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Abstract: Operations of the doubly-fed induction generators (DFIGs) without mechanical sensors
are highly desirable in order to enhance the reliability of the wind generation systems. This article
proposes a limited-position set model-reference adaptive observer (LPS-MRAO) for control of DFIGs
in wind turbine systems (WTSs) without mechanical sensors, i.e., without incremental encoders or
speed transducers. The concept of of the developed LPS-MRAO is obtained from the finite-set model
predictive control (FS-MPC). In the proposed LPS-MRAO, an algorithm is presented in order to give a
constant number of angles for the rotor position of the DFIG. By using these angles, a certain number
of rotor currents can be predicted. Then, a new quality function is defined to find the best angle
of the rotor. In the proposed LPS-MRAO, there are not any gains to tune like the classical MRAO,
where a proportional-integral is used and must be tuned. Finally, the proposed LPS-MRAO and
classical one are experimentally implemented in the laboratory and compared at various operation
scenarios and under mismatches in the parameters of the DFIG. The experimental results illustrated
that the estimation performance and robustness of the proposed LPS-MRAO are better than those of
the classical one.

Keywords: model-reference adaptive observer; doubly-fed induction generator; encoder-less control;
predictive control

1. Introduction

The conventional power generation systems produce a large amount of carbon dioxide,
which increases the temperature of the planet, i.e., global warming. Accordingly, severe consequences
are currently seen in our life like ice melting, forest fires, and others. Therefore, the main goal
of the Paris agreement is to reduce this increase in the global average temperature to safe our
planet [1]. One method to do that is the use of renewable energy systems instead of the conventional
ones. Wind energy is very important source between the different types of renewable energy
systems. The first type of the wind turbines was a constant-speed one with a squirrel-cage induction
generator (SCIG) [2–4]. The SCIG consumes a reactive power, which is usually provided by a
capacitor bank. The main features of the fixed-speed wind turbines are simplicity and low initial
cost. However, the fixed-speed wind turbines have the following disadvantages: (1) The conversion
efficiency is low, (2) operation at constant speed, i.e., the changes in the wind speed directly affect
the electrical utility, and (3) high sensitivity to voltage dips and faults on the grid. Considering these
drawbacks, it can be observed that the constant-speed wind generators have almost disappeared in
the wind turbines market [2–4].
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The disadvantages of the constant-speed wind turbines encouraged the development of
variable speed wind generators. The doubly-fed induction generator (DFIG) is currently the main
variable-speed wind generator on the market [2–4]. The DFIGs have the following advantages:

• High energy conversion efficiency due to the implementation of the maximum power point
tracking (MPPT) technique.

• Changes of the wind speed does not affect the electrical utility.
• No capacitor bank is required.
• The price of the power electronics circuits is low due to the use of partial-scale back-to-back (BTB)

power converter, i.e., 30% of the generator power.

Generally, the control of the DFIG is realized by vector control and implemented in the rotating
dq reference frame [5–7]. Therefore, the measurement of the rotor position and speed is necessary.
Incremental encoders and speed transducers are extensively used for measuring the rotor position
and speed. However, the high failure rate of these mechanical sensors is the main drawback.
Therefore, in order to improve the reliability of the wind generation system with DFIG, estimation of
the rotor position and speed of the DFIG is highly requested [8].

In the literature, a lot of observers for estimating the rotor position and speed of the DFIG
have been presented. The popular estimators are: phase locked loop (PLL) [9], model-reference
adaptive observers (MRAOs) [10–15], sliding-mode observers [16], extended Kalman filter
(EKF) [17–19], unscented Kalman filter (UKF) [20,21], and others. Due to its simplicity and
direct physical interpretation, MRAO received high interest from the researchers. MRAO can be
designed based on stator current, stator flux, rotor current, rotor flux, or back-electro-motive force.
The comparison between the different types of MRAOs have been presented in [11]. Based on
this comparison, MRAO based on rotor current illustrated better response than the other types.
Usually, the main parts of MRAOs are: reference model, adaptive model, and an adaptation mechanism.
Most of the developed adaption mechanisms of MRAOs uses proportional-integrator (PI) regulators
with constant gains [10–15]. The PI controllers give good dynamic and steady-state performances.
However, the narrow bandwidth of those PI controllers is the main drawback. Furthermore, in the
tuning of these PI controllers, a trade-off between the overshoot, oscillations, and damping must be
considered. Therefore, other controllers such as neural network [22], fuzzy logic [23], and sliding
mode [23,24] have been used in the adaption mechanisms of MRAOs instead of the PI controller.

