TECHNISCHE UNIVERSITAT MUNCHEN

LEHRSTUHL FUR SOFTWARE ENGINEERING BETRIEBLICHER
INFORMATIONSSYSTEME

Model Management along the IT Value
Chain in Microservice-based IT Landscapes

Martin Kleehaus

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzender: Prof. Dr. Georg Carle

Priifer der Dissertation: 1. Prof. Dr. Florian Matthes
2. Prof. Dr. Martin Bichler

Die Dissertation wurde am 16.02.2021 bei der Technischen Universitdt Miinchen eingereicht
und durch die Fakultét fiir Informatik am 28.06.2021 angenommen.

I confirm that this doctorate in natural sciences (dr. rer. nat.) is my own work and I have
documented all sources and material used.

Munich, 28.01.2021 Martin Kleehaus

Acknowledgments

After many years of intensive work, this journey finally comes to an end. In this period
of my life, I had to climb many mountains. Only through the support of a few people,
who supported me countless times, I have managed this intense time. First of all, I am
especially grateful to my professors. As the first supervisor, Prof. Dr. Florian Matthes
has always supported me with his suggestions and inspiring discussions. Without your
valuable academic advice, this work would not have been possible. I am also indebted to
Prof. Dr. Martin Bichler for his second report. Thank you for the valuable feedback.

In this time, I have realized that an individual is only as strong as the whole team.
Hence, I would like to thank my colleagues, who have repeatedly guided me into new and
fruitful thematic paths with their enriching tips and contributions to discussions. Special
thanks go to Omer Uludag, Jérg Landthaler and Dominik Huth for their contributions to
my research through co-authorships. Thanks to Klym Shumaiev, Adrian Hernandez, Dr.
Manoj Mahabaleshwar, Dr. Pouya Aleatrati, Fatih Yilmaz, Gloria Bondel and Ingo Glaser
for your support in reviewing my papers and providing valuable feedback. Thanks to
Ahmed Elnaggar, Ulrich Gallersdorfer, Dr. Felix Michel, Dr. Anne Faber, Dr. Bernhard
Waltl and Patrick Holl for the constructive cooperation in teaching and researching.

I would also like to thank my students who allowed me to guide them through their
research. These thanks go to Daniel Hoyos, Jochen Graeff, Lukas Steigerwald and Tien
Vu Duc. Special thanks go to Patrick Schifer, Nektarios Machner, Nicolas Corpancho,
Christopher Janietz and Ludwig Achhammer who contributed a lot to the development of
my concepts and prototypes. I really enjoyed working with all of you.

On several occasions throughout my research, I did not only work with colleagues and
students but also with industry partners. My thanks go to Dr. Matheus Hauder from
Allianz, Dr. Stefan Volkert and Jan Schéfer from BMW, Jeffrey Ahmad, Stefan Melles and
Prof. Dr. Andreas Both from DATEV as well as to Dr. Michael Ponitsch from Siemens.

Finally, and most importantly, I express my sincere gratitude to my wife Dr. Leonie
Kleehaus for her unconditional love, support, and patience during this challenging time.
Thank you for reminding me regularly to take a step back from my work in order to refuel
new energy. I am also utmost grateful to my parents Waltraud and Rolf Kleehaus, my par-
ents in-law Anne and Wilfried Mathemeier and my brother and sisters. Without your great
support and encouragement during my whole life, this work would not have been possible.

Garching b. Miinchen, 17.01.2021 Martin Kleehaus

Abstract

Model management is used in IT management to maintain an abstract representation of
business- and IT-related artifacts. In enterprise architecture management (EAM), those
models help to understand complexity, reason about changes and to achieve a holistic view
on the enterprise. According to the IT4IT framework, models are used in various phases
within the IT value stream. For example, low-fidelity models reflect the current state of each
enterprise architecture layer and their interconnections, whereas run-time models capture
elements of running systems. However, efficient model management faces numerous
challenges, e.g. model creation and maintenance is still conducted manually, which is
error-prone, cost-intensive and time-consuming. In addition, microservice architectures
introduce a high level of complexity with regard to model management, as our empirical
findings confirm.

In order to tackle those challenges, research endeavours conducted in EAM as well as in
model-driven engineering propose to automate the creation of models by collecting the
required information from several information sources used along the IT value stream and
to reassemble the scattered information into one central model management. However, as
literature confirms several problems remain: the extraction of models leads to ambiguous
documentation of the architecture and the merging of models lead to conflicts. Moreover,
model management in EAM restricts modelling to current and future states of an enterprise.
An approach for the automated maintenance and linking of all models required along the
IT value chain in a central repository does not exist at this time.

In this research, we present an approach that allows reconstructing the models from the
individual phases of the IT value chain automatically based on runtime information and
configuration files that are assigned to each application in the observed IT landscape. We
transform the reconstructed models into a linked knowledge graph, which represents our
central model management. This graph can be accessed via a uniform visual interface and
query language. For this purpose, we design and develop a tool called MICROLYZE.

We apply design-science as our research methodology to evaluate the developed con-
cepts and the corresponding prototype. By conducting two case studies in two different
companies, we assess the applicability of our approach and the prototype’s practicability.
19 interviews with practitioners from 17 different companies provide feedback about the
proposed software-, process- and visualization design of the prototype. The reported
experiences showed that MICROLYZE is able to discover most of the models from each
phase of the IT value stream and successfully connect them to a linked knowledge graph.
The elaborated solution approach was positively received by the practitioners. However,
the concept still has to be examined with respect to its scalability, whether the informa-
tion base is truly fully recovered, as well as the ability to uncover the rationale behind
architecture changes and certain runtime behaviour.

vii

Kurzfassung

Modelle beschreiben eine abstrakte Darstellung von geschéfts- und IT-bezogenen Arte-
fakten. Im Enterprise Architecture Management (EAM) helfen Modelle, Komplexitdt zu
verstehen, sowie eine ganzheitliche Sicht auf die Unternehmensarchitektur zu schaffen.
Gemaéfs dem IT4IT-Framework werden Modelle in verschiedenen Phasen innerhalb der IT-
Wertschopfungskette verwendet. Beispielsweise beschreiben Modelle mit einem geringen
Detaillierungsgrad die Schichten einer Unternehmensarchitektur und ihre Verbindungen
untereinander. Laufzeit-Modelle hingegen erfassen das Laufzeitverhalten von Anwen-
dungen. Die Schwierigkeit ein effizientes Modellmanagement zu etablieren, liegt in der
fehleranfilligen und zeitaufwiandigen manuellen Pflege der Modelle. Zudem bringen
serviceorientierte Architekturen wie Microservices eine hohe Komplexitit in Bezug auf
das Modellmanagement mit sich.

Um diesen Herausforderungen zu begegnen, schlagen verschiedene Forschungsarbeiten
vor, die Erstellung von Modellen zu automatisieren, indem die erforderlichen Informatio-
nen aus mehreren Informationsquellen gesammelt und wieder zu einem zentralen Modell
zusammengefiihrt werden. Allerdings fiihrt die Extraktion von Modellen aus mehreren
Anwendungssystemen zu einer mehrdeutigen Dokumentation der Architektur und die
Zusammenfiihrung zu Modellkonflikten. Das Modellmanagement im EAM beschrankt
sich auf die Erfassung von aktuellen und zukiinftigen Zustanden eines Unternehmens.
Ein Ansatz zur automatisierten Pflege und Verkniipfung aller Modelle, die entlang der
IT-Wertschopfungskette benttigt werden, existiert in einem zentralen Repository zum
gegenwartigen Zeitpunkt nicht.

In dieser Forschungsarbeit stellen wir einen Losungsansatz vor, der es ermoglicht,
die Modelle aus den einzelnen Phasen der IT-Wertschopfungskette auf Grundlage von
Laufzeitinformation sowie Konfigurationsdateien automatisiert zu rekonstruieren. Die
rekonstruierten Modelle transformieren wir zu einem verkniipften Wissensgraphen, der
unser zentrales Modellmanagement darstellt. Auf diesen Graphen kann {iber eine einheit-
liche Abfragesprache zugegriffen werden. Zu diesem Zweck haben wir die Anwendung
MICROLYZE entwickelt, die wir als unser Forschungsartefakt evaluieren.

Als Forschungsmethode wenden wir Design-Science an. Aus den Ergebnissen der Durch-
fithrung von zwei Fallstudien in zwei Unternehmen bewerten wir die Anwendbarkeit der
von uns erarbeiteten Konzepte und die Praktikabilitdt des Prototyps. Wir analysieren die
Ergebnisse von 19 Interviews mit Praktikern aus 17 verschiedenen Unternehmen um das
Software-, Prozess- und Visualisierungsdesign des Prototyps zu evaluieren. Die Ergebnisse
zeigen, dass MICROLYZE die meisten Modelle, die zum Verstindnis der IT-Landschaft
erforderlich sind, automatisiert wiederherstellen kann. Allerdings muss die Skalierbar-
keit des Konzepts verbessert werden. Es bleibt zudem unklar, ob die Informationsbasis
tatsachlich vollstindig rekonstruiert wurde.

X

Contents

Acknowledgments
Abstract
Kurzfassung

1. Introduction

1.1. Problem Statement
1.2. Research Questions i i e
1.3. ResearchDesign

1.3.1. Design-Science Research

1.3.2. Qualitative Content Analysis
1.4. Contributionof thisThesis.
1.5. Preliminary Work
1.6. Structureof thisThesis

2. Foundations
2.1. Model Driven Engineering
2.1.1. Modeling Languages
2.1.2. Model Transformations
2.1.3. Model-Driven Reverse Engineering
214. ModelsatRuntime,
2.2. Enterprise Architecture Management
2.2.1. Building Blocks of Enterprise Architecture
2.2.2. Management of Enterprise Architectures
2.2.3. Modelling Enterprise Architectures
2.24. Archimate Notation Language
2.3. Microservice Architecture 0L
2.3.1. Definition of Microservice Architecture
2.3.2. Building blocks of Microservice Architectures
2.3.3. State-of-the Art in Microservice Adoption
24, DevOps
24.1. AgilePractices
2.4.2. Software Release Automation
2.4.3. Monitoring distributed Systems

vii

ix

NN -

10
14
17
20

21
22
22
23
24
25
26
26
29
30
30
33
34
37
41
42
46
48
49

xi

Contents

3. Related Work

3.1.

3.2

3.3.
3.4.

Model Reverse Engineering
3.1.1. Static based Reverse Engineering
3.1.2. Dynamic based Reverse Engineering
3.1.3. Hybrid based Reverse Engineering
EA Model Maintenance
3.2.1. Federated EA model Maintenance
3.2.2. Runtime based EA Model Maintenance
3.2.3. Modern Approaches for EA Model Maintenance
3.2.4. Change Events that trigger EA model Maintenance
IT Landscape Representation
Demarcation L

4. Requirement Analysis

4.1.
4.2.

A Conceptual Framework for Managing Models along the IT Value Chain .
Identification of Requirements
42.1. Architectural Requirements
42.2. Organizational Requirements
42.3. Functional Requirements
42.4. Visualization Requirements

5. Automated Model Recovery via Runtime Instrumentation

5.1.

5.2.

5.3.

IT landscape topology
51.1. AppDynamics.
512. NewRelic
51.3. Dynatrace
514. AppMon
5.1.5. Meta-Model Transformation
System Design
52.1. Monitoring probes oo Lo
52.2. Monitoring Server L oo
5.2.3. MICROLYZE.Collect: Collecting Architecture Models
52.4. MICROLYZE.Analyze: Analyzing Architecture Models.
5.2.5. MICROLYZE Store: Storing Architecture Models
5.2.6. MICROLYZE.Expose: Exposing Architecture Models
Process Design
5.3.1. Reconstruction of Architecture Model Dependencies
5.3.2. Reconstruction of Communication Dependencies
5.3.3. Validation of Architecture Changes
534. ChangeEvents,
53.5. RevisionConcept
5.3.6. Recovering REST Calls using Runtime Data
5.3.7. Elaboration of a Deletion Threshold

67
67
70
71
73
74
76

xii

Contents

54. Visualization Design, 128
5.4.1. Visualization Architecture 129
542. GraphStyling 131
5.4.3. Visualization Process 134
5.4.4. Architecture Model Deployment 137
5.4.5. Architecture Model Communication 139
5.4.6. Architecture Model Interaction 141
5.4.7. Architecture Model Comparison 143
5.4.8. Architecture Model Sidebar 145
549. GraphQLClient. 145

6. Recovery of Business-related Models 149

6.1. System Design 150
6.1.1. ConfigurationFiles 151
6.1.2. General Extension of the Configuration File Content 153
6.1.3. References to Federated Information Systems 155
6.1.4. Importing and Processing of Configuration Files 156
6.1.5. Continuous Delivery Pipeline. 159
6.1.6. JSON Schema validation. 162
6.1.7. Distribution and Location of JSON Schema Files 163

6.2. Organizational Design 164
6.2.1. Roles and Responsibilities 164
6.2.2. Adapted Agile Development Process 166

6.3. Process Design 167
6.3.1. Performed Sequences in CD Pipeline 167
6.3.2. Processing the content of the configuration file 170
6.3.3. Meta-model update based on decisiontree 171

6.4. Visualization Design, 171
6.4.1. Architecture Model Cluster 174
6.4.2. Architecture Model Table View 177
6.4.3. Aggregated Architecture Model Communication 179

7. Evaluation 181

7.1. EvaluationDesign. 0. 183

7.2. Case Study in the Automotive Sector 185
7.2.1. Requirement Analysis and StatusQuo 186
7.2.2. Prototype Integration 188
7.2.3. MICROLYZE ExecutionResult 189
7.2.4. Feedback from Practitioners 193
7.2.5. Critical Reflectionof Results 201

7.3. Case Study in the Insurance Sector 202
7.3.1. Requirement Analysis and StatusQuo 202
7.3.2. Prototype Integration 205
73.3. MICROLYZE Adaption 207

xiii

Contents

7.3.4. MICROLYZE ExecutionResult
7.3.5. Feedback from Practitioners
7.3.6. Critical Reflectionof Results
74. Interview Series e e e
74.1. Assessment of the Solution Architecture
7.4.2. Assessment of Model Visualizations
74.3. Technical and Organizational Integration
744. Supported UseCases.
745. ActionPlan

Conclusion

81. Summary

8.2. Critical Reflection
8.2.1. Functional Limitations of the Prototype
8.2.2. Critical Reflection on the Validity
8.2.3. Critical Reflection on the Research Methodology

83. FutureWork
8.3.1. Business Process Recovery via Process Mining
8.3.2. Assessment of Architecture Quality
8.3.3. Failure Root Cause and Failure Impact Analysis

Appendix
A1 JSON Schema e e

List of Figures

List of Tables

Acronyms

Bibliography

253

257

259

263

Xiv

1. Introduction

Business is in the middle of an unfolding era of disruption, driven by digital transfor-
mation, which challenges how IT is organized and managed today. The role of IT in
the business is elevated from being a support function to an enabler to drive innovation,
enhance competitive advantage, boost productivity, and reduce cost by applying inno-
vative technology. However, new technologies can only provide value to the business if
these can be properly implemented and managed. Hence, within the last years, large
IT organizations experience a culture shift that encourages collaboration for improving
the implementation of those new technologies while being able to develop them more
quickly and reliably. This shift yields new software development methodologies such as
agile practices (Dingseyr et al., 2012), DevOps (Bang et al., 2013; Leite et al., 2020) and
continuous deployment of containerized applications (Fitzgerald et al., 2015), which have
significant influence on the further development of Enterprise Architectures (EA) (Ross
et al., 2006). These include a re-prioritization of conflicting goals, such as product-oriented
vs. process-oriented IT organizations, a continuous evolution of the application landscape
vs. long-lived stable products, and small microservices vs. large monolithic applications.

EA management (EAM)(Hanschke, 2016) has been established as an important instru-
ment for managing the complexity of the application landscape and enabling enterprise-
wide transparency. EAM is typically conducted to manage and analyze the status-quo
of the current EA in order to define requirements and plans for transformations to an
architecture that optimally supports the business strategy (Hanschke, 2010; Ross et al.,
2006). Hereby, it aims to visualize the relationships among regulations, business processes,
software and the underlying infrastructure. In the course of EAM, over the last years, a
multitude of management approaches have been developed both by scientists (Frank, 2002;
Hafner et al., 2008; M. Lankhorst, 2017; Ross et al., 2006) and practitioners (Dern, 2009;
Hanschke, 2016; Niemann, 2005) that propose guidelines how to design, plan, implement,
and govern IT today. Well-known frameworks that are applied in many organizations are
The Open Group Architecture Framework (TOGAF) (Haren, 2011), the IT Infrastructure
Library (ITIL) (Office, 2011b), or the Zachman Framework (Zachman, 1987).

A new framework that was developed by the Open Group to support an end-to-end
workflow with a value-chain-based IT operation is called IT4IT (The Open Group, 2019).
The IT4IT position dissociates from the previous hard-line of separating development
and operations activities which are represented by the aforementioned EA frameworks.
More fundamentally, IT4IT is suggesting a position of representing IT from a value chain
perspective covering all capabilities and data needed to manage the IT services. It regards
the IT function both as an IT service provider to the business and as a consumer of IT
services that support the IT function. The value chain itself is aligned to the steps of a
traditional IT service development workflow i.e. plan, build, deliver, and run. Hereby, a

1. Introduction

newly developed IT service leaves a digital twin, i.e. a model in each phase of the value
chain that describes the service from that perspective and is backed by the particular
collaboration tools.

4h

k Loop

Strategy to Portfolio Requlrement to Deploy Request to Fulfill

1 Conceptional Model Loglcal Model Reahzed Model

Model Instantiation Model Specialization Model Population

High-fidelity and domain-specific
Low-fidelity models that reflect models with detailed requirements

IT service
value chain

Specialized models are transformed
into models at runtime that reflect the

each layer of an EA and their that describe how the business/IT . 3
. . . 5 runtime behavior of IT components
interconnections. service and its components shall be
. and the truth of the IT landscape.
designed.
1 ’ 1 \ ’ 1 \
'

v v v X 4 v X
Figure 1.1.: Model representation along the IT value stream described by IT4IT (The Open
Group, 2019). Each model undergoes various phases including the Instantiation,

Specialization and Execution phase, whereas each phase in the value stream is
supported by specific information systems.

Information
Source

The Figure 1.1 illustrates that each model representation of the IT service undergoes
various phases within the value stream, the Instantiation, Specialization and Execution
phase. Those phases describe the life-cycle of IT service models and emphasize the model
interconnection. Unfortunately, those interconnections are not represented in the applied
information systems, but only in the form of stakeholder collaboration. Hence, a strong
collaboration is essential to maintain, as a lot of stakeholders contribute to the delivery of
valuable IT services. This involves frequent communication, as well as knowledge and
information sharing in order to establish an efficient continuous feedback loop in every
model life-cycle phase.

1.1. Problem Statement

Unfortunately, this feedback loop is often not available. The reasons for this are manifold:

1. The level of specialization between the stakeholders have led to group-specific
languages that thwart effective communication (Armour et al., 2003; Dreyfus, 2007;
Espinosa et al., 2009).

4

2. "Stakeholders have different, sometimes even conflicting needs and perspectives
(Niemi, 2007). This often leads to distributed decision making (Dreyfus, 2007),
in which decision-makers may make local design decisions without incorporating
other stakeholders (Armour et al., 2005; Bubak, 2006; Dreyfus, 2007; Shah et al.,

1.1. Problem Statement

2007). The impact of such changes are understood locally but often not recognized
or understood globally, due to lack of information sharing (Armour et al., 2005).
Dreyfus refers to this as “local optimization with global ramifications” (Dreyfus, 2007).

3. A further reason refers to information silos in organizations. The silo syndrome
(Ensor, 1988) is caused by divergent goals of different organizational units and
can lead to a decreased performance, as information is not adequately shared but
remains sequestered within each organizational unit.

In line with the above observations, missing stakeholder collaboration also leads to
weak EA knowledge management, which is, in general, a big issue in IT organizations
as literature proves (Armour et al., 1999; Henttonen et al., 2009; Lam, 2004; Meilich,
2006; Shah et al., 2007; Templeton et al., 2006). Architecture rationale is often poorly
documented, which makes it difficult to track "what decisions were made and why” (Armour
et al., 1999). IT-landscape modelling (M. Lankhorst, 2017), as a sub-area of EAM, tries to
discover and to document the EA of an organization by having EA-related models and
their relationships as the formal representation of EA information. On the basis of EA
models, future architectural plans can be established. This enables architecture decisions
to be bundled at a higher level and architecture changes to be controlled with the support
of IT governance.

However, many authors report that the EA model maintenance process poses a challenge
and is often regarded both, error-prone and time-consuming (Armour et al., 2005; Farwick
et al., 2011a,b). For that reason, further research endeavours (Buschle et al., 2012; Farwick
et al.,, 2013, 2012a; Farwick et al., 2011b; Roth et al., 2013a) propose to automate the
creation of EA models by collecting the required information from several information
sources. Although practitioners widely agree that EAM uses information that is often
already contained in existing tools (Farwick et al., 2013), the automated extraction and
maintenance of EA models from those tools create new challenges (Hauder et al., 2012).
Extracting models from several tools will just lead to ambiguous documentation of the
architecture (Shah et al., 2007). Hence, it remains unclear how to reassemble the scattered
information that resides in the various information sources used along the IT value chain
to one common meta-model. That means the research community has not provided a
solution yet for having a single repository that maintains models of all phases of the IT
value chain.

In addition, we diagnose that EA model maintenance has been becoming a bigger
challenge in the last years due to the rise of microservice-based architectures (Fowler
et al., 2014). This new software architecture style supports heavily the continuous delivery
approach by releasing the rigid structure of monolithic systems towards independent
deployments of single applications. Even though microservices have several advantages
in contrast to monolithic systems, this architecture style introduces a high level of com-
plexity with regard to model management (Alshuqayran et al., 2016; Canfora et al., 2011;
Kleehaus et al., 2019b). For instance, they aim at distributed transaction processing, foster
communication dependencies and cross-domain data exchange. Due to agile practices
(Schwaber et al., 2002) architecture decisions are shifted to developer teams. Hence, new
microservices are introduced very quickly into the current infrastructure or removed when

1. Introduction

they are no longer needed. From a model documentation perspective, microservice-based
IT landscapes are very volatile which lead to a big effort in the maintenance of these
models.

Due to little published studies about challenges current enterprises face in the model
management of microservice-based IT landscapes, we investigated the status-quo in
the usage of microservice-based architectures in the German market, what challenges
organizations face in maintaining models and to what extent those challenges correlate
with the usage of microservices. In (Kleehaus et al., 2019b), we present the result of our
survey carried out among 58 EA practitioners. Hereby, two important key observations
were made that are worth to mention in this thesis:

First, most of the survey participants confirm that keeping models up-to-date is perceived
more challenging with microservice-based architectures, resulting in incomplete, inaccurate
and out-dated models. Second, the reasons for bad model quality have a strong focus on
content-related challenges. The increasing number of small components, the high velocity
of changes and the complex communication behaviour between microservices are the most
stated concerns which lead to wrong and out-of-date models.

Based on the stated challenges, in this thesis, we investigate on how to establish a
central model management that delivers up-to-date information about each phase of the
IT value chain by extracting the required information out of runtime data. With this novel
approach the models do not only constitute static information about the IT landscape, but
also runtime information derived from monitoring systems which represent the execution
phase of the particular model. We apply our central model management solution in a
distributed microservice-based IT landscape in order to address the model maintenance
challenges identified in our conducted survey (Kleehaus et al., 2019b). For this purpose,
we designed and developed a tool called MICROLYZE that represents our research artefact.
In order to build this tool, we make use of the findings unveiled from the model-driven
engineering, EA model maintenance and IT landscape visualization related work. In the
next section, we present research questions to guide this investigation.

1.2. Research Questions

After outlining the problem investigated in the present thesis, we deduce research questions
that guide the aforementioned investigations.

Our approach for a central model management is by extracting related information from
runtime data in an automated manner. Even though many monitoring solutions (Agrawal
et al., 1998; Hoorn et al., 2012; Josephsen, 2007; Ly et al., 2015), have been developed to
account for a layered architecture and provide metrics for every EA layer, the primarily
task of those systems is the measurement of IT performance and not model extraction.
For that reason, it is necessary to develop a system design that is able to extract models
from runtime data and aggregate them in a human understandable way. This leads to the
following research question:

Research Question 1 (RQ1): How can a system and a process design look like that automati-
cally reverse engineers models from runtime data?

1.2. Research Questions

The extraction of models from runtime data represent primarily the technical IT landscape
including the application- and technology layer. However, an holistic model management
of the whole EA also encompasses business-related models. Those models are created
manually and remain static most of the time. This consideration leads to the following
research question:

Research Question 2 (RQ2): How to recover business-related models and how to establish a
correct assignment of those models to technical layers?

As stated above, several different information systems are used to build the IT service
along the value chain. Each of those information systems describes the IT service from
a certain perspective and provides important architecture-relevant information (Farwick
et al., 2013). In order to consolidate this scattered information into a central model man-
agement, we elaborate a knowledge graph (Binz et al., 2013) that exposes all models and
their relationships. This graph must be backed by an efficient meta-model that describes
the whole EA in a uniform manner. This raises the following question:

Research Question 3 (RQ3): How can a meta-model of the EA knowledge graph look like that
represents the models from all EA layers and what relationship types need to be defined?

The EA knowledge graph (Binz et al., 2013) is established by extracting information
from several information sources that are used along the IT value chain. At some point the
content of the knowledge graph (nodes and relationships) must be created and maintained.
In which phase this should be performed is investigated in the following research question:

Research Question 4 (RQ4): How and where to integrate the concept in the software develop-
ment process and which stakeholders must be involved?

As several stakeholders are involved into the creation of IT services, they require dif-
ferent information from the EA knowledge graph. For this reason, it becomes important
to identify how information for different perspectives of the IT landscape can be exposed
and visually supported. This challenge can be summarized with the following research
questions:

Research Question 5 (RQ5): How can stakeholders be supported in understanding and ex-
ploring the EA knowledge graph?

According to Hevner et al. (Hevner et al., 2004), our concepts must be evaluated based on
practitioner feedback to prove the utility of the solution in an industrial context. In order
to evaluate our approach, its practical application is subject of the final research question:

Research Question 6 (RQ6): What are the benefits and shortcomings of the proposed solution?
What additional use cases can be addressed?

1. Introduction

1.3. Research Design

Information systems (IS) is an "applied" research discipline, which frequently leverages
theory from other disciplines, such as economics, computer science, and the social sciences,
to solve problems at the intersection of IT and organizations (Peffers et al., 2006). The IS
research community established a wide range of research methods to ensure rigor. They
can be distinguished by their degree of formalisation and by the underlying research
paradigm (behavioural-science or design-science) (Frank, 2006; Schreiner et al., 2015).

For this research endeavor the research goals are motivated from practice and will
therefore be approached together with industry representatives if appropriate. The goal
of this thesis is to develop artifacts which implies the application of the design-science
paradigm (Hevner et al., 2004). Design-science research is based on two important
assumptions, according to Frank (Frank, 2006). First, the design of artifacts can be a
sophisticated task that contributes to the development of new knowledge on a scientific
level. Second, the scientific design of artifacts is supposed to require a specific research
method. Hence, the goal of the design-science paradigm is utility (Hevner et al., 2004)
which is achieved by developing innovative artifacts to solve relevant problems by applying
rigorous research methods. Therefore, it can be differentiated from the behavioral-science
paradigm whose goal is truth (Hevner et al., 2004), achieved by developing and validating
theories.

In order to improve the research quality and significance of research results, mixed
or multi-method designs are suitable including prototyping, reference modelling, field
experiments and case studies (Mingers, 2001; Venkatesh et al., 2013).

In the following sections, we detail how we adapted the design-science research frame-
work to our research process described in this thesis (see Figure 1.2). Furthermore, we
want to point out a specific technique, called qualitative content analysis (Mayring, 2010)
that is mostly applied for analyzing and interpreting textual data. We used this method to
analyze the result of our interview series described in Section 7.4.

1.3.1. Design-Science Research

In general, the design-science paradigm is concerned with the creation and evaluation
of innovative IT artifacts that solve identified organizational problems. In this scope, the
design process itself is an iterative sequence of activities that produces several outputs
(product or artifact). The subsequent evaluation of the output provides important feedback
information that can be used to improve both the quality of the output and the design
process. This loop is iterated a number of times before the final design artifact is generated
(Markus et al., 2002).

According to Figure 1.2, the environment represents the problem space in which an
artifact is applied and assessed. It refers to people, organizations, and technologies which
drive the design of an IT artifact. We identified, people face the challenge to collect the
required information to document and to manage the current IT landscape in different
level of details. This challenge together with deficient stakeholder collaboration leads to
weak EA knowledge management. This, however, is especially required for organizations

1.3. Research Design

Environment Relevance IS Research Rigor Knowledge Base
People Foundations on
* Challenge to collect required Develop / Build * Model driven engineering
information for documenting « Process to automate the * Enterprise architecture
and managing the current IT recovery of EA models in a management
landscape in different level of microservice-based IT * Microservice architecture
details. environment * DevOps and agility in software
* Weak EA knowledge * Design and implementation development
management due to missing of an IS artifact that efficiently
stakeholder collaboration Business manages those models in a Applicable Related Work on
needs graph-based representation Knowledge .« static, dynamic and hybrid

Organizations

Need to understand their IT
environment for budgeting,

driven model reverse
engineering
* Federated-based, runtime-

Lo ’ Assess Refine
optimizations, transformations, based and modern
and road-mapping. approaches of EA model
maintenance
Technology Evaluation * IT landscape representation

Highly distributed and
communication intensive

Evaluation with two case studies
in the automotive and insurance

microservice-based IT industry.
environments Evaluation with 19 expert
* Domain-based business interviews

environment

f .]

Application in the appropriate Additions to the
environment knowledge base

Figure 1.2.: Design science research framework by (Hevner et al., 2004) adapted to the
present thesis” contribution

to understand their IT environment for optimizations, transformations, and road-mapping
purposes. After analyzing the results of our online survey (Kleehaus et al., 2019b), we
realized that this challenge is even more present in microservice-based IT landscapes. The
derived requirements detailed in Chapter 4 represent the business needs and thus ensure
relevance of the designed IT artifact.

The other driving force of design science is the knowledge base which ensures rigor
of the IT artifact’s design. It encompasses foundations which is addressed in Chapter 2
and related work summarized in Chapter 3. In this sense, we identified model driven
engineering, EA management, microservice architecture, DevOps and agility in software
development as the foundation in this research. In addition, we have included related work
on model-driven reverse engineering, automated EA model maintenance and different
approaches for representing IT landscapes to identify a clear research gap which we
address with this thesis.

The core component of the design-science framework is the creation and evaluation of
the designed artifact that meets the identified business needs with support of the applied
knowledge base. This thesis” core IT artifact is the design and prototypical implementation
of an information system that automates the recovery of EA models in a microservice-based
IT environment and efficiently manages those models in a graphed-based representation
that delivers up-to-date information about each phases of the IT value chain (cf. Chapter 5
and Chapter 6). A fundamental property of the design-science framework is its iterative
nature, i.e. the IT artifact should be designed, assessed and refined in multiple iterations

1. Introduction

against the business needs in general, and concrete requirements in particular. Chapter 7 of
this thesis elaborates on how our IT artifact was evaluated and which different evaluation
methods, e.g., case studies and expert interviews were applied.

In this scope, Hevner et al. (Hevner et al., 2004) defines seven principles that support
researchers to understand the requirements of effective design-science research. In the
following, we outline these guidelines briefly and express how they are addressed in this
thesis:

Design as an artifact Artifacts in research are constructs, models, methods, or instanti-
ations that addresses important organizational problems. According to design science
research the design and creation of such a purposeful artifact represents a central aspect
and one of the primarily task in this research endeavour. Following this aspect, in this
thesis we established a framework which includes the prototypical implementation of an
automated recovery of EA models, as well as a collaborative process to extend the recov-
ered IT landscape with business-related information. The aim of the tool MICROLYZE
is to support the management of rapid-changing microservice-based IT landscapes by
continuously analysing runtime information and to provide interactive and tailored visu-
alizations as modeling outcome.

Problem relevance Hevner et al. states in his second guideline that information system
research has to develop technology-based solutions that address important and relevant
business problems. The recovery and management of EA models is an omnipresent prob-
lem that concerns the research community (Buckl et al., 2011; Farwick et al., 2012a; Hauder
et al., 2012; Holm et al., 2014; Roth et al., 2013a). In (Kleehaus et al., 2019b), we identified
that this problem has been becoming even worse with microservice-based IT landscapes
and rapidly changing environments due to agile practices. In order to find a different
approach how to master this problem, we analyzed related problems to model driven
reverse engineering, model management as well as model visualization (cf. Section 3.1, 3.2,
3.3). After elaborating a solution (Kleehaus et al., 2020, 2019a, 2018b) that incorporates the
analysis of runtime information for model recovery and model management, we found
two case study partners and 19 interview partners that face the same problem (cf. Section
7.2,7.3,7.4). This again represents the great importance of the problem and the research
gap in this area accordingly.

Design evaluation In the third defined guideline, Hevner et al. make clear that only
via well-executed evaluation methods, the utility, quality, and efficacy of a design artifact
can be demonstrated. In order to address this guideline entirely, we conducted multiple
evaluation methods. "Because design is inherently an iterative and incremental activity” (Hevner
et al., 2004), we first implemented a preliminary version of MICROLYZE that mainly aim
at analyzing runtime information for extracting EA models. The experience we made
with the prototype and the feedback that we collected from practitioners initiated our
next design phase as discussed in Chapter 4. For evaluating the main design artifact, we
apply observational methods in Chapter 7. In this scope, we carried out two case studies,

1.3. Research Design

that allowed us to study the artifact in depth in two practical environments and with
industrial data. Additionally, we carried out an interview series with 19 experts in order
to get feedback for our concepts from a broader audience. We analyzed the feedback via
applying qualitative content analysis techniques (Mayring, 2010).

Research contributions The following guideline aims at providing “clear and verifiable
contributions in the areas of the design artifact, design foundations, and/or design methodologies”
(Hevner et al., 2004). The core contribution of this thesis is the design and development of
MICROLYZE and the corresponding processes and algorithms for analyzing runtime data
to extract EA models, as well as the collaborative approach for enhancing runtime data
with business-related information to fully support the management of models along the IT
value chain. Beside the technical concerns of MICROLYZE described in Chapter 5 and 6
regarding how the recovered models are maintained, queried and visualized, as well as
how the concept is integrated into the IT environment, we also identified in Section 6.2
core user groups that need to be involved in the proposed concept. Technical feasibility
and utility of the prototype is shown in an empirical assessment in the context of case stud-
ies and interview series. The table in Section 1.4 summarizes the contributions of this thesis.

Research rigor The research rigor is an important guideline, as it highlights that “design-
science research relies upon the application of rigorous methods in both the construction and
evaluation of the designed artifact” (Hevner et al., 2004). The foundations of model reverse
engineering, EA management, microservice-based IT landscapes and related fields for
monitoring those environments were extensively studied. We report on the state-of-the-art
in model recovery, model management and model visualization. Based on this, we derive a
conceptual framework for model management of microservice-based IT landscapes along
the IT value chain and subsequently derived concrete requirements for a respective ap-
proach. Afterwards, we precisely describe the used meta-modeling, model transformation,
and model visualization techniques, applied software engineering patterns and software
engineering tools. Finally, we discuss how we performed the different evaluation methods,
and provide a detailed description on the respective results and findings.

Design as a search process Hevner et al. consider the design of an artifact as a con-
tinuous search process, i.e. "The search for an effective artifact requires utilizing available means
to reach desired ends while satisfying laws in the problem environment” (Hevner et al., 2004).
This research is an iterative process that can be roughly divided into three phases. In the
tirst phase, we obtained an understanding of current practices and point out problems
in the domain of model recovery, model management and model visualization in the
context of EA and microservice-based IT landscapes. In the second phase, we searched
for alternative ways to recover and manage models in an automated manner. In this
phase, we experiment with analyzing log files and other runtime information exposed
by log collectors and APM tools, as it was investigated by Farwick et al. (Farwick et al.,
2013) that monitoring data could be a promising information source for automating model
maintenance. We identified which models of the related EA layers can be extracted from

1. Introduction

runtime data and which models still remain hidden. During the second phase, we cre-
ated initial prototypes (Janietz, 2018; Kleehaus et al., 2018b; Schéfer, 2017) and use cases
(Kleehaus et al., 2018a) with support of the industry. After it turned out that the concepts
and prototypes elaborated in phase two seemed to be promising solution artifacts, the
third phase was initiated. Based on the industry feedback, algorithms, processes and
components were improved and finally integrated in a coherent solution design as a single
artifact named MICROLYZE. In this phase, we also elaborated a concept of how to collect
further EA relevant information that cannot be extracted out of runtime data, as well as
where to integrate the artifact in a common development process.

Communication of research Finally, Hevner et al. proposes to present research to both,
“technology-oriented as well as management-oriented audiences.” (Hevner et al., 2004). We
present our research and preliminary results on scientific conferences in order to reach
technology-oriented audience and to receive qualitative feedback. We chose conferences
with a focus on Information Systems (IS). According to management-oriented audience,
we take part of the Software Campus and also received industry feedback during the case
studies and interview series. A list of the main publications can be found in Section 1.5.

1.3.2. Qualitative Content Analysis

An important instrument we use for analyzing feedback collected from industry partners
about the created research artifact is qualitative content analysis (Mayring, 2010). This tech-
niques were developed in the 1980s in a research project to handle huge amounts of data
and does not only support counting of textual components, but also provide interpretative
features (Ulich, 1985). The basic idea of the qualitative content analysis technique is to con-
ceptualize the process of assigning categories to text passages as a qualitative-interpretive
act, following content-analytical rules. In this scope, also quantitative analysis approaches
are applied that count the frequencies of categories. Hence, the qualitative content analysis
can be defined as a mixed methods approach (Mayring, 2012). The basic principles of the
methodology is detailed in the following Sections.

Basic Principles and Definitions

The basic approach of qualitative content analysis is to retain the strengths of quantitative
content analysis and to develop techniques of systematic, qualitatively oriented text
analysis. This will be explained more closely in the following.

e Systematic and rule-bound procedure: Content analysis follows a defined proce-
dure that is based on rules laid down in advance. However, as Mayring stated
(Mayring, 2010), content analysis is not a standardized instrument that always re-
mains the same. It must be adapted to suit the particular material at hand. This is
defined in a procedural model in advance, which determines the individual steps of
analysis. In addition, every analytical step and decision in the evaluation process is
based on a systematic rule. The definition of content-analytical units (recording units,
context units, coding units) entails an approach how the material should be analyzed

10

1.3. Research Design

and in what sequence, as well as what conditions must be obtained in order for
an encoding to be carried out. It is important that such units are theoretically well
founded, in order to allow other analysts to comprehend the logic and method of
the analysis. In general, the system should be described in such a way that another
interpreter may carry out the analysis in a similar way.

Content-analytical units: A central aspect of content-analytical procedures is that
the material is not interpreted as a whole but divided into segments. The categories
are assigned to segments of text. This segmentation has to be defined in advance.
The segmentation rules, which are also called content-analytical units can be differ-
entiated into the following units (Krippendorff, 2004): 1) The Coding Unit determines
the smallest component of material which can be assessed and which may fall into
one category. 2) The Context Unit determines the largest text component, which can
fall into one category. 3) The Recording Unit determines which text portion should be
analyzed, like interviews, articles, etc.

Definition of Categories: The category system constitutes the central instrument
of analysis. It aims to structure the coding- and context units into categories and
concretize the objectives of the analysis. Even though creating categories is not an
easy task (Krippendorff, 2004), the qualitative content analysis provides methods
that guide the synthetic construction of categories. Overall, working with a cate-
gory system is an important contribution to the comparability of findings and the
evaluation of analysis reliability.

Forms of Interpretation: A number of concrete qualitative content analysis tech-
niques are differentiated which are based on the basic processes of summary, explica-
tion and structuring. The analysis technique Summary aims to create a comprehensive
overview of the base material via abstraction and reduction the material in such
a way that the essential contents remain. Regarding Explication, the objective is
to provide additional material on individual incomprehensible text components
in order to increase the understanding, explaining, and interpreting the particular
passage of text. Last but not least, by means of the analysis technique Structuring
particular aspects of the material is filtered to assess it according to certain criteria.

Integration of Quantative Steps: As already mentioned before, efforts are made to
combine qualitative and quantitative methods (Mayring, 2012). Quantitative steps of
analysis gain importance when generalization of the results is required. For instance,
counting how often a category occurs may give added weight to its meaning and
importance. A precisely based qualitative assignment of categories to a certain
material can also be supplemented by more complex statistical evaluation techniques,
as far as these are appropriate to the purpose of analysis.

Quality Criteria: The assessment of results according to quality criteria such as
objectivity, reliability and validity is important in qualitative content analysis. In
general, the validity denotes the trustworthiness of the results, to what extent the
results are true and not biased by the researchers’ subjective point of view (Runeson

11

1. Introduction

et al., 2008). There exist different aspects of validity classification and threats to
validity in the literature. We chose a classification scheme which is also used by Yin
(Yin et al., 2003) and Runeson (Runeson et al., 2008) and similar to what is usually
used in controlled experiments in software engineering (Wohlin et al., 2012). This
scheme can be summarized as follows: 1) The aspect of Construct Validity reflects
to what extent the operational measures that are studied really represent what the
researcher have in mind and what is investigated according to the research questions.
For instance, if the constructs discussed in the interview questions are not interpreted
in the same way by the researcher and the interviewed persons, there is a threat
to the construct validity. 2) Internal Validity is of concern when causal relations are
examined. It is the approximate truth about inferences regarding cause-effect or
causal relationships. For instance, if one factor affects an investigated factor there is
a risk that the investigated factor is also affected by a third factor. If the researcher is
not aware of the third factor there is a threat to the internal validity. 3) The External
Validity validates to what extent it is possible to generalize the findings, and to what
extent the findings are of interest to other people or are of relevance for other cases.
In contrast, internal validity is the validity of conclusions drawn within the context
of a particular study. 4) Regarding the aspect of Reliability, it is concerned to what
extent the data are dependent on and the analysis results are biased by the specific
researchers. In general, another researcher who conduct the same study should
come to the same result. If it is not clear how to code collected data or if interview
questions are unclear, this would threaten the aspect of reliability.

The above listed aspects of quantitative content analysis is regarded to be the foundation
for a qualitative oriented procedure of text interpretation. In this scope, Mayring (Mayring,
2010) developed a number of procedures of qualitative content analysis amongst which
two approaches are central: inductive category development and deductive category
application.

Deductive Category Application

The content-analytical method Deductive Category Creation aims to extract certain structure
from the material. This structure is applied on the material in the form of a category system.
All text components addressed by the categories are then extracted from the material
systematically. The procedure is deductive because the category system is established
before coding the text In general, the structuring procedure can be described as follows: 1)
The particular categories are defined and it is precisely determined which text components
belong in a given category. 2) Anchor samples, which are concrete passages belonging
to the specific categories help to characterize those categories. 3) If there are problems of
delineation between categories, rules must be determined for the purpose of unambiguous
assignment to a particular category.

Subsequently, the following steps are carried out. Initially, text extracts are taken from
the material to check whether the categories are applicable and whether the definitions,
anchor samples and encoding rules make categorical assignment possible. This process

12

1.3. Research Design

Step 1 Step 1
) Research question, — Research question,
theoretical background theoretical background
Step 2 Step 2
Definition of the category system (main N Determination of category definition (criterion NE
categories and subcategories) from theory of selection) and levels of abstraction
Step 4 Step 3
Definition of the coding guideline (definitions, Working through the texts line by line, new
anchor examples and coding rules) category formulation or subsumption
A
Step 5 Step 4
Material run-through, preliminary codings, Revision of categories and rules I
adding anchor examples and coding rules after 10 - 50% of texts
A
Step 6 Step 5
Revision of categories and rules [Final working through
after 10 - 50% of the material the material
A
Step 7 Step 6
Final working through Building of main categories,
the material if useful
Step 8 Step 8
Interpretion of results, quantitative steps of — | Interpretion of results, quantitative steps of
analysis (e.g. frequencies) analysis (e.g. frequencies)

Figure 1.3.: Steps of deductive category as- Figure 1.4.: Steps of inductive category de-
signment (Mayring, 2010) velopment (Mayring, 2010)

results in a revision and partial reformulation of the category system and its definitions.
After the revision process is finalized, the main material run-through can be performed.
The result must then be summarized and analyzed according to category frequencies
and contingencies interpretation. Figure 1.3, illustrates the process of structuring content
analysis in detail.

Inductive Category Formation

Inductive category formation is a central process within the approach of Grounded Theory
(Strauss, 1987), which in this context is called "open coding". It is used to identify categories
and subject areas within the material at hand. The process model shown in Figure 1.4
describes the particular steps of inductive category development. We will now explain the

13

1. Introduction

process in more detail:

Before the analysis can begin, the themes of categories to be developed must be defined
previously. There has to be a criterion for the selection process in category formation.
This is a deductive element and is established within theoretical considerations about
the subject matter and the aims of analysis. After this is decided the inductive category
formation process can be performed.

First of all, the material is worked through line by line. In case the text passage is fitting
the category definition, a specific category has to be constructed. A term or short sentence,
which characterizes the material as near as possible serves as category label. This is an
iterative process, i.e. the next time a passage fitting the category definition is found it is
either subsumed under the known categories, or a new category has to be formulated.

After a large part of the material has been processed (ca. 10 - 50 %) and no new
categories have been found, the whole category system has to be revised. Hence, it must
be checked, if the logic of categories is clear, no overlaps occurred and if the level of
abstraction is adequate to the subject matter and aims of analysis. The category definition
has to be changed eventually. If too many categories had been formulated which results to
an unclear object area, the level of abstraction should be defined more general. As stated
by Mayring (Mayring, 2010), a rule of thumbs is a set of ten to thirty categories in order to
achieve a good overview.

Furthermore, sometime it is helpful and expedient to bring the set of categories into
an order by formulating main categories. This step could be processed more inductively
by only enhancing the level of abstraction in the sense of summarizing. On the other
hand, this step could also be processed more deductively by introducing theoretical
considerations in formulation main categories.

After the analysis a set of categories to a specific topic exist. The further analysis can go
different ways: 1) The whole system of categories can be interpreted in terms of aims of
analysis and used theories. 2) The links between categories and passages in the material
can be analyzed quantitatively, like counting those categories that occur most frequently
in the material.

1.4. Contribution of this Thesis

In the following Section, we summarize the contributions of this thesis and relates them
to the research questions raised in Section 1.2. Figure 1.5 illustrates this correlation. In
addition, we detail which concrete (peer-reviewed) publications and student theses were
created in the context of this thesis that refers to the main contributions.

The first contribution of this thesis is a comprehensive introduction and description
of concepts related to model-driven reverse engineering, enterprise architecture manage-
ment, microservice-based IT landscape as well as an overview of DevOps processes (cf.
Chapter 2). Furthermore, we conduct a state-of-the-art analysis of current approaches
for model management in three research areas, namely model-driven engineering, EA
model maintenance and IT landscape representation (cf. Chapter 3). We elaborate on how
they are currently applied as information systems for the management of models along

14

1.4. Contribution of this Thesis

the IT value chain, and from which shortcomings they suffer in this context. This leads
to the identification of a research gap which was already briefly introduced in Section
1.1. Based on this as well as on related research, we define a conceptual framework for a
central model management in microservice-based IT landscapes. This framework forms
the foundation for the identification of requirements (cf. Chapter 4).

The second contribution is the conceptual and algorithmic design, as well as the pro-
totypical implementation of MICROLYZE. The conceptual design phase includes the
development of a conceptual meta-model capturing all concepts required for representing
the IT landscape in the scope of EAM (cf. Chapter 5).

RQ1 RQ2
Research
Questions RO3 RQ3
RQ1 RQ5 RQ4 RQ6
Chapter Chapter 2 Chapter 3 Chapter 4 Ch Ct Chapter 7 Chapter 8

Research
Result
and
Artifacts

[Kleehaus et al. 2016] [Schifer 2017] [Achhammer 2019] [Achhammer 2019]
[Kleehaus et al. 2019b] [Janietz 2018] [Corpancho 2019] [Machner 2019]
[Machner 2019]
Pub- [Kleehaus et al. 2019a]
lications [Kleehaus et al. 2018] [Kleehaus et al. 2021]
[Kleehaus et al. 2020a]
[Kleehaus et al. 2021]

. Peer-reviewed research paper [| Master thesis

Figure 1.5.: The main contributions of this thesis.

Furthermore, we describe how we translate the meta-model into a graph-based repre-
sentation in order to empower end-users to query the EA models in an efficient way. The
definition of several visualizations addresses different stakeholder concerns. Moreover, we
present the design of configuration files that establish the relationship between business-
and technical-related EA layers and how we validate the content of the configuration file
during deployment phases (cf. Chapter 6).

The third contribution arises from the evaluation of our approach and prototype in
case studies and interview series as described in Chapter 7. The thesis reports on specific
findings from integrating the prototype into an industrial environment covering the

15

1. Introduction

insurance and automotive sector. In addition, we demonstrate the tool to practitioners that
had the roles of Enterprise Architects, Solution Architects and DevOps Team members.
Those findings particularly include open issues and shortcomings of the current prototype.
This thesis concludes with lessons learned from the implementation of our approach from
which we derive limitations and future work (cf. Chapter 8).

16

1.5. Preliminary Work

1.5. Preliminary Work

This thesis describes the research project in a comprehensive way for scientists and
practitioners. Various interim results were presented and discussed at conferences and
workshops. In the following, we briefly describe and list our publications. Afterwards, the
related student theses and their contributions to this thesis are briefly presented.

Publications:

e (Kleehaus et al., 2016): State of the Art Report: Multi-Layer Monitoring and Visu-
alization. Technical report. Munich, Germany

This publication represents the results of a systematic literature review carried out
on the topic of multi-layer monitoring approaches that cover the instrumentation
of each EA layer. Additionally, we provide a survey of academic and commercial
monitoring tools as well as an overview of different visualization types utilized in
monitoring applications.

(Kleehaus et al., 2018a): Towards a Continuous Feedback Loop for Service-Oriented
Environments. QUATIC. Coimbra, Portugal

In this paper, we leverage MICROLYZE and extend the design to support the continu-
ous delivery of software applications by providing metrics and structural information
after each deployment stage i.e. development, test and production. The continuous
feedback is provided via a dependency model that represents the current software
architecture on early stages. Hereby, each deployment phase and final release are
compared against each other in order to uncover inconsistencies in regard to the
predefined requirements. The concept was evaluated through quantitative methods
in a laboratory experimental setup.

(Kleehaus et al., 2018b): MICROLYZE: A Framework for Recovering the Software
Architecture in Microservice-based Environments. CAISE Forum. Tallin, Estonia
In this publication, we introduce the concepts of MICROLYZE by presenting a multi-
layer microservice architecture recovery approach that reconstructs EA models based
on runtime data. The recovery process comprises models from each EA layer as well
as the corresponding relationship between those models. In addition, we present
a tool support for mapping business activities with request transactions in order
to recover the correlation between the business and application layer models. This
developed tool also visualizes the model dependencies based on a adjacency matrix.
The tool was evaluated within an laboratory experimental setup. In this scope, we
investigated technical aspects of our solution in a controlled environment.

(Kleehaus et al., 2019a): IT Landscape recovery via Runtime Instrumentation for
Automating Enterprise Architecture Model Maintenance. AMCIS. Cancun, Mex-
ico

In this research, we present a concept design, and related processes for recovering
EA models by combining runtime data with architecture information that reside in

17

1. Introduction

federated information sources. It represents a further extension of MICROLYZE to
empower stakeholders to explore EA information from different perspectives, which
supports new use cases and analysis capabilities. We evaluated the prototype during
a case study in a big German insurance company.

(Kleehaus et al., 2019b): Challenges in Documenting Microservice-based IT Land-
scape: A Survey from an Enterprise Architecture Management Perspective. EDOC.
Paris, France

In order to analyze the status quo in the adaption of microservices and what chal-
lenges organizations face while documenting microservice-based IT landscapes from
an EAM perspective, we conducted a survey among 58 IT practitioners in German
market. We identified eleven challenges and synthesized them into four categories
namely content-, assignment-, tooling-, and business-related challenges.

(Kleehaus et al., 2020): Recovery of Microservice-based IT Landscapes at Run-
time: Algorithms and Visualizations. HICSS. Haiwaii

In this publication, we introduce the design of two algorithms that run in MI-
CROLYZE that 1) recover the architecture of microservice-based IT landscapes based
on historical data and 2) create continuously architecture snapshots based on new
incoming runtime data. We especially consider scenarios in which runtime artifacts
or communications paths were removed from the architecture as those cases are
challenging to uncover from runtime data. We evaluated our prototype by analyzing
the monitoring data of a big automotive company.

(Kleehaus et al., 2021): Automated Enterprise Architecture Model Maintenance
via Runtime IT discovery. Architecting the digital transformation. Munich, Ger-
many

In this work, we detail the linked enterprise topology graph that represent the
persistence layer of MICROLYZE. The graph exposes all recovered models which em-
powers users to query the microservice-based IT landscape via an uniform language
and allows them to explore information from a static and dynamic perspective. We
evaluated our prototype by implementing it in a big German retailer and conducting
interviews with 17 experts from two different companies.

Supervised master theses:

o (Schifer, 2017): Eine prototypische Implementierung zur Erkennung von Ar-

chitekturinderungen eines verteilten Systems basierend auf unterschiedlichen
Monitoring Datenquellen. Technical University of Munich. 2017

Schifer investigates in this thesis different approaches of architecture recovery and
developed a prototype for reverse engineering microservice-based IT landscapes.
In addition, Schéfer elaborates a method to link business process activities with
technical requests to recover which microservices are responsible to process business
transactions.

(Graeff, 2017): Enhancing Business Process Mining with Distributed Tracing Data
in a Microservice Architecture. Technical University of Munich. 2017

18

1.5. Preliminary Work

Graeff picks up the concept of linking business process activities with technical
requests and elaborates how to enhance process mining with performance indicators
obtained from application monitoring tools. The developed prototype empowers
users to detect correlations between user behaviour from the business layer and
system performance occurring in the application layer.

(Hoyos, 2017): Interactive Visualizations for supporting the analysis of distributed
services utilization. Technical University of Munich. 2017

Hoyos elaborates different visualization approaches for the obtained IT landscape
recovery result. Different views providing information for various stakeholders are
implemented in a prototype visualization tool. Evaluation of the implementation is
performed in a lab environment.

(Janietz, 2018): Enhancing enterprise architecture models using application per-
formance monitoring data. Technical University of Munich. 2018

The thesis of Janietz is a first attempt to establish a linked graph for efficiently
managing recovered EA models. Furthermore, Janietz elaborates a process for syn-
chronizing recovered EA models with EA models stored and managed in EA tools.
The goal is to automate the maintenance of EA models.

(Corpancho, 2019): Automated documentation of Business Domain assignments
and cloud application information from an application development pipeline.
Technical University of Munich. 2019

The thesis of Corpancho focuses on the automated documentation of cloud applica-
tions by integrating the IT landscape recovery concept into a continuous delivery
pipeline. In this scope, he developed a configuration file that contains a reference
to the business layer in order to empower Enterprise Architects to maintain the
allocation of applications in the business context.

(Achhammer, 2019): Assessing the Cost and Benefit of a Microservice Landscape
recovery Method. Technical University of Munich. 2019

Corpancho was not able to evaluate his concept in an industrial setting. For that
reason, Achhammer elaborates prerequisites and requirements for integrating the
concept in an industrial environment. As a result, the updated and enhanced
prototype is able to recover and manage EA models that are enriched with business-
related information. During a case study in a big German insurance company in
combination with a series of interviews the feasibility of the prototype was finally
evaluated.

(Machner, 2019): Assessing the Cost and Benefit of a Microservice Landscape re-
covery Method in the Automotive Industry. Technical University of Munich. 2019
Machner investigates techniques and methods to extend the linked graph for man-
aging an arbitrary amount of different recovered EA models. The prototype was
implemented in a real world environment situated in the automotive industry. The
tool was tested and evaluated through expert interviews with EA practitioners.

19

1. Introduction

1.6. Structure of this Thesis

This thesis is divided into eight chapters. Figure 1.5 illustrates the structure of the thesis,
the addressed research questions, created artifacts as outlined above as well as related core
publications. Each chapter is outlined in the following.

Chapter 1: Introduction motivates the present thesis, details the problem, and derives
research questions which guide the present thesis. Further, we describe the taken research
design and outline the core contributions.

Chapter 2: Foundations serves the reader with foundations to understand the thesis
and refers to literature relevant for the topics investigated.

Chapter 3: Related Work presents a summary of the state-of-the-art in model-driven
engineering, automated EA model maintenance and IT landscape representation referring
to work of others that influenced our design decisions. Hereby, we outline how our
approach differs from the related work representing our research contribution.

Chapter 4: Requirement Analysis characterizes an efficient framework for managing
models along the IT value chain, and derives requirements for an information system that
recovers models automatically and represents them visually in different perspectives.

Chapter 5: Automated Model Recovery via Runtime Instrumentation embraces meth-
ods, techniques, processes and the conceptual design of MICROLY ZE that realizes the
automated recovery of microservice-based IT landscapes by extracting related models and
their relationships from runtime data. We detail, how we expose the recovered models
in a graph-based representation. In addition, we present a framework for visualizing the
models in several perspectives to address important stakeholder concerns.

Chapter 6: Recovery of Business-related Models reveals further methods, processes
and conceptual designs for linking business-related models to technical-related models
recovered in Chapter 5 and to the model representation from all used information systems.
In addition, the Chapter presents concepts of how to integrate MICROLYZE into the
software development process in order to become part of the continuous deployment
strategy.

Chapter 7: Evaluation reports on the setup and results of two case studies in an
industrial setting. In addition, we further present qualitative insights from a broader
audience and feedback as an outcome of an interview series.

Chapter 8: Conclusion summarizes the thesis” contributions, critically reflects on the
contributions and the results, and finally informs about further research.

20

2. Foundations

This chapter provides important concepts relevant for the present thesis. As shown in Fig-
ure 2.1, our solution is developed by bridging the gap between four complimentary fields
of research, namely 1) model-driven engineering, 2) enterprise architecture management,
3) microservice-based IT architecture and 4) DevOps processes.

Model-driven Engineering

(Section 2.1) \

Enterprise Architecture Management Related Work
(Section 2.2) ‘ (Section 3)
Microservice Architecture
‘ Our Approach

(Section 2.3)

DevOps ’

(Section 2.4)

Figure 2.1.: Core topics that represent the foundation of related work and the thesis’
approach.

Model-driven engineering is an engineering paradigm that handles models and their
transformations as primary artifacts to develop, analyze, and evolve software systems. As
the management of models is a core concept we use in the course of this thesis, we will
give attention on model-driven engineering.

Enterprise architecture management represents our problem domain in which we
observe insufficiencies concerning the management of models in microservice-based IT
landscapes. In order to provide a general understanding of the domain, we describe
fundamental concepts and principles of enterprise architecture management. In particular,
we detail the IT-landscape modelling, as a sub-area of enterprise architecture management,
that aims to recover and to maintain the IT-landscape models of an organization.

The microservice architecture build the frame of our research. This architectural style
has received much attention in recent years. Even though microservices have several
advantages in contrast to monolithic systems, this architecture style also introduces a high
level of complexity with regard to model management (Kleehaus et al., 2019a).

In order to automate the recovery and maintenance of models, we leverage the concepts
of agile practices, continuous delivery and monitoring. All those mentioned concepts are
core elements of DevOps and therefore requires our attention.

21

2. Foundations

2.1. Model Driven Engineering

Since decades, models play a core role in various disciplines, including software engi-
neering (Ludewig, 2004). A commonly used reference for the notion and semantics of
a model is Stachowiak (Stachowiak, 1973) who states that “a model represents a relevant
subset of a real-world object’s properties for a specific purpose.” Models are typically used to
reduce complexity by abstraction and by omitting irrelevant details. The general notion of
a model is not limited to graphs or diagrams. The same model may serve for descriptive
and prescriptive purposes. This chapter introduces core concepts and technologies for
model-driven engineering (MDE) (Brambilla et al., 2012; Vélter et al., 2013), which is an
engineering paradigm that manages models and their transformations as primary artifacts
to develop, analyze, and evolve software systems. Core concepts of MDE are modeling
languages, model transformations, model reverse engineering, and models at runtime
which are introduced in the Sections 2.1.1, 2.1.2, 2.1.3 and Section 2.1.4 respectively.

2.1.1. Modeling Languages

A model is a simplified representation of reality. The simplification can be applied on
sensual, especially optically perceptible objects or in theories. According to Stachowiak
(Stachowiak, 1973) it is characterized by at least three features!:

e Mapping feature: Models are mappings or representations that serve as surrogates
of objects in the physical world or of artificial or mental originals.

e Reduction feature: Models capture not all attributes of the original represented by
them, but rather limit the scope relevant to their respective model creators and/or
other stakeholders. The art of reducing the model to such a purposeful scope is
called abstraction.

e Pragmatism feature: Models are not uniquely assigned to their originals in the
real-world. They fulfill a replacement function for 1) a particular subject (human or
artificial receiver), 2) within particular time intervals, and 3) restricted to particular
mental or actual operations, i.e. models serve a special purpose and are a means to
an end.

A model can be conceptualized by defining properties of specific concepts in the real-
world that are of interest for the modeler. From an object-oriented perspective, each
physical object is an object that conforms to an entity. Such an entity has attributes. A
special kind of attribute that refers to other objects is called relationship.

A modeling language is a formalism to express models. It comprises definitions
of abstract syntax, concrete syntax, and semantics (Brambilla et al., 2012). The abstract
syntax describes the structure of the modeling language and specifies the set of modeling
primitives along with rules on how to combine them, independent of any representation.

1We refer the interested reader to Thomas (Thomas, 2005). He presents a comprehensive review of different
notions of models and an extensive discussion on the topic.

22

2.1. Model Driven Engineering

4-layer Metamodeling Stack Examples
<<conformsTo>>
-~ defines MOF,
o c| M3 Meta-Metamodel ———— > Meta-Language
Qo = Ecore,...
S g 1
(]
g" uEn <<conformsTo>> | def UML ER
© n
= 5| M2 Metamodel SN Language EPK T
T ’
<<conformsTo>> |
o \1q represents UML model
c £ Model) SyELEiT) for System A
s 9 t
§ qu <<describes>> | | Aopl. of
t .
& | MO Real World Object _ e, System Component S?/\;ienpr ©

Figure 2.2.: Four-layered meta-modeling stack (Brambilla et al., 2012)

The concrete syntax defines specific representations and can be either textual or graphical.
The meaning of the elements defined in the modeling language is provided by the
semantics.

The abstract syntax of a modeling language is defined by a so-called meta-model,
which describes relevant concepts of the problem domain in terms of its entities and
their relationships. The formalisms used to express entities and relationships in a meta-
model are meta-meta-model. Similar to concepts found in UML class diagrams (Group,
2017), a meta-meta-model typically provides concepts like (abstract and concrete) classes
with typed attributes, class hierarchies through generalization, as well as (un)directed
associations among classes.

Current MDE tools mostly employ a four-layer-based modeling stack, which is shown in
Figure 2.2. The domain engineering layers M0 and M1 are concerned with building models
for a specific domain. The layers M2 and M3 are concerned with language engineering,
i.e. building models for defining modeling languages. In general, meta-meta-models like
MOF or Ecore provide the meta-language to express modeling languages defined by a
meta-model. These meta-models are used to express models of real-world objects. A
common notion is that a model on meta-modeling layer M; conforms to its meta-model on
layer M.

2.1.2. Model Transformations

As Brambilla et al. (Brambilla et al., 2012) defines, a model transformation is a process
that consumes a set of source models as input and maps these to a set of target models
produced as output. Each source and target model conforms to a meta-model. As part of
this transformation process, models are either merged (to homogenize different versions

23

2. Foundations

Transformation

Language
x defines
Meta-Model | Meta-Model T Meta-Model O
A A A
| <<conformsTo>> | <<conformsTo>> | <<conformsTo>>
: input I . output :
Model | — > Transformation —— Model O
Source Model Transformation Process Target Model

Figure 2.3.: Model transformation schema (based on (Czarnecki et al., 2006))

of a system), aligned (to create a global representation of the system from different views),
refactored (to improve their internal structure without changing their observable behavior),
refined (to detail high-level models), or translated (to other languages/representations).
Figure 2.3 depicts the general schema of model transformations. All these operations
on models are implemented either as Model-to-Model (M2M), Model-to-Text (M2T), or
Text-to-Model (T2M) transformations. In M2M, the input and output parameters of the
transformation are models, while in M2T, the output is a text string. Analogously, T2M
transformations have a text string as input and a model as output. Such transformations
are typically applied in model-driven reverse engineering (see Section 2.1.3). Transforma-
tions are performed as one-to-one, having one input model and one output model (e.g.
transformation of a class diagram into a relational model), or one-to-many, many-to-one,
or even many-to-many, which is mostly the case in model merge scenarios where the goal
is to unify several class diagrams into one integrated view.

Transformations are expressed via transformation languages (Czarnecki et al., 2006). The
four-layered meta-model stack described in Section 2.1.1 represents the basis for transfor-
mations (M1) and transformation languages (M2). As Figure illustrates a transformation
is a model that conforms to a meta-model defining the transformation language. This
allows transformations to be used as input and/or output for transformations, which are
then called higher order transformations (HOTs)(Brambilla et al., 2012). HOT are used
to facilitate the manipulation of transformations. Similar to a normal model, that can be
created, modified, and augmented through a transformation, a transformation model can
itself be created and modified.

2.1.3. Model-Driven Reverse Engineering

As described above a text-to-model transformation is called model-driven reverse engineer-
ing (MDRE). Chikofsky and Cross (Chikofsky et al., 1990) defines MDRE as “the process of
analyzing a subject system to identify the system’s components and their inter-relationships and
create representations of the system in another form or at a higher level of abstraction.” The term
subject system represents the end product of a software development process. The main

24

2.1. Model Driven Engineering

objective of such model-based representations is to manage the complexity of IT systems
and obtain a better understanding of the current state, for instance to correct it, update it,
or even completely re-engineer it (Bruneliere et al., 2014). Typically, the process of MDRE
start from a system model with a low abstraction level and try to build views at higher
abstraction levels. This activity is typically performed using static or dynamic analysis, or
a combination of both (hybrid). In general, static analysis techniques extract models from
the source code or binary code of a software system without executing them. Dynamic
techniques analyse the runtime behavior of software systems during execution. Hereby,
the models generation and models transformations is performed automatically based on a
transformation language. Figure 2.4 shows this process in detail. It comprise three phases
(Brambilla et al., 2012):

1. Model Discovery: In the initial phase of MDRE, the low level abstraction of the
system represented in static and/or dynamic data is consumed and translated
into initial models, without losing any of the information required for the process.
The main objective is to quickly switch from the heterogeneous real world to the
homogeneous world of models. These initial models are sufficiently accurate to be
used as a starting point, but do not represent any real increase of the abstraction or
detail levels.

2. Model Understanding: During the second phase, the initial discovered models serve
as input and are translated into the higher level output models via transformation
chains. Thus, the second phase employ manipulation techniques to query and
transform the initial models into more manageable representations.

3. Model Generation: From this point on, further transformation task can be performed
on the abstract models in order to generate low level model representations. For
instance, to migrate from a particular procedural technology (e.g. COBOL) to a object-
oriented technology (e.g. Java). However, this step is not necessarily required. The
MDRE process could only cover the model discovery and the model understanding
phase (Bruneliere et al., 2014).

2.1.4. Models at Runtime

The research on models at runtime (also called models@run.time) (Bencomo et al., 2019)
seeks to extend the applicability of models produced in model-driven engineering ap-
proaches to the runtime environment. Those, so called runtime models can be defined as
abstract representations of a system, including its structure and behaviour, which exist in
tandem with the given system during the actual execution time of that system.

Furthermore, those models can be used by the system itself, other systems or humans
to support reasoning and decision making based on knowledge that may only emerge
at runtime and was not foreseen before execution. Users can also use runtime models
to support dynamic state monitoring and control of systems during execution, or to
dynamically observe the runtime behavior to understand a behavioral phenomenon (Blair
et al., 2009).

25

2. Foundations

Information Model Model Model
Source Discovery Understanding Generation
Meta-Model B Meta-Model C

A s s

Static

source <<conformsTo>>
T2M Trans- Initial
H formation Model A
i
Dynamic ! e.g. COBOL model

source 1
:

i <<conformsTo>>

1

'

'

'

'

I

I

:

'

1 Meta-Model A
I

'

1 H

: <<conformsTo>>
| :

h

1

1

M2M Trans- N Transformed
formation Model C

M2M Trans- Abstract
formation Model B

e.g. UML model e.g. Java model

- /
'

optional

Figure 2.4.: Model-driven reverse engineering process (based on (Brambilla et al., 2012))

Runtime models represent a reflection layer (Maes, 1987), which is causally connected
with the underlying system so that every change in the runtime model leads to a change
in the reflected system (Blair et al., 2009). Significant advances have been made in recent
years in applying this concept, most notably in self adaptive systems (Bencomo et al.,
2019; Bennaceur et al., 2014). Those systems are able to autonomously modify its behavior
at run-time in response to changes in the environment (Cheng et al., 2009; Lemos et al.,
2013).

2.2, Enterprise Architecture Management

The IT architecture is an essential determinant for the future viability of companies.
It highly contributes to the efficiency of the business model and business processes.
Companies need a well thought-out plan to be prepared for future requirements. This is
taken over by an EA. In the following sections, we introduce concepts which are central for
EAM endeavors and illustrate the relationships between these concepts. After introducing
our perspective of an EA as a whole, we revisit the ArchiMate notation language that
supports the description and illustration of specific views on the EA. This language serves
as an important tool for IT-landscape modelling that plays a significant role in the discourse
of this thesis.

2.2.1. Building Blocks of Enterprise Architecture

An enterprise architecture creates an holistic view of the entire company by embracing all
the major business and IT structures, as well as the associations that exist between them.
This includes e.g. buildings, machines, telecommunication networks, information systems,
but also organisational procedures and related information flows. It serves as basis for
describing both the business and IT, as well as the connections between them. Thereby,
dependencies and effects of changes in business and IT become transparent (Hanschke,
2010). A well established EA supports the management to evaluate the possibilities of the
company and to develop it further in a targeted manner.

26

2.2. Enterprise Architecture Management

Architectures refer to logical constructs used in representing and interpreting things in
the real live and their behavior. Architecture is concerned with understanding and defining
the relationship between the users of the system and the system being designed itself.
Based on a thorough understanding of this relationship, the architect defines and refines
the essence of the system, i.e. its structure, behavior, and other properties (M. Lankhorst,
2017). A general definition of architecture is given in IEEE 1471-2000ISOIEC 42010:2007
(Society, 2000) as “the fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principle guiding its design and
evolution.”

An EA is divided in different layers and cross-functional aspects which exert influence
on all layers as many EA researchers (Buschle et al., 2012; Doucet et al., 2009; Matthes
et al., 2020; R. Winter et al., 2007; Wittenburg, 2007) and practitioners (Hanschke, 2010)
agree. Those layers can be clustered into three main areas that comprises business-related,
application-related and infrastructure-related aspects of an IT landscape. Those aspects
are depicted in Figure 2.5 and detailed in the following:

Business Capabilities

Organization & Processes

Business Services

Security

Applications & Information

o)
c ©
@© 2
= .
o o
£ ©
o ©
O o

Visions & Goals

i
o
~
[~]
(%)
C
o
2
(%]
)
>3
()

Strategies & Projects

Infrastructure Services

Principles & Standards

Infrastructure & Databases

Figure 2.5.: Fundamental layers of an enterprise architecture

e Business Capabilities describe core competencies enterprises offer. They represent
functional building blocks of the business architecture to support the business
model and the business strategy. Each business capability is independent from
other business capabilities and realized by combining different elements of the EA
(Mannmeusel, 2012)

e Organization and Processes are used to realize and implement business capabilities.
The organizational structure tends to be static while processes describe behavioral
aspects for value creation (Weske, 2007). In general, business processes are collections
of structured activities which in a specific sequence produce a service or product for
particular customers. At this level, coarse-grained information is modeled such as
business objects, e.g. customer, product, or contract.

27

2. Foundations

e Business Services describe the provision of tangible products or services to accom-
plish certain processes executed by the organization.

e Applications and Information provides the required data for describing the enter-
prise’s application landscape. This comprises applications, their data and interfaces
or information flows. The application layer serves as the bridge linking the busi-
ness architecture with the infrastructure architecture. The links into the business
architecture shed light on the IT support and required information to accomplish a
business service. This embraces not only in-house IT but also applications hosted by
a third party, e.g. through Software as a Service (SaaS). The technical implementa-
tion of applications and interfaces is documented by assigning elements from the
infrastructure architecture to each application.

o Infrastructure Services are technical services used to provide applications and
information, e.g. access to the Internet, the provision of an application server,
etc. Similar to the applications, procurement of third-party services has become
a commodity through Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS).

e Infrastructure and Databases is the technical backbone of an organization and
includes for instance network elements like routers, servers and clusters. Databases
on the other hand are the physical data storage for the most valuable asset today’s
knowledge-intensive organizations possess—information.

These layers are influenced by cross-functional aspects which are driving forces to any
of these layers. These aspects are:

e Visions and Goals are derived from the enterprise strategy. Visions are desired
states of the reality in the far future. Visions are operationalized to goals.

e Questions and KPIs help to measure the accomplishment of goals in a quantitative
manner. Metrics help to formalize questions and key performance indicator (KPI)
values can provide a means to control efforts.

e Strategies and Projects are instruments to implement change and to create innova-
tion. Especially, projects transform the EA whereas strategies provide courses of
action to achieve goals (Buckl et al., 2010).

e Principles and Standards define guidelines and borders for the EA. Thus, they can
be viewed as constraints for the solution space (Buckl et al., 2010).

e Security aspects are relevant to prevent e.g. industrial espionage, data loss, and
contempt of private and personal data.

e Compliance relates to influencing factors like regulatory changes or audit trails.

¢ Information privacy is the privacy of personal information and usually relates to
personal data stored on information systems. The need to maintain information

28

2.2. Enterprise Architecture Management

privacy is applicable to collected personal information, such as medical records,
financial data, criminal records, political records, business related information or
website data (Smith et al., 2011).

2.2.2. Management of Enterprise Architectures

The EA is administered by the EAM function. Gartner (Gartner, 2008) defines EAM as
“the process of translating business vision and strategy into effective enterprise change by creating,
communicating and improving key principles and models that describe the enterprise’s future state
and enable its evolution.”

In general, EAM helps to master the complexity of the IT landscape and to develop the IT
landscape strategically and business-oriented (Hanschke, 2010). It embraces all processes
for documentation, analysis, quality assurance, the creation of current, planned, and target
IT landscapes to align, plan, and control the evolution of the application landscape. The
creation and maintenance of these views is part of the landscape management (Matthes
et al., 2020).

