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Abstract: Anthropogenic carbon dioxide (CO2) emissions mainly come from cities and their
surrounding areas. Thus, continuous measuring of CO2 in urban areas is of great significance
to studying human CO2 emissions. We developed a compact, precise, and self-calibrated in-situ
CO2/H2O sensor based on TDLAS (tunable diode laser absorption spectroscopy), WMS (wavelength
modulation spectroscopy), and VCSEL (vertical-cavity surface-emitting laser). Multi-harmonic
detection is utilized to improve the precision of both measurements to 0.02 ppm for CO2 and 1.0 ppm
for H2O. Using the developed sensor, we measured CO2 concentrations continuously in the city center
of Munich, Germany, from February 2018 to January 2019. Urban CO2 concentrations are strongly
affected by several factors, including vegetation photosynthesis and respiration (VPR), planetary
boundary layer (PBL) height, and anthropogenic activities. In order to further understand the
anthropogenic contribution in terms of CO2 sources, the HySPLIT (Hybrid Single-Particle Lagrangian
Integrated Trajectory) model was applied to calculate six-hour backward trajectories. We analyzed the
winter CO2 with the trajectory clustering, PSCF (potential source contribution function), and CWT
(concentration weighted trajectory) methods, and found that local emissions have a great impact
on urban CO2 concentration, with main emission sources in the north and southeast directions of
the measurement site. In situations with an uneven trajectory distribution, PSCF proves somewhat
superior in predicting the potential emission sources compared to CWT.

Keywords: TDLAS-WMS sensor; CO2 in urban areas; HySPLIT model; PSCF; CWT

1. Introduction

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas (GHG) in the
atmosphere. Cities and their surroundings account for only 2% of the global land area but carry
54% of the population and contribute 70% of the world’s anthropogenic CO2 emissions [1]. Therefore,
it is crucial to study the anthropogenic CO2 emissions in the urban areas. In Germany, continuous
observations have been performed to measure atmospheric CO2 for decades [2–4]. However, these
sites are always located in rural areas or high mountains, exhibiting lesser impacts from local pollution,
and thus, cannot detect the urban emissions directly. There are many techniques to quantify the
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atmospheric CO2, such as remote sensing via satellite [5–7], ground-based column measurement
[8–11], and in-situ measurement [12–16]. In-situ techniques have the advantages that they can measure
the atmospheric components at a high spatial and temporal resolution under various meteorological
conditions, and during day and night, as opposed to other techniques.

The most common in-situ gas sensors are based on NDIR (nondispersive infrared) [17–20] and
TDLAS (tunable diode laser absorption spectroscopy) [21–25] technologies. However, most commercial
gas sensors require periodic calibrations, which would take a lot of effort and possibly interrupt
measurements [26–29]. TDLAS is advantageous for in-situ trace gas monitoring. With this technique,
a tunable laser scans across a specified absorption line with a narrow bandwidth [30,31]. TDLAS is
often combined with WMS (wavelength modulation spectroscopy), a technique that utilizes a faster
but smaller amplitude sinusoidal signal together with a slower and larger ramp signal to modulate
the laser wavelength. Then, it uses a lock-in amplifier (LIA) to decompose the absorption signal into
its harmonic components. Instead of the direct absorption spectrum, highly precise harmonic signals
are obtained to determine gas concentrations. Due to its efficient noise suppression (for example
of 1/ f noise), TDLAS-WMS enhances sensitivity, precision, and SNR in the measurement and has
wide applications for trace gas monitoring in harsh environments as well [32–34]. A precise and
self-calibrated CO2/H2O sensor based on TDLAS-WMS technique has been developed by our group.
Multi-harmonic detection is utilized in the sensor to improve the measurement precision [24,25].

Locating potential CO2 emission sources around the measurement site, a further aim of our study
requires not only temporal variability analysis but transport modeling as well. A common method
with which to analyze long-term measurements relies on simulated backward trajectories; for example,
those calculated with the HySPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model
[35–37]. In a trajectory model, the mechanism for pollutant transportation is simulated as tracing
air parcel paths from the measurement site backwards in time. In conjunction with the observed
concentration, trajectories plotted on a map can indicate probable emission sources and evaluate how
these sources have influence on the concentrations at the measurement site. The most popular statistical
methods for evaluating this precisely are trajectory clustering, PSCF (potential source contribution
function), and CWT (concentration weighted trajectory) methods. PSCF infers the probability that
an area contributes to high pollutant concentration at the receptor site, while CWT uses a computed
weighted concentration to identify the strength of emission sources arriving at the site [38,39].

