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Abstract: Renewable energy sources, especially photovoltaic (PV) ones, are gaining more and more
interest due to the predicted lack of conventional sources over the coming years. That shortage
is not the only concern, as environmental issues add to this concern also. Thus, this study
proposes two-stage PV grid connected system, which is supported with extended Kalman filter
(EKF) for parameter estimation. In the first stage, maximum power point tracking (MPPT) for
the boost converter is accomplished using new MPPT method in which the switching state of the
converter is directly generated after the measurement stage, so it is called direct switching MPPT
technique. This technique is compared with the conventional finite control set model predictive
control (FCS-MPC) method, where the design of the cost function is based on minimizing the error
between the reference and the actual current. The reference current is obtained by employing perturb
and observe (P&O) method. In the second stage, the two-level inverter is controlled by means
of model predictive control (MPC) with reduced computation burden. Further, to overcome the
parameter variations, which is a very common problem in MPC applications, an extended Kalman
filter is utilized to eliminate the control algorithm’s dependency on the parameters by providing
an efficient estimation. After the inverter, an RL filter is inserted to guarantee the quality of the
currents injected into the grid. Finally, the system is validated using Matlab under different operating
conditions of atmospheric variation and parameter changes.

Keywords: direct switching MPPT; extended Kalman filter; grid connection; model predictive control;
MPPT; PV systems

1. Introduction

Photovoltaic (PV) energy sources are very promising due to several advantages over the
conventional sources. PV sources provide clean, silent, friendly, naturally abundant and emissions-free
energy to the installed systems [1]. These systems can be implemented with different topologies
and control methodologies. However, they can be mainly classified into two main categories,
including standalone and grid connected applications [2,3]. In the standalone systems, a DC–DC
converter is utilized between the PV source and the DC load for the purpose of maximum power
point tracking (MPPT) [4]. Actually, some systems use a direct coupling technique between the
load and the source, but this method installs a lot of panels to provide the necessary energy to the
load [5]. Additionally, and because of the night hours, the storage element is mandatory in case of the
standalone schemes [6]. Batteries are a very common solution to this issue, but they require frequent
replacement [7], which increases the overall system cost, especially for low power applications. Thus,
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grid-connected topologies are preferred; they can be implemented by directly coupling the inverter to
the grid without including the DC-DC converter stage [8,9]. Consequently, that is called the single
stage topology. However, and due to the variable atmospheric conditions, the two stage inverter
topology is very common [10,11]. The DC–DC converter stage provides regulation to the PV source
voltage [9,12]. In fact, it boosts the voltage, and hence this widens the operating voltage range of
the system. Furthermore, it separates the MPPT control strategy from active and reactive power
inverter control. This greatly simplifies the overall control methodology and enhances the system
stability [13,14].

In the DC–DC stage, the maximum power should be extracted from the PV source [15].
The converter in this stage operates as a matching circuitry because of the nonlinear characteristics
of the PV source and also elevates the PV voltage for proper grid connection [16,17]. Many MPPT
techniques have been addressed in the literature [18–21]. Indeed, they differ from each other based on
several factors, including methodology, efficiency, tracking speed, required sensors and cost [18,22,23].
The most widespread techniques are perturb and observe (P&O) and incremental conductance
(INC) [24]. That is because of the simplicity of implementation. Further, they do not depend on
the PV source or system parameters [25]. Recently, and as a result of the continuous development
of controllers (microprocessors), advanced techniques, such as the fuzzy logic controller, neural
networks, model predictive control (MPC) and optimization techniques, have emerged into the
light [26,27]. Optimization techniques or searching algorithms involving particle swarm optimization,
genetic algorithm and simulated annealing [28], are applied in nature for systems exposed to partial
shading conditions caused by nearby buildings or trees, clouds or even smoke [29]. As a result,
the power-voltage (P–V) curve of the PV source exhibits several maxima, so the searching algorithm
seeks the global maximum among them [30,31].

