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Abstract

Background: Modern data driven medical research promises to provide new insights into the development and
course of disease and to enable novel methods of clinical decision support. To realize this, machine learning models
can be trained to make predictions from clinical, paraclinical and biomolecular data. In this process, privacy protection
and regulatory requirements need careful consideration, as the resulting models may leak sensitive personal
information. To counter this threat, a wide range of methods for integrating machine learning with formal methods of
privacy protection have been proposed. However, there is a significant lack of practical tools to create and evaluate
such privacy-preserving models. In this software article, we report on our ongoing efforts to bridge this gap.

Results: We have extended the well-known ARX anonymization tool for biomedical data with machine learning
techniques to support the creation of privacy-preserving prediction models. Our methods are particularly well suited
for applications in biomedicine, as they preserve the truthfulness of data (e.g. no noise is added) and they are intuitive
and relatively easy to explain to non-experts. Moreover, our implementation is highly versatile, as it supports binomial
and multinomial target variables, different types of prediction models and a wide range of privacy protection
techniques. All methods have been integrated into a sound framework that supports the creation, evaluation and
refinement of models through intuitive graphical user interfaces. To demonstrate the broad applicability of our
solution, we present three case studies in which we created and evaluated different types of privacy-preserving
prediction models for breast cancer diagnosis, diagnosis of acute inflammation of the urinary system and prediction
of the contraceptive method used by women. In this process, we also used a wide range of different privacy models
(k-anonymity, differential privacy and a game-theoretic approach) as well as different data transformation techniques.

Conclusions: With the tool presented in this article, accurate prediction models can be created that preserve the
privacy of individuals represented in the training set in a variety of threat scenarios. Our implementation is available as
open source software.

Keywords: Biomedical data, Prediction models, Machine learning, Classification, Privacy protection, Data
anonymization

Background
The digitalization of healthcare promises to enable per-
sonalized and predictive medicine [1]. Based on digital
data that characterize patients and probands at compre-
hensive depth and breadth [2], machine learning mod-
els can be created that are able to detect unknown
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relationships between biomedical parameters and enable
decision support systems by using the knowledge about
such relationships to infer or predict parameters (hence-
forth called target variables), e.g. diagnoses or outcomes
[3]. However, in such data-driven environments, it is
becoming increasingly challenging to protect the data
used for creating such models from privacy breaches [4].
Data privacy involves ethical, legal and societal aspects
[5] and different layers of protection mechanisms must
therefore be implemented [6, 7].
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On the technical level, current efforts in the area of
machine learning for health data put a significant focus
on distributed learning which overcomes the need to
share data across institutional boundaries to create the
large datasets needed for training purposes [8, 9]. Cryp-
tographic secure multiparty computation approaches are
an important technique in this context [10]. Although
this solves some of the privacy issues, it is important to
realize that privacy protection must be addressed on mul-
tiple levels, including the output data level where it must
be ensured that the resulting prediction models cannot
be used to extract personal information [11]. Prediction
models, which learn from anonymized data are a common
solution to this problem. The core concept behind data
anonymization is to transform data in such a manner that
privacy risks are reduced while the reduction of risks is
balanced against a reduction of data utility [12, 13]. Sev-
eral high-profile re-identification attacks have shown that
simply removing all directly identifying attributes (e.g.
names and addresses) is not sufficient for this purpose
[14, 15]. Laws and regulations, e.g. the Privacy Rule of the
U.S. Health Insurance Portability and Accountability Act
(HIPAA) [16] or the European General Data Protection
Regulation [17], define different approaches to address
this issue.
In recent years, several easy-to-use tools have been

developed that make methods of data anonymization
available to a broad range of users. At the same time,
various methods for addressing output data privacy in
machine learning have been proposed by the research
community, but robust implementations that can be
applied in practice are lacking. In this article, we report on
our ongoing efforts to bring both worlds together by inte-
grating machine learning techniques into a well-known
data anonymization tool. In prior work, we have laid the
groundwork for the results presented in this article by
(1) implementing a method into the tool that ensures
that anonymized output data is suitable as training data
for creating prediction models, and (2) integrating logis-
tic regression models into the tool in such a way that
they can be used to assess the performance of mod-
els created from anonymized data [18]. In this software
article, we present a wide range of enhancements that
significantly broaden the applicability of the approach.
In detail, we

1. added a method to make anonymized output data
suitable for the training of multiple models that can
predict different target variables,

2. implemented additional types of prediction models
to enable assessing the performance of different types
of privacy-preserving machine learning techniques,

3. integrated the approach with further anonymization
methods, including differential privacy, which is a

state-of-the-art approach offering strong privacy
protection,

4. implemented a wide range of additional metrics and
visualizations for assessing the impact of privacy
protection on prediction performance,

5. added support for further data transformation
techniques, such as data aggregation.

