
feart-08-00263 July 1, 2020 Time: 18:36 # 1

MINI REVIEW
published: 03 July 2020

doi: 10.3389/feart.2020.00263

Edited by:
O. Adrian Pfiffner,

University of Bern, Switzerland

Reviewed by:
Jeffrey A. Coe,

United States Geological Survey
(USGS), United States

Jia-wen Zhou,
Sichuan University, China

Aiguo Xing,
Shanghai Jiao Tong University, China

*Correspondence:
Sibylle Knapp

sibylle.knapp@tum.de

Specialty section:
This article was submitted to

Structural Geology and Tectonics,
a section of the journal

Frontiers in Earth Science

Received: 02 March 2020
Accepted: 12 June 2020
Published: 03 July 2020

Citation:
Knapp S and Krautblatter M

(2020) Conceptual Framework
of Energy Dissipation During

Disintegration in Rock Avalanches.
Front. Earth Sci. 8:263.

doi: 10.3389/feart.2020.00263

Conceptual Framework of Energy
Dissipation During Disintegration in
Rock Avalanches
Sibylle Knapp* and Michael Krautblatter

Landslide Research Group, Technical University of Munich, Munich, Germany

Rock avalanches usually progress through three consecutive phases: Detachment
(Phase 1), Disintegration (Phase 2), and Flow (Phase 3). While significant advances have
been achieved in modeling Rock Avalanche Phase 1 (Detachment) and Phase 3 (Flow),
the crucial link between both during Phase 2 (Disintegration) is still poorly understood.
Disintegration of the detached rock mass is often initiated as soon as sliding starts, and
in situ measurements are impossible due to the excessive energy release equivalent to
multiple nuclear explosions. Better understanding the energy dissipation during Phase
2, and the resulting residual kinetic energy that propels the rock avalanche in Phase 3,
is one of the keys to defining the mechanical properties of the avalanche in the runout
zone and thus also the resisting force within the avalanche. This paper is a review of
our knowledge of energy dissipation in rock avalanches with a focus on processes
like friction, collision, fragmentation, comminution, entrainment and explosion during
the phase of disintegration. We distinguish between energy sources and sinks and
consider not only physical processes, but also chemical alterations that might occur
at high temperatures. With that, we make a contribution to improve our understanding
of Phase 2 “Disintegration,” which is needed for accurately modeling rock avalanches
and assessing their hazard potential.
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INTRODUCTION

Rock avalanches are defined as “extremely rapid, massive, flow-like motion of fragmented rock from
a large rock slide or rock fall” (Hungr et al., 2014). Due to their high velocity, volume and runout
distance, rock avalanches have a significant impact on human activities in mountain areas, can
seriously damage infrastructure and settlements and can cause high numbers of casualties (Evans
et al., 2006; Legros, 2006; Hewitt et al., 2008). Landslides resulting from large-scale rock-slope
failures are especially hazardous; in the 20th century, disasters of this type have killed more than
50,000 people globally (Evans et al., 2006). As a consequence of increasing population density and
the development of infrastructure in mountain areas, the number of elements at risk is growing and
accelerating the vulnerability to landslide hazards (Fischer, 1999; Korup, 2005; Hungr, 2006; Legros,
2006). At the same time, the number of massive rock failures from permafrost warming appears to
be increasing with potentially disastrous consequences especially when causing rock-ice avalanches
with high mobility (Haeberli et al., 2004; Huggel, 2009; Huggel et al., 2012; Krautblatter et al.,
2013; Krautblatter and Leith, 2015) or causing flooding after impacting lakes (Haeberli et al., 2016;
Knapp et al., 2018).
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Better understanding the disintegration (Phase 2; Figure 1) is
key to defining mechanical properties like grain size composition
and content of large blocks in the runout zone and therefore
the hazard potential of rock avalanches. Current approaches
based on Mohr–Coulomb friction models adequately describe
the detachment processes (Phase 1; Figure 1) and its energy
dissipation (Maddock, 1986) or the rock avalanche flow (Phase
3; Figure 1) utilizing fluid (Bingham) or snow avalanche
(Voellmy) analogs with adequate parameterization (Hungr,
2006; Christen et al., 2010; Preuth et al., 2010; Pudasaini and
Krautblatter, 2014; Pudasaini and Mergili, 2019). For Phase 2,
some models on dynamic fragmentation were just developed
(e.g., Zhao et al., 2017; Ghaffari et al., 2019), whereas other
disintegration processes, e.g., heat transfer and phase transitions
still represent major research gaps. This situation is mainly
related to insufficient understanding of energy dissipation during
Phase 2, and the resulting residual kinetic energy that propels
the ensuing rock avalanche (Phase 3). The material properties of
the avalanche result from these energetic processes and from the
material being overrun. Only by understanding disintegration,
will more precise modeling of rock avalanches and their hazard
potential be possible. In this paper, we are going to primarily
concentrate on the intrinsic properties of rock avalanches
that influence disintegration, and we are going to focus on
disintegration and energy dissipation in Phase 2, that is directly
after the detachment.