Through the inverter stage, the DC energy is converted to AC energy. Moreover, the control
strategy in this stage relies on independent control of active and reactive power injected into the
grid [12,26]. Several inverter control strategies are implemented in the literature. However, the most
popular technique is the voltage oriented control (VOC) [32]. In this method, two cascaded control
loops are required. The outer loop (voltage loop), normally associated with the DC-link capacitor
voltage, provides the direct axis component of current (Id) for the purpose of active power control.
Alongside the quadrature axis component of the current (Iq), this is usually set to zero to operate
at a unity power factor conditions. These two components are feed to the inner current loop with a
modulator to get the switching signals for the inverter [32,33]. For the sake of decoupling intentions
and PI controller design simplicity, the VOC can be implemented with feed forward technique [33,34].
Another common algorithm is the direct power control (DPC) strategy; actually, in this technique the
cascaded control methodology of the VOC is avoided [35]. The inverter switching states are selected
based on the instantaneous errors between the estimated and reference values of the active and reactive
power, and the grid voltage vector position [35,36]. The DPC strategy is executed by means of hysteresis
controller and lookup switching table [36,37], and hence there is no need for the modulator.

Recently, and over the past few years, predictive control has gotten more attention and become a
very promising control scheme in various power electronics applications [32,38,39]. It can be sorted into
three prime branches incorporating the continuous control set, deadbeat and finite control set model
predictive control (FCS-MPC) [40]. Both the continuous control set and deadbeat model predictive
control need a modulator at the output stage for switching state generation [41]. However, FCS-MPC
takes the advantage of limited number of switching actions related to the controlled converter and
directly generates the optimal switching state. FCS-MPC can be simply performed by deriving the
model of the system under study. Then, the discrete time model of the converter is developed.
Further, the predicted control variable is differentiated from its reference value together with other
conditions. Finally, the best switching action satisfying the aforementioned constraints will be enforced
on the power switches [41–43]. Obviously, the model of the system has a great effect on optimizing
the FCS-MPC performance [35,40]. This opens the door for combining different observers with
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FCS-MPC to estimate the parameters of the model and enhance the robustness of the control strategy.
Various studies have been carried out using such things as the model reference adaptive system
(MRAS) [44,45], the Luenberger observer [46], the disturbance observer [47] and the extended Kalman
filter (EKF) [48]. However, these estimators can also be used for state estimation and hence sensorless
control strategies [49]. Presently, limited work is done in this area, and that motivated the authors to
go after this control strategy, particularly for PV grid connected systems.

In this paper, a two-stage, grid-connected PV system is proposed with an optimized control
strategy considering high MPPT efficiency for the boost converter and high robustness for the two-level
inverter scheme. Firstly, the maximum power is extracted from the PV source by a new direct switching
MPPT algorithm. For investigation, the proposed methodology is compared with the FCS-MPC
MPPT [50], which is designed with one step in the horizon, and the cost function is adopted based
on the current. Secondly, a modified FCS-MPC is developed to control the inverter, wherein only
three iterations are required to initiate the optimum voltage vector, unlike the case of the conventional
FCS-MPC, wherein seven iterations are essential. This considerably decreases the required computation
time. Further, to enhance the system’s reliability and robustness, and even eliminate the FCS-MPC
dependency on the parameters of the scheme, an EKF is employed to monitor and observe the
parameters for the objective of online correction of potential variations. Finally, the behavior of the
system is validated with simulation results using Matlab under different operating conditions and
compared with the conventional FCS-MPC algorithm.

The rest of this paper is organized as follows. Section 2 presents the mathematical model of the PV
source, boost converter and proposed MPPT. Section 3 describes the conventional and the proposed
FCS-MPC algorithms for controlling the two-level inverter. The extended Kalman filter design is
explained in Section 4. Finally, simulation results are illustrated in Section 5.

2. PV System Modeling and MPPT

The studied PV system, shown in Figure 1, consists of PV source (PV array), a boost converter,
a two-level inverter, an RL filter and the grid. The PV source and the DC-DC converter stage are
investigated in the coming subsections.
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Figure 1. Block diagram of the PV system under study.

2.1. PV Array Modeling

The PV cells provide small output voltage, so normally the PV source is available in modules
(panels) formed from series cells. The modules can further connected in series and parallel (array)
to provide sufficient power to the system. Here, the single diode model is used for describing the
behavior of the PV module as [20,51]



Sustainability 2020, 12, 4542 4 of 22

ipv = iph − io[e
(

vpv+ipv Rs
nNsvt

) − 1]−
vpv + ipvRs

Rsh
, (1)

where iph is the photovoltaic current, n is the diode ideality factor, io is the diode saturation current, Rs

is the module series resistance, Rsh is the module shunt resistance, vt = kT/q is the thermal voltage,
Ns is the number of series cells in the module, ipv is the terminal current and vpv is the terminal voltage.
The electrical circuit that describes this model is shown in Figure 2.