The resulting tool is highly versatile, as it supports
binomial and multinomial target variables, different types
of prediction models and a wide range of methods of
privacy protection. Moreover, all techniques have been
integrated into a sound framework that supports the cre-
ation, evaluation and refinement of models through intu-
itive graphical user interfaces. We demonstrate the broad
applicability of our approach by creating different types
of privacy-preserving models for breast cancer diagnosis,
diagnosis of acute inflammation of the urinary system and
prediction of the contraceptive method used by women
using different anonymization and prediction techniques.
The results show that accurate prediction models can be
created that preserve privacy in a variety of threat sce-
narios. Our implementation is available as open source
software.

Implementation
The software described in this article has been developed
by extending ARX, an open source anonymization tool
which has specifically been designed for applications to
biomedical data [19]. In this section, we will focus on the
two most important functionalities implemented, which
are (1) methods for the automated creation of privacy-
preserving predictionmodels and (2)methods for evaluat-
ing and fine-tuning the resulting models. In the individual
sections, we will describe how we addressed particularly
complex challenges.

Methods for creating privacy-preserving predictionmodels
In predictive modeling, the goal is to predict the value of
a predefined target variable from a given set of values of
feature variables as accurately as possible. Typical appli-
cation scenarios in medicine include knowledge discovery
and decision support.
Our tool implements the common supervised learn-

ing approach, where a model is created from a
training set. It focusses on classification tasks where tar-
get variables are categorical and values of the target
variable are called classes [20]. To create privacy-
preserving prediction models, our tool implements super-
vised learning from anonymized data. To maximize
the performance of the resulting models it utilizes
the optimization procedures provided by ARX to pro-
duce anonymized output data that is suited for this
purpose.
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At its core, ARX utilizes user-defined generalization
hierarchies to transform data. A simple example is shown
in Fig. 1. As can be seen, generalization hierarchies store
the original attributes’ values in the leaf nodes while inner
nodes contain generalized representations of the values
from the leaf nodes of the according subtree. When a
hierarchy is used to transform the values of an attribute,
all values are replaced by the corresponding inner nodes
on a given level of the hierarchy. In the example, values
of the attribute “age” are transformed into age groups by
replacing them with the corresponding generalized values
on level 2 of the hierarchy, while values of the attribute
“sex” are left as-is (which corresponds to “transforming”
them to level 0 of the hierarchy). In an abstract sense,
the anonymization process implemented by ARX basi-
cally produces all possible output datasets by applying
all possible combinations of generalizations to the input
dataset. For each possible output, two parameters are
measured: (1) privacy protection, and (2) data utility. After
this process, ARX returns the transformed dataset that
satisfies pre-defined privacy protection levels and which is
most useful. In practice, ARX implements a wide range of
pruning strategies and optimization techniques to avoid
needing to analyze all possible output datasets (see, e.g.
[19, 21]). Moreover, ARX supports further transformation
techniques which are implemented by extending the basic
anonymization process outlined in this paragraph. Fur-
thermore, privacy protection as well as data utility can be
measured using different models. We will briefly intro-
duce the most important methods used in this article in
the remainder of this section.

Privacymodels
In ARX, privacy models are used to specify and quantify
levels of protection. The methods for creating privacy-
preserving prediction models presented in this arti-
cle are compatible with all privacy models currently

implemented by ARX (an overview is provided on the
project website [22]). In this paper, we will use the fol-
lowing models to showcase our solution: (1) k-anonymity,
which protects records from re-identification by requiring
that each transformed record is indistinguishable from at
least k − 1 other records regarding attributes that could
be used in linkage attacks [15], (2) differential privacy
which guarantees that the output of the anonymization
procedure is basically independent of the contribution of
individual records to the dataset, which protects output
data from a wide range of risks [23, 24], and (3) a game-
theoretic model which employs an economic perspective
on data re-identification attacks and assumes that adver-
saries will only attempt re-identification in case there is a
tangible economic benefit [25, 26].