Through the systematic and clear presentation of the business architecture and the IT
landscape in its interaction, connections and dependencies become visible and understand-
able. This supports the access of knowledge, recognition of trends, as well as identification
of optimization potential. Gaining transparency of the IT landscape is a prerequisite for
mastering the EA complexity. Thereby;, it is not sufficient just to collect the information
ad-hoc and store it in the EA database for later use. Information may be outdated shortly
after collecting, which lead to analysis on outdated information. The main problem —
ensuring the availability of up-to-date information — arises due to the different information
suppliers needed and the high effort for a consistent set of information objects. As EAM
concerns different functions from both IT and business areas, Business Process Modelers,
Product Owners, IT Architects, Project Managers, Developers etc. must supply the EAM
process with the information needed for addressing the concerns of different stakeholders.

Hence, EAM is an iterative, incremental, and continuous process as stated by researchers
like Ahlemann et al. (Ahlemann et al., 2012) and Buckl (Buckl, 2011), as well as practi-
tioners, e.g. Hanschke (Hanschke, 2010), Keller (Keller, 2017), and Niemann (Niemann,
2005). Initially, EAM starts by motivating an EA endeavor by convincing all required
stakeholders of the meaningfulness of EAM and long-term benefits for the entire orga-
nization. In particular, top management support is considered essential for successful
EAM endeavors (Young et al., 2013). Next, the developed models and concepts represent
a communication baseline that conveys made decisions, long-term benefits and further
course of EA transformation projects. In this phase, the EAM team should show the
turnover for each individual stakeholder. In the third phase, the EAM team reflects their
practices, outcomes and behavior. It is essential that the delivered artifacts are challenged
by constant feedback. This especially emphasizes the human and social aspect of EAM. A
successful EAM initiative relies on continuous collaboration between the EAM team, their
stakeholders as well as top management support (Roth, 2014).

29

2. Foundations

2.2.3. Modelling Enterprise Architectures

IT-landscape modelling, as a sub-area of EAM, tries to discover and document the IT-
landscape of an organization. It aims to generate and maintain a virtual representation — a
digital twin — of the whole organization (Tao et al., 2018). This digital twin represents the
baseline for the Enterprise Architects to address different concerns of the stakeholders and
to assess the as-is EA. In addition, the Enterprise Architects use the models to create the
to-be landscape and the practical interventions to usher the present landscape towards the
to-be status. It also comprises all the supporting measures to help direct the evolution of
the IT landscape. This is important for decision support especially when it comes to IT
transformation and modernization. A comparison of the as-is and to-be landscape allows
to disclose the progress of the IT transformation endeavour (Hanschke, 2010).

In general, the description of an EA is an explicit artifact formalized in models and
views. These formalisms are provided by architecture description languages (ADLs). An
ADL definition is provided by (Clements, 2003) “A language (graphical, textual, or both) for
describing a software system in terms of its architectural elements and the relationships among
them.” Typical types of architectural elements to be supported by an ADL are components,
connectors, and configurations (Medvidovic et al., 2000).

Several frameworks (CIO Council, 1999; Haren, 2011; Zachman, 1987) and modeling
languages (Group, 2017; Object Management Group, 2011; The Open Group, 2016) were
introduced to provide a uniform representation for diagrams that describe the EA2. The
EAM team uses those views to address concerns of stakeholders and each of them provides
the opportunity to present the current status and progress of one or multiple concerns. A
comprehensive list of typical concerns in EAM presented in seven categories can be found
in (Aleatrati Khosroshahi et al., 2020).

In the context of this thesis, we assume that an ADL is a modeling language defined by a
meta-model on the M2 layer of the four-layered meta-modeling stack introduced in Section
2.1.1. However, an explicit concrete syntax is not required. This allows to use architecture
descriptions in tool-supported contexts, e. g. for model analysis and transformations. This
strict assumption on ADLs is not always required. For instance, Taylor et al. (Taylor et al.,
2009) have a rather broad view on an ADL’s requirements. They define “ADLs can be textual
or graphical, informal (such as PowerPoint diagrams), semi-formal, or formal, domain-specific or
general-purpose, proprietary or standardized, and so on.”

2.2.4. Archimate Notation Language

According to Lankhorst et al. (M. Lankhorst, 2017) “Important for an architecture description
language is that the properties of the system can be represented in their bare essence without forcing
the architect to include irrelevant detail. This means that the description language must be defined
at the appropriate abstraction level. The language and methods are the basis for unambiguous
mutual understanding and successful collaboration between the stakeholders of the architecture.”
This has required more coarse-grained modelling concepts than the finer grained
concepts that can typically be found in modelling languages used at the level of specific

2An extensive literature review on EAM frameworks can be found in (Buckl et al., 2012).

30

2.2. Enterprise Architecture Management

development projects, such as e.g. UML (Group, 2017) and BPMN (Object Management
Group, 2011). In these cases, it is unclear how concepts in one view are related to concepts
in another view and whether views are compatible with each other. Therefore a new
language was needed, leading to the development of ArchiMate (M. M. Lankhorst et al.,
2010).

The ArchiMate Enterprise Architecture modeling language (The Open Group, 2016) pro-
vides a uniform representation for diagrams that describe Enterprise Architectures. It offers
an integrated architectural approach that describes and visualizes different architecture
domains, layers and their underlying relations and dependencies. ArchiMate distinguishes
between the model elements and their notation, to allow for varied, stakeholder-oriented
depictions of architecture information. The language is supported by a plethora of ven-
dors and service providers. Many organizations are using it already as their company
standard for describing enterprise architecture, and its value has been proven in practice
(M. Lankhorst, 2017).

The core language of ArchiMate defines a structure of elements and their relationships,
which can be specialized in different layers. Those layers are depicted in Figure 2.6 and
are described as follows:

1. The Business Layer defines business services offered to customers, which are realized
in the organization by business processes performed by business actors.

2. The Application Layer depicts application services that support the business, and
the applications that realize them.

3. The Technology Layer comprises technology services such as processing, storage,
and communication services needed to run the applications, and the computer and
communication hardware and system software that realize those services. Physical
elements are added for modeling physical equipment, materials, and distribution
networks to this layer. The technology layer is equivalent to the EA infrastructure
layer detailed in Section 2.2.1

Passive Behavior Active
structure structure

N
Business Layer
Application Layer > Layers
Technology Layer

P4

A\ J
Y
Aspects

Figure 2.6.: ArchiMate core framework (The Open Group, 2016)

31

2. Foundations

The framework allows to model the EA from different viewpoints, whereas the position
within the layers highlights the concerns of the stakeholder. A stakeholder typically can
have concerns that cover multiple aspects. Those aspects are defined as follows:

e The Active Structure aspect represents structural elements like the business actors,
application components, interfaces or devices that perform actual behavior.

e The Behavior aspect represents the behavior performed by the actors like, processes,
functions, events, or services. As ArchiMate describes, active structural elements are
assigned to behavioral elements, to show who or what performs specific behavior.

e The Passive Structure aspect defines the objects on which the actual behavior is
performed. These are usually information objects in the Business Layer and data
objects in the Application Layer.

triggers /
flows to
triggers / flows to External Behavior| assigned to External Active
Element Structure Element
triggers / flows to (Service) (Interface)
Passive ‘—J realizes | | serves
Structure accesses
Element composed of serves
aggregates /
composed of serves
accesses accesses Internal Behavior Internal Active
Element R— Structure
triggers / Element
flows to assigned to
triggers / triggers /
flows to flows to
Event assigned to
|\
triggers /
flows to

Figure 2.7.: ArchiMate behavior and structure elements meta-model (The Open Group,
2016)

The according meta-model of the structural and behavioral elements of the ArchiMate
language is illustrated in Figure 2.7. It specifies the main relationships between the behavior
and structure elements. Structure elements can be subdivided into active structure elements
and passive structure elements. Active structure elements can be further categorized in
external active structure elements and internal active structure elements. Behavior elements
can be subdivided into internal behavior elements, external behavior elements, and events.
These three aspects have been inspired by natural language, where a sentence has a subject
(active structure), a verb (behavior), and an object (passive structure).

32

2.3. Microservice Architecture

In addition to the aspects outlined above, the ArchiMate language defines a set of generic
relationships, that define a connection between two aspects, like an interface is assigned
to an application component. The relationships finally describe the overall structure of a
stakeholder concern. The relationships are classified as follows:

e Structural relationships model the static construction or composition of concepts of
the same or different types

e Dependency relationships model how elements are used to support other elements
e Dynamic relationships are used to model behavioral dependencies between elements

e Other relationships, which do not fall into one of the above categories

Relationship
[1]
Structural Dependency Dynamic Other
relationship relationship relationship relationship
Realization Association Triggering ZE Specialization
N—] N—]
Assignment | Influence Flow
| Aggregation |_| Access
__| Composition _| Serving

Figure 2.8.: ArchiMate relationship meta-model (The Open Group, 2016)

The different relationship types are depicted in Figure 2.8. A detailed explanation of the
relationship types can be found in (The Open Group, 2016). The set of different aspects
that are connected via relationship models addresses a particular stakeholder concern. A
concern describes a specific view on the Enterprise Architecture.

2.3. Microservice Architecture

As the previous chapters indicate, IT organizations continuously search for better ways to
build IT systems by adopting new technologies and observing technology trends that might
have the potential to either optimize the organization’s internal processes or open up new

33

2. Foundations

markets. Domain-Driven Design (DDD) (Evans, 2003) fosters organizations to represent
the real world in their code and suggests better ways to model their IT systems. Agile
practices (Dingsoyr et al., 2012) and continuous delivery (Humble et al., 2010) accelerate
the deployment of software into production. Cloud platforms (Mell et al., 2011) and
virtualization helps to provision and resize machines at will. DevOps (Riungu-Kalliosaari
et al., 2016; Smeds et al., 2015) and infrastructure automation (Humble et al., 2010) provide
ways to handle these machines at scale. The development of microservice architectures
(Newman, 2015) emerged from those new technologies. They represent an innovation
derived from service-oriented architectures (SOA) (Bieberstein et al., 2008) that were in
fact already applied years before but were not able to meet the new requirements of the
present time. In the following sections, we detail key characteristics of microservices, how
this architecture style differs from SOA, as well as present a conducted study about the
state-of-the-art in microservice adoption in industry.

2.3.1. Definition of Microservice Architecture

The microservice architecture style was introduced 2012 by Martin Fowler and James Lewis
(Fowler et al., 2014) during a workshop of software architecture. The participants of the
workshop agreed on the term "microservices" as the most appropriate name for describing
a common architectural style that many of them had been recently explored in software
development projects. There is no commonly accepted definition about microservices. This
architecture is mostly described by their key characteristics that are detailed in (Fowler
et al., 2014). The National Institute of Standards and Technology (NIST) (Karmel et al.,
2018) describes Microservices as:

"A basic element that results from the architectural decomposition of an application’s components
into loosely coupled patterns consisting of self-contained services that communicate with each other
using a standard communications protocol and a set of well-defined APIs, independent of any
vendor, product or technology.”

Adrian Cockcroft at Netflix (Cockcroft, 2016) summarized the key characteristics of
microservices as “fine grained SOA” that presents single applications as a suite of small
IT services that run in their own processes and communicate with each other through
lightweight HTTP-based mechanisms, like REST (representational state transfer) (Fielding
et al., 2000). As DDD suggests, these IT services are built around business capabilities,
are modularized in a way they can be deployed independently without affecting other
services and use their own data storage. As standard communication protocols are used,
the services can be written in different programming languages which provides a high
degree of flexibility.

Figure 2.9 illustrates how microservices differs from traditional monolithic applications.
A monolithic application consists mostly of three different parts: 1) A frontend that
represents the client-side user interface (UI), 2) a server-side application that contains
the requires components (C) for executing the business logic and processing client-side
requests and 3) a database that retrieves transactions from the server and stores all
necessary data. This traditional way of building applications has been dominated the IT
architecture many years for most of the IT organizations. The development team was

34

2.3. Microservice Architecture

... 0o @ 0e®
= Mg g
Domain Team 1 Domain Team 2 Domain Team 3
Frontend Frontend

0o O
=0 Ui ui2 ui3
Frontend Team

Backend|
009

=
Backend Team
Databas \
0o @

)

Database Team

Database

Database DB1 DB2 DB3
Monolithic Architecture Microservice Architecture

Figure 2.9.: Monolithic Architecture vs. Microservice Architecture

structured towards the three layers which is beneficial, as all experts are assigned to their
well-known field and are capable to support each other.

However, it also leads to major drawbacks. A new feature or the adaption of an existing
one requires a change on each architectural layer. The Ul implements the feature in order
to be accessible by the users, the backend must implement the business logic and the table
schema in the database must be adapted for storing the corresponding data. Ultimately,
this approach leads to a large amount of dependencies, as well as communication and
coordination overhead:

e The implementation of new features requires the communication and coordination
between three different teams.

o The result of the work of the teams are dependent from each other and must be
aligned accordingly. For instance, the backend team can hardly work without the
submission of the database team - and the Ul need the deliveries from the backend.

e In case agile practices are applied for the development teams, the dependencies lead
to temporal delays. In the first sprint, the database team creates the necessary table
structure. In the second sprint, the backend team implements the logic and in the
third sprint the UI team starts with their implementation. In total, three sprints are
required for developing one feature.

e The database and the backend of monolithic applications must run stable and new
features tested intensively, as failures would affect too many client-side applications
otherwise. Whereas, frontends undergo many changes and customer feature requests.
This implies a fast-speed, customer-centric frontend running alongside a slow-speed,
transaction-focused legacy backend, which leads to a two-speed architecture (Bossert,

35

2. Foundations

2016). These two different software-release cycles cause further delays in software
deployment.

In fact, microservice architectures follow a different approach, which lies buried in the
fundamental concept of Conway’s Law (Conway, 1968): “Any organization that designs
a system will produce a design whose structure is a copy of the organization’s communication
structure.” That means, development teams should be formed cross-functional according
to domains and all software development within the domains are performed by the
individual teams, as Figure 2.9 illustrates on the right-hand side. They work at the
respective IT services, which are technically divided into Ul, backend and database. The
division into the technical artifacts and the interface between the artifacts can now be
clarified within the team. In the simplest case, one developer is a full-stack developer that
covers all technical layers. In cross-functional teams only one developer needs to talk to
the developer sitting next to him. Hence, the communication and coordination overhead
between teams can be reduced to a minimum, as cross-domain communications hardly
affect software development (Newman, 2015).

In the following, we describe the characteristics of microservices summarized by Cockroft
in more detail. A complete analysis of microservice concepts was provided by Martin
Garriga (Garriga, 2018) in the form of a taxonomy, encompassing the whole microservice
lifecycle, as well as organizational aspects:

Modularization: Microservices represent an isolated unit of software that is indepen-
dently deployable, replaceable and upgradeable. It contains all required software libraries
to run autonomously. This allows to deploy new features faster. The change of a compo-
nent in a monolithic application requires the whole application to be deployed in order to
release the change. This could have a large impact on down-time and customer satisfaction.
Every microservice is built to serve one specific business functionality. This open up
opportunities for reuse of functionality, i.e. microservices can be consumed in different
ways for different purposes, making software release cycles faster.

Resilience: Microservice architectures are designed to be tolerant of service failures. If
a problem occurs, it can be isolated quickly to an individual microservice, which makes
troubleshooting easy to achieve and does not impact the whole application. If monolithic
applications fail, everything stops working. However, as the communication frequency
and volume are higher than in monolithic applications, any microservice request call could
fail due to unavailability of the supplier. The client microservice has to respond to this
as gracefully as possible. This is a disadvantage compared to a monolithic design as it
introduces additional complexity to handle it. For that reason, many architectural patterns
(Richardson, 2018) like Circuit Breaker, Bulkhead and Timeout has been introduced by the
resilient engineering community.

Product orientation: Microservices foster organizations to align their software devel-
opment efforts towards product orientation instead of projects. The purpose is that a
development team should own a product over its full lifetime. A team is not only respon-
sible for developing products, but also for their operation, which is a key characteristic in
DevOps (Bass et al., 2015). Amazon’s notion of “you build it, you run it” (O’Hanlon, 2006)
is a common inspiration for this approach. This brings developers into day-to-day contact

36

2.3. Microservice Architecture

with how their software behaves in production and increases contact with their users, as
they have to take on at least some of the support burden.

Distributed communication: The only way to communicate with microservices is via
well-defined exposed interfaces. Hence, all communication between microservices are
via network calls, to enforce separation between the services and avoid the perils of tight
coupling and low cohesion (F. Beck et al., 2011). The microservice community defines this
characteristic with smart endpoints and dumb pipes (Fowler et al., 2014). Every microser-
vice receives a request mostly via simple RESTful-API, process the request by applying the
intended business logic and produces a response. Hereby, it is irrelevant where on earth
the requested microservice runs. The communication can be fully distributed and executed
asynchronously via lightweight messaging services like Apache Kafka®, RabbitMQ*, or
MQTT®.

Technology Heterogeneity: With a system composed of multiple modularized and
collaborating services via standardized interfaces, the use of technology within each
service can be outsourced to the preferences of the development team. This allows to
select the appropriate tool for each task, rather than having to select a more standardized,
one-size-fits-all approach. For instance, a system that needs to improve its performance
should better use C++ as programming language, whereas a system that provides simple
reports can go with Node.js as server framework.

The technology heterogeneity can also be applied for the choose of the right database
system. While monolithic applications prefer a single logical database for persistent
data, microservice architectures prefer letting each service manage its own database
and database technology. This approach is called Polyglot Persistence (Sadalage et al.,
2013). For example, for a social network, a graph-oriented database that reflects the
highly interconnected nature of a social graph is more appropriate than a relational
database. However, the posts the users make in the social network could be stored in a
document-oriented database, giving rise to a heterogeneous data storage architecture.

2.3.2. Building blocks of Microservice Architectures

There exist many reference architecture models of microservice architectures proposed by
industry, as well as by academic researcher. A systematic mapping study on microservices
was performed by Pahl et al. on a set of 21 primary studies from 2014 to 2015 (Pahl et al.,
2016). It is a classification of the research directions in the field and highlights the relevant
perspectives considered by researchers. In (Alshuqayran et al., 2016) Alshuqayran, Ali
and Evans presented a mapping study with the focus on 1) the architectural challenges
faced by microservice-based systems, 2) the architectural diagrams used for representing
them, and 3) quality requirements that need to be considered for developing microservice
architectures. Di Francesco et al. (Francesco et al., 2017) identified and evaluated the
current state of the art on architecting microservices from the perspectives publication

Shttps://kafka.apache.org/, last accessed: 2020-10-28
‘nttps://www.rabbitmq.com/, last accessed: 2020-10-28
Shttp://mqtt.org/, last accessed: 2020-10-28

37

https://kafka.apache.org/
https://www.rabbitmq.com/
http://mqtt.org/

2. Foundations

trends, focus of research, and potential for industrial adoption. They produced an overview
of the state of the art by synthesizing the obtained data from 71 different studies.

Based on the related work, specific key architectural components and building blocks
for implementing and managing microservices in the context of enterprise architecture
can be identified that occur very frequently. For that reason, several publications (Mayer
et al., 2018; Munaf et al., 2019; Yu et al., 2016) exists that collect those patterns, and
proposed building blocks and elaborate potential reference architectures. In the following,
we illustrate a microservice reference architecture in Figure 2.10 derived from the literature
and describe the key components in more detail.

AP| Consumer

R t
equest/ Public API
Response
URL
Discovery AP| Gateway
-
Security
=
o
=
wv
<y Request / Internal API Request/ Internal API
) Response Response
o
ke
> q a . .
= o) Microservice A Microservice B
g 2 Regis- Request / Request /
a N
) —_— . . Message Broker : .
§ Business Logic Business Logic
3 B
&
o
8
S Logs, Metrics Logs, Metrics
[}
(%]
Monitoring
Legend

Scope of Reference Model - Internal Component - Outside Scope of Reference Model

Figure 2.10.: Microservice Architecture Reference Model

Microservice: The microservices itself are lightweight, independently deployable appli-
cations that perform one assigned task. Microservices exist of three layers: 1) each service
contains its own database which represents the persistence layer. A database that is not
shared provide the benefit of better concurrency control, scaling and technology hetero-
geneity as various types of databases can be used as per requirements (e.g. NoSql). 2) the
business logic implements some sort of required functionality to perform the business task.

38

2.3. Microservice Architecture

3) the interface layer expose RESTful-APIs, that must be addressed in order to execute the
particular business logic.

Service Discovery: With the reduction in size of microservices, in large and complex
software systems the number of microservices will also increase. In order to manage
all those microservices and to find the appropriate service (Alshuqayran et al., 2016) for
specific task, service discovery components were developed to provide a service repository.
It contains the location of all microservice instances along with their details and status of
the instance. The service registry act as a registration system for microservices which can
be consulted by API Gateways and microservices for services discovery. That means, as
soon as a new microservice instance is introduced into the system, it must first register its
metadata to the service discovery. This also supports API gateways and other microservices
to find the requested service (Xiao et al., 2016). Service discovery also act as a monitoring
system and identifies active microservice instances, temporarily inactive instances due to
some issues, or failed instances.

API Gateway: API gateways (Newman, 2015) represent the single entry point for
all clients and other API consumers. The API gateway takes all API calls and routes
them to the appropriate microservice with request routing, composition, and protocol
translation. Without the gateway, each client must know the exact endpoint and location
of the microservice which is responsible for delivering the required information. However,
this is rather challenging as microservices can change their location (domain and port)
dynamically due to scaling or redeployment processes. For that reason, API gateway were
developed to handle endpoints and optimize the response. As API gateway need the
location information from the service repository, both components are often assembled
into one service.

API gateways also take over the task to load balance requests. A load balancer (LB)
distribute calls to one or more microservice instances based on some algorithm. With a
LB the utilization of available resources can be optimized and, hence, the resilience of
the overall system increases. In addition, this also reduces the impact of a single service
failing. However, it must be ensured that the persistence layer of the microservices are
also scaled when increasing the amount of microservice instances (Newman, 2015).

Access control and security mechanism are further important components in API
gateways. Each request handled by any microservice needs to be verified and validated
against the allowed permissions of clients in order to prevent unauthorized access to
business operations. Since API gateways handle any incoming client requests before they
arrive the microservices the access control is performed by those services.

Message Broker: Microservices mostly communicate via their RESTful interfaces. REST
calls have a synchronous character, and synchronous calls are blocked due to the re-
quest/response model of the technology. That means, every incoming request is processed
sequentially. Especially, by using the API gateway for direct communication between mi-
croservices, the request is handled synchronously, which results in tight runtime coupling.
Hence, both the caller and caller service must be available for the duration of the request.

In order to apply an asynchronous communication between microservices that prevents
thread blocking and tight runtime coupling, the usage of the message broker pattern

39

2. Foundations

is quite usual (Wise et al., 1993). This pattern introduces a further service into the
architecture that handles all message exchanges between microservices. It achieves loose
runtime coupling since it decouples the message sender from the consumer. In addition,
the availability is improved since the message broker buffers messages until the consumer
is able to process them. That means, sent messages are never lost.

Monitoring: Breaking a monolithic system up into smaller, fine-grained microservices
results in multiple benefits. However, it also adds complexity when it comes to proper
surveillance of the system in production. Monitoring a microservice architecture is not
achieved by only analysing the resource utilization. It also covers further tasks that
go beyond of hardware metrics. This includes the monitoring of transaction status,
performance issues, graceful handling of failed microservices during active operations,
instance management, distributed tracing, distributed logging, anomaly detection or
failure root cause analysis. A detail description of monitoring distributed systems like the
microservice architecture is covered in Section 2.4.3.

The purpose of logging (Fu et al., 2014) is to track error reporting and related data in a
centralized way. The term logging can refer both to the practice of event logging or to the
actual log files that result. Log files can show any discrete event within an application,
such as a failure, warning, information, debug messages, or a state transformation. When
errors occur, such transformations in state help indicate which change actually caused
an error. The challenge that need to overcome in microservice logging is the efficient
collection of distributed logs and to aggregate them in a centralized logging application
(T. B. Sousa et al., 2017).

Tracing allows the tracking of transactions through the microservice-based system and
analyzes transaction states and performance issues. Especially distributed tracing (Fonseca
et al., 2007; Sigelman et al., 2010; Zhou et al., 2014) was developed for microservices in
order to understand the path of data as it propagates through the services. While Logs
can record important checkpoints when servicing a request, a trace connects all these
checkpoints into a complete route that explains how that request was handled across all
services from start to finish.

Monitoring also implement the circuit breaker module (Nygard, 2007) which will be
responsible for graceful handling of failed, not responding or lagging microservices during
active operations. A circuit breaker is required especially in synchronous communications.
After a certain number of requests to the called microservice have failed, the circuit breaker
is activated. All further requests will fail immediately while the circuit breaker is in its
active state. After a defined period of time, the client sends a few requests through to see
if the downstream service has recovered, and if it gets enough healthy responses it resets
the circuit breaker.

Service Mesh: The concept of service mesh is rather new (Li et al., 2019). It was
first introduced by William Morgan (Morgan, 2017). Morgan defines a service mesh
as "a dedicated infrastructure layer for handling service-to-service communication by using a
side-car proxy. It is responsible for the reliable delivery of requests through the complex topology of
services that comprise a modern, cloud native application. In practice, the service mesh is typically
implemented as an array of lightweight network proxies that are deployed alongside application

40

2.3. Microservice Architecture

code, without the application needing to be aware.”

As all service-to-service communications will go trough a side-car proxy, common
microservice architecture components used for service discovery, routing, access control,
observability, load balancing and security are already covered by service meshes (Li et
al., 2019). This makes them obsolete and reduces the complexity of managing several
components that are required in parallel to the microservices. Currently, four service mesh
platforms get great attention. These are Istio®, Linkerd 7, Amazon App Mesh 8, and Airbnb
Synapse °.

2.3.3. State-of-the Art in Microservice Adoption

There are currently only a few empirical papers with microservices adoption in industry.
The work of Alshuqgayran et al. (Alshuqayran et al., 2016) contains a list of significant
challenges in microservice architectures, in particular regarding to operation, integration
and performance. A similar survey have been conducted by Ghofrani and Liibke (Ghofrani
et al., 2018), that reveals the current state of practices and challenges in introducing
microservice architectures in an existing IT landscape. Schermann et al. (Schermann
et al., 2015) present the results of a survey of 42 participants which targets primarily on
implementation specifics such as used communication protocols, data formats, monitoring
data and preferred programming languages. Knoche et al. (Knoche et al., 2017) conducted
a survey with 71 participants and reveal drivers and obstacles in the introduction of
microservices. Fransesco et al. (Francesco et al., 2017) report about an empirical study on
migration practices towards the adoption of microservices.

According to Google Trends (Balalaie et al., 2016), widespread interest in microservices
has been shown in early 2014, and it has grown steadily ever since. Although, the term
itself was coined in 2012 (Fowler et al., 2014), implementations of this architectural style
were already made much longer. For instance, the video streaming provider Netflix, one
of the best-known early adopters, began in 2008 with the introduction of a microservice
architecture to leverage the benefits of cloud computing (Meshenberg, 2016). As of
today, many well-known companies use microservices such as Amazon (Kramer, 2011),
SoundCloud (Calgado, 2014), LinkedIn (Ihde, 2015), or Zalando (Schaefer, 2016), just to
name a few.

Particularly noteworthy about microservices is the fact that many companies make their
research and technologies publicly available. For example, Zalando '° and Netflix!! have
technology blogs for discussing current ideas and experiences with the community. In
addition, many tools, libraries and infrastructure components required for the development
and operation of microservices are published free of charge as open source software.
They invite the community to participate in their research in order to benefit from it.

bhttps://istio.io, last accessed: 2020-10-28

"https://linkerd.io, last accessed: 2020-10-28
8https://aws.amazon.com/de/app-mesh, last accessed: 2020-10-28
“https://airbnb.io/projects/synapse, last accessed: 2020-10-28
Ohttps://jobs.zalando.com/en/tech/blog/?gh_src=4n3gxhi, last accessed: 2020-10-28
Hhttps://netflixtechblog.com/tagged/microservices, last accessed: 2020-10-28

41

https://istio.io
https://linkerd.io
https://aws.amazon.com/de/app-mesh
https://airbnb.io/projects/synapse
https://jobs.zalando.com/en/tech/blog/?gh_src=4n3gxh1
https://netflixtechblog.com/tagged/microservices

2. Foundations

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Overall s e e 18% 1% 2%
Automotive IS O e 33%
Chemical & Pharma G 33%
Finance, Insurance | IEZSYG S 31% 15%
Health Care 07 2076 40%
IT, Technology | e 22% 22%

Production

Public Sector
Publisher

Retail / Wholesale 50%
Transport, Logistic

m0-20% m®21-40% =41-60% =61-80% m81-100%

Figure 2.11.: Proportion of IT that is based on microservices grouped by industry sectors.
N=58 (Kleehaus et al., 2019b)

Furthermore, cloud providers such as Amazon Web Services (AWS), Microsoft Azure, IBM
Bluemix, or Google Cloud allow to procure the necessary resources quickly and with little
effort. As a result, entry barriers for implementing microservices are relatively low.

We conducted a survey among 58 participants from industry in order to identify the
current distribution of microservice architectures in the German market (Kleehaus et al.,
2019b). Figure 2.11 reveals the result of the study.

54,5% (n=30) of the participants replied that the proportion of microservices in their IT is
lower than 20% or even 0%. This little number indicates that the adoption of microservice-
based IT landscape is still at an early stage in the German industry. 32,7% (n=18) of the
participants stated they are using microservices on a mid-range extent i.e. 21% - 60% of the
IT is based on this architecture style. Only a small group of 12,7% (n=7) represent experts
in this area and already transformed 61% to 100% of their IT towards microservices.

A closer look at the sector-specific number depicted in the figure reveals differences.
While results indicate that microservices seem to be used very intensively in the field
of Retail/Wholesale, Finance and Insurance, Automotive and IT, Technology, they are
rarely used in the Public sector, Production, and Transport, Logistic. However, based on
the answers of 73,3% (n=22) of the participants which have a low amount of running
microservices in their IT (0% - 20%) plan to increase this amount. This number indicate
that companies recognize the potential and benefits of microservices and will intensify the

usage of this architecture pattern. This result is in line with Knoche et al. (Knoche et al.,
2017).

2.4. DevOps

Releasing a new application or a new version of an information system is one of the most
sensitive steps in software development. Regardless whether the system or version is for
consumers, or for internal use, releasing a new software opens the possibility of incompat-
ibilities or failures, with subsequent customers dissatisfaction. Hence, organizations pay
great attention to the process of defining a stable release plan.

42

2.4. DevOps

According to ITIL (Office, 2011c), the following release planning steps are important to
address. Traditionally, most of the steps are done manually (Bass et al., 2015):

o Define and agree on release and deployment plans with customers and stakeholders.
This could be done at the team or organizational level.

e Ensure that each release package consists of a set of related assets and service
components that are compatible with each other. Since, all assets including libraries,
platforms, and dependent services changes over time, those changes may introduce
incompatibilities. Hence, it is important to prevent incompatibilities from becoming
apparent only after deployment.

e Ensure that the integrity of a release package and its constituent components is
maintained throughout the transition activities and recorded accurately in the con-
figuration management system. There are two parts to this step: First, it is important
to make sure that old versions of a component are not inadvertently included in the
release, and second a record must be kept of the components of this deployment.

e Ensure that all release and deployment packages can be tracked, installed, tested,
verified, and/or uninstalled or rolled back, if appropriate.

e Ensure that organization and stakeholder change is managed during release and
deployment activities.

e Ensure that skills and knowledge are transferred to service operation functions to
enable them to effectively and efficiently deliver, support and maintain the service
according to the agreed service level agreements. This includes to monitor, record
and manage deviations, risks and issues related to the new or changed service and
take necessary corrective actions.

If all of these activities above are accomplished primarily manually through human
coordination then these steps are labor-intensive, time-consuming, and error-prone (Bass
et al., 2015). For that reason, methods and tools were created to accomplish the listed
activities with differing levels of automation (Humble et al., 2010).

Furthermore, help desk as well as operations personnel need to be trained in features of
the new system and in troubleshooting any problems that might occur while the system
is operating. The timing of the release may also be of significance because it should not
coincide with the absence of any key member of the operations staff. In general terms,
all of these activities requires coordination between the developers and the operations
personnel. If there is no active exchange between both groups, the service operations will
inevitably lead to customer dissatisfaction.

A more rapid release schedule which is striven by agile practices would emerge an even
worse bottleneck in operation functions, when the software release is coordinated by the
operation stuff. As a consequence, this would lead to long delays in software releases.
Hence, in order to solve this coordination issue, Debois (Debois et al., 2011) advocated
a tighter integration between the development and operations functions which is finally
termed as DevOps.

43

2. Foundations

DevOps is a set of principles and practices for merging development and operations
activities in order to continuously deploy stable versions of application systems (Hiitter-
mann, 2012). DevOps therefore aims at a better integration of all activities in software
development and operation of an application system life cycle. By means of DevOps
integration, IT organizations are able to react more flexibly to changes in the business
environment (Sharma et al., 2015). Humble and Molesky (Humble et al., 2011) summarize
the DevOps approach into four principles:

« Treat operations * Small teams * Build tools * Automated * Deployment * Monitoring
personnel as first- * Limited « Continuous testing tools * Responding to
class stakeholders coordination integration (Cl) * User acceptance « Continuous error condititons
* Get their input * Agile practices testing delivery/deploy- * Infrastructure
when developing * Unit tests ment (CD) automation

o Culture: DevOps requires a cultural change of accepting joint responsibility for

delivery of high quality software to the end-user (Brunnert et al., 2015). This can be
achieved by setting up mixed DevOps teams that have end-to-end responsibility for
the development, release and operations of software. At its most extreme, DevOps
practices make developers responsible for monitoring the progress and errors that
occur during deployment and execution. Another example would be to set integrated
(agile) processes in place that force development and operations teams to work closer
together.

Automation: DevOps relies on full automation of the build, deployment and testing
in order to achieve short lead times, and consequently rapid delivery and feedback
from end-users. This can be achieved by applying continuous integration (CI) and
continuous delivery (CD) pipelines (Humble et al., 2010).

Measurement: Gaining an understanding of the current delivery capability and
setting goals for improving it can only be done through measuring. This varies from
monitoring business metrics (e.g. revenue) to test coverage and the time to deploy a
new version of the software.

Sharing: Sharing happens at different levels, from sharing knowledge (e.g. about
new functionality in a release), sharing tools and infrastructure, as well as sharing
in celebrating successful releases to bring development and operations teams closer
together.

Agile Development Continuous Integration / Delivery / Deployment (Cl + CD)

requirements

Continuous Feedback

Figure 2.12.: DevOps life cycle phases (Bass et al., 2015)

Figure 2.12 gives an overview of DevOps processes. In the following, we detail the seven

activities of DevOps practices (Bass et al., 2015):

44

2.4. DevOps

. Requirements: Operation staff must be treated as first-class stakeholders from the
point of view of requirements. Operations have a set of requirements that pertain
to logging and monitoring. Therefore, logging messages, for instance, must be
understandable and usable by an operator. Monitoring agents must be integrated
into the source code. Involving operations in the development of requirements will
ensure that these types of requirements are considered.

. Development: Development must be performed in small teams with less coordination.
Most organizations move away from waterfall-based software development processes
and apply agile-based practices. We further detail agile practices in Section 2.4.1.

. Build: The build process of applications should be automated via continuous integra-
tion (CI) scripts. Practices that apply to the development of CI scripts are intended to
ensure both high quality in the deployed applications and that deployments proceed
as planned. Integration bugs are detected early and are easy to track down due to
small change sets. This saves both time and money over the lifetime of a project.

. Test: Test and staging are the previous environments of the deployment pipeline
prior to deploying the system into production. The staging environment should
mirror as much as possible the production environment. In both environments
several test cases are performed including user acceptance tests (UATs), smoke tests
and nonfunctional tests (Kaner et al., 2000).

. Deployment: It is important, that the deployment process is used by both develop-
ment and operations personnel in order to ensure a higher quality of deployments.
This practice also refer to the time that it takes to diagnose and repair an error. The
normal deployment process should make it easy to trace the history of a particular
deployment artifact and understand the components that were included in that
artifact. Furthermore, practices associated with continuous deployment (CD) are
intended to shorten the time between a developer committing code to a repository
and the code being deployed. Continuous deployment also emphasizes automated
tests to increase the quality of code making its way into production. We detail the
basic concepts in Section 2.4.2.

. Execution: In the execution phase, the development team is more responsible for
relevant incident handling by applying monitoring practices (see Section 2.4.3. These
practices are intended to shorten the time between the observation of an error and
the repair of that error. Organizations that utilize these practices typically have a
period of time in which development staff has primary responsibility for a new
deployment. Later on, the operations team takes over.

. Feedback: Providing feedback about each phase in the software deployment process
is not only the responsibility of customers but also the responsibility of operations
staff. The detection of outliers and anomalies (Hawkins, 1980), or the collection of
incidents must be forwarded to the development teams as soon as possible. In case
the application is not working as expected, a continuous feedback often represents

45

2. Foundations

the first trigger to start a new iteration of an application life-cycle (Kleehaus et al.,
2018a).

In the following sections, we focus on those DevOps principles that are important in the
course of this thesis.

2.4.1. Agile Practices

One of the characterizations of DevOps emphasizes the relationship of DevOps practices
to agile practices. Agile software development projects have become widely accepted
and adopted across the industry (Abrahamsson et al., 2017; Cohen et al., 2004; Dyba
et al., 2008; Erickson et al., 2005). The traditional waterfall model is outdated and unable
to keep up with the advantages offered by agile methodology (Highsmith et al., 2001).
Conboy (Conboy, 2009) defines software development agility as the continued readiness
“to rapidly or inherently create change, proactively or reactively embrace change, and
learn from change while contributing to perceived customer value (economy, quality, and
simplicity), through its collective components and relationships with its environment.”
Agile methodology owes its success to its core principles such as (K. Beck et al., 2001):

e Individuals and interactions are valued over process and tools
e Working software is valued over comprehensive documentation
e Customer collaboration is valued over contract negotiation

e Change adoption agility is valued over project plan adherence

At the core of these principles is the idea of self-organizing teams whose members are
not only collocated but also work at a pace that sustains their creativity and productivity.
The principles encourage practices that accommodate change in requirements at any
stage of the development process. That means, customers are actively involved in the
development process and are allowed to expose feedback at any time. This minimizes
overall risk and allows the product to adapt to changes quickly (Moran, 2014). The
principles are not a formal definition of agility, but are rather guidelines for delivering
high-quality software in an agile manner.

In general, the agile software development process is an incremental and iterative
approach for developing software features or functionality. The development cycle is
broken into cycles of two to four weeks to accomplish units of work. Small increments
minimize the amount of up-front planning and design. Each iteration involves a cross-
functional team working in all development tasks including planning, design, coding and
testing. At the end of the iteration a working product is demonstrated to customers and
surrogates. The structure and documentation are not important but a working prototype is
considered valuable. In general, multiple iterations are required to release a final version
of a software product.

There exists a plethora of different agile software development methods. The most
important ones are extreme programming (K. Beck, 2000), Scrum (Schwaber et al., 2002),

46

2.4. DevOps

crystal family of methodologies (Cockburn, 2002), feature driven development (Palmer
et al., 2002), the rational unified process (Kruchten, 2004), dynamic systems development
method (Stapleton, 1997), and adaptive software development (Highsmith, 2013).

Agile Method: Scrum

One of the most adapted agile software development method in industry is Scrum (Kurapati
et al., 2012; Linkevics, 2014). The term "Scrum" originally derives from a strategy in the
game of rugby where it denotes "getting an out-of play ball back into the game" with
teamwork (Schwaber et al., 2002). Scrum is an empirical approach applying the ideas
of industrial process control theory to systems development resulting in an approach
that reintroduces the ideas of flexibility, adaptability and productivity (Schwaber et al.,
2002). Scrum primarily concentrates on how the team members should function in order
to produce high-quality software in a constantly changing environment. It does not define
any specific software development techniques.

The most central artifact in Scrum is the so called Sprint. It defines a time-box of one
month or less during which a potentially releasable product increment is created. All
other Scrum events and artifacts are organized around Sprint. Each development iteration
is divided into three phases (Schwaber et al., 2002), which we detail in the following:

1. Planning: In the planning phase the system that needs to be developed is defined.
This includes the creation of a Product Backlog list that contains all the requirements for
the software product. The requirements can originate from several stakeholders like
customer, sales and marketing division, or software developers. The requirements
are prioritized and the effort needed for their implementation is estimated. The
requirements in the Product Backlog are constantly updated with new and more
detailed items, as well as with more accurate estimations. Before each Sprint iteration,
the updated Product Backlog is reviewed by the Scrum Team in order to gain their
commitment for the next iteration. Before initializing a next Sprint the Scrum team
selects and defines what Product Backlog items should be realized. This subset of
items is called Sprint Backlog.

2. Development: The development phase is the agile part of the Scrum approach. In
the development phase the system is developed in Sprints. Each Sprint includes
the traditional phases of software development including analysis, design, test and
delivery phases. The architecture and the design of the system evolve during the
Sprint development. After each Sprint the developed increment is considered to
be released if it fulfills the criteria of "Done". The Definition of Done (DoD) drives
the quality of work and is used to assess when a User Story has been completed.
The specification in the DoD ensures that the entire team is aligned on what "done"
actually means. There may be, for example, three to eight Sprints in one systems
development process before the system is ready for distribution. Also there may be
more than one team building the increment.

3. Review and Retrospective: At the end of a Sprint, the team holds two events, the

47

2. Foundations

Sprint Review and the Sprint Retrospective. At the Sprint Review, the team presents the
completed increment to the stakeholders and reviews the work that was completed
as well as the planned work that was not completed. During the Sprint Retrospective
reflects on the past Sprint agrees on continuous process improvement actions.

A Scrum Team comprises the following roles:

e The Scrum Master (SM) is a new management role introduced by Scrum. The SM is
responsible for team setup, conducting sprint meetings, and removing development
obstacles. The SM is not a traditional team lead or project manager but acts as a
buffer between the team and any distracting influences. The SM ensures that the
scrum framework is followed, i.e. the project is carried out according to the practices,
values and rules of Scrum.

e The Product Owner (PO) represents the product’s stakeholders and the voice of the
customer. The PO creates and prioritizes the product backlog, and is responsible for
the delivery of the functionality at each sprint cycle. The main task is to maximize the
value that the development team delivers. The PO should focus on the business side
of product development and spend the majority of time liaising with stakeholders and
the development team. The product owner should not dictate how the development
team reaches a technical solution, but rather will seek consensus among the team
members.

e The Development Team (DT) has the authority to decide on the necessary actions
and to organize itself in order to achieve the goals of each sprint. The DT members
perform the actual development tasks.

Agility in DevOps

DevOps extends agile in terms of the principles as DevOps can provide a pragmatic
extension for the current agile activities. For example, as DevOps stresses more on the
communication and collaboration between developers and operators rather than tools
and processes, it can achieve agile goals to reduce team working latency and extend
agile principles to entire software delivery pipeline (Farroha et al., 2014). The other way
around, agile can support DevOps by encouraging collaboration between team members,
automation of build, deployment and test, measurement and metrics of cost, value and
processes, knowledge sharing and tools (Bang et al., 2013).

2.4.2. Software Release Automation

CI and CD processes are the inevitable items of medium and large scaled software projects
that enable software release automation. They represent essential concepts in agile and
DevOps cultures (Humble et al., 2010). The combination of CI and CD processes forms a
continuous delivery pipeline. Many tools(Leite et al., 2020) were developed in the last years to

48

2.4. DevOps

realize a CD pipeline. One of the most prominent example is Jenkins 2. In the following
Sections, we highlight the main concepts of these processes in more detail.

Continuous Integration

Cl is an automated process that triggers inter-connected steps such as compiling code,
running unit and acceptance tests, validating code coverage, checking coding standard
compliance and building deployment packages. It ensures that the written code works by
providing developers with rapid feedback on any problems that might be introduced with
committed changes (Humble et al., 2010). In the CI process, every developer merges their
code changes to a central version control system, each commit triggers automated build.
So the latest versions are always available in the code repository and also built executable
is from latest code. CI has increased in importance due to the benefits that have been
associated with it (Stahl et al., 2014). These benefits include improved release frequency and
predictability, increased developer productivity, and improved communication. Without
CI, developers must perform a lot of work before they are able to commit their own code
in order to prevent merge conflicts.

Continuous Delivery

CD is the practice of continuously deploying software builds automatically to other
environments like test or stage, but not necessarily to actual users (Humble et al., 2010). The
CD process involves continuous integration and extends it with an automated deployment
to pre-production environments. With CD the DevOps team is able to reduce the cost, time,
and risk of delivering changes by allowing for more incremental updates to applications.
This fits perfect to agile development, as CD ensures that the most current and latest
version of the software is readily available after each sprint.

Continuous Deployment

Continuous deployment (CDE) implies continuous delivery and is the practice of ensuring
that the software is continuously ready for release and deployed to actual customers
(Humble et al., 2010). This minimizes the lead time between the development of new
code and its availability in production for usage. The rational of CDE is to accelerate the
feedback loop with the customers and to reduce release pressure of the team. That means,
there is no release day anymore.

2.4.3. Monitoring distributed Systems

The measurement and control of IT landscapes is based on a continuous process of monitor-
ing, reporting, analyzing and performing subsequent actions. These steps are fundamental
as they provide required enactment proposals to support and improve delivered IT ser-
vices. Therefore, it is important to note that, although this monitoring process takes place

Phttps://jenkins.io/, last accessed: 2020-10-28

49

https://jenkins.io/

2. Foundations

during service operation, it provides a basis for transformation strategies that improve the
EA. ITIL (Oftfice, 2011b) defines these steps as:

e Monitoring is the activity of observing a situation to detect changes that happen
over time.

e Reporting refers to the analysis, production and distribution of the output of the
monitoring activity.

o Control refers to the process of managing the utilization or behaviour of a device,
system or service. It is important to note, that simply manipulating a device is not
the same as controlling it. Control requires three conditions: 1) the action must
ensure that behaviour conforms to a defined standard or norm, 2) the conditions
prompting the action must be defined, understood and confirmed, and 3) the action
must be defined, approved and appropriate for these conditions.

Monitoring can make sure that the system’s Quality of Service (QoS) requirements are
tulfilled as well as to detect, diagnose, and resolve QoS problems as early as possible. As
many EA frameworks (Buckl et al., 2012; Haren, 2011; Zachman, 1987) delivers the holistic
view on the EA on basis of a meta-model that describes the IT landscape in several layers,
monitoring solutions have been placed on each layer of the EA stack, including physical
server, network devices, and storage hardware, the operating system, virtualization and
containerization, applications, as well as business processes and user activities. On each
level, various QoS measures of interest exist. While these are typically hardware-agnostic
for system level measurements, e.g. utilization of CPUs and storage resources, the set of
measures becomes EA-specific, when it comes to application or business process level, e.g.
involving measures like completed orders per hour.

In (Kleehaus et al., 2016), we described the basic concepts of IT monitoring classified in a
taxonomy and presented the main research areas which are currently in focus by academia
and industry. The following sections provide a brief introduction into selected aspects of
IT monitoring with respect to instrumentation strategies, interrogation and data collection
approaches (Section 2.4.3), instrumentation behavior and perturbation (Section 2.4.3), and
performance measurement (Section 2.4.3). For a detailed presentation of foundations on
performance measurement of software systems, we suggest to refer to Jain (Jain, 1991),
Lilja (Lilja, 2005), as well as Menascé and Almeida (Menascé et al., 2002).

Monitors and Instrumentation

Monitoring can be classified based on the trigger mechanism, the result display ability,
and the implementation level (Jain, 1991). Event-driven and sampling-based approaches
are strategies for triggering the measurements of runtime data from a system (Lilja, 2005;
Menascé et al., 2002). Event-driven techniques collect data whenever a relevant event in
the system occurs. Example events are software exceptions, incoming user request, or the
invocations of software operations. In the simplest case, an event-driven measurement
routine updates an event counter. A technique for reducing monitoring overhead is defined

50

2.4. DevOps

as sampling. With this approach only a subset of traffic within a specific time and in a
specific node is collected. Sampling prevents the burden of collecting all traffic and still
uncovers a good approximation of the runtime behavior (Duffield, 2004).

According to the implementation level, monitoring can be divided into hardware moni-
toring and software monitoring. Hardware monitoring focus on low level measurements
of physical devices based on electrical signals and hardware registers. Important KPIs
are CPU, Memory, hard drive, and network utilization. Software monitoring, as the
opposite, are software routines integrated in the analyzed software system. The process of
integrating software monitors into a system is called instrumentation.

Instrumentation can be divided into agent-based or agent-less instrumentation. The
choose of the right method is often dependent on the business criticality of an application
to a company’s business revenue and processes (Pargaonkar et al., 2012). In an agent-
based instrumentation, a software routine (agent — sometimes also called service or
daemon) is installed in the application (source/object/byte) code or the underlying
runtime environment in form of operating system, middleware, or application server
with the primary purpose of collecting information and pushing it over the network
to a central server. Agents intervene deeply into system and provide more features
than agentless monitoring. That enables access to deeper levels of root-cause analysis,
trouble shooting and performance analysis of applications, servers, and network devices.
Various instrumentation techniques exist, e. g., direct code modification, indirect code
modification using compiler modification or aspect-oriented programming (AOP), or
middleware interception (Jain, 1991; Lilja, 2005; Menascé et al., 2002). Instrumentation
is often already integrated into the runtime environment, like logging mechanisms that
provides performance measurements based on event logs.

As opposed to this, in agent-less instrumentation, data is obtained from applications
or network devices without installing any additional software. Instead, the monitoring
solution use various protocols to gather the monitoring data such as SNMP, WMI, HTTP,
POP, FID, etc. or leverages the application programming interface (API) exposed by the
applications. In particular, network traffic monitoring and analysis of log files can be
performed without the installation of agents. In addition, it allows administrators to
get monitoring up and running more quickly. However, agentless instrumentation has
its own drawbacks. Agentless monitoring tools do not have the same depth of features
and provide limited control over the IT system being monitored. Therefore, while the
maintenance and deployment costs are negligible, the relatively high network traffic and
the non-availability of real-time data are big disadvantages.

Instrumentation Behavior and Perturbation

According to ITIL (Office, 2011b), the way how applications can be instrumented can be
abstracted into four categories. Active instrumentation refers to the ongoing "interrogation"
of a system in order to analyze and determine its current status and to predict future
behaviors. This approach is resource-intensive and is usually reserved to proactively
monitoring the availability of critical systems or attempting to resolve an incident or
diagnosing a problem. In contrary to this, passive instrumentation is addressing issues in

51

2. Foundations

the system by analyzing historical log data. The main difference to active monitoring is
that the passive approach shows how the system handles existing conditions but provides
less insights into how the system will deal with future events. Reactive instrumentation
reacts to certain type of events or failures and executes particular actions. For instance,
server performance degradation may trigger a reboot, or a system failure will generate an
incident. Proactive instrumentation is designed to detect patterns of events which indicate
that a system or service is about to fail. This includes continuously analyzing of historical
or streaming data in order to create patterns which determine on the one hand the
normal condition of a system and on the other hand anomalies which have been detected
previously. It has to be mentioned that reactive and proactive instrumentation could be
active or passive. For instance, in a proactive - passive scenario event records are correlated
over time to build trends for proactive problem management. Reactive - active scenarios
are used to diagnose which system is causing the failure and under what conditions, e.g.
"ping" a device to obtain its health status.

An important aspect to consider when instrumenting software systems is perturbation.
Every software requires hardware resources like CPU, memory, and storage in order to
tulfill its task. Hence, instrumentation agents compete for shared resources with the
system under analysis. This may affect the system’s runtime behavior, like the software
control flow due to measurement routines. Perturbation that has an impact on a system’s
performance is often referred to as overhead. For that reason, it is critical that monitoring
systems are required to introduce a rather low overhead — i.e., 1-2% on the system
resources (Mappic, 2011) — to not degrade the monitored system’s performance and to
keep maintenance budgets low. In general, this overhead can be measured by analyzing
response time and resource usage. However, instrumentation could also have an impact
on other quality of service characteristics, e.g. reliability due to implementation errors.
The degree of perturbation introduced by measurements depends on different aspects, e.g.
the measurement strategy—event-driven vs. sampling based—, agent-based vs. agent-less
monitoring and the granularity of instrumentation.

In order to find an acceptable degree of perturbation it is required to balance the interest
between monitoring overhead and the gained detailed information on the runtime behavior.
It is also important to consider the current stage of the application life-cycle. For instance,
measurements with the purpose of debugging and profiling are usually performed at
development time in development environments where a high degree of instrumentation
perturbation is acceptable. On the other hand, logging and application performance
monitoring are used primarily during operation in the production environment, which
limits the accepted perturbation to a level that does not violate the system’s SLAs.

Performance Measurement

One of the most important monitoring practices is application performance management
(APM). As business success is directly influenced by the performance of the enterprise
application systems that support and enables it, any performance issue that may arise
during production use could impact revenue and customer satisfaction. Examples of such
impacts are documented in various literature. Google reports a 20% traffic loss if their web

52

2.4. DevOps

sites respond 500ms slower (Linden, 2006). Amazon loses 1% of revenue for every 100 ms
in latency (Einav, 2019). A study conducted by Mozilla proved that users tend to leave web
sites if the page is not loaded within one to few seconds (Cutler, 2010). Those examples
show how important it is to monitor the response time of applications on regular basis.

APM is an agent-based practice of collecting, evaluating and interpreting performance
of applications at runtime, as well as detecting, diagnosing, and resolving performance-
related problems using runtime data. Data like endpoint response errors, request amount
and method call instrumentation is utilized by APM to gain important insights about
the behavior of the IT landscape. A state-of-the-art report in APM was developed by
Heger et al. (Heger et al.,, 2017). Rabl et al. (Rabl et al., 2012) provides challenges
current organization face when implementing APM solutions. A plethora of application
performance monitoring tools have been developed since the past decade (De Silva et
al., 2019). Best practices in monitoring the several layers of an EA and suggestions of
well-suited tools is provided by Allspaw (Allspaw, 2008). The most mature and feature-
rich APM tools are commercial products such as AppDynamics!?, Broadcom APM,
Dynatrace!®, New Relic!®, Data Dog!” and Instana'®, which are regularly reviewed by
Gartner (De Silva et al., 2019). As an alternative to commercial solutions, also various open-
source tools have been published for measuring application performance. The most known
open-source projects are Nagios!?, Zipkin® developed by Twitter (including the numerous
forks for supporting other programming languages like Sleuth, Brave, HTrace, py_zipkin,
just to name a few), Jaeger?! developed by Uber, PinPoint*? developed by Naver, Kieker??
an academic project developed by the University of Kiel, or openTracing®*. An extensive
landscape about open-source APM including monitoring agents, libraries, data transport
techniques, collectors, data processing approaches as well as storage, visualization and
alerting tools are provided by Novatec?. A decision support guideline for choosing the
best appropriate open-source solution for monitoring distributed architectures is created
by Haselbock and Weinreich (Haselbock et al., 2017).

The core technique for performance measurement developed under the umbrella of
APM is called tracing (Sigelman et al., 2010). Tracing is performed by following a request
through a networked service from start to finish and collects variable level of processing
details across application and network layers. This method is especially used in distributed

Bhttps://www.appdynamics. com, last accessed: 10/28/2020

4nttps://www.broadcom. com/products/software/aiops/application-performance-management, last ac-
cessed: 10/28/2020

15h'c‘cps ://www.dynatrace. com, last accessed: 10/28/2020

16https ://www.newrelic.com, last accessed: 10/28/2020

https://www.datadoghq. com, last accessed: 10/28/2020

18https://x,nm,z. instana. com, last accessed: 10/28/2020

Phttps://www.nagios.org, last accessed: 10/28/2020

Onttps://zipkin.io, last accessed: 10/28/2020

2lpttps://www. jaegertracing. io, last accessed: 10/28/2020

2} ttps://naver.github.io/pinpoint, last accessed: 10/28/2020

Bhttp://kieker-monitoring.net/apm, last accessed: 10/28/2020

24ht'l:ps ://opentracing.io, last accessed: 10/28/2020

Phttps://openapm.io/landscape, last accessed: 10/28/2020

53

https://www.appdynamics.com
https://www.broadcom.com/products/software/aiops/application-performance-management
https://www.dynatrace.com
https://www.newrelic.com
https://www.datadoghq.com
https://www.instana.com
https://www.nagios.org
https://zipkin.io
https://www.jaegertracing.io
https://naver.github.io/pinpoint
http://kieker-monitoring.net/apm
https://opentracing.io
https://openapm.io/landscape

2. Foundations

environments (distributed tracing), where one request is not processed by one application
but by a bulk of distributed servers in which the request is forwarded from server to
server through the network in order to execute the particular business logic. A tracing
server is collecting all information produced by the trace and joins each processing step
for reconstructing the request call stack, i.e. the trace tree. This listing of the system calls
can provide further hints on areas of an involved application that should be optimized to
improve a request’s response speed.

In detail, the tree nodes are basic units of work which we refer to as spans. A span could
represent a function call in the same application, or a function call in another application
that receives the request through the network. Each span is uniquely defined by a spanID.
The request itself which is processed by the nodes is uniquely defined by a tracelD. The
identifier tracelD and the previous spanID defined as parentID are forwarded from span
to span through injecting the information into the HTTP header. Spans created without
a parentID are known as root spans. The trace tree can be reconstructed based on the
tracelD and the chronological order of the spanIDs. The edges indicate a communication
relationship between two spans. Independent of its place in the trace tree, a span is always
a log of timestamped records which encode the span’s start and end time, indicating the
processing time and a list of annotations that describe the request in more detail, e.g.
request path, port, class and method name, etc. An illustration of the trace tree is shown
based on a waterfall diagram in Figure 2.13. The time between a request is sent by service
A and received by service B is defined as the network latency. The time between a request
is received by service B and responded to service A is defined as the request processing
duration.

Frontend.Request

(no parentlD)
spaniD: 1
ServiceA.Call ServiceB.Call
parentID: 1 parentID: 1
spanliD: 2 spaniD: 3
i g . i ServiceC.Call
34— request processing —N‘ parentID: 2 .
spaniD: 4
0 10 80 95 100 160 170 180
Time in ms

Figure 2.13.: The causal and temporal relationships between four spans in distributed
tracing (Sigelman et al., 2010)

54

3. Related Work

The previous Section summarizes the foundations for our approach to obtain an overall
understanding of the used concepts. In the following Section, we provide an overview
over related approaches. We identified three different research areas which are related
to our work: model-driven reverse engineering (cf. Section 3.1), EA model maintenance
research area (cf. Section 3.2), and automated creation of IT landscape visualization (cf.
Section 3.3). Finally, we detail in Section 3.4, to what extent our approach differs from the
related work.

3.1. Model Reverse Engineering

As stated in Section 2.1.3, the automated extraction of models from IT landscapes can
be regarded as (model-driven) reverse engineering and architecture recovery (Canfora
et al., 2011; Chikofsky et al., 1990). Reverse engineering mainly focus on the recovery and
documentation of the inner architecture of an application in order to understand the source
code (Ducasse et al., 2009). The reconstruction of the outer architecture of IT landscapes
for the purpose of understanding how network typologies interact with applications is
called architecture recovery (AR) (Ali et al., 2017; Medvidovic et al., 2003) L Tt is concerned
to provide an overview about runtime artifacts and their interactions. Especially for EAM
practices, AR is fundamental to manage the complexity of emerging IT-landscapes. As we
also use MDRE/AR techniques in our thesis, we present in this Section related methods
and tools that consumes different static and dynamic information to recover architecture
models.

A systematic literature review regarding to MDRE was conducted by Raibulet et al.
(Raibulet et al., 2017). A study conducted at the university of Stuttgart (Bahle et al., 2013)
evaluated 20 commercial and open-source products for IT landscape reverse engineering
and related fields.

1In several papers (Duffy, 2004; Hoorn, 2014; Ros et al., 2011), AR is also defined as architecture discovery
(AD), although there exist some publications (Ali et al., 2017; Medvidovic et al., 2003) that clearly define
the difference between AR and AD. AD is a top-down process that takes the requirements as input in
order to create an architecture, whereas AR is a bottom-up process that extracts the architecture from an
implemented system. In conclusion, the research community is currently divided over which term is the
correct one.

55

3. Related Work

3.1.1. Static based Reverse Engineering

Pivio? is an open-source projected initiated by Wehrens (Wehrens, 2017). The objective of

this framework is to provide a meta-model based language for describing a microservice-
based architecture. Every microservice carries a JSON file at its root directory. This file
contains several attributes that defines this particular service in detail. Example attributes
comprise the name and the description of the service, the life-cycle state, dependencies
to other services, as well as software dependencies. As soon as the microservice instance
is started the JSON file is sent automatically to the central Pivio server, which stores the
architecture models and its dependency information based on the provided description.

3.1.2. Dynamic based Reverse Engineering

Briand et al. (Briand et al., 2006) present an approach for reverse engineering UML
sequence diagrams obtained from Java systems using Aspect]3 . Similar to this thesis, the
authors extract architectural models and communication relationships based on dynamic
analysis. They primarily focus on distributed java-based IT environments.

Hrischuk et al. (Hrischuk et al., 1999), Israr et al. (Israr et al., 2007) as well as Fittkau et al.
(Fittkau et al., 2015) present solutions that automatically extract architecture models based
on trace data. The main purpose is to unveil the layered architecture and its corresponding
interaction behavior in order to study concurrency, threading and performance issues. This
also involves the interaction style, which is either synchronous, or asynchronous. Fittkau
et al. extends the AR process with an interactive web-based IT landscape visualization.
The authors provide different abstractions on each perspective and features two of them,
namely the landscape and the application level perspective.

Besides communication extraction based on tracing data, Porter et al. (Porter et al.,
2016) extends the recovery of architecture models of distributed systems with additional
gossiping methods. Gossiping in distributed systems refers to the repeated probabilistic
exchange of information between two nodes (Kermarrec et al., 2007). Through tracing,
Porter et al. is able to identify synchronous and asynchronous communication patterns.
Whereas, through the use of gossiping, the authors unveils the properties of scalability,
global consistency among participating nodes, and resiliency.

Van Hoorn et al. (Hoorn et al., 2012) developed a framework called Kieker that also
utilizes tracing data to 1) recover the information exchange behavior between microservices
and 2) the internal data processing behavior within a microservice. The landscape topology
is visualized via a graph-based representation. While the extracted traces can be used to
reconstruct the IT landscape, the focus is primarily on analyzing transaction processing
performance for capacity management.

Under the term application performance management (APM) (Menascé et al., 2002),
various tools for continuously monitoring heterogeneous and distributed landscapes were

2http://pivio.io, last accessed: 10/28/2020

3 Aspect] is an aspect-oriented programming (AOP) extension created for the Java programming language.
Aspect] has become a widely used de facto standard for AOP by emphasizing simplicity and usability for
end users.

56

http://pivio.io

3.2. EA Model Maintenance

developed. Gartner regularly analyzes the market of APM tools and publishes a report of
the "Magic Quadrant for Application Performance Monitoring" (De Silva et al., 2019). As
detailed by Gartner the following functional dimensions as a requirement for achieving
APM objectives: 1) end-user experience monitoring, 2) application topology recovery
and visualization, 3) user-defined transaction profiling, 4) application component deep-
dive, and 5) IT operations analytics. Even though APM tools are primarily purchased
for performance and capacity management, they also offer the ability to recover the IT
landscape topology.

3.1.3. Hybrid based Reverse Engineering

Cuadrado et al. (Cuadrado et al., 2008) proposes QUE-es Architecture Recovery (QAR),
which represents a semi-automated architecture recovery workflow that divides the ex-
traction process into three activities, documentation analysis, static analysis and dynamic
analysis. Documentation analysis covers the investigation of user manuals and design
documents. Static analysis is performed by using reverse-engineering tools like Omondo
UML Studio 4. These tools automatically generate UML class diagrams by analyzing java
source code. Dynamic information are extracted by profiling tools, such as JProfiler® for
java applications.

Bruneliere et al. (Bruneliere et al., 2014) propose MoDisco (Model Discovery), an open
source project for model driven reverse engineering of IT systems. Its main objective is to
provide support for activities dealing with legacy systems ranging from understanding
and documentation to evolution, modernization, and quality assurance. Hereby, MoDisco
consumes several static artifacts, like source code, database records, configuration files, or
documentation in order to create the corresponding model representations.

Granchelli et al. (Granchelli et al., 2017a,b) presents a prototypical implementation of an
architecture recovery tool dedicated to microservice-based systems. The recovery process
applies different phases, that include the recovery of the model of the physical architecture
and the transformation to a logical architecture model. Used data sources for extracting
architecture model information are GitHub repository, the log files of the communication
among microservices, and Docker runtime environment information. The main purpose of
this work is to create a visual representation of the architecture for architectural reasoning,
analysis, and documentation.

3.2. EA Model Maintenance

The model discovery detailed in Section 3.1 primarily focuses on reverse engineering the
application layer of IT landscapes. This covers service identification, as well as unveiling
the communication exchange behavior between services. However, the related work does
not provide further information according to EA specific concerns like business layer

“nttps://www.ejb3.org/, last accessed: 2020-10-28
Shttps://www.ej-technologies.com/products/jprofiler/overview.html, last accessed: 2020-10-28

57

https://www.ejb3.org/
https://www.ej-technologies.com/products/jprofiler/overview.html

3. Related Work

associations. For that reason, the following Section describes approaches that aim to
discover the whole EA and how to automate the maintenance of EA models.

As stated in Section 2.2.3 EA models express an architectural description of the EA from
several perspectives to address important stakeholder concerns. The maintenance of the
corresponding models is still performed manually in most organizations (Lucke et al., 2010;
K. Winter et al., 2010) with very little automation. This manual process is regarded as time
consuming, cost intensive, and error-prone (Armour et al., 2005; Farwick et al., 2011a,b).
In addition, the provided data quality often becomes challenging (Roth et al., 2013a), due
to missing information, unstructured data, and wrong or outdated information. In the
present time, most EA practitioners rely on a strong collaboration in order to keep the
EA repository up-to-date, as Hacks et al. (Hacks et al., 2019a) identifies. They receive the
required information from many stakeholders like Solution Architects, Domain Architects,
Project Managers, etc. The information are further processed and transformed into the
desired EA models. Initial thoughts on collaboration come from Fischer et al. (Fischer
et al., 2007). The authors propose to involve EA stakeholders and data owners in the EA
model maintenance process. Many authors followed this idea and elaborated solutions for
different problems that arise in this scope (Buckl et al., 2011; Farwick et al., 2011a; Fiedler
et al., 2013; Fuchs-Kittowski et al., 2008; Roth et al., 2013b).

Fiedler et al. (Fiedler et al., 2013) for instance, propose the integration of Enterprise
Wikis into an EA repository and provide empirical grounds. This Wiki is maintained
collaboratively and provide several benefits. For instance, file attachments could represent
the basis for referencing EA documents. The management of these documents is supported
by the integrated full-text search. Properly referenced EA documents help Architects to
find the required information more efficiently. This also includes additional information
that is not being captured in the model of the EA Tool.

Several research endeavours attempt to automate the creation of EA models in order
to keep the EA documentation up-to-date. A literature review that summarizes those
approaches was conducted by Silva et al. (Silva et al., 2020). In the following, we will
provide an overview over related research in the field of automated EA model maintenance
in general and how the related work addresses the issues outlined in Section 1.

3.2.1. Federated EA model Maintenance

In Section 1, we note that many EA related information is already existing within an enter-
prise and contained in several information systems. Following this remark, researchers as
well as practitioners propose to import information to the EA repository in an automated
manner to keep the EA models up-to-date. The resulting challenges are summarized by
Hauder et al. (Hauder et al., 2012). The authors identified data-, transformation-, business-
and organizational-, as well as tooling challenges, that need to be solved in order to
achieve a practical solution. In this sense, Farwick et al. (Farwick et al., 2011b) conducted
a literature review and an exploratory survey to derive requirements for an automated EA
model maintenance solution. In addition, Farwick et al. (Farwick et al., 2013) provide a
list of information systems that contain EA relevant information and may act as a source
for automated data extraction. In the following, we list important solution examples.

58

3.2. EA Model Maintenance

Farwick et al.(Farwick et al., 2012a) elaborate a meta-model for automated EA model
maintenance. An EAM tool that uses this model as its foundation, can use the contained
information to drive automated and manual update processes, reconcile duplicate entries
and automatically trigger updates based on expiry times. The authors divide the meta-
model into three layers. The lowest layer Instance Layer (M0) defines concrete elements of
the EA. MO represents the instance of the second layer Information Model Layer (M1). M1
defines the model classes in an object-oriented manner. The Meta-Model Layer (M2) finally
exposes the interface of M1 and details the meta-information of the model classes.

How this meta-model is filled semi-automatically with information imported from feder-
ated information systems is detailed in (Farwick et al., 2011a). The authors present a data
collection process, similar to Moser et al. (Moser et al., 2009) that consumes information
from different data sources. However, in their process design, the EA repository manager
and the data owners are supposed to collaboratively resolve arising conflicts. They argue
that an automated conflict resolution is not possible due to the different abstraction levels
of the imported EA models. In this scope, Roth et al. (Roth et al., 2013b) present a software
supported process design that describes this collaboration during the resolution of conflicts
in detail.

Silva et al. (Mira da Silva et al., 2016) specifies a set of migration rules for turning the
manual task of migrating EA models into a faster, and automatic process. These migration
rules aim to achieve two main objectives: 1) Automate the EA migration process, and 2)
provide a complete set of steps throughout the migration of EA data. Nonetheless, Silva
et al. identified also some limitations. First, only a tool that follows an object-oriented
paradigm is capable of implementing their approach. Furthermore, they do not claim that
the proposed approach covers all co-evolution scenarios, despite arguing that the most
common cases are covered.

3.2.2. Runtime based EA Model Maintenance

As identified by Hauder et al. (Hauder et al., 2012) and Farwick et al. (Farwick et al., 2013)
monitoring tools could be a promising information source for delivering EA relevant data
and to achieve an automated maintenance of EA models. However, only a few research
endeavors (Alegria et al., 2010; Buschle et al., 2012; Farwick et al., 2010, Holm et al.,
2014; Viélja et al., 2015) leverage runtime data for automating the EA model maintenance.
The study conducted by Farwick et al. (Farwick et al., 2013) unveiled that incorporating
runtime information for EA model maintenance is a challenging task as runtime data is
mostly too fine granular and must be aggregated into a higher abstraction level.

The authors in (Farwick et al., 2010) presents a federated EA documentation approach
that uses runtime information as one of the connected data sources. A central EA model
controller retrieves application-related data from cloud platforms and a project portfolio
management (PPM) tool and transforms it into an integrated model. All maintained
infrastructure elements have a universally unique identifier (UUID) assigned to them, as
soon as they are planned in the PPM tool. This way, once it is signaled to the central
model that an instance, tagged with a planned UUID, is running, it can be inferred that a
planned infrastructure element changed its status from planned to current.

59

3. Related Work

Buschle et al. (Buschle et al., 2012) and Grunow et al. (Grunow et al., 2013) conduct
a qualitative assessment of an Enterprise Service Bus (ESB) as the central component
for extracting information flows between business applications. The authors reveal that
ESBs are a profound source to discover EA models on the application layer and on the
technology layer whereas there are weaknesses on the business layer. Based on the received
feedback from the practitioners, ESBs are considered as a valid approach which provide
correct data in most cases.

Alegria et al. (Alegria et al., 2010) uses network traffic monitoring to analyze the
actual status of information systems and to verify the IT architecture model. Based on
their developed network traffic analysis technique, the authors are able to automate the
discovery of conceptual models of information systems. The extraction of relationship
information between the discovered information systems is defined as a limitation and,
hence, part of future work.

Holm et al. (Holm et al., 2015) takes up the research of Alegria et al. and assess network
scanners as the main data source for an automated generation of ArchiMate based EA
models. The obtained models encompass not only technical elements like infrastructure
interfaces, application protocols, system software, application component, device, network
elements but also business actor information. However, the authors also admit that the
results do not contain many different EA model entities and often present the data too
fine-grained for EA purposes.

Valja et al (Vélja et al., 2015) present a generic, systematic process of how modeling
automation can be achieved by using two different data sources that incorporate a network
scanner and a network traffic analyzer. In order to maintain data quality, the authors
elaborate certain steps that need to be taken. Finally, the data is used to automatically
generate a security meta-model called P>?CySeMoL(Holm et al., 2015). Reflected against
typical enterprise architecture meta models, the approach is restricted to the technology
layer.

3.2.3. Modern Approaches for EA Model Maintenance

Hacks et al. (Hacks et al., 2019b) took notice about the potential that resides in continuous
deployment technologies for EA model maintenance purposes. They describe how to
implement and partly automate an EA model evolution process from a given preexisting
EA model towards a revised EA model. This process ensures the model quality by
applying several quality gates and the calculation of KPIs. Only if all quality gates are
passed successful in the CD pipeline, the new EA model version is released to production.
Landthaler et al. (Landthaler et al., 2018) presents a machine-learning based approach
for detecting and identifying information systems in the IT landscape of an organization.
The approach discovers and classifies binary strings of application executables on target
machines. Hereby, the authors face the challenge that the binary strings of executables
representing the same application differ depending on the devices. For further evaluation
of the approach it is necessary to examine the work on a heterogeneous environment.
Johnson et al. (Johnson et al., 2016) also introduce a machine-learning technique to
automate EA modeling. The solution considers Dynamic Bayesian Networks (DBNs) as a

60

3.3. IT Landscape Representation

suitable technique to apply to EA model maintenance since DBNs are probabilistic, hence
capable of capturing the inherent and significant uncertainty of both as-is and to-be EAs.
In addition, DBNs are dynamic, so they can represent the time-dependent nature of the
architecture. Some parts of the architecture may be expected to remain stable for extended
periods, while others change rapidly. The approach was tested using data produced by a
network sniffer. However, the results were limited to two EA elements only, namely hosts
and network messages. For all other EA elements, the paper remains theoretical.

3.2.4. Change Events that trigger EA model Maintenance

An important aspect that need to be considered for developing approaches for automated
EA model maintenance is the right time when changes on EA models must be applied.
This aspect centers around change events or triggering events. For the maintenance of an EA
model, Fischer et al. (Fischer et al., 2007) discuss two different strategies to initiate a new
maintenance cycle, these are:

periodic, which is initiated by the EA team and based on a maintenance schedule. In
this regard, Fischer et al. introduces a contract that incorporates model definitions for
relevant information sources and the maintenance schedule. In their periodic approach,
the EA team triggers a data owner that provides the corresponding model as defined in
the contract.

non-periodic can be triggered manually by the EA team as well as by data owners.
A non-periodic cycle is initiated, e.g. if architecture models changed significantly. An
example Fischer et al. provides is a change in the model due to project work. Upon project
completion, the data owner informs the EA team about the changes which then decides
whether or not to initiate a maintenance cycle for the respective information source.