Rsh

Rs

Diph

ipv

vpv

Figure 2. Single diode model of the PV module.

Further, the characteristics of the module KC200GT [52] chosen for simulation are shown in
Figures 3–6, where the P–V and the I–V characteristics are illustrated at different atmospheric conditions
of radiation and temperature.
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Figure 3. P–V characteristics of the PV module under different radiation conditions and constant temperature.
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Figure 4. P-V characteristics of the PV module under different temperature conditions and constant radiation.
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Figure 5. I–V characteristics of the PV module under different radiation conditions and constant temperature.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

T=25 0C

T=50 0C

T=75 0C

G=1000 W/m2

Figure 6. I–V characteristics of the PV module under different temperature conditions and constant radiation.

2.2. Boost Converter Model

The objective of the boost converter in PV systems is to interface the PV source with the two-level
inverter, and to boost the voltage of the array to a convenient value for grid connection. The boost
converter has two modes of operation, which are specified by the power switch cases on and off.
Figure 7 shows the two modes of the converter, where its behavior can be formulated as follows:

Lb

cdc

+

-

+

-
(a) (b)

cpv cdcvdc

+

-

ipv il

icpv
iinv

ipv il

cpv

icpv

vdc
iinv

+

-

Lb

Figure 7. Equivalent circuit of the boost converter when: (a) Switch is off, and (b) switch is on.

When the switch is off:
dil
dt

=
1
Lb

(vpv − vdc), (2)

dvdc
dt

=
1

cdc
(il − iinv), (3)

where il is the inductor current, vdc is the capacitor voltage, Lb is the boost converter inductance,
iinv is the inverter current and cdc is the coupling capacitor value (between the boost and the
two-level inverter).

And when the switch is ON:
dil
dt

=
1
Lb

vpv, (4)
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dvdc
dt

= − 1
cdc

iinv. (5)

Using the state space averaging technique, the boost model can be finalized as

ẋ = Ax + Bu,
y = Cx + Du,

(6)

where x = [ipv vdc]T is the state vector, u = [vpv iinv]T is the input vector and y = vdc is the output.
Further, A, B, C and D are the system matrices and are expressed as follows

A =

[
0 − 1−d

Lb
1−d
cdc

0

]
, B =

[
1
Lb

− 1
cdc

]
, C =

[
0 1

]
, D = 0, (7)

where d is the duty cycle of the boost converter.

2.3. MPPT Using FCS-MPC

Maximum power point tracking is an essential regulation to capture the obtainable power from
the PV source during the variable operating conditions. At this stage, FCS-MPC technique is developed
to extract the maximum power from the array. The FCS-MPC requires the discrete-time model of the
boost converter, which can be derived from the above-mentioned model (Equations (2)–(5)), and using
forward Euler discretization [53]

ipv(k + 1) = ipv(k) +
Ts

Lb
(vpv(k)− vdc(k)), (8)

vdc(k + 1) = vdc(k) +
Ts

cdc
(iinv(k)− ipv(k)), (9)

ipv(k + 1) = ipv(k) +
Ts

Lb
vpv(k), (10)

vdc(k + 1) = vdc(k)−
Ts

cdc
iinv(k), (11)

where ipv≈ il , Equations (8) and (9) are valid when the switch is open. Equations (10) and (11) describe
the on state, Ts is the sampling time, k represents the actual sampling instant and (k + 1) is the
future one.

The design of the cost function is based on the current as

gS=0,1 = |ipvS=0,1(k + 1)− ire f (k + 1)|, (12)

where S is the switching state of the boost converter, and ire f (k + 1) is the reference current generated
from the P&O method. The final scheme for the conventional FCS-MPC MPPT method is shown
in Figure 8.
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Figure 8. (a) P&O scheme to generate the reference current for FCS-MPC. (b) FCS-MPC procedure to
generate the switch state. (c) The proposed direct switching MPPT technique.

2.4. MPPT Using Direct Switching Technique

Maximum power can be harnessed from the PV source using the well-known direct control
method [54–57], where the duty cycle is directly perturbed in the control algorithm without the need
for PI controllers [54,58]. Combining this idea with the FCS-MPC MPPT principle, the duty cycle
can be replaced with the converter switching state, as shown in Figure 8. The main advantages
of the proposed MPPT are: (1) The avoidance of current predictions and cost function evaluations
(i.e., low computational load), and (2) no dependency on system parameters.