Utility models
ARX supports a wide range of models for quantifying (and
hence optimizing) the utility of output data. To optimize
output towards suitability as a training set for prediction
models, we have implemented themethod by Iyengar [27].
The basic idea is to distinguish between the removal of
structure and the removal of noise by measuring the het-
erogeneity of values of class attributes in groups of records
that are indistinguishable regarding the specified feature
variables. For instance, if the age of individuals and the
occurrence of a certain disease exhibits a strong corre-
lation, the relationship between these two attributes is
most likely best captured by adequate age groups instead
of more granular data. In prior work, we have already
described a basic implementation of the approach [18].
However, the implementation had several important limi-
tations, which resulted from the compressed internal data
representation used by ARX [19]: (1) it only supported
one class variable, (2) it required that class variables were
addressed by a privacy model, and (3) it required that
no transformations were applied to target variables. To

Fig. 1 Example of attribute transformation based on generalization hierarchies. Values of the attributes “age” and “sex” are transformed using level 2
and level 0, respectively, of their associated hierarchies
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overcome these limitations we had to rewrite major parts
of the internals of the software and the resulting utility
model is now the most complex model supported. Finally,
we also had to develop and implement a specialized score
function with proven mathematical properties to support
differential privacy [24].

Transformationmodels
Based on the generic mechanism described above, ARX
provides support for a wide range of transformation tech-
niques. Different methods for transforming data can also
be used in combination. Typically, this is done to preserve
as much output data utility as possible and to preserve
important schematic properties of data, such as the data
types of variables. Figure 2 shows an example of the dif-
ferent methods supported: (1) Random sampling is a com-
monmethod to reduce the certainty of attackers about the
correctness of re-identifications. It is also a major building
block of differential privacy in ARX [24]. (2)Aggregation is
a method where sets of numeric attribute values are trans-
formed into a common aggregated value. (3) Suppression
means that values are simply removed from a dataset,
which may be applied on the cell-, record- or attribute-
level. (4)Masking is a method where individual characters
are removed. (5) Categorization means that continuous
variables are mapped to categories. (6) Generalization is a
methodwhere attribute values are replaced by less specific
values based on user-defined generalization hierarchies or
classifications, such as the International Classification of
Diseases [28].

In the output dataset shown in Fig. 2, the risk of a
record being re-identified correctly is not higher than
33.3% (3-anonymity). In addition, the anonymization pro-
cedure fulfills (ε, δ)-differential privacy with ε ≈ 0.92
and δ ≈ 0.22, under the assumption that all changes
other than sampling have been implemented using a data-
independent transformation method [24]. While support
for the transformations utilized in the example is pro-
vided out-of-the-box by ARX, implementing evaluation
methods for prediction models trained on this data needs
careful attention, as we will describe in the next section.

Classificationmodels
To enable users to assess the performance of different
types of prediction techniques, we implemented a generic
interface to prediction models and integrated three meth-
ods as is shown in Fig. 3: (1) Logistic regression, where the
relationship between the feature variables and the target
variable is expressed as a linear model which is trans-
formed using a logarithmic function [20]. Since support
for this model was already established in previous work,
we only had to make minor adjustments to integrate it
with the new interface. (2) Naïve Bayes [29], which makes
strong (hence naïve) assumptions about the independence
of the distributions of the feature variables based on
Bayes’ theorem. The only dependency is assumed to exist
between the target variable and each of the feature vari-
ables. Predictions are made by simply calculating the pos-
terior probabilities of each of the classes using the prior
probability of the feature vector. (3) Random forest [30],

Fig. 2 Example of different transformation schemes used in data anonymization. 1: Sampling, 2: Aggregation, 3: Suppression, 4: Masking, 5:
Categorization, 6: Generalization
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Fig. 3 Classification models supported by the current implementation. A generic wrapper has been developed to encapsulate the implementation
specifics of different machine learning libraries

which belongs to the class of ensemble learning methods.
This means that the predictions of multiple models are
combined into a single prediction. The individual models
are decision trees generated from independently sampled
training data by selecting a random subset of the features
at each split in the learning process.
We tested a wide range of implementations that are

compatible with ARX’s license and decided that we need
to rely on different frameworks to integrate scalable
implementations of different techniques. For this reason,
we had to create a common interface already mentioned
above to abstract away the details of specific implemen-
tations. We integrated logistic regression from Apache
Mahout [31] and both naïve Bayes and random forest from
Smile [32].