Several publications (Ahlemann et al., 2012; Hanschke, 2010; P. Sousa et al., 2011) that
discuss the notion of triggering events for EA model maintenance is listed and reviewed
by Farwick et al.(Farwick et al., 2012b). Those publications can be assigned into one of
the aforementioned categories. To some extent, the authors assume that these events are
triggered by tools rather than persons. This includes for instance, project start/end, new
application release, new laaS instance, new technical services, new hardware acquired or
the corresponding removal of those elements.

3.3. IT Landscape Representation

As the related work listed in Sections 3.1 and 3.2 highlight, the discovery and automated
maintenance of models are important steps to manage the complexity of IT landscapes.
However, a reconstruction also requires an appropriate visual representation in order to
understand and to communicate the IT infrastructure complexity (Matthes et al., 2020).
In particular, the research community around Matthes underpin the importance of visual
means for the analysis of EA models. An extensive research about current EA visualization
tools was conducted by Roth et al. (Roth et al., 2020). The authors address in their survey
both the industry perspective as well as the EA tool vendor perspective. Such tools are

61

3. Related Work

Measures

Interconnections

Application
Systems

Base Map

Figure 3.1.: Layered architecture of a software map (Lankes et al., 2005)

often based on a Configuration Management Database (CMDB) or similar databases and
allow the management of arbitrary models, and provide different approaches for model
visualizations.

A turther survey in this area was conducted by Aleatrati et al. (Aleatrati Khosroshahi
et al., 2020). The goal of the EAM pattern catalog project is to support systematically the
situational adaptation and the gradual establishment of a company-specific EAM. Besides
the definition of which concerns are addressed with a particular EAM pattern, as well
as which methods and information are required, also the supporting representations are
described, i.e. which representations support stakeholders to carry out their activities
collectively.

Roth et al. (Roth, 2014; Roth et al., 2014) elaborate visualizations for highlighting
differences in EAM models between different states of an EA. Similar to the proposed
method of Binz et al. (Binz et al., 2013), the representation of EA models and their
relationships follows a graph-based approach.

Buckl et al. (Buckl et al., 2007) discovers a large number of different visualizations for
application landscapes, which they refer to as software maps. They categorized them into
three different types: cluster map, cartesian map and graph layout map.

In order to support the visualization of different aspects on a software map, Lankes et
al. (Lankes et al., 2005) proposes a layered architecture as illustrated in Figure 3.1.

The represented software map consists of a base map including organizational units
and multiple layers, which are used to visualize relationships between different objects.
The layers contain applications on the first layer, interconnections representing a technical
aspect on the second layer as well as measures on the third layer, visualizing operational
or economical aspects. Each layer has a reference layer to which the elements correspond.

Similar to Buckl et al. and build upon Lankes et al. Wittenburg (Wittenburg, 2007)
elaborates a large number of different visualization approaches for EAM concerns in
his PHD thesis. Wittenburg divides the individual visualizations into the IT project life-
cycle. This include visualizations for requirements management, strategy and objectives
management, project portfolio management, the synchronization management and IT
architecture management.

62

3.3. IT Landscape Representation

J 6 epiorvi
€ [localhost3388

ExplerViz = ves

‘WDC-Mare

PubFlow

OceanRep
OCN Database

00
1807:18 140820 140910 141000 141050 141140 141230 141320 141410 141500 141550 141640 141730 141820 141910 142018

Figure 3.2.: IT landscape visualization with ExplorViz (Fittkau et al., 2015)

Fittkau et al. (Fittkau et al., 2014, 2013; Fittkau et al., 2015) develop ExplorViz that enables
users to view into each running application while still providing the landscape overview.
In general, the approach provides visualizations of IT landscapes on two abstraction
levels. The landscape level provides an overview of application communications and is
represented utilizing 2D elements. An example is depicted in Figure 3.2. The application
level perspective is more detailed and leverages a 3D city metaphor (Knight et al., 2000) to
visualize one particular application running in the landscape. The reconstruction of the
EA models is performed automatically by utilizing application performance monitoring.

Frank et al. (Frank et al., 2009) presents an IT domain specific modeling language
(ITML). This language focuses on modeling technical IT landscapes which are extended
by a business perspective, detailed as process maps. The left side of Figure 3.3 illustrates
an example. It shows various types of IT concepts in a layered perspective. For instance,
IT services, software, diverse hardware, and locations amongst others. Furthermore,
relationships are visualized in case the models are interrelated or dependent, e.g. software
runs on hardware and enables IT services. With respect to the business perspective, the
models allow for evaluating a resource’s relevance for the business, e.g. by analyzing the
business impact of a resource in case of its breakdown. In addition, the visualized models
can be enriched with additional run-time information about the actual state of the model
instances, like resource utilization, availability or transaction processing duration. This is
shown by the right side of Figure 3.3.

Brown (Brown, 2018) introduces the C4 model for visualising software architectures,
which is gaining popularity in many organizations. Essentially, the C4 model diagrams

63

3. Related Work

—— =T N - [

S > > - o= —r—

. No. of current instances 136 i
= | Business Process 2 | % Business Process 2 Business Process 4

o usiness Process 2

2 =3 Total number of faulty a4 o > \ —

§ o> instances 5 5% ‘E' o> = :-‘=>-_——>:>
& Business Process 1 & Business Process 1 Businoss Process 3

Average Revenue / Instance | 4157 § [isiness Process 5 /-/ Business Process 5
= < / \\ /
Customer Rating =0 Customer Rating EED
[| i Groupware — = Groupware

g | IDED E3ED =D 8 ERED ERED ERED

E | Oustomer Data BI/DW Customer Contact s Customer Data BI/DW Customer Contact

g 1 ~ O¥ED CREED 3 \ S~ IED
3 r Web-Mail 3 r r Outlook Web-Mail
g =1 Utiization Lan-Bualpry o 1 =1 [3]

H H

2 Oracle 10 - 13 Oradle 10

. Availability o 3_

— = A —
Ave»rage costs / 1208
instance
DBS 1 DBS 2 DBS 3 Averagte duration 02:54 minutes g Website DB? 1 DBS 2 DBS3 DBS 9 N HPC 1 Exchén\ge Website
f/—/" = AN Ve \\‘ P

s S b S5 Y Y % S5 Y

= s

H Data Center Data Center Data Center Data Center § Data Center Data Center Data Center Data Center

S Munich, Germany Houston Georgia Ry Austin Munich, Germany Houston Georgia

Legend
— —> supported by
T Business . y g % y — comprises / requires
= e AT 17 service Database-Server Mail-Server Location % Software Mainframe Web-Server L
————— located at

Figure 3.3.: IT domain specific modeling language (Frank et al., 2009)

&
£

Level 1
Context

Level 2
Container

Level 4
Code

Level 3
Component

Figure 3.4.: Different levels of detail in the C4 model (Brown, 2018)

capture the complexity of software design in four levels. The primarily goal is to provide
a way for software development teams to communicate their software architecture, at
different levels of detail. The relationships of the different levels is shown in Figure 3.4

and include:

e System context, that provides a starting point and shows, how the software system in
scope fits into the overall enterprise context.

o The container level zooms into the software system in scope and unveils the high-level
technical building blocks.

o A component diagram identifies the major structural building blocks and their inter-
actions within a single container.

o The code level details the implementation structure of a single component.

64

3.4. Demarcation

3.4. Demarcation

We reviewed literature on the automated recovery and maintenance of models and gave an
overview of insights that influenced our design. In the following Section, we clarify how
the solution approach detailed in this thesis differ in various aspects from the preexisting
work.

Most of the related work that use dynamic reverse engineering approaches (Briand et al.,
2006; Fittkau et al., 2015; Granchelli et al., 2017a; Hoorn et al., 2012; Hrischuk et al., 1999;
Israr et al., 2007; Porter et al., 2016) focus on unveiling technical components and their
communication relationships. However, they do mostly not incorporate infrastructure-
related or business-related aspects. These systems proved to be effective on the application
layer but lack to close the gap to EA related concerns. Another limitations is that the
obtained models achieve only a specific abstraction level which is for some cases too
fine-grained. A flexible aggregation covering different abstraction levels is not provided.
The hybrid based reverse engineering approaches go a step further and try to enrich the
discovered models with further information. Only the work of Granchelli et al. (Granchelli
et al., 2017b) is comparable to the approach of this thesis. Their concept recovers static
and dynamic information of microservices and their interrelations. However, they still
ignore business-related information and do not provide a proper holistic visualization of
the IT landscape. The project pivio.io initiated by Wehrens (Wehrens, 2017) proposes a
similar way of instrumenting microservices with a configuration file. The content of the
file is extracted as soon as the service is deployed. However, pivio.io aims to describe
services from a merely technical point of view and neglect business- and infrastructure
information. In addition, all information must be provided manually, which does not fully
correspond to our intention.

Concerning the elaborated solutions for automating the EA model maintenance, we have
found several issues. First, many researchers follow a federated approach to recover EA
models (Farwick et al., 2012a; Farwick et al., 2011a; Mira da Silva et al., 2016; Roth et al.,
2013b). As Farwick et al. (Farwick et al., 2013) investigated, there exists several information
sources, that can be addressed for this purpose. The extracted models are transformed
to the target models in order to achieve a general valid representation of the EA. The
problem with these approaches is not the process description (Farwick et al., 2011a; Mira
da Silva et al., 2016) or the resolution of model conflicts (Roth et al., 2013b), but the data
sources themselves. The models are still inserted or generated manually in the federated
information systems. That means, data completeness and actuality cannot be guaranteed.
In addition, not all stakeholder concerns can be approached, as the data granularity and
abstraction level differs too much between the information sources. Second, even though
the incorporation of runtime data in order to extract EA models is the same approach
we follow, most related work (Alegria et al., 2010; Buschle et al., 2012; Farwick et al.,
2010; Grunow et al., 2013; Holm et al., 2015; Vilja et al., 2015) in this scope only focus
on a specific EA layer to prove their feasibility. In particular, the automated creation
of business-related models are either incomplete or totally neglected, which is not the
case in our solution. In addition, the feasibility of leveraging runtime information for
EA model maintenance in a highly distributed, microservice-based IT landscape was not

65

3. Related Work

conducted yet. Third, using CD pipelines for automating the maintenance of EA models
as introduced by Hacks et al. (Hacks et al., 2019b) goes into the same direction as we do.
However, the authors still rely on manual work for revising the EA models and do not
leverage runtime data for this purpose. Last but not least, when considering the suitability
of related meta-models (Binz et al., 2013; Braun et al., 2005; Farwick et al., 2012a; Fittkau
et al., 2015; Frank et al., 2009) for EA model maintenance automation, we have found
significant difficulties. A number of meta-models are not detailed enough to provide the
information required for a microservice-based IT landscape management. Our intention
is to address architecture-related concerns of several stakeholders, not only of Enterprise
Architects. Especially, detailed information of data exchange relationships are not covered
by most of the provided meta-models.

There are several conducted studies (Buckl et al., 2007; Frank et al., 2009; Roth et al., 2020;
Wittenburg, 2007) about how to visualize IT landscapes and what different perspectives
must be addressed. However, we only identified the work of Fittkau et al. (Fittkau et al.,
2014, 2013; Fittkau et al., 2015), Brown (Brown, 2018) and Horn et al. (Hoorn et al., 2012)
which developed a tool that creates a visual representation of IT landscapes based on
a meta-model. A solution for the automated creation of Archimate models based on
runtime data was also elaborated by Holm et al. (Holm et al., 2015). In comparison
to the related work, beside the visual representation, we also provide the capability to
query the information against the meta-model in order to offer the stakeholders maximum
flexibility.

66

4. Requirement Analysis

In this chapter, we elaborate on how we envision the conceptual framework for reverse
engineering EA models from a microservice-based IT environment and how to reassemble
the scattered information that reside in the various information sources used along the
IT value chain. Based on this conceptual framework and findings of related work, we
systematically derive and describe requirements of five different categories for respective
tool support.

4.1. A Conceptual Framework for Managing Models along the IT
Value Chain

As stated in the previous chapters the management of models that describe any represen-
tation of an enterprise artifact provide the necessary transparency to uncover the as-is IT
landscape and to support the engineering of future enterprises (Dietz, 2006). The research
endeavours detailed in Chapter 3 mostly regard models in one specific aggregate state
(instantiated, specialized, or populated) and restrict modelling to dateless states of an
enterprise, as Aier confirmed (Aier et al., 2010). We claim that models can constitute the
basis for engineering the EA by providing models in different aggregate states that are
connected and managed in a linked knowledge graph. Referring to this statement, we
follow the IT4IT framework (The Open Group, 2019) for conceptualizing our framework
to manage EA models in a microservice-based IT landscape. The core aspect of IT4IT is
to represent the IT from a value chain perspective in which each model representation
undergoes various phases within the value stream. Those phases are a reflection of the
aggregate state of models. The transition from one aggregate state to the next one is
described visually in Figure 4.1. In the following, we explain this value stream in more
detail.

Enterprise- and Domain Architects manually document and assess the IT-landscape of an
organization in order to derive rough plans that optimally support the EA transformation
strategy enabling IT alignment with business plans. For this purpose, low-fidelity models
are instantiated that reflect each layer of an EA and their interconnections. This activity
is carried out via IT-landscape modelling supported by EA modeling languages like
Archimate (The Open Group, 2016). The output are conceptual blueprints that provide the
business context of the IT landscape along with high-level architectural attributes. Finally,
the instantiated EA models covering the blueprints are used to communicate the as-is IT
landscape and future plans to other stakeholders. The created models are maintained in

67

4. Requirement Analysis

EA repositories, like Iteraplan!, AdoIT? or LeanIX® just to name a few.

2 2 2 as a8 2

Enterprise Architect Domain Architect Solution Architect DevOps Team DevOps Team Incident Manager
Create and maintain EA Specify EA models for specific Analyze requirements and Develop applications Deploy developed Monitor applications,
models that reflect domains and elaborate convert them into a detailed based on provided applications and collect incidents and

Involved
Stakeholder

organization’s strategies domain IT strategy solution architecture model specification ensure operation report on the process

c dback Loo
e P
S
§ § Strategy to Portfolio Requlrement to Deploy Request to Fulfill > Detect to Correct
=
=g l Conceptional Model Loglcal Model 1Reallzed Model
Model Instantiation Model Specialization Model Population
Passive Behavior Active = -
Structure Structure
K]
o "
?>. Business Layer
£
:' Layers Application Layer
3
<}
E Technology Layer
&ﬁ—/

Aspects

I ’ 1 \ I \
} z } \ ,I \

I'4 v

Figure 4.1.: Model interconnection along the IT value stream. Each phase in the value
stream is supported by specific information systems. An holistic model man-
agement is essential for knowledge sharing as several stakeholders are involved
in phase in the value stream

Information
Source

After the rough as-is IT landscape is modelled and future plans are created, the build
phase is carried out by Solution Architects and DevOps Teams. They receive the conceptual
blueprints and develops the logical models. In this phase, the instantiated models of each
EA layer are translated into high-fidelity specialized and domain-specific models with
more detailed requirements that describe how the newly requested business/IT service
and its components shall be designed. The logical models are stored in Configuration
Management Databases (CMDB), Project Management tools (PM) or UML charts.

Finally, the request to fulfill value stream receives the logical blueprint and is responsible
for the tasks to transition the IT services into production. As soon as the service is deployed,
the detect to correct value stream provides a framework for integrating monitoring, event-
and incident management, or other aspects associated with service operation. In this
phase DevOps teams, System Administrators, or Incident Managers keep the deployed IT
service up and running, but are also responsible to observe their runtime behavior. This is
achieved by having the specialized models in executed form, i.e. the specialized models

Ihttps://www.iteraplan.de/, last accessed: 2020-10-28
Zhttp://alfabet.softwareag.com/, last accessed: 2020-10-28
Shttps://www.leanix.net, last accessed: 2020-10-28

68

https://www.iteraplan.de/
http://alfabet.softwareag.com/
https://www.leanix.net

4.1. A Conceptual Framework for Managing Models along the IT Value Chain

are transferred into models at runtime (Bencomo et al., 2019).

Our approach of how to capture and to manage the whole life-cycle of EA models along
the IT value chain follows a bottom-up strategy in a three-step transformation process,
which is illustrated in Figure 4.2.

Process Design Instantiated

Models
A

|
| <<conformsTo>>

100110101001

010110111001 Executed Specialized

110011101000 Models Models S—

Runtime data

S
NS :
Business
l Context Models Store reverse
Business Information engineered
specialized
models in
Storage Design graph-based
child representation
n Segment
parent
L tgger L Ed "
ge Type e ge refers-to
n 1
from & —|> Element “—
1 n
1 n }
properties

7 Node Type TR Node — n
parent n
Property

1 1
1 1
child 1 1
1 1
1 1

) Establish reference to source
Reference DeS|gn information systems 1

Federated Information Systems Monitoring Server

Figure 4.2.: Conceptional framework of EA model management in a microservice-based IT
environment

In its core, the populated models are reverse engineered by analyzing runtime data
retrieved from monitoring tools. As identified by Hauder et al. (Hauder et al., 2012)
and Farwick et al. (Farwick et al., 2013) monitoring tools are a promising information
source for delivering EA relevant data and to achieve an automated maintenance of EA
models. Runtime data allows to recover all deployed applications and their communication
relationships. In addition, they provide hierarchical information which can be used to
describe deployment dependencies. They reflect models in its highest granularity level.
However, runtime data primarily represent technical aspects from the application and
infrastructure layer. In order to make the reverse engineered models more valuable from
an EAM perspective, they are further enriched with static information that relate to the
business layer, so that business-related statements can be made, e.g. which applications

69

4. Requirement Analysis

are assigned to a product or domain, or which user is responsible for specific applications.
As business information are not available in runtime information, they must be provided
manually. Finally, the reverse engineered executed models and business models are
combined and transformed into specialized models. In this process, we leverage the
meta-model of the instantiated models as our transformation meta-model.

We store the reverse engineered specialized models and the model connections in a
graphed-based representation. In this scope, we follow the design proposed by Binz et al.
(Binz et al., 2013). That means, we store each specialized model as nodes and each model
connection as edges. The edge and node types refer to the instantiated meta-model.

Furthermore, in order to reestablish the link between the models and its digital twins
that are managed within the particular information systems that are used along the IT
value chain, we attach a reference to each reverse engineered model. This reference is
provided manually and describes an API that points at the particular model representative
within the information system. With support of GraphQL as the query and manipulation
language for APIs, we are able to query the model and model dependency structure either
directly from the information system or from the database layer. This query language
is also used to retrieve the required data for visualizing the model structures in several
perspectives in order to address the concerns of all involved stakeholders.

4.2. Identification of Requirements

The conceptual framework described in the previous section defines the general architec-
ture and which user roles need to be involved. Based on this understanding, we derive
requirements of a tool-support for recovering and managing models in a central manner.
The identified requirements originate from the following sources:

e the explicit requirements elaborated in the work of Farwick et al. (Farwick et al.,
2011b) especially for automating EA model maintenance,

o the references and statements made by literature which have been studied during
the literature research (cf. Chapter 2) and related work (cf. Chapter 3), and

o the study (Kleehaus et al., 2019b), we conducted for elaborating challenges current
industries face in the documentation of microservice-based IT landscapes, as well as
experience and knowledge we gained through the evaluation of initial prototypes
with industry partners (Corpancho, 2019; Janietz, 2018; Schéfer, 2017).

In the following, we first present the requirements in general and then emphasize
the relevance when managing and visualizing models. We categorize the requirements
into architectural requirements, that stems from the heterogeneous environment that most
enterprises are currently faced with. Organizational requirements derive from acknowledging
that managing models and collecting required information without human intervention is
unrealistic. Integration requirements relate to aspects that ensure a smooth integration of the
concept into the IT landscape. Functional requirements describe specific functionality that
define what the system is supposed to accomplish, and finally Visualization requirements

70

4.2. Identification of Requirements

define concerns regarding the visual representation of the managed models and their
dependencies.

4.2.1. Architectural Requirements

Requirement R1: Automated identification of models
The collection of model information and model dependencies must be performed
automatically from every EA layer.

Microservice architectures are distributed, have a heterogeneous character, and experience
frequent changes (Fowler et al., 2014). This makes is rather challenging to manage those
architectures from an EAM perspective (Kleehaus et al., 2019b). Hence, in order to achieve
an efficient management of microservice-based IT landscapes, the related models must
be identified automatically. This includes the automated collection of model information
form every EA layer, as well as the automated reconstruction of model relationships. A
manual process for documenting models and keeping them up-to-date is not a successful
approach, as several researchers identified (Farwick et al., 2011a; Kleehaus et al., 2019b;
Roth et al., 2013a).

Requirement R2: Automated identification of structural dependencies
The collection of model dependencies between EA layers must be performed automati-
cally.

Most EA frameworks (Office, 2011b; The Open Group, 2016; Zachman, 1987) that emerged
in the last decades provide standards on how to model the EA and typically divide it
into several abstraction layers (R. Winter et al., 2007). The models defined and managed
within those layers are semantically related to each other. For instance, microservices are
represent models in the application layer are deployed on hosts that are located in the
infrastructure layer. This requirement demands an holistic management of models that
covers the whole structure of the IT landscape including all model relationships.

Requirement R3: Automated identification of model communications
The identification of model communications with the application layer must be per-
formed automatically.

Besides inter-relationships that define dependencies between EA layer, the intra-relationships
detail dependencies within a specific layer. For instance, several microservices contribute
to serve a user request. These services exchange data over their interface and, hence,
feature an intra-relationship. This requirement extends R2 and demands to automate the
identification of communication behavior within the application layer.

71

4. Requirement Analysis

Requirement R4: Process support for maintaining relationships between business
and technical EA layers

Runtime data only describes technical aspects of the IT landscape. Hence, a solution to
extract business-related models and the according relationships must be elaborated.

The solution approach described in Section 4.1 uses runtime data to automate the recov-
ery of EA models. However, due to the technical nature of runtime data, they describe
primarily technical aspects of an IT landscape. However, the overall management of EA
models does not only cover the application and infrastructure layer but also encompass
the allocation of the models within the business area and the according relationship
between business and technical EA layers. Unfortunately, this information remain hidden
in runtime data. Consequently, this requirement demands to elaborate a solution to extract
business-related information and map it with the runtime data in order to uncover a
complete and holistic picture on the EA.

Requirement R5: Decentralized data collection process
Extraction of architecture-relevant information from different sources must follow a
decentralized setup.

A decentralized collection of model information is inspired by Fischer et al. (Fischer et al.,
2007). They argue that if data is collected at the side of the data owners, these owners
can still use the modeling tools they are familiar with. Another researcher supporting
this requirement is Breu (Breu, 2010). Nevertheless, the uniform automation mechanism
that collects and integrates the model information into a central repository, as well as
establishes the connection between each phase of the IT value chain must be deployed
across all departments. Otherwise, complicated merging conflicts will occur (Roth, 2014).
Hence, this requirement specifies a decentralized and uniform data collection process, and
a central data analysis and storage mechanism.

Requirement R6: Model references to federated information systems used along the
IT value chain.

The maintenance of model references to federated information systems used along the
IT value chain and the according information extraction must be supported.

In order to establish a central model management that delivers up-to-date information
about each model phase along the IT value chain it is required to maintain the references
to the particular federated information systems that represent those models in different
aggregate state. Those federated information systems provide further architecture-relevant
data that completes the EA picture. Hence, it is required that the maintenance of those
references and the according information extraction is supported by the prototype.

72

4.2. Identification of Requirements

4.2.2. Organizational Requirements

Requirement R7: Organizational regulation of model management
An organizational process must be in place that regulates the data collection and
management of models.

A key aspect of EA practice is the identification and modelling of the as-is IT landscape
(Hanschke, 2009). This modelling endeavour is present in every phase of the IT value
chain. Hence, several stakeholders contribute to the modelling process in order to achieve
a certain perspective of the model life-cycle. However, the required knowledge is often
distributed in the organization (Armour et al., 2005). For that reason, Enterprise Architects
must get notified about changes from other stakeholders like Solution Architects, Product
Owners, Developers etc. which is often not the case. Unfortunately, documentation in gen-
eral is perceived as an unpleasant overhead and the responsible people lack of motivation
to do it. Therefore, the following requirement put model management in its organizational
context, by identifying stakeholders, owners as well as defining organizational regulations
(Fischer et al., 2007; Kleehaus et al., 2019b; Moser et al., 2009). For instance, this require-
ment demands the assignment of ownership to a specific data source. This enables the
recognition of the source of each model in the repository which is an important aspect of
the quality assurance process.

Requirement R8: Technical support of the organizational maintenance process
The organizational maintenance process must be supported by a technical process.

The organizational process needs to be guided by a technical process that assists the
involved participants to fulfill required tasks and perform maintenance activities in the
desired intervals (Fischer et al., 2007; Moser et al., 2009). In this sense, the technical process
is executed as a workflow engine that 1) specifies tasks that must be executed by the users
and 2) lists quality gates that must be passed in the general application development
process. Consequentially, this technical process also enforces the users to adhere to defined
regulations in order to ensure data quality. Hereby, it is important to ensure that the
technical process is adaptable in such a way that it fits into any existing organizational
processes of an enterprise.

Requirement R9: Alignment of model management to superior EA concepts
The internal data structure and model visualization process of the system must be
aligned to superior EA concepts.

Despite the variety of available EA frameworks (Shah et al., 2007), the description of
how to maintain EA-related information is not considered detailed enough in current
EA literature to assist organizations with this task (Haren, 2011; Kleehaus et al., 2019b).
For that reason, sub-organizations often define their own documentation standard which
is not aligned with superior EA concepts. For instance, same models like applications,

73

4. Requirement Analysis

servers, products, etc. have different names in different sub-organizations. Hence, in
order to overcome this issue, the system must propose an internal data structure that is 1)
aligned to EAM concepts and 2) defines and persist the models based on a existing and
well-known EA framework. As soon as this EA framework alignment is available and
applied in every sub-organizations, the communication about models is comprehensible
for every stakeholder.

4.2.3. Functional Requirements

Requirement R10: Delivery of up-to-date information
The model management must deliver up-to-date information about each phases of the
IT value chain

As described in Chapter 1 and inspired by the framework IT4IT (The Open Group, 2019),
many different user roles contribute to the value chain of an IT service and require differ-
ent information, and perspectives on the particular IT service models. Requirement R6
demands that in each phase of the value chain the users must work on a complete and
up-to-date model repository. It has been confirmed in current studies (Kleehaus et al.,
2019b) that especially in agile-based and microservice-based environments Enterprise
Architects struggle to cope with rapid architectural changes and to document the IT
landscape accordingly. Hence, Architects have to deal with high dynamics and constraints
that are caused by shortened life-cycle phases of applications (Armour et al., 2005; Bubak,
2006; Dreyfus, 2007, Lam, 2004). In the specialization and execution phase of the IT
value chain, it is undoubtedly necessary to have a complete and current repository of the
managed models, due to the architectural and operational nature on this model perspective.

Requirement R11: Automated detection of changes
The system must be able to detect changes in the IT landscape automatically without
human intervention.

The desired system must be able to detect changes in the IT landscape automatically and
relate those changes to the the models managed in the repository (Farwick et al., 2011a).
This is an essential requirement which is also expressed in visions of future EA tools
described in (Aldea et al., 2018) and (Doest et al., 2004). In this sense, it is important to
evaluate in which organizational process or by which information sources this change
could be triggered. Organizational process could be the development process. Information
sources could potentially be anything from low-level infrastructure information, over
information from release and change management tools, up to high-level governance tools.
Changes needs to cover not only new or modified EA models but also removed models
and corresponding relationships.

74

4.2. Identification of Requirements

Requirement R12: Automated change propagation
The system must provide mechanisms that allow for the automated propagation of
changes.

In addition to Requirement R7, the detected changes in the IT landscape must be propa-
gated to the system that updates the affected models and the corresponding relationships
if required. In this scope, the system must also be able to distinguish between changes
that has an impact on the models from an architectural perspective, and those changes
that just represent stability and performance improvements. The importance here is that
the information of changes can be abstracted into a granularity that is appropriate for all
involved stakeholders among the IT value chain.

Requirement R13: Generic model transformation
The system must provide a mechanism to transform the information from incoming
data to the internal model representation.

As soon as different information sources are used to achieve an holistic model management
along the IT value chain, a model transformation (Brambilla et al., 2012) is required which
translates the source information into the desired model representation (Moser et al.,
2009). This model transformation must be as generic as possible to support many different
information sources as possible. Furthermore, the data schema of the central system must
not be too rigid in order to support extensions of the model-, and model relationship types.
Otherwise, the system can only be used for specific IT environments which prevents the
aspect of generality.

Requirement R14: Management of model evolution
The system must maintain models in different states for analyzing model evolution.

According to literature (Armour et al., 2005; Bubak, 2006; Dreyfus, 2007; Lam, 2004) current
IT landscapes face high dynamics and agility that lead to shortened life-cycle phases of
applications. This requirement demands that stakeholders are capable to compare different
architecture revisions in order to uncover unforeseen changes and, where necessary, to
intervene as early as possible. With this requirement it is also possible to evaluate how the
architecture emerged over time and what impact specific changes have on the overall IT
landscape performance. As a result, each model needs to have meta—data attached to it
that indicates the creation time stamp and a form of expiration date in order to manage
the volatility.

Requirement R15: Network-based management of models
The system must maintain the models and its relationships in a network oriented way.

Enterprise architectures in general and microservice-based IT landscapes in particular
can be regarded as a network of intra-related or inter-related components (Foltéte et al.,

75

4. Requirement Analysis

2012; Naranjo et al., 2015; Santana et al., 2016). Those relationships of IT landscape
elements can occur in different forms, like 1) elements, such as applications, are linked
due to their data exchange behavior, 2) applications are deployed on hosts representing
hierarchical relationships, or 3) several applications are grouped into products. Hence, we
regard the graph-based management of EA models as the only efficient way to store the
underlying data structures. With this approach, we empower users to examine the effects
of inter-dependencies between individual elements, in contrast to aggregated patterns of
occurrences as typically suggested by EA endeavours (Fiirstenau et al., 2015).

Requirement R16: Automated detection of interfaces
The system must be able to detect interfaces between information systems.

As it was identified in a study conducted by Farwick et al. (Farwick et al., 2011b), the
automated detection of interfaces between information systems have the highest value for
architectural roles. Especially in distributed microservice environments, the number of
interfaces and the amount of data exchange between applications increases a lot (Salah
et al., 2016). Therefore, an automation method needs to be provided that can infer the
interfaces between information systems on a high level of abstraction.

Requirement R17: Definition of KPIs
The system must allow for the definition of KPIs, that are calculated from runtime
information.

According to the IT value chain, especially in the model execution phase the definition
of Key Performance Indicators (KPI) are required to analyze and control the runtime
behavior of model execution. Hence, this requirement demands a language with which the
calculation algorithm for KPIs can be defined (Farwick et al., 2011a). The ability to gather
runtime information also brings the positive effect that the actuality and fine granularity
of the collected data allows for up-to-date calculation of KPIs. Hence, this requirement
also demands that the KPIs an be calculated from runtime information.

4.2.4. Visualization Requirements

Requirement R18: Web-based client for model visualizations
The system must be web-based and accessible without the need to install additional
browser plugins.

The striving success of the web-based and service-oriented applications is confirmed by
researchers (Mcafee, 2007; Zajicek, 2007) and practitioners (Bughin et al., 2009). McAfee
(Mcafee, 2007) transfers the underlying technology, collectively summarized as Web 2.0
to collaboration requirements within an enterprise coining the term Enterprise 2.0. A
platform that has a low entrance barrier as well as an intuitive design can provide utility

76

4.2. Identification of Requirements

for organizations pursuing model management.

Requirement R19: Visualization of structural and communication dependencies
The solution must support the visualization of structural dependencies and model
communications in order to address different stakeholder concerns.

As Figure 4.1 illustrates several stakeholders are required to gather model information from
every IT value chain. Hence, they must be involved in the collection process which leads
to a dependency of the system on user commitment. As a recognition of their contribution,
the system must service model management and model visualizations for all involved user
roles, as the study in (Kleehaus et al., 2019b) identified. For instance, Enterprise Architects
are interested in an aggregated overall landscape visualization, whereas Solution Architects
or Product Owners require detail insight to a specific product. A recurring concern when
designing model views is the need to develop representations that are understandable by
both business and technical experts (Moody, 2010), or in general, to provide a medium
for communication between people with different professional backgrounds (Frank, 2002).
Hence, the solution must support the visualization of different perspectives of the IT
landscape including structural dependencies and model communication behavior.

Requirement R20: Visualization of runtime information
The system must be able to display runtime information of each technical model in
order to represent the specialized models in executed form.

As described in Section 4.1, in order to capture and to manage the whole life-cycle of EA
models along the IT value chain, the models must be represented in different forms. The
models at runtime (Bencomo et al., 2019) is the final phase that reveals the true runtime
behavior. Consequently, the solution must be able to display the models in executed form
by extending the model information and their relationships with runtime metrics.

Requirement R21: Query language for retrieving model information
The system must provide a language to query model information and to adjust the
granularity of data.

The correct granularity of data is crucial to realize the benefit of an holistic model manage-
ment. If the managed model information is too fine-grained, it is useless for user roles that
aim at drawing strategic conclusions from it. If it is too coarse-grained, the information
contained in it is too unspecific. However, as the requirement R13 demands the system to
address several user roles, the queried data granularity must be adjustable to the particular
user needs. Hence, the system must collect data as fine grained as possible and provide
a query language that can be used to adjust the data granularity via aggregation and
filtering methods.

77

5. Automated Model Recovery via Runtime
Instrumentation

Based on the conceptual framework and requirements described in Chapter 4 as well as
related work summarized in Chapter 3, in this Section, we outline a system design and the
core activities for recovering models via runtime instrumentation. A detailed description
of the concept is presented in (Janietz, 2018; Kleehaus et al., 2020, 2019a, 2018b; Machner,
2019; Schifer, 2017).

We would like to point out, that the following design, and presented concepts and
processes aim to reverse engineer IT landscape from a higher abstraction level. We do not
refer to software architecture reconstruction (Ducasse et al., 2009), which mainly focus on
reconstructing object-oriented software systems. This is mainly important for software
developers to get a better understanding of the system, but is not in the field of interest of
architect roles, like Enterprise Architects, Domain Architects or Solution Architects. Those
roles need a more holistic view on the complete IT landscape that is in their responsibility.

First, we outline the architecture design for MICROLYZE that serves to build the
foundation for the subsequent sections. Next, we present algorithms and workflows that
enable the recovery of models and the synchronization with architecture changes. The
materialization of the recovered models is necessary to keep the documentation up-to-date
and to unveil emerging architectures. For this purpose, we detail our corresponding
meta-model. Finally, we describe our concept to expose an interface for accessing the
recovered models and how we visualize the several perspectives on the IT landscape.

5.1. IT landscape topology

In order to store each building block of an common IT landscape and to visualize the
topology in the most generic way, we conducted an extensive analyses of the exposed IT
landscape meta-models of modern APM vendors including Dynatrace, AppMon, AppDy-
namics and New Relic. According to Gartner (De Silva et al., 2019), those competitors are
currently leading the market for application performance monitoring. Based on our analy-
sis, we elaborate in the next step a general IT landscape meta-model that matches most of
the vendor’s specific entities and relationships. The definition of those entities is oriented
on the ArchiMate 3.0.1 (The Open Group, 2016) specification in order to correspond to a
well-known reference model.

We extract the vendor-specific meta-models by analyzing the exposed RESTful APIs.
During this process, we recognized that not every useful information that describes the
IT landscape from a certain perspective can be consumed by API requests. Especially,

79

5. Automated Model Recovery via Runtime Instrumentation

transaction traces that define communication paths between infrastructure components
are often not directly accessible via exposed APIs. However, we realized that the frontend
clients of the APM tools utilizes APIs which are only available to the user interface, but
are not documented or made public. For that reason, we also incorporate in our analysis
the client-based user interfaces in order to derive a generally valid meta-model. We refrain
from accessing directly the underlying databases of the monitoring vendors to retrieve
more information as this led in our investigations to unforeseen performance issues. In
addition, accessing the databases is mostly not possible in production environments. In
the following sections, we describe the vendor specific IT landscape meta-models in more
detail.

5.1.1. AppDynamics

AppDynamics provides four different monitoring agents and development SDKSs for vari-
ous languages, including Java, Node.JS, .NET, PHP and Python. The agents instrument
Applications, Databases, Browser and Mobile Clients, and Server including cloud platforms.
The agents itself are categorized into App agents, that instrument runtime processes (appli-
cations, databases and clients) and Machine agents which primarily collects hardware and
network metrics from virtual machine, operating systems and cloud platforms. The agents
report the collected metrics to the AppDynamics Controller, which basically represent the
monitoring server. The Controller retrieves, stores, calculates baselines for, and analyzes
performance data reported by the particular agent. AppDynamics exposes various APIs
that can be categorized as server-side APIs, which are served by the Controller, and
agent-side APIs.

AppDynamics provides multiple ways to specify the names of the instrumented ap-
plications and physical devices. The recommended way is to set up a configuration file
"controller-info.xml" that is stored in each application’s path. This file contains a unique
combination of Tier, and Node name. In case the application should be a member of a
specific Business Application, the according name must also be provided. Besides the con-
figuration file AppDyanmics also supports system properties and environment variables
(in particular for Docker deployments) for name specifications.

Via the exposed APIs, we are capable to recover the IT landscape meta-model depicted
in Figure 5.1. In the following, we describe the entities in more detail:

Business Applications: A BusinessApplication encompasses all components that are
required to fulfill the functionality of a specific information system. It is a complete set of
interacting runtime artifacts including web and mobile applications, backend components
like databases or message queues, as well as tiers and business transactions that serve the
Business Application mission. Based on the recorded tracing data, AppDynamics groups
entities to one BusinessApplication that frequently occur in the same transaction flows.
Business Application are stored in the database and can be named via manual input. Per-
formance metrics among the Business Application components are aggregated as well in
order to provide the DevOps a complete picture of the overall Business Application perfor-
mance. In AppDynamics, there are no correlations between separate Business Applications.

80

5.1. IT landscape topology

However, it is possible to create copies of the same Business Application. A typical example
of using multiple Business Applications is when you have separate staging, testing, and
production environments for the same website. In this case the three business applications
are essentially copies of each other.

Tiers: Business Applications contain Tiers. A Tier entity represents an instrumented ap-
plication such as a web application, a Node.JS server, a JAVA application, or a virtual
machine, etc. A Tier encompasses multiple application instances that perform the exact
same functionality. Tiers helps to organize and manage logically related applications. A
Tier is composed of one Node or multiple redundant Nodes. One example of a multi-node
Tier is a set of clustered application servers. There is no interaction among Nodes within
a single Tier. The traffic within a Business Applications flows between Tiers. The "origi-
nating" Tier defines the application that receives the first request of a Business Transaction.
A "downstream" Tier is an tier that is called from another tier. The different flows of
transactions within a Business Applications is modeled by Business Transactions.

Nodes: A Node is the basic unit of processing that AppDynamics monitors. Basically, a
Node represents an AppDynamics agent that is either an App agent or a Machine agent.
Nodes belong to Tiers. A Node cannot belong to more than one Tier. An application that
is represented by a Tier could consist several Nodes if the application is load balanced.

Machines: A Machine consists of hardware and an operating system that hosts applica-
tions. The operating system can be virtual. A Machine agent instruments a Machine to
collect runtime data about hardware and network devices, such as CPU activity, memory
usage, disk reads and writes, etc.

Business Transactions: A Business Transaction is a transaction trace, i.e. a collection
of user requests that accomplish a logical user activity within a Business Application. A
single request is a Business Transaction instance. A Business Transaction defines the request
flow through the Business Applications defined by an entry point and a processing path
across Tiers like application servers, databases, and other infrastructure components.

Service Endpoints: ServiceEndpoints define specific application services and detail entry
points of requests. AppDynamics provide metrics about ServiceEndpoints which repre-
sents a subset of the metrics for a Tier. ServiceEndpoints are similar to exposed APIs that
can be accessed by other applications.

Backends: Any detected out of process components that are involved in Business Trans-
action processing, such as Databases, Message Queues, Remote Services or unknown com-
ponents are collectively known as Backends. If AppDynamics detects a request to an
unknown application it records it as Uninstrumented. Backends are recovered from exit
point instrumentation placed in the application code. An exit point is the location in the
code where an outbound call is made from an instrumented Node.

81

5. Automated Model Recovery via Runtime Instrumentation

‘ Web Applications ‘ ‘ Mobile Applications ‘
0.* 0.%
serves
1
. . 0.* 1.* K . 1 0.* 1 1.% K
Business Transactions Business Application Backends Properties
contains
SIEEEEHg) - application Name: String ~backend Name: String ~key: String
mentyRointiyee otine - type: String 1 - type: String - value: String
1.% - technology: String
1o
1
contains
calls
- groee Database
I 0.* I
Communication f--———-————-
- source: Tier 0. Tiers
- target: Tier 1.
é f - tier Name: String MessageQueue
- name: String .
i agentType: String
- nodes: Number
groups
1
exposes
Service Endpoints 15 isinstanceOf Uninstrumented
- name: String 1.% runsOn
- type: String 1.%
Nodes
0.%
- node Name: String ﬁApp Agent ‘
- agentType: String
- version: String
1.*
Machine Agent
runsOn
1
Machines

- machineName: String
- 0s: String
- virtual: String

Figure 5.1.: AppDynamics meta-model (A. Inc., 2020)

82

5.1. IT landscape topology

Communication

1 0.* 0.%

- source: Application Instance
. . - target: Application Instance
Application Hosts Server Application Instances |, « _ url: String

1.+ 1 1 0.
- host: String sDeployedon -name: String anson - port: Number 1.%
- language: String - health_status: String - language: String
- health_status: String - summary: Object - health_status: String

1 I
contains
run:

0.*

o

Browser Applications

1+
- name: String

Applications i

isinstanceOf

Key Transactions

serves gaame L] contains
- language: String - name: String
0

Mobile Applications - health_status: String L. 0 - transcation_name: String

- summary: Object

- name: String
- language: String
_ health_status: String | ‘

| APMApplication ‘ ‘ APMDatabase ‘ ‘APMExternaIService |

Figure 5.2.: New Relic meta-model (N. Inc., 2020)

5.1.2. New Relic

The New Relic agents can be grouped into four categories. 1) APM agents collect appli-
cation specific metrics (APM) and distributed traces. Currently, the following languages
are supported: Java, .Net, C, Go, Node.JS, PHP, Python and Ruby. 2) The Browser agent
monitors Web Browsers by injecting JavaScript snippet into the front-end pages, regardless
which framework is used. It collects metrics about page load performance, Ajax calls,
geographic localization, JavaScript errors, and others. 3) Infrastructure agent are installed
on operating systems (Windows, Linux) and cloud based environments (Amazon Web
Services, Google Cloud Platform, and Microsoft Azure). The agent provides host specific
runtime data including hardware and network performance, and resource utilization as
well as event logs. Database monitoring is also covered by the Infrastructure agent. 4)
Mobile agents are responsible to deliver crash reports, request performance and user
behavior.

New Relic provides different ways to name applications. The recommended approach
is the specification of the application’s name in a configuration file "newrelic.yml" that
is assigned to the application agent’s directory. Further options are set up of system
properties with JVM arguments, or environment variables during deployment of containers.
Based on the exposed server API, we are capable to recover the IT landscape in the Figure
5.2 illustrated scope. In the following, we describe the entities in more detail:

Applications: The Application details all generic software applications that are instru-
mented by the APM agent. Each monitored Application is identified by its assigned
name and an unique ID. The Application is categorized in 1) APMApplication which
represents an application component written either in Java, C, GO, PHP, Python, and Ruby,
2) APMDatabase groups all instrumented databases, and 3) APMExternalService indicate
non-instrumented applications that occur in recorded tracing data but cannot be assigned

83

5. Automated Model Recovery via Runtime Instrumentation

to known applications. In addition, the Applications entity contains a self-relationship in
order to indicate communication between applications in request processing.

Application Instance: The Application Instance entity provides general information about
each specific instance of an Application. The instances represent the runtime processes of
an Application. Every Application contains at least one Application Instance.

Application Host: The Application Host resource provides information about the host
in which Applications reside. It also represents an aggregation of all the Application
Instances that might be running on the Application Host. New Relic summarizes physical
machines, virtual machines, and cloud instances to Application Hosts. Whereas physical
machine primarily means the operating system on which Applications run and has dedi-
cated physical resources, including memory, cpu and storage.

Server: A Server describes a physical device that has one or more Application Hosts.
The Server entity provides, besides device meta-information, general information about
real-time hardware related metrics. In addition, Servers encompass cloud environments
like Amazon Web Services or Microsoft Azure.

Key Transaction: The Key Transaction entity represent transaction traces that has been
marked as particularly important, since they either indicate defined key business events,
such as signups or purchase confirmations, or transactions with a high performance impact
— a transaction that is regularly slower that other transactions and might affect the user
experience. Key Transactions represent only a subset of transaction traces. In order to obtain
all traces for recovering any communication path between Applications the required data
must be collected via accessing the browser-based user interface.

Mobile and Browser Applications: Those both entities provides general information
about mobile and browser-based applications monitored by New Relic, including active
users, interaction time, crash rate, and http error rate.

5.1.3. Dynatrace

The monitoring vendor Dynatrace provides a full-stack monitoring covered by one single
monitoring agent called Oneagent that is responsible for collecting all monitoring data
produced on one host, supporting on-premise and cloud environments. Dynatrace leverage
bytecode injection in a huge scope in order to reduce agent configuration to a minimum.
Oneagent that is installed on the host injects itself in processes of known technology patterns
such as Node.JS, Java, Python, .Net, PHP, Go, C/C++ and others. Browser applications are
instrumented as well by injecting JavaScript tag into the HTML of each application page
that is rendered by the web servers. With one agent that is capable to instrument a large
amount of different technologies from scratch, Dynatrace generates a complete picture of
the IT landscape by default. This is different to other solutions, e.g. AppDynamics and
NewRelic, as they require a manual integration into application and configuration effort.

84

5.1. IT landscape topology

In addition, Dynatrace provides an agent SDK that enables manual instrumentation of
applications to extend end-to-end visibility for frameworks and technologies for which
there is no default support available yet.

Dynatrace automatically detects names of Processes based on basic properties of the
application deployment, configuration or code level inside. For instance, some technologies
allow to give deployed application explicit names. In Spring Boot applications this name
is stored in the spring.application.name property included in application.properties file. In
Node.JS the application name is provided in the package.json file. For other technologies, the
default name can be provided by the environment variable DT_APPLICATIONID=<name>.
Figure 5.3 illustrated the meta-model we are able to recover. In the following, we describe
the entities in more detail:

Applications: In Dynatrace the term Application refers to the front-end part that can be
accessed via a browser or a mobile app. It serves as the user interface. Application are
built upon Services that process incoming requests. Dynatrace monitors the trace of each
request to uncover all individual components like services, databases, processes, hosts, etc.
that work together in order to collectively deliver what the end users view as a complete
application. The metrics collected on Application level encompass all KPIs that has an
affect on the user experience. Web Applications are automatically named on domain level.
Mobile Applications based on the app name.

Service: The Service entity basically represents server-side methods that are accessi-
ble via application interfaces and are responsible to consume and process requests like web
requests, web service calls, remote procedure calls, and messaging. For instance, Dynatrace
considers an API interface controller of a microservice to be a Service. In case Dynatrace
detects database requests executed by an Application, the request itself is defined as a
database service. Services may also call other services indicating a communication rela-
tionship between two processes. Services are categorized into web request services, web
services, database services, messaging and queueing services, remote services, as well as
background activity services.

Process: A Process is an instance of an executed computer program. It defines a run-
time artifact that consumes hardware resources. Processes serve as containers that host
Services. In general, Processes provide topology information, whereas Services uncover
code-level insights. For example, a Tomcat Process hosts a web application in the form of
a server-side Service. A Process is associated to a single Hosts and therefore host-centric,
whereas Services are request-centric and therefore typically span across multiple Hosts in
a Data Center. The technology the Process is based on, like Java, Java application servers
(Tomcat, WebSphere, Weblogic, Glassfish, JBoss), Node.js, .Net, PHP, C/C++, NGINX,
Apache HTTP, IIS, etc., including container information like Docker is assigned directly to
the Process entity.

Process Groups: Process Groups exists of several Processes that perform the same function.

85

5. Automated Model Recovery via Runtime Instrumentation

Web Application

‘Mobile Application

- mobileOsFamily: String][]

-

isProcessOf

Data Center ‘

. 1.* 0.*
Application - Transaction Flow
contains
- discoveredName: String
- applicationType: String
- managementZones: Object[] L.r
0.*
calls
0% contains
0.*
Service
1.*
- discoveredName: String
- serviceType: String 0.%
- softwareTechnologies: Object[] [~ 777 PurePath
0.% 0.* - source: Service
runsOnProcessGrouplnstance ~{EIEEE SRt
0.1
Process runson
- discoveredName: String
- softwareTechnologies: Object(] 0.%
- listenPorts: String[]
1.* 0.*
isinstanceOf
isNetworkClientOf
1
0.1
Process Group
- discoveredName: String
- softwareTechnol : Object[]
- metaData: Array<Object> | 0"
L 0.*
runsOn
1* isNetworkClientOfProcessGroups
Host
- discoveredName: String
- osType: String 0.*
- ipAdresses: String[]
- cpuCores: Number
1.*% 0.*
isSiteOf isNetworkClientOfHost
1

Figure 5.3.: Dynatrace meta-model (D. Inc., 2020)

86

5.1. IT landscape topology

Process Groups span across multiple Hosts. For instance, a load-balanced application is
deployed on a cluster of servers with each server running the same Process in support
of multiple Hosts. Dynatrace recognizes automatically related Processes and assign them
to a Process Group. When Dynatrace detects multiple Process Group, it assumes that the
Process Group represent separate applications, or at least separate logical parts of a sin-
gle application. Therefore, Process Group represent boundaries for the Services they contain.

PurePaths: PurePaths are traces of transactions through the backend system. Multi-
ple Services can participate in a single PurePath. The observation of a transaction trace
covers called interfaces and include asynchronous communication over message queues.
In terms of data structures, PurePaths are realized as trees with arbitrary width and
depth whereby each node represents a Service and each edge represents a call between
connecting nodes. Dynatrace is able to aggregate transaction traces in order to unveil
communications between higher order elements, i.e. Process, ProcessGroups or Hosts.

Host: A Host in Dynatrace is a virtual or physical machine on which Processes run
and hardware resources are assigned. They are mostly regarded as operating systems.
Each Host is mapped to one Data enter. Dynatrace generally names the detected hosts
based on their DNS names.

Data Center: Data Center primarily specifies the real-world geographic location on which
Hosts are running and Processes are deployed. From the perspective of Dynatrace, a Data
Center is either a grouping of virtual machines running in an cloud platform or a set of
vCenter-based virtual hosts that transmit data to Dynatrace via a single ActiveGate.

5.1.4. AppMon

AppMon is the precursor of Dynatrace and mainly offers application performance mon-
itoring. The core technology of AppMon is identical to Dynatrace. Monitoring agents
are injected into application processes, from where they collect performance metrics and
send them to the monitoring server. However some monitoring features are missing and
parts of the IT landscape entities are named differently. The meta-model of AppMon is
illustrated in Figure 5.4. It is rather similar to the meta-model of Dynatrace. However,
some terms were renamed: Agents represent Processes, AgentGroups are ProcessGroups,
and Sites reflects DataCenters. An exception represents AppMon Applications. Whereas
Dynatrace defines Applications as the front-end part that can be accessed via a browser
or a mobile app, AppMon’s Applications are logical groupings of an arbitrary amount of
Agents that cooperate to perform some business task.

5.1.5. Meta-Model Transformation

In the next step, we transform the APM vendor specific meta-models to a generally
accepted meta-model that will represent the persistence layer of MICROLYZE. For this
purpose, we elaborate a mapping table that translate the meta-model entities of the APM

87

5. Automated Model Recovery via Runtime Instrumentation

Site

1.%

runsOn

1

- name: String
- location: String

isSiteOf

Host

- name: String
- hostGroup: String

Application Transaction Flow
contains
- name: String -name: String
1.* 1.*
contains
greups calls
1.% 0.* L
————————— PurePath
Agent Group isInstanceOf Agent 0..*
- - - name: String
- name_. SFrlng) - name: Strlng' - parent: Agent
- description: String - agentRef: String - child: Agent
- technologylInfo: Object

- os: String
- ipAddress: String

Figure 5.4.: AppMon meta-model

vendors to the ArchiMate specification. The mapping table is shown in Table 5.1. The Table
unveils that every meta-model follows mostly the same schema but uses different names
for describing identical entities. Only a few entities do not have one concrete counterpart.
For instance, Business Applications as defined in AppDynamics cannot be extracted from
NewRelic or Dynatrace via API request or direct access to the Web UIL. We consider, that
Business Applications are not defined in those tools. Furthermore, transaction traces are
mostly not directly accessible via API request. Hence, we must access directly the user
interface in order to extract tracing information. In NewRelic, retrieved Key Transactions
represent only a subset of all traces. This also applies for AppDynamics. In Dynatrace
and in its previous version AppMon, tracing data is defined in combination of PurePath
and Transaction Flows. However, they obtained data is also restricted to a certain maximum
timeframe.

The entities that define runtime processes (Application Instance, Nodes, Process, Agents) are
not translated into an ArchiMate model, as we consider this information as 1) a runtime
aspect that changes frequently due to scaling behavior and 2) it is already aggregated in
Applications, Tiers, Process Groups and Agent Groups and can be easily obtained by accessing
the related API of the monitoring tool.

As stated in Section 2.2.4 ArchiMate differences between, inter alia, structure elements
and behavior elements. Structure elements are the subjects that can perform behavior.
They are primarily defined as "nouns" whereas behavior elements are listed as "verbs".
Structure elements represents resources and behavior elements represent the dynamic
aspects of the enterprise. In the following, we describe the structure and behavior entities
that form our general meta-model in more detail:

88

5.1. IT landscape topology

Table 5.1.: Meta-model transformation for deriving a generally accepted meta-model for

Microlyze
NewRelic ‘ AppDynamics ‘ Dynatrace ‘ AppMon Microlyze
Mobile Mobile Mobile n/a Mobile Device
Application Application Application
Browser Web Web n/a Browser
Application Application Application Device
APMApplication| Tiers Process Group | Agent Group Application
Component
Application Nodes Process Agent n/a
Instances
n/a Service Service n/a Application
Endpoints Service
n/a Business n/a Applications Application
Applications Collaboration
Key Business Pure Path /| Pure Path /| Application
Transactions Transactions Transaction Transaction Interaction
Flow Flow
Application Machines Host Host Node
Host
Server Machines Data Center Site Facility
APMDatabase | Database Service n/a Application
Component
n/a Message Service n/a Application
Queues Component
APMEXxternal Uninstrumented | Service n/a Application
Service Component

89

5. Automated Model Recovery via Runtime Instrumentation

Device: A device is a physical IT resource upon which system software and artifacts
may be stored or deployed for execution.

We model browser-based and mobile-based applications as devices, as the user interface
of any software is only accessible via a Smartphone or a Desktop Computer. It therefore
represents a physical IT resource with processing capability. The user interface is deployed
on a Device and forwards all requests to the processing applications, such as microservices.

Application Component: An application component represents an encapsulation of
application functionality aligned to implementation structure, which is modular and
replaceable. It encapsulates its behavior and data, exposes services, and makes them
available through interfaces.

Microservices are self-contained units, which are independently deployable, reusable,
and replaceable (cf. Section 2.3). Its functionality is only accessible through a set of
exposed interfaces. With this definition, they fit into the model description of Application
Components. We also assign databases, message queues, and any other backend application
to Application Components, as ArchiMate does not distinguish between those artifacts.
However, in order to keep this information, we create an enumeration entity Application
Type which stores the particular specialization of Application Components. This enumeration
is referenced by the applicationsype attribute. As Application (NewRelic), Tiers, Process
Groups and Agent Groups represent an aggregation of runtime processes which perform
the same functionality, we map those entities to Application Components.

Application Collaboration: An application collaboration represents an aggregate of two
or more application components that work together to perform collective application
behavior.

Application Collaborations are recognized in the entities Business Applications (AppDynamics)
and Applications (AppMon), as they define an aggregate of two or more runtime processes
that cooperate to perform some task. We did not identify such entities in NewRelic and
Dynatrace.

Application Service: An application service represents an explicitly defined exposed
application behavior.

As defined in ArchiMate, Application Service exposes the functionality of components to
their environment. This functionality is accessed through one or more Application Interfaces.
Thus, Application Services represent methods that use, produce and yield data objects. In
APM, traces between Application Components are recorded on method level. Each outbound
request is triggered by the caller method and each inbound request in processed and

90

5.1. IT landscape topology

answered by the callee method. The communication itself is performed through the
Application Interface.

Not all investigated monitoring tools provide a separate entity for Application Services.
Dynatrace and AppDynamics represents this context via Service and Service Endpoints re-
spectively. Application Services are not directly monitored as separate entities by NewRelic
and AppMon. In order to keep the data model as general as possible and allow for
conformance with other APM tools, we create two dummy Application Services for each
recovered Application Component. One service represents an interface for incoming requests
and the other for outgoing requests. They strictly follow a naming convention where "_IN"
or "_OUT" is added to the ID of the respective Application Component. To summarize, we
define Application Service as the methods of Application Components that can be accessed via
Application Interfaces.

Application Interface: An Application Interface represents a point of access where
application services are made available to a user, another application component, or a
node.

An Application Interface specifies how the functionality or an Application Service of an
Application Component can be accessed. In microservice-based environments RESTful
requests are primarily used for calling interfaces. Other messaging mechanisms are
Remote Procedure Calls (RPC), Remote Method Invocation (RMI) the object-oriented
equivalent of RPCs, or Remote Function Call (RFC) which represents the standard SAP
interface for communication between SAP systems.

Application Interfaces are assigned to Application Services, which means that the interface
exposes these services to the environment. In case dummy Application Services must
be created, all Application Interfaces are assigned to the "_IN" - Application Service of the
respective called Application Component. A description of Application Interfaces is often
provided in API documentation and administration tools such as Swagger! or Apigee?.

Application Interfaces are not directly accessible via the exposed APIs of the investigated
monitoring tools. Similar to Application Services this information can only be uncovered by
analyzing the communication path between applications visualized in the respective Uls.
In AppDynamics interfaces are described in the Service Endpoints entity.

Application Interaction: An application interaction represents a unit of collective appli-
cation behavior performed by (a collaboration of) two or more application components.

The communication behaviors of Application Components that participate in an Application
Collaboration can be described in the Application Interaction entity. In general, it defines a
detail trace of a user request that accomplishes a logical user activity. The trace between
Application Components are modelled on Application Service level which, in turn, realize
them based on the exposed Application Interface. Hence, each single Application Interaction

Ihttps://swagger.io/, last accessed: 2020-10-28
’https://cloud.google.com/apigee, last accessed: 2020-10-28

91

https://swagger.io/
https://cloud.google.com/apigee

5. Automated Model Recovery via Runtime Instrumentation

record contains the information of the Application Collaboration in which the interaction
takes place and two attributes of Application Service — the caller and callee service. In sum,
a complete Application Interaction is described by an amount of hierarchical caller - callee
relationships. With this approach, a whole request trace can be stored. In the investigated
monitoring tools, the Application Interactions are modelled via Key Transaction, Business
Transaction, or is encapsulated in the PurePath and Transaction Flow visualization.

Node: A node represents a computational or physical resource that hosts, manipulates,
or interacts with other computational or physical resources.

Every Application Component is deployed on Nodes, which represents the host environment
that provides required physical resources for data processing and storage. Hereby, we
distinguish between operating system, virtualization, containerization, or cloud environ-
ments. We map the monitoring entities Application Host, Machines and Host to the Node
entity.

Facility: A facility represents a physical structure or environment.

In ArchiMate notation, a Facility is a specialization of a Node, which provides the physical
resources like housing or locating for facilitating the use of equipment required for data
processing and storing. As it is typically used to model factories, or buildings, we use the
entity to generalize Server, Machines, Data Center and Site. Each Node is assigned to one
Facility.

The UML representation of the general meta-model is depicted in Figure 5.5. We define
three different relationship types in order to express entity connections:

e hierarchy relationships represent technological deployments or associations. In gen-
eral, they express an hierarchical relationship from a deployment perspective. In
the meta-model, we name hierarchies with runs on. For instance, "An Application
Component runs on a Node".

e grouping expresses an aggregation of entities in the form of a parent-child relationship.
That means, child entities that rely on the same superior parent entity are grouped
together. In the meta-model, we represent groupings with the verb contains. For
instance, "A Product contains a Business Service".

o communication relationships either represent data exchange between entities, such as
communications, or remote execution of application interfaces. The assigned verb
for communications is calls: "An Application Service calls another Application Ser-
vice". This basically, represents communications between Application Components
that happen on Application Service level, which are realized through Application
Interfaces.

To summarize, in the meta-model shown in Figure 5.5 Devices define the presentation
layer of an information system that is directly accessible by end-users. Devices call backend

92

5.1. IT landscape topology

<<Enumeration>>

ApplicationType

contains

App. Collaboration

1.*

contains

0.*

2.% 0.*
_—

Application Interaction

contains

Java
NodeJS
Database
Facility B
Net
1
runs on
[| 1.%
<<Enumeration>> . .
1 |Node - Application Component
T
NodeType
Type: NodeType runs on Type: ApplicationType
os i
N T 0.*
virtualization
containerization runs on
cloud
runson
runs on
1 0%
1.% I ;
Application Service
Application Interface
0.*
0.% calls
calls
0.F
Device

Mobile Device

Browser Device

Figure 5.5.: Derived meta-model for MICROLYZE

93

5. Automated Model Recovery via Runtime Instrumentation

components represented by Application Components entities via Application Interfaces that
constitute the access points where Application Services are made available to end-users,
or other Application Components. Communications between Application Components are
realized through their assigned Application Services. Hereby, a Application Service calls
another Application Service through the exposed Application Interface. Application Components
run on Nodes that represent the host which provide required hardware resources and
services. A Node is classified in operating system, virtualization, containerization, or
cloud space. In case physical hardware, such as mainframe servers are maintained in
the company’s infrastructure, the corresponding Facility indicate the location where the
server reside. Application Collaborations contain Application Components that work together
to realize a certain functionality of a specific information system. An Application Interaction
represent a certain communication context (trace). It contains all corresponding Application
Services within a specific Application Collaboration that call each other for executing a user
request.

In the following sections, we define each entity in the meta-model as an Architecture
Model (AM) that is extracted from runtime data and causally connected to the particular
components of an IT landscape. The Architecture Models reflect the running system with
respect to functional and non-functional concerns. It defines a concrete entity in one
specific EA layer, i.e business, application and technology layer.

5.2. System Design

IT landscape Monitoring Server Microlyze Backend
1 <<Component>>
. P @ e e Collect
Client Probe ! Models
1* iR <<Component>> @ <<Component>> | <<Component>> £ |
1' & Monitoring Server :)> MICROLYZE.Collect MICROLYZE.Analyze
Client o { 1 'n|
'
. ! E’ Store Transfer /‘Lq Analyze
1 <<Component>> 18 gn Monitoring Models 82 1 ? Models
Service Registry 5 Logs
11 = IS ZeComponents <iComponents
. .* <<Component>> g’] ! <<Component>> $j MICROLVZE Expose MICROLYZE.Store
Backend Application . [tore
Tracing Probe Database Modal
i odels
1 Expose
. Models
> 1% 1 <<Component>> & |
nfrastructure Infrastr. Probe I <<Component>> @
Frontend

Developed components for extracting IT
landscape information out of runtime data

Required setup for monitoring
system under observation

L] L]

Figure 5.6.: The interplay between the IT landscape under observation (SUO), the corre-
sponding APM server and our developed tool MICROLYZE

After designing our meta-model for managing models of microservice-based IT land-
scapes, we continue with the elaboration on a system design for recovering, analyzing,
storing and exposing the models. In the following sections, we outline the fundamental
concepts.

We schematically divide the architecture into four main domains. The IT landscape

94

5.2. System Design

represents the system under observation (SUO) that constitutes the runtime environment
whose AMs and their location in the overall IT landscape architecture are supposed to
be recovered by MICROLYZE. In order to receive the required runtime data, several
monitoring probes need to be deployed on the IT landscape, in particular on infrastructure
hosts, applications and web clients. Those probes collects measurements and traces
that are streamed as Monitoring Logs to a central Monitoring Server that stores the data
for a configured period of time in its Database. The Monitoring Server expose those
runtime data via APIs. MICROLYZE itself is separated into a backend- and frontend-
based application. The backend contains a runtime data collection part referred to as
MICROLYZE.Collect, an analysis part, defined as MICROLYZE.Analyze, a component for
storing the models in a database named as MICROLYZE.Store and finally a component
MICROLYZE.Expose that provides an interface for exposing the recovered models and its
dependencies. MICROLYZE.Collect consumes the runtime data provided by monitoring
tools through their APIs and browser-based clients. MICROLYZE.Analyze provides the
corresponding infrastructure to analyze runtime data and to recover architecture-related
models and their relationships, which cannot be obtained by the conventional APIs. The
MICROLYZE.Store persists the recovered architecture in its current and previous states.
MICROLYZE.Expose serves as entry point for accessing the stored EA models. It exposes a
GraphQL interface with the required query definitions. The frontend application provides
several views for visualizing the recovered IT landscape from different perspectives. Figure
5.6 depicts the core components and their assembly.

Information | APM Server i MICROLYZE.Collect : MICROLYZE.Store
' ' '
Source ! ! MICROLYZE.Expose !
i i i
1 1 1
' ' '
1 APM specific H Unified H Graph-based
i Meta-Model i Meta-Model i Meta-Model
1 A 1 A 1 A
1 B 1 H 1 H
H i <<conformsTo>> H i <<conformsTo>> H i <<conformsTo>>
: : H : ! !
I I I
P H _ 1 - ! =
Monitoring : T2M Tre?ns — APM models ——» () Tr.ans — Unified model —— 2 Trf’ans — Graph model
probes ' formation ' formation ' formation
: : :
Reverse transformation

Figure 5.7.: Model transformations during the IT landscape recovery process

In relation to the model transformation theory stated in Section 2.1.2, the collection of
runtime data, as well as the performed reconstruction and management of EA models
is a continuous process of model transformations. This transformation takes place in
four different steps as Figure 5.7 illustrates. First of all, the Monitoring Logs that are
streamed from the monitoring probes to the central Monitoring Server apply a text-to-
model transformation. This takes place in the APM system itself. By collecting the models
through the exposed API, we transform the (APM) source models to our defined target
model in order to achieve a unified model representation. This transformation is performed
in the MICROLYZE.Collect component. Afterwards, the models are again transformed
into a graph-based representation for an efficient persistence. The MICROLYZE.Store

95

5. Automated Model Recovery via Runtime Instrumentation

is responsible for this model-to-model transformation. Finally, in case the models are
requested from the database, we transform the graph-based meta-model back to our target
meta-model.

Figure 5.8 summarizes the most important classes and their relationships in each
component in high detail, which is needed to better understand the architecture of
MICROLYZE. The following Sections mainly refer to this Figure.

5.2.1. Monitoring probes

Microservices are very different to monolithic application, as detailed in Section 2.3. Due
to agile practices and emphasizing change tolerance and continuous deployment (Dingseyr
et al., 2012), microservices are introduced very quickly into the current infrastructure
or removed when they are no longer needed. In these scenarios, it is crucial to keep
track of the current microservice architecture orchestration and their service dependencies.
In addition, microservice architectures are mostly distributed that means they run on
different hosts but act as a composition to serve a specific request (Dragoni et al., 2018).
For those reasons, monitoring microservices remains challenging. In the following sections,
we elaborate which types of monitoring probes need to be installed on the system in order
to instrument the IT landscape in its full essence.

96

5.2. System Design

IZXTONDIN Jo syuauoduwod 2100 ay} Jo wrerderp sse[d pafred('g'G aIn3rj

UOI10BJ1X3UOIIEIIUNWIWIOD)

v‘

BuuaisnDi¥N

azfi|euy 3ZAT0HDIN

UONEIBWNUI|[SPOINBNIIRIYIY :3dA] -
2}eQ ‘uaasise| -

?3eq ol

91eQ :WoIpljeA -

eA -

OVaIBPON3INIRIYLY

uonesawnuiadAjdiysuonelay :adA; -
31eQ :ploysalyy” uona|ap -

uea|j00g :paja|ap -

21eQ :uaasise| -

23eq o]

9leQ :wou4pijen -
OVaIPOINRINIIRYDLY 33843 -
OVA|2POIAI24N32311Yd]Y :304N0S -
OVQ[2PONRININYIUY :JAUMO -

A-

ovadiysuone|ay

2l}eQ :woi4pifeAa -
Buus :anjen -
Buins A -

ovauonejouuy

23e(:91EQUOISINDI -

ovauoisinay

I

T |

IA

13pInoIdaseqeleq

()49nj0s9ys21weuAQddy +
()43nj0s3Y2I[2YMBN +
()42n059yuoNddy +
()4aAj0s9y@e018UAQ +
(Manjosayaseqeieq +

Janjosaypaniun

[

—

waipToydess

Janjosayaseqeleq

7 J19A|0SAY<INAY>

J3A|0SY [SPOIN2INIIDUYIIY

<<3JBHA[>>

<adA| [9poIN 34n3oa:

diysuoneas

uoNERWNUI|SPOIAIRINIIRIYRIY :adA) -

9)e((USSR -
91eq :oLpijea-
91eQ :WOoIJpI|eA -

[9POIN 24N UYIIY

<<ddRURWI>>

7 950dx3°3ZATOYDIN

JUBI|DISRY<INGY>

U3IDPUSIUOIIN V> 7

()I2POINIR1N2331Y2u Y1018 +
()A1anoasigpemio +
()A1anosigplemyoeg +

J3QUINN :[eAIIUIpIEMIO) -
J3qUINN :[eAJ)uIpIemyOeq -
J3QINN :p|OYSAIYLUONI|BP -

10139||0D

Japiaoidpapjiun

<<ddBpI>>

f

[

*SPOY3aW 24199ds 924n0s""

JUIDPUSIUOIS :JUSI|DPUIIUOIY -

J3PINOIJ<INGY>

<[9pPON
9IN1AUYIIY d193dS-NdV>

diysuonejps

940315 3ZATOHIIN

13|00 IZATOHUIIN

97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

5. Automated Model Recovery via Runtime Instrumentation

Service Discovery

As described in Section 2.3.2, a fundamental pattern for building microservice architectures
is the usage of Service Discovery (Newman, 2015) that serves as a repository to find the
network location of a specific microservice dynamically. Since, microservices frequently
change their status and IP-address due to reasons like updates, autoscaling or failures
the Service Discovery serves as a gateway that always provides the current network
locations of the registered instances of microservices. In case a change in the architecture
(removed service, added service, updated service) is detected, this alteration is reflected in
the repository of the Service Discovery. By retrieving this information via accessing the
exposed API, we are able to reveal the existence of microservices and the current status of
each service instance.

<applications>
<application>

<name>EXAMPLE-SERVICE</name>

<instance>
<instanceId>

PC192-168-2-50:example-service:6003

</instanceld>
<hostName>PC192-168-2-50</hostName>
<app>EXAMPLE-SERVICE</app>
<ipAddr>192.168.2.50</ipAddr>

<status>UP</status>
<port enabled="true">6003</port>
<dataCenterInfo>
<name>MyQOwn</name>
</dataCenterInfo>
<metadata>
<appType>functional-service</appType>
</metadata>
</instance>
</application>
<application>
</application>
</applications>

Figure 5.9.: GET list of processes from Dynatrace API

Listing 5.9 provides an example Monitoring Log produced by the Service Discovery.
In this example, we use the application Netflix Eureka® and call the endpoint "GET

3https ://github.com/Netflix/eureka, last accessed: 2020-10-28

98

https://github.com/Netflix/eureka

O 0 N N U o W N~

10
11
12
13
14

5.2. System Design

Jeureka/v2/apps”

The application name inside the <name> tag is delivered by the application during
registration on start up. The <instanceID> attribute is concatenating with <hostName>,
<app> and <port>. It identifies a concrete instance of an application. The <ipAddr> defines
the IP address in which the application instance can be found by other applications for
direct communication. In case the application is deployed in a docker container, the IP
address defines the public container address. The <status> represents the health status of
the application.

In order to install the Service Discovery probe on any application, it is required to inject
a subroutine into the start-up sequence. An example is provided in Listing 5.1 for Spring
Boot* based applications. The agent will be activated by adding the @ EnableEurekaServer
annotation before the main class of the application.

package registry;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
O@EnableEurekaServer
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Listing 5.1: GET list of processes from Dynatrace API

Infrastructure Probe

The Service Discovery mechanism already provides useful data about the status of
microservice instances. However, it is restricted in discovering mainly microservices. Other
application types like databases are not reported. In addition, further interrelationship
information like on which specific host (operating system, virtualization) and physical
infrastructure the microservice is running remain unclear. For that reason, the SUO
must be instrumented with a monitoring probe, that runs on host level and collects
infrastructure-related information for all processes running on that particular host. A key
feature to consider is the ability to support multi-component analytics (Heger et al., 2017;
Kleehaus et al., 2016), i.e. the identification of different information systems like database,
web service, server, etc.

“nttps://spring.io/projects/spring-boot, last accessed: 2020-10-28

99

https://spring.io/projects/spring-boot

O 0 NI N U o W N -

[N B T T e T T S S S SO
= O 0O 0NN N Uk W NN =, O

5. Automated Model Recovery via Runtime Instrumentation

APM serves to automate the process of mapping applications to underlying infrastruc-
ture components. Data measurements delivered by APM probes reveal 1) infrastructure
related information, like host type, container type and address, database type and ad-
dress, operating system or information about the cloud provider, and 2) interrelationship
information like schematic connections between microservices and other infrastructure
elements, like on which host the microservice is running, or in which specific container or
operating system the microservice is deployed.

Most of the APM vendors expose APIs for extracting the IT landscape topology. The
whole topology including the relationships can be retrieved via API calls. For instance,
according to Dynatrace a request to the endpoint GET /entity/in frastructure/ processes
fetches the list of all processes in the environment, along with their parameters and
relationships. An excerpt of the response JSON file including attributes and attribute types
is shown in Listing 5.2.