3. Control of the Two-Level Inverter Using FCS-MPC

The PV generated DC energy is fed into the grid and converted to AC energy by means of
inverters. In this study, a two-level inverter is utilized; its model and control strategies with the
conventional and proposed FCS-MPC will be addressed in the coming subsections.

3.1. Two-Level Inverter Model with Grid Connection

Figure 9 shows the configuration of the inverter, filter and the grid. The two-level inverter has
eight possible switching actions, shown also in Figure 9 with their sectors distribution (1–6). According
to these potential actions, eight voltage vectors can be generated at the output terminals of the inverter.
Table 1 summarizes the possible switching actions and output voltage vectors. It is worth mentioning
that six active voltage vectors are produced from the inverter with two zero voltage vectors.
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Figure 9. (a) Two-level voltage source inverter with grid connection. (b) Switching actions and voltage
vectors of the inverter.
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Table 1. Switching actions and output voltages of the two-level inverter in αβ and abc frames.

Voltage Vectors Switching States (Sabc) Output Voltages (vα,vβ) Output Voltages (va,vb,vc )

u0 000 0 0 0 0 0
u1 100 2vdc

3 0 2vdc
3

−vdc
3

−vdc
3

u2 110 vdc
3

√
3vdc
3

vdc
3

vdc
3

−2vdc
3

u3 010 −vdc
3

√
3vdc
3

−vdc
3

2vdc
3

−vdc
3

u4 011 −2vdc
3 0 −2vdc

3
vdc
3

vdc
3

u5 001 −vdc
3

−
√

3vdc
3

−vdc
3

−vdc
3

2vdc
3

u6 101 vdc
3

−
√

3vdc
3

vdc
3

−2vdc
3

vdc
3

u7 111 0 0 0 0 0

Referring to Figure 9 and applying KVL at the inverter output side yields

vx = ux + L f
dix

dt
+ R f ix, (13)

where x ∈ {a, b, c}, vx are the grid side voltages, ux are the inverter side voltages, L f is the filter
inductance and R f is the filter resistance. The output voltages of the inverter is given by [59,60]

ux =
1
3

vdcTxSx, (14)

where vdc is the coupling capacitor voltage; Sx is the switching state vector of the two-level inverter
and ∈{0, 1}; and Tx is the coefficient matrix, which can be expressed as

Tx =

 2 −1 −1
−1 2 −1
−1 −1 2

 . (15)

In the stationary reference frame (α-β), and using Clarke transformation, the inverter voltages are
specified as

uαβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
ux, (16)

so Equation (13) can be rewritten as

vαβ = uαβ + L f
diαβ

dt
+ R f iαβ. (17)

Furthermore, and using Park transformation, the rotating reference frame (d-q) components of the
voltages can be expressed as

vd = ud + L f
did
dt + R f id −ωL f iq,

vq = uq + L f
diq
dt + R f iq + ωL f id,

(18)

where ω is the grid frequency. Considering a balanced three phase system, the active and reactive
power in different frames are obtained as

P = 3
2 (vαiα + vβiβ),

Q = 3
2 (vβiα − vαiβ),

(19)

P = 3
2 (vdid + vqiq),

Q = 3
2 (vqid − vdiq),

(20)

where Equation (19) is in the α-β frame, while Equation (20) is in the d-q frame.
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3.2. Conventional FCS-MPC

To design the FCS-MPC, the discrete time model of the grid-connected inverter (derived earlier)
is required. Rearranging Equation (18) gives

did
dt = − R f

L f
id + ωiq + 1

L f
(vd − ud),

diq
dt = − R f

L f
iq −ωiq +

1
L f
(vq − uq).

(21)

Applying forward Euler method, the following results

id(k + 1) = (1− TsR f
L f

)id(k) + ωTsiq +
Ts
L f
(vd(k)− ud(k)),

iq(k + 1) = (1− TsR f
L f

)iq(k)−ωTsid +
Ts
L f
(vq(k)− uq(k)).