Our group previously developed a self-calibrated TDLAS-WMS gas sensor [24,25]. In this paper,
we utilized the developed sensor to measure CO2 concentration in Munich, Germany for an entire
year, from February 2018 to January 2019. Afterwards, we used the observational data to address the
potential emission sources in Munich combined with air mass backward trajectories using different
methods. The structure of this article is as follows: the theory behind the TDLAS-WMS gas sensor,
the precision and accuracy of the sensor, the comparative experiment with sensors at weather station,
and some supporting data for analysis are discussed in Section 2. The analyses of the whole year’s
measurement results can be found in Section 3. A description of our backward trajectory computations
and the model-based analyses of winter CO2 are presented in Section 4. Section 5 provides the
conclusion of this work. Note that the CO2 recorded for the month of January in this article was
measured in 2019, and the rest of the results were performed considering the data from 2018.

2. Measurement System and Auxiliary Data

2.1. Measurement Site

Munich, the capital of Bavaria, is located at the south of Germany, only 100 km from the Alps.
The city and its metropolitan region are home to around 6 million residents. Munich is an ideal city for
studying local pollutant emissions, since it is relatively isolated from other cities with strong emissions.
As shown in Figure 1, the measurement site is situated at the main campus of Technical University of
Munich (TUM, 48.15◦ N, 11.57◦ E, 5 m above ground level (a.g.l.)). Here, somewhat north from the
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city center, the Central Train Station (Hbf), the Old Town (Altstadt), and shopping malls are within a
radius of about 5 km. Moreover, some factories, such as BMW (Bayerische Motoren Werke, Munich,
Germany) and Mercedes-Benz (Benz, Stuttgart, Germany), are north from the measurement site at a
distance of approximate 3–5 km. Although the height of the measurement site (5 m a.g.l.) is not ideal
and will be more sensitive to nearby emissions than taller sampling sites, there is no strong emission
source directly at the measurement site. Thus, the measurement data from the site can be used to study
the local emissions in Munich.

TUM: TDLAS

BMW Benz

Hbf
Altstadt

5 km

Figure 1. Detailed locations of the TDLAS-WMS measurement site and its surroundings in Munich.
The Central Train Station (Hbf), Old Town (Altstadt), and main factories (BMW and Benz) are within a
circle with a radius of 5 km around the measurement site. Map provided by Google Earth and GeoBasis
DE/BKG. (Germany/Federal Agency for Cartography and Geodesy).

2.2. TDLAS-WMS Sensor

The TDLAS-WMS sensor used in this study has been described in detail in our previous
works [24,25]. In the left panel of Figure 2, a VCSEL (vertical-cavity surface-emitting laser) is used
as the light source. The laser beam is reflected by a concave mirror (CM254-075-G01, Thorlabs)
of 75 mm focus length and sent to an InGaAs amplified detector (PD, PDA10DT-EC, Thorlabs).
Only a 30 cm path length is compacted in the system. VCSEL utilized in the system is an InP
-based, single-mode, tunable semiconductor laser whose wavelength is near 2004 nm (available
at: https://vertilas.com/content/products/; accessed on: 18 December 2019). It is suitable for
simultaneous detection of several gas species owing to its characteristics of a wide tuning range [40].
The right panel is the signal processing which not only controls the laser emitting wavelength but
also calculates the gas concentration. For our sensor, the laser is set up to measure CO2 and H2O
concentrations in one tuning cycle.

Laser

Mirror

PD

Light Path

control

signal

Signal Processing
Signal Control

Concentrations

LIA

Figure 2. Schematic diagram of TDLAS-WMS sensor. Left: optical light path; right: concentration
calculation using multi-harmonic signals. The signals in the lock-in amplifier (LIA) are the first to
third harmonics.

https://vertilas.com/content/products/
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The basic principle of TDLAS is described by the Beer–Lambert Law. A signal processing method
was developed for self-calibrating the intermediate parameters (e.g., light intensity, wavelength,
and phase shifts) and calculating gas concentrations in real time. That is, a digital LIA was made
to obtain the zeroth to third harmonic signals. For a trace gas measurement when the absorbance is
weak, the zeroth harmonic can serve as the central light intensity to remove the effects of the laser
intensity drifts [25]. Through those processes, the multi-harmonic signals are acquired for inferring
gas concentration based on least-squares curve fitting.