Listing 5.2: GET list of processes from Dynatrace API

[{
"entityId": String,
"displayName": String,
"customizedName": String,
"discoveredName": String,
"firstSeenTimestamp": Date,
"lastSeenTimestamp": Date,
"fromRelationships": Object,
"toRelationships": Object,
"azureSiteName": String,
"versionedModules": [
"monitoringState": {
"actualMonitoringState": Boolean,
"expectedMonitoringState": Boolean,
¥,
"softwareTechnologies": Array<String>,
"agentVersions": Array<String>,
"managementZones": Array<String>,
"azureHostName": String,
"listenPorts": Array<String>

]

The attribute discoveredName describes the recovered name of the entity by the mon-
itoring agent. This is mostly the name of the application component. The attribute
fromRelationships and toRelationships constitutes vertical and horizontal relationship types,
i.e. it represents either a deployment or a communication relationship. A definition of the
meta-model of Dynatrace was shown in Figure 5.3. The description of all attributes can be
found in the API documentation of Dynatrace.’

Shttps://www.dynatrace.com/support/help/dynatrace-api, last accessed: 2020-10-28

100

https://www.dynatrace.com/support/help/dynatrace-api

O 0 N O U1 s W N

I N R S e e e e e T e e
W N P, O OV © NN O O &= W N = O

5.2. System Design

Tracing probes

Both monitoring probes (service discovery, infrastructure probe) uncover the status of
running applications and unveil infrastructure-related information including interrelation-
ships. In order to extract the data exchange behavior between applications it is necessary
to instrument each microservice with a monitoring probe that tracks request flows through
the system. This technique is called distributed tracing (Sigelman et al., 2010). Distributed
tracing tracks all executed HTTP requests in each service by injecting tracing information
into the request headers. The main purpose of tracing is to analyze application perfor-
mance and to troubleshoot latency problems. In addition, it also provides capabilities to
add further information in the form of annotations to each request. These annotations
contain additional infrastructure and software-related information like executed class and
method name, requested port, etc. We leverage distributed tracing in order to detect the
communication relationship between applications.

Listing 5.3 provides an example monitoring log produced by the open-source distributed
tracing tool Zipkin®. We call the API endpoint GET/traces for retrieving all recorded
traces within a defined timestamp.

Listing 5.3: Get list of traces from Zipkin call

[

"traceld": String,

"name": String,

"parentId": String,

"id": String,

"kind": "CLIENT|SERVER|PRODUCER |CONSUMER",

"timestamp": Date,

"duration": Integer,

"debug": Boolean,

"localEndpoint": {
"serviceName": String,
"ipv4": String,
"ipv6": String,
"port": Integer

1,
"remoteEndpoint": {
"serviceName": String,
"ipv4": String,
"ipv6": String,
"port": Integer
3,
"annotations": Array<String, String>,
31

https://zipkin.io, last accessed: 2020-10-28

101

https://zipkin.io

5. Automated Model Recovery via Runtime Instrumentation

As described in Section 2.4.3, a trace is a series of spans which nest to form a latency tree.
Spans are in the same trace when they share the same traceld, i.e each span represents a
processing step of a request. The logical operation this span represents is stored in name
(e.g. rpc method). The parentld field establishes the position of one span in the tree. The
root span is defined with a absent parentld and usually has the longest duration in the
trace. However, nested asynchronous work can materialize as child spans whose duration
exceed the root span.

Spans usually represent remote activity such as RPC calls or in-process activity in any
position of the trace. In which chronological order the span is positioned in the call tree
is defined (among other attributes like span id, parent id and timestamp) by the kind
attribute. For instance, "client" spans forward the request to "server" spans and wait for
a response. If no response is expected due to asynchronous calls, the "sender" span is
marked as a producer and the receiver span as the "consumer".

The endpoints define the network context of a node in the trace graph. The local endpoint
in combination with name, ip address and port either defines the sender application that
calls a remote endpoint, or a local processing step in the trace. The remote endpoint
represents the receiver application that consumes the request. Hence, if the span kind is of
type "CLIENT" the remote endpoint is the server. If the span kind is of type "SERVER" the
remote endpoint is the client.

Client-side Probe

Last but not least, monitoring of the client applications delivers important information
about the user behavior including key metrics like load time and transaction paths. This
type of monitoring is also known as real user measurement, real user metrics, end-user
experience monitoring, or real user monitoring (RUM). There exists many approaches
(Choudhary et al., 2009; Filipe et al., 2016, 2017) how to realize the instrumentation
of client-based applications. It is an important component of APM, as it captures and
analyzes each transaction executed by users. Those transactions are transferred to the
system’s backend where they are further analyzed via the tracing concepts. By the
support of RUM, monitoring tools are able to disclose which users, browsers or mobile
devices communicate with the system. This information are important to collect from a
documentation perspective.

In order to instrument client-side applications, a JavaScript tag is required to inject into
the HTML head of every application page. It must be ensured that the tag is the first
executable script on each page. Otherwise, the probe might collect wrong metrics. As
soon as the probe is installed it records the following metrics:

e JavaScript errors: The majority of web applications and websites depend on JavaScript
to function. Hence, one of the major goals of a client-side monitoring tool is to
identify JavaScript errors, their frequency, and how severe their impact is.

o Network request failures: Web sites and web applications rely on several of external
services to function, in addition, they perform continuously requests to the backend

102

5.2. System Design

server in which they are hosted on. Client-side monitoring tools record the HTTP
requests and responses that a user initiates.

e Framework-specific issues: Frameworks like React or Angular are used more and
more frequently, as they make the development of powerful applications much easier.
Based on client-side monitoring tools, those frameworks are easier to debug and
provide additional reporting for issues encountered with functionality, such as what
state the application was in.

e User experience issues: Monitoring collects events that have a negative impact on
the user experience, like “rage clicks”, where a user clicks an element multiple times
very quickly, or detect if a user is stuck in a navigation loop.

e User behavior: A further use cases is the analyzes of the user behavior. Monitoring
tools report the click path users are following, or how long users stay on a specific
page before they continue with their journey.

e Performance issues: In addition to the aspects above, client-side instrumentation
will also track performance metrics like average time to load a page, average server
response time, time to display elements, and more.

Commercial monitoring tools

Instrumenting the IT landscape with four different monitoring tools, each covering one of
the described monitoring technique would increase the administration overhead unnec-
essarily. Each agent must be installed and configured and requires its own monitoring
server that compete against hardware resources. For that reason, the commercial APM
suits integrate all mentioned monitoring techniques into one monitoring agent.

Dynatrace, for example, provides with its technology OneAgent a software that is able to
instrument most application and infrastructure out-of-the-box. Those monitoring agents
primarily consumes metrics that are either delivered by the applications itself, like "Docker
stats", "Unix top", or analyzes log events produced by applications or operating systems.
A more intrusive runtime analysis can be achieved by integrating those agents into the
source code. For this purpose monitoring vendors provide SDKs for most of the common
programming languages like C, C++, Java, Python, JavaScript, etc. The complexity of the
installation of those agents depends on the runtime environment and used frameworks.

For instance, the Java Virtual Machine (JVM) runtime expose command-line options,
also called start-up commands, that can be used to override the default start-up settings
for applications running on a JVM. These options define how the application should be
run or specify a path to a script that should be executed before the application starts. One
command-line option is the —agentpath tag which specifies an absolute path from which
a monitoring agent should be load and run. This simple approach can also be used for
Java frameworks like Spring or Spring Boot and enables the collection of runtime metrics
and traces.

The instrumentation of applications that are developed in other runtimes like Node.js
or .NET proves to be more complex. The installation of agents must be performed on

103

5. Automated Model Recovery via Runtime Instrumentation

code level, as well as the instrumentations of remote calls for collecting trace data. As the
example for Nodejs illustrated in Listing 5.4 shows, the trace agent must be wrapped
around each function that triggers a remote call.

1

2 const Sdk = require("@dynatrace/oneagent-sdk");

3 const Api = Sdk.createInstance();

4

5

6 async function tracedOutgoingRemoteCall (method, data) {
7 const tracer = Api.traceOutgoingRemoteCall ({

8 serviceEndpoint: "ChildProcess",

9 serviceMethod: method,

10 serviceName: "StringManipulator",

1 channelType: Sdk.ChannelType.NAMED_PIPE

12 3}

13

14 try {

15

16 return await tracer.start(function triggerTaggedRemoteCall() {
17

18 const dtTag = tracer.getDynatraceStringTag() ;

19

20 return doOutgoingRemoteCall(method, data, dtTag);
21 IoF

22} catch (e) {

23 tracer.error(e);

24 throw e;

25} finally {

26 tracer.end() ;

27}

28 }

Listing 5.4: Tracing of outgoing remote calls with Dynatrace

5.2.2. Monitoring Server

The monitoring server consumes the runtime data called metrics delivered by the mon-
itoring agents, processes and aggregates it, and finally persists the runtime behavior in
the database. The server exposes APIs for delivering the metrics to other systems, mostly
for reporting purposes. As the analysis in Section 5.1 shows, the exposed meta model
of the persisted data can be various between the APM vendors. All commercial APM
tools provide their own reporting tool for visualizing metrics and creating dashboards.
Those frontend tools use further server APIs that are often not reported in the official
documentation.

104

5.2. System Design

5.2.3. MICROLYZE.Collect: Collecting Architecture Models

In the following, we detail the MICROLYZE.Collect component that is responsible to
consume monitoring data and to translate the runtime information into the MICROLYZE
meta-model. Hereby, we assume that it is sufficient to access one monitoring server
which provides all required information about models and relationships, i.e. topology
information and traces.

The core class of the MICROLYZE.Collect component is the Collector. It provides the
required methods for consuming monitoring data from different sources and extracting the
architecture information. Hereby, we leverage the adapter design pattern (Gamma et al.,
2015) by wrapping the APM-specific AM with the Unified Provider class that supports the
interface required by the Collector.

The Collector class exposes two important methods, the BackwardRecovery() and the
ForwardRecovery(). The former methods represents an algorithm for discovering the IT
landscape architecture based on historical data, whereas the latter method starts right
after the BackwardRecovery() and regularly polls the APM server APIs in order to recover
newly deployed applications and communications paths. How those algorithms work in
detail is explained in Section 5.3.

The Unified Provider defines all "getter" methods for retrieving the unified architecture
meta-model described in Section 5.1.5. The provider classes build the foundation of all
the processes that are orchestrated via the API. Each particular <APM>Provider class
ensures the access to one particular vendor-specific APM server. The <APM>Provider
class access the APIs exposed from the APM server and transforms the APM-specific
meta-model managed by the <APM-specific Architecture Model> classes to the our unified
meta-model. An extension of MICROLY ZE in order to support further monitoring tools
than the listed ones in Section 5.1 can be done by adding a new provider class that fulfills
the Unified Provider interface.

Furthermore, we separate the API request realization into two client classes. The first
class <APM>RestClient provides access to rest-based APIs. Those APIs are official and
mostly well-documented. They allow to retrieve general metrics but provide only limited
access to the vendor-specific meta-model. For instance, during the writing of this thesis
1) the documented API of Dynatrace is not able to get data on Docker images or 2) the
AppMon API does not provide details about transaction flows. For that reason, we also
developed a <APM>FrontendClient, which utilizes APIs that are not documented and
only available to the user interface, i.e. the vendor-specific frontend. In general, the
<APM>FrontendClient imitates the user interface in this regard. All frontend-based APIs
are JSON-based and use the HTTP transport protocol.

By developing the <APM>FrontendClient, we face the challenge that all APM vendors
restrict querying of frontend-specific APIs when there is no valid and active user session
available in the cookies. However, generating a user session requires manual authenti-
cation via the loaded authentication form. A simulated login process that is performed
programmatically got blocked due to security restrictions. In order to solve this issue,

105

5. Automated Model Recovery via Runtime Instrumentation

we leverage the Node library Puppeteer” which provides a high-level API to control
Chrome/Chromium Browser over the DevTools Protocol®. In general, Puppeteer is a
product for browser automation. It downloads a version of Chromium and mirrors the
browser structure for simulating user behavior. The library is officially supported by
Google. With Puppeteer, we are capable to imitate a manual login process and got access
to all frontend-specific APIs.

5.2.4. MICROLYZE.Analyze: Analyzing Architecture Models

The monitoring records are transferred from the monitoring collection part to the analysis
part MICROLYZE.Analysis. The goal of the analysis part is 1) to extract further com-
munication relationship information between application models, 2) to remove request
parameters for finding the original RESTful API and 3) to determine AM deletion thresh-
olds. From an implementation perspective, the MICROLY ZE.Analysis component keeps
the recovered AMs in memory until all records are processed. Afterwards, it persists the
architecture in the database.

With the support of modern APM tools important correlations between AMs are al-
ready recognized and delivered through a simple API call. However, in the context of
communication relationships many information like the requested URL endpoints, the
communication synchronicity, or involved message broker are not delivered "out of the
box" and must be reconstructed by analyzing the available runtime data. For this task, we
developed the class CommunicationExtraction. A detailed description of the analysis of
communication relationships is stated in Section 5.3.2.

The determination of AM communication also involves the extraction of the involved
API interfaces. Many APM tools provide information about the methods that are called for
request processing and the corresponding URI, in case the HTTP-based communication
protocol is used, like for RESTful webservices. However, the URIs reported by the
monitoring agents still contain all provided parameters that must be removed first in
order to find the originally executed REST API. For this purpose, we integrate a log events
clustering algorithm called LogCluster (Vaarandi et al., 2015) in the URIClustering class.
The algorithm recognizes substrings in the requested URI that mainly remain stable and
others that change frequently. Stable substrings indicate REST methods and the others
define parameters. A detailed description of the applied algorithm can be found in Section
5.3.6.

Monitoring data represent the as-is architecture of a SUO in a specific point in time.
Monitoring agents frequently report the health status of the instrumented microservices.
No runtime data indicate the microservices is either not running or was removed from
the SUO. In both cases, the recovered model is not a part of the IT landscape anymore.
However, this cannot be applied for the recover of removed model communications.
Model communications represent a behavioral pattern. If the event occurs that triggers
this data exchange between models, it can also be observed. That means, no observed

"nttps://github. com/GoogleChrome/puppeteer, last accessed: 2020-10-28
8https://chromedevtools.github.io/devtools-protocol, last accessed: 2020-10-28

106

https://github.com/GoogleChrome/puppeteer
https://chromedevtools.github.io/devtools-protocol

5.2. System Design

communication only indicates, that the required event did not take place. It cannot be
concluded that models do not communicate at all. Hence, in order to solve this issue
we incorporate a threshold 7 > 0 that defines the maximum period of time how long
communications are allowed to be invisible in the tracing data. In case the threshold is
exceeded, the particular communication path is marked as deleted. We define this process
in detail in Section 5.3.7.

5.2.5. MICROLYZE.Store: Storing Architecture Models

Annotations

- name: String
- value: String
- validFrom: Date
- validTo: Date
1 1
<<Enumeration>> Revisions ArchitectureModel |- s Relationship <<Enumeration>>
e - createdAt: Date - name: String - owner: ArchitectureModel Beetionshipilvbe
Pipeline - event: EventType - referencelD: String - source: ArchitectureModel Communication
Manual - lastSeen: Date - target: ArchitectureModel Hierarchie
Periodic - validFrom: Date - lastSeen: Date Grouping
-validTo: Date - validFrom: Date
- validTo: Date
- deleted: Boolean
- type: RelationshipType

Docker
Java

NodelS
. PHP -
Application Interface Net Facility
MysaL

MongoDB

pplication Componen App“cationType ode
— 1

Application Service

App. Collaboration

Application Interaction

o s
okt v
e i |
ot

Mobile Device
———————]

Device

Browser Device

Figure 5.10.: Meta-Model for storing EA models in graph-based representation

The MICROLYZE.Store component provides interfaces for storing and retrieving per-
sisted AMs recovered by the MICROLYZE.Collect component. The core class of this
component is the DatabaseProvider that also inherits the Unified Provider interface in or-
der to be aligned with the defined unified architecture meta-model. However, for storing

107

5. Automated Model Recovery via Runtime Instrumentation

the data, we do not follow the elaborated architecture meta-model described in Section
5.1.5. We transform the meta-model into a graph-based representation. Hereby, we follow
the idea of an enterprise topology graph (ETG) that was introduced by Binz et al. (Binz et al.,
2013). The purpose of an ETG is to capture the whole architecture of an IT landscape
in a graph-based form. The nodes in the graph define AMs and the edges the logical,
functional, and physical relationships between the models.

The final meta-model for storing the IT landscape is depicted in Figure 5.10. It is
highlighted that the Application Models are grouped into the common EA layers. The
information is distributed to the following classes:

o The data access object ArchitectureModel DAO defines all AMs that exist in the SUO.

The specific entity type like node, application component, application interaction, etc.
is defined by the type attribute. We define the validity of an AM by the attributes
validFrom and validTo. AMs are valid from the moment they were recovered at the
first time and valid until they are removed from the IT landscape or experience a
change that has a significant effect from an architecture perspective. In general, the
validity attributes describe a revision of an AM. We "only insert" entities into the
database and never delete. With this approach, we are capable to move back in
time in order to analyze architecture evolution. Furthermore, the lastSeen attribute
indicates the last time when an AM have been seen by MICROLY ZE. If the lastSeen
timestamp is beyond a predefined threshold, it could be marked as removed from
the IT landscape. More information about this process is described in Section 5.3.7.

Within the RelationshipDAO class, we realize the relationship between AMs. The
concrete relationship type as defined in Section 5.1.5 is stored in the type attribute. A
relationship is compiled by a source, a target and an owner. The source - target pair
define the ends of a directed graph. The owner specifies a group of relationships
which belong together via a schematic assignment. An example is the Application
Interaction AM. The validFrom, validTo and lastSeen attributes apply the same logic
described for the ArchitectureModel class.

As the retrieved information about AMs and the relationships between two models
differ from APM tool to APM tool, we decided to store every attribute as a key-value
pair in the AnnotationDAO class. With this structure, we keep flexibility and are
able to handle any incoming information. The AnnotationDAO class is assigned to
the ArchitectureModel DAO and RelationshipD AO class. That means, we store any
further information regarding to AMs and their relationships in the same class.

Revisions define specific points in time in which the recovered AMs experiences a
change. Revisions basically store every modified validity period of an AM, represent-
ing an architecture evolution which is worth to keep in database. A change could be
the deployment of a new application, the introduction of a new interface, the starting
up of a new server, or the like. Those revisions are saved in the RevisionDAQO class.
Based on revisions, we are able to analyze the emerging behavior of an IT landscape,
or compare different architecture states.

108

5.2. System Design

The reason for a further meta-model transformation are manifold and can be summa-
rized into the following points:

1. We represent the IT landscape in a graph-based form, where the AMs are the nodes
and relationships are the edges of this graph. In order to query relationships instantly
regardless which AM is used as the entry point and the complexity of the query, the
relationships are easier to manage when they are maintained in one single class and
stored in a "parent - child" representation.

2. In addition to the aforementioned point, new relationship types can be easily intro-
duced with this approach without having to change the database schema. It is only
required to update the relationship type enumeration.

3. Since the information what we receive from APM tools could vary from AM to AM,
we decided to store all extracted information as annotations in the Annotation class.
With this approach, we keep flexibility of the amount of different AM attributes and
do not have to change the database schema.

4. The recovered IT landscape can be easily extended with further not yet regarded
AMs without having to change the database schema. It is only required to update
the AM type enumeration.

5. Since we store the validity of AMs in one single class, the querying of the IT landscape
orchestration in a specific point in time is easier to implement.

5.2.6. MICROLYZE.Expose: Exposing Architecture Models

In order to access the recovered AMs including the relationship structure, we create the
component MICROLYZE.Expose. It represents an interface for querying the data that
enables users to retrieve an holistic picture on the IT landscape resources.

For exposing the recovered AMs of our SUO, we use a graph-based query language
with the name GraphQL’. GraphQL is an API standard that provides a more efficient,
powerful and flexible alternative to REST. In comparison to RESTful APIs, GraphQL is a
server-side runtime for executing queries by using a type system backed on a predefined
data schema, which is finally represented by our elaborated unified meta-model described
in Section 5.1.5. Due to its type system, GraphQL is able to check queries for syntactic
correctness and validity before execution, thereby allowing the server to make certain
guarantees about what response to expect. In addition, RESTful APIs typically suffer from
over- and under-fetching. Over-fetching is when a request returns too much data because
the addressed endpoint returned fixed data structures including data which is currently
not needed. Under-fetching, on the other hand, is when an addressed endpoint returns not
enough data, forcing the client to send one or more additional requests to other endpoints
to acquire the desired results. GraphQL solves this problem by exposing all of the data
from a single endpoint, thereby enabling the client to request precisely the data that is

‘nttps://graphql.org, last accessed: 2020-10-28

109

https://graphql.org

O 0 N N U s W N

I T o T s S e S S G St S G Y
O 0 NI N U ks W N~ O

5. Automated Model Recovery via Runtime Instrumentation

required with a single query. This not only reduces the complexity of creating queries, but
also minimizes the amount of data transferred.

The data schema must be written in a graph-based representation, as GraphQL only
understandds nodes and relationships. An example is depicted in Listing 5.5.

interface ArchitectureModel {
id: ID!
name: String!
validFrom: Date!
validTo: Date!
lastSeen: Date!

type ApplicationComponent implements ArchitectureModel {
id: ID!
name: String!
node: [Node]
applicationService: [ApplicationService]
applicationCollaboration: [ApplicationCollaboration]
calls: [ApplicationComponent]
calledBy: [ApplicationComponent]

Listing 5.5: Example data schema of GraphQL

Informally, such a GraphQL-schema defines types of objects by specifying a set of so-
called fields for which the objects may have values. A field is synonymous with attributes
specified in UML notation. The possible values of the fields can be restricted to a specific
type of scalars or objects. An object refers to another type, which represents model
relationships. The exclamation mark defines mandatory fields that are not allowed to be
null.

It is also possible to define relationships that are not provided in this way in the reflected
meta-model. For instance, a communication relationship between ApplicationComponents
are actually realized through their ApplicationServices. That means, the calls relationship
is included in the ApplicationService type by default. However, by implementing an
additional method in the ApplicationComponent class with the name "calls" and "calledBy",
that extracts the communication information from the related ApplicationService class, an
additional request in the GraphQL query can be bypassed. This enables users to write
simple queries for retrieving rather complex structures. In the next Section, we describe
the concept of queries in more detail.

110

NN G N

N

5.2. System Design

Querying Enterprise Topology Graph

With the support of GraphQL, we are capable to query ETGs efficiently and to enable
users to select, search, filter, analyze and to modify ETGs. It is worth to mention that
GraphQL is not tied to any specific database or storage engine. Instead it is completely
backed by the defined graph-based data schema, which makes the query engine powerful.
In general, the query executes the respective method in the backend, which retrieves the
data from the connected information source and returns the result in JSON format.

In order to allow data to be queried, Resolvers for each connected monitoring tool and
the database have to defined and implemented on the root level. The method within
the resolver allow to query for an object or collections of objects and work in a similar
manner to RemoteProucedureCalls. The resolvers inherit from the ArchitectureModelResolver
interface in order to be aligned with the defined unified meta-model. Each resolver
references to a GraphQL-based representation (<Architecture Model Type>) of the <APM-
specific Architecture Model>. With the support of resolvers, we can decide which specific
data source should be addressed to resolve the query. The UnifiedResolver class serves as
entry point of each user request. It forwards the request to the particular resolver based
on a passed argument.

The methods in the resolver classes can be parameterized with multiple arguments that
serve the query as filters to reduce the amount of objects. Every traversal of the graph is
done on behalf of the implemented object types and selections on their properties. We
developed for every AM a GraphQL resolver method that retrieves the data either from
our database or from the connected monitoring system. With the latter approach, we can
also obtain further runtime information by accessing the exposed APIs. We developed
four different resolver methods for each AM. Two methods return one single AM defined
by an ID and differentiate on basis of an passed date argument. The other two resolver
methods are not restricted by an ID and return more than one AM. For instance, the
following method returns the Application Component with the defined ID that is valid until
the current time.

@Field(returns => GraphQLApplicationComponent)
public async applicationComponent(@Arg("id") id: string):
Promise<GraphQLApplicationComponent> {
const entity = await this._databaseProvider.
getArchitectureModel (id) ;
return new GraphQLApplicationComponent(entity, Date.now());

Listing 5.6: GraphQL resolver for retrieving a specific application component

The method below returns all Application Components that were valid until the provided
date, or is still valid in case the validTo attribute is empty:

Q@Field(returns => [GraphQLApplicationComponent])
public async applicationComponentsAt(@Arg("timestamp") t: number):
Promise<GraphQLApplicationComponent [1> {

111

O 0 N O Ul

5. Automated Model Recovery via Runtime Instrumentation

const entity = await this._databaseProvider.
getArchitectureModelsByTypeAtTimestamp ("application-component", t);
return applicationComponents.map(
item => new GraphQLApplicationComponent(item, Date.now())
)5
b

Listing 5.7: GraphQL resolver for retrieving application components for a specific validity
period

With the support of GraphQL, we have any AM as starting point for a query and can
traverse through the ETG. The following Figures 5.11 and 5.12 provide an example for an
ETG traversal and the corresponding result. The query list all valid Application Components
that are required to process a particular request that is represented by an Application
Interaction.

query getCommunications{
database {
applicationInteraction(id: "/svds/vehicle/internal/v2/{VIN}") {
id
applicationComponents {
name

}

iggs

Figure 5.11.: GraphQL query for retrieving all Application Components that are required to
process a specific request

{"data": {
"database": {
"applicationInteraction": {

"id": "/svds/vehicle/internal/v2/{VIN}",

"applicationComponents": [
{"name": "CASA"},
{"name": "AM_USAGE"},
{"name": "AM_PROCESS"}

i3ads

Figure 5.12.: GraphQL result for retrieving Application Components within a specific Appli-
cation Interaction

Each GraphQL query starts with the term "query". On the root level of a query,

112

5.2. System Design

we pass the information which particular resolver, i.e. data source should handle the
request. In this case we request the database for resolving the request. Similar to method
calls, resolver accept arguments if implemented. In the above example, the argument
id="/svds/vehicle/internal/v2/VIN" was used to select a specific Application Interaction. Further
attributes like name define entity properties to display in the result list. GraphQL queries
statements could be theoretically expressed with an arbitrary amount of depth. In practice,
however, too complex queries rise timeouts or have performance impacts and should be
verified by the server before execution. The result of the query is shown in 5.12 and follows
the pattern how the initial query was structured, thereby allowing a consumer to expect
predictable result structuring.

Querying Runtime Data

To this end the ETG is static and can only visualize EA models that are known by
GraphQL. In the next step, we enhance the managed AMs with runtime information in
order to uncover behavioral aspects and to transform the static models to models@run.time
(Bencomo et al., 2019). As we use monitoring tools to recover the EA models anyway, we
are also able to retrieve runtime metrics from the exposed APIs. For this purpose, we add
additional fields to the GraphQL schema that point to the related methods in the backend.

In this context, metrics are always assigned to a specific AM and must be aggregated to
a higher-order model if necessary. For instance, most resource utilization metrics including
CPU, memory, harddrive, etc. can be retrieved on Node, and ApplicationComponent level.
Whereas response time, failed operations, number of requests, idle time, etc. are only
available on ApplicationComponent level. In addition, several metrics exist for specific
application types, like Java, Docker, MySQL, MongoDB, etc. Those metrics describe the
number of reads and writes operations, request time, cpu and memory utilization, running
containers, etc. A full list of all available metrics can be found in the API documentation
of the particular APM tool.

Each APM vendor defines its metrics differently, which makes the creation of a uniform
query complicated. An additional transformation would be needed to translate each
vendor-specific metric definition to one standard. This can only be achieved with a
mapping table. However, taking only Dynatrace!® into account this table would have more
than 1.200 metrics that need to be mapped with the definitions of the other APM vendors.
The creation of this table would have gone beyond the scope of this thesis.

For the above reason, we analyzed the metric API specifications of the APM tools and
figured out that every vendor offers a general API that provides requested metrics based
on defined parameters. Those parameters are mostly the same for all APM providers.
Required fields are 1) metric ID and 2) entity ID, which represents the specific AM. Further
important optional fields are aggregation type like sum, avg, count, max, min, median and
percentile, as well as the observed timeframe.

Hence, in order to retrieve metrics, we add a method metric to each AM which can be
queried by the field metric. We extend the resolver and provider classes accordingly. This

Onttps://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/environment-api/
metric-vl/available-metrics/managed, last accessed: 2020-10-28

113

https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/environment-api/metric-v1/available-metrics/managed
https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/environment-api/metric-v1/available-metrics/managed

AN Ul s W =

5. Automated Model Recovery via Runtime Instrumentation

method requires the aforementioned parameters. The metric ID must be looked up for
every APM tool individually. Based on this concept, we are able to transform the static
model into a model@run.time. Listing 5.13 illustrates an example for retrieving metrics
about a defined Application Component:

query cpu_util {
database {
applicationComponent (id: "MUPI_GW_NBT") {
metric(type: "cpu.system", aggrType: "avg", relTime: "1585825695000") {
data
i33g,

Figure 5.13.: GraphQL query for retrieving the average cpu utilization within a specific
timeframe for a defined Application Component

Querying the Architecture Evolution

The retrieval of the ETG is based on a revision concept backed by the validity attributes.
Figure 5.14 shows an example of a chronological sequence of the validity of a revision and
how the AM can be retrieved for a selected time. Time t; leads to the selection of revision
1.12 and 2.1. Application component C does not yet exists at this time. T, contains the
revisions 1.14, 2.1 and 3.1 for the applications A, B and C. That means, the AM has been
significantly changed after ¢;, as component A was modified two times and component C
was introduced into the architecture.

Comp. A
Comp. B
Comp. C

Figure 5.14.: Revision concept

If we query the AMs for time t;, all revisions that are valid at this time are selected
and the relationships of the selected revisions are transferred to their source and target
components. Since revisions have a validity period over time, their relations also have a
validity period. Figure 5.15 shows an example of this for two AMs with several revisions.

Modifying Enterprise Topology Graph

It is also possible to use GraphQL for executing requests to create and update AMs. We
use this interface for starting, inter alia, the architecture recovery process. An example
for such a request is shown in Figure 5.16. The required keyword is mutation instead of

114

X N9 O U s N -

5.3. Process Design

Comp. A
Comp. B

Relation A/B

Time

Figure 5.15.: Revision relation concept

query. Similar to a regular queries arguments can be passed as well. In this case, the
forwardRecovery algorithm runs for the next seven days and checks every 12 hours for
unknown AMs. We will describe the architecture recovery algorithms in Section 5.3.1 and
5.3.3 in more detail. After the process has been successfully completed, it returns all newly
recovered AMs with their corresponding ID and name.

mutation {
forwardsRecovery (
currentTimestamp: Date.Now(),
futureTimestamp: Date.Now()+7,
timeInterval: 12) {
architecureModels{id name}
}
}

Figure 5.16.: GraphQL mutation for recovering and storing new AMs

5.3. Process Design

In the following sections, we describe processes related to EA models recovery in more
detail. We published the corresponding algorithms in Kleehaus et al. (Kleehaus et al., 2020).
The overall process we elaborated for reconstructing AMs including the corresponding
relationships is illustrated in Figure 5.17. It consists of four collapsed subprocesses that
are detailed in the following paragraphs.

In general, during model recovery, we set the focus mainly on disclosing the dependency
structure between AMs. Runtime data primarily determines a snapshot of the IT landscape
architecture for the regarded period of time. As the monitoring server receives frequently
the health status of all instrumented AMs, the existence of those models is proven undoubt-
edly. However, communication dependencies are reactive in nature, i.e. they can only be
recognized as soon as they appear in the analyzed runtime data. Hence, we cannot ensure
that the communication structure is uncovered completely during runtime data analysis,
as it would require all possible communications between applications take place in the

115

5. Automated Model Recovery via Runtime Instrumentation

considered period of time. That is rather unlikely to happen. For that reason, our model
recovery process, reconstructs an incomplete IT landscape by analyzing past runtime data
(Section 5.3.1). This incomplete IT landscape is continuously refined by processing newly
incoming runtime data (Section 5.3.3). Hence, the recovered IT landscape will become
complete at some point in the future. However, as we cannot guarantee this, we consider
our reconstructed IT landscape as eventually consistent (Brewer, 2012). The recognized
changes that finally lead to an architecture revision are defined in Section 5.3.4. We store
those changes as revisions with a corresponding timestamp in the database. Hereby, we
never delete old architectural states, but set them as invalid and insert the currently valid
state. Based on this only insert approach, we are capable to move through time and disclose
the architecture evolution (see Section 5.3.5).

Furthermore, communications between applications are performed at the interface
level. Especially in microservice architectures those interfaces are realized with HTTP-
based RESTful APIs, which are defined with an base URI and an HTTP method. The
URI contains member resources that determine parameters. In order to reconstruct the
origin REST API, those member resources must be recognized automatically and replaced
with an appropriate placeholder. We describe the corresponding process in Section 5.3.6.
Finally, we detail in Section 5.3.7 possible approaches for defining communication deletion
threshold. We use those thresholds to determine when communication relationships can
be marked as removed in the IT landscape.

During the creation of the aforementioned processes, we have to consider the following
challenges:

e Most tracing techniques are based on sampling (Duffield, 2004) in order to reduce
network overhead, i.e. only a percentage of, for example, 10% of the requests
is traced and forwarded to the monitoring server. For the purpose of creating
performance KPIs, an excerpt of the traces is sufficient. However, sampling could
also conceal communication dependencies between services, which is a concern for
model recovery purposes. In the worst case, specific communication paths are not
seen at all.

e Due to resource limitations like available CPU time, most monitoring tools only
provide a small timeframe of runtime data, e.g. last 6 hours or 24 hours, depending
on the frequently incoming data volume. A request for runtime data for a longer
duration would be too resource intensive and cannot be served.

e Even though the aforementioned challenge could be solved, most monitoring tools
store runtime data for only a specific period of time and archive or even delete older
data in order to ensure free storage capacity is always available.

e The runtime history does also contain obsolete AMs and communication paths that
had been already removed a long time ago. This legacy data must be filtered in
order to uncover the real architecture. This can be easily performed with the general
existence of AMs extracted from repository data, as the installed monitoring agents
frequently provide application health data. Hence, if no health data is reported

116

5.3. Process Design

anymore, the AM was certainly removed from the IT landscape. However, it is a
different case with communication paths, as they only get visible by request events.
No communication does only mean there have been no events reported yet.

Extract REST
Interfaces

Create initial

Perform Backward . Perform Forward
Discove > Architecture > Discove
v Revision v
OH

Analyze Deletion
Threshold

<

Monitoring Server
Database

Figure 5.17.: Overall model recovery process

5.3.1. Reconstruction of Architecture Model Dependencies

For recovering the IT landscape based on available historical runtime data, we developed
the backwardRecovery process. The iterative process is illustrated in Figure 5.18. In each
iteration, we extract the topology models from the monitoring server for a predefined
timeframe. The size of the timeframe is dependent on the configuration of the monitoring
server and the maximum allowed query response time. For each recovered AM a revision
record is created that expresses the validity of this model. The validFrom attribute is set to
the timestamp when the backwardRecovery algorithm was triggered. The validTo attribute
remains empty. The lastSeen attribute of the AM is also set to the current timestamp.

The topology records already contain interrelationships between AMs. However, in
the available meta-model of the particular monitoring tool, the intrarelationships, i.e.

117

5. Automated Model Recovery via Runtime Instrumentation

Backend Discovery

Extract
Communications from

|
|
|
|
|
|
|
|
: Tracinecords
|

|

|

|

Iy

Extract and
Extract Tracing
Save Topology
Records
Records

Further

monitoring
records

Qvailable

Create initial
No Architecture
Revision

Topology
Records?

Topglogy Traring
Recprds Rec‘brds
1

| |
| |
|
!¢ Monitoring)
o —
Server
Database

((‘

Figure 5.18.: Backward recovery process

communications path between applications might be incomplete. This is often the case
with asynchronous communications in which a message broker like Apache Kafka is installed
between. Hence, as a next step, we extract tracing records from the monitoring server
and analyze the AM communications. In order to extract asynchronous communications,
we developed an algorithm described in Section 5.3.2. Each identified relationship and
communication dependency between AMs is assigned to the particular revision entity.

The identified communications are only stored if the caller and callee AM is available in
the topology records. Missing AMs have been removed in previous architecture versions,
but might be still available in the monitoring server. Hence, an additional verification is
required.

In general, we assume the architecture A(E,C) is a directed graph with AMs E and de-
pendency paths C, whereas C C E x E on a finite set E and E x E € {contains, runsOn, calls}.
The algorithm reconstructs the architecture A/(E/,C/) from the last reported time t.; until
the present time fy. It excludes communications that did not occur in the regarded history
yet or includes communications between applications that were already removed in future
versions. Both scenarios must be handled accordingly. Hence, we define A/(E/,C/) as

E/ =E:<=Ve(e € El <> e € E)
Cr:={c|(ceENN(ceEINE)}

The corresponding algorithm in Listing 1 runs recursively and retrieves in every iteration
historical tracing data (tD) with a timeframe of T =t - t.;. The timeframe T represents
the maximum time period that is accepted by the monitoring tool to go back in history.
First, we instantiate the architecture A/(E/,C/) based on the Topology Record rD(E)

118

5.3. Process Design

(line 3 and 4) APM tools provide in order to identify running IT artifacts. We use the
function ToroLOGYRECORD() for this purpose. The communication paths C remain empty.
Next, we retrieve the tracing data tD(E, C) for the last considered timeframe via the call
TRACINGRECORD(ty, 1) (line 7). If the tracing data tD is not empty (line 8), we iterate
through all elements ¢ € tD(E) and validate whether the elements e are also included
in the topology data (line 9 and 10). If this is the case, we add all communication paths
assigned to this runtime element to the architecture (line 11) and start over with the next
timeframe (line 12). If no data is received from the monitoring server, the algorithm returns
an incomplete architecture (line 14) which can be used as a basis for further refinements.
Line 9 to 11 can also be described as an intersection between the elements e in tD(E, C)
and rD(E), but for simplicity reasons we use the imperative representation.

Algorithm 1 Backward Recovery Algorithm

Require: T >0
1: function BACKWARDRECOVERY(A, tg, T)
2: if A =@ then

3: rD(E) < REPOSITORYDATA

4: Al < A(rD(E),C)

5: t 1o

6: to+<t —T

7: tD(E,C) < TRACINGRECORD(t(,t1)
8 iftD # @ then

9: foralle € tD(E) do

10: ife € rD(E) then

11: A<+ AI(E,CUtD(C,))
12: BACKWARDRECOVERY(A/, ty, T)
13: else

14: return A/

5.3.2. Reconstruction of Communication Dependencies

The analyzed APM tools display communication relationships between monitoring agents
mostly in two different granularity levels. In Dynatrace/ AppMon for instance, the Trans-
action Flow describes which agents contribute to process a certain transaction. Hence, it
displays the trace of the transaction through the backend. However, the information about
communication between agents is rather limited and does not include 1) which interfaces
were targeted and 2) whether communication took place asynchronously by means of a
messaging queue (cf. Section 2.3.2). This message queue is abstracted from the Transaction
Flow, i.e. if agent A communicated with agent C over message queue B, the Transaction
Flow will only store "A communicated with C” without mentioning the message queue.
Consequently, for the user all communication appears as synchronous communication.
A more detailed analyzes of traces is available in PurePaths, which mainly represents
all correlated spans of a trace. Unlike Transaction Flows, PurePaths do capture targeted

119

5. Automated Model Recovery via Runtime Instrumentation

interfaces and reveal asynchronous communication over message queues. Most APM tools
follow the design of Sigelman et al. (Sigelman et al., 2010) to store traces. That means, in
terms of data structures, they are realized as trees with arbitrary width and depth whereby
each node represents an agent and each edge represents a call between agents (cf. Section
2.4.3). In order to identify which interfaces microservices expose and how often they are
called, it is required to periodically analyze all incoming traces.

We process each PurePath record for a specific timeframe in order to extract the infor-
mation about microservice communications. Since traces are represented as data trees
of arbitrary depth, the algorithm recursively calls itself once for every edge in the tree
in order to traverse the entire trace. In every execution it checks whether the source
(parent node) and target (child node) belong to different microservices to exclude internal
communication of microservices. From an architecture point of view, this information
is not important. We extract the targeted API and the communication synchronization
(synchronous or asynchronous calls). In the last step, we determine trace equivalence
classes, i.e. all traces that are equal in terms of the control flow structure. While the
request flow within a single trace constitute a view on the sequence of interactions among
microservices, it is required to analyze this runtime dependencies in an aggregated form
in order to disclose microservice interactions from an architectural perspective. Simply
spoken, we prevent to store communications that are already available in the database and
only add the target interface if it was not seen yet. Furthermore, the edges are augmented
with the total number of call actions among the respective microservices observed in the
considered set of traces. Hence, we update the call count in the annotations . Figures
5.19 illustrate the aggregation of microservice communications.

5.3.3. Validation of Architecture Changes

We regard architecture recovery as a never-ending process. It is a continuous monitoring
of the service interaction within an IT infrastructure. Especially microservice architectures
evolve over time (Dragoni et al., 2016). That means, new services are added or removed,
and newly implemented interfaces lead to a change in the information exchange and
dependency structure. Hence, it is important to keep track of architectural changes,
especially when new releases cause failures or performance anomalies.

Based on this consideration, we elaborate the forwardRecovery algorithm that either gets
triggered on a fixed time interval or on special events (see Section5.3.4). The process is
depicted in Figure 5.20 in detail. It continuously extracts the AMs and corresponding
communication dependencies from incoming topology and tracing records. Those records
are validated against the database. If the extracted models or dependencies are unknown,
or the change has a significant impact on the overall maintained architecture then the
database is updated accordingly. In case, the lastSeen attribute is behind the particular
threshold, the entity is marked as deleted.

'We must emphasize that the number of calls between microservices observed in the traces do not represent
the real number of interactions. As stated in Section 2.4.3, most APM tools apply sampling to reduce
network overhead. That means, the monitoring server only receives a subset of runtime data. In order to
derive the real number of interactions the amount of observed calls must be divided by the sampling rate.

120

5.3. Process Design

Container Instance 1
<<component>> @ <<component>> @ <<component>> %
8000 Flight CRM Booking

: 7400

e 4500
searchFlight() getOffim(/.”I)/ bookFlight(...)

cancelFlight(...)
400

(o)

ontainer Instance 2

<<component>> @
Booking

2500

bookFIighD
600
cancelFlight(...)
A) Deployment-level operation communication graph
7400 <<component>> % 7400
CRM bookFlight(...)
getOffers|...) cancelFlight(...)
8000 <<component>> <<component>>
Flight Bookin
g 600 cancelFlight(...) &

B) Assembly-level component communication graph

Figure 5.19.: Differences between deployment-level communications and assembly-level
communications between microservices. Only the assembly-level are stored
in the database.

The corresponding forwardRecovery algorithm is described in Listing 2 and consumes
1) a timeframe T for retrieving the monitoring data, 2) the deletion threshold T > 0
which defines how old a communication path is allowed to be, before it gets removed
(see Section5.3.7) and 3) the obsolete stored architecture that was initially returned by
the backwardRecovery function. First, the function fetches both the current content of the
TopologyRecords (line 3) and the TracingRecords(line 4) for a specific period of time. Based
on the retrieved data the architecture A/’ is refined accordingly. For the runtime elements,
we apply the intersection (line 5) and for the communication paths, we use the union (line
6) to return the complete architecture which is eventual consistency in case the missing
communication paths were available in the tracing data. In case an AM has changed from
an architecture point of view (line 8), we create a new revision for this entity (line 9) and
set the value of the validTo attribute of the previous revision to the current timestamp in
order to express a validity expiration. Subsequently, all relationships going in and going
out from this model are duplicated. If no changes were detected, we update only the

121

5. Automated Model Recovery via Runtime Instrumentation

Forward Discovery

I
e N
MICROLYZE
Database

Store Architecure
Models and 7LastSeen’ Mark
Create attribute
Yes: N Ye: communication
Architecture behind a5 deleted
Revision breshold>

Extract
Communications
from Tracing
Records

No

Extract i

2 Extract Tracing Communi
Topology Records cations Yes

Records available?

i ;
|

Identification of
new/updated
Architecture
Models and
Dependencies

New
elements
identifed?

Topglogy Trafing
Recbrds Recbrds

] I
<
S
‘= Monitoring ¢-’
Server
Database

Figure 5.20.: Forward Recovery process

lastSeen attribute for the AM (line 11). The same applies for dependencies between AMs
(line 14). As removed communications are still not recognized without any manual input,
we incorporate a threshold 7 > 0 that defines the maximum period of time how long
communications are allowed to be invisible in the tracing data. In case the threshold is
exceeded (line 15), the particular communication path is marked as deleted (line 16) in
the annotation entity. Hereby, we leverage the lastSeen timestamp of each communication.
We never remove communications from the current architecture as we never can make
sure that the communication is not appearing in future traces again. The algorithm itself
is designed to be idempotent as long as no changes have occurred in the architecture,
therefore running it multiple times has no further impact on the result.

5.3.4. Change Events

A major concern of model recovery is the definition of events that trigger an adoption
of the maintained EA models. Hereby, we define every event can be considered as an
architecture-related change that need to be handled accordingly if it has a significant
impact on the maintained EA models including their inter- and intrarelationships. In
(Kleehaus et al., 2019b), we described the results of a survey conducted in 2018. In this
survey, we analyzed the response of 58 survey participants to unveil major challenges of
documenting microservice-based IT landscapes. One important question we asked was
"Which events lead to an update of the EA models in order to keep the models in-sync with the
reality?” Most participants agree (37,9%, n=22) that the development of new applications
or the deployment of a major release of an existing application lead to an update of
the documentation. 27,6% (n=16) of the participants state that business driven as well
as IT driven projects that have an impact on the IT landscape initiate an update of the
corresponding models. 27,6% (n=16) of the participants state that their data collection

122

5.3. Process Design

Algorithm 2 Forward Recovery Algorithm

Require: T >0, 7 >0
1: function FORWARDRECOVERY(A, T, T)

2:

10:
11:

12:
13:
14:

15:
16:
17:
18:

19:

t1<tg—T
rD(E) < ToPOLOGYRECORDS
tD(E,C) < TRACINGRECORDS(t1,t0)
Ar < A(ENrD(E),C)
All < AI(Er,CUtD(C))
for all e € A11(E/) do
if isNewOrUpdated(e) then
CREATEREVISION(e)
else
e(lastSeen) <t
forall c € An(Cr) do
if c € tD(C) then
c(lastSeen) < ty
if c(lastSeen)+7 < to then
c(annotations.deleted) < true
else
c(annotations.deleted) < false

return All

123

5. Automated Model Recovery via Runtime Instrumentation

process is initiated by a change request or incident system that allows triggering tasks
for other stakeholders, as it has been also recommended by literature from practice
(Hanschke, 2010). Many survey participants (20,1%, n=12) rely on periodic checks with
key stakeholders that provide data on specific parts of the architecture. Hence, the update
of the models happens in an ad-hoc manner. 10,3% (n=6) of the participants describe
automatic triggers that initiate a change in an automatic manner. Those changes are mostly
detected by CMDBs and afterwards forwarded to the particular architects which populate
the data into the EA tool, or even update the model automatically.

Based on our findings and the findings elaborated by other researcher like Farwick et
al.(Farwick et al., 2012b), and Winter et al. (K. Winter et al., 2010), we define the following
points as an architecture-related change:

e Deployment-based: Every deployment of new applications or application updates
o Deletion-based: Deletion of AMs regardless from which architecture layer

e Structure-based: Modifications of the interrelationships between AMs, like movement
of applications from on-premise to cloud environments.

e Host-based: Modifications in the host environment including operating system,
virtualization and containerization

e Hardware-based: Modifications, upgrades or new physical resources

As described in Section 3.2.4, Fischer et al. (Fischer et al., 2007) discuss two different
strategies to initiate a new cycle for EA model maintenance:

periodic changes are initiated automatically based on a maintenance schedule. In
our scenario, this schedule would trigger the forwardRecovery algorithm periodically to
update the maintained AMs. However, this strategy comes with two drawbacks. 1) A
too long schedule would always follow the change that leads to timeframes in which the
IT landscape is obsolete and not up-to-date. 2) A too short schedule would be rather
resource intensive as the already heavily loaded monitoring server has to handle additional
frequently triggered queries.

non-periodic can be triggered manually by the data owners. A non-periodic cycle is
initiated if AMs changed significantly, e.g. due to project work. In our scenario, a non-
periodic schedule could be integrated into a Continuous Delivery Pipeline which triggers a
non-periodic maintenance cycle every time a deployment is performed.

The forwardRecovery algorithm is responsible to apply changes to the EA models and
can be triggered based on the aforementioned strategies. When the trigger is aware of
changes immediately when they occur, this could potentially give birth to the concept of
"real-time" IT landscape architecture documentation.

5.3.5. Revision Concept

The implementation of the revision concept is based on the assumption that every change
in the IT landscape has an impact on the structure and performance of the maintained archi-
tecture. If changes on AMs or relationships are identified a revision entity is created in the

124

5.3. Process Design

Revision Creation

Insert new entity and
set validFrom
' attribute to current
timestam :
P . Duplicate
Architecture relationships
Create revision Model and assign to
entity new entity
. , Insert new entit Duplicate
Set validTo attribute . v P!
N . and set validFrom annotations and
of current entity to "
attribute to current apply
current timestamp R A
timestamp modifications

Changein
Architecture

Models or
Relationship;

Relationship——

Figure 5.21.: Revision Creation Process

Revisions table indicating a general change in the IT landscape. If the MICROLY ZE.Collect
component recovers a new AM or relationship, a new record is inserted into the database.
If the modified entity is already known, then the previous valid record becomes invalid by
setting the validTo attribute to the current timestamp. Afterwards, the modified entity is in-
serted in the ArchitectureModel or Relationships table respectively and the corresponding
validFrom attribute indicates the timestamp when the change was recognized. In addition,
the assigned annotations are duplicated and modified according to the recognized change.
As modifications on ArchitectureModels has an direct affect on their relationships, all
corresponding entities in the Relationships table of the invalidated AM must be duplicated
and assigned to the new valid entity. This step can be skipped for recognized changes in
the Relationship entities.

In general, revisions could also be used as a versioning concept. With this approach
architects are capable to compare different architecture revisions in order to uncover
unforeseen changes. In addition, it is possible to evaluate how the architecture emerged
over time and what impact specific changes have on the overall IT landscape performance.

5.3.6. Recovering REST Calls using Runtime Data

Monitoring tools collect log events that are created during the communications between
applications. Especially microservices communicate primarily via RESTful interfaces. The
executed URL in this HTTP-based communication protocol consists of substrings that repre-
sent resources. The URL in addition with the HTTP method like POST, PUT, GET, DELETE,
etc. determines the exposed interface of an application, i.e. the RESTful-Webservice. Those
interfaces are mainly documented via tool support like with swagger.io'? or apiary.io'>.

The log events reported by the monitoring agents contain the complete executed URL
with all provided resources. However, resources do not only represent the location of a
specific method call but also specific IDs of the addressed resource. In a figurative sense,
those IDs determine parameters of an exposed interface. Hence, in order to determine the

original used interface that was executed by the application, those parameters must be

Phttps://swagger. io, last accessed: 2020-10-28
Bhttps://apiary.io, last accessed: 2020-10-28

125

https://swagger.io
https://apiary.io

5. Automated Model Recovery via Runtime Instrumentation

Table 5.2.: Reported log events of RESTful API calls and their corresponding interface
description. The parameters are highlighted in bold.

Log Event | 127.0.0.1 wuser-identifier frank [10/Oct/2018:13:55:36 -0700] "GET
/api/v1/users/123456 /vehicles /789 /status HTTP/1.0" 200 2326

Interface GET: /api/v1/users/{UID}/vehicles/{VID}/status
Retrieve the status of a specific vehicle

Log Event | 127.0.0.1 wuser-identifier frank [10/Oct/2018:14:01:17 -0100] "PUT
/api/v1l/users/123456/vehicles /790 HTTP/1.0" 200 2189

Interface PUT: /api/v1/users/{UID}/vehicles/{VID}
Create a new vehicle for a specific user

Log Event | 127.0.0.1 user-identifier paul [12/Oct/2018:15:02:24 -0600] "DELETE
/api/vl/users/123457 HTTP/1.0" 200 562

Interface DELETE: /api/v1/users/{UID}
Delete a specific user

identified automatically and replaced with a placeholder. An example is provided in Table
5.2. This is a challenging task, as the identification of a resource location and parameter
is not obvious at first glance from a programmatic perspective. For that reason, several
data mining methods have been proposed in the past to analyze textual log data without
well-defined structure. The methods primarily focus on the detection of line patterns
from textual event logs. Suggested algorithms have been mostly based on data clustering
approaches (A. Makanju et al., 2013; A. A. Makanju et al., 2009; Vaarandi, 2003). The
algorithms assume that each event is described by a single line in the event log, and each
line pattern represents a group of similar events. Further algorithms (Reidemeister et al.,
2011; Reidemeister et al., 2009) uses event log mining techniques for diagnosing recurrent
patterns in textual data. However, the applied methods require labeled event logs which is
not always available.

A further development of clustering log events and discovering frequently occurring line
patterns was conducted by (Vaarandi et al., 2015). The authors introduce the algorithm
LogCluster that is mainly designed for addressing the shortcomings of existing event log
clustering algorithms.

In general, LogCluster regards the log clustering problem as a pattern mining problem.
As an input parameter LogCluster requires a support threshold s (1 < s < n) and divides
event log lines into clusters Cy, ..., Cy, so that there are at least s lines in each cluster C;
(i.e., |Cj| > s). Each cluster C; is uniquely identified by its line pattern p; which matches
all lines in the cluster. The support of pattern p; and cluster C; is defined as the number
of lines in C;: supp(p;) = supp(C;) = |C;|. Finally, each pattern consists of words and
wildcards, e.g., /api/vl/users/ = {1,1}/vehicles/ = {1,1} has words api, v1, users and

126

5.3. Process Design

vehicles, and two wildcards *{1,1} that matches at least 1 and at most 1 word. The second
number of the wildcard would increase to *{1,2} in case the parameter consist of up to
two words. However, this case does not need to be taken into account in our scenario, as
URLs do not allow words separated by empty space. How the pattern is constructed is
described in detail in (Vaarandi et al., 2015).

LogCluster is originally designed to cluster whole log events that recognizes words
based on empty spaces as delimiter. Hence, in its original form, the algorithm would
convert the URL string in the log event as wildcard as its appearance certainly exceed
the passed support threshold. For that reason, we modified the algorithm in that way, it
initially extracts the reported URL and uses the slash sign as the main word delimiter. In
general, the URL string starts after the recognition of HTTP methods like GET, POST, PUT,
DELETE, etc. and ends before the next empty space appears. As we are interested in the
reconstruction of the RESTful Webservice interface, only the URL part in the log event is
sufficient to consider.

As soon as we constructed the patterns for each log cluster, we translate the pattern
into a regular expression. Those expressions are stored as the Inter face type of an AM.
Afterwards, we establish the relationship between Inter face and Application Service. In
case the Application Service is unknown as the installed Monitoring Server is unable to
retrieve this information, we create dummy entities. The name of the dummy entity
is built upon the Architecture Component name and _IN postfix for representing the
processing of incoming transactions and _OUT postfix for outgoing transactions. As soon
as MICROLYZE processes new incoming runtime data via the forwardRecovery algorithm,
we validate each new log event in that specific timeframe against the stored regular
expression. If the validation is successfully, we increase the API access counter with 1,
otherwise we store the log event as unknown API call. In a frequent period of time, the
modified LogCluster algorithm is executed on the unknown log events in order to update
the event pattern repository. A complete visualization of this process is illustrated in
Figure 5.22.

RESTful Interface Reconstruction Creation

Increase API
access counter

Services and regular

Establish relationship Validate new log
between Application events against
Interfaces expression

Translate cluster
Cluster log events et Store regular
and construct B atiar expressions as
cluster patterns g Interfaces
expression

T

Store unkown log
events

u

53
MICROLYZE Kk — = —— = ———————mm e mm—
Database @ === == — - m e

Figure 5.22.: RESTful Interface Reconstruction Process

127

5. Automated Model Recovery via Runtime Instrumentation

5.3.7. Elaboration of a Deletion Threshold

The selection of an appropriate deletion threshold strategy is fundamental to keep a high
model recovery accuracy. In the following, we discuss different approaches on how to
define the threshold for deleting potentially removed communication paths:

Manual definition: The period of time of how long the algorithm has to wait until specific
communication paths should be marked as removed could be based on simple manual
input. That means, the user defines the period of time based on experience. The advantage
of this option is the simplicity of this approach. However, it is rather inflexible and does
probably not conform to development behavior.

Statistic based: The drawbacks of the manual method could be neglected based on
statistics. Hereby, we analyze past runtime data and extract maximum communications
pauses between applications. Once this maximum is exceeded in future runtime data,
the concerned communication will be marked as deleted. Even though this approach has
benefits as it calculates the threshold automatically and is determined for each individual
communication path, it does not take behavior changes into account that result from new
deployments. In addition, communication pauses do not necessarily lead to architectural
changes.

Event based: Specific events that describe a situation in which selected communication
paths must be deleted can be leveraged for defining an event based threshold. However,
the threshold is not a period of time anymore but represents rather a Boolean value that
triggers the deletion workflow. An advantage of this option is a resource optimization
and near real-time documentation. On the contrary, the definition of possible events is
challenging.

Tool support: In the last option, no threshold calculation is performed at all. The removal
of obsolete communications is achieved by tool support. Based on an application that
visualizes the IT landscape architecture the developers can decide which communication
path is obsolete and must be removed. That means, the decision is outsourced to a manual
task, which realizes a high accuracy if developers maintain the communications via the
tool. As a disadvantage, no automation mechanism is achieved.

As soon as we detect a communication that might have been removed due to the
threshold excess, we set the deleted attribute to true but we do not close the validity by
setting the validTo attribute to the current timestamp. The reason for this approach is that
we want to keep potentially removed communications in the query result as we can never
make sure those communications were definitely removed. Based on the deleted attribute,
we emphasize those communications visually in our frontend tool. As a follow-up the
Architects can finally remove those communications manually from the ETG.

5.4. Visualization Design
After we detailed the backend architecture of MICROLYZE and how we process and

analyze runtime data for recovering the AMs, the following sections describe the visu-
alization framework. In EA management and especially in modeling of IT landscapes,

128

5.4. Visualization Design

visualizations are a common mean not only to identify and prioritize problems but also
to understand the current state of an EA. Visualizations often form the basis for knowl-
edge sharing, discussing planned states and therefore are indispensable for developing
strategies and transition plans that implement changes. However, visualizing relationship
and dependency information can be regarded as a complex task, as too much information
adversely affect the recognition value. Such a complex task can be facilitated by advanced
user interfaces that make use of different approaches to prevent information overload.
Still, human cognition is especially strong in identifying patterns in complex information
represented visually!4.

As stated in Section 5.2 the IT landscape architecture is based on the ETG model
accessible via GraphQL. Hence, we also provide the different views on the IT landscape in a
graph-based representation. The conceptual framework builds on the works of Wittenburg
(Wittenburg, 2007). Although Wittenburg presents a comprehensive Visualization Model,
we put the focus of the IT landscape representation on schematic relationships, like
communications, deployment dependencies and schematic groupings. In addition, we
decided to apply the well-known Archimate notation (The Open Group, 2016) for styling
all ETG nodes and edges. With this approach, we ensure that the IT landscape visualization
is comprehensible from the start and requires less explanation.

The remainder of this section is as follows: First, we present the architecture of the
visualization component and outline general principles. Then, we detail how users can
interact with the visualization framework. Finally, we show different IT landscape views
and the rational behind them. Each visualization addresses and renders dependency
information from a particular perspective. Hereby, we distinguish between Compositions,
Associations and Flow dependencies.

5.4.1. Visualization Architecture

We developed the frontend of MICROLYZE with the JavaScript Library React]S'. The
library is maintained by Facebook and a community of individual developers and compa-
nies. We use React]S as a base for developing a web-based single-page application. React]S
code is made of stateful components, that can be rendered to a particular element in the
DOM using the React]S DOM library. For visualizing the nodes and edges of the ETG,
as well as applying different layouts for the graph, we leverage the visualization library
yFiles(Wiese et al., 2001)'°. In general, yFiles is a library for the visualization and auto-
matic layout of graphs. Included features are data structures, graph algorithms, a graph
viewer component and diverse layout and labeling algorithms. The main layout styles
are orthogonal, tree, circular-radial, layered and force-directed. For the representation
of the graph, we provide all layout styles to the user. In the following, we describe the
particular components of our visualization framework in more detail. Figure 5.23 sketches
the architecture.

l4For general design guidelines for visualizations we refer the interested reader to Tufte (Tufte, 2001), and
Moody (Moody, 2010); for design guidelines for information dashboards we refer to Few (Few, 2006)

Bhttps://reactjs.org, last accessed: 2020-10-28

Yhttps://www.yworks.com/products/yfiles-for-html, last accessed: 2020-10-28

129

https://reactjs.org
https://www.yworks.com/products/yfiles-for-html

JZXTONDIN JO syuauoduwrod uorjezifensia ay} Jo aInjddIdIy '¢’S I3

puadajydeio

()a1msBunysiysiHuul +
(Jydesomeup +
()udesopiing +

ydeuoyneyaq :ydess -

5. Automated Model Recovery via Runtime Instrumentation

juauodwopydesn ydeioy|nejaq
JegapisiuawhodagiNy (hepuai +
9|ge L [9POIAIRINIRUYY
1eqapISUOIRBIRUIAY [
(Jeseqpeoj + ()1apuas +
1eqPPISUOSIIEWOD Y |9POINRINIIBYDIY ([apow -
UOI112BJDU|[9POIARINIIDUYIY
jauodwo)ieqgapisydess
9JA1SopoNeWIYIY
JeQgapISUOIIEIIUNWWODAY [| ()laqeT21e9.0 +
()4opual + ()o8p3e180.0 +
()apoNaiea.n +
JuawAo|dag|apoARIn1a N YUY (Judeiosz]
JeqIPISIASNDINY (Jereq@antasas +
- 133eueNBuip|o
ydeuoyneyaq :ydess - Wsupiod
sjusuodw o) Jeqapls ()4opuas +
1uauodw o) [9POIAIRINIIR YUY
uosliedwo)|apoIAIR4N1 1YY ()dodxa +
nusiNjusWAo|daQIAY ydesoynejaq :ydess -
> usuodwopnuayydes Jauodx3ydes
} > NYaeIs (Mepual + ()1senbayainoaxa + W 34de1D
NUIAIUCIIDRBIRWIANY [| UO0NEDIUNWWIODISPOIAIRINIIRNIYIIY U013eJ3WNUIAIN0S :32IN0S -
ER]SEIN:=H1:=Ig]
NUBIAJUCIIBIIUNWWODAY [| epua] 7
+
19321491t 131SN|D|2PO NN YIY
nuauosIedWOoNY | 18M|059¥dLLH
NUBIAMBISNDINY walDToydess 7
sjuauodwo) nua sjusauodwo) MaIp

130

5.4. Visualization Design

e The ArchitectureModelComponent serves as the parent class for all visualization
component classes that transform information represented in the general meta-
model (see Section 5.1.5) to a target structure that is convenient to traverse in
the viewpoint. Within the receiveData() method of each subclass, this model-to-
model transformation is performed. The method executes GraphQL queries on
the source model, applies filters and transforms the model into a view model.
This view model denotes the intended part of a model that is visualized later
on. ArchitectureModel Component provides required methods for creating nodes,
labels and the edges of the ETG that represents the IT landscape from an particular
viewpoint. In addition, it manages the styling towards the Archimate notation. The
graph styling classes are described in Section 5.4.2 in more detail.

e DataService is a static class managing the client-server communication via GraphQL-
based query statements.

o The View Component group contains all React]S components that render the particular
visualization pages. They inherit attributes, methods and in particular style formats
from the ArchitectureModel Component class.

e Most visualization views are compiled with a graph component, a menu component
and a sidebar component. The GraphMenuComponent provides functionality for
interacting with the ETG by adding dropdown items for filtering, time picker for
choosing an architecture revision or search fields.

o The GraphSidebarComponent contains further static and dynamic information about
each AM and their assigned relationships.

e The GraphComponent class is responsible for building the ETG and rendering it
to the DOM. It receives the required information of the ETG from the particular
visualization view components. All user interactions with the graph is processed by
the GraphComponent.

For each visualization type, a concrete View Component exists that inherits from the
ArchitectureModel Component. Each view component executes a GraphQL statement that
responds in a JSON-based format. During the execution the GraphQL resolver translates
the relationship information into the unified meta-model. The type of each returned AM is
defined by a type attribute integrated in each GraphQL statement. Based on the returned
AM type, the correct node style can be selected. The same approach applies to the edge
style. With this approach any dependency information can be visualized via the Archimate
taxonomy.

5.4.2. Graph Styling

After describing the core concepts of the visualization framework, we introduce some
additional classes that make up the styling and layouting of the ETG. The Archimate
taxonomy already introduces symbols, visual styles and notations for visualizing the

131

5. Automated Model Recovery via Runtime Instrumentation

IT landscape. We apply this taxonomy for creating our ETG. The corresponding class
diagram is illustrated in Figure 5.24 and detailed in the following.

e The NodeStyleBase is the abstraction for different node representations. We separate

between NodeStyle that visualizes a node in its basic format and GroupStyle that
renders a folder-based structure of nodes. We commonly use GroupStyles for group-
ing information that either belong together semantically, or represent hierarchies.
For instance, Application Components that are build upon the same technology like
Java, Node]JS, .Net, etc. are grouped together. A further example is the definition of
hierarchical relationships. Therefore, a Product that consists of several Business Ser-
vices is visualized as a group node. In addition, we developed a NodeStyleDecorator
that provides methods for individual node decoration. We use this class for styling
our nodes based on the Archimate taxonomy provided in the ArchimateNodeStyle
class.

The purpose of the EdgeStyleBase class is to provide methods for styling the
edges of the ETG. Those methods are inherited by the child classes EdgeStyle and
EdgeStyleDecorator which represent edges either in a basic format or decorated
towards the Archimate taxonomy:.

The ETG is compiled by nodes, edges, as well as edge labels and node labels. Labels
are used to visualize text on nodes and edges. For this purpose, we developed
the abstract class LabelStyleBase and three subclasses. The HtmlLabelStyle renders
HTML markup for formatting label text. This class is used for displaying all Archi-
mate models that are not collapsed in a folder. Whereas, the GroupLabelStyle class
displays the label of folder nodes. Last, but not least, the EdgeLabelStyle class is
responsible for superimposing labels on edges.

The LayoutBase class and its subclasses provide methods for applying layouts for
the ETG. The classes control how the ETG is build and which algorithm is used
to arrange the nodes and edges. This also includes how the graph representation
changes while uses are interacting with it, like zooming, expanding or collapsing
group nodes, etc.

132

5.4. Visualization Design

()dnouoBuisde|j0)a105q +
()dnosoBuipuedigaloeq +
()nokerhidde +

JZXTONDIN JO 21n3da3rydIe Jnoke| pue d[41S '$7'G 23]

noAeqjelpey

1

InoAeiomiaN

aseginoAe]

1

noAeq8uidnotn

inoAera|qeL

| L

InoAeTdIydIRIBIH

(huauodwoduones
(Juooungssauisng +
(onpoud +
()2o1mia5553UISN +

a|AxsapoNarewIydy

uopesogeljojuoeydde +
apou +

ajmiasuonedydde +
eyia)ujUonedydde +

1onpoud +
uonouNssaulsng +
291MagssauIsNg +

()a1Aas8unyBIYSI H
(Judesomesp +
()ydesopying +

(12qeT21e010 +
()o8p3s1e91 +
()apoNatean +

(Judeoaziieniui +
(Jereqan@oai +

Gdeionejaq ydes -

deionejaq ydeis -

103e102903|A1S2PON

3lAisdnoin

wnu3adA] |apojNRIeWwIyILY

<<uoljeIaWNUT>>

(Juodjrean +
(Juonngaiean +
()dnosoarepdn +
()dnosouapuas +
()13pjosorepdn +
()12plo4sapuas +
()fensinazepdn +

(Jlensinareasn +

ajhisapoN

juauodwonydels

Juauodwo)d|apoIARINIIRYIIY

A |

ydeigynejoq

Jo1e102203|A1598p3

I |

3|A1598p3

2segajAISopoN

BupsaB8L +
uonepossy +
Mol +
uonisoduio) +

wnu3adAdiysuoiejayalewydy

<<uojjeIaWNUZ>>

()yredarean +
(JfensiAaaepdn +
(Jlensinateasn +

asega|Aisasp3

ajhispqeradpy

alhisiagen|uiH

alksjoqerdnoln

(Jensiraepdn +
(rensipareasn +

asegajhisiaqe

133

5. Automated Model Recovery via Runtime Instrumentation

Figure 5.25 illustrates the visual representation of the different nodes we use to build
the ETG. Each node consists of a label and a symbol. The symbol and the color of the
node represents the corresponding AM which is based on the Archimate taxonomy. We
separate between leaf nodes and group nodes. Group nodes group schematically-related
nodes and can be collapsed or expanded like a folder. Collapsed group nodes visualize
the number of child nodes in the middle of the node. Collapsed and expanded group
nodes position the label on the top left side of the node. Leaf nodes show the label in the
middle of the node. Each node contain the Archimate corresponding symbol on the top
right side. In addition, Application Components draw two rectangles in the middle of the
node that show the number of instances and exposed interfaces.

Each leaf node and collapsed group node is 140px wide and 80px high. This size is
fixed and only changes by expanding group nodes. The label width is determined by the
width of the node minus the space which is required for drawing the grouping button and
the Archimate symbol. If a Label object requires more space than it has available, it gets
shrunk to its width and the removed text is replaced by three dots.

As stated in Section 5.1.5, we classify dependencies between AMs in grouping, hierarchy,
and communication relationships. The corresponding Archimate taxonomy determines
those relationships in Composition, which indicates that an element consists of one or
more other elements, Association, which models an unspecified relationship and finally
Flow, that details a dynamic relationship which indicates a transfer of information from
one element to another. The visual representation of those relationships is shown in Figure
5.26.

The information which node or edge type must be visualized by the frontend is di-
rectly provided by the backend and derived by the relationship meta-model. How the
visualization process is performed in detail is described in the next Section.

@ Key Management S...(+] Mapupdate ll[S]
OTP_REPORTING
- ccg-21-h9drz 1 = Map Update Interface
(=]
7 ”

Figure 5.25.: AM Visualization: (left) Architecture Component with 7 instances and 13 ex-
posed interfaces, (middle-left) representation of a Node element, (middle-right)
collapsed Product with 1 subelement and shrinked Label, (right) expanded
Product with one Business Service as subelement. Further AMs are displayed
in a similar way and with the correct Archimate symbols.

5.4.3. Visualization Process

Figure 5.27 gives a high level overview of the visualization process. In a first step, the
required data for visualizing a particular perspective on the IT landscape is retrieved via
the DataService class. The method receiveData is used to execute a predefined GraphQL

134

5.4. Visualization Design

_) OTP_REPORTING Java_Application
Business_Service
7 =] o [a0]
t ¢ '
|
I | '
v
PostgreSQL Java_Application cog-21-hodz PostgreSQL
= s o =

Figure 5.26.: Relationship Visualization: (left) Compositions are marked with a rhombus
and determine contains relationships, (middle) Associations are represented by
a solid line, indicating runs on relationships, and (right) Flows are drawn with
a dashed arrow and defines calls relationships

statement that responses in JSON format. Subsequently, the retrieved data records are
analyzed within the ArchitectureModelComponent, which also creates the ETG in its raw
form. Hereby, the following steps are performed: First, an empty default graph is
initialized and all the taxonomy for visualizing the ETG in the Archimate styles is loaded.
Next, we iterate through the JSON data and create all nodes, group nodes, edges and labels
for the ETG. The information on how the nodes and edges have to be styled according
the Archimate taxonomy is stored in the attribute type, which is a main integral of the
GraphQL statement.

In the next step, the GraphMainComponent is used for building and layouting the ETG.
In the method buildGraph, the ETG including its nodes, groups, labels and edges is
compiled. Afterwards, we apply a specific algorithm for arranging the graph. We can
choose between 1) hierarchic layout which distributes the nodes into layers so that most of
the edges point to the main layout direction, 2) the tabular layout style arranges the nodes
in rows and columns, 3) the circular layout style emphasizes group and tree structures
within a network. It creates node partitions by analyzing the connectivity structure of
the network, and arranges the partitions as separate circles. The circles themselves are
arranged in a radial tree layout fashion. 4) The radial layout style arranges the nodes
of a graph on concentric circles. The overall flow of the graph is visualized similar to
hierarchic layouts. The layout algorithm itself runs in three main phases. In the following,
we describe those phases with hierarchic layouting as example:

1. Layering: The nodes are distributed into layers by means. If the layout orientation is
top-to-bottom, the nodes in each layer are arranged horizontally while the layers are
ordered vertically top-to-bottom.

2. Sequencing: The order of the nodes in each layer is determined such that the number
of edge crossings is as small as possible.

3. Drawing: The layout algorithm assigns the final coordinates to all nodes and routes
the edges.

135

5. Automated Model Recovery via Runtime Instrumentation

O

Start
execute GraphQL
statement receiveData

initializeGraph

DataService

Initialize empty
default graph

initialize archimate taxonomy
styles for rendering ETG

initializeStyles

| |
v y

[createGroupNode] [createEdge] createlabel

ArchitectureModelComponent

buildGraph
build ETG based on
architecture model

applyLayout

apply graph layout style
requested by user

register commands like node
click, zoom, collapsing, or
expending node, etc.

A
MU%U

registerCommands

|

v i

[renderGraph] [renderMenu [renderSidebar]

—/

ViewComponent

Is
I

O

End

Figure 5.27.: Overview of the Visualization Process represented in an activity diagram

136

N O G o W -

5.4. Visualization Design

Finally, we register commands required for interacting with the graph. This includes
node and edge selection, zoom functionality, collapsing and expanding group nodes, as
well as hovering and drag and drop features.

In a final step, the particular ViewComponent which is selected for visualizing the graph
renders all three main components of a View, the ETG, the menu and the sidebar.

5.4.4. Architecture Model Deployment

The following visualization is a first demonstration that highlights the potential of query-
ing the ETG with GraphQL. We query AMs from different layers and visualize their
hierarchical dependency. The query statement is provided is Listing 5.28.

query getAMDeployment{
database {
applicationCollaborationAt(id:"${id}", timestamp:${timestamp}) {name
applicationComponents {name
nodes {name
facilities {name

313

Figure 5.28.: GraphQL query for Architecture Model Deployment visualization

Goal: The Architecture Model Deployment view shows the interrelationship of the
application- and infrastructure layer on the basis of Application Collaborations. This view
can be used to determine on which server microservices are deployed and which server
technology or environment (cloud or on-premise) is employed. In this context, the Applica-
tion Collaboration, Application Components, Nodes and Facilities present the different layers
in descending order.

Visualization: Each of those AMs represents nodes in a graph-based structure as Figure
5.29 details. The root node represents the selected Application Collaboration. The leaf node
is always the Facility. The positioning of the nodes and group nodes are determined
automatically and cannot be changed manually. Nodes with the same technology (Linux
or Windows) are grouped in a folder. When collapsing group nodes the out-going and
in-going edges are aggregated accordingly in order to reduce unnecessary duplicates. The
shown number of instances on every Application Component corresponds to the number of
out-going edges.