(22)

The predicted currents are calculated for the possible switching actions (eight times). Then,
the optimal voltage vector is applied to the inverter based on the cost function design as

gi = |id(k + 1)u0,..,7 − idre f (k + 1)|+ |iq(k + 1)u0,..,7 − iqre f (k + 1)|, (23)

where idre f (k + 1) and iqre f (k + 1) are the reference currents. The procedure for controlling the
grid-connected inverter with conventional FCS-MPC is clarified in Figure 10.
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Grid
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iabc
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DC-DC Converter

Sboost
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Figure 10. Conventional FCS-MPC of the PV grid connected system.

3.3. Proposed FCS-MPC

The conventional FCS-MPC suffers from high calculation burden (seven prediction of current
and the cost function is evaluated seven times), so—to decrease the computational effort as
well—the reference voltage vector (RVV) is directly calculated in the proposed FCS-MPC. This can
be accomplished by substituting idre f (k + 1) and iqre f (k + 1) instead of id(k + 1) and iq(k + 1) in
Equation (22), which results

udre f (k) = −R̂ f id(k)−
L̂ f
Ts
(idre f (k + 1)− id(k)) + ωL̂ f iq + vd(k),

uqre f (k) = −R̂ f iq(k)−
L̂ f
Ts
(iqre f (k + 1)− iq(k))−ωL̂ f id + vq(k),

(24)
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where R̂ f and L̂ f are the estimated filter parameters. Then, using Park transformation

uαβre f (k) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
udqre f (k). (25)

As a result, the position (sector) of the reference voltage in the α-β frame, as shown in Figure 9,
can be computed as

δ(k) = atan2(uβre f (k), uαre f (k)). (26)

Therefore, the cost function subjected to minimization is modified to

gm = |uα(k)− uαre f (k)|+ |uβ(k)− uβre f (k)|, (27)

where uα(k) and uβ(k) are the voltage vectors in a certain sector and adjacent to the reference voltage
vector (ure f ) specified according to Equation (26), as illustrated in Figure 9. According to this design
of cost function, and based on sector selection, only three calculations of the cost function are required
to get the optimal switching vector. For example, if the selected sector is sector one, the two voltage
vectors 100 and 110 along with one of the zeros voltage vectors (000 or 111) are evaluated in the cost
function. The modified FCS-MPC scheme is illustrated in Figure 11.
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Grid

Two-level Inverter

vabc

iabc
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Figure 11. Proposed FCS-MPC of the PV grid connected system.

4. Design of the Proposed Extended Kalman Filter

Extended Kalman filter is a powerful tool for states’ and parameters’ estimation. A great
advantage of EKF is its filtering capability and noise rejection [61]. It is designed based on the
nonlinear discrete-time model of the system [48,61]. Obviously, FCS-MPC depends also on the discrete
model of the system, so EKF and FCS-MPC fit very well together. In fact, and as mentioned previously,
the FCS-MPC depends on the system parameters. Hence, a major concern is selecting an inaccurate
sector and a more incorrect voltage vector, if these parameters are subjected to change. A main
contribution of this paper is to eliminate the FCS-MPC dependency on the parameters of the system
by estimating the values of the RL filter; i.e., the filter resistance and inductance by means of EKF.
In reality, the filter parameters are exposed to variation due to aging, heat or saturation.
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To implement the EKF, the discrete time nonlinear state space model of the grid connected inverter
can be derived by rearranging Equation (17) as

diαβ

dt
= −

R f

L f
iαβ +

1
L f

(vαβ − uαβ). (28)

Thus, the model of the grid-connected inverter including disturbance can be written as

ẋ = Ax + Bu + w,
y = Cx + Du + v,

(29)

where x = [iα iβ R f L f ]T is the state vector, u = [(vα-uα) (vβ-uβ)]T is the input, y = [iα iβ ]T is the
measurement, w is the system uncertainty with covariance matrix Q and v is the measurement noise
with covariance matrix R. Further, A, B, C and D are the inverter system matrices, and based on
Equation (28) they are defined as

A =


− R f

L f
0 0 0

− R f
L f

0 0 0

0 0 0 0
0 0 0 0

 , B =


1

L f
1

L f

0
0

 , C =

[
1 0 0 0
0 1 0 0

]
, D = 0. (30)

