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Abstract: Knowledge of the propagation of sensor errors in strapdown inertial navigation is crucial
for the design of inertial and integrated navigation systems. The propagation of initialization errors
and deterministic sensor errors is well covered in the literature. If considered at all, the propagation of
inertial sensor noise has typically been assessed for un-correlated (white) Gaussian noise. Real inertial
sensor noise, however, is time-correlated (colored) and best described by a combination of different
stochastic processes. In this paper, we demonstrate how a navigation system’s response to colored
noise input differs from the response to bias-like or white noise inputs. We present a method for
assessing the navigation error from various inertial sensor noise processes without the need for
time-consuming Monte Carlo simulations and demonstrate its application and validity with real
sensor data. The proposed method is used to determine in which scenarios the sensor’s real noise
can be approximated by simple white Gaussian noise. The results indicate that neglecting colored
sensor noise is justified for many applications, but should be checked individually for each sensor
configuration and mission.

Keywords: inertial navigation; inertial measurement unit; sensor errors; navigation performance;
noise processes; error propagation; angular random walk; bias instability

1. Introduction

Selecting suitable inertial sensors for an inertial or integrated navigation system is a crucial
step in the system’s design. Clearly, this step requires in-depth understanding of the propagation
of inertial measurement errors within the navigation algorithms. Typically, a general sensor error
model of the following or similar structure is used to describe the specific forces f̃ b and angular rate
ω̃ib measurements from the true states f b, ωib, in the simulation and analysis of navigation systems:

f̃ b = ba + Ma f b + νa (1)

ω̃ib = bg + Mgωib + νg (2)

These models include sensor biases b, a scale-factor and misalignment matrix M and noise terms
ν for each accelerometer and gyroscope axis. Depending on the application, these simple models are
extended by higher-order errors terms and environmental influences. In many cases, the noise terms
are simply approximated as white Gaussian noise [1].

The growth of navigation state errors (position, velocity and orientation) from the above described
inertial sensor errors is defined by the navigation system’s error dynamics. The error dynamics of
platform and, more importantly, strapdown inertial navigation systems is, in general, well covered in
the literature. An extensive discussion of inertial navigation error dynamics is, e.g., given in the works
of Britting [2], Savage [3] and Chatfield [4]. This includes analytical expressions of the position error’s
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growth from both initialization errors and sensor biases. Short- and medium-term approximations of
these expressions can also be found in [1,5,6]. While these allow for the analysis of bias-like errors
e.g., run-to-run bias variations, the system’s response to noise-like errors is rarely covered. With the
advent of optical gyroscopes, the random walk noise became more significant compared to the previous
mechanical gyroscopes, which leads to increasing interest in the propagation of gyro noise [7]. With the
proliferation of micro-electro-mechanical system (MEMS) sensors and their complex error behavior [8,9],
considering colored noise and especially long-term processes has again gained in importance. Still,
publications are limited to considering white Gaussian noise, e.g., [3,7] or quantization noise of integrating
sensors [10] for predicting the navigation performance.

In reality, however, the measurement noise of inertial sensors indeed contains time-correlated
components that are represented by various noise processes, as pointed out in e.g., [11–13]. State of the
art is the identification and analysis of the sensor noise processes using the power spectral density
(PSD) and Allan variance [14] as demonstrated in [15–17]. Based on these two methods, the Institute
of Electrical and Electronics Engineers (IEEE) standards on specification and testing of various inertial
sensor technologies [18–21] define five typical noise processes that can be found in inertial sensor noise
and is covered in this publication:

• angular random walk,
• rate random walk,
• in-run bias instability,
• rate ramp noise,
• quantization noise.

Despite the existence of methods that consider these sensor noise processes in a Kalman filter
framework [12,22] to increase estimation consistency, the actual influence of colored sensor noise on
the inertial position drift (e.g., between two updates) is not well covered. The often-utilized white noise
model represents only one of the different processes, namely the angular random walk for gyroscopes,
respectively, velocity random walk for accelerometers. This obvious discrepancy between the typical
modeling and real sensor behavior raises two questions that shall be answered within this paper:

• How do the these sensor noise processes propagate through the strapdown inertial navigation?
• Under what circumstances is neglecting non-white noise processes actually justified?

Of course, these questions could be answered by numerical simulation. A discussion of detailed
sensor noise modeling for numerical simulations can be found e.g., in [23]. Such a numerical simulation
can provide highly accurate results, but requires detailed modeling, is time-consuming and provides
little insight into the underlying mechanisms compared to the analytical modeling.

Within this manuscript, we present a more basic and simple-to-use method for evaluating the
navigation errors from a sensor’s noise properties. The proposed method is not meant to replace
the high detail Monte Carlo simulations that are used to demonstrate the navigation performance,
but to allow a first assessment of the navigation errors caused by the sensor noise. For that, an analytical
model of the inertial navigation system’s response to the various sensor noise processes is derived
within the first section of this publication. This extends the already known analytical solutions for
bias-like errors and white noise by analytical solutions for the most typical (non-white) sensor noise
processes. Subsequently, the various results for sensor error propagation are presented and validated
using real sensor measurements. Finally, the results are used to determine for which applications
and under what conditions the various noise processes may be neglected compared to the white
noise components.

2. Propagation of Sensor Noise in Strapdown Inertial Navigation

An inertial navigation system’s response to stochastic input, like sensor noise, is of course of stochastic
nature and requires respective methods of analysis. A performance analysis and demonstration of a
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designed navigation system is usually performed using time-consuming Monte Carlo simulations of
representative mission scenarios. This work, however, aims at providing an application-independent,
more general insight into propagating inertial sensor noise processes. Therefore, we revisit the analytical
representation of strapdown navigation’s error dynamics and derive the system’s white noise response
and then extend these to the typical sensor noise processes.

