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Abstract

Sensory organs use neural populations to encode information about the environment
and transmit it to the brain using parallel information channels. This happens in
the presence of noise which corrupts the information encoding at several stages
along the sensory pathways. The prominent hypothesis of efficient coding postu-
lates that during evolution properties of sensory neurons have evolved to encode
maximum information about stimuli given metabolic and biophysical constraints.
Previous studies have used the efficient coding hypothesis to investigate small pop-
ulations with just two neurons or only one noise source. They have shown that
high noise levels favor redundant coding where the same signal is transmitted in
parallel channels to average out noise, while low noise levels favor non-redundant
coding where each channel transmits a distinct aspect of the signal.

In this thesis, I propose a model with populations with up to six neurons to de-
rive the optimal encoding of a sensory signal in the presence of two different noise
sources. I implement a model of spiking neurons jointly encoding a one-dimensional
stimulus and maximize the mutual information between stimulus and population
response using a constraint on the maximum firing rate. I also derive optimal
thresholds of the neurons for varying sources and levels of noise assuming nonlinear
input-output functions. In particular, the model includes input noise, which cor-
rupts the signal before the nonlinearity and output noise which corrupts the signal
after the nonlinearity. I determine critical noise levels where the optimal number
of distinct neural thresholds changes, i.e. where the transition from redundant to
non-redundant coding takes place. This is done for two scenarios: first, a lumped-
coding channel where the information from different channels converges to a single
channel, and second, an independent-coding channel when different channels con-
tribute information without convergence. I find that the lumped-coding channel
causes information loss, especially at intermediate noise levels, and therefore acts
like an additional form of noise.

The transition from redundant to non-redundant coding with decreasing noise takes
place gradually via subsequent bifurcations of optimal neural thresholds at critical
noise levels. The thresholds bifurcate continuously with the independent-coding
channel and discontinuously with the lumped-coding channel. Interestingly, there
occurs an unexpected non-monotonic behavior of the optimal number of distinct
thresholds for certain noise parameters.

I show that the threshold bifurcations at critical noise levels correspond to phase
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transitions encountered in physics and chemistry. In particular, maximizing the
mutual information corresponds to minimizing the free energy of a physical system,
noise corresponds to temperature, the threshold differences correspond to order
parameters, and continuous threshold bifurcations correspond to continuous phase
transitions.

To investigate how much information is lost in the case of suboptimal thresholds
compared to optimal thresholds, I examine the shape of the information landscape
as a function of the thresholds. I find that at continuous threshold bifurcations
the information landscape takes the shape of a ridge, i.e. its curvature becomes
zero in specific directions in threshold space, implying threshold combinations at
which information does not change locally. Additionally, I quantify information
loss in the case of randomly sampled thresholds or randomly perturbed optimal
thresholds compared to optimal thresholds. My result suggests that it is not trivial
to compare the information loss in the case of suboptimal thresholds across differ-
ent neural population sizes. Nonetheless, using several measures that I develop, I
demonstrate that the information loss with suboptimal thresholds compared to the
case with optimal thresholds decreases with population size.

My results yield important insights into the coding strategies used by neural pop-

ulations to optimally encode sensory stimuli in the presence of distinct sources of
noise and can be applied to stimulus coding in diverse sensory systems.
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Zusammenfassung

Sensorische Organe nutzen neuronale Populationen, um Informationen iiber die
Umgebung zu kodieren und diese mittels paralleler Informationskanéle zum Gehirn
weiterzuleiten. Dies passiert unter dem Einfluss von Rauschen, welches die Informa-
tionskodierung an verschiedenen Punkten des sensorischen Signalwegs stort. Die
weit verbreitete Hypothese der effizienten Informationskodierung postuliert, dass
sich im Laufe der Evolution die Eigenschaften der sensorischen Neuronen derart
entwickelt haben, dass sie unter gegebenen metabolischen oder biophysikalischen
Nebenbedingungen maximale Information tiber Stimuli kodieren. Bisher haben
Studien die Hypothese der effizienten Informationskodierung genutzt, um kleine
Populationen mit nur zwei Neuronen oder nur einer Rauschquelle zu untersuchen.
Diese Studien haben gezeigt, dass hohe Rauschpegel eine redundante Kodierung
beglinstigen, bei der das gleiche Signal in parallelen Kanélen iibertragen wird, um
Rauschen herauszumitteln. Geringe Rauschpegel hingegen begiinstigen eine nicht-
-redundante Kodierung, bei der jeder Kanal einen unterschiedlichen Aspekt des
Signals tibertragt.

In dieser Arbeit nutze ich ein Modell neuronaler Populationen mit bis zu sechs
Neuronen, um die optimale Kodierung eines sensorischen Signals zu bestimmen,
welches von zwei verschiedene Rauschquellen gestort wird. Dafiir wahle ich ein
Modell von feuernden Neuronen, in dem die Neuronen gemeinsam einen eindimen-
sionalen Stimulus kodieren, und maximiere die Transinformation zwischen Stimulus
und Populationsantwort unter der Nebenbedingung einer maximalen Feuerrate der
Neuronen. Auflerdem bestimme ich die optimalen Schwellenwerte der Neuronen
bei verschiedenen Rauschquellen und -pegeln, wobei ich nichtlineare Input-Output-
Funktionen annehme. Im speziellen enthéilt das Modell Inputrauschen, welches das
Signal vor der Nichtlinearitdt stort, und Outputrauschen, welches das Signal nach
der Nichtlinearitat stort. Ich bestimme die kritischen Rauschpegel, bei denen sich
die optimale Anzahl unterschiedlicher neuronaler Schwellenwerte &ndert, das heif3t,
die Rauschpegel, bei denen der Ubergang von redundanter zu nicht-redundanter
Kodierung stattfindet. All dies fithre ich unter zwei Szenarien durch: Zum einen mit
einem konvergierten Kanal, bei dem die Information von verschiedenen Kanélen in
einen einzelnen Kanal konvergiert. Zum anderen mit eigenstédndigen Kanélen ohne
Konvergenz der Information aus den einzelnen Kanélen. Ich habe herausgefunden,
dass die Konvergenz der Kanéle einen Informationsverlust verursacht, insbesondere
bei mittleren Rauschpegeln und damit wie eine zusatzliche Rauschquelle wirkt.

Der Ubergang vom redundanten zum nicht-redundanten Kodieren mit abnehmen-



dem Rauschpegel findet graduell mittels aufeinanderfolgender Bifurkationen (Gabe-
lungen) der optimalen neuronalen Schwellenwerte bei kritischen Rauschpegeln statt.
Die Schwellenwerte gabeln sich auf stetige Weise mit den eigenstdndigen Kanélen
und nicht-stetig mit den konvergierten Kanélen. Bei endlichen Rauschpegeln beein-
flussen Input- und Outputrauschen die optimalen Schwellenwerte in einer dhnlichen
Weise. Interessanterweise tritt bei bestimmten Rauschparametern ein unerwartetes
nicht-monotones Verhalten der optimalen Anzahl unterschiedlicher Schwellenwerte
auf.

Die Schwellwertbifurkationen bei kritischen Rauschpegeln entsprechen physikalis-
chen Phaseniibergdngen. Insbesondere entspricht die Maximierung der Transin-
formation der Minimierung der freien Energie eines physikalischen Systems, das
Rauschen entspricht der Temperatur, die Schwellwertdifferenzen entsprechen Ord-
nungsparametern und stetige Schwellwertbifurkationen entsprechen stetigen Pha-
senlibergéngen.

Um zu untersuchen, wie viel Information im Falle von suboptimalen statt opti-
malen Schwellenwerten verloren geht, untersuche ich die Form der Informations-
landschaft in Abhangigkeit der Schwellenwerte. Ich habe herausgefunden, dass bei
stetigen Schwellwertbifurkationen die Informationslandschaft die Form eines Grats
annimmt, das heifit, die Krimmung in bestimmten Richtungen des Schwellwer-
traums ist null, was Schwellwertkombinationen impliziert, bei denen die Informa-
tion sich lokal nicht dndert. Auflerdem quantifiziere ich den Informationsverlust im
Falle von zufallig gewahlten Schwellenwerten oder Storungen von zufalliger Starke
der optimalen Schwellenwerte vergleichen mit optimalen Schwellenwerten. Das
Ergebnis ist, dass es nicht trivial ist, den Informationsverlust durch suboptimale
Schwellenwerte iiber die Populationsgrofien hinweg zu vergleichen. Ich entwick-
ele verschiedene Mafle, um trotzdem zeigen zu konnen, dass der relative Informa-
tionsverlust durch suboptimale Schwellenwerte mit der Populationsgréfie abnimmt.

Meine Ergebnisse liefern wichtige Erkenntnisse beziiglich der optimalen Strategien
von neuronalen Populationen, um sensorische Stimuli unter dem Einfluss von ver-
schiedenen Rauschquellen zu kodieren. Diese Ergebnisse kénnen auf die sensorische
Kodierung in verschiedenen sensorischen Systemen iibertragen werden.
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1 Subject and motivation

Where do we come from? What are we? Where are we going? Both philosophy and
natural sciences are originally driven by such deep questions. Today we know that
living and reproducing organisms have appeared at some point in planetary history
and then biological evolution with its “survival of the fittest” has led to an explo-
sion of variability in living species. For all organisms, it is essential to interact with
their respective environments and in many animals, specific cells and organs have
evolved to receive and process information about their surroundings [2]. These
cells and organs are often highly specialized for different sensory modalities like
light [3], sound [4], chemical substances [5], forces [6], temperature [7], mechanical
vibrations [8], and electrical [9] or magnetic fields [10]. Through evolution, many
of them have reached an astonishing degree of sensitivity, precision, and complexity.

However, interacting with the environment is not just about sensors collecting in-
formation about the surroundings but also about processing the information and
making use of it through prompting behavior which is — ideally — in the interest of
the respective animal or its species. To achieve this, extremely complex organs like
brains have evolved which integrate information from different sensory modalities.
The brain is so complex that science is still very far away from understanding its
function and many scientists argue that it will never be possible to understand it
at all.! Thus, it is a commonly held opinion that to understand “the brain” one
should first understand simpler neural circuits where the complexity is smaller and
where the input and output and the immediate purpose of the circuits are better
known [12,13]. At least the part about having more knowledge of input/output and
purposes is true for sensory organs. Therefore, it makes sense to investigate the
basic principles of how sensory organs work and use these insights to understand
how our brains work.

A very important building block of sensory organs are neurons, i.e. electrically ex-
citable cells specifically evolved for information processing. They are well-suited for
information processing since they are fast and already a single neuron can perform
basic computations like addition and multiplication [14]. When they are coupled to-
gether via synapses the resulting circuits can in many cases perform highly complex
computations [15]. The example of a “simple” animal, the fly, demonstrates that
modern computers are still far away from reaching similar performance in many
sensory tasks as, for instance, object movement detection — in particular when it

IThis is, for example, expressed in the famous statement “If the human brain were so simple that
we could understand it, we would be so simple that we couldn’t.” [11]



1 Subject and motivation

comes to energy efficiency [16].

With my work, I want to contribute to the understanding of sensory processing
and why sensory organs have evolved the specific way they have. In particular,
the goal is to better understand basic principles and phenomena which are present
across different sensory organs and different species. Across different species, the
same sensory organ, for example, the eye, often seems to have very differently
evolved [17]. However, in most species, it still shares many commonalities when it
comes to its basic structure, building blocks, basic processes, and purpose.

At the same time, every sensory organ is composed of a large variety of differ-
ent neuron types, which differ in size, shape, response properties, function, and
gene expression patterns, to just name a few [18,19]. My goal is to shine a light
on why exactly it made sense from an evolutionary perspective that cells in sen-
sory organs show such a great diversity. To achieve this, I use an approach from
an information theoretical perspective: information from sensory organs has to be
sent to the brain. However, the amount of information that can be transmitted
per unit time is limited, for what often the metaphor of the “information bottle-
neck” [20] is used (Fig. 1.1A) . Moreover, information transmission using neurons
needs substantial amounts of energy [21]. A prominent hypothesis called efficient
coding argues that during evolution the energy efficiency of information transmis-
sion has been optimized [22,23] (Fig. 1.1B). The reason is that animals that could
transmit more information per unit energy had an advantage in spotting predators
or prey, could better communicate with conspecifics, or needed less food compared
to fellow animals, all of that meaning higher evolutionary fitness.

A B t c .
information (& 2 .
ﬁ *Olution A gz
.t 1

“information bottleneck”

information
information information information
information

Figure 1.1: Diversity of sensory cells and efficient information transmission.
A. Information about the environment is obtained by sensory organs and sent to the brain.
However, the amount of information that can be transmitted is limited. B. Schematic
depicting the assumption that due to evolutionary pressure information transmission has
become close to optimal. If at some point in time (¢1) the efficiency of information transmis-
sion for a biological species is suboptimal, then over time it evolves towards being optimal
optimal (t2). Optimality here means maximally efficient in terms of information transmis-
sion per energy needed. C. Retinal ganglion cells, the output cells of the eye, show a large
variability (here: morphology of dendritic trees). From [24].

information
energy




Retinal ganglion cells (RGCs) are the neurons that send information from the eye
to the brain [18]. Figure 1.1C shows how RGCs from the rat retina differ in size
and shape. The goal of my work is to use the efficient coding hypothesis to gain an
understanding of why it might be favorable to have such a diversity of neurons in
sensory organs. My approach is not restricted to a specific sensory organ but can
be applied to any sensory modality.

In all systems in which information is processed or transmitted, noise limits the
amount of information that can be processed [25]. This is especially true for bio-
logical systems, where noise corrupts the information processing at many different
stages [26]. Nevertheless, many sensory organs function astonishingly well in sur-
roundings dominated by noise as for example star light [27] or cocktails parties [28].
The efficient coding hypothesis can also be used to predict optimal information
processing in the presence of noise. In this thesis, I will use it to investigate how
optimized information encoding depends on the type and strength of noise. In-
terestingly, varying noise can cause sudden changes in the way sensory signals are
optimally encoded and it has been shown that these sudden changes represent phase
transitions from physics [29]. In physics, phase transitions occur when the prop-
erties of a system suddenly change with an external variable like temperature, for
example in the transition from water to ice. Therefore, I am also going to charac-
terize the properties of the phase transitions occurring in my studies.

The understandings gained about information encoding in sensory organs might
be beneficial in understanding diseases of sensory organs and could aid the de-
velopment of medical technology that helps patients. Widely-known examples are
retinal and cochlear implants [30,31]. However, also other approaches like gene ther-
apy or optogenetic therapy for sensory diseases are under active development [32].
Apart from a more general understanding of how information is encoded, it might
also help to understand the role of different cell types and how therapies could be
specifically tailored towards certain cell types.

This thesis is organized as follows: In Chapter 2, I give a basic introduction into
how sensory neurons are modeled, the basics of information theory, and how sen-
sory organs use different neuron types to transmit information in parallel. This
is followed by a literature overview of studies using the efficient coding hypothesis
and how noise influences optimal information encoding. In Chapter 3, I describe
the model that I use for my studies and present results of optimal neural diversity
when maximizing information transmission. It will become apparent, that optimal
diversity changes at particular noise levels. In Chapter 4, I discuss the shape of the
information landscape and why it takes a specific form at particular noise levels.
This includes quantifying information losses in the case of suboptimal information
processing. Furthermore, I show that the sudden changes in optimal neural diver-
sity can be related to phase transitions. Finally, I will discuss my results and the
limits of my model in a greater context (Ch. 5).



2 Foundations and literature

To investigate how efficient information encoding has led to the development of
different neuron types in sensory organs, in this chapter, I first give an introduction
into the necessary concepts. This includes a basic neuron model used for sensory
neurons (Sec. 2.1), how sensory systems encode stimuli with parallel information
streams (Sec. 2.2), and an introduction into information theory (Sec. 2.3). After-
ward, I give an overview of the literature about how previous studies have made
use of the efficient coding hypothesis (Sec. 2.4), including the properties of noise
and its effects on efficient information encoding, and the convergence of parallel
channels. Finally, I will give a basic introduction to phase transitions (Sec. 2.5).

2.1 The linear-nonlinear spiking neuron model

The knowledge presented in this section is from [14] unless stated otherwise. Neu-
rons are electrically excitable cells that play a crucial role in information processing.
They have a membrane potential, i.e. a voltage difference between the inner and
the outer side of their cell membrane. Inputs to a neuron can either decrease or
increase the membrane potential. Most neurons are spiking neurons, which means
that if the membrane potential increases above a certain threshold value the neu-
ron responds with a characteristic output pulse, the spike. That is why input that
increases the membrane potential is called ezcitatory input while input that de-
creases the membrane potential is called inhibitory input. If the threshold value of
the membrane potential is not reached no output is generated. Thus, neurons are
highly nonlinear units.

The Hodgkin-Huxley model is a mathematical model that describes the dynam-
ics of channel openings and closings depending on the membrane potential [33].
It can explain in great detail how the membrane potential changes with incoming
inputs and how the temporal dynamics evolve if the threshold is crossed. However,
I take a less detailed level of description in my work. To model the input-output
function of sensory neurons, it is common to use a linear-nonlinear model with a
probabilistic spike generation process, or in short LNP model. There, the input
is in general a time-dependent sensory stimulus that is first processed by a linear
function, then passed through a nonlinear function, and the output of the nonlin-
ear function is finally used to generate stochastically distributed spikes (Fig. 2.1).
The sequence of the generated spikes is called the spike train and it encodes in-
formation about the sensory stimulus. Such a mapping from stimulus to spike
train can be implemented by a variety of sensory systems, for instance, the retina
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which processes various visual stimulus attributes, such as light intensity or con-
trast [34], the olfactory receptor neurons which process a range of concentrations
of odor molecules [5,35-37], or the auditory nerve fibers (ANFs) which transmit
information about sound pressure levels [4]. I will now briefly describe these three
steps.

probabilisitc
linear filter f(t) nonlinearity v(.) spike generation
filtered stimulus nonlinear output spike train

stimulus s(t) I\/ (s F)(t) -/— V(s + F)() %
— Apw —— i ——||[l

Figure 2.1: Modeling sensory neurons with a linear-nonlinear model with a
probabilistic spike generation process. From left to right: the input to the neuron, a
time-dependent stimulus s(¢), is first convolved by a linear filter f(t), whose output s f(t)
is then passed through the nonlinear function v(.). Its output is then used as a rate variable
for the stochastic spike generation process. The resulting spike train r(t) carries information
about the stimulus s(¢). Based on [14].

2.1.1 Linear filters as a model of the receptive fields of sensory neurons

A linear filter is used to model the receptive field of a sensory neuron. The receptive
field describes to which spatial and temporal stimulus characteristics (also called
features) the neuron responds. In the visual system, spatial features represent the
location of stimulus in the visual field and spatial changes of the stimulus as for
example edges or bars of certain orientations. Temporal features are for example
the onset and offset of a stimulus. Mathematically, the process of linear filtering is
described as a convolution of the filter kernel, f(t), with the stimulus, s(t), so that
the output of the linear filter is'

L(t)=(s* f)(t / f(r)s(t —7)dr (2.1)

In biology, the filter f(¢) is approximated by stimulating the cell with uncorrelated
inputs (“white noise”) for some time and determining the spike-triggered average
of the stimulus, i.e. the average shape of the stimulus in the time before a spike is
emitted by the neuron. f(¢) often has a biphasic shape, meaning a positive part
followed by a negative part. This shape is responsible for the adapting behavior
of the neural output with constant stimulus: a temporal biphasic filter promotes
stimuli changing in time but is unresponsive to constant stimuli, while a spatial
biphasic filter promotes edges and spatial structure but is unresponsive to full-field
stimulation.

'Here, T just express the temporal dimension of the linear filter, but the spatial dimensions (of
the retina) or the frequency dimension (in the cochlea) are completely analogous.
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There exist several studies who have investigated the optimal shapes of linear fil-
ters [38-42]. The work of this thesis will be dedicated to the nonlinear function and
the spike generation. Even though the linear filter should in principle have an influ-
ence on the nonlinear processing, its effect can be incorporated easily by a change
in the input distribution. Thus the framework used in the following chapters will be
a general framework independent of the particular linear filtering. For simplicity
I set s(t) = L(t) and denote s(t) as the linearly filtered or linearly preprocessed
stimulus from now on.

2.1.2 Tuning curves as the nonlinear functions

The nonlinear part of the LNP model is called the tuning curve and describes
the nonlinear response characteristics of a neuron. It is given as a function of
the filtered stimulus s(¢) and the firing rate v(t). Experimentally, the nonlinearity
is obtained by plotting v(s) (obtained from the spike train, see next section) at
different s and fitting a suitable function. In principle, different shapes of the
function are possible. Sensory neurons are often modeled by using a sigmoidal (“S-
shaped”) function [14,29,43,44] (Fig 2.2A). Qualitatively, they show the following
characteristics: for small input values s, the firing rate is equal to the baseline
firing rate, also called “spontaneous” firing rate, 1y. The input value for which the
firing rate starts to be significantly larger than vq is called the threshold, 6. From
there on, the firing rate increases until the maximum firing rate, vpyax is reached.
There, even with a further increase of the input, the firing rate does not increase
anymore. Such a function is highly nonlinear since the firing rate does not change
at small or large input values (where the function is flat), but changes a lot in an
intermediate regime (where the function is steep). The steepness of the function is
related to the sensitivity of the neuron since small input changes cause large output
changes. Figure 2.2B shows tuning curves of different ANFs, which encode sound
pressure levels. All of them have a sigmoidal shape but they differ in spontaneous
rate, threshold and maximum firing rate. The goal of this thesis is to contribute in
understanding the reasons for this diversity in tuning curves.

2.1.3 The probabilistic spike generation process

For a given input, neurons in general do not produce deterministic output. In the
LNP model, the linear and the nonlinear parts are deterministic and the stochastic
nature of neural output is incorporated by a probabilistic spike generation process.
That means that the output of the nonlinearity, v(t), indicates how likely it is that
spikes are emitted, however, the exact spike times are generated by a stochastic
process and are thus randomly distributed. The most common stochastic process
used in the LNP model is the Poisson process.? It takes the rate v as input and is
characterized via the Poisson distribution in such a way that the number of spikes k

2The Poisson process is in fact so common that the acronym LNP is often understood to be
meant linear-nonlinear Poisson [14,46].
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Figure 2.2: The nonlinearity of sensory neurons with a monotonic tuning curve
can be modeled using a sigmoidal function. A. Basic properties of a tuning curve
modeled with a sigmoidal function: the firing rate v depends on the (linearly filtered)
input stimulus s. Below a threshold 6, the firing rate is the baseline (or spontaneous) firing
rate 9. The maximum firing rate is denoted by vpax. B. Measured tuning curves from
seven different auditory nerve fibers. From [45].

in a time interval AT follows the Poisson distribution:

k
P(klv) = m . (2.2)
Strictly speaking, this is true only for a constant rate v or the time interval ap-
proaching zero and this special case is called the homogeneous Poisson process.
Since the firing rate of a neuron changes in time, the inhomogeneous Poisson pro-
cess is the way to go. There, the number of spikes k(t,, ) in a time interval [tq, 3]
is given as [47]

Ak

P(k(tast)A) = 1 -

(2.3)

where A is the integrated rate in[t,, tp]:

A / " byt (2.4)

The special property of a Poisson process is that spikes are generated independently
of each other, i.e. the fact of a spike generation at time ¢; has no influence on the
probability of another spike generation before or after t1. Apart from being biolog-
ically unrealistic for very short3 time intervals around ¢;, it describes the stochastic
behavior of many sensory neurons reasonably well. In my work, I almost exclu-
sively use the Poisson process for modeling the spike generation process, except for

3The refractory period does not allow another spike generation for 1 to 2ms after a previous spike
and reduces the probability of spike generation for another few milliseconds. In principle, this
could be taken into account by the model by setting the firing rate to zero for 2 ms after a spike
and decreasing it by some factor for another few milliseconds.



2 Foundations and literature

Section 3.6.4.2, where I study two other processes.

Note: The assumption is that sensory neurons which transmit information about
stimuli to the brain (e.g. RGCs in the visual system and ANFs in the auditory
system) encode the information with their spiking outputs. Therefore, I use the
words information transmission and information encoding as synonyms throughout
my work when I talk about sensory neurons.

2.2 Sensory systems encode stimuli with parallel
information streams

In many sensory systems, the sensory signal is not just coded by individual neurons
but rather by the joint activity of populations of neurons. One signature of this
parallel coding might be the remarkably diverse response properties exhibited by
many sensory neurons. Figure 2.3 illustrates this parallel encoding using the eye
as an example: the visual image is mapped onto the retina and each point of the
retina is covered by the receptive fields of different RGC types which each transmit
a different version of the image to the brain [48,49]. In specific, it has been shown
that around thirty different RGC types exist [18]. For each type, the receptive fields
independently tile the retina with little overlap, meaning each spot of the retina
is covered once and only once by each RGC type (see Fig. 2.3A for a schematic
showing the receptive fields of three different RGC types). The RGC types differ
in size, morphology, connectivity, and response properties [18,50]. Several of them
show very specific response properties like direction selectivity or object movement
selectivity, while for other RGC types, the exact properties still remain elusive.
Altogether, it can be said that many RGC types encode different visual features of
the same retinal image [18,49,51] (Fig. 2.3B,C). Yet, there are also neurons from
distinct RGC types which in parallel encode a single stimulus feature but differ in
functional properties like thresholds [29,52,53]. Altogether, this means that the
information stream from the eye to the brain is highly parallelized (Fig. 2.3D).

Another example of parallelization in a sensory information stream is the first
synapse level of the auditory pathway, where each inner hair cell transmits infor-
mation about sound intensity to approximately ten to thirty different ANF's [55].
ANTFs differ in several aspects of their responses, including spontaneous rates and
thresholds [56]. However, each fiber receives exclusive input from only a single
inner hair cell. As in the retina, this results in a highly parallelized stream of
sensory information. Similarly, this parallel encoding of a single stimulus feature
with a population of neurons with different thresholds has been shown in olfactory
receptor neurons [5], in mammalian touch receptors [57], and in electroreceptors of
electric fish [9].

In conclusion, one can say that the remarkably distinct functional properties of
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Figure 2.3: Sensory systems encode stimuli with parallel information streams.
Schematic illustrating how different neuron types in the eye transmit different features of
the visual input in parallel. A. The whole retinal image is covered by distinct retinal
ganglion cells (RGCs). Each of the three RGC types depicted here (green, yellow, red; they
are unrelated to the three primary colors) independently tiles the retina with the receptive
fields (circles) of the respective cells. Thus in this schematic, each point of the retinal
image is covered exactly once by each of the three distinct RGC types. Redrawn from [49].
B. Top: the dendritic trees of three RGC types. Note that they are artificially separated
in space for visualization purposes but in reality, dendritic trees of different RGC types
overlap. Bottom: schematic slice through the retina. The axons of the RGCs (lines at the
very bottom) transmit the information towards the brain. Schematic from [54]. C. Each
RGC type transmits a different representation or a different feature of the same retinal
image to the brain. This results in parallel information streams. D. Schematic illustrating
that the same stimulus is encoded in parallel by several neurons.

sensory neurons are directly related to the parallel nature of the information stream
from sensory organs to the brain. Since the goal of this thesis is to explain diversity
among sensory neurons using an information theoretical approach, the next section
addresses the foundations of information theory.

2.3 Information theory

The central topic of my thesis is information encoding by sensory organs. For that,
I need a definition of information and a framework that can quantify it. Claude
Shannon’s groundbreaking work in the 1940s introduced information theory and
he defined measures which are very useful for quantifying how much information
is encoded [25]. In this section, I will describe the basic concepts of information
entropy and mutual information and how they can be applied to studying infor-
mation encoding with neural populations. If not stated otherwise, my sources of
knowledge for this section are [14,25].

The basic concept of information theory is a communication channel that is sup-
posed to transmit information from the sender (in my work: sensory neurons) to
the receiver (the brain). The sender uses certain symbols (neural responses) to
encode information about the source (the stimulus value) that is supposed to be
transmitted. Let us denote the stimulus with S and the neural responses with R.
Both are random variables, i.e. they follow probability distributions p(S) and p(R),
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respectively. To quantify the amount of information that a sender can transmit to
the receiver, Shannon introduced the concept of entropy. It is very related to en-
tropy known from physics but in information theory, it quantifies how “surprising”
a random variable is on average. If the response value r occurs with probability p(r)
then the surprise of the occurrence of r should be quantified by — log p(r) accord-
ing to Shannon. This makes sense for the following reason: if p(r) is very small, it
is very surprising if r occurs; while when p(r) is very large it occurs all the time
and nobody is surprised if it occurs.* The entropy H(R) of a random variable R
quantifies how surprising R is on average:

Zp ) logy p(r (2.5)

reR

Its unit is denoted as bits and H(R) > 0. The entropy takes larger (maximum)
values when all r appear with similar (equal) probabilities. H(R) also becomes
larger when R can take more values: the surprisingness for each r is increased
when they appear less often and the sum is taken over more terms. If R, for ex-
ample, can take two values then H(R) can be at most 1bit — namely in the case
when p(r1) = p(r2) = 1/2. If R can take four different values, then H(R) can take
at most 2 bits (when p(r) = 1/4 for all r).

Information theory states that the information is bounded by the entropy of the
variable that the sender uses to transmit information to the receiver (here: H(R)).
However, at the same time, information channels are in general corrupted by noise,
which further reduces the amount of information. The concept of noise can be
understood as an imperfect correlation between stimulus and response: if stimulus
and response are perfectly correlated, then the response is fully determined by the
stimulus and there is perfect information transmission. If, on the other hand, the
response is independent of the stimulus, then the response cannot carry any infor-
mation about the stimulus. Shannon introduced the noise entropy to quantify the
amount of noise. The noise entropy is given as the entropy of the response for a
given stimulus value, averaged over all stimulus values s:

H(R|S) = p(s)H(R]s) (2.6)
ses
= *Zp ZP s)logy p(7|s) . (2.7)
sesS reER

This makes intuitive sense since for a given stimulus the surprise of the response
should ideally be zero, i.e. if for a given stimulus there is a surprise about a response

4There are two reasons why Shannon chose the negative logarithm. First, the surprise of 7 should
increase with decreasing p(r), and second, surprise should add up, i.e. the surprise of observing
both 71 and r2 should be the surprise of observing 71 plus the surprise of observing r2. Since
p(r1,7m2) = p(r1)p(rz) (if r1 and ry are independent), the logarithm is chosen because it allows
to transform the product into a sum.

