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ABSTRACT Whenwill automated vehicles come onto the market? This question has puzzled the automotive
industry and society for years. The technology and its implementation have made rapid progress over
the last decade, but the challenge of how to prove the safety of these systems has not yet been solved.
Since a market launch without proof of safety would neither be accepted by society nor by legislators,
much time and many resources have been invested into safety assessment in recent years in order to
develop new approaches for an efficient assessment. This paper therefore provides an overview of various
approaches, and gives a comprehensive survey of the so-called scenario-based approach. The scenario-based
approach is a promising method, in which individual traffic situations are typically tested by means of virtual
simulation. Since an infinite number of different scenarios can theoretically occur in real-world traffic, even
the scenario-based approach leaves the question unanswered as to how to break these down into a finite
set of scenarios, and find those which are representative in order to render testing more manageable. This
paper provides a comprehensive literature review of related safety-assessment publications that deal precisely
with this question. Therefore, this paper develops a novel taxonomy for the scenario-based approach, and
classifies all literature sources. Based on this, the existing methods will be compared with each other and,
as one conclusion, the alternative concept of formal verification will be combined with the scenario-based
approach. Finally, future research priorities are derived.

INDEX TERMS Automated vehicles, autonomous vehicles, data analysis, formal verification, intelligent
vehicles, key performance indicators, simulation, vehicle safety.

I. INTRODUCTION
According to the World Health Organization [1], more than
one million people died in traffic accidents in 2013. Auto-
mated vehicles (Level 3 and higher according to SAE [2])
are expected to make a significant contribution towards con-
siderably reducing this figure in the future. After investing
much time and many resources in the implementation of
such systems, and due to the existence of various prototypes,
the safety issue has received more and more attention in
recent years. With SAE Level 1 (Driver Assistance) and
Level 2 (Partial Automation), the driver must monitor the
system at all times and intervene immediately in the event
of a system fault. From Level 3 (Conditional Automation)
to Level 5 (Full Automation), safety assessment becomes
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particularly important as responsibility is transferred from the
driver to the vehicle. Consequently, the safety of Automated
Vehicles (AVs) must be thoroughly tested before they can be
launched on the market, which is a challenging task [3]–[5].

Various aspects must be taken into account when assess-
ing the safety of AVs. Firstly, safe functionality must be
ensured (the so-called Safety of the Intended Functional-
ity, or SOTIF), which focuses on an intended function that
could induce hazards due to functional insufficiencies, in the
absence of technical system failures [6]. The other aspect is
ensuring that the intended function, assuming it is proven
safe, does not induce hazards caused by technical failures due
to random and systematic faults in the system’s hardware or
software (functional safety) [7]. The present paper ascribed
to the former aspect of safety assessment mentioned. The
content of this paper can also be classified under Object and
Event Detection and Response (OEDR) by NHTSA [8], [9],
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which is similar to SOTIF but caries a different designation.
OEDR examines whether the vehicle is capable of correctly
detecting objects and events, and of executing an appropriate
response. This must be checked for the entire Operational
Design Domain (ODD) of the system. For the rest of this
publication, the term ‘‘safety assessment’’ is equivalent to the
assessment of SOTIF and OEDR. Additionally, we explicitly
consider only the ODD specified by the manufacturer.

The greatest challenge in safety assessment is that road
traffic is an open parameter space in which an infinite number
of different traffic situations can occur. Absolute proof of
safety is therefore not possible, but research is being carried
out around various methods, in order to be able to provide
the soundest evidence about the system’s safety. Research
into this issue started with Advanced Driver Assistant Sys-
tems (ADASs) where, e. g. [10] gave an overview of ADAS
testing methods in 2015. As early as 2016, Huang et al. [11]
wrote a short overview of AV test methods, the extent of
which was deemed to be unsatisfactory, and which, due to the
rapid development in this field, no longer reflected the current
state of the art. An overview of the properties of different
safety validationmethodswas published by Junietz et al. [12]
in 2018. There, the evaluation of the properties is strongly
emphasized. However, a comprehensive literature review,
similar to the one included in the present paper, is not
provided.

Due to the enormous interest in a rapid market introduction
of AVs, a large number of publications dealing with the AV
safety validation have been published in recent years. Most of
them examine scenario-based testing, and therefore we focus
strongly on this approach, which is described in more detail
in Section II-B.1. The main contributions of this publication
are:
1) An integration of the scenario-based approach into the

overall field of safety assessment
2) The definition and clarification of a taxonomy for

scenario-based safety assessment
3) A comprehensive literature review of approaches on

how to define and select scenarios for the scenario-based
approach as well as for formal verification (mainly from
2016 to the present)

4) A comparison of different methods
5) The deduction of necessary research directions for the

future
This publication does not focus on standardization activ-

ities that can be considered as development guidelines for
manufacturers. Examples are the activities of ISO/TC 221 and
the P.E.A.R.S. initiative [13], [14]. Also beyond the scope
of this publication are efforts to develop regulations for the
type approval of AVs (e. g. UN-ECE WP.292). Nevertheless,
there is a connection between these topics and the content
of this paper, because the approaches presented are to be
regarded as the basis for the development of regulations

1https://www.iso.org/committee/46706.html
2https://www.unece.org/trans/main/wp29/introduction.html

and standards. For a more comprehensive overview on the
topic of regulations and standards, interested readers are
referred to [15]–[18].

II. SCENARIO-BASED SAFETY VALIDATION
This chapter first introduces the most important terms
and differentiates the scenario-based approach from other
safety assessment approaches. Thereafter, a taxonomy for the
scenario-based approach is presented and explained.

A. TERMS AND DEFINITIONS
We start by introducing some key terms, so that a common
understanding for this survey paper can be built.

1) SCENARIO TERMINOLOGY
The core methodology of this paper is the scenario-based
approach (Section II-B.1) for the assessment of the safety
of AVs. It is therefore important to have a common under-
standing of the term ‘‘scenario’’. In the context of our paper,
we use the definition according to [19], which states that
a scenario is a temporal sequence of scene elements, with
actions and events of the participating elements occurring
within this sequence. ‘‘Actions and events’’ in this respect
mean, for example, maneuvers like cut-ins and following a
vehicle ahead. Based on this, [20] defines three different cate-
gories of scenarios. These are the so-called functional, logical
and concrete scenarios. The level of detail and the machine
readability increases, beginning with a verbal description of
the functional scenarios, continuing to the logical scenarios
defined by parameter ranges and distributions, and through
to the concrete scenarios defined by exact parameter values.

For logical and concrete scenarios, all parameters that
describe the scenario are required. For this purpose,
a five-layer model is presented in [21] to structure the param-
eters. The five layers are as follows:

Layer 1: Road-level
Layer 2: Traffic infrastructure
Layer 3: Temporary manipulation of L1 and L2
Layer 4: Objects
Layer 5: Environment

Sauerbier et al. [22] supplement this layer in the form of
a sixth layer (digital information), but as the latter hardly
appears in the current literature review, we will use the
five-layer model for the remainder of the paper. In order to
describe the scenarios uniformly and thus efficiently integrate
them into different simulation environments, standards are
developed for their description. For the description of static
elements, OpenDRIVE3 is standardized by ASAM, and for
dynamic elements, OpenSCENARIO.4

Since these definitions were developed and used in the
PEGASUS project [23], and are therefore already known to a
large part of the community, these definitions are also used in
this paper. However, there is not yet a common understanding

3https://www.asam.net/standards/detail/opendrive/
4https://www.asam.net/standards/detail/openscenario/
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of all terms. For example, scenarios are the central element,
but there is no common understanding about the duration of a
scenario. In the authors’ experience, such duration is typically
of around 10 seconds.

2) MICROSCOPIC AND MACROSCOPIC ASSESSMENT
For the launch of AVs on the market to be socially accepted,
it is crucial that they have a lower accident probability than
human drivers [24]. In order to be able to make such a
macroscopic (statistical) statement about the overall impact
of AVs on traffic, a vast amount of data must be made avail-
able. Especially in scenario-based safety assessment, on the
other hand, individual traffic situations (scenarios) are tested
and evaluated. The evaluation of a single scenario is called
microscopic evaluation. These definitions of microscopic and
macroscopic evaluation are based on [25, Sec. VII]. The tran-
sition from a microscopic assessment of a single scenario to a
macroscopic assessment of safety is one of the key challenges
of the scenario-based approach.

3) TESTING, FALSIFICATION AND VERIFICATION
In 2016, Kapinski et al. [26] presented a comprehen-
sive overview of simulation-based approaches for assessing
embedded control systems, and especially cyberphysical sys-
tems. They distinguish between three general techniques:
testing, falsification and verification. Since AVs belong to
cyberphysical systems, we use this classification as a starting
point for our survey.