Interaction: The menu component of the Architecture Model Deployment view contains three
input fields. The datepicker shows the selected architecture timestamp. The single-select
dropdown field contains all Application Collaboration that can be selected. Performing a
search in the search bar lead to a highlighting of the nodes which names are within the
research result. Group nodes can be expanded or collapsed and moving the mouse wheel
performs zooming. A sidebar is opened immediately after clicking on any node.

137

5. Automated Model Recovery via Runtime Instrumentation

‘papuedxs 10 pasderod aq ued sapou padnoin

‘uonyejuasardar paseq-va1) e ur sapudpuadep [Ppow oy} Surmionns Aq sjuauhojda(q [apoN 241392111241 JO UOTIZI[ENSIA '6¢’S 9IN3L]

Ayjioe ﬁ apoN [sdinies uopeoliddy [jusuodwiog uonedyiddy [& uonelogejjod uopealjddy () eoinss sssuisng [1onpoid [uonoung sseuisng QY sssooud sssuisng <=

V3aN3
|
| | | ﬁ _ | | |
zodderdnuwd| ‘podderdnud Jodderdnwd| % 08840 % 1aPOZ408 19 SEZL08 XEUW-Z-008 Jupoz-z-008 bufwb-z-008
20 _ _ _ _ xnuny =20 _ _ _ _ _ NMONSNN =20 _ _ _ SMOANIM
_ — T — _ 4 T — — — =
SIE] * _ _ VAP S]E] _ _ _ 3svaviva
[L J J
| R |
1w
(@)
- MOND uoneioge|jo) uoneslddy ONON\NO\ﬁO dwe)sawi] 8in}0eNydIy [9POW Yyoieas
4 3SEQeIBP 90IN0S eleq 109]9S ON>|_ OJDIIN ”‘

138

5.4. Visualization Design

5.4.5. Architecture Model Communication

The aforementioned view represent only hierarchical relationships but no communications
between AMs. In the following view, we detail how MICROLYZE empowers users to
identify communication dependencies between Application Component. In this scope, com-
munications are collected on Application Service level by observing the called Inter faces
and afterwards aggregated up on Application Components.

Goal: The Architecture Model Communication views shown in Figure 5.30 respectively,
enables users to analyze which AMs communicate with each other in general, i.e. ex-
change information and how often they communicate with each other. This is especially
important to understand architecture complexity. The communication direction is dis-
played via a directed arrow. Further information about the communication details are
provided in the sidebar. This includes the synchronicity as well as the addressed interfaces.

Visualization: The nodes are arranged tree-like. The positioning of the nodes are deter-
mined automatically via an algorithm provided by the yFiles library. The positioning
cannot be changed manually. Those nodes which have neither in-going nor out-going com-
munication paths are arranged at the very top. Nodes with communications are layouted
underneath. Each child nodes are positioned in levels. By moving the mouse pointer over
a node, the node will be highlighted in red as well as all assigned communication paths.
The hovering of an edge leads to the highlighting of the edge inclusive of the adjacent
nodes.

Interaction: Similar to the Architecture Model Deployment view, group nodes can be ex-
panded or collapsed and moving the mouse wheel performs zooming. A sidebar is
opened immediately after clicking on any node. The menu component of the Architecture
Model Communication view contains two input fields. The date-picker shows the selected
architecture timestamp. Performing a search in the search bar lead to a highlighting of the
nodes which names are within the research result.

139

5. Automated Model Recovery via Runtime Instrumentation

‘suoryejuasardar paseq-0013 SurdeIaad] Aq UOTIRZI[ENSIA UOVIIUNUIIIOD) [JPOIN dANIIJYILY "0’ 9INIT]

ddy (] jusuodwo) uonedyddy m uoneloqe|jo9 uoneolddy () @d1nes ssauisng [1onpoid [uonound ssauisng @ $s820.d ssauisng <o

SaAS A28

E ST ST S S S S

: l%l
i | maren Buibieud peroeuuod

g9 952/a9 Lyl

39VsSN ¥ ass

GOM IdVaoM

¥

39VSN L ass e
9N 0009L / 9N LLSS
39VSN AYOWAW m m = - m .
“osesise MOND VN L3NNG 30 ST NMOMIN 35vaviva
% LE *@IP! NdO
_ [
39VSN Ndo _
3l
uonezijin waisAs mono
Q
(o0 oo ® A MONO uoneioqe|0D uonedyiddy 0202/20/70 dweisswi) simosnyosy [9POIN YoJeas
a 9SEQEIEP 90.N0S el 19919S ®N>|_ 0J u_ _>_ ”‘

140

5.4. Visualization Design

5.4.6. Architecture Model Interaction

The previous described visualizations represent the IT landscape in a rather static way
without any dynamic characteristics. However, in order to understand how the IT land-
scape behaves and emerges over time, we developed a visualization that focus on dynamic
aspects.

Goal: The Architecture Model Interaction visualization uncovers how Application Com-
ponents are interacting with each other to process a certain business request. This is
especially important for troubleshooting and architecture optimization. In detail, it shows
the transaction flow through the system and which services, interfaces and communication
paths are used. Figure 5.31 illustrates this interaction. In this example, the root node
represents a Application Collaboration. The following child nodes are Application Components
representing microservices, databases and the like. As the visualization constitutes a very
fine granular representation of the IT landscape it is mainly suitable for Solution Architects
or Developers.

Visualization: The positioning of the nodes are determined automatically and follow
a tree-like layouting. The positioning cannot be changed manually, in order to achieve
a high recognition value by the users. The transaction flow is shown via two different
approaches. The first approach leverages the tree-based preparation of the microservice
architecture and highlights used communication paths. The highlighting is achieved by
changing the edge and node border color to blue and increasing the line thickness. The
second approach is showing the microservice interaction via a table. This table lists all
microservices that are required for processing the transaction in a chronological order. The
table has four columns as illustrated in Figure 5.31. The first field contains the name of
the microservice that communicates with the microservice in field two. The third field de-
scribes through which interface (in URL representation) the communication is established.
The interface is exposed by the called microservices. The parameters have been removed
from the interface. The last field indicates the synchronicity of the communication, i.e.
whether the communication is performed through a message broker.

Interaction: The menu component of the Architecture Model Interaction view contains
three input fields. The date-picker shows the selected architecture timestamp. By changing
the value of the Application Collaboration dropdown field the architecture of the selected
Application Collaboration is retrieved. The second dropdown field contains all transactions
that were processed within the selected architecture. The selection of a particular trans-
action leads to the visualization of the transaction flow. In parallel, the aforementioned
table is opened. Furthermore, the mouse wheel changes the zoom level of the graph and a
sidebar is opened immediately after clicking on any node.

141

5. Automated Model Recovery via Runtime Instrumentation

=

Anjoe4 r‘l___ 9PON @ 99IAI8S uonedlddy (] jusuodwog uonedyddy W uoneloge|jo uoneoyddy (P eoinles ssauisng (] 10npold [uonoung sseuisng @ $S820.d ssauisng <= ,

‘Gurssaooxd uonoesuel) 10§ sadeyIRuUT pasn a3 s[relap ydeid oy saoqe d[qel
9y ‘uonejussaidar paseq-sax) e urgim syjed uonoesuen Suny3ySny Aq SUOHORISIUL [9POJA 241392111241 SUT[EaAY TS 9IS

as|e}.
as|ey
as|ey.

anly
as|e}.
as|e}
as|ey
as|ey.
as|ey

Ayduoayouhs

a Shjejsuonnoax3aolnIas/{NIA}/se[oIyan/iasn/|A/ideqam/

4 9seqelep 921N0S eje(109|9S

{ainn}/uonnosxa/e1eis/{NIA}/LA/IdeS./SdINI8SB10WBI/
peojdn/woo/

ubBis/ao1n1esgam-sqse/
NITSNLYLS ISOATE MINg///-enanby/:suil
{NIA}/zN/|eulBuI/BOIyRA/SPAS/
SN)eISUONNIBXFBINIBS/{NIA}/SOIoIYan/iasn/La/ide/|dyaamnds/
$S900Ye)eIUaAT/SaOINIeS/MBAS/
snjeISuonNdaX3aINIBS/{NIAY/SOoIyan/iasn/La/ide/idyaamnds/
snjelsuonnoax3aoIAas/{NIA}/Se[oIyaA/iasn/LA/ide/|dyaamnds/
aoepIa|

uonoeId)U| uoneslddy a |dY goMm uojeioge||oQ uoneolddy 0202/€0/70

Sy

34 NOD Azd
SAsv-AZd

ojul snieisIeD
SAAS A2

30 A28

d19N

30 A4

oM IdVIeM
pETICTR

dweysauwi] 2in}oa)ydly

30 Azd
d19N
d19N

30 A4

30 AZ4d

LINYILNITGIM MO IdY

30 A4

JOM IdVadIM
LINYALNITGIM MO IdY
22unos

azhtooiN &

142

5.4. Visualization Design

5.4.7. Architecture Model Comparison

Whereas the Architecture Model Interaction visualization uncovers how transactions are
processed with the system, the following visualization describes how the IT landscape
changes over time.

Goal: The Architecture Model Comparison clarifies to what extent the regarded section
of the IT landscape has changed over time by comparing two different architecture times-
tamps. This enables Architects to validate whether the changes correspond with the
planned architecture and can intervene at an early stage if necessary, in case the changes
are going in the wrong direction. Figure 5.32 illustrates an example.

Visualization: The view is divided into two parts. Each part represent an excerpt of
the IT landscape in a specific time. The left part contains an older representation of the IT
landscape. In case new AMs have been introduced into the landscape the particular nodes
on the right side of the view get a green border. The same applies for new relationships. If
AMs or relationships between models have been removed this transition is expressed in
red. As in all other tree-based visualizations, the positioning of the nodes are determined
automatically and the positioning cannot be changed manually.

Interaction: The menu component of the Architecture Model Comparison view contains two
timepicker elements which enables the user to change the architecture timestamps of both
views for the aforementioned comparison purposes. Further interactions like zooming
and the visualisation of the sidebar via clicking on any node is implemented as well.

143

5. Automated Model Recovery via Runtime Instrumentation

U913 uI pazifensia a1e SV J0 sdiysuone[ar maN pal ur papy3y3ny a1e sy 1o sdrysuonje[ar
paAowRY 2aIn3da)TYdIe pajepdn oY) s[reaun apis puey JYSLI Y, ‘U0LpL0qD]]0D) UolpILIddy PI3IS[AS A JO AINIATYDIL
91910sqo ayj sAe[dsip aprs puey o[9y, ‘Inole] mopuim ay3 Sumids Aq uoneziensia uosLwduI0)) [9POIN 24130031424y 7€ G 9IN3L]

Ayjioe4 _a|<__ 9pON @ 99IA19S uoneolddy (] jusuodwo) uonedyddy m uoneloqe|j09 uoneolddy () @d1nes ssauisng [1onpoid [uonound ssauisng @ $s820.d ssauisng <o

Wl e

[+ ===

ol smels 180

—

Z3sverdad

sasv:Aza

P

3300 Az

Z3sve-dad

ONSOSH

onSOSH

== =

34100 A28 H ESCIFLE)

- L) . . ., m m [
T0s8:bisod and dad 38N0OAZ8
—— |
Ty G
and oo anddao
= o)
- 8Nd dAdD uoneioge|j09 uoneslddy ®5N\ RQ@O dwelsawi] 8In}0eHydIY 2dNdddD uopeioge||0) uonedddy ®row\m (@O dwesawi] 8In}0eNydIY
4 9SECEIEP 50.N0S Bled }09[9S 9zAJoIN ”‘

144

5.4. Visualization Design

5.4.8. Architecture Model Sidebar

Each described IT landscape visualization contains three components 1) the main compo-
nent, 2) the menu component and 3) the sidebar component. All three components are
required to provide the user sufficient information about the IT landscape and the best
user experience. In the following, we detail the sidebar, illustrated in Figure 5.33.

Goal: The sidebar provides further information about a selected AM or a communication
relationship between two AMs. Based on the selected element the provided information is
either retrieved from the database or extracted directly from runtime data. The sidebar for
the application and infrastructure layer is filled with runtime information. In addition,
the sidebar opens for call relationships between AMs. The displayed information com-
prises primarily runtime data as well as communication details like used interfaces and
synchronicity.

Visualization: The sidebar component consists of three tabs as Figure 5.33 shows. The
first tab "General Information" assembles all static attributes provided by the monitoring
tool. This includes inter alia technology type, OS type, cloud provider, containerization
technology and virtualization vendor, as well as IP address, ports, CPU cores and further
meta data. The second tab "Relationship” details the caller and callee relationship of the
selected AM. For instance, if a microservice is called by another microservice this informa-
tion is listed in the called by category. If the same microservice calls other microservices
this relationship is detailed in the calls table. By clicking on the "communication" button a
table modal is displayed which visualizes the communication relationship in more detail.
The third tab "Monitoring" shows how the selected AM or call relationship performs in
runtime. We consume different KPIs from the monitoring tool like CPU-, memory-, and
disk utilization, data throughput, requests per seconds or response time. Which model
KPIs are shown depends on the architecture layer in which the selected node is assigned.

5.4.9. GraphQL Client

All aforementioned visualizations provide different perspectives on the IT landscape.
However, all approaches face several issues: the scalability suffers by increasing data
volume which leads inevitably to bad transparency. Information will always be missing as
either not all requirements can be fulfilled or the graphical representation is difficult to
achieve. For that reason, we also integrate an interface that enables users to write their
own GraphQL statements for querying any perspective on the IT landscape which they
currently require. The result of the queries are provided in json-based format but can also
be exported to Microsoft Excel. For this purpose, we integrate the open-source GraphQL
client "GraphQL Playground"!” developed by prisma'®. The menu component contains
one button which exports the query result to Microsoft Excel. An example query including
the output result is depicted in Figure 5.34.

7https://github.com/prisma-labs/python-graphql-client, last accessed: 2020-10-28
Bhttps://www.prisma.io, last accessed: 2020-10-28

145

https://github.com/prisma-labs/python-graphql-client
https://www.prisma.io

5. Automated Model Recovery via Runtime Instrumentation

6) &b 0ol

General Information

ID
APP-18866

Name

Teleservice CallStorage (TSCS)

Architecture Model

business-service

Last Seen
11/26/51670 10:33

Application Description

In der Teleservice CallStorage werden alle

Teleservice Calls inkl. MGU gespeichert
und Uber das TS Portal angezeigt.

Application Department
DE-812

Application Type
Technical Application

Application Version
1.0

Application Status
Active

® &b 0ol

Relationships

Called By
API_GW_WEB_INTERNET

WebAPI_Web
CDP_BASE
NGTP

Calls
Connected_Charging_Gateway

B2V SVDS
Car_Status_Info
CDP_BASE

NAV CNGW CORP
B2V-SEC

NGTP
Car_Status_Updater

RS

Communications Diagram

See communications

@ &b ool

System Utilization

CPU USAGE

CPU idle: 32 %
MEMORY USAGE
10425 MB /16000 MB

SSD 1 USAGE

255 GB/256 GB
SSD 2 USAGE
——

115 GB/256 GB

SSD 3 USAGE

246 GB/256 GB

SSD 4 USAGE

180 GB/256 GB

Figure 5.33.: Sidebar that opens after clicking on a Architecture Model or communication re-
lationship. Left: static information about the AM that is stored as annotations
in the database. Middle: communication relationship information separated
in calls and called by. Right: runtime information about the AM

146

5.4. Visualization Design

‘paAerdsrp st jnsax

ay) moy pue sarronb 1HYdern) 93uam 03 moy adurexa ue sajenisnyr Mara Y[, ewstJ Aq padopasp juarp TOYdern pg'g am3ry

(7]
o
X
m
=
>

T4NO AdOD

. 9seqelep

92.N0S ejeq 19919S

.D30p,,

SH3AV3IH dl11H

2dpdoSpupIT

y e AHOLSIH Adlll3dd

azA1040110 ”‘

147

6. Recovery of Business-related Models

The described concept in Chapter 5 that uses runtime data to automate the architecture
recovery focuses primarily on technical aspects of an IT landscape. However, an overall
management of EA models does not only cover the application and infrastructure layer but
also encompass the allocation of models within the business layer. Having a thorough un-
derstanding of all parts and pieces of the enterprise’s IT including their inter-relationships,
lead to profound strategic decisions and a smoother transformation of the EA into the
desired direction which is in line with business needs (Farwick et al., 2011b).

As demonstrated in Chapter 5 runtime data can only provide information about the
specialization and execution phase of technical models. However, business-related informa-
tion covering the status of ongoing projects, software development progress, performance
of products, the relationship to business services and business domains as well as team
definitions are not available in runtime data. This information resides in federated in-
formation systems and are used along the IT value chain. Consequently, it is necessary
to extract this information and map it with the runtime data in order to enhance the
common meta-model with further business-related information. With this approach, we
aim to achieve a complete and holistic view on the model representation. In the following
Sections, we present a concept of how to enhance the common meta-model with further
business-related information that cannot be extracted out of runtime data. A detailed
description of the concepts are presented in (Achhammer, 2019; Corpancho, 2019; Kleehaus
et al., 2019a, 2021; Machner, 2019).

In Section 6.1, we describe to what extent we extend our backend for supporting further
AMs that represent the business-layer of an organization. In this scope, we propose the
creation of a configuration file that must be manually maintained and assigned to each
deployed microservice. This file contains all required information for establishing the
relationship between business- and application layer.

As the maintenance of the configuration file introduces a manual process, several
stakeholders must be involved that contribute to the solution concept. Which stakeholders
are addressed and what tasks they must undertake is stated in Section 6.2. In addition, we
detail how the concept can be integrated into a common agile development process and
which artifacts in SCRUM need to be adapted accordingly.

The previous Sections outline the system and organizational design of our solution
approach. In Section 6.3, we focus on technical processes how to import the content of the
configuration file into MICROLYZE. In particular, we highlight the process of validating
the content of the configuration file and which prerequisites must be fulfilled.

Finally, we present three visualizations in Section 6.4, that we use to visualize the
application- and business layer relationship. For this purpose, we leverage clustermaps
and table views.

149

6. Recovery of Business-related Models

6.1. System Design

The field of software engineering has changed in the recent years to become as agile as
possible by leveraging various social and technical techniques that improve the develop-
ment process pace and quality (Hanssen et al., 2011). Social techniques are the ongoing
adoption of agile process models like scrum (Schwaber et al., 2002) or kanban(Ohno, 1988)
and even techniques directly related to the development itself like pair programming.

Continuous delivery(Humble et al., 2010) (CD) is considered as an emerging paradigm
that aims to significantly shorten software release cycles and improve feedback loops by
bridging existing gaps between developers, operators, and other stakeholders involved
in the delivery process. A prerequisite to establish continuous delivery, is a high degree
of technical automation. This is typically achieved by implementing an automated CD
pipeline (also known as deployment pipeline) (Shahin et al., 2017), covering all required
steps such as retrieving code from a repository, building packaged binaries, running tests,
and deployment to production.

As CD pipelines directly indicate a non-periodic change in the IT landscape, we regard
this technology as an important starting point to enhance our meta-model with business-
related architecture models. The overall system integration concept described in Archimate
3.0.1 is depicted in Figure 6.1 and detailed in the following.

Q0 e
-

2 Conhnuous Deployment Pipelines i i
3] Enterprise-/Domain Archif ih
[g9 Product Owner F:} =]
4 I
o 'A‘ f 1 (PEEE Commn Tes(REI6aSER- =~ ~~-=-===~ 1
- ') ment " i
E Product Owner / i define o !
Developer i ' g
g‘ ! N : deploy / containerize
° deploy = Validate JSON schema LN — ! 5
> L i against JSON config file y config file !
8 maintain / install ! d)
i : transfer transfer !
i i i
i H
i i
g v '
Development Environment 3 Static data O) Production Environment
| i H
@® microLvzE | @
<Name convention> (@ Container (@

‘ Analyze E‘ Collect =] }——(—

Monitorini : Micro-
Prt:beg E i FrontendE O— ? ’ service $:‘
3 Monitoring
| [om 8 [7]

:)
—_— 1 Monitoring(ﬁ_ogs

Monitoring @

Version @‘ ‘ cMDB @‘ ‘ WIKI @‘ I:l 3 _’O_ Server

Control Runtime
data

Federated Information Systems

Project @

Application and Infrastructure Layer

Figure 6.1.: Overall System Integration Concept

The Figure shows two layers that together represent a general agile-based software
development process. The bottom layer covers the application and infrastructure layer in
which software systems are developed and process business transactions. This layer is sep-
arated into different environments. In the development environment all new applications
are created by the development team. New or updated applications are deployed into the

150

6.1. System Design

production environment. The top layer of Figure 6.1 details all activities of the software
deployment process that is supported by a CD pipeline. Our concept for recovering
EA models is arranged between the development and production environment and is
an integrated part of the agile development process. It is performed with each run of
the deployment pipeline without any further manual intervention. In an iterative and
incremental software development process the models are updated at least with each
product increment release. Hereby, the following prerequisites must be fulfilled in order
MICROLYZE becomes fully operational:

1. First of all, a monitoring agent must be installed on all applications and server
instances. Those agents provide us with runtime data, so that we are able to recover
the technical aspects of the IT landscape.

2. Second, in order to extend our meta-model with business-related information, we
propose a configuration file (cf. Section 6.1.1) that is placed in the root directory of
the application’s source code repository. This configuration file contains business-
relevant information including model assignment in the business context.

3. Third, the CD pipeline is extended with a further quality check within the test
stage that validates the content of the configuration file, transfers the content to
MICROLYZE and cancels the deployment in case the content does not confirm to
the provided schema (more details about this process in Section 6.1.5).

4. Fourth, MICROLYZE is allowed to access federated information systems through
references and our software has the required rights to consume exposed data during
deployment. As IT4IT defines, a newly developed IT service leaves a digital twin
in each federated information system that is used along the value chain. Farwick
et al.(Farwick et al., 2013) elaborated which specific information system provides
architecture-relevant information, especially for EA model maintenance. By accessing
this information, we are able to recover the whole context in which the application
was developed. This concept is detailed in Section 6.1.3.

In the following Sections, we describe the single components of the concept in more
detail.

6.1.1. Configuration Files

As state above, all deployed applications integrate a configuration file that is placed in the
root directory of the application’s source code repository. The file is maintained manually
by the development team. The integration of a configuration file serves two purposes:

e Contextual information: The configuration file contains contextual business-related
information about that application. This encompasses on the one hand a naming
and a description of the primarily goal of the particular application, and on the
other hand the general allocation in the business context, like product assignment,
supported processes or business capabilities.

151

6. Recovery of Business-related Models

References to federated EA information sources: Federated information systems
store further important architecture-relevant information. For that reason, it is
necessary to extract those information and map them with the runtime processes,
i.e. deployed applications. However, mapping of different data sources demands
indispensably a foreign key relationship. Hence, we propose to establish the mapping
on the application or where applicable on the microservice level as the smallest unit.
In order to accomplish this goal, the configuration file additionally contains URL-
based references to the application’s representation in the federated information
systems.

The configuration file itself is specified in JSON! format. It contains mandatory key-
value json-based attributes, but can also be filled with arbitrary additional attributes. We
hereby leverage the technology pivio.io? and modified it according to our needs. The
mandatory attributes are the following:

Name: The name of the application represents an human-understandable unique
definition of the artefact. We recognized during our survey described in (Kleehaus
et al., 2019b) that many Enterprise Architects claim that “same things (apps, servers,
tools) have different names in different sub-organizations”. In most cases the name
of an application depends on the particular user role that determines the name.
For instance, developers recognize applications based on the name given in the
development framework configuration file. Administrators or Operators see the
name provided by the monitoring tool and the particular departments have their
own names as well. Hence, the application name specification in the configuration
file could lead to a standardized name assignment.

Description: The Description property contains further information about the pur-
pose of the application and which task it is supposed to solve.

Business Service: A Business Service is an explicitly defined exposed business behav-
ior and primarily defines the according application from a business perspective.

Product: Archimate defines a Product as a coherent collection of services, accompanied
by a set of agreements, which is offered as a whole to customers. The Product itself is
mostly defined by the business departments. Hence, the product assignment is very
important to understand in which business-specific relation the application was built.
In particular when service-oriented architectures are applied.

Business Function: The Archimate definition of a Business Function is A collection of
business behavior based on a chosen set of criteria, closely aligned to an organization, but
not necessarily explicitly governed by the organization. In our scenario this attribute
represents the business domain in which the application is allocated.

Business Capability: A Business Capability represents an ability that an organization,
person, or system, possesses. On the one hand, they provide a high-level view of

Ihttps://www.json.org, last accessed: 2020-10-28
’http://pivio.io, last accessed: 2020-10-28

152

https://www.json.org
http://pivio.io

6.1. System Design

the current and desired abilities of an organization, in relation to its strategy and its
environment. On the other hand, they are realized by various elements like people,
processes, systems, and so on that can be described, designed, and implemented
using Enterprise Architecture approaches.

The aforementioned mandatory attributes are at least required to establish the mapping
between the application- and the business layer. For this purpose, we extend our meta-
model with further AMs. In general, a Business Capability is provided by a Business Service,
which consists of one-to-many Application Components. A Product is compiled with one or
many Business Services and one or several Products group a Business Function. The adapted
meta-model is illustrated in Figure 6.2.

Business Function

1

<<Enumeration>> "
contains

ApplicationType
e

Java

NodelS Product
Database

PHP

Net 1

contains

1.*

Facility Business Service L ‘ol Business Capability
contains

1 1

runs on contains
‘ ‘ 1.% 1.%

<<Enumeration>> Node L 0.* | Application Component <
NodeType contains

Type: NodeType runson Type: ApplicationType
@5 R 1
virtualization
containerization
cloud

runs on

runs on

runs on

B 0.*

v o Application Service

. . contains
Application Interface |« ___ »

0.*

calls

calls

0.*

Device

Figure 6.2.: Adapted Meta-Model including AMs from the business layer

6.1.2. General Extension of the Configuration File Content

The listed attributes in the configuration file represent the minimum requirement to
achieve a mapping between the application and business layer. In addition, we enhanced
the implementation of the processing logic of the configuration file in a way it can be
easily extended and incorporate further arbitrary information, either in a key-value or
in a key-object format. Those extensions can represent either Architecture Model entities

153

O 0 NI N U s W N

N N N N = o = s e e e e e e
W N P, O VW 0 NN O U = W N =R O

24

6. Recovery of Business-related Models

which replaces already existing Architecture Models, or general information that are stored
as annotations in the database. An example for such an extension is shown in Listing 6.1.

Listing 6.1: Extended configuration file

A

// mandatory attributes
"name": "COD Booking Service",
"description": "A human understandable description of the service",
"business_service": {

"name": "COD Booking", //mandatory

"ID": "BS-123" //optional

"any": "further information" // optional
3,
"product": "...",
"business_function": "...",
"business_capability": "...",

// optional attributes
"application_collaboration": {
"name": "COD Application",
"overwrite": true
1,
"product_owner": {
"name": "John Who",
"contact": "john_who@mail.com"
3,
"used_ports": [5000,5001,5002]

The Listing contains one key-object property that extend the maintained AMs. They
are initialized by the definition of the particular AM type. The corresponding object
is compiled by one mandatory property, which is an unique "name". However, further
optional properties can be added as well, which are stored as assigned annotations. A
special feature is the optional property "ID". It does not define the primary key in the
MICROLYZE database as this key is created automatically. It reflects the entity in the
particular federated information system, which is primarily used to create and maintain it.
For instance, business-layer related entities like Business Service, Product, Business Function
or Business Capability are maintained in EAM tools like Iteraplan, PlanningIT or LeanIX.
These tools also create unique IDs for these entities. By using the same IDs, we are able to
establish a mapping between MICROLYZE and the mentioned EAM tools. However, as it
is often the case, those entities are not up-to-date or incomplete, so we cannot assume that
there will be always a match. For that reason, this property is declared as optional.

A further special feature is the boolean property "overwrite". If it is set to true, the
previously assigned AM entity is updated with the provided one. A detail description of

154

6.1. System Design

this process is presented in Section 6.3.3. For instance, a monolithic application is split into
microservices. Hence the Application Collaboration represents the related parent application.
Many APM tools recognize automatically which microservices belong together logically
and suggest a possible name of the parent application. However, this information must be
provided beforehand in the monitoring configuration in most cases, as the automatically
identified name is mostly not understandable. Overall, with this property, we can make
sure that the parent application follows a predefined standard.

The last two attributes "product_owner" and "used_ports" determine further information
that is added to the annotation table in a key-value or key-object format. It is possible
to extend the annotation table with arbitrary information. As we use a document-based
database like MongoDB, objects with several attributes can be easily managed.

6.1.3. References to Federated Information Systems

Farwick et al.(Farwick et al., 2013) conducted a survey in 2013 for elaborating a list of
potential tools that provide important architecture-related information that can be used for
IT model maintenance. Those tools are also used inter alia by Enterprise Architects to col-
lect information for their EA model maintenance endeavours. Examples are Configuration
Management Databases (CMDBs) that provide data about server, database and applica-
tion instances and their relationships. Project Portfolio Management (PPM) tools cover
information about ongoing projects including its start and end date, budget information,
as well as the artifacts affected by the projects. Change Management (CM) tools are used
in the context of ITIL in order to optimize the processes of implementing changes in the IT
landscape. The participants in the survey mentioned change projects, and the statistics of
tickets for applications as the data types that could be collected. Furthermore, Granchelli
et al.(Granchelli et al., 2017a) demonstrate a tool that leverages code repositories like
Github to extract further architecture-relevant information. This data covers information
about developers that contributed to the development of an application. Based on our
experience with previous projects many companies use Wikipages to describe and report
architectural concepts of an application. Those concepts are either written in plain text or
with modeling language support like UML.

In general, the life cycle of an application, starting with the architecture planning,
through the development and operation to the deletion, leaves a digital twin in many
collaboration tools that are required to support each phase of the value chain of the
application (The Open Group, 2019). In order to recover the EA models in its full
essence, we suggest to document each reference between the running application and the
collaboration tool that maintains architecture information from a certain perspective about
that application.

Listing 7.1 illustrates an example how those references could be modelled. First of
all, the beginning of a reference section is defined with the keyword references, which
contains an array of key-object pairs. Each array item represents a reference to a known
collaboration tool. The reference is described in detail with at least four properties. Tool
defines the tool itself that is to be accessed. Domainurl points to the domain in which the
tool is running and accessible. In the current state, we can only extract information that

155

O 0 N N U s W N

N N NN N RN N NN R 2R sl s 1 e s
X N O U kW N RO V0O NN U W N RO

29

6. Recovery of Business-related Models

are exposed via a RestAPI The corresponding resource is defined in the property apiurl.
Finally, the id points to the exact instance that represent the particular application.

Listing 6.2: Extended configuration file with references

{
// mandatory attributes
"name": "...",
"description": "...",
"business_service": "...",
"product": "...",
"business_function": "...",
"business_capability": "...",
// references to federated information systems
"references": [{
"pm": {
"tool": "jira",
"domainurl": "http://131.159.30.142:5000",
"apiurl": "/rest/api/2/component",
"id": "10002"
s
"cmdb": {
"tool": "servicenow",
"domainurl": "http://131.159.30.300:16001",
"apiurl": "/api/now/cmdb/instance/cmdb_ci_apps",
"id": "539f£0c0a8016407ec",
"apiToken": "fH45c45F"
X
H,
// further optional attributes
+

In order to store references, we add a new class to the storage-specific meta-model
illustrated in Figure 6.3. For simplicity, we omit all child classes that inherit from the
ArchitetureModel class. The new class is called References and applies the same schema
of the Annotation class. In the current version, the references can only be assigned on
Application Component level.

6.1.4. Importing and Processing of Configuration Files

In order to process the received content of the configuration file, we adapted the com-
ponents MICROLYZE.Collect and MICROLY ZE.Expose. The updated class diagram for

156

6.1. System Design

References Annotations
X

- name: String 0- - name: String 0.
- value: String 0.* - value: String

- validFrom: Date - validFrom: Date

- validTo: Date - validTo: Date

1 1 1
o X 2.% 1
Revisions ArchitectureModel Relationship

- name: String

- referencelD: String
- lastSeen: Date

- validFrom: Date

- validTo: Date

- createdAt: Date
- event: EventType

- owner: ArchitectureModel
- source: ArchitectureModel
- target: ArchitectureModel
- lastSeen: Date

- validFrom: Date

- validTo: Date

- deleted: Boolean

- type: RelationshipType

Figure 6.3.: Extended meta-model for storing entities within the MICROLY ZE.Store com-
ponent

those two components is depicted in Figure 6.4. New classes are highlighted in yellow. In
the following, we describe the adaptions in more detail:

MICROLY ZE exposes a REST interface that must be called via a POST request to process
the content of the configuration file. The related class is named ImportConfiguration. The
class contains four methods that are responsible to create AMs, relationships between AMs,
references to federated information systems and annotations. The creation of relationships
executed in the method create ArchitectureModelRelationship() is performed iteratively
in a hierarchical order. That means, from the lowest level represented by Application
Components up to Business Functions. A detailed description of this procedure is provided
in Section 6.3.2.

In addition, we create for each provided reference a provider class that inherits from the
UnifiedProvider interface. Those providers contain methods that retrieve the reference-
specific meta-model exposed by REST APIs. In order to establish the required connection,
we create the corresponding RestClients. Any information of the regarded application
that reside in the referenced tool is accessed via the provided id and apilr! maintained in
the configuration file. That allows to exactly address the instance in the respective source
system independent of any changes made to it such as renaming.

MICROLY ZE keeps the data it manages down to a minimum to avoid any synchro-
nization or update conflicts that arise with managing data that is owned by a different
system. While it might be considerable to cache some types of data to enable more efficient
querying of the enterprise graph, the maintaining of own copies of objects should be
avoided, as performed changes need to be collected too frequently which would stress
the systems unnecessarily. MICROLYZE realizes these constraints by only saving the
references to the application instances. With the support of the GraphQL framework, we
are able to realize adhoc queries to the federated information systems, retrieving only
up-to-date data.

157

6. Recovery of Business-related Models

MICROLYZE.Collect

<APM-specific Architecture
Model>

<<Interface>>

UnifiedProvider

f

Collector

<APM>Provider

<Reference>Provider

- frontendClient: FrontendClient
- restClient: RestClient

- restClient: RestClient

- deletionThreshold: Number
- backwardinterval: Number
- forwardinterval: Number

...reference specific methods

+ BackwardDiscovery()

+ ForwardDiscovery()
+ StoreArchitectureModel()

.source specifc methods...

ImportConfiguration

r T r r
<APM>FrontendClient u <APM>RestClient u <Reference>RestClient u

L T L T L T

- config: JSONObject

+ createArchitectureModel()

+ createArchitectureModelRelationship()
+ createReference()

+ createAnnotation()

MICROLYZE.Expose

<<Interface>>
ArchitectureModel

" <<Interface>>
- validFrom: Date

- validTo: Date
- lastSeen: Date T

[
<Reference Meta Model J
Entity>

ArchitectureModelResolver

- type: ArchitectureModelEnumeration
- deleted: Boolean

[1 [1
<Architecture Model Type> <APM>Resolver u ‘ DatabaseResolver ‘ <Reference>Resolver }7
L] L]

L T L T ‘

\
[
‘ GraphQLClient }7 UnifiedResolver

!] + DatabaseResolver()

+ DynatraceResolver()

+ AppMonResolver()

+ NewRelicResolver()

+ AppDynamicsResolver()
+ <Reference>Resolver()

Figure 6.4.: MICROLY ZE.Expose and MICROLYZE.Collect component extension for sup-
porting model import from federated information systems

158

6.1. System Design

For this purpose, we created new Resolvers for each referenced information system
that abstracts the meta-model exposed by the particular system. The particular entities of
the meta-model is maintained in the classes <Reference Meta Model Entity>. For example,
in order to retrieve all projects that involve the regarded application and are currently
ongoing, we access the project management tool JIRA. Applications are mostly modelled as
Components and assigned to one or more Projects. Components can be referenced in Stories
or Epics. The corresponding API for retrieving information about Components including
assigned Projects is: <url>/rest/api/2/component/<componentID>. Afterwards, we can retrieve
more information about a specific project via <url>/rest/api/2/projects/<component.projectID>

All those aforementioned classes build the foundation for querying application-related
information that reside in the collaboration tools. In order to support more tools, those
classes need to be duplicated and adapted accordingly.

6.1.5. Continuous Delivery Pipeline

Since the configuration file must be maintained manually, we must ensure that the content
is validated in order to guarantee a high data quality. For this purpose, we integrated
a separate test case into the CD pipeline that checks whether 1) the configuration file
is available in the defined application path, 2) all mandatory attributes are available, 3)
the references point to an available and accessible endpoint in the particular federated
information system, and 4) the content of the configuration file follows a predefined
schema. For this purpose, we validate the content against a JSONSchema file. In the
following, we describe how we developed the additional test case based on the open-source
CD pipeline Jenkins®>. However, any other CD pipeline can be used for this purpose. A
detailed description can be found in (Achhammer, 2019).

In order to adopt the pipeline, we create a SharedLibrary* that is useful to share parts
of pipelines between various projects to reduce redundancies. The shared library can
be defined in external source control repositories and imported into existing pipelines.
A SharedLibrary is defined with a name, a source code retrieval method, and optionally
a default version. The most important benefits of using a library in the context of the
suggested solutions are as follows:

e Central management and maintenance: A library can be centrally managed by the
responsible department. They can maintain the source code, extend its functionality
and provide different versions to cope with different technologies.

e Ease of integration: Libraries are easy to import and to integrate into pipelines. The
centrally managed code logic is loaded into the CD server instance and executed
decentrally. The code requires only the necessary parameters for executing methods.

e Reuse of existing credentials: As the exposed methods of the library are loaded
into the pipeline, it allows to reuse of the credentials that are needed to run the

3nttps://jenkins. io, last accessed: 2020-10-28
“nttps://jenkins.io/doc/book/pipeline/shared-libraries, last accessed: 2020-10-28

159

https://jenkins.io
https://jenkins.io/doc/book/pipeline/shared-libraries

6. Recovery of Business-related Models

deployment. Credentials are required in particular for accessing the referenced
information systems.

¢ Reduced roll-out and running costs: The aforementioned benefits reduce the roll-
out costs significantly. In case of updates, the development teams are not required
to integrate the logic anew. The only exception is when the method’s signature is
changed.

The additional Model Exposure stage, we integrate into the pipeline, is responsible to
validate the configuration file against a predefined JSONSchema and export the content
to MICROLYZE. How the library is used in detail is presented in Listing 6.3. First of all,
the procedure of the new stage must be added into the pipeline script before the final
deployment stage starts (line 14-37). The reason for this order is that a failed test case
should block the final deployment of the application in order to ensure the configuration
file is validated and follows the predefined schema. In the Microlyze documentation process
stage, we first extract the microlyze.json configuration file and the [SONSchema file and
translate it to a JSONObject (line 19-21). The paths must be given as a parameter. The
JSONSchema file should be stored in a shared folder on which every CD pipeline has
access to it. In the lines 24-26, we start the validation process by executing the method
microlyze.validate(). In case the validation is successful and the provided attributes follow
the predefined schema, we continue with the model exposure process by executing the
method microlyze.expose() (line 31). Basically, this method forwards the content of the con-
figuration file to MICROLYZE. MICROLYZE consumes the content and creates/updates
all corresponding AMs including assigned relationships. Afterwards, MICROLYZE returns
the IDs of the affected entities. Those entities are stored in the variable updated AM. This
variable represents an array with key-value pairs, whereas the keys are not unique but
reference to the main table Revision, ArchitectureModel, Relationship and Annotation.

After finishing the exposure process, the final release is executed (line 40). However, a
failed final deployment task would lead to an inconsistent model documentation, as the
new or updated application is not yet in production but already available in MICROLYZE.
In order to prevent this situation, we suggest to add a post section. The post section
defines one or more additional steps that are run upon the completion of the stages. In
the post section, we define conditions that allow the execution of steps depending on the
completion status of the pipeline. In case any stage is failed and the updated AM parameter
contains a list of IDs, then the rollback method microlyze.rollback() (line 48) is triggered
which removes all created records and corresponding relationships in the database. This
process is necessary as otherwise we experience an inconsistency between the documented
EA models and the real as-is IT landscape.

Besides assuring the availability of the configuration file, the validation process executed
in microlyze.validate() encompasses the following checks:

e JSONSchema validation: This check verifies whether all provided key-value proper-
ties follow the predefined schema. For implementing the validation logic, we take
advantage of the open-source Mozilla Jenkins pipeline library® that integrates all

Shttps://github.com/mozilla/fxtest- jenkins-pipeline, last accessed: 2020-10-28

160

https://github.com/mozilla/fxtest-jenkins-pipeline

O 0 N O U ks W -

I S N N N e e T
QG = W N =P © VW 00 N O UG b= W N —= O

6.1. System Design

methods written in groovy required for a full JSONSchema validation.

o Null pointer references: We allow exclusively read-only access. Hence, this check

pings all exposed REST APIs in the referenced information system and fails if the
HTTP respond status code is not 200, which determines a successful HTTP request.
In a GET request, the response will contain the entity corresponding to the requested
resource. Returned empty resources will also lead to a failed check.

e Repository matching: Our concept is powerful in recognizing schematic errors, but

not in the verification of the delivered information. That means, spelling mistakes
could lead to the creation of completely new AM entities although the true entity
already exists in the database. In order to restrict this scope of error, we suggest to
connect EA repositories to the validation process to verify the regarded business-
related entity is found in the EAM tool. However, this assumes that the entity is
created beforehand, which might not always be the case. Therefore, this check is
regarded as non-critical which will not lead to a failed deployment. In any case, the
result is reported to the user for possible manual adoption.

Listing 6.3: Example pipeline script

// import the microlyze-library into the pipeline script
\@Library([’microlyze-jenkins-library@master’])

// define return value for updated Architecture Model
parameters {

string(name: ’updatedAM’, defaultValue: ’’)

boolean(name: ’validConfig’, defaultValue: false)

// original pipeline stages (Checkout, Build, Test)
..

// pipeline stage to be added
stage(’Model Exposure’) {

steps {
script {

// read microlyze.json to a JSONObject

def microlyzeConfig = readJSON file: "${PATH_TO_CONFIG.JSONZ}"
// read microlyzeSchema. json to a JSONObject

def microlyzeSchema = readJSON file: "${PATH_TO_SCHEMA.JSONZ}"

// validate configuration file against JSON schema
env.validConfig = microlyze.validate(
config: microlyzeConfig, schema: microlyzeSchema

161

26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

6. Recovery of Business-related Models

// if config file is valid exzecute final documentation process.
if (env.validConfig) {
// the IDs of the updated AM are returned
env.updatedAM = microlyze.expose(config: microlyzeConfig, name
: NULL)
Yelse {
sh ’exit 1°

// start final deployment stage
stage(’Release’) {
// execute deployment steps
[...]

// in case deployment fails, rollback affected Architecture Models
post {
failure {
microlyze.rollback(affected_IDs: env.updatedAM)

6.1.6. JSON Schema validation

JSONSchema® is a specification for defining the structure of JSON-based data. It repre-
sents basically a contract that specifies the required JSON data-definition format, and
how to interact with that data-object structure. [SONSchema is intended to define com-
plete structural validation for JSON data and describes existing data format in a clear,
human- and machine-readable documentation. In order to validate JSON data, the schema
specification defines a vocabulary that can be used to describe the meaning of JSON docu-
ments, provide hints for user interfaces working with JSON data, and to make assertions
about what a valid document must look like. A complete terminology can be found in
https://datatracker.ietf.org/doc/draft-handrews-json-schema-validation/

The JSON Schema terminology asserts constraints on the structure of JSON data in-
stances. If the instance satisfies all asserted constraints, then the instance is said to be valid
against the schema. In the following, we describe the most important keywords:

https://json-schema.org, last accessed: 2020-10-28

162

https://datatracker.ietf.org/doc/draft-handrews-json-schema-validation/
https://json-schema.org

6.1. System Design

e required: This keyword specifies the minimum required JSON keys that must be
available in the JSON data.

e properties: Properties are key-value pairs that define the format of each key and
value of a JSON object. Properties contain inter alia the id of the JSON key, the value
data type, corresponding format and the pattern validated against.

o type: The keyword type determines the data type that a key is allowed to accept as a
value. Examples are object, string, number, boolean, etc.

e pattern: The pattern keyword uses regular expressions to express value constraints.

o format: The format keyword allows for basic semantic validation on certain kinds of
string values that are commonly used. This allows values to be constrained beyond
what regular expressions can do. Examples are email, hostname, ipv4/6, uri, date, time,
etc.

In Listing A.1 provided in Appendix Section A.1, we determine the required JSON Schema
for validating the JSON example provided in Listing 7.1.

6.1.7. Distribution and Location of JSON Schema Files

The distribution of the J[SONSchema files follows a hierarchical regulation as depicted
in Figure 6.5. At the highest level the Enterprise Architects create the master of the
JSONSchema file which represents the basis from which all further schema files derive and
are distributed to the lower levels including domain-, product-, and application level. That
means, the next lower levels must accept the specifications provided by the upper levels
and are only allowed to add more, but never remove specifications. As the figure illustrate,
the Enterprise Architects create the initial file and communicate it to the Domain Architects.
They might extend the schema with further specifications that need to be fulfilled by the
configuration files. Thereafter, the Domain Architects report the extended schema to the
Product Owners which are finally responsible to ensure the configuration file is created,
assigned to the particular application and fulfills the defined schema specifications. Also
on this level, the Product Owner are allowed to extend the schema according to their
needs.

After all, the J[SONSchema files are stored in a shared location with access control.
The Developer Teams create the configuration files that correspond to the particular
JSON schema that is applied for their application domain. The Developers are only
able to provide the demanded information if there is an active exchange between all
involved stakeholders, which entails an important sensitization of EA-relevant concerns.
In many enterprises, those concerns are often not accessible or comprehensible, especially
on development level due to missing stakeholder collaboration (Armour et al., 1999;
Henttonen et al., 2009; Lam, 2004; Meilich, 2006; Shah et al., 2007; Templeton et al.,
2006). Finally the CD pipeline retrieves both file types and validates the content of the
configuration files against the predefined schema.

163

6. Recovery of Business-related Models

O ™\
= Distribute Distribute
— Enterprise Architects

communicate Master JSON Schema

Distribute Distribute Distribute Distribute

S0
=
Domain Architects

‘ Level 1 JSON Schema Level 1 JSON Schema

communicate:

communicate

O
-

— Product Owners

Level 2 JSON Schema—Level 2 JSON Schema Level 2 JSON Schema—Level 2 JSON Schema

m
=]
-
(]
=
©
=8
(%)
()
-
()
<
o

| store store

communicate

create backlog item Shared Location with Access Control
definition of done £

@)
o
3
o,
5
=
)
<
o

[9A97 1oNpOId

' I
Validation against corresgonding JSON Schema

oo

|

'
vy v

g9
=
Developer Teams

Configuration Files

>
©
°
=
QO
=5
o
=]
=
(0]
<
ol

Figure 6.5.: JSON Schema location and distribution overview

6.2. Organizational Design

Microlyze maintains the AMs of the current IT landscape that is supplied with different
information systems, above all the APM system and the maintained references in the
configuration file. With the extraction of architecture-relevant information from different
sources, we follow a decentralized setup originally proposed by Fischer et al. (Fischer et al.,
2007) who stated that each stakeholder in an enterprise (e.g. Enterprise Architect, Systems
Operation, Project Manager, etc.) needs their own set of tools which they are familiar with.
However, every solution concept or software is only successful if the involved stakeholders
who are required to bring this solution in operation 1) accept the additional effort and 2)
can easily integrate it into their daily work. In the following Sections, we outline which
stakeholders need to be involved in the proposed concept. Thereafter, we detail how the
concept can be integrated into a common agile development process and which artifacts
in SCRUM need to be adapted accordingly.

6.2.1. Roles and Responsibilities

The determined roles represent an integrated part of the solution concept. They need to
interact with each other and assume certain tasks to achieve the overall goal of automated
EA model maintenance. The roles are defined as follows:

Enterprise Architects: The Enterprise Architect is responsible for aligning the business
mission, strategy, and processes to its IT landscape. In terms of EA documentation
Enterprise Architects are responsible for defining central guidelines and rules for modeling.

164

6.2. Organizational Design

The department centrally defines and models the most central business layer elements
including Business Domains, Business Functions, Business Capabilities, Products, etc. in
close collaboration and alignment with business departments. Hence, the EA department
has the overall accountability for the EA repository, its operation and maintainability.

Domain Architects: A Domain Architect is a specialist with deep knowledge within a
particular domain of their expertise. In the course of documentation, they cover most of
manual modeling efforts and ensure that the business and application layer are reasonably
documented and interconnected by the most important relationships. This information
is mainly obtained by the means of meetings and intensive collaboration with Developer
teams.

Product Owners: The Product Owner role was introduced during the creation of the
agile development process framework SCRUM (Schwaber, 2004). The Product Owner
is a member of the Agile Team responsible for defining user stories and prioritizing the
Backlog items. The Product Owner has a significant role in quality control and is the only
team member empowered to accept stories as done. Product Owners take the responsibility
for the documentation of the application they own including the relationships to other
applications, provided and consumed interfaces, transferred business objects and the
related infrastructure platforms they are operated on.

Development Team: The Development Team carries out all tasks required to build
increments of an application. While Domain Architects are specialists in one facet of their
domain, and Enterprise Architects keep an eye on the bigger picture, Developers focus
on one solution at a time, and have a deep focus on technical details. In the course of
documentation, the Development Team is mainly responsible to document the interplay of
created software components, as well as to comment the software code in detail.

In general, those roles can be clustered into three user groups. 1) Enterprise- and Domain
Architects represent the Enabler group. They are responsible to define which AMs and
relationships need to be recovered and documented in an automated manner. Not all
models and relationships are equally important or change so frequently, that is impossible
to document them manually. As we will see in Section 7, it depends on the company’s
assessment which information must be included in the automated documentation process
or can be omitted. Overall, the required information pool is modelled in the J[SONSchema
format and reported to the development team. 2) The Worker group has the task to fulfill
the defined requirements. The Product Owner as part of the Worker group ensures that the
configuration file follows the predefined schema, all information is provided and adapts
the definition of done (DoD) for the SCRUM development process. The Developer team
creates the corresponding JSON-based configuration file for each application and integrates
the additional validation stage into the CD pipeline. Furthermore, the Developers install
the monitoring agent on each applications. 3) Finally, we define the Beneficiary group that
benefits most from the solution. As the management of EA models and the automated
recovery of such models is important and useful for every user role that takes part of
the IT service value chain, we assign every aforementioned role into this group. The
Enterprise- and Domain Architects might be mainly interested into the business-related
AMs and the business- and application layer assignment for EA model maintenance.

165

6. Recovery of Business-related Models

access()

A

reportRequirements() é

@ :Backlog

Domain Architects Enterprise Architects

iy

create()

createTask(JSONConfig)
definitionOfDone()

apply(JSONSchema)

forward(JSONSchema) o

:JSON >
Schema @

Product Owner

access()

o

:Application ,_Um

=

-
deploy(Application) develop() Devel

o
k]
o

consume(JSONSchema)

<

()o1e840

integrate(JSONConfig)

:Microlyze :Pipeline :JSON Config
forward(JSONConfig) consume(JSONConfig)

TestResult
- >
generate() respond(TestResult)

Figure 6.6.: Interplay of the different roles and components involved in the overall solution
concept.

The Product Owner and Development Team requires a more granular insight into the
application communication and deployment relationship for performance assessment and
troubleshooting. However, we regard the Development Team to take most of the effort to
make the solution concept runable.

6.2.2. Adapted Agile Development Process

The interplay of all those roles and components and how they are allocated into the overall
solution concept is illustrated in the communication diagram shown in Figure 6.6. Once
the preconditions are established, the IT landscape documentation becomes a natural part
of the agile development process, in which the particular AM is updated at least with each
product increment release.

First of all, the Enterprise Architects report their requirements to all Domain Architects
which AMs and relationships are incomplete or outdated in their EA repository and need
to be included in the automated documentation process. The Domain Architects translate
the requirements into the J[SONSchema format. It is important that Domain Architects
decide which information system contain important architecture-relevant information and
should be referenced by the configuration file. Of course, Domain Architects can extend

166

6.3. Process Design

the requirements to their needs, resulting in a more comprehensive schema.

Afterwards, the [SONSchema is forwarded to the Product Owners of each Agile Team.
They define a new UserStory that contains the requirements for the solution’s integration.
For further facilitation and reduction of comprehension problems, the Product Owners
must stay in active exchange with Domain- and Enterprise Architects. This improves the
communication between those roles which used to be rather low in most companies. The
UserStory is added to the ProductBacklog and at some point selected for execution as part
of a SprintBacklog. Depending on how fast the roll-out should proceed, the backlog items
priority may vary according to the organization’s needs.

During the Sprint, the Development team create the JSON configuration files and fills
them with support of the Product Owner. Once the files are assigned to the applications,
they finally commit the adapted source code repository. In parallel, they integrate the
additional stage for validating the configuration file into the CD pipelines. This completes
the UserStory. The provision of the models itself is automatically performed with each
run of the deployment pipeline. There is no further need for manual intervention. The CD
pipeline finally reports the test results back to the Development team. If the Developers
do not adhere to the defined schema, the application cannot be deployed to production.

Once the solution is integrated, it has to be ensured that the information contained in the
configuration files is kept up-to-date. In order to achieve an up-to-date model management,
we suggest to redefine the Definition of "Done” (DoD) for a product increment. The DoD is
a Scrum artifact that ensures a common understanding of what "done" means and what
criteria have to be fulfilled (Schwaber, 2004). By including this aspect in the SprintReview
it is possible to ensure that the information is maintained before any product increment
release.

6.3. Process Design

In the previous Sections, we outline the system and organizational design of our solution
approach. In the following Sections, we focus on technical processes, we elaborated on to
import the content of the configuration file to MICROLY ZE. We publish those processes in
(Achhammer, 2019; Kleehaus et al., 2019a, 2021). First, we detail the performed sequences
in the CD pipeline which are necessary to validate the content of the configuration file
and to transfer the content to MICROLYZE. Next, we elaborate the steps that are carried
out to process the content and on which challenges we have to pay attention.

6.3.1. Performed Sequences in CD Pipeline

Figure 6.7 depicts the overall sequence diagram of the model provision process. Grey
activities express the normal continuous deployment steps that are common in most
pipeline configurations. The activities marked in yellow indicate new steps that must be
introduced into the continuous deployment. In general, the process can be broken down
into three sequences, which we detail in the following:

Sequence 1: Extraction and Build: The deployment process starts as soon as the

167

6. Recovery of Business-related Models

[validation == success]

[validation

deploy to production

Developer

I
|
T
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I

loop

[for each key-value pair]

opt

[Application exists == true]

reate Application

alt

[AM entity exists == true]

[else]

reate new relationship

create new AM entity

create new relationship

reate annotation

L :Version Control :Referenced :EAM "
:CD Pipeline :Shared Folder . :Microlyze
System Tool Repository
T T T T T T
L checkautsource code— b ! ! ! !
| | | |
| | | |
— — — send source code— - — | | | |
| | | | | |
| | | | |
build artifact } } } } }
4_] | | | | |
run tests				
4_]				
request microlzye json: } } } }				
< — —send microlyze json — } } } }				
equest JSON } } }				
i				
!				
——————————— sendJSONSchema-——————————lr'				
validate JSON Schema			i I	
4—1				
loop ! T ping REST Api T >	i			
[for each reference] } } } }				
—————————————— T — -response with HTTP code— —	——————————————			
T T				
I L P y T				
loop T arch for existing AM entity				
[for each AM entity] } 1 }				
—————————————— ——————————entity found / not found = — — — = = = — — — == ————————————				
T T T				
		I		
alt [nd configuration fil T »,]
I
c
CE
[E

Figure 6.7.: CD pipeline validation process

168

6.3. Process Design

Developer uploads the modified source code to the Version Control System (VCS). This
event triggers the automation of the CD pipeline. Initially the regular pipeline stages are
executed, which encompasses:

1a) The checkout step loads the artifact’s source code from the VCS system into the
CD server’s working directory

1b) The CD server builds the source code into an executable artifact

1¢) Functional tests such as unit tests or integration tests are performed to ensure
the built artifact works correctly

Sequence 2: Validation: If all previous steps performed successfully, the validation
sequence continuous before the application is finally deployed to the production environ-
ment. In case one of the following activities are not successful the validation process end
with an error report and the Developer are notified accordingly. The validation sequence
consists of the following steps:

2a) The first stage verifies the existence of the JSON-based configuration file mi-
crolyze.json in the specified path. It is retrieved from the VCS. Furthermore, this
step obtains the application’s technical name, i.e. the name that is assigned to the
artifact, by analyzing the configuration file of the development framework which is
either provided in POM.xml, application.properties, or package.json, etc. files, depending
on the used framework. The technical name is required as an ID to establish the
mapping between the runtime data and the static data provided by the configuration
file. If the stage is not able to retrieve this information automatically, the artifact’s
name can also be provided as a parameter in the microlyze.validate() method.

2b) Next, the JSON Schema file is retrieved from a shared folder. We suggest to store
the schema file in a location at which all developer teams in the specific domain has
access to it.

2¢) In this step, the pipeline validates the schematic correctness of the configuration
file with support of the JSONSchema.

2d) Thereafter, we loop through each provided reference in the configuration file and
ping the addressed information systems. The step can only be regarded as successful
if the HTTP respond code is 200 and the returned resource is not empty.

2e) Finally, we validate all delivered AM information by searching the entity in the
connected EA repository. However, this is the only step, which will not lead to a
failed stage, since non-existent entities only means an incomplete documentation.

Sequence 3: Model Creation: In the final sequence, the actual model creation process
starts by sending the content of the configuration file in JSON format to MICROLYZE.
The steps of the upcoming sequence is performed in the MICROLY ZE backend and can
be grouped into three main activities. A detail description of the following activities is
provided in Section 6.3.2:

169

6. Recovery of Business-related Models

e 3a) In the first step, MICROLY ZE consumes the content of the configuration file and
iterates through all key-value pairs. Applications that are not in the database yet
are inserted as a new entity. In case the application is already known the lastSeen
timestamp is updated.

e 3b) In the next step, all provided AM entities are processed. Unknown entities are
newly added to the database and already available entities get an updated lastSeen
timestamp. Furthermore, the relationship table is updated as well.

¢ 3¢) In the last step, all remaining key-value pairs are inserted as annotations or as
references to the Annotation and Reference table, respectively. Also in this step a
comparison with existing entities is carried out in order not to transfer duplicates
into the database. However, with support of the overwrite parameter, the existing
value of a provided property can be overwritten.

In case all activities of the above sequences perform successfully (with exception of
activity 2e), the application is deployed to the production environment and MICROLYZE
starts with processing of the received runtime data. It is important to highlight that the
mapping between the information delivered by the configuration file and delivered by
runtime data is achieved based on the technical name of the application extracted from
the development configuration file, i.e. the technical name represents the primary key. If
this name differs in the monitoring tool, then it must be adapted manually.

6.3.2. Processing the content of the configuration file

The detailed workflow for processing all information delivered by the configuration file
is depicted in Figure 6.8. First of all, the MICROLYZE.Collect component receives the
information and stores it temporarily in the cache. Thereafter, the content is processed
chronologically in three steps:

e Step 1: The first step covers the mandatory keys Name and Description. If there
already exists a corresponding Application Component for the delivered application
in the database, the lastSeen attribute is updated to the current timestamp. If not,
MICROLY ZE creates a new Application Component entity.

e Step 2: The second step is an iterative process and focuses on provided AMs
including the mandatory keys BusinessService, BusinessCapability, Product and
BusinessFunction. In each iteration the next AM is selected and processed as fol-
lows: First, the system checks whether the stored Application Component is new,
i.e. the lastSeen timestamp equals the created At timestamp. If it is not new, the
meta-model is updated based on a decision tree detailed in Section 6.3.3. Otherwise,
a further check is performed to determine whether the selected AM entity have been
already created in MICROLYZE. 1If it has been, the lastSeen timestamp for the AM
is updated, as well as new relationships are established, most notable between the
Application Component and the Business Service. In case the AM entity is new, then it is

170

6.4. Visualization Design

inserted as the appropriate type before the relationship table is updated accordingly.
Afterwards, the procedure begins over with the next provided AM.

e Step 3: In the third step, we store all remaining keys in the Annotations table and
the references to the federated information systems in the Reference table. Same
as Step 2, this process is performed iteratively. We proceed as follows: First, we
select a remaining key and store it if the Application Component is new. Otherwise,
the property overwrite indicates whether the value of the selected key should be
overwritten. In case overwrite = true, a new revision of the Application Component is
created before the key-value pair is stored. The same process is also applied with
references, with the exception that references are stored in the Reference table.

6.3.3. Meta-model update based on decision tree

In the previous Section, we described the procedure, how provided AMs are processed
for new applications. In the following Section, we elaborate on how the process must be
extended for updating existing applications. The workflow is based on a decision tree
(Quinlan, 1987) and illustrated in Figure 6.9.

Decision tree is a tree-like model of decisions that help to identify which paths or
decisions lead to specific goals. In our scenario decisions are represented by conditions
and goals are sequences of activities. We separate between three conditions: the root
condition validates the existence of the particular AM entity in MICROLYZE. The second
condition checks whether there is already an available parent-child relationship from the
provided AM type that lead back hierarchically to the Application Component. The third
condition checks whether the overwrite property is set to true.

For example, let us consider the following scenario. A defined AM entity in the
configuration file is not yet available in MICROLYZE. However, there already exists a
relationship to another entity of the same AM type. Hence, in case no overwrite property
was set, then the user receives an error respond with the parameterized notification “A
relationship to a <Architecture Model> with the name <name> was already defined.” Otherwise,
the following sequence is performed. First, the AM entity is created in MICROLYZE.
Thereafter, new revisions for all AM entities are created that are subordinate in hierarchical
terms. Finally, new relationships are created for all concerned AM entities.

6.4. Visualization Design

In the previous Sections, we detailed the system design how to enhance the EA model
management with further business-related information via support of configuration files.
This enhancement bridges the gap of missing or incomplete documentation of the de-
pendencies between application- and business layers. It discloses where applications are
located in the business domain. In the following Sections, we describe approaches how
this additional application- and business layer relationship information can be represented
visually. For this purpose, we leverage clustermaps and table views. The visualizations

171

6. Recovery of Business-related Models

Step 3

Step 2

Update AM entity
lastSeen attribute
-

Create Application

Step 1

Figure 6.8.: Workflow for processing information delivered by the configuration file

172

6.4. Visualization Design

False

True

Relationship’
to AM type
exists?

AM entity
exists?

Create

Relationship’
to AM type
exists?

AM entity
exists?

Relationship
to AM type
exists?

eate Create AM ’
N Creatg AM application entity
entity component relationships
revision
Respond with
Yes——»|
error result
Create Create AM |
application entity
component relationships
revision
Create Create AM
N Create AM application entity
entity component relationships
revision +
Create AM . C’I’ie;tt?on Delete existing Create AM
Yes—»| X PP relationship to entity
entity comgqnent AM type relationships
revision
Create
N application
component
revision
Create | -
Ye application Del efe ex:tmg
component re aAt;\:ns ipto
revision type

Figure 6.9.: Decision tree for ArchitectureModel updates

173

6. Recovery of Business-related Models

are based on the same architecture detailed in Section 5.4.1. Again, we use the Archimate
taxonomy to visualize AMs and their dependencies and address the research conducted
by Wittenburg (Wittenburg, 2007).

6.4.1. Architecture Model Cluster

In general, a cluster map combines elements (e.g. information systems, databases, products,
etc.) into logical domains. The domains are derived from functional areas, organizational
units or locations. The visualized elements can be nested to adapt the information granu-
larity. The representation of relationships between elements are facilitated by hierarchically
overlapping layers. That means, the schematic relation of the elements is represented by
locating the elements in the logical border of the parent element to which it belongs to. A
further way to distinguish between the various logical elements is the use of a colour code.
A cluster map does not specify how the domains are placed and how the different elements
are arranged within a domain. A space-optimizing positioning on the map tries to create
a map with minimal size. Thus, when such a card is created, rules are already established.
The drawback of this visualization are duplicated elements. There is the possibility that an
element which belongs to more than one logical parent elements appears several times on
the map.

Goal: The Architecture Model Cluster visualization illustrates a management overview
of the hierarchical dependencies of all AMs in an organization. It describes the depen-
dencies of all Business Functions, Products and Subproducts, as well as Business Services and
which Application Components are assigned to the aforementioned AMs. It mainly repre-
sents the business layer of a company and can be easily extended with further information
like the application type, Nodes or Facilities as well as Business Capabilities in case those
information are relevant for the particular use case.

Visualization: Figure 6.10 presents the Architecture Model Cluster view in detail. In this
example, the topmost parent folder node represents Business Functions and the following
child nodes represents those AMs that are subordinated in a hierarchical perspective.
Since Business Services are manually defined by the business departments and Application
Components are automatically recovered using runtime data, the subsequent mapping of
those layers must be achieved via the configuration file.

The positioning of the nodes and group nodes are determined automatically via an
algorithm provided by the yFiles library. The positioning cannot be changed manually.
With this approach, we achieve a high recognition value by the users. The top-down
and left-right ordering of the nodes is performed randomly and does not indicate any
prioritization.

Not every AM is assigned to a parent node within the same hierarchical level. If this is
the case, MICROLYZE skips automatically missing layers and establish the connection to
the next available parent node. However, if the relationship information to the topmost
parent node, i.e. the Business Function is not available, a dummy Business Function is
created and named as "unknown".

174

6.4. Visualization Design

Interaction: The menu component of the Architecture Model Cluster view contains three
input fields. The datepicker shows the selected architecture timestamp. By selecting an-
other date, the visualization process described in Section 5.4 is restarted with an adjusted
timestamp attribute in the GraphQL statement. Future dates are deactivated and cannot
be chosen. The same applies for dates that are older than the last known architecture
timestamp. The "select level" dropdown field is a multi-selection. The values are fetched
from the database and represent basically the hierarchy structure maintained in the config-
uration file, plus the Architecture Component recovered using the runtime data. By changing
the values selected layers are shown or hide in the graph, in order to reduce the granularity
of information. Performing a search in the search bar lead to a highlighting of the nodes
which names are within the research result.

Apart from using the menu component, a direct interaction with the graph is also
possible. Group nodes can be expanded or collapsed by clicking on the # button. By
using the mouse wheel the graph can be zoomed in or zoomed out. A sidebar is opened
immediately after clicking on any element node. This sidebar is showing further static
and dynamic information about the selected node.

175

6. Recovery of Business-related Models

‘pasderoo 10 pauado aq
ued SNV padnoin ‘uorjejussardal 193sn[d Uurewop e BIA SjapoN 24132231404y Jo sauapuadap [ednyorersry Suizijensip 019 aIndig

Ayjioeq _‘_‘l_‘__ 9pON D @o19s uoneolddy (] jusuodwio) uoneoyddy [& uoneiogejog uoneoyddy () edinies ssauisng (] 1onpold [uonoung ssauisng @ $s900.d ssauisng <=

 Jusuodwio) uonedlddy

. aseqejep

@0

o
®

=
®
]

|
ny
| |8

|
|

:

!

B0 oovwsossy| |Brvessunes-ossy| |BO)]
L - - - - . - L LB} LB} LB}
essouy poeued
== ey sepan o B0 mustnes-vo| B0 soeewowa| SN pemewen - mono) [EC _ sosswossy| [0 isvossomsy| |BICHwev movewsom
Bz awandon| (B2 woneusom wonespen| Ee] swoues Auroes aneod
Sl
- - LR LB} . - LB} - - LB}
s 20 wsms vosestes swant oasv sasvozn
Byt oremios ousv| B0 = E=2 = == B
(El=] Sl ea
=]

LB
e
ﬁlliﬁll II; ﬁll ﬁllifll:.lliﬁll ﬁ.ll ﬁll
280 (Sl 20 EeQIUaISIHED | 280 SESIED |
= s Wll 7 Wll 7 WII
20 e oS 1se|
Ele] s opron)
lez om0 eeq sprien|
BY sooos puowoeg popowoo
[ELER BEETEN ONON\NO\LQO duweisawl] 21n}08)YdIy [SPON Yoieas

921N0S ejeq 1099S

{)
azA10401N -

176

6.4. Visualization Design

6.4.2. Architecture Model Table View

Although graph-based and cluster-based visualizations are frequently used in EA man-
agement, both visualizations face scalability issues with large amounts of data. Filter,
grouping and search functionality can help in the beginning, but they also reach their
limits at some point. For that reason, we propose a table-based visualization of dependency
information. Hereby, relationships are represented by using tabs and filter combinations.

Goal: The Architecture Model Table view list all AM entities in a table structure. With
this approach a large amount of data can be easily managed and saves a lot of space. Fur-
thermore, the readability of large data sets is also supported by tables by using pagination.

Visualization: Each particular AM is shown in horizontally arranged tabs. The sequence
is based on the hierarchical order of the AMs. Each tab content contains a table which lists
all entities and attributes of the particular AM. Below the tables, a pagination supports
how many records are shown at once.

Interaction: In order to constitute the dependency between AMs one can select any
row in the particular table and a filter is set on this entity. This filter is also applied to
any following table, that means, only those records are shown that are related to the filter
selection. It is also possible to set more than one filter. The filter itself is indicated by a
symbol shown on the tab.

Each attribute in the particular table can be ordered in ascending or descending order.
The ordering is also applied when a filter is set. The ordering is shown via an arrow
symbol on the attribute header.

The menu component of the Architecture Model Table view contains two input fields. The
search component consists of a dropdown field that lists all AMs and a search field. By
selecting a value in the dropdown field the search is only applied on the selection. In
the current state only full text search is supported. The datepicker indicates the shown
architecture revision and can be changed by selecting another date.

177

6. Recovery of Business-related Models

“UOT}eULIOJUT UOTjejOUUR S[e[TeAe) 0} Jurpiodde payrads
9q ued d[qe} renonted oY) Jo suwnjod Y] uonejuasaidal paseq-a[qe) e Ul SjapojN a41nj0a314d4}/ JO UORZI[eNSIA 119 3INJL]

4 smoig Ljo L obed
S92IAIBS Pa}IBUU0) | [SeEliele)e) 1SINA [9BYDIN Lv:¥2:20 - 6L0Z°6°0L SO3
S9OIAIBS Pa3oauuo) | S03/000 1IN\ [9BYDIN L¥:v2:¢0 - 6L0C°6°0L SAAS Acd
S9DIAISS P3}OdUUOD |V S$03/000 1SINM [9BYDIIN L¥:v2:¢0 - 6L0C°6°0L 200
S82IAISS Paldauuo) | 29S d19N J9lad sueH Ly:¥2:20 - 6L0C°6°0L d1lON
S92IAISS Pa}oaUUOD | uonesado AZg 1919 sueH L¥:v2:2¢0 - 6L0C°6°0L O3S Acd
S92IAISS Pa}oBUUOD | 295 d19N Jared sueH L¥:¥72:20 - 6L0C°6°0L asSs1
S82IAIBS Pa1IBuUU0) | uonesado AZg 19}9d sueH L¥:¥2:20 - 6L0Z°6°0L WOD AZd
S9OIAI9S Pa}OLUUOD |V uonesado Azg 199 sueH L:¥2:20 - 6L0Z6°0L Burojuo
$80IAIBS P81osuu0) | 985 d19N JIe)ed sueH L:¥2:20 - 6L0C'6°0L uonealjddy ynejeq
Juswiledaq wes) JauMQ 1onpold u9as 1se7 aweN
sal|1oe4 SOPON sjusuodwod ddy suolnelsoqe||od ddy S92INISS SSauisng syonpoidgns s1oNpoId sujewoq
A
0202/20/70 dweysewi) simosuyoly [9PON Ydiess
4 9SEQRIBP 90INn0S Bleq 199195 wN>|_ OJIJIA ”‘

178

6.4. Visualization Design

6.4.3. Aggregated Architecture Model Communication

The AM communication visualization displayed in Figure 5.30 shows which Application
Components exchange information. If this aggregation level is too fine granular to fulfill
certain use cases or to answer specific questions, GraphQL queries can also be designed
with maximum flexibility, ensuring the execution of queries on any aggregation level of
the IT landscape architecture. In this case, on Business Service level, as illustrated in Figure
6.12.

Goal: An aggregated AM communication visualization enables users to analyze data
exchange behavior on a higher aggregation level. The goal of this feature is to remove
unimportant details and to provide a more holistic perspective of the IT landscape com-
munication architecture. Hereby, users are able to uncover communication turntables and
corresponding bottlenecks.

Visualization: The nodes are arranged tree-like and the position is determined auto-
matically. The positioning cannot be changed manually. Those nodes which have neither
in-going nor out-going communication paths are arranged at the very top. Nodes with
communications are layouted underneath. Each child nodes are positioned in levels. By
moving the mouse pointer over a node, the node will be highlighted in red as well as all
assigned communication paths. The hovering of an edge leads to the highlighting of the
edge inclusive of the adjacent nodes.

Interaction: The interaction possibility of this view is the same as in the Architecture
Model Communication visualization. That means, a sidebar is opened immediately after
clicking on any node. The menu component contains two input fields, i.e. the date-picker
and the search bar.

179

6. Recovery of Business-related Models

‘TeIdUR3 U 9)edTUNUIWIOD SIITAIDS UYDTUM [I9AUN 0} [IAJ] 2012495 SSaUISng
uo sapuapuadap uonedTUNUIWOD Y} d3e3a133e om ‘ordurexa Sy} U "SUISdU0D ISP[OYSYE)S JUDISJIP SSAIPPE 0} I9PIO
ur oa9] uonje3ar33e 1Yy ue uo pawrroyiad aq Os[e Ued SUOEITUNWIWOD [IPOJA 241199311d4Y/ JO UOTJeZI[ensIA Y[, :'g['9 23]

ddy (] jusuodwo) uoneolddy m uoneioqe|jo9 uoneolddy (P od1nes ssauisng [1onpoid [uonound sseuisng @ $s900.d ssauisng <=

uonduosaq uonesyjddy

GL:0L 0£9LS/92/LL

uaasg ise

nq

[9POIN 24n308)Y2IY

uoljewIou] [esaus9

[Fo @ ® 0202/20/70 dwersewi) simosnyosy [9POIN YoJeas

4 9SECBIEP 50.N0S Bled 10°[9S 9zAJonIIN ”‘

180

7. Evaluation

In the previous chapters, we presented the system, process and visualization design of
MICROLYZE. Based on a prototypical implementation, we conducted multiple kinds of
empirical evaluations to assess different aspects of our contribution.