In 2007, the so-called finite-set model predictive control (FS-MPC) has been presented for two-level
voltage source inverters [25]. The basic idea of the FS-MPC is the use of the limited number of switching
states of the voltage source inverter to predict a certain number of currents in the next sample.
Subsequently, a cost function is formulated to select the optimal switching state to directly apply in the
next sampling interval without the use of a modulator. The FS-MPC has the following advantages:

• Simple and easy to understand.
• Non-linear control system and no modulator is required.
• Constrains can by easily considered in the design of the FS-MPC.
• Multi-variable control problem can be easily handled by the FS-MPC.

Accordingly, the FS-MPC has been then applied for several power electronics circuits and
motor drive systems [26–31], where the FS-MPC gives excellent dynamic performance without
overshoot and oscillations. However, the FS-MPC is rarely used in observers [32–34]. In [33],
a finite-position-set phase-locked loop (FPS-PLL) is proposed for estimation of the rotor position
and speed of a permanent-magnet synchronous generator (PMSG). In this FPS-PLL, the concept of
the FS-MPC is used instead of the PI controller. According to the experimental results presented
in [33], the dynamic performance and robustness of the FPS-PLL are better than the traditional PLL.
Furthermore, in [34], the concept of the FS-MPC is used in MRAO for sensorless control of PMSGs,
where the dynamics and robustness of the proposed MRAO are enhanced. This fact motivated us to
use the principles of FS-MPC in MRAO for a different machine (i.e., DFIG).
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In this paper, a limited-position set model-reference adaptive observer (LPS-MRAO) for control
of DFIGs without mechanical sensors is proposed. Due to the fact that the rotor position did not has a
limited number of states like the power electronics circuits, an algorithm is developed to produce this
finite number of angles. Subsequently, those angles are used in the adaptive model of the proposed
LPS-MRAO to estimate a certain number or rotor currents and by the help of a cost function, the best
angle for the rotor position is found. This optimal angle is then differentiated to obtain the rotor
speed of the DFIG. The proposed LPS-MRAO and classical one are experimentally implemented and
compared. The results illustrated that the response of the proposed LPS-MRAO is better than that of
the classical MRAO.

This paper is organized as follows: Section 2 explains the model and control of the DFIG.
The traditional MRAO for DFIGs is given in Section 3, while the proposed LPS-MRAO for DFIGs
is detailed in Section 4. The description of the experimental setup is given in Section 5 and the
experimental results are presented in Section 6. Finally, Section 7 concludes the paper.

2. Modeling and Control of the DFIG

The schematic-diagram of the wind generation system with DFIG is illustrated in Figure 1,
where the rotor of the DFIG is connect to a power converter called rotor-side converter (RSC) and the
stator is tied with the point of common coupling (i.e., grid). In this work, the voltage-oriented control
(VOC) is employed to control the DFIG. The model of the DFIG in the stationary reference frame of the
stator can be expressed as

us
s (t) = Rsis

s (t) +
d
dt ψs

s (t),
us

r (t) = Rris
r (t) +

d
dt ψs

r (t)−ωr(t)Jψs
r (t),

}
(1)

where
ψs

s (t) = Lsis
s (t) + Lmis

r (t)
ψs

r (t) = Lris
r (t) + Lmis

s (t).

}
(2)

In Equations (1) and (2), us
s = (uα

s , uβ
s )
> [V], us

r = (uα
r , uβ

r )
> [V], is

s = (iα
s , iβ

s )
> [A], is

r = (iα
r , iβ

r )
> [A],

ψs
s = (ψα

s , ψ
β
s )
> [Vs], and ψs

r = (ψα
r , ψ

β
r )
> [Vs] are the stator/rotor voltages/currents/fluxes,

respectively. Rs [Ω] and Rr [Ω] are the resistances of the stator and rotor of the DFIG. Ls [H], Lr [H],
and Lm [H] are the stator/rotor/mutual inductances, respectively. ωr [rad/s] is the electrical angular

speed of the rotor and J =

[
0 −1
1 0

]
.

The control system of the DFIG is usually designed in the rotating-reference frame dq. Accordingly,
Park transformation is applied as follows

xk =

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
︸ ︷︷ ︸

=:TP(φ)−1

xs, (3)

where xk = (xd, xq)> and xs = (xα, xβ)>. Hence, Equations (1) and (2) in the dq frame as follows [28]

uk
s (t) = Rsik
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s (t) + ωs Jψk
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r = Lrik
r + Lmik

s .