Hence, the discrete model can be expressed as

x(k + 1) = Adx(k) + Bdu(k) + w(k),
y(k) = Cdx(k) + Ddu(k) + v(k),

(31)

where Ad = I + ATs, Bd = BTs, Cd = C, Dd = D and I is the identity matrix. Normally, the system
uncertainty and measurement noise are not known, so the EKF is implemented as follows:

x̂(k + 1) = Ad x̂(k) + Bdu(k) + K(k)(y(k)− ŷ(k)),
ŷ(k) = Cd x̂(k) + Ddu(k),

(32)

where K(k) is the Kalman gain, x̂(k) and ŷ(k) are the estimated quantities. Finally, the Kalman filter
can be implemented through two stages of prediction and correction, following this procedure:

1. Initialize the state vector and covariance matrices.
2. Prediction of state vector

x̂−(k) = Ad x̂(k− 1) + Bdu(k− 1). (33)

3. Error covariance matrix prediction

P−(k) = f (k)P(k− 1) f (k)T + Q, (34)

where
f (k) =

∂

∂x
(Adx(k) + Bdu(k))|x̂−(k). (35)

Kalman gain calculation

K(k) = P−(k)CT
d (CdP−(k)CT

d + R)−1. (36)
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4. Estimation update through measurements

x̂(k) = x̂−(k) + K(k)(y(k)− Cd x̂−(k)). (37)

5. Error covariance matrix update

P(k) = P−(k)−K(k)CdP−(k). (38)

6. Go back to step 2.

5. Simulation Results and Discussion

The proposed PV system is shown in Figure 11. It consists of a PV array of 15 kW (15 series ×
5 parallel), followed by a boost converter, where the MPPT function is accomplished by FCS-MPC
and the direct switching technique. The FCS-MPC generates the switching state for the boost
converter to follow the reference current coming from outer-side loop developed by the P&O technique.
The switching state (0 or 1) identified by the cost function (g) will be enforced to the power switch in
the boost circuit. In the proposed MPPT, the switching state is generated directly. Then, the extracted
power from the PV source is fed to the two-level inverter. The two-level inverter has two control
loops for the purpose of active and reactive power control. The first and outer loop is achieved by PI
controller to stabilize the DC-link capacitor voltage at its reference value (vdcre f ) and to provide the
reference current (idre f ) to the inner loop, where iqre f is set to zero for unity power factor operation.
In this study, the inner current loop is realized by the conventional and the proposed FCS-MPC
technique. In the conventional one, the predicted currents is calculated and then the voltage vector
(out of seven) corresponding to the minimum cost function (gi) will be selected. It is obvious that
to get this optimal vector, 14 iterations (seven for the currents, and seven for the cost function) are
required in the inner loop. This in turn increases the computational burden. However, in the proposed
FCS-MPC technique, the RVV is computed to narrow the calculation range from six sectors to only
one sector. This greatly reduces the computation time as only three computations of the cost function
(gm) are required in the specified sector. Furthermore, and to avoid the potential variation in the
parameters of the grid connected inverter, an EKF is employed to estimate and correct these values
online. The parameters of the PV grid connected system are summed up in Table 2.

Table 2. PV grid-connected system parameters.

Parameter Value

PV array power [kW] 15
Boost inductance Lb [mH] 25
DC-link capacitance cdc [µF] 1000
Filter inductance L f [mH] 12
Filter resistance R f [Ω] 0.25
DC-link reference voltage vdcre f [V] 700
Grid frequency ω [rad/s] 2π × 50
Grid line-line voltage v [V] 400
Sampling time Ts [µs] 40

The simulation results are divided to two subsections under different atmospheric conditions
and parameter variations, where the performance of the proposed scheme is compared with the
conventional FCS-MPC as follows:

5.1. MPPT and System Behavior under Different Radiation Conditions

Figures 12 and 13 show the behavior of the proposed MPPT and the conventional one. The results
are performed at different radiation conditions ranging from 400 W/m2 to 1 000 W/m2. It is clear that
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the proposed MPPT has a very fast transient behavior in comparison with the conventional FCS-MPC.
As there is no need for current prediction computation in the proposed algorithm, the calculation time
is highly reduced. The tracking speed of the proposed direct switching method is 0.5 ms, while it is
1.6 ms for the conventional MPPT. Besides, the average switching frequency for the direct switching
technique is 4.42 kHz, while the conventional technique has a higher average switching frequency of
4.85 kHz.

