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Abstract

To enable reliable and safe human-machine interactions, an automatic analysis of the surround-
ing environment by the machine is key. At the core of these geometric interpretations based on
sensor signals lies the ability to estimate the rotation and translation of objects in space, and
computer vision allows to realize such systems with image data. This thesis focuses on high
performance 6D pose pipelines leveraging visual sensing to formulate algorithms that allow
us to put solutions into practice and enable efficient pose computation methods.

We investigate an image processing pipeline for sub-pixel precise ellipse detection that meets
the accuracy requirements of industry and the reliability needs for medical applications while
being able to run in real-time. The algorithm is used for camera calibration and marker
triangulation with a binocular stereo system. We propose and implement an optical tracking
system both in hardware and software. The focus of our considerations is an optical pose
computation algorithm that precisely determines the pose of an object marked with small
self-adhesive, retro-reflective circular markers that generate an adaptable object point cloud.
Efficient methods such as ICP can determine poses between point clouds, however, are sensitive
to initialization and fail on sparse and corrupt input. To overcome these downsides, we
formulate sparse point cloud matching as an energy optimization problem and reshape it from
a probabilistic perspective. This allows to design an efficient yet robust solver based on dual
quaternion 6D pose parametrization which we extend to a pose tracker.

Outside-in tracking suffers from line of sight restriction if an occluder appears in the field of
view. We miniaturize the system and fix it on the object by inverting the camera view towards
the surrounding environment. Utilizing advances in SLAM literature, we establish a markerless
inside-out stereo method which demonstrates its benefits in rotational accuracy over marker-
based outside-in tracking. Further reducing constraints, we investigate the ill-posed problem of
marker-free monocular pose estimation. Many previous methods either treat the problem as a
regression task or discretize pose space. They use convolutional neural networks and train one
model per object. We reformulate this paradigm and look at the problem as an action decision
process where the next best pose is determined using a render-and-compare strategy. It turns
out that this simpler task can be solved reliably with a lightweight neural architecture that
is instance agnostic such that our pose computation generalizes to unseen objects. Temporal
considerations accelerate the process and allow for dynamic complexity reductions.

Finally, we apply our 6D pose estimation results for the task of sensor fusion. Concepts from
differential geometry allow for pragmatic pose modifications and improve computations in
presence of noise. We exemplify the practical impact of the developed pipelines in three
orthogonal use case scenarios for industrial manufacturing, mobile augmented reality and
cooperative medical robotics where multiple modalities are spatially fused.
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Zusammenfassung

Automatische Umgebungsanalyse ist ein Schlüsselkonzept verlässlicher Mensch-Maschine In-
teraktion. Die Fähigkeit zur Bestimmung von Objektrotation und -translation auf Basis von
Sensordaten ist hierbei eine Kerngröße, die mit Hilfe von maschinellem Sehen und der Aus-
wertung von Bilddaten realisiert werden kann. Die vorliegende Dissertation beschäftigt sich
mit Hochleistungs-Algorithmen zur 6D Posenbestimmung durch visuelle Sensorinputs, die
erlauben Lösungswege zu definieren und effiziente Berechnungen praktisch umzusetzen.

Wir untersuchen zunächst ein Bildverarbeitungskonzept zur subpixel-genauen Ellipsendetekti-
on, welches sowohl den Genauigkeitsansprüchen der Industrie als auch den Verlässlichkeitsan-
sprüchen der Medizin genügt. Neben Kamera-Kalibrierung wird der Algorithmus zur Marker-
Triangulation in einem Stereo-Kamera-Verbund benutzt. Hierfür wird ein optisches Tracking
System entwickelt, welches die Grundlage für einen Posen-Algorithmus bietet. Objektposen
werden präzise anhand von kleinen, selbstklebenden und retro-reflektierenden Markern be-
stimmt, die sich veränderliche Punktwolken erzeugen. Effiziente Methoden wie ICP können
zwar Posen zwischen Punktwolken bestimmen, sind jedoch stark abhängig von Initialisierung,
Messfehlern und Punktanzahl. Um diese Probleme zu eliminieren, formulieren wir ein Opti-
mierungsproblem, welches wir in einer probabilistischen Relaxierung lösen. Dazu verwenden
wir einen effizienten und robusten Ansatz, und parametrisieren Posen als duale Quaternionen
in zeitlichen Video Sequenzen.

Im Falle von Verdeckung im Sichtfeld kann ein solches outside-in Tracking ausfallen. Um diese
Problematik zu adressieren, miniaturisieren wir das System und fixieren es mit in den Raum
gerichtetem Sichtfeld am Objekt. SLAM-Algorithmen helfen hierbei, ein markerloses inside-
out Stereo-System umzusetzen, welches bezüglich seiner Rotationsgenauigkeit dem marker-
basierten outside-in Tracker überlegen ist. Darüber hinaus untersuchen wir Lösungsansätze
zur marker-freien Posenbestimmung aus einem einzelnen Bild. Viele Methoden betrachten das
Problem entweder als Regressionsaufgabe oder diskrete Klassifikation. Üblicherweise werden
CNNs eingesetzt und ein Netz pro Objekt trainiert. Wir reformulieren dieses Paradigma, in-
dem wir das Problem als Aktions-Entscheidungs-Prozess betrachten und die nächstbeste Pose
bestimmen. Es stellt sich heraus, dass diese einfachere Frage verlässlich mit einem Netzwerk
niedriger Komplexität gelöst werden kann, welches zudem Instanz-agnostisch ist, also dessen
Posen sich auf unbekannte Objekte übertragen lassen. Darüber hinaus lässt sich der Komplexi-
tätsgrad mittels Video-Input dynamisch reduzieren und der gesamte Prozess beschleunigen.

Schließlich wenden wir die entwickelten Konzepte in der Praxis an, wobei Konzepte aus der Dif-
ferentialgeometrie helfen, die Posen zu verbessern. Wir illustrieren die praktische Bedeutung
der entwickelten Algorithmen anhand von drei Anwendungsfällen aus industrieller Fertigung,
mobiler Augmented Reality und kooperativer Medizinrobotik.
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Part I

Introduction & Background





1Introduction

„“What is the use of a book,” thought Alice,
“without pictures or conversations?”

– Alice
(Alice’s Adventures in Wonderland)1

Knowing the position and orientation of objects in space is a basic concept that enables us to
understand and interact with our environment. The world around us has a spatial extend in
three dimensions and objects can move in these directions and rotate around these three axes.
An intelligent vision system that passively observes or is used to actively manipulate its sur-
roundings requires a solid understanding of the six parameters from geometric displacements
caused either by ego-motion or the movement of objects in its line of sight.
The human visual apparatus is our broadband interface to the world and as such heavily inter-
connected with the brain that facilitates fast interpretation of this sensory impression enriched
in real-time with information from all our other senses and the experience reflected by our
mind.

A plethora of analogue and digital sensors have been inspired by our own information process-
ing pipelines and mimic the gathering of environmental information. These artificial devices
are capable of detecting information often far beyond the accuracy and abilities of humans.
Digital sensors are nowadays omnipresent and part of your watch, laptop and mobile phone.
They guarantee cars to drive safely, activate the light at night and enable video conferences
with your colleagues overseas. However, the design of systems that reliably evaluate data from
optical sensors such as digital cameras to enable measurements of displacements is an intricate
process. And the fusion of information from multi-modal sensor inputs to combine a variety
of orthogonal events is a non-trivial task for machines.

In this thesis, we focus on designing and improving pipelines and algorithms in silico that
appear natural for our biological system and programmatically expand their capabilities with
accurate mathematical models. We thereby look at computational pose estimation and multi-
modal sensor fusion with 3D computer vision systems and teach experience in a data-driven
fashion. In the spirit of Alice, we try to motivate our thoughts and ideas visually throughout
the thesis and discuss dialectically the disadvantages and benefits of system designs when we
explore the wonderland of 3D computer vision.

1Lewis Carroll. Alice’s Adventures in Wonderland [Chapter I, p. 3]. Sam’l Gabriel S.& C., 1916.
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1.1. Motivation & Objectives

The measurement of 6D poses with its three translational and three rotational degrees of
freedom plays a key role in modern computer vision pipelines. It allows the interaction of
robotic manipulators with their surrounding,2 helps to self-localize mobile agents in unknown
environments3 and is the backbone for augmented and mixed reality applications.4 These
setups oftentimes acquire temporally connected video sequences of consecutive images where
additional sensors can provide meaningful insights.5 In particular the medical field has a wide
variety of sensing modalities that provide orthogonal information and the spatially correct
fusion of such data can be integral for the outcome of medical treatments.6 Thus, reliable and
accurate optical pose estimation and visual tracking systems are essential tools in practice and
the improvement for 6D pose estimation pipelines constitutes an active research domain of
interdisciplinary interest.7

The task of pose estimation can be separated into two branches. Inside-out methods perform
camera self-localization by observing its surrounding while moving through the scene. Aside
of early markerless ego-motion estimation with visual odometry,8 a series of pipelines for
simultaneous localization and mapping (SLAM) exists. The most prominent directions involve
direct approaches such as LSD-SLAM9 and DSO10 on one side and feature-based pipelines such
as ORB-SLAM11 on the other side. The latter rely on detector-descriptor backbones such as
SIFT,12 ORB13 or learning based alternatives.14

Outside-in and camera-in-hand algorithms give the second branch of pose estimators. They
compute the object pose relative to a static or moving camera.

Classical outside-in methods for pose estimation rely on fiducial markers.15 The systems that
use these markers can also encode an object ID.16 They detect the displacement of the marker
instead of the object itself whose pose is defined with a relative offset. Besides planar markers,
both passive and active targets exist for accurate optical measurements.17 These are usually
attached to a rigid metal frame that is fixed to the object of interest and restricts its ergonomics.
Optical systems that utilize these markers can track with a sub-millimeter precision using stereo
camera setups which triangulate spheres from the rigid body marker.18

The triangulated spheres form a sparse 3D point cloud which is fitted to the reference cloud of
the rigid body marker. With a close initial estimate, one can find the local optimal pose with

2Cf. Calli et al. [56].
3Cf. Engel, Sturm, and Cremers [99].
4Cf. Tateno et al. [406].
5Cf. Wendler et al. [449].
6Cf. Vorst et al. [438].
7Cf. Garon, Laurendeau, and Lalonde [136].
8Cf. Nistér, Naroditsky, and Bergen [307].
9Cf. Engel, Schöps, and Cremers [98].

10Cf. Engel, Koltun, and Cremers [97].
11Cf. Mur-Artal, Montiel, and Tardós [297], Mur-Artal and Tardós [298] as well as Campos et al. [58].
12Cf. Lowe [264].
13Cf. Rublee et al. [356].
14Cf. DeTone, Malisiewicz, and Rabinovich [86].
15Cf. Kato and Billinghurst [204], Naimark and Foxlin [303], Fiala [111], as well as Olson [316].
16Cf. Garrido-Jurado et al. [137].
17Cf. Marinetto et al. [276].
18Cf. Elfring, Fuente, and Radermacher [96].
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Fig. 1.1. Object motion in temporal sequence. An object moves throughout a sequence of seven frames. The
object pose is indicated by a reference frame with x-axis in red, y-axis in green and z-axis in blue.

the iterative closest points (ICP)19 algorithm or its variants20 which provide fast convergence
or one uses the centroid-aligned Kabsch approach21 to determine the optimal rotation. While
these methods are computationally efficient they can lead to incorrect results under partial
occlusion or in the presence of imprecise initialization ultimately restricting the measurable
movements of the object of interest as full marker visibility is required at all times.

Markerless outside-in methods fully rely on the visual content acquired by the camera to
estimate the pose and are less precise. Early methods use parametric models and geometric
primitives such as quadrics22 and superquadrics23 in combination with depth sensors to es-
timate objects of simple shapes. The advent of machine learning made it possible to learn
appearance-based object poses from annotated datasets such as LineMOD24 and its succes-
sors25 some of which also included temporal video sequences for optical tracking26 where
poses change smoothly in time as depicted in Fig. 1.1. Modern RGB-D tracking methods can
generalize to unseen objects,27 but are very sensitive to their initialization and likely to drift.
The learning paradigm for markerless pose estimation either follows a discretization approach
of pose space where a classifier is trained28 or uses regression of the pose parameters directly.29

A final improvement is then often reached with the help of a depth sensor.

Most of these methods rely on real data which suffers from a time-consuming annotation
process, however, a recent trend also leverages synthetic renderings of 3D object models and
investigates the reduction of the resulting domain gap.30 The learning for multiple objects is
very time-consuming as one pipeline is usually specifically trained for each individual object.
However, a step towards more generic frameworks is done by Wang et al. [443] who estimate
parameters for unseen objects with similar appearance from RGB-D inputs.

To describe rigid body displacements, the literature leverages a variety of pose parametriza-
tions. Oftentimes, 6D poses are treated with parameters in SO (3)×R3 where rotation and

19Cf. Besl and McKay [23].
20Cf. Rusinkiewicz and Levoy [359].
21Cf. Kabsch [202].
22Cf. Cross and Zisserman [75].
23Cf. Leonardis, Jaklic, and Solina [243].
24Cf. Hinterstoisser et al. [174].
25Cf. Tejani et al. [408], Hodaň et al. [178] as well as Kaskman et al. [203].
26Cf. Xiang et al. [454] as well as Garon, Laurendeau, and Lalonde [136].
27Cf. Garon, Laurendeau, and Lalonde [136].
28Cf. Kehl et al. [210].
29Cf. Wang et al. [441].
30Cf. Rad, Oberweger, and Lepetit [340].
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translation components are considered separately.31 The rotational component enjoys a variety
of frequently used parametrizations such as Euler angles, rotation matrices and quaternions.
One can also use dual number theory32 to jointly describe rigid poses as elements of a quadric
in the 7-dimensional real projective space RP7. While these unit dual quaternions appear
less intuitive at first, they provide a low-complexity tool for fast pose computation33 and the
Riemannian structure of their parameter space can be beneficial for efficient sensor fusion.34

Our first objective in this light is to design a robust and flexible image processing pipeline that
enables highly accurate marker detection without the requirement for rigid body frames.
Using epipolar geometry and a careful hardware design that allows for precise calibration, we
then want to overcome current practical obstacles when using optical tracking systems and
improve pose computation from video sequences targeting sensor fusion applications with
multi-modal input. A third investigation aims to provide a generalization of currentmarkerless
pose estimation pipelines by means of problem reformulation.

1.2. Key Contributions

To fulfill these objectives we provide a set of contributions which we detail hereafter. The
relevant dissemination platform to these results is indicated below the contribution.
The first three contributions lead to a novel marker-based optical tracking system:

1. Robust algorithm for sub-pixel precise ellipse detection in real-time.
An accurate detection pipeline is designed and implemented to locate image coordinates of self-
adhesive circular markers attached to an object of interest in the presence of partial occlusion
and illumination changes. The algorithm can be leveraged for accurate calibration routines and
replaces bulky and inflexible rigid body markers and facilitates individual marker setups.

Benjamin Busam, Marco Esposito, Simon Che’Rose, Nassir Navab, and Ben-
jamin Frisch. “A Stereo Vision Approach for Cooperative Robotic Movement
Therapy”. ICCV, ACVR, 2015. [49]. [Oral Presentation].

2. Hardware design of optical tracking system and miniature versions.
An optical outside-in stereo system prototype is designed and manufactured. The system
consists of a hardware-synchronized binocular stereo global shutter camera pair with actively
triggered infrared illumination, strobe controlling and a band-pass filter to allow retro-reflective
transmission. A custom carbon-fiber mount stabilizes the calibration. A miniature camera-in-
hand and an inside-out version are also developed and validated in medical applications.

Benjamin Busam. “Adaptable High-resolution Real-time Stereo Tracking”.
EMVA Young Professional Award 2015 from the European Machine Vision
Association (EMVA).

31Cf. Jia and Evans [195].
32Cf. Kenwrigth [215].
33Cf. Kavan et al. [207].
34Cf. Varghese, Chandra, and Kumar [433].
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3. High-performance optical pose computation pipeline.
An algorithm for sub-millimeter precise 6D pose estimation and tracking in real-time is con-
tributed. We formulate an accurate stereo triangulation to enable robust sparse point set
registration in the presence of noise, outliers and occlusion. A probabilistic formulation of the
interdependent correspondence and pose estimation problem is solved with an energy opti-
mization where mutual updates for pose and correspondence with gradual confidence level
increase allow for a large convergence basin. Describing the displacement with dual quater-
nions results in an efficient optimization where an online learning algorithm can dynamically
adjust the marker representation. We use the robust approach to prototype a cooperative robot
movement therapy for hemiparetic patients.

Benjamin Busam, Marco Esposito, Simon Che’Rose, Nassir Navab, and Ben-
jamin Frisch. “A Stereo Vision Approach for Cooperative Robotic Movement
Therapy”. ICCV, ACVR, 2015. [49]. [Oral Presentation].

Contribution 4. and 5. target markerless pose computation:

4. Inside-out tracking system for 3D ultrasound.
Outside-in trackers suffer from line-of-sight issues. We place aminiature stereo system inversely
onto an object with field of view into the operating room and utilize a SLAM pipeline for inside-
out (IO) tracking to study the advantages in comparison with a commercial outside-in system.
Due to a rotation leveraging effect, small rotational motions change the visual image content
for the IO tracker significantly which results in higher rotational pose resolution and improves
3D ultrasound compounding accuracy.

Benjamin Busam, Patrick Ruhkamp, Salvatore Virga, Beatrice Lentes, Ju-
lia Rackerseder, Nassir Navab, and Christoph Hennersperger. “Markerless
Inside-Out Tracking for 3D Ultrasound Compounding”. MICCAI, POCUS,
2018. [53]. [Oral Presentation and Live Demonstration].

5. Reformulation of object pose estimation as an action decision process.
We propose a markerless monocular 6D object pose estimation pipeline based on a lightweight
neural network that is trained only with synthetic data. While pose estimation pipelines either
follow a regression or classification scheme, we redefine the pose prediction paradigm and
look for the next best pose given an observation and a current estimate. We gradually move a
virtually rendered object model in incremental steps towards the observation. Learning this
action decision process reinforces correct updates and allows for both training and testing on
a laptop. The question we ask leads to an object agnostic tracking algorithm that consequently
extends to a 6D pose detector which can estimate the pose of objects that were never seen
during training. We improve the accuracy of recent approaches while being able to dynamically
reduce the computation cost in case of insignificant motion. An additional attention mechanism
makes the model robust to occlusion.

Benjamin Busam, Hyun Jun Jung, and Nassir Navab. “I Like to Move It: 6D
Pose Estimation as an Action Decision Process”. arXiv:2009.12678, 2020.
[52]. [arXiv preprint].
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The last three contributions target sensor fusion in heterogeneous environments. They improve
the poses and facilitate spatial modality-fusion:

6. Efficient pose upsampling with dual quaternions.
A unified approach for efficient interpolation and extrapolation of poses with concepts from dif-
ferential geometry is proposed. This facilitates synchronization between hybrid pose tracking
systems for sensor fusion and provides a tool to reduce temporal delays and lags.

Benjamin Busam, Marco Esposito, Benjamin Frisch, and Nassir Navab. “Qua-
ternionic Upsampling: Hyperspherical Techniques for 6 DoF Pose Tracking”.
3DV, 2017. [50].

7. Pose denoising with local regression geodesics.
We suggest an approach for camera pose filtering on the Riemannian manifold of dual quater-
nions. The accuracy of a temporal pose stream is improved by active denoising in the presence
of outlier estimates using the structure of the pose space itself. The novel method utilizes
principal component regression in a local linearization of the pose space. By using parallel
transport we map a temporally connected moving pose window into the Lie algebra of dual
quaternion space represented by the tangent space at the identity where an outlier-aware
robust regression corrects the window centre pose.

Benjamin Busam, Tolga Birdal, and Nassir Navab. “Camera Pose Filter-
ing with Local Regression Geodesics on the Riemannian Manifold of Dual
Quaternions”. ICCV, MVR3D, 2017. [48]. [Oral Presentation and Best
Student Paper Award].

8. Spatial modality-fusion with accurate pose estimates.
The advantages of our pose estimation systems allow to combine orthogonalmodalities. Besides
contributing an industrial and mobile mixed reality setup, we exemplify the benefit for sensor
fusion with a collaborative medical robot that holds a camera-in-hand miniature system and
a gamma detector array to improve a breast cancer staging procedure. Real-time fusion of
functional nuclear gamma and anatomical ultrasound images enable the robot to assist a
sentinel lymph node punch biopsy.

Marco Esposito, Benjamin Busam, Christoph Hennersperger, Julia Rack-
erseder, Nassir Navab, and Benjamin Frisch. “Multimodal US–Gamma Imag-
ing using Collaborative Robotics for Cancer Staging Biopsies”. IJCARS, 2016,
Volume 11, Issue 9. [102]. [Best Paper Award].

Marco Esposito, Benjamin Busam, Christoph Hennersperger, Julia Rack-
erseder, An Lu, Nassir Navab, and Benjamin Frisch. “Cooperative robotic
gamma imaging: Enhancing us-guided needle biopsy”. MICCAI, 2015.
[101]. [Oral Presentation].
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1.3. Outline & Overview

Before we start with the detailed scientific explanations and discussion, we give a brief overview
over the content of this thesis. Throughout the chapters, we try to make the content self-
contained by introducing relevant and necessary concepts as well as high-level connections in
the specific domain. The chapters are structured as follows:

Chapter 1 introduces and motivates our work, points out the key contributions and provides
an overview of the topics in the thesis.

Chapter 2 explains the fundamental concepts of an image acquisition system and defines basic
structures.

Chapter 3 details the necessary steps of a 2D image processing pipeline that robustly detects
ellipses and extracts centre coordinates with sub-pixel precision in real-time.

Chapter 4 explains the camera geometry and defines the camera model used. We detail its
calibration routine using the ellipse detector from chapter 3.

Chapter 5 illustrates the use of artificial neural networks for data-driven image processing.
We state the potential and explain basic concepts of convolutional neural network inference
and training.

Chapter 6 summarizes 3D depth sensing concepts and compares 6D pose parametrizations.
The chapter discusses the geometry of pose parameter spaces and provides insights in epipolar
geometry. This part further describes point triangulation from binocular stereo and two-view
depth estimation with neural networks. We end with an algorithm for point cloud triangulation
from self-adhesive, retro-reflective circular markers.

Chapter 7 is the core of ourmarker-based high performance optical tracking system (OTS). We
investigate hardware design choices for an outside-in OTS and its miniature versions and de-
tails a robust real-time pose estimation algorithm. The algorithm utilizes joint dual quaternion
parametrization to fit a point cloud observation to a source point cloud with mutual correspon-
dence and pose improvements while increasing a fitting confidence. We further validate the
OTS, explain the pose communication interface and detail co-calibration routines. Limitations
and potential solutions are discussed and we apply a camera-in-hand system prototype in a
medical robotic environment where a collaborative robotic arm performs a movement therapy
targeted to assist hemiparetic patients in the re-education of upper limb movements.

Chapter 8 focuses on markerless pose estimation and consists of two parts. In the first part, we
analyse the capabilities of SLAM-based inside-out tracking for 3D ultrasound compounding in
comparison with a commercial outside-in tracking system. The rotation leveraging effect that
significantly changes the image of an inside-out camera during a rotational motion improves
the rotational accuracy in difficult medical ultrasound procedures such as transrectal prostate
fusion biopsy and improves the quality of 3D ultrasound compounding.
The second part looks into other means of object pose estimation without markers such as
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parametric primitives, shape decomposition and feature extraction pipelines. We then redefine
the 6D object pose estimation paradigm as an action decision process comparing a current
rendering of the 3D model with the image observation. A lightweight neural network decides
for incremental updates of the rendering which brings it gradually closer to the observation.
The resulting network is trained fully on synthetic data and provides an improved accuracy
while being able to even track the poses of unseen objects.

Chapter 9 looks at ways to adjust pose measurements. We start with a unified formulation
for pose interpolation and extrapolation. Using (dual) quaternion parametrization allows for
simple yet efficient and smooth interpolations along geodesic trajectories in pose space that
are physically interpretable. We validate the pose extrapolation accuracy for natural hand
motion and see that we can use the approach to synchronize hybrid systems and reduce lag
and latency for sensor fusion.
We then investigate local regression geodesics to denoise temporally connected pose signals
in non-Euclidean pose spaces in presence of outliers. A local linearization of the pose space
for unit (dual) quaternions is used to smooth the temporal signal via principal component
regression in a moving local pose sequence window around a specific pose estimate.

Chapter 10 showcases the use of accurate and reliable pose estimation for multi-modal spa-
tial fusion. We exploit the practical benefit in three orthogonal scenarios. A high-energy 3D
printer melts metal particles with a laser for additive manufacturing in an industrial environ-
ment where we fuse thermal and geometric information from various locations by accurately
measuring relative poses for quality control. A second use case illustrates a mobile augmented
reality application that aims at providing anatomical pose guidance for ultrasound scans. The
final example illustrates a medical robotic setup where we equip a cooperative medical robot
with a camera-in-hand system to assist a medical expert during breast cancer staging. The
optical tracking makes the fusion of ultrasound and nuclear imaging possible during a sentinel
lymph node biopsy procedure.

Chapter 11 critically summarizes the thesis and points out limitations. We discuss potential
solutions to it and show promising future directions and prospects.

The Appendix finalizes the thesis and includes detailed derivations and additional complemen-
tary results. It lists the set of authored and co-authored publications and supervised academic
projects as well as the managed research funding and acquired grants. We end with lists for
the proposed algorithms, figures and tables and lastly the bibliography.
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2Fundamentals

„Omnium enim rerum
principia parva sunt.

– Cicero
(De finibus bonorum et malorum)1

Multiple mathematical concepts serve as the foundation for the developed techniques and
algorithms in this thesis. Before we start to investigate digital image processing and 3D geom-
etry, we present the used physical and mathematical models and look at our data source in a
traditional image acquisition pipeline.2

2.1. Data Acquisition

We start by considering the physical components of a classical machine vision system in indus-
try to build a foundation for hardware components used in computer vision. If one wants to
detect, for instance, the position, shape or the movement of a certain object within a volume or
if one wants to check whether an industrially manufactured product is complete or possesses
special geometric parameters, one is often not able to do such extremely precise and sometimes
highly complex tasks manually but has to rely on different computer-based alternatives. In the
industry, challenges like that are frequently solved with the help of machine vision.
A typical machine vision system to tackle these kind of problems consists of several com-
ponents which can interact with each other. Fig. 2.13 shows the specific setting for such a
purpose.
An image of the object of interest (1) is acquired while the illumination (3) illuminates the
scene in the classical outside-in scenario where a static camera (2) observes the scene. If the
camera is mounted on the moving object instead, the setup becomes inverted and we call the
view inside-out; this will be the case for some of our later investigations in chapter 8.1, but
we commonly consider the static case. In both cases, however, strobe illumination and image
acquisition are triggered by a camera-computer interface (4) which stores the image data in
the memory (5) of a computer where the machine vision software (6) evaluates the image
and returns an inspection result (7).

1“The beginnings of all things are small.”, M. T. Cicero. De finibus bonorum et malorum [5.58, p. 460]. William
Heinemann, 1914.

2We follow the concepts and notation of Busam [47].
3Figure based on Steger, Ulrich, and Wiedemann [395, p. 2].

11



The actual process of image acquisition with its physical background, its hardware compo-
nents, and its intrinsic data structures and signal processing tasks plays an important role for
the realization of automated inspections and other typical scenarios. If a defined industrial
problem has to be solved, one is forced to think about all the different components in Fig. 2.1.
However, the main focus of this thesis will be on the software- and algorithm-based part of the
process chain within the computer. We consider (2), (3), and (4) mostly to be part of a black
box which provides an image stream for our software solutions. Although these components
are essential for the whole process, we do not research them in more detail since this has
already been done by several authors before. An elaborate introduction to the single hardware
parts, their functions, and the pros and cons of different component designs can for example
be found in the book of Steger et al. [395, pp. 5–63].

(1)

(2)

(3)

(4)

(7)
(6)
(5)

Fig. 2.1. Components of a typical machine vision system. The object of interest (1) is observed by a camera
(2) with an active illumination (3). A camera-computer interface (4) triggers the acquisition and stores
the image data in the memory (5) of a computer where vision software (6) processes the image and
returns information (7).

Now that we know about the processing chain of an image acquisition system, we intend to
focus on the image itself and establish precise mathematical definitions of images and videos
as a basis for our analysis afterwards.

2.2. Image & Video

Image and video data is the essential input for our ideas and approaches. Subsequently, we
define the data description in uniform, mathematical terms that allow us to define pixels inside
monochrome and colour images and temporal sequences of images in a video. Moreover, we
define different neighbourhood terms for local pixel regions.
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2.2.1. Image Data

From now on, if we talk about images we implicitly refer to digital single-channel raster grey
scale images which consist of pixels. This is to say, whatever comes from the image acquisition
task explained beforehand, gives a certain digitized discrete pixel domain with some grey
value for every single element in it.4 In case we use colour images, we focus on 3-channel RGB
sensors or explicitly mention if a different domain is used.
Depending on the number of possible values for one pixel, we give the definition below.