We use Allan deviation analysis for analyzing frequency stability and precision of the
measurement system in the time domain. This method can identify and quantify different noise
contributions that exist in the measurement system [41,42]. In Figure S1 of Supplementary Materials,
the Allan plots for multi-harmonic detection and traditional second harmonic detection for CO2
and H2O measurements are given. Compared with the second harmonic detection, the results with
multi-harmonic detection indicate that applying it in gas monitoring can effectively enhance the
precision about 2–3 times. As displayed in Figure S1a for CO2, broadening the scanning wavelength can
also effectively improve the measurement precision. At the optimum integrating time (τopt = 10 min),
the detection limits of CO2 and H2O are 0.02 and 1.0 ppm (1.0 × 10−3‰), respectively. It is evident
that the wide tuning VCSEL and the multi-harmonic detection help to increase the precision of the
developed sensor. Moreover, a commercial NDIR sensor (LiCor 840A CO2/H2O gas analyzer) is
employed as a standard instrument to verify the accuracy of our sensor. The comparison experiments
were carried out in the field measurements and the results have demonstrated that our sensor has high
measurement accuracy and good consistency with the LiCor sensor.

During the one-year measurement campaign, the absolute CO2 and H2O concentrations were
measured simultaneously. To validate the credibility of our measurement, the H2O concentrations
observed in June 2018 were compared with the data from a weather station of LMU (Ludwig
Maximilian University of Munich) which is less than 1 km away from our site. The station uses
Fischer TF (temperature/humidity) sensors which are installed at heights of 2 m and 30 m a.g.l. to
measure temperature and humidity every minute. The results are presented in the Supplementary
Materials (Figure S2). From Figure S2, we can learn that the H2O concentration measured at the
measurement site (5 m a.g.l.) has fluctuation tendency similar to those of the TF sensors and is
closer to TF sensor at 2 m a.g.l. The results indicate that the air measured by our sensor represents
the atmospheric H2O concentrations and it can be concluded that our sensor shows similarly good
performance and is valid for the CO2 measurements as well.

2.3. Auxiliary Data

To better understand the CO2 variations and emissions in Munich, we utilized observations of
ambient temperature and solar-induced fluorescence (SIF), modeled planetary boundary layer (PBL)
height, and acquired the CO2 emission inventory from fuel consumption around Munich. The ambient
temperature was measured at the LMU weather station and its monthly averaged curves are shown in
Figure S3 in Supplementary Materials.

The PBL is the atmospheric layer directly contacting the earth surface, whose height responds
to variations in the Earth’s surface temperature and the solar radiation. The air within the PBL is
well-mixed and the top of this layer can prevent the surface air from mixing with the air in the lower free
atmosphere. Hence, the thickness of the PBL affects the ground-based gas concentrations. When the
PBL height rises, the gas concentration decreases; when PBL drops, the concentration increases [43,44].
The PBL height dynamic is a major factor to determine the measured diurnal gas variations and
probably conceals the anthropogenic emissions [45]. The PBL height depicted in Figure S4 was
obtained from the meteorological data in the ECMWF (European Centre for Medium-Range Weather
Forecasts) ERA5 dataset (see Section 4.1).The diurnal PBL cycles in the warm months have huge
variations, especially in summer, the heights can reach 1500 m in the day and drop to about 150 m at
night. In winter, the PBL height is much more stable, staying below 600 m most of the time.
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The SIF measures an electromagnetic signal emitted by the chlorophyll molecules during
photosynthesis activity and indicates plants’ photosynthetic light use efficiency. Here, the SIF data
observed from the OCO-2 satellite was used to present the regional photosynthetic activity [46,47].
The higher the SIF values are, the stronger the photosynthesis is. As shown in Figure 3a, the SIF data
was retrieved from the O2 A-band spectrum at 757 nm with a spatial resolution of 1.3 × 2.25 km2

and a spatial domain of 10–13◦ E and 47.5–49◦ N. The OCO-2 tracks can also be seen in Figure 3b,c.
In the growing season (spring to summer), the SIF increases sharply from 0.5 to 1.2 W/(m2·sr·µm).
The SIF level remains high in summer, and then gradually decreases in the fall season to approximately
0.4 W/(m2·sr·µm), signifying that the photosynthesis becomes feeble.