2.1. Strapdown Inertial Navigation Error Dynamics

A strapdown inertial navigation algorithm propagates a vehicle’s position, velocity and
orientation based on the measured specific forces (accelerations) f b and angular rates ωib of the
vehicle’s body with respect to the inertial reference frame. For the sake of vividness and simple
interpretation, this analysis is based on a strapdown inertial algorithm in (local leveled) navigation
frame mechanization. This has the inherent advantage of separated horizontal and vertical channels.
In the selected mechanization, propagating the position in geodetic coordinates (latitude φ, longitude λ,
altitude h) is described by the following set of coupled differential equations [6]:

λ̇ =

φ̇

λ̇

ḣ

 =


vn

RM(φ)+h
ve

(RN(φ)+h)cos(φ)
−vd


︸ ︷︷ ︸

D(λ ,vn))

(3)

with the north, east and down velocities vn, ve, vd and the local meridional and normal Earth radii RM
and RN . Based on the vehicle’s orientation and the measured specific forces, the change of velocity in
the local North–East–Down (NED) frame is given as:

v̇n =

v̇n

v̇e

v̇d

 = Rnb f b − (2RneΩieRen + Ωen) vn + γn(φ, λ, h) (4)

where Rnb denotes the rotation matrix from the body fixed b-frame to the local north-east-down
n-frame, Rne from the Earth-centered Earth-fixed (ECEF) e-frame to the n-frame. Ωie and Ωen are
the skew-symmetric matrices of the respective angular rate vectors ωie and ωen. Due to the moving
reference system, the measured accelerations are corrected for Coriolis and centrifugal forces. The local
gravity γn is typically from gravity models like Somigliana’s gravity formula [24] or higher-order
models like the EGM2008 [25], depending on the application. The vehicle’s change of orientation Rnb
with respect to the local North–East–Down (NED) frame is described by the following orientation
differential equation:

Ṙnb = RnbΩib−ΩinRnb (5)

The rotation matrix from the Earth-fixed frame e to the local leveled n-frame depends on the
vehicle’s geodetic position and is given by:

Rne =

− sin φ cos λ − sin φ sin φ cos φ

sin λ cos λ 0
− cos φ cos λ − cos φ sin λ − sin φ

 (6)

The corresponding transport rate in the navigation frame is given by:

ωen =
[
λ̇ cos φ −φ̇ −λ̇ sin φ

]ᵀ
(7)

We are aware that the above strapdown inertial formulation would require modifications for a
real-world implementation due to the singularities at the Earth’s poles and a computationally non-optimal
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orientation representation. However, this choice allows for a comprehensible and representative analysis
of the dynamics of strapdown inertial navigation systems.

By splitting the true navigation states from (3) to (5) into the estimated (marked by the hat)
and error states (marked by the δ), a set of differential equations for the dynamics of the error
states is derived. Although, in contrast to the simple separation of the position and velocity states,
the orientation error states are represented by multiplying a preceding error rotation matrix Rnn̂:

λ = λ̂ + δλ (8)

vn = v̂n + δvn (9)

Rnb = Rnn̂Rn̂b (10)

Applying above definitions to the strapdown Equations (3)–(5) and solving for the error states
yields the differential equations of the strapdown error dynamics. Linearization of the error state
differential equations yields the following set of linear ordinary differential equations:

δλ̇ ≈ D(φ,h)−1δvn (11)

δv̇n ≈
(

∂γ(λ)

∂δλᵀ +
∂ (2Rne(λ)ωie + ωen(λ, vn))× vn

∂δλᵀ

)
δλ

+
∂ (2Rne(λ)ωie + ωen(λ, vn))× vn

∂δvnᵀ
δvn − (Rnb f b×) δψnn + Rnbδ f b + δγn

(12)

ψ̇nñ ≈ −Ωin(λ, ṽn)ψnñ + Rñbδωib −
∂ωin(λ, vn)

∂λᵀ
δλ − ∂ωin(λ, vn)

∂vnᵀ
δvn (13)

where the orientation error matrix Rnn̂ is approximated by the skew-symmetric matrix of the vector of
orientation error Euler angles Ψnn̂:

Rnn̂ ≈ (I3×3 + Ψnn̂×) (14)

These linearized error equations depend on the current trajectory, which is the true position,
velocity, orientation and the corresponding ideal inertial measurements. As we are only interested in
the system’s basic response, we trade accuracy for simplicity by only looking at the most typical vehicle
state and take further assumptions to eliminate the trajectory dependency and reduce complexity:

1. The specific forces f b are selected to represent a stationary (ground) vehicle or an aircraft
at straight and level flight. The only acceleration is the local gravity as measured by the
accelerometer’s down-pointing z-axis. The local gravity measurement is approximated by the
standard gravity g0.

2. Vertical states are omitted for this analysis. The instability of the vertical channel is well
known for inertial navigation. In consequence, inertial navigation systems are almost always
used with additional aiding of the vertical channel, e.g., barometric altitude measurements in
aviation. This bypasses the error dynamics of the vertical channel, which motivates neglecting
the corresponding states for this analysis.