Assessing prediction performance
Preprocessing training data
The creation of prediction models typically involves

the process of reviewing models and iteratively refining
parameters to achieve optimal performance. This requires
metrics for performance assessment. A commonly used
method is to calculate performance measures using k-
fold cross-validation [33]. In this process, the records of
a dataset are first divided randomly into k partitions of
equal size, which are then iteratively analyzed by using
each of the k partitions as evaluation and all other parti-
tions as training data. This process yields k results which
are combined to derive an overall estimate of the model’s
performance.
When classification models are built from anonymized

data, it needs to be evaluated how anonymization has
affected their performance. This cannot be implemented
“naively” by comparing the results of performing k-fold
cross-validation on the anonymized data and of perform-
ing k-fold cross-validation on input data. Instead, a clas-
sifier must be built from transformed output data in such
a way that the model is able to make predictions based
on features which have not been transformed. As a result,

the model can be evaluated using unmodified input data
to obtain relative performance estimates [34]. This can
be achieved by implementing a preprocessing step which
transforms a given set of previously unknown features in
the same manner in which the anonymized training data
has been transformed before passing it to the classifier
to make predictions [35]. Figure 4 visually contrasts both
approaches. It can be seen that in the naive approach two
classifiers are built from two different datasets (input and
output), evaluated against these datasets and then their
accuracy is compared to derive a relative performance.
In our tool, the second classifier is built from output
data but evaluated on (preprocessed) input data to obtain
comparable results for both models.
Our tool creates privacy-preserving models by training

them on anonymized data. This results in the challenge
that the prediction models created can only be applied to
data that has been transformed in the same way as the
anonymized training dataset. Thus, we had to ensure that
the resulting prediction models are able to interpret fea-
tures from output data as well as input data correctly. This
is challenging when the domain of attribute values is not
preserved during anonymization, as in these cases, the
input contains values which are not present in the output
and thus the classifier would have to be evaluated with
values which it has not seen during training. As a solu-
tion, we implemented a preprocessing step that accounts
for the different types of transformations supported (see
beginning of this section).
Whether the preprocessing step needs to be applied to

a specific variable depends on the type of the variable
and the transformation method utilized. Table 1 shows an
overview. “N/A” indicates that the transformation method
cannot be used for variables of the according type. For
instance, aggregation is typically only applied to numeric
attributes. It can be seen that for all types of suppres-
sion (cell, attribute, record), random sampling as well as
aggregation, evaluation data does not have to be prepro-
cessed. The reason is that the domain is being preserved
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Fig. 4 Different approaches for measuring the relative performance of a privacy-preserving classifier. Our tool implements a method that makes
sure that the performance of prediction models can be expressed relative to the performance of models trained on unmodified data

during transformation.With all remaining transformation
schemes, data needs to be preprocessed before handing
it to the classifier for evaluation. As can be seen, prepro-
cessing only needs to be performed for attribute values
that have been generalized or categorized. In both cases,
this can be implemented by applying the same general-
ization hierarchies or categorization functions to input
data that have also been used to anonymize the training
dataset. During the evaluation process this is performed
automatically as all relevant information on how input
data has been transformed is known to the software. For
the purpose of utilizing the output data generated by ARX
to build a privacy-preserving prediction model outside
of the software, according export functionalities (e.g. for
hierarchies) are provided.

Performance assessment
All implemented classification models are able to handle
multinomial classification tasks, where the target vari-
ables need not be dichotomous. The main reason behind

Table 1 Overview of transformation schemes and their
preprocessing requirements

Transformation scheme Preprocessing required

Numeric attributes Categorical attributes

Cell suppression No No

Attribute suppression No No

Record suppression No No

Generalization Yes Yes

Categorization Yes N/A

Aggregation No N/A

Random sampling No No

this design decision is that we wanted our methods to
integrate seamlessly with the remaining functionalities of
ARX, without imposing any major restrictions. However,
assessing the performance of multinomial classifiers is
non-trivial and subject of ongoing research [20]. Our pre-
vious implementation therefore only supported very rudi-
mentary performance measurements [18]. One method
to overcome this limitation is the one-vs-all approach, in
which the performance of a n-nomial classifier is assessed
by interpreting it as a collection of n binomial classifiers,
each of which is able to distinguish one selected class from
all others.
We decided to implement this method as it is sim-