}
(5)
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In Equation (4), ωs [rad/s] is the stator (grid) angular frequency.
It can be observed from Figure 1 that the d-axis component of the rotor current is used to

control the active power injected to the grid. Usually, it is required to realize the maximum
power point tracking (MPPT) operations of the wind turbine, i.e., achieving the highest conversion
efficiency of the wind turbine. Therefore, the non-linear relation, T?

e = −k?pω̂2
m with a positive

constant k?p [28], is implemented to compute the optimal electro-magnetic torque of the DFIG.

Subsequently, the reference current of the d-axis is obtained as follows id
r,re f = −

2
3

ωs Ls
np Lm

T∗e
ud

s
. The output

reactive power of the DFIG can by regulated by the q-axis current [28].
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Figure 1. Schematic-diagram of the VOC technique for doubly-fed induction generators (DFIGs) with
model-reference adaptive observer (MRAO) in wind turbine systems.

3. Traditional MRAO for DFIGs

In [11], several MRAOs have been designed and compared based on stator current, stator flux,
rotor current, and rotor flux. According to this study, MRAO based on rotor current of the DFIG
showed the best performance between the different types of MRAOs. Accordingly, a rotor current
based MRAO is considered in this work. The block diagram of the traditional MRAO for DFIGs is
depicted in Figure 2, where the adaptive model of this MRAO estimates the rotor current îs

r in the
stator stationary reference-frame from the stator voltage us

s and stator current is
s based on Equation (2)

as follows
îs
r (t) =

1
Lm

(
ψs

s (t)− Lsis
s (t)

)
, (6)

where ψs
s (t) is obtained from Equation (1) as follows,

ψs
s (t) =

∫ t

0

(
us

s (τ)− Rsis
s (τ)

)
dτ. (7)

This estimated current îs
r is then transferred from the stator stationary reference-frame to the

rotor stationary reference frame by the help of Park transformation as illustrated in Figure 2. In the
MRAO-based rotor current, the reference model is very simple, which is the measured rotor current
of the DFIG ir

r in the rotor stationary reference frame. Then, the error between this estimated and
measured rotor current is computed as follows

e := îr
r × ir

r = ‖îr
r ‖ ‖ir

r ‖ sin
(
∆φr

)
. (8)

This error e is the input of the adaption mechanism, which is a PI controller in case of the
traditional MRAO. The output of the adaption mechanism is the estimated rotor speed ω̂r of the DFIG
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after filtering the high frequency noise by a low-pass filter (LPF). The estimated rotor position φ̂r is
found by integration of the speed signal ω̂r. Detailed design of the traditional MRAO and the tuning
of the PI controller are presented in [11].
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Figure 2. Block diagram of the traditional MRAO for control of DFIGs without incremental encoders.

4. Proposed Limited-Position Set MRAO for DFIGs

The block-diagram of the proposed LPS-MRAO is illustrated in Figure 3. The main challenge
to use the FS-MPC instead of the PI controller in the adaption mechanism of MRAOs is that the
rotor positions of the DFIG are not discrete like the switching states of the power electronics circuits.
Therefore, it is essential to develop an algorithm (Algorithm 1) for producing a limited number of
positions. The first step of this algorithm is reading the currents of the rotor/stator ir

r/is
s and stator

voltage us
s . The second step is computing of the stator flux ψs

s . Then, the rotor current is observed
in the stator reference frame îs

r . In step 4 of Algorithm 1, the limited number of rotor positions is
generated by using the following equation:

φri,j = φin,i + (j− 4)∆φi, (9)

where ∆φi =
π
4 ×

1
2i . For more declaration, at i = 0, ∆φo = π

4 . Then, by utilizing j = 0− 7 with a
step of one (i.e., j = 0, 1, 2, 3, 4, 5, 6, 7), the following angles are produced: 0, π

4 , π
2 , 3π

4 , π, −3π
4 , −π

2 ,
and −π

4 rad. Note that the number of these angles are 8 to be similar to the 8 switching states of the
2-level power converter. For each angle, the rotor current in the rotor reference frame is estimated as
îr
ri,j = TP(φ̂ri,j)

−1 îs
r . Then, the cost function (CF) is defined as

CFi,j = îα
ri,ji

β
r − îβ

ri,ji
α
r = ‖îr

ri,j‖‖ir
r‖ sin(φr − φ̂ri,j︸ ︷︷ ︸

=:∆φri,j

). (10)