3. The meridional and normal radii RM and RN are approximated by a single Gaussian mean radius
RG =

√
RMRN . The maximum error arising from this approximation occurs along the equator

and is only 0.3% of the true radii.
4. The vehicle’s velocity is neglected. This eliminates any trajectory dependency and creates a more

general approximation. Although the transport rate due to the vehicle’s velocity may reach the
same order of magnitude as the Earth’s angular rate, the resulting Coriolis forces are usually
negligible compared to e.g., the specific forces errors. Jekeli [6] states a maximum velocity of
about 200 m/s up to which the vehicle’s velocity can be neglected for the error propagation
without major impairs.
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5. The orientation Rnb is neglected for the inputs. This is equivalent to choosing inertial measurement
inputs in the local navigation frame instead of the body frame. For isotropic and uncorrelated sensor
triads, the input covariance is spherical and a transformation via the orientation matrix Rnb has no
effect anyway on such a sphere.

Incorporating these approximations into the linearized strapdown error dynamics (11) to (13)
yields the following linear state space system:

δφ̇

δλ̇

δv̇n

δv̇e

δΦ̇

δΘ̇

δΨ̇


︸ ︷︷ ︸

ż

=



0 0 1
RG

0 0 0 0
0 0 0 1

RG cos φ 0 0 0

0 0 0 −2ωie sin φ 0 −g 0
0 0 2ωie sin φ 0 g 0 0

ωie sin φ 0 0 −1
RG

0 −ωie sin φ 0
0 0 1

RG
0 ωie sin φ 0 ωie cos φ

ωie cos φ 0 0 tan φ
RG

0 −ωie cos φ 0


︸ ︷︷ ︸

As



δφ

δλ

δvn

δve

δΦ

δΘ

δΨ


︸ ︷︷ ︸

z

+ (15)



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Bs



δ fb,n
δ fb,e
δ fb,d

δωib,n
δωib,e
δωib,d


︸ ︷︷ ︸

δu

Despite the various assumptions, this simplified error model contains all three well-known
strapdown error dynamics (Schuler, 24 h and Foucault oscillations) that are also observed in the
system’s responses to sensor errors. Using the above state space system and a linear output mapping
described by the matrix Cs:

y = Csz (16)

the transfer function G(s) from sensor errors in u to selected navigation error states y of interest can
be determined as [26]:

G(s) = C (sI − As)
−1 Bs (17)

Transformation of the transfer function G(s) from the frequency to the time domain yields the
impulse response g(t) in the time domain:

g(t) = L−1{G(s)} (18)

Using these equations, the transfer functions and impulse responses of the strapdown inertial
error dynamics are determined. In contrast to literature [1,3,4,6], no further approximations are made.
The resulting lengthy expressions are presented in Appendix A. The corresponding Bode plots for
gyroscope and accelerometer inputs to the north and east position errors are depicted in Figure 1.
The determined transfer functions display up to three different complex conjugate poles at:

• the Earth angular rate ωie

• the rates ω2
s− = 2ω2

ie sin2 φ + ω2
s − 2ωie sin φ

√
ω2

ie sin2 φ + ω2
s

• and ω2
s+ = 2ω2

ie sin2 φ + ω2
s + 2ωie sin φ

√
ω2

ie sin2 φ + ω2
s

The trigonometric addition theorem allows the interpretation of the two frequencies ωs− and ωs+
as a Schuler oscillation:

ωs =

√
g0

RG
(19)
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that is modulated at the Foucault rate ω f :

ω f = ωie sin φ (20)

In consistency with the literature, the positions errors follow that modulated Schuler oscillation
when driven by accelerometer errors. When excited by gyroscopic errors, the additional 24 h oscillation
can be observed.
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Figure 1. Bode plots of the strapdown error dynamics transfer functions at a geodetic latitude of 45◦.

2.2. Propagation of White Noise

Using the determined transfer functions, the strapdown system’s response to deterministic
bias-like errors can be easily determined as its step response. For stochastic input, like sensor noise,
the output will be stochastic and thus described by its stochastic moments, e.g., mean and variance.
First, the propagation of white Gaussian sensor noise input and the navigation system’s output error
variance is determined. As (15) is a (locally) linear time-invariant system, the system’s response y(t) to
an input u(t) is determined from the convolution of the system’s impulse response g(t) and the input
signal u(t):

y(t) = g(t) ∗ u(t) =
∫ t

0
g(τ)u(t− τ)dτ (21)

Using above formula, the expected value µy of the system’s response to white noise can be
determined. For stationary white noise input, the expected value of the system’s output is simply the
step response scaled by the input’s expected value:

µy(t) = E [y(t)] = E
[∫ t

0
g(τ)u(t− τ)dτ

]
= µu,ν

∫ t

0
g(τ)dτ = µu,νh(t) (22)
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A zero-mean white Gaussian noise input results in a zero-mean output µy(t) = 0. By definition,
the auto covariance of white noise is zero for any two different evaluation times τ 6= ρ and the variance
σ2

u if τ = ρ. Finally, the variance of the output signal σ2
y (t) from white Gaussian noise input of variance

σ2
u is determined to:

σ2
y (t) = E

[
y(t)2

]
− µ2

y = E
[∫ t

0
g(t− ρ)u(ρ)dρ

∫ t

0
g(t− τ)u(τ)dτ

]
=
∫ t

0

∫ t

0
g(t− ρ)E[u(ρ)u(τ)]︸ ︷︷ ︸

N2
uδ(ρ−τ)

dρ g(t− τ)dτ

= N2
u

∫ t

0
g2(t− τ)dτ

(23)

Above equation allows the determination of the navigation error’s (e.g., position) variance from
white Gaussian noise on the inertial measurements inputs. In the next section, this concept is adapted
to incorporate the non-white inertial sensor noise processes.