Suppose there is a model M of the AV that shows the
driving behavior 8 and requirements ψ for the safety of
the AV. The model has internal parameters p ∈ P and external
inputs in the form of a concrete scenario u ∈ U . In accor-
dance with the scope of the survey paper and the references
therein, the following definitions focus on the ODD / scenario
space U , but can also be extended to the model parameter
space P.
Testing means determining whether the safety require-

ments are satisfied for a finite set of concrete scenarios Û :

check 8(M , p, Û ) |H ψ for Û ⊆ U . (1)

Falsification is relatively similar to testing, but instead looks
for one concrete scenario u where the AV model violates the
requirements. Formally speaking, falsification means to

find u ∈ U so that 8(M , p, u) 6|H ψ. (2)

Even if the model behavior satisfies the requirements in all
test scenarios, or no counterexample could be found in the
falsification process, safety still cannot be guaranteed across
the whole ODD. Formal verification can provide this proof
of correctness, but currently lacks scalability to complex
systems. Ultimately, verification means to

prove 8(M , p,U ) |H ψ for U . (3)

B. SAFETY-ASSESSMENT APPROACHES
There are multiple approaches available for assessing the
SOTIF- or OEDR-related capabilities of AVs. We focus in
our paper on the scenario-based approach because it is a
very promising method in the current state of the art in sci-
ence and technology. Nevertheless, since the scenario-based
approach is not the only way to assess safety, we also briefly
describe alternatives, as shown in Figure 1, and highlight
the differences. In general, each of these approaches can be
used to assess AVs. In the scenario-based and function-based
approaches, a microscopic statement about the safety of the
system is first made, which must then be transferred to a
macroscopic statement. All other approaches result directly
in a macroscopic statement.

FIGURE 1. Overview of safety-assessment approaches, with a focus on
formal verification and especially the scenario-based
approach. Additionally, we highlight the three techniques (outlined in
red) from Kapinski [26] from Section II-A, with testing and falsification as
scenario-selection methods for the scenario-based approach.

1) SCENARIO-BASED APPROACH
By definition, a scenario is a sequence of actions and events.
For example, if we consider a typical journey on a high-
way, there is a significant amount of time in which no
actions or events occur. The scenario-based approach, which
is also used in large research projects (e. g. in Germany [23],
Japan [27] and Singapore5), omits the part without signif-
icant actions and thus reduces the test scope. In addition,
common scenarios, like cut-in situations with large rela-
tive distances and a higher velocity of the leading vehi-
cle, which do not provide any relevant information for the
safety validation process, can be disregarded. Nevertheless,
the issue remains unresolved as to hich scenarios need to
be considered in scenario-based testing, and how these can
be found. This is the central issue addressed in the liter-
ature review presented here. According to the definitions
given, testing and falsification are techniques for the selection
of concrete scenarios (u). Therefore, we later distinguish

5http://cetran.sg/
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in our scenario-based taxonomy between testing-based and
falsification-based scenario-selection methods.

2) FORMAL VERIFICATION
According to the definition given, verification is a mathemat-
ical method by which the safety of systems can be formally
proven across the whole ODD (U ). It is not a selection tech-
nique to partition the space into scenarios, and is therefore
not part of the scenario-based approach. As our conclusion
(Section VIII-C) of this paper, we see a combination of
the scenario-based approach and verification as a promis-
ing approach to efficiently demonstrate the safety of AVs.
Therefore, the most important papers in this area are briefly
introduced in section VII.

3) FUNCTION-BASED APPROACH
In function-based testing, system functions are defined
based on requirements, and then tested on the test track
or in simulation. This is a widely used procedure for
ADAS. Current ISO standards (e. g. ISO 15622 for Adaptive
Cruise Control) and UN ECE regulations (e. g. UN ECE
R131 for Advanced Emergency Braking Systems) follow a
function-based approach and define a few fixed tests for the
individual systems, which confirm the basic functionality of
the latter.

In order to use the function-based testing method, the func-
tionalities of the system have to be defined. This works for
ADAS but is difficult for AVs, because it is impossible to
define the required functionality of AVs in every conceivable
situation.

Additionally, future standards and regulations should not
use a small set of predefined standardized scenarios to
test AVs, because this would lead to a performance opti-
mization towards these test cases. Then the assessment result
might not correspond to the real driving behavior of the
system.

4) REAL-WORLD TESTING
A solely distance-based evaluation of safety resulting from
field tests is no longer economically feasible at higher levels
of automation. In order to be able to state with sufficient
confidence that the AV is outperforming humans by a defined
factor, according to [28] 11 billion miles would have to be
driven in the USA. In this context, outperforming means that
fewer fatal accidents occur. Analogous statistical considera-
tions exist for Germany, where [29] conclude that a highway
chauffeur needs about 6.6 billion test kilometers.

Real world testing is the standard at low levels of automa-
tion, but from Level 3, the required scope increases to such
an extent that it is no longer economically feasible.

5) SHADOW MODE
Wang and Winner [30] present a method, whereby the auto-
mated driving function is executed passively in series produc-
tion vehicles, which is sometimes known as shadow mode.
The driving function is provided with the real inputs of

the sensors, but cannot access the actuators of the vehicle.
Simulation can be used to evaluate the decisions of the auto-
mated driving function and thus determine the safety level.
The same approach is used by car manufactures, e. g. Tesla6

to test new systems, and new versions of existing systems.
One major disadvantage, however, is that the behavior of

the possible conflict partner (other road users) in the simula-
tion does not correspond to reality, because other road users
also plan and execute their actions based on the actions of
the AV. If the passive driving function in a situation decides
differently than the actual (active) driving function in the
vehicle, then perhaps another road user would have decided
differently, and the results of the simulation have only limited
validity.

6) STAGED INTRODUCTION OF AVs
The idea is to limit the ODD of the vehicle and thus the
number of traffic situations that occur, to the extent that a
safety assessment based on real world testing can be carried
out in an economically feasible way. A severely limited ODD
would be, for example, driving on a certain section of a road
of a few hundred meters or a few kilometers, only under good
visibility conditions. In addition, a trained safety driver is part
of the safety concept, who can intervene immediately if the
systemmakes incorrect decisions. If the vehicle is assessed as
safe in this ODD, the ODD can be gradually increased and/or
the safety driver can be omitted. Many system manufacturers
apply this procedure, mainly in China and the USA. The most
recent example is Daimler and Bosch,7 who are testing their
systems in San Jose, California, on a defined section of road.

For the introduction of Level 4 vehicles in a selected down-
town area, this procedure can be very promising. In practice,
however, it is not suitable for the validation and approval of
Level 5 systems.

7) TRAFFIC-SIMULATION-BASED APPROACH
The concept of traffic simulation is not only to simulate a
single scenario, but a whole road network with hundreds
of road users (so-called agents). This method is therefore
particularly well suited for making a macroscopic statement
about the safety of AVs.

Therefore, Kitajima et al. [31] develop a multi-agent simu-
lation to estimate the impact of AVs. Hundreds of road users
(vehicles and pedestrians) are simulated several times in a
6 km× 3 km road layout in a Japanese city, over a total of
80 000 km. In various simulations, the degree of automation
of the vehicles is gradually increased up to Level 4, starting
with purely Level 0. Their results show that the number of
accidents for the area under consideration decreases from
859 for purely manual driving to 156 accidents at the high-
est considered automation level (25 Level 2 and 75 Level
4 vehicles).

6Tesla Autonomy Day: https://www.youtube.com/watch?v=
Ucp0TTmvqOE at 2:55:43

7https://www.daimler.com/innovation/case/autonomous/pilot-city-san-
jose.html
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FIGURE 2. Taxonomy of the scenario-based approach. The taxonomy elements reflect a process from left to right.

The introduction of AVs will also change the traffic on
our roads. According to [32], this must be taken into account
in the safety assessment, by analyzing the change in the
frequency of occurrence of scenarios via agent-based sim-
ulation. According to the authors, a shift in frequency of
occurrence in combination with a change in the severity of
damage of scenarios will impact their relevancy.

Saraoglu et al. [33] demonstrate a framework called
MOBATSim for the analysis of traffic safety, including AVs,
with a focus on the Fault-Error-Failure chain. Thereby, errors
such as inaccurate sensor data can be injected and their influ-
ence on the safety of the system can be investigated. Thus,
the effect of component failures / inaccuracies on the overall
traffic safety can be investigated.

The traffic-simulation-based approach can be used to
increase the efficiency of the staged introduction of AVs
because the whole ODD can be rebuilt in the traffic simu-
lation. For Level 5 systems, this is no longer feasible.