ENERGY DISSIPATION DURING
DISINTEGRATION

Disintegration Processes
Large rock-slope failures usually undergo different stages of
downhill movement which may occur consecutively (Abele,
1974): (i) The rock mass moves as a coherent block, and
translational shearing occurs along the contact of the bottom of
the rock avalanche and the ground surface. (ii) Subsequently,
differential movement of individual blocks initiates crushing of
the original rock mass. (iii) If the coherent rock mass loses its
internal cohesion and disintegrates intensely (shattering) it can
evolve into a rapid granular flow (Pollet and Schneider, 2004),
which is defined as the distributed shear motion of a group of
clasts where individual grains interact with each other and with
the boundaries of the moving flow (Dufresne and Davies, 2009).
The result can be a highly fragmented (pulverized) rock mass
which consists of angular grains of all sizes down to <1 µm
(Figures 2A–D; e.g., Davies and McSaveney, 2012).

To decipher individual processes during disintegration,
two types of disintegration can be distinguished: (i) static
disintegration, a collision-free process driven mainly by gravity,
and (ii) dynamic disintegration, referring to particle comminution
by grain-to-grain collisions driven by motion. Disintegration
refers to fracturing by rapid changes in stress coupled
with sudden (un-)loading caused by bending, transverse
shearing or delamination of the rock mass creating large
blocks, thin vertical slabs or, horizontal sheets, respectively
(Erismann and Abele, 2001). Static disintegration is an essential

precursor for dynamic disintegration as it creates fractures along
which further relative shearing and fragmentation can occur.
Shearing along predefined bedding and foliation planes induces
shear crushing and the creation of a granular layer.

Energy Sources and Sinks
Energy dissipation in rock avalanches occurs by transformation
of the total energy into thermal energy, acoustic energy or
inelastic deformation energy (Nicoletti and Sorriso-Valvo, 1991),
where due to the law of energy conservation, the final energy
available for mechanical work is less than the initial amount. The
energy release is often in the range of dozens to more than a
thousand Hiroshima bombs (∼15 kt TNT or 63 TJ each) for large
rock avalanches. Recent work also emphasizes the energy transfer
into chemical reactions and phase transitions (Anders et al.,
2010; Mitchell et al., 2015). Energy “release” and “consumption”
describe the transfer of energy into a different form. Energy in
rock avalanches is released by friction, collision and fracturing.
Far from a continuous process, energy release is concentrated at
points of impact with the ground surface and obstacles where
major friction and disintegration of the rock mass is initiated
(Erismann and Abele, 2001).

Field conditions constraining energy dissipation can be
derived from (i) paleotopography (Nicoletti and Sorriso-Valvo,
1991), (ii) compressive and extensional flow structures in the
rock-avalanche deposits (Hewitt, 2006; Dufresne and Davies,
2009; Dufresne et al., 2015), (iii) positions inside the flow
recording differences between intact rock and major shear zones
(Pollet et al., 2005), (iv) the sedimentological record (Yarnold,
1993; Weidinger et al., 2014) with (v) fine-sediment signatures
(Reznichenko et al., 2012), and (vi) melting mineral formation
(Weidinger and Korup, 2009). Referring to (i), Nicoletti and
Sorriso-Valvo (1991) differentiate dissipation types and rates
dependent on geomorphic controls along the runout path: The
low-energy dissipative type refers to rock avalanches which are,
for example, channelized in narrow valleys. Here, little potential
energy is dissipated to other processes than kinetic energy,
and mobility is enhanced. The moderate-energy dissipative type
refers to radial spreading “free from lateral constraints,” resulting
in moderate mobility. Finally, the high-energy dissipative type
describes running across a narrow valley and impacting against
the opposite, at best perpendicular slope, which results in low
mobility. Here, most initial energy is dissipated to energy sinks,
and only little is left for the transfer into kinetic energy.