2.3. Propagation of Colored Sensor Noise Processes

The above-derived propagation of white Gaussian noise is enhanced to incorporate the most
typical inertial sensor noise processes. These sensor noise processes are characterized by a specific
shape of its power spectral density and a scaling coefficient. These coefficients are usually determined
from an Allan variance analysis of the recorded sensor noise as described in [20]. Different descriptions
of inertial sensor noise processes can be found in the literature, e.g., [11,27,28]. In this manuscript,
we follow the definitions of the IEEE inertial sensor standards [18–20]. The typical noise processes and
their defining properties are summarized in Table A3 in Appendix C. Although the listed processes are
labeled for gyroscope measurements (angles and rates), they also apply to accelerometers: gyroscope
angular random walk corresponds to accelerometer velocity random walk and analogously rate noise
corresponds to acceleration noise.

For a (wide-sense) stationary stochastic process, the Wiener–Khinchin theorem states that the PSD
of an output signal is the squared magnitude of the system’s transfer function GP( f ) times the input’s
PSD [29]:

Sy( f ) = |GP( f )|2Sx( f ) (24)

Using the defining PSD of the different noise processes and the strapdown error dynamic’s
transfer function Gp(s), the resulting PSD of the navigator’s output error can thus be easily determined.
The resulting PSD of the north position error is exemplarily depicted in Figure 2 for the different noise
processes of Table A3. The strapdown error dynamics itself has a low-pass-like behavior. All non-white
noise processes, except the quantization noise, excite the system dominantly in the low-frequency
spectrum, which is propagated through the strapdown error dynamics. Although the quantization
noise is dominated by the higher frequencies, the low-pass behavior of the strapdown dynamics still
attenuates this excitation effectively.

The Wiener–Khinchin theorem (24) provides an option for creating colored noise from white noise
input. As illustrated in Figure 3, a suitable filter with transfer function Gp(s) can be used to create
noise with the PSD of the desired noise process. Combining this transfer function with the strapdown
error dynamics transfer function yields a total system that describes the navigator’s response to this
particular noise process; however, it is not always possible to find such a simple filter, which requires
another approach for modeling the bias instability and rate ramp noise.
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Figure 2. Power spectral density of the north position error from different inertial sensor noise processes.
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Figure 3. Determination of the strapdown inertial navigation system’s error response to colored noise
by including a noise-shaping filter into the system’s transfer function.
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2.3.1. Angular Random Walk

As defined in Table A3, the angular velocity random walk is characterized by a constant PSD of
amplitude N2 and is thus simply white noise on the angular rate respectively acceleration. Integrating
this noise gives a random walk process on the angle or velocity output, hence the name. The variance
of an arbitrary navigation error state y from the input x is already given by (23). Introducing the
angular random walk’s scaling coefficient N yields:

σ2
N,y,x = N2

∫ t

0
g2

y,x(t− τ)dτ (25)

For the given sine- and cosine-based transfer functions from Appendix A, this integral can be
solved analytically. The lengthy, general solution is given in Appendix B. The resulting error growth
from angular velocity random walk, described here by the position errors standard deviation (SD) σN,∆x,
is depicted in Figure 4. These curves match well with the theoretical and numerical results published
by Flynn [7]. As expected, the strapdown error dynamics’ characteristic oscillations, especially the
Schuler oscillation, can also be observed in the response to sensor noise.
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Figure 4. Position error growth from the angular velocity random walk noise. The time axis of the
plots is split to provide a better resolution of the short-term response.

2.3.2. Rate Random Walk

Rate random walk is a random walk process on the rate measurements. Following Table A3 it
is characterized by a quadratically decreasing PSD (red noise or Brownian noise). The same applies
analogously to the acceleration measurement. Random walk is created from time-integration of white
noise, which is given by the following transfer function:

GK(s) = K
1
s

(26)

The total system’s impulse response that represents the strapdown error response to rate (or
acceleration) random walk is thus simply the time integral of the strapdown navigation error’s
impulse response:

gK,y,x = K
∫ t

0
gy,x(τ)dτ (27)
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Due to their structure, the impulse responses can be easily integrated analytically. Analogous to
the angular random walk, the resulting total impulse response and (23) are finally used to determine
the system’s response to rate random walk noise:

σ2
K,y,x =

∫ t

0
g2

K,y,x(t− τ)dτ (28)

Again, this integral can be solved analytically for the impulse responses using the general solution
from Appendix B. The resulting position standard deviations are depicted in Figure 5.
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(c) East error SD from acceleration random walk.
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(d) East error SD from angular rate random walk.

Figure 5. Position error growth from rate respectively acceleration random walk noise. The time axis
of the plots is split to provide a better resolution of the short-term response.

2.3.3. Quantization Noise

Quantization noise is characterized by a quadratically increasing PSD (violet noise), which corresponds
to the time-derivative of white noise. The auto-covariance of such noise is given by the second time
derivative of the Dirac delta function:

E [u(ρ)u(τ)] = δ̈(ρ− τ) (29)

Inserting definition (29) into (23) and using the defining PSD from Table A3 the variance of the
navigation error states from quantization noise is determined to:

σ2
Q,y,x(t) = Q2τsg2

y,x(t) (30)

Note that quantization noise, in contrast to the other noise processes, scales with the sample
time τs. The resulting normalized position errors from gyro and accelerometer quantization noise are
depicted in Figure 6. In contrast to the other noise processes, quantization noise leads to pure position
oscillations and thus to a bounded position error.
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(c) East error SD from velocity quantization noise.
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Figure 6. Position error growth from quantization noise. The time axis of the plots is split to provide a
better resolution of the short-term response.

An alternative analysis of inertial sensor quantization noise in strapdown navigation, especially
in the context of two-speed algorithms, can be found in [10]. This paper, however, aims to stay within
the noise processes framework defined by the IEEE test and specification standards.