Definition 2.1
The discrete pixel depth d of an image is given by the number of used bits per pixel (bpp) to
store the colour information.
The set of 2d different values to describe a pixel with d bpp is given by

Gd =
�

0, 1, . . . , 2d − 1
	

⊂ N0. (2.1)

In the literature the terms bit depth or colour depth are also commonly used.
Usually we work with a discrete pixel depth of 8 bits (1 byte) per pixel which gives 28 = 256

different possible shades of grey with the representationG8 = {0,1, . . . , 255}where the smallest
value 0 is assigned to black, whereas 255 codes white. As conventional cameras produce two-
dimensional rectangular pixel domains,5 we can regard an image as an integer valued function
over a discrete grid whose values can be visualized with a bar plot where the bar heights
represent the pixel values of the underlying grid as illustrated in Fig. 2.2.
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Fig. 2.2. Image description by matrix and bar plot over discrete pixel grid. A single channel image with 8-bit
pixel depth with values in G8 = {0, 1, . . . , 255} is shown. The value 0 describes a fully black pixel while
255 decodes white.

The visualization with spatial bars may be unconventional. A planar way to look at the scenario
would just be to think of the image as a matrix with the dimensions of the number of pixels in
both width w and height h and the grey value gx ,y ∈G8 at entry (x , y).
In a formalized manner, we therefore describe an image as a function I in the following way:

4In the following, see Steger, Ulrich, and Wiedemann [395, p. 66].
5We want to neglect line-scan cameras with only a single row of pixel sensors here.
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Definition 2.2
A multi-channel image of width w, height h, and pixel depth d, and c channels is a function

I : D→Gc
d (2.2)

(x , y) 7→ gk
x ,y (2.3)

where

D = {0, 1, . . . , w− 1} × {0, 1, . . . , h− 1} ⊂ N2
0 (2.4)

is the image domain and

Gc
d =Gd ×Gd × . . .×Gd

︸ ︷︷ ︸

c times

, (2.5)

k ∈ {0,1, . . . , c − 1} . (2.6)

In terms of Fig. 2.2, I simply gives the height map for the pixel grid D per channel. Sometimes
it can be advantageous to speak about an image as the actual representation of I in Gc

d .
For most programming languages, the first index of an array is denoted by 0. This is the
implementation-driven reason for us to start counting at 0 here. We thereby directly avoid
differences or misunderstandings within the computation part of the processing chain from
Fig. 2.1. If the pixel depth d is not our main issue or if it is clear what we look at, we drop the
index. The channel number c 6= 0 is relevant for onscreen colour images because most video
screens work with an additive mixture of colour stimuli with an underlying model consisting
of three different colours.6 The RGB model has three channels, one for each red, green, and
blue and using them at different intensities produces a wide variety of colours for the human
visual system which works in a similar way.7 Fig. 2.3 visualizes these different sources for an
RGB colour image. In this important case, it is c = 3. However, for plenty of different tasks we
can treat the channels separately and therefore remain with c = 1 to also simplify notation.

Fig. 2.3. RGB image with separated channels. For visualization purposes, the 3-channel image is separated into
its red, green and blue components. Every single component can be viewed as an individual grey scale
image.

6Cf. Brockhaus [41]. Catchword: RGB-Farbmodell.
7Humans are trichromats. They have three different types of colour receptors with special absorption spectra, see
Brockhaus [41]. Catchword: Farbensehen beim Menschen.
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2.2.2. Video Data

Temporal information is crucial for specific computer vision tasks which include movement
such as object tracking and camera pose estimation. Thus, we formally extend the domain for
the function in Definition 2.2 by adding a third dimension (time) to D which brings

Definition 2.3
A single-channel video of width w, height h, pixel depth d with f frames is a function

I : D→Gd (2.7)

(x , y, z) 7→ gx ,y,z (2.8)

with

D = {0,1, . . . , w− 1} × {0, 1, . . . , h− 1} × {0,1, . . . , f − 1} ⊂ N3
0. (2.9)

Varying only the parameter of the third dimension of D gives the set of considered frames. A
fixed fl ∈ {0,1, . . . , f − 1} yields the image domain corresponding to frame fl and a frame rate
declares how many frames per second (fps) are streamed from the camera.

2.3. Neighbourhood

It is necessary to sometimes restrict the area for a special image processing operation locally.
For this reason we analyze the surroundings of a certain pixel p in more detail. Depending on
the context, we use different approaches of the theory of cellular automata8 to define various
neighbourhoods for p.

Definition 2.4
If it exists, the von Neumann neighbourhood of a pixel p ∈ D is given by

Uvon Neumann (p) =
�

q ∈ D | ‖p− q‖1 ≤ 1
	

, (2.10)

the Moore neighbourhood of p by

UMoore (p) =
�

q ∈ D | ‖p− q‖∞ ≤ 1
	

, (2.11)

and the extended Moore neighbourhood of p by

Uextended Moore (p) =
�

q ∈ D | ‖p− q‖∞ ≤ r
	

, (2.12)

where r ∈ N0 with r ≥ 2.
8Cf. Müller and Kuttler [295, p. 350].
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The norms used in the definition are the standard taxicab norm and the maximum vector norm.9

Fig. 2.4 illustrates the three types of neighbourhoods. This explains why 4-neighbourhood
or 8-neighbourhood are also possible terms for the two different surrounding pixel sets.

ppp

von Neumann
extended Moore

Moore

r = 2
8-nbhd4-nbhd

Fig. 2.4. Different neighbourhoods for pixel p. The neighbourhood definitions include four and eight pixels for
Neumann and Moore and can be extended with increasing threshold r.

What happens if a certain neighbourhood of pixel p does not exist? This is equivalent to the
question of how we define the neighbourhood of p at image boundaries. Depending on the
context, there certainly are possible solutions on how to fill the neighbourhood pixels outside
of the image domain. For our purposes, though, we just truncate the pixel set to make it fit
the image as Fig. 2.5 shows.

p

Fig. 2.5. Truncated Moore neighbourhood. The neighbourhood size is decreased at image boundaries according
to the image domain.

As before, we want to define a time-dimensional neighbourhood. This is done by defining the
frames fl−1 and fl+1 as neighbour frames of fl if they exist. Definition 2.4 for pixel neighbour-
hoods translates directly into the new context and our previous truncation rule still holds true
for all boundary regions. Fig. 2.6 exemplifies a pixel p of video frame fl with its neighbour
frames and its von Neumann neighbourhood within the video. These thoughts are likewise
applicable to every channel of our definition of multi-channel images from Definition 2.2.

The elementary definitions for our further research are made and we established how image
data is acquired.
The concepts we developed so far help to describe the subject of our following discussions by
9Definitions for the vector norms ‖·‖1 and ‖·‖∞ can be found in Bronstein et al. [42, p. 267].
For general information on `p norms, see Rudin [357, p. 78].
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fl ¹

p

fl
fl⁺¹

Fig. 2.6. Von Neumann neighbourhood of pixel p within a video. The neighbourhood extends both in image
space and across the temporal dimension.

enabling us to formulate highly specific algorithms to process images in order to acquire a
variety of content information to tackle numerous imaging problems.
Henceforth, we develop applicable tasks and algorithms based on the presented concepts and
models. As a first step, we describe ways on how to get high-level information like area
connection or contour paths from low-level pixel grid data. Besides, we examine ways to
improve image quality as a preprocessing step and formulate an algorithm to automatically
detect marker locations from images to perform a camera calibration.

2.3 Neighbourhood 17





Part II

Image Analysis





3Image Processing

„We often plough so much energy
into the big picture,
we forget the pixels.

– Silvia Cartwright

This part of the thesis concentrates on processing 2D images with classical and data-driven
methods. We formulate ways for automatic pixel processing and detail a parametric camera
model which we aim to optimize. Our investigations remain fully on the projected flat sensor
grid where we intend to elaborate principle approaches and algorithms before we apply them
to 3D computer vision problems.1

A grid with pixel values as formally described in the previous chapter does not directly reveal
high level content information of what is visible. Measuring intensities and collecting their
relative values does neither give size nor location or amount of particles or some objects of
interest.
The essence of the following paragraphs is thus to find and describe efficient methods that are
able to extract abstract image content.
In the first part of this chapter, we focus on data optimization for standard images given by
typical image acquisition systems as described in section 2.1. Subsequently we discuss classical
ways to deal with high level image information and conceptualize single view treatment for
object segmentation and the detection of special features within image subdomains. At the
end of this chapter, we formulate an algorithm that combines the previously discussed methods
and detects centroids of elliptic shapes on a sub-pixel precise level which will pave the way for
a camera calibration presented thereafter in part 4.2.
As a starting point, we concentrate on some preliminary work by improving the captured
camera data.

3.1. Image Enhancement

High accuracy in industrial detection tasks and reliable quality control standards can not be
achieved with noisy, inaccurate or lossy image data. We are therefore interested in reducing
the influence of the main interference factors by optimizing the image in order to gain the
best possible visual data by image preprocessing.
1We reprint Busam [47] in parts to detail our description.
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3.2. Grey Value Transformation

In the beginning, we focus on position independent modifications and formulate a robust way
to prepare pixel data for further analysis. From a mathematical point of view such global
operations can be described as follows:

Definition 3.1
A grey value transformation h of a single-channel image with values gx ,y is a function

h: G→G (3.1)

gx ,y 7→ h
�

gx ,y

�

. (3.2)

Using a transformation h on an image f is then equal to the function composition h ◦ f where
the transformation h is arbitrary and does not depend on the actual pixel position but only on
its value. Depending on the pixel depth, an acceleration of this task in practical applications
can often be achieved by using look-up tables where the function values for every grey level
are stored and calculating operations can be omitted.2

An important role in this context plays the linear grey value scaling

h: G→G (3.3)

gx ,y 7→ agx ,y + b (3.4)

with a ∈ R+ and b ∈ R. The parameter b influences the overall brightness of the image whereas
a affects the contrast by either enhancing or diminishing the pixel value gx ,y .
Equation (3.3) and (3.4) allow for normalization of the contrast of an image with pixel depth
d – this is essential to achieve illumination-invariance for algorithms. If the minimal and

2Cf. Demant, Streicher-Abel, and Waszkewitz [81, pp. 40–42].
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maximal grey levels are gmin and gmax , algorithm 3.1 gives such a contrast enhancement.3

Fig. 3.1 shows some linear grey value transformations with different parameters.

Algorithm 3.1. Contrast Normalization
Input parameters:
• Image f with grey values gx ,y , domain D, and pixel depth d

Computation steps:
1. Get minimal grey level gmin = min

(x ,y)∈D
gx ,y

2. Get maximal grey level gmax = max
(x ,y)∈D

gx ,y

3. Calculate a =
2d − 1

gmax − gmin
and b = −agmin

4. Perform linear grey value scaling gx ,y = agx ,y + b

Output:
• Normalized image f with grey values gx ,y

Fig. 3.1. Different grey value transformations. The original image is shown on top left. Note the dark regions
and strong metallic reflections. The top row shows normalization with different brightness while the
bottom row gives examples with different contrast parameters. The bottom right image shows the results
of Algorithm 3.1.

In real images shades and highlight spots often cause some few pixels to be very dark or exceed-
ingly bright. These pixels prevent the above transformation to scale the image to an optimal
grey value range. A less error-prone way to handle this is via robust contrast normalization
with a cumulative histogram.4

3It is true that this is not a grey value transformation in the sense of Definition 3.1 since gmin and gmax depend on
the entire image. However, we can think of these extreme values as given scalars from some pre-calculation step
and thus keep definitions simple.

4Cf. Schaeffel et al. [364, pp. 517–519].
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This works as follows: At first, we calculate the relative frequency (i.e. the probability of the
observation) of a certain grey value v within the image by

fv =

∑

x ,y 1
�

gx ,y = v
	

∑

x ,y 1
=

∑

x ,y 1
�

gx ,y = v
	

h ·w
, (3.5)

v ∈G, (3.6)

where 1 {g ∈ V} represents the indicator function on V , w is the image width, and h the image
height respectively.
Then, we calculate the cumulative histogram

q (g) =
g
∑

v=0

fv , (3.7)

g ∈G (3.8)

and cut off the upper and lower percentiles with parameters pup and plow.
The remaining pixels are then used to calculate gmin and gmax for the normalization. In the
end, values v /∈G (i.e. below 0 and above 2d − 1) become leveled.
In conclusion we retrieve Algorithm 3.2 for this procedure. Fig. 3.2 demonstrates a robust
grey value normalization with plow = 0.02 and phigh = 0.92 where this method significantly
improves the image with its problematic reflecting parts.

Algorithm 3.2. Robust Contrast Normalization
Input parameters:
• Image f with grey values gx ,y , width w, height h, and pixel depth d

• Truncation parameters plow, pup

Computation steps:

1. Relative frequencies: ∀v ∈G: fv =

∑

x ,y 1
�

gx ,y = v
	

h ·w

2. Cumulative histogram: ∀g ∈G: q (g) =
g
∑

v=0
fv

3. Cut histogram: Q g =
�

g | plow ≤ q (g)≤ phigh

	

4. Remaining extremal values:
• gmin =min

�

Q g

�

• gmax =max
�

Q g

�

5. Normalize contrast:

• gx ,y =
2d − 1

gmax − gmin

�

gx ,y − gmin

�

• Level outliers: gx ,y =























0, if gx ,y < 0

gx ,y , if 0≤ gx ,y ≤ 2d − 1

2d − 1, if gx ,y > 2d − 1

Output:
• Robust normalized image f with grey values gx ,y
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cumulative
histogram
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phigh= 92%

original

robust contrast normalization

Fig. 3.2. Robust contrast normalization. On the top right, the original picture is shown. The left column shows
the image and the cumulative histogram with the cut off percentiles illustrated in grey. Bottom right
shows the result of Algorithm 3.2 with plow = 0.02 and phigh = 0.92.

3.3. Filtering

In this section, we deal with the reduction of noise. We do so by using the neighbourhood
concepts of Definition 2.4 to formulate image filtering operations.

3.3.1. Spatial Domain

A spatial filter is a local transformation around pixel px ,y . The filtered value gx ,y is a result of
some predefined operation and the values of the Moore neighbourhood of radius r. For our
purposes linear filters are relevant.

Definition 3.2
A linear spatial filter h with kernel K is a function

h: G→G (3.9)

gx ,y 7→
∑

|s|,|t|≤r

ks,t gx+s,y+t . (3.10)

Fig. 3.35 illustrates the process of linear filtering, where every image pixel is visited once by
the filter kernel K of size r filled with the coefficients kx ,y as given in Definition 3.2.
Of course, it is also possible to choose non-quadratic neighbourhood ranges or domains with
special shapes, but selecting a quadratic Moore neighbourhood is most common and is part of
our preprocessing algorithm later on.
5Figure based on O’Gorman, Sammon, and Seul [309, p. 61].
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Linear filters are strongly correlated with convolutions as we can see by the definition of con-
volution.6

Definition 3.3
The discrete convolution on k and g is given by

(k ? g)x ,y :=
∑

s,t

ks,t gx−s,y−t , (3.11)

where elements with non-existent indices are treated as zeros.

kernel K

image domain

�ltered pixel

Fig. 3.3. Linear filter with kernel K. The image domain with the Moore neighbourhood around pixel px ,y with
value gx ,y is illustrated with a black grid. The kernel K of the same size acts on this domain. The filtered
pixel has the value h

�

gx ,y

�

.

In other words, a convolution with a kernel function k is just a linear filter with a kernel K
that has been rotated 180◦ since flipping g instead of k does not make a difference but has
conventional reasons. In actual implementations, rotating the smaller K is often favourable.
This means, whenever we perform linear filtering, we can do so by pre-rotating the kernel
and performing a convolution afterwards. In fact, we will use kernels that are invariant under
these rotations so that there is no need to rotate these masks beforehand.
Convolutions have become majorly important in computer vision in particular in the field
of data driven methods where machine learning is used to build artificial neural networks
capable to process image data. These structures involve sets of filters whose weights are learnt.
Due to the close relation between filters and convolutions, such pipelines are often called
convolutional neural networks (CNNs). Part 5 discusses these concepts in more detail.

6Cf. Gonzalez and Woods [151, pp. 146–150].
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3.3.2. Frequency Domain

Filtering an image by computing the convolution can be very time consuming depending on
the size of the kernel. Some precalculation steps by transforming the image into phase space
by change of basis can decrease the number of operations especially if large kernels are used
or multiple filters work consecutively. In order to understand this properly, we repeat the
definition of the discrete Fourier transform.

Definition 3.4
The discrete Fourier transform F of a function f : D→G on a domain D of width w and height
h is given by the operator F with

F ( f (x , y)) := F (u, v) =
h−1
∑

x=0

w−1
∑

y=0

f (x , y)exp
�

−2πi
� xu

h
+

yv
w

��

, (3.12)

where (u, v) ∈
�

−w
2 , w

2 − 1
�

×
�

− h
2 , h

2 − 1
�

.

Lemma 3.1
Its inverse transform can be calculated as

F−1 (F (u, v)) = f (x , y) =
1

hw

h/2−1
∑

u=−h/2

w/2−1
∑

v=−w/2

F (u, v)exp
�

2πi
� xu

h
+

yv
w

��

, (3.13)

where (x , y) ∈ [0, w− 1]× [0, h− 1].

We do not want to go into the analytical details for the inversion formula since this has been
addressed already by various authors. Further details can be found for example in the work
of Rudin [357, pp. 215–221]. In the literature, the discrete Fourier transform is sometimes
referred to as DFT and its inverse as IDFT and since there is a one-to-one correspondence, the
Fourier pair occasionally is symbolized by f F or F f respectively. We will use this
symbolic abbreviation, too.
With this transformation and its inverse, it is now possible to think about images either in their
spatial or in their frequency domain. Fig. 3.4 shows a few images in both domains. Since the
DFT gives values in C, their amplitudes are used for the images and normalized to the given
grey scale. In general, fast changes in the image content like edges or small details cause high
spatial frequencies whereas slow changes or large plane regions are of low spatial frequencies
and code sinusoids with longer periods. Fig. 3.5 shows the effect of keeping only high or low
frequencies of an image.

As we can only use a finite number of coefficients to calculate a Fourier transform, we cannot
avoid getting ringing artifacts especially at sharp edges. Figure 3.6 illustrates this problem for
one dimension. This depicts that there will be a loss of image data when we perform a DFT
and we shall be aware of it.
What is the practical reason for us to speak about Fourier transforms here? The answer is being
given by the following theorem.
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frequency domain

spatial domain

spatial domain

frequency domain

Fig. 3.4. Images in frequency and spatial domain. The left pair shows two sparse examples in frequency domain
and their spatial counterparts. On the right, two images with sparse spatial data are illustrated together
with their data in frequency domain. For visualization purposes, the grey levels are on an inverse
logarithmic scale and the axes of the left two images in frequency domain are scaled by a factor of 40.

lowpass highpassoriginal

Fig. 3.5. Image filtered with lowpass and highpass. The source image is shown in the middle. The lowpass
filter result on the left has suppressed high frequency details while the highpass filter used for the right
image keeps only high frequency information.
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Fig. 3.6. Gibbs phenomenon. Due to the restriction on a finite number of coefficients in the Fourier basis, ar-
tifacts appear at simple discontinuities such as the sharp edges of this square wave. Illustrated is an
approximation with a Fourier series approximation of increasing eigenfunction cardinality from one basis
coefficient up to 100.

Theorem 3.1 (Convolution theorem)
The relation between convolution and discrete Fourier transform is being given by

( f ? g) (x , y) F (u, v) · G (u, v) . (3.14)

Proof. We prove this in the theoretical case using Laurent series

F (( f ? g) (x , y)) =
∞
∑

x=−∞

∞
∑

y=−∞
( f ? g) (x , y)exp

�

−2πi
� xu

h
+

yv
w

��

(3.15)

=
∑

x ,y

∑

s,t

f (s, t) g (x − s, y − t)exp
�

−2πi
� xu

h
+

yv
w

��

(3.16)

=
∑

s,t

f (s, t)
∑

x ,y

g (x − s, y − t)exp
�

−2πi
� xu

h
+

yv
w

��

(3.17)

=
∑

s,t

f (s, t)exp
�

−2πi
� su

h
+

t v
w

��

(3.18)

∑

x ,y

g (x − s, y − t)exp
�

−2πi
�

(x − s)u
h

+
(y − t) v

w

��

(3.19)

=
∑

s,t

f (s, t)exp
�

−2πi
� su

h
+

t v
w

��
∑

x ,y

g (x , y)exp
�

−2πi
� xu

h
+

yv
w

��

(3.20)

= F (u, v) · G (u, v) . (3.21)
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This means that the discrete Fourier transform of a convolution is a point-wise product of Fourier
transforms. Instead of calculating a convolution directly, we can use a DFT to transform the
image and its kernel first, calculate the product and do an IDFT afterwards. The actual process
of filtering becomes a point-wise multiplication in Fourier space.
Is this detour worth it? Surely this is not necessary, if we want to use just one small mask
to filter the image. However, for large kernels or multiple masks a noteworthy acceleration
can be performed using discrete fast Fourier transform (FFT). For an image of size n × n
and a kernel of size r × r with r < n the computational complexity of a convolution in spatial
domain measured by the number of multiplications and summations is O

�

r2
�

per pixel. With
the computationally-efficient FFT algorithm and n being an adequately suitable number such
as a power of 2, FFT and its inverse can be done with O

�

2n2 log2 (n)
�

operations on the entire
image.7 Table 3.1 shows the complexity of the different filter methods. Note that the limit
complexity of the latter is independent of filter parameters and the point-wise multiplication
dominates the calculation cost for large n. Fig. 3.7 shows the computation time for both
methods on a 640 × 640 image with a kernel of increasing size. The independence of the
calculation time from the size of the kernel for the FFT-method is evident.

Method Process Complexity

Convolution k ? g = gnew O
�

n2r2
�

FFT k ? g F · G = Gnew gnew O
�

n2 + 4n2 log2 (n)
�

Tab. 3.1. Complexity of different filter methods for n×n image with kernel of size r.While the computational
complexity of a direct calculation depends quadratically on both filter and image size, the cost with
the use of a fast Fourier transform is only dependent on the image dimension. This can be a relevant
advantage for large kernels.
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Fig. 3.7. Calculation time for different filter methods and varying kernel size. The calculations are performed
using MATLAB R2012b on Windows 7 64bit on a machine with an AMD FX-8120 Eight-Core Processor
at 3.10 GHz with 8 GB RAM using an NVIDIA GeForce GTX 550 Ti with 192 CUDA Cores and 1024 MB
GDDR5 RAM. The reported time measurements are averaged over 100 runs.
While a direct calculation is faster for small kernels, using FFT speeds up the calculation for larger filter
sizes. The independence of the computational complexity from the kernel size is clearly visible.

7A 1D FFT requires O
�

n log2 (n)
�

, see Deuflhard and Hohmann [87, pp. 223–226]. A 2D FFT on an n× n image
requires 2n 1D FFTs, one for every column and row, see Bourke [35].

30 Chapter 3 Image Processing



Henceforward, it is also clear that the term filtering refers to the frequency domain of this
process where certain frequencies can be accepted or rejected. In order to denoise and blur
an image, we introduce a kernel to suppress high frequencies that use the neighbourhood
information equally. We do this with an isotropic discrete Gaussian kernel whose values are
calculated at the pixel centres according to the standard formula

K (x , y) = Ae−
x2+y2

2σ2 (3.22)

with height A and standard deviation σ.
This gives an ideal filter with respect to the artifacts mentioned beforehand, since the Gaus-
sian has an optimal localization in both domains - its Fourier transform is again a Gaussian.
Potentially ideal filters in contrast suffer from ringing effects as Fig. 3.8 demonstrates.

spatial domain

frequency domain

Fig. 3.8. Idealized filter vs. Gaussian filter. The circular spatial filter shown on the left causes fringing in fre-
quency domain while the Gaussian filter illustrated on the right has a much better localization in both
domains. For visualization purposes, the axes are scaled by the factor 4 and the grey levels are on an
inverse logarithmic scale for the frequency domain.

Filtering can be used for a variety of image processing tasks such as local image feature inten-
sification or edge sharpening with numerous discretized operators, and a solid background is
fundamental for various machine vision applications. For further application, Gonzalez et al.
[151, pp. 152–191, 269–303] give a lucid introduction.
Equipped with denoised and prepared image data, we focus now on the image content and for-
mulate algorithms to localize potentially interesting parts and regions. We begin by classifying
image subdomains.

3.4. Segmentation

The important parts of an image are often not displayed on the full screen and further pro-
cessing is required to find the regions of interest (ROIs). The probably most intuitive way
of segmenting object and background is by thresholding its grey values within a brightness
interval.
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3.4.1. Band Thresholding

Definition 3.5
The region of interest R of a band thresholding operation on an image with domain D is given
by

R=
�

(x , y) ∈ D | gmin < gx ,y < gmax

	

. (3.23)

This is of great use, especially if the grey values of objects and their background differ consider-
ably. In case of illumination changes during the measurement, a proper contrast normalization
as presented in section 3.2 should be taken into account.
Unfortunately, finding proper values for gmin and gmax can be cumbersome and cause precal-
culation steps. A way to circumvent this is by finding just one basic threshold parameter to
distinguish between object and background if their grey values differ considerably.8

3.4.2. Basic Thresholding

Definition 3.6
The region of interest R of a basic thresholding operation on an image with domain D is given by

R=
�

(x , y) ∈ D | gx ,y < gthresh

	

(3.24)

or gx ,y > gthresh if the object is brighter than the background.
This leaves just one parameter for the operation which separates the grey values. According
to our assumption, there should be two maxima within the image histogram, which we might
have already calculated for the contrast normalization. The minimum in between separates
object and background. Fig. 3.9 shows that this can be problematic since the uniqueness of
these extreme values is not guaranteed, but a 1D Gaussian filtering of the histogram solves this
problem. The result (with a Gaussian of standard deviation σ = 5) can be seen in Fig. 3.10 and
seems to be a reasonable choice for our example. A lot more advanced classical segmentation
techniques for miscellaneous application scenarios can be found in the work of Šonka et al.
[389, pp. 175–327]. More recent approaches like the work of He et al. [166] perform learning
based object instance segmentation by extending powerful two stage detectors with a parallel
second stage prediction of a binary mask at the cost of computational complexity which may
not be applicable to high-speed applications or in case of limited computational bandwidth.

Depending on the type of object and particular colour changes in the background region, the
result of a segmentation can still be noisy. Fig. 3.11 shows such an example where using a
Gaussian filter of high standard deviation σ would result in loosing important image informa-
tion. To finally get only the sought ROIs (e.g. the discs in the upper part of the image), further
processing may be needed. We will solve problems like this with the help of morphological
operators which we introduce in the following section.
8Cf. Šonka, Hlavac, and Boyle [389, pp. 176–180].
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Fig. 3.9. Image and its histogram. The source image is shown on the left while it is visible from the histogram
on the right that most grey values distribute around the background grey value and the foreground
brightness. Multiple local minima are visible.
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Fig. 3.10. Smooth histogram and segmented image. Only two local minima remain in the filtered histogram on
the left. A segmentation of the image is possible. The mask is depicted in red on the right.

Fig. 3.11. Segmentation clutter. The task is to mask the discs in the upper part of the image. The proposed
segmentation pipeline alone is incapable of removing the clutter in the background and thus the mask
shown in red contains more pixels.
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3.5. Morphology

The modification of regions for the selection of important image parts is an indispensable tool
for the implementation of effective algorithms. In this section, we deal with the mathematical
operations to tackle such tasks. Besides the standard operations from set theory, namely union
A∪ B, intersection A∩ B, difference A \ B, and complement A, we therefore introduce a new
geometric operation, the translation.9

Definition 3.7
The translation of a region A by a vector t ∈ Z2 is given by

At = {a+ t | a ∈ A} . (3.25)

Fig. 3.12 shows an example of this operation.
With these five elementary set operations, we develop the basic operators of mathematical
morphology.

AtA

Fig. 3.12. Translation of region Awith t = (2, 1)T . The selected region A in red on the left travels with this operator
in the direction of t. The result is shown on the right.

3.5.1. Erosion and Dilation

In typical morphological tasks, there are two sets involved. One is the underlying ROI R of
some image and the other one, S, represents the shape we are interested in; it is called the
structuring element (SE). Mostly, this is a symmetric domain around a special point O (its
origin).
The first two morphological operators we define are erosion and dilation.10

Definition 3.8
The erosion of a region R by the structuring element S is given by

R	 S :=
⋂

s∈S

R−s. (3.26)

9Cf. Steger, Ulrich, and Wiedemann [395, p. 126].
10Cf. Soille [386, pp. 65, 68].
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The dilation of a region R by the structuring element S is given by

R⊕ S :=
⋃

s∈S

R−s. (3.27)

Since

R	 S =
⋂

s∈S

R−s =
�

t ∈ Z2 | St ⊆ R
	

=
�

p ∈ Z2 | p+ s ∈ R ∀s ∈ S
	

⊆ R, (3.28)

an erosion is essentially a shrinking of the region R by putting the origin of S onto an arbitrary
pixel p of R	 S. Thus, S is completely covered by R. See Fig. 3.13 for a simple example.

SR R  -  S

0

Fig. 3.13. Erosion of R by S. The red region R on the left is eroded with the structuring element S in the middle.
The reduced region is shown on the right.

In an analogous manner, a dilation can be written as

R⊕ S =
⋃

s∈S

R−s =
�

t ∈ Z2 | R∩ St 6= ;
	

=
�

p ∈ Z2 | ∃s ∈ S : p− s ∈ R
	

⊇ R. (3.29)

This means that a dilation lets the region expand by putting the origin of S onto an arbitrary
pixel p of R. Thus, S is completely covered by R⊕ S. Fig. 3.14 depicts this fact.

SR R  +  S

0

Fig. 3.14. Dilation of R by S. The red region R on the left is dilated with the structuring element S in the middle.
The expanded region is shown on the right.

As long as not defined specifically, S shall be a centrally symmetric discretization of a two-
dimensional disc around O. A first example of the given operations on a more complex region
is illustrated in Fig. 3.15. An erosion by S reduces the ROI and deletes isolated small domains,
whereas a dilation enlarges the ROI and fills gaps within separated image parts.