Figure 3. (a) Solar-induced fluorescence (SIF) variability in Munich and its surroundings from
November 2017 to November 2018. The SIF data is obtained from the OCO-2 satellite (available at:
https://co2.jpl.nasa.gov/build/?dataset=OCO2L2Stdv8&product=FULL; accessed on: 18 December
2019). (b,c) the OCO-2 tracks during the study period. (c) is the enlarged view of the black block
in (b) which is the spatial domain (10–13◦ E, 47.5–49◦ N) for calculating the daily mean SIF. The red
rectangular in (c) denotes the domain of Munich.

The TNO-MACC_III (Monitoring Atmospheric Composition and Climate) CO2 emission
inventory map with a spatial resolution of 1 × 1 km2 is provided in the Supplementary Materials
(TNO GHGco v1.1, Figure S5). The emission inventory is documented the latest in 2015 [48]. The map
accounts for CO2 emission from fossil fuel and bio fuel near Munich with a spatial domain of 10◦–13◦ E
and 47.5◦–49◦ N. The enlarged view of the emission map at the city center is shown in the second
map, where the measurement site and the main places mentioned above are marked inside. From the
enlarged map, we can learn that the primary emission sources are located in the city center, and the
north factory area also contributes large emissions.

3. Results and Discussion

3.1. Diurnal Cycles by Month

Our continuous observation of atmospheric CO2 concentration was carried out in Munich city
center from February 2018 to January 2019. Figure 4 shows the monthly-averaged observed CO2
concentration with a shaded area corresponding to ±2 standard deviations (σ). The mean, minimum,
and maximum values of each month are summarized in Figure 5. Moreover, the monthly mean CO2
measured from Mauna Loa (NOAA) are added in the plots as the background concentration [49].
The diurnal CO2 cycle is: the CO2 concentration decreases in the daytime and reaches a minimum in
the afternoon; afterwards, it increases at night and reaches a maximum in the next morning, becoming
more and more noticeable from February to July. Then, it gradually disappears. The following analyses
were conducted by combining with the supporting data of the ambient temperature (Figure S3), PBL
height (Figure S4) and SIF data (Figure 3). Here, we define the warm months as when the ambient
temperature is above 10 ◦C (see Figure S3, from April to October), and the cold months as when the
temperature is below 10 ◦C.

https://co2.jpl.nasa.gov/build/?dataset=OCO2L2Stdv8&product=FULL
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Figure 4. Diurnal variations of CO2 concentration based on measurements from February 2018 to
January 2019 in Munich’s city center averaged for each month. The gray shaded areas denote ±2σ

of the means. The minimum, maximum. and mean values of the curves are given in each subplot.
The blue-dashed lines are the NOAA Mauna Loa CO2 monthly mean concentration [49]. (LT: local time).

The observed CO2 concentrations have distinct diurnal variations and reduce below the
background levels in the afternoon in the warm months. The diurnal cycles are caused by a combination
of several factors. In the daytime around Munich, the vegetation photosynthesis consumes lots of
CO2 and decreases the CO2 concentration. As a more “physical” factor, the sun heats the ground,
resulting in increments of temperature and PBL height (see Figures S3 and S4), and a decrement of
CO2 mixing ratio. At night, the photosynthesis stops while the plan and soil respiration increases
the CO2 mixing ratio in the atmosphere. Opposite to the daytime, the shallow PBL further augments
the tendency for an increasing CO2 concentration. Our observations in these months, especially in
summer, were similar to other measurements in European cities, such as Basel, Switzerland [18,50],
London, UK [26], and Valladolid, Spain [51]; their diurnal cycles also had large amplitudes (more
than 30 ppm) with low concentrations (<400 ppm) in the afternoon. As a minor episode, the August
curve has the longest stable but not the lowest concentration in the afternoon of summer. Taking
temperature (Figure S3) and SIF data (Figure 3) into consideration, temperature in August afternoon
is the highest (27.6 ◦C; 23.4 ◦C for June and 26.6 ◦C for July), while its SIF mean is the lowest
(0.8 W/(m2·sr·µm); 1.2 W/(m2·sr·µm) for June and 1.0 W/(m2·sr·µm) for July) among the summer
months. The heatwave and the pronounced drought in summer 2018, especially in August, might have
decreased the photosynthesis and made the CO2 stable above 380 ppm in the afternoon (available
at: https://www.worldweatherattribution.org/attribution-of-the-2018-heat-in-northern-europe/;
accessed on: 18 December 2019). The October curve shares the same diurnal range but the highest
concentration in the warm months. It is because of the vegetation decay in the fall season: the
photosynthesis is almost stopped (see Figure 3; SIF is 0.6 W/(m2·sr·µm) in October) and the dry leaves
and dry grass decompose and deliver more CO2. Thus, it can be concluded that the ground-based
diurnal CO2 variations in warm months are mainly influenced by the vegetation photosynthesis and
respiration (VPR) and PBL height variations.