2.3.4. In-Run Bias Instability

In-run bias instability is a slow in-run variation of the sensor output’s bias. In Table A3, the bias
instability is defined by a linearly decreasing PSD (flicker noise or pink noise) that is cut off hard at a
frequency f0,B. This definition poses two practical problems to the analytical approach that has been
used to model the noise processes so far:

1. Generating flicker noise would require a filter with the following irrational transfer function:

Gflicker(s) =
1√

s
(31)

There is no LTI system that corresponds to such a transfer function. Although G f licker can be
transformed to the time-domain, the resulting impulse response

gflicker(t) =
1√
πt

(32)

has little use, since Equation (21) is only valid for LTI systems. Additionally, the impulse response is
not even defined at time t = 0.

2. Also, the theoretical hard cutoff at f0,B cannot be represented by a linear filter. In practice, it has
to be approximated by a suitable low-pass filter.

Traditionally, flicker noise is approximated by the combination of multiple linear filters [30].
This approach, however, is only a rough approximation. The longer the signal time, the more poles are
required in the filter [31]. Therefore, another approach is used in this manuscript. As stated above,
the impulse response in continuous time cannot be used for the analysis. However, a method proposed
by Kasdin [31] is used to create a time-discrete impulse response that accurately represents power law
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noise of the full time range of interest. This impulse response used to create power law noise of PSD
1/ f α is defined recursively:

gα[0] = 1 (33)

gα[k] =
(

k− 1− α

2

) g[k− 1]
k

(34)

Note that this discrete-time impulse response is not a time-discretization of the theoretical
continuous time impulse response but specifically designed to create a power-law noise sequence that
has the desired PSD and auto-correlation.

For this analysis, the cutoff in the bias instability is approximated by a first-order low-pass filter.
A comparison of bias instability signals with a sharp cutoff and this approximation is depicted in
Figure 7. This approximation shifts the Allan variance slope slightly to higher cluster times but the
level of the plateau is virtually unchanged. A reduction of the cutoff time T0,B by a factor of about
1/3 compared to the identified cutoff yields a good approximation in simulation (see Section 3.2).
Nevertheless, in practice, the high-frequency parts of sensor noise are highly dominated by other
processes such as angular random walk. Consequently, the inaccurate PSD slope beyond the cutoff
frequency is covered by the other processes.

10−4 10−3 10−2 10−1 100 10110−4

100

104

cutoff

Frequency (Hz)

PS
D
((
◦ /

s)
2 /

H
z)

ideal cutoff low-pass

(a) Power spectral density.

10−2 10−1 100 101 102 103

10−6

10−3

100

cutoff

Cluster time (s)

A
lla

n
de

vi
at

io
n
(◦

/
s)

ideal cutoff low-pass

(b) Allan deviation.

Figure 7. Comparison of the power spectral density (PSD) and Allan variance of simulated bias
instability signals for a sharp cutoff and first-order low-pass approximation.

With the impulse response of flicker noise, which is Equation (34) for α = 1, and the following
impulse response of a first order low-pass filter with time constant T0,B

glp[k] = glp[k− 1]
(

1− τs

T0,B + τs

)
(35)

glp[0] =
τs

T0,B + τs
(36)

the final impulse response of a fictive filter that generates bias instability noise can be determined to:

gB[k] =
k−1

∑
l=0

gα=1[k− l]gl p[l] (37)

The total system impulse response for bias instability excitation can then be determined using the
discrete-time version of (21):

gB,y,x[k] = B
k−1

∑
l=0

gy,x[k− l]gB[l] (38)
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The output’s variance at time k is finally determined from [31]:

σ2
B,y,x[k] =

k−1

∑
l=0

g2
B,y,x[l] (39)

Clearly, the resulting response depends on the selected cutoff frequency f0,B (respectively time
constant T0,B = 1/ f0,B). The resulting growth of the position uncertainty is depicted by way of
example in Figures 8 and 9 for different values of TB. Higher time constants, like 5000 s, that are
typical for optical gyroscopes lead to a slower growth in the short term and a reduction of the Schuler
oscillation amplitudes. For the low time of about 100 s, which is more representative for accelerometers,
the Schuler oscillations are still clearly visible on top of the long-term error growth. Both observations
match with the low-pass-like shape of the bias instability’s PSD.
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(c) East error SD from acceleration bias instability.
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Figure 8. Position error growth from bias instability with T0 = 5000 s. The time axis of the plots is split
to provide a better resolution of the short-term response.
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Figure 9. Position error growth from bias instability with T0 = 100 s. The time axis of the plots is split
to provide a better resolution of the short-term response.
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For assessing and predicting the influence of bias instability on the navigation error, not only the
scaling B (which may be given in data sheets), but also the time constant T0,B, or at least its approximate
magnitude, is required. Both can be determined from e.g., Allan variance charts of the sensor’s noise.

2.3.5. Rate Ramp Noise

As summarized in Table A3, rate ramp noise, respectively acceleration ramp noise, is characterized
by a PSD that declines cubically with the frequency. From this definition, the shaping filter’s transfer
function can be easily determined to:

GR(s) =
R

(2π f )3/2 (40)

Analogous to the bias instability, this irrational transfer function cannot be handled with the
continuous-time approach. However, the already introduced Equation (34) directly yields the
discrete-time impulse response gR[k] that shapes rate ramp noise from white noise for α = 3. From that,
the total system response is then determined to:

gR,y,x[k] = R
k−1

∑
l=0

gy,x[k− l]gR[l] (41)

and finally used in

σ2
R,y,x[k] =

k−1

∑
l=0

g2
R,y,x[l] (42)

to determine the navigation error variance from rate ramp or acceleration ramp noise. The resulting
position error standard deviation over time is depicted in Figure 10. As rate ramp noise is dominated
by low-frequency parts, the position error growths show even less dynamics than the bias instability.
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(b) North error SD from angular rate ramp noise.
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(c) East error SD from acceleration ramp noise.
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Figure 10. Position error growth from rate ramp noise. The time axis of the plots is split to provide a
better resolution of the short-term response.