From an application viewpoint it would be preferable to have the denoising and cancelling
effects of an erosion without a reduction of the main areas. Doing so will help to solve prob-
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R  +  SR

S

R  -  S

Fig. 3.15. Erosion and Dilation of R with the structuring element S. On the left, both the region R and the
structuring element S are shown. The result of an erosion is drawn in the middle in comparison with the
region R while the domain after dilation is illustrated on the right.

lems like the one pointed out in Fig. 3.11. This can be done by successive execution of both
operations, erosion and dilation.11

3.5.2. Image Opening

Definition 3.9
The opening of a region R by the structuring element S is given by

R ◦ S := (R	 S)⊕ S. (3.30)

Although the opening is defined in terms of erosion and dilation we can write

R ◦ S = (R	 S)⊕ S =
⋃

St∈R

St , (3.31)

which gives a geometric formulation of the operation, since this is essentially the same as
moving the structuring element S along every pixel of R and examining whether it fits the
region or not. Schematically this works as shown in Fig. 3.16. We note that by choosing a disc
as SE, R is rounded by S from the inside.

R
S

R    S

Fig. 3.16. Opening of R by S. The successive application of erosion and dilation with the structuring element S
transforms the region R on the left into the dark region depicted on the right. The original region is
added for comparison in brighter grey.

This indeed solves the issues from Fig. 3.11 which can be seen in Fig. 3.17. Getting rid of the
last wrongly selected larger region can then be done by some further parameter filtering to

11Cf. Soille [386, pp. 105–106].
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which we come in the subsequent sections. At first, however, we focus on the separation of the
unconnected parts.
Last but not least, it also has to be mentioned that the defined morphological operations
are considerably more costly in terms of their computational complexity compared to the
operations and methods presented beforehand. This means, if it is possible we try not to apply
the operations on the entire image but rather on some small restricted regions of interest to
save computation time and facilitate real-time tasks.

Fig. 3.17. Selection with opening. The task is to mask the discs in the upper part of the image. The morphological
operation with the structuring element SE shown in green removes the cluttered parts of the red mask
in the middle such that the green mask on the right remains.

3.6. Separation

We are now able to detect a set of pixels for a certain ROI. So far, these pixels do not have
to be connected, which yields one single set of image coordinates without labelling its non-
connected subsets. This works perfectly if we are looking for one connected domain within an
image, but this is often not the case. On the contrary, in many tasks we are not only interested
in finding or selecting one single object or region within the image. Often several visible spots
are relevant for further processing.
We discuss hereafter methods that separate image regions and allow us to label different
domains.

3.6.1. Connectivity

If we want to think about connected components of a region, we have to determine how it
can be defined that two pixels are connected. The natural way of speaking about connection
can be formulated in terms of the neighbourhood Definition 2.4, where two pixels are said to
be connected if they either share a vertex or an edge.

Definition 3.10
Two pixels p1 and p2 are 4-connected ⇐⇒ p1 ∈ Uvon Neumann (p2).
Two pixels p1 and p2 are 8-connected ⇐⇒ p1 ∈ UMoore (p2).
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As this definition is obviously symmetric, the ordering of p1 and p2 is negligible.
One peculiarity can be noted if we use the same classification for both foreground and back-
ground.12 This issue is illustrated in Fig. 3.18. We would intuitively separate the background
into two areas, one enclosed by the circle and one outside of it. However, if we use 8-
connectivity for the background, it would consist of only one single connected region. On
the other hand, if we use 4-connectivity for the foreground, the circle would not be regarded
as a connected region. To avoid this counterintuitive behaviour, we use different connectivity
classifications on both sets. 8-connectivity defines components in the foreground whereas
4-connectivity is used for the background.

Fig. 3.18. Thin foreground circle. Depending on the choice of the neighbourhood, the inner circle is connected
with the exterior part or not. Choosing for instance a Moore neighbourhood defines only one connected
white region while 4-connectivity yields separate regions. The red circle is 8-connected.

This allows us to finally separate the connected components of Fig. 3.17. Now that every
component has an individual label, we could just look at the number of pixels within every
area and get rid of the larger domain which exceeds a specific threshold. Unfortunately this
depends on the camera resolution and the camera-object distance. However, in section 3.8 we
find ways to describe the geometry of the connected components more specifically; these can
be used as distance-invariant filter options.

Fig. 3.19. Separation of regions. While the green mask after segmentation (shown on the left) is not separated,
each individually coloured component (shown on the right) is labeled separately.

The methods presented so far give powerful tools for plenty of applications. However, we still
work on the pixel level. In the next sections, we leave this level and formulate solutions to
collect more abstract region parameters starting with a definition of an edge in an image.

12Cf. Umbaugh [428, pp. 109–110].
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3.7. Edge Detection

Catching a glimpse of an image for a short time reveals the main information flow obtained
by the human visual system. Remembering only a fraction of the depicted scene demonstrates
that the observer often stores only a small amount of the image content at first glance.13 This
can be type and position of the foreground objects and some other high-level image features.
To separate this information, a significant change of the image intensity at particular spots
is needed: the edges.
For localization of edges and to detect contours, it is essential to understand, how an edge can
be defined. We differentiate between 1D edges along curves and 2D edges.

3.7.1. Edges along Curves

As a start, we think about the problem in a simplified manner and neglect discretization effects.
This allows us to use differential operators. For an edge detection along a curve as illustrated
in Fig. 3.20, this gives the following definition.

Image with curve c
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Fig. 3.20. Idealized sample with derivatives along curve. The original image is shown on the right together with
a curve c depicted in green. The normalized grey values along the curve are given by the plot c (x) while
c′ and c′′ illustrate the derivatives. It is clearly visible that the extreme values of c′ (and respectively the
zero crossings of c′′) localize the boundary of the circle.

Definition 3.11
The set E of edges along a curve c : I → A in an image f : D→G is given by

E =
�

a ∈ A | a = c (e) :
�

�c′ (e)
�

�> C ∧
�

�c′ (e)
�

�>
�

�c′ (x)
�

� ∀x ∈ Br (e)
	

, (3.32)

where I ⊂ R is an interval, A⊂ D̃ ⊂ R2 with the continuation D̃ of the discrete image domain D.
Moreover, C ∈ R, C � 0 is a constant, c is a unit speed curve, and Br (p) symbolizes a small ball
of radius r > 0 around p ∈ I .

13The storage capacity of the human short term memory for familiar content consists of not more than seven (plus
or minus two) storage units, see Microsoft [282]. Catchword: Gedächtnis, 2.2.b. Speicherkapazität für Kurzzeit-
und Arbeitsspeicher.
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The first condition guarantees that the grey value change is significant since |c′ (e)| � 0. It
automatically neglects points that differ just by local lighting variations or by problematic
colour fidelity. We call the second condition non-maximum suppression. It ensures that the
detected edge point is locally unique. We choose c to be of unit speed since this allows us to
easily measure distances on the curve later on.
An alternative definition for edges along one-dimensional manifolds in application tasks is
often done using the second derivative as Fig. 3.20 suggests. In this case one may call a point
an edge point if c′′ = 0. Two major issues occur in this case: firstly, the existence is not even
guaranteed for simple discrete cases. This can be avoided using a soft upper threshold instead
of 0. Secondly, however, flat inflection points are wrongly detected as edge points - this would
need further processing.14

If we want to apply our definition to real images, we have to discretize the differential
operator and interpolate the grey value on the curve if it does not coincide with a pixel centre.
The discretization of the differential operator can be done in a symmetric way as shown in
Fig. 3.21, so that

d
du
(c (u)) ≈

1
2
(c (u+ 1)− c (u− 1)) . (3.33)

u-1 u+1u

c(u)

Fig. 3.21. Discretization of differential operator d/du. The green continuous curve is evaluated at the discrete
points shown in black. The values of c (u− 1) and c (u+ 1) are used for a linear approximation of the
derivative at c (u).

With the methods described in section 3.3, we note that this can also be expressed as a 1D
convolution (note the mirroring):

d
du
(c (u)) ≈

�

1
2
·
�

1 0 −1

��

? c(u). (3.34)

For convenient reasons and since we are mostly interested in relative comparisons of differential

values, we will drop the constant pre-factor and stay with the kernel
�

1 0 −1

�

. Ourdiscrete
formalization of the differential operator is therefore given by

D
�

d
du

c (u)
�

=
�

1 0 −1

�

? c(u), (3.35)

where D represents the discretization operator.

14Cf. Burger and Burge [46, p. 126].
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How do we now get the grey value on curve points that lie not directly on the discrete pixel
grid? If we have a certain position p for such a point, a virtual pixel centred at p would touch
four pixels of the grid underneath as shown in Fig. 3.22. A direct way to a pixel value would
be to look for the closest pixel centre and take its grey value: namely nearest-neighbour
interpolation, which can cause unwanted artifacts.15 Using the fictive coordinates of p, we
can do a linear interpolation in both the vertical and horizontal direction to retrieve its bilinear
interpolation that gives a scalar at its centre which we assign to the closest value within the
pixel depth. With the distances given in Fig. 3.22 we can write this interpolation as

gp = b (ag11 + (1− a) g01) + (1− b) (ag10 + (1− a) g00) . (3.36)

The effect of this interpolation is visualized in Fig. 3.23 for an edge detection task with a
real image. A smoothing of the discrete grey value function would also be done for denoising
purposes before calculating the width of such a component part.
In the following, we use these one-dimensional concepts to develop detection methods for
two-dimensional edges.

p

p00

p10

p01

p11

a

1 - a

b 1 - b

nearest-neighbour bilinear

Fig. 3.22. Parameters for nearest-neighbour and bilinear interpolation. The sought value at point p not co-
inciding with the discrete pixel grid shown on the left can be calculated either via nearest-neighbour
interpolation, where the value of the closest discrete pixel centre is adopted (in this case p11 in the
middle) or bilinear interpolation is used with the distances shown on the right.

Fig. 3.23. Edges along curve using bilinear interpolation. The intensity values of the red linear segment c shown
on the left are calculated with bilinear interpolation. The local noise level is reduced by filtering. This
can be observed by comparison of the jitter between the two middle images. Calculating the discrete
derivative clearly reveals the two edge points.

15Cf. Steger, Ulrich, and Wiedemann [395, pp. 96–99].
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3.7.2. Image Contours

An image contour or a two-dimensional edge is a curve s that has a one-dimensional edge
perpendicular to itself. That means if we want to use the concepts of section 3.7.1 to describe
contours, we need to look for points whose gradient magnitude is locally maximal in direction
of the gradient.16 In the continuous case, this can be expressed formally by the definition
below.

Definition 3.12
The set R of contour points of an image f : D→G is given by

R= {p ∈ D | p is edge along line c∧ c ‖ ∇ f (p)} , (3.37)

where D ⊂ R2 and ∇=
�

∂x ,∂y

�T gives the 2D nabla operator of partial derivatives.

p

f (p)

∆

c

Fig. 3.24. Contour point with assigned curve. The curve c is illustrated as a dashed blue line. It can be seen that
the derivative ∇ f (p) is parallel to the curve at its edge p.

In Fig. 3.24 one such contour point p of the image with an example curve c and its edge p are
shown.
We nowwant to reformulate the definition above for our discrete purposes. A first step therefore
is to apply a Gaussian smoothing. This decreases the influence of noise for further processing
steps and scatters highly localized image features within kernel-sized areas.
Following the same principles as in the one-dimensional case, we can define the components

of the discrete gradient on the 2D grid as a convolution with the kernel
�

1 0 −1

�

for

the X-direction and with
�

1 0 −1

�T
for Y respectively. In order to receive reliable values,

a smoothing perpendicular to the gradient seems convenient.17 To do so, we introduce the
Sobel operator in both directions by its kernels

Sx =













1 0 −1

2 0 −2

1 0 −1













and Sy =













1 2 1

0 0 0

−1 −2 −1













. (3.38)

16Note also that a gradient direction may be noisy within areas of similar grey values.
17Cf. Jähne [191, pp. 350–351].
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Neglecting constant pre-factors again, this allows us to formulate a discrete version of the
image gradient as

D [∇ f (p)] =





Sx ? f (p)

Sy ? f (p)



 . (3.39)

In Fig. 3.25 the absolute value of this operation can be compared to the original image. What is
more, it can be observed that the gradient direction is noisy in areas without contours whereas
it is similar along edges.

Original Gradient magnitude Gradient direction

Fig. 3.25. Grey value image and its gradient image. On the left is the source image. For the visualization of the
gradient magnitude, the vector length is represented by the inverted grey scale. For the image gradient
direction, the angle interval (−π,π] from the positive x-axis is assigned to the colour code shown. While
the gradient magnitude in the middle highlights the image contours, it can be observed that the gradient
direction on the right is noisy in non-contour areas.

p
p+1

p+2

p-2

p-1

pp-1 p+1

||    f ||

∆

Fig. 3.26. Edge detection with interpolation along gradient direction. On the left, the gradient ∇ f (p) at p
(visualized with an arrow) is used to calculate the direction which is illustrated as a dashed black line.
Samples along the line are taken at discrete steps forwards (+) and backwards (-). The right graphic
illustrates the interpolated gradient magnitude for some example locations.

If we directly adopt the principles of detecting edges along curves we can now use the gradient
∇ f (p) as the direction for a line through p and calculate the local maximum on this line
using bilinear interpolation and non-maximum suppression along the gradient direction in
order to detect two-dimensional edges as illustrated schematically in Fig. 3.26. The process
of edge detection for a certain pixel would then be twofold. Firstly, we calculate the gradient,
and secondly, we search for peaks in the direction of the gradient. This would mean that we
have to do at least two calculations for fictive pixel centres and the corresponding bilinear
interpolations for each considered pixel within the image besides the prior gradient calculation.
Since it is essentially a binary decision if either pixel p is an edge point or not given its particular
neighbourhood, we instead use a similar, more pixel-based approach to detect edges. After the
calculation of the discrete gradient, we separate the neighbourhood of p into four angle
sectors based on the possible gradient directions according to neighbourhood pixels. The
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decision process is then reduced to a comparison of the gradient magnitude of the two relevant
pixels within the 8-neighbourhood as shown in Fig. 3.27.

For some tasks, especially if the position of corner points is important, an edge detection
with the Laplace operator ∆=∇ ·∇ can also be carried out. The condition for corner points
would then be ∆ f (p) = 0. Since this approach is sensitive to noise, further ideas as proposed
by Šonka et al. [389, pp. 138–142] have to be taken into account. For our purposes, it is
important that the edge detection is robust and accurate. Thus, we keep the discretization
simple and use only first derivatives here without specific corner detection.
Fig. 3.28 shows a detailed part of the image gradient whose contour pixels are detected with
this method. Specific attention has to be paid to the result on the right which has significantly
thinner contours due to the non-maximum suppression.

Angle 15° Angle 35°

Fig. 3.27. Pixel-based non-maximum suppression. In the middle, it is illustrated that the neighbourhood of the
centre pixel is separated into four angle sectors which are coloured blue, green, red, yellow. On the left,
a query gradient - illustrated by the arrow - with an angle of 15◦ to the horizontal line falls into the blue
sector while the right query point with an angle of 35◦ is assigned to the green bin. In order to suppress
non-maximal values, only a comparison with the gradients in the coloured pixels is necessary.

Image Gradient Non-maximum suppression

Fig. 3.28. Image gradient before and after non-maximum suppression. The left image depicts the image gradi-
ent and a magnification. Note the spurious points. After edge thinning with non-maximum suppression,
the contours are more clearly defined as shown on the right.

3.7.3. Hysteresis Thresholding

Until now, we have only used one single threshold C for the segmentation of edge points by
their gradient magnitude ‖∇ f (p)‖. This often gives results that are not yet satisfying if the
grey level of the object is similar to noisy features or irrelevant background parts. If we use for
example a high threshold Cup > C , we probably get the relevant edge points but it is likely that
they stay fragmented. On the other hand, using a low threshold Clow < C can give all relevant
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edge points but also some irrelevant pixels. This drawback has already been tackled in the
early days of computer vision by Canny [60] with the use of two thresholds for hysteresis
thresholding.18 For our purposes, we propose Algorithm 3.3.

Algorithm 3.3. Hysteresis Thresholding
Input parameters:
• Image f : D→G

• Selected pixel set S ⊂ D by non-maximum suppression
• Lower threshold Clow, upper threshold Cup > Clow

Computation steps:
1. Calculate ‖∇ f (p)‖ ∀p ∈ S

2. Mark pixels as
• wrong, if ‖∇ f (p)‖< Clow

• potential, if Clow < ‖∇ f (p)‖< Cup

• correct, if ‖∇ f (p)‖> Cup

3. Set P := {p ∈ S | p potential} and R := {p ∈ S | p correct}
4. Detect contour. ∀p ∈ R:

• Calculate neighbourhood intersection I = U (p)∩ P

• If I 6= ; add p ∈ P ∩ I to R

Output:
• Contour pixel set R

Since 8-connectivity defines foreground objects19 we use U = UMoore for the neighbourhood
intersection. This band thresholding process then guarantees that potential pixels are only
considered if they are connected to already correct ones. The hereby detected individual pixels
still need to get linked to one another in order to form a thin contour line. This is done by
repeatedly selecting a first pixel centre of some p ∈ R and successively looking for adjacent
pixels until the end of a contour is hit, the contour closes, an intersection point of two contours
is reached or no unprocessed pixels remain in R. An example of this algorithm is shown in
Fig. 3.29.

For many application tasks, an algorithm using gradient calculation via Sobel kernels, non-
maximum suppression and a hysteresis threshold gives sufficient results and works robust.
An example for such a processing chain is illustrated in Fig. 3.30, where the colour image
is mapped to grey scale following the recommendation ITU-R BT.601-7 of the International
Telecommunication Union BT [43].

f (x , y) = 0.2989 ·R (x , y) + 0.5870 ·G (x , y) + 0.1140 ·B (x , y) , (3.40)

18Cf. Schaeffel et al. [364, pp. 601–602].
19Cf. section 3.6.

3.7 Edge Detection 45



Clow = 0.25 Chigh = 0.6 hysteresis thresholding

Fig. 3.29. Hysteresis thresholding on smoothed gradient image scaled to [0, 1]. The left two images show
selected gradient images with different thresholds on the gradient magnitude. While the low threshold
Clow delivers connected relevant edges, clutter remains. The high threshold Cup includes only relevant
edge points, but they are fragmented. The hysteresis thresholding on the right involves both thresholding
operations and gives a clean and connected result.

hysteresis thresholding

original smooth greyscale gradient

non-maximum suppression

Fig. 3.30. Edge detection chain. The original colour image on the upper left is mapped to grey scale according to
the standard BT [43] and filtered with a Gaussian kernel of size 5× 5 with standard deviation σ = 1.4.
The resulting gradient image on the upper right is processed with a non-maximum suppression for edge
thinning (see lower left). A hysteresis thresholding is performed with parameters set to Clow = 0.2 · Cmax

and Cup = 0.9 · Cmax relative to the maximum length of the gradient Cmax . The result is visualized in red
on top of the original grey scale image on the lower right.
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where the values for R, G, and B are scaled to [0,1] and represent the different colour channels
red, green, and blue. The value

Cmax :=max
p∈S
{‖∇ f (p)‖} (3.41)

gives the maximum length of the gradient within the relevant image point set. It serves as a
parameter for the threshold determination which is calculated as

Clow = 0.2 · Cmax and Cup = 0.9 · Cmax . (3.42)

For a variety of reasons including resolution constraints, a better accuracy than a pixel centre
can be required. We want to consider a precision enhancement method for edge detection
tasks hereafter.

3.7.4. Sub-pixel Precise Contours

If we look for highly accurate edge detection possibilities to calculate the contour lines with a
precision above the resolution of our images, we need a more sophisticated method to correct
potential sampling errors due to discretization problems of the image data. To achieve such
precision, we use an interpolation with a quadratic polynomial as suggested by Steger [392,
pp. 9–10] and Steger [393, pp. 116–117] for 2D line detection tasks.
Every edge pixel p=

�

px , py

�

of a pre-smoothed image f detected by Algorithm 3.3 lies on a
ridge line of extreme values within the gradient image

r (x , y) =
Ç

fx (x , y)2 + f y (x , y)2 (3.43)

where the subscripts indicate partial derivatives. This gives an 8-neighbourhood in the gradient
image whose values we use to calculate the two-dimensional quadratic Taylor polynomial

r (x , y) = r (x) = r (x0 +∆x) (3.44)

≈ r (x0) +∆xT∇r (x0) +
1
2
∆xTH (r (x0))∆x (3.45)

= r (x0) +∆xT





rx

ry



+
1
2
∆xT





rx x rx y

rx y ry y



∆x (3.46)

with ∆x = x − x0. And ∇r (x0) =
�

rx , ry

�T is the Jacobian of first-order partial derivatives
evaluated at x0, and

H (r (x0)) =





rx x rx y

rx y ry y



 (3.47)

is the Hessian matrix of second-order partial derivatives at x0.
Searching for the proper sub-pixel precise edge point location, we look for the direction of p
in which the gradient change is maximal in order to detect the position of its maximum. This
direction is determined by the eigenvectors of H. The dominant eigenvector of H (i.e. the
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eigenvector corresponding to the eigenvalue with maximal absolute value) points perpendicu-
lar to the edge line. Let us denote the normalized direction by n=

�

nx , ny

�

with






�

nx , ny

�



= 1.
As a next step, we look for the maximum along this line using the Taylor approximation. We
therefore set x0 = 0 as origin and insert psubpix = λ

�

nx , ny

�

into equation (3.46).

r
�

psubpix
�

(3.48)

≈ r (0) +
�

λnx ,λny

�





rx

ry



+
1
2

�

λnx ,λny

�





rx x rx y

rx y ry y









λnx

λny



 (3.49)

= r (0) +λnx rx +λny ry +
1
2
λ2n2

x rx x +λ
2nx ny rx y +

1
2
λ2n2

y ry y . (3.50)

Differentiation with respect to λ gives

∂λr
�

λnx ,λny

�

≈ nx rx + ny ry +λn2
x rx x + 2λnx ny rx y +λn2

y ry y . (3.51)

An evaluation of equation (3.51) at 0 yields

λ= −
nx rx + ny ry

n2
x rx x + 2nx ny rx y + n2

y ry y
(3.52)

and our extreme point is given by

psubpix =







λn, if
�

λnx ,λny

�

∈ [−0.5,0.5]× [−0.5,0.5]

0, otherwise.
(3.53)

The sub-pixel precise contour location psubpix therefore is either the corrected extremum
within the pixel width and height or its centre point. In Fig. 3.31 the interpolation method is
illustrated for one pre-detected pixel p and its gradient neighbourhood. The slight offset of
the contour point in direction of the arrow is noteworthy.

After the calculation of the new contour points, they still need to be connected to each other
to form the discrete contour curve. This follows the same principle as for the centre points in
the pixel precise case of section 3.7.3 and is illustrated in comparison to the latter in Fig. 3.32.
Finally, we have to note that the gradient image r already contains the two partial derivatives
fx and f y . The partial derivatives of r are given by

rx =
fx fx x + f y fx y

r
(3.54)

ry =
fx fx y + f y f y y

r
(3.55)

rx x =
fx fx x x + f y fx x y + f 2

x x + f 2
x y − r2

x

r
(3.56)

rx x =
fx fx x y + f y fx y y + fx x f y y + fx y f y y − rx ry

r
(3.57)

ry y =
fx fx y y + f y f y y y + f 2

x y + f 2
y y − r2

y

r
. (3.58)
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Fig. 3.31. Sub-pixel precise edge point. Illustrated are the gradient values r (x , y) above the pixel centre grid.
The gradient magnitude is colour coded. The sub-pixel refinement for the pixel p is given by a step of
size λ in the direction of n which is shown here in red on the grid together with the contour lines. Note
the difference between the pixel centre p and the refined coordinates of psubpix.

pixel precision subpixel precision comparison

Fig. 3.32. Detailed sub-pixel contours. The pixel precise contour detection is drawn in blue on the left. The
middle illustrates the sub-pixel refinement. The right image shows the direct comparison of both. Note
the difference of the contour lines in particular for points away from the pixel centres.

This causes several computationally costly differentiations including error-prone third-order
partial differentiation and can be overcome by applying a convolution method including differ-
ent 3×3 facet model kernels. Since this is not obligatory for the understanding of the principle
for sub-pixel precise contour extraction, we do not go into details of this process and refer to
the work of Steger [394, pp. 46–47].

With the methods presented so far it is possible to detect and change special image features
such as noisy parts or areas with different light intensities. Furthermore, we can determine
image sections according to their grey values or significant shapes. The contour operations for
the shape detection can even be performed with an accuracy above the pixel grid resolution.
The drawback is the computational complexity. Those tasks require considerable processing
power for large regions and it is our objective to diminish the considered regions as much as
possible if we apply sub-pixel precise detection. In the next section we apply the previous work
on contours to search the image for particular shapes with given parameters.
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3.8. Ellipse Fitting

Are there circles in an image? How can we group ellipses of similar size from pixel data?
Which contour looks like the one in my database? We will now discuss possible answers and
an efficient algorithm for questions as the ones above.
With the methods presented in section 3.7 it is now not only possible to detect the pixels of
image edges, but also to determine the contour line even with sub-pixel precision. The huge
amount of information for such contours including the contour points and their connected
neighbours are often not of interest for tasks where only the length of a contour line or the
diameter of a circular hole are demanded. We need to fit parameters to our measurements
to tackle tasks where simple geometric objects, such as lines, circles or ellipses serve as repre-
sentatives for noisy contours with a few parameters that are often difficult to compare with
similar discrete curves. Such objects are called geometric primitives.
Simple geometric primitive such as lines can be robustly detected with iterative optimiza-
tion approaches like the method proposed by Lanser [235, pp. 72–75]. These 2D-forms are
relevant for many machine vision tasks which involve camera based measurements, quality
inspection and can serve as anchors for classical vision pipelines. For our purposes, however, we
focus solely on the detection of ellipses since these are the projections of circles to be detected.
Detection of other 3D primitives is briefly discussed in section 8.2.1.

In order to formulate an ellipse fit for a certain pixel set, we start with the representation of a
general projectively transformed circle as a quadratic form in RP2 by its implicit formula with
homogeneous coordinates

pTC p= (x , y, z)













a b/2 d/2

b/2 c e/2

d/2 e/2 f

























x

y

z













(3.59)

= ax2 + bx y + c y2 + d xz + e yz + f z2 = 0. (3.60)

Following the idea of Richter-Gebert [347, pp. 148–149], we intersect the conic represented
by the homogeneous equation (3.60) with the line at infinity l∞ : z = 0 to classify object
properties. This gives

ax2 + bx y + c y2 = 0. (3.61)

Solving equation (3.61) for x = x (y) yields

x =

�

−b±
p

b2 − 4ac
2a

�

y, (3.62)

which has up to scalar multiples either none, one or two solutions depending on the discrimi-
nant. The three different cases for the transformed circle are illustrated in Fig. 3.33.20

20Figure based on Richter-Gebert [347, p. 149].
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ellipse

l∞ l∞
l∞

parabola hyperbola

Fig. 3.33. Different forms of a conic. The shape of the resulting geometric object depends on the intersection of
the conic with the line at infinity l∞. In the top row, the three possible classes are illustrated schematically.
If the line has no common point with the conic (see top left), the result is an ellipse (lower left). Exactly
one common point gives a parabola as shown in the middle while two intersections form a hyperbola
(lower right).