During disintegration, ∼20–50% of the potential energy is
consumed (Locat et al., 2006; Haug et al., 2016). Considering
multiple energy sinks in Figure 1, A–D (friction, inelastic
collision, entrainment, and crustal deformation) cause heating to
some degree, E and F (chemical energy consumption and phase
transition) require latent energy for phase transitions, and G–
I (dust production and bouncing, sound and microseismicity,
and momentum exchange) act to export energy outside the
impact/disintegration zone. The relative importance of D, G,
H, and I (compression, dust production and bouncing, sound
and microseismicity, and momentum exchange) has yet to be
determined, but Erismann and Abele (2001) assumed that they
are of minor importance. If A–C (friction, inelastic collision,
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FIGURE 1 | Energy dissipation in Rock Avalanche Phase 2 (Disintegration). The primary energy input to the system is mostly derived from the potential/kinetic
energy of the moving rock mass (“Energy sources”). “Energy sinks” cover different types of energy transformation, the majority of which involve heating. (A) Friction.
(B) Inelastic collision: breaking at bonds stretching and friction. (C) Entrainment: plowing, scouring. (D) Compression: crustal deformation. (E) Chemical energy
consumption: e.g., mineral transformation. (F) Phase transition: solid – fluid – gas, needs latent energy. (G) Dust production and bouncing. (H) Sound and
microseismicity. (I) Momentum exchange between solid and fluid phase: energy dissipates to shock wave. The sediment record theoretically shows transitions linked
to (A)–(F). (F) and (I) may be present, but cannot be illustrated in the figure. Small arrows indicate direction of energy transfer.

and entrainment) have a major share in the energy dissipation
and cause a mean frictional shear resistance whereas E–G
(chemical energy consumption, phase transformation, and dust
production) consume energy for phase transition, the rate of
frictional heat generation per unit area Q is

Q̇ = τv− φ = µkσnv− φ (1)

where τ is the average frictional shear resistance, v is the average
velocity, φ is the heat sink-rate due to latent heat, µk is the
kinetic coefficient of friction and σn is the normal stress across the
sliding plane (Maddock, 1986). Effective latent heat sinks could
be from decarbonation of dolomite and calcite in sedimentary
rock failures (Mitchell et al., 2015) or from phase transitions of
water during melting and vaporization (De Blasio and Medici,
2017). The heat flow away from a source (e.g., a sliding plane)
can be calculated by 1D-heat diffusion (Carslaw and Jaeger, 1959;
Mitchell et al., 2015), where the temperature increase 1T within
the observed slip zone is

1T (x, t) =
1

2ρc
√

κπ

t
∫
0

τ(t′)v(t′)− φ(t′)
√
t − t′

e
−x2

4κ(t−t′) dt′ (2)

where x is the distance from the slip zone, t is time, ρ is mass
density, κ is thermal diffusivity, c is heat capacity.

Physical Processes
Fragmentation/Collision/Comminution
Fragmentation describes the initiation and propagation
of fractures and breaking apart and movement of grains
(Turcotte, 1997). The related process energy is both linked

to the length of the crack extension within existing grains
(microcracking) and to the surface energy of the new created
grains during comminution (Bieniawski, 1967; Hamdi et al.,
2008). Fragmentation occurs as a static (Eberhardt et al., 2004;
Wang et al., 2011; Zhang, 2016) or dynamic process (Pollet and
Schneider, 2004; Crosta et al., 2007; Imre et al., 2010; Zhang
et al., 2019). Static fracture occurs before any collision triggers
the disintegration of a mass, whereas dynamic fragmentation
shows more intense disintegration, e.g., in shear zones at the base
of rock avalanches.