The performance of the inverter control using the conventional and the proposed FCS-MPC with
EKF is investigated at the previous radiation conditions, and shown in Figure 14, where the DC-link
voltage (vdc), the active power injected into the gird (P), reactive power (Q), the direct axis current (id),
the quadrature axis current (iq) and the abc currents are illustrated respectively. The DC-link voltage
tracks its reference value with a very low overshoot of 1.5% for both of the conventional and the
proposed techniques. The active power behavior is similar in the two methods. However, the reactive
power has a lower ripple content in the proposed strategy due to the enhanced tracking of iq, as clarified
in Figure 15.
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Figure 12. Performance of the conventional MPPT using FCS-MPC.

0

5

10

15

0.198 0.2 0.202
8

10

12

0

200

400

0.198 0.2 0.202

400

450

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time [s]

0

20

40

0.198 0.2 0.202
22
26
30

G=800 W/m2

G=600 W/m2

T=25 oC

G=1000 W/m2

G=400 W/m2

Figure 13. Performance of the proposed direct switching MPPT.
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Figure 14. Simulation results at different step changes of radiation of the grid connected PV inverter
(from top): DC-link voltage, grid-injected active power, reactive power, d-axis current, q-axis current
and abc currents for: (a) conventional FCS-MPC and (b) proposed FCS-MPC with EKF.
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Figure 15. Comparison between the proposed and the conventional FCS-MPC at different radiation
conditions: (a) reactive power and (b) q-axis current.

Furthermore, the total harmonic distortion (THD) of the proposed approach is better than the
conventional one, despite of the lower average switching frequency of the proposed FCS-MPC.
A comparative summary is provided in Table 3. Another merit of the proposed technique with EKF is
eliminating the prior need of knowledge of the system parameters. Figure 16 shows the estimated filter
parameters for the same previous atmospheric conditions. The EKF provides a very fast and accurate
online monitoring for the filter inductance (L f ) with a maximum error of 1.7%. However, the filter
resistance (R f ) estimation is relatively slower than the inductance estimation at the beginning of the
simulation, but the estimation is very precise with a maximum error of 0.8%.
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Table 3. Performance summaries of the conventional and the proposed FCS-MPC.

Condition THD Average Switching Frequency

Conventional Proposed Conventional Proposed

400 [W/m2] 4.24% 3.87%
600 [W/m2] 2.80% 2.58% 3.99 kHz 3.81 kHz
800 [W/m2] 2.14% 2.04% for all conditions
1 000 [W/m2] 1.74% 1.68%
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Time [s]

(b)

0
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Figure 16. Estimated and actual values of the filter parameters with different radiation conditions:
(a) filter resistance and (b) filter inductance.

5.2. System Performance with Parameter Variations

In this subsection, the effects of parameter variations on the conventional and the proposed
FCS-MPC are investigated. The atmospheric conditions for this test are kept constant at 800 W/m2 and
25 ◦C. Figure 17 shows the PV power, voltage and current, respectively. The results of the conventional
FCS-MPC MPPT exhibit higher ripples compared with the proposed MPPT in all the waveforms,
where the proposed MPPT shows an increased average power extraction, and hence higher energy
gain. Table 4 presents the energy calculation for the two MPPT techniques within a one day (10 h)
period. The difference (saving) between the two methods is about 228 kWh; this amount is calculated
through the simulation interval (0.3 s).
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Figure 17. MPPT performance at constant atmospheric conditions with: (a) conventional MPPT and
(b) direct switching technique.
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Table 4. Energy calculation for the conventional and the proposed MPPT within a one day span (10 h).

Condition Energy [kWh] Saving [kWh]

Conventional Proposed

800 [W/m2] 11.9395 × 60 × 60 × 10/0.3 11.9414 × 60 × 60 × 10/0.3 228

Figure 18 illustrates the DC-link voltage, the active power injected into the gird, reactive power,
the d-axis current, the difference between the actual d-axis current and its reference value, the q-axis
current and the abc currents at different step changes of the filter resistance, respectively. In the
first interval, the filter resistance is kept constant at its nominal value R f = 0.25 Ω; after that the
resistance is decreased to the half of its nominal value i.e., ∆R f = −50%, finally it is increased by
+50%. Filter resistance change affects the steady state error between id and idre f , which is obvious at
the last interval (0.2–0.3 s) of id, where id is deviated from its reference, unlike the proposed method.
This error is further examined in Figure 19 for better observation. However, the effect of resistance
change on the THD of the currents is small. Moreover, the estimated values of the filter resistance and
inductance are presented in Figure 20, where the EKF provides a very efficient estimation for both
of them.