Since we are only interested in the case of ellipses, we consider the constraint case for the
conic being an ellipse given by

b2 − 4ac < 0. (3.63)

Dehomogenization of equation (3.60) with z = 1 finally gives

pTC p= ax2 + bx y + c y2 + d x + e y + f = 0, (3.64)

which we can rewrite as

0= pTC p (3.65)

=
�

a b c d e f

�

︸ ︷︷ ︸

rT

�

x2 x y y2 x y 1

�T

︸ ︷︷ ︸

d

(3.66)

= rTd (3.67)

=: C (r,d) , (3.68)

where r represents the vector of conic parameters that determine the conic type and d is the
designed variable vector that describes the structure of the object. C (r,d) gives the algebraic
distance of a point p = (x , y, 1) to the conic C (r,d) = 0. This is the basis for our fitting.
A non-linear approach for minimizing the geometric error for a fit of a 2D point cloud to an
ellipse is for example given by Ahn et al. [3]. Even though there exist such ideas, they often
use elaborate approximation techniques and thus are computationally complex. Since we want
to develop real-time systems, we follow a linear approach andminimize the algebraic error
given by C (r,d) instead, which still gives satisfactory results. However, we keep in mind that
for highly accurate fitting procedures without hard runtime requirements, this would not be
the method of choice. In this case, choosing a geometric minimization approach would be
preferable.
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Firstly, we note that, similar to the line fitting, the set of parameters is a homogeneous quantity,
since

C(r,d) = 0 ⇔ C(τr,d) = 0 (3.69)

∀τ ∈ R \ {0}. This leaves us the choice of arbitrarily scaling the parameter vector r. We follow
the idea of Fitzgibbon et al. [117] and incorporate the choice of τ into the inequality ellipse
constraint (3.63) to form the equality constraint

4ac − b2 = 1 (3.70)

instead. We can rewrite this in terms of matrix-vector formalism as

1= 4ac − b2 (3.71)

=
�

a b c d e f

�



















0 0 2

0 −1 0 0[3,3]

2 0 0

0[3,3] 0[3,3]



















︸ ︷︷ ︸

A

































a

b

c

d

e

f

































(3.72)

= rTA r, (3.73)

with 0[3,3] representing a 3× 3 matrix filled with zeros.
Let us now write all measurements in one matrix. If n measured points are given by pi =
(x i , yi , 1), we write them in form of vector d from equation (3.66) and build

D=













dT
1

...

dT
n













=













x2
1 x1 y1 y2

1 x1 y1 1
...

x2
n xn yn y2

n xn yn 1













. (3.74)

Then the minimization problem summing up all the residuals

min
n
∑

i=1

C(r,di) (3.75)

subject to b2 − 4ac < 0 (3.76)

reduces to

min‖D r‖2 (3.77)

subject to rTA r= 1, (3.78)
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where ‖·‖= ‖·‖2 is the Euclidean norm and D is called the design matrix.21

We solve this with a Lagrange multiplier and focus now on

min‖D r‖2 −λ
�

rTA r− 1
�

︸ ︷︷ ︸

S

(3.79)

instead. Differentiation leads to the necessary condition

0 !
=∇S (3.80)

=
�

∂a,∂b,∂c ,∂d ,∂e,∂ f

�T
S (3.81)

=∇
�

‖D r‖2 −λ
�

rTA r− 1
��

(3.82)

=∇
�

rTDTD r
�

−∇λ rTA r (3.83)

= 2 DTD r− 2λ A r, (3.84)

where the last step works because A and the scatter matrix M := DTD are symmetric. This
equation can be written as the generalized eigenvalue problem

M r= λ A r, (3.85)

for which there exist six eigenvalue-eigenvector pairs (λk, rk). Since

‖D r‖2 = rTDTD r= rTM r= λ rTA r= λ, (3.86)

we are interested in the eigenvector r+ corresponding to the minimal eigenvalue λ+ ∈ R+0 for
which the minimization achieves the best value.22 Moreover, such an eigenvalue is unique and
it always exists.23

Let us suppose we already have the pair (λ+, r+) that solves equation (3.85). The parameter
vector r+ is still only fixed up to scale, since (λ+,η r+) also satisfies (3.85) ∀η ∈ R \ {0}. We
can find the proper scaling factor by considering condition (3.78), where

η2
+r

T
+A r+ = 1 (3.87)

finally gives

η+ =

√

√

√
1

rT+A r+
. (3.88)

21Cf. O’Leary and Zsombor-Murray [310, p. 494].
22Cf. Halíř and Flusser [159].
23It can be shown that the signs of the eigenvalues of the generalized eigenvalue problem M r= λ A r with positive

definite M and symmetric A are the same as the signs of the eigenvalues of A up to permutation (see Lemma 1,
Fitzgibbon et al. [117, p. 478]). Since the different eigenvalues of A in our case are {−2,−1, 0,2}, this leaves
exactly one positive eigenvalue.
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We conclude this line of thoughts by putting the ideas together in Algorithm 3.4.

Algorithm 3.4. Ellipse Fitting
Input parameters:
• Contour points pi = (x i , yi) with i ∈ {1, . . . , n}

Computation steps:

1. Set up design matrix D=













dT
1

...

dT
n













=













x2
1 x1 y1 y2

1 x1 y1 1
...

x2
n xn yn y2

n xn yn 1













2. Calculate scatter matrix M := DTD
3. Solve generalized eigenvalue problem M r= λ A r
4. Get (λ+, r+) with λ+ ∈ R+0

5. Calculate scaling factor η+ =

√

√

√
1

rT+A r+
6. Scale parameter vector r= η+r+

Output:

• Ellipse parameters rT =
�

a b c d e f

�

This procedure is robust against occlusion and small outliers, as you can see in Fig. 3.34. If large
deviations from the ellipse contour occur, weighting coefficients for the algebraic distances
should be introduced.24 The two figures Fig. 3.34 and Fig. 3.35 shows that this method can
work in presence of noise and on real data. Thus, we do not consider any further weighting
here.

SNR = 35 SNR = 30 SNR = 25 SNR = 20

Fig. 3.34. Fitted ellipses of artificial point sets with decreasing signal to noise (SNR) ratio. The illustrations
show a synthetically created set of contour points on an ellipse with different noise levels in blue. The
results of Algorithm 3.4 on these point sets is depicted in red. Note that the algorithm is robust to both
a severe occlusion of contour points (see the left three illustrations) and various levels of noise.

3.8.1. Ellipse Properties

At last, we want to state some useful ellipse properties, especially how we derive geometric
quantities that describe an elliptic shape given its algebraic parameters. We thereby focus on
24One such concept is given by Lanser [235, pp. 76–77].
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input contour and ellipse

Fig. 3.35. Ellipse fitted on contour. For the image shown on the left, a contour detection delivers the contour
drawn in green on the right. Algorithm 3.4 detects the ellipse with the centre point shown in red on the
right as an overlay.

the centre point q =
�

qx , qy

�

and the semi axes as illustrated in Fig. 3.36. In order to do this,
we remember the dehomogenized algebraic equation (3.64) for an ellipse given by

ax2 + bx y + c y2 + d x + e y + f = 0. (3.89)

q = (qx , qy)

Fig. 3.36. Ellipse with centre point and semi-axes. The semi-axes lengths are shown with dashed arrows. The
major axis joins the centre point q =

�

qx , qy

�

and the ellipse points of maximal distance a2 away from q
while the minor axis joins the centre and its closest points on the ellipse contour at distance a1.

Thus we get

qx =
be− 2cd
4ac − b2

and qy =
bd − 2ae
4ac − b2

, (3.90)

as centre point coordinates in the non-degenerate case, and

a1,2 =
2ae+ 2cd + 8 f b2 − 2bde− 8ace

(4ac − b2)
�

(a+ c)±
Æ

(a− c)2 + b2
� (3.91)

for the two semi-axes lengths.25

As a last step in this image processing study, we combine the designed ideas and processes to
form a robust algorithm for detecting centres of circles within arbitrary images.

25Cf. Weisstein [447].
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3.9. Marker Detection Chain

Imagine an object with uni-coloured circular stickers on its surface that vary in their colour
significantly from the rest of the object - or a manufactured planar board with circles. We
now want to collect all the ideas from the previous sections to form an algorithm that is able
to detect the position of the centre points of these circles within an arbitrary image of such
a scene. We therefore note that depending on the camera position, this task is identical to
finding a circular shaped structure under some projection. In other words, we look for the
centre points of ellipse contours within the entire image.
Let us assume that all the hardware is set up properly and the camera is already calibrated
as proposed in section 4.2 where the intrinsic camera parameters are satisfyingly estimated.26

The circular regions reflect or absorb our illumination in a way that foreground and background
can be clearly distinguished. If a new image is acquired, Algorithm 3.5 gives the coordinates
of the centre points of the ellipse structures within this image, where pixel size units are used.
Fig. 3.37 shows a step-by-step example of the subroutines of Algorithm 3.5.

This algorithm is the essence of this chapter andwe use it as a basis for further tasks and problem
solutions. From now on, we can look at it pragmatically as in most cases, it is sufficient to
know what it does whereas the technical details are not crucial and we therefore mostly refer
to it as a black box which translates an input image into a coordinate set of centre points.
Before we look at further image processing steps and analyze various geometries, we focus
on the reliability of our image data by looking at the geometry of a single camera setup and
discuss ways to correct already mentioned hardware errors with mathematical models based
on the extraction of image content.

26The methods proposed in section 4.2 – and the intrinsic camera parameters in particular – guarantee the correction
of hardware errors for real applications. For this reason, we can suppose an idealized theoretical setup here and
deal with the necessary requirements to approximate such a setup in the mentioned section.
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Algorithm 3.5. Extraction of Ellipse Centre Coordinates
Input parameters:
• Image f with grey values gx ,y , width w, height h, and pixel depth d

Preprocessing:
1. Image Enhancement ( f → fv , fenh)

a) Set truncation parameters plow and pup

b) Run robust contrast normalization (Algorithm 3.2)
c) Save image histogram fv

2. Filtering ( fenh→ f f il )
a) Prepare 5× 5 Gaussian kernel k (Equation (3.22))
b) Convolve f f il := (k ? genh)x ,y (Definition 3.3)

Computation steps:
1. Segmentation ( f f il , fv → R)

a) 1D Gaussian filtering of fv ( fv → fv f il
)

b) Get 2 largest local maxima fvlow
, fvhigh

of fv f il
with vlow < vhigh

c) gthresh :=
vhigh − vlow

2
d) Perform basic thresholding on f f il to retrieve R (Definition 3.6)

2. Morphology (R→ Rmor )
a) Prepare disc-shaped structuring element E

b) Do opening Rmor := R ◦ E (Definition 3.9)
3. Separation (Rmor → S = {S1, . . . , Sn})

a) Set n= 0, S0 = ;
b) Get connected components ∀p ∈ Rmor :

if ∃ i ∈ {0, . . . , n} : p 8-connected to Si (Definition 3.10)
Si = Si ∪ p

else
n= n+ 1 and Sn := {p}

4. Contour Detection (S→ C = {C1, . . . , Cn})
a) Prepare disc-shaped structuring element L

b) Get contour of RoI ∀ i ∈ {0, . . . , n} :

• Extend RoI Ci := Si ⊕ L with dilation (Definition 3.8)
• Calculate image gradient D [∇ f (p)] ∀p ∈ Ci (Equation (3.39))
• Do pixel-based non-maximum suppression ∀p ∈ Ci (Fig. 3.27)
• Calculate Cmax (Equation (3.41)). Clow = c− · Cmax , Cup = c+ · Cmax

• Perform hysteresis thresholding (Algorithm 3.3)
• Get sub-pixel precise contour points psubpix ∀p ∈ Ci (Equation (3.53))
• Save coordinates p = psubpix ∀p ∈ Ci

5. Ellipse Fitting (C →Q = {q1, . . . , qm})
a) Set Q := ; and analyze contour ∀ i ∈ {0, . . . , n}

• Calculate ellipse parameters ri from Ci (Algorithm 3.4)
• Filter ellipse centres in coordinate set Q

if ellipse shape tolerable with max{a1 ,a2}
min{a1 ,a2}

< athresh (Equation (3.91))

Detect centre points q =
�

qx , qy

�

(Equation (3.90))
Q =Q ∪ q

Output:
• Coordinate set with centres Q = {q1, . . . , qm}
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Fig. 3.37. Example with subroutines of Algorithm 3.5. In order to extract ellipse centre points a three stage
algorithm is performed. In a first preprocessing stage, the input image (top left) is first processed with
a robust contrast normalization (top middle) and then smoothed with a Gaussian kernel (top right).
The second stage detection pipeline commences with a basic thresholding (middle left) to obtain a first
segmentation mask. The mask is reduced with a morphological opening (centre image) and connected
components are separated (middle right). In a third stage, each individual region of interest is then
extended (bottom left) and fed into a contour detector (bottom middle). An ellipse fitting method
delivers ellipse parameters to filter relevant centre points (bottom right).
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4Camera Geometry

„AΓ EΩM ET PHTOΣ
MH∆EIΣ EIΣ I TΩ.

– Plato’s Academy, Athens
(Engraved at the Door)1

Once the data is acquired, transferred and present as a pixel-array in the memory of our
processing unit (see Fig. 2.1), we can describe it with the presented mathematical formulation
of 2D image and video.
In this chapter, we detail the parametric camera model we want to use and investigate how to
calibrate the camera with the concepts and algorithms from chapter 3. We start to investigate
the camera component of the vision pipeline more closely in order to bridge the gap between
the physical exposure of cells on the sensor and the availability of an image as a pixel grid
with intensity values. To do so, we provide the required mathematical background to describe
the camera and its surroundings with the help of projective geometry and formulate a model
that describes the projection of world points onto images. We then focus on the estimation of
the model parameters.
In order to fit the model parameters to our hardware, we use a camera calibration algorithm
including the pinhole camera model as used by Zhang [481] and combine it with lens distortion
correction from Heikkila and Silven [168].

4.1. Camera Model

A camera maps a world point xW = (x , y, z) with its three coordinates onto a two-dimensional
image. Thus, geometrically speaking, an idealized standard camera is a mapping.
We use projective geometry to investigate the properties of the standard pinhole camera. The
model is based on the optical phenomenon which can be observed when light travels through
a small hole and gets projected onto a flat surface. In a dark room one can observe a reversed
an inverted image of the scene on the other side, which is why this apparatus is also called
a “camera obscura”2 and was used together with a lens in the opening already in the 16th
century by drawers and painters.3 The first published picture of a camera obscura dates back to
Frisius [124, p. 61] from 1545 where the author describes an installation to observe the solar
1“No one ignorant of geometry may enter.”, as detailed in D. H. Fowler. The Mathematics of Plato’s Academy: A
New Reconstruction [pp. 200-201]. Oxford University Press, 1987.

2“Camera obscura” is Latin for “dark room”.
3Cf. Gage and Gage [130].
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eclipse from January 24, 1544. It is illustrated in Fig. 4.1 together with a schematic drawing.
Most of the modern cameras on the market can be describe with this model.4

Fig. 4.1. Camera obscura. On the left, the first published picture of a camera obscura from Frisius [124, p. 61]
is shown. Note how the occluded solar region is upside down on its projection plane. On the right, a
schematic drawing shows the principle of such installations.

4.1.1. Pinhole Camera

The geometry of the model we want to use is illustrated in Fig. 4.25. The world point xC is
projected through the pinhole to the point x on the image plane (or principal plane) which
is located at a distance f from the projection centre. We call f the principle distance or focal
length.6 The principle point C =

�

cx , cy

�

is the base point for the perpendicular principle ray
through the camera centre O. The coordinate system (xC , yC , zC) located at O is the camera
coordinate system and we call a system

�

x img , yimg

�

the image plane coordinate system
and the shifted, scaled version (x , y) the image coordinate system where the pixel width sx

and height sy in image plane coordinates determine the scaling of the axes.
We keep in mind that the origin of the latter is on the top left corner of the image and consistent
with our Definition 2.2, since the projection flips the actual orientation of the scene. Therefore
it can sometimes be easier to work with a virtual image plane in front of the camera centre at
zc = f with aligned axes to the camera coordinate system as illustrated in Fig. 4.3. We come
back to the method of virtual image planes in chapter 6.3.

4.1.2. World to Image

At first, we look a bit closer to the given geometry and formulate the mapping from an arbitrary
world point xC to the point x in pixel coordinates. As shown in Fig. 4.3, xC = (x , y, z) maps to
�

f x
z , f y

z ,− f
�

and the projection is given in image plane coordinates by

�

x y z

�T
7→
�

f x
z

f y
z

�T
. (4.1)

4Cf. Xu and Zhang [456, p. 8].
5Figure inspired by Steger, Ulrich, and Wiedemann [395, p. 182].
6Cf. Tipler and Mosca [411, p. 1038].
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Fig. 4.2. Pinhole camera geometry. The world point xC is projected to the image plane. The focal length f
between the principle point C =

�

cx , cy

�

and the optical centre O together with the pixel width sx and
height sy determine the image coordinate (x , y) of x.
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Fig. 4.3. Virtual image plane. The actual projection of the scene lies behind the optical centre at z = − f to the
left of these axes and the orientation is flipped. For convenience, a virtual image plane in front of the
camera coordinate system at z = f is introduced to simplify the orientation and align the axes. The
left image shows the virtual image plane in a generic projection while the right image illustrates the
yC -zC -plane in side view.
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Describing the projection in terms of homogeneous coordinates leads to
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(4.2)

where the projection matrix M can be expressed with the notation of Šonka et al. [389,
pp. 564–565] as

M=













f

f

1













�

I | 0
�

(4.3)

=Q1

�

I | 0
�

(4.4)

with the identity matrix I ∈ R3×3 and a column vector 0 ∈ R3 appended to the right.
To transform the origin of the coordinate system to the origin of the image coordinate system,
a further translation is needed, so that

�

x y z

�T
7→
�

f x
z + c̃x

f y
z + c̃y

�T
(4.5)

with c̃x = cx sx and c̃y = cysy in image plane coordinates. This gives
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=Q2Q1
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. (4.8)

Since CCD cameras can have a non-squared element alignment,7 a different scaling according
to the two axes of the image coordinate system is introduced. Therefore we finally scale the

7Cf. Hartley and Zisserman [165, p. 156].
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x and y-coordinate properly according to the pixel width sx and the pixel height sy , which
yields
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(4.11)

with the camera calibration matrix

K=Q3Q2Q1 (4.12)

containing the intrinsic camera parameters. To sum up, this gives the transformation

x= K
�

I | 0
�

xC (4.13)

from camera coordinates xC to image coordinates x.
Note that because of the structure of K not all parameters can be determined by a set of coor-
dinates and their projections since the system is underdetermined. A change of f for example
could be counterbalanced by a change of the pixel sizes sx and sy as illustrated in Fig. 4.48

where two possible camera realizations for the same scenario are shown.
We solve this issue by fixing the pixel size namely sy with the knowledge of the sensor specifi-
cations by the manufacturer.9

In general, an arbitrary point can be given in someworld coordinate system as xW = (xW , yW , zW )
which is not necessarily aligned to the camera coordinates xC = (xC , yC , zC). In fact, the first
is related with the latter through a translation t and a rotation R as shown in Fig. 4.510.

8Figure inspired by Steger, Ulrich, and Wiedemann [395, p. 191].
9Cf. Steger, Ulrich, and Wiedemann [395, p. 191].

10Figure inspired by Steger, Ulrich, and Wiedemann [395, p. 182].
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Fig. 4.4. Underdetermination of camera parameters. The system is underdetermined for the parameters f , sx ,
and sy . Two possible realizations (left) for the projection of the right are shown.
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Fig. 4.5. Pinhole camera with different coordinate systems. The two coordinate systems are connected with a
rigid transformation involving the rotation R and the translation t. This transformation aligns the world
coordinate system xW = (xW , yW , zW ) to the camera coordinates xC = (xC , yC , zC ).

If the origin of the camera coordinate system is given by CW in world coordinates, we can write
xC = R (xW − CW ). A coordinate transformation from world coordinates to camera coordinates
can then be written as11

W=




















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R

|
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|

− 0 − 1























=





R −RCW

0 1



 . (4.14)

11Cf. Richter-Gebert and Orendt [348, pp. 19–20] where this is proposed for 2D translations and rotations.
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with the extrinsic camera parameters, namely the translation vector t= −RCW ∈ R3 and the
rotation matrix R ∈ R3×3.
Together with equation (4.13) for the intrinsic camera parameters we can now formulate the
complete transformation of a world point to an image point following the chain shown in
Fig. 4.6 as

x= KR
�

I | −CW

�

xW (4.15)

= K
�

R | t
�

xW . (4.16)

world

xw

Q3 Q1Q2
image

project onto
image plane

shift
coordinate origin

scale
pixel grid

transformation

x

R, t

transform to
camera coordinates

Fig. 4.6. Projection chain of world point xW . The world point is first referenced to the camera coordinates with
a rigid transformation by R and t before it is projected onto the image plane (Q1). The transformation
Q2 shifts the coordinate origin and Q3 takes care for scaling.
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Fig. 4.7. Pinhole camera with lens distortions. The projection is affected by the non-linear distortion of the lens.
While the dotted line shows the direct projection of the point through the pinhole, the lens causes a
distortion which forces the light to be slightly deviated. The difference of the dots on the sensor shows
the effect on pixel level.

Our supposed model has one disadvantage, though: It does not take the lens of the camera
system into account, yet. The spherical shape of the lens causes radial distortions which
modify our actual calculated coordinates x as illustrated in Fig. 4.712, where the dotted line
indicates the point without distortion.
This is a non-linear effect and can be approximated for most lenses by the model of Lanser

12Figure inspired by Steger, Ulrich, and Wiedemann [395, p. 182].
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Fig. 4.8. Effects of radial distortion. Lens composition is responsible for the parameter κ to take different values.
Three main effects can be observed. For κ < 0 a barrel distortion is visible as shown on the left while
κ > 0 causes a pincushion distortion as illustrated on the right. A value of κ= 0 prevents distortion.

[235, pp. 45–46]. The following function describes this phenomenon in terms of image
coordinates:

D1 : R2→ R2 (4.17)




x

y



 7→
2

1+
p

1− 4κ (x2 + y2)





x

y



 . (4.18)

with dimensionless normalized image coordinates x and y. Fig. 4.8 illustrates this effect with
different values for the parameter κ. It comes to a barrel-like look of the grid for κ < 0, and
for κ > 0 to pincushion distortion. If we want to solve this, we have to invert the function D.
This is analytically possible and gives

D−1
1 : R2→ R2 (4.19)




x

y



 7→
2

1+ κ (x2 + y2)





x

y



 . (4.20)

Empirical tests show, however, that a more elaborate model better reflects the physical lens-
camera system at the cost of losing the ability for an analytic inverse mapping.13 We conse-
quently integrate a higher order distortion model into our formulation and adopt the ideas of
Heikkila et al. [168]. The new distortion model involves a radial distortion component

D2 : R2→ R2 (4.21)




x

y



 7→
�

1+ κ1r2 + κ2r4 + κ3r6
�





x

y



 (4.22)

13Cf. Heikkila and Silven [168].
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with r2 =
�

x2 + y2
�

and the radial distortion coefficients κ1, κ2, κ3 of the lens. In order to
address the effect when the image plane and the lens are not parallel, tangential distortion
can also be modeled with

Dτ : R2→ R2 (4.23)




x

y



 7→





x + 2τ1 x y +τ2

�

r2 + 2x2
�

y +τ1

�

r2 + 2y2
�

+ 2τ2 x y



 (4.24)

where τ1 and τ2 depict the tangential distortion coefficients.
Even though this description of the hardware components is more accurate, the issue with
the more complex model becomes evident if we look for example at two radial distortion co-
efficients. The mappings become fifth order polynomials so that an analytic solution for the
inverse mapping does not exist anymore. However, Heikkila et al. [168] propose an empirical
inverse model which compensates for distortions caused by the model above.
For all our experiments, we utilize the more complex model and decide to work with a radial
distortion model with two coefficients, thus choosing τ1 = τ2 = κ3 = 0.

If we write D−1 for a function that acts on homogeneous coordinates of RP2 by using an inverse
mapping D−1 for the first two coordinates and keeping the third one fixed, we can now rewrite
(4.15) as

x= P (xW ) =Q3Q2D−1 ◦Q1
︸ ︷︷ ︸

K

R
�

I | −CW

�

xW (4.25)

= K
�

R | t
�

︸ ︷︷ ︸

P

xW (4.26)

= P xW . (4.27)

Since the correction of the distortion must happen before the shift of the image coordinate
system via the principle point C , we have to apply D−1 after Q1. As denoted above, we define
the whole process also as K for a simpler notation even though the non-linear operation D−1

is involved. Likewise we treat the whole function P in further sections as a projection matrix
P to ease the description.

4.1.3. Image to World

The general triangulation of an arbitrary 3D world point is considered in chapter 6.3. Later
we argue that in favour of reconstructing its coordinates, it is helpful to utilize two acquired
images of the same scene from different perspectives. In this section though, we concentrate on
establishing 2D-3D correspondences of known real-world points and their projections in order
to determine the camera parameters. Hence, we focus on the special case of triangulation of
co-planar points with only one acquired image and construct a method for intersecting the
visual ray of an image point through the camera centre with this plane.
In terms of the different coordinate systems of our camera model, we can for example choose
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the plane zW = 0. For application reasons, we model the coordinate points xi
W , i ∈ {1, . . . , n}

as centroids of circular markers on some planar target within this plane as illustrated in
Fig. 4.914.
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Fig. 4.9. Pinhole camera and co-planar world points. The individual centroids of circular markers on a planar
target are projected onto the image plane to provide 2D-3D correspondences. After correction for the
distortion effects, the pixel location of x changes and it is possible to shoot a ray through the camera
centre O (densely dashed line). This ray intersects with the target in the circle centre xW .

Circular markers are projected as ellipses onto the image plane. In section 3.9, we established
Algorithm 3.5 to calculate the pixel locations of the projected points xi in image coordinates
with sub-pixel precision. For now, we can think of an image processing pipeline as a black box
which can determine the marker centres and investigate the geometric problem first.
Thus, inversion of the steps from equation (4.25) gives a mapping for the homogenized image
point
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3 x. (4.28)

This introduces a point x̃C = ( x̃ , ỹ , f ) to the virtual image plane. With x̃C and the origin of
the camera coordinate system OC , we can form the visual ray through the camera centre as a
line

lC = {OC +ηx̃C | η ∈ R} . (4.29)

And hence we have the desired line which we want to intersect with the target plane. Since
zW = 0, this plane is given by the exterior camera parameters R and t. It could be transformed

14Figure inspired by Steger, Ulrich, and Wiedemann [395, p. 182].
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into the camera system, too. We, however, transform the visual line into world coordinates.
A point in camera coordinates xC transforms into world coordinates xW by

xW = R−1 (xC − t) = RT (xC − t) . (4.30)

This brings two points on the transformed line, the camera centre OW = −RTt and the point

x̃W = RT (x̃C − t) . (4.31)

Joining them yields the desired line

lW = {OW +η (x̃W −OW ) | η ∈ R} (4.32)

= {OW +ηdW | η ∈ R} (4.33)

in world coordinates. Writing OW =
�
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W , O y

W , Oz
W

�

and dW =
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d x
W , d y

W , dz
W

�

, we can intersect
this line with zW = 0 and get the 3D world coordinate vector
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(4.34)

on the target plane.
We now use the two methods from the sections onworld to image (4.1.2) and image to world
(4.1.3) to formulate a procedure to adjust the parameters of our pinhole camera model.

4.2. Camera Calibration

The model introduced previously has six degrees of freedom for the extrinsic camera parame-
ters, three for both the translation t=

�

t x , t y , tz

�

, and the angles α, β , and γ of the rotation R.
With C =

�

cx , cy

�

, f , and sx , sy , there are five degrees of freedom for the intrinsic parameters
from which we keep the pixel size sy fixed. The modelled distortion parameters κ1,κ2 add
another two degrees of freedom for a total of 13 (12 with fixed sy ) degrees of freedom.
Now imagine an image acquisition with a calibration target as shown in Fig. 4.10 where
the centroids of the dots of the planar target code the position of the n world points xi

W ,
i ∈ {1, . . . , n}.
As a first step, we detect the calibration target itself.15 Given its characteristic structure, what
we do is to look for a large and bright connected region with at least n dark holes inside of it.
This can be done using the principles from section 3.4 and section 3.6. Since circles transform
to ellipses via projection, we can then approximate the centroids within the separated area in
terms of image coordinates with Algorithm 3.5. The whole process is illustrated in Fig. 4.10.

15Cf. Lanser [235, p. 51].
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Fig. 4.10. Extracting coordinates from calibration target. After image acquisition, the full calibration target is
detected (2.) and separated into regions with ellipses (3.). For each individual region, a sub-pixel precise
contour detection is performed and an ellipse fit generates the sub-pixel precise centroid coordinates
shown in red (4.).

Suppose the centroids of the projections are given by xi with i ∈ {1, . . . , n}. A parameter
estimation for the parameters

r=
�

f , sx , sy , cx , cy ,κ1,κ2,α,β ,γ, t x , t y , tz

�

(4.35)

from n points can be formulated as the non-linear optimization problem

min
n
∑

i=1





xi − P
�

xi
W , r

�





2 (4.36)

which minimizes the squared geometric error of a point projected by our model and the actual
point measured in the image.
For a whole set of m images where the calibration target determines the exterior orientations
and is moved around in between two shots as shown in Fig. 4.11, we get

r=
�

f , sx , sy , cx , cy ,κ1,κ2,e1, . . . ,em

�

, (4.37)

e j =
�

α j ,β j ,γ j , t j
x , t j

y , t j
z
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(4.38)

with the multi-image minimization

min
m
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j=1

n
∑
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2
. (4.39)
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Fig. 4.11. Multi-image calibration. Each acquisition gives a set of 49 co-planar points together with 6 extrinsic
parameters. Multiple images increases the amount of data points for our optimization problem. The
intrinsic parameters remains the same while the extrinsic values vary between different acquisitions.

To gain a solution to this non-linear minimization problem, we use the iterative Levenberg-
Marquardt algorithm.16 Since the radial correction of the image depends on the minimization
itself, we iteratively calculate the minimum and use the calculated radial correction for a new
loop until the parameter change is negligible.
Besides that, we require several reliable initial parameters for this minimization to converge.
For the intrinsic parameters, the actual manufacturer information shall suffice. However, we
also need an estimation for the extrinsic parameters given by e1, . . . ,em. This is indeed a non-
trivial task and, following the ideas presented by Lanser [235, pp. 52–53], we can detect
the coordinates of the markers in terms of the camera coordinate system at first by using the
circular shape of our markers. That is to say, the 3D coordinates of the centroid of a circular
marker for the point with the virtual image coordinates x̃C = ( x̃ , ỹ , f ) can be estimated by
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. (4.40)

The parameters for this are the radius r of the dot and the major axis a of the corresponding
ellipse. We then calculate a regression plane through the point cloud of n markers and deter-
mine the normalized normal vector n1 of it. n1 can then be used to calculate the rotation R
which is given by a transformation that maps the vector n1 perpendicular to the plane zW = 0

to the vector n2 = (0,0, 1) perpendicular to the plane zC = 0.
As the origin of the world coordinate system, we use the 3D centroid C avg of all the n markers
given by equation (4.40) so that we get the translation vector t= RTC avg .
Summing up all the results in this chapter, we formulate Algorithm 4.1 for the estimation of
the camera parameters r.

The camera calibration is essential for accurate measurements. Stability and reliability of the
algorithms in all consecutive chapters depend on this procedure. Instead of planar boards with
circular markers other commonly used calibration targets include checkerboards as shown in
Fig. 4.12 or fiducial markers as discussed in chapter 7.2.