Grains fragment quickly under high local pressures and,
thus, general intergranular effective stress and the frictional
resistance to shear are reduced (Bowman et al., 2012). In
laboratory experiments, the overburden strain-rate is directly
related to the fragmentation process. If load is applied sufficiently
quickly, particles will dynamically fragment and the kinetic
energy of the resulting fragments will cause collisions with
surrounding particles. Under dynamic disintegration, kinetic
energy is dispersed through the system as colliding particles
undergo further fragmentation (Rait and Bowman, 2010). The
higher the spatial concentration of simultaneously-fragmenting
grains, the lower the effective direct stress on the grain flow
(Davies and McSaveney, 2009). Thereby, the basal sliding friction
dissipates upward and laterally through the mass, which causes
the slabs at the bottom to come to rest first. Thus, slabs higher
in the moving mass travel further than the ones lower down
(Erismann and Abele, 2001; Pollet and Schneider, 2004). Grain-
to-grain collisions require an unconfined environment, in which
particles can move freely. In such a case the highest levels of
friction, crushing and collision occur in the lower part of a rock
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FIGURE 2 | Examples of energy-related features in deposits of the Flims Rock Avalanche (Switzerland): (A) Shattering into cube-like, sharp-angled fragments of
different size (cm-dm) in dark gray Helvetic limestone, secondarily cemented with white matrix of rock powder. (B) “Snapshot” of pulverization with multiple
grain-internal layers of micro-shearing. (C,D) Grinding within a shear zone. (E) Entrained lump of lake sediment in the Bonaduz gravel deposits. (F) Vertical Pavoni
pipes indicate rapid water discharge after deposition (person for scale).

avalanche due to high compressing forces and large differences in
velocity between the moving particles and the ground (Erismann
and Abele, 2001). Running on dry rock substrates, it is mainly
fragmentation that leads to an increased travel length of the
rock avalanche (Pollet and Schneider, 2004; McSaveney and
Davies, 2007; Davies and McSaveney, 2009). After Haug et al.
(2016), increased fragmentation mostly affects the front of a rock
avalanche traveling further, whereas the center of mass crucial
for energy considerations, is hardly displaced or decelerates.
In comparison to previous papers stating that fragmentation

accelerates the flow (Bowman et al., 2012; Langlois et al., 2015),
Haug et al. (2016) confirmed that high fragmentation rather
favors a more energy-efficient transport mode yielding longer
runouts without acceleration.

In either case, fragmentation is considered an “energy sink”
(Locat et al., 2006; Crosta et al., 2007; Haug et al., 2016).
Haug et al. (2016) propose that static fragmentation may use
up to 50% of the potential energy. Also, Ghaffari et al. (2019)
postulate that the kinetic energy is only a small portion of
dissipated energy during fragmentation, and the energy rather
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transfers into intergranular collision and friction. Thereby, it is
important to note that the energy input for grain-internal “micro-
cracking” weighs far more than for “macro-fragmentation,” i.e.,
the formation of new grains (Ouchterlony et al., 2004; Hamdi
et al., 2008). Zhao et al. (2017) quantify the energy dissipation
by friction and plastic deformation to ∼90%, and the energy
needed by bond breakage to <5%. Plus, the smaller the grain
size becomes, the more energy is needed for comminution
(Locat et al., 2006). The process of dynamic rock pulverization
(Figures 2A–D) consumes massive amounts of energy, e.g., in
gouge formation it sums up to 50% of earthquake energy (Wilson
et al., 2005). During grinding, most energy (∼97%) is converted
to heat, with only a small portion (<1%) actually contributing to
fracturing (Spray, 1992).

Friction/Heat
Near the base of the moving rock mass, confining forces are
largest and so the majority of frictional energy dissipation occurs
in this zone (Pollet and Schneider, 2004). Disintegration and
heating of the rock mass mainly arise (i) along well-defined
persistent shear planes, or (ii) as a total disintegration of the
whole mass. Shearing may be localized to a thin, discrete layer
and frictional heating of bedrock may reduce basal strength (Hu
et al., 2018, 2019; Hu and McSaveney, 2018). For (i), a high
proportion of the energy release is focused on only a small
proportion of the whole mass and will cause significant heating
up to a partial melting of clasts, called frictionite (Heuberger
et al., 1984; Erismann and Abele, 2001). As soon as particles
are ∼1 µm and below, the amount of heat produced by their
elastic and plastic deformation leads to their melting (Spray,
2005). In rare cases (i) this heating can cause centimetre-thick
melting of rock and formation of frictionites at temperatures
of 1700◦C (Erismann et al., 1977; Weidinger et al., 2014).
Discrete layers of more intense fragmentation contain micro-
breccias and traces of partial melting (frictionite along shear
planes; Schramm et al., 1998; Weidinger and Korup, 2009). For
phase transitions, latent energy is absorbed. Besides, frictional
shearing is controlled by the production and decay of random
kinetic energy during gravitational work (Preuth et al., 2010).
Random kinetic energy is referred to the random motion and
inelastic interaction between the fragments; it is irreversible
because it cannot perform mechanical work (Bartelt et al., 2006;
Buser and Bartelt, 2009; Christen et al., 2010). For quantification,
Schneider et al. (2010) argue that the total frictional work best
correlates with the seismic signal of a rock (-ice) avalanche.
The seismograph represents a small, but proportional fraction of
this energy loss.