10
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then something is not ideal in the information encoding: noise has struck. Shannon
showed that the amount of information that the sender transmits to the receiver
is given as the difference between response entropy and noise entropy. He termed
this quantity mutual information, I,,:

m(l; 5) = H(R) — H(R|S) (2.8)
=- ZP( log, p(r) + Z ZP s) logy p(r|s) (2.9)
reRk reR ses
=35 n(s)p(r]s) log, p}ﬂ‘;) . (2.10)
reR seS

In the case of zero noise, I,,(R;S) = H(R); one says “the channel reaches capac-
ity”.> Furthermore, I,(R;S) = 0 in the case of infinite noise — this corresponds
to zero correlation between S and R. Finally, the mutual information is symmet-
ric, i.e. I,(R;S) = I,,(S; R). In conclusion, the mutual information is a measure
of how much one can know on average about one variable when observing the other.

Note that by summing over each r and s, I have implied that both S and R are dis-
crete variables. This makes sense when using a spike count for the neural response.
The stimulus, however, is in general continuous. Thus, I will replace the sum over s
by an integral over s from now on. Furthermore, for a population of neurons, one
has a spike count for each neuron, such that the overall neural response is a vector.
This is also easily captured by the mutual information:

Z/ s) logs ;?1)) s . (2.11)

TER

Using a population of neurons, the number of response states increases exponen-
tially with the number of neurons. Therefore, using parallel information streams
with populations of neurons can in principle drastically increase the amount of in-
formation that can be encoded.

Also other measures exist which can quantify information encoding, for example,
the mean square error between the stimulus and the estimated stimulus. These
measures, however, make specific assumptions about a decoding mechanism, i.e. a
mechanism where the stimulus is estimated from the neural response. The mutual
information is a more general approach since it gives an upper bound for the infor-
mation that can be extracted by any decoder [58]. Another quantity is the Fisher

5Note that in this case of zero noise, the information is still bounded by the alphabet of the
response variable: with an alphabet of M distinct responses and no noise, the maximum
information is log, M bits — namely when all response states occur with probability p = 1/M.
For unbounded information, the response variable would need to have infinitely many distinct
states. This is only realistic with a continuous response variable, which, however, can never
be perfectly correlated with the stimulus variable in real scenarios. Thus the capacity of every
information channel is limited.

11
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information, which quantifies the sensitivity of tuning curves among the stimulus
axis, but is not suited for spiking neurons with considerable noise [59,60].

2.4 The efficient coding hypothesis

The question I want to answer in this thesis is whether the diverse properties of
sensory neurons are a consequence of the evolutionary pressure of the sensory sys-
tem to efficiently encode sensory stimuli. A powerful framework to address this
question is the hypothesis of efficient coding [22]. Both obtaining more informa-
tion about the environment and having less metabolic costs® are beneficial from
an evolutionary perspective. The efficient coding hypothesis postulates that dur-
ing evolution the efficiency of information encoding in sensory systems has been
optimized. Information efficiency can be increased by increasing the amount of in-
formation or by decreasing the metabolic cost of information encoding. This means
there is a so-called Pareto optimality where optimal information efficiency can be
reached at any given metabolic budget with resulting different amounts of informa-
tion [61]. To give an example, an elephant and a fly have a very different metabolic
budget, however, both can maximize information transmission for their respective
metabolic budget. This illustrates that information efficiency is optimized with
respect to constraints. Such a constraint can be the metabolic budget, but also
the available space and material as well as numerous biophysical and phylogenetic
constraints [2]. Table 2.1 lists some of the most important limits and constraints.

Table 2.1: List of constraints in neural coding. Data from [2].

Type of limit | Specific limit What is constrained; Examples
. space size of the eye / optic nerve / skull
finite : " -
material dendritic tree: minimizing cable length
Resources
energy firing rates, axon diameters, synapse maintenance
noise min. number of cells / spikes / ion channels / ...
biophysical membrane capacitance | max. firing rate /cell size
limits cytoplasm conductivity | max. firing rate / cell size
energy density max. and mean firing rate
phylogenetic genetic building blocks | limited toolbox: ion channels, pumps, receptors, ...
limits developmental history retina is “inside out”: occurrence of blind spot

Predictions from efficient coding are consistent with many properties of primary
sensory neurons. The presence of center-surround receptive fields in the visual
pathway reduces unnecessary redundancy and thus increases the efficiency of in-
formation transmission [38], and this has also been shown for the split into ON
and OFF pathways” in the retina [41,62]. Similarly, the division of RGCs into

6 «Metabolic cost” is a fancy term for “requires some amount of energy through food”.
"ON cells are neurons which increase their response with increasing stimulus, while OFF cells are
neurons which decrease their response with decreasing stimulus.

12
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midget and parasol cells® in the primate retina can be explained by an efficiency
gain [63,64]. The efficient coding theory also predicts an alignment of the stim-
ulus statistics and the input-output function of sensory neurons. This has been
shown to be the case for the retinal cells of the blowfly [43] and ANFs from the
bullfrog [65]. Furthermore, it has been shown in movement-selective cells in the
insect retina [44] and in neural populations in the auditory brain stem [66] that the
input-output functions adapt to changing stimulus statistics in order to maintain
maximized information transmission in different environments.

2.4.1 Noise corrupts information transmission in sensory systems

In information theory, noise is defined as an unwanted disturbance of a signal and
reduces the information capacity of a communication channel [25]. In biological
information processing, noise is an ubiquitous phenomenon that corrupts signal
transmission at different processing stages [26] (Fig. 2.4).

noise

information L

Figure 2.4: Noise negatively impacts information transmission.

Neural information transmission is based on moving chemicals or ions. All move-
ments of molecules or ions are affected by Brownian motion — i.e. random thermal
fluctuations — especially when molecule or ion concentrations are low or transmis-
sion distances are large [2]. In addition to this Brownian noise, the opening and
closing of ion channels have randomness involved. This channel noise [67] leads
to membrane potential fluctuations which are especially impactful when the mem-
brane potential is near the threshold for spiking. Furthermore, noise is introduced
at synapses. This synaptic noise is caused by spontaneous opening of intracellular
calcium stores, calcium channel noise, or spontaneous fusion of neurotransmitter
vesicles with the cell membrane [26]. Apart from this general noise in neurons,
there exist also noise sources in the early sensory pathways. Every sensory modal-
ity is subject to transducer noise [68], meaning that no conversion from physical
quantities to a neural can be perfectly reliable. In the visual modality, for example,
photon noise exists — photons arrive Poisson distributed, which implies noise in
low illumination settings [69,70]. Furthermore, the light-sensitive molecules — the
opsins — are subject to spontaneous thermal isomerization, causing false positive
photon detection events [27]. The human ear, for example, is so sensitive that it

8Midget cells have a high spatial precision but a low temporal precision, while parasol cells have
a low spatial precision but a high temporal precision.
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operates at the limit imposed by Brownian movements of the stereocilia in the inner
hear cells, which use mechanosensing to detect sound [69].

All these noise sources set high demands on neural information encoding in sen-
sory organs. This is especially true, when the signal-to-noise ratio is small, for
example in dark light conditions, low concentrations of odor molecules, or environ-
ments with high background noise. Shannon’s mutual information automatically
incorporates all noise effects in the noise entropy term (Eq. 2.6 in the previous sec-
tion). Historically, the efficient coding hypothesis has been applied to populations
of neurons, where the noise term has been ignored, resulting in ambiguous optimal
solutions [23,38,41,42]. The strength [40,65,71-75] and type [76,77] of noise can
have distinct effects on signal encoding. In the following section, I will review how
noise affects parallel information encoding.

2.4.2 The influence of noise on parallel information encoding

The efficient coding hypothesis postulates that evolutionary pressure has led to the
development of mechanisms that reduce noise and its deleterious effects on infor-
mation encoding. One possibility to reduce the effect of noise is using parallel,
redundant information channels: when the same signal is sent across N noisy chan-
nels and the output is summed, the signal strength adds up linearly with the number
of channels N, while the noise strength increases only with v/N (since the noise is
uncorrelated across the channels) [2]. Thus, the signal-to-noise ratio increases with
V/N. This is a comparatively flat increase, in particular when compared with the
fact that in the case of no noise the information increases exponentially with N
if channels are not used redundantly but optimally [25]. Nevertheless, it has been
found consistently that redundant coding is optimal in the presence of high noise,
as [ will review now.

Several studies have used the efficient coding hypothesis to investigate how popula-
tions of neurons should encode a noisy signal. These studies used distinct encoding
frameworks, noise models, neuron models, or constraints and often also optimized
different functions (mutual information, Fisher information, stimulus reconstruc-
tion errors). Nevertheless, one common result of all of these studies is that in
the regime of high noise it is optimal to have a redundant coding scheme, which
“averages out noise” [29,38,42,59, 62,76, 78-86], while in the low noise regime it
is optimal to either have independent coding [29, 59,62, 76,84-86] or decorrelation
coding [38,42,79-83,87]. This is in agreement with other studies that investigated
filter sizes in single neurons and found large and monophasic filters — which means
increased redundancy — to be optimal in the presence of high noise [40,65,72]. Note
that the term “independent coding” comes from the fact that different parts of
the signal — e.g. high vs. low stimulus values — are independently transmitted in
different channels. This is contrasted to redundant coding, where the same signal
is transmitted in all channels; and decorrelation coding where decorrelated parts

14
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of a correlated signal are separately transmitted in different channels. In the case
of a correlated signal, decorrelation is the optimal strategy with low noise, while
without a correlated signal no decorrelation is possible and therefore independent
coding is the optimal strategy with low noise.

For populations of neurons, the difference between redundant and independent par-
allel coding can be interpreted as multiple neurons in the population that acquire
the same response thresholds to average out uncertainties in stimulus representation
due to noise — redundant coding — and neurons that acquire distinct thresholds to
optimally encode different parts of the stimulus distribution — independent coding
(Fig. 2.5A). This is in agreement with experimental data [29,84,86]. The intuitive
explanation is that for low noise each neuron encodes a specific part of the stimulus
space with high fidelity, thus giving high information about many parts of stimulus
space. For high noise, on the other side, the information about the stimulus is
heavily disturbed to such an extent that each single neuron cannot transmit much
information anymore, and it makes more sense to pool neurons together to achieve
at least some fidelity in one stimulus region.

A B
low noise high noise
rate Adapting
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L 50
stimulus _— g
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full diversity, no diversity, 0
"independent coding" "redundant coding" o0 01
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Figure 2.5: Efficient coding predicts diverse tuning curves at low noise levels and
redundant tuning curves at high noise levels. A. Schematic tuning curves of three
neurons show distinct thresholds 6 at low noise for optimal information encoding (left).
For high noise, the optimal solution is to have three equal thresholds (right). B. Measured
tuning curves from retinal ganglion cells in salamander which respond to the same linearly
filtered stimulus. Two distinct cell types are shown in color (“adapting”, red; “sensitizing”,
blue) which systematically differ in threshold and maximum firing rate. From [29].

2.4.3 Convergence of parallel information streams

As I have reviewed in the previous section, encoding information with parallel
streams using populations of neurons is advantageous compared to using a single
stream. Another question when maximizing information between stimulus and out-
put is how the output of the neuronal population converges further downstream.
Both convergence (several channels merging into a smaller number of channels) and
divergence (splitting of channels into a larger number of parallel channels) are seen
across all stages of sensory processing [2]. Channel divergence means more neurons
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are needed, i.e. a higher need for space, material, and energy. Therefore, from an
efficiency perspective, channel divergence is only favorable for high signal-to-noise
ratios [2] and convergence is especially advantageous for low signal-to-noise ratios.
This explains why there is much more convergence in the rod pathway compared
to the cone’ pathway in the retina [70].

Previous studies using the efficient coding hypothesis have assumed a framework
in which the spiking output of a neural population converges, or is lumped, into a
single output channel [85,86]. In contrast, other works have assumed a framework
without signal lumping, i.e. where the signal is encoded by the independent spiking
output of each neuron in the population [29,37,62,76]. In this thesis, I am going to
compare these two commonly used frameworks for stimulus processing (Sec. 3.3).

2.5 Phase transitions indicate sudden qualitative changes
of a system

For a population of two neurons, it has been found that the encoding scheme under-
goes sudden changes when efficiently encoding a noisy stimulus [29]: the transition
from independent coding at low noise to redundant coding at high noise happens
not gradually but suddenly with increasing noise. These sudden changes show many
similarities to phase transitions known from physics. Since I will also look into these
sudden transitions in my thesis and compare them to phase transitions I will give
the reader a brief introduction. If not stated otherwise, my sources of knowledge
for this section are [89,90].

In physics, phases are different states of the same matter and a phase transition
is a change between different states through the change of external variables like
temperature or pressure. During a phase transition, the properties of the matter
abruptly change. Well-known examples are the transition from ice to water or from
water to vapor at the melting point or boiling point, respectively. Other examples
are ferromagnets (above a critical temperature the magnetization suddenly disap-
pears), superconductors (below a critical temperature they suddenly lose all electric
resistance), superfluids (ultra-cold, liquefied Helium has zero viscosity!?) and the
miscibility of liquids (above a critical temperature two liquids become mixable).
Different phases can be characterized through macroscopic variables; depending
on the specific systems these are one of the following: density (in water-to-vapor

9Rods and cones are two types of photoreceptors, which transmit information about incoming
light to bipolar cells. Rods are very light-sensitive and fast on the cost of a lower signal-to-noise
ratio, while cones are less sensitive and slower but are less noisy. For example, each rod bipolar
cell on average gets input from approximately 35 rods while each cone bipolar cell on average
gets inputs from 2-6 cones [88].

10Viscosity quantifies the resistance of fluids to change their shape. Honey, for example, has a
higher viscosity than water. Superfluid Helium shows such remarkable properties like zero
viscosity — when being stirred it rotates indefinitely.
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2.5 Phase transitions indicate sudden qualitative changes of a system

transitions), magnetization (ferromagnets), electrical conductibility (superconduc-
tors), viscosity (superfluids), or crystal structures (water-to-ice transition). The
macroscopic variable of a system is called the order parameter. When an exter-
nal parameter like temperature or pressure continuously changes, the properties
of a system in general also change continuously. At a phase transition, however,
the properties of the system abruptly change when the external parameter is just
slightly varied. One of these properties is the order parameter, another is in general
the symmetry of the system. The value of the external parameter at which phase
transitions occur are called the critical value, e.g. critical temperature or critical
pressure.

Phase transitions are extensively studied in thermodynamics and statistical physics.
They are defined by a non-analytic behavior of the free energy of the system!!.
Non-analytic behavior means that the first or a higher-order derivative of the free
energy with respect to temperature is discontinuous (i.e. jumps) or diverges (i.e.
goes to infinity) (Fig. 2.6). Classically, phase transitions were classified according to
Ehrenfest into two classes [91]: if the first derivative of the free energy is discontin-
uous the phase transition is of first-order (Fig. 2.6B), while if the second derivative
is discontinuous the phase transition is of second-order (Fig. 2.6C). The modern
classification groups all phase transitions that are not first-order into the class of
continuous phase transitions and also includes divergent behavior of derivatives of
the free energy (in contrast to just discontinuous behavior).
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Figure 2.6: Schematic of free energy and its derivatives during phase tran-
sitions. A. Free energy F' depending on temperature 1" for systems showing a first- or
second-order phase transition (orange or blue color, respectively) at critical temperature T.
B. First derivatives of the free energy curves shown in A. For the system showing the first-
order phase transition, the first derivative of F/(T') is discontinuous at critical temperature.
C. For the system showing the second-order phase transition, the second derivative is either
discontinuous (solid) or diverges (dashed) at critical temperature.

In my studies of maximizing information transmission with populations of noisy

' The free energy is a quantity that all systems tend to minimize in the absence of outside force. If a
system has minimized its free energy it is said to be in an equilibrium state. As a consequence,
chemical reactions only happen spontaneously when the free energy is reduced during the
reaction.
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2 Foundations and literature

neurons, I discover behavior akin to phase transitions (Ch. 4). To find out how
these phase transitions are related to phase transitions studied in statistical physics,
I use measures like the moment-generating function of the neural responses, which
is related to the moment-generating function of the energy. In the appendix A.1, I
give a quick introduction to how phase transitions occur in statistical physics and
how they are related to the moment-generating function of the energy.
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3 Efficient coding in neural populations
with multiple noise sources

Remark: Some of the methods, results, figures, and text in this chapter are part
of an article entitled Efficient population coding depends on stimulus convergence
and source of noise which has been written together with Shuai Shao and Julijana
Gjorgjieva. The article has been uploaded to the preprint server bioRziv [1] and
is currently under review for publication in the journal PLOS Computational Biol-
ogy. All methods, results, figures, tables, and text from that article which are part
of this chapter were my contribution to the article. In this chapter, I specifically
mention if and what I have taken from [1] before each (sub)section.

In the previous chapters, I presented the assumption that biological systems opti-
mize their efficiency due to evolutionary pressure and that neural populations in
sensory organs are optimized towards efficiently encoding information about the
environment. Now, I will use that assumption to make a contribution in the under-
standing of why there is such a great variety of different neuron types in the sensory
organs. I use a model that is based on a population of spiking neurons that encode
a sensory stimulus under different noise scenarios. By maximizing its information
encoding, I investigate how the individual neurons of the population optimally di-
versify in their nonlinear properties and how this diversification depends on the
noise scenarios. Additionally, I will compare two different channel types that can
be used for information encoding. These are, first, the independent-coding channel,
where the full output of the neural population encodes the stimulus, and second,
the lumped-coding channel, where the output is reduced to a scalar variable. Rather
than investigating efficient coding in a specific sensory system, I sought to derive a
general theoretical framework that applies to multiple sensory systems.

This chapter is organized as follows: first, I describe the framework of my model
and carry out the mathematical calculations for the mutual information (Sec. 3.1),
followed by a description of why and how I carry out numerically the calculation
and maximization of the mutual information (Sec. 3.2). Afterward, I show how the
maximized information depends on the noise and how and why the independent-
coding channel outperforms the lumped-coding channel (Sec. 3.3). I also show how
the individual nonlinearities of the neurons of the population have to be organized
so that the information is maximized, including again a comparison between the
two channel types (Sec. 3.4). Then, I will dedicate some attention to unexpected re-
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3 Efficient coding in neural populations with multiple noise sources

sults, which seem faulty at first but still persisted after a battery of tests (Sec. 3.5).
An investigation on how different noise models and different stimulus distributions
affect the results is carried out in Sections 3.6 and 3.7, respectively. Finally, I
summarize and briefly discuss my results (Sec. 3.8).

3.1 Framework and analytical expressions

Remark: The following framework was first published in [1] and content-wise is
identical to [1]. This includes the methods (Egs. 3.1-3.7), Fig 3.1, and the text.
However, here I have slightly modified the text for stylistic reasons increased clarity.

A population of N neurons encodes a static, one-dimensional stimulus s drawn
from a stimulus distribution P(s) through the spike counts {ki,...kx} = k emitted
in a coding time window AT (Fig. 3.1A). If not stated otherwise, I use a Gaus-
sian stimulus distribution with mean zero: s ~ N(0,02). The mapping from the
stimulus value s to the spike count vector k happens through a set of N nonlinear
functions (tuning curves) {vi(s),...,un(s)}, where v;(s) denotes the firing rate of
the respective neuron ¢. The quahty of the mapping from s to k is quantified by
the mutual information I,,,(k; s) between s and k. Two noise sources, namely input
noise (introduced at the input of the nonlinearities) and output noise (introduced
at the output of the nonlinearity), distort the mapping and reduce the information.
Both noise sources are described in detail below.

I assume that the nonlinearities take a filtered stimulus s as input. For example, if
I assume that my sensory system of interest is the population of ANF's, which are
highly nonlinear processing units [92], then s represents the stimulus value following
preprocessing by the cochlea and the inner hair cells and not sound intensity when
it reaches the eardrum. In particular, I assume that all linear filtering is included
in this preprocessing.

I modeled the neurons’ tuning curves as binary, each described by two firing rate
levels {0, Vmax} and an individual threshold #; which determines which of the two
rates is the output of the tuning curve. Thus, the input-output functions of each
neuron ¢ can be represented by

Vi(x) = Vmax©O(0; — ), (3.1)

where O(.) is the Heaviside function.! The input to each nonlinearity is the sum of
stimulus and input noise z: x = s+ z. This simplification of a binary nonlinearity
is justified by the fact that many sensory neurons have been described with steep
tuning curves that resemble binary neurons [44,59,87], and it makes the problem
mathematically traceable. Moreover, as I will explain below, input noise causes a

!The Heaviside function is a simple one-step function: H(z) = 0 for 2 < 0, and H(x) = 1 for
x> 0.
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3.1 Framework and analytical expressions
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Figure 3.1: Stimulus encoding with a population of neurons in the presence
of input and output noise. A. Framework: A static stimulus s (top) is encoded by a
population of spike counts {k1,...kn} (bottom) in a coding time window AT. The stimulus
is first corrupted by additive input noise z and then processed by a population of N binary
nonlinearities {11, ...vx}. Stochastic spike generation based on Poisson output noise cor-
rupts the signal again. Thresholds {61, ...,0x} of the nonlinearities are optimized such that
the mutual information I, (k1, ..., kn; s) between stimulus and spike counts is maximized.
Inset: Introducing additive input noise and a binary nonlinearity can be interpreted as
having a sigmoidal nonlinearity after the input noise is averaged, (...),. Shallower non-
linearities result from higher input noise levels. B. Two different scenarios of information
transmission: With the independent-coding channel each neuron contributes with its spike
count to the coding of the stimulus, while with the lumped-coding channel all spike counts
are added into one scalar output variable that codes for the stimulus. From [1].

binary nonlinearity to appear as a sigmoidal. The question I mainly investigate
in this thesis is about how the information encoding can be optimized, i.e. under
which conditions the mutual information of the mapping from s to k is maximized.
To answer this question, I focus on optimizing the nonlinearities in the framework,
i.e. to find the optimal values of thresholds 0= {01, ...,0N} in the population of N
neurons:

0 = arg max I, (k; ). (3.2)
7
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3 Efficient coding in neural populations with multiple noise sources

As I will describe later, the optimal thresholds depend on the strength of the noise
sources. Therefore, I will first introduce the two noise sources used in the frame-
work.

Input noise

Before being processed by the nonlinearities, the stimulus s is corrupted by additive
noise z drawn from a distribution P(z). The size of input noise can be quantified
by the ratio of its variance (22) = o2 to the stimulus variance (s?) = 2. Without
loss of generality, I set 02 = 1 and thus 02 := 02/02 alone stands for the size of
input noise. The noise affects the stimulus independently for each nonlinearity, i.e.
I did not consider correlated noise since previous work has shown that the case of
correlated noise can be reduced to independent noise with lower o [76]. Similarly to
the stimulus distribution, I primarily examined the case with the noise drawn from
a Gaussian distribution, z ~ N(0,0?), but I also considered other distributions
with different kurtosis (z%) (see Sec. 3.6.1). Since the input to the nonlinearities is
x = s + z, the effective tuning curves, v;(s), can be described to have a sigmoidal
shape (Fig. 3.1A, inset). Note that here the threshold 6 is not the input value where
the effective tuning curve indicates a firing rate significantly different from zero, but
the input value where the tuning curve has the steepest part, i.e. at the inflection
point, where v = vy, /2. A larger input noise size, determined by the variance of
the noise 2, corresponds to a shallower slope of the tuning curve, without effecting
the threshold value. In the remainder of the text, I use the standard deviation o
to refer to the size of input noise.

Output noise

Output noise was implemented by generating output spikes stochastically. In gen-
eral, I use Poisson output noise, for which each of the spikes counts k; in a coding
window AT given firing rate v; is Poisson distributed, i.e.
k;

Plllv) = 2200 (33)
Output noise models different from Poisson noise are discussed in Sec. 3.6.4. Here,
large output noise corresponds to the case when the product of vy, and AT is
small; in this case the output of a given cell ¢ is often k; = 0 making it more
difficult to distinguish whether the underlying firing rate for that cell is 0 and thus
the stimulus was smaller than the threshold 6;, or whether the firing rate is vmax
and the stimulus was greater than #;. The output noise size can thus be quantified
by the expected? spike count for maximum firing rate, R := v AT, where small
R means high noise since for small R there is a higher ambiguity about the real
firing rate. For R — 0 the two firing rate levels 0 and vyax are indistinguishable,
meaning all information about the stimulus is lost (case of infinite output noise).

2For the Poisson distribution, the mean is given as the rate parameter, which here is v;AT.
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3.1 Framework and analytical expressions

The implementation of output noise described in this section can be understood
as a constraint on the maximum firing rate level vy, while having a fixed coding
window length AT.

Maximizing mutual information for two different coding scenarios

In addition to two noise sources, I further distinguish between two different scenar-
ios previously considered in the literature for how the sensory signal converges after
being processed by a population of neurons. First, the scenario described so far,
termed the independent-coding channel, where a vector of spike counts k= {k:}
generates a population code of the stimulus (Fig. 3.1B, top). Here, each spike count
independently contributes to the total information [29,62,76]. Second, the lumped-
coding channel where a scalar output variable k = ). k;, obtained by summing the
individual spike counts k;, codes for the stimulus [85,86] (Fig. 3.1B, bottom). For
given noise levels ¢ and R the goal is to find nonlinearities that optimally encode
the stimulus s with a vector of spike counts k = {k;} (independent-coding channel)
or the lumped spike count k£ = > k; (lumped-coding channel). As a measure for
optimality for the independent- and lumped-coding channels I choose the mutual
information between stimulus s and observed spike count k or k, respectively. In
other words, the optimization of the threshold vector 0 stated in Eq. 3.2 is per-
formed for both channel types.

The mutual information gives an upper bound on how much information can on
average be obtained about the input by observing the output. As described in

Section 2.3, it is given as the difference between output entropy H (k) and noise
entropy H(kl|s) [25]:

L (F; s) = H(F) - H(F]s) (3.4)

_ i i P(F) log, (P(E)) +3 .3 [ dsP(s) P(R]s) log, (P(“s))

k1=0 kn=0 k1=0 ky=0"°%

. G - P(k|s)
= ds P(s) P(kl|s) lo — 3.5
g% 3%£ (s) P(Fls) &<@®@wwww) (3.5)

where the input-output kernel P(E |s) is the probability of obtaining a certain vector
of output spikes for a given stimulus value. In the case of the lumped-coding
channel, the calculations are the same, except that the spike count is now one-
dimensional, i.e. I have I,,,(k; s) as the mutual information and P(k|s) as the input-
output kernel:

I (k; s) = H(k) — H(k|s) (3.6)

e P(k|s)
_kz_o / ds P(s) P(k|s) log, < T aTPP (Ms’)) (3.7)
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3 Efficient coding in neural populations with multiple noise sources

The way of calculating the respective kernels differ between the channel types and
are now derived in detail.

3.1.1 Mutual information of the independent-coding channel

Remark: The analytical expressions, methods, and text in this subsection (in par-
ticular, Egs. 3.8-3.21) were originally developed in [1] and content-wise are identical
to [1]. However, here I have slightly modified some text for stylistic reasons and
increased clarity.

In the case of the independent-coding channel, information about the input stimu-
lus s is encoded by the N-dimensional spike count vector k. The input-output ker-
nel P(k|s) = P(ki, ..., kn|s) can be expressed by multiplying P(k1, ..., kx|vi, ..., vn)
and P(vy, ...,vn|s) and summing over all possible combinations of firing rate states
{Oa Vmax}N:

P(kls)= > .. > P(ki,..knlvi,.ovn)P(vr, oonls)  (3.8)

VIE{Oyymax} VNE{Oyymax}

I assume no noise correlations and thus v; conditional on s are independent of each
other:

P(vy,...,un|s) = Hp(yz-\s) (3.9)

Furthermore, all k; are independent of each other conditional on a set of firing rates
{v1,...,vn}, and every k; only depends on vj_;:

P(ky, ... knlvr,vn) = [[ PRilvn, o vw) = [ ] P(kil) (3.10)

Taken together:

N N
Pkls)= > [[PKilv)Pwls)=]] >. Phlv)P(uls) (3.11)

ﬁe{oﬂjmax}N i i ViE{O7Vmax}

P(k;|v;) follows a Poisson distribution (Eq. 3.3) and P(v;|s) denotes the probability
of having a firing rate of zero (or vyax) for a given stimulus s. Since the input noise
fluctuations are on a much faster time scale than the length of the coding window
(over which the stimulus is assumed to be constant), an averaging over z can be
performed. Thus P(v; = 0|s) (or P(v; = Vmax|s)) is given as the probability that
stimulus plus noise is smaller (or larger, respectively) than threshold 6;, which is the
area under the noise distribution for which s + z < 6; (or s + z > 6;, respectively):

P(v; = Vmax|$) :/900 dzP,(z) =: H;(s), (3.12)
0
P(us = 0]s) :/_ =P, () = 1 — Hi(s). (3.13)
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3.1 Framework and analytical expressions

H;(s) can be viewed as the “effective” tuning curve that one would measure elec-
trophysiologically (see also Fig. 3.1, top right). It is the cumulative distribution
function of the dichotomized noise distribution. If the noise distribution is normal
distributed with variance o2, the effective tuning curve is given by the complemen-
tary error function®:

Hy(s) = > 5 erfe (0 f;) (3.14)

Then one can calculate the mutual 1nformatlon by performing the summation over
all output variables ki, ..., k. The output noise is included since P(k;|v;) is Poisson
distributed. According to the Poisson distribution, P(k; = 0|v; = vmax) = e~ . For
each neuron i, all spike counts greater than zero can be lumped into one state due
to the fact that if there are one or more spikes emitted, the firing rate v; cannot be
zero for any k; > 0 but must be vyayx since P(k; > 0|r; > 0) = 0 for v; = {0, Vmax }-
This state is denoted as 1 and from now on I have k; € {0,1}. Thus

P(k; = 1| = Vmax) = 1 — P(ki = 0|t = vax) = 1 — e . (3.15)
The mutual information can then be calculated as

N
I(k;s) = Z / (s) H Z P(k;|vi) P(vi)s) logs (fcl”) ds
, ,ds'P(s")...
ki,.. ,kNE{O l}N =1 1;€{0,Vmax } s
(3.16)
where the placeholder “...” indicate that P(k;|s) shall have the same expression as
outside the logarithm, namely:

N
=11 Y. Pki)Puls), (3.17)

=1 V'LE{OJ/max}

and with
ZP(/@ = 0|v;) P(vi]s) = (1 — Hy(s)) + e BH;(s) =: Qi(s), (3.18)
> Pk = 1) P(vils) = (1 — e F) Hy(s) =: Si(s) (3.19)

where output noise is R = vmaxAT as defined earlier. Taken together, the mutual
information for the independent—coding channel is

N
Hi Pki(s)
Z Z / (};[1 P]Ci(s)) log, <fs’ P L Pki(5/)> ds

1=0  kyn=0
(3.20)

. Qi(s), for kl =0
Py, (s) = {Si(S% for ki = 1 (3.21)

3The error function, erf(x), is defined as the integral from —oo to x over a Gaussian distribution,
while the complementary error function, erfc(z), is defined as the integral from z to co over a
Gaussian distribution.

with
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3 Efficient coding in neural populations with multiple noise sources

3.1.2 Mutual information of the lumped-coding channel

Remark: The analytical expressions, methods, and text in this subsection (in
particular, Eqgs. 3.23-3.29) were originally developed in [1] and content-wise are
identical to [1]. However, here I have slightly modified some text for stylistic rea-
sons and increased clarity.