16Cf. Hartley and Zisserman [165, pp. 600–602].
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Algorithm 4.1. Camera Calibration
Input parameters:
• Calibration target with n circular dots of radius r
• m images I j , j ∈ {1, . . . , m} of the target

Preprocessing:
1. Initialize intrinsic parameters r=

�

f , sx , sy , cx , cy ,κ1,κ2

�

2. Further parameters: ε. Initialize: τ=∞
Computation steps:
while |τprev −τ|< ε or first iteration do

Save previous residual: τprev = τ
// Collect 2D image coordinates of markers
for j = 1 to m do

Extract region R j of calibration target
Perform coordinate detection on R j to get set Q j (Algorithm 3.5)

Save major axis ai, j
Reset counter: i = 0
// Estimate exterior parameters of image I j (Section 4.2)
for x j ∈Q j do

Increment counter i = i + 1 and label points xi, j = x j
Get 3D marker coordinates mi, j of xi, j with ai, j (Equation (4.40))

// Check number of markers on calibration target
if i < n then

Skip image I j and start loop again with next j = j + 1

else
Calculate regression plane E j and average marker centroids: C avg

j

Estimate exterior parameters with C avg
j and norm. normal vector of E j:

e j =
�

α j ,β j ,γ j , t j
x , t j

y , t j
z

�

// Calculate world points and image points by modelled projection
for xi, j ∈Q j do

Transform image coordinates to world: xi, j 7→ xi, j
W (Section 4.1.3)

Estimate parameter by minimization (Levenberg-Marquardt):

min
∑

j

∑

i








xi, j − P
�

xi, j
W , r,e

�










2
(Equations (4.25), (4.39))

Update initialization parameters: r, e, and current residual τ

Output:
• Intrinsic camera parameters: r=

�

f , sx , sy , cx , cy ,κ1,κ2

�

• Exterior camera parameters: e= (e1, . . . ,em) with e j =
�

α j ,β j ,γ j , t j
x , t j

y , t j
z

�
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RGB Image Checkerboard Detection

Fig. 4.12. Calibration board with checkerboard pattern. A common alternative to circular markers on a planar
target is a planar checkerboard with squares of known size. An RGB or greyscale image (left) is then used
with a detector for the checkerboard corners that are illustrated in green on the right. The coordinate
origin (yellow) is chosen as the corner of the detected grid and determines the x- and y-coordinate origin.
The sub-pixel precise calculations of corner coordinates are fed into Algorithm 4.1 to determine the
calibration parameters identical to the ellipse coordinate centres.

After all, the camera calibration can be done offline, which makes the computation time non-
critical. During the process of image acquisition it is helpful to pay attention that the calibration
target is moved to different viewing angles at various distances in order to reduce the error
rate of the estimated parameters.
Until now, we presented methods with classical image processing techniques and algorithms
which are used in this thesis to realize modern high performance 3D vision systems. As a result
of this, the outcome algorithms and pipelines are used throughout this document.
All previously discussed methods have in common that they target a highly specific problem
and solve it automatically with a handcrafted pipeline for the task. The design of a solution
for a computer vision problem, however, is not always evident or reliably possible in general.
This holds true in particular if the input structure is complex or the sample distribution is
difficult to model. Data-driven methods are often powerful tools to abstract image data and
solve these specific task by generalizing underlying patterns automatically. In the following,
we study statistical methods from machine learning that help to meet our objectives. Artificial
neural networks formed by optimizing parameters of highly nonlinear functions in order to
generalize from a training dataset to further samples are therefore considered next.
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5Neural Networks

„A deep-learning system
doesn’t have any explanatory power.

– Geoffrey Hinton

Powerful machine learning algorithms benefit from the large amount of data present in many
parts of our life to extract patterns and predict trends. Deep-learning systems can leverage
this information and find structure in features extracted from it. Neural networks are one way
to design such systems that learn from our data. More complex nets can thereby provide more
accurate predictions but extracted features may be harder to interpret at the same time. They
are powerful tools that provide high-parametric models able to mimic nonlinear processes by
means of data analysis.
We want to touch here the basic concepts, designs and training mechanisms of neural nets and
state their potential such that we can use them for image processing afterwards.

As the name suggests, an artificial neural network (artificial NN) is an artificially-designed
ensemble of connected neurons which have vague resemblance to biological neural networks
in the brain where interconnected synapses react on certain stimuli.1 We specifically focus
on multi layer networks with the capability of representing hierarchical structured abstrac-
tion levels to enable content specific machine learning. Such deep neural networks can help
to generalize a task from a set of training examples to previously unseen data with similar
distribution or patterns by optimization the parameters of the architecture. In vision, such
deep learning approaches significantly enhanced the performance of a wide variety of tasks
involving recognition, classification, segmentation, regression and many more.
The aim of this chapter is by no means to give a complete overview over the advances of this
briskly progressing and remarkable research field, but rather to provide the general ideas for
the concepts used in this thesis. There are exceptional works from very experienced researcher
in this domain that conduct a more in-depth analysis of neural networks, their applications
and the theoretical foundation which go way beyond the scope possible in this chapter.
For a sound theoretical background and mathematically rigorous presentation, the authorita-
tive work of Goodfellow et al. [152] is an excellent resource and a brief introduction is given
by LeCun, Bengio, and Hinton [239] as a starting point to study this field. A more applied and
practical access is given by Rosebrock [352], who explains the concepts hands-on with many
code examples.
In the following, we recap the idea of artificial neural networks as a potent tool in machine
learning. We briefly justify their use and explain both a general vanilla network structure and
the involved components. Finally we conclude with an overview of parameter optimization.
1Cf. Purves et al. [335].
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5.1. Multilayer Perceptron

Suppose you have to solve the assignment task F where you assign a value y ∈ Y to a given
value x ∈ X with some criteria.2 If you want to formalize the ideal way to solve this job, you
can imagine the function F : X → Y that describes this assignment. A neural network can be
seen as a parametric approximation of F that can learn to solve such a task by optimization
of certain intrinsic parameters with the help of data. More specifically, a neural network can
be viewed as a function f : X → Y where an input x ∈ X is fed into the network which ideally
produces the output y ∈ Y . A classical use case is a non-linear separation of the input space
according to a set of labeled training data points x i ∈ X in order to classify images for example.
The function f has in general a multitude of parameters and can be decomposed into sub-
functions that are connected through a graph which defines the network architecture.
In order to identify the components of such an architecture and to clarify concepts, we take
a look at a specific class of neural networks and analyze the so called multilayer perceptron
shown in Fig. 5.1 in more detail.

Input

Output

Hidden

Fig. 5.1. Multilayer perceptron. The architecture shows a 4-layer neural network whose information flow is from
left to right. The circular nodes represent the neurons and the directed connections are illustrated with
lines. The input neurons are connected to a first hidden layer which is fully connected with a second
hidden layer before feeding the two output neurons.

A multilayer perceptron (MLP) is a specific class of feedforward neural net well suited to
explain naming conventions. The term feedforward refers to the fact that the architecture can
be represented as a directed acyclic graph as illustrated in Fig. 5.1.3 The network consists of
hierarchically ordered neurons, illustrated as circles and connections between them which are
marked as lines. Let us imagine first, that the neural network is already trained. This means,
that the network parameters have been optimized in a way that the function f represented by
the network approximates the assignment task F sufficiently well.4

Imagine each neuron in the network as a unit holding a real number a ∈ R which we call
the activation. High numbers correspond to activated neurons while low numbers describe
inactive neurons at a specific point. A high number in a neuron ȳ ∈ Y in the output layer, for

2For our purposes, we can think of X and Y as subsets of Rd with d ∈ N.
3Networks with cyclic graphs are usually called Recurrent Neural Networks (RNNs).
4We will look into the optimization part (i.e. training) of the neural network in section 5.4.
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instance, represents the response of the system to a certain input stimulus x̄ ∈ X suggesting a
correspondence of x̄ ↔ ȳ for the assignment F in our example.
The way information is processed in the network is determined by the way activations of
neurons in layer l influence the activations of neurons in layer l + 1. The idea behind it is that
early layers pick up information very close to the data input while deeper layers respond on
higher level information from the earlier extracted activations. Speaking of images, the flow
could be from input pixel values over edge detection to image patterns ending with image
concepts or classes represented by a certain output probability. However, feeding images
motivated by this idea is discussed with the concepts of filters from part 3.3 in section 5.3.
Let us focus on an input x̄ ∈ Rd which can be imagined also as grey values for an image of
resolution d = w× h with width w and height h. The model used to calculate the activation of
the next column follows the idea illustrated in Fig. 5.2.

Input

Output

Hidden

a0
(0)

a1
(0)

a2
(0)

a0
(1)

a1
(1)

a2
(1)

a3
(1)

a0
(2)

a1
(2)

a2
(2)

a3
(2)

a0
(3)

a1
(3)

w0,0
(0)

w2,3
(0)

w3,1
(2)

w0,0
(2)

Fig. 5.2. Weights and activations of a multilayer perceptron. Each neuron i at layer l is assigned to an activation
function a(l)i . The edges in the graph represent the weights of the activation, where one weight w(l)i, j is the
amount of influence of the neuron i of layer l on the activation of neuron j in layer l + 1. For illustration
purposes not all associated weights are drawn here.

Each neuron can hold an activation a(l)i where l is the layer number an i represents the neuron
number within this layer. For the input layer this could be the grey value of a certain pixel.
Every edge going out of layer l in the graph is assigned a weight w(l)i, j where i is the neuron
number in layer l and j represents the neuron number in layer l + 1.
In order to calculate the activation in a certain neuron j of layer l + 1, a weighted sum of the
connected neurons from the previous layer is chosen such that

a(l+1)
j = σ

�

k
∑

i=0

�

w(l)i, j a
(l)
i

�

+ b(l+1)
j

�

(5.1)

together with a bias b(l+1)
j for inactivity and a differentiable nonlinearity σ : R→ R that guar-

antees that a change in the input causes some change in its output which can be amplified
by the nonlinearity around a certain threshold. Commonly used activation functions include
the sigmoid function

σ (x) =
1

1+ e−x
(5.2)
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and a rectifier to employ a rectified linear unit (ReLu)

σ (x) =max (0, x) (5.3)

as introduced by Glorot, Bordes, and Bengio [142].5 This forces the network to fire if and only
if the common activations are bigger than a bias of − b(l+1)

j .
The concept of equation (5.1) can be summarized for a whole layer in matrix-vector notation
as

a(l+1) :=
�

a(l+1)
0 , a(l+1)

1 , . . . , a(l+1)
n

�T
(5.4)

= σ
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(5.5)

=: σ
�

W(l)a(l) + b(l+1)
�

(5.6)

where σ acts on each vector component individually.
With this model in mind we can look at each neuron as a function that responds with a value
a ∈ R to a given set of stimuli from connected neurons in the previous layer. Thus the entire
network is a function composed of these individual neural sub-functions.

5.2. Universal Approximation Theorem

In general, a feedforward multilayer perceptron with a single hidden layer and nonconstant,
bounded, and continuous activation function can serve as a universal function approxima-
tor as shown by the theoretical result of Cybenko [76] for sigmoid activation functions as in
equation (5.2). Hornik [183] generalizes the result to more generic activation functions. They
prove that any continuous function F on compact subsets of Rk can be approximated by a feed-
forward network with one hidden layer and weights according to equation (5.6). Rephrasing
the theorem for a single output in our notation with the definitions in equation (5.1), we can
state

Theorem 5.1 (Universal approximation)
Let the activation function σ : R → R be nonconstant, bounded, and continuous. Let Ik with
a(0) ∈ Ik denote a compact subset of Rk+1 and C (Ik) the space of continuous functions F : Ik → R.
Then it holds:

∀ F ∈ C (Ik) ,ε > 0 ∃ N ∈ N, v j , b(1)j ∈ R, w(0)j =
�

w(0)0, j , . . . , w(0)k, j

�T
∈ Rk+1 with j ∈ {0,1, . . . , N}:

f
�

a(0)
�

= f
�
�

a(0)0 , a(0)1 , . . . , a(0)k

�T�
:=

N
∑

j=0

v j σ

�

k
∑

i=0

�

w(0)i, j a(0)i

�

+ b(1)j

�

(5.7)

5Other activation functions include hyperbolic tangent, softmax, leaky ReLu andmany more that cannot be addressed
in the scope of this thesis.
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approximates the function F which is independent of σ in a way that it holds
�

� f
�

a(0)
�

− F
�

a(0)
��

�< ε ∀ a(0) ∈ Ik. (5.8)

This means, that the functions f represented by the single layer neural network are dense in
C (Ik) which can be directly deduced to the general case of multiple output neurons. As the
proofs are not constructive regarding the network architecture and the training, the amount of
neurons for a specific approximation accuracy and the optimization complexity remain unclear.
The tremendous success of neural networks in various scientific fields in the last decade, how-
ever, indubitably demonstrates the practical performance of these pipelines. We focus our
attention now more towards vision-specific aspects of neural networks and combine the archi-
tectural ideas presented in section 5.1 with the classical vision concepts of chapter 3.3.

5.3. Convolutional Neural Networks

The biological brain studies of Hubel andWiesel [189] and Hubel et al. [190] show the reaction
of neurons in the visual cortex in certain mammals is restricted to a specific stimulus in the
visual field. Their study shows that a simple local visual stimulus such as a straight edge of a
specific orientation causes the activation of certain neurons while a change in location induces
other cells of the brain region to react. Moreover, cells that are close to each other react on
similar regions. The space causing a response in a specific cell is called its receptive field. A
second category of more complex cells is less sensitive to the location of the input visual signal,
however, they react on specific visual patterns.
The idea of Convolutional Neural Networks (CNNs) is somewhat similar and combines low
level cues such as edge information with more abstract visual concepts in hierarchical order on
top of them. Image data is fed into a specific variation of a shift invariant multilayer perceptron
where a convolutional layer (i.e. a filter as described in section 3.3) is applied to the data
of its receptive field without being fully connected to every pixel in the image. According to
Definition 2.2 and Definition 3.3, we formulate

Definition 5.1
For an image f : D→Gd with (x , y) 7→ gx ,y and domain D = {0, 1, . . . , w− 1} × {0,1, . . . , h− 1},
the output of a convolutional layer with a filter bank of size n formed by kernel functions ki,
i ∈ {0, . . . , n− 1} is a feature map given by

M (x , y, i) = (ki ? g)x ,y . (5.9)

A convolutional layer has thus parameters for the amount of kernels and their dimension, stride
and padding such that the filter moves according to the stride over the image while usually a
zero-padding guarantees the correct input image crop for the convolution especially at image
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borders.6 Deeper layers can convolve feature maps to new feature maps by summation over
the third dimension accordingly or are fully connected such that the receptive field at deeper
levels increases.
CNNs are widely used for deep learning in vision tasks where the use of k×k filters with shared
weights requires significantly fewer parameters than a fully connected layer that connects all
pixels. A filter stack with n kernels, for instance, requires n · k2 parameters, while a fully
connected layer has w · h weights for an image of size w× h. This is a relevant difference in
most common cases where k� w and k� h.
Apart from the weight sharing, a frequently used concept is pooling where for instance the
maximum value (max pooling) or the average (average pooling) of a neuron cluster after a
nonlinearity is condensed with this operation to one single neuron in order to progressively
reduce the size of the feature map. This also reduces the amount of output parameters. Fig. 5.3
shows a classical model proposed by LeCun et al. [241] which involves the presented concepts
to recognize hand-written digits.

Input C1 S2 C3 S4 C5 F6 Output

120 84 10

Conv.

Pooling Conv. Pooling FC FC SoftMax

Fig. 5.3. LeNet-5. The graphic illustrates the pioneering model of LeCun et al. [241] for handwritten digit recog-
nition. The 7-layer CNN consists of a hierarchical chain of convolutional layers, subsampling layers
using average pooling and fully-connected layers. Extracted feature maps feed a fully connected layer.
The nonlinearity is a hyperbolic tangent and the final layer uses a softmax function in order to obtain
probabilities for each digit. The architecture has a total amount of 60k parameters.

In order to efficiently learn from image data for large scale tasks with CNNs, it took over a
decade from these early approaches until Krizhevsky, Sutskever, and Hinton [228] published
an architecture with over 62M parameters which significantly improved image based object
recognition with convolutional neural nets. The authors make efficient use of modern GPUs,
perform data augmentation and use dropout7 for regularization to prevent over-fitting while
optimizing the weights.
In contrast to early CNN scholars such as Denker et al. [83] who use manually designed kernels
for image recognition, we want to automatically optimize the weights in a training stage which
we specify hereafter.

6Strictly speaking, a convolutional layer uses a cross-correlation filter rather than a convolution according to Defini-
tion 3.2, however, the term “convolution” is most commonly used and equal up to kernel indexing which is why
we do not differentiate here.

7Cf. Hinton et al. [175].
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5.4. Training

Until now, we analyzed different network architectures and discussed specific layers. However,
we did not speak about the actual learning process, yet. In this section, we focus on the
parameter training and go back to the example of a multilayer perceptron for the purpose of
notation as presented in section 5.1.
At first let us assume that all weights are initialized with random numbers. To this end, if we
feed a particular input x i ∈ X to the network, it produces an output f (x i) which in general is
far away from solving the assignment task x i ↔ yi for the correct response yi ∈ Y . We can
now define a cost for this output

C (x i , yi) : X × Y → R. (5.10)

One such example could be the use of an Lp-norm in the real vector space Rd with

C (x i , yi) := ‖ f (x i)− yi‖p =




a(L) − yi







p (5.11)

where a(L) defines the activations in the output layer L and yi can either be given directly
(supervised learning) or can be a function of the input data (self-supervised learning); in
the latter, the data provides the supervision.
As C depends on all weights and biases of the network and our goal is to change them such
that the average cost for our training examples decreases, we take a look at the derivatives of
C in order to optimize the weights and biases.
A naive way to solve this task would be to minimize the average cost of all training data such
that our objective becomes

min
1
M

∑

i∈I

C (x i , yi ,W) , (5.12)

where I = {1, . . . , M} indicates the labeled input data points and W represents all weights and
biases of the network. Thus in order to minimize the objective, we can use gradient descent
with stepsize η and calculate

−η∇C (W) , η ∈ R. (5.13)

Due to the large number of parameters and the nonlinear activation functions, the loss function
embedded in the multi-dimensional parameter space is highly non-convex. For such problems
it can be very difficult to find a global minimum and gradient descent brings us only iteratively
to a local minimum. However, Choromanska et al. [69] show that most local minima are
of similar quality in large-size networks and the search for the global minimum is prone to
overfitting in practice. Thus, we seek an efficient way to optimize the network parameters
using gradient descent.
Let us take one step back and analyze the two consecutive last layers of the network concep-
tually. Neurons that react on a specific pattern have high activation if the specific stimulus
occurs in the input. On the other side, if a high activation is desired, the neurons reacting on
this pattern should be strongly linked to it. This concept can also be found in the biological
behaviour of the visual cortex as observed by Hebb [167] and Lowel and Singer [265] who note
that “neurons wire together if they fire together”. For artificial neural networks this holds true
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not only for the second last layers but even before. However, as the cost function is evaluated
with the output of the last layer whose neurons are connected to entries in the second last
layer, we want to first update their weights and propagate the error backwards.

5.4.1. Backpropagation

Backpropagation8 is one mechanism commonly used to train convolutional neural networks
since its first use for CNNs in the early 1990s.9 To calculate the derivative with respect to the
network parameters, we introduce the shorthand for a part of equation (5.1) such that

z(l+1)
j :=

k
∑

i=0

�

w(l)i, j a
(l)
i

�

+ b(l+1)
j (5.14)

for the weighted sum of activations from layer l to l + 1. Thus the activations in layer l + 1

become

a(l+1)
j = σ

�

z(l+1)
j

�

(5.15)

with the nonlinearity σ. If we now focus on the second last layers L and L − 1, we can
conceptualize the information flow as shown in Fig. 5.4 where the activations a(L−1)

i from layer
L−1 together with their weights w(L−1)

i, j and biases b(L)j form the auxiliary variables z(L)j . These
in turn feed nonlinearities σ to calculate the activations a(L)j which can be compared to y j ∈ Y
via the cost function C .

yj

Layer L-1 Cost Training
Signal

aj
(L)zj

(L) Cai
(L-1)

bj
(L)

wi,j
(L-1)

Layer L

σ

...

Fig. 5.4. Information flow in neural network. Illustrated is a neuron from the second last layer L − 1 with
activation a(L−1)

i which feeds together with k+1 neurons and weights w(L−1)
i, j of the same layer and a bias

b(L)j the function z(L)j which is mapped by the nonlinearity σ to the activation a(L)j of the neuron j in layer
L. Together with the training signal y j ∈ Y , the cost C can be evaluated.

8Cf. Werbos [450].
9Cf. LeCun et al. [240].
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Applying the chain rule, the derivatives of the cost function with respect to weights, biases and
activations as illustrated in Fig. 5.4 become

∂ C

∂ w(L−1)
i, j

=
∂ z(L)j

∂ w(L−1)
i, j

∂ a(L)j

∂ z(L)j

∂ C

∂ a(L)j

(5.16)

∂ C

∂ b(L)j

=
∂ z(L)j

∂ b(L)j

∂ a(L)j

∂ z(L)j

∂ C

∂ a(L)j

(5.17)
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∂ z(L)j

∂ a(L−1)
i
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∂ C

∂ a(L)j

(5.18)

where the last summation combines all k+ 1 neurons from layer L − 1. Together with

∂ z(L)j

∂ w(L−1)
i, j

= a(L−1)
i ,

∂ a(L)j

∂ z(L)j

= σ′
�

z(L)j

�

,
∂ z(L)j

∂ b(L)j

= 1,
∂ z(L)j

∂ a(L−1)
i

= w(L−1)
i, j , (5.19)

we are able to calculate the gradient from equation (5.13) as

∂ C

∂ w(L−1)
i, j

= a(L−1)
i σ′
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(5.20)
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∂ C

∂ a(L−1)
i

=
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w(L−1)
i, j σ′

�

z(L)j

� ∂ C

∂ a(L)j

. (5.22)

This holds true not only for the second last layers, but for two common consecutive layers l−1

and l. Thus, we can propagate back the error of the network prediction in the final layer L
through the entire network up to the input layer 0 and optimize the network parameters.
Due to the iterative use of the chain rule, however, the gradients for activation functions in a
small range may vanish. To diminish the risk of vanishing gradients and to realize efficient
training, modern architectures rely on rectified linear units as proposed by Glorot, Bordes, and
Bengio [142].
In practice averaging over all training samples is very time consuming for large training sets.
Thus, we use stochastic gradient descent by randomly shuffling the training data and divid-
ing it into mini-batches which can be used to calculate the gradient. Equation (5.12) then
effectively becomes

min
1
|In|

∑

i∈In

C (x i , yi ,W) , (5.23)

where In ⊂ I defines a mini-batch with n ∈ {1, . . . , N}. While a gradient calculated from a batch
is not the correct one, it still serves as a good approximation to provide a significant speed up.
Adaptive optimization variants such as AdaGrad, RMSProp and its variants10 as well as
ADAM11 are also commonly used to train neural networks.

10Cf. Mukkamala and Hein [293].
11Cf. Kingma and Ba [219].
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Subsequently, we go one step further, leave the two-dimensional world of single images, and
discuss the special geometry of binocular computer vision systems with calibrated cameras
where we can extract depth information by looking at the same scene from two different view-
points. The discussed deep learning foundation thereby serves as a tool to enable robust and
accurate 3D measurements using convolutional neural networks. Beyond that, the invariance
of our centre coordinate extraction approach from section 3.8 helps us to compare and receive
information from multiple views when images are acquired together.

84 Chapter 5 Neural Networks



Part III

Optical Pose Computation





63D Sensing

„Change the way you look at things
and the things you look at change.

– Wayne W. Dyer

How can we make a computer see in three dimensions? Where do we get the depth information
from? There are a lot of different possibilities to tackle this problem. One can either use time-
of-flight cameras, interferometry, work with coherence-based methods and with structured
light or even detect the shape of a structure by its shading.1

The focus of this chapter is on the extraction of spatial information from different sources. We
initially discuss different 3D sensing system groups and lay the mathematical foundation to
describe motion in space before explaining how multiple sensors can be referenced to each
other. For this purpose, we introduce a second camera to imitate the human visual system.
After an in-depth study of this two-view setup, we formulate a way to triangulate world points
from camera images and analyze their properties according to the acquisition structure. A
variety of approaches to extract depth information from images enabled by this knowledge is
then developed which we consecutively utilize for marker-based tracking.2

6.1. 3D Sensors

Single and multi channel images as introduced in Definition 2.2 can be used to collect 3D
measurements of their surroundings using several cameras to observe the scene from different
angles as shown in Fig. 6.1. Scene points are viewed from different perspectives and their
distance to the cameras can thus be triangulated.

Apart from passive stereo vision with cameras, a multitude of other sensing systems for 3D
measurements exist and we introduce commonly used principles before diving into the details
of geometric methods and applications of these sensing concepts.

1For more information on these methods, see Jähne [191, pp. 217–242].
2Some parts about epipolar geometry andmarker-based pose tracking are improved reprints of Busam [47] to provide
a detailed explanation.
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C2

C1

Fig. 6.1. Passive stereo vision. The two cameras C1 and C2 observe the scene from two different viewpoints. It
is possible to triangulate the coordinates of a 3D point in the overlapping field of view if its location in
both images is known.

6.1.1. Structured Light

Passive stereo vision where a scene is viewed by multiple cameras comes with certain problems.
In particular areas of low texture are problematic as the correspondence of a scene point in
multiple images is difficult to determine without characteristic structure. Structured light
tackles this problem by adding a known texture to the visible scene via active illumination of
the surroundings with a designed intensity pattern.
In general, an active illuminator emits light in the form of a 2D data array, usually an image
projected onto the surface geometry. A projector represents an inverse camera and while the
chip of a camera is sensitive to electromagnetic waves of a specific spectrum, a projector emits
light of these wavelengths or multiple colours as illustrated for a stripe pattern in Fig. 6.2.

P1

C1

Fig. 6.2. Active stereo vision with structured light. The projector P1 acts as an inverse camera and projects a
stripe pattern into the scene which is deformed by the object’s geometry. A passive camera C1 observes
the deformation. A reconstruction of the object surface is possible even in non-textured and unicoloured
areas.

The deformation of the pattern enables the reconstruction of the surface even in low-textured
and unicoloured areas if the relative position and orientation of camera and projector with
respect to each other are known. It is possible to refine the reconstruction quality by sequential
projections with varying pattern which is shown in an industrial application in chapter 10. A
variety of approaches to encode pattern position and to refine realizations of this idea exist.
Geng [140] provides an overview of different structured-light approaches for 3D surface re-
construction.
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Other active systems to retrieve depth information from the scene include time-of-flight cam-
eras and LiDAR sensors that use the known speed of light and measure the round trip time
needed for an electromagnetic pulse of a specified wavelength in order to estimate the distance
of objects. These systems are also used for autonomous driving and to evaluate stereo vision
systems.3

6.1.2. Volumetric Approaches

In medical applications, image sensing systems such as Magnetic Resonance Imaging (MRI)
and computed tomography (CT) provide the user with 3D volumetric data. For other sensing
modalities such as diagnostic sonography with ultrasound, a tracking of position and orien-
tation of the sensing transducer enables the possibility to reconstruct the imaged volume with
spatial fusion of the acquisitions. This will be discussed in more detail in chapter 8.1.

In order to realize spatial alignments of observed 2D image slices and to reference system
components as a backbone to properly describe the 3D pipelines hereafter, we discuss different
mathematical concepts that describe rigid body motions in space as a next step.

6.2. Poses

A crucial element of 3D computer vision is the relative displacement between different system
components of a pipeline. Thus, pose parametrization is ubiquitous in vision and robotics
application as developed further throughout this thesis.
In this part, we take a close look on its mathematical description and discuss algebraic and
practical properties of various forms to establish a strong backbone for applications such as
pose estimation, tracking and co-calibration which follow afterwards.
The most widely used pose parametrizations involve rotation matrices, quaternions as well
as twist-coordinates. We commence with a general introduction of poses and look at the
commonly used matrix-vector representations.

6.2.1. Rigid Displacements

Definition 6.1
A rigid displacement is a transformation

P : R3→ R3 (6.1)

p 7→ Rp+ t (6.2)

with a translation vector t ∈ R3 and a rotation matrix R ∈ R3×3 where RTR= I and det (R) = 1.
3Cf. Geiger, Lenz, and Urtasun [139], and Geiger et al. [138].
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Fig. 6.3 illustrates this with an object coordinate system x-y-z which moves to x’-y’-z’. The
displacement rotates and translates a set of points pi ∈ R3 to its new locations P (pi) ∈ R3. The
position and orientation of the object is called its pose. A pose is characterized by six degrees
of freedom: three for the translation in space and another three for the rotation about each
spatial axis. This is why we sometimes also speak about 6D poses.

t

z

x

y

y‘

x‘

z‘

p

P(p)

Fig. 6.3. Rigid displacement. The object is transformed with a rigid transformation P that involves the translation
t illustrated by the blue vector and a rotation R that rotates the coordinate frame x-y-z to x’-y’-z’. The
point p on the object is moved to P (p).

Using homogeneous coordinates, the point

p = (x , y, z)T (6.3)

p 7→ (x , y, z, 1)T =: p (6.4)

can be transformed directly by

p 7→P p (6.5)

:=









R t

−0− 1









p=





Rp+ t

1



 . (6.6)

A rotation around an arbitrary axis can be decomposed into two translations and a rotation
around the origin as shown in Fig. 6.4. We therefore focus on translations in Euclidean space
R3 and rotations about the origin such that we treat rigid transformations in SO (3)×R3.

We discuss the parametrization of the elements of the 3D rotation group SO (3) in more detail.