During our evaluation, we performed surveys, experiments, case studies and interviews
as Wohlin et al. (Wohlin et al., 2012) suggests for conducting empirical research. In general,
surveys as well as interviews collect information from practitioners to describe, compare,
or explain knowledge, preferences, and behavior of individuals (Fink et al., 2006). Surveys
and interviews are accomplished by handing out written or online questionnaires that
are filled by individuals. Experiments takes place in controlled environments, in order to
get an understanding of relationships between specific factors. Furthermore, case studies
empower researchers to observe a software tool within an industrial setting, and to study
its performance in real-life situations (Kitchenham et al., 1995; Yin et al., 2003).

The combination of different feedback enriched by several evaluation methods result
in a profound empirical evaluation (Shull et al., 2001; Wohlin et al., 2012). As argued by
Yin (Yin et al., 2003) only multiple sources of evidence lead to an acceptable conclusion in
the context of an empirical study. As a consequence, we chose to perform different kinds
of empirical strategies as part of this thesis” evaluation. In the following, we detail our
evaluation process with support of Figure 7.1 and point out the core publications.

=

E - Survey Experiment Case Studies Interviews

% 2 Fink et al. 2013 Wohlin et al. 2012 Kitchenham et al. 1995 Mayring 2010

3]

g 2 ~ —— ~
e

<+———— Prototype refinement in multiple iterations —

Analysis about EA
model maintenance

Prototype integration
in automotive

Collecting feedback

Concept elaboration .
from practioner

Prototype integration

Performed
Activtiy

and application of 'and prototyPe industry; prototype n Insurance |.ndustry, about concept and
o 0 implementation . prototype refinement
microservices refinement prototype

Oy oo
T g
% § 10 companies 4 companies BMW Allianz 17 companies
H § 58 practioners 17 practioners 7 practioners 14 practioners 19 practioners
B S
" Kleehaus et al. 2018a
1= Kleehaus et al. 2018b
S s Kleehaus et al. 2019b Graeff 2017 Kleehaus et al. 2020 Kleehaus et al. 2019a
R rae Machner 2019 Kleehaus et al. 2021
58 Schéfer 2017 Achhammer 2019
g3 Janietz 2018

n Corpancho 2019

Figure 7.1.: Performed evaluation activities combining different research methods

Initially, we started with an online survey (Kleehaus et al., 2019b) among 58 IT practition-
ers in the German market to analyze the status quo in the adaption of microservices and

181

7. Evaluation

what challenges organizations face while documenting microservice-based IT landscape
from an EA perspective.

Next, we performed multiple experiments (Corpancho, 2019; Graeff, 2017; Janietz, 2018;
Kleehaus et al., 2018a,b; Schéfer, 2017) to test our elaborated concepts and developed
first prototypes in cooperation with industry partners. Four experiments were evaluated
in an industrial environment. The insights gained from the experiments were enriched
additionally with feedback from practitioners. The gained knowledge were used to refine
our concepts that ultimately resulted in the development of MICROLYZE.

In the next step, we integrated the tool in industrial settings in the scope of two case
studies (Achhammer, 2019; Machner, 2019). We found the industry partners for the case
studies after an initial one-hour phone call, in which we intended to figure out if the
organization is an interesting candidate and in turn is interested to evaluate MICROLY ZE
within their IT infrastructure. During the phone call, we focused on the following aspects:

e problem description, solution proposal and concept description

e unveil status-quo of the organization’s microservice utilization and IT landscape
documentation endeavours

e align expectations of a case study on both sides
e scope of the case study, define responsibilities and define follow-up activities

The outcome of the phone call was a precisely formulated scope, i.e. on which part of
MICROLY ZE the industry partner is setting the focus and what is the realistic timeline to
employ the prototype. For both case studies the follow-up activity was a live demonstration
of the first prototype in front of all involved stakeholders and the clarification which
organizational and technical obstacles must be solved upfront.

The first case study mainly focused on the evaluation of the EA model recovery concept
based on runtime data analysis. This case study was conducted in the automotive industry.
We highlight obtained key findings in Section 7.2. The second case study covers the
feasibility of maintaining business-related models and the connection of business- and
application layers via the introduction of configuration files and leveraging CD pipelines.
For this purpose, we received feedback from the insurance industry. The case study is
presented in detail in Section 7.3. Both case studies provided insights about 1) the general
feasibility of the approach, 2) which challenges we faced during integration and 3) to what
extent MICROLY ZE can support the management of EA model endeavours.

As a last step to finalize the empirical evaluation of MICROLYZE, we conducted 19
interviews with practitioners from 17 different companies to receive overall feedback about
the proposed software-, process- and visualization design of the tool. We analyzed the
experts’ feedback with support of the qualitative content analysis technique introduced
by Mayring (Mayring, 2010). Based on this feedback and the results of the previous
performed evaluation methods, we were finally able to derive limitations of our concept
and to propose future research questions that need to be solved by upcoming researchers.
We summarize in Section 7.4 the findings of our conducted interviews.

182

7.1. Evaluation Design

7.1. Evaluation Design

The way through the evaluation process of the elaborated concept is depicted in Figure 7.2.
The case study is structured along the following elements:

°

- -
] o g Demonstration of first Requirements-analysis Derpo:stratlotn Offhe Demonstration of the
B g g prototype and main — foran automated IT F"S dim Efyp results and feedback
25 £ concept of MICROLYZE documentation ee a.c rom collection
253 practioner

©
< s 3

s I]

2
1. Workshop 2. Workshop Status Quo 1. Prototype 2. Prototype 3. Workshop
Demonstration Requirement analysis Elaboration Integration Refinement Evaluation

=
£Z
©
€ 3 Prototype integration
0w O wn Information System i .g Interface adaption and
LT S B and elaboration of the A"
s 9 analysis and data > visualization
= . IT landscape target
= e collection enhancement
el state
< o

Figure 7.2.: Performed evaluation activities and their milestones

In a first workshop, we clarify the concept of MICROLYZE and demonstrate the
prototype. The outcome of this workshop was the clarification, which employees must be
involved, which infrastructure setting can be used for evaluation, for which applications
are access rights required, who is the primary contact person, and what is the exact
timeline as well as defined milestones.

In the second workshop, we conducted interviews to derive automation requirements,
i.e. AMs, that are important for the industry partner to be recovered and maintained in an
automated manner. The objective of this workshop was two-folded: First, we aimed to
identify how IT landscape documentation is currently performed at the industry partner’s
side in detail. Second, we analyzed the present documentation weaknesses and quantified
the documentation gap. For this purpose, we created a questionnaire to collect the as-is
situation of the IT landscape documentation with regards to the criteria 1) importance, 2)
completeness, 3) actuality and 4) change frequency degree of a particular AM:

e The importance criteria aims at determining how important it is to document a given
artifact. IT artifacts that are not perceived as very relevant also do not necessarily
need to be documented automatically.

e The completeness criteria indicates how complete the already existing documenta-
tion of a given artifact is. Already completely documented IT artifacts have a lower
need for automated recovery than incompletely documented ones.

e An IT artifact with an high actuality rate is perceived as up-to-date and signalize
that the current documentation process is sufficient and the need for automation is
low.

e Last but not least, the change frequency criteria determines how often an artifact is
subject to change and therefore indicates an high need for automated updates.

183

7. Evaluation

These criteria dimensions were structured along the three main EA layers (business layer,
application layer and technology layer), as well as the inter- and intra-relationships between
those layers. In total, the experts rate 41 different AMs on a likert scale(Likert, 1932) of
four labels. Even though four labels are not suitable to calculate mean and standard
deviation from a mathematical point of view, we still chose this scale in order to identify
tendencies of the experts. The 41 AMs are collected during the analysis of Archimate
model elements and the examination of well-known EAM tool meta-models including
Iteraplan' and Alfabet®. Afterwards, we prioritized those requirements based on provided
dimension ratings. The top 15 requirements represent us the basis to decide whether the
solution approach is successful or not.

The next goal aims to determine the case study context, including the SUO in which
we were allowed to integrate MICROLY ZE, as well as the industry partner’s current state
of IT landscape documentation. The outcome of this evaluation step serve as a baseline
to measure achieved improvements after deploying and executing MICROLYZE. Data
collection methods used in this phase are quantitative analysis of the EA repository, CMDB
and used cloud platforms. Based on the status quo analysis, we developed a priority list
of those AMs that are mostly required to be recovered and maintained automatically.

For this purpose, we build an automation score over the questionnaire’s criteria impor-
tance, completeness, actuality and change frequency. This score reflects the need for an
automated recovery and maintenance of EA models. That means, the score identifies
which IT artifacts would benefit most from being maintained automatically. The higher a
given IT artifact scored within a category the higher the need for automated maintenance
is perceived to be. Based on received feedback from the industry partners, we also applied
weights over the criteria importance and completeness, i.e. importance with factor 2.0 and
completeness with factor 1.5. Both case study partners perceived those criteria more impor-
tant then the others. In addition, we reverse the criteria rating of importance and change
frequency to normalize the scaling. That means, an importance or change frequency rate
of four denotes a low automation need. Whereas, a completeness or actuality rate of four
indicates a high automation need. Hence, the scoring is calculated as depicted in formula
7.1.

Yol12.0x |ay —5| +15xb,+cu+ |dy— 5|
~— ——
rating reversal rating reversal

N (7.1)

score, ;=

where:

score, € {5.5,...,22.0}, defines the need for automation for a specific architecture element
e. The higher the rate, the higher the need for automation.

a € {1 (essential),...,4 (irrelevant)}, defines the importance rating

b € {1 (complete), . ..,4 (not documented)}, defines the completeness rating

c € {1 (up-to-date), . ..,4 (not documented)}, defines the actuality rating

d € {1 (very often), ..., 4 (seldom)}, defines the change frequency rating

Ihttps://www.iteraplan.de, last accessed: 2020-10-28
’https://www.softwareag.com/au/products/aris_alfabet/eam/default.html, last accessed: 2020-10-28

184

https://www.iteraplan.de
https://www.softwareag.com/au/products/aris_alfabet/eam/default.html

7.2. Case Study in the Automotive Sector

In the next phase, we finally integrate MICROLYZE into the SUO and quantitatively
assesses its capabilities with regards to its automated IT landscape recovery degree. In
this phase, we also adapted the code of MICROLY ZE where required in order to better
address the target landscape of the case study partner. The outcome of this phase unveils
to what extent the industry partner’s target meta-model can be covered and how much of
it can be automatically reconstructed, including inter- and intra-relationships.

The outcome of the next two steps covers a qualitative assessment against the results
obtained by MICROLYZE. We use the first feedback in order to start a next iteration
to improve the solution. The improved version was afterwards deployed to the same
environment. We bundle all findings acquired in the previous phases and present them to
the organization’s experts in the field. For this purpose, we conducted a semi-structured
interview to obtain feedback about the solution’s capabilities, value proposition, ideas for
improvement and overall judgment. All feedback received as part of the open question
was compiled into a set of items classified as concerns, limitations and future work. Concerns
denote skepticism or doubts expressed regarding a certain topic. Limitations denote
restrictions of different kinds which the solution currently does not cover. Both criteria
allow room for future work.

7.2. Case Study in the Automotive Sector

The first case study was conducted in cooperation with a large German-based international
automotive company. As of 2019, the company counts over 130,000 employees and
generates nearly 100 billion euro revenue. As documented by Machner (Machner, 2019),
the case study took place between July, 2019 and November, 2019. The design follows the
guidelines and best practices suggested by Runeson et al. (Runeson et al., 2008).

Due to technical and organizational limitations, we had no possibility to 1) instrument
the microservices with microlyze.json configuration files and 2) to integrate the software into
a Continuous Integration pipeline as detailed in Chapter 6. This evaluation mainly covers
the concept described in Chapter 5. However, in order to be still able to bridge the gap
between application and business layer assignments, the industry partner provided us a
Microsoft Excel sheet that already contains a mapping between microservice IDs, domains,
(sub)products, business services, as well as further relevant attributes like product owner.
The information within the Excel sheet is maintained manually and represent a collection
from different sources like CMDB and other federated information systems. With the
support of the industry partner, we map the recovered Application Components with the
microservice IDs maintained in the provided Excel sheet in order to obtain the required
mapping table. In general, our industry partner considers microservices too small of a unit
and too large in numbers to justify documenting them within a centralized information
system. Hence, regarding microservices and their relationships to other AMs there exist
no official single source of truth that could be used to validate the accuracy of our recovery
algorithms.

185

7. Evaluation

Table 7.1.: Status quo: Average as-is EA model documentation rating per EA layer. N=1.
1=fully agree, 2=rather agree, 3=rather disagree, 4=fully disagree

Importance Completeness Actuality Change Freq.

Business Layer 1,90 2,10 2,40 3,70
Application Layer 1,00 2,50 3,00 3,25
Technology Layer 1,33 1,50 2,00 3,33
Intra-Relationships 1,00 2,00 2,50 3,00
Inter-Relationships 1,43 3,14 3,14 3,86

7.2.1. Requirement Analysis and Status Quo

The second workshop aims to assess the current state in the scope of EA model docu-
mentation and which mandatory requirements must be fulfilled in order to describe the
project as successful. The workshop was conducted with one Enterprise Architect. In the
following, we briefly summarize the results, while Machner (Machner, 2019) reports on
the case study extensively.

The EA model documentation is mostly performed on a manual basis, which is still
the normal case in big organizations (Kleehaus et al., 2019b; Lucke et al., 2010; Roth et al.,
2013a). In order to keep the EA models up-to-date, the case study partner installed a
robust deployment process. This process ensures that every application which is ready
to deploy to production obtains an unique ID, the APP-ID. The creation of this ID is part
of an holistic quality management process. In general, the APP-ID defines an Application
Collaboration, i.e. a logical aggregation of one or more Application Components that perform
a specific task. The particular Application Components are not documented, nor is their
communication structure. As different roles name applications differently, the only way to
uniquely identify the applications is via the assigned APP-IDs.

The completed questionnaire about the as-is situation of the EA model documentation
serve as a baseline to identify the perceived documentation gaps most painful to the
organization. An aggregated summary of the result is shown in Table 7.1 including the
average rating tendency per element.

The model documentation of the business layer is perceived as least important in
comparison to the other layers, even though an average completeness of 2,1 indicates a
tendency that there are still deficiencies. The stored business information is reported as
not always current (2,4). However, the information is not changing very often. Business
processes, use case, as well as products are considered the most important models that
need to be documented.

All models within the application layer are perceived as one of the most important
information that need to be collected and kept up-to-date. An average rating of 2,5 indicate
that all elements face the highest documentation deficiency except Application Collaborations.

186

7.2. Case Study in the Automotive Sector

Table 7.2.: MICROLY ZE execution result: Result of the Top 15 of those ArchitectureModels
with the highest automation score. scorey, = 5,5, scorem,, = 22,0

Rank Architecture model score # recovered # unknown
models models

1 Data flow and dependencies 18,5 2250 2250

2 Intrarelationships (application layer) 18,5 3420 3420

3 Instance (running process) 18,0 884 n/a

4 Interrelationships (application - technology) 17,5 6135 6135

5 Application component 17,5 221 62

6 Actors (customers, partners, employees) 17,0 n/a n/a

7 Business functions (marketing, accounting, etc.) 17,0 4 0

8 Interrelationships (business - application) 16,5 129 0

9 Interface (external application behavior) 16,5 3.485 n/a

10 Use Cases 16,5 n/a n/a

11 Intrarelationships (technology layer) 15,0 5807 5807

12 Business processes 14,5 n/a n/a

13 Application (application collaboration) 135 73 n/a

14 Communication technology (e.g. protocols) 13,5 2 2

15 Database (Mysql, MongoDB, etc.) 135 8 8

The information about applications should be complete, as the documentation is a required
part of the deployment process as stated above. Hence, it is not surprising that the
information base of application layer models are perceived as rather obsolete (3,0).

Similar to application layer models, the information within the technology layer is rated
as very important and the most completed one. In addition, with an average actuality
rating of 2,0 and change frequency rating of 3,33 there is no particular need for a system
that automate the maintenance of technology layer models.

The inter-relationships of elements, i.e. the architectural dependency between different
architectural layers, as well as the intra-relationships, i.e. the relationship between ele-
ments within an architectural layer are also both perceived as one of the most important
information that needs to be documented. Hence, especially for inter-relationships it is
essential to improve data completeness and actuality which is currently reported both
with 3,14.

After collecting the ratings, we created the architecture model priority list by calculating
the automation score detailed in Section 7.1. Table 7.2 lists the top 15 of those models that
have the highest score.

As Table 7.2 shows, all dependency and relationship information including data
flow between Application Components as well as intra-specific relationships and inter-
relationships are highly ranked. This indicates potential in the automated recovery

187

7. Evaluation

and maintenance of relationship information between AMs. In addition, also most of
the Application Layer elements are found within the Top 15. This emphasize the poor
documentation of applications at the industry side.

7.2.2. Prototype Integration

The following sections describe the SUO in which MICROLY ZE was integrated, as well
as the execution results in detail.

Evaluation Environment

We evaluated our system at the department for vehicle data connectivity, which develops
and operates several IT services that are required in the context of connected cars. The IT
landscape which is in responsibility of our industry partner is mostly based on microser-
vice architecture. The infrastructure is monitored by Dynatrace Application Monitoring
(AppMon). The version in use during the conduction of this thesis was AppMon 2018
April. During the evaluation of MICROLYZE, we had full access to the whole monitoring
data. Unfortunately, AppMon exhibits a few limitations that restrict the effectiveness of
the proposed solution approach. These limitations and the applied workarounds will be
presented and discussed hereinafter.

o API restrictions: As of most APM tools do not publish or even document all available
APIs, we are forced to use the additional REST APIs that are only accessible via
the AppMon web interface. As described in Section 5.2.3 leveraging undocumented
APIs that are not designed to be freely available by developers require specific
security credentials that need to be included in every HTTP request header. Without
those credentials, we receive a HTTP 401 Unauthorized response. In a trial and error
approach, we identified two parameters that are absolutely necessary to successfully
perform HTTP requests. 1) the WEBUISESSIONID needs to be included as a cookie
parameter. 2) a CSRF-Token needs to be added as a X-XSRF-Header in each request.
This token serve as security mechanism designed to prevent CSRF attacks (De Ryck
et al., 2011). We are able to retrieve both parameter by simulating user authentication
with the support of Puppeteer (see Section 5.2.3).

o Filter restrictions: In order to circumvent timeouts in requests or massive resource
loads, MICROLYZE.Collect is originally developed to retrieve data batch-wise and
limited upon timeframes. However, after the first run of our recovery algorithms (see
Section 5.3.1), we realized that requesting a timeframe of six hours for all applications
took a heavy toll on the algorithm’s runtime. It required more than 24 hours to
process the data. Hence, we integrated a second request iteration by using each
application information as additional filter. This yielded an acceptable trade-off
between retrieved amount of data and overall runtime.

e Timeframe restrictions: We observed during the execution of the recovery algo-
rithms that the longer we go back in history, the longer the request against the

188

7.2. Case Study in the Automotive Sector

AppMon API takes to respond. After all, detailed tracing data could only be re-
trieved for roughly the last ten days relative to the point in time the backwardRecovery
algorithm was initiated. This restriction could be removed by modifying the AppMon
configurations, however, we were not allowed to perform this change.

e Request response restrictions: AppMon restricts the response of tracing data to
the 100 most recent transactions. As a result, depending on how busy certain
microservices are, requesting tracing data for a timeframe of, e.g. one hour, might
effectively retrieve data pertaining only to the last few minutes of that timeframe.
This could be countered by minimizing the requested timeframe, but in turn, the
overall runtime of the algorithm would increase. After performing various tests,
setting the requested timeframe to six hours proved to provide an acceptable trade-
off between accuracy of individual timeframes and overall runtime of the recovery
algorithms. Ideally, since there exists a finite set of possible tracing information to
be observed, running the recovery algorithms for a sufficiently long period of time
would eventually lead to recovering each unique tracing record at least once and,
hence, also each unique microservice communication.

e Request amount restrictions: The deployed instance of AppMon in the evaluation
environment is reportedly running close to full capacity. AppMon prioritizes avail-
able resources for storing incoming data, streamed by deployed agents. During
heavy load, manually executed API requests are sometimes canceled via timeout
or an empty data set was returned. In order to circumvent this issue, we 1) ran
our recovery algorithms between 8pm - 5am during business days and full day
during weekends. 2) all requests were performed in a sequential manner, which
evidently increased the overall runtime of the recovery algorithm. However, as a
positive side effect, requesting information only sequentially reduced the complexity
of synchronizing access to the database when storing relevant tracing information.

7.2.3. MICROLYZE Execution Result

MICROLYZE was installed on a personal computer with Ubuntu 16.04 as operating system.
The PC is configured with a Quad-Core Intel Core i7 with 2,7 GHz and 16GB DDR5 RAM.
The connection to the AppMon server was only available within the internal network of
our industry partner and has been established via a VPN connection.

A total of 174 iterations were completed successfully starting September 12th and ending
September 27th, thereby covering a time window from August 15th (00:00) to September
27th (12:00). The algorithms did not run continuously but were stopped and resumed
various times due to the limitations detailed in Section 7.2.2. One iteration took one to two
hours to complete. All requests were executed sequentially in order to prevent too heavy
load on the monitoring server.

e Start: September 12th

e End: September 27th

189

7. Evaluation

e Timeframe Size: 6 hours

o Completed Iterations: 174

o Iterations backwards: 112 (28 days)
o Iterations forwards: 62 (15.5 days)

e Duration per iteration: ~60 - 120 minutes

Table 7.2 lists the amount of recovered AMs and their relationships. We can only show
the total amount of AMs recovered and new AMs found, but not the complete coverage
ratio as the ground truth is for most AMs unknown.

In addition to the table above, we recovered 1.141 Application Interactions, 5.805 Nodes
and one Facility. Except of the Facility model none of those models are maintained in
any repository. In addition, we extract 46 (Sub)Products and 79 Business Services from the
provided Excel sheet. All recovered AMs are structured based on 12.544 hierarchy-, 3.086
grouping- and 2.250 communication dependencies. Last but not least, we were able to
extract 15.432 annotations that represent further AM attributes.

Business Layer

In this case study, we had no possibility to instrument microservices with microlyze.json
files in order to establish the relationship between application and business layer elements.
Hence, technically speaking, we did not recover such elements, but only extracted them
from the provided manual documentation with support of the mapping table.

Application Layer

196 of the 221 recovered Application Components (~88.7%) were identified during the first
iteration covering merely a timeframe of 6 hours. Within the first day of recovery (4
iterations), the total amount increased to 211 (~95%). The remaining ten Application
Components were recovered dispersed over the remainder of the recovery process.

MICROLY ZE identified automatically 159 of the 167 manually documented microser-
vices (~95%). While this number represent a high coverage and exceedingly satisfying
accuracy, the even more interesting observation is that MICROLY ZE recovers 221 Applica-
tion Components, which is a lot more than the 159 that could be matched. Further analysis
revealed that 8 of the 221 recovered Application Components represent databases which are
not documented as microservices by our industry partner.

Figure 7.3 illustrates the amount of recovered Application Components during the recovery
process. The numbers on the x-axis indicate a timeline represented by iterations. Whereas
the algebraic sign denotes whether it was an iteration during the backward recovery
(negative sign) or the forward recovery (positive sign). The recovery process starts at
iteration -1 and initially recreates the IT landscape based on history data (backwards
recovery) until iteration -112. Afterwards, the forward recovery takes over by iteration
113 and updates the modeled IT landscape based on new incoming monitoring data until
iteration 174.

190

7.2. Case Study in the Automotive Sector

Discovered Application Components
225

220 [_/—/—/7
215 \—\

210

Amount
N
o
8

195
190
185

180
HHHHHHHHHHHHHHHHHHHH

Iteration

Figure 7.3.: Recovered ApplicationComponents during recovery process. The backward
recovery process starts at iteration -1 and ends at iteration -112. The forward
recovery process takes over at iteration 113.

Recovered Application Collaborations were of no particular interest of the industry partner
because they do not directly represent Application Collaborations as maintained within the
federated information systems. Therefore the amount of identified elements bears no
expressiveness. However, the industry partner realizes during the evaluation that AppMon
should be indeed configured to directly match maintained Application Collaborations. This
might entail a change of the underlying meta-model.

Technology Layer

Quite a lot of Nodes were identified during the recovery process (a total of 5.805), which
seems to be disproportionate considering only 221 Application Components were uncovered
during the same time span. In particular, MICROLYZE recognizes multiple spikes in
iteration -57, -85 and -112 as Figure 7.4 illustrates, which do not correspond to other
recovered elements, when comparing the data.

According to EA practitioners, this phenomenon is accounted for by the usage of pods.
A pod is a concept of Kubernetes®. It represents a deployable unit that is used to run
a single instance of an application by encapsulating and managing its container. Our
industry partner uses OpenShift technology, which leverages the concept of pods*.

The sudden rise of Nodes can be explained through the lifecycle of pods. Kubernetes’

3https://kubernetes.io/docs/concepts/workloads/pods, last accessed: 2020-10-28
“nttps://docs.openshift.com/enterprise/3.0/architecture/core_concepts/pods_and_services.

html, last accessed: 2020-10-28

191

https://kubernetes.io/docs/concepts/workloads/pods
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/pods_and_services.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/pods_and_services.html

7. Evaluation

Discovered Nodes
7000

6000

5000

4000

Amount

3000

2000

1000

HHH

Iteration

Figure 7.4.: Recovered Nodes during recovery process. The backward recovery process
starts at iteration -1 and ends at iteration -112. The forward recovery process
takes over at iteration 113.

pods can not be modified while running. They must be terminated, recreated with adjusted
configuration to reflect intended changes and finally redeployed. As pods do not maintain
state during redeployment, AppMon is unable to recognize redeployed pods and treat
them as new Nodes. Consequently, MICROLYZE inserts those already known Nodes into
the database with different names, which leads to unwanted duplicates.

Eventually, the "lastSeen" value of the old Node, which would no longer get updated,
would indicate the old Node is most likely no longer available. However, until a reasonable
amount of time has passed to justify such assumptions, the Nodes could have been rede-
ployed multiple times, which poses a problem in the long run, because the database gets
flooded with outdated data. This issue needs to be addressed in future research.

Dependencies

The observed Application Interactions were plotted in Figure 7.5 in conjunction with their
corresponding communication relationships. Considering that tracing data can only be
retrieved for a restricted timeframe into the past, the majority of recovered interactions
and communications were identified during the first iterations of the backwards recov-
ery. Further elements were identified with forwards recovery, which was still detecting
unknown data even in its final iteration. Hence, it can be suspected that there are a lot of
Application Interactions which were not yet observed during the evaluation.

192

7.2. Case Study in the Automotive Sector

Discovered Application Interactions and Communication Relationships
2500

2000

1500

Amount

1000

500

ﬁﬁﬁ

Iteration

—Application Interactions Communication Relationships

Figure 7.5.: Recovered ApplicationInteractions and communication relationships during
recovery process. The backward recovery process starts at iteration -1 and
ends at iteration -112. The forward recovery process takes over at iteration 113.

7.2.4. Feedback from Practitioners

In the following section, we present the results of our conducted semi-structured interviews
with seven experts from the case study company including three Enterprise Architects and
four Solution Architects. We structure each of our findings with 1) the question we asked
2) the core feedback received from the practitioner, and 3) a brief discourse providing
further insights and discussions. For a detailed report on the case study interviews, we
refer to Machner (Machner, 2019). Even though, we had no possibility to evaluate the
instrumentation of microservices with microlyze.json configuration files, we presented
our interview partners the whole solution approach including every aspect described in
Chapter 5 and 6. However, in this feedback round we set the focus on the concepts of
IT landscape recovery based on runtime data processing and the according visualization
approaches.

Overall assessment

Question Q1: The first question intends to obtain an overall assessment of the suggested
solution. We asked the following question: "To what extent does the solution approach con-
tribute in general to improve the EA model documentation?”

Feedback: Multiple practitioners expressed uncertainty as to how the presented solution
approach could also cover the automated documentation of monoliths and legacy systems

193

7. Evaluation

besides microservices (limitation L1). Some concerns were raised towards completeness
and reliability of the data. Since it can not be guaranteed that the solution recovers all
relevant elements during a specific timeframe, no claim can be made that the recovered
AMs and relationships are complete (concern C1).

Reflection: In general, most of the interviewees agree that MICROLY ZE is an innovative
approach to realize an automated EA model documentation, especially in a microservice
architecture-based environment. The Enterprise Architects stated that every piece of
information that can be extracted automatically is considered an improvement compared
to manual documentation prevailing at the moment. It was claimed that manual doc-
umentation becomes outdated at the moment it is created. Especially in the aspect of
actuality and consistency runtime data is considered to be the right choice to uncover
reality. In this regard, one Enterprise Architect stated that MICROLYZE might be a
good tool to validate the currently existing manual documentation and thereby assist the
documentation process in general. The Solution Architects argue that MICROLYZE with
its visualizations and standardized query language provide a good baseline for supporting
root-cause-, triage- and even impact analysis. From their point of view, those use cases are
even more important than the model documentation itself.

According to stated limitation L1, the presented solution approach is primarily scoped
for the usage of microservice-based IT landscapes. We heavily rely on the runtime data ex-
posed by APM tools. In case the connected APM tool is also able to instrument monolithic
application and legacy systems, we are also capable to integrate those information systems
in our recovery process. During this evaluation, we had no access to legacy systems or
received related runtime data. Hence, it is part of future work (future work F1) to cover
this question. C1 is a reasonable concern. We cannot guarantee in any point in time
whether the recovered AMs and related relationships are complete. An assessment of data
completeness is always based on the assumption that the ground-truth is known. Since in
this case the ground-truth is unknown, we can only guarantee that our recovery process is
a good approximation. Expressed in simple words, since runtime data always have a time
dimension, we only see what happens in the regarded timeframe.

Question Q2: This question aims at assessing the value proposition of the solution
approach by contrasting the estimated costs with the expected benefits. “"How do you assess
the cost-benefit ratio of the solution approach in general?”

Feedback: All interviewees estimate the costs for integrating and managing the solution
as being low. APM tools are already in place and therefore would not create additional
costs. Creating and maintaining a JSON configuration file is also not perceived as a
huge effort even for external contractors. Still, it is advised to keep the content of the
configuration files as minimal as possible. No information should be added just for
the purpose of adding additional information. Hence, every piece of information needs
to have an added value. Furthermore, it was argued that the integration needs to be
conducted incrementally and not as a big bang approach. Initially, only mission critical

194

7.2. Case Study in the Automotive Sector

microservices should be incorporated in order to save costs and assess the provided results.

Reflection: In general, it was argued that costs and benefits strongly depend on the
organization in question. In case of our industry partner, where APM tools are already in
widespread usage and therefore do not represent additional costs, the perceived benefits
clearly outweighed the overall cost estimations. However, even if monitoring tools are not
in place, it was stated that the automatically extraction of architecture information from
the JSON configuration files represents a tremendous benefit.

Incremental roll-out would indeed minimize the risks in general. However, we see two
issues that needs to be considered. 1) An incremental roll-out requires multiple procedures
for documentation to be used in parallel while integrating all microservices into the
solution approach. 2) Even though only incorporating mission critical microservices brings
the most important elements of the IT landscape into focus, it also eliminates the ability to
provide a complete view of the IT landscape. This contradicts with one of the goals of the
proposed solution, which is to provide an holistic recovery approach.

Technical assessment

Question Q3: The next question focuses on receiving feedback about how reasonable
runtime data is for the architecture recovery process: "How do you assess the approach of
extracting Architecture Models and relationship information from runtime data?”

Feedback: Besides stated limitation L1, the practitioners correctly identified the chal-
lenge of recognizing removed models based on runtime data. MICROLYZE will always
show the presence and therefore existence of certain models because they were observed
within a specific timeframe. However, it can never conclusively prove the absence of
models, as missing runtime information only indicate a lack of instrumentation in the
tirst place (limitation L2). Furthermore, while runtime data can show that a communi-
cation took place between two AMs, it can not explain the reasons why these models
communicated with each other. Therefore, it was argued by the practitioners that an
actual understanding of the underlying architecture cannot be revealed (limitation L3).
In addition, one Enterprise Architects raised the concern that runtime data is naturally
technical and fine-grained and therefore probably not suitable to be used as a basis for
communicating with stakeholders outside the technical domain (e.g. management). It
needs to be abstracted and translated into terms and KPIs appropriate for the stake-
holder’s role (concern C2). Last but not least, another limitation is that runtime data can
only uncover the as-is EA models, but does not provide information about planned or
future states (limitation L4). For many EA stakeholders it is important, due to strategic
reasons, to see how the IT landscape will look like after the next deployment (n+1 analysis).

Reflection: In general, extracting architecture information from runtime data was per-
ceived as an useful approach. One interviewee even call it the only feasible approach in
the long run. In order to solve limitation L2, we introduced deletion thresholds described
in Section 5.3.7. However, most of the interview partner were not satisfied with the idea of

195

7. Evaluation

using time dimensions to detect obsolete AMs. In addition, we were not able to evaluate
our approach during this case study. Consequently, further research is required in this
case (future work F2).

An extraction of semantic information from runtime data in order to understand the
reason for certain communications between AMs is currently not possible. Even though,
semantic information could be added manually in the configuration files, this would cover
only certain aspects of the IT landscape. There exists academic projects like MIDAS (Holl
et al., 2019), that provide methods to enhance data sources and the underlying schema
with semantic information. One goal of this project is to figure out what specific data
(from an semantic perspective) certain applications access and process. An integration of
MIDAS into MICROLYZE could support the identification of this semantic relationships.
Overall, limitation L3 must be addressed in future work (future work F3)

According to the limitation L4, especially Enterprise Architects claimed a lack of integra-
tion of the EA planning process. At this phase, AMs are planned and initially registered
in the EA repository. A link between the current runtime model and the planned model
is not available. In order to solve this issue, we propose as future work to extend the
MICROLYZE meta-model with different AMs life-cycle phases (future work F4). Based on
our revision concept, we already store "current" (valid) and "obsolete" models. It would be
conceivable to add a third "planned" state.

Question Q4: This question aims at evaluating the integration of the solution approach
into a CD pipeline by assessing advantages and possible limitations: "To what extent do you
perceive the integration of the approach into a CD pipeline as useful?”

Feedback: The usage of a deployment pipeline is perceived as necessary. However,
reliability of the approach needs to be ensured at all times as one practitioner stated. For
instance, the roll out of an important hotfix cannot be blocked due to an unsuccessful
model exposure task (concern C3). A further mentioned concern was that pipeline integra-
tion requires additional effort which might be circumvented by some developer teams. To
that effect, adherence to the approach needs to be enforced so that all teams follow the
rule and do not implement their own solutions outside of a pipeline (concern C4).

Reflection: In general, pipeline integration is seen as very useful and reportedly the
best way to get people to comply with the overall approach. It covers the validation of the
microlyze.json configuration file and achieves an enforcement of the governance regulations.
We regard concern C3 as a little evil. The microlyze.json configuration files must not be
changed frequently. They primarily represent static data that are created once. Conse-
quently, we are convinced that a successfully completed test cases of microlyze.validate()
and microlyze.compose() will still be successful in future deployment executions. Therefore,
hotfixes should not represent exceptions.

Question Q5: This question tries to gauge the feasibility of the solution approach with
respect to the efforts that need to be undertaken on the technical side in order to imple-

196

7.2. Case Study in the Automotive Sector

ment MICROLYZE. "What barriers do you recognize regarding the technical integration of the
approach, especially with respect to the technical requirements that need to be met?"”

Feedback: During the case study, we had only access to on-premise deployed microser-
vices. However, in some departments microservices are partially deployed on-premise
and partially migrated to the cloud. Hence, uncertainty was expressed regarding how
well the solution approach can handle a massive distributed environment (concern C5).
This uncertainty is justified in particular when communications with legacy systems occur.
A further concern was raised towards security and privacy issues. Since MICROLYZE
processes and stores sensible information that are included in runtime data, appropriate
measures need to be taken to ensure compliance with prevailing laws and regulations
(concern C6). Last but not least, a big concern was mentioned by many practitioners
regarding the integration of multiple APM tools (concern C7). In the presented case study,
we had only access to one monitoring solution. However, especially in big companies,
different commercial and even open-source APM tools might be in use to accommodate
the agile mind.

Reflection: Even tough some concerns were raised, all practitioners agreed that the
technical integration is manageable as no identified barrier is perceived as insuperable. All
interviewees regarded the technical integration as technically feasible without any major
obstacles, even some are going as far as calling it trivial. The usage of monitoring tools
is already widespread within the organization and does therefore not require additional
effort to set up. However, there was an agreement that a dispersed usage of different APM
tools could lead to operational issues in the long run. JSON is considered a standard and
therefore not an issue.

Regarding concern C5, most APM solutions including AppMon provide support for
both on-premise and cloud deployments. From a technical point of view, it makes no
difference on which environment the monitoring agents are installed, as long as they are
allowed to communicate with the required monitoring server. As described by Kleehaus et
al. (Kleehaus et al., 2018a), further information about the data origin including deployment
environment can be simply delivered by extending runtime annotations. If the information
system is not supported by the APM solution which might be the case with legacy systems,
then the recovery process will provide an incomplete picture. This limitation was already
covered in L1.

Even though stated concern C6 does not have to be a barrier per se, it does require
additional implementation and configuration effort. For instance, some countries do not
allow sensible information to leave the country and be stored elsewhere. Considering
many organizations operate data centers in different parts of the world, this is indeed
an issue that needs to be addressed (future work F5). One possible solution would be to
store the collected data locally within the allowed boundaries and query them from their
respective storage locations in order to retrieve the overall IT landscape picture.

MICROLYZE supports different meta-models of several APM solutions as illustrated
in Section 5.1. In addition, using the adapter design pattern, it is possible to extend the

197

7. Evaluation

support of further APM tools with just a little implementation effort. Hence, the support
of several APM tools deployed in parallel should not be an issue. However, during this
thesis, we have not evaluated this feature and considering it as future work (future work
F6).

Organizational assessment

Question Q6: The following question tries to identify whether shifting the responsibility
towards developer teams is considered the right approach: “How do you assess the approach
of shifting the documentation responsibility towards developer teams?”

Feedback: Some practitioners stated that a centrally stored documentation which is
conducted in a decentralized way might be more complicated to keep consistent. An
expressed concern is that not every team might use the same notation and structure
(concern C8). In addition, the teams might lack in motivation to actually fulfill their
responsibility for documentation (concern C9).

Reflection: Overall, shifting the documentation responsibility to the agile teams was
perceived as a necessary measure to improve overall documentation quality. The intervie-
wees mostly agreed with this approach as it is already a reality within the organization.
The documentation should be conducted by those who are closest to the information
source, i.e. mostly developer teams and product owners. They possess the necessary
information to comprehensively document the IT artifacts, which is not necessarily the
case for Enterprise Architects.

Regarding concern C8 and C9, MICROLY ZE already provides a solution for enforcing
developer teams to use the right notation by validating microlyze.json files against [SON
Schema files within the CD pipeline. The enforcement of rules of conduct is task of the
EAM team.

Question Q7: This question aims at identifying which stakeholders or roles need to
be taken into consideration when integrating the solution approach into an organiza-
tion: "Which stakeholders do you identify as drivers and blockers regarding the integration of
MICROLY ZE into the existing organization?”

Feedback: A variety of people and roles were mentioned that need to be involved (cf.
Section 6.2). Architecture departments and management positions were identified as
drivers. These stakeholders profit most from the integration of MICROLYZE and do not
necessarily have to spent much effort in the integration of the solution besides approving
and controlling it. Possible blockers are considered departments that are responsible for
data protection and security related concerns (concern C10). As the proposed solution
processes possibly sensible information including user behavior, a variety of measures such
as access management need to be applied in order to ensure compliance with applicable
laws and regulations. This represents additional effort and might limit the acceptance of
MICROLY ZE by the responsible stakeholders. Developers and Product Owners who are

198

7.2. Case Study in the Automotive Sector

finally responsible for integrating the solution are not regarded as blockers in fact. It was
argued that the integration and operation of monitoring tools are required anyway, so the
additional effort keeps within limits.

Reflection: In a final reflection, it can be concluded that every stakeholder who would
potentially benefit from the solution would act as a driver. On the other hand, everybody
who would perceive additional effort for integrating and adapting the solution would act
as a blocker. This is why the benefits of MICROLY ZE needs to be made transparent and
communicated clearly to the respective people in a convincing way.

Visualization assessment

The next questions focus on assessing the different visualizations created with support of
GraphQL. We separate the visualizations into two different groups. 1) AM dependency
views cover Architecture Model Cluster, Architecture Model Deployment and Architecture Model
Table. 2) AM communication views encompass Architecture Model Communication, Architec-
ture Component Interaction, as well as Architecture Model Comparison.

Question Q8: In this question, we wanted to know how the interview partners rate
the AM dependency views. Hence, we asked the following question: How do you assess the
AM dependency views?

Feedback: It was stated by the practitioners that the Architecture Model Cluster view
contains valuable information in general. However, it does not add more value to al-
ready existing visualizations (concern C11). It shows information dependencies that
does not change very often. Therefore, from the practitioner’s point of view, the manual
documentation of such overviews is usually sufficient.

The Architecture Model Deployment view was mostly criticized for its level of complexity.
Depending on how many Application Components are associated with the selected Applica-
tion Collaborations, the resulting view can become quite large with too many edges and
nodes in general (concern C12). Grouping Application Components by their technology
and Nodes by their operating systems was perceived as confusing and unnecessary by
some practitioners. However, the view was deemed useful for technical users who are
responsible for deployments and more interested in the underlying IT infrastructure.

The Architecture Model Table view was considered as an important data representation for
quickly accessing information. It was argued that more analysis functionality is required
to regard it more useful (limitation L5).

Reflection: Overall, the practitioners were overwhelmed with the amount of informa-
tion those visualizations provide. In a certain way, they were impressed to see how
MICROLYZE is able to manage and visualize all those dependency information. How-
ever, it requires clear use cases and more focused information representation to have an
added value to the practitioners. Especially, search and filter methods, as well as analysis
functionality would lead to a higher level of abstraction (future work F7).

199

7. Evaluation

For instance, one practitioner stated the Architecture Model Cluster view is valuable when
a company goes through a reorganization, but then only the information of one specific
domain or department should be visualized. In this context, the displayed hierarchy level
should be selectable as well. Another use case was mentioned according to the table-based
representation of dependency information. One practitioner suggested of having a service
catalog including assigned interfaces, descriptions and responsible persons of contact. If
those information and relationships are recovered automatically, it would really have an
added value. Search and filter functionality would round-off this use case.

Question Q9: Finally our last question aims at collecting feedback regarding the de-
veloped communication views. We asked the following question: How do you assess the AM
communication views?

Feedback: The Architecture Model Communication view made mostly a good impression
on the practitioners. It was argued that more metrics should be included and hotspots
should be highlighted, e.g. elements with many incoming and outgoing edges must be
visualized more prominently (limitation L6). In this context, additional functionality is
deemed necessary to drill the information up and down to the desired level of aggregation
(limitation L7).

The Architecture Component Interaction view made an exceptional impression on the
EA practitioners. In order to further improve the view, it was suggested to remove the
Application Collaboration from the visualization since it does not provide any valuable
information. Further potential was identified by associating the extracted requests with
business use cases and business processes (limitation L8). This would unveil what happens
on a technical level when a certain use case or business process is triggered.

Regarding the Architecture Model Comparison view, it was mentioned, that filtering states
by date should be replaced or supplemented by release deployment cycle since this is the
only trigger that applies changes (limitation L9). Furthermore, it was argued that future
(planned) states need to be included in the comparison (limitation L10). A further concern
was raised according to reliability. Since runtime data does not necessarily provide a
complete data set as discussed in previous questions, the Architecture Model Comparison
view can contain false positives, i.e. due to incomplete data differences might be detected
which do not exist in reality (see also concern C1). Reduced reliability leads to more
manual effort to double check whether a difference is actually true or not.

Reflection: The AM communication views were regarded as more important then the AM
dependency views. Especially, the Architecture Component Interaction view was praised for
providing information which no other tool provided in this manner. The possibility to
select an individual request and visualize its way through the system including the called
interfaces was perceived as one of the most important added values.

Limitation L6 requires only small changes on the frontend. According to limitation
L7, aggregation is already supported by the MICROLYZE.expose component, but was not
implemented in the frontend yet. Both limitations must be addressed in future work F8

200

7.2. Case Study in the Automotive Sector

and F9 respectively.

Limitation L8 could be accomplished by adding further dependency information to the
microlyze.json configuration file and should be addressed in future work F10.

Comparing different states within the Architecture Model Comparison view was generally
considered useful. The implemented highlighting of added and removed elements was
identified as a necessary feature. As we already store the exact time of a deployment cycle,
a change in the state selection can be easily achieved in future work F11. According to
limitation L10, especially Enterprise Architects claimed a lack of integration of the EA
planning process. We see potential in the extension of the microlyze.json instrumentation.
The JSON file could be already initialized during the application planning phase and is
passed through the implementation and release stages in order to bridge the gap between
all model life-cycle phases. Once an application is released to production, the state of
this model would change from "planned" to "current". An adaption of MICROLYZE’s
meta-model is indispensable to apply a further AM life-cycle phase. This must be part of
future work F12.

7.2.5. Critical Reflection of Results

This case study particularly shaped how we perceive the process support for an automated
maintenance of EA models via a continuous analysis of runtime data. Many expectations
and ideas of the practitioners center around features that have a productive character and
go beyond the purpose of our prototype. Sometimes the Enterprise Architects compared
MICROLY ZE with a fully-fledged extended EA repository. While this certainly was none
of our intentions, it shows the maturity of the prototypical implementation. Taking into
consideration all the findings of the qualitative analysis, one can assert that the proposed
solution approach seems promising.

However, many concerns and limitations were raised and discussed that need to be
addressed in future research. In the following, we summarize the additional prerequisites
that need to be fulfilled prior to a productive roll-out:

1. Reliability and data completeness — C1-C3, L2: Further research must be conducted
in order to ensure reliability of the solution approach and completeness of the recov-
ered AMs including their relationships. Attention should be paid to the recognition
of removed elements (see Section 5.3.7).

2. Scalability — C5, C7, L1: In order to increase the solution’s scalability, further inves-
tigation is required regarding 1) the support of massive distributed environments, 2)
the parallel support of different APM tools and 3) the support of legacy systems, as
well as monolithic applications.

3. Compliance with guidelines — C4, C8, C9, C10: The solution requires manual effort
to become fully operational like microservice instrumentation, as well as CD pipeline
integration. Hence, several stakeholders must be involved in this process. It must
be ensured that those stakeholders comply with the defined guidelines and are
motivated enough to maintain the system. From our point of view it is indispensable

201

7. Evaluation

to communicate the benefits of MICROLYZE clearly to all involved stakeholders in
order to achieve far-reaching acceptance.

4. Data privacy and security — C6: Precautions must be taken in order not to jeopardise
data privacy and security. In this case, further assessment in cooperation with data
protectionist is required.

5. General improvement — C11, C12: As not every developed visualization met with
approval, it is necessary to redesign some views on the basis of clear and small use
cases.

6. General extension — L3-L10: Last but not least, the practitioners elaborated several
missing functionalities that must added. Especially, the integration of future IT
landscape states (L4) and the rational behind certain microservice communications
(L3) were mentioned several times as missing important features. Further limitations
can be assigned to the frontend application, e.g. hotspot visualization (L6), drill-up
and drill-down features (L7), deployment cycles instead of time dimensions (L9), etc.

7.3. Case Study in the Insurance Sector

The second case study was conducted in cooperation with a large German-based interna-
tional insurance enterprise. As of 2019, the company counts over 140,000 employees and
generates over 140 billion euro revenue. As documented by Achhammer (Achhammer,
2019), the case study took place during April, 2019 and October, 2019. The design follows
the guidelines and best practices suggested by Runeson et al. (Runeson et al., 2008).

This case study considers mainly the assessment of the concept to extend the automated
recovery and maintenance of EA models with business-related information. This infor-
mation is provided via configuration files that are exposed by CD pipeline integration
as detailed in Chapter 6. Due to technical and organizational limitations the access to
runtime data in this case study is limited to the cloud platform repository, which only
provides the current state and no historical data. For that reason, in this case study, we
mainly focus on evaluating the concepts described in Chapter 6.

7.3.1. Requirement Analysis and Status Quo

The requirement analysis workshop was conducted with seven experts covering the
Enterprise Architect role. In the following, we briefly summarize the results, while Achhamer
(Achhammer, 2019) reports on the case study extensively:

Similar to the first case study, the EA model documentation is performed on manual
basis. Exceptions are automated data imports from federated information systems like the
CMDB and the PPM system. From those systems relevant architecture-related information
are imported to the EA repository on a daily basis in order to keep a central model
documentation up-to-date. However, the imported data stored in the federated information
systems are created manually as well. The integration is unidirectional, i.e. an executed
change is not synchronized with other systems, which sometimes lead to import conflicts.

202

7.3. Case Study in the Insurance Sector

Table 7.3.: Status quo: Average as-is EA model documentation rating per EA layer. N=7.
1=fully agree, 2=rather agree, 3=rather disagree, 4=fully disagree

Importance Completeness Actuality Change Freq.

avg var avg var avg var avg var
Business Layer 1,67 036 2,63 0,79 2,65 062 3,17 0,61
Application Layer 1,78 038 3,23 0,25 3,00 0,11 2,69 0,58
Technology Layer 254 1,15 3,07 2,34 3,15 1,03 3,24 0,46
Intra-Relationships 210 030 3,34 1,66 3,15 0,13 294 0,56
Inter-Relationships 1,35 040 3,09 0,45 3,00 0,25 3,01 0,67

Furthermore, no naming conventions or global, system-independent identifiers are in
place for application. Since different roles name applications differently, the used naming
does often not match across information systems.

The completed questionnaire about the as-is situation of the EA model documentation
serve as a baseline to identify the perceived documentation gaps most painful to the
organization. An aggregated summary of the result is shown in Table 7.3 including the
average rating tendency per element.

The maintenance of the business layer models is perceived very important and in
relation to the other layers most complete, even though an average rating of 2,63 indicates
a tendency that there are still deficiencies. Important to mention is that the documentation
actuality (2,65) of the business layer models is considered rather low, even though the
data pool of this layer is not changing very often (3,17). Business domains, -processes and
-capabilities as well as products and product domains are considered the most important
models that need to be documented.

The models within the application layer, including applications (microservices), inter-
faces and communication relationships face the highest documentation deficiency. The
completeness is rated between 2,60 to 3,60 and the actuality between 2,57 to 3,80. A
complete repository of those models are considered as essential, as all entities are rated
as very important with an average of 1,78 points. By now, it has been a conscious deci-
sion by the industry partner, not to model microservices as this would cause too much
manual modeling effort. The application layer experiences the most frequent changes in
comparison to the other layers with an average of 2,69 points.

The technology layer is of least relevance to the industry partner, even though the
completeness and actuality of those models is rated rather low with an average of 3,07 and
3,15 respectively. It is notable, that the variance of received importance and completeness
rating is high for technology layer models, which might indicate that the experts do not
have a uniform perception here.

The inter-relationships of AMs, i.e. the architectural dependency between different
architectural layers, as well as the inter-relationships, i.e. the relationship between AMs
within an architectural layer are both perceived as the most important information that
needs to be maintained. Hence, it is severe that the rated completeness of this information

203

7. Evaluation

ranges between 3,09 to 3,34 in average. As all kinds of relationships are modeled fully
manually, the experts stated doubts regarding the actuality of the data repository.

In the next step, we create a priority list of AMs by calculating the automation score as
detailed in Section 7.1. Figure 7.4 shows the TOP 15 of those AMs that have the highest
score.

Table 7.4.: MICROLY ZE execution result: Result of the Top 15 of those Architecture Models
with the highest automation score. score,,;, = 5,5, scorey,x = 22,0

Rank Architecture model score # recovered # unknown
models models

1 Interrelationships (application - technology) 17,9 3404 2798

2 Interface (external application behavior) 17,7 1133 793

3 Data flow and dependencies 17,6 0 n/a

4 Application (application collaboration) 17,3 2 2

5 Intrarelationships (application layer) 17,2 5906 3393

6 Interrelationships (business - application) 17,1 15 15

7 Instance (running process) 16,7 n/a n/a

8 Intrarelationships (within business layer) 16,6 3 3

9 Actors (customers, partners, employees) 16,5 2 0

10 Business processes 16,4 0 n/a

11 Use Cases 16,0 0 n/a

12 Roles (product owner, developer, etc.) 16,0 0 n/a

13 Business functions (marketing, accounting, etc.) 15,8 1 0

14 Business capability 15,5 1 0

15 Application component 15,3 1660 1660

As Table 7.4 uncovers, communication dependencies between Application Collaboration, i.e.
data flow and dependencies as well as further intra-specific and inter-specific relationships
are highly ranked and listed within the Top 15. This indicates a high need for automating
the recovery and the maintenance of relationships between AMs.

In addition, also most of the Application Layer models are highly ranked. This empha-
size the poor documentation of Application Collaboration at the industry side. An exception
are Application Components that are ranked on the last position. This corresponds to the
current circumstance that the industry partner focuses on the modeling of Application
Collaborations only, and skips more fine-grained components like microservices. After
feedback from the industry partner, we learned that those components are too expensive
for manual modeling and especially for Enterprise Architects not important enough.

Most business-related models can be found in the TOP 15. However, it is challenging to
automate the maintenance of those models, as they represent virtual elements that must
be defined on management level.

204

7.3. Case Study in the Insurance Sector

Despite being perceived as poorly documented, models from the technology layer, except
for Instance (running process), take lower positions in the ranking. The reason behind this
are rather low ratings for the criteria importance, which has an average of 2,54.

7.3.2. Prototype Integration

The following sections describe the SUO in which MICROLYZE was integrated, as well
as the execution results in detail.

Evaluation Environment

The available IT landscape for the case study is depicted in Figure 7.6. It consists of an
Enterprise Private Cloud layer that is subdivided into a militarized zone and a de-militarized
zone. Frontend-based applications are running in the militarized zone and are decoupled
from the backend application components located in the de-militarized zone. In each of
these zones dedicated cloud platform instances are located which host the applications.
Cloudfoundry® and Redhat OpenShift® are used as the cloud platform technologies.
Communications between both zones are performed either via message queues or via
a central API gateway. The core business systems of the case study partner reside in
proprietary, traditional data centers. This part of the IT landscape is out of scope for the
evaluation.

| Enterprise Private Cloud : ' On-premise |
! . i Infrastructure
E Frontend applications Backend applications b '
1 (militarized zone) (de-militarized zone) ! E E
i OpenShift OpenShift E i i
Project Project Project Project : E . i

Space Space API Gat / S| S { i | Corebusiness |

P p —| ateway/ le—p pace pace «—+»| backendand | !

Message Broker ! I

! data storage !

E CloudFoundry CloudFoundry

Project Project Project Project E
Space Space Space Space E

1

I
CD Pipelines (Jenkins) J
00 [
"A" 'A‘ = Out of scope
— In scope
Development Team A Development Team B

Figure 7.6.: Case Study IT landscape overview

Shttps://www.cloudfoundry.org, last accessed: 2020-10-28
https://www.openshift.com, last accessed: 2020-10-28

205

https://www.cloudfoundry.org
https://www.openshift.com

7. Evaluation

During the evaluation, we had access to two agile development teams that are assigned
to each of those zones. Both teams utilize the CD pipeline Jenkins’ to deploy applications to
the cloud environment. We received access to the cloud platforms internal monitoring tool
for extracting runtime models. In addition, we were allowed to instrument the CD pipeline
and to integrate an additional test case for validating the MICROLYZE configuration
tile. We received feedback from the following experts: 1) The agile development teams
including Product Owners and Developers who take a central role in order to make the
solution work. 2) The central Enterprise Architecture Management department, that is
both, provider of the EA repository and key consumer of EA information. 3) Domain
Architects, that currently bear the most manual EA modeling activities.

Configuration File Content

Before MICROLY ZE becomes operational, we asked the case study partners to decide
which federated information systems should be referenced in the configuration file and
what additional attributes, beside the mandatory ones, should be added. Since CMDBs
and PPM systems are mainly used for EA model documentation and provide important
architecture-relevant information, those tools are referenced by MICROLYZE.

The reference to the CMDB is important, as this database is currently used as the
single point of truth for EA model documentation. The Product Owners maintain all
applications within their area of responsibility as Business Services in the CMDB. This is
part of a mandatory process, as without a valid record the Product Owners do not obtain
approval to deploy their applications to the production stage. In addition, the CMDB is
closely connected to operative IT service management processes such as change, incident
or request management. The CMDB data is also imported on daily basis into the EAM
tools to be accessible for Enterprise Architects. Relationships are not imported which is
one of the main reasons for a lack of documentation at this place. In general, the CMDB is
considered the leading system over the EA repository.

The case study partner uses Apigee® as an API-management system for building scalable
APIs. It serves as the API gateway between the frontend-, and backend applications.
A reference to the Apigee platform allows to recover which APIs a given application
consumes over the gateway. Based on this information, we are able to recover application
communications to a certain extent.

Finally, the project management tool PlanView is required to retrieve assigned projects
to a particular Application Component. The experts also considered integrating the license
management system into the configuration file. However, the endeavor failed due to issues
in establishing a reliable mapping between the systems” models.

In conclusion, based on the expert’s feedback and information demand, the configuration
file contains the following properties that contribute most to cover the missing AMs listed
in Table 7.1.

Listing 7.1: Extended configuration file with references

"https://jenkins.io, last accessed: 2020-10-28
8https://docs.apigee.com, last accessed: 2020-10-28

206

https://jenkins.io
https://docs.apigee.com

O 0 N N U o W N

W W W W W N N N DN DN DN DN DNDDNDDND P2 2R 2= == ==
B W N = O OV 0 NN O U k= W N P © WV 0 N O U k= W N = O

35

7.3. Case Study in the Insurance Sector

-~

// mandatory attributes
"name": "...",
"description": "...",
"business_service": "...",
"product": "...",
"business_function": "...",

"business_capability": "...",

// further business-related attributes

"product_owner": "email of the product owner",

"business_subdomain": "the business subdomain the component belongs to",
"business_unit": "the business unit the application supports",
"business_process": "the business process the application fulfills",

// references to federated information systems
"references": [{
"ppm": {
"tool": "planview",
"domainurl": "...",
"apiurl": "...",
"id"e ot
s
"cmdb": {
"tool": "servicenow",
"domainurl": "...",
"apiurl": "...",
"igts Ll
s
"api_gateway_client": {
"tool": "apigee",
"id". ot

H,

7.3.3. MICROLYZE Adaption

The configuration file in its current version only supports 1:n business layer assignments.
However, some experts of the case study company request the possibility for n:m assign-
ments to reflect the full essence of the IT landscape. As a consequence, we adapted the
GraphQL resolvers to support n:m business layer assignment relationships. A modified

207

O 0 N N U o W N

_
_= O

12

7. Evaluation

microlyze.json is depicted in Listing 7.2.

Listing 7.2: Updated configuration file for n:m business layer assignment support

A

// mandatory attributes
"name": "...",
"description": "...",
"business_service": [],
"product": [{

"name": "...",

igr v,
{0030,
"business_function": [],
"business_capability": []

As mentioned above, we had only access to the cloud platform APIs, which does not
provide full APM functionality but only the status of the repository data. What we can
receive are all registered Application Components including the application technology, e.g.
database, runtime environment, container, etc. as well as their health status, request
metrics, resource utilization and the number of instantiations.

Based on the API management tool ApiGee, we are able to extract exposed APIs provided
by Application Components. This information is normally obtained by distributed tracing.
Unfortunately, we are not able to recover which specific Application Components consume
the exposed APIs. This information is not directly available in ApiGee. We model the
exposed APIs as Interfaces, which can only be recovered in case the Application Component
is registered in the API Gateway. As we are not able to obtain detailed information about
Application Services, we are forced to create dummy records for each Application Component
in order to assign interface information.

At the industry partner, there is no reliable way to automatically recover Application
Collaborations. Initially, we aim to extract this information based on spaces (in Cloud
Foundry) or namespace (in Kubernetes) that are used to technically organize Application
Components. However, this was rejected by the industry partner due to a lack of reliability, as
the naming of such spaces does often not correspond to a certain Application Collaboration’s
name. Hence, we add this information into the microlyze.json configuration file.

The established references to the other information systems Planview and ServiceNow
deliver further attributes, in particular assigned projects that represent valuable information
for the Enterprise- and Domain Architects.

7.3.4. MICROLYZE Execution Result

Table 7.4 lists the amount of recovered AMs and their relationships. We can only show the
amount of new models found, but not the complete coverage ratio as the ground truth is
for most models unknown. The same applies for Relationships that have a many-to-many or

208

7.3. Case Study in the Insurance Sector

one-to-many multiplicity. As we had only access to two development teams that manage
in total 15 microservices, we could only recover the relationships that are maintained in
the 15 created configuration files.

Business Layer

Regarding the business layer, MICROLYZE has not found new AMs in the provided
environment, as the documentation of all recovered models were already up-to-date, most
probably due to their static nature. Exceptions are three new intra-relationships within the
business layer.

Application Layer

MICROLYZE was able to recover two new Application Collaborations and 1.660 Application
Components, which expose 793 undocumented Application Interfaces. The huge number of
Application Components is derived from the exposed cloud platform API. This is a significant
improvement as this information is currently not documented at all. Unfortunately, we
were not able to extract new communication relationships between Application Components
since the access of an appropriate APM tool was not available. Furthermore, over 6.084
intra-specific relationships within the application layer could be recovered which mainly
represent assignments between Application Components and Application Interfaces. Important
information about Application Components that are stored as annotations can be recov-
ered from the cloud platforms itself. This includes inter alia bound cloud services (e.g.
databases, autoscaler, monitoring agents, etc.), technology stack, programming languages
and software dependencies.

Dependencies

Relationships of Application Components towards business-, and infrastructure layer models
can be established most likely up to 100 percent. Although, this heavily depends on the
availability and completeness of the microservice instrumentation with microlyze.json files.
In the current case, we were only able to identify 15 new relationships corresponding to the
15 instrumented microservices. In addition, at the case study partner there is no reliable
way to technically recover Application Collaborations, because no naming conventions or
other global identifiers are in place that would allow to map Application Components
to Application Collaborations. The instrumentation of microservices with microlyze.json
represents currently the only possible way to achieve this mapping. The amount of
dependencies between Application Components and application instances varies dynamically
according to the configuration made in the applied load balancer.

In order to summarize this section, the results in Table 7.4 has shown that most crucial
advantage of microlyze.json is the automated establishment of inter- and intrarelationships
via a decentralized approach. However, the suggested solution strongly depends on
the availability and correctness of the microlyze.json configuration file. In any case, the
suggested process must be enforced by an established IT governance and technical means
to ensure the success of the solution. Also quality assurance mechanisms are crucial to
validate the quality of information contained (cf. section 6.1.6). The API gateway as a

209

7. Evaluation

source to recover Application Component relationships proofed to be valuable, but is far
from providing a complete picture. In order to close the remaining gap in Application
Component communications, the analysis of distributed tracing data is indispensable.

7.3.5. Feedback from Practitioners

During the integration of MICROLYZE into the SUO including the required setup of
all involved systems like the CD pipeline, we documented the time the development
teams spent for all implementation tasks. The result of the integration effort is detailed in
Section 7.3.5. After the integration process of MICROLY ZE was finished, we conducted
semi-structured interviews with 14 experts from the case study company including six
Enterprise Architects, four Domain Architects, two Product Owners and two Software
Developers. All of those experts were involved in the integration process and had access to
the exposed ETG. While Achhammer reports on the case study extensively (Achhammer,
2019), we summarize his results in Section 7.2.4 and subsequently reflect the case study
in the light of additional insights through our interview series. We structure each of our
findings with 1) the question we asked 2) the core feedback received from the practitioner,
and 3) a brief discourse providing further insights and discussions. As we had only limited
access to runtime data, in the following interview series we mainly focus on evaluating
the concepts described in Chapter 6.

MICROLYZE Integration Effort

MICROLYZE was integrated by both development teams during a regular Sprint. Ini-
tially, a UserStory was created by the Product Owners in the Product Backlog that defines
integration requirements. The instrumentation of all 15 microservices with microlyze.json
tiles, as well as the creation of the additional test case in the pipeline took for both teams
in total 4-5 hours. A challenge was to identify the right business assignments and to model
them in the microlyze.json file. Whereas the specification of the correct references to the
defined federated information systems did not take much time. One Software Engineer
had difficulties with adding the shared library to the new Model Exposure stage due to
missing rights which caused a delay. After the first setup, the teams expect for further
instrumentation an effort of 00:30 to 01:00 hour due to learning effects. No impairments
were reported by the development teams during the execution of the CD pipelines. The
execution of the additional stage took 01:30 to 01:45 minutes to complete. Table 7.7
summarizes the figures.

In general, the development teams perceived the required effort as acceptable, especially
compared to other existing governance regulations which require pipeline integration.
One Product Owner and Developer appreciated that only a onetime effort is needed,
which is predominantly reduced in future instrumentations. However, a four to five hours
effort for the initial setup indicate potential improvement. For instance, the number of
required method parameters must be reduced as stated by one Developer. Regarding the
required time to process the Model Exposure stage, one Product Owner had little willingness
to accept more than 0,5 minutes of extra duration as productive deployments already take

210

7.3. Case Study in the Insurance Sector

Development Team 1 | Development Team 2
number of microservices
5 microservices ‘ 9 microservices
integration efforts
effort for pipeline integration 03:00 h 01:00 h
effort for microlyze.json creation 02:00 h 03:00 h
effort for future instrumentation 01:00 h 01:00 h
pipeline duration (avg)
‘documentation stage duration ‘ 01:33 min ‘ 01:47 min

Figure 7.7.: MICROLYZE integration effort compared between two different development
teams

a long time. Other experts, in turn, stated that the duration should be kept as little as
possible. One practitioner suggested to separate the logic into a dedicated CD server job,
that should be triggered from the origin deployment pipeline. This would result to no
additional waiting time, however, it would undermine data quality assurance concept (see
Section 6.1.6).

Furthermore, additional support for creating the microlyze.json file is required as Software
Engineers claimed that the manual was not always clear enough. For instance, uncertainties
of what the correct path should be have been raised. Developers also requested a more
meaningful console based feedback about the success or failure of the Model Exposure
stage.

Overall assessment

In the following, we discuss the received feedback during the interview series with 14
practitioners involved in the described case study.

Question Q1: Even though, APM tools were not in use in this case study, we presented
the complete solution including Section 5.2. We asked the following question: "To what
extent does the suggested approach reduce the amount of manual EA model maintenance effort?”:

Feedback: Two experts doubt whether APM tools in general and distributed tracing
in particular are the right instruments to continuously document the emerging behavior of
EA models (concern C1). A complete instrumentation of the whole IT landscape might
cause too much overhead and negatively impacts applications’ performance. This is seen
critically, especially in high performance environments. In addition, Product Owners
would benefit only a little as they still have to model their applications in the CMDB in
parallel (concern C2). In addition, some experts claimed that the provision of further
information about other life-cycle phases are not considered by the solution (limitation
L1). The solution focuses on the current state of the IT landscape and does not incorporate
planning phases. Hence, the comparison of planned states and current states must be

211

7. Evaluation

conducted manually in two different tools. This only leads to unnecessary complexity.

Reflection: In general, all interviewed experts expressed their full agreement, that this
solution approach reduces the amount of manual model maintenance effort. In the current
state Domain Architects are responsible for most of the EA modeling activities. They
collect the required information from agile development teams during meeting, conference
calls and emails, which is perceived as very time consuming and bind several resources
at once. Those activities can be reduced by the proposed decentralised approach and
shift the documentation responsibility to the development teams. Instead of APM tools,
we promote two possible alternatives to solve concern C1: 1) the use of cloud specific
solutions that are already integrated natively in cloud platforms (for instance AWS XRay).
A further alternative might be Service Meshes. For instance, Istio’ places sidecar-proxies
along with deployed services which allows to govern inter-service communication across
the mesh uniquely. Such a mesh can be spanned across multiple cloud platforms. The
communication behavior can be extracted via REST APIs. However, in order to support
both alternatives a huge change in the model recovery algorithms and model transfor-
mation logic would be required for MICROLYZE. Regarding concern C2, we suggest to
leverage MICROLYZE as a knowledge source platform for automatically export AMs to
CMDBs and other tools (future work F1). Limitation L1 corresponds to limitation L4 in
the previous case study (see Section 7.2.4)

Question Q2: In this question, we wanted to evaluate whether MICROLYZE repre-
sent an important extension of the software portfolio that is needed to successfully fulfill
EAM tasks. Hence, we asked the following question: “To what extent does the suggested
solution reasonably integrates into the EAM ecosystem? "

Feedback: Two experts disagreed that the solution fit well into the EAM ecosystem.
They claim that MICROLY ZE exposes EA information, that should be actually integrated
into existing EAM tools. As a consequence, the recovered EA models and relationships
must be imported into the EA repository, which might lead to mapping conflicts and
duplicates that need to be handled (concern C3) accordingly. In this respect, one Enterprise
Architect also claimed, that automated imports would reduce the flexibility for manual
modeling and corrections using the EA repository’s user interface (concern C4). Attributes
that are affected by automatic import would need to be protected against manual changes.
Otherwise they would be frequently overwritten by further imports. The correction sup-
port using the deployment pipeline proposed in Section 6.1.2 is perceived as high overhead,
as the change request is linked with a deployment release. Hence, proper mechanisms
are required to ensure data consistency, which is not provided in the current solution
(limitation L2).

Reflection: As of now, the solution is not considered to replace existing EAM tools.
Via the proposed ETG MICROLY ZE concentrates on architecture recovery and knowledge

‘https://istio.io, last accessed: 2020-10-28

212

https://istio.io

7.3. Case Study in the Insurance Sector

provision. Indeed, this knowledge must be imported to EAM tools, to ensure up-to-date
and complete EA models. The same applies for CMDB imports, see concern C2 and future
work F1. How to solve EA model import conflicts was extensively discussed by Roth (Roth,
2014). During the discussion of concern C3, two Enterprise Architects saw the opportunity
to overcome this issue by introducing a system overarching global identifier of applications.
In the current state, no naming conventions or global IDs exist at the industry partner’s
environment. This constitutes an issue whenever elements from different information
sources should be matched due to the lack of unique, shared attributes. MICROLYZE
could help to realize this global ID, by extending the microlyze.json file with such an
identifier (future work F2). Hereby, we assume that the creation of the configuration file
is initialized via a web-based form. A unique identifier for an application is generated
automatically and placed into the configuration file. Along with the microlyze.json file this
ID becomes an integral part of an artifacts source code repository. Through its integrated
nature with other federated information systems, this unique ID is propagated to other
relevant information systems it connects to, e.g. CMDB, EA repository, etc. Regarding
concern C4, one expert argued that this is not an issue but only a matter of process change.
In his opinion, agile teams have to know what business layer elements their application
corresponds to. In case such assignments are incorrectly modelled, agile teams have to be
made aware of this mistake and forced to correct it appropriately.

Technical Assessment

Question Q3: The following questions addresses technical aspects of the solution ap-
proach, with a focus on the configuration files. "How do you assess the approach of binding
static information to runtime models within configuration files?"”

Feedback: The general idea was well perceived by the practitioners. In particular, the
possibility to link all business-related models to the Application Component was well ac-
cepted. A slight majority fully supported this idea as software artifacts become directly
associated with business layer relationships instead of having this information maintained
decoupled in an EA repository. Several interview partners came up with ideas how to
extend the configuration file for realizing further use cases, like the analysis of cloud-ready
applications. One Enterprise Architects stated, that the configuration file adds a high value
for EAM as it allows to interpret, filter and report on Application Components recovered at
runtime from a business layer perspective.

However, the following drawbacks were recognized during the creation of microlyze.json:
1) Most of the agile development teams suffer from missing knowledge about business
layer assignments. Such knowledge would have to be build upfront to ensure data quality
and correct assignments (concern C5). 2) Some experts stated that the maintenance of
configuration files does not lead to real automated recovery of dependency information
between business- and application layers (limitation L3).

Reflection: In order to solve concern C5, we suggest as future work to develop an
additional frontend application that provides a form-support for facilitating the main-

213

7. Evaluation

tenance process for all stakeholders that are either unfamiliar with the JSON format
or need support for the correct choice of business layer assignments (future work F3).
Form-support could also achieve to reduce efforts by generating the microlyze.json file once
per application and replicate it for each of its microservices. As a result, the risk of manual
errors and inconsistencies is mitigated. Further improvements were proposed from some
experts. They suggest binding the microlyze.json content directly to the runtime artifact e.g.
as environment variables or tags. Doing so would allow to retrieve this information at any
time from the artifact’s runtime environment after deployment. Regarding the mentioned
limitation L3, we admit that this solution approach is rather a semi-automatic recovery of
dependency information. Manual input is still required.

Question Q4: With the following question we aim at receiving feedback regarding the
concept described in Section 6.1.3. "How do you assess the integration of references to federated
information systems into the configuration files in order to retrieve further architecture-relevant
information?”

Feedback: The automated extraction of further architecture-relevant information from
other data sources is regarded as an valuable approach. Experts highly valued the idea
to include those references in the microlyze.json configuration file, as it represent static
information that is easy to maintain. However, some experts complain, that for each new
data source an adapter including GraphQL resolver must be written that exposes the
additional information (concern C6). This lead to further implementation and maintenance
efforts, in particular when the accessed REST APIs might change after an update. An
interesting aspect was raised by one expert. The practitioner demanded to assess all tools
along the application life-cycle whether they can be integrated into microlyze.json or not.

Reflection: The automated extraction of architecture-relevant data from federated in-
formation systems is not an easy task. There is not always a direct mapping between an
Application Component and the counterpart models contained in other systems in many
cases. For instance, during project portfolio planning it is not yet clear of what microser-
vices an application will consist of. In CMDBs, Application Components might not be
represented as well. Other tools might only register the parent application but not its
microservices. Therefore an individual assessment is always necessary for a given tool.
As future work, the mapping between the configuration files and federated information
systems could be achieved on Application Collaboration level and not on microservice level
(future work F4). However, in the worst case, this would lead to a one to many mapping
which must be handled accordingly.

Question Q5: Besides the usage of configuration files to achieve the recovery of business-
related EA models and the application mapping to referenced federated information
systems, the correct moment when to trigger the recovery process is also crucial to
assess. Hence, we asked the following question: “To what extent, is the instrumentation
of deployment pipelines to trigger the data collection process a practicable and reasonable approach?”

214

7.3. Case Study in the Insurance Sector

Feedback: Most experts endorsed the idea to instrument CD pipelines for triggering
the model maintenance process for two reasons: 1) It brings the process close to the actual
knowledge carriers, i.e. the agile development teams, and 2) it ensures AM updates are
performed at the most important points in time, which is the deployment of application
releases. However, the Enterprise Architects also raised the concern that the solution could
lead to a complex fragmentation of the overall model maintenance process, due to the
decentralized approach (concern C7). In addition, the again claim that the solution does
not consider important preceding EA phases like planning stages (see limitation L1).