https://www.worldweatherattribution.org/attribution-of-the-2018-heat-in-northern-europe/
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Figure 5. Summary of CO2 concentration variations on the monthly plots. The dashed line is the
NOAA Mauna Loa CO2 monthly mean concentration.

In the cold months, especially in winter, the concentrations stayed above background levels with
no distinct diurnal cycles. The low atmospheric temperature not only prevents the VPR activities from
the biosphere but also leads to a shallow PBL and high CO2 concentration in urban areas due to the
accumulation of CO2. Moreover, the CO2 emission from the residence is also enhanced in the heating
days. Two distinct peak mixing ratios that occur in the morning and afternoon are likely to be caused
by the rush-hour traffic in Munich city center. The diurnal cycles with two peaks in wintertime of
Munich are similar to some other urban sites, such as Basel [18], London [26], and Chicago, US [21].
However, the diurnal ranges in London and Chicago (∼20 ppm) were larger than those in Basel and
Munich (∼10 ppm), likely due to the enhanced nighttime PBL dynamics in London and Chicago [45].
Given that the PBL (see Figure S4) is constant at a low height in the cold months, the anthropogenic
activities become highlighted in the CO2 observed. Therefore, CO2 measurements in the cold months,
especially in winter, act as an ideal basis for studying the anthropogenic activities in urban areas.

3.2. Diurnal Cycle on Workdays versus Weekends

The workday and weekend diurnal variations of the observed CO2 concentration over all seasons
are shown in Figure 6. Diurnal variations are obvious on both workdays and weekends, suggesting that
the PBL and VPR factors are dominant in the weekly average. However, the workday cycle is slightly
different from the weekend curve. At first, the peak value occurs about one hour later in the workday
morning (07:00 LT(local time)) than on the weekend (06:00 LT). The difference is probably caused
by the heavy rush-hour traffic on the workday which usually peaks well after 07:00 in Munich [52].
On workdays, people commute in the city by private cars or public transport. The heavier traffic flows
increase the CO2 concentration during this time period in urban areas. On the contrary, during the
weekend, people usually stay at home or participate in some recreational activities and go home late
at night. The activities and traffic at weekend nights in urban areas elevate CO2 concentration at our
measurement site. Therefore, the weekend curve has lower daytime CO2 concentration but higher
nighttime CO2 concentration than the workday curve. These results are quite similar to some previous
studies in European and US cities; for example, Lietzke et al. in Basel [18], Sparks et al. in London [26],
Moore et al. in Chicago [21], and Rice et al. in Portland, US [27]. They found that CO2 concentrations
on workdays were slightly higher with later peak values during the day compared to weekends and
that the results correlated with traffic volume. From the workday-to-weekend differences, we can
confirm that daily anthropogenic activities augment the CO2 concentration in the city center [4].
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are ±2σ of the means. The minimum and maximum values are marked in the plot.

The analyses above focused on the temporal variability of the measured CO2 concentrations.
From the month-by-month analysis, we can conclude that the ground-based CO2 concentration
in Munich is strongly affected by the atmospheric and biogenic factors (PBL height and VPR).
Meanwhile, the anthropogenic activities are almost submerged by the PBL and VPR effects in the warm
months [53]. The human activities can be clearly observed, especially in the wintertime. Our analysis
by workday/weekend brings out a small difference between the workday and weekend, which is
likely to be caused by the traffic volume in the city. However, the main drivers of diurnal variations
remain as the PBL and VPR behaviors. Thus, further studies are needed for the quantification of the
effects of different factors on the ground-based CO2 concentration variations.