90 Chapter 6 3D Sensing



p

p p

p
T-1 RT-1 TRT-1

Fig. 6.4. Rotation around arbitrary axis. The object is rotated around the axis perpendicular to the image plane
through the point p depicted in green. This can be done by consecutive execution of the three illustrated
task. First, translate the local coordinates to the world reference by T−1, then rotate around the origin
(RT−1). The sought rotation is given by translation of the result back (TRT−1).

6.2.2. Rotation Matrices & Euler Angles

A rotation about the origin in 2D with the angle ϕ can be described by

R (ϕ) =





cosϕ − sinϕ

sinϕ cosϕ



 . (6.7)

Fig. 6.5 illustrates the rotation of the point (r, 0)T with the angle ϕ.

Fig. 6.5. 2D Rotation. The vector (r, 0)T is rotated about the origin with the angle ϕ counterclockwise. The new
position is illustrated with the green line. the new coordinates are given by (r cosϕ, r sinϕ)T as shown
in blue.

Applying equation (6.7) to the 3D planes with normals in x-, y-, and z-direction, we get

Rx (α) =













1 0 0

0 cosα − sinα

0 sinα cosα













, Ry (β) =













cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ













, Rz (γ) =













cosγ − sinγ 0

sinγ cosγ 0

0 0 1













,

where the rotation angles α, β , and γ are known as yaw, pitch and roll. Altogether, we can
write a representation for the 3D rotation as

R= Rz(γ) Ry(β) Rx(α) (6.8)
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with three parameters and nine entries. This representation has the minimum of three degrees
of freedom to describe a rotation in space. However, it is not unique.

x

X

y

-z

-Z

Y

α

γ

β

N

Fig. 6.6. 3D Rotation and Euler angles. Illustrated is a rotation of the blue x-y-z reference frame about the origin
with angles α, β , and γ into the black X-Y-Z coordinate frame. For visualization purposes, the negative
z- and Z-axis are drawn. The rotations are indicated in grey and the line of nodes N (i.e. the XY-yz
intersection and the y-axis after the first rotation) is highlighted in full green while the -z-axis is shown
with a dotted green line before the second rotation.

Looking at the 3D scenario in Fig. 6.6, for example, reveals a problem if x-y and X-y planes
become incident. It comes to the Gimbal lock phenomenon where – depending on whether
z- and Z-axis point in the same or opposite direction – only α + γ or α − γ are uniquely
defined and not the individual values α and γ. This becomes problematic in particular when
an interpolation between certain rotations is needed. We study this problem more closely in
chapter 9.1.
One way to circumvent this issue is the use of quaternions.

6.2.3. Quaternions

Another way to look at equation (6.7) is the use of a complex numbers q ∈ C. While a matrix-
vector multiplication with R (ϕ) rotates a vector (a, b)T about the origin with the angle ϕ, the
rotor q = cosϕ + i sinϕ rotates the complex number representation p = a + i b in the same
way.
The goal of this section is to use an extension of the complex numbers, the quaternions H
to perform a similar task in 3D and to define a rotation quaternion q ∈ H. We follow the
terminology of Busam et al. [50] and Busam et al. [48].
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6.2.3.1. Introduction to Quaternions

Hamilton [160] is the first to describes a non-commutative division algebra of hypercomplex
numbers in his early work which is why we attribute the letter H to this concept. Besides their
essential role in pure and applied geometry,4 quaternions are frequently used in computer
vision.5

The concatenation of rotations becomes more efficient with quaternions and singularities are
avoided.6 As an effect of this, quaternions are applied to various 3D processing pipelines that
require robust real-time functionality.7 The particular fact that elements of H can be identified
with points on the 3-dimensional hypersphere S3 is the source for their success in animation
and rendering where Shoemake [374] proposes an efficient method for keyframe interpolation.
The abbreviation of his method, SLERP stands for Spherical LinEar inteRPolation and uses
geodesic curves on S3 to continuously blend from one quaternion to another.
The extension of the complex numbers with quaternions is realized in general by using three
imaginary units i, j, k.

Definition 6.2
A quaternion q as an element of the algebra H has the form

q= q11+ q2i+ q3j+ q4k (6.9)

=
�

q1, q2, q3, q4

�T
, (6.10)

with
�

q1, q2, q3, q4

�T ∈ R4 and

i2 = j2 = k2 = ijk= −1. (6.11)

Another way of writing a quaternion is q := [a,v], where v =
�

q2, q3, q4

�T ∈ R3 is called the
vector part and a = q1 ∈ R is the scalar part. The multiplication Table 6.1 for the imaginary
units shows that quaternion composition is not commutative in general.
Similar to the complex numbers, a conjugation operator for the quaternion q ∈ H is defined
as

q̄ := q1 − q2i− q3j− q4k. (6.12)

Especially the unit quaternions (or versors) q ∈H1 with

1
!
= ‖q‖ := q · q̄ (6.13)

4E.g. Arnol’d [7] uses quaternions for geometrical purposes and Richter-Gebert and Orendt [348] apply them to
different geometric problems.

5Cf. Pervin and Webb [329].
6The problem of Gimbal lock as explained in section 6.2.2 can be avoided. Cf. Lepetit and Fua [244].
7Cf. Mukundan [294].
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· 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Tab. 6.1. Multiplication table for the imaginary units of the quaternion algebra H. The missing symmetry in
the table demonstrates that the multiplication is non-commutative. Note that extending the table along
the diagonal reveals the real number R and the complex numbers C as part of the quaternions.

are of particular interest in computer vision due to their strong connection with spatial rotations8

since they give a compact and numerically stable parametrization for orientation and rotation
of objects in R3.

6.2.3.2. Rotations with Quaternions

Quaternions can be used to uniquely define spatial rotations. A rotation about the unit axis
v= (v1, v2, v3)

T ∈ R3 with angle θ is thereby given by the rotor

r= [cos (θ/2) , sin (θ/2)v] (6.14)

and antipodal points q and −q ∈H1 are identified with the same element in SO (3). Altogether,
the unit quaternions form a double covering group of the 3D rotations about the origin and
any point quaternion or pure quaternion

p= xi+ yj+ zk. (6.15)

of a point u= (x , y, z)T ∈ R3 can be rotated by the versor r via the sandwiching product map

p 7→ r · p · r̄. (6.16)

The radius for the hypersphere H1 with r = 1 is arbitrary and done to simplify the notation. In
fact, any other sphere in R4 with radius r 6= 0 would also work. The inverse rotation is given
by

q−1 :=
q̄
‖q‖2 (6.17)

such that qq−1 = 1 which simplifies to q−1 = q̄ in H1. If we compare quaternions on the same
line in H through the origin, we see that they describe the same rotation as

(νq) · p · (νq)−1 = ν · q · p · q−1 · ν−1 (6.18)

= q · p · q−1 · νν−1 (6.19)

= q · p · q−1 (6.20)

8Cf. Faugeras [105].
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holds true for an arbitrary quaternions q ∈H \ {0} and all ν ∈ R \ {0}.

6.2.4. Comparing Parametrizations

To compare different parametrizations for 6D poses in SO (3) × R3, we take a special look
at rotations and summarize the findings in Table 6.2 for Euler angles, rotation matrices and
quaternions.

Euler Angles Rotation Matrices Quaternions

3 Easy for simple rot. 3 Point transf. cheap 3 Ref. system independent

3 Most compact 3 DoF 3 Isotropic (no order issues)

7 Transf. via matrices ◦ Same form as other 3 Concat. cheap (16×)

7 Order dependent linear transformations 3 Smooth interpolation

7 No direct composition 3 No Gimbal Lock / Flipping

7 Gimbal Lock / Flipping 7 Concat. expensive (27×) 3 Re-Normalization

7 Difficult to predict 7 Re-Orthogonalization ◦ Compact storage (4 coeff.)

7 Interpr. counterintuitive 7 Redundancy (9 coeff.) 7 Difficult to visualize

7 Ambiguities 7 R3×3 ⊃ SO (3) 7 Rotations only

Tab. 6.2. Comparison of different parametrizations for 3D rotations. While the Euler angle representation
has the most compact form it suffers from a series of drawbacks such as Gimbal Lock and the fact that
the values cannot serve as transformation directly. Rotation matrices are well studied algebraic objects
similar to other representations which come with the drawback of redundant representation that make
an adjustment due to numerical inaccuracies with a re-orthogonalization very costly. Concatenating them
requires 27 multiplications. Quaternions on the other side suffer from the lack of direct visualization of
quaternionic curves while being very efficient and flexible in practice. The aspect of efficient interpolation
can be a further advantage which we address in detail in chapter 9.1.

Further parametrizations for rotations such as Euler–Rodrigues parameters which are closely
related to quaternions do also exist. The details would go beyond the scope of this thesis and
we point the interested reader to Goldstein, Poole, and Safko [150].
This concludes our investigations on separate parametrization of rotation and translation and
we research the concept of dual quaternions where these two entities are jointly fused.

6.2.5. Dual Quaternions

Rotations as presented so far, either use the group SO (3) of rotationmatrices or the hypersphere
H1 of quaternions. These representations are sufficient to handle orientation and the translation
component is usually treated separately.9 In this part, we treat translation and orientation
jointly on the the dual quaternion quadric in 7-dimensional real projective space RP7 and
9Cf. Farenzena, Bartoli, and Mezouar [104] as well as Jia and Evans [195].
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investigate the Riemannian manifold of unit dual quaternions DH1.
While the matrix representation of SE (3) with homogeneous matrices suffers from intrinsic
singularities of this representation, dual quaternions can be a solution. Using a parametrization
with dual quaternions (DQ), we can form a common space for the entire 6D pose that jointly
describes both components the rotation and the translation.

6.2.5.1. Introduction to Dual Quaternions

Kavan et al. [207] already use a dual quaternion formulation successfully for interpolation
and Xu et al. [457] apply the idea to rigid body dynamics. However, the applications of dual
quaternions are not numerous which is partially due to the more complex underlying manifold
that lacks immediate geometric intuition in contrast to non-dual quaternions.
The non-commutative division algebra of hypercomplex numbers H invented by Hamilton
[160] are extended by Clifford [71] to the Clifford algebra of dual quaternions. In spite of the
usefulness of dual approaches for many real-time tasks, they do not receive the same attention
as their non-dual counterpart.
A rigid body displacement can be fully described by a dual quaternion Q ∈ DH1 of unit length.
Similar to the quaternion rotation from section 6.2.3, we use unit length dual quaternions to
represent spatial displacements. For this, we define an ordered pair of quaternions with dual
number coefficients as a dual quaternion. Following the terminology of Kenwrigth [215], we
can write a dual number Z as an element of the algebra D in the form

Z = r + εs, (6.21)

where r, s ∈ R and ε2 = 0.10 The term ε 6= 0 is called the dual operator, r is the real-part, and s
is the dual part. A dual conjugate similar to the complex conjugate in C = R+ iR is defined
as

Ẑ := r − εs. (6.22)

If we extend this concept to dual quaternions, we can write

Definition 6.3
A dual quaternion Q ∈ DH is an ordered set of quaternions r, s ∈H with

Q= r+ εs=
�

q1, q2, q3, q4, q5, q6, q7, q8

�T
, (6.23)

where
�

q1, q2, q3, q4, q5, q6, q7, q8

�T ∈ R8 and ε 6= 0 with

ε2 = 0, εi= iε, εj= jε, εk= kε. (6.24)

Again, this leads to non-commutative multiplications as shown in Table 6.3 where we notice
that the Clifford algebra of dual quaternions contains the real numbersR, the complex numbers
C, the dual numbers D, and the quaternions H.
10Cf. Ercan and Yüce [100].
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· 1 i j k ε εi εj εk

1 1 i j k ε εi εj εk

i i −1 k −j εi −ε εk −εj

j j −k −1 i εj −εk −ε εi

k k j −i −1 εk εj −εi −ε

ε ε εi εj εk 0 0 0 0

εi εi −ε εk −εj 0 0 0 0

εj εj −εk −ε εi 0 0 0 0

εk εk εj −εi −ε 0 0 0 0

Tab. 6.3. Multiplication table for the imaginary units of the dual quaternion algebra DH. The missing sym-
metry in the table demonstrates that the multiplication is non-commutative. Note that extending the
table along the diagonal reveals the real number R, the complex numbers C, and the quaternions H as
part of the dual quaternions.

Defining the conjugate Q̄ of the dual quaternion Q= r+ εs as

Q̄ := r̄+ εs̄, (6.25)

we can investigate the constraints given for a unit dual quaternion Q ∈ DH1 of length 1.
Restricting the dual quaternion Q to unit length gives

1
!
= ‖Q‖ :=Q · Q̄ (6.26)

= (r+ εs) · (r̄+ εs̄) (6.27)

= rr̄+ ε (rs̄+ sr̄) , (6.28)

which decomposes into the two distinct constraints

rr̄= 1 and (6.29)

rs̄+ sr̄= 0. (6.30)

6.2.5.2. Displacements with Dual Quaternions

The group of rigid body displacement SE (3) and the unit dual quaternions are isomorphic11

and the two constraints from equations (6.29) and (6.30) reduce the eight parameters of a
dual quaternion to the six degrees of freedom for a rigid motion in space. Let us construct a
unit dual quaternion by writing the translation as a point quaternion t (cf. (6.15)) and the
rotation r as a unit quaternion (cf. (6.14)) such that

DH1 3Q= r+ ε1
2
tr. (6.31)

11Cf. Ablamowicz and Sobczyk [1].
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Analogously to the rotor in non-dual quaternions, we name Q ∈ DH1 a displacor which spa-
tially moves a dual point quaternion P = 1+ εu with the point quaternion u = [0,p] via a
sandwiching product map.
Direct calculation shows that the spatial displacement in terms of dual point quaternions be-
comes

P 7→Q · P · ˆ̄Q (6.32)

=
�

r+ ε
2
tr
�

(1+ εu)
�

r̄− ε
2
t̄r
�

(6.33)

=
�

r+ ε
2
tr+ εru

��

r̄− ε
2
r̄t̄
�

(6.34)

= rr̄+ ε
�

1
2
trr̄+ rur̄− 1

2
rr̄t̄
�

(6.35)

= 1+ ε (rur̄+ t) , (6.36)

where the two conjugates for the dual quaternion and the dual are calculated consecutively.
The last step holds since t̄ = −t for the point quaternion t and the term rur̄ matches exactly
the known quaternion rotation from equation (6.16). As a result, the last line (6.36) repre-
sents a spatial displacement in dual quaternion notation. In compliance with quaternions, a
recalculation with the displacor −Q gives the same result.

6.2.6. Riemannian Geometry

The spaces H1 and DH1 can also be studied from the perspective of differential geometry. In
fact, both the unit quaternion and unit dual quaternion space are non-Euclidean and form
differentiable Riemannian manifolds.12 We analyze these spaces locally and calculate expo-
nential and logarithm maps explicitly in quaternion representation to enable implementation
of algorithms acting directly on the manifold afterwards.
For a Riemannian manifold G, a continuous collection of inner products on the tangent space
of G at x ∈G defines a Riemannian metric. The shortest path defined by such a metric on the
manifold is called the geodesic. We analyze the geometric structure of (dual) quaternion space
and calculate mappings into the tangent space and back using parallel transport. This paves
the way also for the pose interpolation discussed in chapter 9.1 and pose filtering methods
with local geodesic regressors discussed in part 9.2.

6.2.6.1. Geometry of H1 and DH1

The unit quaternions are constrained by equation (6.13) and cover the three dimensional
hypersphere S3 ∈ R4. Thus, H1 and the real projective space RP3 are isomorphic.
Similarly, the two constraints (6.29) and (6.30) help to analyze the structure of unit dual
quaternion space. Looking at the first equation ‖r‖ = 1, we observe that the real part r of Q
is forced to be of unit length, hence r ∈ H1. This constrains the projection to the first four
parameters to form a hypersphere. Thinking of all parameters in homogeneous coordinates

12Cf. Tron, Vidal, and Terzis [420].
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and identifying equivalence classes again, we can investigate the unit dual quaternion space
on the 7-dimensional hypersphere S7 ∈ R8. The identification of antipodal points on the
hypersphere forms the seven dimensional real projective space RP7. A closer look at the
second constraint rs̄= −sr̄ reveals that this is a definition of a 6-dimensional quadric in RP7.
Thus, equation (6.29) is redundant and the space constrained even more by equation (6.30).
As a result, DH1 is not a hypersphere, but a quadric13 which needs to be considered for any
operation on the manifold.

6.2.6.2. Lie Groups and Parallel Transport

Differentiable manifolds which are also groups with smooth operations are called Lie groups.
This is the case for both non-dual and dual quaternions andwe take a closer look at some aspects
from this differential geometry perspective. Introduced to study infinitesimal transformations,14

the tangent space at the identity of the group is commonly described as the Lie algebra to the
Lie group. It gives a local linearization to the Lie group near the identity. The map from the
tangent space TxG at x to the Lie group G is called the exponential map

expx : TxG→G. (6.37)

It is locally defined and maps a vector in the tangent space to a point on the manifold. The
mapping follows the geodesic on G through x. The inverse to the exponential map is called
the logarithm map

logx :G→ TxG. (6.38)

Fig. 6.7. Parallel transport for the calculation of Lie operators expx and logx. The intermediate calculations
of x−1s and x−1q are used to apply the operators to the Lie algebra T1G (left) at the identity of the Lie
group G. The information is transported along the manifold to point x ∈G (right).

Explicit formulas for the general mappings expx and logx may be cumbersome to derive. Thus,
the underlying Lie group is often studied through an investigation of the according Lie algebra
and by utilizing parallel transport. We follow the same approach and derive numerically stable
Lie algebras for the unit and the dual quaternions. Parallel transport as illustrated in Fig. 6.7

13The quadric is called Study quadric as detailed in Study [397].
14Cf. O’Connor and Robertson [311].
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can be used to deduce the general case to calculate expx at point x ∈G.15 Defining log := log1
and exp := exp1 for the logarithm and exponential maps at the identity 1 ∈G it holds

expx (s) = xexp
�

x−1s
�

, (6.39)

logx (q) = x log
�

x−1q
�

. (6.40)

We now look at the groups SO (3) and SE (3) and deduce formulae for these maps in quaternion
notation. For matrices Murray et al. [300] and Visser et al. [436] are one of several sources
that study these maps. As shown in section 6.2.4, there are several advantages if quaternions
are used, such as their small memory footprint and efficiency for consecutive transformations.
Moreover, numerical stability is advantageous compared to the higher dimensionalmatrix space
where a re-orthogonalization is more expensive to calculate than normalizing the quaternion
vector. These are advantages that are of particular interest in regression tasks with neural
networks for instance. We study the exponential maps therefore directly by their Maclaurin
series definition in (dual) quaternion space.

6.2.6.3. Exponential and Logarithm Map in H

The quaternion vector 1 = (1,0, 0,0)T defines the identity in H1. Its tangent space T1H1 is
the hyperplane parallel to the plane defined by x2, x3, x4 axes that touches the hypersphere
S3 ∈ R4 in 1. Thus, any element in T1H1 can be written in the form q ∈H with

q= [0,φv] (6.41)

with the unit vector v ∈ R3, ‖v‖= 1 and φ ∈ R. Thus it holds

qk =

(

(−1)
k
2 φk ∀k ∈ {0,2, 4, . . .}

(−1)
k−1

2 φkq ∀k ∈ {1,3, 5, . . .}.
(6.42)

Writing the series expansion for the exponential map gives

exp : T1H1→H1 (6.43)

q 7→ exp (q) :=
∞
∑

k=0

qk

k!
(6.44)

(6.42)
=

�

1−
φ2

2!
+
φ4

4!
− . . .

�

+

�

φq−
φ3q
3!
+
φ5q
5!
− . . .

�

(6.45)

= cos (φ) +
sin (φ)
φ

q (6.46)

= [cos (φ) , sin (φ)v] (6.47)

=: r. (6.48)

15Cf. Gallier [133].
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Where (6.46) recognizes the Taylor series of the trigonometric functions about 0. This rela-
tionship aligns with the notation discussed in (6.14) with φ = θ/2. The inverse reads as

log :H1→ T1H1 (6.49)

r 7→ [0,φv] . (6.50)

6.2.6.4. Exponential and Logarithm Map in DH

For the dual quaternion mappings, let Q be a pure dual quaternion in DH with

Q=ωq+ εψqε. (6.51)

where q,qε ∈ H1 are two pure quaternions. One can simplify16 the Maclaurin series for the
exponential operator such that

exp : T1DH1→ DH1 (6.52)

Q 7→
∞
∑

k=0

Qk

k!
(6.53)

=
1
2
(2cos (ω) +ω sin (ω)) (6.54)

−
1

2ω
(ω cos (ω)− 3 sin (ω))Q (6.55)

+
1

2ω
(sin (ω))Q2 (6.56)

−
1

2ω3
(ω cos (ω)− sin (ω))Q3. (6.57)

In order to formulate the inverse function we take a closer look at the unit dual quaternion

Q= [φ,v] + ε [φε,vε] (6.58)
:= [Φ,V] (6.59)

with the dual entities

Φ= φ + εφε (6.60)

V= v+ εvε. (6.61)

Equivalently to (6.14), we can find a canonical forms for dual quaternions.17 A series expansion
for the trigonometric operators gives the dual trigonometric operators

sin (Φ) := sin (φ) + εφε cos (φ) , (6.62)

cos (Φ) := cos (φ)− εφε sin (φ) . (6.63)

The following lemma justifies the use of a canonical form. We explore this through explicit
calculation of the dual representation.

16Cf. Selig [373].
17Cf. Daniilidis [80].
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Lemma 6.1
Any unit dual quaternion Q ∈ DH1 can be written as

Q=
�

cos
�

Θ

2

�

, sin
�

Θ

2

�

V
�

, (6.64)

where V ∈ DH is a pure dual quaternion of form (6.51).

Proof. Equation (6.64) can be seen as a parametrization of a rigid body motion. Chasles’ The-
orem18 tells that any rigid displacement in space can be decomposed into a translation along a
unique axis together with a rotation about this axis as visualized in Fig. 6.8. We explicitly con-
struct the rigid transformation given by the dual quaternion for such a motion in form of (6.64).

θ
εθ

l

v

Q

Fig. 6.8. Screw linear displacement. The rigid transformation described by the dual quaternion Q is decomposed
into a rotation with angle θ about the axis l and a translation of length θε in the direction of v.

Let a rigid displacement be given by a rotation R ∈ R3×3 around the unit vector v with ‖v‖= 1

and rotation angle θ together with a translation t ∈ R3. The dual quaternion parametrizing
this motion is given by (6.31).
We now calculate the displacement parameters for the screw motion: These are the rotation
angle θ , the screw axis l with a direction v and moment vε (i.e. vε = p× v ∀ p ∈ l) as well
as the pitch θε. As the angle θ and the signed axis v are already given, we first calculate the
pitch θε as the projection of the translation onto the axis in the direction of v:

θε = tTv. (6.65)

To determine the moment vε, we first pick a point u on the axis and express the translation
t with the parameters θε, v, R and u as the sum of the part t‖ parallel to the axis and the
perpendicular part t⊥ by

t= t‖ + t⊥ (6.66)

= θεv+ (I−R)u. (6.67)

18Cf. Chen [66].
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Rodrigues formula gives

Ru= u+ sin (θ )v×u+ (1− cos (θ ))v× (v×u) (6.68)

which we can substitute into (6.67) such that

u (6.67)
= t− θεv+Ru (6.69)

(6.65)
= t−

�

tTv
�

v+Ru (6.70)
(6.68)
= t−

�

tTv
�

v+u+ sin (θ )v×u+ (1− cos (θ ))v× (v×u) . (6.71)

With uTv= 0, this gives

u= 1
2

�

t−
�

tTv
�

v+ cot
�

θ

2

�

v× t
�

(6.72)

and we can write the moment vector as

vε = u× v (6.73)

=
1
2

�

t× v+ cot
�

θ

2

�

v× (t× v)
�

. (6.74)

The rotation quaternion r= [q0,q] from R reads with (6.14) as r= [cos (θ/2) , sin (θ/2)v] and
(6.74) becomes

sin
�

θ

2

�

vε =
1
2

�

t× q+ q0t− cos
�

θ

2

�

�

vTt
�

v
�

. (6.75)

Using (6.65), we can write

sin
�

θ

2

�

vε +
θε
2

cos
�

θ

2

�

v= 1
2
(t× q+ q0t) . (6.76)

This is precisely the pure quaternion of the dual part in (6.31). Thus we can write the dual
quaternion representation of the rigid displacement as

Q= [q0,q] + ε
�

−
1
2
qTt, 1

2
(q0t+ t× q)

�

(6.77)

(6.76)
=

�

cos
�

θ

2

�

, sin
�

θ

2

�

v
�

+ ε
�

−
θε
2

sin
�

θ

2

�

, sin
�

θ

2

�

vε +
θε
2

cos
�

θ

2

�

v
�

(6.78)

(6.63)
= cos

�

Θ

2

�

+ sin
�

θ

2

�

v+ ε sin
�

θ

2

�

vε + ε
θε
2

cos
�

θ

2

�

v (6.79)

= cos
�

Θ

2

�

+ sin
�

θ

2

�

v+ ε sin
�

θ

2

�

vε + ε
θε
2

cos
�

θ

2

�

v+ ε2 θε
2

cos
�

θ

2

�

vε
︸ ︷︷ ︸

= 0

(6.80)

= cos
�

Θ

2

�

+
�

sin
�

θ

2

�

+ ε
θε
2

cos
�

θ

2

��

(v+ εvε) (6.81)

(6.62)
= cos

�

Θ

2

�

+ sin
�

Θ

2

�

(v+ εvε) (6.82)

(6.61)
=

�

cos
�

Θ

2

�

, sin
�

Θ

2

�

V
�

(6.83)
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This representation algebraically separates the pitch and angle values from the line information
of the screw axis. The dual angle Θ encapsulates the information for both the rotation angle
and the translation length while the dual vector V contains the axis of the screw motion and
its direction vector.
The exponential map of a dual quaternion in the form Q= VΘ2 is given by19

exp
�

VΘ
2

�

=
�

cos
�

Θ

2

�

, sin
�

Θ

2

�

V
�

. (6.84)

The inverse function of a dual quaternion in canonical representation (6.64) thus can be
calculated by

log : DH1→ T1DH1 (6.85)
�

cos
�

Θ

2

�

, sin
�

Θ

2

�

V
�

7→ VΘ
2

. (6.86)

Equipped with the tools on how to parametrize poses in space, we now investigate the diverse
applications where these can be used starting with the estimation of the relative poses of
cameras and tools with respect to each other in order to passively sense the surrounding
geometry and actively interact with the recognized 3D world by automatic steering of robotic
manipulators. To make these applications possible, we first take a closer look at the internal
geometry of multi-camera systems.

6.3. Epipolar Geometry

How do humans visually sense the world? We use two similar organs of vision separated only
by some base vector b as illustrated figuratively in figure 6.9, where the disparities between
the rays code the depth information processed by our brain.
Let us get back again to the introductory question of this chapter: How can wemake a computer
see in three dimensions? We answer this in the supposedly most intuitive and natural way by
describing this scenario in mathematical terms, which allow us to triangulate a point observed
in two cameras of one stereo camera system. Hereby, we follow the explanations structure
of Busam [47].

6.3.1. Geometric Analysis

Suppose we have two already calibrated cameras CL and CR left and right with their projection
centres given by OL and OR as shown in Fig. 6.10. We call the vector b from OL to OR the base
and the line through the projection centres the baseline.20

To formulate some ideas in an idealized manner and to directly obtain a simpler notation,

19Cf. Kavan et al. [206].
20Cf. Steger, Ulrich, and Wiedemann [395, p. 199].

104 Chapter 6 3D Sensing



0-1-2 21

b

Fig. 6.9. Binocular disparity. The human visual system consists of a pair of eyes (top and bottom left) separated
by a baseline vector b. The distance from the observer is decoded by the projection onto the retina. For
a given ray of sight from the upper (left) eye, several depth layers are illustrated relative to a mid depth
layer (“0”). Closer distance (e.g. −1,−2) gradually shift the projection further away from the left eye
while further distances (e.g. 1,2) result in closer projections.

we now introduce a fictive normalized coordinate system21 for the two cameras with the
projections PL and PR as in equation (4.25) with

xL = PL xW = KL

�

RL | tL

�

xW (6.87)

and

xR = PR xW = KR

�

RR | tR
�

xW . (6.88)

If we apply K−1
L to the point xL we get the normalized coordinate

x̂L = K−1
L KL

�

RL | tL

�

xW (6.89)

=
�

RL | tL

�

xW , (6.90)

which we can think of as an image of the world point xW with respect to a camera at
�

RL | tL

�

and an identity calibration matrix. Similarly we have

x̂R =
�

RR | tR
�

xW (6.91)

for the normalized coordinates x̂R within the right image. Hence we can always consider a
pair of cameras with projections

PL =
�

I | 0
�

and PR =
�

R | t
�

, (6.92)

in the same world coordinate system located at the projection centre OL. For the base, this
gives b= t.
Following Definition 2.2, the x-axis describes the width and the y-axis the height of the image.
We always assume the origin of the image coordinate system to be in the upper left corner
21Cf. Faugeras [105, p. 43].
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of an image. As a consequence of the projection, the origin in pixel coordinates lies in the
lower right while the x-axis of Fig. 6.10 points to the left whereas the y-axis points upwards.
The camera coordinate system is adjusted to OL so that the z-axis points in viewing direction
perpendicular to the image plane, x increases to the right and the y-axis points downwards.

xW

R, t

OL
ORb

xL xR

xL

zL

yL

zR xR

yR

Fig. 6.10. Schematic hardware stereo camera setup. The baseline b separates the left camera with centre OL

from the right camera with centre OR. A rigid transformation with rotation R and translation t transforms
the left camera system x L-yL-zL into the right coordinates xR-yR-zR. A 3D world point xW is projected
onto xL on the left and xR on the right image plane.