3. Results

3.1. Predicting Strapdown Inertial Navigation Performance

The different responses of the strapdown error dynamics to excitation by different noise processes
have been derived in the previous section. Once the different noise process parameters of the inertial
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measurement unit (IMU) are identified (or taken from a data-sheet), the derived solutions can be easily
used to determine the position variance from each single sensor axis and noise process. This can
be performed by implementing and evaluating the derived Equations (25), (28), (30), (39) and (42)
with the appropriate transfer functions from Appendix A in a suitable programming environment.
Analytical solutions for the integrals can be found in Appendix B. Alternatively, the position variance
at a given time can be simply read off of the charts provided in Figures 4–10 and scaled with the
respective noise parameters.

For the linearized error dynamics, the total position variances can be easily determined by adding
up the variances of the different processes and axes j ∈ (ωib,x, ωib,y, ωib,z, fb,x, fb,y, fb,z). For the north
position error this yields:

σ2
∆xn

(t) = ∑
j

σ2
N,∆xn ,j(Nj, t) + ∑

j
σ2

K,∆xn ,j(Kj, t) + ∑
j

σ2
Q,∆xn ,j(Qj, t)+

∑
j

σ2
B,∆xn ,j(Bj, t) + ∑

j
σ2

R,∆xn ,j(Rj, t)
(43)

The east position variance σ2
∆xe

(t) is determined analogously. As the resulting position errors are
zero-mean they can be easily combined into a single measure, e.g., distance root mean square (DRMS):

DRMS(t) =
√

σ2
∆xn

(t) + σ2
∆xe

(t) (44)

In addition to the navigation errors from sensor noise presented here, the position errors from
e.g., sensors biases and navigation state initialization errors should be considered in the sensor selection
process. A discussion of these errors can be found in classic literature, e.g., [2–4]. The presented method
for predicting the positional uncertainty growth is best understood from the following example.

3.2. Example: Navigation Error Prediction for a Fiber Optic Gyroscope IMU

In the following example, we demonstrate the approximation of the navigation errors from
sensor noise of an exemplary FOG IMU. The different noise process parameters were identified from
the Allan Variance analysis of a 48 h recording of the stationary IMU. The noise coefficients were
determined from a least-squares fit of the IEEE noise process models to the Allan variance curve that
was determined from the recorded sensor noise, as suggested in [32]. The identified parameters are
summarized in Table 1.

Table 1. Noise parameters identified from 48 h recorded data of an IFOS-500 inertial measurement unit
(IMU).

Gyro x Gyro y Gyro z Acc x Acc y Acc z

N 0.0049
◦√
h

0.0052
◦√
h

0.0054
◦√
h

0.0056 mg√
Hz

0.0070 mg√
Hz

0.0057 mg√
Hz

B 0.013
◦

h 0.0075
◦

h 0.0079
◦

h 0.0025 mg 0.0042 mg 0.0029 mg
T0,B 3000 s 3000 s 3000 s 50 s 50 s 50 s
R - - - 0.55 · 10−6 mg Hz 0.96 · 10−6 mg Hz 0.37 · 10−6 mg Hz

As described in Section 3.1, the formulas for the position error variance from Section 2.3 were
implemented and evaluated in Matlab R2019b. For example, the results for the north position error
variance are depicted in Figure 11. The respective contributions from the different noise processes are
represented by the colored faces that add up to the total north position error variance.

To account for the low-pass approximation of the bias-instability (see Figure 7), the cutoff time
T0,B used in the analytical solution is reduced to 1/3 of the identified time. This approximation yields
good results compared to the numerical simulation with a hard cutoff of the bias instability. The result
of 10,000 Monte Carlo runs with numerically generated IMU noise in the full non-linear strapdown
navigation is added for comparison. Here, one advantage of the analytical approach becomes obvious:
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The numerical evaluation of the derived expressions requires only 0.6 s, whereas the Monte Carlo
simulation takes 11 h on an average desktop computer. Additionally, the resulting variance from
multiple strapdown navigation simulation runs using the real recorded sensor outputs is depicted.
The 48 h recorded IMU data are split into 24 chunks of 2 h each, to allow multiple simulation runs.
Both results fit the analytically predicted variance well. The small deviation of the recorded data can
be explained by the low number of iterations with the recorded data as well as additional factors like
alignment and initialization errors.

For the utilized IMU, the navigation error is clearly dominated by the gyroscope errors.
In particular, the gyro angular random walk dominates the short-term errors. Starting at about
90 min, the gyro bias instability surpasses all other error sources. For the accelerometers, only the
low-frequency errors (bias instability and acceleration ramp) are relevant. Still, the errors from
gyroscope noise are several magnitudes higher for this IMU configuration.
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Figure 11. Composition of the north position variance for example noise processes identified from
a Fiber Optic Gyroscope compared to the resulting variance from 10,000 Monte Carlo runs with
numerically simulated synthetic IMU noise (labeled sim, dashed line) and 24 runs using the real
recorded IMU noise (labeled rec, solid line).