ple and enables utilizing typical parameters for prediction
performance. Our implementation currently supports the
following measures: (1) sensitivity, also called recall or
true positive rate. (2) Specificity, also called true nega-
tive rate. (3) The Receiver Operating Characteristic (ROC)
curve, which plots the true positive rate (i.e. the sen-
sitivity) for a single class against the false positive rate
(1-specificity) [36]. The ROC curve shows the trade-off
between sensitivity and specificity for every possible cut-
off for a prediction, i.e. any increase in sensitivity will be
accompanied by a decrease in specificity. (4) The Area
Under the ROCCurve (ROCAUC), which summarizes the
ROCperformance of a classifier andwhich is equivalent to
the probability that the classifier will assign a higher score
to a randomly chosen positive event than to a randomly
chosen negative event [36]. (5) The Brier score, which
measures the mean squared distance between predicted
and actual outcomes [37].
In addition to the models described previously, we

always evaluate the performance of the Zero Rule (0-
R) algorithm, which ignores the feature variables and
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simply always returns the most frequent class value.
The performance of this simplistic “prediction model”
is frequently used as a realistic baseline for assess-
ing the performance of more sophisticated machine
learning algorithms. In our tool, the performance
of privacy-preserving models is reported in absolute
terms as well as relative to baseline (0-R) and the
selected classifier, both trained on unmodified input
data.
As an additional measure specific to our application sce-

nario, we implemented the skill score, which quantifies
the relative accuracy of a classification model over some
reference accuracy [38]. In our case, the relative accu-
racy is the accuracy of the classification model built from
anonymized data over the accuracy of the model built
from original data. Typically, the accuracy is represented
by ametric such as the Brier score, leading to the following
definition:

Brier skill score = 1 − Brieranonymized
Brieroriginal

A skill score of zeromeans that the Brier scores for models
built on output and input data are equal. If the score is in
the range ] 0, 1] then the model built on output data per-
formed better and if it is in the range [−∞, 0[, the model
trained on the original data performed better.

Results
Interfaces for end users and applications
ARX’s views and interfaces for data anonymization and
privacy risk analysis have been described in previous pub-
lications [19, 39] and are also explained in depth on the
project website [22]. Here, we will focus on the views and
interfaces provided for analyzing the performance of pre-
diction models. All methods described in the previous
sections have been implemented into the Graphical User
Interface (GUI) and they are also available via the soft-
ware’s comprehensive Application Programming Interface
(API).
Figure 5 shows a screenshot of the graphical inter-

face in which methods for configuring prediction mod-
els as well as for assessing their performance have been
implemented. Areas 1 and 2 can be used to graphically
assess the performance of privacy-preserving models.
Both views are available side-by-side for input data and
output data to allow for visual comparisons. They show
basic performance parameters and ROC curves for mod-
els built with original and anonymized data, respectively.
Areas 3 and 4 can be used to select target variables as well
as feature variables and to configure model types and their
parameters.

Case studies
In this section, we will present three case studies to illus-
trate our solution and to show its practical applicability.
For this purpose, we have selected three datasets to build
different types of models for different biomedical predic-
tion tasks. We have deliberately selected datasets that are
challenging to anonymize as they contain a small number
of records (between 120 and 1473). We will use the visual-
izations provided by ARX to discuss the utility and privacy
protection provided by the resulting models. In all cases,
we measured execution times for data anonymization as
well as model building and evaluation of not more than a
few seconds on commodity hardware.

Case study 1: acute inflammation of the urinary system
In the first case study, we used a dataset containing 120
records that were originally collected for testing expert
systems. The task is to diagnose two diseases of the
urinary system: acute inflammation of the bladder and
acute nephritises. The dataset contained nine numeric
and binary attributes, two of which represented the tar-
get classes. More details can be found in the original
publication [40] and the publicly available version of the
dataset [41]. As a privacy model we used k-anonymity,
which protects the records in the training set from re-
identification.We used common parameterizations of 5 ≤
k ≤ 25 and random forests as predictionmodels. Data was
transformed using aggregation, generalization and record
suppression.
Figure 6 shows the results obtained for one of the