C. TAXONOMY OF THE SCENARIO-BASED APPROACH
Much literature published recently on the scenario-based
approach deals with the question of how to find the set of rep-
resentative scenarios for the scenario-based approval of AVs.
However, the literature is quite diverse. The individual ref-
erences uncover different strategies and contribute to one or
more aspects within the scenario-based approach. Therefore,
we developed the taxonomy in Figure 2, which is abstract
enough to cover and categorize most approaches, but still
reflects the workflow of the scenario-based approach, even
for large frameworks [23], [27]. We will refine the taxonomy
as the text progresses and place all references within it.
If an overlap is detected for an individual reference, we will
mention it in the text. In general, the assignment of references
is not always unambiguous. Therefore we try to identify the
main aspect of the reference and categorize it according to
this.

The scenario database is the central element in the tax-
onomy. According to the definition used in this paper,

the database is just a storage container for all scenario cat-
egories. The processing methods are placed externally, and
scenarios inserted into the database or scenarios taken from it.
The scenario generation/extraction methods use information
from different sources to derive different categories of sce-
nario. Their main aim is to fill the database with many scenar-
ios. On the right-hand side of the database, concrete scenarios
are selected based on the database, typically forwarded to a
simulation tool-chain for execution, and finally assessed for
safety.

We will give a short summary of each block of our taxon-
omy in order to start from a common understanding. Addi-
tionally, we have identified the scenario generation as well as
the scenario selection as the most important research topics
from a methodological point of view. Therefore, the methods
highlighted in red in Figure 2 are described in more detail in
Sections III to VI.

1) SOURCES FOR SCENARIOS
Initially, information sources are available which should be
used as a basis for the scenario methodology. The informa-
tion can be in the form of abstract knowledge from experts,
standards and guidelines, like the German guidelines for the
construction of highways [34] and consumer tests, or in the
form of driving or accident data.

Another source of information is data from real world
driving (e. g. field operational tests). A prerequisite for the
generation of scenarios from driving data is a data set that is as
comprehensive as possible. Many institutions and companies
have their own, non-accessible data sets, but in recent years,
publicly accessible data sets have increasingly been made
available by various organizations. An overview of available
data sets can be found in [35], [36]. Zhu et al. [37] also show
an overview of data sets and try to unify them.

Krajewski et al. [38] show a novel method for recording
real driving data. Here, traffic is recorded with the help of
a drone, and the trajectories of the individual road users are
extracted from the images using computer vision. This entails
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the advantages that no complex and cost-intensive test vehi-
cles with comprehensive sensor technology have to be set up,
and that the traffic is not affected by the measurement.
However one disadvantage of the presented method is the
comparatively small section of about 400 meters that can be
recorded by the drone, which is a limitation especially when
extracting highway scenarios.

2) SCENARIO GENERATION/EXTRACTION
On the one hand, we present knowledge-based approaches
in Section III, which take the abstract information from e. g.
experts and generate scenarios from it, and on the other hand
data-driven approaches in Section III, which extract scenarios
from recorded data sets.

3) SCENARIO DATABASE
For scenario-based testing, a database with test scenarios is
the central element. Due to the number and high dimension
of the scenarios, an efficient description and storage of the
scenarios is essential. Within the PEGASUS project [23],
a database with relevant scenarios for the ODD highway is
created [39], [40]. The focus is on a standardized interface
for reading in different data sources and processing them into
a machine-readable format. A further framework for creating
a database, called the Testing Scenario Library, is described
in detail in [41], [42]. They also use the definitions for the
different scenario types from the PEGASUS project. Another
approach to building a scenario database can be found in [43].
Althoff et al. [44] introduce the Commonroad framework,
including not only scenarios but also models and cost func-
tions, ni order to fully reproduce experiments for evaluating
motion planners.

4) SELECTION OF CONCRETE SCENARIOS
In Section V and VI we will distinguish between scenario-
selection approaches, focusing on covering the parameter
space with test cases, and approaches focusing on challenging
corner cases to find counterexamples. This partitioning is in
line with the definitions given for testing and falsification in
Section II-A.3.

5) SCENARIO EXECUTION
Different testing environments are available for the execu-
tion of the selected concrete scenarios. These can either be
performed in the real world via field or proving-ground tests,
or using a different degree of virtualization via X-in-the-Loop
(XIL) simulation [45]. Since the latter has many advantages
regarding e. g. costs, expenditure and safety risks, almost
all references use simulation for their proof of concept.
There are many commercial and free simulators on the
market, as well as simulation frameworks developed in the
literature [46], [47].

6) AV ASSESSMENT
In Figure 2 we distinguish between microscopic and macro-
scopic safety assessment according to the definitions given

in Section II-A.2. In order to evaluate safety within a micro-
scopic assessment, Key Performance Indicators (KPIs) are
needed. Since accidents are rare events, it is beneficial to use
criticality metrics as KPIs. The most well-known of these is
the Time-to-Collision (TTC) of [48]. There are also many
variations of it, for example in [49]–[51]. An overview of
criticality metrics can be found in [52]. Hallerbach et al. [47]
introduce four domains of interest to evaluate the criticality
within different spatial areas around the AV. The number
of critical situations and accidents occurring in the micro-
scopic assessment can be used for transition to a macroscopic
assessment.

The testing-based and the falsification-based scenario-
selection methods are both able to assess the safety micro-
scopically for each scenario. The testing-based methods
(Section V) focus more on covering the scenario space,
whereas the falsification-based methods (Section VI) focus
more on finding corner case scenarios. Selecting corner cases
is indeed a very efficient way of finding counterexamples,
but it is not well suited to a macroscopic assessment. The
coverage-based testing approaches include a broader rep-
resentation of real traffic behavior, and are therefore more
suitable for transferring the microscopic results to a statis-
tical macroscopic statement using the parameter distribu-
tions (exposure) of microscopically assessed scenarios.

III. KNOWLEDGE-BASED SCENARIO GENERATION
The knowledge-based approach uses abstract information to
create functional, logical or even directly concrete scenarios
for the database, as per Figure 3.

FIGURE 3. Knowledge-based scenario generation.

Besides standards and guidelines, expert knowledge can
be used as a source for scenarios. Ontologies are a widely
used method for storing and structuring expert knowledge.
Therefore, the focus of knowledge-based scenario generation
in this publication is on the use of ontologies.

Geyer et al. [53] initially proposed a fundamental ontology
for AV guidance, and this forms the basis for many of the
following references.

Bagschik et al. [21] use an ontology for the knowledge-
based creation of scenes specifically for German highways,
and include all five layers of their five-layer model. Accord-
ing to the authors, the advantage of using ontology as a knowl-
edge base is that it is not necessary to check the resulting
comprehensive scene catalogue, only the knowledge base
itself. If, for example, different lane markings are defined in
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the ontology, it is ensured that the catalog contains scenes
with the different markings.

Chen and Kloul [54] combine three ontologies as a
knowledge base for the generation of motorway scenarios:
a motorway, a weather-based and a vehicle ontology, each
connected by relations and effects. Furthermore, traffic rules
are expressed as first-order logic. However, according to the
authors, the representation of time dependency is still missing
in their implementation.

Graz University of Technology [55]–[57] developed an
ontology-based framework for the simulation-based testing
of AVs. The developed process consists of three steps. First,
an ontology is built and used as a input for combinatorial
testing (Section V) in the next step. The generated scenarios
are automatically transferred to a simulation environment
and executed there. In their publications they apply their
process with three ontologies, which differ in size and com-
plexity. They also compare two algorithms for converting
the ontology into an input model for combinatorial testing.
According to the authors, their approach enables an industrial
application.

FIGURE 4. Data-driven approach to generate scenarios.

IV. DATA-DRIVEN SCENARIO EXTRACTION
For the data-driven generation of scenarios according to
Figure 4, there are a multitude of different approaches
in the literature, which typically use machine-learning or
pattern-recognition methods. There are extraction methods
that directly filter concrete scenarios without any assignment
to predefined logical scenarios or similar clusters. These
methods can typically detect novelties in existing data, and
sometimes even generate new concrete scenarios, for exam-
ple with generative neural networks. Alternatively, scenario
clustering and classification methods can group the data to
also obtain concrete scenarios, but with a kind of group
membership. In scenario clustering, the groups are similar
clusters and the assignment is made in an unsupervised learn-
ing fashion, whereas in scenario classification, the groups
are predefined logical scenario classes and the assignment is
made in a supervised learning fashion. This has the advan-
tage that the classified data can be used subsequently to

describe the parameters of a logical scenario by ranges or
even distributions.