4. Model Analysis of Winter Data

Since the CO2 sources and sinks from ecosystems become feeble in winter, the winter-time
concentration in urban areas is more strongly affected by anthropogenic activities (Section 3.1). In this
section, we target the winter as study period for analyzing the anthropogenic activities in Munich
using the HySPLIT model.

4.1. Trajectory Calculation and Analysis Methods

Backward-trajectory models are an essential tool to trace back air parcels and supply the
information on their origin. HySPLIT, which we will employ here, is commonly used to establish
locations of relevant emission sources with respect to a specific receptor site [36,54]. Combined with
the observed gas concentration at the time when air parcels arrive at the measurement site, the air
backward trajectories reflect the air movement and gas distribution on the computed paths. Using
a clustering method giving mean trajectories, similar paths are grouped together, and the major air
mass transport pathways which elevate the pollution concentration at the receptor may be determined.
In our study, six mean-clusters were calculated from all backward trajectories by using the angle-based
matrix method.

Other ways to understand the origins of observed concentrations are PSCF (potential source
contribution function) and CWT (concentration weighted trajectory) methods. The PSCF gives probable
spatial distributions of emission sources using backward trajectories. The PSCF is a conditional
probability function, calculated as follows:

PSCFij = mij/nij, (1)
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where nij is the total number of trajectories that pass through the cell (i, j), and mij is the number
of trajectories resulting in a gas concentration at receptor that is greater than a specific threshold
(75th percentile of CO2 concentration in this study). In our calculation, a weighting factor has been
considered in the PSCF value for grid cells which lack sufficient data:

W(nij) =


0.75 n < N ≤ 2n

0.5 n/2 < N ≤ n

0.15 N ≤ n/2,

(2)

where W(nij) is the weight function, N is the number of the end point per grid cell, and n is the
average of N. The PSCF method cannot distinguish whether the gas concentration for a grid cell is only
slightly or much higher than the threshold. The use of a higher threshold concentration can, in our
experience, limit the consequences of this shortcoming and help to distinguish moderate and major
sources. This method has a good angular resolution but poor radial resolution since the trajectories
converge to the receptor. Therefore, the trajectory length should not be too long. For the Munich case,
we use the six-hour backward trajectories for computing the PSCF values [39,55].

The CWT method, also called concentration-field (CF), computes concentration fields to identify
the pollutant source areas. In the CWT calculation, the mean concentration (Cij) of a grid cell (i, j) is
determined by using the following averaging formula:

ln(Cij) =
1

∑N
k=1 τijk

N

∑
k=1

ln(ck)τijk, (3)

where k is the index of the trajectory, N is the total number of trajectories, ck is the gas concentration
measured upon the arrival of trajectory k at the receptor, and τijk is the residence time of trajectory k in
grid cell (i, j). The computed mean concentrations are then assigned to all grid cells and the pollutant
gas would be assumed to come from the “hot spots.” In other words, a high Cij indicates that the air
going across the cell (i, j) would lead to high concentration at the measurement site [56–58].

For the trajectory calculation, the input meteorological data is the ERA5 dataset from ECMWF
(data available via: https://cds.climate.copernicus.eu; accessed on: 18 December 2019). ERA5
reanalysis provides hourly estimates of climate variables with a high horizontal resolution of 31 km
on 137 vertical levels from the surface up to 80 km. Six-hour backward trajectories ending at the
measurement site (receptor) (48.15◦ N, 11.57◦ E) 100 m a.g.l. are calculated every hour in hourly
resolution for arrival time during the winter months. We calculated trajectories at different arrival
heights (50, 150, 200, 300, 400, and 500 m a.g.l.) and found that the transport pathways under 300 m
a.g.l. are quite similar. The calculated trajectories were processed by the Openair package in RStudio,
in which the observed CO2 concentrations can be incorporated into analysis [59].

4.2. Analysis of Winter Data

The six transport path clusters based on the six-hour backward trajectories in the wintertime
are displayed in Figure 7. It can be seen that the air parcels arriving at the measurement site are
mainly from the east (Cluster 6 with 23.3%) and the west (Cluster 1 with 32% and Cluster 2 with 22%),
accounting for more than 77% in total. There are few occurrences of air masses from the north (Cluster
3—10.8%, and Cluster 4—5%) and southeast (Cluster 6—6.8%) during these three months. The length
of the trajectory cluster correlates with the traveling speed of the air mass. That is, the longer the
trajectory cluster is, the faster the air parcels are transported. Here, the trajectories from the west
direction (Cluster 1 and Cluster 2) travel at the highest speeds, while the trajectories in Cluster 4 and
Cluster 6 move most slowly among all the clusters, and the trajectories in other directions (Cluster 3
and Cluster 5) travel at intermediate speeds.

https://cds.climate.copernicus.eu
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Figure 7. Clustering of the wintertime (February and December 2018, and January 2019) trajectories
arriving at the measurement site, the black circle is the measurement site.