In the case of the lumped-coding channel, the output spike counts of all cells are
lumped together and the information about the input stimulus is encoded by the
one-dimensional variable k = ). k; (Fig. 3.1B). For the case of only input noise,
where Q;(s) = 1 — H;(s) (Eq. 3.18) and Si(s) = H;(s) (Eq. 3.19), previous work
took advantage of the fact that only two output states exist for each neuron and
explained how P(k|s) can be calculated using a recursive formula [85,93]. I have
extended these calculations to additional Poisson output noise, where all neurons
can have potentially infinite output states. I write P(k|s) as P(k|N,s) and use the
notation by McDonnell et al. [85,93], who define the probability of having k spikes
with IV neurons and stimulus value s as

Ty, = P(k|N, s). (3.22)

Furthermore, they define P, |5 ; as the probability of cell ¢ firing k; spikes in a coding
window AT when the stimulus is s. Using this basis, I can now add output noise
by expressing the probability of having k spikes with N cells as the probability
of having ky spikes by the N-th neuron multiplied by the probability of having
k — kn spikes by the other neurons and taking into account all possibilities of ky
by summing over ky:

k
T = D Prnlsi=n - Ti e s (3.23)
where
Posa= > Plkilr)P(vils) (3.24)
Vi €{0,Vmax }

= P(k |Vz = O)P(VZ = 0|S) + P(kl‘l/l = VmaX)P(Vi = VmaX’S) (325)

s))+e BH;(s), fork;=0
_ [0 ) (s) 50

k,e,RH(S), for k; >0

is the probability of cell i emitting k; spikes given stimulus s, and

N
HPom = (1 - Hy(s)) + e "Hy(s) = [ [ Qi(s) (3.27)
=1

being the probability of having zero spikes with N cells, as well as

Tk},s = Pk1|s,i:1 (328)
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3.2 Numerical calculations of the mutual information

being the probability of having k spikes with IV = 1. With this recursive procedure,
the expression for the mutual information of the lumped channel

00 TN
I (k:s) = ds P(s) TN 1 ks 3.29
( 5) kzzo/s & (S) k,s 1082 (fs' dS’P(S/)TN ) ( )

k,s’

can be calculated. For every k = 0, 1,2, ... until an upper bound which is determined
by the precision one wants to reach,* T éVS is calculated for every ky = 0,1, ...k by
using the recursive formula in Eq. 3.23. This is computationally very expensive for
larger R (due to non-vanishing contributions even for very large k) and larger N
(since all combinations of spike outputs that lead to a single k have to be consid-
ered). Thus, I studied only populations with up to N = 3 neurons and with R —
the expected spike count in AT in the case of firing rate vmax — up to® R = 10.
As with the independent-coding channel, input noise o is included in H;(s) (see
Eq. 3.12) and the output noise level is denoted by R.

3.2 Numerical calculations of the mutual information

The goal is to find the optimal thresholds 6 that maximize mutual information for
given levels of input and output noise o and R:

0% = argmax I, (k; s|o, R). (3.30)
2

Since the expressions for the mutual information here (Egs. 3.20 and 3.29) contain
integrals over error functions or recursive formula, they have to be computed nu-
merically. As a consequence also the optimization has to be performed numerically.

3.2.1 Numerical integration

As can be seen from Egs. 3.20 and 3.29, numerical integration has to be performed
twice for each evaluation of mutual information. These numerical integrations hap-
pen to be the most computationally expensive parts. Since during the numerical
optimization a high number of evaluations of the mutual information are necessary,
it was important to make the integration process as quick as possible. After testing
several different algorithms (Riemann, Trapezoid, Romberg, Simpson, and adaptive
algorithms; [94]) for speed, I settled for the Trapezoid algorithm. In Sec. 3.5.2, I
will show that errors arising from numerical integration are negligible. To avoid
numerical instabilities in the case that lim, o xzlog(x), I always add a machine
epsilon, € &~ 2.2 - 10716 [95], to P(k|s), and P(k|s), respectively.

4T usually stop increasing k when contributions become smaller than 1072 bits

SNote that calculating just one P(k|s) for N = 3 and R = 10 requires on the order of 50000
evaluations of Eq. 3.24. To compute the information for one combination of thresholds, this
has to be done k(k — 1)/2 times where k is in the order of approximately 80. That means
around 150 million evaluations of Eq. 3.24, which again has to be performed many times
during optimization and for 200 different values of o.
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3 Efficient coding in neural populations with multiple noise sources

3.2.2 Numerical optimization

As for numerical integration, several algorithms exist for numerical optimization.
However, optimization seems to be more involved and thus a variety of different
algorithms exists, often specialized in specific properties of the function to opti-
mize [96]. After systematically exploring several of them, I chose the Nelder-Mead
simplex (NM) algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm, both implemented in the Scipy package [97,98]. Both of them are local
optimizers — which means they, in general, find only the (local) maximum close to
the initial point.® I tried global optimizers like basin-hopping but were found to be
too slow — at least without extensive adjustments of optimizer parameters.

The NM algorithm does not rely on estimating the gradient of the objective func-
tion, while the BFGS algorithm relies on calculating or estimating the inverse of
the Hessian matrix (see Eq. 4.3 in Sec. 4.1) to estimate the gradient. I found the
BFGS algorithm, in general, to be faster than the NM algorithm, however, for the
independent-coding channel, the BFGS algorithm becomes problematic around crit-
ical noise values where one eigenvalue of the Hessian approaches zero (see Sec. 4.3)
and thus leads to large numerical imprecisions when inverting the Hessian. For the
lumped-coding channel this is unproblematic (see Sec. 3.4.5 and Sec. 4.3). Thus
for speed purposes, I used an adaptation of the BFGS algorithm implemented in
Scipy [98] for the lumped-coding channel and an adaptation of the NM algorithm
for the independent-coding channel [97]. In Sections 3.4.5 and 3.5.2, I show that
in general for my calculations the specific optimizer is not very important — except
for speed purposes — as most of them lead to basically identical results and local
maxima can easily be spotted.

To spot possible local maxima (which are somewhat prevalent for N > 4), T ap-
plied a grid of initial values. After some trials, it was possible to predict what
form of initial values lead to local maxima. Furthermore, in general, local maxima
can be easily spotted and checked by looking at the plots showing optimal thresh-
olds [1]. T will describe this prevention of local maxima in more detail not here but
in Section 3.4.4 after the reader has become familiar how to read the plots showing
optimal thresholds. If not mentioned specifically otherwise, all results in my work
show global maxima.

The heavy numerical procedure limited my analysis to small population sizes with
a maximum of three neurons in the case of the lumped-coding channel and six
neurons in the case of the independent-coding channel [1].

SMore precisely, they find the local maximum in whose basin the initial point lies.
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3.3 Maximal mutual information of the respective channel types

3.3 Maximal mutual information of the respective channel
types

Remark: The results of this section (Fig. 3.2 and the text) have been published
before in [1] and content-wise are identical to [1]. However, here I have slightly
modified some text for stylistic reasons and increased clarity.

In this section, I will show how maximized information values for the lumped-
and independent-coding channels for a population of N = 3 neurons depend on
both input and output noise values. Then I will compare the performance of the
two channel types with each other.

As expected, the smaller the noises, the higher is the maximized mutual informa-
tion; both for the independent-coding and the lumped-coding channel (Fig. 3.2A
and B, respectively). Additionally, I found that the increase of information with
smaller output noise (higher R) saturates faster in the case of the independent-
coding channel, as can be seen by the flattening of the contour lines as R increases
(compare Fig. 3.2A and B). Note that the optimal thresholds that lead to these
values of maximal mutual information are shown in Figure 3.4 and described in
Section 3.4. I quantified the ratio and the absolute differences in information trans-
mission between the two channels (Fig. 3.2C,D). For all finite input and output
noise levels, the independent-coding channel outperforms the lumped-coding chan-
nel. The information loss due to lumping is the largest at intermediate levels of
output noise and low levels of input noise; for instance, at R ~ 2.5 and ¢ ~ 0
the independent-coding channel transmits up to 40% more information than the
lumped-coding channel (Fig. 3.2D). To best visualize these differences, I fixed one
source of noise and varied the other. For fixed output noise R, the information loss
in the lumped-coding channel relative to the independent-coding channel mono-
tonically decreases as a function of the input noise o (Fig. 3.2E). There, I also
included the case of zero output noise (R — o), showing that in this special case
the two channels transmit basically the same amount of information.” The differ-
ence in information transmitted by the independent- and lumped-coding channels
as a function of the output noise R for fixed input noise o demonstrates that the
information loss due to lumping is a non-monotonic function of output noise R
(Fig. 3.2F), with the largest loss occurring in the biologically realistic range of in-
termediate noise [87,99]. In summary, I found that in the presence of both input
and output noise, the lumped-coding channel transmits less information than the
independent-coding channel, especially for intermediate output noise values. In the
following subsections, I will give an intuitive explanation of why this is the case and
what it potentially implicates for sensory systems in biology.

"For the lumped-coding channel it is computationally very expensive to have large values of R,
but that R — oo is computationally cheap.
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Figure 3.2: Maximized mutual information for the lumped- and independent-
coding channels for a population of three neurons. All information units are in bits.
A. Information of the independent-coding channel is color-coded for different combinations
of output noise R and input noise 0. White contours indicate constant information. B. In-
formation of the lumped-coding channel. C. Absolute information difference between the
two coding channels. D. Information ratio between the two coding channels. Both C and
D show a region of intermediate output noise where the independent-coding channel sub-
stantially outperforms the lumped-coding channel. E. Information difference depending on
input noise o for various levels of output noise R, corresponding to vertical slices from C.
In addition, the case for no output noise (R — 00) is shown for comparison. F. Information
difference depending on output noise R for various levels of input noise o, corresponding
to horizontal slices from C. Adapted from [1].

3.3.1 Why the independent channel encodes more information

Remark: The results of this section (Fig. 3.3 and the text) have been originally
published in [1] and content-wise are identical to [1]. However, here I have slightly
modified some text for stylistic reasons and increased clarity.

To gain intuition on why lumping causes an information loss and why this loss
is highest for intermediate output noise while it vanishes in the limits of zero and
infinite output noise, I illustrate the case with vanishing input noise (¢ = 0) and a
population with two neurons with thresholds 81 < 85, which divide the entire stim-
ulus distribution into three regions: Aj:s < 0y, Ag: 0 < s <y and Ag: s> 0
(Fig. 3.3, left). Here, I compute all possible spike counts and corresponding “esti-
mation probabilities,” P(s € AZIE) which describe the probability of the stimulus
being in each of the three regions {A;};_;; 23y for a given spike count k (Fig. 3.3).
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Figure 3.3: Schematic illustrating the dominance in information of the
independent- over the lumped-coding channel. Here, I treat the case of N = 2
cells and vanishing input noise (o = 0). Left schematics: The relative positions of optimal
thresholds of both the independent- and lumped-coding channel are shown in red and blue,
respectively (see also Fig. 3.4). A,C. For the limits of vanishing and very high output noise,
the stimulus “estimation probabilities” P(s € A;|k) are identical. B. In contrast, in the
case of intermediate noise levels these estimation probabilities are different, as illustrated
when the total number of spikes k = k; + k3 = 1. Yellow shading shows where the noise
entropy is higher in the lumped-coding channel. «, o/, and 8 denote probability values
which depend on the exact noise level. Red and blue color indicate values for lumped- and
independent-coding channel, respectively. From [1].

These estimation probabilities vary as a function of output noise, and I consider
three cases: negligible, intermediate, and very high output noise. First, in the
limit of vanishing output noise where R = vy, AT — oo the information encoded
by both channels is identical because with optimal thresholds both reach capacity
and transmit logy(N 4+ 1 = 3) = 1.6 bits of information (Fig. 3.3A). In particular,
whenever the stimulus is larger than the threshold of a given cell, that cell will on
average fire R spikes. Since R — oo, for that given cell the probability of having 0
spikes is infinitesimal. This unambiguously determines the stimulus region {A;} in
which the stimulus occurs. Hence, the estimation probabilities all become either 0
or 1, leading to identical output entropy for both coding channels, and consequently
identical mutual information with zero noise entropy.

For intermediate output noise, the independent- and the lumped-coding channels
have distinct estimation probabilities. Although in principle the number of emitted
spikes can be anything, let me consider the example where the total number of
spikes is 1 (k1 + k2 = 1, Fig. 3.3B). I demonstrate that the lumped-coding chan-
nel loses information because knowledge about the identity of which individual cell
spiked is lost. For example, if the cell with higher threshold 6, fires at least one
spike, this implies with certainty that the stimulus is greater than 6». The lumped-
coding channel fails to encode this information since in principle the spike could
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3 Efficient coding in neural populations with multiple noise sources

also have been emitted by the cell with lower threshold 6. Thus, the estimation
probabilities o/ and 1 — o' for the stimulus being below or above 0,, respectively,
are nonzero. For the independent-coding channel, however, the corresponding esti-
mation probabilities o and 1 — « are nonzero and non-one only if the cell with the
lower threshold 6, fires a spike, but not if the cell with the higher threshold 6 fires
a spike. Therefore, for the independent-coding channel, there are more cases in
which the uncertainty is resolved, leading to higher mutual information. As an ex-
ample, for output noise of R = 2.5, the mutual information for the independent- and
lumped-coding channel is 1.30 and 1.01 bits, respectively (for optimized thresholds).

For very high output noise, R — 0, the expected spike count of either of the
cells is very small, even when the stimulus is larger than the respective threshold
with the resulting firing rate vmax (Fig. 3.3C). This means that most of the time the
observed spike count of each cell is 0, rarely 1, and never 2 (the probability of ob-
serving more than one spike is infinitesimal). In this high noise regime, the optimal
solution for both the independent- and lumped-coding channels is to make both
thresholds identical, i.e. §; = 03 (“redundant coding”, see Sec. 2.4.2 and the results
of optimal thresholds in the next section). Therefore, the intermediate regime A,
does not exist for very high output noise and the two possibilities of having a spike
from either cell are equivalent. Thus, if the observed spike count is 1, then there is
no possibility of error for either channel. Similarly, if the observed spike count is 0,
the two different estimation probabilities are the same for both channels, namely £
and 1 — 3 for the stimulus being above or below 61 2, respectively. This results in
identical mutual information between stimulus and response for both channels.

In summary, one can say that the contribution of each neuron to the overall spike
count provides additional information about the stimulus, which is lost by summing
all the spike counts through lumping. Thus, lumping acts as another form of noise,
since it corrupts information transmission. Now I will give reasons why it could
still be beneficial for biological systems to use lumped-coding channels.

3.4 Optimal thresholds which maximize information
encoding

In this section, I will present the optimal population thresholds for which the spiking
output of the populations achieves maximal information about the stimulus. I first
discuss both channel types with three neurons, for which the maximized information
has already been shown in the previous section. Afterwards, I will present optimal
thresholds when I extend the number of neurons for up to six for the independent-
coding channel. Furthermore, I will show that in the limit cases of one noise value
going to zero my results are equal to results from the literature. Then, I will
describe how in the optimizing process I avoided mistaking suboptimal thresholds
of local maxima of the information with truly optimal thresholds of the global
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3.4 Optimal thresholds which maximize information encoding

maximum. Finally, I will show for the lumped-coding channel that a gradient-
based optimization algorithm provides the same results as an optimizer based on
the simplex method.

3.4.1 General results for lumped- and independent-coding channel

Remark: The results of this subsection (Fig. 3.4 and the text) have been originally
published in [1] and content-wise are identical to [1]. However, here I have slightly
modified some text for stylistic reasons and increased clarity.

For both the independent- and lumped-coding channel with three neurons, the opti-
mal number of distinct thresholds in the population depends on the source and level
of noise (Fig. 3.4). When both sources of noise are negligible, the optimal number of
thresholds is three, representing a fully diverse population where all thresholds are
distinct. However, when both input and output noise is high, the optimal number
of thresholds in the population is one, representing a fully redundant population
where all thresholds are equal. This is true for both the independent- and lumped-
coding channel (Fig. 3.4A and F, respectively) as it is in accordance with many
previous studies (see Sec. 2.4.2). The most interesting cases arise at intermediate
input and output noise levels, where I found two distinct optimal thresholds, i.e.
two thresholds are equal and the third threshold has a different value.

To gain a better understanding of the transition between different threshold regimes
as a function of noise, I fix one level of noise and examine the thresholds as a func-
tion of the other noise level. I found that the number of distinct thresholds in the
population generally decreases with increasing input or output noise through a set
of bifurcations. I call the noise levels at which these bifurcations in the thresholds
appear critical noise levels. For the lumped-coding channel, the threshold bifurca-
tions occur at lower noise levels compared to the independent-coding channel, i.e.
the critical noise levels of the lumped coding channel are smaller than those of the
independent channel. This result makes intuitive sense because as was pointed out
in the previous section (Sec. 3.3.1), lumping multiple information pathways into
a single coding channel reduces the possible values of the encoding variable and
increases the noise entropy, and therefore acts like an additional noise source. Thus
the effective critical noise levels — by taking into account the noise-like effect of
lumping — of the lumped- and independent-coding channel might actually be in a
similar range.

Optimal thresholds of the independent-coding channel

For the independent-coding channel, the thresholds become distinct from each other
gradually, in the sense that the differences between the optimal thresholds change
continuously, both as a function of output noise when the input noise level is fixed
(Fig. 3.4B) and also as a function of input noise when the output noise level is fixed
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Figure 3.4: Optimal thresholds for the independent- and lumped-coding chan-
nels. Optimal thresholds for the independent-coding channel (A-E) are compared to the
lumped-coding channel (F-J) for a population of N = 3 neurons. A. The optimal num-
ber of distinct thresholds depend on input noise ¢ and output noise R. B. The optimal
thresholds as a function of output noise for a fixed value of input noise (¢ = 0.4). C. The
optimal thresholds as a function of input noise for a fixed value of output noise (R = 1).
D. The optimal thresholds as a function of output noise in the limit of no input noise
(o = 0). E. The optimal thresholds as a function of input noise in the limit of vanishing
output noise (R — o0). F-J. As (A-E) but for the lumped-coding channel. Intermediate
noise levels in (G,H) take smaller values of R and o in the lumped-coding channel since
lumping itself acts like a source of noise (G: 0 = 0.1, H: R =9). Note the different scaling
of the R-axis in (G,I) compared to (B,D) and the different values of the fixed noise source
in (B,C) compared to (G,H). From [1].

(Fig. 3.4C). In the case when one source of noise is zero, these bifurcations repre-
sent the transition from all optimal thresholds being distinct directly to the state
where all optimal thresholds are identical, without an intermediate state where two
thresholds are the same (Fig. 3.4D,E). For instance, in the absence of input noise
(o0 = 0), the population’s thresholds are all distinct from each other for all finite
ranges of output noise except when R — 0 (Fig. 3.4D). In the absence of output
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3.4 Optimal thresholds which maximize information encoding

noise (R — 00), there is a critical value ot > 0 at which the population transitions
directly from all thresholds being distinct to all thresholds being equal (Fig. 3.4E).
Note that for all these bifurcations the threshold differences change continuously,
i.e. there are no jumps of optimal threshold values with varying noise.

Surprisingly, for the independent-coding channel I found a small range of input
noise, 0.54 < ¢ < 0.6, for which I observed a non-monotonic change in the number
of distinct optimal thresholds when varying the output noise R (visible in the tail
of red area indicating three distinct thresholds in Fig. 3.4A): for this range of o,
the optimal number of distinct thresholds with increasing output noise is 3-2-3-2-1,
i.e. the optimal number of distinct thresholds changes from three thresholds being
distinct, to two thresholds being distinct, to again three thresholds being distinct,
to two thresholds being distinct before finally, the optimal solution is that all three
thresholds are equal. T will treat this finding with more detail and within a greater
context in Section 3.5.

Optimal thresholds of the lumped-coding channel

In comparison, for the lumped-coding channel, the bifurcations occur as the thresh-
old differences at critical noise values change abruptly, i.e. discontinuously, when
one noise source varies and the other remains fixed (Fig. 3.4G,H). Here, the system
has an intermediate degree of redundancy, i.e. two thresholds being distinct, for a
large range of noise values, and the transition from one to three distinct thresholds
is not simultaneous as either noise vanishes. Rather, the discontinuous threshold
jumping at each bifurcation becomes continuous (Fig. 3.41), as normally seen for
the independent-coding channel, or partly continuous (Fig. 3.4J). In Chapter 4 I
will discuss in great detail the cause and implications of these differences between
the two channel types. My results in the cases of one noise source vanishing for
the lumped-coding channel agree with two previous studies, where a lumped-coding
channel was studied with only output noise (Fig. 3.41) [86], or with only input noise
(Fig. 3.4J) [85]. In Section 3.4.3 I will show that my results in these limit cases are
in fact equivalent to previous studies. My results are also consistent with previous
studies for small populations of two neurons and only one source of noise [29,59,62],
large populations with only output noise [37] and two-neuron populations with mul-
tiple noise sources [76].

3.4.2 Results for larger populations (independent-coding channel)

Remark: Two figures of this subsection (Fig. 3.5A, and 3.6B) have been previ-
ously published in the supplementary material of [1] where they were also briefly
mentioned in the main text. Here, I show these two figures again and present and
discuss them in a larger context.

The smaller computational load of calculating the mutual information of the independent-
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3 Efficient coding in neural populations with multiple noise sources

coding channel allowed me to study optimal thresholds for larger neural populations
with up to six neurons. There, optimal thresholds, in general, show the same pat-
tern of full redundancy (i.e. all thresholds are equal) at high noise levels and no
redundancy (i.e. all thresholds are distinct) at low noise levels.

For four neurons, the transition from full to no redundancy with decreasing noise
levels happens gradually through three transitions in the presence of both input
and output noise (Fig. 3.5B,C). In the case of only output noise, the thresholds are
fully distinct for all finite noise values (Fig. 3.5D), while for only input noise two
transitions happen simultaneously at the same noise value (Fig. 3.5E).
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Figure 3.5: Optimal thresholds for a population of four neurons (independent-
coding channel only). A. The optimal number of distinct thresholds depend on input
noise o and output noise R. Adapted from [1]. B. The optimal thresholds as a function of
output noise for a fixed value of input noise (¢ = 0.35). The arrow indicates a discontinuous
threshold bifurcation. C. The optimal thresholds as a function of input noise for a fixed
value of output noise (R = 1). D. The optimal thresholds as a function of output noise in
the limit of no input noise (¢ = 0). E. The optimal thresholds as a function of input noise
in the limit of vanishing output noise (R — 00).

A phenomenon that is not seen for the independent-coding channel with only three
neurons is that of discontinuous threshold bifurcations, i.e. where optimal thresh-
olds suddenly “jump” from one value to a very different value with changing noise.
These discontinuous threshold bifurcations appear near the bifurcation to full re-
dundancy, interestingly while the optimal number of distinct thresholds remains
two (Fig. 3.5B, arrow). One can argue that having three equal thresholds and a
fourth being distinct, i.e. 84 # 03 = 02 = 6, means more redundancy (or less di-
versity) than having two times two equal thresholds, i.e. 04 = 03 # 03 = 61, even
though the number of distinct thresholds is two in both cases. With that argument,
this behavior of a discontinuous threshold jump of 3 fits very well into the general
pattern of increased redundancy with increasing noise. Nevertheless, I will treat
this phenomenon of discontinuous threshold jumps with more detail in Section 3.4.4
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3.4 Optimal thresholds which maximize information encoding

since they imply interesting consequences.

For six neurons, the basic pattern already described for three and four neurons
stays the same for high output noise (Fig. 3.6A,C,D,I). However, more irregularities
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Figure 3.6: Optimal thresholds for a population of six neurons (independent-
coding channel only). A. Optimal number of distinct thresholds depending on input
noise o and output noise R for small ¢ and a small range of R. Single beige dots in the
darker regions are due to local maxima. B. As A but with a wide range of o and large R.
Adapted from [1]. C-H. Optimal thresholds for slices of fixed input noise. I-K. Optimal
thresholds for slices of fixed output noise.

appear for lower output noise (Fig. 3.6B,E-H,J,K). The reason for these irregulari-
ties is that for some noise ranges the two middle thresholds, 63 and 64, get so close
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3 Efficient coding in neural populations with multiple noise sources

to each other that is more optimal that they have equal values instead of having
distinct, but very similar values (Fig. 3.6E,F,J,K). This behavior is also a form
of non-monotonic change in the number of distinct optimal thresholds, but again,
these non-monotonicities will be treated in Section 3.5.

In conclusion, I can say that at least for the independent-channel the basic pattern
of transition from full threshold diversity to full redundancy through subsequent
bifurcations also remain valid for larger populations. However, with larger popu-
lations more and more special phenomena like discontinuous bifurcations and non-
monotonic threshold behavior occur and the patterns of optimal thresholds become
less clean.

3.4.3 Comparing results in the limit of one noise source with results
from the literature (lumped-coding channel)

For the lumped-coding channel and one noise source only, the calculations are much
less involved and have been described previously: McDonnell et al. looked at input
noise only [85] and Nikitin et al. looked at output noise only [86]. Using their
methods,® T reproduced their results and compared the results of my calculations
with one noise source being very small to their respective results.

First I compared my result with very small input noise with Nikitin et al. For
N = 3 and very small input noise of ¢ = 0.01 my calculations lead to very similar
optimal thresholds (Fig. 3.7A) and maximized mutual information (Fig. 3.7B) as
Nikitin et al.’s calculations. The exceptions are one local maximum shortly be-
fore the first threshold merging and small deviations in maximized information for
large R. The former is likely due to a local maximum which would be resolved with
a grid of initial optimization values, while the latter is due to the fact that o = 0.01
is considerably larger than ¢ = 0. However, it was not possible to run a grid of
initial values or to further decrease o, since both a large R and a small o are very
expensive with N = 3 neurons.”

Then I compared my result with very small output noise with McDonnell et al.
Since very small output noise here means R 2 50 (with R = 35, for example, there
are still considerable differences, not shown), I could only do this comparison for

8For both of their methods, the underlying approach of numerically optimizing the mutual infor-
mation is similar to that described in my work. The method of McDonnell et al. is analog to
that in Sec. 3.1.2 but with less summation terms due to missing output noise. The method of
Nikitin et al. allows for fast numerical calculation of the mutual information since no numer-
ical integration has to be performed, due to the error functions (see Eqgs. 3.12-3.14) becoming
binary. However, I slightly had to modify their setup: in their work, they also optimize the
optimal weighting of the single channels before lumping them. I set these weights to 1/N since
I have an equal weighting of all channels.

9The result shown in Figure 3.7A,B took more than three days of computing on a cluster with
32 cores.
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Figure 3.7: The results using the lumped-coding channel in the limit of one
noise correspond to results from the literature. A,B. The lumped setup (N = 3
cells) with very small input noise (0 = 0.01) is compared to Nikitin et al., who looked into
a lumped setup with only output noise [86]. A, B. The lumped setup (N = 3 cells) with
very small input noise (¢ = 0.01) is compared to Nikitin et al., who looked into a lumped
setup with only output noise and can calculate the mutual information without numerical
integration [86]. A. Optimal thresholds depending on output noise. The dashed vertical
line denotes the first threshold split calculated analytically for the lumped-coding channel
without input noise [86]. B. Maximized mutual information depending on output noise.
C, D. The lumped setup (only N = 2 cells since numerical calculations become not feasible
for R > 10 and N = 3) with very small output noise (R = 50) is compared to McDonnell
et al., who looked into a lumped setup with only input noise [85]. Note that the curves lay
on top of each other. E. Optimal thresholds in the lumped setup with only input noise and
large neuron number (N = 15), reproducing the result of McDonnell et al. but plotting it
with continuous lines of different colors. That way, local maxima and threshold switches
can be easily spotted. F. The same result as in E but in style McDonnell et al. plotted
optimal thresholds (see their Fig. 3 in [85]). Due to unconnected dots one often does not
see the existence of local maxima, threshold switching, or how exactly which thresholds
bifurcate.