Reflection: Regarding the concern C7, some experts proposed 1) to integrate the so-
lution even deeper into the CD pipeline, by delivering the shared library as default when
being included in the CD server image. 2) A standardized, team-overarching deploy-
ment pipeline that encompasses obligatory stages needed across the entire organization
including the model exposure stage would enforce a standardized documentation process.
This approach could also be enforced technically. However, they also admit, that this is
currently not possible due to the numerous independent CI/CD servers that limit the
solution’s scalability.

Organizational Assessment

Question Q6: The following question tries to identify whether shifting the responsibility
towards developer teams is considered the right approach: “How do you assess the approach
of shifting the documentation responsibility towards developer teams?”

Feedback: All experts agreed that this approach is the correct way to implement the
concept. The maintenance of AMs must be performed by the knowledge carriers, i.e. the
agile teams. In the current state, this is not the case. One Enterprise Architect stated
that most of EA modeling is currently covered by Domain Architects who have to gather
information from agile teams in labor-intensive and error prone work. By shifting the
model maintenance responsibility to the development teams, awareness is raised for the
need of a proper understanding of business-related models and their relationships. Based
on the feedback received from the development teams, the solutions preconditions are easy
to integrate as part of regular sprint planning and sprint execution processes, described
in section 6.2.2 which was inspired in exchange with the agile teams that adopted the
solution. A Product Owner and a Developer appreciated that only a onetime effort is
needed.

Reflection: By integrating the model maintenance endeavour into the agile teams nat-
ural development process and tool environment, it leads to a higher acceptance than
imposing the development teams to use an EA repository for modeling. In particular, by
making them responsible for documentation, the current gap between agile teams and
EA teams might be reduced and leads to increased understanding at both sides. As a
result, better collaboration could be enabled. In this sense, some Enterprise Architecture

215

7. Evaluation

experts see an intrinsic motivation with agile teams: They might quickly realize the
benefit of the suggested solution as they can save time consumed by meetings, calls and
email conversations which are currently needed to align manual EA modeling. Hence,
they might integrate the solution on their own without pressure from Enterprise Architects.

Question Q7: For question Q7, we presented the integration effort evaluation covered in
Section 7.3.5 and asked the following: “"How do you assess the effort it takes to get the tool
operational and do you think it pays off quickly?"”:

Feedback: The majority of experts confirmed the manageability of the solution. The
determined integration effort was regarded as feasible. Since the solution is easy to adopt
with small amounts of onetime efforts, some experts argued that there is no need to fund
a roll-out but only the implementation cost. Still, such a project could probably not be
funded by the EA department on its own, as some experts stated (concern C8).

Achhammer estimates for this project with support of one involved Enterprise Architect
an amortization period between four to five years, solely considering saved cost due to
reduced manual modeling efforts (Achhammer, 2019). After presenting this result, some
experts stated that this might constitute an issue as the organization usually demands a
faster payback (concern C9). In parallel, they highlighted that the presented estimation did
not include other value propositions beside time savings. Hence, the results are perceived
as rather pessimistic.

Reflection: The paypack of IT projects is always difficult to measure (Devaraj et al.,
2001). For that reason, we are convinced that the success of this project is determined
by the favour of several involved stakeholders which recognize an added value for their
daily work. Beside the access to hidden knowledge, which is obviously a benefit for many
users, we see the following motivation to realize this project: 1) Agile development teams
and Domain Architects can save time for alignment meetings and workshops with the
purpose of manual EA modeling. 2) Domain Architects need to spend less time in manual
verification/rework of EA repository based reports due to higher data reliability.

7.3.6. Critical Reflection of Results

This case study particularly assesses our solution to extend the automated recovery and
maintenance of EA models with business-related information. This information is provided
via configuration files that are exposed by CD pipeline integration as detailed in Chapter
6. The practitioners gave us useful insights how MICROLYZE can be integrated into the
case study environment in a meaningful way. Reflecting on the feedback of the case study
outlined above, from our perspective, only minor adaptations were required, i.e. the major
design decisions seem to be promising with respect to this specific use case.

In (Achhammer, 2019), Achhammer additionally sketches a preliminary, revised process
which incorporates the most important experts” feedback. The process should overcome
most of the concerns and limitations mentioned above. In the following, we summarize
the additional prerequisites that need to be fulfilled prior to a productive roll-out or to be

216

7.4. Interview Series

caught up on as soon as possible.

1. Performance impact assessment — C1: Prior to roll-out, it is necessary to analyze
the additional resources required for monitoring the IT landscape and the exposure
of the runtime data.

2. Reliability and data consistency — C2-C4, L2: Further research must be conducted
in order to resolve data consolidation and conflicts between overlapping data imports
by different source systems. This corresponds to the concerns, that the extraction of
additional architecture-relevant data might lead to mapping conflicts and duplicates
that need to be handled appropriately. In addition, in the current state it remains
unclear how automated EA model imports to EA repositories does not reduce the
flexibility for manual modeling and data corrections.

3. Software and operation documentation — C5, C6: It is necessary, that all involved
stakeholders adhere to the modelling rules for the configuration and the json schema
validation files. In addition, developers must know how to extend the adapter
pattern in order to support further referenced information systems. Hence, a proper
software documentation and operation instructions is needed for MICROLY ZE.

4. Organizational acceptance — C8, C9: The experts pointed out that it is mostly the
involvement of all required key stakeholder that made the project a success and
not the overcoming of technical hurdles. Hence, prior to roll-out, the benefits of
MICROLY ZE must be communicated transparently in order to achieve a common
organizational acceptance of the solution.

5. CD pipeline standardization — C7: Prior to the roll-out, distributed CD servers
should be consolidated to enable standardization of deployment pipelines which is a
precondition to further reduce the pipeline integration efforts and allow technically
effective process enforcement.

7.4. Interview Series

In order to answer our research question RQ6, we conducted interviews with 19 experts and
analyzed the feedback according to the qualitative content analysis technique proposed by
Philipp Mayring (Mayring, 2010). For the interviews, we initially compiled a questionnaire
with open response format, in which we asked the experts to assess the system based
on three subject areas 1) the overall solution architecture, 2) the model visualization
approaches, and 3) the technical and organisational integration. Additionally, it was
important for us to assess which further use cases can be addressed by MICROLYZE
besides the automated recovery and management of models created along the IT value
chain. Moreover, we also wanted to understand how a detailed project plan for integrating
MICROLYZE into the organization could look like. For this purpose, we collect all
required steps received from the experts and arranged them into a plan of action.

217

7. Evaluation

Prior to every interview, we presented our solution approach in detail with support
of a Microsoft Powerpoint presentation. In this presentation, we discuss the problem
description, our research goal, the overall solution concept, the technical prerequisites
that need to be fulfilled as well as a live demo of our prototype. The compiled material
is in textual and audio-recorded form, i.e. during the interview, we wrote a protocol to
gather the main points and in parallel we recorded the conversation with the interviewee.
Afterwards, we transcript the recorded material and finally merged the protocol with the
created transcription.

147 interview invitations were sent by e-mail. This list of experts was compiled during
EA research we performed with industry partners in recent years. We received 29 commit-
ments for an interview (19,7% of the invitation pool). During a first phone call with all 29
interview partners in which we sketched a rough schedule of the interview 10 participants,
i.e. 34,4%, dropped out due to schedule conflicts or because they did not feel skilled
enough to assess the system and to answer all questions. As a result, we were able to
analyze the interview material of 19 experts from 17 different companies and 10 different
industries. Table 7.5 illustrates the distribution of the industry sectors of the organizations
with Insurance as the largest sector followed by Automotive Supplier, Automotive Industry,
Information Technology and Telecommunications. Table 7.6 shows the job title of the
participants. The largest groups in our interview series consist of Enterprise Architects
with 68,4% and IT Architects with 10,5%, as well as Software Architects with 10,5%.

Table 7.5.: Interview participants grouped by
industry sector. N=19

Table 7.6.: Interview participants grouped by

Industry Sector n | % of all b title. N=19
Insurance 5 26,3% Job title. =
::u:omo?ve ISuCI{)pl;er 2 13’20;0 Job Title n | % of all
utomo ‘1ve naustry =7 Enterprise Architect 13 68,4%
Information Technology | 2 10,5% . o
o IT Architect 2 10,5%
Telecommunication 2 10,5%)
- 1 5 30, Software Architect 2 10,5%
mance 7% Global IT Architect 1 5,3%
Food Retailer 1 5,3% .
o IT Infrastructure Architect | 1 5,3%
Logistic 1 5,3%
Media 1 5,3%
Pharma 1 5,3%

As a result, the concrete task for the analysis is to identify the main positive and negative
aspects of the solution approach, as well as the concrete barriers that must be overcome in
the process of integration. Based on this task and the available data material, we regard it
obvious and appropriate to apply the interpretation technique of Summary, specifically the
systematic categorisation of the material with inductive category formation (Mayring, 2010).
The to be analysed three areas of system assessment can be understood as "deductive"

218

7.4. Interview Series

subject areas, which were given on the basis of the structure of the questionnaire. Inductive
categories were developed for these subject areas in the course of the evaluation.

When we recall the flow chart of inductive category formation illustrated in Figure 1.4,
the further procedure is to define categories (selection criterion), as well as the determi-
nation of the analysis units and the level of abstraction. In the course of the interview
evaluation, we elaborated three categories. Category A describes all technical-related
concerns of the solution concept, like technical limitations that prevent MICROLY ZE to
become fully operational. Category system B determines essential organizational aspects
and decisive factors that slows down the integration of MICROLY ZE. The final category
system C summarizes all concerns and limitations that focus on the concrete prototype and
the visual representations of the recovered models. Hence, all three deductive subject areas
of the interview material was analyzed with regard to these three category definitions.
As far as the level of abstraction is concerned, all concrete statements in the interview
material to all three subject areas should be coded in inductive categories.

Specifically, inductive categories were developed from the interviews in the first run for
all three subject areas and the frequencies with which the categories were mentioned were
noted. During the revision of the categories in the second run after the analysis of about
one third of all questionnaires, categories relating to a similar subject were combined and
reduced. In the third phase, all inductively found categories within the three subject areas
were then reassigned to upper categories at a higher level of abstraction. At the same time,
the frequencies of the mentions of the individual categories were noted in order to evaluate
them quantitatively afterwards. In addition, due to the numerous cross-references across
all upper categories in a specific subject area, a further topic area "general assessment" was
specified. The final result of the qualitative content analysis is detailed in the following
Sections.

7.4.1. Assessment of the Solution Architecture
Overall Assessment

Overall, the experts agree that the employees will be relieved by the proposed concepts
from keeping the EA models up-to-date and complete. Most experts, however, would
not use it as a standalone application but rather as a data pipeline, that exposes the EA
models to other tools, like CMDBs or EAM tools. That means, the data collection and
model recovery process is still performed by MICROLYZE, but the model maintenance
and visualization process should be performed by more advanced tools.

MICROLY ZE forces the adoption of a specific organizational and technical structure,
which follows the Archimate taxonomy (S-B1). It introduces an EA modelling standard.
This structure is mostly designed in the EAM but challenging to convey in the whole
organization. Via the decentralized and collaborative approach this challenge could
be overcome. However, not all experts regard this point as an advantage. In case the
organization has its own design and do not follow the architecture of Archimate, either
the whole organization must be redesigned or the meta-model of MICROLYZE.

Even though MICROLY ZE was primarily designed for recovering and managing models

219

7. Evaluation

Table 7.7.: Received feedback on the subject area of "Assessment of the solution archi-
tecture" consisting of code, name and frequency of the categories as well as

allocation to the five elaborated upper categories.

Code Category Count
Solution Architecture (S)
Overall Assessment
S-B1 | Forces the adoption of a specific organizational structure 9
S-Al | Too complex for heterogeneous IT landscapes 6
S-A2 | No reconstruction of use cases and corresponding relationships 2
S-B2 | Too much transparency leads to political issues 1
S-A3 | No reconstruction of business processes and corresponding relationships 1
S-A4 | Costly change in data sources due to read only access 1
Runtime Instrumentation
S-A5 | No full coverage of the IT landscape due to infrastructure diversity 8
S-A6 | Lack of technical interpretation of information flows 2
S-A7 | Analysis of huge amount of data 2
S-B3 | Too fine granular data for strategic architecture roles 2
S-B4 | Up-to-date models are not important for strategic architecture roles 2
S-A8 | Strong focus of new technologies 1
S-A9 | No recognition of removed communication and interfaces 1
S-B5 | Misuse of monitoring tools lead to compliance and security issues 1
S-B6 | Conflict with IT operation and service management 1
Configuration File
S-B7 | Additional documentation and integration effort 7
S-B8 | Error-prone due to manual maintenance 5
S-B9 | Duplicate work as information are maintained in other tools 2
S-All | No support of legacy and monolithic applications 2
S-A12 | No database-driven architecture 1
CD Pipeline
S-A13 | Not applicable for legacy and monolithic applications 3
S-A14 | Tool diversity lead to high integration effort 3
JSON Schema Validation
S-A15 | No content driven validation lead to duplicate models 2
S-B10 | Time-consuming schema updates 1

220

7.4. Interview Series

that are primarily reconstructed from microservice-based IT landscapes, the experts argue
that the concept must also cover other applications in order to become practicable. Modern
APM vendors do support a lot of different technologies. Still, it must be validated whether
a complex heterogeneous IT landscapes can be fully instrumented (S-A1). This is certainly
not the case for all legacy applications and obsolete technologies.

Two experts claim that MICROLY ZE is not able to recover use cases (5-A2) and business
processes (S-A3) and the corresponding relationships to other AMs. Use cases define
the interaction between users and the systems to achieve a goal. A business process is
a collection of related activities performed by users to produce a service or product for
customers. Some experts align IT projects according to use cases and business processes
with the goal to optimize the related workflow or transaction processing. Hence, both
models and the according relationships are important to maintain.

Furthermore, an interesting aspect was raised by one Enterprise Architect. He stated
that too much transparency about the IT landscape might also lead to displeasure by
managers (S-B2). MICROLYZE might disclose bad performance in departments, which is
due to bad management or "lazy" employees. This can be reflected by slow adoption of
new technologies or slow execution of projects. For instance, the AM comparison view
could indicate how fast the system is changing in a particular domain or department.
Hence, due to the aforementioned reasons some managers might refuse to introduce and
support MICROLYZE.

Finally, MICROLYZE represents a read-only system that is not able to update the
information in the particular data sources. It only consumes the data and prepares them
accordingly. If the information provided by the data sources is incorrect, which can be the
case especially in the configuration files, then MICROLY ZE recovers wrong models. The
same applies for monitoring tools that require manual configuration to identify correct
relationships in IT landscapes. If the data source deliver incorrect information and requires
modification, this is only recognizable after MICROLY ZE recovered the AMs. Hence, the
necessary subsequent adaptation of the data sources causes an high effort (S-A4).

Runtime Instrumentation

Most of the interviewees regard the concept of recovering EA models based on the analysis
of runtime data as a promising solution. One expert even defines it as the only available
solution for keeping models up-to-date.

However, the interviewees also identified many challenges that must be overcome
for productive use. Most experts doubt that monitoring tools are able to cover the
whole IT landscape (S-A5). They primarily focus on new technologies (S-A8) and self-
developed applications, in particular microservices. In every case it must be validated if
the heterogeneous landscape is fully supported by the monitoring tool, which causes a
high validation effort. If we assume that one organization provides a rather homogeneous
IT landscape that is fully instrumented, then we have to set up a very high performance
system that is able to analyze those huge amount of incoming monitoring data (§-A7). Two
experts argue that runtime data are too fine granular for strategic architecture roles (S-B3)
and up-to-date models are not important for strategic decisions anyway (S-B4). Hence,

221

7. Evaluation

the processing of runtime data and the subsequent aggregation to higher abstractions is
complex and probably causes too much overhead. Moreover, one important information
that is missing in runtime data is the technical interpretation of information flows (S-A6).
It is only visible that two AMs are dependant on each other because they exchange data
in general or due to deployment relationships, but it cannot be uncovered the rational of
this data exchange or which specific data objects are transported. One expert correctly
identified that removed communications cannot be recovered, because this information is
not available in runtime data (S-A9). Hence, manual work is necessary which puts the
actual purpose of the solution into perspective. Last but not least, one expert claim that
the application of monitoring tools may cause conflicts with the IT operation and service
management team (S-B6), because a misuse of monitoring tools for model maintenance
purposes lead to higher administration overhead, as well as to compliance and security
issues (S-B5).

Configuration File

The concept of the configuration files was also well received by the experts. It represents a
simple way to provide business-related model information and the according relationship
with other EA layers. The definitions of the models in business-related terms achieves
a better understanding for the business world among the Developers. Especially, the
decentralized approach of model maintenance was perceived as very useful as it leads to
collaborative work. The references to other information systems opens up completely new
possibilities and use cases for some experts. Even though the maintenance of configuration
files causes less work for an individual, it represents a big advantage for the EA model
maintenance endeavours and the reconstruction of the model life-cycle along the IT value
chain. This was confirmed by most of the interviewees.

But still, the Developers must create the file and integrate it into the CD pipelines, what
needs to be done during the actual work. Depending on the size of the instrumented IT
landscape, this initial effort may represent for some departments a challenge (S-B7), even
if the maintenance effort becomes less after the integration is accomplished. In addition,
Developers and Product Owners may perceive this task as duplicate work as specific
information must already be maintained in project management tools, wikis and the like (S-
B9). All in all, one justified criticism raised by five experts is the fact, that the maintenance
of configuration files are still performed manually, which does not solve the original
problem. The effort is only distributed among many. Hence, the provided information
might still be error-prone and outdated (S-B8). Moreover, the configuration files represent
physical data that are stored in the particular application paths and are processed via a
CD pipeline. Even though MICROLY ZE focuses on microservice-based IT landscapes, it
must be determined whether legacy applications and cloud-based applications are also
supported by this concept and if not which changes must be applied (S-A11). One expert
proposed to change the concept towards a database-driven architecture, i.e. all maintained
information are stored in a database and are frequently validated before each application
deployment (S-A12). In this sense, it must be figured out how the validation process can
be performed in detail.

222

7.4. Interview Series

Continuous Delivery Pipeline Integration

As most of our experts had the Enterprise Architecture role, they were not able to provide
much feedback regarding the usage of CD pipelines. In general, it was perceived as a
reasonable approach to identify change events and to trigger the model update process.

Two points of criticism were expressed. First, CD pipelines are not used for every
development process (S-A13). Most organizations follow a liberal approach for application
development, i.e. the Product Owner and development teams can decide how to develop
and operate applications. This also leads to a technology diversity according to CD
pipelines, which in turn, increases the effort of configuration file processing and JSON
schema validation (S-A14).

JSON Schema Validation

Every additional validation of manual work is important and required to keep the quality
of EA models high. For that reason, most experts confirm the necessity of JSON schema
validation. It specifies a concrete structure of the IT landscape that every Developer
must adhere. In addition, it supports the exchange between Developers and Enterprise
Architects.

However, the validation of the configuration files against a JSON schema does not achieve
a content validation (S-A15). Spelling mistakes and wrong information are processed
without verification. This leads to duplicated models and incorrect model assignments
in the worst case. Furthermore, a change in the JSON schema must be rolled out in the
whole organization, which leads to high update efforts (S-B10). In addition, the updates
are not carried out in time, but are first scheduled in the sprint backlogs with probably
low priority.

7.4.2. Assessment of Model Visualizations
Overall Model Visualization Assessment

All experts agree that the developed visualizations are an appropriate initial approach to
demonstrate the flexibility of the graph-based representation of the maintained models.
Especially, the different ways how to visualize dependency structures and the aggregation
possibilities found approval. However, there are still several points that need to be
addressed in order to improve the prototype.

First of all, all views misses important features like aggregation, filter and display of
a specific section (V-C1). That was claimed by eight experts. The integration of those
features would also address the recognized scalability issues, which is a problem with all
diagrams that have to handle huge amount of data (V-C3).

In addition, MICROLY ZE is able to offer service for many different user roles, however,
the prototype has no clear focus according to the developed visualizations (V-C2). As stated
above, the Model Deployment, Model Interaction, and Model Communication views are rather
important for Solution Architects but unusable for Domain- and Enterprise Architects in
the current form. A different entry into the ETG, as well as a higher aggregation level

223

7. Evaluation

Table 7.8.: Received feedback on the subject area of "Assessment of the visualization
approaches" consisting of code, name and frequency of the categories as well as
allocation to the seven elaborated upper categories.

Code Category Count
Visualizations (V)

Overall Model Visualization Assessment

V-C1 | Missing important features like aggregation and filter for all views 8
V-C2 | No clear focus on EA layers and different roles 6
V-C3 | Scalability issues 5
V-C4 | No visualization of important KPIs 5
V-C5 | No manual adoption of the model visualization 4
V-C6 | Only as-is representation of the IT landscape without target states 1
Model Cluster View
V-C7 | Representation of too much information 5
V-C8 | Challenging visualization of many to many relationships 1
V-C9 | No clear focus on business context 1
V-B11 | Vertical ordering of the IT models might lead to displeasure 1
Model Deployment View
V-B12 | Important for technical roles - no business-related model definitions 7
V-C10 | Representation of too much information 7
V-C11 | No selection of different entries 5
Model Table View
V-C12 | No export to Excel format 3
V-C13 | No data analysis possibilities like sum, count, etc. 1
V-C14 | No differentiation between last seen of a AM and data traffic 1
Model Communication View
V-C15 | No interface description 3
V-C16 | No transparency about data object exchange on business level 2
V-C17 | Representation of too much information 2
Model Interaction View
V-B13 | Only important for technical roles 3
V-C18 | No visualization of non-functional requirements 2
V-C19 | No selection of different entries 2
V-B14 | Aggregation level is too low for business roles 1
V-C20 | No highlighting of long request processing paths 1
Model Comparison View
V-C21 | No comparison in other EA layers 5
V-C22 | No representation of target plans 2
V-C23 | No delta visualization 2
V-C24 | No visualization of change impacts on business processes 1
V-C25 | Missing information about detailed changes 1
V-C26 | Comparison must be based on same data quality level 1

224

7.4. Interview Series

would also make those visualizations usable for Domain- and Enterprise Architects. At
the same time the Model Cluster, Table and Model Comparison views are highly relevant for
Enterprise Architects. Hence, the experts propose to elaborate clear uses cases for every role
and create visualizations with an adequate aggregation level for each EA layer accordingly.

The representation of static and runtime information in each model was considered
as an advantage over other solutions. However, the experts misses further important
KPIs like the incurred costs, especially in cloud environments, runtime status of each
model, operation within the defined SLAs, or the number of users and transactions that
are currently processed (V-C4).

Furthermore, even though the visualization framework is able to reconstruct the ETG
always in the same form in order to improve the recognition value for the users, some
experts still wanted to modify the node and edge positions manually (V-C5). Besides that,
it should also be possible to save the new positions.

Last but not least, the views only represent the IT landscape in its current state, but
do not incorporate planned or target states (V-C6). If MICROLYZE could be evolved in
this direction that it could also manage different architecture states, this would be an big
improvement, especially for Enterprise Architects.

Model Cluster View

Many experts confirm that the Model Cluster view represents an important entry to visualize
the link between the business and IT world. It creates an overview about the whole IT
landscape. In particular, the folder-based structure to navigate into the business and IT
layers is considered as valuable.

However, it still has some drawbacks that need to be improved. First of all, the view
displays too much information at once, as five experts stated (V-C7). The experts would
prefer a more focused business context that shows, for instance, only the models of one
selected domain and hides information from other domains (V-C9). In addition, many
to many relationships between business, application or infrastructure models lead to
duplicated nodes, which created confusion among the users (V-C8). Hence, even though
the folder structure is regarded as useful, an improvement would be to zoom into a
selected model and only display those information that represent child models from a
hierarchical perspective.

We apply an automatic layouting of models that does not change after a page refresh.
Hence, there is no priority of those models that are positioned in the first lines. However,
one expert stated that the vertical ordering of the models may lead to displeasure by other
users (V-B11). They might feel disadvantaged because their domains are not positioned in
the first place. The possibility to move the models manually would solve this problem.

Missing information is Use Cases, Business Capabilities and the according relationships,
the display of the status of the applications and hosts like run, stopped, crashed and the
like, as well as usability functions like model search, filter, export and the possibility to
save the displayed IT landscape section as a snapshot.

225

7. Evaluation

Model Deployment View

The Model Deployment view was rated as the less valuable visualization of AM relationships.
It displays way too much information in the current form and is only useful for applications
that are not distributed a lot, which is mostly not the case for microservice architectures
(V-C10). In addition, this model representation has a strong focus on technical roles (V-
B12). Deployment relationships on a more business-oriented perspective would highlight
important cost aspects for Business Services, Products, or Domains. Hence, the selection of
different AMs as the parent node would represent a big improvement (V-C11).

An additional improvement would be the enhancement of grouped nodes with technical-
, and business-related KPIs. For instance, the experts seek answers to the following
questions: How much time does my application consume on the cloud platform? What
data volume and storage space does it require? What costs does the system incur? How
many requests does the system process? Where are the outliers that put heavy strain on
the budget?

Model Table View

The table-based representation of the AMs was regarded at the most valuable visualization
for hierarchical dependencies. The experts confirmed that tables are especially useful for
displaying many objects of the same type and level. The hierarchical ordering of the AMs
via tabs and the presentation of relationships via setting filters was also well accepted.
A missing feature that was raised by three experts is the export of the table into CSV or
Microsoft Excel format (V-C12). Furthermore, the table does not provide any data analysis
capabilities like sum, count, aggregation etc. (V-C13) An important information that is
missing in the table is the differentiation between last seen of a AM and last seen of data
traffic (V-C14). With this additional timestamp it is possible to identify microservices that
still run in the system and consume resources, but are not used anymore since there is no
data traffic recorded. Hence, it is an indication for removing this microservice from the IT
landscape and free additional system resources.

Model Communication View

Regarding the Model Communication view, we received good feedback. The experts con-
sidered it as a good approach to reveal transparency about the communication behavior
of a whole business area, as well as about the dynamics of change in an area over a time
dimension. Also the automatic positioning of the nodes that do not change after a page
refresh was considered beneficial. It provides a high recognition value.

Some improvements were also mentioned: First of all, the communication path does
not provide a detail description of the used interfaces (V-C15). This was criticized by
three experts. In addition, the communication path should be enhanced with information
about the data object that is exchanged between AMs (V-C16). Last but not least, the
visualization also face scalability issues (V-C17). If too many nodes and edges are displayed,
the visualization becomes complex and unreadable. Hence, filter, search and aggregation
functionality to prevent information overload was demanded.

226

7.4. Interview Series

Model Interaction View

The Model Interaction view was well appreciated by the experts. The representation of the
transaction flow through the system and all applications that contribute to process the
transaction addresses several important use cases. For instance, the experts recognized that
it uncovers optimization potential like bottleneck identification, long running processes
and root cause analysis. Even though, these use cases are intensively addressed by APM
tools, MICROLY ZE is able to display the transaction flow on a higher aggregation level,
which opens up further analysis possibilities.

The Model Interaction view was also considered as important for rather technical roles
like Solution Architects (V-B13). In general, the displayed aggregation is too low and the
presented data too fine-grained for business roles (V-B14). The possibility for a higher
aggregation of the transaction flow was requested several times. One expert also proposed
to display the processing flow of predefined use cases and not only single transactions
(V-C19). In addition, the view does not highlight long path of request processing (V-C20).
This would unveil hidden potential for performance optimization. Last but not least,
two experts suggest to enhance the runtime data with KPIs that measure the coverage of
non-functional requirements (V-C18).

Model Comparison View

The last view, Model Comparison discovers the areas where a lot of development work is
conducted. As the expert stated, this information is important for gaining transparency
about the dynamics of change of an specific area. Especially Enterprise Architects perceived
the Model Comparison view as important to assess whether the IT landscape evolves into
the desired direction.

However, the visualization in its current version lacks in providing detailed informa-
tion about changes, like on which level the change was performed (architecture-based,
functional-, non-functional-based, bug fixes, etc.), connection to the backlog, and respon-
sibilities (V-C25). Furthermore, it remains unclear what impacts the changes have on
the business processes, or the processed use cases (V-C24). One expert argued that the
comparison must be based on the same data quality level (V-C26). If particular AM’s rela-
tionships actually exist in both architecture states, but were not recovered in the obsolete
architecture due to any reasons, then one can draw false conclusions from the comparison.
Transparency about the dynamics of changes of an specific area can also be abused to
assess the performance of developer teams, or whole departments. On management level
this would lead to displeasure among the stakeholders as one expert worried.

In addition, what could be improved is the integration of planned states of the IT
landscape (V-C22) and to display the delta of both architecture states, i.e. the as-is versus
as-planned (V-C23). This delta would support the monitoring and the assessment of a
project progress and to point out critical differences. Last but not least, the view should
cover the comparison of all models from every EA layer and not only the business layer (V-
C21). This is definitely achievable with the graph-based representation of the IT landscape
but was not realized due to the high additional development effort.

227

7. Evaluation

Table 7.9.: Received feedback on the subject area of "Assessment of the technical and
organizational integration" consisting of code, name and frequency of the
categories as well as allocation to the three elaborated upper categories.

Code Category Count
Technical and Organizational Integration (I)

Technical Barriers

I-A16 | Instrumentation of legacy and cloud-based applications 10
I-A17 | Interface and meta-model support of different monitoring tools 9
I-A18 | Organization-wide rollout of APM tools 8
I-A19 | Organization-wide rollout of CD pipelines 8
I-A20 | Storage of data beyond national borders and restricted areas 6
I-A21 | Instrumentation of applications in closed networks 2
I-A22 | High network administration effort due to higher network load 1
Organizational Barriers
I-B16 | Adaption of the development process 8
I-B17 | Complete preliminary definition of business layer models 4
I-B18 | Involvement of many stakeholders 3
I-B19 | High initial effort in case not all prerequisites are fulfilled 2
I-B20 | Necessary training of employees 2
I-B21 | Management guidelines restrict the technology stack 1
I-B22 | Convincement of management that EAM requires runtime data 1
Delegation of Documentation Responsibility
I-B23 | Low self-motivation lead to bad data quality 6
I-B24 | High heterogeneity of internal and external developers 2
I-B25 | High fluctuation of employees 2
I-B26 | High task load of developers 2
I-B27 | Frequent change of responsibilities 1

7.4.3. Technical and Organizational Integration
Technical Barriers

Many experts recognized a technical barrier towards the instrumentation of legacy- and
cloud based applications (I-A16). Many legacy applications are not supported by APM
tools or do not even provide any interfaces for runtime instrumentation. Cloud platforms
offer their own monitoring technologies or provide interfaces for integrating third-party
monitoring tools. In both cases, it must be validated technically if the cloud platform
tulfills all requirements. It is also challenging to add configuration files to cloud-native
applications, as they run in encapsulated environments. Furthermore, each monitoring
tool has its own meta-model for analyzing the IT landscape. If this meta-model is currently

228

7.4. Interview Series

not supported by MICROLYZE then an additional meta-model transformation must be
written in order to translate the meta-model into the Archimate taxonomy (I-A17).

The experts claimed that their IT landscape is not fully instrumented by APM tools and
not all departments use continuous delivery or agile methodologies. There exist many
gaps. Hence, in order to make MICROLYZE fully operational, an organization-wide
roll-out of APM tools and CD pipelines is required, which might meets refusal by many
managers (I-A18, I-A19). The most stated concern is the cost aspect. Dynatrace, for
instance, charges 4 Cent per host per hour for self-service agents. According to our case
study described in Section 7.2, we recovered 5.805 hosts. A simple projection would mean
that this IT landscape cost over 167.000 EUR per month. We do not have any information
about the actual conditions agreed upon regarding the license costs.

Moreover, six experts argued that the central processing of runtime data and the
according maintenance of the recovered models is not possible beyond national borders
and restricted areas (I-A20). The organizations must obey the laws of the country they are
located in. Due to data privacy regulations and other laws, it is not allowed to transfer data
across national borders in certain countries (Nigel, 2017). A similar technical barrier was
identified in closed networks (I-A21). They present not a regulatory but a technical barrier.
In both cases, an automated collection of distributed runtime data and configuration file
contents, as well as a central processing is impossible.

Last but not least, one expert had concerns that the processing of huge amount of
runtime data lead to additional network overhead (I-A22). This overhead lead to higher
administration cost and eventually to performance issues in peak times.

Organizational Barriers

According to organizational barriers, many experts stated that an adaption of the develop-
ment process is unavoidable in order to integrate the concept (I-B16). The maintenance
and validation of the configuration file must become a central task in the deployment
process. Without a successful validation against the JSON schema the application should
not be allowed to deploy to production. However, this deployment process follows agile
practices, which is not conducted in all areas of the organization. This also requires a
necessary training of the employees, especially for Developers and Product Owners (I-B20).
First, they must understand how to apply the agile development process. Second, they
must understand the structure and features of the configuration file and third, they must
understand the Archimate taxonomy and how it is applied in their own organization.
However, before MICROLY ZE can become fully operational certain prerequisites must
be fulfilled that also represent organizational barriers. The fulfillment of the technical
prerequisites already requires high initial efforts in case the technical prerequisites are
currently not completely fulfilled (I-B19). This barrier becomes even worse in case man-
agement guidelines restrict the usage of the required technology stack (I-B21). In addition,
it is important to have a clear, uniform and complete definition of the business layer
and the according models (I-B17). Without an available definition of the business layer
structure the configuration files cannot be maintained properly. However, some experts
admitted that their organization is still working on the business layer definition. Hence,

229

7. Evaluation

MICROLYZE would put too much pressure on the business which might lead to a refusal
of the system.

All in all, the concept of MICROLYZE suggest to delegate several task to Developers
and Product Owners in order to achieve a decentralized model maintenance process.
Some experts see this critically as too many stakeholders must be involved in the model
management (I-B18). Indeed there are many supporters who recognize the advantages of
this concept. Enterprise Architects and Solution Architects were mentioned frequently as
the biggest beneficiaries. But there exist also blockers who fear to have even more work
to do, or might not see the benefit of MICROLYZE. The experts mentioned Developers,
Product Owners, Security and Compliance, Business Owners, and the IT Operation as
the potential blockers. Those blockers must somehow convinced to become supporter of
MICROLY ZE which seems to be challenging according to the expert’s feedback (I-B22).

Delegation of Documentation Responsibility

Most experts agreed that a decentralized approach to maintain EA models is the correct
way. We recorded many statements similar to “the documentation must be made where
the data is generated.” A central approach where one department, mostly the Enterprise
Architects, are responsible to carry out the documentation for the whole organization
lead to incomplete and outdated models. This was also confirmed by many researchers
(Armour et al., 2005; Farwick et al., 2011a,b; K. Winter et al., 2010).

However, a decentralized approach for model maintenance leads to several challenges.
Many experts admit that the developer teams have less motivation for model maintenance,
especially in keeping the documentation up-to-date that is mostly required by other roles
(I-B23). Hence, the risk is high that the content of the configuration file is maintained in
the beginning and not touched anymore afterwards. It must be set up a strong governance,
as well as penalty measures to ensure the model maintenance is carried out frequently.
This is very difficult to enforce and also not wanted, because the developer teams should
not be controlled too much in order to remain they agility. In addition, due to high
workload, many developers complain that there is mostly no time left to update the
documentation for other roles (I-B26). As a consequence, especially architecture roles
have to work with obsolete documentations. To summarize, even though a decentralized
approach has already been introduced in the organizations of many interviewees, they
still need to validate the provided documentation and fill many gaps manually.

Furthermore, many experts complain a high heterogeneity of internal and external
developers (I-B24). Especially in big organizations application development is mostly
outsourced, even though many experts state that the development process is increasingly
shifting towards internal development. This leads to an unstable composition of the
developer teams. This problem is further exacerbated due to a high fluctuation of internal
employees (I-B25) and frequent changes of responsibilities (I-B27). As a result, the
knowledge how to maintain the models and how the business is structured in detail, as
well as the rational behind this approach must be passed over and over again. The experts
have concerns that due to this instability of development teams the model maintenance
quality will suffer in the long run.

230

7.4. Interview Series

7.4.4. Supported Use Cases

Besides the management and the automated recovery of models, the experts identified
further important use cases that can be addressed with MICROLYZE. Those use cases
can also be regarded as future work, that complement the list with future work identified
in the previous case studies. In the following, we discuss those use cases in more detail:

e F1 — Application life-cycle management: Four experts identified MICROLYZE
as an instrument to support the application life-cycle management (Keuper et al.,
2011). MICROLY ZE uncovers the version number of technologies and how long the
application or infrastructure components are part of the IT landscape. This would
give a hint to replace the technology with a newer version. In addition, based on the
communication information, MICROLY ZE helps to disclose obsolete applications
that are not used anymore and, hence, can be removed from the IT landscape. This
information is often not available as some experts admit.

e F2 — IT transformation planning and controlling: MICROLYZE uncovers the as-
is IT landscape, which represents an important baseline for identifying problem
areas and supports the planning in which direction the IT landscape should be
optimized and evolved. Hence, it provides important information for elaborating
IT transformation plans and EA roadmaps. In addition, since MICROLY ZE stores
every change applied to the IT landscape in the form of revisions (cf. Section
5.2.5), one can use this information to control the IT transformation and intervene if
unwanted changes are recognized.

e F3 — Support of requirements analysis: Similar to I-UC2, the identification of
problem areas by analyzing the as-is IT landscape recovered by MICROLY ZE makes
also room for supporting requirements analysis (Kotonya et al., 1998). This use case
was proposed by two experts.

e F4 — Cloud migration planning and controlling: According to cloud migration
endeavours, the experts stated that it is challenging to identify which applications
are ready to be deployed to the cloud. This accounts especially for distributed
microservices that establish a big communication network. It is important to analyze
which services form a conglomerate of dependant elements and therefore must be
migrated as a whole (Gholami et al., 2016). MICROLYZE supports this analysis
by recovering the communication relationships and the related dependencies to the
business layer.

e F5 — Failure impact analysis: According to ITIL v3 Service Management (Office,
2011b), the component failure impact analysis (CFIA) can be used to identify what
impacts failure have to business operations and users. The result of the analysis
emphasize where additional resilience should be considered to prevent or minimize
the impact of failures. In general, the impact assessment is mainly conducted via
a CFIA matrix, which represents the dependencies of all IT landscape components
including business processes and users. MICROLY ZE could support the CFIA by

231

7. Evaluation

automating the recovery of component dependencies and the according visualization
of failure impact paths.

F6 — Service catalog management: The service catalogue describes in a formal way
the available services that the organization have to provide (Office, 2011a). The
catalogue contains the respective Service Level Agreements (SLA) that should be
met, setting expectations between clients and providers of services. In a study (Cole,
2008) conducted with 100 companies that tried to implement a service catalogue,
12% reported that the project was unsuccessful. 34% of those companies mentioned
service definition as one of the "top risks" for successful catalogue implementation.
According to one expert, MICROLYZE could support the implementation of a
service catalog by recovering all currently running services, their states, and their
runtime behavior.

7.4.5. Action Plan

We asked the experts what steps they would perform to introduce MICROLY ZE into their
organization. Based on the received responses we elaborated a general plan of action
that is accepted by most of the experts. Interesting, the experts agreed that it is mostly
the involvement of all required key people that made the project a success and not the
overcoming of technical hurdles. The elaborated plan of action is detailed in the following:

1. Validation of prerequisites fulfillment: First of all, a first validation is required to

assess to what extent the prerequisites of MICROLYZE can be fulfilled in the target
organization. If the IT landscape primarily consists of legacy applications that are
developed based on a waterfall approach, then MICROLY ZE is not the right tool
to recover and to manage the EA models. However, if the organization has a huge
microservice-based IT landscape and the development process mainly follows the
agile principles, then the project responsible can proceed with the next step.

. Development of a first Proof of Concept (PoC): The next step covers the develop-

ment of a first PoC to validate whether MICROLY ZE satisfies the required aspects
and solves the problems it was designed for. For this task, the project responsible
should seek for an appropriate area in which most of the technical obstacles are not
present. Maybe the own developer team can be used to accomplish this task. The
project responsible should calculate important KPIs, that emphasize the advantages
of the system. These are among others 1) time needed for integration, 2) costs that
are likely to be incurred, 3) model recovery ration, that means the number of AMs
that can be recovered automatically divided through all existing AMs in this area.

Presentation of the PoC to the management: Afterwards, the result of step two
must be presented to the management. According to the experts, all benefits and
drawbacks of MICROLY ZE should be listed transparently. The cost factor is an
important aspect that needs to be considered, but also the potential cost savings
including employee relief. Only if the management can be convinced of the solution,
the project can be continued with the next steps.

232

7.4. Interview Series

4. Validation of required stakeholders and responsibilities: Next, as detailed in Sec-
tion 6.2.1 many different stakeholders are required to bring this solution in operation
and must integrate it into their daily work. We identified the roles Enterprise Ar-
chitects, Domain Architects, Product Owners and Development Team. It must be
validated whether those roles are present in the target organization and actually
performs the necessary tasks. After the correct roles are found, the persons behind
those roles must be identified and contacted accordingly.

5. Performing motivational work: Now, the most challenging part comes according to
the experts. All identified stakeholders must be convinced to contribute to the project.
Having the management on his side is a first important step, however enforcing the
people to contribute is not seen as the right way, as this would certainly compromise
the quality of the project. Hence, incentives must be found for the stakeholders to
use the system out of their own conviction. Otherwise, the performance of EA model
maintenance endeavours still remains low. However, this step also encompass the
validation to what extent the specific business area of the target stakeholders can be
supported by MICROLYZE. That means, the area fulfills the technical prerequisites
and applies an agile development process. If this is not the case at all then any
motivational work is pointless.

6. (Optional) Introduction of an uniform definition of the business-layer models: A
complete definition of the business-layer models and their relationships is required
by MICROLYZE. This can only be provided by organizations with a certain level of
maturity as one expert stated. Without a clear business structure the configuration
files cannot be filled with the required information and MICROLY ZE is not able to
assign the recovered models to the business layer. In case the business layer models
are not defined yet, then this should be made up in this step.

7. (Optional) Rollout of APM tools and CD pipelines: A further optional step is
the rollout of required technologies encompassing APM tools and CD pipelines.
As already stated by many experts, not all departments have APM tools and CD
pipelines in service.

8. MICROLYZE integration and definition of the JSON schema: All the aforemen-
tioned steps are preliminary work. If the organization arrives this point, MICROLY ZE
can be finally integrated into the IT landscape. This step covers the following tasks:
1) connecting MICROLY ZE to the APM tool, 2) creating the configuration files and
adding them to the application repositories, 3) defining the JSON schema file, 4) inte-
grating the configuration file validation to the CD pipeline, 5) fixing interfaces and
wrong model transformations and 6) adjusting the development process to ensure
continuous configuration file maintenance. The experts agree that MICROLY ZE
should be rolled out step by step.

9. Training of Developers and Product Owners: Last but not least, Developers and
Product Owners must be trained to use and maintain the system. This step is
important, especially in organizations with a high staff turnover.

233

8. Conclusion

In the last chapter of this thesis, we aim at summarizing the thesis’ content, reflect on
the proposed solution design based on the research questions raised in Section 1.2, reveal
known limitations, and give an overview of further research.

8.1. Summary

The thesis at hand starts with the motivation that newly developed IT services leave a
digital twin, i.e. a model in each phase of the IT value chain that is backed by a particular
collaboration tool. The management of those models serve as an important information
source to establish a knowledge management and an efficient continuous feedback loop in
every model life-cycle phase. However, the problem description in Section 1.1 highlights
that an efficient model management is overshadowed by numerous issues: 1) Model
management is still conducted manually, which is error-prone and time-consuming. 2) The
extraction of models from the tools used along the IT value chain lead to an ambiguous
documentation of the architecture. 3) Microservice architectures introduce a high level
of complexity with regard to model management. Based on the problem description,
Section 1.2 elaborates on the formulation of concrete research questions, while Section
1.3 discusses the adoption of the design science research methodology to the context of
this thesis. Sections 1.4, 1.5 and 1.6 summarize the thesis’ core contributions, conducted
preliminary work on this topic and the documentation structure respectively.

Our solution approach is based on the foundation detailed in Chapter 2. We introduce in
Section 2.1 the concepts of model-driven engineering that handles models and their trans-
formations as primary artifacts to evolve software systems. EAM as our problem domain in
which we observe challenges concerning the management of models in microservice-based
IT landscapes is described in Section 2.2. Hereby, we detail in particular IT-landscape
modelling as an important subarea of EAM to recover and to maintain the models of an
organization. Microservice architectures represent the frame of our research and introduce
a high level of complexity with regard to model management. Therefore, the Section 2.3
requires high attention. Finally, Section 2.4 summarizes characterizing features of DevOps,
which aims to shorten the software development life-cycle and covers many concepts that
we leverage to elaborate our solution including agile practices, continuous delivery and
monitoring.

We summarize in Chapter 3 the state-of-the-art which is related to our solution approach.
In this scope, we address related literature on behalf of model-driven reverse engineering
(cf. Section 3.1), EA model maintenance (cf. Section 3.2), and automated creation of IT
landscape visualization (cf. Section 3.3). Finally, we detail in Section 3.4, to what extent

235

8. Conclusion

our approach differs from the related work.

In Chapter 4, we describe how we derived the requirements for the conceptual and
technical design of our approach to automate the recovery of EA models by processing
runtime data. To this end, in Section 4.1 we first explain the different aggregate states
of models covering the instantiation, specialization and execution phase, and how those
phases are interconnected along the IT value stream. Afterwards, we sketch the respective
conceptual framework of our approach to manage models which captures the process
design, storage design and reference design respectively. We further identify different
roles of users interacting with the models in each life-cycle phase. Based on our con-
ceptual framework as well as on related work on model reverse engineering, EA model
maintenance and IT landscape representation, we describe in Section 4.2 the systematic
derivation of 21 requirements categorized along the domains architectural, organizational,
functional and visualization requirements.

Based on the derived requirements, we outline the concrete system design of MI-
CROLYZE and the core activities for recovering technical models via runtime instru-
mentation in Chapter 5. Consequently, we analyze in Section 5.1 exposed IT landscape
meta-models of modern APM tools in order to understand what specific EA models can
be recovered and which remain hidden. Based on those findings, we develop in Section
5.2 the meta-model and the main components of our system design. Further on, we detail
the processes on how to recover EA models and the corresponding relationships in Section
5.3. This section covers the most important algorithms, that we created to recover EA
models. We continue in Section 5.4 to describe our model visualization framework and
detail the implementation of several IT landscape views that represent models in different
perspectives.

Since Chapter 5 outlines the highlights of the implementation of the prototype empow-
ering the automated reconstruction of technical EA models via runtime instrumentation,
we focus in Chapter 6 on recovering business-related models and the extraction of further
architecture-relevant information from federated information systems that are used along
the IT value chain. In this scope, we introduce in Section 6.1 the concept of configuration
files that contain business-related model information and detail how we intend to integrate
those files into the continuous delivery pipeline. In Section 6.2, we elaborate on the
organizational design and summarize which stakeholders must be involved. We focus on
technical processes in Section 6.3, that must be performed to import the content of the
configuration file to MICROLYZE. Finally, we describe in Section 6.4 approaches how
this additional application- and business layer relationship information can be represented
visually.

The prototypical implementation serves as a proof of concept on the one hand, and
enables the evaluation of the developed concepts as described in Chapter 7 on the other
hand. Thereby, we applied different evaluation strategies to validate different aspects
of the prototype. In Section 7.2, we evaluate the concepts described in Chapter 5 in an
automotive setting. Section 7.3 outlines the setting and key findings of the evaluation in
an insurance environment. Hereby, we primarily assess the solution design detailed in
Chapter 6. Finally, Section 7.4 summarizes the result of 19 interviews with practitioners

236

8.1. Summary

from 17 different companies that provide overall feedback about the prototype.

After summarizing the thesis and its chapters, we assess its results with respect to the
research questions raised in Section 1.2. In this scope, we provide a brief answer to the
particular research question and refer to specific sections of the thesis that provide more
details.

Research Question 1 (RQ1): How can a system and a process design look like that automati-
cally reverse engineers models from runtime data?

The answer of the first research question is primarily covered by Chapter 5. First, we
analyzed in Section 5.1 four different APM tools and evaluated based on their provided
meta-model what specific information they can deliver. The knowledge gained helped us
to understand what models of an IT landscape can be reconstructed at most. Afterwards,
we elaborated the required model-transformation process that translates the runtime data
into our desired meta-model. In this scope, we described our system design that primarily
consist of four main backend components (see Section 5.2), i.e. 1) MICROLYZE.Collect,
that consumes the runtime data, extracts the EA models and transforms the models in
our elaborated meta-model, 2) MICROLYZE.Analyze extracts communication relationships
between application models, identifies the used interface and determines communication
deletion thresholds, 3) MICROLYZE.Store is responsible to persist the EA models in the
elaborated meta-model and finally 4) MICROLYZE.Expose provides an interface to enable
users to query the recovered EA models.

In this scope, we further elaborated in Section 5.3 two algorithms the Backward Recovery
Algorithm and the Forward Recovery Algorithm that first reconstructs an incomplete IT
landscape by analyzing past runtime data and afterwards continuously refined the EA
model architecture by processing newly incoming runtime data. As removed communi-
cation relationship poses a challenge as this information is not available in runtime data,
we elaborated a concept to detect removed communications by introducing the deletion
threshold approach.

Research Question 2 (RQ2): How to recover business-related models and how to establish a
correct assignment of those models to technical layers?

In Section 6.1, we elaborate on a concept of how to enhance the developed meta-model
with further business-related information that cannot be extracted out of runtime data.
In this scope, we propose the creation of a configuration file that must be manually
maintained and assigned to each deployed microservice. This file contains all required
information for establishing the relationship between business- and application layer. In
addition, we present a concept in Section 6.1.3 to enhance the configuration file with
references to other federated information systems that are used to evolve models along
the IT value chain. The detailed workflow for processing all information delivered by the
configuration file is detailed in Section 6.3.

Research Question 3 (RQ3): How can a meta-model of the EA knowledge graph look like that
represents the models from all EA layers and what relationship types need to be defined?

In order to answer research question three, we introduce the concept of enterprise topology
graph in Section 5.2.5. The purpose of the ETG is to capture the whole architecture of an
IT landscape in a graph-based form. The nodes in the graph define AMs and the edges

237

8. Conclusion

the logical, functional, and physical relationships between the models. The ETG is the
final model manifestation after a chain of model transformations. First, the APM server
itself transforms the runtime data into their specific meta-model. Second, we analyzed
those meta-models in Section 5.1 and transform the entities into the Archimate taxonomy,
which represents our basis for visualizing the IT landscape. Third, we enhance our meta-
model with further business-related models provided by configuration files. Finally, we
transform this meta-model into a graph-based representation. In Section 5.1.5, we discuss
the relationship types between the AMs. We specify them into hierarchy, grouping and
communication relationships.

Research Question 4 (RQ4): How and where to integrate the concept in the software develop-
ment process and which stakeholders must be involved?

With the extraction of architecture-relevant information from different sources, we follow
a decentralized setup. The model extraction out of runtime data is performed continuously
without human intervention. However, the processing of the distributed configuration
tiles must be embedded into the agile development process of every SCRUM team. We
suggest to involve the model management into the regular sprint planning, as stated in
Section 6.2.2. In this scope, the CD pipelines used to release new application versions can
be leveraged to validate the content of the configuration files and to forward it to a central
model management.

Several stakeholders must be involved in the proposed concept, as described in Section
6.2.1. We cluster them into the Enabler, Worker and Beneficiary group. The interplay of
all those roles and how they are allocated into the overall solution concept is described in
Section 6.2.2.

Research Question 5 (RQ5): How can stakeholders be supported in understanding and
exploring the EA knowledge graph?

We introduce in Section 5.2.6 GraphQL as the query language for requesting the recov-
ered models and their relationships. This language adhere to the meta-model taxonomy
detailed in Section 5.1. It enables users to select, search, filter, analyze and to modify the
ETG. In addition to simple requesting models, we develop methods that enable users to
retrieve runtime metrics for every technical model from the exposed APM server APIs.
For this purpose, we add additional fields to the GraphQL schema that point to the related
methods in the backend. This approach uncovers behavioral aspects of models and, hence,
represents the models@run.time. Furthermore, we integrate the model revision concept
into the GraphQL language. Based on revisions, we enable users to analyze the emerging
behavior of an IT landscape, or compare different architecture states. Finally, we discuss
in Section 5.4 and 6.4 visualization approaches that illustrate the IT landscape in different
graph-based representations.

Research Question 6 (RQ6): What are the benefits and shortcomings of the proposed solution?
What additional use cases can be addressed?

Chapter 7 summarizes the settings and key findings of two different evaluation strate-
gies, namely two case studies in the automotive and insurance industry that assess the
prototype’s practicability, and an interview series with 19 practitioners of 10 different
domains to get feedback on the concept and the developed visualizations. Each Section in

238

8.2. Critical Reflection

Chapter 7 provides a synthesis of the key findings identified in the particular evaluation.

For further challenges of recovering EA models, we refer to Section 8.3 in which we
summarize potential future research opportunities based on the findings of the thesis at
hand. We conclude our summary with a recapitulation of the requirements identified in
Section 4. Table 8.1 lists the requirements and provides both a brief description of how we
addressed them and a reference to the respective section of this thesis.

8.2. Critical Reflection

In the previous Chapters in this thesis, we aim at addressing all defined requirements and
summarize our achievements in Table 8.1. However, we are aware that not all of them are
fully met. Especially, the evaluation conducted in Chapter 7 revealed main limitations of
the developed solution approach. In the following sections, we recapitulate on known
limitations and critically reflect both this thesis” contribution and its evaluation.

8.2.1. Functional Limitations of the Prototype

Many functional limitations were already discussed in the evaluation chapters. In the
following, we summarize those limitations based on four main categories:

o Limitations towards scalability: MICROLY ZE still has to be examined with respect
to its scalability. This aspect was mentioned by several interviewed practitioners. In
this context, scalability not only refers to the tool’s ability to handle large runtime data
sets, but also to handle those data in the respective visualizations. The complexity of
huge recovered IT landscapes with many EA models must be reduced with either
use case specific visualizations or with user control features like aggregation, filter
and search in order to allow end-users to effectively explore the ETG in the light of
thousands of nodes and edges. Further scalability concerns address 1) the support
of massive distributed environments, 2) the parallel support of different APM tools
and 3) the support of legacy systems, as well as monolithic applications. Even
though, many of those mentioned scalability aspects are already implemented in
MICROLY ZE, they were not evaluated.

e Limitations towards completeness: Information completeness can only be proven if
the ground truth is known. However, research regarding to (model-driven) reverse
engineering and architecture recovery assumes that the ground truth is unknown
or at least undocumented. Hence, it is rather challenging to prove that the solution
approach is working correctly. This was recognized, especially in the analysis of
removed models or model communications. No runtime information about those
models initially only indicate a lack of instrumentation, but do not fully prove the
according absence. As a result, as long as we cannot prove MICROLY ZE is able to
recover every model in the observed IT landscape, we also cannot form a general
opinion about its practicability, but only discuss its potential benefits and drawbacks.

239

8. Conclusion

Table 8.1.: Addressed requirements detailed in Section 4.2

Req Brief Description Sections
Architectural Requirements
REQ 1 Automated identification of models 5.2.3,5.24
REQ 2 Automated identification of structural dependencies | 5.3.1, 6.1.1, 6.3.2
REQ 3 Automated identification of model communications | 5.3.2
REQ 4 | Process support for maintaining relationships be- | 6.1.1, 6.1.2
tween business and technical EA layers
REQ 5 | Decentralized data collection process 523,611,617
REQ 6 | Model references to federated information systems | 6.1.3
used along the IT value chain
Organizational Requirements
REQ 7 | Organizational regulation of model management 6.2
REQ 8 | Technical support of the organizational maintenance | 6.1.5, 6.1.6
process
REQ9 | Alignment of model management to superior EA | 5.1.5, 6.1.1
concepts
Functional Requirements
REQ 10 | Delivery of up-to-date information 5.2.3,5.3,6.1.5,6.3.3
REQ 11 | Automated detection of changes 5.3.3,5.34,53.7,6.1.5
REQ 12 | Automated change propagation 53.3,6.3
REQ 13 | Generic model transformation 51.5,52
REQ 14 | Management of model evolution 5.2.5,5.2.6
REQ 15 | Network-based management of models 525
REQ 16 | Automated detection of interfaces 5.2.4,65.3.6
REQ 17 | Definition of KPIs 5.2.6
Visualization Requirements
REQ 18 | Web-based client for model visualizations 54.1
REQ 19 | Visualization of structural and communication depen- | 5.4, 6.4
dencies
REQ 20 | Visualization of runtime information 5.4.8,5.49
REQ 21 | Query language for retrieving model information 5.2.6,5.4.9

240

8.2. Critical Reflection

e Limitations towards information analysis: This point summarizes all limiting as-
pects with regard to model extraction from the available information base. First of
all, runtime data only show that communication took place between two models,
but cannot explain the reasons why these models communicated with each other.
Therefore, it was argued by the practitioners that an actual understanding of the
underlying architecture cannot be unveiled. In addition, MICROLY ZE is not able
to recover use cases and business processes from the available information. Fur-
thermore, the validation of the configuration files against a JSON schema does not
achieve a content validation which would lead to duplicated models and incorrect
model assignments in case spelling mistakes are inserted. All those limitations
challenge the practicability of the solution.

¢ Limitations towards privacy: Some interviewed experts stated that their organiza-
tion would have worries when implementing MICROLY ZE in their IT landscape. In
general, this worry refers to the topic of "surveillance vs. privacy". In concrete terms
this means that too much transparency about the IT landscape might disclose bad
performance in departments, which is reflected by slow adoption of new technolo-
gies, slow execution of projects, bad architecture quality due to unskilled developers
and the like. Privacy is a huge concern especially in big and regulated companies.
Consequently, MICROLY ZE would reignite the debate about holistic economic util-
ity for an organization and each individual’s privacy claims. In this context, the
acceptance of people to make certain concessions regarding their privacy would only
grow if they receive benefits as an exchange. For that reason, it is indispensable to
show that MICROLY ZE can be applied in different stakeholder concerns. However,
this must be performed in every individual organization. We were only able to list
its potential benefits and drawbacks.

8.2.2. Critical Reflection on the Validity

In order to discuss the trustworthiness of the evaluation results we apply the schema
described in (Runeson et al., 2008). Different aspects of the approach and the prototype
were validated with different evaluation strategies. The first case detailed in Section
7.2 study focused on the recovery of technical models through runtime data analysis
and according visualizations. The second case covered in Section 7.3 study validates
the recovery approach of business-related models by maintaining them in configuration
files. The feasibility of both case studies were validated with quantitative and qualitative
methods. Finally, the interview series with 19 practitioners of different domains and
different companies assess the overall solution and visualization approaches (cf. Section
7.4).

We see one of the greatest threat in the construction validity. The experts we interviewed
might understand the questions differently according to our intention. For instance, the
term "microservice" could be interpreted differently since this term is not clearly defined.
Some experts might not be aware of the differences between business services, service-
oriented applications (SOA) and microservices and could mix up the terms. Since we

241

8. Conclusion

interviewed a lot of Enterprise and IT Architects this group of people might understand
microservices in a different way as Developers do. Nevertheless, from our point of view, it
was appropriate to use this terminology, since most of the experts are familiar with it and
the hype about microservices leads to a common understanding about this architectural
pattern.

For the demonstration of the prototype, we used the results collected by the case
studies and showed the visualizations generated from it to the interviewees. Based
on this demonstration, we discussed the potential utility for the particular application
domain. This demonstration was indeed successful for the case study interviews, as the
practitioners recognize their own IT landscape. However, for the conducted interviews
detailed in Section 7.4, the discussions were of a hypothetical nature, since on the one
hand the presented visualizations were based on anonymized data and on the other hand
the practitioners had only the opportunity to see a foreign recovered IT landscape. This
fact represents another threat to the evaluation’s validity.

The main limitation regarding external validity is given by the structure of the sample.
We see three threats according to the external validity: First, the experts were mainly
from Germany, hence, the transferability of the results to other countries may be limited.
In addition, the sample might not be representative enough because the experts were
obtained by convenience sampling. For the interview series, we were only able to analyze
responses from 19 experts. The experts do not represent an equal distribution over every
industry sector.

The evaluation strategies in general are primarily of a qualitative nature. Although
the case studies provide helpful and in-depth insights into concrete applications of the
prototype in specific contexts, the evaluation’s empirical foundation implies that its results
are not generalizable. A big percentage of the whole sample represent user groups that
are responsible for EA management tasks. Therefore, the evaluation is potentially biased
towards this specific domain. In addition, even though, these group of persons have
enough knowledge about EA management and EA model maintenance, they were not
always able to provide high-qualified answers about the assessment of rather technical
aspects like CD pipelines integration, data collection from monitoring tools, etc. Another
danger stems from the decision to primarily address experts who are already dealing with
microservices. While their existing knowledge can reduce the risk of misunderstandings
and lead to more qualified answers, a positive bias towards this architecture style can not
be eliminated.

A potential danger to the reliability of the results may arise from the fact that a significant
number of experts were obtained through personal contact. Their answers could be
influenced subjectively, since the experts might not want to give a bad evaluation.

8.2.3. Critical Reflection on the Research Methodology

In this thesis, we applied the design science research framework (Hevner et al., 2004) in
order to systematically develop the solution design and the prototypical implementation.
Even though, this research framework is widely used in the research community;, it also
must be questioned whether this method is the right approach to process the research

242

8.3. Future Work

topic. In this context, we refer to Frank (Frank, 2006) which discusses four deficiencies the
design science research is suffering from. These are 1) a lack of accounting for possible
future worlds, 2) insufficient conception of a scientific foundation, 3) a mechanistic world
view, and 4) a lack of appropriate concepts for describing the IT artifact.

For instance, Hevner et al. (Hevner et al., 2004) propagate to focus on problems which
are motivated by current business needs. Business needs which might potentially emerge
in future are not captured by the framework. According to this, the motivation of this thesis
is indeed based on current problems, experiences, and business needs, and thus is certainly
suffering from a lack of accounting for possible future worlds. In addition, we derive the
requirements for our IT artifact based on related work (cf. Chapter 3) and foundations
(cf. Chapter 2). Hence, the derived requirements are certainly contingent. This fact is
described by Frank (Frank, 2006) as one of the key issues of the design science research
framework’s mechanistic world view. As a consequence, it is important to interpret the
results and conclusions of this thesis in the light of those flaws.

8.3. Future Work

In the final section of this thesis, we discuss future research opportunities which are
enabled by this thesis’ contribution and findings. Table 8.2 summarizes all future work we
identified during the conducted case studies in Section 7.2 and 7.3, as well as during the
interview series in Section 7.4. Those future work are mainly derived from limitations we
collected as a response by the interviewed practitioners. In addition to Table 8.2, in the
following we focus on research opportunities which are not direct implications from those
technical limitations but still represent high research potential.

8.3.1. Business Process Recovery via Process Mining

MICROLYZE processes runtime data for recovering technical EA models. Business-
related EA models are not recovered automatically but provided by configuration files
that are placed in each application’s repository. The configuration file can be extended
manually with arbitrary information like business domains, capabilities, products or
business processes. We see potential for future research especially in the automated
reconstruction of business processes. For this objective, process mining could be applied
(W.M. P. v. d. Aalst et al., 2000; W. M. P. v. d. Aalst, 2015). This research aims at identifying
trends, patterns and further activity-related details that user performs by analyzing
event log data recorded by an information system. One process mining technique is the
discovery of event sequences that represent a specific business process. By incorporating
this techniques with our model discovery technique, we would also be able to discover
business-related models automatically. However, the researcher would probably face one
big challenge: At this stage, it remains unclear how to establish the relationship between
the discovered business processes and the Application Components that are responsible to
handle the business process.

243

8. Conclusion

Table 8.2.: List of future research derived from identified limitations from the automotive
case study (ACS), insurance case study (ICS) and conducted interviews (INT)

Source | Code| Brief Description Section

ACS | F1 Recovery of monolithic applications via runtime instrumentation | 7.2.4

ACS F2 Application of deletion thresholds for detecting removed com- | 7.2.4
munications

ACS F3 Extraction of semantic information from runtime data in order | 7.2.4
to understand the reason for application communications

ACS F4 Integration of planned states in the IT landscape recovery 724

ACS F5 Recovery of IT landscapes across national borders 724

ACS | Fe Support of runtime data analysis exposed from several different | 7.2.4
APM tools

ACS | F7 Integration of search and filter features into the MICROLYZE | 7.2.4
frontend

ACS | F8 Integration of highlighting features to emphasize certain hotspots | 7.2.4

ACS | F9 Integration of aggregation features to drill the information up | 7.2.4
and down to the desired aggregation level

ACS | F10 | Association of recovered requests with business use cases and | 7.2.4
business processes

ACS | F11 | Add release deployment cycle to Architecture Model Comparison | 7.2.4
visualization

ACS | F12 | Add planned architecture states to Architecture Model Comparison | 7.2.4
visualization

ICS F1 Export recovered models to CMDBs, EAM tools or other applica- | 7.3.5
tions

ICS F2 Extension of the configuration file with a global identifier that | 7.3.5
uniquely determines applications

ICS F3 Additional user frontend for supporting configuration file main- | 7.3.5
tenance

ICS F4 Extension of configuration file mapping on Application Collabora- | 7.3.5
tion level

INT F1 Application live-cycle management 744

INT F2 IT transformation planning and controlling 744

INT F3 Support of requirements analysis 744

INT F4 Cloud migration planning and controlling 744

INT F5 Failure impact analysis 744

INT F6 Service catalog management 744

244

8.3. Future Work

8.3.2. Assessment of Architecture Quality

The assessment of the quality of the developed architecture also gives potential for
further research. Especially, microservice-based architectures rely on the interaction of self-
contained services. In order to assess an architecture’s quality and validate its conformance
to behavioral requirements, those models must be subjected to sophisticated static analyses.
Those analysis are mostly limited to performance analysis but not to architecture quality
analysis. Since MICROLYZE is able to discover the whole IT landscape, we suggest to use
the recovered information as the base for performing quality analysis in order to obtain
its strengths and weaknesses. This provides a sound foundation for the future evolution
of the architecture as well as for decision-making regarding new projects. In this scope,
we refer to related work published by the University of Augsburg (Bauer et al., 2015;
Langermeier. et al., 2017).

8.3.3. Failure Root Cause and Failure Impact Analysis

Due to the inherent complexity of EA models and their interconnections, the task of
generating additional value from these models is very challenging without suitable analysis
methods. Failure root cause analysis (Gupta et al., 2003; Wilson et al., 1993), that determine
the root causes of faults or problems as well as failure impact analysis (Bagchi et al., 2001;
Hanemann et al., 2005), that uncover or predicts the effects of changes or failures on other
architectural elements, can provide valuable information for architecture roles. Whether
a model is affected depends on its context, i.e. its connections to other models and their
semantics with respect to the analysis. Those analysis techniques are mostly applied by
operations with support of monitoring tools. However, the big picture is often not taken
into account. The goal is to fix the failure to get back into normal operation quickly. An
holistic analysis that also takes further EA layer into account is mostly not applied. Hence,
it remains either hidden what impact a failure had on customers, business processes
and business domains or it will be discovered much later. MICROLYZE could support
those analysis techniques by automating the recovery of component dependencies and the
according visualization of failure impact and root cause paths.

245

g = W N =

Nele)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A. Appendix

A.1. JSON Schema

The following Listing A.1 details the required JSON Schema for validating the JSON

example provided in Listing 7.1 in Section 6.1.3.

Listing A.1: JSON Schema validation file

"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "microlyze json validation",
"type": "object",
"required": ["name","description","business_service","product","
business_function"],
"properties": {
"name": {
"$id": "#/properties/name",
"type": "string",
"pattern": "~(.*)$"
1},
"description": {
"$id": "#/properties/description",
"type": "string",
"pattern": "~(.*x)$"
1,
"business_service": {
"$id": "#/properties/business_service",
"type": "object",
"required": ["name"],
"properties": {
"name": {
"$id": "#/properties/business_service/name",
"type": "string",
"pattern": "~(.x)$",
1,
}
1,
"product": {
"$id": "#/properties/product”,

247

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71

A. Appendix

"type": "object",
"required": ["name"],
"properties": {
"name": {
"$id": "#/properties/product/name",
"type": "string",
"pattern": "~(.*)$",
1,
}
1,
"business_function": {
"$id": "#/properties/business_function",
"type": "object",
"required": ["name"],
"properties": {
"name": {
"$id": "#/properties/business_function/name",
"type": "string",
"pattern": "~(.*)$",
1,
}
1,
"references": {
"$id": "#/properties/references",
"type": "array",
"items": {
"$id": "#/properties/references/items",
"type": "object",
"properties": {
"pm": {

"$id": "#/properties/references/items/properties/pm",

"type": "object",

"required": ["tool","domainurl","apiurl","id"],

"properties": {
"tool": {

"$id": "#/properties/references/items/properties/pm/properties

/tool",
"type": "string",
"pattern": "~(.*)$"
1,

"domainurl": {

"$id": "#/properties/references/items/properties/pm/properties

/domainurl",

248

72
73
74
75
76
77

78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99

100
101
102
103
104
105

106
107
108
109

A.1. JSON Schema

"type": "string",
"pattern": "~(.*)$",
"format": "uri"
1,
"apiurl": {
"$id": "#/properties/references/items/properties/pm/properties
/apiurl",
"type": "string",
"pattern": "~(.H)\/(["\/]H)$"
1,
"id": {
"$id": "#/properties/references/items/properties/pm/properties
/id",
"type": "string",
"pattern": "~(.*)$"
}
}
1,
"cmdb": {
"$id": "#/properties/references/items/properties/cmdb",
"type": "object",
"required": ["tool","domainurl",'"apiurl","id","apiToken"],
"properties": {
"tool": {
"$id": "#/properties/references/items/properties/cmdb/
properties/tool",
"type": "string",
"pattern": "~(.*)$"
1,
"domainurl": {
"$id": "#/properties/references/items/properties/cmdb/
properties/domainurl",
"type": "string",
"pattern": "~(.*)$",
"format": "uri"
1,
"apiurl": {
"$id": "#/properties/references/items/properties/cmdb/
properties/apiurl",
"type": "string",
"pattern": "~(.+)\/(["\/I1+)$"
1,
"id": {

249

110

111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

A. Appendix

"$id": "#/properties/references/items/properties/cmdb/
properties/id",
"type": "string",
"pattern": "~(.*)$§"
¥,
"apiToken": {
"$id": "#/properties/references/items/properties/cmdb/
properties/apiToken",
"type": "string",
"pattern": "~(.*)$"
}
131,
"application_collaboration": {
"$id": "#/properties/application_collaboration",
"type": "object",
"required": ["name"],
"properties": {

"name": {
"$id": "#/properties/application_collaboration/properties/name",
"type": "string",
"pattern": "~(.x)$"
}
}
1,

"product_owner": {
"$id": "#/properties/product_owner",
"type": "object",

"required": ["name", "contact"],
"properties": {
"name": {
"$id": "#/properties/product_owner/properties/name",
"type": "string",
"pattern": "~(.*)$"
s
"contact": {
"$id": "#/properties/product_owner/properties/contact",
"type": "string",
"format": "email"
}
}
1,

"used_ports": {
"$id": "#/properties/used_ports",

250

A.1. JSON Schema

151 "type": "array"
152 +

153}

154 }

251

List

1.1.

1.2.

1.3.
1.4.
1.5.

2.1

2.2.
2.3.
24.
2.5.
2.6.
2.7.

2.8.
2.9.
2.10.
2.11.

2.12.
2.13.

3.1.
3.2.
3.3.
3.4.

4.1.

of Figures

Model representation along the IT value stream described by IT4IT (The
Open Group, 2019). Each model undergoes various phases including the
Instantiation, Specialization and Execution phase, whereas each phase in the

value stream is supported by specific information systems.. 2
Design science research framework by (Hevner et al., 2004) adapted to the

present thesis” contribution o o Lo 7
Steps of deductive category assignment (Mayring, 2010) 13
Steps of inductive category development (Mayring, 2010) 13
The main contributions of this thesis. 15

Core topics that represent the foundation of related work and the thesis’

approach. 21
Four-layered meta-modeling stack (Brambilla et al., 2012) 23
Model transformation schema (based on (Czarnecki et al., 2006)) 24
Model-driven reverse engineering process (based on (Brambilla et al., 2012)) 26
Fundamental layers of an enterprise architecture 27
ArchiMate core framework (The Open Group, 2016) 31
ArchiMate behavior and structure elements meta-model (The Open Group,

2016) . .o 32
ArchiMate relationship meta-model (The Open Group, 2016) 33
Monolithic Architecture vs. Microservice Architecture 35
Microservice Architecture Reference Model 38
Proportion of IT that is based on microservices grouped by industry sectors.

N=58 (Kleehaus etal.,2019b) 42
DevOps life cycle phases (Bass et al., 2015) 44
The causal and temporal relationships between four spans in distributed

tracing (Sigelman etal.,2010) 54
Layered architecture of a software map (Lankes et al., 2005) 62
IT landscape visualization with ExplorViz (Fittkau et al., 2015) 63
IT domain specific modeling language (Frank et al., 2009) 64
Different levels of detail in the C4 model (Brown,2018) 64

Model interconnection along the IT value stream. Each phase in the value
stream is supported by specific information systems. An holistic model
management is essential for knowledge sharing as several stakeholders are
involved in phase in the value stream 68

253

List of Figures

4.2.

5.1.
5.2.
5.3.
54.
5.5.
5.6.

5.7.
5.8.
5.9.

5.10.
5.11.

5.12.

5.13.

5.14.
5.15.
5.16.
5.17.
5.18.
5.19.

5.20.
5.21.
5.22.
5.23.
5.24.
5.25.

5.26.