Erosion/Entrainment/Role of Water
There is an apparent increase in rock-avalanche mobility with
volume (e.g., Heim, 1932; Scheidegger, 1973). The volume can
be increased either by fragmentation up to 25–30% (Hungr
and Evans, 2004; Crosta et al., 2007) or by the entrainment of
substrate material. How enormous the effect of entrainment is,
can be shown by the 2000 Tsing Shan event (Hong Kong), where
a small volume of 150 m3 of material grew to 1620 m3 because
of the strong erosion along the slope (Hungr and Evans, 2004).

Entrainment strongly depends on the character of the path
material (Crosta et al., 2009; Aaron and McDougall, 2019)
and, for example, may cause high basal shear resistance and
momentum loss, when overrunning bedrock or dry bed material
(Iverson et al., 2011; Aaron et al., 2017; Whittall et al., 2017;
Aaron and McDougall, 2019). In other cases, basal friction
is reduced and mobility enhanced (Hungr and Evans, 2004;
Aaron and Hungr, 2016; Coe et al., 2016). On the one hand,
entrainment is an energy sink because the erosion, uptake and
incorporation of material along the travel path by plowing,
scouring or even surficial scratching (Hu and McSaveney, 2018)
is mechanical work, accompanied by heating. On the other
hand, the gain in weight increases the energy budget by acting
as an energy source and must not be neglected. Water plays
an important role for the amount and rate of entrainment
and erosion (Iverson and Ouyang, 2015). Especially for rock
avalanches traveling on ice (Huggel et al., 2008; Deline et al.,
2015; Bessette-Kirton et al., 2018; Walter et al., 2020) or wet,
soft sediments (e.g., lake sediments, Figure 2E), the increased
pore pressure enhances the scour of the bed, reduces basal
friction and causes velocity, mass and momentum to increase
(Iverson et al., 2011; Iverson, 2016; Johnson et al., 2016).
Pure ice has a basal friction which is about 75% lower than
that of pure rock. Hence, in rock-ice avalanches, a ∼12.5%
reduction of basal friction angle is observed for every 10%
increase in ice content (Sosio et al., 2012). The intergranular
direct stress between single grains is reduced by pore-water
pressure, i.e., in initially wet sediment more overburden is
necessary to start fragmentation than in dry sediment (Abele,
1997). Water may escape quickly after deposition like at the
Flims Rock Avalanche (Figure 2F; Pavoni, 1968; Calhoun and
Clague, 2018) but increasing temperature may cause water to
be pressurized (Voight and Faust, 1982) and/or vaporized, as
it is proposed for the Vajont Rockslide (Habib, 1975) or the
Köfels Rockslide (De Blasio and Medici, 2017). For the melting
of ice, a specific latent heat of 334 kJ/kg is needed, and for
vaporization ∼2265 kJ/kg, which is almost seven times as much.
There is a momentum exchange that consumes energy (Pudasaini
and Krautblatter, 2014), and steam explosions are present, but
probably camouflaged in the other energy dissipative processes.
We have yet to understand the sedimentological imprint of steam
explosions in the sediments.