N = 2. For this case, both the optimal thresholds and the maximum information
are in accordance with McDonnell et al. (Fig. 3.7C,D). Therefore I conclude that
my way of calculating the mutual information in the case of a lumped setup with
both additive input noise and Poisson output noise and my way of optimizing the
optimal thresholds is consistent with previously published research.

As a side note I want to point out that McDonnell et al.’s way of plotting their

optimal thresholds with black dots only (Fig. 3.7F) is potentially concealing the
existence of suboptimal thresholds due to local maxima: when comparing their
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way of plotting to my way of plotting thresholds in color and with connecting lines
(Fig. 3.7E) one sees that many irregularities can be concealed.

3.4.4 Avoiding suboptimal thresholds in the case of local maxima

With optimization problems, there is always the general possibility that there exist
one or more local optima in addition to a global optimum. Classical optimization
algorithms in general just find the (local) optimum in whose proximity they started
the search. Now that the reader has become familiar with how optimal number
of distinct thresholds and the optimal threshold values behave with changing noise
values, I am going to use some examples to explain how I avoided local maxima.

For N = 2 neurons it is still possible to plot the information landscape I,,,(01,62)
as a heatmap and with contours to get an impression if there are local maxima.
Already for N = 3 this is not trivial anymore. A simple approach is to use a
grid of initial threshold values and for each element of the grid perform a local
optimization. This approach also gets computationally involved for larger N as
the number of local optimizations that have to be performed scales with the power
of N. Therefore, for high-dimensional optimizing one usually uses global optimiza-
tion algorithms, which are designed to find the global maximum in a landscape of
many local maxima [96].

There exist a large zoo of global optimization algorithms, which are often specifi-
cally designed for the properties of the specific landscape. These properties include
the number and distributions of local maxima, the size and range of the basins of
the maxima, how much the peaks of the maxima actually differ, etc. Fortunately,
it turned out that my information landscapes are usually very concave'?, especially
for smaller populations: for the independent-coding channel it was impossible to
find local maxima for N = 2 and still not easy!! for N = 3. For N = 4 and N = 6,
local maxima regularly appeared, but were easy to spot (described below). For the
lumped-coding channel, local maxima only appeared at threshold bifurcations, and
even there the whole information landscape had exactly one local maximum. To
be able to comprehensively describe the details, I give an overview of four different
types of local maxima that I encountered and describe them step by step (Tab. 3.1).

107 ¢. they are positively curved — like a parabola — almost everywhere. Mathematically, this is
the case when the second derivative of the information with respect to a threshold is negative
for all thresholds at every point [100].

1T tried a grid of initial vectors to find local maxima, but the only initial threshold vector that
gave more than a handful of local maxima (in most cases it was just zero) out of 40 000 noise
combinations was the null-vector, i.e. g = (0,0,0). Even in this case, local maxima are the
absolute minority (see Fig. 3.10).
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3.4 Optimal thresholds which maximize information encoding

Table 3.1: Overview of the different types of local maxima. “# bifu.” means that
the local maximum happens near (in terms of noise values being close to critical noise
values) bifurcation of optimal thresholds or are directly related to it. “#dy eff.” means
that the optimal threshold diversity, #dy, is effected and thus differs between the local
and the global maximum; these are very easy to spot in the color maps showing #dy(R, o)
(see Fig. 3.10A) and thus called “intrusive”. The columns “Indep.” and “Lump.” show
that some types of local maxima do only appear for a minimum population size or do not
appear at all for the respective channel types. The last column specifies how the respective
type of local maximum can be avoided: either by a grid of initial threshold values 8y or by
adapting 6y to the optimal thresholds from slightly different noise values (see Fig. 3.9A-C)

Type Example 6 bifu. #dy eff. Indep. Lump. Avoiding
(1) Discont. bifurcation Fig. 3.4G,H, 3.9B,C yes yes not seen always adapt 0o
(2) Discont. switching Fig. 3.5B,C, 3.9D yes no N >4 not seen adapt g
(3) “Unintrusive” random | Fig. 3.9E no no rarely rarely adapt g
(4) “Intrusive” random Fig. 3.10A-C no yes N>3 not seen | grid of g

Overview of different types of local maxima

Remark: Some panels of Figure. 3.8 in this subsection have appeared in a similar
form in a different context in [1]. Here, I use adapted and extended versions of
these panels to discuss results in a different context.

First, there are local maxima due to discontinuous threshold bifurcations which
I call type (1) and (2). They necessarily appear since every discontinuous threshold
bifurcation implies a switch from a local to a global maximum (Fig. 3.8A,B; also
treated in more detail in Fig. 4.4 in Sec. 4.1). In contrast, continuous threshold
splits do not involve a switch from a local to a global maximum (or vice versa) and
thus not necessarilly imply the presence of a local maximum (Fig. 3.8C,D).

At type (1) local maxima, the optimal number of distinct thresholds, #dp, actually
changes (see Fig. 3.4G,H). To reliably avoid confusing type (1) local maxima as
global maxima, optimal thresholds are obtained for each noise value by using two
different initial threshold vectors 6 in the optimization process. First, by using the
optimal thresholds from the slightly larger noise value as initial values, 50 4, and
second, by using the optimal thresholds from the slightly smaller noise values, 50 T
(Fig. 3.9Aj. Then for each noise level two optimization procgdures are performed,
one with 0y | as initial threshold vectors and the other with 6y 1. The optimization
procedure with bo 1 as initial conditions reliably finds the maximum that is global
for low noise values, which then becomes local at the critical noise value, and which
then vanishes eventually for further increased noise (see again Fig. 3.8A,B). The
optimization procedure with 50 l as initial conditions reliably finds the maximum
that is global for high noise values, which then (with decreasing noise) becomes local
at the critical noise value, and which then vanishes eventually for further decreased
noise. By comparing the two maxima for each noise value, one can identify the
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3 Efficient coding in neural populations with multiple noise sources
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Figure 3.8: Discontinuous threshold bifurcations imply at least one local maxi-
mum. A. Information landscapes for continuous threshold bifurcations. Each panel qual-
itatively shows the information landscape I,,(01,02) for a given noise value, from left to
right the noise value increases. Global maxima are shown in red, local maxima in blue.
At noise levels close to the critical noise level, there exist at least one local maximum. At
the critical noise level, the local maximum becomes global and vice versa (middle panel).
B. Schematic slices through the information landscape to visualize the switch from local
to global maxima. C. As in A but for continuous threshold bifurcations. In general, there
exist no local maxima. D. Schematic slices through the information landscape.

global and the local maximum with the respective optimal and suboptimal thresh-
olds at each noise value (Fig. 3.9B). The information differences between local and
global maxima are shown in Figure 3.9C.

At type (2) local maxima, there are also discontinuous bifurcations of optimal
thresholds, however, the optimal number of distinct thresholds, #dy, does not
change (see Fig. 3.5B, arrow; and Fig. 3.9D), since one or more optimal thresh-
olds just “switch sides”: in Fig. 3.5B, for example, with decreasing R, 03 switches
from being equal to 6, to being equal with #; and 69; during that switch the number
of distinct optimal thresholds does not change and remains constant at #dy = 2.
Type (2) local maxima cannot be identified using the color maps showing #dp(R, o)
(like Fig. 3.5A). Instead, they can only be seen when plotting optimal thetas in de-
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Figure 3.9: Different examples of local maxima due to discontinuous threshold
bifurcations. A. Schematic showing how the mutual information of both local and global
maxima depends on noise. At discontinuous threshold bifurcations, the local maximum
becomes global and vice versa. Two different initial threshold vectors 50 are used for
the optimization at each noise value: 6y | (red) is the optimal threshold vector from
the slightly larger noise value and bo + (blue) is the optimal threshold vector from the
slightly smaller noise. The information difference between local and global maximum is
denoted as AI | andAI 1, respectively. B. Thresholds resembling both the local and
global maxima around a discontinuous threshold bifurcation (lumped channel with N = 3
neurons). Blue and red lines show the optimized thresholds using 50 J and 50 J as initial
values for optimization. The green line shows the globally optimal thresholds for each
o, which is obtained through choosing for each o the thresholds which lead to higher
information (see next panel). C. Information difference between optimal thresholds and
the ones obtained in B by using 50 J and 50 1 as initial threshold values. D. An example
of local maxima around discontinuous threshold bifurcations using the independent-coding
channel (N = 4 neurons). For a range of output noise values R the optimizer jumps between
the local and the global maximum. E. An example of local maxima not related to threshold
bifurcations. Independent-coding channel with N = 6 neurons.

pendency of one noise source while fixing the other one (e.g. Fig. 3.5B). Since they
only appear for N > 4, I did not spend too much time on techniques for reliably
spotting or avoiding them. However, in principle they can be avoided by the same
technique of using adapted initial threshold vectors as used for type (1) local max-
ima, i.e. using optimal threshold vectors from both lower and higher noise values
as initial vectors.

Type (3) local maxima are not related to any bifurcations of optimal thresholds
and the optimal number of distinct thresholds does not change (Fig. 3.9E). Thus
they are difficult to spot using color maps showing #dy(R, ). In addition, they
seem to appear randomly, at least I have not found a clear pattern. Thus, for
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3 Efficient coding in neural populations with multiple noise sources

type (3) local maxima one again has to look at the slices where the optimal thresh-
olds are plotted against one noise level while the other one is fixed. Luckily they
do appear very rarely and can be reliably avoided using adapted initial threshold
vectors for optimization.

Type (4) local maxima are also not related to any bifurcations of optimal thresh-
olds but for them, the optimal number of distinct thresholds is effected, so they
can easily be spotted using color maps showing #dy(R, o) (Fig. 3.10A). They also
seem to appear randomly. I have not seen them for the lumped channel, and for
the independent channel, they only appear when using the null-vector as the initial
threshold vector for optimization or for N = 6. They can in most cases be avoided
by using initial threshold vectors as for the previous three types, however, in some
cases for N = 6 they can only be reliably avoided by using a grid of initial threshold
vectors for optimization.
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@ F) . < 05
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[=}
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£
0.6 e 3 = s
a N 0.2 0.4 0.6 6 4 2 0
)
- o R
<
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Figure 3.10: Obtaining a few local maxima by changing the initial values fed to
the optimization algorithm. To find local maxima for the independent-coding channel
and N = 3, initial threshold values being used for the optimization process are changed to
0o = {0,0,0} (instead of y = {—0.4,0.2,0.8}). A. Optimal number of distinct thresholds
(compare to Fig. 3.4A). The single white dots in the red space and the single red dots in the
white space represent noise combinations for which the optimization algorithm ran into a
local maximum. B, C. Two slices through A for which suboptimal thresholds occur. These
are clearly visible as single threshold jumps. D, E. Corresponding information loss at the
local maximum versus the global one. The information difference and the information ratio
are very close to zero or one, respectively.

Conclusion

For the different types of local maxima there exist techniques to reliably spot these
suboptimal thresholds. Mostly, however, the local maxima only appear for N > 4
and thus do not play a big role for most of my work. Besides, the information
difference between local and global maxima are often rather small, for example
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3.4 Optimal thresholds which maximize information encoding

in the order of 10~* bits for N = 3 (Fig. 3.10D,E) and even smaller for N > 3
(usually smaller than 107 for N = 4, data not shown). Thus, the question arises if
biological systems really go for the global maximum or if they might not also settle
for a local maximum that is almost identical to the global maximum in terms of
efficiency. This question will be treated in Section 4.2.

3.4.5 Comparing two local optimization algorithms

In Section 3.2.2 I promised to show that for the lumped-coding channel the BFGS
which is based on estimating the gradient of the information landscape provides
the same results as the NM optimization algorithm which is based on the simplex
method. For my optimizations, the BFGS algorithm is about two times faster than
the NM algorithm, however, the BFGS algorithm relies on inverting the Hessian
matrix what leads to large numerical errors in the case of continuous threshold bi-
furcations (see Sec. 4.3). Since the threshold bifurcations are discontinuous for the
lumped-coding channel it should be fine to use it there. Nevertheless, I show that
for the lumped-coding channel the two optimizers provide indeed the same — or
at least extremely similar — results of maximized mutual information and optimal
thresholds: the difference in maximized information between the two optimizers is
on the order of 1078 bits for three neurons and a grid of 200 times 200 noise com-
binations (Fig. 3.11A), and also the information ratio deviates less then 10~7 from
one (Fig. 3.11B). Besides, the sum of absolute threshold differences, va =3 |Aby),
is on the order of 1073 (Fig. 3.11C). These results demonstrate, that I can indeed
use the speed advantage of the BFGS algorithm for the lumped-coding channel.

A Information diff. (bits) x10~% B Information ratio - 1 x10 C Summed threshold diff. %1073
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Figure 3.11: Comparing information and thresholds when using the L-BFGS
algorithm (“LB”) compared to the Nelder-Mead algorithm (“NM”) for opti-
mizing the lumped-coding channel (N = 3). A. Color coded is the absolute infor-
mation difference in bits for each noise combination when maximizing mutual information
using the two different optimizers (note the 10~% scale). B. Similarly to A, here is shown
the information ratio minus one in order to demonstrate that the information ratio is very
close to one for all noise level combinations. C. The sum of all three (since N = 3) absolute
threshold differences for each noise level combination is color-coded (note the 1073 scale).
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3 Efficient coding in neural populations with multiple noise sources

3.5 Non-monotonous behavior of optimal thresholds

Now I will treat the unexpected results of non-monotonic behavior of optimal
thresholds in the case of the independent-coding channel. There, instead of the
expected behavior of optimal number of distinct thresholds decreasing with increas-
ing noise, the optimal number of distinct thresholds is a non-monotonous function
of noise. In this section, I will first describe in detail three different classes of
non-monotonicity in the optimal number of distinct thresholds. Since some of this
non-monotonous behavior is very counter-intuitive and lacks a comprehensive ex-
planation I have put considerable effort into excluding potential errors or numerical
instabilities. Thus, I will describe the extensive approaches to exclude numerical
imprecisions, local maxima and non-analytical behavior in the functions of which
the mutual information is composed of. Finally, I will show that a non-monotonic
behavior of optimal threshold differences have occurred already in some previous
studies and that this non-monotonic behavior of threshold differences is closely re-
lated to the non-monotonic behavior of the optimal number of distinct thresholds.
For brevity, I will from now on use the term “threshold diversity” for “number of
distinct thresholds”.

3.5.1 Three classes of non-monotonicity in the optimal number of
distinct thresholds

Remark: Some figures of this subsection (Figs. 3.12B,G) have been published in a
similar form in the supplementary material of [1] and have been briefly mentioned
in the main text of [1]. Here, I show these two figures again and present and discuss
them in a larger context.

All of the non-monotonicities that I found can be classified into one of the three
groups which I call “threshold ribbons”, “threshold switching”, and “threshold
splitting”.

Threshold ribbons

Threshold ribbons are arguably the most pronounced and unexpected form of non-
monotonic threshold behavior. In the most simple form, two thresholds which are
equal at a certain noise level will first split and then merge again with increas-
ing noise level. In Figure 3.12A, for example, at a certain value of input noise
the optimal threshold diversity with increasing output noise is “2-1-2-1”, which
means that first having two distinct thresholds is optimal, then having two equal
thresholds (i.e. one distinct threshold) is optimal, before having two distinct opti-
mal thresholds and then finally just one again. Such a ribbon behavior also exists
for populations with more than two neurons: for example, in a population of three
neurons, the optimal threshold diversity is 1-2-1 with increasing output noise at
a certain input noise level (Fig. 3.12C). For a population of four neurons, there
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Figure 3.12: For certain values of one noise source, optimal number of dis-
tinct thresholds change in a non-monotonic way with the other noise source
(independent-coding channel only). A. “Threshold ribbons”: For N = 2 neurons and
varying output noise R (larger R means less output noise) the optimal thresholds show a
sequence of three bifurcations, leading to a peculiar ribbon of optimal thresholds for fixed
input noise o). B. “Threshold switching”: With increasing output noise the optimal num-
ber of distinct thresholds changes from three to two, to again three, then again to two,
and finally to one (N = 3). C. A threshold ribbon in the case of N = 3 neurons. D. A
ribbon of two thresholds splitting and merging again, without any effect on the other two
thresholds (N = 4). E. A ribbon in which all four thresholds participate. There also hap-
pens a discontinuous threshold switch inside the ribbon which is not affecting the optimal
number of distinct thresholds. F-H. Ribbons in the case of N = 6. I. Threshold switching
in the case of N = 6 along the input noise axis when fixing the output noise value (R = 2).
The optimal number of distinct thresholds is 6-5-4-3-4-3-2-1. The panels B, C, and F are
from [1].

exist two different ribbon behaviors, namely one with optimal threshold diversity
of 4-3-2-3-2-1 at 0 ~ 0.44 (Fig. 3.12D), and one with 1-2-1 at o ~ 0.64 (Fig. 3.12E).
Note that in the latter example the non-continuous switching of optimal thresholds
comes from a local maximum becoming the global maximum and vice versa with
changing R (a type (2) local maxima, see Tab. 3.1 in Sec. 3.4.4). For a population
of six neurons, numerous ribbons appear at various o, but here I just list three
examples: one with optimal threshold diversity of 6-5-6-5-4-... (Fig. 3.12F), one
with 5-4-5-4-3-... (Fig. 3.12G), and one with 4-3-2-3-4-3-2-1 (Fig. 3.12H).
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3 Efficient coding in neural populations with multiple noise sources

Ribbons in general only appear for a fixed input noise and with varying output
noise, i.e. they, in general, do not appear for fixed output noise and varying input
noise.'? Usually, the range of input noise for which ribbons appear is very small
but becomes larger for larger N. The ribbon for N = 2, for example, appears only
in the range of o ~ [0.55426,0.55431], while the ribbon of N = 4 appears in the
range of o ~ [0.434,0.447]. In general, it can be said that the larger N, the more
ribbons appear, the more pronounced they are, and the larger the range of input
noise ¢ is at which they appear.

Threshold switching

The non-monotonic behavior I call threshold switching is not as peculiar as the
ribbons. With Gaussian input noise it only occurs for a population of three neu-
rons, however there it occurs in a wide range of input noise, namely o ~ [0.54, 0.60]
(Fig. 3.12B).!3 During threshold switching the following happens: first, at lower
output noise, the upper two thresholds being equal is optimal, and then, at some-
what higher output noise, the lower two thresholds being equal is optimal. Between
these two states, there is a continuous transition from one state to the other, at
which all three thresholds being distinct is optimal. Thus, the optimal number
of distinct thresholds with increasing output noise is 3-2-3-2-1. The reason that
threshold switching does not appear for N > 3 could be that for N > 3 the thresh-
old switching happens discontinuously, for which there is no intermediate regime
with increased threshold diversity necessary (Fig. 3.12E and Fig. 3.5B, arrow). Still,
it remains unclear for N = 3 why, (1) it is optimal that the upper two thresholds
are equal for relatively low output noise, while it is optimal that the lower two
thresholds are equal for somewhat larger noise, and why, (2) the switching of the
middle threshold from being equal to the upper threshold to being equal to the
lower threshold happens continuously and not in a discontinuous manner as it is
the case for N = 4.

Threshold splitting

This class contains the form of non-monotonic threshold behavior which is not
covered by the first two classes. Threshold splitting is very prevalent for populations
with more than four neurons. For six neurons, it happens for large ranges of input
noise and even — in contrast to the previous two classes — when fixing the output
noise and varying the input noise. This form is characterized by the fact that
the two middle thresholds, 03 and 64, get so close to each other that it is more
optimal that they have equal values instead of having distinct, but very similar
values (Fig. 3.6E,F,J.K and Fig. 3.12F,G.,I). The reason why they get so close to

12However, they can be seen for fixed output noise when using not a Gaussian input noise distri-
bution but an input noise distribution with lower kurtosis (Fig. 3.19 in Sec. 3.6.1).
13For the case of non-Gaussian noise, it also happens for N = 4 (Fig. 3.19D,E in Sec. 3.6.1).
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3.5 Non-monotonous behavior of optimal thresholds

each other in the first place remains unknown. The optimal threshold diversity can
behave like 5-4-3-4-3-2-1 (Fig. 3.6E, though it is difficult to verify in this plot size),
like 3-4-3-2-1 (Fig. 3.6F), or like 6-5-4-3-4-3-2-1 (Fig. 3.121).

3.5.2 Excluding potential errors that cause non-monotonic results

Since the non-monotonicities described above are very unintuitive and I have not
found a comprehensible explanation, I have invested a lot of efforts into verifying
the results above. In principle, three possible sources of error exist that could cause
systematically wrong results: (1) the optimization procedure is faulty or ends up in
local maxima, (2) the numerical integration introduces significant errors, and (3)
during the numerical calculations of the mutual information numerical instabilities
are introduced, e.g. due having functions that cause non-analytic terms, like poles.
Now, I will show that neither of them seems to be the case.

3.5.2.1 Verifying the optimization procedure

Eight different optimization algorithms of the Scipy package [101] were used to find
optimal thresholds for three and four neurons at an input noise value at which the
threshold diversity showed non-monotonic behavior (Fig. 3.13A,B). Remarkably, all
algorithms reliably reproduce the non-monotonic behavior of threshold switching
(Fig. 3.12A) and the threshold ribbon (Fig. 3.12B). The basin-hopping algorithm
is a global optimizer, while all other algorithms are local optimizers, which rely
on gradient descent (BFGS, L-BFGS, SLSQP, conjugated gradient) or use other
techniques (Nelder-Mead, Powell’s method, COBYLA) [96]. Except for the basin-
hopping, the Nelder-Mead, and the (L-)BFGS algorithm I did not look into how
they function or choose specific adjustments. Additionally for N = 4, I performed
a simple grid search for each R € {7,4,2.,0.75,0.1} and o = 0.44 with 150* grid
elements in the threshold space of [—0.8, 0.8]4 for each R; as well as Nelder-Mead
optimization with a grid of initial threshold vectors with 33% grid elements in the
threshold space of [—0.8,0.8]* (data not shown). Both approaches are in accor-
dance with the ribbon result in Fig. 3.13B. Additionally, I also implemented the
case with N = 3 in Mathematica (Wolfram Research) where using the “Random
Search” algorithm for R € {6,4,2.75,1.95,1} and o = 0.56. It also gave results in
accordance with Fig. 3.13A (data not shown).

Furthermore, for N = {2,3,4} I performed optimizations where I constrained
thresholds to be equal, i.e. I made it impossible that threshold ribbons occur.'?
Then I compared the information with the unconstrained thresholds (showing rib-
bons) to the constrained thresholds (showing no ribbons): For each N, the con-
strained thresholds showing no ribbons cause an information loss at the noise range
in which the ribbons occur (Fig. 3.14).

“These calculations T performed with Matlab (MathWorks) as their fmincon function handles
constrained optimization problems very well.
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3 Efficient coding in neural populations with multiple noise sources

A

Figure 3.13: Checking if the non-monotonic threshold behavior is due to wrong optimiza-
tion or numerical integration (left column: three neurons, right column: four neurons).
A, B. Using different optimization algorithms produce the same qualitative result of non-
monotonic threshold diversity. C,D. Using different integration algorithms lead to differ-
ences in optimal threshold in the order of 1076, E, F. The resulting information differences
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for the different thresholds obtained in (C,D) are in the order of 10719 bits.

The facts that all optimizers lead to similar results, that performing a very dense
grid search showed no hidden maxima, and that when optimizing while constrain-
ing thresholds to be equal leads to information loss, makes me confident that the
unexpected results of non-monotonic threshold behavior are not caused by using

optimization processes incorrectly.
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Figure 3.14: Doing a constrained optimization by forcing the thresholds partic-
ipating in non-monotonic bifurcations to be equal results in information loss.
A. “Optimal” thresholds in the case of constraining thresholds to be equal (red) compared
to the unconstrained optimization (blue). Independent channel with N = 2 cells and input
noise o = 0.554274. B. As A but with N =3 and 0 = 0.6. C. With N =4 and ¢ = 0.44,
where just the upper two thresholds are constrained to be equal. D-F. The information

loss in case of the constrained optimization compared to the unconstrained optimization
from A-C.

3.5.2.2 Excluding numerical integration errors

Another potential error could have entered through the numerical integrations
which have to be carried out in the calculation of the mutual information (Egs. 3.5,
3.20). First, one has to integrate P(k|s) over s for all combinations of k; = {0,1}
and then one has to integrate P(k|s)log,(P(k|s)/P(k)).*5 T used five different nu-
merical integration methods: four from the Numpy package [102] which have a fixed
step size (Riemann, Trapezoid, Romberg, Simson) and one adaptive integration al-
gorithm from the Scipy package [101] where the step size is adapted. The adaptive
integration was very slow due to large numbers of function evaluations and was
thus only used for N = 3.

The assumption is the following: if the non-monotonic behavior is really introduced
by numerical integration imprecisions, then different integration algorithms cause
different imprecisions and thus lead to different thresholds. I compared optimized
thresholds obtained by using the Trapezoid algorithm (which I used as a standard

15Since summing and integration can be swapped, the second integration can be done once for
all combinations of k; (i.e. N times) before summing the integrals, or just once in total after
having summed the terms into one integrand. To reduce the numerical integration error, I
chose the latter possibility.
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3 Efficient coding in neural populations with multiple noise sources

for all my calculations) with optimized thresholds obtained by using other integra-
tion algorithms at an input noise level at which non-monotonic threshold diversity
occurs. I found that for several output noise values there is a threshold difference
on the order of 10~® but for most noise levels it is much smaller (Fig. 3.13C,D).
In any case, the differences are so small, that the non-monotonic behavior still oc-
curs. Unsurprisingly, then also the mutual information does not differ significantly,
namely in the order of 10719 bits and smaller (Fig. 3.13E,F). These results make
me confident that imprecisions due to numerical integration errors are also not the
reason for obtaining the unexpected threshold behavior.

3.5.2.3 Excluding numerical imprecisions due to non-analytic terms

Even though the equations which describe the calculation of the mutual information
of the independent-coding channel do not indicate that any single term by itself is
non-analytic (Sec. 3.1.1), in principle, there could also be the case of a pole, i.e. one
variable becoming infinite. However, this pole-behavior could be hidden through
something like

. Yy .
lim = or lim
z,y—0o0 I x,y—)O

Y
= 3.31
2 (3:31)
which still would cause numerical instabilities. To check for these hidden poles,
I took the case of N = 2 neurons with the threshold ribbon at ¢ = 0.554274

(Fig. 3.12A). For each combination of output variables {k;} there exist a separate
term of the mutual information (Eq. 3.20) which for N = 2 is given as

P S
s = [ P9 Prosao) 1o (T2 Y (3.32)
$ 1,Kk2
where
N=2
Py, io(s) = T Pr(s), (3.33)
and

Bk17k2(s) = /dSPS(S)th]Q(S). (334)

For ease of notation, I just write Ix, Pii(s), and Bgi. Note that each k; € {0,1}
and thus there are 22 different Ipy, Pyi, and Bji. Possible numerical instabilities
arise when one or more By or Pyi(s) go to zero. In Fig. 3.15(D-F) I show how
By depends on output noise for specific values of input noise. I chose values of
input noise for which the non-monotonic threshold behavior occurs (o = 0.554274,
Fig. 3.15B) as well as one value slightly below and above (0 = 0.5542 and o =
0.55435, Fig. 3.15A and C, respectively). It is not well visible in the plots, however,
I confirmed that all By are at least 0.01 for all R > 1 and any ¢. Similarly, all Iy
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3.5 Non-monotonous behavior of optimal thresholds
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Figure 3.15: No poles or other numerical instabilities are visible in the marginal-
ized output probabilities or the components of the mutual information in the
case of non-monotonous threshold behavior. A-C. Optimal thresholds for three dif-
ferent values of input noise o (one value where the unexpected non-monotonicity of diversity
occurs (B), as well as one value below and above (A and C, respectively)). D-F. For the
respective input noise values and corresponding optimal thresholds all possible values of the
marginalized probability distribution of the response, By (Eq. 3.34) are shown. G-I. The
respective parts of the total mutual information (Eq. 3.32). None of the values in (D-I)
shows any infinite behavior for R 2 1.

have finite values except for R — 0 (Fig. 3.15G-I). To avoid numerical instabilities
due to

xgrgo ylog(xz) =0, (3.35)
two different approaches were used to numerically calculate
P Pr(s)\ _
i (5) 10gy B )~ Prer(s)1ogy (Prk(s)) — Pri(s) logy(Brk) (3.36)

in the cases of Pyx(s) and/or By becoming very small: The first approach is to
add machine epsilon € ~ 2.2 - 10716 to all Pyx(s) and Bgg. Then, Eq. 3.36 takes a
value basically in the order of € for Pyr(s) — 0 (since logy(€) = —52). The second
approach is to set Py;(s) = 1 (since logy(1) = 0) for all'® s where Py (s) is smaller

6Note that I discretized s in the numerical calculations.
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3 Efficient coding in neural populations with multiple noise sources

than a very small threshold value ¥):

1 for Pkk(s) <

Puls)  for Pu(s) > (3:37)

Pyr(s)) = {

Both ¢ = 107'2 and 10~'* were used, but there was no difference between using
these two values. Additionally, I set

0 for By, < ¢

. (3.38)
logQ(Bkk) for Bkk > 9

logy(Bik) = {

Both of the two approaches lead to the same results of optimal thresholds for all
noise combinations (not shown) and thus indicate that numerical instabilities due
to Equation 3.35 were avoided since otherwise the two different approaches or the
different values of ¥ would lead to significantly distinct results.

Nevertheless, I also want to point out that there is no pole-like behavior in Pyx(s), as
all values go to 0 or 1 for s — +oo (data not shown). Furthermore, the Py (s)/Byk
show no suspicious behavior: since this term depends on the stimulus it can only be
plotted in a comprehensible way for one combination of noise values at a time. As
input noise values I chose again o € {0.5542,0.554274,0.55435} and as output noise
values I chose four values at and around the ribbon, i.e. R € {3.0,4.0,4.6,6.0}. For
all four combinations of {k;} there are no visible irregularities of Pyx(s)/Byy for
any of the twelve noise combinations (Fig. 3.16).