A. EXTRACTION OF SPECIAL CONCRETE SCENARIOS
Amethod for evaluating the uniqueness of a concrete scenario
is presented by [58]. The authors use the time signals of a sce-
nario as an input for an autoencoder. According to the authors,
by compressing and reproducing the time signals using the
auto-encoder, the reproduction error can be used as a novelty
indicator of a scenario. This means a high reproduction error
is an indication of a rare scenario. The approach can be
used to fill a database with representative concrete scenarios.
The authors were able to perform an exemplary validation.
A global validation of this procedure could however not be
shown.

For the authors of [59], so-called corner cases constitute
particularly challenging scenarios. In their publication, they
consider it as particularly challenging if an object in a position
relevant to the driving task cannot be predicted, or only poorly
so. The detection of such cases can be performed offline as
well as online while driving using camera data. This is done
in three steps. First, relevant objects are detected by semantic
segmentation. The behavior of the objects in the next time
step is predicted using artificial intelligence. In the last step,
corner cases are detected by means of a threshold exceeding
the deviation between the prediction and the actual behavior
of the objects.

Krajewski et al. [60] use generative neural networks to
model maneuver trajectories from recorded data and to gen-
erate new trajectories from them. They compare an extension
of the Generative Adversarial Network (GAN) with an exten-
sion of the Variational Autoencoder (VAE). By varying the
values of the model input parameters, the network can fill a
scenario database with many concrete scenarios. Similarly,
[61] use Recurrent Neural Networks (RNNs) tomodel driving
data as a sequence and to generate new concrete scenarios
from it.

Jesenski et al. [62] focus on the variation of the road topol-
ogy and the position and speed of road users (Layers 1 and 4
of the five-layer model [21]) for scenes. Using Bayesian
networks, they model complex road layouts including the
relationships between individual road sections. The network
is trained on the basis of a real data set and, according to
the generated results, it reflects the traffic conditions of the
data set. However, this approach can currently only be used
to generate scenes and not scenarios, which the authors intend
to address in their future work.

B. SCENARIO CLUSTERING
Kruber et al. [63] and Kruber et al. [64] apply an unsu-
pervised clustering technique to find similar situations from
measurement data, and group them into clusters. If new mea-
surement data is added, the data is assigned to the existing
clusters if they exceed a defined similarity. Otherwise, a new
cluster is created for the new measured data.
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Watanabe et al. [65] define a mixed similarity measure to
quantify the distance between scenario signals of different
types and to quantify the cluster centrality. Based on the
distance and centrality measure, they compare the approx-
imate k-covers algorithm as a Hierarchical Agglomerative
Clustering approach with the Partitioning Around Medoids
of k-medoids as a Partitional Clustering approach.

Wang and Zhao [66] introduce a four-step approach. In the
first step, they extract scenario primitives from time series
data without prior knowledge. In the second step, they cluster
the primitives and therefore generate primitive templates.
They address both steps with a non-parametric Bayesian
learning method – a sticky, hierarchical, Dirichlet-process
Hidden-Markov-Model. In the last two steps, they plan to
model dynamic stochastic relations between the template
sets, and sample from them in order to select new concrete
scenarios (Section V).

C. SCENARIO CLASSIFICATION
The definition of logical scenarios based on a potential colli-
sion direction between the ego-vehicle and another vehicle is
the subject of [67]. This methodology is developed especially
for highway scenarios and can also include boundary condi-
tions, such as an action restriction for the ego-vehicle due to
other road users. The presented method can thus be seen as
a preliminary stage for classification (and also clustering) of
real driving data.

The extraction of concrete scenarios from real driving data
and their assignment to one of the eight considered categories
of logical scenario is shown by [68]. Only parameters of
dynamic objects (Layer 4 of the five-layer model [21]) are
considered. In their work, the authors use synthetic data with
available class labels for training and real data for testing
classification algorithms. They achieve the best results with
supervised learning methods.

The classification of scenarios from real driving data on
motorways and country roads especially, for a Lane-Keeping
Assist system is presented by [69] using an end-to-end
Deep Learning approach. With the help of Convolutional and
Recurrent Neural Networks (CNNs and RNNs, respectively),
the scenarios are assigned to one of the 13 considered sce-
nario classes based on ten different sensor channels, which
corresponds to the definition of logical scenarios. The devel-
opedmethod can be applied online as well as offline, and their
results show that CNNs have a higher accuracy.

Gruner et al. [70] represent scenarios in spatiotemporal
grid-maps. They address Layer 4 of the five-layer model [21]
and aggregate the information regarding all objects within a
grid-map, independent of the number of objects. The grid
cells without objects are just empty (white pixels). This
represents a large difference compared to the time-series
representation, where each object requires its own time series.
In return, several maps are needed for the time component,
and generally for several channels. They distinguish three
types of grid-maps. The Velocity Grid (VeG) consists of
three grid-maps for the channels occupancy, longitudinal and

lateral velocity. The Stacked Velocity Grid (SVeG) consists
of six grid-maps: the three VeG maps, multiplied by two
points in time. The History Grid (HiG) consists of the three
VeG maps, but incorporates the time component into the
occupancy map via a fading effect of gray pixel values. For
classification, they use a CNN and show that it currently
works best with the SVeG representation.

Dávid et al. [71] use artificial intelligence for the online
determination of the current risk and classification of the
current driving situation. The focus of the authors is on the
methodology, and the classified situations are not further used
for the safety assessment.

Bach et al. [72] propose a two-step approach to derive a test
set from recorded data. The first step partitions scenarios into
categories based on the system requirements, and pre-selects
the scenarios from the partitions using a classification-tree.
In the second step, they reduce the amount of scenarios by
analyzing them with a coverage criterion and 2D histograms,
and by discarding repetitive scenarios.

D. SCENARIO PARAMETERIZATION
Hartjen et al. [73] address multiple steps of our taxonomy at
a high level, with an initial proof of concept at an intersection
scenario. They define a maneuver catalog for urban vehicular
traffic. They extract the maneuvers from data based on a sim-
ple rules-based classification. They parameterize the object
trajectories with Bezier splines, and learn the parameter dis-
tributions from the data. Finally, they sample new trajectories
from the distributions in order to select concrete scenarios
(Section V).

Zhou and del Re [74] model a lane-change with a hyper-
bolic tangent function and parameterize it with data fromfield
tests. They conclude that the tail of the parameter distribu-
tions can be taken to assess rare critical scenarios (Section VI)
and that the common driving behavior focusing on scenario
coverage can be used to determine the safety boundary of the
AV (Section V). This is in line with our proposed framework.

Zofka et al. [75] use a particle filter to estimate scenario
parameters from field data. They modify the object trajecto-
ries with small spatial and temporal translations to select new
scenarios and preserve the plausibility of the original scene
(Section V).

de Gelder and Paardekooper [76] use Kernel Density Esti-
mation to fit a distribution to the parameters from real-life
scenarios. Sampling from the distributions via Monte Carlo
simulation techniques, they are able to ensure that the
assessed safety level corresponds to the real safety level
(Section V). Using Importance Sampling, they are able to
generate new scenarios that are particularly critical. The
authors demonstrate the applicability of the method by means
of the evaluation of an ACC system.

deGelder et al. [77] examine howmany scenarios from real
data are needed to completely describe the parameter ranges
of the activity ‘‘braking’’. For this purpose, the probability
density function (PDF) of the parameters of the activities is
determined by kernel density estimation (KDE).
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V. TESTING-BASED SCENARIO SELECTION
What the testing-based approaches for scenario selection
have in common is that they sample a subset of concrete
scenarios for the microscopic assessment of safety in each
individual scenario, and offer the possibility of aggregating
the individual results into a macroscopic assessment. Within
this section, we distinguish between two types of sampling
as shown in Figure 5. Either samples are generated within
parameter ranges specified by minimum and maximum val-
ues, or from parameter distributions. The latter contains the
probability of occurrence (exposure) of the scenarios and
therefore allows a weighting of the results for a true statistical
macroscopic statement about the accident probabilities. The
former intends to cover the entire parameter range, neglecting
the significance of the scenarios in real world, and therefore
allows just an overall statement to be made, based on the
coverage.

FIGURE 5. Testing-based scenario selection.

A. SAMPLING WITHIN PARAMETER RANGES
N-wise sampling is a standard technique where all possible
combinations of the parameters are considered. It is only
applicable with a coarse discretization of the parameters and
for comparable simple systems like SAE Level 1 functions,
e.g. Lane-Keeping Assistants [78].