The cost function is the cross product between the estimated rotor current îr
ri,j and measured one

ir
r. Accordingly, its value is significantly based on sin(φr − φ̂ri,j) = sin(∆φri,j). Therefore, the angle

that produces the minimum error between îr
ri,j and ir

r, i.e., minimum ∆φri,j, will be chosen to be the
optimal angle and the initial value of the second iteration φin,1. Step 4 will be iterated for 8 times to
estimate the rotor position φ̂r with an accuracy of ∆φ7

2 = 1
2 ×

π
4 × 2−7 = π

1024 = 0.003 rad.
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Figure 3. Block diagram of the proposed limited-position set (LPS)-MRAO for control of DFIGs without
mechanical sensors.
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Finally, to observe the rotor speed, the observed angle φ̂r is differentiated as illustrated in
Figure 3. By the help of a low-pass filter (LPF), the signal of the rotor speed is filtered from the
high frequencies noise.

Algorithm 1 Proposed LPS-MRAO for DFIGs

Step 1: Read the rotor and stator currents ir
r, is

s and stator voltage us
s .

Step 2: Compute ψs
s (t) =

∫ t
0

(
us

s (τ)− Rsis
s (τ)

)
dτ.

Step 3: Estimate îs
r (t) =

1
Lm

(
ψs

s (t)− Lsis
s (t)

)
.

Step 4:
Initiate the angle φin,0 = 0 and error CFin = ∞
For i = 0 : 1 : 7

calculate ∆φi =
π
4 ×

1
2i .

For j = 0 : 1 : 7
compute φri,j = φin,i + (j− 4)∆φi.

compute îr
ri,j = TP(φ̂ri,j)

−1 îs
r .

evaluate the cost function CFi,j = îα
ri,ji

β
r − îβ

ri,ji
α
r .

if CFi,j < CFin
CFin = CFi,j
φr,opt = φi,j

end
end

set φin,i+1 = φr,opt
end
Step 5: φ̂r = φr,opt
Step 6: Return to Step 1.

5. Description of the Test Bench

The utilized test bench to validate the presented LPS-MRAO is depicted in Figure 4, where a
10 kW DFIG is used in the following experiments. The basic parameters of this DFIG is listed in Table 1.
In our laboratory, no wind turbine emulator is available. Therefore, another machine is used for this
purpose, which is a 10 kW electrical-excited synchronous machine (EESM). As illustrated in Figure 1,
the rotation speed of the rotor is controlled by the DFIG by using the non-linear criteria T∗e = −k∗pω2

m.
However, this controller is extremely slow. Therefore, in the following experiments, the EESM is used
to regulate the rotation speed of the rotor. The used real-time system is a dSPACE DS1007 and the
following boards are connected to it.

• DS3002 incremental encoder board to interface the measured speed/position of the rotor with
the main board. Note: this measured speed/position of the rotor is only for comparison with the
estimated ones.

• DS2004 analog to digital converter (A/D) board to interface the measured currents of the rotor
and stator, measured voltages of the stator, and measured DC-link with the main board.

• DS5101 pulse-width-modulation board to interface the switching signals with the
power converters.
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A

B

C

A: DFIG            

B: EESM

C: Torque sensor

D: Encoder

E: dSPACE DS1007

F: Power converters

G: Saftey-box and ON/OFF

H: Host computer

E

F

G

H

D

D

Figure 4. The used test bench to validate the proposed LPS-MRAO.

Table 1. Parameters of the utilized DFIG.

Name of the Signal Math. Symbol Value

Nominal power pn 10 kW
Nominal line-line voltage of the stator us,n 400 V
Voltage of the DC-link udc 360 V
Nominal mechanical angular speed ωm,n 157 rad/s
Stator resistance Rs 0.72 Ω
Rotor resistance Rr 0.55 Ω
Stator inductance Ls 73.5 mH
Rotor inductance Lr 86 mH
Mutual inductance Lm 60 mH
Pole pairs np 2

6. Experimental Results

The wind turbines-based DFIGs are operating with ±30% variations of the speed around the
synchronous speed. In the adopted DFIG, the synchronous mechanical speed is 157 rad/s. If the
rotation speed is lower than this value, the DFIG operates in the sub-synchronous region and if the
rotation speed is higher than this value, the DFIG operates in the super-synchronous region.