In summary, I can rule out all numerical instabilities I could have thought of and
thus conclude that the surprising non-monotonic behavior of threshold diversity
described in this section is not caused by numerical implementations but is the
true behavior.

3.5.3 Relationship to ubiquitous non-monotonic threshold differences

I have spent a considerable amount on time searching if similar results of non-
monotonicity in efficient coding or other optimization problems exist in the litera-
ture. For the non-monotonic behavior of optimal threshold diversity, I only found
one similar result, which has been observed when optimizing Fisher information —
a different, local measure for information — in a population of bell-shaped tuning
curves in a model of optimal coding of interaural time differences in the auditory
brain stem [84]. There, the optimal number of distinct thresholds is 2-3-2 with
increasing encoding precision, however, the authors did not comment on this phe-
nomenon.

When looking at optimal threshold differences, 6; — 0, with changing input noise in
my work, these do appear for almost the whole range of output noise (Figs. 3.17C,E;
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Figure 3.16: No poles or other numerical instabilities are visible in in the log-
arithmic terms of the mutual information. For N = 2, Py (s)/Byi (see Eqgs. 3.33
and 3.34) are shown for three different values of input noise o (along columns) and four
different values of output noise R (along rows) for the corresponding optimal thresholds
shown in Fig. 3.15A-C. The middle column shows terms with the input noise value that
leads to non-monotonic behavior with output noise.

3.5C,E; 3.4C,E), while the non-monotonicity of threshold differences with changing
output noise does only appear at a very small range of input noise (Figs. 3.17D,F,G).
These non-monotonic threshold differences with input noise have been found be-
fore [62,85] and do also occur when using a mean rate constraint [29] (see Fig. 3.24
in Sec. 3.6.3D), but have so far not been commented on. Concluding, the non-
monotonic behavior of threshold differences is not an uncommon phenomenon and
can be seen as a less peculiar version of the non-monotonic behavior of threshold
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Figure 3.17: Threshold differences change non-monotonously with noise levels.
For the independent-coding channel and N = 2 neurons. A. The optimal threshold diversity
for a wide range of the noise space (input noise o and output noise R). B. Inset of A in
the range of noise space at which the non-monotonicity of optimal diversity with R occurs.
C,D. The optimal threshold differences 62 — 6; of (A,B) are color-coded. E-G. Slices
through C,D when keeping one noise level fixed shows that optimal threshold differences
change non-monotonously with the other noise level varied. Note that E and F show a non-
monotonicity of the threshold differences with input noise and output noise respectively,
but both show no non-monotonicity of the number of distinct optimal thresholds.

diversity. As with the whole topic of non-monotonic threshold behavior, there is
still a lack of explanations for these occurrences and their relationships.
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3.6 Using different noise models

3.6 Using different noise models

All results so far have been obtained by using a Gaussian normal distribution as
input noise distribution and Poisson noise as output noise. In this section, I will
investigate if different noise models lead to qualitatively different results, in par-
ticular, if the non-monotonic threshold diversities are restricted to the normally
distributed input noise. In addition, I will treat the case where the input noise
fed to each neuron is not equal but distinct for each neuron. Since this latter case
becomes involved quickly for larger populations I will restrict my analysis to the
two-neuron setup. All of these investigations will be done for the independent-
coding channel since for this channel type the non-monotonic behavior occurs and
the computational load is small.

3.6.1 Effect of the input noise model

Here, I use two different classes of noise distributions, namely the generalized normal
distribution and a distribution related to the logistic function.

3.6.1.1 Generalized normal distribution

Remark: The methods of this subsection (Egs. 3.40, 3.41, 3.43-3.45) have been
described briefly in [1], and two figures (Fig. 3.18C,G) have been published in the
supplementary material of [1] and were also briefly mentioned in the main text.
Here, I describe the methods in more detail and present and describe the results in
a greater context and a more detailed manner.

The Gaussian distribution has just two parameters, p and o, which define the mean
and the standard deviation of the distribution, respectively. However, distributions
have more properties than just these two, for example how asymmetric a distribu-
tion is around its mean, or how heavy the tails of a distribution are. The asymmetry
is called skewness, and the heaviness of the tails is called kurtosis [103]. The gener-
alized normal distribution (GND) generalizes the Gaussian distribution [104]. It is
still symmetric around the mean, but it has an additional parameter which allows
to vary the kurtosis. The kurtosis of a random variable z with mean g is defined
as [103]

Kurt[z] = ((z — p)*). (3.39)

All Gaussian distributions have a kurtosis of three. In analogy to the mean and
the variance being called the first and second moments, respectively, the kurtosis
is called the fourth moment.'” The GND is parameterized by the mean (which will
be set to zero as with the Gaussian noise) and two additional parameters, o and 3,

17Similarly, the skewness is defined as ((z — )®) and is thus called the third moment.
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3 Efficient coding in neural populations with multiple noise sources

and is given as [104]

B (el
-7 4
Paxle) = (175 (240
where I'(x) is the gamma function given as
o0
[(z) = / h*~te~hdh. (3.41)
0

The parameter S controls the kurtosis such that

I'(1/8)I'(5/8)
Kurt|z] = ——+— 3.42
and the parameter « is connected to the standard deviation o via
I
= (1/8) (3.43)

r'3/8)

As before, the standard deviation of the input noise distribution, o, compared to
the standard deviation of the stimulus distribution (the latter is set to o5 = 1)
determines the level of the input noise. The effective tuning curve of each neuron
(Eq. 3.14) with the GND as input noise is given as

)’ <1/ﬁ’ <|9“)6>

1
H.: — g 9 _ 344
’L(S) 9 Slgn( 1 S QF(l/ﬂ) ( )
where v(z,y) is the lower incomplete gamma function defined as
Y
v(z,y) = / t"te~tdt. (3.45)
0

The GND relaxes to well-known distributions, namely to the Laplace for g = 1,
to the classic Gaussian distribution for 8 = 2, and the uniform distribution for
B8 — oo. The distributions with different 8 are plotted in Fig. 3.18A. Remember
that the effective tuning curve is given as the cumulative distribution function of
the dichotomized noise distribution (Eq. 3.12 and see Fig. 3.1C for visualization).
Figure 3.18B shows the effective tuning curves for the different noise distributions.
In the following, I will use the GND as the input noise distribution, and by varying
its parameter 3, I can investigate how the kurtosis of the noise distribution influ-
ences the optimal thresholds of the independent-coding channel.

As with the classical Gaussian noise, the results with a population of three neu-

rons is that for low noise having three distinct thresholds is optimal, while for
high noise having equal thresholds is optimal, with an intermediate range of having
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Figure 3.18: Effect of the kurtosis of the input noise distribution on the op-
tial number of distinct thresholds. The different input noise distributions used and
their effects on optimal threshold diversity across the noise space (R,o are shown for a
population of N = 3 neurons. A. Different noise distributions P(z) obtained by using the
generalized normal distribution (Eq. 3.40) with different values of the kurtosis parameter £3.
For comparison, in dashed is shown the logistic distribution (Eq. 3.48) which is the deriva-
tive of the logistic tuning curve. The variance is 02 = 1 for all distributions. B. Effective
tuning curves H(s) (see Eq. 3.12) for the noise distributions shown in (A) with § = 0. The
effective tuning curves are given as the cumulative distribution functions of the noise distri-
butions. The dashed line shows the logistic tuning curve (Eq. 3.46). C-F. Kurtosis of the
noise distribution influences the non-monotonicity of optimal number of distinct thresholds.
C. For 8 = 1 (meaning the noise distribution follows a Laplace), no non-monotonicity of
optimal threshold diversity occurs. D, E. For § in the range of 8 ~ [1.4, 5] there is a non-
monotonicity of optimal threshold diversity for certain input noise levels o due to threshold
switching (compare to Fig. 3.4 where § = 2). F. For larger § — the noise distribution
resembles more and more a uniform one — the threshold switching disappears while the
non-monotonicity due to ribbons become more pronounced. Panels C and F are from [1].

two distinct optimal thresholds (Fig. 3.18C-F, compare to previous results with
B = 2, Fig. 3.4A). For B = 1 (equivalent to Laplace noise'®), there exists no non-
monotonicity of optimal threshold diversity. The range of noise combinations for
which a partial diversity — two distinct optimal thresholds — is optimal is very
small. For a certain range of the kurtosis parameter, namely 8 ~ [1.4,5], there
exists a non-monotonic behavior of optimal threshold diversity (Fig. 3.18D,E) due
to threshold switching (not shown). This is in accordance with the previous result
of the classical Gaussian distribution with g = 2 (Fig. 3.12B). For g = 7.5, the

181 also implemented Laplace noise using the classical expression for its cumulative distribution
function and it conformed with the implementation using the generalized normal distribution
for f =1 (not shown).
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3 Efficient coding in neural populations with multiple noise sources

non-monotonicity due to threshold switching also does not exist, but the ribbon
non-monotonicity (shown in Fig. 3.12C for § = 2) is present and even exists for a
larger range of input noise strength o (the bump of the beige color into the blue
color is larger in Fig. 3.18F compared to Fig. 3.4A).

I also used the GND as the input noise distribution for a population of four neu-
rons (Fig. 3.19). For relatively high kurtosis (8 < 2.5) the results are qualitatively
similar to the case of three neurons: optimal thresholds bifurcate in subsequent
transitions, i.e. there is a gradual change of optimal diversities. However, the range
where the optimal number of distinct thresholds is three, is again quite small for
Laplace noise, i.e. very high kurtosis (8 = 1, Fig. 3.19A). For 8 = 1, there is also
again no non-monotonic behavior for any noise value, while for 8 2 2 the qualita-
tive structure of non-monotonic behavior seen with the Gaussian noise is preserved
(Fig. 3.19B,C). For 8 = 5 however, qualitatively new behavior occurs: contrary to
B = 2, where only ribbon non-monotonicities are found (Fig. 3.12D,E) and where
all threshold switching!® are discontinuous and thus do not effect optimal diversity
(Fig. 3.5B, arrow), for § = 5, now there also exists a non-monotonicity due to
continuous threshold switching (Fig. 3.19E). Furthermore there exist ribbon non-
monotonicities with respect to input noise o (Fig. 3.19F), which have not been
observed for g = 2.

Since the GND only becomes uniform for § — oo, I also implemented the uniform
noise explicitly and compared it for high values of 5. The explicit implementation
of the uniform noise needs a high number of integration steps to be precise, thus
I have here only done it for N = 2 neurons: For g = 20, the shape of optimal
thresholds still differs somewhat (Fig. 3.20B), while for 8 = 50 the thresholds for
most noise values are very similar and only differ for noise values near critical noise

values (Fig. 3.20A).

3.6.1.2 Logistic distribution

In addition to effective tuning curves used so far which are described by being
the cumulative distribution function of a (generalized) normal distribution, I also
looked at tuning curves described by the logistic function [105]

1

].OgiS(S) = m

(3.46)

with variance

o’ = . (3.47)

Y The discontinuous transition of optimal thresholds from 61 = 03 # 03 = 04 to 01 = 02 = 03 # 04.
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Figure 3.19: The effect of having a generalized normal noise distribution with
four neurons and different kurtosis of the input noise distribution. A-D. The
optimal number of distinct thresholds. A. There is no non-monotonicity of optimal thresh-
old diversity for input noise distributions with high kurtosis (8 = 1, i.e. for Laplace noise).
B,C. For input noise distributions with kurtosis of a normal distribution (8 = 2, B), or
smaller kurtosis (8 = 2.5, C) there occurs a non-monotonicity of optimal threshold diver-
sity. D. For quite low kurtosis (8 = 5), there are very pronounced non-monotonicities over
a large area of the noise space. E. For 8 = 5, the optimal threshold values are shown in
dependence of output noise while the input noise is fixed to ¢ = 0.39. Unlike for N = 4
with Gaussian input noise, one sees continuous threshold switching along the output noise
axis. F. For g = 5, the optimal threshold values are shown in dependence of input noise
while the output noise is fixed to R = 4. Unlike for Gaussian input noise, one sees threshold
ribbons along the input noise axis.

The corresponding noise distribution is its derivative, namely

(3.48)

and is called the logistic distribution [105]. Both p;(z) and logis(s) are shown in
Figure 3.18A and B, respectively. As with the GND as input noise distribution, the
qualitative results of optimal thresholds remain the same (Fig. 3.21A). As such, the
non-monotonic behavior of optimal threshold diversity through threshold switch-
ing for N = 3 also exists (Fig. 3.21B). However, threshold ribbons do not occur
when using the logistic distribution as input noise distribution. The reason why I
considered this noise distribution is that in principle it could be possible to find an
analytical expression, f(o., R.), for the combinations of critical noise values o, R.,
at which the bifurcations occur; i.e. to find a function that describes the curves in
the o-R-plane at which the bifurcations occur. With N = 2 neurons, there is just
a single curve, separating the noise space where the optimal thresholds are equal
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Figure 3.20: Comparing uniform noise with generalized normal noise with very
low kurtosis, i.e. large $. A population of two neurons and the independent-coding
channel is used. A. The difference in number of distinct thresholds between using real
uniform noise and generalized normal noise with 5 = 50. For such a large 3, there is only
seen a small difference at critical noise values (purple region). B. Differences of optimal
thresholds between uniform noise (optimal thresholds O ypiform ) and generalized normal noise
(optimal thresholds fgen) for different parameters of .

and the noise space where optimal thresholds are distinct. For that case, there are
four unknowns (61, 62, o¢, R.) while there are three equations which are fulfilled at
the bifurcations:

oL,

(1) S0 =0 (3.49)
(I1) ‘2{9’; =0 (3.50)
(III) Ay =0 (3.51)

where Ay is the smaller eigenvalue of the Hessian at 601,02 (see Sec. 4.3 for details
and why Eq. 171 is true). This set of equations would allow me to find a relationship
between R, and o, for two neurons.?’ It became apparent that at least Eq. I and
11 cannot be solved analytically in the case of having the classical Gaussian as
the input noise distribution p(z): the thresholds influence the mutual information
through the effective tuning curves H;(s) (see Egs. 3.12 to 3.20):

o0

Hi(s) = P(V; = Vmax|s) = /9-— dz p(z) (3.52)

and when p(z) is Gaussian then H;(s) is not analytically solvable. When p(z) is
Laplacian or uniform there have to be made extensive case distinctions — e.g. if 01,
and/or 0y are larger/smaller than +o0 — for integration limits. Using the logistic
distribution, p;(z), (Eq. 3.48) for p(z), a closed and continuously differentiable form

20However, this approach would in principle also work for larger N, as more equations become
available to use.
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Figure 3.21: Using a logistic function as the effective tuning curve with a popu-
lation of three neurons and the independent-coding channel. A. Optimal number
of distinct thresholds color-coed in the input-output-noise space (o, R). B. Optimal thresh-
olds for varying output noise R and input noise fixed to o = 0.33. As with Gaussian input
noise there happens a threshold switching with R for a range of o.

of H;(s) exists since logis(s) is by definition the integral of p;. Thus
o 1

S (3.53)
0;—s 1+ e_(al s)

For N = 2, the information consists of four terms (k; = {0,1} for ¢ = 1,2). Using
the notation as in Sec. 3.5.2.3, the first term of the mutual information is

o= [ P)Q1(3)Qa5) o T ) KX

Expressing Q;(s) in terms of H;(s) (see Eq. 3.18) one obtains

T _/ 6_73 1 1 N eR
" 21+ e%s)2 1+ e (01=3)/0 1+ e (0i=s)/o

R

—(01—s)/0 —(0;—s)/c
— e Lte ds  (3.55)

e 2 . 1 el /
21te 52 [(1 1+e‘(91‘3')/"> + 1+e‘(”i‘s')/"] ds

. 10g2

To use equations (I) — (III), one should eliminate #; and #3. However, that seems
very difficult, especially since Eq. 3.55 also has to be differentiated once — for (1,11)
/ Egs. 3.49, 3.50 — or twice — for (I11) / Eq. 3.51 — with respect to ;2. I tried to
obtain expressions for (I, I7) using Mathematica (Wolfram Research), however, the
results after several hours of computations were expressions stretching over several
pages, from which it was not feasible to eliminate 6; and 65 as they occurred all
over the place. Nevertheless, I still wanted to outline a principle possibility of how
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3 Efficient coding in neural populations with multiple noise sources

to potentially calculate critical noise levels analytically.

In conclusion, I can say that the general result of having a series of bifurcations of
optimal thresholds with varying either input or output noise also holds when having
an input noise distribution different from Gaussian. Also the non-monotonic thresh-
old behavior of threshold switching and threshold ribbons exist for non-Gaussian
noise. The conclusion is, however, that non-monotonicities are more pronounced
and occur in a wider parameter range for input noise distributions with smaller
kurtosis — like the uniform distribution — while they do not occur at all for distri-
butions with high kurtosis — like the Laplace distribution. The reason might be
that the tails of the stimulus distribution get more attention with higher kurtosis
of the input noise distribution. Thus there would be a greater overlap of tuning
curves in the stimulus space where their probabilities of firing with maximum firing
rate is significantly different from zero or one. However, so far I have not found
an intuitive explanation why this difference in kurtosis should cause a difference in
non-monotonic behavior.

3.6.2 Distinct input noise levels

Often in neural populations, tuning curves differ both in their thresholds and in
their steepnesses [52,56]. By using binary tuning curves with distinct levels of addi-
tive input noise, one obtains effective tuning curves with distinct values of steepness.
Thus, I introduced a noise difference Ao such that o1 = 09 — Ac. Apart from dif-
ferent o; the setup is the same as before, in specific, I use the classical Gaussian
input noise again and varied both the input noise and output noise.

First, I found that there exist at least one local maximum, thus I used a grid
of initial thresholds 9_6 = {001,002} with 20 steps for each 6y;. Using that grid
and plotting the information landscape, I found that independent of output noise
level, R, there is only one local maximum in addition to the global maximum
(Fig. 3.22A,B). I found that this local maximum can be avoided reliably for all R
by using five steps for each 6 ;.

The main result is that for low output noise it is optimal that the neuron with
steeper effective tuning curve — i.e. with less input noise — has the higher threshold
(Fig. 3.22A,C), while for high output noise the opposite is optimal — i.e. the neuron
with shallower tuning curve having the higher threshold (Fig. 3.22B,D). However,
the two possibilities have only a small difference in information transmission: For
small output noise the relative difference is of the order of 10~ bits, while for high
output noise it is on the order of 1073 bits (not shown).

Then I extended the investigations to using arrays of different input noise differ-

ences, Ao, and input noise values of neuron two, oy, as well as an array of output
noise values R. The input noise value of neuron one is automatically given as
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Figure 3.22: Having distinct input noise levels for each neuron introduces an
asymmetry of the information landscape. Independent-coding channel with two neu-
rons and two distinct input noise levels, o7 and o3. A, B. The information landscape
I,,(01,63) has two maxima, of which only one is the global one (denoted by the red dot).
When changing output noise levels from low (A: R = 10) to high (B: R = 2) the global
maximum swaps along the diagonal of the thresholds space. C,D. Respective optimal
tuning curves of the two neurons (orange and blue) from (A,B). The stimulus distribution
is shown for comparison in gray. The swap of the global maximum means that while for
low output noise it is optimal that the neuron with a steeper tuning curve (with smaller o,
blue) has the larger threshold and is thus positioned to the right of the other neuron on the
stimulus axis (C). On the contrary, for high output noise it is optimal that the neuron with
the shallower tuning curve (larger o, orange) has the larger threshold and is positioned
right of the other neuron (D).

01 = 09 — Ao for each combination of Ao and os. Figure 3.23A,B shows how the
optimal threshold difference Af depends on Ao for two values of R. In accordance
with the results shown above, there is a sign switch of optimal Af with chang-
ing output noise R (compare Fig. 3.23A where R = 10.0 with Fig. 3.23B where
R = 2.3).2! From this result, one could postulate that there exists a critical value
of R somewhere between 2.3 and 10.0, for which the sign switch of optimal Af

2I'Note that the optimal Af are not symmetric around Ag = 0 since o1 = 02 — Ac for each o3 so
that the total noise o1 + 02 = —Ao varies with Ao. Therefore, for example, for Ao > 0.1, all
A@ are # 0 since the total noise is so small that the optimal solution is to have two distinct
thresholds for all o2 shown.
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3 Efficient coding in neural populations with multiple noise sources

happens.?? However, A does not happen for all o5 at the same R: For R = 7.8,
for example, there is only a sign switch for low values of o9 (Fig. 3.23C,D); while a
sign switch for larger o9 only occurs at R > 7.8. This means that both output and
input noise level influence for which R when these sign switches of Af occur.

R=10
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. : :
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Figure 3.23: Optimal threshold differences Af depend on input noise differences
Ac. A,B. Between low (R = 10.0, A) and high (R = 2.3, B) output noise, Af switches
signs. C, D. For an intermediate output noise level (R = 7.8), it is shown how the switch
between the two maxima takes place (here at o2 ~ 0.25 and Ao ~ 0.1). The occurrence of
the switching depends on R, Ao, and o5.

3.6.3 Distinct input noise values with a mean rate constraint

A setup with two neurons and distinct input noise levels has already been inves-
tigated by Kastner et al. [29]. Contrary to the one described above, they have
included a mean rate constraint and no output noise. Until now I have given
threshold values in the original stimulus space s with p(s) ~ AN(0,1). For some se-
tups, e.g. the one in this section, the shape of the stimulus distribution has no effect
on optimal thresholds. To compare thresholds across any stimulus distribution, it
is beneficial to use the cumulative distribution function of the stimulus distribution,

given as
/

s = /_S ps(s)ds . (3.56)

22Note that I chose these seemingly arbitrary values of 2.3, 7.8 and 10.0 for R just because I ran
a grid of 10 values between 0.1 and 10.
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3.6 Using different noise models

Kastner et al. introduced a mean rate constraint through (r):
(r) =01 +05, (3.57)

where 6 are thresholds in the cumulative stimulus space. Thus, 0 < (r) < 2, with
results of 0 < (r) < 1 being symmetric to those of 1 < (r) < 2, which is why I only
did calculations for 0 < (r) < 1. Again, I set 01 = 02 — Ac. Only one threshold is
optimized for each combination of {(r), Ao, o2} and the other threshold is obtained
by fulfilling Eq. 3.57. The goal is first to reproduce a finding of Kastner et al.,
namely that distinct input noise levels (o7 # 02) introduce an asymmetry among
the thresholds, such that A < 0if Ao < 0, and Af > 0if Ao > 0 [29]. The results
are shown in Fig. 3.24. As in the previous paragraph (with output noise and no
mean rate constraint), there are sign switches of optimal Af even without a sign
switch of Ao when varying o7 while keeping o9 fixed (Fig. 3.24A,C).?3 This result
is in contrast to Figure 2A of Kastner et al.’s work [29] since they do not observe
sign switches of Af without sign switches of Ao. They even explicitly state that
A < 0if Ao < 0, and A6 > 0if Ao > 0 for any oy # o1. Possible reasons could be
that (1) they did not take into consideration the switch from the global to the local
maximum (they do not mention local maxima anywhere in their publication), or
(2) they chose large o; only, for which the sign switches do not appear (Fig. 3.24B)
(it is not clear which values of o; they use as they only denote the values of Ao).
Another result is that using the mean rate constraint of Kastner et al. qualitatively
changes the behavior of optimal thresholds: no bifurcations appear for any input
noise level combinations (o1, 02), as long as o1 # o9 (Fig. 3.24C,D). The results
so far show that more research has to be done to understand where the differences
between my and Kastner et al.’s results come from. Note that the absence of
threshold bifurcations seen in Fig. 3.24C.D is in accordance with their results.

The setup by Kastner et al. can be generalized to also incorporate output noise:
instead of having a firing probability of one when the input is above the threshold,
one sets it to 7; = 1 — e i (see Eq. 3.15), again with R; = vpmaq;AT. Then, the
overall mean rate is

(r) = r10] + ra05. (3.58)

Two additional parameters have to be chosen in this case: r1, and ra. Again, only
one threshold is optimized for each combination of((r),r1, 72,01, 02) and the other
threshold is obtained by fulfilling Eq. 3.58. To not make things too complicated,
one can assume that the two neurons have the same maximum firing rates (i.e. the
same output noise levels), thus 1 = r9. Still, the whole story would become quite
involved since optimizations for combinations of four parameters are performed. To
not get lost in details in this work, these studies remain to be done in the future.

#Note, that to reproduce Kastner at al.’s results the mean rate (r) is now color-coded and o is
fixed in Figure 3.24A,B.
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Figure 3.24: Threshold differences for only input noise with a mean rate con-
straint according to Kastner et al. [29]. Optimal thresholds differences Af depend
on input noise differences Ao for different mean rates (r) (color coded) and input noise of
neuron two, oo. A. For small o9, sign switches of Af occur without sign switches of Ao.
B. For large o9, sign switches of Af occur only at sign switches of Ao. C,D. For a fixed
value of the mean rate, (r), and a fixed value of input noise differences, Ao, optimal thresh-
olds are shown in dependence of input noise o3. As in the previous two figures (Fig. 3.22
and 3.23C,D) the discontinuous switching of the optimal thresholds corresponds to a switch
of the global maximum along the diagonal of the (61, 62)-space.

3.6.4 Effect of the output noise model

Now, I will investigate the effects of the output noise model optimal thresholds.
The focus is not primarily on describing how the previous results change when
varying the output noise model, but instead on giving an understanding about how
a probabilistic spike generation process — which necessarily implies a discrete, non-
zero output variable since spikes can only be non-zero integers — affects optimal
thresholds. Therefore and for reduced computational load, I will now remove input
noise from the system, i.e. I will have truly binary tuning curves again.

That way, I also hope to find explanations for two peculiarities regarding output
noise: first, there is the phenomenon that output noise shifts the optimal thresh-
olds away from the stimulus mean towards higher values of the stimulus space. The
consequence is that the average of the optimal thresholds is always larger than the
stimulus mean, except in the limit of no output noise, R — oo (see how optimal

68
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thresholds are on average considerably larger than zero in Fig. 3.4 and 3.5, espe-
cially for small R). This phenomenon is especially pronounced for R — 0, where
it has been analytically calculated that optimal thresholds are at 1 — 1/e =~ 0.63 in
the cumulative stimulus space [106] (note that the stimulus mean is at 0.5 in the
cumulative space). Second, with the independent-coding channel and only output
noise, optimal thresholds are distinct for all finite R, i.e. the bifurcation happens at
R — 0 (see Figs. 3.4D, 3.5D, and 3.6C). Before demonstrating the effects of output
noise models different from Poisson I will show how spontaneous firing rates affect
optimal thresholds. From now on I will denote threshold values in the cumulative
stimulus space since it has been shown that without input noise the shape of the
stimulus distribution does not matter [86,106].

3.6.4.1 Including spontaneous firing rates

The binary tuning curves I have used so far have a zero firing rate level, i.e. the
firing rate is zero below the threshold. The Poisson distribution is deterministic
for zero rate, so that P(k; = Ol; = 0) = 1 and thus the noise entropy is zero for
v; = 0. This property might be the cause for the two peculiar phenomena of shifted
thresholds towards the right of the stimulus mean and having distinct threshold for
all R > 0. Here, I investigated the case of a binary tuning curve with both firing
rates being larger zero, such that the tuning curve becomes

vi(s) = 9 + (Vmax — 10)O(0; — s) . (3.59)

As with the maximum rate, vpax, the interesting size is the expected spike count in
the coding window, Ry = v9AT, which can be directly compared to R = vmax AT
Since it is not possible anymore to map all spike counts larger zero to the high-firing
rate level, analytical calculations were replaced by numerical ones (summing over
all spike counts with significantly large probability, and finding the optimal thresh-
olds using the SLSQP algorithm?*). For simplicity and to reduce the computational
load, I did calculations with a population size of only N = 2 neurons. However, as
in Figure 3.4D, the two thresholds bifurcate at R — 0 in all cases, three neurons
would not provide more insights anyway.

As expected, larger spontaneous rates decreased the information transmission and
thus act as another source of noise (Fig. 3.25). For very low spontaneous firing
rate of Ry = 0.005, the result resembles previous (analytical) results [106] with no
spontaneous rate (Fig. 3.25A B). For significant spontaneous firing rates, Ry = 0.05
or Ry = 0.5, the information is decreased (Fig. 3.25C,E) and the optimal thresholds
are shifted towards the stimulus mean (Fig. 3.25D,F). As expected in the limit of
vanishing noise, R — oo, both the information and the optimal thresholds resemble
the case with no spontaneous rates: the maximized information reaches capacity

24 Sequential Least Squares Programming, a local optimizer being able to handle constraints [96].
I performed optimization in the cumulative space with the constraint of 0 < 62 > 0; < 1 what
reduced the computational load.
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3 Efficient coding in neural populations with multiple noise sources

at log,(3) bits and the optimal thresholds become {3,2} in cumulative space. Re-
garding the optimal thresholds (Fig. 3.25D,F) there are two observations. First, the
optimal thresholds are still distinct for all finite output noise values, what shows
that this peculiar phenomenon is not caused alone by having zero spontaneous fir-
ing rates. Second, interestingly, the optimal thresholds for infinite output noise,
R — 0, are shifted towards the mean of the stimulus distribution (0.5 in cumula-
tive stimulus space) with spontaneous rates. Brinkman et al. gave the following
intuitive explanation for why optimal thresholds are shifted away from the mean
with high output noise: the Poisson distribution has larger variance with larger fir-
ing rates and noise entropy is reduced by encoding the most probable stimuli with
lower firing rates, i.e. by shifting thresholds towards higher values of the stimulus
distribution [76]. The shifting back towards the stimulus mean is in accordance
with this explanation since for smaller firing rates — i.e. R getting in the range of
Ry — the advantage of having less variance is reduced.