Beglerovic et al. [79] use an interactive Design of Experi-
ments (DoE) procedure to generate concrete cut-in scenarios.
They identify the system behavior and model it via a robust
neural network. After an initial test design, the data-driven
model is used for the purpose of optimization within the
interactive DoE, in order to generate more concrete scenar-
ios in the area of interest (Section VI-D). They analyze the
criticality using KPIs, time plots and Pareto fronts.

An automated framework for regression testing is pre-
sented by [80], whereby parameter variations of roads, static
and dynamic objects and also of environmental conditions are
automatically created and combined. To make sure that all
scenarios are physically reasonable, a modified In Parameter
Order Generalized (IPOG) algorithm using a nonrecursive
backtracking algorithm is used, in combination with a tra-
jectory planner. According to [80], the algorithm works as
intended, but needs to become more efficient in the future.

Kim et al. [81] generate road networks based on Satisfiabil-
ityModulo Theories (SMTs). They define curve coverage cri-
teria and several constraints, and use an SMT-solver to either

generate multiple road segments from a single criterion, or to
directly generate the road network from multiple criteria.
They further develop the approach in [82]. Majzik et al. [83]
monitor the AV behavior using Signal Temporal Logic (STL)
for the purpose of assessment at the system level. They
investigate coverage of an existing test suite with respect to
regulations from safety standards, and derive new challeng-
ing test cases by increasing coverage with graph generation
techniques. Khastgir et al. [84] generate concrete scenarios
by applying randomization techniques to the cut-in point of
a traffic vehicle and to the brake and accelerator pedal values
of the AV.

Huang et al. [85] focus on surrounding vehicles and create
logical scenarios using the example of a Level 2 vehicle.
New logical scenarios are created by adding surrounding
vehicles, and by varying their parameters such as the starting
position and speed, as well as the lateral and longitudinal
behavior in the course of the scenario. The combination of
these parameters results in a large number of different con-
crete scenarios, which is why the number is reduced via a
assessment of the Scenario Importance. Here it is examined
to what extent an action of a surrounding vehicle restricts the
desired behavior of the ego-vehicle. If the influence is large,
the Scenario Importance is large and vice versa. All scenarios
with a Scenario Importance lower than a threshold value are
not considered further. The method is implemented using a
curve scenario as an example.

Xie et al. [86] present a similar approach, which is imple-
mented in three scenarios (curve, following and lane-change).
Zhou and Re [87] also focus on surrounding traffic partici-
pants and create a structured test catalogue for an Adaptive
Cruise Control (ACC) based on the number of participants
and their abstract behavior, which according to the authors is
sufficient to obtain a sufficient coverage of critical scenarios
from real driving data.

Althoff and Dolan [88] use rapidly exploring random
trees (RRTs) as a motion-planning algorithm to generate
trajectories, in order to check the results of a reachability anal-
ysis (VII). They test whether the reachable set of a high-order
model is within the reachable set of a low-order model, so that
the latter can be used for inexpensive computations. RRTs are
impressive due to their good coverage of the state space, yet
still guiding the simulation such that uninteresting simulation
traces are abandoned (Section VI). Tuncali and Fainekos [89]
determine the boundary scenarios where the transition from
safe driving to a collision occurs. They define a custom cost
function for the RRTs based on the collision surface, velocity
and TTC.

B. SAMPLING FROM PARAMETER DISTRIBUTIONS
Monte Carlo (MC) is a standard technique for sampling from
parameter distributions. Since most of the scenarios are not
critical for AVs, MC sampling is inefficient. Therefore, most
of the paper introduces accelerated approaches approaches
which use ExtremeValue Theory and can be compared toMC
sampling as the baseline.
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An accelerated approach using Extreme Value Theory is
presented by Åsljung et al. [90], [91]. Based on real data and
a criticality metric, the safety level of the system is predicted
using near misses. They note that the prediction depends con-
siderably on the criticality metric used. Their results in [91]
show that the Brake Threat Number is a promising criticality
metric. According to them, this approach requires 45 times
less measurement data than a statistical approach.

Zhao [92], Zhao et al. [93], and Zhao et al. [94] develop a
statistical model of the behavior of road users based on real
data. Subsequently, the behavior is modified in such a way as
to provoke more intensive and critical interactions between
the automated vehicle and those surrounding it. In addition,
Importance Sampling Theory is used to ensure the accuracy
of the method. According to them, a safety assessment that
is between 300 and 100 000 faster than real-world testing is
possible. The method is applied in an exemplary manner for
the logical scenarios cut-in and car-following. These publica-
tions form the basis for further ones of their research group
in the next paragraph.

Huang et al. [95] use PiecewiseMixture DistributionMod-
els to model the behavior of the vehicles. The procedure is
carried out in an exemplary cut-in situation. They show that
this method is 7000 times faster than the crude Monte Carlo
method. In [96], [97] the accelerated assessment is performed
with a sequential learning approach based on kriging models.
Here, a heuristic simulation-based gradient descent procedure
is used iteratively to find the best scenario that maximizes
an information criterion regarding the accuracy of the con-
flict probability. According to them, the procedure is more
efficient than the random selection of test scenarios, but no
quantitative statement is made. There is similar work from
Huang et al. [98], Huang et al. [99], Huang et al. [100], and
Huang et al. [101], [102] as well as from other members of
their research group [103], [104].

There are further publications by other authors who also
use Importance Sampling [105]. Wang et al. [106] combine
their Importance Sampling-based accelerated approach with
a Reachability Analysis (Section VI) and apply the approach
to the functional scenario of a pedestrian crossing. The advan-
tage of the presented method is that all generated scenarios
are physically feasible and therefore realistic.

An accelerated method without making a quantitative
statement about the overall risk level is presented by [107].
Analogous to the accelerated methods, the parameter distri-
butions are determined on the basis of real data. In addition,
a traffic risk index is used to evaluate the scenarios with
the corresponding parameters. Subsequently, it is possible
to define more critical scenarios automatically with the help
of Markov Chain Monte Carlo sampling. A reverse calcula-
tion of the tested scenarios back to an overall safety state-
ment – as occurs with the accelerated procedures – is not
performed.

Olivares et al. [108] focus purely on Layer 1 (road topol-
ogy) of the five-layer model [21]. The authors develop a road
generator that generates road geometry using the Markov

Chain Monte Carlo method. The necessary parameter distri-
butions are extracted from OpenStreetMap.

Åsljung et al. [109] highlight the influence of the dis-
cretization of the states of traffic participants in the calcula-
tion of criticality metrics. The movements of other road users
are predicted using aMarkov chainmodel, and the probability
of a future collision is calculated. The authors conclude that
the discretization of the states has a significant influence on
the resulting error of the criticality metric.

FIGURE 6. Falsification-based scenario selection. Dashed and solid
arrows have the same meaning and provided for the sake of better
legibility.

VI. FALSIFICATION-BASED SCENARIO SELECTION
The aim of the falsification approaches is to find counterex-
amples violating the safety requirements during microscopic
assessment. According to Figure 6, they either take exist-
ing concrete scenarios from the database, or simply logical
scenarios with parameter ranges. One option for scenario
selection is to use an accident database. Another is to take an
exemplary concrete scenario and increase its criticality. The
third option is to take a logical scenario and find critical sce-
narios within the defined parameter ranges of this logical sce-
nario. Instead of increasing criticality directly, the probability
of finding a counterexample can also be increased by increas-
ing the scenario complexity. Finally, Section VI-D introduces
simulation-based falsification. This is distinguished by an
additional feedback loop and can therefore use the assessment
results of the simulation for optimization to select the next
concrete scenarios. In contrast to the database, which mainly
consists of fleet data, this is actual data from the vehicle under
test.

A. SCENARIOS FROM ACCIDENT DATABASES
The use of accident data as a basis for test scenarios arises
from the safety assessment of driver assistance systems.
These driver assistance systems are permanently monitored
by the driver and therefore have to perform well (from a
safety point of view) only in those cases where the human
driver shows insufficient performance, which would lead to
accidents.

Various publications deal with the definition of test sce-
narios from accident data, focusing on different aspects.
Stark et al. [110] and Stark et al. [111] use the GIDAS
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accident database to investigate which requirements have to
be met by automated systems in order to avoid as many
accidents as possible (with a focus on urban areas). A com-
parable procedure is carried out by [112] for a motorway
chauffeur. Fahrenkrog et al. [113], on the other hand, use
accident scenarios as a basis for a simulation-based variation
of parameters, in order to be able to make a more general
statement about the accident-avoidance potential of the sys-
tem. The derivation of representative logical scenarios from
an extensive accident database is carried out by [114] using
Big Data techniques.