3.3. Conditions for Neglecting Colored Sensor-Noise

The previous example clearly shows how the different noise processes contribute differently to
the overall position error at different times. For short times, the position error is clearly dominated by
the gyro angular random walk, whereas this gradually changes in favor of the bias instability. For the
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given example, the typical approach to model the sensor’s noise as simple white noise on the rate
output (angular random walk only) seems justified for at least the first 30 min of propagation.

To obtain a more general statement, we look at the ratios of the position errors caused by the
different noise processes. The total position error (DRMS) caused by a specific noise process shall be
only a fraction k of the position error caused by the angular or velocity random walk. To be consistent
with practice, we can assume equal noise coefficients for all axis of the sensor triads. For the gyro bias
instability, this condition yields, for example:

DRMSB(Bωib , t) ≤ k ·DRMSN(Nωib , t) (45)

B ≤ kN ·

√
(σ2

∆n,N(t) + σ2
∆e,N(t))√

(σ2
∆n,B(t) + σ2

∆e,B(t))
(46)

The resulting maximum noise coefficients for rate random walk, bias instability, rate ramp noise,
quantization noise and their accelerometer counterparts are depicted in Figure 12. The charts can be
used as follows:

1. Choose the maximum ratio k of the position error (DRMS) caused by the colored noise process
and the DRMS caused by angular or velocity random walk, e.g., k = 0.01.

2. For a given angular random walk coefficient N, find the blue plot line closest to k · N.
3. Read off the maximum acceptable noise coefficient, e.g., B, at the desired time. The selected

coefficients now fulfill Equation (45) at time t.

In contrast to the other noise processes, which are usually hard to identify or are not observed
at all, the bias instability and angular random walk can be observed for virtually every inertial
sensor. Using above described method, the maximum mission time that allows for the neglect of the
bias instability compared to the angular random walk is summarized for several sensors in Table 2.
The sensors were chosen based on their publicly available Allan variance plots to represent a wide
range of gyroscope grades. The given DRMS values give the total position error from bias instability
and angular random walk, only. Further sensor errors are not considered in this analysis.

Table 2. Maximum mission time that allows for the neglect of the gyro bias instability for different
sensor grades. Below the threshold time, the bias instability’s contribution to the total position error is
less than 1% of the angular random walk’s contribution.

Noise Parameters 1% Threshold

Grade Example Tech. N B TB DRMS (1 h) Time DRMS(
◦
√

h

) (
◦

h

)
(s) (km) (s) (m)

Industrial DMU10 [33] CVG 0.4 15 500 2800 * 11 0.14
STIM300 [34] CVG 0.15 0.5 1000 80 96 12

Tactical DSP3100 [35] FOG 0.048 0.072 2000 7 55 0.1
Navigation GG1320 [36] RLG 0.0015 0.0024 2000 0.4 245 1.3

* Value clearly exceeds validity range of the linearized model.

In general, higher sensor grades provide better long-term stability, but this does not allow a
statement on the maximum acceptable time for neglecting the bias instability since this depends on the
ratio of the bias instability and the angular random walk. For the FOG gyro DSP3100, for example,
we determined a threshold of 55 s, whereas the MEMS based STIM300 allows the bias instability to
be neglected up to a time of 96 s. Still, the FOG gyro’s position drift is one magnitude better than the
MEMS-based example.

Even for low-cost sensors, the bias instability contributes significantly to the total position error
only after several seconds. This gives a hint regarding the necessity of considering the bias instability
when modeling the sensor noise in certain applications. The free inertial propagation time between two
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position fixes in an integrated navigation system is usually below 1 s. Even when considering short
outages of the satellite navigation systems (GNSS), the bias instability will not contribute significantly
to the position growth within this time scale. Navigation-grade sensors, however, are used to provide
unaided position reference for hours or longer. For these time scales, the bias instability clearly yields
a significant contribution to the position error and should be considered in the analysis.

Similarly, the other 1/ f α noise processes become significant for long-term navigation only.
As illustrated in Figure 12, the contribution of the quantization noise is worst for short times.
Still, from the charts, it can be determined whether a certain level of quantization noise can be
neglected, independent of the mission duration.
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(f) Accelerometer bias instability.
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(g) Acceleration ramp noise.

0 5 1010−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105

10−6
10−5
10−4
10−3
10−2
10−1
100

𝑘
⋅𝑁

in
(

m

s 2√
H
z )

Time (h)

𝑄
in
(m
s
)
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Figure 12. Maximum noise coefficients for scaled angular/velocity random walk coefficient kN over
time. Graphs were determined for a latitude of 45◦ and an altitude of 0 m. For a given time t, the lines
indicate the noise coefficients where e.g., the bias instability’s contribution to the position uncertainty
is a fraction k of the angular random walk’s contribution.
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4. Limitations

The derived analytical solutions and charts provide an easy-to-use method to estimate the
strapdown navigation errors caused by different inertial sensor noise processes. This simplicity comes
with the caveat of extensive assumptions on the vehicle’s dynamics and the sensor’s behavior:

• The analytical solutions are only valid for a stationary vehicle. The accuracy of the error dynamic’s
approximation decreases with the actual velocity.

• The vehicle is assumed to be straight and leveled.
• The navigation system’s vertical channel is fixed by an external aiding.
• The position errors must be kept below about 100 km to stay within the valid region of the

linearized error dynamics.
• The sensor’s noise characteristics are assumed to be constant. They neither depend on the time

nor the trajectory.
• The presented graphs were created for a latitude of 45◦. Of course, the analytical solution allows

for a simple evaluation at any other latitude more representative for a certain application.