A Spont. rates, Ry =0.005 C Spont. rates, Ry =0.05 E Spont. rates, Ry =0.5
1.5 1.5
= = =
= = 1.0 = 1.0
~ ~ &
4 05 . 4
= 051 — Ry =0.005 E 051 — Ry =0.05 S 059 — Ry =05
— Ry=0 — Ry=0 — Ry=0
0.0 0.0 0.0
10 5 0 5 0 10 5 0
R R R
D Spont. rates, Ry =0.05 F Spont. rates, Ry =0.5
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Figure 3.25: Spontaneous rates reduce information and shift optimal thresholds
towards stimulus mean at high output noise. A. Maximized mutual information in
the case of low spontaneous rate, Ry = 0.005, is almost the same as without spontaneous
rate, Ry = 0. B. Optimal thresholds corresponding to A. Near R — 0, there is a small shift
from the theoretical value of 1 — 1/e for Ry = 0 (dashed gray line) towards the stimulus
mean of 0.5 (solid gray line). C. As A but with slightly larger spontaneous rate, Ry = 0.05,
and a slightly decreased information for intermediate output noise values. D. Optimal
thresholds are significantly shifted towards the stimulus mean for R — 0. E. As C but with
Ry =0.5. F. As D but with Ry = 0.5.
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3.6.4.2 Changing the output noise model

After having shown that the presence of spontaneous rates cannot explain the
phenomenon that optimal thresholds have distinct values for all finite output noise
values (in the absence of input noise, Fig. 3.4D), the goal was to investigate if
some specific properties of the Poisson noise are the cause for this phenomenon. A
prominent property of the Poisson distribution is the fact that its variance is equal
to the mean. Both are given by its rate parameter, A:

p=0o2=\. (3.60)

The ratio between the variance and the mean is used to quantify the dispersion of
a distribution and is called Fano factor [107]:

F o (3.61)
where the case of F' > 1 is called over-dispersion and the case of F' < 1 is called
under-dispersion. Thus, my idea was to work with a discrete probability distribution
for which the variance deviates from the mean. One can obtain such a distribu-
tion by modifying the traditional Poisson distribution in various ways [108], e.g. by
using a compound Poisson distribution, by convolving a Poisson distribution with
another distribution, or by just modifying its formula. Another possibility is to
multiply the Poisson distribution with a function F'(k) which depends at least on k
and optionally also on A, and subsequently to ensure normalization. Note that in
the latter case every function, F'()\), that only depends on A and not on k will lead
to a normalization term of e=*/F(\).

The Delaport distribution
By convolving the Poisson distribution with a negative binomial distribution, Pyp(k|a, 3),
one obtains the Delaporte distribution [108]:

PDelap(k’)‘7 a, ﬂ) = PPoiss(k‘)\) * PNB(]C’CV?ﬁ) (362)
k

= ZPPoiss(k_i’a> PNB(i‘aaﬁ) (363)
=0

- k N A\ (k—1) Dla+i) . . -

_Z;z CES R (3.64)

where A\, o, 8 > 0 and with
[(z) = / h*~te~hdh. (3.65)
0

The mean is given by

fp=A+ap (3.66)
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and the variance as
o2 =A+aB(1+5), (3.67)

thus o2 > p for all 8 > 0 and the Delaporte is always more dispersed than the origi-
nal Poisson. For «, 8 — 0 the Delaporte converges to the Poisson distribution [108].

Conway-Maxwell-Poisson distribution
When multiplying the Poisson distribution with F(k|¢) = (k!)'~% one obtaines the
Conway-Mazwell-Poisson (CMP) distribution [109]:

1Ak Y
Ponp (k| ¢) = Z009) (97 Z(\,¢) = ZO G (3.68)
=

where Z(\, ¢) ensures normalization. For ¢ = 1 it is the usual Poisson distribu-
tion, otherwise one has over-dispersion (02/u > 1) for ¢ > 1 or under-dispersion
(02/u < 1) for ¢ < 1. The problem with the CMP distribution is that it is compu-
tationally very expensive to calculate the normalization term, which is why it was
not feasible to use it for my calculations. However, it laid the basis for defining the
following distribution whose dispersion can be varied by a parameter:

My distribution

From the experience with the CMP distribution, I searched for a distribution which
does not involve an infinite summation in the normalization term. After some trial
and error I chose

CAARN T IR
F(\K|B) = Gam Alk+1 =—A .
(A k[B) = Gamma(Alk + 1, §) Thrn € , (3.69)
resulting in
1 ﬁk-{-l )\Qk 6—6)\

PrailkIAB) = s T 8

(3.70)

The normalization term is according to Mathematica (Wolfram Research):

Z(XB) = v/Be” T L (2¢/BN) (3.71)
where I;(x) is the modified Bessel function of first kind [110]:

1 K
Li(z) = / e®<% cos0de . (3.72)
T Jo
Another reason I chose that distribution is that unlike the Delaporte distribution
but like the Poisson distribution there is a probability of one to have zero spikes if
the rate is zero, P(k = 0|\ = 0) = 1, i.e. there are no spontaneous rates.
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3.6 Using different noise models

I will now use the Delaporte distribution and my distribution as output noise
models and will compare them to the case of Poisson noise: for a given output
noise strength A and parameter(s) («,) 8 the spike count of a neuron, k, will be
distributed according to Ppoiss(k|A), Ppelap(k|A, @, ), and Piai(k|A, 3). Then, their
effects on maximum information and optimal thresholds will be compared.

Comparing the Delaporte and my distribution to the Poisson distribution

In Figure 3.26, one can see how the two modified Poisson distributions differ from
the original Poisson for various parameter combinations of A and . For a small rate
parameter \ (Fig. 3.26, left column) my distribution is shifted to & = 0 compared
to the Poisson; in contrary the Delaporte is shifted to & > 0, however, this shift
can be controlled with 5. For a large A (Fig. 3.26, right column) the Delaporte
distribution is still always shifted to larger & compared to the Poisson, while my
distribution is either shifted to smaller k (when (3 small) or larger k (when [ large).
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Figure 3.26: Comparison of the three discrete probability distributions Ppeiss(k|A) (blue),
Ppeiap(k|A, a0 = 1,8) (orange), and Pxai(k|A, 5) (green) for different rates A along the
horizontal direction and different parameters S along the vertical direction.

Figure 3.27 shows for various values of § how variance and mean depend on .
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The Delaporte distribution shows over-dispersion for all values of a, 3 > 0 which
increases with increasing o (not shown) and (3, whereas my distribution shows
under-dispersion which increases with increasing 5 (deducted only from numerical
calculations since I did not manage to calculate analytic expressions for the mean
and the variance). For the Delaporte distribution the over-dispersion is present
for all A but technically decreases with increasing A since both mean and variance
depend linearly on A\. With my distribution, on the other hand, dispersion only
becomes significant for A > 1.
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Figure 3.27: The Delaporte distribution is over-dispersed and has a spontaneous
rate larger zero, while my distribution is under-dispersed and has a spontaneous
rate equal to zero. Shown are the mean, y, (solid) and variance, o2, (dashed) depending
on rate parameter \ for Poisson and Delaporte distribution (top row) and my proposed
distribution (bottom) for different values of additional parameter 5. Values were obtained
numerically. For the Delaporte distribution, o/p > 1 and p > 0 for all 8 > 0 and any \.
For my distribution, 0?/u < 1 for all 3 > 0 and, additionally, = 0 for A\ = 0. Note the

different scaling of the y-axes. The a parameter of the Delaporte distribution was set to
one.

For the three noise models (Poisson, Delaporte, Kai) I compared information en-
coding and optimal thresholds for a system of two binary neurons in dependence
of the output noise level, R, where setting R as the rate parameter A. As before,
smaller R means larger output noise.

Comparing the effect of Delaporte noise to Poisson noise, the maximized informa-
tion is decreased and optimal thresholds are shifted back towards the stimulus mean
for given output noise parameter R (Fig. 3.28). For small (3, the Delaporte indeed
resembles the Poisson distribution as long as R is not to close to zero (Fig. 3.28A,B).
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For significant £, however, the maximized information is reduced and thresholds
are at the stimulus mean for R — 0 (Fig. 3.28C-F). The information loss is in
accordance with the fact that the effective output noise at any given R is larger for
Delaporte noise compared to Poisson noise (Egs. 3.66, 3.67; Fig. 3.27). Similarly,
the shift of optimal thresholds towards the stimulus mean is in accordance with the
fact that Delaporte noise causes spontaneous rates, since Ppelap(ki > 0|v; = 0) > 0,
such effectively qualitatively reproducing the results of Section 3.6.4.1. However,
the peculiar phenomenon that optimal thresholds are distinct for all output noise
parameters R > 0 occurs also for Delaporte output noise.
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Figure 3.28: The Delaporte distribution as output noise model shifts optimal
thresholds to the mean of the stimulus distribution. A. Maximized information
depending on output noise R using the Delaporte distribution as output noise model with
very small § = 0.001 (o = 1 for all plots). For such small 3, Delaporte noise seems to
have the same effect on the information quantity as Poisson noise. B. Optimal thresholds
in cumulative stimulus space leading to the information shown in A. The thresholds are
same as with Poisson noise, except for slight deviations at large noise, R — 0. The dashed
horizontal line indicates the analytically calculated value of optimal thresholds for R — 0
in the case of Poisson noise [106]. C. As A but with 8 = 0.5. For this parameter value, the
Delaporte distribution causes more noise than standard Poisson noise, what leads to smaller
information. D. As B but with 8 = 0.5. Compared to the Poisson, optimal thresholds are
shifted to the stimulus mean of 0.5 (grey horizontal line) for R — 0. E,F. As C,D but
with 8 = 2. Information loss and threshold shifiting to the stimulus mean are even more
pronounced.

Finally, I was interested in the case of having an over- or underdispers distribution
as output noise model without spontaneous rate. Comparing the effect of my noise
to Poisson noise, the maximized information is decreased for small g (Fig. 3.29A),
but either decreased or increased for larger 8 (depending on output noise parame-
ter R, Fig. 3.29C). For all 3, the respective optimal thresholds still take the same
value for R — 0 as with Poisson output noise, namely 1 — 1/e (Fig. 3.29B,D).

75



3 Efficient coding in neural populations with multiple noise sources

Note, that even though my distribution shows under-dispersion for all R > 0, the
information for a given R is not necessarily increased. The reason becomes obvious
if one looks at the distribution (e.g. for A = 1, 5 = 0.1 in Fig. 3.26): even for
R > 0 the probability is high that zero spikes are emitted, thus leading to a high
noise entropy and low mutual information. For larger values of R and 3 the effect
of under-dispersion takes over (mostly because then zero spikes are very unlikely
resulting in small noise entropy) and my distribution shows higher information
compared to the Poisson. Thus, there is a nonlinear scaling of R compared to the
Poisson distribution, since the noise is larger than with the Poisson for large R but
smaller for small R.

A Max. Info, § =0.1 C Max. Info, = 2.0
1.5 1.5
Z 10 Z 104
z z
05— Kai <05 Kai
— Poisson — Poisson
0.0 T T T T 0.0 T T
10 8 6 4 2 0 3 2 1 0
R R
B Thresholds, 5 = 0.1 D Thresholds, 5 = 2.0
g 0.61 2 0.6
= =
= Kai = Kai
< L em— Poisson < 051 —— Poisson
Y 2
5044 204

Figure 3.29: Without spontaneous rates there is no shift of optimal thresholds
towards the stimulus mean. A. Maximized information depending on output noise R
using my distribution as output noise model with 5 = 0.1 as parameter. For this parameter
my distribution causes more noise then standard Poisson noise. B. Optimal thresholds in
cumulative stimulus space corresponding to A. There is no shift towards the stimulus mean
of 0.5 for R — 0. C,D. As A,B but with 8 = 2. Note different scaling of x-axes.

Conclusion

The specific properties of the Poisson distribution of deterministic output at zero
rate and normal dispersion (i.e. the mean being equal to the variance) can only
partly explain the peculiar phenomena of the output noise: the phenomenon of
optimal thresholds shifted away from the stimulus mean to 1 —1/e ~ 0.63 occurs in
fact only in the case of deterministic output at ® — 0. However, the phenomenon
that optimal thresholds are distinct for all R > 0 seems to occur irrespective of
deterministic output at zero rate or dispersion, but instead, seems to be caused by
stochastic spike generation, i.e. the nature of a discrete probability distribution.
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3.7 Effect of the stimulus distribution

3.7 Effect of the stimulus distribution

Remark: The method of this subsection has been mentioned in short in [1] and
Figure 3.30 has been published in the supplementary material of [1]. Here, I de-
scribe the method and the results in a detailed manner.

Throughout this work, I investigate the encoding of a one-dimensional stimulus
drawn from a Gaussian distribution; however, natural stimulus distributions have
a higher level of sparseness than the Gaussian distribution [111,112]. Therefore, I
explored information maximization using the GND as the stimulus distribution. In
analogy to the input noise distribution, using the GND allows me to continuously
vary the kurtosis (Sec. 3.6.1.1). Otherwise, the setup is the same as in the be-
ginning of the chapter: I use the independent-coding channel with a population of
three neurons with Poisson output noise and Gaussian input noise. The noise levels
are quantified by the expected spike count at maximum firing rate, R = vy AT,
and the standard deviation of the input noise distribution, o. The standard de-
viation of the stimulus distribution is still set to one (remember that increasing
the standard deviation of the stimulus distribution is equivalent to decreasing the
standard deviation of the input noise distribution), while I varied the kurtosis by
changing the parameter § of the GND (Eq. 3.42). Qualitatively, my results did
not change much (Fig. 3.30) compared to using the Gaussian stimulus distribution
(8 = 2, Fig. 3.4A). For increased kurtosis of the stimulus distribution (8 = 1, i.e.
a Laplace distribution), there are still subsequent threshold bifurcations with re-
spect to both noises, however, the range of intermediate threshold diversity with
two thresholds being equal is quite small for small o (beige color in Fig. 3.30A).
Since there are no “bumps” visible anymore in Figure 3.30A the non-monotonic
behavior has disappeared for such a large kurtosis of the stimulus distribution. On
the other hand, for small kurtosis (8 = 7.5, resembling more a uniform distribu-
tion), the non-monotonic behavior is still present, what is indicated by the bumps
in Figure 3.4B. The conclusion is that the shape of the stimulus distribution does
not play a significant role in my framework. Also the non-monotonic threshold
behavior is not restricted to the stimulus distribution being Gaussian.

3.8 Summary and discussion

In this chapter, I maximized the mutual information between stimulus and re-
sponses of a population of neurons with binary nonlinearities. The stimulus is
corrupted by two different noise sources, namely additive input noise before the
nonlinearities and Poisson output noise after the nonlinearities. I compared two
scenarios for stimulus processing commonly used in previous studies, specifically,
encoding the stimulus with independent transmission channels and lumping the
channels into one effective channel. In each scenario, I calculated the maximized
mutual information and the optimal thresholds of the population and portrayed
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3 Efficient coding in neural populations with multiple noise sources

A P(s) ~ General. Gauss, 8 = 1.0 P(s) ~ General. Gauss, f = 7.5

0.6 3
© 04 2 2
0.2 1
10 5 0
R

Output noise
Figure 3.30: Number of distinct optimal thresholds when varying the kurtosis
of the stimulus distribution through using the generalized normal distribution
with varying (. Independent-coding channel with a population size of three neurons.
A. Laplacian (having high kurtosis) as input distribution. B. Input distribution with low
kurtosis (similar to uniform). From [1].

# distinct 0;
# distinct 0;

Input noise

how they depend on the strength and shape of the two noise sources. For some

noise parameters, I obtained unexpected non-monotonous behavior of the optimal
thresholds.

Lumping channels causes information loss

Unsurprisingly, increasing either input or output noise in the population decreases
the total amount of transmitted information. For all finite noise levels, the inde-
pendent-coding channel always encodes more information than the lumped-coding
channel, especially for biologically realistic, intermediate output noise values (Sec. 3.3,
Fig. 3.2). This occurs because lumping multiple information pathways into a single
coding channel reduces the possible values of the encoding variable and increases
the noise entropy and thus introduces additional noise (Fig. 3.3). Therefore, thresh-
old bifurcations in the lumped-coding channel occur at significantly lower critical
noise levels compared to the independent-coding channel (Sec. 3.4, Fig. 3.4).

I only treated the extreme cases of full lumping — where the outputs of all neu-
rons are lumped into a single variable — and no lumping. In principle, different
combinations of partial lumping, e.g. lumping three outputs into two channels, are
also possible. Partial lumping is a common strategy in sensory systems [113]. Fur-
thermore, I assumed no weighting of inputs during the lumping process. This is an
oversimplification since in biology spikes from different presynaptic neurons usually
very differently impact the membrane potential of the postsynaptic neuron. These
individual weights could also be optimized [86].
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3.8 Summary and discussion

Optimal thresholds bifurcate successively from no to full redundancy

In general, the number of distinct optimal thresholds decreases with increasing
noise of either kind at critical noise levels by successive bifurcations of the optimal
thresholds (Sec. 3.4). This is the case for both channel types, however, for the
independent-coding channel the bifurcations are continuous, while for the lumped-
coding channel, the bifurcations are discontinuous (Fig. 3.4). Interestingly, in the
case of the lumped-coding channel with only one noise source, threshold bifurcations
become continuous. It remains unclear what the exact reasons for the difference in
continuity are.

Another interesting point for populations of four or more neurons is the phenomenon
of a “subtle” increase in redundancy, where the optimal number of distinct thresh-
olds does not change but their allocation does (e.g. optimal thresholds changing
from 0; = 0y = 03 # 04 to 0 = 03 # 63 = 04). This change happens in a
discontinuous manner even for the independent-coding channel (Fig. 3.5).

Unexpected non-monotonous behavior of optimal thresholds

Interestingly, for a small range of noise parameters, I found a non-monotonic change
in the number of distinct optimal thresholds with noise levels (Sec. 3.5, Fig. 3.12).
After having made considerable efforts to verify and understand this behavior it
seems indeed to be a true phenomenon, however, an intuitive explanation for this
behavior is still missing. The only similar result that I have found in the literature is
a non-monotonicity of optimal threshold diversity when maximizing Fisher informa-
tion (a local information measure) for neurons encoding sound direction [84]. There,
the optimal thresholds diversity is first increasing, then decreasing and finally in-
creasing again with encoding precision, however, the authors did not comment on
this non-monotonicity. When looking at optimal threshold differences instead of
optimal number of distinct thresholds, I see a non-monotonic behavior for a very
large range of noise parameters. The two phenomena are very probably related and
understanding one could help in understanding the other.

The influences of the noise sources

For finite noise levels, both Gaussian input noise and Poisson output noise seem
to have the same effect on threshold bifurcations, i.e. there is no qualitative dif-
ference between varying one noise source or the other. For the limit of one noise
vanishing or being very strong, however, distinct effects become apparent regarding
the symmetry of the optimal thresholds and regarding subsequent transitions from
zero to full redundancy. Moreover, the exact shape of the input noise distribution
does not matter, as least as long as it is symmetric (Sec. 3.6.1, Fig. 3.18). Thus, in
future studies, it would be interesting to investigate if and how skewed input noise
distributions qualitatively affect optimal thresholds. For the case of neurons being
exposed to distinct noise levels, I confirmed for two neurons that the information
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3 Efficient coding in neural populations with multiple noise sources

landscape becomes asymmetric (Sec. 3.6.2). However, the direction of asymmetry
is not as trivial as previously reported [29] as it depends on the noise levels: for
the overall noise being small it is optimal that the neuron with high input noise
has the lower threshold, while for the overall noise being high it is optimal that
the neuron with low input noise has the smaller threshold (Fig. 3.22-3.24). For
the output noise, it became apparent that the presence of spontaneous rates has
a clear effect on the asymmetric shift of optimal thresholds towards larger values
(Sec. 3.6.4). Unfortunately, due to the computational expensiveness of incorporat-
ing spontaneous rates, it was hard to study this effect on a population with more
than two neurons.
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4 Information landscapes and phase
transitions at critical noise values

Remark: Some of the methods, results, figures, tables, and text in this chapter
are part of an article entitled Efficient population coding depends on stimulus con-
vergence and source of noise which has been written together with Shuai Shao and
Julijana Gjorgjieva. The article has been uploaded to the preprint server bioRziv [1]
and is currently under review for publication in the journal PLOS Computational
Biology. All methods, results, figures, tables, and text from that article which are
part of this chapter were my contribution to the article. In this chapter, I specifi-
cally mention if and what I have taken from [1] before each (sub)section.

In the previous chapter, I have described extensively how the optimal thresholds and
the maximized mutual information depend on noise levels. An interesting question
is about how much information is lost when using suboptimal compared to optimal
thresholds. In the current chapter, I, therefore, want to investigate how important
it actually is that thresholds are precisely optimized, i.e. to quantify information
loss when thresholds (slightly) deviate from their optimal values. If suboptimal
thresholds cause negligible information loss then there is no strong incentive for bi-
ological systems to achieve near-optimal threshold values during evolution. Then,
my predictions would unlikely be confirmed in experiments. Therefore, in this chap-
ter, I will first look at the shape of the information landscape (Sec. 4.1). Since it
is hard to visualize the shape of high-dimensional landscapes I will use methods
from differential geometry. That way I find that the information landscape takes
a characteristic shape at critical noise values (Sec. 4.3). Furthermore, I quantify
how much information is encoded if thresholds are sampled randomly (Sec. 4.2).
The intention is to find out how much worse the information encoding with ran-
domly chosen thresholds is compared to optimal thresholds and to understand how
much random mutations of thresholds affect information encoding. Then, I will de-
scribe how information encoding with an independent- or lumped-coding channel
undergoes phase transitions at critical noise levels that are well-described in physics
(Sec. 4.4). Interestingly, this phenomenon of phase transitions can be related to the
previous sections of this chapter, i.e. the fact that the information landscape takes
specific shapes around critical noise values.
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4 Information landscapes and phase transitions at critical noise values

4.1 Using principal curvatures to quantify the sensitivity of
information landscape

Remark: One method of this section (using the Hessian matrix of the information
landscape, Eq. 4.3) has been mentioned in [1]. Here, I derive and describe this
method in detail and discuss it using new figures (Figs. 4.1 and 4.2) to increase the
understanding and limits of the method.

For a single neuron, the information just depends in a concave manner on the
threshold. Also for a population of two or more neurons, I found that the infor-
mation is a (locally) concave function with respect to each threshold component.
Thus, the idea could be to look at information loss Al,, when perturbing an op-
timal threshold component by Af; (Fig. 4.1A). However, the functions I,,(6;) are

Figure 4.1: Quantifying information loss due to suboptimal thresholds using
principal curvatures of the information landscape. A. Schematic showing how the
mutual information I, is a (locally) concave function with respect to each threshold com-
ponent #;. Perturbing one component of the optimal threshold vector by A6; causes an
information loss Al,,. B. Schematic of the information landscape for N = 2 neurons for
which the curvature is highly asymmetric: the information loss due to perturbing opti-
mal threshold vector * can vary substantially between perturbations in the direction of
largest or smallest curvature (denoted as ¥; and s, respectively). These directions are the
eigenvectors of the Hessian matrix of the information and called “principal curvatures”.
Adapted from [114].

in general different for each component ¢, and furthermore, I am also interested in
quantifying how the information behaves when changing several components simul-
taneously. One idea is to identify those directions in threshold space along which
the information landscape exhibits largest and smallest curvature (Fig. 4.1B). This
would give upper and lower limits, respectively, of information loss due to thresh-
old perturbations by a given magnitude. Another idea is to perturb the optimal
threshold vector §* by an arbitrary (but small) A and look at the information
difference:

AT = I(6*) — I(6* + AG) (4.1)

In the following, I will show that these two ideas are interconnected since they base
on the concept of principal curvatures, which is a well-known concept in differential
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4.1 Using principal curvatures to quantify the sensitivity of information landscape

geometry [100]. Note that for simplicity from now on I drop the subscript of the
mutual information and set I = I,,. Expanding Eq. 4.1 around 6* up to second-
order one obtains

1) ~ I(6*) + VI@) (0-6) + (-6 HIO") (0-0"). (42)
The second term vanishes since the gradient at the maximum, VI (5*), is zero.
The third term contains the Hessian matrix H of the information, which is defined
as [115]

(HI)i; = - (4.3)

(HI)i; is a symmetrical matrix and performing an eigendecomposition yields the
directions of principal curvatures as eigenvectors and the respective magnitude of
the curvatures in these directions as eigenvalues [100].! These principal curvatures
provide a lot of information on the curvature of the information landscape. In two
dimensions, for example, the principal curvatures at a point of a surface are the
directions of largest and smallest curvature (see again Fig. 4.1B which shows the two
principal curvatures of a cylindrical object). For my general case of having an N-
dimensional information landscape, I(61,...0), the N principal curvatures give the
directions in threshold space along which the curvature of the information landscape
is of special interest. Note that from a mathematical perspective, the information
landscape is an N-dimensional manifold in N + 1-dimensional space [100]. Taking
together Egs. 4.1 and 4.2 one obtains for the information loss:

AL = —(AO)T HI (AD). (4.4)

My first attempt to systematically quantify the information loss due to suboptimal
thresholds was to compare the relative information loss, Al /Ijyax, when perturbing
the optimal threshold vector §* by magnitude § in a direction of principal curvature:

AT (0% + 60))

Imax Imax

(4.5)

This is schematically illustrated in Figure 4.2A. From my experience with spotting
and avoiding local maxima (Sec. 3.4.4), I suspected that the relative information
loss scales with the population size and indeed there was some dependency of the
relative information loss on the neuron number N (Fig. 4.2B-D). For most noise level
combinations, the relative information loss is highest for N = 1 and decreases with
increasing N (Fig. 4.2D). However, the relative information loss strongly depends
on the noise levels (compare Fig. 4.2B with C). Moreover, one can see that this

'In differential geometry a principal curvature of a surface is defined as the direction along which
the normal vector (being perpendicular to the surface) only moves in a plane spanned by the
principal curvature and the normal vector if one moves into the direction of this principal
curvature.
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4 Information landscapes and phase transitions at critical noise values

approach is too simple in many cases: for N = 2 and two different values of output
noise R, plotting the information landscape shows that the direction of greatest
curvature points to the other maximum? (Fig. 4.2E,F). Especially, in this case,
there might be a big difference between the positive and negative direction of v{
(though this difference usually depends on the strength of the perturbation, ¢).
Additionally, in this case, the information loss is strongly non-monotonic with 9.
Thus, the approach of Eq. 4.5 only makes sense locally, i.e. within a very small
distance from the maximum. Furthermore, it is difficult to compare perturbations
across different population sizes: If, for example, the total perturbation is of length §
along the diagonal of the threshold space, then the perturbation in each dimension
is §/ VN, i.e. each threshold component is perturbed to a smaller extend the higher
the dimension N.
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Figure 4.2: The attempt to quantify information loss along the largest curvature
of the information landscape. A. Schematic showing qualitatively how the information
normalized by the maximum information decreases when perturbing optimal thresholds by
magnitude § in the direction of largest curvature of the information landscape ;. B. Ac-
tual information when perturbing optimal thresholds for N = {1,2,3,4} neurons, each
normalized by maximum information for the respective N. Independent coding-channel
with the case of low noise levels (R = 5, 0 = 0.1). C. As B but with high noise levels
(R = 0.5, 0 = 0.7). D. Normalized information loss for each N when perturbing optimal
thresholds by going 6 = 0.1 threshold units away from the optimum in the direction of
largest curvature. E,F. Normalized information landscapes in the case of N = 2 neurons
for the noise values used in B and C, respectively. The direction of largest curvature could
point towards to or away from the other maximum, which could be further or closer away.

The conclusion is that the Hessian matrix of the information landscape and its
eigenvectors and eigenvalues quantify the local curvature of the information land-

2The two maxima are equivalent due to symmetry reasons: having two neurons with thresholds
01,02 is equivalent to having two neurons with thresholds 62,60 as long as both neurons are
exposed to the same noise levels (see Sec. 3.6.2). Thus, both maxima are “the” global maximum.
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4.2 Information loss for randomly sampled thresholds

scape. However, since this is a local measure, it can only be used to quantify
information loss for suboptimal thresholds in very close proximity to the optimal
thresholds. Thus, these information losses are naturally small and cannot be used to
gain systematic insights on how much information is lost when suboptimal thresh-
olds are more distant from the optimal thresholds. In Section 4.3, however, I
demonstrate how the eigendecomposition of the Hessian matrix still provides very
valuable information about the shape of the information landscape. First, I will
describe a more suitable approach of systematically quantifying information loss
due to suboptimal thresholds in the next section.

4.2 Information loss for randomly sampled thresholds

In the previous section, it became apparent that when perturbing the optimal
thresholds the information loss seems to decrease as the number of neurons in the
population increases. Indeed, increasing the number of neurons in the population
reduces the contribution of each individual threshold to the total information. To
go beyond the local analysis performed in the previous section, I compared the
information loss (relative to the optimal information I,,x) achieved in populations
where the thresholds of the neurons were chosen randomly. It became apparent,
that there are at least three different ways of randomly choosing (“sampling”)
thresholds: First, by sampling each threshold component from the stimulus distri-
bution, second, by sampling each component around the optimal threshold vector,
and third, by sampling around the optimal threshold vector but correcting the
distance between the sampled threshold vector to the optimal threshold vector by
taking into account the dimensionality of the threshold vector.

Each of these three approaches has its supporting arguments for why each is the
right one: with the first approach only the stimulus distribution is taken into ac-
count but no information about the information landscape with its optimalities. It
would resemble the “beginning” of an evolutionary process. The second approach
of sampling around the optimum gives insights into how much information is lost
when perturbing optimal thresholds, i.e. the evolutionary pressure to stay at or
very close to the optimum, for example in the presence of mutations. The third
approach has the same rationale but explicitly takes into account that the distance
between the optimal threshold and the sampled threshold in the second approach
increases with population size N. Thus, the sampled thresholds in the third ap-
proach are corrected for the dimension such that on average the distance between
optimal and sampled threshold are equal for all population sizes. In the following,
I describe the implementation and the results for each approach. All of this will be
done for the independent-coding channel for computational tractability and to be
able to go for N as large as four.
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4 Information landscapes and phase transitions at critical noise values

4.2.1 Sampling thresholds around null-vector

The first approach is to sample each threshold component independently from the
stimulus distribution A/(0, 1), which means that the whole threshold vector is sam-
pled from a multi-variate Gaussian with unit variance:

0~ N(0,1) . (4.6)

Figure 4.3A,B shows the relative information loss as distributions for N € {1,2,3,4}
for high and low noise levels. While it is common for N = 1 to have a very
small relative information loss close to zero and also not uncommon to have very
high relative losses close to 1, both become increasingly uncommon with increasing
population size N. This is expected, since for very small or very large information
losses, each component of the optimal threshold has to be close to its optimal value
or very far away from the stimulus mean, respectively. With increasing N, however,
it becomes much less probable to sample threshold vectors where each component
is very close to the optimal value or very far away from the stimulus mean. With
increasing population size the relative information loss is slightly decreasing (29%
for N =1 vs. 24% for N = 4, Fig. 4.3G). This qualitative result was independent
of the exact values of the two noise sources (not shown).