The exclusive use of accident data does not correspond to
a safety assessment of an AV (Level 3 and higher), because
accident data only investigates which accidents can be
avoided by the system, but does not indicate which accidents /
risks will occur in the future due to the system.

B. CRITICALITY-BASED SELECTION
In [115] a method is presented with which the risk of real
traffic situations can be efficiently determined in order to
select critical scenarios for the testing of AVs. The focus is
on the behavior of other road users, which corresponds to
Layer 4 of the five-layer model [21]. The risk at a spatial
location depends on the position and speed of the road users.
If the environment of the AV is evaluated as presenting a
high-level risk, a critical scenario exists. The procedure is
evaluated using the real data from the HighD and the NGSIM
data set.

The generation of critical scenarios from complex urban
scenarios is the focus of [116], [117]. The criticality of a
scenario is calculated based on the area that can be used safely
by the AV. Optimization by means of evolutionary algorithms
maximizes the criticality of complex scenarios andminimizes
the safely passable area, respectively. This is done by adapt-
ing the behavior of the surrounding traffic participants. The
definition of criticality used in [116], [117] differs from the
definition used in other publications, because criticality is
not dependent on the performance of the AV, which is similar
to complexity in other publications. A validation of whether
the generated scenarios in [116], [117] also lead to critical
situations is not performed.

C. COMPLEXITY-BASED SELECTION
Several references [118]–[120] develop a procedure that com-
bines combinatorial testing and the definition of complex
test scenarios. The complexity is described by a complexity
index, which assigns a weighting to each parameter of a
scenario, using the Analytic Hierarchy Process. In their pub-
lication, 16 different parameters are assigned and the process
is validated via the evaluation of a lane-departure warning
system. The authors can demonstrate that more complex
scenarios reveal more system errors.

In [121] the complexity of a scenario is divided into two
categories. The first is a Road Semantic Complexity, which
describes the complexity of the static environment and is
determined using Support Vector Regression. The second is a

Traffic Element Complexity, which describes the complexity
of the behavior of up to eight surrounding traffic participants.
A validation of the metric is not performed in the publication.

In order to efficiently test the cognitive capabilities of
an AV, Zhang et al. [122] develops a framework that takes
the complexity into account when selecting scenarios. They
describe the complexity in terms of cognitive tasks, depend-
ing on the road type, semantic content of the road segment and
challenging conditions such as fog. In a comparison of two
autonomous driving platforms, they can show that there is a
negative correlation between performance and the complexity
of the scenarios.

Qi et al. [123] use a Scenario Character Parameter (SCP)
based on the trajectories that lead to a failure. By analyzing
the SCP, scenario groups can be created and reduced to one
relevant or challenging scenario.

An optimization-based approach (without concrete imple-
mentation) for defining challenging scenarios is presented
in [124]. Partial aspects of this approach are examined in
more detail in [125].

An overview of complexity-influencing factors can be
found in [35] and [126].

D. SIMULATION-BASED FALSIFICATION
The approaches in this sub-section use an optimizer, which
takes the microscopic assessment results of the scenario
simulations from the feedback loop visualized in Figure 6.
Depending on the optimizer, it processes one or more scenar-
ios in parallel per iteration, e. g. depending on the population
size in a genetic algorithm. At the outset, the optimizer needs
to be initialized using concrete scenarios and the correspond-
ing assessment results. Based on a cost function that includes
an expression of vehicle safety, the optimizer selects the
next concrete scenarios and forwards them to the simulation
tool for execution and assessment. With the new assessment
results, again, the optimizer determines the next concrete
scenarios and the next iteration starts. By minimizing the cost
function, the optimizer can – with each iteration – determine
more and more critical scenarios for the vehicle under test.
Normally this approach requires many iterations in a simula-
tion environment.

The research group of Prof. Kochenderfer uses Rein-
forcement Learning to find the most likely critical sce-
narios, and calls it Adaptive Stress Testing [127]–[130].
Koren et al. [127] use Monte Carlo Tree Search and Deep
Reinforcement Learning. They select a scenario with a vehi-
cle approaching pedestrians on a crosswalk as a proof of
concept. The Reinforcement Learner generates pedestrian
trajectories and sensor noise to consider both actions and
sensor failures. The advantage of Reinforcement Learning is
that it can even change the time signals during run-time based
on the assessment results in the current time step within the
scenario execution. Corso et al. [128] develop the approach
further with a reward-augmentation technique. Both papers
build on a predecessor paper [129] from the avionic domain.
The latter also provides the basis for a paper [130] addressing
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the differential comparison of two simulators. Instead of
minimizing safety, the learner tries to maximize the deviation
between both.

Beglerovic et al. [131] propose an approach with a loop
of surrogate modeling and stochastic optimization. They use
kriging as the surrogate modeling technique with Differential
Evolution Genetic Optimization and Particle Swarm Opti-
mization. The idea is to not execute all optimization iterations
on the expensive simulation engine to determine the global
minimum, but instead use a cheap surrogate model. As the
surrogate model is just an approximation of the simulation
behavior, they add an outer loop to refine the surrogatemodel.
A so-called zooming-in algorithm takes new samples in the
area of the global minimum, executes them on the simula-
tion engine and updates the surrogate model in this faulty
area. Therefore, with each iteration, the surrogate model gets
better in the faulty area and the optimizer improves in its
determination of the global minimum or faulty area. In the
example, the cost function is based on the TTC, and the
optimizer controls the coordinates of an object that the AV
is approaching. They inject an error into the sensor’s field
of view to check if the optimizer finds scenarios that exploit
this weakness. Beglerovic et al. [131] adapt the approach in
Abdessalem et al. [132] by using the zooming-in algorithm
and Kriging instead of neural networks.

Mullins [133] develops the Range Adversarial Planning
Tool (RAPT) framework to generate test scenarios. He uses
adaptive search-algorithms to iteratively generate new con-
crete scenarios based on previous results. Related work has
already been published by the author in [134], [135]. Gan-
gopadhyay et al. [136] use a Bayesian optimization, [137] use
a random forest model and Abbas et al. [138] use simulated
annealing in their test harness capable of testing perception
algorithms.

Tuncali et al. [139] use formal system requirements, not
for formal verification but for falsifying them. They use their
automatic test generation tool S-TaLiRo and select simulated
annealing for optimization. As a cost function they define
a robustness metric that quantifies the gap to falsifying the
formal system requirements. The optimization engine and
the stochastic sampler try to minimize the robustness met-
ric. In the example, the robustness metric is based on the
TTC, and the optimizer controls the target speed for the
vehicle in a collision-avoidance setup. It does not directly
generate the time signal, but controls a predefined num-
ber of control points instead, which are then interpolated.
Tuncali et al. [140] further develop the approach with a hier-
archical framework combining high-fidelity and low-fidelity
models. They use a functional gradient descent optimization
that outperforms the simulated annealing.

In [141]–[143], covering arrays for combinatorial testing
as well as simulated annealing for falsification are applied
both in a simulation-based framework to the overall system
including sensors. The idea is to use the results of another
scenario-selection technique to enhance the initialization
of the optimizer. Starting from more promising conditions,

the optimizer converges faster to the global optimum, or per-
haps finds a better local optimum. Felbinger et al. [144]
compare falsification and combinatorial testing for an
Autonomous Emergency Braking (AEB) System. Their
results show that both methods have been proven to find
critical scenarios, but the authors do not assess the efficiency.

Koschi et al. [145] divide the falsification of an ACC
system into a forward and a backward search. The backward
search developed by the authors is based on an accident
and is simulated and optimized backwards in time. They
conclude that the backward search finds a fault efficiently,
even in a highly sophisticated ACC and is therefore superior
to common forward-search algorithms.

VII. SAFETY VERIFICATION
Formal verification as shown in Figure 1 is an alternative
to the scenario-based approach presented so far. It requires
the traffic rules and generally all specifications, which are
just available in prose, to be made available in a formal,
machine-readable format. We distinguish three verification
methods. In theorem proving, mathematical theorems are
usually automatically proven by computer programs. In the
reachability analysis, the states that a complex system can
reach in the future are calculated. In correct-by-construction
synthesis, safe controllers are automatically generated from
formal specifications.

A. FORMALIZATION OF TRAFFIC RULES
Most papers described here address the formalization of traf-
fic rules as one key requirement. A few of them [146]–[148]
even focus exclusively on it. Aréchiga [149] defines a set of
contracts, with which automated driving can be formally ver-
ified, in the formal language Signal Temporal Logic (STL).
This means that traffic is guaranteed to be safe if all traffic
participants comply with these contracts. The authors high-
light that the STL contracts enable multiple formal tech-
niques, like the automatic synthesis of run-time monitors,
falsification, formal verification, and parameter synthesis.
Compliance with the traffic rules ensures that there are no
accidents caused by the AV. This is not to be equated with a
macroscopic statement on road safety, because (especially in
mixed traffic) new accidents involving human road users may
occur due to unexpected behavior of the AV.