6.3.1.1. Virtual Images

At first, we simplify the illustrated real scenario slightly. Since the different orientations of the
axes and the origins in the middle of the scene may cause a mix-up of names and rather disturb
the clear view for the analysis of the given geometry, we simply exchange the real images in
our figure on its actual place for virtual images placed at twice the principal distance parallel
to them in direction of the principle ray. This is the same setup as the one used in section 4.1
and the simplified scenario is shown in Fig. 6.11 where we note that all the indicated points
are coplanar to the plane E.

An arbitrary point xL in the left image may arise from the projection PL of a world point xW .
This transformation is not invertible, since the depth information is lost. As shown in Fig. 6.12,
a given point xL has indeed a whole line of potential world points x1

W , x2
W , x3

W , . . . which can
be assigned to it. If we want to know which point xR in the right image corresponds to points
coded by xL , we are restricted to the line lR given by the projection of the plane E held by OL ,
eL , and xL into the right image. E is called the epipolar plane, the line lR is called the epipolar
line for xL .22 These definitions are apparently symmetric by interchanging the descriptions of
left and right.

22Cf. Hartley and Zisserman [165, pp. 239–241].
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xW

OL OR

xL xR

eL eR

E

Fig. 6.11. Virtual stereo camera setup. The two virtual images are depicted in blue with the camera origins OL

and OR. The world point xW projects onto xL on the left and xR on the right virtual image plane. The
epipolar plane E spanned by OL , OR, and xL intersects with the virtual image planes in the epipolar points
eL and eR.

x1
xW

E

OR

eR

xL

eL

OL

xW

x2xW

x3xW

xR

lR

Fig. 6.12. Schematical illustration of the epipolar geometry. To recover the 3D coordinates of a world point xW

from its projection xL , multiple possible solutions lay on the ray from the left camera centre OL through
xL . This line is incident with the epipolar plane E and projects an epipolar line lR into the right image.
The epipolar line connects the epipolar point eR with the correct projection xR of the world point xW .
Possible point combinations of xL with the right image coordinates on lR result in different other 3D
world points x1

W , x2
W , x3

W , . . . which are incorrect triangulations.

The epipoles eL and eR are the intersections of the image planes with the baseline joining
the two camera centres. This line is invariant to movements of the world point xW and its
projections xL and xR respectively. Together with xW this forms a pencil of epipolar planes
around the baseline. Expressed in terms of the images, this gives two families of lines crossing
eL and eR.

6.3.2. Fundamental Matrix

Let us now construct the epipolar line lR in the right image for a particular point xL using
homogeneous coordinates.
Suppose the points in image IL and IR are named as in Fig. 6.12 and the two projection
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matrices are given by PL and PR. As seen above, there is a whole line of possible world points
corresponding to xL . We can construct this line with the two points OL and

x0
W = P+LxL such that PLP+L = I (6.93)

with the pseudoinverse matrix P+L of the projection PL ∈ R3×4.23 This gives the line

xW = x0
W +ηOL , η ∈ R. (6.94)

We choose one of the points on the line – namely x0
W – and project it with PR into the right

image. This gives a point xR on the epipolar line of the right image with

xR = PRx0
W = PRP+LxL . (6.95)

Since lR is given by the join of two different points eR and xR, we can write in homogeneous
coordinates

lR = eR × xR = eR ×
�

PRP+LxL

�

. (6.96)

The epipole eR itself is given by the projection PR of OL as

eR = PROL . (6.97)

Substituting equation (6.97) into (6.96), we have

lR = (PROL)×
�

PRP+LxL

�

. (6.98)

Since

a× b = Sa b, (6.99)

with the skew-symmetric matrix Sa

Sa =













0 −a3 a2

a3 0 −a1

−a2 a1 0













, (6.100)

we can rewrite equation (6.98) as a matrix vector multiplication

lR = SPROL
PRP+LxL = SeR

PRP+L
︸ ︷︷ ︸

F

xL = FxL (6.101)

where F ∈ R3×3 is called the fundamental matrix (or bifocal tensor).24

We now give an example for the calculation of F for the case of two calibrated cameras.

23Cf. Xu and Zhang [456, pp. 75–78].
24Cf. Xu and Zhang [456, p. 34].
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Example
Suppose the two projection matrices of a stereo camera system with the world origin in the
left camera are given by

PL = KL

�

I | 0
�

and PR = KR

�

R | t
�

(6.102)

and we write

P+L =





K−1
L

0T



 . (6.103)

Then, the fundamental matrix is given as

F= SeR
PRP+L = SPROL

PRP+L = SKRtKRRK−1
L , (6.104)

which brings F= StR in normalized coordinates of equation (6.92).

Geometrically speaking, F maps an arbitrary point from the 2D projective image plane of the
left image to one of the epipolar lines from the pencil through eR, which gives a 1D projective
space. F factors as a product of SeR

and M := PRP+L , thus F must be of rank 2 which can be
seen in equation (6.101), where

rank (M) = 3 and rank
�

SeR

�

= 2. (6.105)

In terms of the point xR the meaning of F is given by

lTRxR = xTR lR = xTRFxL = 0, (6.106)

which is also true for every scalar multiple ηF of F with η ∈ R and gives a necessary condition
for two points to correspond.

Altogether we formulate a definition of the fundamental matrix analogeously to Hartley et al.
[165, p. 245].

Definition 6.4
The fundamental matrix F of a stereo camera system with camera centres OL 6= OR is given by
the homogeneous matrix F ∈ R3×3 with rank (F) = 2 which satisfies

xTRFxL = 0 (6.107)

for all corresponding points xL ↔ xR.

The matrix F decodes the entire epipolar geometry for the two images.
Besides the equations for the epipolar lines

lR = FxL and lL = FTxR, (6.108)
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we can detect the epipoles with the fundamental matrix, since

lTReR = (FxL)
T eR = xTLF

TeR = 0 ∀xL , (6.109)

lTLeL =
�

FTxR

�T eL = xTRFeL = 0 ∀xR. (6.110)

The epipoles eL and eR are given by the non-trivial kernel of F and FT respectively, so that

FTeR = 0, (6.111)

FeL = 0. (6.112)

Thus it can be interesting to determine the fundamental matrix from a given set of correspond-
ing points if we do not have the projection matrices PL and PR from a calibration.

6.3.2.1. Calculating the Fundamental Matrix

Let us write the fundamental matrix as

F=













f11 f12 f13

f21 f22 f23

f31 f32 f33













(6.113)

and the homogenized coordinates of the two images as

xL =













xLx

xLy

1













and xR =













xRx

xRy

1













. (6.114)

Similar to the previous ideas of section 3.8, we expand the equation from Definition 6.4 in
order to minimize the algebraic residual. We get

0= xTRFxL (6.115)

= xLx xLy f11 + xLy xRx f12 + xLy f13 + xLx xRy f21 + xRx xRy f22 (6.116)

+ xRy f23 + xLx f31 + xRx f32 + f33 (6.117)

=
�

f11 f12 f13 f21 f22 f23 f31 f32 f33

�

︸ ︷︷ ︸

rT

· (6.118)

�

xLx xLy xLy xRx xLy xLx xRy xRx xRy xRy xLx xRx 1

�T

︸ ︷︷ ︸

d

(6.119)

= rTd (6.120)

=: F (r,d) . (6.121)
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With the n measured corresponding points x i
L ↔ x i

R we can form a design matrix

D=













dT
1

...

dT
n













=













x1
Lx x1

Ly x1
Ly x1

Rx x1
Ly x1

Lx x1
Ry x1

Rx x1
Ry x1

Ry x1
Lx x1

Rx 1
...

xn
Lx xn

Ly xn
Ly xn

Rx xn
Ly xn

Lx xn
Ry xn

Rx xn
Ry xn

Ry xn
Lx xn

Rx 1













(6.122)

to formulate a minimization problem for the algebraic residuals F (r,di). Since the matrix F
is homogeneous, we introduce the condition ‖r‖= 1 to avoid the trivial solution for equation
(6.115) and hence get

min‖D r‖2 (6.123)

subject to ‖r‖= 1. (6.124)

Introducing a Lagrange multiplier gives

min‖D r‖2 −λ (‖r‖ − 1) , (6.125)

which yields in a similar way as in section 3.8 to an eigenvalue problem given by

DTD r= λ r. (6.126)

Since M := DTD ∈ R9×9 is symmetric and positive semi-definite, for its eigenvalues it holds

λk ∈ R+0 ∀k ∈ {1, . . . , 9} . (6.127)

Moreover, because

‖D r‖2 = rTDTD r= rTM r= λkrT r= λk ‖r‖2 = λk, (6.128)

we look for the normalized eigenvector to the smallest eigenvalue λk with k ∈ {1, . . . , 9}.
The problem now is that it is not guaranteed that the rank constraint (rank (F) = 2) of Defi-
nition 6.4 is satisfied. As proposed by Zhang [480, pp. 166–167] one can integrate such a
condition a posteriori. In order to do this, we perform a singular value decomposition of the
so far computed matrix

F̂= UΣ̂VT, (6.129)

where U and V are orthogonal matrices and

Σ̂=













σ1

σ2

σ3













(6.130)
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is a diagonal matrix with σ1 ≥ σ2 ≥ σ3.
Setting σ3 = 0 and

Σ :=













σ1

σ2

0













(6.131)

yields an estimation of the fundamental matrix

F := UΣVT. (6.132)

It can be shown that this procedure minimizes the Frobenius norm




F− F̂




 under the condition
that rank (F) = 2.25

When we combine all the steps, we come up with a method to estimate the fundamental matrix
F presented in Algorithm 6.1.

Algorithm 6.1. Computation of Fundamental Matrix
Input parameters:
• Corresponding points xi

L ↔ xi
R with i ∈ {1, . . . , n}

Computation steps:
1. Set up design matrix

D=













x1
Lx x1

Ly x1
Ly x1

Rx x1
Ly x1

Lx x1
Ry x1

Rx x1
Ry x1

Ry x1
Lx x1

Rx 1
...

xn
Lx xn

Ly xn
Ly xn

Rx xn
Ly xn

Lx xn
Ry xn

Rx xn
Ry xn

Ry xn
Lx xn

Rx 1













2. Calculate scatter matrix M := DTD
3. Solve eigenvalue problem M r= λr
4. Get (λmin, rmin) with λmin =min {λk | k = 1, . . . , 9}

5. Fill F̂ with rmin (Equations (6.113), (6.118))
6. Perform singular value decomposition F̂= UΣ̂VT (Equations (6.129), (6.130))
7. Set σ3 = 0 and form Σ (Equation (6.131))
8. Calculate fundamental matrix F= UΣVT

Output:
• Fundamental matrix F

The process is often referred to as the 8-point algorithm as proposed by Longuet-Higgins [260,
p. 135] who first published a similar technique. The problem, however, is that the minimized
error F (r,d) is an algebraic one. There are several other methods to minimize the geometric
distance without artificially imposing the rank criterium after minimization. One of these is
for example the Gold Standard method proposed by Hartley et al. [165, pp. 284–285].

25Cf. Zhang [480, pp. 191–192].
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The so-parametrized geometry can now be used to formulate ways to extract 3D measurements
from a set of images. Before we extract depth information from two images, we now look closer
at the underlying geometry andmake use of the representation of our points with homogeneous
coordinates one more time.

6.3.3. Rectification

In the previous section we developed a method to determine the geometry of the stereo system
with a given point set of corresponding points. We now use this knowledge to transform the
two images in a way that they become coplanar in order to simplify the search for a new
point correspondence within two transformed images to one dimension. We make this
dimension the x-axis of some standard coordinate system as shown in Fig. 6.13.

Fig. 6.13. Rectified pair of images. Two images are taken from a 3D object (top). Each is acquired from a different
points of view (mid row). A 3D object part projects to a specific location in the image (as illustrated by
the red area in the left image, mid row). The corresponding projection in the other image is restricted
by the epipolar geometry and lies on the epipolar line. Thus the corresponding patch may be shifted in
x- or y-direction along the line. A “rectifying” transformation as illustrated by the arrow changes the
images (bottom) and aligns epipolar lines. The search space for corresponding points becomes restricted
to the dimension aligned with the horizontal image axis.

The principle procedure of such a task is twofold. At first, we want to rotate the image planes
of both images so that they become parallel. This transformation ideally makes sure that the
epipolar lines are set up horizontally. Secondly, we adjust the image planes with a translation
perpendicular to the plane in order to make them coplanar. Figure 6.14 illustrates this pro-
cedure for a pair of stereo images. The second step of the figure shows that this process is
not unique. It works with every two translations that give coplanar image planes. A desirable
transformation pair HL and HR would be a pair for which only little scaling for both images IL

and IR is necessary.
Let us now formulate a way to estimate these two transformations.
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Fig. 6.14. Rectification of image planes. Two spatially separated images are shown (left) togetherwith an example
epipolar plane (top) and several epipolar lines (bottom). A first transformation makes the epipolar lines
parallel and horizontally aligned (centre). The image planes become parallel. A second transformation
(right) makes the image planes coplanar with a shift along the viewing direction. The epipolar lines
become incident.

6.3.3.1. Calculating the Homographies

Suppose we have n corresponding points xi
L ↔ xi

R with i ∈ {1, . . . , n} and already an estimation
for the fundamental matrix F for instance from Algorithm 6.1. We now want to calculate two
mappings that transform the points from the actual image planes onto coplanar virtual ones.
We call these transformations of the images the two homographies HL and HR.
Again, we want to make use of homogeneous coordinates to formulate rigid transformations
as matrix-vector multiplications. A planar rigid transformation W that consists of a rotation
R ∈ R2×2 and a translation with the vector t ∈ R2 is directly described with one matrix multi-
plication26 with

W=









R t

−0− 1









. (6.133)

We start with the right image IR. The least deformation of such a homography is around the
origin. As a first step, we therefore shift the origin to the centre of IR by the translation t and
rotate the image with R so that the epipole eR is mapped onto the x-axis. We write this first
transformation as a matrix W such that

WeR =
�

f 0 1

�T
. (6.134)

We nowwant the epipolar lines to become parallel. Following the ideas of Hartley [163, p. 199],
we push eR along the x-axis to the point at infinity. A matrix G with

GWeR =
�

f 0 0

�T
(6.135)

26Cf. Richter-Gebert and Orendt [348, pp. 19–20].
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is given by

G=













1 0 0

0 1 0

−1/ f 0 1













. (6.136)

After the transformation HR := GW, the epipolar lines of IR are parallel. Figure 6.15 illustrates
the consecutive operations.

y
x

eR
lR

eR
eR

R
t

GW

Fig. 6.15. Parallelization of epipolar lines. A first transformation W of image IR shifts the origin by a translation
t to the image centre (left) and rotates the image with a rotation R such that the epipole eR is mapped
onto the x-axis as shown in the middle. A consecutive transformation G (right) makes the epipolar lines
parallel to the x-axis. The epipole eR becomes a point at infinity.

We then seek for a matching transformation of the second image which projects the epipolar
lines of IL onto the transformed epipolar lines of IR. How we find such a homography can
be answered with the help of the following two theorems. The first describes possible virtual
projections that satisfy epipolar constraints and the second gives some criteria for homogra-
phies.

Theorem 6.1 (Stereo projections from fundamental matrix)
The general two projection matrices PL ∈ R3×4 and PR ∈ R3×4 that project 3D points onto two
image planes are given by the fundamental matrix F via

PL =
�

I | 0
�

(6.137)

with the identity matrix I ∈ R3×3, 0 ∈ R3 and

PR =
�

SeR
F+ eRvT | ηeR

�

(6.138)

with the epipole eR and an arbitrary v ∈ R3 and η ∈ R \ {0}.

Calculating first eR with equation (6.111), choosing v =
�

0 0 0

�T
and η = 1 gives the

possible projection matrix27

PR =
�

SeR
F | eR

�

. (6.139)

With this theorem, we can state the second fact.
27Note the similarity to equation (6.92).
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Theorem 6.2 (Matching homographies for stereo vision)
Let IL and IR be two images with the fundamental matrix F. Then two homographies HL and
HR of IL and IR match in terms of epipolar line equality if and only if

HL =
�

I+HReRaT
�

HRM (6.140)

with M := PRP+L as in theorem 6.1 and equation (6.93), the identity matrix I ∈ R3×3 and an
arbitrary a ∈ R3.

The detailed proofs would be of minor value for our further studies and are left out here. The
interested reader may be referred to Hartley et al. [165, pp. 255–256] for theorem 6.1 and
to Hartley [163, pp. 119–120] for theorem 6.2.

Since we are interested in particular in the case whereHR transforms the epipole eR of the right

image to the point at infinity
�

f 0 0

�T
, we can simplify equation (6.140) for our purposes

to

HL =
�

I+HReRaT
�

HRM (6.141)

=

�

I+
�

f 0 0

�T
aT
�

︸ ︷︷ ︸

B

HRM (6.142)

= BH0 (6.143)

with H0 :=HRM and

B=













1+ f a1 f a2 f a3

0 1 0

0 0 1













=













b1 b2 b3

0 1 0

0 0 1













. (6.144)

This leaves three parameters which have no influence on the rectification of the two images
since they only appear in the first row of the matrix. What we want is to avoid unnecessary
image distortions. Fixing all other parameters, we therefore formulate an optimization problem
for the disparity. With n known point correspondences xi

L ↔ xi
R with i ∈ {1, . . . , n}, this gives

the following minimization of the sum of squared distances:

min
n
∑

i=1





HLxi
L −HRxi

R







2 (6.145)

=min
b

∑

i





BH0xi
L −HRxi

R







2 (6.146)

=min
b

∑

i





Bx̂i
L − x̂

i
R







2 (6.147)

=min
b

∑

i

�

b1x̂i
L1 + b2x̂i

L2 + b3x̂i
L3 − x̂

i
R1

�2
+
�

x̂i
L2 − x̂

i
R2

�2
+
�

x̂i
L3 − x̂

i
R3

�2 (6.148)
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=min
b

∑

i

�

b1x̂i
L1 + b2x̂i

L2 + b3x̂i
L3 − x̂

i
R1

�2
+
∑

i

�

x̂i
L2 − x̂

i
R2

�2
+
�

x̂i
L3 − x̂

i
R3

�2

︸ ︷︷ ︸

C

(6.149)

=min
b

∑

i

�

b1x̂i
L1 + b2x̂i

L2 + b3x̂i
L3 − x̂

i
R1

�2
+ C (6.150)

with the homogenized points x̂i
L :=H0xi

L and x̂i
R :=HRxi

R and the parameters

b=
�

b1 b2 b3

�T
∈ R3. (6.151)

Since C is a constant value with respect to the parameter vector b, this is equivalent to

min
b

∑

i

�

b1x̂i
L1 + b2x̂i

L2 + b3x̂i
L3 − x̂

i
R1

�2 (6.152)

which gives a linear least squares problem and can thus be solved algorithmically.
To summarize this procedure all in one, we formulate Algorithm 6.2 and Fig. 6.16 shows some
point correspondences for real images before and after the rectification.

Fig. 6.16. Corresponding points before and after rectification. The upper row shows a pair of images before
rectification where different corresponding points do not lie on parallel lines. The epipolar lines after
rectification (lower row) are parallel such that correspondences for the same points are connected with
parallel horizontal lines.

It may look like this process is computationally very complex for newly acquired images of
a stereo camera rig. In fact, after the offline calculation of the two homographies by Algo-
rithm 6.2, we can store the individual pixel transformation in a lookup table and are ready for
efficient online rectification as long as the relative position of the two cameras is fixed. This can
be achieved, for instance, by mounting the cameras on a solid rigid frame. Furthermore, taking
for example bilinear interpolation as in section 3.7 into account even enhances the quality of
the rectified output images. To achieve accurate point measurements, it is for example possible
to use the same calibration target as in section 4.2.
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Algorithm 6.2. Rectification of Stereo Images
Input parameters:
• A pair of stereo images IL and IR
• Corresponding points xi

L ↔ xi
R in homogeneous coordinates, i ∈ {1, . . . , n}

Computation steps:
1. Estimate fundamental matrix F with Algorithm 6.1
2. Calculate epipole eR by solving FTeR = 0 (Equation (6.111))
3. Compute pose matrix for transformation of IR

• Shift origin of IR to the centre→ translation t
• Rotate eR onto x-axis→ rotation matrix R
• Form pose matrix W with t and R (Equation (6.133))

4. Calculate x-coordinate f with equation (6.134) as WeR =
�

f 0 1
�T

5. With equation (6.135) form matrix G=









1 0 0

0 1 0

−1/ f 0 1









6. Calculate homography for right image HR := GW
7. Shift origin of IL to the centre

8. Form matrices PL =
�

I | 0
�

and PR =
�

SeR
F | eR

�

(Theorem 6.1)
to calculate helper matrix M := PRP+L (Theorem 6.2)

9. Get matching homography H0 :=HRM
10. Adjust homography for left image

• Apply transformations to homogenized points:
x̂i

L :=H0xi
L and x̂i

R :=HRxi
R ∀i ∈ {1, . . . , n}

• Solve least squares optimization for b=
�

b1 b2 b3

�T
∈ R3 (Equation (6.152)):

min
b

∑

i

�

b1x̂i
L1 + b2x̂i

L2 + b3x̂i
L3 − x̂

i
R1

�2

• Form matrix B with equation (6.144): B=









b1 b2 b3

0 1 0

0 0 1









• Calculate homography for left image HL = BH0 (Equation (6.143))
11. Resample images IL and IR with transformations HL and HR (→ Irec

L , Irec
R )

Output:
• Homographies HL , HR and rectified images Irec

L , Irec
R
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The structure of the images after rectification is then not only utterly helpful for the search of
corresponding points by reducing the search space to a pixel line but also for the extraction of
depth information from Irec

L and Irec
R which we investigate as a next step.

6.3.4. Triangulation

We want to discuss how to calculate the depth information from a newly measured correspond-
ing point pair xL ↔ xR within rectified images.
For this purpose we leave out the virtual images of section 6.3.1 for a moment and focus on
the rectification scenario in terms of images behind the projection centres as illustrated in
Fig. 6.17.

xW

OL ORb

xL xR

Fig. 6.17. Rectification scenario with real image planes. Two cameras are separated by a base distance b. The
world point xW is projected through the two pinholes OL and OR onto the left and right images (dotted
line). The point coordinates after image rectification are given by xL and xR for the left and the right
image respectively.

xW

OL OR

b

z

x

f f
xL xR

dL dR

Fig. 6.18. Geometry on epipolar plane. The world point xW = (x , y, z) is projected to xL and xR onto two rectified
images. The pinholes OL and OR of the two cameras are separated by a baseline b parallel to the image
planes at a distance f away from the common plane. The coordinate shift of the projected points xL and
xR from the principle points of the cameras is given by dL and dR.

We look at the epipolar plane for some world point xW with the two camera centres OL and OR

where b gives the baseline. The geometry is illustrated in Fig. 6.18. The planes of the rectified
images are parallel to the base and f gives their distance to the camera centres. xL and xR are
the corresponding points in the two rectified images that arise from the projection of xW . The
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illustrated distance z shows the desired depth coordinate of xW . If we locate the origins of the
image coordinate systems for the rectified images at the base points of the principle rays, the
differences of xL and xR to the base points are directly given by their x-coordinates xLx and
xRx in the particular image coordinates.
The disparity d of the two projected points is then given by

d = xRx − xLx , (6.153)

where xRx and xLx are the signed x-coordinates of the projected point.
We observe that the two triangles OLORxW and xLxRxW are similar and we can therefore use
the intercept theorem to write

z
b
=

z + f
b+ d

. (6.154)

Rearranging this gives the depth

z =
b f
d
=

b f
dpix sx

, (6.155)

where dpix is the disparity in pixels and sx the pixel width. We keep the different scaling in
mind but use just d from now on to keep the notation as simple as possible. The parameters
b, f , and sx are known from calibration and rectification. After calculation they remain fixed.
The only value that varies is the disparity.
The coordinate value of x for the world point xW can then be calculated from the relation

z
x
=

f
xLx

. (6.156)

Thus we have

x =
zxLx

f
=

bxLx

d
. (6.157)

The values of x and z are with equations (6.155) and (6.157) inversely proportional to the
depth: The larger the disparity the closer is the point xW to the image plane. This is illustrated
in Fig. 6.19 where it can also be seen, that the resolution induced by a regular sampling be-
comes coarser for areas further away from the image planes.

To conclude this section we write down the world coordinates of an arbitrary point xW

which projects to the corresponding point pair xL ↔ xR with dehomogenized coordinates
xL =

�

xLx , x y

�

and xR =
�

xRx , x y

�

of a rectified image pair. In terms of a coordinate system
situated in OL , the world coordinates are given by:

xW = (x , y, z) (6.158)

=
�

bxLx

xRx − xLx
, x y ,

b f
xRx − xLx

�

. (6.159)
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OL
OR

x

z

Fig. 6.19. Different disparities and resolution in depth. For equidistant image points (bottom) of two rectified
images, the rays of sight through the two camera pinholes OL and OR intersect at different points (top).
The spatial resolution in the overlapping field of view decreases for larger z values.

6.4. Depth Estimation

A topic we have not touched so far was the actual question of how to detect a stereo corre-
spondence. How do we know that a point from the right image matches a point in the left
one?

For the calculation of the fundamental matrix and the point correspondences for the rectifi-
cation procedure, we can use the methods of chapter 3 and especially the algorithm for the
extraction of ellipse centre coordinates (Algorithm 3.5). We can move a unicoloured planar
object with differently coloured circles around in the visible area of the stereo camera sys-
tem. If we acquire the images with both cameras simultaneously, we can directly calculate the
fundamental matrix and rectification parameters as the correspondences are known by the
colour-coding. For efficiency reasons, we extract several ellipse centres with Algorithm 3.5
from one image using the same target as for the camera calibration in section 4.2 shown in
Fig. 6.20. The extraction of the marker coordinates from the images follows the same principle
as described in section 4.2. Having fixed a certain distance between the dots, it is then possible
to scale the axes of our world coordinate system according to a special unit such as metres.

Suppose all calibration, rectification and scaling is done. Extracting depth information from
any new 3D world point within two images can still be a highly challenging task. The most
difficult process then is to solve the correspondence problem between the two images.
We differentiate between algorithms that reliably triangulate a sparse set of points andmeth-
ods that estimate a dense depth map which assigns a distance value to each pixel individually.
Depending on the underlying task either one of those can be the method of choice. For an
accurate real-time pose tracker which we describe in chapter 7 we chose the former while
dense fusion of different measurements in chapter 10.1 requires the latter.
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Fig. 6.20. Calibration target. The circular marker coordinates on the white background can be extracted robustly
by Algorithm 3.5 with sub-pixel precision. With a known distance between the markers, it is possible to
scale the coordinate frames to metric units.

6.4.1. Literature Overview

Before we explain the details of the approach chosen in the consecutive chapters, we take
a tour through the depth estimation literature to summarize the state-of-the-art. This also
provides an understanding of why certain approaches are advantageous over others depending
on the use case.
Since depth estimation is an elemental task in computer vision, there are numerous methods
and approaches to calculate distances depending on various inputs. Classical multi-view ge-
ometry utilizes several synchronized images while structure from motion (SfM) approaches
use video sequences and temporally align images for triangulation. Simultaneous localiza-
tion and mapping (SLAM) pipelines reconstruct the environment while later observations
re-identify landmarks within the constructed map. With the advent of deep learning, recent
approaches also tackle the ill-posed problem of monocular depth estimation or fuse multiple
sensor modalities such as LiDAR and RGB images in depth completion networks.

6.4.1.1. Stereo Vision

The correspondence problem is a crucial part of binocular and multi-view vision and matching
patches by visual content is at the core of most stereo methods. Dense stereo reconstruction
algorithms classically follow a pipeline that consists of the general steps:28

1. Matching cost computation
2. Cost aggregation
3. Disparity computation
4. Disparity refinement

Early methods are mostly based on template matching techniques which compare small image
windows under similarity measurements. The simplest and fastest algorithms use the sum
of absolute grey value differences (SAD) or the sum of squared grey value differences
(SSD) to compare these patches. The approaches are not invariant to illumination changes,

28Cf. Scharstein and Szeliski [366].
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but illumination-invariant methods exist. One of them is using for instance normalized cross
correlation (NCC) which allows to calculate similarities respecting the mean and the standard
deviation within the chosen window.29

Traditional matching algorithms for stereo vision often follow a form of semi-global matching
scheme as originally proposed by Hirschmüller [176]. Since the algorithm can be parallelized,
efficient real-time implementations utilize the proposal of Hirschmüller [177] with sub-pixel
metrics such as the one proposed by Birchfield et al. [25] to implement block matchers (SGBM)
directly on chips.

Some scholars such as Lazaros et al. [238] as well as Tippetts et al. [412] try to summarize
the long history of depth estimation from image pairs.
The cost volume C (x , y, d) – commonly used to predict the disparity (or depth) d at pixel lo-
cation (x , y) – can be interpreted as a probability measure for the likelihood of a specific depth
d at the coordinate (x , y). Modern approaches make use of this and reformulate the classical
pipeline with neural networks. Fig. 6.21 illustrates intermediate steps of the pioneering CNN
from Zbontar et al. [474] for stereo matching directly after the matching cost computation
and before all post processing and Fig. 6.22 shows the identical scene and its disparity as well
as the cost volume after the post processing steps.