4.2.2 Sampling thresholds around optimal threshold vector

Second, I sampled each threshold component around the optimal threshold vector to
quantify how much information is lost when the optimal thresholds are perturbed.
Again, I choose a multi-variate normal distribution with unit variance, but this
time the mean is the optimal threshold vector:

0~ N(©6*,1) . (4.7)

This could help understand the size of the evolutionary pressure to maintain op-
timality in the presence of genetic drift. Qualitatively, both the distributions
(Fig. 4.3C,D) and the mean (Fig. 4.3H) of the relative information loss show the
same behavior as with the previous sampling method. The relative information loss
slightly decreases with N (24% for N =1 vs. 20% for N = 4).

For both of these two ways of sampling thresholds, i.e. sampling around the origin
and around the optimum, the average Euclidean distance (d) between the sampled
threshold vectors and the optimal threshold vector 0* increases with the dimen-
sion N of the threshold vector:

(2

0; — 9*)2> ~ VN. (4.8)
i={1,..,N}

Even more impactful, the distribution of the distance becomes extremely skewed
away from small distances with larger V. This phenomenon is often called the curse
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Figure 4.3: Information losses for randomly sampled thresholds compared to
optimal thresholds decreases with neural population size. For the independent-
coding channel and normalized by maximum information for each neuron number N. A,B.
Sampling thresholds around the origin (the null-vector) by drawing each component of the
threshold vector from a Gaussian distribution N'(0,1) (same as the stimulus distribution).
This is done for N = {1,2,3,4} neurons (independent-coding channel only) and then the
resulting normalized information distributions are shown for high noise levels (A) and low
noise levels (B). C,D. As in A,B but instead of sampling around the origin, the threshold
vectors for each N are Gaussian sampled around the respective optimal threshold vector G+
6 ~N (5*, 1). E,F. As in C,D but in such a way that the sampled threshold vectors are
corrected by length, i.e. have on average the same distance to the optimum for each N (see
text). G-I. Mean and standard deviation of the relative information losses shown in A,C,
and E, respectively, i.e. each for high noise.

of dimensionality [116]. For example, the probability to be in the range of [—0.1,0.1]
when sampling one threshold from N(0, 1) is approximately 0.08. When sampling
N thresholds from N(0, 1), the probability that all thresholds are in [—0.1,0.1] is
only 0.08V. If only one of the N thresholds is outside of [—0.1,0.1], then the whole
threshold vector has already a length > 0.1. Thus, it is not so unlikely to have
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4 Information landscapes and phase transitions at critical noise values

a length of smaller 0.1 with N = 1, but extremely unlikely with N = 4 (namely
~4-1075).

4.2.3 Sampling thresholds with corrected distance

Thus, in the third way of sampling thresholds I corrected for the length of the
sampled values so that for all N the average distance of perturbation in threshold
space is equal. This cannot be done by naively adapting the variance matrix, for
example by sampling from N (5*, 1/N). Instead, one has to first, uniformly sample
the direction from threshold space [117], and second, sample the distance to the
optimal threshold vector from N(0,1). This threshold vector is then added to the
optimal threshold vector and the relative information loss is compared. I found in
fact that the relative information loss decreases much stronger with N (24% for
N =1 vs. 6% for N =4, Fig. 4.3]).

There is no obvious answer to which of the three measures® is the “right” one.
On the one hand, the first two measures underestimate the decrease of relative
information loss with N since the fact that the distance between sampled and op-
timal thresholds increases with N is not taken into account. On the other hand,
one can argue that the third measure overestimates the relative information loss
with NV since in this case, the perturbation of each threshold component becomes
smaller with N. Depending on the question one wants to answer, the importance
of thresholds being precisely at the optimum decreases with N to different extents.

4.3 Characteristic shape of the information landscape at
critical noise levels

Remark: The methods, results, figures (Figs. 4.4 and 4.5A), and text of this section
have been originally published in [1] and content-wise are mostly identical to [1].
The differences are that I in this section I also describe results and show figures for
larger population sizes (Fig. 4.5B,C) and non-monotonic thresholds (Fig. 4.6) and
put it in context to the results from [1]. Apart from that, I have slightly modified
some of the original text for stylistic reasons and increased clarity.

To gain a better understanding of the information landscape, especially at the
critical noise values at which threshold bifurcations appear, I examined the Hes-
sian matrix of the mutual information with respect to the thresholds (Eq. 4.3).
To gain intuition about the differences of the information landscape between the

3The fourth possibility of sampling thresholds, namely with corrected length but around the
origin, is not practicable since with larger N most threshold components will be sampled in
very close proximity to the origin (so that the average distance to the origin is still one even
with a larger amount of components). The information loss will then be highly dominated by
the information loss that occurs when choosing the null-vector; in other words, the information

— —,

loss will be dominated by I(6*) — I(0) for larger N.
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4.3 Characteristic shape of the information landscape at critical noise levels

independent- and lumped-coding channels, I considered a population of two cells
for which the landscape can be easily portrayed. However, I also showed that the
theory extends naturally to populations with more neurons, i.e. information land-
scapes in higher dimensions.

I first considered the independent-coding channel for a fixed level of input noise,
while varying the output noise. At the critical noise level, R, where the thresh-
olds bifurcate, one eigenvalue of the Hessian goes to zero (Fig. 4.4A). The informa-
tion landscape undergoes a transformation around the critical noise levels, from a
landscape with two distinct maxima separated by a local minimum at low noise,
R > Ruit (Fig. 4.4B, top), where the population thresholds are distinct, to a
landscape where there is a unique maximum at high noise, R < R, where the
population thresholds are identical (Fig. 4.4B, bottom). For R > R, there are
two inflection points (Fig. 4.4C, top), resulting in two opposite curvatures along
the line that connects the two maxima. At the critical noise, R = R, the two
maxima converge at the bifurcation point and the two inflection points fuse to-
gether such that the curvature becomes zero (Fig. 4.4C, middle). At this point
of convergence, the information landscape locally resembles a ridge, which extends
along one principal direction of curvature (Fig. 4.4B, middle; see also Fig. 4.1B for
the schematic). The ridge is perpendicular to the other principal direction, which
stands for the direction of largest curvature. Finally, for R < R, the information
landscape has a single maximum with negative curvature (Fig. 4.4B and C, bottom).

I then examined the eigenvalues of the Hessian matrix for a larger population of
size N > 2. I found that at each critical noise level where the thresholds bifurcate,
at least one eigenvalue of the Hessian matrix approaches zero. The number of zero
eigenvalues — denoting the number of dimensions along which the information does
not change locally — is equal to the number of thresholds participating in a bifur-
cation minus one. For N = 3, for example, there are two critical noise values at
which the thresholds bifurcate (Fig. 4.5A,B, top). Therefore, at critical noise values
where three thresholds are involved in the bifurcation the number of eigenvalues
approaching zero is two, while at the critical noise values with only two thresholds
involved thus the number of eigenvalues approaching zero is one (Fig. 4.5A,B, bot-
tom). Similarly, for N = 4, three eigenvalues go to zero at the bifurcation where
all four thresholds participate (Fig. 4.5C). Interestingly, for the bifurcation where
only 03 and 6, participate, a different eigenvalue goes to zero compared to the bi-
furcation where only #; and 6y participate.

Then I also looked at how the eigenvalues of the Hessian behaved for the non-
monotonic threshold behavior (Fig. 4.6). The same pattern as before emerged: at
each bifurcation, the number of eigenvalues going to zero is the number of thresholds
participating minus one. That is true for threshold ribbons (Fig. 4.6A,C), threshold
switching (Fig. 4.6B) and also for threshold splitting with N = 6 (data not shown).
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Figure 4.4: Information landscape for the independent- and lumped-coding chan-
nels behaves differently around critical noise levels. A. Top: Optimal thresholds of the
independent-coding channel for a population of two neurons as a function of output noise R.
Bottom: Corresponding eigenvalues of the Hessian of the information landscape with respect to
thresholds. At the critical noise value Rerit =~ 0.396 at which the threshold bifurcation occurs
(vertical dashed line) the smaller eigenvalue approaches zero. B. Information landscape I, (61, 62)
for the three output noise levels R indicated by arrows in A. Top: For R > Reit, there are two
equal maxima. Middle: At R = Rit, the eigenvectors of the Hessian are shown and scaled by the
corresponding eigenvalue (the eigenvector with the smaller eigenvalue, ¥, was artificially length-
ened to show its direction). At the critical noise value the information landscape locally takes the
form of a ridge. Bottom: For R < Rg:it, there is one maximum, meaning that the optimal thresh-
olds are equal. C. The mutual information as a function of the line z in (61, 62) space connecting
the two maxima in B. Top: For R > Rt (low noise), there are two inflection points (dashed
vertical lines) with zero curvature along the line z. The point with equal thresholds corresponds
to a local minimum. Middle: At R = Reyit, the two maxima, the minimum, and the two inflection
points merge in one point, thus the curvature is zero. Bottom: For R < Reit, there is a single
maximum with negative curvature. D. As in A but for the lumped-coding channel. Both the
optimal thresholds and the eigenvalues show a discontinuity at critical noise level. The eigenvalues
do not approach zero. E. Information landscape as in B for lumped-coding channel and noise
values indicated by arrows in D. Local maxima are shown in cyan, global ones in red. F. Similar
to C for lumped-coding channel. Here the abscissa denotes the (non-straight) path connecting the
three maxima in E. From [1].
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Figure 4.5: The number of eigenvalues of the Hessian matrix approaching zero
is the number of thresholds participating in a bifurcation minus one. This is true
with respect to both input and output noise. A. Optimal thresholds and corresponding
eigenvalues depending on output noise R for N = 3 neurons and fixed input noise. B. As A
but depending on input noise and with fixed output noise. C. As B but for N = 4 neurons.
Panels A and B are from [1].

These results further support my claim that the aforementioned non-monotonic
threshold behaviors are not an artifact.

Locally, threshold combinations along the ridge of the information landscape
achieve almost the same information. Mathematically speaking, this ridge is a
manifold [100] of dimension M — 1, where M is the number of thresholds involved
in the bifurcation. Since the ridge is oriented at exactly 45° with respect to all of
the #-directions participating in the bifurcation the manifold is locally given by

Z ; = constant. (4.9)

{ i | 6; involved
in the bifurcation

For example, for M = 2 this manifold is a line, while for M = 3 it is a plane and for
M = 4 it cannot be visualized anymore. Following the same argument as for the
population with N = 2 neurons (Fig. 4.4C,D), it can be shown that the curvature
of the information landscape has to be zero in M — 1 principal directions, thus
M — 1 eigenvalues of the Hessian have to be zero when M thresholds participate in
a continuous bifurcation.

For the lumped-coding channel, the eigenvalues of the Hessian do not approach
zero at the critical noise levels where the thresholds split (Fig. 4.4D). This is in
agreement with the fact that threshold bifurcations are in general discontinuous
for the lumped-coding channel (see also Fig. 3.4G,H). An exception to this is the
limiting case when one noise level is zero, where the lumped-coding channel shows
continuous bifurcations (Fig. 3.41,J). At low output noise, R > R (Fig. 44E.F,
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Figure 4.6: The same structure of eigenvalues of the Hessian matrix approaching
zero at critical noise levels also holds true in the case of non-monotonic behavior
of optimal number of distinct thresholds. A. Optimal thresholds and eigenvalues
depending on output noise R for N = 2 neurons at a fixed input noise value o for which
the threshold ribbon appears. B. As A but for N = 3 with a threshold switching. C. As
A but for N =4.

top), the information landscape has two distinct maxima corresponding to the op-
timal thresholds, #1 and 6,. However, the information landscape also has a local
maximum at 1 = f5. As noise increases, this local maximum decreases more slowly
compared to the two global maxima, until at the critical noise level Rt the three
maxima become equal (Fig. 4.4EF, middle). As noise increases further, R < Reit,
the maximum at 6; = 6 becomes the single global maximum (Fig. 4.4E,F, bot-
tom). In other words, the local maximum “overtakes” the global maximum at the
critical noise value.

My results show, that for finite noise, the shape of the information landscape for
the independent- and the lumped-coding channels can be uniquely related to the
nature of the threshold bifurcations (continuous for the independent-coding and
discontinuous for the lumped-coding channel). The information landscape takes a
qualitatively different shape at the threshold bifurcations in each case, demonstrat-
ing the emergence of a new threshold through splitting either through a gradual
“breaking” of the information ridge (Fig. 4.4B,C), or through a discrete switching
from a local information maximum to the global maximum (Fig. 4.4F E).

4.4 Phase transitions at critical noise levels

Remark: The methods and results (Fig. 4.7, 4.8, and 4.9 and the text) of this
section (until including Subsec. 4.4.1) have been originally published in [1] and
content-wise are identical to [1]. The differences are that in this section I have split
up one figure into two (Fig. 4.7 and 4.8) for page width reasons. Furthermore, the
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4.4 Phase transitions at critical noise levels

methods, results, figures, tables, and text of Subsections 4.4.2 and 4.4.3 are taken
from a modified version of [1] which currently is under review (see remarks at the
beginning of Secs. 4.4.2 and 4.4.3). Apart from that, I have slightly modified some
of the original text for stylistic reasons and increased clarity.

The characteristic bifurcations of the optimal thresholds at critical noise levels sug-
gest the occurrence of phase transitions akin to those encountered in a variety of
physical systems. In physics, a phase transition is defined by non-analytic behavior
of the free energy — usually a discontinuity of its first or second derivative — and
can be characterized by an order parameter [89]. For example, a phase transition
occurs when the order parameter — which could among others be the magnetiza-
tion of a ferromagnetic material — changes abruptly from zero to non-zero values
with an external parameter, such as pressure or temperature. The quantities that
change abruptly from zero to non-zero values in my diagrams of optimal thresholds
are the threshold differences, which I thus treated as order parameters from now
on. Furthermore, the external parameters are the two noise levels and the size that
is potentially non-analytic is the mutual information. Guided by this character-
ization, I sought to relate the qualitative differences in optimal thresholds of the
independent- vs. lumped-coding channel with two noise sources to phase transition
phenomena. In specific, I wanted to test if there is indeed a close analogy between
the following quantities: First, the mutual information being analogous to the free
energy, second, the two noise sources being analogous to the temperature or pres-
sure, and third, the threshold differences being analogous to the order parameter
(as for example magnetization in a ferromagnetic material).

4.4.1 Bifurcations of optimal thresholds represent phase transitions

I illustrate the results for a population with three neurons. Using the analogy
from physics, I have two order parameters which are the two threshold differences,
0> — 01 and 03 — f5. To determine whether a phase transition occurs, I computed
the first and second derivatives of the mutual information with respect to a given
noise parameter (Fig. 4.7). Using the classic Ehrenfest classification of phase tran-
sitions [91], a discontinuity in the first (second) derivative with respect to the noise
implies a first- (second-) order phase transition. My approach also works with using
the modern classification of phase transitions, which generalizes the second-order
phase transition to any non-analytic behavior (i.e. discontinuous or divergent) of
the information with a continuous first derivative [90]. There, the second-order
phase transition is called a “continuous” phase transition since the order parameter
is continuous as long as the first derivative of the information is continuous.

I found that the orders of the phase transitions always correspond to the disconti-
nuity of the threshold differences — being the order parameters — when noise var-
ied. For continuous threshold bifurcations, there was a discontinuity in the second
derivative with respect to output noise while the first derivative was continuous,
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Figure 4.7: Bifurcations of optimal thresholds correspond to phase transitions
with respect to both noise sources. To show the order of the phase transition the
optimal thresholds and the derivatives of the mutual information with respect to both
input and output noise are shown (both channel types, N = 3 neurons). A. Optimal
thresholds for the independent-coding channel with respect to output noise R. Insets:
The first derivative of the mutual information as a function of noise is continuous while the
second derivative is discontinuous at the critical noise values where the thresholds bifurcate,
implying a second-order phase transition. B. As in A, but with respect to input noise o.
C. Optimal thresholds as in A but for the lumped-coding channel. The first derivative is
discontinuous at the critical noise values where the thresholds bifurcate, implying a first-
order phase transition. D. As in C but with respect to input noise 0. Adapted from [1].

thus corresponding to a second-order phase transition (Fig. 4.7A). All phase transi-
tions for the independent-coding channel were continuous and thus of second-order,
i.e. also with respect to input noise (Fig. 4.7B). This result is in agreement with
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a previous study which also found a second-order phase transition in a population
of two neurons in the presence of only input noise [29]; I extended this result to
populations of more than two neurons and with more than one noise source. Next,
I investigated phase transitions in the lumped-coding channel.

For discontinuous threshold bifurcations, I observed a discontinuity in the first
derivative with respect to output noise and thus a phase transition of first-order
(Fig. 4.7C). For the lumped-coding channel, almost all threshold bifurcations are
discontinuous, i.e. first-order phase transitions; also when fixing output noise and
varying input noise (Fig. 4.7D). The reason for that is that the bifurcation / phase
transition happens at the noise level where the local maximum becomes the global
one. This is a first-order phase transition since at this critical noise level the de-
crease of maximum information with noise changes abruptly, resulting in a discon-
tinuity in the first derivative (Fig. 4.8H). An exception to this is when one noise

|
|
|
|
|
L

crit. noise noise

Figure 4.8: Schematic of why the discontinuous threshold bifurcations resemble
first order phase transitions. At a discontinuous threshold bifurcation, the global
maximum at 67 # 62 at low noise (red, solid) becomes a local maximum for high noise (cyan,
solid), while §; = 05 (dashed) becomes global. As their respective derivatives are different,
there is a discontinuity in the first derivative when only taking the global maximum into
account (red lines), corresponding to a first-order phase transition. From [1].

source vanishes, e.g. when there is only input noise (Fig. 4.9B) or only output noise
(Fig. 4.9D). There, most threshold bifurcations become continuous and thus also
the phase transitions are of second-order. The single discontinuous bifurcation in
Figure 4.9B stays first-order, as expected.

These results show that the threshold differences in the population of neurons re-
semble order parameters and determine the order of the observed phase transitions:
discontinuous threshold differences correspond to first-order phase transitions while
continuous threshold differences correspond to second-order phase transitions. In
the following sections, I will investigate more similarities to statistical mechanics
models from physics and also point out where my system shows peculiarities when
compared to physics’ systems.
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Figure 4.9: Bifurcations of optimal thresholds correspond to phase transitions
in the limit of just one noise source. As in the previous figure, but now with R = oo
or o = 0, respectively. A. Threshold bifurcations for the independent-coding channel with
respect to input noise o for vanishing output noise. The derivatives of mutual information
with respect to input noise indicate a second-order phase transition. B. As in A but for
lumped-coding channel. There is first-order phase transition for low noise (left inset) and a
second-order phase transition for high noise (right inset). C. Independent-coding channel
with vanishing input noise. No phase transition is visible since the “bifurcation” happens
in the limit of infinite output noise. D. The lumped-coding channel with vanishing input
noise exhibits second-order phase transitions. From [1].
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4.4 Phase transitions at critical noise levels

4.4.2 Critical exponents of the continuous phase transitions

Remark: The methods, results, figure, table, and text of this section (in particu-
lar, Egs. 4.10-4.13, Tab. 4.1, and Fig. 4.10) are taken from a modified version of [1]
which is currently under review. Content-wise, the methods, results, figure, table,
and text of this section are identical to this modified version of [1]. However, here
I have slightly modified some text for stylistic reasons and increased clarity.

Continuous phase transitions from different physical systems often behave very
similarly around critical points (e.g. the Ising model of magnets at critical tem-
perature or the liquid-gas transition at the critical point [89]). This phenomenon
is known as wuniversality and the universality class to which a system belongs can
be characterized by critical exponents [89]. For example, the critical exponent [
describes how the order parameter behaves for small temperature changes close
to (but below) the critical temperature. In my system with mutual information
and noise, S describes the behavior of threshold differences for noise values slightly
smaller than critical noise values o. and R, i.e.

_ 1B
A | 2222 foro < oc (4.10)
Oc
and
R—R.\""
Af x < 7 c) for R > R, , (4.11)

respectively (Fig. 4.10A,B). I obtained critical exponents for both noise sources
through fitting a monomial to the positive part of the threshold differences depend-
ing on one noise value while treating the other noise value as a parameter that I
varied across 20 different values to get statistical robustness (Table 4.1). Similarly, I
fitted the critical exponents for the eigenvalues which approach zero at critical noise
values. Since the eigenvalues have finite values on both sides around the critical
noise values, I separately fitted critical exponents for each side; e.g. for the output
noise R, I fitted a monomial-function to both

_ PR,
N oc|Z—2¢| " for R< R, (4.12)
and
R . RC ¢R,r
|A| o 7 for R > R, , (4.13)

again with 20 different values of input noise to get statistical robustness (Fig.
4.10C,D; Table 4.1). I found all the critical exponents for the eigenvalues to be
approximately 1, while the thresholds differences as order parameters have a critical
exponent of 8 ~ 0.5, the value predicted by the mean-field theory for all contin-
uous phase transitions [118]. My results extend previous theoretical work which
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considered a population of two neurons with only input noise and already reported
a critical exponent close to 0.5 [29]. For the critical exponent of the eigenvalues, ¢,
I have not found a resemblance in a statistical physics model.

A R=2,f,=05014 B 0 =0.1, 3z =0.5008
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Figure 4.10: Obtaining critical exponents from fitting order parameter and
eigenvalues in proximity of critical noise values of continuous phase transitions.
A. Obtaining the critical exponent §, by fitting a monomial function to the threshold dif-
ferences for input noise values slightly smaller than the critical input noise value o.. B. As
in A, Bg is obtained by fitting output noise values slightly smaller than the critical output
noise R.. C, D Similarly one obtains the critical exponents of the eigenvalues of the Hessian
of the information landscape, ¢; and ¢,., by fitting the eigenvalues for both slightly smaller
(¢1) and slightly larger (¢,) noise values than the critical noise value. This figure is from
an article that is based on [1] and that is currently under review.

4.4.3 The moment-generating function of the independent-coding
channel

Remark: The methods, figure, and text of this section (in particular, Eqs. 4.14-
4.17 and Fig. 4.11) are taken from a modified version of [1] which is currently under
review. Content-wise, they are identical to this modified version of [1]. However,
here I have slightly modified some text for stylistic reasons and increased clarity.

In statistical physics, the moment-generating function is directly related to the
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Table 4.1: Critical exponents, their respective definitions and the values obtained from
fitting. This table is from an article that is based on [1] and that is currently under review.

Crit. exp. Definition Fitted value (mean + SEM)
B A x |(0 —0.) /o, 0 < 0. 0.5027 4 0.0018
Br Af o |(R— R.)/R:|°~*,R > R, 0.5018 + 0.0023
b0l N o [(o — 0¢)/oc|®r, 0 < o 1.0034 £+ 0.0019
Do N o ((0 —ap)/o.)%m, 0 > o, 0.9977 4 0.0005
ORI I\ o< [(R — R.)/Rc|?"4, R < R, 0.9967 & 0.0015
PR, I\ o< (R — R.)/R.)®*", R > R, 1.0023 + 0.0025

free energy of a system and plays a central role in studying its critical behavior and
phase transitions [119] (see also App. A.1). The moment-generating function of an
N-dimensional random variable X is:

Mg (F) = (%), FerN . (4.14)

In my case, for the independent-coding channel and N = 2, the moment-generating
function regarding the output variable is:

My(®) = () (4.15)
=3 "k P(ky, kg)eltFrtiehe (4.16)
k1 ko
with
N
P(kl,k@):/HZP(@@Z-)P(V”S)P(S)CJS, (4.17)
Si=1 vy

where P(k;|v;) follows the Poisson distribution and P(v;|s) is given by the thresh-
old 6; and the noise model (Sec. 3.1, Eqgs. 3.3, 3.12). In statistical physics, phase
transitions are characterized by a non-analytic behavior of the moment-generating
function [120]. Since the moment-generating function is a sum of exponentials it
should be non-analytic only for N — oo [121]. In my work, I characterized phase
transitions by non-analytic behavior of the maximized mutual information. That
way, I found phase transitions for N finite and as small as two. Interestingly,
the moment-generating function in my case is a smooth function of the thresh-
olds and also — when the thresholds are not optimized but fixed — of both noises
(Fig. 4.11A-C). However, in my case, the moment-generating function does be-
come a non-analytic function of the noises when the optimized thresholds are used
(Fig. 4.11D,E).

4.5 Summary and discussion

In this chapter, I quantified the information loss in the case of suboptimal thresh-
olds. Using (local) curvature of the information landscape (Sec. 4.1) and different
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Figure 4.11: The moment generating function of the spike output vector k is
smooth for fixed thresholds but not for optimized thresholds of both noise
sources. A. The two components (N = 2) of the moment-generating function M (%) for
t= (1,1) depending on input noise o. Output noise value and threshold vector are fixed to
R=1and = (—0.5,0.5), respectively. The first two derivatives show no discontinuities.
B. As A but depending on R with ¢ = 0.2. C. As A B but depending on first threshold
vector 6;. D, E. As A B but with optimized threshold vector for each noise value. The
components of the moment-generating function show a bifurcation and the first derivatives
show discontinuities. This figure is from an article that is based on [1] and that is currently
under review.

ways of randomly sampling thresholds (Sec. 4.2) T found that, in general, the in-
formation loss relative to maximal information seems to decrease for larger pop-
ulations. However, due to the difficulty of comparing distances across different
dimensions, this quantification turned out to be not trivial. Moreover, different
approaches lead to different quantitative results for different questions one wants
to answer. During the process of quantifying the curvature of the information
landscape I discovered that the landscape takes a particular shape at continuous
threshold bifurcations: among at least one direction in the threshold space, the
curvature of the landscape becomes zero meaning that perturbing thresholds in
these directions leads to small information losses (Sec. 4.3). Finally, I was able to
show that the threshold bifurcations respond to phase transitions: at critical noise
levels, the system undergoes a first-order phase transition when thresholds bifur-
cate discontinuously and a second-order phase transition when thresholds bifurcate
continuously (Sec. 4.4). To make a comprehensive comparison with physics’ sys-
tems, I looked into critical exponents and the moment-generating function of the
second-order phase transition.
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4.5 Summary and discussion

4.5.1 Information loss due to suboptimal thresholds depends on
measure

Systematically quantifying relative information loss due to suboptimal thresholds
is not trivial since optimal thresholds can be perturbed in an N-dimensional space
and quantification across dimensions is difficult. I tried two different approaches.
First, through systematically quantifying particular directions in the threshold
space along which I can perturb optimal thresholds, and second, randomly sam-
pling thresholds. It turned out that the first approach is only feasible very locally
around optimal thresholds (Fig. 4.2). There, it seems that the relative informa-
tion loss is smaller for larger population size. However, the measure of perturbing
thresholds by a fixed distance has a different impact depending on the dimension
of the space: in high dimensional space it means that even though the length of the
perturbation is the same, the perturbation in any single dimension is smaller. The
second approach, randomly sampling thresholds, has the same caveat: the higher
the dimension, the longer is the threshold vector on average when each component
is sampled independently. Even more impactful, due to the law of large numbers,
with increasing population size IV, there is an increasingly strong shift away from
very small or very large perturbations of the whole threshold vector towards mean
perturbation values (Fig. 4.3).

I described three principle possibilities of randomly sampling threshold vectors.
Two of them do not take into account that the average length of a sampled vector
increases with its dimension N and thus cause small decreases of relative informa-
tion loss with N (about 20% less loss for N = 4 compared to N = 1, Secs. 4.2.1
and 4.2.2). The third possibility makes sure that the average length of the sampled
vector is constant across IN. As a consequence each single threshold is only slightly
perturbed for large N, thus causing a large decrease of information loss with N
(about 80% less loss for N = 4 compared to N = 1, Sec. 4.2.1). It is not possible
to give a clear answer on which measure is the right “one” and the measure to use
depends on the concrete question one wants to answer. Concrete questions are, for
example, how strong the evolutionary pressure is to optimize randomly distributed
thresholds towards the optimum in general, or how deleterious mutations of already
optimized thresholds are, or if the answer to the two previous questions depends
on population size. Nevertheless, it is true to say that the importance of thresholds
being precisely at the optimum decreases with IV, although to different extents de-
pending on the measure.

The conclusion is, that when maximizing information in future studies, instead
of just finding optimal solutions, one also has to check how much worse suboptimal
solutions actually are. For that, one also has to think about which measure to use
when quantifying information loss. In particular, it is very hard to compare systems
with different dimensions, i.e. different number of thresholds, with each other.
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4 Information landscapes and phase transitions at critical noise values

4.5.2 Threshold bifurcations resemble phase transitions

The phase transitions at critical noise levels in my work resemble phase transition
from physics: maximizing the mutual information corresponds to minimizing free
energy, noise corresponds to temperature, and the threshold differences correspond
to order parameters. As in physical systems, the orders of my phase transitions are
consistently linked to the continuity of the threshold differences: a continuous (dis-
continuous) order parameter corresponds to a second (first) order phase transition.
At finite noise levels, the lumped-coding channel undergoes discontinuous thresh-
old bifurcations which correspond to first-order phase transitions. In contrast, for
the independent-coding channel, the threshold differences change continuously and
the phase transitions are of second-order. My results suggest that input and out-
put noise influence the mutual information in a very similar way that temperature
or pressure affect free energy in physical systems [89]: both noise sources act as
external parameters with respect to which the phase transition occurs (Figs. 4.7
and 4.9).