In Figure 5, the mechanical rotation speed ωm of the DFIG rotor is ramped from 118 rad/s to
173 rad/s by the help of the EESM. In this experiment, the reference value of the electro-magnetic
torque of the DFIG T∗e is selected −30 N m, while the reference value of the q-axis current of the DFIG
rotor iq

r,re f is chosen 0 A. Based on Figure 5, the response of the presented LPS-MRAO in the transient
conditions is better than the traditional MRAO, where the errors ∆ωm = ωm− ω̂m and ∆φm = φm− φ̂m

are lower.
To further investigate and compare the dynamic performance of both proposed and conventional

MRAO, a step change in the electro-magnetic torque of the DFIG T∗e from −35 N m to −20 N m is
applied to the DFIG control strategy. The mechanical rotation of the DFIG rotor is regulated to
be constant at 140 rad/s by the EESM. The experimental results at these operation conditions are
illustrated in Figure 6. It can be clearly observed that the performance of the LPS-MRAO is better
than that of the classical MRAO. By using the traditional MRAO, the overshoot in the estimated
speed is approximately 15 rad/s, while an overshoot of 7 rad/s is seen in the response of the proposed
LPS-MRAO. Furthermore, the errors ∆ωm = ωm − ω̂m and ∆φm = φm − φ̂m using the LPS-MRAO are
lower than those of the conventional MRAO.
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Figure 5. Experimental results at changes of the rotation speed of the rotor: (a) LPS-MRAO,
and (b) traditional MRAO.
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Figure 6. Experimental results at variations of the electro-magnetic torque of the DFIG T∗e :
(a) LPS-MRAO, and (b) traditional MRAO.

It is important to investigate the performance of the developed LPS-MRAO and traditional one
under variations of the DFIG parameters. Accordingly, the stator resistance Rs of the DFIG is reduced
to half of its nominal value, i.e., Rs = 0.5Rso. Note: the change in the stator resistance of the DFIG
occurred in the software model not in the hardware. The mechanical rotation of the DFIG rotor is
regulated to be constant at 150 rad/s by the EESM and the electro-magnetic torque of the DFIG T∗e is
controlled at −25 N m. Based on Figure 7, it is clear that variation of the stator resistance Rs of the
DFIG has almost no effect in the response of the developed LPS-MRAO and traditional MRAO. This is
due to the fact that the value of the stator resistance Rs of the DFIG is small, in particular for large
generators like the ones used in real modern wind turbines.

The last experiment is to test the response of the developed LPS-MRAO and traditional one under
variation of the stator inductance Ls of the DFIG as illustrated in Figure 8, where Ls is reduced by 50% in
the software model. The mechanical rotation of the DFIG rotor is regulated to be constant at 145 rad/s
by the EESM and the electro-magnetic torque of the DFIG T∗e is controlled at −32 N m. It is clear that



Machines 2020, 8, 72 9 of 11

the robustness of the developed LPS-MRAO is better than that of the traditional MRAO. The dynamic
error ∆ωm using the LPS-MRAO is approximately 6 rad/s, while it is approximately 19 rad/s using
the traditional MRAO. Furthermore, the error ∆φm using the classical MRAO is significantly higher
than ∆φm in case of using the developed LPS-MRAO.
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Figure 7. Experimental results at variations of the DFIG stator resistance Rs: (a) LPS-MRAO,
and (b) traditional MRAO.
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Figure 8. Experimental results at variations of the DFIG stator inductance Ls: (a) LPS-MRAO,
and (b) traditional MRAO.

7. Conclusions

In this paper, a limited-position set model-reference adaptive observer (LPS-MRAO) for
sensor-less control of doubly-fed induction generators (DFIGs) in wind applications with
variable-speeds has been developed. The fundamental idea of the developed LPS-MRAO is similar
to the idea of the finite-set model predictive control (FS-MPC). This is because the rotor position
of the DFIG is formulated as a limited number of angles, which is like the limited switching states
of the power converter. The next step in the proposed LPS-MRAO is using this limited number of
angles to observe a fixed number of values for the rotor current of the DFIG. After that, a cost



Machines 2020, 8, 72 10 of 11

function is designed to find the best position of the rotor in this limited number of positions,
i.e., the position that gives the minimum error between the measured rotor current and observed one.
Hence, the proportional-integral that is always utilized in the adaption mechanism of the classical
MRAO is not needed. The developed LPS-MRAO and the traditional one have been implemented in
the laboratory and the experimental results have been given and compared. Based on these results,
it has been observed that the developed LPS-MRAO illustrated better dynamics and robustness than
the classical MRAO.
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