B. THEOREM PROVING
Shalev-Shwartz et al. [150] introduce the formal model
Responsibility-Sensitive Safety (RSS). They describe safety
using numerous axioms and lemmas, and formally verify
with worst-case assumptions andmathematical induction that
an exemplary planning algorithm satisfies it. They introduce
a semantic language including units, measurements, action
space and specification as an abstraction of overly detailed
maneuver instructions. A Q-learning algorithm serves as the
exemplary planner. Outcome is a formal proof stating that
no accident can be caused for which the AV is to blame.
This model-based approach only targets the planning module
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within a typical sense-plan-act architecture. They neglect
to address the act module arguing that much research and
theory exists from the last decades. For the sense module,
they argue that it should be tested with a statistical distance-
based approach. Since sensor failures cannot be completely
excluded, the probability of such events must fall below a
statistically derived threshold. They argue that the threshold
can be reduced by several degrees through a triple-redundant
design of the sensor system.

Loos et al. [151] use a formal proof calculus to verify
a distributed car-control system. Multiple cars are equipped
with ACC and modeled as distributed hybrid systems which
involve both discrete control and the continuous actuation of
a cyberphysical system. Their idea is to decompose the ver-
ification problem into multiple modular pieces. By proving
safety separately for a local and global lane control as well
as a local and global highway control, they claim that the
distributed car-control system can be certain that every car
controller will not cause an accident anywhere at anytime.

Aréchiga et al. [152] use the theorem prover KeYmaera
to verify the safety of an intelligent cruise controller and
a cooperative intersection collision-avoidance system. [153]
use the theorem prover Isabelle to verify the safety of a
collision-avoidance safety function for autonomous vehicles.

Nilsson et al. [154] describe the worst-case performance as
an optimization problem, and derive closed-form expressions
for it. Thus, they can calculate the set of scenarios where it
can be guaranteed that no incorrect decisions are made by
the AV.

C. REACHABILITY ANALYSIS
Reachability analysis aims to determine the states a system
can reach from given initial states and possible inputs and
parameters. As the exact reachable set cannot be computed
for more complex systems, it is typically over-approximated
in order to formally guarantee safety. If the reachable set of
the AV does not intersect with the predicted occupancy sets
of other traffic participants, the AV is safe. In contrast to the-
orem proving and the scenario-based approach, reachability
analysis is mainly performed online during run-time.

Althoff et al. [155] introduce reachability analysis argu-
ing safety of AVs. In his dissertation [156], Althoff
distinguishes between classical and stochastic reachability
analysis. Althoff uses polytopes, zonotopes and multidi-
mensional intervals for over-approximation, as these pro-
vide good mathematical characteristics for the calculation
of reachable sets. Stochastic reachability analysis calculates
with probabilities, but can only provide probabilistic guar-
antees in contrast to intervals. Althoff further develops the
approach in [157], [158]. The dissertation and papers form the
basis for further publications of the authors’ current research
group [159], [160].

O’Kelly et al. [161] present their verification tool APEX
that internally uses the SMT-solver dReach. They distin-
guish between the behavioral planner (represented as a for-
mal model in form of a finite transition system) and the

motion planner (represented as a black-box that just provides
a trajectory). Their design-time approach can verify the com-
plete trajectory planning and tracking stacks of an AV. They
describe unsafe conditions in Metric Interval Temporal Logic
and use reachability analysis to guarantee a safe vehicle
trajectory. They demonstrate that their approach can identify
faulty behavior missed during testing, and how to refine the
requirements.

A combination of simulation-based optimization (Sec-
tionVI-D) prior to a reachability analysis is also possi-
ble [162], [163]. They call it a robustness-guided verification
technique. As the reachability analysis is computationally
expensive and limited to not too complex systems, at first they
identify interesting areas via optimization. That improves the
efficiency or even enables a reachability analysis of more
complex systems.

Tuncali et al. [164] use barrier certificates for proof of
safety. According to [156], they are similar to Lyapunov func-
tions, but focus on safety instead of stability. The idea is that if
the barrier separates initial states from unsafe states, the sys-
tem safety is proven. The difficulty lies in finding the bar-
rier certificate function. Barrier certificates are also similar
to reachability analysis, but calculate the upper bound for
reaching an unsafe state, rather than being in one.

D. CORRECT-BY-CONSTRUCTION SYNTHESIS
Another formal verification approach is the synthesis of
correct-by-construction controllers that are automatically
generated from formal specifications.

Johnson et al. [165] describe the specification in the Linear
Temporal Logic language. They represent the AV behavior
with a probabilistic model, and formally verify the system
properties using the model checker PRISM. They demon-
strate their approach with a real, full-scale AV that drives on
a road network of a parking lot controlled by the formally
synthesized controller. They use the experimental data to
validate the formal analysis of the probabilistic model.

Wongpiromsarn et al. [166] also use Linear Temporal
Logic specifications for the automatic synthesis of a trajec-
tory planner and continuous controller. They use a receding
horizon framework to split the synthesis into smaller prob-
lems. Nilsson et al. [167] synthesize an ACC, guaranteeing
safe trajectories of the closed-loop system. The two presented
methods are performing the computations either on the con-
tinuous state space or on a finite-state abstraction.

VIII. COMPARISON
In this section, we derive criteria for the evaluation of the
different approaches presented in the survey paper. We then
compare these approaches by applying the evaluation criteria
in order to identify possible research gaps.

A. EVALUATION CRITERIA
Wehave derived the following ten evaluation criteria based on
expert judgment, which serve to analyze the approaches pre-
sented in this survey paper. In order to ensure traceability in
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TABLE 1. Rating system for the evaluation criteria.

this evaluation process, we introduce a multi-level evaluation
system in Table 1, which contains descriptions for each rating
which are as generic as possible. We do not evaluate at the
level of individual papers, but rather categories of approaches.
We select the rating that best represents the entire category to
the best of our knowledge. Individual papers may differ from
this. If a criterion is not applicable, it is graded as 0. This
rating should not necessarily be considered in a ‘‘negative’’
light: it is merely that the corresponding approach does not
take this criterion into account. The order of the criteria is
related to the scenario-based process. In some cases, the crite-
ria influence each other. For example, good scenario coverage
also allows for more reliable macroscopic statements.

1) SCENARIO REPRESENTATIVENESS
The scenarios should reflect the real world as closely as pos-
sible. In the best case, parameter distributions are determined
and used to consider the probabilities of occurrence in the real
world. At the very least, the scenarios must comply with the
laws of physics.

2) PARAMETER COMPATIBILITY
Different scenario parameter types require different represen-
tations. Most parameters are real, continuous, time- and/or
location-dependent values (e. g. velocities, road friction, etc.)
that might – for the sake of simplicity – be assumed to be con-
stant during the scenario-generation and selection process.
On the other hand, there are parameters like traffic lights that
have only discrete states and are therefore easier to include in
the safety-assessment process.

3) CORNER CASE IDENTIFICATION
Efficiency in identifying corner cases is especially crucial
for system developers and for spot-checking by testing orga-
nizations. They can often be found in the tail of parameter
distributions. If a failure occurs during safety assessment,
it can be used to both improve the system and provide
testing organizations with a quick insight into the system’s
performance capabilities.

4) SCENARIO SPACE COVERAGE
Since infinite situations occur in the real world, the scenario
methods must cover a large number of permutations within
the physically possible parameter space. To ensure sufficient
coverage, concrete scenarios should be sampled within the
entire space. In the best case a formal coverage can even be
achieved without sampling.

5) SCENARIO SPACE EXPANSION
Currently, many papers validate their proposed methodology
with a simple proof of concept to ensure quick traceability for
the reader. For industrialization, however, safety assessment
approaches must scale to a full range of logical scenarios
of the ODD, taking into account all layers of the five-layer
model [21], the correct representation of all parameter types,
and generally more complex scenarios.

6) SYSTEM APPLICABILITY
Many approaches focus merely on the planning module,
and only a few on perception. Ultimately, the safety of the
overall system must be assessed. Therefore, the methods
should be extended to cover the overall system with all its
sub-modules.

7) COMPUTATIONAL FEASIBILITY
The methods differ in their computational complexity. For
offline methods that assess safety during design, it should
be feasible to execute them within a reasonable time frame.
For online methods that are executed during vehicle run-
time, efficient calculations are a decisive factor for real-time
capability.