527
5.28

Conceptional framework of EA model management in a microservice-based

ITenvironment 69
AppDynamics meta-model (A. Inc.,2020) 82
New Relic meta-model (N. Inc.,2020) 83
Dynatrace meta-model (D. Inc.,2020) 86
AppMon meta-model o L oo 88
Derived meta-model for MICROLYZE 93
The interplay between the IT landscape under observation (SUO), the corre-

sponding APM server and our developed tool MICROLYZE 94
Model transformations during the IT landscape recovery process 95
Detailed class diagram of the core components of MICROLYZE 97
GET list of processes from Dynatrace API 98
Meta-Model for storing EA models in graph-based representation 107
GraphQL query for retrieving all Application Components that are required

to process a specificrequest L L Lo 112
GraphQL result for retrieving Application Components within a specific Ap-

plication Interaction 112
GraphQL query for retrieving the average cpu utilization within a specific

timeframe for a defined Application Component 114
Revisionconcept L o 114
Revision relation concepto L 0oL 115
GraphQL mutation for recovering and storing new AMs 115
Overall model recovery process 117
Backward recovery process Lo oo 118

Differences between deployment-level communications and assembly-level
communications between microservices. Only the assembly-level are stored

inthedatabase. L 121
Forward Recovery process 122
Revision Creation Process 125
RESTful Interface Reconstruction Process 127
Architecture of the visualization components of MICROLYZE 130
Style and layout architecture of MICROLYZE 133

AM Visualization: (left) Architecture Component with 7 instances and 13
exposed interfaces, (middle-left) representation of a Node element, (middle-
right) collapsed Product with 1 subelement and shrinked Label, (right) ex-
panded Product with one Business Service as subelement. Further AMs are
displayed in a similar way and with the correct Archimate symbols. 134
Relationship Visualization: (left) Compositions are marked with a rhombus
and determine contains relationships, (middle) Associations are represented
by a solid line, indicating runs on relationships, and (right) Flows are drawn

with a dashed arrow and defines calls relationships 135
. Overview of the Visualization Process represented in an activity diagram . 136
. GraphQL query for Architecture Model Deployment visualization 137

254

List of Figures

5.29. Visualization of Architecture Model Deployments by structuring the model de-
pendencies in a tree-based representation. Grouped nodes can be collapsed
orexpanded. L

5.30. Architecture Model Communication visualization by leveraging tree-based
representations.o

5.31. Revealing Architecture Model interactions by highlighting transaction paths
within a tree-based representation. The table above the graph details the
used interfaces for transaction processing.

5.32. Architecture Model Comparison visualization by splitting the window layout.
The left hand side displays the obsolete architecture of the selected Appli-
cation Collaboration. The right hand side unveils the updated architecture.
Removed relationships or AMs are highlighted in red. New relationships or
AMs are visualized ingreen. L

5.33. Sidebar that opens after clicking on a Architecture Model or communication
relationship. Left: static information about the AM that is stored as anno-
tations in the database. Middle: communication relationship information
separated in calls and called by. Right: runtime information about the AM .

5.34. GraphQL client developed by Prisma. The view illustrates an example how
to write GraphQL queries and how the result is displayed.

6.1. Overall System Integration Concept
6.2. Adapted Meta-Model including AMs from the business layer
6.3. Extended meta-model for storing entities within the MICROLY ZE.Store
component e
6.4. MICROLYZE.Expose and MICROLYZE.Collect component extension for
supporting model import from federated information systems.
6.5. JSON Schema location and distribution overview
6.6. Interplay of the different roles and components involved in the overall
solutionconcept.
6.7. CD pipeline validation process
6.8. Workflow for processing information delivered by the configuration file . .
6.9. Decision tree for ArchitectureModel updates
6.10. Visualizing hierarchical dependencies of Architecture Models via a domain
cluster representation. Grouped AMs can be opened or collapsed.
6.11. Visualization of Architecture Models in a table-based representation. The
columns of the particular table can be specified according to the available
annotation information. L L L L oo
6.12. The visualization of Architecture Model communications can also be per-
formed on an higher aggregation level in order to address different stake-
holder concerns. In this example, we aggregate the communication depen-
dencies on Business Service level to unveil which services communicate in
general. L

7.1. Performed evaluation activities combining different research methods . . .

140

255

List of Figures

7.2.
7.3.

74.

7.5.

7.6.
7.7.

Performed evaluation activities and their milestones
Recovered ApplicationComponents during recovery process. The backward
recovery process starts at iteration -1 and ends at iteration -112. The forward
recovery process takes over at iteration 113.
Recovered Nodes during recovery process. The backward recovery process
starts at iteration -1 and ends at iteration -112. The forward recovery process
takes over at iteration 113. Lo
Recovered ApplicationInteractions and communication relationships during
recovery process. The backward recovery process starts at iteration -1 and
ends at iteration -112. The forward recovery process takes over at iteration
113, . e
Case Study IT landscape overview
MICROLYZE integration effort compared between two different develop-
mentteams. Lo

256

List of Tables

5.1.

5.2.

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.
7.7.

7.8.

7.9.

8.1.
8.2.

Meta-model transformation for deriving a generally accepted meta-model

for Microlyze 89
Reported log events of RESTful API calls and their corresponding interface
description. The parameters are highlighted inbold. 126

Status quo: Average as-is EA model documentation rating per EA layer.
N=1.

1=fully agree, 2=rather agree, 3=rather disagree, 4=fully disagree 186
MICROLY ZE execution result: Result of the Top 15 of those ArchitectureModels
with the highest automation score. scorey, = 5,5, scorem =22,0 187

Status quo: Average as-is EA model documentation rating per EA layer.

N=7.

1=fully agree, 2=rather agree, 3=rather disagree, 4=fully disagree 203
MICROLYZE execution result: Result of the Top 15 of those Architecture
Models with the highest automation score. score,, = 5,5, scoreya, = 22,0 . 204
Interview participants grouped by industry sector. N=19 218
Interview participants grouped by job title. N=19 218
Received feedback on the subject area of "Assessment of the solution archi-
tecture" consisting of code, name and frequency of the categories as well as
allocation to the five elaborated upper categories. 220
Received feedback on the subject area of "Assessment of the visualization
approaches” consisting of code, name and frequency of the categories as

well as allocation to the seven elaborated upper categories. 224
Received feedback on the subject area of "Assessment of the technical and
organizational integration" consisting of code, name and frequency of the
categories as well as allocation to the three elaborated upper categories. . . 228

Addressed requirements detailed in Section4.2 240
List of future research derived from identified limitations from the automo-
tive case study (ACS), insurance case study (ICS) and conducted interviews
(INT) . oo 244

257

Acronyms

ADL Architecture Description Language.
AM Architecture Model.

APl Application Programming Interface.
APM Application Performance Monitoring.
AR Architecture Recovery.

AWS Amazon Web Services.

CD Continuous Delivery.
CDE Continuous Deployment.

Cl Continuous Integration.

CMDB Configuration Management Database.

CPU Central Processing Unit.

CSRF Cross-Site Request Forgery.

DDD Domain-Driven Design.
DoD Definition of Done.
DOM Document Object Model.

DT Development Team.

EA Enterprise Architecture.

EAD Enterprise Architecture Documentation.

EAM Enterprise Architecture Management.
ESB Enterprise Service Bus.

ETG Enterprise Topology Graph.

HOT Higher Order Transformation.

259

Acronyms

HTTP Hypertext Transfer Protocol.

laaS Infrastructure as a Service.
IS Information Systems.
IT Information Technology.

ITIL Information Technology Infrastructure Library.

JS JavaScript.
JSON JavaScript Object Notation.

KPI Key Performance Indicator.

M2M Model to Model Transformation.
M2T Model to Text Transformation.

MDE Model-driven Engineering.

MDRE Model-driven Reverse Engineering.

MOF Meta Object Facility.
NIST National Institute of Standards and Technology.
OS Operating System.

PaaS Platform as a Service.
PO Product Owner.

PPM Project Portfolio Management.
QoS Quality of Service.
REST Representational State Transfer.

SaaS Software as a Service.
SM Scrum Master.
SOA Service-Oriented Architecture.

SQL Structured Query Language.

T2M Text to Model Transformation.

260

Acronyms

TUM Technical University of Munich.

UAT User Acceptance Test.

Ul User Interface.

UML Unified Modelling Language.
URL Uniform Resource Locator.

UUID Universal Unique Identifier.

VCS Version Control System.

261

Bibliography

Aalst, W. M. P. v. d.,]. Desel, and A. Oberweis, eds. (2000). Business Process Management,
Models, Techniques, and Empirical Studies. London, UK, UK: Springer-Verlag.

Aalst, W. M. P. van der (2015). “Extracting Event Data from Databases to Unleash Process
Mining”. In: BPM. Springer, pp. 105-128.

Abrahamsson, P, O. Salo, J. Ronkainen, and J. Warsta (2017). “Agile software development
methods: Review and analysis”. In: arXiv preprint arXiv:1709.08439.

Achhammer, L. (2019). “Assessing the Cost and Benefit of a Microservice Landscape
Discovery Method”. Master’s Thesis. Munich, Germany.

Agrawal, R., D. Gunopulos, and F. Leymann (1998). “Mining Process Models from Work-
flow Logs”. In: Proceedings of the 6th International Conference on Extending Database Technol-
ogy: Advances in Database Technology. EDBT "98. Springer-Verlag, pp. 469-483.

Ahlemann, F,, E. Stettiner, M. Messerschmidt, and C. Legner (2012). Strategic Enterprise
Architecture Management: Challenges, Best Practices, and Future Developments. Management
for Professionals. Springer Berlin Heidelberg.

Aier, S. and B. Gleichauf (2010). “Application of Enterprise Models for Engineering
Enterprise Transformation”. In: Enterprise Modelling and Information Systems Architectures
- An International Journal 5.1, pp. 58-75.

Aldea, A., M. Iacob, A. Wombacher, M. Hiralal, and T. Franck (2018). “Enterprise Archi-
tecture 4.0 — A Vision, an Approach and Software Tool Support”. In: 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pp. 1-10.

Aleatrati Khosroshahi, P., M. Hauder, A. Schneider, and F. Matthes (2020). Enterprise
Architecture Management Pattern Catalog. Tech. rep. Technical University Munich. URL:
https://wwwmatthes. in.tum.de/pages/ugsyil9wmmvl /Enterprise-Architecture-
Management-Pattern-Catalog-V2-2015 (visited on 02/14/2020).

Alegria, A. and A. Vasconcelos (2010). “IT Architecture automatic verification: A network
evidence-based approach”. In: 2010 Fourth International Conference on Research Challenges
in Information Science (RCIS), pp. 1-12.

Ali, N., S. Baker, R. O’Crowley, S. Herold, and J. Buckley (2017). “Architecture consistency:
State of the practice, challenges and requirements”. In: Empirical Software Engineering 23,
pp- 1-35.

Allspaw, J. (2008). The Art of Capacity Planning: Scaling Web Resources. O'Reilly Media, Inc.

Alshuqgayran, N., N. Ali, and R. Evans (2016). “A systematic mapping study in microservice
architecture”. In: International Conference on Service-Oriented Computing and Applications
(SOCA). IEEE, pp. 44-51.

Armour, E, S. Kaisler, J. Getter, and D. Pippin (2003). “A UML-driven enterprise archi-
tecture case study”. In: 36th Annual Hawaii International Conference on System Sciences
(HICSS'03).

263

https://wwwmatthes.in.tum.de/pages/ugsyi19wmmvl/Enterprise-Architecture-Management-Pattern-Catalog-V2-2015
https://wwwmatthes.in.tum.de/pages/ugsyi19wmmvl/Enterprise-Architecture-Management-Pattern-Catalog-V2-2015

Bibliography

Armour, F, S. Kaisler, and S. Liu (1999). “Building an Enterprise Architecture Step-by-Step”.
In: IT Professional 1, pp. 31-39.

Armour, F, S. Kaisler, and M. Valivullah (2005). “Enterprise Architecting: Critical Prob-
lems”. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

Bagchi, S., G. Kar, and J. L. Hellerstein (2001). “Dependency Analysis in Distributed
Systems using Fault Injection: Application to Problem Determination in an e-commerce
Environment.” In: DSOM, pp. 151-164.

Bahle, S., C. Endres, and M. Fetzer (2013). Evaluierung von Ansiitzen zur Identifizierung und
Ermittlung der Enterprise IT in Forschung und Produkten. Tech. rep. Stuttgart.

Balalaie, A., A. Heydarnoori, and P. Jamshidi (2016). “Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Software 33.3, pp. 42-52.

Bang, S. K., S. Chung, Y. Choh, and M. Dupuis (2013). “A Grounded Theory Analysis of
Modern Web Applications: Knowledge, Skills, and Abilities for DevOps”. In: Proceedings
of the 2nd Annual Conference on Research in Information Technology. New York, NY, USA:
Association for Computing Machinery, pp. 61-62.

Bass, L. J., I. Weber, and L. Zhu (2015). DevOps: A Software Architect’s Perspective. Pearson
Education.

Bauer, B., M. Langermeier, and C. Saad (2015). “A Flow Analysis Approach for Service-
Oriented Architectures”. In: Software, Services, and Systems: Essays Dedicated to Martin
Wirsing on the Occasion of His Retirement from the Chair of Programming and Software
Engineering. Ed. by R. De Nicola and R. Hennicker. Cham: Springer International
Publishing, pp. 475-489.

Beck, F. and S. Diehl (2011). “On the Congruence of Modularity and Code Coupling”.
In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, pp. 354-364.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley.

Beck, K., M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K.
Schwaber, J. Sutherland, and D. Thomas (2001). Manifesto for Agile Software Development.
URL: http://www.agilemanifesto.org/ (visited on 02/14/2020).

Bencomo, N., S. Gotz, and H. Song (2019). “Models@run.time: a guided tour of the state of
the art and research challenges”. In: Software Systems Modeling.

Bennaceur, A., R. France, G. Tamburrelli, T. Vogel, P.]. Mosterman, W. Cazzola, F. M. Costa,
A. Pierantonio, M. Tichy, M. Aksit, P. Emmanuelson, H. Gang, N. Georgantas, and D.
Redlich (2014). “Mechanisms for Leveraging Models at Runtime in Self-adaptive Soft-
ware”. In: Models@run.time: Foundations, Applications, and Roadmaps. Ed. by N. Bencomo,
R. France, B. H. C. Cheng, and U. Aimann. Cham: Springer International Publishing,
pp. 19-46.

Bieberstein, N., R. Laird, K. Jones, and T. Mitra (2008). Executing SOA: A Practical Guide for
the Service-oriented Architect. developerWorks series. IBM Press/Pearson plc.

264

http://www.agilemanifesto.org/

Bibliography

Binz, T., U. Breitenbiicher, O. Kopp, and F. Leymann (2013). “Automated Discovery and
Maintenance of Enterprise Topology Graphs”. In: 2013 IEEE 6th International Conference
on Service-Oriented Computing and Applications, pp. 126-134.

Blair, G., N. Bencomo, and R. B. France (2009). “Models@run.time”. In: Computer 42.10,
pp- 22-27.

Bossert, O. (2016). “A Two-Speed Architecture for the Digital Enterprise”. In: Emerging
Trends in the Evolution of Service-Oriented and Enterprise Architectures.

Brambilla, M., J. Cabot, and M. Wimmer (2012). Model-Driven Software Engineering in
Practice. Vol. 1.

Braun, C. and R. Winter (2005). “A comprehensive enterprise architecture metamodel
and ist implementation using a metamodeling platform”. In: Enterprise modelling and
information systems architectures. Ed. by J. Desel and U. Frank. Bonn: Gesellschaft fiir
Informatik e.V., pp. 64-79.

Breu, R. (2010). “Ten Principles for Living Models - A Manifesto of Change-Driven Software
Engineering”. In: pp. 1-8.

Brewer, E. (2012). “CAP twelve years later: How the "rules" have changed”. In: Computer
45.2, pp. 23-29.

Briand, L. C., Y. Labiche, and J. Leduc (2006). “Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software”. In: IEEE Transactions of Software
Engineering 32.9, pp. 642-663.

Brown, S. (2018). Software Architecture for Developers. Best Sellers.

Bruneliere, H., J. Cabot, G. Dupé, and F. Madiot (2014). “MoDisco: a Model Driven Reverse
Engineering Framework”. In: Information and Software Technology 56.

Brunnert, A., A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring, C. Heger, N. Herbst,
P. Jamshidi, R. Jung, J. von Kistowski, et al. (2015). Performance-oriented DevOps: A research
agenda. Tech. rep.

Bubak, O. (2006). “Composing a course book for system and enterprise architecture
education”. In: IEEE/SMC International Conference on System of Systems Engineering.

Buckl, S. and C. Schweda (2012). On the State-of-the-Art in Enterprise Architecture Management
Literature. Tech. rep. Miinchen.

Buckl, S. (2011). “Developing Organization-Specific Enterprise Architecture Management
Functions Using a Method Base”. Dissertation. Munich, Germany.

Buckl, S., A. M. Ernst, J. Lankes, F. Matthes, C. M. Schweda, and A. Wittenburg (2007).
“Generating Visualizations of Enterprise Architectures using Model Transformations”.
In: Enterprise Modelling and Information Systems Architectures (EMISA]) 2, pp. 3-13.

Buckl, S., F. Matthes, C. Neubert, and C. M. Schweda (2011). “A Lightweight Approach to
Enterprise Architecture Modeling and Documentation”. In: Information Systems Evolution.
Ed. by P. Soffer and E. Proper. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 136-
149.

Buckl, S., E. Matthes, S. Roth, C. Schulz, and C. M. Schweda (2010). “A Conceptual
Framework for Enterprise Architecture Design”. In: Trends in Enterprise Architecture
Research. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 44-56.

265

Bibliography

Bughin, J., M. Chui, and A. Miller (2009). How companies are benefiting from Web 2.0. URL:
http://wuw.mckinsey.com/business-functions/mckinsey-digital/our-insights/
how-companies-are-benefiting-from-web-20-mckinsey-global-survey-results?
cid=eml-web (visited on 02/14/2020).

Buschle, M., M. Ekstedt, S. Grunow, M. Hauder, E. Matthes, and S. Roth (2012). “Au-
tomating Enterprise Architecture Documentation using an Enterprise Service Bus”. In:
Americas Conference on Information Systems (AMCIS).

Calcado, P. (2014). Building Products at SoundCloud—~Part III: Microservices in Scala and
Finagle. Tech. rep. SoundCloud Limited. URL: https://developers.soundcloud. com/
blog/building- products-at-soundcloud-part-3-microservices-in-scala-and-
finagle (visited on 02/14/2020).

Canfora, G., M. Di Penta, and L. Cerulo (2011). “Achievements and Challenges in Software
Reverse Engineering”. In: Communications of ACM 54.4, pp. 142-151.

Cheng, B. H. C,, R. de Lemos, H. Giese, P. Inverardi,]. Magee,]. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek,
R. Mirandola, H. A. Miiller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and]J.
Whittle (2009). “Software Engineering for Self-Adaptive Systems: A Research Roadmap”.
In: Software Engineering for Self-Adaptive Systems. Ed. by B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 1-26.

Chikofsky, E. and J. H. Cross (1990). “Reverse engineering and design recovery: a taxon-
omy”. In: IEEE Software 7.1, pp. 13-17.

Choudhary, S. R. and A. Orso (2009). “Automated Client-Side Monitoring for Web Appli-
cations”. In: 2009 International Conference on Software Testing, Verification, and Validation
Workshops, pp. 303-306.

CIO Council (1999). FEAF - Federal Enterprise Architecture Framework Version 1.1. URL: https:
//web.archive.org/web/20090202182509/http: //www.whitehouse.gov/omb/assets/
fea_docs/FEA_CRM_v23_Final_0Oct_2007_Revised.pdf (visited on 02/14/2020).

Clements, P. (2003). Documenting Software Architectures: Views and Beyond. SEI series in
software engineering. Addison-Wesley.

Cockburn, A. (2002). Agile Software Development. Agile software development series.
Addison-Wesley.

Cockcroft, A. (2016). Microservices Workshop: Why, what, and how to get there. URL: https:
//conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/
44066 (visited on 02/14/2020).

Cohen, D., M. Lindvall, and P. Costa (2004). “An introduction to agile methods.” In:
Advances in computers 62.03, pp. 1-66.

Cole, S. (2008). Service Catalog Trends and Best Practices Survey Highligths. URL: https :
//www . enterprisemanagement . com/research/asset . php/ 966/ Service - Catalog -
Trends-and-Best-Practices-Survey-Highlights (visited on 02/14/2020).

Conboy, K. (2009). “Agility from First Principles: Reconstructing the Concept of Agility in
Information Systems Development”. In: Information Systems Research 20.3, pp. 329-354.

266

http://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-companies-are-benefiting-from-web-20-mckinsey-global-survey-results?cid=eml-web
http://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-companies-are-benefiting-from-web-20-mckinsey-global-survey-results?cid=eml-web
http://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-companies-are-benefiting-from-web-20-mckinsey-global-survey-results?cid=eml-web
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-3-microservices-in-scala-and-finagle
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-3-microservices-in-scala-and-finagle
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-3-microservices-in-scala-and-finagle
https://web.archive.org/web/20090202182509/http://www.whitehouse.gov/omb/assets/fea_docs/FEA_CRM_v23_Final_Oct_2007_Revised.pdf
https://web.archive.org/web/20090202182509/http://www.whitehouse.gov/omb/assets/fea_docs/FEA_CRM_v23_Final_Oct_2007_Revised.pdf
https://web.archive.org/web/20090202182509/http://www.whitehouse.gov/omb/assets/fea_docs/FEA_CRM_v23_Final_Oct_2007_Revised.pdf
https://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/44066
https://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/44066
https://conferences.oreilly.com/oscon/open-source-2015/public/schedule/detail/44066
https://www.enterprisemanagement.com/research/asset.php/966/Service-Catalog-Trends-and-Best-Practices-Survey-Highlights
https://www.enterprisemanagement.com/research/asset.php/966/Service-Catalog-Trends-and-Best-Practices-Survey-Highlights
https://www.enterprisemanagement.com/research/asset.php/966/Service-Catalog-Trends-and-Best-Practices-Survey-Highlights

Bibliography

Conway, M. E. (1968). “How Do Committees Invent?” In: Datamation.

Corpancho, N. (2019). “Automated documentation of Business Domain assignments and
cloud application information from an application development pipeline”. Master’s
Thesis. Munich, Germany.

Cuadrado, F,, B. Garcia, J. C. Duefias, and H. A. Parada (2008). “A case study on software
evolution towards service-oriented architecture”. In: Advanced Information Networking
and Applications-Workshops, 2008. AINAW 2008. 22nd International Conference on. IEEE,
pp- 1399-1404.

Cutler, B. (2010). Firefox Page Load Speed. URL: https://blog.mozilla.org/metrics/2010/
03/31/firefox-page-load-speed-part-i/ (visited on 09/14/2019).

Czarnecki, K. and S. Helsen (2006). “Feature-based survey of model transformation ap-
proaches”. In: IBM Systems Journal 45.3, pp. 621-645.

De Ryck, P, L. Desmet, W. Joosen, and F. Piessens (2011). “Automatic and Precise Client-
Side Protection against CSRF Attacks”. In: Computer Security — ESORICS 2011. Ed. by
V. Atluri and C. Diaz. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 100-116.

De Silva, E, C. Rich, and S. Ganguli (2019). Magic Quadrant for Application Performance
Monitoring. URL: https://www.gartner.com/en/documents/3904665/magic-quadrant-
for-application-performance-monitoring (visited on 02/14/2020).

Debois, P. et al. (2011). “Devops: A software revolution in the making”. In: Journal of
Information Technology Management 24.8, pp. 3-39.

Dern, G. (2009). Management von IT-Architekturen: Leitlinien fiir die Ausrichtung, Planung und
Gestaltung von Informationssystemen. Edition CIO. Vieweg+Teubner Verlag.

Devaraj, S. and R. Kohli (2001). The IT Payoff: Measuring the Business Value of Information
Technology Investments. Financial Times/Prentice Hall.

Dietz,]. (2006). Enterprise Ontology—Theory and Methodology. Springer Berlin Heidelberg.

Dingseyr, T., S. Nerur, V. Balijepally, and N. B. Moe (2012). “A decade of agile methodolo-
gies: Towards explaining agile software development”. In: Journal of Systems and Software
85.6, pp. 1213-1221.

Doest, H. ter and M. Lankhorst (2004). Tool support for enterprise architecture - A vision.
Tech. rep. Enschede.

Doucet, G., P. Saha, and S. Bernard (2009). Coherency Management: Architecting the Enterprise
for Alignment, Agility and Assurance. AuthorHouse.

Dragoni, N., S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L.
Safina (2016). “Microservices: yesterday, today, and tomorrow”. In: CoRR abs/1606.04036.

Dragoni, N., I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina (2018). “Mi-
croservices: How To Make Your Application Scale”. In: Perspectives of System Informatics.
Ed. by A. K. Petrenko and A. Voronkov. Cham: Springer International Publishing,
pp- 95-104.

Dreyfus, D. (2007). “Information System Architecture: Toward a Distributed Cognition
Perspective.” In: p. 131.

Ducasse, S. and D. Pollet (2009). “Software Architecture Reconstruction: A Process-Oriented
Taxonomy”. In: IEEE Transactions on Software Engineering 35.4, pp. 573-591.

267

https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
https://www.gartner.com/en/documents/3904665/magic-quadrant-for-application-performance-monitoring
https://www.gartner.com/en/documents/3904665/magic-quadrant-for-application-performance-monitoring

Bibliography

Dulffield, N. (2004). “Sampling for Passive Internet Measurement: A Review”. In: Statistical
Science 19.

Dufty, D. (2004). Domain Architectures: Models and Architectures for UML Applications. Wiley.

Dyba, T. and T. Dingseyr (2008). “Empirical studies of agile software development: A
systematic review”. In: Information and software technology 50.9-10, pp. 833-859.

Einav, Y. (2019). Amazon Found Every 100ms of Latency Cost them 1% in Sales. URL: https:
//www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-
in-sales (visited on 03/04/2020).

Ensor, P. (1988). “The Functional Silo Syndrome”. In: AME Target 16.

Erickson, J., K. Lyytinen, and K. Siau (2005). “Agile modeling, agile software development,
and extreme programming: the state of research”. In: Journal of Database Management
(JDM) 16.4, pp. 88-100.

Espinosa, J. and W. Boh (2009). “Coordination and Governance in Geographically Dis-
tributed Enterprise Architecting: An Empirical Research Design.” In: pp. 1-10.

Evans (2003). Domain-Driven Design: Tacking Complexity In the Heart of Software. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Farroha, B. S. and D. L. Farroha (2014). “A Framework for Managing Mission Needs, Com-
pliance, and Trust in the DevOps Environment”. In: 2014 IEEE Military Communications
Conference, pp. 288-293.

Farwick, M., R. Breu, M. Hauder, S. Roth, and F. Matthes (2013). “Enterprise Architecture
Documentation: Empirical Analysis of Information Sources for Automation”. In: 46th
Hawaii International Conference on System Sciences, pp. 3868-3877.

Farwick, M., W. Pasquazzo, R. Breu, C. M. Schweda, K. Voges, and I. Hanschke (2012a).
“A Meta-Model for Automated Enterprise Architecture Model Maintenance”. In: 2012
IEEE 16th International Enterprise Distributed Object Computing Conference, pp. 1-10.

Farwick, M., B. Agreiter, R. Breu, M. Haering, K. Voges, and 1. Hanschke (2010). “Towards
Living Landscape Models: Automated Integration of Infrastructure Cloud in Enterprise
Architecture Management”. In: 2010 IEEE 3rd International Conference on Cloud Computing,
pp. 3542.

Farwick, M., B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke (2011a). “Automation
Processes for Enterprise Architecture Management”. In: Proceedings - IEEE International
Enterprise Distributed Object Computing Workshop, EDOC, pp. 340-349.

Farwick, M., B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke (2011b). “Requirements
for Automated Enterprise Architecture Model Maintenance - A Requirements Analysis
based on a Literature Review and an Exploratory Survey.” In: vol. 4, pp. 325-337.

Farwick, M., C. M. Schweda, R. Breu, K. Voges, and 1. Hanschke (2012b). “On Enter-
prise Architecture Change Events”. In: Trends in Enterprise Architecture Research and
Practice-Driven Research on Enterprise Transformation. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 129-145.

Few, S. (2006). Information Dashboard Design: The Effective Visual Communication of Data.
O'Reilly Media.

268

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales

Bibliography

Fiedler, M., M. Hauder, and A. Schneider (2013). “Foundations for the Integration of
Enterprise Wikis and Specialized Tools for Enterprise Architecture Management”. In:
11th International Conference on Wirtschaftsinformatik (WI). Leipzig, Germany.

Fielding, R. T. and R. N. Taylor (2000). “Architectural Styles and the Design of Network-
Based Software Architectures”. Dissertation. Irvine, California.

Filipe, R. and F. Araujo (2016). “Client-side monitoring techniques for web sites”. In:
2016 IEEE 15th International Symposium on Network Computing and Applications (NCA),
pp. 363-366.

Filipe, R., R. P. Paiva, and E. Araujo (2017). “Client-side black-box monitoring for web
sites”. In: 2017 IEEE 16th International Symposium on Network Computing and Applications
(NCA), pp. 1-5.

Fink, A. and]. Kosecoff (2006). How to Conduct Surveys: A Step-by-Step Guide. SAGE
Publications.

Fischer, R., S. Aier, and R. Winter (2007). “A Federated Approach to Enterprise Architecture
Model Maintenance”. In: Enterprise Modelling and Information Systems Architectures 2,
pp- 14-22.

Fittkau, F., A. V. Hoorn, and W. Hasselbring (2014). “Towards a Dependability Control
Center for Large Software Landscapes (Short Paper)”. In: 2014 Tenth European Dependable
Computing Conference, pp. 58-61.

Fittkau, F, J. Waller, C. Wulf, and W. Hasselbring (2013). “Live trace visualization for
comprehending large software landscapes: The ExplorViz approach”. In: 2013 First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1-4.

Fittkau, E, S. Roth, and W. Hasselbring (2015). “ExplorViz: Visual Runtime Behavior Anal-
ysis of Enterprise Application Landscapes”. In: 23rd European Conference on Information
Systems (ECIS 2015).

Fitzgerald, B. and K.-J. Stol (2015). “Continuous Software Engineering: A Roadmap and
Agenda”. In: Journal of Systems and Software 25.

Foltéte, J.-C., C. Clauzel, and G. Vuidel (2012). “A software tool dedicated to the modelling
of landscape networks”. In: Environmental Modelling Software 38, pp. 316-327.

Fonseca, R., G. Porter, R. H. Katz, S. Shenker, and I. Stoica (2007). “X-Trace: A Pervasive
Network Tracing Framework”. In: Proceedings of the 4th USENIX Conference on Networked
Systems Design Implementation. NSDI'07. Cambridge, MA: USENIX Association, p. 20.

Fowler, M. and]. Lewis (2014). Microservices. Tech. rep. ThoughtWorks. URL: https :
//martinfowler.com/articles/microservices.html (visited on 02/14/2020).

Francesco, P. D., I. Malavolta, and P. Lago (2017). “Research on Architecting Microser-
vices: Trends, Focus, and Potential for Industrial Adoption”. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 21-30.

Frank, U. (2002). “Multi-perspective enterprise modeling (MEMO) conceptual framework
and modeling languages”. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, pp. 1258-1267.

Frank, U. (2006). Towards a Pluralistic Conception of Research Methods in Information Systems
Research. ICB Research Report. Tech. rep. 7. Essen.

269

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Bibliography

Frank, U., D. Ferguson, D. Heise, E. Hadar, H. Kattenstroth, and M. Waschke (2009).
“ITML: A Domain-Specific Modeling Language for Supporting Business Driven IT
Management”. In: In Proceedings of the 9th OOPSLA workshop on domain-specific modeling
(DSM "09.

Fu, Q., J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie (2014). “Where Do
Developers Log? An Empirical Study on Logging Practices in Industry”. In: Companion
Proceedings of the 36th International Conference on Software Engineering. ICSE Companion
2014. Hyderabad, India: Association for Computing Machinery, pp. 24-33.

Fuchs-Kittowski, F. and D. Faust (2008). “The Semantic Architecture Tool (SemAT) for Col-
laborative Enterprise Architecture Development”. In: Groupware: Design, Implementation,
and Use. Ed. by R. O. Briggs, P. Antunes, G.-J. de Vreede, and A. S. Read. Springer Berlin
Heidelberg, pp. 151-163.

Fiirstenau, D. and N. Kliewer (2015). “Exploring Enterprise Transformation from a Path
Dependence Perspective: A Recycling Case and Conceptual Model”. In: Wirtschaftsinfor-
matik.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (2015). Design Patterns: Entwurfsmuster als
Elemente wiederverwendbarer objektorientierter Software. mitp Professional. MITP-Verlags
GmbH & Co. KG.

Garriga, M. (2018). “Towards a Taxonomy of Microservices Architectures”. In: Software
Engineering and Formal Methods. Ed. by A. Cerone and M. Roveri. Springer International
Publishing, pp. 203-218.

Gartner (2008). Gartner Research Publication. Symposium/ITxpo.

Ghofrani, J. and D. Liibke (2018). “Challenges of Microservices Architecture: A Survey on
the State of the Practice”. In: ZEUS.

Gholami, M. F,, F. Daneshgar, G. Low, and G. Beydoun (2016). “Cloud migration pro-
cess—A survey, evaluation framework, and open challenges”. In: Journal of Systems and
Software 120, pp. 31-69.

Graeff, J. (2017). “Enhancing Business Process Mining with Distributed Tracing Data in a
Microservice Architecture”. Master’s Thesis. Munich, Germany.

Granchelli, G., M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle (2017a).
“MicroART: A Software Architecture Recovery Tool for Maintaining Microservice-based
Systems”. In: IEEE International Conference on Software Architecture (ICSA).

Granchelli, G., M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle
(2017b). “Towards recovering the software architecture of microservice-based systems”.
In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). 1IEEE,
pp. 46-53.

Group, O. M. (2017). Unified Modeling Language (UML). URL: https://www.omg.org/spec/
UML/ (visited on 02/14/2020).

Grunow, S., F. Matthes, and S. Roth (2013). “Towards Automated Enterprise Architecture
Documentation: Data Quality Aspects of SAP P1”. In: Advances in Databases and Informa-
tion Systems. Ed. by T. Morzy, T. Harder, and R. Wrembel. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 103-113.

270

https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/

Bibliography

Gupta, M., A. Neogi, M. K. Agarwal, and G. Kar (2003). “Discovering dynamic dependen-
cies in enterprise environments for problem determination”. In: International Workshop
on Distributed Systems: Operations and Management. Springer, pp. 221-233.

Hacks, S. and H. Lichter (2019a). “Qualitative Comparison of Enterprise Architecture Model
Maintenance Processes”. In: Enterprise Modeling and Information Systems Architectures
(EMISA).

Hacks, S., A. Steffens, P. Hansen, and N. Rajashekar (2019b). “A Continuous Delivery
Pipeline for EA Model Evolution”. In: Enterprise, Business-Process and Information Sys-
tems Modeling. Ed. by 1. Reinhartz-Berger, J. Zdravkovic, J. Gulden, and R. Schmidt.
Vol. 352. Lecture Notes in Business Information Processing. Cham: Springer International
Publishing, pp. 141-155.

Hafner, M. and R. Winter (2008). “Processes for Enterprise Application Architecture
Management”. In: Proceedings of the 41st Annual Hawaii International Conference on System
Sciences (HICSS 2008), pp. 396-396.

Hanemann, A., D. Schmitz, and M. Sailer (2005). “A framework for failure impact analysis
and recovery with respect to service level agreements”. In: 2005 IEEE International
Conference on Services Computing (SCC’05) Vol-1. Vol. 2, 49-56 vol.2.

Hanschke, 1. (2009). Strategisches Management der IT-Landschaft: ein praktischer Leitfaden fiir
das Enterprise-architecture-Management. Hanser.

Hanschke, 1. (2010). Strategic IT Management - A Toolkit for Enterprise Architecture Management.
Springer-Verlag.

Hanschke, I. (2016). Enterprise Architecture Management — einfach und effektiv: Ein praktischer
Leitfaden fiir die Einfithrung von EAM. Carl Hanser Verlag GmbH Co. KG, p. 333.

Hanssen, G. K., D. Smite, and N. B. Moe (2011). “Signs of Agile Trends in Global Software
Engineering Research: A Tertiary Study”. In: 2011 IEEE Sixth International Conference on
Global Software Engineering Workshop, pp. 17-23.

Haren, V. (2011). TOGAF Version 9.1.

Haselbock, S. and R. Weinreich (2017). “Decision Guidance Models for Microservice
Monitoring”. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 54-61.

Hauder, M., E. Matthes, and S. Roth (2012). “Challenges for Automated Enterprise Archi-
tecture Documentation”. In: Trends in Enterprise Architecture Research and Practice-Driven
Research on Enterprise Transformation. Springer Berlin Heidelberg, pp. 21-39.

Hawkins, D. (1980). Identification of Outliers. Monographs on applied probability and
statistics. Chapman and Hall.

Heger, C., A. van Hoorn, M. Mann, and D. Okanovi¢ (2017). “Application Performance
Management: State of the Art and Challenges for the Future”. In: Proceedings of the 8th
ACMY/SPEC on International Conference on Performance Engineering. ICPE "17. L’ Aquila,
Italy: ACM, pp. 429-432.

Henttonen, K. and M. Matinlassi (2009). “Open source based tools for sharing and reuse
of software architectural knowledge”. In: 2009 Joint Working IEEE/IFIP Conference on
Software Architecture European Conference on Software Architecture, pp. 41-50.

271

Bibliography

Hevner, A., S. March, J. Park, and S. Ram (2004). “Design science in information systems
research”. In: MIS Quarterly: Management Information Systems 28.1, pp. 75-105.

Highsmith,]J. (2013). Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House eBooks. Pearson Education.

Highsmith, J. and A. Cockburn (2001). “Agile software development: the business of
innovation”. In: Computer 34.9, pp. 120-127.

Holl, P. and K. Gossling (2019). “MIDAS: Towards an Interactive Data Catalog”. In:
International Workshop on Polystore and Other Systems for Heterogeneous Data, pp. 128-138.

Holm, H., K. Shahzad, M. Buschle, and M. Ekstedt (2015). “P? CySeMoL: Predictive,
Probabilistic Cyber Security Modeling Language”. In: IEEE Transactions on Dependable
and Secure Computing 12.6, pp. 626—639.

Holm, H., M. Buschle, R. Lagerstrom, and M. Ekstedt (2014). “Automatic data collection
for enterprise architecture models”. In: Software & Systems Modeling 13.2, pp. 825-841.
Hoorn, A. van (2014). “Model-Driven Online Capacity Management for Component-Based

Software Systems”. Dissertation. Kiel, Germany.

Hoorn, A. van, J. Waller, and W. Hasselbring (2012). “Kieker: A Framework for Applica-
tion Performance Monitoring and Dynamic Software Analysis”. In: Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering. ICPE "12. Boston,
Massachusetts, USA: ACM, pp. 247-248.

Hoyos, D. von (2017). “Interactive Visualizations for supporting the analysis of distributed
services utilization”. Master’s Thesis. Munich, Germany.

Hrischuk, C. E., C. Murray Woodside, and]. A. Rolia (1999). “Trace-based load characteri-
zation for generating performance software models”. In: IEEE Transactions on Software
Engineering 25.1, pp. 122-135.

Humble, J. and D. Farley (2010). Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Signature Series (Fowler). Pearson
Education.

Humble, J. and J. Molesky (2011). “Why enterprises must adopt devops to enable continu-
ous delivery”. In: Cutter Business Technology Journal 24, pp. 6-12.

Hiittermann, M. (2012). DevOps for Developers. Expert’s voice in Web development. Apress.

Ihde, S. (2015). From a Monolith to Microservices + REST: the Evolution of LinkedIn’s Service
Architecture. URL: http://www.infoq.com/presentations/linkedin-microservices-
urn (visited on 02/14/2020).

Inc., A. (2020). AppDynamics APIs. URL: https://docs.appdynamics.com/display/PR045/
AppDynamics+APIs (visited on 02/14/2020).

Inc., D. (2020). Dynatrace API. URL: https : //www . dynatrace . com/ support /help /
dynatrace-api/ (visited on 02/14/2020).

Inc., N. (2020). Rest API v2. URL: https://docs.newrelic.com/docs/apis/rest-api-v2
(visited on 02/14/2020).

Israr, T., M. Woodside, and G. Franks (2007). “Interaction Tree Algorithms to Extract
Effective Architecture and Layered Performance Models from Traces”. In: Journal of
Systems and Software 80.4, pp. 474-492.

272

http://www.infoq.com/presentations/linkedin-microservices-urn
http://www.infoq.com/presentations/linkedin-microservices-urn
https://docs.appdynamics.com/display/PRO45/AppDynamics+APIs
https://docs.appdynamics.com/display/PRO45/AppDynamics+APIs
https://www.dynatrace.com/support/help/dynatrace-api/
https://www.dynatrace.com/support/help/dynatrace-api/
https://docs.newrelic.com/docs/apis/rest-api-v2

Bibliography

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley Sons.

Janietz, C. (2018). “Enhancing enterprise architecture models using application perfor-
mance monitoring data”. Master’s Thesis. Munich, Germany.

Johnson, P., M. Ekstedt, and R. Lagerstrom (2016). “Automatic Probabilistic Enterprise IT
Architecture Modeling: A Dynamic Bayesian Networks Approach”. In: 2016 IEEE 20th
International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 1-8.

Josephsen, D. (2007). Building a Monitoring Infrastructure with Nagios. Upper Saddle River,
NJ, USA: Prentice Hall PTR.

Kaner, C., J. Falk, and H. Nguyen (2000). Testing Computer Software Second Edition. Dreamtech
Press.

Karmel, A., R. Chandramouli, and M. Iorga (2018). NIST Definition of Microservices, Ap-
plication Containers and System Virtual Machines. Tech. rep. NIST, Information Technol-
ogy Laboratory. URL: https://csrc.nist.gov/CSRC/media/Publications/sp/800-
180/draft/documents/sp800-180_draft.pdf (visited on 02/14/2020).

Keller, W. (2017). IT-Unternehmensarchitektur: Von der Geschiiftsstrategie zur optimalen IT-
Unterstiitzung. dpunkt.verlag.

Kermarrec, A.-M. and M. van Steen (2007). “Gossiping in Distributed Systems”. In: ACM
SIGOPS Operating Systems Review 41.5, pp. 2-7.

Keuper, F, C. Oecking, and A. Degenhardt (2011). Application Management: Challenges -
Service Creation - Strategies. Gabler Verlag.

Kitchenham, B., L. Pickard, and S. L. Pfleeger (1995). “Case studies for method and tool
evaluation”. In: IEEE Software 12.4, pp. 52-62.

Kleehaus, M., N. Corpancho Villasana, F. Matthes, and D. Huth (2020). “Discovery of
Microservice-based IT Landscapes at Runtime: Algorithms and Visualizations”. In: 53rd
Annual Hawaii International Conference on System Sciences (HICSS). Hawaii.

Kleehaus, M., M. Hauder, O. Uludag, F. Matthes, and N. Corpancho Villasana (2019a). “IT
Landscape Discovery via Runtime Instrumentation for Automating Enterprise Archi-
tecture Model Maintenance”. In: Twenty-fifth Americas Conference on Information Systems
(AMCIS). Cancun, Mexico.

Kleehaus, M., J. Landthaler, D. Huth, and F. Matthes (2016). State of the Art Report: Multi-
Layer Monitoring and Visualization. Tech. rep. Munich, Germany: Software Engineering
for Business Information Systems (sebis).

Kleehaus, M. and F. Matthes (2019b). “Challenges in Documenting Microservice-based IT
Landscape: A Survey from an Enterprise Architecture Management Perspective”. In:
23RD IEEE International EDOC Conference - The Enterprise Computing Conference (EDOC).
Paris, France.

Kleehaus, M. and F. Matthes (2021). “Automated Enterprise Architecture Model Main-
tenance via Runtime IT Discovery”. In: Architecting the Digital Transformation: Digital
Business, Technology, Decision Support, Management. Springer International Publishing,
pp- 247-263.

273

https://csrc.nist.gov/CSRC/media/Publications/sp/800-180/draft/documents/sp800-180_draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-180/draft/documents/sp800-180_draft.pdf

Bibliography

Kleehaus, M., O. Uludag, and F. Matthes (2018a). “Towards a Continuous Feedback Loop
for Microservice-based Environments”. In: 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), pp. 126-134.

Kleehaus, M., O. Uludag, P. Schéfer, and F. Matthes (2018b). “MICROLYZE: A Framework
for Recovering the Software Architecture in Microservice-Based Environments”. In:
CAiSE Forum.

Knight, C. and M. Munro (2000). “Virtual but visible software”. In: 2000 IEEE Conference on
Information Visualization. An International Conference on Computer Visualization and Graphics,
pp- 198-205.

Knoche, H. and W. Hasselbring (2017). Treiber und Hindernisse fiir die Einfiihrung von
Microservices in der deutschen Softwareindustrie. URL: http://eprints.uni-kiel.de/
38682/1/tr-1702.pdf (visited on 02/14/2020).

Kotonya, G. and I. Sommerville (1998). Requirements Engineering: Processes and Techniques.
1st. Wiley Publishing.

Kramer, S. (2011). The Biggest Thing Amazon Got Right: The Platform. URL: https://gigaom.
com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/ (visited
on 02/14/2020).

Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology. Content
Analysis: An Introduction to Its Methodology. Sage.

Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-Wesley object
technology series. Addison-Wesley.

Kurapati, N., V. Manyam, and K. Petersen (2012). “Agile Software Development Practice
Adoption Survey”. In: vol. 111, pp. 16-30.

Lam, W. (2004). “Technical Risk Management on Enterprise Integration Projects”. In:
Communications of the Association for Information Systems 13.

Landthaler, J., O. Uludag, G. Bondel, A. Elnaggar, S. Nair, and F. Matthes (2018). “A
Machine Learning Based Approach to Application Landscape Documentation”. In: 11th
Working conference on the Practice of Enterprise Modelling (PoEM).

Langermeier., M. and B. Bauer. (2017). “Generic EA Analysis Framework for the Definition
and Automatic Execution of Analyses”. In: Proceedings of the 19th International Conference
on Enterprise Information Systems - Volume 1: ICEIS, INSTICC. SciTePress, pp. 316-327.

Lankes, J., E. Matthes, and A. Wittenburg (2005). “Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften”. In: Wirtschaftsinformatik, pp. 1443-1462.

Lankhorst, M. (2017). Enterprise Architecture at Work: Modelling, Communication and Analysis.
4th. Springer Publishing Company, Incorporated.

Lankhorst, M. M., H. A. Proper, and H. Jonkers (2010). “The Anatomy of the ArchiMate
Language”. In: International Journal of Information System Modeling and Design 1, pp. 1-32.

Leite, L., C. Rocha, F. Kon, D. Milojicic, and P. Meirelles (2020). “A Survey of DevOps
Concepts and Challenges”. In: ACM Computing Surveys (CSUR) 52.6, pp. 1-35.

Lemos, R. de, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y.
Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. M. Goschka, A.
Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, A. Lopes,]J. Magee, S. Malek, S.

274

http://eprints.uni-kiel.de/38682/1/tr-1702.pdf
http://eprints.uni-kiel.de/38682/1/tr-1702.pdf
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/

Bibliography

Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer, W.
Schiéfer, R. Schlichting, D. B. Smith, J. P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke
(2013). “Software Engineering for Self-Adaptive Systems: A Second Research Roadmap”.
In: Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers. Ed. by R. de Lemos,
H. Giese, H. A. Miiller, and M. Shaw. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp- 1-32.

Li, W, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han (2019). “Service Mesh: Challenges, State of
the Art, and Future Research Opportunities”. In: 2019 IEEE International Conference on
Service-Oriented System Engineering (SOSE), pp. 122-1227.

Likert, R. (1932). A Technique for the Measurement of Attitudes. A Technique for the Measure-
ment of Attitudes Nr. 136-165. publisher not identified.

Lilja, D. J. (2005). Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University.

Linden, G. (2006). Marissa Mayer at Web 2.0. URL: http://glinden.blogspot.de/2006/11/
marissa-mayer-at-web-20.html (visited on 09/14/2019).

Linkevics, G. (2014). “Adopting to Agile Software Development”. In: Applied Computer
Systems 16.

Lucke, C., S. Krell, and U. Lechner (2010). “Critical Issues in Enterprise Architecting - A
Literature Review.” In: AMCIS 2010 Proceedings. Vol. 4, p. 305.

Ludewig, J. (2004). “Models in software engineering - An introduction”. In: Informatik
Forschung und Entwicklung 18, pp. 105-112.

Ly, L., E. Maggi, M. Montali, S. Rinderle-Ma, and W. Aalst (2015). “Compliance monitoring
in business processes: Functionalities, application, and tool-support”. In: Information
Systems 14.

Machner, N. (2019). “Assessing the Cost and Benefit of a Microservice Landscape Discovery
Method in the Automotive Industry”. Master’s Thesis. Munich, Germany.

Maes, P. (1987). “Concepts and Experiments in Computational Reflection”. In: SIGPLAN
Notices 22.12, pp. 147-155.

Makanju, A., A. N. Zincir-Heywood, and E. E. Milios (2013). “Investigating event log
analysis with minimum apriori information”. In: 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013), pp. 962-968.

Makanju, A. A., A. N. Zincir-Heywood, and E. E. Milios (2009). “Clustering Event Logs
Using Iterative Partitioning”. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for
Computing Machinery, pp. 1255-1264.

Mannmeusel, T. (2012). “Management von Unternehmensarchitekturen in der Praxis:
Organisatorische Herausforderungen in mittelstindischen Unternehmen”. In: Analyse
und Gestaltung leistungsfihiger 1S-Architekturen: Modellbasierte Methoden aus Forschung und
Lehre in der Praxis. Ed. by C. Suchan and J. Frank. Berlin, Heidelberg: Springer, pp. 35-57.

Mappic, S. (2011). The Real Overhead of Managing Application Performance. URL: https://www.
appdynamics . com/blog/product /the-real - overhead - of - managing - application-

performance/ (visited on 03/04/2020).

275

http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
https://www.appdynamics.com/blog/product/the-real-overhead-of-managing-application-performance/
https://www.appdynamics.com/blog/product/the-real-overhead-of-managing-application-performance/
https://www.appdynamics.com/blog/product/the-real-overhead-of-managing-application-performance/

Bibliography

Markus, M. L., A. Majchrzak, and L. Gasser (2002). “A Design Theory for Systems That
Support Emergent Knowledge Processes”. In: MIS Quarterly: Management Information
Systems 26.3, pp. 179-212.

Matthes, F, S. Buckl, J. Leitel, and C. M. Schweda (2020). Enterprise Architecture Management
Tool Survey 2008. Tech. rep. Technical University Munich. URL: https://wwwmatthes.in.
tum.de/pages/1lwdia0twywbOw/Enterprise-Architecture-Management-Tool-Survey-
2008-EAMTS-2008 (visited on 02/14/2020).

Mayer, B. and R. Weinreich (2018). “An Approach to Extract the Architecture of Microservice-
Based Software Systems”. In: 2018 IEEE Symposium on Service-Oriented System Engineering
(SOSE), pp. 21-30.

Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Beltz.

Mayring, P. (2012). “Mixed Methods. Ein Pladoyer fiir gemeinsame Forschungsstandards
qualitativer und quantitativer Methoden.” In: Mixed Methods in der empirischen Bildungs-
forschung. Ed. by M. Glaser-Zikuda, T. Seidel, C. Rohlfs, A. Groschner, and S. Ziegelbauer.
Miinster: Waxmann, pp. 287-300.

Mcafee, A. (2007). “Enterprise 2.0: The Dawn of Emergent Collaboration”. In: Engineering
Management Review, IEEE 47, pp. 38-38.

Medvidovic, N. and R. N. Taylor (2000). “A classification and comparison framework for
software architecture description languages”. In: IEEE Transactions on Software Engineering
26.1, pp. 70-93.

Medvidovic, N., A. Egyed, and P. Griinbacher (2003). “Stemming Architectural Erosion
by Coupling Architectural Discovery and Recovery”. In: Proc. of the 2nd International
Software Requirements to Architectures Workshop.

Meilich, A. (2006). “System of systems (SoS) engineering architecture challenges in a net
centric environment”. In: 2006 IEEE/SMC International Conference on System of Systems
Engineering.

Mell, P. M. and T. Grance (2011). SP 800-145. The NIST Definition of Cloud Computing.
Tech. rep. Gaithersburg, MD, USA.

Menascé, D. and V. Almeida (2002). Capacity Planning for Web Services: Metrics, Models, and
Methods. Prentice Hall PTR.

Meshenberg, R. (2016). Microservices at Netflix Scale: Principles, Tradeoffs Lessons Learned.
URL: https://cloudbestpractices.net/microservices-at-netflix-scale/ (visited
on 02/14/2020).

Mingers, J. (2001). “Combining IS Research Methods: Towards a Pluralist Methodology”.
In: Information Systems Research 12, pp. 240-259.

Mira da Silva, M., N. Silva, F. Ferreira, and P. Sousa (2016). “Automating the Migration of
Enterprise Architecture Models”. In: International Journal of Information System Modeling
and Design 7.2, pp. 72-90.

Moody, D. (2010). “The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering”. In: IEEE Transactions on Software Engineering
35, pp. 756-779.

Moran, A. (2014). Agile Risk Management. Springer Briefs in Computer Science. Springer
International Publishing.

276

https://wwwmatthes.in.tum.de/pages/1wdia0twywb0w/Enterprise-Architecture-Management-Tool-Survey-2008-EAMTS-2008
https://wwwmatthes.in.tum.de/pages/1wdia0twywb0w/Enterprise-Architecture-Management-Tool-Survey-2008-EAMTS-2008
https://wwwmatthes.in.tum.de/pages/1wdia0twywb0w/Enterprise-Architecture-Management-Tool-Survey-2008-EAMTS-2008
https://cloudbestpractices.net/microservices-at-netflix-scale/

Bibliography

Morgan, W. (2017). What’s a service mesh? And why do I need one? URL: https://buoyant.
i0/2017/04/25/whats - a- service - mesh - and - why - do - i - need - one/ (visited on
02/14/2020).

Moser, C., S. Junginger, M. Briickmann, and K.-M. Schéne (2009). “Some Process Patterns
for Enterprise Architecture Management”. In: Software Engineering, pp. 19-30.

Munaf, R. M,, J. Ahmed, F. Khakwani, and T. Rana (2019). “Microservices Architecture:
Challenges and Proposed Conceptual Design”. In: 2019 International Conference on Com-
munication Technologies (ComTech), pp. 82-87.

Naranjo, D., M. Sanchez, and]. Villalobos (2015). “PRIMROSe: A Graph-Based Ap-
proach for Enterprise Architecture Analysis”. In: Enterprise Information Systems. Ed. by
J. Cordeiro, S. Hammoudi, L. Maciaszek, O. Camp, and J. Filipe. Springer International
Publishing, pp. 434-452.

Newman, S. (2015). Building Microservices. 1st. O'Reilly Media, Inc.

Niemann, K. (2005). Von der Unternehmensarchitektur zur IT-Governance: Bausteine fiir ein
wirksames IT-Management. Edition CIO. Vieweg+Teubner Verlag.

Niemi, E. (2007). “Enterprise Architecture Stakeholders - a Holistic View”. In: p. 41.

Nigel, C. (2017). Cross-Border Data Flows: Where Are the Barriers, and What Do They Cost? URL:
https://itif .org/publications/2017/05/01/cross-border-data-flows-where-
are-barriers-and-what-do-they-cost (visited on 02/14/2020).

Nygard, M. (2007). Release It!: Design and Deploy Production-ready Software. Pragmatic
Bookshelf Series.

O’Hanlon, C. (2006). “A Conversation with Werner Vogels”. In: Queue 4.4, pp. 14-22.

Object Management Group (2011). Business Process Model And Notation (BPMN). URL:
https://www.omg.org/spec/BPMN/2.0/ (visited on 02/14/2020).

Office, C. (2011a). ITIL Service Design 2011 Edition. Norwich: The Stationery Office.

Oftice, C. (2011b). ITIL Service Operation 2011 Edition. Norwich: The Stationery Office.

Oftice, C. (2011c). ITIL Service Transition 2011 Edition. Norwich: The Stationery Office.

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. Taylor & Francis.

Pahl, C. and P. Jamshidi (2016). “Microservices: A Systematic Mapping Study”. In: Proceed-
ings of the 6th International Conference on Cloud Computing and Services Science - Volume 1
and 2. CLOSER 2016. Rome, Italy, pp. 137-146.

Palmer, S. and J. Felsing (2002). A Practical Guide to Feature-driven Development. The Coad
Series. Prentice Hall PTR.

Pargaonkar, V. and K. Ramakrishnan (2012). AUTOMATIC SELECTION OF AGENT-
BASED OR AGENTLESS MONITORING. URL: https://patents.google.com/patent/
US20120016706A1 (visited on 02/14/2020).

Peffers, K., T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge (2006).
“The design science research process: A model for producing and presenting information
systems research”. In: Proceedings of First International Conference on Design Science Research
in Information Systems and Technology DESRIST.

Porter, J., D. A. Menascé, and H. Gomaa (2016). “DeSARM: A Decentralized Mechanism
for Discovering Software Architecture Models at Runtime in Distributed Systems”. In:
Models@Run.time.

277

https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://itif.org/publications/2017/05/01/cross-border-data-flows-where-are-barriers-and-what-do-they-cost
https://itif.org/publications/2017/05/01/cross-border-data-flows-where-are-barriers-and-what-do-they-cost
https://www.omg.org/spec/BPMN/2.0/
https://patents.google.com/patent/US20120016706A1
https://patents.google.com/patent/US20120016706A1

Bibliography

Quinlan, J. (1987). “Simplifying decision trees”. In: International Journal of Man-Machine
Studies 27.3, pp. 221-234.

Rabl, T., S. Gémez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and S.
Mankovskii (2012). “Solving Big Data Challenges for Enterprise Application Performance
Management”. In: CoRR abs/1208.4167.

Raibulet, C., F. A. Fontana, and M. Zanoni (2017). “Model-Driven Reverse Engineering
Approaches: A Systematic Literature Review”. In: IEEE Access 5, pp. 14516-14542.

Reidemeister, T., Miao Jiang, and P. A. S. Ward (2011). “Mining unstructured log files
for recurrent fault diagnosis”. In: 12th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 377-384.

Reidemeister, T., M. A. Munawar, M. Jiang, and P. A. S. Ward (2009). “Diagnosis of
Recurrent Faults Using Log Files”. In: Proceedings of the 2009 Conference of the Center for
Advanced Studies on Collaborative Research. USA: IBM Corp., pp. 12-23.

Richardson, C. (2018). Microservices Patterns: With examples in Java. Manning Publications.

Riungu-Kalliosaari, L., S. Mékinen, L. E. Lwakatare, J. Tithonen, and T. Ménnisto (2016).
“DevOps Adoption Benefits and Challenges in Practice: A Case Study”. In: Proceedings
of the International Conference on Product-Focused Software Process Improvement (PROFES
2016), pp. 590-597.

Ros, J. P. and R. S. Sangwan (2011). “A Method for Evidence-Based Architecture Discovery”.
In: 2011 Ninth Working IEEE/IFIP Conference on Software Architecture, pp. 342-345.

Ross, J., P. Weill, and D. Robertson (2006). Enterprise Architecture as Strategy — Creating a
Foundation for Business Execution.

Roth, S. (2014). “Federated Enterprise Architecture Model Management”. Dissertation.
Munich, Germany.

Roth, S., M. Hauder, M. Farwick, R. Breu, and F. Matthes (2013a). “Enterprise Architecture
Documentation: Current Practices and Future Directions”. In: Wirtschaftsinformatik.

Roth, S., M. Hauder, E. Michel, D. Miinch, and F. Matthes (2013b). “Facilitating Conflict Res-
olution of Models for Automated Enterprise Architecture Documentation”. In: American
Conference on Information Systems (AMCIS).

Roth, S. and F. Matthes (2014). “Visualizing Differences of Enterprise Architecture Models”.
In: Softwaretechnik-Trends 34.

Roth, S., M. Zec, and F. Matthes (2020). Enterprise Architecture Visualization Tool Survey 2014.
Tech. rep. Technical University Munich. URL: https://wwumatthes.in.tum.de/pages/
0790x7rholte/EAVTS-2014-Final-Report (visited on 02/14/2020).

Runeson, P. and M. Host (2008). “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2, p. 131.

Sadalage, P. and M. Fowler (2013). NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Always learning. Addison-Wesley.

Salah, T., M. Jamal Zemerly, Chan Yeob Yeun, M. Al-Qutayri, and Y. Al-Hammadi (2016).
“The evolution of distributed systems towards microservices architecture”. In: 2016 11th
International Conference for Internet Technology and Secured Transactions (ICITST), pp. 318—
325.

278

https://wwwmatthes.in.tum.de/pages/o790x7rho1te/EAVTS-2014-Final-Report
https://wwwmatthes.in.tum.de/pages/o790x7rho1te/EAVTS-2014-Final-Report

Bibliography

Santana, A., K. Fischbach, and H. Moura (2016). “Enterprise Architecture Analysis and
Network Thinking: A Literature Review”. In: 2016 49th Hawaii International Conference on
System Sciences (HICSS), pp. 4566—4575.

Schaefer, R. (2016). From Monolith to Microservices, Zalando’s Journey. URL: https : //
www . infoq . com/ news /2016 / 02 / Monolith - Microservices - Zalando/ (visited on
02/14/2020).

Schéfer, P. (2017). “Eine prototypische Implementierung zur Erkennung von Architek-
turdnderungen eines verteilten Systems basierend auf unterschiedlichen Monitoring
Datenquellen”. Master’s Thesis. Munich, Germany.

Schermann, G., J. Cito, and P. Leitner (2015). “All the Services Large and Micro: Revisiting
Industrial Practice in Services Computing”. In: ICSOC Workshops.

Schreiner, M., T. Hess, and A. Benlian (2015). Gestaltungsorientierter Kern oder Tendenz zur
Empirie? Zur neueren methodischen Entwicklung der Wirtschaftsinformatik. Tech. rep. 1/2015.
Miinchen.

Schwaber, K. (2004). Agile Project Management with Scrum. Developer Best Practices. Pearson
Education.

Schwaber, K. and M. Beedle (2002). Agile Software Development with Scrum. Agile Software
Development. Prentice Hall.

Shah, H. and M. El Kourdi (2007). “Frameworks for Enterprise Architecture”. In: IT
Professional 9.5, pp. 36—41.

Shahin, M., M. A. Babar, and L. Zhu (2017). “Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices”. In:
IEEE Access 5, pp. 3909-3943.

Sharma, S. and B. Coyne (2015). DevOps. John Wiley Sons.

Shull, E, J. Carver, and G. H. Travassos (2001). “An Empirical Methodology for Introducing
Software Processes”. In: SIGSOFT Software Engineering Notes 26.5, pp. 288-296.

Sigelman, B. H., L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,
and C. Shanbhag (2010). Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.
Tech. rep. Google, Inc.

Silva, N. M., P. Sousa, and M. M. da Silva (2020). “Maintenance of enterprise architecture
models as tools to support enterprise transformation: A systematic literature review”.
In: Business Information Systems Engineering (BUIS).

Smeds, J., K. Nybom, and I. Porres (2015). “DevOps: A Definition and Perceived Adoption
Impediments”. In: Proceedings of the International Conference on Agile Processes in Soft-
ware Engineering and Extreme Programming (XP 2015). Springer International Publishing,
pp. 166-177.

Smith, H. J., T. Dinev, and H. Xu (2011). “Information Privacy Research: An Interdisci-
plinary Review”. In: MIS Quaterly 35.4, pp. 989-1016.

Society, I. C. (2000). “IEEE Recommended Practice for Architectural Description for
Software-Intensive Systems”. In: IEEE Std 1471-2000, pp. 1-30.

Sousa, P, R. Gabriel, G. Tadao, R. Carvalho, P. M. Sousa, and A. Sampaio (2011). “Enterprise
Transformation: The Serasa Experian Case”. In: Practice-Driven Research on Enterprise

279

https://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando/
https://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando/

Bibliography

Transformation. Ed. by F. Harmsen, K. Grahlmann, and E. Proper. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 134-145.

Sousa, T. B., H. S. Ferreira, F. F. Correia, and A. Aguiar (2017). “Engineering Software
for the Cloud: Messaging Systems and Logging”. In: Proceedings of the 22nd European
Conference on Pattern Languages of Programs. EuroPLoP "17. Irsee, Germany: Association
for Computing Machinery.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien, New York: Springer Verlag.

Stahl, D. and J. Bosch (2014). “Modeling Continuous Integration Practice Differences in
Industry Software Development”. In: Journal of System Software 87, pp. 48-59.

Stapleton, J. (1997). DSDM, Dynamic Systems Development Method: The Method in Practice.
Addison-Wesley.

Strauss, A. (1987). Qualitative Analysis for Social Scientists. Cambridge University Press.

Tao, E, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui (2018). “Digital twin-driven
product design, manufacturing and service with big data”. In: The International Journal of
Advanced Manufacturing Technology 94.

Taylor, R., N. Medvidovic, and E. Dashofy (2009). Software Architecture: Foundations, Theory,
and Practice. Wiley.

Templeton, G. F,, C.-P. Lee, and C. A. Snyder (2006). “Validation of a Content Analysis
System Using an Iterative Prototyping Approach to Action Research”. In: CAIS 17, p. 24.

The Open Group (2016). ArchiMate 3.1 Specification. URL: https://pubs.opengroup.org/
architecture/archimate3-doc/ (visited on 11/18/2019).

The Open Group (2019). The Open Group IT4IT Reference Architecture, Version 2.0. URL:
https://publications.opengroup.org/c155 (visited on 11/18/2019).

Thomas, O. (2005). Das Modellverstindnis in der Wirtschaftsinformatik: Historie, Literaturanalyse
und Begriffsexplikation. Tech. rep. Saarbriicken.

Tufte, E. (2001). The Visual Display of Quantitative Information. Graphics Press.

Ulich, D. (1985). Psychologie der Krisenbewiiltigung: eine Liingsschnittuntersuchung mit arbeit-
slosen Lehrern. Beltz.

Vaarandi, R. (2003). “A data clustering algorithm for mining patterns from event logs”. In:
Proceedings of the 3rd IEEE Workshop on IP Operations Management (IPOM 2003), pp. 119-
126.

Vaarandi, R. and M. Pihelgas (2015). “LogCluster - A data clustering and pattern mining
algorithm for event logs”. In: 2015 11th International Conference on Network and Service
Management (CNSM), pp. 1-7.

Vilja, M., R. Lagerstrom, M. Ekstedt, and M. Korman (2015). “A Requirements Based
Approach for Automating Enterprise IT Architecture Modeling Using Multiple Data
Sources”. In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop,
pp- 79-87.

Venkatesh, V., S. Brown, and H. Bala (2013). “Bridging the Qualitative-Quantitative Divide:
Guidelines for Conducting Mixed Methods Research in Information Systems”. In: MIS
Quarterly: Management Information Systems 37, pp. 21-54.

280

https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://publications.opengroup.org/c155

Bibliography

Volter, M., T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von Stockfleth
(2013). Model-Driven Software Development: Technology, Engineering, Management. Wiley
Software Patterns Series. Wiley.

Wehrens, O. (2017). Service Discovery for Machines and Humans. URL: http://pivio.io/
(visited on 02/14/2020).

Weske, M. (2007). Business Process Management: Concepts, Languages, Architectures. Berlin,
Heidelberg: Springer.

Wiese, R., M. Eiglsperger, and M. Kaufmann (2001). “yFiles: Visualization and Automatic
Layout of Graphs”. In: vol. 2265.

Wilson, P, L. Dell, and G. Anderson (1993). Root Cause Analysis: A Tool for Total Quality
Management Workbook. ASQC Quality Press.

Winter, K., S. Buckl, F. Matthes, and C. M. Schweda (2010). “Investigating the State-of-
the-Art in Enterprise Architecture Management Methods in literature and Practice.” In:
MCIS 90.

Winter, R. and R. Fischer (2007). “Essential Layers, Artifacts, and Dependencies of Enter-
prise Architecture”. In: Journal of Enterprise Architecture 3.2, pp. 7-18.

Wise, M. J. and T. McDermott (1993). “Message-brokers: a novel interprocess communi-
cations primitive”. In: Proceedings of the Twenty-sixth Hawaii International Conference on
System Sciences. Vol. 2, pp. 184-193.

Wittenburg, A. (2007). “Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften”. Dissertation. Munich, Germany.

Wohlin, C., P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln (2012). Experi-
mentation in Software Engineering. Springer Publishing Company, Incorporated.

Xiao, Z., I. Wijegunaratne, and X. Qiang (2016). “Reflections on SOA and Microservices”.
In: 2016 4th International Conference on Enterprise Systems (ES), pp. 60—67.

Yin, R. and SAGE. (2003). Case Study Research: Design and Methods. Applied Social Research
Methods. SAGE Publications.

Young, R. and S. Poon (2013). “Top management support—almost always necessary and
sometimes sufficient for success: Findings from a fuzzy set analysis”. In: International
Journal of Project Management 31.7, pp. 943-957.

Yu, Y., H. Silveira, and M. Sundaram (2016). “A microservice based reference architecture
model in the context of enterprise architecture”. In: 2016 IEEE Advanced Information Man-
agement, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1856—
1860.

Zachman, J. A. (1987). “A framework for information systems architecture”. In: IBM
Systems Journal 26.3, pp. 276-292.

Zajicek, M. (2007). “Web 2.0: Hype or Happiness?” In: Proceedings of the 2007 International
Cross-Disciplinary Conference on Web Accessibility (W4A). New York, NY, USA: Association
for Computing Machinery, pp. 35-39.

Zhou, J., Z. Chen, H. Mi, and]J. Wang (2014). “MTracer: A Trace-Oriented Monitoring
Framework for Medium-Scale Distributed Systems”. In: 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, pp. 266-271.

281

http://pivio.io/

	Acknowledgments
	Abstract
	Kurzfassung
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Design
	1.3.1 Design-Science Research
	1.3.2 Qualitative Content Analysis

	1.4 Contribution of this Thesis
	1.5 Preliminary Work
	1.6 Structure of this Thesis

	2 Foundations
	2.1 Model Driven Engineering
	2.1.1 Modeling Languages
	2.1.2 Model Transformations
	2.1.3 Model-Driven Reverse Engineering
	2.1.4 Models at Runtime

	2.2 Enterprise Architecture Management
	2.2.1 Building Blocks of Enterprise Architecture
	2.2.2 Management of Enterprise Architectures
	2.2.3 Modelling Enterprise Architectures
	2.2.4 Archimate Notation Language

	2.3 Microservice Architecture
	2.3.1 Definition of Microservice Architecture
	2.3.2 Building blocks of Microservice Architectures
	2.3.3 State-of-the Art in Microservice Adoption

	2.4 DevOps
	2.4.1 Agile Practices
	2.4.2 Software Release Automation
	2.4.3 Monitoring distributed Systems

	3 Related Work
	3.1 Model Reverse Engineering
	3.1.1 Static based Reverse Engineering
	3.1.2 Dynamic based Reverse Engineering
	3.1.3 Hybrid based Reverse Engineering

	3.2 EA Model Maintenance
	3.2.1 Federated EA model Maintenance
	3.2.2 Runtime based EA Model Maintenance
	3.2.3 Modern Approaches for EA Model Maintenance
	3.2.4 Change Events that trigger EA model Maintenance

	3.3 IT Landscape Representation
	3.4 Demarcation

	4 Requirement Analysis
	4.1 A Conceptual Framework for Managing Models along the IT Value Chain
	4.2 Identification of Requirements
	4.2.1 Architectural Requirements
	4.2.2 Organizational Requirements
	4.2.3 Functional Requirements
	4.2.4 Visualization Requirements

	5 Automated Model Recovery via Runtime Instrumentation
	5.1 IT landscape topology
	5.1.1 AppDynamics
	5.1.2 New Relic
	5.1.3 Dynatrace
	5.1.4 AppMon
	5.1.5 Meta-Model Transformation

	5.2 System Design
	5.2.1 Monitoring probes
	5.2.2 Monitoring Server
	5.2.3 MICROLYZE.Collect: Collecting Architecture Models
	5.2.4 MICROLYZE.Analyze: Analyzing Architecture Models
	5.2.5 MICROLYZE.Store: Storing Architecture Models
	5.2.6 MICROLYZE.Expose: Exposing Architecture Models

	5.3 Process Design
	5.3.1 Reconstruction of Architecture Model Dependencies
	5.3.2 Reconstruction of Communication Dependencies
	5.3.3 Validation of Architecture Changes
	5.3.4 Change Events
	5.3.5 Revision Concept
	5.3.6 Recovering REST Calls using Runtime Data
	5.3.7 Elaboration of a Deletion Threshold

	5.4 Visualization Design
	5.4.1 Visualization Architecture
	5.4.2 Graph Styling
	5.4.3 Visualization Process
	5.4.4 Architecture Model Deployment
	5.4.5 Architecture Model Communication
	5.4.6 Architecture Model Interaction
	5.4.7 Architecture Model Comparison
	5.4.8 Architecture Model Sidebar
	5.4.9 GraphQL Client

	6 Recovery of Business-related Models
	6.1 System Design
	6.1.1 Configuration Files
	6.1.2 General Extension of the Configuration File Content
	6.1.3 References to Federated Information Systems
	6.1.4 Importing and Processing of Configuration Files
	6.1.5 Continuous Delivery Pipeline
	6.1.6 JSON Schema validation
	6.1.7 Distribution and Location of JSON Schema Files

	6.2 Organizational Design
	6.2.1 Roles and Responsibilities
	6.2.2 Adapted Agile Development Process

	6.3 Process Design
	6.3.1 Performed Sequences in CD Pipeline
	6.3.2 Processing the content of the configuration file
	6.3.3 Meta-model update based on decision tree

	6.4 Visualization Design
	6.4.1 Architecture Model Cluster
	6.4.2 Architecture Model Table View
	6.4.3 Aggregated Architecture Model Communication

	7 Evaluation
	7.1 Evaluation Design
	7.2 Case Study in the Automotive Sector
	7.2.1 Requirement Analysis and Status Quo
	7.2.2 Prototype Integration
	7.2.3 MICROLYZE Execution Result
	7.2.4 Feedback from Practitioners
	7.2.5 Critical Reflection of Results

	7.3 Case Study in the Insurance Sector
	7.3.1 Requirement Analysis and Status Quo
	7.3.2 Prototype Integration
	7.3.3 MICROLYZE Adaption
	7.3.4 MICROLYZE Execution Result
	7.3.5 Feedback from Practitioners
	7.3.6 Critical Reflection of Results

	7.4 Interview Series
	7.4.1 Assessment of the Solution Architecture
	7.4.2 Assessment of Model Visualizations
	7.4.3 Technical and Organizational Integration
	7.4.4 Supported Use Cases
	7.4.5 Action Plan

	8 Conclusion
	8.1 Summary
	8.2 Critical Reflection
	8.2.1 Functional Limitations of the Prototype
	8.2.2 Critical Reflection on the Validity
	8.2.3 Critical Reflection on the Research Methodology

	8.3 Future Work
	8.3.1 Business Process Recovery via Process Mining
	8.3.2 Assessment of Architecture Quality
	8.3.3 Failure Root Cause and Failure Impact Analysis

	A Appendix
	A.1 JSON Schema

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Dissertation__Management_of_MS_Landscapes___old_Design.pdf
	Danksagungen
	Zusammenfassung
	Abstract
	A Appendix
	A.1 JSON Schema

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Akronyme

	Dissertation__Management_of_MS_Landscapes___old_Design (1).pdf
	Danksagungen
	Zusammenfassung
	Abstract
	A Appendix
	A.1 JSON Schema

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Akronyme