two target variables (inflammation of urinary bladder).
For comparison, the blue line shows the performance
achieved when always returning the most frequent class
attribute (0-R). In the first two plots, the ROC of mod-
els trained on unmodified training data and anonymized
data is identifical. We measured a relative ROC AUC
(relative to the trivial classifier and to the performance
of models trained on input data) of 100% for k = 5 and
k = 10 and k = 15. For higher values of k, performance
dropped to 87.72% for k = 20, 48.37% for k = 25. The
Brier skill scores changed from 0 to 0.08, −0.78, −1.25
and −4.05. For k ≤ 20, which offers a very high degree of
protection [42], the resulting privacy-preserving models
exhibited high prediction power.
When anonymizing data, ARX may determine that an

optimal balance between privacy protection and output
data utility is achieved by completely generalizing (and
thereby actually removing) one or multiple attributes.
This can be interpreted as automated dimensionality
reduction or feature selection. Figure 7 shows that for k =
15 three out of six feature variables were removed (Miss-
ings = 100%). From the results presented in the previous
paragraph we can see that this had only a minor impact on
prediction performance, which implies that the variables



Eicher et al. BMCMedical Informatics and DecisionMaking           (2020) 20:29 Page 8 of 14

Fig. 5 Screenshot of the view implemented for assessing the performance of privacy-preserving prediction models. Area 1: Comparison of basic
performance parameters, Area 2: ROC curves for models built with original and anonymized data, Area 3: Selection of feature and class variables,
Area 4: Selection and configuration of model parameters

that have been removed are not predictive for the target
variable. If the target variable needs to be protected from
inference attacks, this information can be used as an indi-
cator that the variables that have been removed may not
needed to be transformed at all.
Finally, Fig. 8 shows re-identification risk profiles pro-

vided by ARX (cf. [39]). A risk profile summarizes the
risks of all records in a dataset, by associating each pos-
sible risk level with the relative number of records which
are affected. It can be seen that k-anonymity with k = 15

significantly reduced the risk of re-identification for all
records in the dataset, highlighting the high degree of
privacy protection that can be achieved with negligible
effects on prediction performance.

Case study 2: breast cancer cytopathology
In the second case study, we utilized a dataset which
contained 699 records collected by the University of Wis-
consin Hospitals to study methods for predicting the
malignancy of breast tissue from cytopathology reports. It

Fig. 6 ROC performance in the case study using k-anonymous data for training random forests on the acute inflammation dataset. The False
Positive Rates (FPR) and True Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. It can be seen that data anonymization had
a negative impact on the performance of the resulting prediction models only for k ≥ 15
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Fig. 7 Automated dimensionality reduction performed by ARX starting from k = 15 when anonymizing the acute inflammation dataset. For larger
values of k, ARX performs automated dimensionality reduction during data anonymization. By comparing the results with the ROC curves in Fig. 6 it
can be seen that the removal of three out of six feature variables had only a minor impact on prediction performance

contained 10 numeric and binary attributes, one of which
represented the target class (malignant or benign tissue).
The dataset and further details are available online [41].
For privacy protection, we utilized (ε, δ)-differential pri-

vacy with ε ∈ {2, 1.5, 1.0, 0.5, 0.1} and δ = 10−3. We
used logistic regression as modeling technique. Imple-
menting differential privacy requires randomization and
we therefore report on the best model obtained from five
anonymization processes performed for each parameteri-
zation. Data was transformed using random sampling, cat-
egorization, generalization and record suppression. The
results are shown in Fig. 9.
As can be seen in the figure, prediction performance

decreased with decreasing values of epsilon, which was
to be expected as the degree of privacy protection
increases when epsilon decreases. Moreover, the results
confirm prior findings which indicated that a value of
about ε = 1 is an optimal parameterization for the

differentially private anonymization algorithm imple-
mented by ARX [24]. Furthermore, we studied the effect
of randomization on the stability of the performance of
the models created. The prediction model trained on
unmodified input data achieved a ROC AUC of about
99.2%. For the five models created with ε = 1 we mea-
sured a ROC AUC of between 85.8% and 92.27% (88.28%
on average) which equals a relative ROC AUC of between
61.63% and 83.96% (74.80% on average) compared to base-
line performance and the model trained on unmodified
data. The Brier skill score varied between -1.38 and -3.45
(-2.66 on average), which is quite good considering the
high degree of privacy protection provided.
Finally, Fig. 10 shows the risk profiles provided by ARX

for the best model obtained using ε = 1. As can be
seen, re-identification risks were reduced to an extent
even larger than in the previous case study. Moreover, we
also found that ARX performed significant dimensionality

Fig. 8 Impact of data anonymization on re-identification risk profiles for the acute inflammation dataset. As can be seen, k-anonymity with k = 15
significantly reduced the risk of re-identification for all records in the dataset
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Fig. 9 ROC performance in the case study using differential privacy for training logistic regression models to predict the malignancy of breast tissue.
The False Positive Rates (FPR) and True Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. It can be seen that data
anonymization had a significant impact on prediction performance, but acceptable accuracy could still be observed for ε ≥ 1

reduction and that malignancy was basically predicted
from a single attribute (bland chromatin).