Chemical Processes
Chemical processes are often neglected in the energy balance of
rock avalanches. Novel friction experiments on carbonate rocks,
for example, show that at velocities of several meters per second
carbon dioxide starts to degas due to thermal decomposition
induced by flash heating after only a few hundred microns of slip
(Mitchell et al., 2015). This process creates vesicular degassing
rims in dolomite clasts and crystalline calcite cement (Anders
et al., 2010; Mitchell et al., 2015) and may allow the upper
rock mass to slide over a “cushion” of pressurized material.
Around 800–850◦C, talc and dolomite start to decompose
(Hu et al., 2018) and to produce high-pressure live steam
and carbon dioxide (Habib, 1975; Hu et al., 2019). De Blasio
and Medici (2017) found bubbles grown in the frictionites
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of the Köfels Rockslide, which they ascribe to water vapor,
either due to seeping of vadose water through rock fissures
prior to the rock-slope failure, or due to dehydroxylation of
the mica, which occurs at ∼700◦C (Alexiades and Jackson,
1967). Also, the existence and relative increase of pyrophyllite
on sliding surfaces indicate hydrothermal alteration around
450◦C (Schäbitz et al., 2015). The accumulation of pyrophyllite
at the sliding surface results in reduced shear strength.
Also, graphitization (crystallization of amorphous carbon) was
recognized in slip zones as phase transformation, which implies
frictional heating due to rapid sliding (Oohashi et al., 2011).
Graphite is well known as an effective solid lubricant in fault
zones with a friction coefficient as low as that of smectite, µ = 0.1
(Oohashi et al., 2014).

DISCUSSION OF RESEARCH NEEDS

Processes during the disintegration phases of rock avalanches are
beyond observation, and we have very few analogs that show
pressure and temperature conditions inside rock avalanches.
Thus, it is likely that we neglect important processes such as steam
explosions, partial melting, chemical transitions, and material
explosion processes at high pressures.

To systematically decipher relevant processes in rock
avalanches, we propose that the energy balance needs to be
considered more seriously, since it will help us to reveal energy-
relevant processes that we would otherwise neglect. Here we
propose to balance the primary energy input to the system
constrained by the potential/kinetic energy of the moving rock
masses (“Energy sources”). “Energy sinks” include heating,
friction, inelastic collision, entrainment, compression during
crustal deformation, chemical energy consumption, phase
transition solid – fluid – gas, dust production and bouncing as
well as sound and microseismicity, and momentum exchange
between solid and fluid.

Using an energy balance approach, we can attribute
proportions of the energy transmission to certain processes
and we can rule out others. However, for this approach, we
have to find ways to accurately constrain the 3D deposition
temperature of the rock avalanche by new methods as
has been exemplified in a few cases in this paper. The
influence of the substrate on types and rates of energy
dissipation during disintegration and during the flow
represent major research gaps and ask for more studies.
For the hazard assessment of rock avalanches, it makes
sense not only to differentiate between energy sources and
sinks, but also to separate processes that favor mobility
and runout length from those which may consume or
release energy but do not essentially contribute to the
hazard potential. Furthermore, we need to transfer the
achievements gained in qualitative assessment toward a
more quantitative approach.

Future research in the field should focus on analyzing
spatial patterns of disintegration using surface mapping and 3D
subsurface reconnaissance of rock slide/avalanche deposits using
geophysical methods at varying scales. Sedimentological analyses

reveal abundant information on internal processes, for instance
high-stress comminution preserved in fine-sediment signatures
(Reznichenko et al., 2012). There is a great demand for study
cases with petrographic analysis at microscopic scale (Weidinger
et al., 2014), and for such with cross sections through the debris
(Locat et al., 2006).

Future research in the laboratory should focus on the
implementation of disintegration scenarios in large-scale analog
models to help better understand the impact of disintegration and
heating on runout length. This way, a conceptual physical (and
chemical) model of rock-avalanche disintegration in time and
space may be set up in a first step, followed by the implementation
in benchmark one- and two-phase runout models.

CONCLUSION

(1) Due to the law of energy conservation we have a
superior tool to decipher processes we have yet neglected
in rock avalanches: heating, friction, inelastic collision,
entrainment, compression crustal deformation, chemical
energy consumption, phase transition solid – fluid – gas,
dust production and bouncing as well as sound and
microseismicity generation and momentum exchange.

(2) Energy dissipation is concentrated in the disintegration
zone where energy estimations indicate considerable
heating above 100◦C of significant portions
of the rock mass.

(3) The spatial pattern of heating is characteristic for
individual types of movement ranging from concentrated
heating by friction along defined sliding planes to diffuse
clustered heating in crushing zones near to obstacles.

(4) Massive entrainment where large rockslides drive into, or
override, valley sediments also evidently causes crushing
and very likely significant heating.

(5) Massive energy dissipation may leave a distinct
sedimentological signal detectable in compressive
and extensional flow structures, melting or new
mineral formation, rock-avalanche structure, material
composition, brecciation and fine-sediment signature.
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