Critical exponents

For the case of continuous order parameters, i.e. optimal threshold differences of
the independent-coding channel, I found critical exponents of the order parameter
to be 0.5 — irrespective of the noise source (Fig. 4.10 and Tab. 4.1). This value
corresponds to the mean-field theory of continuous phase transitions [118], which
underscores the similarity of my phase transitions to those of physical systems.
Furthermore, I determined the critical exponents for eigenvalues of the Hesse matrix
of the information landscape and found them to be 1. Again the source of the noise
has no impact which underscores the previously made statement, that additive
input noise and Poisson output noise have a similar influence.

Discontinuity of the moment-generating function

In statistical physics, phase transitions occur where the moment-generating func-
tion of the state distribution shows non-analytic behavior, which only happens in
the thermodynamic limit of having N — oo many particles [90]. With my system
of a neural population optimized for information encoding, the moment-generating
function of the output distribution shows non-analytic behavior for N = 2 neu-
rons (Fig. 4.11). However, this occurs only when using the optimized thresholds
(which change with varying noise) but not when using fixed (even for varying noise)
thresholds. The cause for this difference remains unclear, since I could only carry
out numerical calculations. Thus, in contrast to models from statistical physics, I
did not have access to analytic expressions which could help me understand why
the non-analytic behavior occurs.

I provide an extensive comparison between bifurcations of the optimal thresholds
and phase transitions studied in physics in the following chapter.
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5 Discussion and outlook

Remark: Table 5.1 and some of the text in this chapter are part of an article
entitled Efficient population coding depends on stimulus convergence and source of
noise which has been written together with Shuai Shao and Julijana Gjorgjieva.
The article has been uploaded to the preprint server bioRziv [1] and a modified
version of it is currently under review for publication in the journal PLOS Com-
putational Biology. All content from that article which is part of this chapter was
my contribution to the article unless specifically mentioned otherwise. The current
rules of self-citation require me to strictly separate old from new content, but con-
trary to previous chapters, I have new and old material closely intermixed in this
chapter. To not impair the typeface too much, I denote new content which has not
previously been published by putting a dagger symbol, , at its beginning and a
double dagger symbol, 1, at its end (e.g. TThis sentence is new.%).

In this thesis, I have applied the efficient coding framework to a neural population
with binary nonlinearities encoding a one-dimensional stimulus corrupted by two
noise sources (additive input noise and output noise due to a stochastic spike gen-
eration process). I optimized the respective thresholds of the nonlinearities such
that the mutual information between stimulus and population output is maximized.
This way, I was able to characterize how the optimal threshold diversity depends on
the two noise strengths. I did this for two different channel types, namely encod-
ing the stimulus with the lumped output of the population or with its independent
output. In summary, I have found that

e the lumped-coding channel encodes less information for all finite noise levels,
meaning that lumping of the output is an additional form of noise (Fig. 3.2,
Sec. 3.3).

e the optimal thresholds of the neurons’ nonlinearities are all distinct at low
noise and all equal at high noise and the transitions happen through subse-
quent bifurcations as a function of each noise (Fig. 3.4, Sec. 3.4).

e these bifurcations are continuous for the independent-coding channel and dis-
continuous for the lumped-coding channel (Fig. 3.4, Sec. 3.4).

e the two noise sources influence information encoding and optimal thresholds
in a very similar way in that sense that each noise predicts fully distinct
thresholds at lower noise levels and equivalent thresholds at higher noise levels,
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with subsequent threshold bifurcations in between. Furthermore, the nature
of the bifurcations does not depend on which noise source is varied but on
the channel type (Fig. 3.4, Sec. 3.4).

e surprisingly, for some parameters, the optimal number of distinct thresholds
behaves non-monotonously with noise, i.e. the number of optimal thresholds
first decreases, then increases, and then decreases again with increasing noise
(Fig. 3.12, Sec. 3.5).

e these results are robust with respect to the specific nature of the noise sources
or the stimulus distribution (Secs. 3.6 and 3.7).

e the information landscape takes the form of a ridge at continuous thresh-
old bifurcations, meaning that the information landscape is flat in certain
directions and there is vanishing information loss when choosing suboptimal
threshold combinations which lie on that ridge (Fig. 4.4, Sec. 4.3).

e the relative information loss achieved when the optimal thresholds are per-
turbed is smaller for larger neural populations (Fig. 4.3, Sec. 4.2).

e threshold bifurcations resemble phase transitions from statistical physics. As
in physics, discontinuous threshold bifurcations resemble phase transitions
of first-order, while continuous threshold bifurcations correspond to phase
transitions of second-order (Fig. 4.7, Sec. 4.4). In general, the number of
phase transitions increases with the population size.

In the following sections, I will discuss some of the results (Sec. 5.1), the assumptions
of my model (Sec. 5.2), compare my model to other models from the literature
(Tab. 5.1), and discuss the limitations (Sec. 5.3) and implications of my model
(Sec. 5.4).F

5.1 Discussion of the results

5.1.1 Lumping channels: trade-off between information loss and energy
efficiency

Lumping the output of parallel channels into one effective channel causes a loss of
information since lumping acts like a form of noise (Sec. 3.3). From an evolutionary
perspective this appears to be counterproductive. So why would a biological system
lump information transmission channels? A biological upside of combining infor-
mation from multiple streams into one effective channel is the reduction of neurons
needed for information transmission, thus potentially saving space and energy. For
example, the optic nerve has a strong incentive to reduce its total diameter since
it crosses through the retina and thus causes a blind spot. On the other hand, for
a given constraint on space and energy, it is favorable to have many thin, low-rate
axons over fewer thick, high-rate axons [122,123], thus arguing against convergence.
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5.1 Discussion of the results

However, at least for the retina, an intermediate degree of convergence is probably
the optimal solution. One would expect that this degree of convergence depends on
the location at the retina. At the center of the retina, there is small convergence
from photoreceptors to retinal ganglion cells compared to the periphery [124]. This
implies that a higher visual acuity is achieved by increasing information transmis-
sion at the cost of energy and space. In contrast, there does not seem to be any
convergence in the early auditory pathway: At the first stage of the neural signaling
process, one inner hair cell diverges to 10 to 35 auditory nerve fibers [55]. This lack
of convergence might be due to the fact that, contrary to the retina, there is no
pressure of having a thin ganglion. A recent theoretical study suggests that con-
vergence can compensate for the information loss due to a nonlinear tuning curve
with a small number of output states [125].

I only treated the extreme cases of full convergence (where all neurons are lumped
into a single channel) and no convergence (no lumping). In principle, different
combinations of partial convergence, e.g. lumping three outputs into two chan-
nels, are also possible. Partial lumping is a common strategy in sensory systems
with different levels of convergence [113]. Furthermore, I assumed no weighting of
inputs during the lumping process. This is an oversimplification since in biology
spikes from different presynaptic neurons could have a different impact on the mem-
brane potential of the postsynaptic neuron depending on the synaptic connection
strengths. These individual weights can also be optimized [86].

5.1.2 Optimal number of distinct thresholds as a function of noise

The number of distinct optimal thresholds decreases with increasing noise of ei-
ther kind at critical noise levels by successive bifurcations of the optimal thresholds
(Sec. 3.4). T mapped these characteristic bifurcations of the optimal thresholds at
critical noise levels to phase transitions of different orders with order parameters
being the threshold differences. At finite noise levels, the lumped-coding chan-
nel undergoes discontinuous threshold bifurcations which correspond to first-order
phase transitions with respect to noise where the threshold differences are the order
parameters. In contrast, for the independent-coding channel, the threshold differ-
ences change continuously and the phase transitions are of second-order.

Interestingly, for a range of noise parameters, I found non-monotonic changes in
the number of distinct optimal thresholds with noise levels (Sec. 3.5). A similar
non-monotonicity has also been reported under maximization of the Fisher infor-
mation for neurons encoding sound direction [84]. TThe reasons for this behavior
remains elusive. Numerical imprecisions, however, can be excluded (Sec. 3.5.2).
The non-monotonic threshold diversity seems to be related to the much more com-
mon non-monotonic threshold differences [62,85] ¥ A related phenomenon in physics
is that of retrograde phenomena [126]. For example, in a mixture of liquids, a phase
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transition from liquid to gas, followed by another transition from gas to liquid, and
then liquid to gas again can be observed while increasing temperature [126].

5.1.3 Information loss at non-optimal thresholds

An important but often neglected question for optimal coding theories is how much
worse suboptimal solutions are in comparison to optimal ones in terms of infor-
mation transmission. In the independent-coding channel, near critical noise levels,
the information landscape becomes flat in the directions of principal curvature
(Sec. 4.3). This suggests that multiple threshold combinations yield nearly iden-
tical information, a property of the neuronal population that is closely related to
the concept of “stiff vs sloppy modeling”, whereby a system’s output is insensi-
tive to changes in “sloppy” directions of the parameter space, but very sensitive to
changes in “stiff” directions [127-130]. Hence, even populations that utilize sub-
optimal thresholds often achieve information very close to the maximal, and it is
unclear whether such small information differences could be measured experimen-
tally. This also raises the question of whether a few percent more information about
a stimulus realized by optimal codes could be sufficiently beneficial for the perfor-
mance of a sensory system to become a driving force during evolution. {Therefore,
I looked at the information loss when sampling thresholds randomly compared to
the maximum information when using optimal thresholds and found that relative
information loss is smaller the larger the neural population. However, the exact re-
sult depends on the question and the measure (Sec. 4.2). For example, the decrease
of information loss with population size is smaller when each threshold component
is independently perturbed compared to when the magnitude of the perturbation of
the whole threshold vector is fixed across population sizes. The former case would
resemble a mutation of a gene that influences the threshold of a single neuron, while
the latter would resemble a mutation of a gene that influences the thresholds of all
neurons.?

It has been shown that mutations that have very small effects on evolutionary
fitness are fixated in a population with a probability almost irrespective of the mu-
tation being advantageous or deleterious [131,132]. This analysis demonstrates
that despite the prominence and success of efficient coding frameworks that opti-
mize information about a stimulus utilizing population codes with multiple neurons,
one should be cautious when interpreting the optimal solutions. It turns out that
even population codes that utilize suboptimal thresholds can achieve information
very close to the optimally possible, putting into question whether differences in
the biological implementations of such codes could even be detected.?

On the other hand, in certain sensory systems like the retina, entire populations of
retinal ganglion cells perform multiple functions [133-135] or fulfill different com-
putations under different light conditions [136]. For such systems, there must be a
fundamental trade-off in performance, since such a system cannot be optimal for
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all functions simultaneously [61,137]. The sloppiness of nearly-equivalent optimal
thresholds that I observed near critical noise levels should resolve when taking into
account that neurons have multiple constraints and often perform more than just
one function. fIncorporating several constraints into a model, however, requires
additional assumptions about weighting constraints as they often have opposite ef-
fects: a metabolic constraint, for example, favors many thick axons with low firing
rates, while a space constraint favors few thin axons with high firing rates [2].}

5.1.4 Analogies and differences to phase transitions in statistical
physics

fThere are several direct analogies between phase transitions in this work and in
statistical physics, the most prominent being: maximizing the mutual informa-
tion corresponds to minimizing free energy, noise corresponds to temperature, the
threshold differences correspond to order parameters, and a continuous behavior of
the threshold differences corresponds to a second-order phase transition. However,
there are also some noteworthy differences, for example, the critical exponent of
the eigenvalue of the Hessian has not been reported in statistical physics, and my
system has several order parameters. Since in statistical physics mostly second-
order phase transitions are of interest [90], I extensively discuss the analogies and
differences between statistical physics and my system using the independent-coding
channel .}

5.1.4.1 Symmetry break during phase transition

In statistical physics models, the transition of an order parameter from zero to
non-zero values is accompanied by a symmetry break of the system. Examples
are the symmetry break introduced by magnetization of a ferromagnetic material
below the critical temperature,! by the non-miscibility of liquids below the critical
temperature, and by the occurrence of hydrogen-bounds through the transition
from vapor to liquid water [89]. Similarly, there is a symmetry break in my system
as optimal thresholds become unequal at critical noise levels and thus the statistical
equivalence of neurons breaks.

5.1.4.2 Critical exponents

I found critical exponents of the order parameter 5 to be 0.5, with respect to
both input and output noise (Tab. 4.1, Sec. 4.4.2). This value corresponds to
the mean-field theory of continuous phase transitions [118], which underscores the
similarity of my phase transitions to those of physical systems. Since mean-field
theory ignores statistical fluctuations, the measured exponents of physical systems
are in most cases different from the ones predicted by theory and are referred to as

! Above the critical temperature there is no magnetization and the material is completely sym-
metric in all directions.
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“anomalous” exponents [89]. In my model, the mutual information already takes
into account statistical fluctuations, and appears to be an analytic function of the
thresholds. Therefore, I do not expect an analogous mechanism that would lead to
anomalous scaling exponents. Another critical exponent in my continuous phase
transitions is the exponent of the smaller eigenvalue of the Hessian of the informa-
tion landscape. I found this critical exponent to be 1. As before, the source of the
noise has no impact on the critical exponent, which again highlights that additive
input noise and Poisson output noise have a similar influence.

fIn physical systems, it is usually computationally very expensive to calculate the
Hessian of the free energy due to its high-dimensional landscape and thus can
only be done by using symmetry arguments or other approximations to reduce the
dimension of the landscape [138,139]. It has been noted before in perturbation
analysis that if one eigenvalue of the Hessian? goes to zero, the perturbations in
the respective directions diverge which resembles a second-order phase transition.
In any case, I have not found any evidence in the existing work that relate critical
exponents to the eigenvalues of the Hessian.?

5.1.4.3 Order parameters: optimized values vs. statistical quantities

In standard phase transitions, the order parameters are statistical quantities since
they are the moment of a function, e.g. magnetization in the Ising model is the mean
over spin directions [90]. My order parameters are not statistical variables but are
obtained by optimizing mutual information. It is possible that they are related to
statistical moments of some function of neural activity or to a function of statistical
moments of neural activity, however, I have not found such a relationship.

5.1.4.4 More than one order parameter

In contrast to most physical systems, my system has more than one order parame-
ter, specifically the number of subsequent threshold differences, i.e. the number of
neurons minus one. My scenario with three neurons shows similarities with a sys-
tem with three mixed liquids where the miscibility depends on the liquids’ relative
concentration differences [141]. As the temperature varies, the system undergoes
two phase transitions at which the miscibility changes: from having one phase in
which all three liquids are miscible, to two phases where in one phase two liquids
are miscible but which is separated from a second phase containing the third liquid,
to three phases where none of the liquids are miscible with each other. This cor-
responds to my system where the number of distinct thresholds varies with noise:
from all three thresholds being distinct, to two being distinct, to all three being
equal.

2To be precise: the Hessian of the Legendre transform of the logarithm of the moment-generating
function [140].
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5.1.4.5 Lumped-coding channel: second-order phase-transition in the limit of
one noise approaching zero

"With input and output noise, the lumped-coding channel in general shows discon-
tinuous bifurcations, i.e. first-order phase transitions. For one of these noise sources
becoming smaller and approaching zero, however, the discontinuity becomes smaller
and approaches a continuous bifurcation, i.e. second-order phase transition. This
is comparable to the water-vapor phase transition with respect to temperature and
pressure [89]: in general, the transition from water to vapor is a first-order phase
transition with respect to both temperature and pressure. However, there exist
a critical point of temperature and pressure where this phase transition becomes
second-order.> As with the lumped channel and one noise approaching zero, the
first-order phase transition from water to vapor continuously approaches a second-
order phase transition when temperature and pressure approach the critical point.}

5.2 Assumptions in my model and comparison to other
theoretical frameworks

5.2.1 Assumptions about the stimulus

I considered the encoding of a static stimulus, even though natural stimuli have
correlations in space and time. Previous studies have exploited their correlation
structure to explain various aspects of sensory coding, for example, the size and
shape of receptive fields of RGCs [38,40,41, 78,81, 83]. Since correlations in the
stimulus are thought to reduce effective noise values [78], by considering stimuli
independent in time, I likely underestimated effective noise levels.

Moreover, my coding framework assumed a one-dimensional stimulus; thus, it is
appropriate for explaining the number of the population’s distinct thresholds which
encode a single stimulus feature — this could be the contrast at a single spatial po-
sition on the retina (as found to be coded by two different types of retinal ganglion
cells that encode the same linearly filtered stimulus [29]), or sound intensity at a
single frequency (as found to be coded by ANF's, where many ANF's get input from
the same inner hair cell [56,143]). "Throughout this study I investigated the encod-
ing of a one-dimensional stimulus drawn from a symmetric distribution; however,
natural stimulus distributions are skewed and thus asymmetric [41]. Since the rela-
tionship between stimulus distribution and input noise distribution is what matters
in this respect, using a skewed stimulus distribution could potentially qualitatively
effect the pattern of optimal thresholds.

3Namely at 647K and 220 bar [142].
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5.2.2 Assumptions about the noise

In my work, I studied how noise entering at different stages affects information
encoding without going into detail about the origins of this noise. In the mam-
malian retina, multiple sources of noise can be identified in the retinal circuits,
including from the photoreceptors [144-147] or at the bipolar cell output synapses
[78,148-150]. In the case that my model was applied to coding by RGCs at the
same spatial locations and with the same visual feature, these sources would all
count as input noise. Their relative contributions and the total magnitude could
change with ambient light level, especially when one considers the signal-to-noise
ratio [151].

The output noise originates after the thresholding nonlinearity. It can be linked to
random fluctuations in the membrane potential (e.g. due to random openings and
closings of ion channels [26]) or to stochastic vesicle release at synapses [152]. This
noise is often taken to follow Poisson statistics where the variance in output scales
with the output strength. T have shown that the exact statistics of the stochastic
spike generation process have no qualitative impact on the optimal encoding as
long as the spontaneous rate is not affected. All these types of output noise which
are based on constraining the firing rate are multiplicative output noises [76]. In
principle, also additive output noise can be considered when the signal processing
cascade after the spike generation process might introduce considerable quantities
of noise [76]. Similarly, input noise in sensory systems can also be multiplicative,
where the noise strength scales with the stimulus values [77].*

5.2.3 Binary nonlinearities

I modeled each neuron in the population solely with a binary nonlinearity. This
nonlinearity describes the tuning curve of the neuron as a function of a given stimu-
lus feature. In general, a tuning curve with respect to a stimulus feature is measured
by reverse correlating the stimulus variable with the output variable and fitting a
linear-nonlinear model [14]. The linear part of the model denotes the stimulus
feature to which the neuron responds and the nonlinear part represents the tun-
ing curve. I did not incorporate the linear part in my model but rather assumed
that the input to the nonlinearity is already linearly preprocessed because simul-
taneous optimization under different noise sources and stimulus convergence would
be mathematically intractable. I chose binary nonlinearities as they are theoreti-
cally optimal under certain conditions of high (and biologically plausible) Poisson
noise [76,86,106]. For example the steepness of the tuning curve of the H1 blowfly
neuron increases with contrast, and for high contrast — which corresponds to low
noise — the tuning curve is almost binary [44]. However, under conditions of non-
negligible input noise, the optimal nonlinearity could be interpreted to acquire a
finite slope thus making my analysis relevant also for continuous nonlinearities with
a sigmoidal shape. This is consistent with neuronal recordings.
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5.2.4 Maximum firing rate vs. mean firing rate constraint

fMaximizing mutual information needs some form of constraint since with arbitrary
large firing rates channel capacity can always be reached with any noise strength.
Throughout most of this work, I have quantified output noise by a variable that
is the product of the maximum firing rate of the neurons and the coding window
length.* Such a constraint is motivated by a biophysical limit of a neuron’s firing
rate and the biological reality of a short reaction time. Instead of constraining
the maximum firing rate, one can also constrain the mean spike count [29,62,153],
which would be interpreted as a metabolic constraint. It can be implemented in
different ways: a relatively simple way is to not optimize the value of one thresh-
old but automatically assign it through the mean rate constrained [29] (Eq. 3.57,
Sec. 3.6.3). A more involved way is that of optimizing all threshold values and an
also optimizing an additional weight parameter that determines the optimal ratio
of the firing rates among the neurons [62].f Maximum and mean rate constraints
lead to qualitatively similar conclusions regarding the optimal number of thresh-
olds (though the thresholds seem to be shifted to higher values), as shown in small
populations of two neurons [29,62].

5.2.5 Comparison to previous studies

Many previous studies make very similar assumptions but consider certain limiting
scenarios, for instance considering only one noise source [29, 37,85, 86], studying
a population with only two neurons [29, 37, 76], introducing an additional source
of additive output noise [76], or using different quantities to optimize [77,84,154].
Table 5.1 summarizes these studies with regards to the different optimization mea-
sures, constraints, information convergence strategies, sources of noise and neuronal
population size. While my results are in agreement with these previous studies in
the specific limiting conditions, I extended the optimal coding framework by map-
ping the full space of noise and stimulus convergence thus linking and extending
previous findings.

5.3 Limitations of my framework

fIn this section, I elaborate on the limits of my framework. This includes the
question about how much computation is already performed in sensory organs in
contrast to pure information transmission, and the fact that for most animals not
all information is equally relevant from an evolutionary perspective.t

5.3.1 Information transmission vs. computation

In the retina, RGCs are the third layer of neurons after the photoreceptors and the
bipolar cells, with amacrine cells in-between [49]. RGCs, in general, integrate inputs
from many bipolar cells and amacrine cells in a nonlinear way, often performing very
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Table 5.1: Comparison of different studies with regards to the different optimization mea-
sures, constraints, information convergence strategies, sources of noise and neuronal popu-
lation size. MI stands for Mutual Information and MSE for Mean Square Error. Modified
from [1].

Study Optimality Constraint Lumped Input or out- | # Neu-
measure or indep. put noise rons

My work MI Max. rate Both Both <6

Brinkman MI and MSE Max. rate Indep. Both 2

et al. [76]

Gjorgjieva et | MI and MSE Mean rate Indep. Both 2

al., 2014 [62]

Kastner MI Mean rate Indep. Input 2

et al. [29]

Gjorgjieva et | MI and MSE Max. rate Indep. Output any

al., 2019 [37]

Nikitin MI Max. rate Lumped Output 4

et al. [86]

McDonnell MI Max. rate Lumped Input <15

et al. [85]

Bethge MI and MSE Max. rate Indep. Output 4

et al. [59]

Harper and | Fisher info Bell-shaped Indep. Output 200

McAlpine [84] tuning curves

'"Wang et al., | Fisher I, MI, | “Meta-tuning | Indep. Output any*

[153] L, measure curves”

complex computations, e.g. detecting direction-specific movements of objects [155],
while for many RGCs it is still unknown which computations they perform [18].
Thus, it might be naive to assume that sensory neurons like RGCs solely transmit
information about contrast levels of their receptive fields to the brain. Since my
framework makes no explicit assumptions about the feature of the input stimulus
in principle it could also be applied in the context of complex input features, e.g.
object movements in specific directions. However, one assumption of my framework
is that all preprocessing of the input is linear and this assumption is usually not
justified for such complex stimulus features.*

5.3.2 Not all information is equally important

fContrary to a digital camera, the goal of sensory perception is not to faithfully
represent the light intensity at every pixel of the retina but to encode as much in-
formation as possible about biologically relevant stimuli [155]. Relevant stimuli for
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most species include information about danger, food, or communication with fellow
animals. Most of these stimuli include some form of stimulus change, e.g. due to
object movement. In principle, the importance of changing stimuli is incorporated
in my framework, since it takes linearly filtered stimuli as input. A biphasic linear
filter, for example, highlights changing stimuli while constant stimuli are repressed.
Sensory organs in general receive feedback from the brain, which modulates stimu-
lus processing. In the auditory system, there is extensive feedback from the cortex
back to the basilar membrane of the cochlea where the transduction from sound
signal to a neural signal happens [156]. In the visual system, the feedback to the
retina seems to be much smaller and its details mostly remain elusive [157, 158].
With feedback from the brain to the sensory organs, however, higher-order mech-
anisms like attention can influence linear filters at the beginning or even before
neural processing. That way, the information about biologically relevant stimuli
might be very differently processed than non-relevant stimuli. However, their pro-
cessing can still be modeled by an LNP model. Relevant and non-relevant stimuli
might have a different (filtered) stimulus distribution which should be considered.*

5.3.3 Optimal shape of nonlinearity

fPrevious studies have optimized nonlinearities of neural information encoding un-
der different assumptions and constraints [43,76,77,86,153]. In the limit of very low
noise and no metabolic constraints, efficient coding predicts that the nonlinearity
should be the cumulative distribution function of the input distribution [43,77].4
In my work, I assumed nonlinearities with a fixed shape — mathematically binary
but effectively sigmoidal in the presence of input noise. Since I only optimized the
thresholds of the nonlinearity, my tuning curves are in general suboptimal. For high
output noise, however, it has been shown that a very steep or even binary nonlin-
earity (corresponding to small or zero input noise in my model) is optimal [76,86).*

5.4 Implications of my model

My model consists of a population of neurons that codes for a one-dimensional
stimulus. It is a general model that could apply to any sensory system, including
the coding of sound intensity in auditory nerve fibers [56,143], the coding of tem-
perature in thermosensation by heat- and cold-activated ion channels [7,159], the
coding of vibration frequency by mechanosensory neurons [8,160], and the coding
of contrast by retinal ganglion cells coding for the same visual feature with different
thresholds [29)].

4The nonlinearity being the cumulative of the stimulus distribution maximizes output entropy
since it “equalizes” the response distribution, i.e. all output values occur with equal probability.
Intuitively speaking: the nonlinearity is most sensitive to stimulus values where it has its
steepest part and this most sensitive part should be matched to the most probable stimuli.
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5 Discussion and outlook

"In work done by my colleague Shuai Shao, it was possible to show that the re-
sults of my framework are in agreement with data from ANFs [1]. However, the
theory is also relevant for other sensory systems where each neuron of a population
encodes the same stimulus feature and where the two noise sources can be sepa-
rately measured. When verifying predictions from models using the efficient coding
hypothesis, noise is usually inferred but not manipulated [1,29,72,86]. However,
since the level of the input noise is given as the ratio of the variances of the input
noise distribution and the stimulus distribution [76], it could be possible to vary
the noise level through varying the stimulus distribution. For example, reduced
background illumination levels [44,151] or reduced general sound intensities [161]
should reduce the signal to noise ratio.*

fThe implications of the non-monotonous threshold behavior on biological systems
should be insignificant since it should not make a difference for sensory systems
if the optimal number of distinct thresholds only decreases with increasing noise
or also increases for some parameters. Therefore, it is more a peculiarity that
is not in accordance with previous results and the general assumption that opti-
mal redundancy always increases with increasing noise.* A related phenomenon in
physics is that of retrograde phenomena [126]. For example, in a mixture of lig-
uids, a phase transition from liquid to gas, followed by another transition from gas
to liquid, and then liquid to gas again can be observed while increasing tempera-
ture [126]. TNevertheless, these non-monotonicities remain a peculiar and surprising
phenomenon that deserves further theoretical investigation.

fIn this thesis, I have investigated the coding of populations of sensory neurons
assuming that sensory organs have optimized their function during evolution. I
used computational modeling approaches to simply the problem and proposed a
framework for how sensory populations support efficient information transmission
to the brain. In contrast to previous work, I included different sources of sen-
sory noise which corrupts information transmission. My results demonstrates that
when there is significant amount of noise in the system, neurons in the sensory
populations should diversify their functional properties in order to transmit op-
timal information about the sensory stimulus they encode. Therefore, my work
makes predictions about coding strategies that can be applied to different sensory
systems. Additionally, my work contributes to the understanding about the trade-
offs between information loss and signal compression due to signal convergence on
information transmission. ¥
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A Appendix

A.1 Free energy, the moment-generating function, and
their behavior at phase transitions

Here, I take a small excursion to statistical physics to show how the moment-
generating function of energy is related to the free energy and why it is helpful in
studying phase transitions. If not stated otherwise, information in this section is
taken from [90,162].

The probability of a system to be in energy state E; is denoted as p; = p(E;).
Furthermore, the (Helmholtz) free energy of a system is defined as

F .= szEz -TS 5 (Al)

where T is the temperature of the system and S is the entropy, which is defined as
(note its resemblance to entropy in information theory, Eq. 2.5 in Sec. 2.3):

S :=—kp Zpilogpi (A.2)

)

with Boltzmann constant kp. The free energy takes into account that a system
tends to reduce its energy and increase its entropy. Without outside work, the sys-
tem can only transition from one state to another if the free energy is not increased
during that transition, i.e. if AF < 0. If the free energy is decreased during a
transition, the transition is irreversible without applying outside force. Thus, the
system decreases its free energy through irreversible transitions until it reaches a
(local) minimum of free energy. Setting 3 = (kpT)~! and minimizing

F=> pEi+kpgT» pilogp (A.3)
yields
pi = - (A.4)
" Z(B) '
where Z(3) is a normalization term called partition function,
Z(8) =) pie P (A.5)
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A.1 Free energy, the moment-generating function, and their behavior at phase transitions

With that, the free energy can thus be expressed as

d
F=——1logZ(B) . A6
45 82 (8) (A.6)
At the same time, the moment-generating function for the energy is [119]:
Mpg(t) = (e'F) (A.7)
1
— (t=B)E:i A9
705 2 (8.9)
It is called the moment-generating function since
o0 tn .
Mi(t) =3 (B (A.10)

n

what means that the n-th derivative evaluated at t = 0 gives the n-th moment of
the energy:

M (0) = (B . (A.11)

Using Eqgs. A.6 and A.9, the relation between free energy and moment-generating
function of the energy is:

(e}

Mp(t) =) de;(;ﬁ ) (A.12)

Phase transitions occur, when Mpg(t) (or, equivalently: the free energy) becomes
non-analytic with § (i.e. with temperature). Since the moment-generating function
is a sum of exponentials it should be analytic everywhere. Yang and Lee showed
that the non-analytical behavior only occurs when the number of particles of the
system goes to infinity [121].
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