8) BLACK-BOX COMPATIBILITY
Some methods require white-box models to calculate a gra-
dient or to apply special verification techniques. Black-box
approaches are more flexible and respect the intellec-
tual property provided by suppliers and simulation-tool
manufacturers.
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9) STATEMENT RELIABILITY
For a credible decision on whether AVs are safe enough to
be launched on the market, the reliability of a statement is
crucial. At best, the safety of AVs can be formally guaranteed.
If this is not possible, a statistical statement should be sought
as a minimum.

10) ASSESSMENT TRANSFERABILITY
To ensure the responsible introduction of AVs into traffic,
accident rates should first be compared with societal expecta-
tions. Since the scenario-based approach starts with a micro-
scopic assessment, the transferability of its results is crucial
for a macroscopic statement. The probabilities of occurrence
of individual scenarios enable a genuine statistical assessment
of overall accident rates.

FIGURE 7. Evaluation and comparison of the data-driven and
knowledge-based approach for scenario generation/extraction.

B. COMPARISON OF CATEGORIZED APPROACHES
We now analyze and compare the methods presented in
sections III to VII against the evaluation criteria derived
in the previous section. We compare the knowledge-based
approach with the data-driven approach in the Kiviat diagram
in Figure 7, as the purpose of both is to fill the database.
In addition, we compare testing-based scenario selection,
falsification-based scenario selection and formal verification
in Figure 8. As shown in Figure 1 we again would like to
point out that the formal-verification approach is an alter-
native to the scenario-based approach (Figure 2) including
the testing- and falsification-based scenario selection. This
should be taken into account when viewing the table. Nev-
ertheless, it makes sense to include formal verification, since
the objective of all approaches is to assess safety.

The data-driven approach covers slightly more area in
the Kiviat diagram than the knowledge-based approach. The
advantage of the knowledge-based approach is that an initial

FIGURE 8. Evaluation and comparison of testing-based and
falsification-based scenario selection and formal verification for the
safety assessment of AVs.

catalog of scenarios can be quickly created based on existing
knowledge such as standards and guidelines. However, it is
difficult to extend the catalog to completeness. On the other
hand, the data-driven approach requires many prerequisites
such as fleet vehicles equipped with additional high perfor-
mance measurement systems and data processing pipelines.
If the prerequisites are met, it is characterized by representa-
tive real-world scenarios, high coverage and the derivation of
occurrence probabilities.

The testing-based scenario selection covers slightly more
area in the Kiviat diagram than the falsification-based
scenario selection and the formal verification. The latter
currently lacks scalability to complex systems and is compu-
tationally expensive, but may provide guaranteed statements
without the need for testing. Falsification is a helpful tool for
the developer to efficiently identify weaknesses in his system.
However, falsification lacks coverage and the ability to make
macroscopic safety statements. Testing can provide these
macroscopic statements, which are important for comparison
against human drivers, but requires an enormous amount of
tests.

C. IDENTIFICATION OF RESEARCH GAPS
In this section, a summary of the research gaps and future
challenges are given, based on the evaluation results from the
previous section (Figure 7 and 8).

1) COMBINATION OF APPROACHES TO
COMPENSATE FOR DRAWBACKS
Currently there exists no approach that stands out with regard
to all evaluation criteria.

A combination of approaches seems necessary to com-
pensate for the disadvantages of the individual approaches,
both inside as well as outside of the scenario-based approach.
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For example, in terms of scenario generation, the lack of
parameter distribution in the knowledge-based approach can
be compensated by extracting parameter distributions from
the data-driven approach. Li et al. [168] suggest a combi-
nation of scenario-based and functionality-based testing as
improvement. Since formal verification techniques make the
most reliable statements in Table 8, but are usually only
applicable to the planning module, they should be applied
whenever possible, but combined with the scenario-based
approach at a system level.

2) CONSISTENT TERMINOLOGY AS A BASIS
There is a lack of common terminology, and certain terms are
used in various publications with differing meanings.

The terms ’Scene’, ’Situation’ and ’Scenario’ as defined
in [19] as well as the ’five-layer model’ as defined in [21]
seem to be promising in terms of standardization. The terms
’critical’, ’complex’ and ’challenging’ will be taken here as
examples of termswith different meanings in literature. In our
opinion, ’complex’ and ’challenging’ can be used as syn-
onyms, but they can be clearly distinguished from ’critical’.
The delimitation is based on the intended evaluation. If the
performance of an AV is evaluated, we speak of a critical
scenario. If the scenario itself is evaluated, it can be a complex
or challenging scenario. The following definitions can be
used as a basis for further discussion:
Critical: Describes an assessment of the performance of

the ego-vehicle behavior in a concrete scenario. The crit-
icality is only determinable after test-case execution, and
the behavior of different AV functions lead to different
criticality-results for the same concrete scenario.
Challenging or Complex: Describes an assessment of

a concrete scenario itself. Determinable before test-case
execution and independent of the AV performance. Whether
a concrete scenario is challenging / complex depends on the
chosen parameter values. Therefore, the difficulty for the AV
to master the concrete scenario without the occurrence of a
critical situation can be seen as challenging or complex.

3) DATABASE FOR BENCHMARKING
For proof of concept, most papers use completely different
scenarios, parameters, ODD and simulation models, such
that a detailed comparison of approached is rendered almost
impossible.

The Commonroad Framework [44], which includes not
only scenarios but also models and cost functions, seems
to be a good starting point for benchmarking. Standards
like OpenDrive and OpenScenario can be used as common
interface formats. For industrialization, it is necessary to tran-
sition from simple, exemplary proof of concepts to complex
scenarios using a dedicated use case.

4) FUNCTIONAL DECOMPOSITION FOR
SCENARIO REDUCTION
Even for simulation, there are still many scenarios required
for a macroscopic safety assessment.

Therefore, further methods to increase efficiency should be
considered in the future. A possibility to reduce the number
of necessary scenarios is the functional decomposition of
the system [169], [170]. One use case of this procedure can
comprise the revision of a sub-module, so that only scenarios
which require this module must be re-validated. Then there
must be approaches for each module. It can even be helpful
to have approaches that are tailor-made for special modules.
Most verification approaches focus on the planning module.
[164] can be seen as a starting point for verifying the percep-
tion system with barrier certificates. Even in scenario-based
testing, there are not many publications that focus particu-
larly on the evaluation of perception [171], [172]. However,
the perception is a very important module of AVs [173].

5) EXPOSURE FOR MACROSCOPIC ASSESSMENT
There is currently a big gap between the microscopic assess-
ment of single scenarios and the macroscopic assessment.
Without this, no general statement on the introduction of AVs
can be made.

The work of [24], [25], [174], [175] can be used as a start-
ing point. Further research is required to transfer the results
by means of exposure or traffic-simulation-based techniques
from Section II-B.

6) MODEL VALIDATION TO ENABLE SIMULATION
The shift from real world tests to simulation is a huge chal-
lenge [176]. Even though if there are a few scenario-based
methods that could be executed on a proving ground with
restrictions, almost all approaches currently use a physical
or mathematical model to assess safety. However, almost
none address model validation. Without the latter, virtual
assessment results have no credibility in terms of their
use in decision making. This applies both to simulation
in the scenario-based approach and to the formal models
of verification. The latter is usually referred to as confor-
mance testing, which checks the conformance between a
model and the real system in terms of obtaining formal
properties [159].

Our work [45], [177] and the work of [178]–[182] can be
used as a starting point for future simulation model valida-
tion. Additionally, [183] can be seen as a starting point for
simulation tool qualification.

IX. CONCLUSION
In order for automated vehicles to be launched on the mar-
ket, an assessment of their safety is essential. Since this is
a huge challenge, much research is currently being carried
out into new approaches for evaluating safety. We focus
on the safety of the intended functionality, and thereby on
the scenario-based approach. Based on a newly developed
taxonomy for the scenario-based approach, this paper sum-
marizes the most important publications of recent years.
Subsequently, the methods are compared with each other
and formal verification is integrated as an alternative con-
cept. Based on the comparison of the different approaches,
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we propose the use of formal verification techniques for
the planning module, and the scenario-based approach at
the overall system level to ensure the safety of automated
vehicles. Within the scenario-based approach, all of the
sub-methods investigated have the potential to contribute to
the safety assessment of automated vehicles by identifying
the most relevant scenarios. So far, however, all methods are
purely exemplary, i. e. of limited scope and low complexity.
They all, without exception, fall short of proof of industri-
alization. Therefore, the biggest challenge for the future is
to implement the methods in a scope and level of detail that
allows to obtain a reliable safety statement.
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