Case study 3: use of contraceptivemethods
In the third case study, we utilized a dataset consisting
of 1473 records from the 1987 National Indonesia Con-
traceptive Prevalence Survey to predict the contraceptive
method used of women based on their demographic and
socio-economic characteristics. The dataset contained 10
numeric, categorical and binary attributes, one of which
represented the target class (type of contraceptive method
used). More details can be found in the original publica-
tion [43] and the dataset is available online [41].
For privacy protection, we employed an innovative

game-theoretic method that works on the assumption
that adversaries will only attack a dataset (or prediction
model) if there is a tangible economic benefit. For param-
eterizing the method, we followed the proposal by Wan
et al. [25]: the cost for the adversary of trying to re-
identify an individual was set to $4 (a number that has
been derived from the costs of obtaining detailed personal
information online) and the monetary benefit of includ-
ing a record into the training set was assumed to be $1200

(this number was derived from an analysis of grant fund-
ing received and data shared by the Electronic Medical
Records and Genomics (eMERGE) Network [44], which is
funded by the National Institute of Health (NIH)).
We considered a single free parameter G, which spec-

ified the monetary gain of the adversary in case of suc-
cessful re-identification and, at the same time, the mon-
etary loss for the data controller for each successfully
re-identified record. By varying this single parameter we
were able to investigate a wide variety of scenarios, in
which either the data controller or the adversary was at an
advantage. For prediction, we used Naïve Bayes classifiers.
Data was transformed using categorization, generaliza-
tion as well as cell and record suppression.
Overall, as can be seen in Fig. 11, we found that

anonymizing the dataset with G = 0, 500, 1000, 1500 and
2000 had only a very limited impact on the performance of
the resulting privacy-preserving prediction models. Mod-
els trained on unmodified input data achieved a ROC
AUC of 71.82%.Wewere not able to observe a relationship
between privacy parameters and the prediction perfor-
mance of the privacy-preserving models. The reason is
that the game-theoretic model contains an implicit data

Fig. 10 Impact of data anonymization on re-identification risk profiles for the breast cancer dataset. As can be seen, the differential privacy model
with ε = 1 resulted in the strongest reductions to re-identification risks of all models used in the case studies
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Fig. 11 Impact of data anonymization on prediction performance in the contraceptive methods case study. The False Positive Rates (FPR) and True
Positive Rates (TPR) are plotted against the x-axes and y-axes, respectively. As can be seen, data anonymization using the game-theoretic model had
only a very minor impact on prediction accuracy

quality model that does not directly reflect the suitabil-
ity of data for training prediction models. We measured a
relative ROC AUC between 77.33% and 100% (90.35% on
average) and Brier skill scores between -0.04 and 0 (-0.02
on average). Analogously to the other studies, we observed
a significant reduction of re-identification risks.

Discussion
Comparison with prior work
Early work has suggested that anonymization destroys
the utility of data for machine learning tasks [45]. Many
methods for optimizing anonymized data as a training set
for prediction models have since been developed. They
show that this is not actually true. Initially, these meth-
ods focused on simple anonymization techniques, such
as k-anonymity, and simple prediction models, such as
decision trees and on applications in distributed settings
[35, 46]. As a result of these developments, evaluat-
ing (novel) anonymization methods by measuring the
usefulness of output data for predictive modeling tasks
has become a standard practice in academia [47, 48].
More recently, a broader spectrum of prediction and
privacy models has been investigated. Some authors
proposed general-purpose anonymization algorithms to
optimize prediction performance. While most of these
algorithms have been designed in such a way that the
resulting anonymized data is guaranteed to provide a
degree of protection based on specific privacymodels only
[49, 50], they allow for any type of prediction model to
be used. In contrast, in other works, privacy-preserving
algorithms for optimizing the performance of specific
prediction models were developed [51, 52]. Many recent
studies focused on sophisticated models, such as support
vector machines [51, 53, 54] and (deep) neural networks
[55–57]. More complex and comprehensive privacy mod-
els have also received significant attention. In particular,
the differential privacy model was investigated extensively
[53, 55, 56, 58–62]. It is notable, that among these more
modern approaches, a variety has focused on biomedical
data [56, 57, 60]. We note, however, that these devel-
opments originate from the computer science research