Figure 21 shows the DC-link voltage, the active power injected into the gird, reactive power,
the d-axis current, the q-axis current and the abc currents at different step changes of the filter
inductance, where the inductance is changed with a mismatch of ±50%, respectively. As a matter
of fact, it is not strange that the performances of the conventional and the proposed FCS-MPC are
enhanced with +50% mismatch in the filter inductance, as shown in the second interval (0.1–0.2 s);
this due to the filtering capability of the inductor. However, this increase affects the steady state
error of iq in the same interval, as shown in Figure 22, and hence the steady state error of the reactive
power. Referring to Figure 22, it was found that the steady state error of the conventional FCS-MPC is
about 75 (VAR), which is approximately three times the steady state error of the proposed FCS-MPC
with 25 (VAR). Underestimating the filter inductance (the third interval) deteriorates the behavior
of the conventional FCS-MPC, where the abc currents is greatly distorted. Furthermore, the injected
active power exhibits very high ripples. In contrast, the proposed technique with EKF sustains a very
good performance with reasonable active power ripples. Thanks to the accurate estimation provided
by the EKF as revealed in Figure 23. Furthermore, Table 5 gives a comparative evaluation of the
two techniques concerning the THD, where the proposed methodology has superior performance,
especially when the inductance is underestimated (6 mH). The difference between the THD of the two
techniques with this condition is approximately 5%, where the conventional FCS-MPC exceeds the
IEEE standards [62].

The EKF is not only parameter estimation tool; it also has a filtering capability. To prove that,
a current noise shown in Figure 24 is added to the αβ currents. The estimated currents exhibit a very
good refined waveform in comparison with the noisy currents, as revealed in Figure 24.

Table 5. Total harmonic distortion (THD) of the conventional and the proposed FCS-MPC with filter
inductance variation.

Condition THD

Conventional Proposed

12 [mH] 2.17% 2.07%
18 [mH] 1.55% 1.47%
6 [mH] 8.75% 3.69%
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Figure 18. Simulation results at different step changes of the filter resistance (from top): DC-link
voltage, grid injected active power, reactive power, d-axis current, error in d-axis current with respect
to the reference, q-axis current and abc currents for: (a) conventional FCS-MPC and (b) proposed
FCS-MPC with EKF.
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Figure 19. Error between d-axis current and its reference for: (a) conventional FCS-MPC and (b)
proposed FCS-MPC with EKF.
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Figure 21. Simulation results at different step changes of the filter inductance (from top): DC-link
voltage, grid injected active power, reactive power, d-axis current, q-axis current and abc currents for:
(a) conventional FCS-MPC and (b) proposed FCS-MPC with EKF.
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Figure 23. Estimated and actual values of the filter parameters with different step changes in the filter
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(filtered) currents.

6. Conclusions

A two-stage, grid-connected PV system is proposed in this paper, wherein the model of each
component in the system is examined. The maximum power is extracted from the PV source by a new
direct-switching MPPT technique. The proposed technique is very fast as there is no need for a PI
controller or a modulation stage. For investigation, the methodology is compared with the conventional
FCS-MPC algorithm. The cost function of the conventional MPPT is designed to minimize the error
between the reference and the one-step in the horizon-predicted current. The inverter is controlled by
a computationally-efficient FCS-MPC technique supported by an EKF to estimate the filter parameters.
The proposed methodology determines the sector of the RVV directly from demanded currents, so the
cost function is evaluated only three times in the identified sector. The proposed system was compared
with the conventional FCS-MPC under different operating conditions of radiation and parameter
variation, and validated using Matlab. The results show that the proposed MPPT gives better dynamic
and steady state responses than the conventional MPPT with FCS-MPC. Moreover, the results of the
proposed MPPT provide enhanced energy utilization in comparison with the conventional MPPT at
steady state. Besides, and due to the very high transient behavior of the proposed MPPT, this gain
will be higher in large PV arrays (i.e., 1 MW or higher). Furthermore, the results show that the filter
inductance has a greater effect on the system’s performance than the filter resistance, especially when
considering the THD of the currents. Low inductance values of the filter deteriorate the conventional
FCS-MPC behavior. However, the proposed technique offers robust performance, where the EKF
presents a delicate estimation for the filter resistance and inductance. This improves the system’s
behavior against parameter uncertainties, even preserving the stability of the system. Additionally,
the EKF rejects potential noise in the measurements (currents).
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