Given the above limitations, the described method can only provide qualitative statements and
no definite prediction of the navigation errors. Of course, all of these assumptions could be easily
abandoned in a Monte Carlo simulation to generate a quantitative prediction. This, however, requires
detailed error models and a known mission trajectory, which is usually not available at an early
stage of development. In this case, the developed method allows for an early assessment of the
suitability of different sensors. Within this manuscript, we considered only noise-like sensor errors,
but uncompensated bias-like errors typically result in higher navigation errors. The presented methods
should therefore be combined with the results for bias-like errors that can be found in the literature [2–4]
to get a complete picture.

5. Conclusions

In this manuscript, we presented a method to analytically predict the position errors from
colored sensor noise in strapdown inertial navigation systems. Together with literature methods for
biases and initialization errors, the presented scheme allows for a simple evaluation of an inertial
sensor’s navigation performance at an early design phase. Compared to Monte Carlo simulations,
the method requires significantly reduced implementation effort and computing time. Additionally,
the method supports the assessment of the contributions of individual noise processes and thus
allows the identification of critical performance parameters in the sensor selection process. This was
demonstrated for real sensor data in Section 3.2. In addition to the position errors, the presented
approach can be easily adapted to the other navigation states, e.g., the orientation angles.

Due to the low-pass behavior of the strapdown inertial navigation algorithms, the impact of
colored sensor noise processes, except for the quantization noise, grows with the mission time. For short
times, the position uncertainty is always dominated by the white noise parts (angular or velocity
random walk). The maximum time for which the white noise dominates and the other noise processes
can be neglected can be easily read off of the charts provided in Figure 12. The presented examples
indicate that even for low-cost sensors, it takes several seconds of propagation until the gyro bias
instability contributes significantly to the position uncertainty. For integrated navigation, where the
time between two consecutive updates is below 1 s, the white noise is clearly dominant. For long-term
inertial navigation, however, our results clearly point out the necessity of modeling and considering all
noise processes properly. In general, the focus on white sensor noise seems to be justified, but should
be checked individually for each sensor configuration and mission.
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Abbreviations

The following abbreviations are used in this manuscript:

CVG Coriolis Vibratory Gyroscope
DRMS Distance Root Mean Square
ECEF Earth-Centered Earth-Fixed Coordinate System
FOG Fiber Optic Gyroscope
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
IEEE Institute of Electrical and Electronics Engineers
MEMS Micro-Electro-Mechanical Systems
NED North–East–Down Coordinate System
ODE Ordinary Differential Equation
PSD Power Spectral Density
RLG Ring Laser Gyroscope
SD Standard Deviation
Symbols
α Exponent of 1/ f α PSD noise
As System matrix of the linearized strapdown error dynamics
ba Vector of accelerometer biases
bg Vector of gyroscope biases
B Bias instability coefficient
Bs Input matrix of the linearized strapdown error dynamics
Cs Output matrix of the linearized strapdown error dynamics
f Frequency
f b IMU’s specific forces (accelerations) vector
γn Local gravity vector in NED frame
g0 Standard gravity, 9.80665 m/s2

g(t) Transfer function/impulse response in the time domain
G(s) Transfer function in the Laplace domain
h Geodetic altitude
I Identity matrix
K Rate/acceleration noise coefficient
λ Geodetic longitude
λ Vector of geodetic position components
µ Expected value
Ma Accelerometer misalignment and scale factor matrix
Mg Gyroscope misalignment and scale factor matrix
νa Vector of accelerometer noise
νg Vector of gyroscope noise
N Angular/velocity random walk noise coefficient
ωs Angular frequency of the Schuler oscillation
ωib IMU’s angular rate vector
ωie Vector of the Earth’s angular rate, expressed in the ECEF frame
ωen Vector of the angular rate between the local NED and the ECEF frame expressed in the NED frame



Sensors 2020, 20, 6914 21 of 26

Ωxy Skew symmetric matrix of angular rate vector ωxy

Q Quantization noise coefficient
φ Geodetic latitude
ψnn̂ Vector of orientation Euler angles representing the orientation error
R Rate ramp/acceleration ramp noise coefficient
RG Gaussian mean of the local Earth radii
RM Local meridional radius of the Earth curvature
RN Local normal radius of the Earth curvature
Rnb Rotation matrix from the body fixed frame to the local NED frame.
Rne Rotation matrix from the ECEF frame to the local NED frame.
Rnn̂ Rotation matrix representing the orientation error of the body fixed frame with respect to the NED frame
σ Standard deviation, root variance
S( f ) Power spectral density
t Time
T0,B Time constant of low-pass filter used to model the in-run bias instability cut-off
vn Velocity vector in NED-frame
vn North velocity component
ve East velocity component
vd Down velocity component
y Output vector of the linearized strapdown error dynamics

Appendix A. Transfer Functions

The transfer functions and corresponding impulse responses of the strapdown inertial navigation
error states to inertial measurement errors are summarized in the following tables.

Table A1. Latitude error impulse responses
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Table A1. Cont.
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Table A2. Longitude error impulse responses.
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Table A2. Cont.
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Appendix B. Analytical Solution

For impulse responses of the form given in Appendix A, the integral (23) can be solved analytically.
For sine-based transfer functions of the general form

ga,sin(t) = a0 + a1t + a2 sin(ωs− t) + a3 sin(ωs+ t) + a4 sin(ωiet) (A1)

the integral yields:
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In a similar fashion, the integral over a cosine-based transfer function

ga,cos(t) = a0 + a1t + a2 cos(ωs− t) + a3 cos(ωs+ t) + a4 cos(ωiet) (A3)
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is given as:
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Appendix C. IEEE Sensor Noise Processes

Table A3. Power spectral density and Allan variance of typical inertial sensor noise processes [20].
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Table A3. Cont.

Process Power Spectral Density Allan Variance
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