community and if the developed algorithms are published,
then typically only in the form of research prototypes.
In parallel, several practical tools have been developed

that make methods of data anonymization available to
end-users by providing easy-to-use graphical interfaces.
Most notably, μ − ARGUS [63] and sdcMicro [64] are
tools developed in the context of official statistics, while
ARX has specifically been designed for applications to
biomedical data [19]. μ-ARGUS and sdcMicro focus on
the concept of a posteriori disclosure risk control which is
prevalent in the statistics community. In this process, data
is mainly transformed manually in iterative steps, while
data utility, usefulness and risks are monitored continu-
ously by performing statistical analyses and tests. ARX
implements a mixture of this approach and the a priori
disclosure risk control methodology. This means that data
is anonymized semi-automatically. In each iteration, the
data is sanitized in such a way that predefined thresholds
on privacy risks are met while the impact on data utility
is minimized. A balancing is performed by repeating this
process with different settings, thereby iteratively refin-
ing output data. This approach has been recommended
for anonymizing health data (see, e.g. [7, 12] and [13])
and it enables ARX to support an unprecedentedly broad
spectrum of techniques for transforming data and mea-
suring risks. All three tools provide users with methods
for assessing and optimizing the usefulness of anonymized
data for a wide variety of applications. ARX is, however,
the only tool providing support for privacy-preserving
machine learning.

Limitations and future work
Currently, our tool only supports three different types of
prediction models, i.e. logistic regression, naïve Bayes and
random forest, for which we could find scalable imple-
mentations that are compatible to ARX in terms of their
technical basis and licensing model. However, further
approaches, e.g. C4.5 decision trees and support vector
machines, have also received significant attention in the
literature (see e.g. [49–51, 53, 54, 58, 60, 62]). In future
work, we plan to extend our implementation accordingly.
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Moreover, choosing the right type of prediction model
for a specific dataset and task is challenging, as there
are no general recommendations [20]. Therefore, bench-
mark studies are often performed, in which the results
of different models are experimentally compared for a
specific dataset using a complex process involving the
separation of data into training sets, evaluation sets and
validation sets [65]. In future work, we plan to extend our
implementation to support such benchmark studies for
privacy-preserving models as well.
In this article we have focused on transformation tech-

niques supported by ARX for which a preprocessing
step can be implemented by applying a known transfor-
mation function to features (see “Preprocessing training
data” section). The software, however, also supports trans-
formation approaches where it is not clear how a given
feature must be transformed to match the representa-
tion used for training purposes. Local generalization is
an important example. In this case, the same attribute
value can be transformed to different generalized repre-
sentations in different records of the training set. When
providing features to the model to make predictions, it is
therefore unclear how the values of such attributes must
be generalized. One approach to overcome this challenge
is to apply all possible transformations and to then analyze
which transformation results in the prediction with the
highest confidence. However, this involves a high degree
of complexity and we therefore plan to develop more
scalable approaches in the future.
Finally, our current implementation focuses on classifi-

cation tasks. In future work, we plan to provide support
for further learning and prediction tasks that are of spe-
cific importance to medical research. Important examples
include regression and time-to-event analysis [20].

Conclusions
In this paper, we have presented a comprehensive tool
for building and evaluating privacy-preserving prediction
models. Our implementation is available as open source
software. We have further presented three case studies
which show that, in many cases, a high degree of pri-
vacy protection can be achieved with very little impact on
prediction performance. Our tool supports a wide range
of transformation techniques, methods for privacy pro-
tection and prediction models. The methods supported
are particularly well suited for applications to biomedical
data. Notably, the truthful transformationmethods imple-
mented prevent implausible data from being created (e.g.
combinations or dosages of drugs which are harmful for
a patient) [66]. Moreover, methods of privacy preserva-
tion have been implemented in a way that is relatively
easy to explain to ethics committees and policy makers,
as they basically rely on the intuitive idea of hiding in a
crowd [24]. To our knowledge, ARX is the only publicly

available anonymization tool supporting a comprehensive
set of methods for privacy-preserving machine learning in
an integrated manner.
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