To determine the potential emission sources in Munich, PSCF and CWT plots for CO2
concentrations in winter were calculated from six-hour backward trajectories. The trajectories
were sampled on 0.05◦ × 0.05◦ grid cells, and the resulting PSCF and CWT plots are shown in
Figures 8 and 9, respectively. The cells are colored according to the calculated PSCF probabilities and
weighted concentrations, with the dark-red parts illustrating a high probability of source locations and
strong emission sources affecting the measurement site. Figure 8 displays the PSCF result using the
75th percentile of the total concentration as the criterion. The map indicates that relevant CO2 sources
are highly probable around the measurement site, especially from the north (northwest and northeast)
and southeast, which is consistent with the CO2 emission map in Figure S5. The north direction has
the highest probability of pollutant emission sources and corresponds to the trajectory Cluster 3 and 4
in Figure 7. The air parcels in Cluster 3 and 4 may be polluted by the local emissions (northwest) and
industrial factories (north), and they do not move at high speeds. Therefore, the pollutants from these
directions tends to be accumulated inside the city, leading to high concentrations at the receptor. Similar
to Cluster 3 and 4, the wind from the southeast (Cluster 6) also travels slowly across the dense polluted
area (Altstadt), such that high concentrations can arrive from this direction. All in all, air parcels
from these directions will elevate CO2 concentrations at the measurement site. On contrary, the west
direction has the lowest probability of air pollution. Taking the trajectory clusters into consideration,
the clusters in this orientation (Cluster 1 and 2) have long transport paths (air travels at high speeds).
The fresh air from rural areas cleans the polluted air in the city center. Moreover, the Cluster 1 goes
across the Alps, indicating fresh air being transported from high altitude regions.
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Figure 8. PSCF (potential source contribution function) plot of CO2 concentration measured during
wintertime with 75th percentile of CO2, based on six-hour backward trajectories (CO2 concentration:
437 ppm), the black circle is the measurement site.
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Figure 9. CWT (concentration weighted trajectory) plot of CO2 concentration measured during
wintertime, based on six-hour backward trajectories, the black circle is the measurement site.

The CWT plot for our wintertime measurements is shown in Figure 9 with the same longitude and
latitude ranges as the PSCF in Figure 8. From the CWT map, we can learn that high trajectory weighted
concentrations are mostly found near the measurement site, indicating that the local emissions are
dominant in Munich (Figure S5 in Supplementary Materials). However, the CWT mapping results are
not really fully consistent with the PSCF plot. As shown in Figure 9, high weighted concentration areas
are mainly distributed on the east and west of the measurement site. The corresponding trajectory
clusters in these directions are Cluster 1, Cluster 2, and Cluster 5, respectively, which are not the same
as for the PSCF plot. The reason for the phenomenon may be understood by taking into account
the basics of the PSCF and CWT methods (Equations (1) and (3)). As expressed in the formulas,
a PSCF contribution in a grid cell is accounted for when the gas concentration is greater than a specific
threshold concentration (e.g., 75th percentile of all CO2 concentrations). The high probability (>0.6) in
the northwest in Figure 8 reflects that the air parcels from this direction are always corresponding to
high concentrations which exceed the criterion, while the Cluster 3 in this direction contains only 10.8%
of the trajectories, as shown in Figure 7. The CWT method (Equations (3)) is an algorithm reflecting
all of the concentrations observed; not only the high concentrations but the low ones as well. All
the air parcel trajectories going through a grid cell will contribute to the total CWT concentration in
the cell. When the trajectories in one direction constitute a huge proportion by number and not by
concentration, the computed weighted concentration in this direction can still become large in the
integration process. Therefore, due to the air parcels often coming from the west (Cluster 1 and Cluster
2 with 54%) and east (Cluster 5 with 23.3%), the weighted concentrations of these two directions
become huge. Liu et al. calculated PSCF and CWT maps with unevenly distributed trajectories and
obtained consistent results in PSCF and CWT maps [39]. That is because the pollutant emission sources
were located in the directions with highly frequent trajectories in their study. For example in their
study, a large and heavy industrial area was at the west of the measurement site with trajectories
accounting for more than 40%.

Combining the trajectory clustering, PSCF and CWT methods, we observed that CO2 emission
sources in Munich mainly lie around the city center, especially in the north and southeast directions.
The industrial factories in the north region are very likely the emission sources relevant to the
measurement site. Low wind speed, e.g., from the southeast, may result in high CO2 concentration
measured at our site. Compared with CWT, the PSCF method is more useful for predicting strong
emission sources, since it uses a high observed concentration as a calculation criterion. The CWT
method can forecast that local emissions are the primary pollutant sources. However, merely the high
frequency of trajectories from the east and west will lead to "exaggerated" concentrations in these
directions. Thus, the CWT method should only carefully be used for predicting emission sources
when the trajectories are unevenly distributed. If the emission sources are inconsistent with the highly
frequent trajectories, the CWT will yield an incorrect prediction result.
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5. Conclusions

In this work, we deployed a self-calibrated TDLAS-WMS gas sensor for continuous CO2
concentration measurements at Munich’s city center from February 2018 to January 2019. The precision
and accuracy of the sensor were verified with Allan Variance analysis and compared with a commercial
LiCor sensor. Using measurement results over one year, the diurnal variations of CO2 concentration
averaged by month and workday/weekend in the Munich city center were evaluated and analyzed.
The cycles are influenced by various factors. Among all these, VPR and PBL height have the largest
impacts, while the anthropogenic activities are less dominant in the diurnal cycles, especially in the
warm months (from April to October). The cold months’ data, in contrast, are not so sensitive to these
biogenic and atmospheric factors. Due to only one measurement site being studied in the paper, it was
difficult to quantitatively analyze the different factors on the diurnal CO2 variations and determine
the anthropogenic activities in the warm months.

To study potential anthropogenic CO2 emission sources in Munich, winter CO2 concentration
measurements were contrived with a transport modeling analysis. Air parcel backward trajectories
were calculated based on the HySPLIT model. The trajectory clustering, PSCF, and CWT methods
were employed to identify probable emission sources. The PSCF mapping indicates that the main
emission sources are located at the city center, especially on the north and southeast directions of
the measurement site. The mapping result is consistent with the CO2 emission inventory in Munich.
The CWT shows that high CO2 concentrations can be traced back to local emissions. However, the exact
CWT results may have been somewhat skewed by a huge proportion of trajectories from the east and
west. Therefore, the PSCF method is more suitable for predicting emission sources. Combined with
modeled details of air mass transportation, primary locations of pollutant emission sources can be
determined. To better understand the emission and distribution of CO2 and other pollutant gases in
cities, we will build a sensor network to observe multiple gas species at different sites. Compared to
other commercial gas sensors (e.g., LiCor and Picarro), our sensor has the properties of compactness,
self-calibration, and cost-efficiency, and it is easy to operate. With such analysis of the CO2 time
series analysis, our sensor was proven to be suitable for long-term pollutant sensing, especially in
urban areas.

Supplementary Materials: The following are available in supplementary http://www.mdpi.com/2073-4433/
11/1/58/s1: Figure S1: Allan Deviation of CO2 and H2O concentration measurements. Figure S2: Our absolute
H2O measurements (unit: ‰, parts per thousand) compared with weather station measurements (Fischer TF
sensor). (a) Our measurement data in June versus those of the TF sensors at 2 m and 30 m a.g.l. The temperature
is averaged for every day. (b) Linear regression between TF sensor measurements at different levels and TDLAS
results. It shows that the TDLAS measurements have better consistency with the TF sensor at 2 m. Figure S3:
Ambient temperature averaged over every month. The gray shaded areas denote ±2σ of the mean. Figure S4: PBL
height in different months. The PBL data were obtained from the HySPLIT model and averaged over every month
with hourly data. The gray shaded areas denote ±2σ of the means. Figure S5: The yearly fossil fuel and bio fuel
CO2 emission map near Munich from a subset of TNO GHGco version 1.1 with resolutions of 1 × 1 km2 (2015,
TNO-MACC_III) [48]. The second figure is the enlarged view of Munich city center, where the measurement site
and main places are marked in the map.
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