The utilized Siamese network of Zbontar et al. [474] compares image patches at different
locations. Both the query and the potential target of a rectified image pair are fed into two
towers with shared weights such that a cost volume can be formed through deep feature com-
bination. While the first deep learning approaches provide robust disparity estimates, they
are unable to run in real-time and their resolution is limited. More efficient approaches such
as StereoNet30 still rely on a relatively low-resolution cost volume to enhance computation
time while hierarchical upsampling refines the disparity estimate through multiple residual
corrections with the help of the RGB input image. Thus 60 fps are possible for 720p images on
a consumer PC with an Nvidia Titan X GPU. Its successor ActiveStereoNet31 extends the work
with self-supervision to the domain of active sensing while maintaining the core efficiency.
Other works such as the fast bilateral solver from Barron et al. [12] and the pixel-to-pixel
mapping from Lutio et al. [267] also propose to upsample the depth map resolution with RGB
guidance.
More than two views are addressed by the work of Choi et al. [68] who utilize multiple
binocular stereo pipelines to create individual cost volumes with confidence. These are con-
secutively fused with a depth regression network. This requires knowledge of the amount of
stereo pairs a priori and the number cannot be changed. The approach of Yao et al. [462]
extends this principle and makes the pipeline agnostic to the amount of input views through
the use of a differentiable homography warping that fuses the image information on top of
one reference cost volume. Statistical measures are used to combine cross-view information
with a variance-based metric.

Training a stereo network is possible with a large corpus of various datasets such as the KITTI
benchmark32 and the CityScapes dataset33 which include synchronized stereo pairs from a
29A comparative analysis and an overview of the characteristics and performance of various classical methods is

described by Roma, Santos-Victor, and Tomé [350].
30Cf. Khamis et al. [217].
31Cf. Zhang et al. [478].
32Cf. Geiger, Lenz, and Urtasun [139].
33Cf. Cordts et al. [72].
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Fig. 6.21. Stereo matching with neural network. A stereo RGB pair (left image shown on top) is fed to the neural
network of Zbontar and LeCun [474] for stereo matching. The matching cost C (x , y, d) for various
disparity levels is shown. Note the visible dark line approaching from far (d = 0) to closer distances
(d = 96). The raw matching cost calculated by the network contains outliers and noise which are visible
in the directly calculated disparity map (bottom) before post processing. The disparity map illustrates
the direct maxima along the disparity dimension.
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Fig. 6.22. CNN stereo matching and post processing. A stereo RGB pair (left image shown on top) is fed to the
neural network of Zbontar and LeCun [474] for stereo matching. The post processed matching cost
is illustrated as Cp (x , y, d) for various disparity levels. Note the smoother boundaries in the disparity
volume and the much cleaner processed disparity map at the bottom.
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binocular camera pair rigidly mounted on a car. KITTI provides accurate but sparse ground
truth measurements from a LiDAR laser scanner that is also mounted on the roof. While these
scenes are restricted to driving environments, the Middlebury dataset34 provides a diverse set of
indoor scenes with high quality ground truth that can be used for supervision and Scene Flow35

gives pixel-perfect ground truth for its synthetic renderings. Synthetic data training requires
high quality renderings.36 Further data generators such as SYNTHIA37, Virtual KITTI38 and
its point cloud pendant39, the CARLA simulator40, and others41 are used to simulate accurate
data to train depth estimation networks. However, they mainly address driving scenarios.

Networks trained on one of these large scale datasets therefore usually suffer from domain
shift problems when they are applied to another environment. However, ground truth data
acquisition is a challenging task with real data and reliable supervision is often unavailable.
Synthetic data is often not realistic enough and mainly addresses specific niche environments.
Thus domain transfer across datasets and from synthetic to real data is naturally addressed
by various groups. Tonioni et al. [415] propose a way for parameter fine tuning such that
stereo networks generalize better to new data without the need for additional ground truth
in the target domain. More recently, the same group with Tonioni et al. [416] suggests
continuous online domain adaptation for disparity estimation with real-time applicability in
unseen environments.

6.4.1.2. Depth Estimation beyond Multi-view Geometry

Spatio-temporal cues from different images in a video sequence also provide the possibil-
ity for triangulation even though the calibration scale is unknown and a depth or baseline
normalization is often used instead.42 For this, the pose between the images is estimated sepa-
rately or on the fly. Temporal sequences are aligned in classical SfM43 and SLAM frameworks44

such as LSD-SLAM45, ORB-SLAM46, and DSO47 while overlapping images with varying camera
viewpoint are considered in the recent works of Agarwal et al. [2] as well as Knapitsch et al.
[223].

Single view depth estimation is an ill-posed problem with naturally arising ambiguities by
its geometric nature. Even though scale cannot be uniquely recovered solely relying on geom-
etry, data-driven methods either estimate a normalized depth map or implicitly learn scale-
awareness. Usually an encoder-decoder architecture is used for this task where the input is
34Cf. Scharstein et al. [365].
35Cf. Mayer et al. [280].
36Cf. Mayer et al. [279].
37Cf. Ros et al. [351].
38Cf. Gaidon et al. [131].
39Cf. Francis et al. [122].
40Cf. Dosovitskiy et al. [90].
41E.g. Miralles [287] for Atapour-Abarghouei and Breckon [8].
42The unknown scale in monocular video sequences can be recovered with visio-inertial pipelines where an additional

sensor with an inertial measurement unit (IMU) provides the additional scale. This can be achieved through
calculation of the relative motion between consecutive frames by robust integration over the acceleration signal.

43Cf. the pipelines of Faugeras and Lustman [106] as well as Huang and Netravali [188].
44A benchmark of various RGB-D visual odometry and SLAM frameworks is provided by Handa et al. [161].
45Cf. Engel, Schöps, and Cremers [98].
46Cf. Mur-Artal, Montiel, and Tardós [297] as well as Mur-Artal and Tardós [298].
47Cf. Engel, Koltun, and Cremers [97].
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an RGB image and the output a depth map. The first learning-based method of this kind is
proposed by Eigen et al. [95] with a fully connected layer close to the bottleneck limiting its
application beyond training resolution. Further scholars propose fully convolutional residual
architectures.48 These networks require full supervision and ground truth extraction is usually
complicated or not possible at all.

Stereo vision can help, though. If multiple cameras are considered during training time,
self-supervision becomes possible by warping pixels from one view to the other with the
current depth estimate. In the other reference system, a photo-consistency measure comparing
the warped pixel with its counterpart usually provides the training signal. Thus, not only
do additional ground truth labels become unnecessary but also the calibration-based error
propagation is diminished. The works of Xie et al. [455] as well as Garg et al. [134] formulate
ways to learn without ground truth by utilizing this kind of stereo self-supervision during
training. However, their image formation models are not differentiable leading to limited
quality results. Godard et al. [144] propose to use left-right consistency checks during training
with a stereo vision systems and a differentiable image sampling strategy to improve the
accuracy and Poggi et al. [331] use trinocular imaging for supervision.
The main source of information for depth estimation from a single static image is the dataset.
Thus, these approaches are very sensitive to the data used in training and suffer from domain
shift errors when applied to other image sources. To address this drawback, Guo et al. [156]
use stereo matching49 as a proxy to benefit from pre-training on synthetic data across domains
and MegaDepth50 is trained using photos from publicly available web sources.
While state-of-the-art monocular depth methods estimate a reliable depth ordering, they often
suffer from over-smoothing.51 Artefacts become visible as “flying pixels” in the free space close
to depth discontinuities.

Some mono depth pipelines combine both classical SfM and self-supervision to pre-compute
both depth and camera poses that can be used for supervision.52 Zhan et al. [475] combine
single view depth with the simultaneous estimation of the relative camera pose between
images in a video sequence. The assumption underlying this concepts is that the scene is
temporarily rigid and nothing moves. In this way, a frame at time t and another frame at
time t + n can be used as a stereo pair for triangulation while the baseline is normalized. For
the often-considered driving scenarios, however, this assumption is wrong as multiple other
vehicles as well as pedestrians move independently of the camera motion. In order to avoid
incorrect supervision, Yin et al. [464] mask incoherently moving objects by using a 2D optical
flow to estimate rigid scene content. Dense 3D optical flow and depth estimation can also be
entangled.53 A more elaborate network architecture is proposed by Zhou et al. [484] who
use one part for mapping and multiple networks to track the motion. Despite the quality
improvements of suchlike approaches, they suffer from bigger computational cost and require
more training data. The memory footprint for the latter, for instance, only allows for a 80×60

pixel input resolution. Integrating pose, flow and depth mutually benefit each other and the

48Cf. Laina et al. [233].
49Also Watson et al. [446] incorporate information from stereo algorithms.
50Cf. Li and Snavely [253].
51Cf. Godard et al. [145].
52Cf. Klodt and Vedaldi [222] as well as Yang et al. [461].
53Cf. Zhao et al. [482].
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estimation can be unified.54 Moreover, additional semantic information55 can improve depth
and vice versa.

As most ground truth data is acquired with LiDAR laser scanners, alsomodality combination
is considered with the problem of depth completion where the sparse active sensing of a LiDAR
scan is fused with dense passively acquired information from RGB imagery. The sampling
mask for the sparse signal is a crucial element for modality fusion.56 Classical image processing
techniques are used by Ku et al. [229] to solve this problem and Jaritz et al. [194] apply
a learning based encoder-decoder network that encodes the different input modalities in a
common latent space where feature fusion is possible before a consecutive decoder reconstructs
a depth map.
It turns out that even a small amount of randomly sampled depth values can significantly
improve the quality of the predicted depth map in comparison to monocular depth pipelines.57

More recent approaches in this domain also consider self-supervision utilizing a stereo view
or an image sequence without the need for ground truth annotations. Mutual pose prediction
across an image sequence is for instance considered by Ma et al. [268] where a photometric
loss provides the signal for backpropagation.

6.4.2. Sparse Stereo Matching

Despite various approaches for depth estimation, multiple views are still one of the best options
to visually retrieve high-accuracy depthmaps with precise triangulation, correct scale and sharp
boundaries.58 Our first target is an efficient and reliable pipeline with most accurate results
applicable to domains such as medical environments where precision is essential. Thus, we
follow a binocular stereo approach and detect the depth for special image features rather than
a full depth map for the entire image. Since our later work focuses on centre coordinates of
ellipses, these shapes code our features.

6.4.2.1. Disparity Gradient

We start with a rectified image pair and triangulate 3D coordinates efficiently and robustly.
The 2D coordinates are decoded by the centres of identical ellipse markers as a results of
Algorithm 3.5. Thus we cannot use surrounding texture for reliable triangulation and fully
rely on geometric constraints. For a search along the epipolar line, a small neighbourhood
may result in only one possible matching partner or several as illustrated in Fig. 6.23 where
the search space for potential stereo matches is highlighted.

54Zou, Luo, and Huang [488] combine these concepts with different branches in a single network.
55Cf. Jiao et al. [196].
56Cf. Uhrig et al. [427].
57Cf. Ma and Karaman [269].
58Cf. Smolyanskiy, Kamenev, and Birchfield [385].
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Fig. 6.23. Possible matching partners for rectified stereo images. Three ellipses with their centres are extracted
by Algorithm 3.5 on the left and right rectified image. The epipolar line (red) defines the search space
(blue) for a matching partners in the right image. The search space for the upper left point xL and the
lower right one in the left image is illustrated. Projective geometry and the rectification setup constraint
possible matches. Matches such as xL ↔ xR that decode a 3D point are required to lie on the same
epipolar line.

If there is just one potential partner xR within this area it is most likely59 the partner of xL from
the left image and the matching is trivial. The corresponding point pair is xL ↔ xR in such a
case. If, however, this decision is not zero-one or occlusions occur, we need some algorithm to
decide. There are many different approaches to detect these matches. We follow the ideas of
Pollard et al. [332] and introduce another constraint on the point set: the boundedness of
the disparity gradient.
Let us investigate two 3D points x1
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L =
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These image coordinates are shown in Fig. 6.24.
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Fig. 6.24. Left, right and cyclopean image. The left image IL (left) and the right image IR (right) show the
projections of two 3D points x1

W and x2
W . The points project onto xi

L and xi
R, i ∈ {1, 2} in the two images.

The coordinates in their cyclopean image IC (centre) are illustrated by xi
C together with their cyclopean

separation S
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.

59Unfavourable occlusion in the right image and another visible point on the same epipolar line can still cause
problems.
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The distance of x1
C and x2

C in this image is called the cyclopean separation S
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On the other hand, the disparity difference D is
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The disparity gradient is then the ratio of the disparity difference to the cyclopean separation
with
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This disparity gradient can be expected to be limited with60
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∈ [−1, 1] (6.169)

for two real world points x1
W and x2

W that can be seen simultaneously from a stereo vision
system. We can use this to check for consistencies within putative triangulated point clouds
where correct points mutually support each other.

6.4.2.2. Robust Coordinate Triangulation

With the thoughts from section 6.4.2.1 we score all possible matches according to all other
point pairs that either support the pairing if

�

�Γ
�

x1
W ,x2

W

��

�≤ 1 or not. Weighting this score by the
reciprocal distance from the considered match, we formulate Algorithm 6.3 to extract world
coordinates from rectified stereo images by always taking the matched pair with the highest
score.

We note that the epipolar constraint reduces the search space within the first loops and the
uniqueness of a point pair guarantees that QL decreases since we delete the already matched
pair in every outer loop.
60Cf. Šonka, Hlavac, and Boyle [389, p. 590].
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Algorithm 6.3. World Coordinates from Rectified Images
Input parameters:
• Rectified image pair Irec

L and Irec
R

• Parameters: Base b, focal length f , search bandwidth tepi

Preprocessing:
1. Get sets QL and QR with 2D coordinates from Irec

L and Irec
R (Algorithm 3.5)

2. Prepare point cloud for 3D coordinates: C = ;
Computation steps:
while QL 6= ; and (max Si j 6= 0 or first iteration) do

for xi
L ∈QL do

Prepare sets of potential matches: Mi = ;
// Look for potential matching partners along epipolar line
for x j

R ∈QR do
if
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Add point to potential point set Mi = Mi ∪ x

j
R

Prepare score Si j = 0
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R
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// Update scores
for xk
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for xl

R ∈ Mk do

Get world point x2
W =

�

bxk
Lx

x l
Rx−xk

Lx
,

xk
Ly+x l

Ry

2 , b f
x l

Rx−xk
Lx

�

// Check if disparity limit is violated (Equation (6.169))
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Add point to cloud: C = C ∪ xW

Delete coordinate pair from sets: QL =QL \
�

xi
L

	

and QR =QR \
¦

x j
R

©

Output:
• Set C of 3D world points
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With this algorithm and the ideas explained beforehand, it is now possible to accurately extract
world coordinates from any scene with an object that has circular markers on its surface. In
chapter 7 we will extract such a cloud C within every frame of a stereo video stream and use
such markers to detect the movement of the underlying object by describing its pose with the
parametrization from section 6.2.
In the next chapter we also apply the theoretical knowledge established so far in the previous
sections and use the developed techniques and algorithms to formulate a robust passive real-
time tracking system for marked rigid body objects based on stereo camera observations.
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7High Performance Optical Tracking

„Le temps
est du mouvement
sur de l’espace.

– Joseph Joubert
(Essais et maximes de J. Joubert)1

The aim of the following chapter is to build a high performance optical tracking system
(OTS) that allows usage in various industrial as well as medical applications. The OTS will not
only be the backbone for medical tool tracking (cf. section 7.7), it also enables cooperative
robotic applications (cf. section 7.9) and serves as the core technology to fuse different image
modalities such as thermal imaging, ultrasound sensing, and gamma radiation imaging as
discussed in chapter 10.

Everything we considered so far was static and we also start with a tracking by detection
approach without temporal information. However, we finally also include the only preliminary
definition from chapter 2 that has not yet been used: the video concept from section 2.2.2.
Along with definition 2.3 for videos comes a consecutive set of images on which we can perform
the developed algorithms over time. This allows us to formulate a processing for certain
dynamic changes within the scene.

Since industrial environments can change drastically and many medical scenarios require high
accuracy even under challenging illumination, we need a flexible, reliable and precise system.
In the following sections, we make use of the already generated pipelines to accurately track
artificially tagged objects in real-time and study the movement of a static point set within
three-dimensional space. We then formulate a method to robustly determine the rigid body
motion of these objects and discuss its efficiency and capabilities necessary to apply the OTS
to a set of real problems from different fields.

Through a collaboration with the university hospital Klinikum rechts der Isar and the inter-
disciplinary research lab (IFL), medical case studies with the tracking system are performed
in nuclear medicine, assistive movement therapy, and diagnostic sonography. We detail a first
application in section 7.9 and use the OTS in later considerations within chapter 10 for both
medical (10.2, 10.3) and industrial (10.1) sensor fusion.

1“Time is movement in space.”, J. Joubert. Pensées, essais et maximes de J. Joubert suivis de lettres à ses amis
et précédés d’une notice sur sa vie, son caractère et ses travaux: Volume 1 [Titre XIX, p. 322]. Tome Premier,
Librairie de C. Gosselin, 1842.
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Before we start to describe the tracking framework with a mathematical model following
Busam et al. [49], we talk about useful hardware parts for a special setup that allows such a
procedure and present the state-of-the-art in marker tracking.

7.1. System Components

A desirable method for the estimation of the position and orientation of an arbitrary object in
space is ideally independent of certain patterns on the surface of the object. In some previous
algorithms, our feature points have been described by circles and ellipses, their projected
equivalents. Not every object offers such a special geometry on its surface and we thus generate
such a geometry artificially. We simply stick retro-reflective circular markers on the surface
of the object we want to track. The material is chosen to specifically reflect infrared (IR)
electromagnetic waves.

7.1.1. Stereo Vision System

We mount a ring of IR LEDs for a flash around the lens of the camera and trigger the illumi-
nation with the camera exposure. If the diodes are triggered, a strong flash in the direction
of the line of sight occurs as shown in Fig. 7.1. Since the markers are retro-reflective for this
spectrum we have some weak diffuse reflection in different directions and a strong reflection
back to the ring of LEDs as well as to the camera lens.

marked object

Fig. 7.1. Ring flash and retro-reflective markers. An LED ring is mounted around the lens of the camera and
flashes during camera exposure (left). An object is markedwith retro-reflective circularmarkers (bottom).
These markers strongly reflect the light back to its source such that the combined reflected signal of the
full ring shines into the lens while only a small part of the energy is dissipated through diffuse reflection
(right).

This also offers another benefit. If we use a filter for this particular spectrum, we firstly get
high intensity peaks for the circular image parts and, secondly, suppress other noisy sections
since the retro-reflection of the flash is set to be much stronger than the natural reflections
from other sources. This simplifies the search for ellipses and makes it more robust against
other circular shaped structures within the visible area and less susceptible for ambient light.
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Furthermore, we mount the two cameras on a rigid bar fixed on a tripod. The whole hardware
setup for the triangulation of point clouds looks as the one shown in Fig. 7.2.

Fig. 7.2. Stereo camera rig. A binocular pair of identical cameras is fixed to a rigid bar (top left). After calibration,
the acquisition of images with synchronized illumination allows for triangulation of 3D coordinates coded
by circular markers attached to an object.

The vision system hardware is build around two GC1932MP cameras (SMARTEK Vision,
Croatia) with Fujinon HF8XA-1 C-mount lenses with 8 mm focal length to observe a field of
view of 58.4◦ × 44.6◦ on a 2/3” sensor. An IF 093 NIR band-pass filter (Schneider-Kreuznach,
Germany) is used in each camera. Two ring lights FLDR-i70A (FALCON Illumination, Malaysia)
illuminate the working volume with 875 nm wavelength and are triggered and powered syn-
chronously by an IPSC2 strobe controller from SMARTEK Vision, Croatia at 24 VDC with
750 mA each. The cameras run in hardware trigger mode and receive their exposure signal
also from the strobe controller. Acquisition time is set to 1.5 ms at a maximum frame rate of
24 Hz.

A CAD drawing of the first prototype demonstrator is illustrated in Fig. 7.3, where a stereo
system observes a moving object in the form of an ultrasound transducer for which the pose has
to be determined. The object moves on a fixed trajectory around a pivot point in the middle and
the results together with tracking parameters and a 3D visualization can be shown in real-time
on the attached screen in the background. Fig. 7.4 shows the first prototype realization of the
setup with a demonstrator where the object of interest is a small airplane model. The knob
on the frontal part is mounted to regulate the speed of the movement of the object around
its trajectory. The lower part shows version two of the prototype modeling as well as a live
demonstration with the more advanced housing at a trade fair. The two objects, torso and
ultrasound transducer can be freely moved while they are tracked by the system which gives
real-time feedback on the screen even with the high intensity ambient light at the booth.

7.1.2. Tracking Markers

Traditional tracking systems often used in medical applications consist of a metal rigid body
frame with multiple marker spheres as shown in Fig. 7.5 on the left. The rigid metal frame
is usually attached to the medical instrument such that the spherical markers are visible for a
tracking system. Depending on the size of the frame and the tool, the setup becomes sometimes
difficult to handle. Partial occlusion of individual markers through stain, blood, etc. as well
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Fig. 7.3. First OTS design. The left and the middle image show a frontal and a top view of an OTS hardware

prototype. Two cameras are mounted at a height of 110 cm above ground and 90 cm over a small box.
The inner part of the box allows for space to fit the small electronics, a strobe controller, cabling and
a computation unit while the connection cables for the stereo vision system on top can be fixed to the
vertical bar. The stereo camera rig with identical cameras equipped with narrow band-pass filters and
ring lights for the active illumination is put on a flexible arm on top of the setup such that it fully observes
a table with an ultrasound transducer phantom. The phantom is equipped with retro-reflective markers
and fixed to a moving bar that rotates on a trajectory around a pivot point to illustrate dynamic behaviour.
The current status, tracking parameters, 3D visualization, and the stereo video signal can be shown for
real-time feedback on a 22 inch monitor. For better visualization, a 3D rendering is shown on the right.

as line-of-sight obstacles impede the tracking process or stop pose estimation fully. Various
ultrasound scans, for instance, cannot be realized with a rigidly attached frame at all. These
include abdominal vascular ultrasound scans for which the transducer is put with pressure
to the scanned tissue and becomes partly invisible in particular in adipose patients. A multi-
redundant marker setup with self-adhesive markers allows for natural use of the medical
instrument while the physician can fully focus on the medical question at hand. The tracked
poses in case of vascular scans in the mentioned example can then be used for registration and
3D reconstruction to enable vascular diagnostics.

This still leaves the choice for the size of the markers. A large radius makes sure that the fitted
elliptic shape for the contour is highly accurate even in case of noisy spots around the contour
line, whereas a very small marker is error-prone to noise. However, a smaller marker is only
slightly deformed by the shape of the surface and allows for the use of different markers even
on small objects. We use reasonably small circles of 5 mm diameter for our experiments.

Having fixed the hardware framework so far, we can now formulate the tracking problem in
mathematical terms and consider a robust pose estimation method.2 To get a general idea of
the process, let us first consider marker-based methods used in the literature and then split
the consecutive task up into smaller pieces.

2We thereby follow the formulation of Busam [47].
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1st Demo

2nd Demo

OTS Prototype v.1

OTS Prototype
Design v.2

Fig. 7.4. OTS prototype realization v.1 and v.2. The optical tracker is realized as a demonstrator with a small
airplane model (top) in the design version illustrated in Fig. 7.3. In version 1, the two cameras are
rigidly attached to a metal bar. Consecutive updates are realized with version two (bottom). The stereo
cameras are integrated into a housing (centre) where the cameras are sandwiched between two carbon
fiber plates (see bottom left for the lower plate). The fibers are put in the direction of the baseline for
maximal stiffness and temperature-stable calibration parameters while the external housing protects the
whole rig. The setup is demonstrated (right) at a trade fair where two objects (a torso and an ultrasound
transducer) are tracked individually.
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Rigid body with marker spheres

Self-adhesive markers

Mount for medical instrument

Fig. 7.5. Tracking marker comparison. A rigid body marker with four exchangeable spheres is shown on top
left. Despite their size, these are usually attached to medical instruments (top right). Self-adhesive
markers (bottom) with 5 mm diameter allow for intuitive use of the medical instrument while generating
a multi-redundant cue for an optical tracking algorithm.
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7.2. Marker Tracking Literature

Marker-based optical pose estimation has a wide application in augmented (AR) and mixed
reality (MR/XR) applications where static or dynamic virtual content is overlaid on top of an
RGB image. Besides gaming and remote support, various fields benefit from this technology
to create content, fuse information (cf. chapter 10) or enable robotic vision (cf. section 7.9)
and human-machine interaction (cf. section 10.3). Diagnostic sonography is just one of many
medical applications, for instance, where AR glasses or augmented screens such as the one
shown in the prototype in Fig. 7.6 can help the physician to spatially fuse data. Tracking
is a crucial element in image-guided surgery to obtain the position and orientation of tools
and the patient during medical procedures and various solutions exist. While mechanical
and magnetic trackers can be used, optical tracking systems are often the preferred choice in
computer aided surgery due to their accuracy and flexibility.3

We briefly review the literature on marker tracking, commercially available systems used in
rigid body tracking, and natural extensions with less physical constraints.

Fig. 7.6. Mobile augmented reality. An optical stereo tracking system (top, white) tracks both the rigid body
marker attached to the green mount of an ultrasound transducer (centre) and a spherical marker frame
on a wooden bar (right) where a mobile phone is fixed. All sensors are co-calibrated such that the live
ultrasound video can be sent wireless to the mobile phone together with the correct pose such that it
can be rendered at the current position on top of the RGB video stream of the mobile camera. A 3D
coordinate frame additionally visualizes the live ultrasound coordinates.

7.2.1. Fiducial Markers

Besides the direct use of calibration boards as described in section 4.2 to estimate the cam-
era pose relative to the marker, other fiducial markers are used to calculate the position
3Cf. Marinetto et al. [276].
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and orientation of an attached object relative to the camera. Typically, a QR code like struc-
ture in black and white is used to provide high contrast features and to decode a marker ID
simultaneously.

Early method rely on planar markers such as the ARToolkit from Kato et al. [204], the coded
markers used by Naimark et al. [303] (Intersense), and AR-Tag presented by Fiala [111].
Cyclic codes are used by Bergamasco et al. [20] and a random dot pattern is proposed by
Uchiyama et al. [426] which is extended to an efficient and robust marker that utilizes per-
spective invariants by Birdal et al. [28]. Many augmented reality applications enjoy the wide
use of AprilTag4, Pi-Tag5, or the more recent ArUco as introduced by Garrido-Jurado et al.
[137] which is available in the computer vision library OpenCV6 together with its checker-
board extension ChArUco as illustrated in Fig. 7.7. With the advent of deep learning, the
ChArUco marker tracker has become a robust upgrade by Hu et al. [186]. Their deep ChArUco
system consists of a data driven ArUco detector that works well also under varying scene illu-
mination. The pipeline then combines this with a sub-pixel refiner and the Perspective-n-Point
(PnP) algorithm to retrieve accurate pose information even under varying image and light
conditions.

Checkerboard ArUco ChArUco

=+

Fig. 7.7. ChArUco marker as a combination of checkerboard and ArUco marker. Corner detection of a checker-
board (left) can be done with high precision while the ArUco marker (in the middle) can be detected
rapidly with its coded ID. The ChArUco marker (right) combines the advantages of both approaches by
encapsulating different ArUco markers in the chessboard pattern.

In a first approach, we used an ArUco marker tracking to fuse different medical sensors7 and
noticed that the placement of planar markers on the object requires an attachment which
is not always trivial to produce and impedes the natural use of the objects by changing its
geometry. Accurate detection, however, is a must in many applications where more flexible
and modifiable structures are superior. Moreover, the printer and paper quality of these usually
self-made markers hamper the quality and lifespan of the tracking target. Various commercial
systems have been evolved.

4Cf. Olson [316].
5Cf. Bergamasco, Albarelli, and Torsello [21].
6Cf. Bradski [38].
7Cf. Esposito et al. [101]. See also chapter 10.3.
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7.2.2. Tracking Systems

There are various commercially available tracking systems to track rigid objects. Most of
them require a statically mounted rigid body marker similar to the one shown in Fig. 7.5
to be attached to the object of interest. Multiple systems enjoy use in particular as medical
trackers and have been tested and compared over the years.8 Commercial tracking companies
also support comparative research studies. The more recent study of Elfring et al. [96], for
instance, is supported partly by Stryker Leibinger, Freiburg, Germany.

Tested trackers include the FlashPoint 580 (Image Guided Technology, Inc., Boulder, CO, USA)
and various stereo vision systems such as the Northern Digital Inc. (NDI) Polaris P4, which is
arguably the most prominent tracking system for surgical interventions as well as its successor,
the NDI Polaris Spectra (successor of P4) and its small baseline version Polaris Vicra. Other
stereo systems are FusionTrack from Atracsys Inc., Puidoux, Switzerland and the Navigation
System II Camera from Stryker, Freiburg, Germany. OptiTrack (NaturalPoint, Inc., Corvallis,
OR, USA) is tested by Marinetto et al. [276]. The tracker consists of multiple individual
cameras that are co-calibrated and is evaluated with different occlusion scenarios in an eight
cameras setup.
These systems usually work with passive marker spheres as shown in Fig. 7.5 and illuminate
the scene with infrared light. Also active infrared emitting diodes (IREDs) in the near
infrared (NIR) spectrum are used. Both solutions share the need for a known and calibrated
rigid body that is likely to change the dimensions of the tracked object significantly. As a result,
this can also impede the surgical workflow.

Optical trackers suffer from line-of-sight restrictions as the tracking system usually needs
visibility of the full set of markers on a rigid body. While we propose a more flexible solution,
partial visibility remains a need.
An alternative solution circumventing this issue is electromagnetic (EM) tracking where a
changing EM-field induces a current in sensing elements attached to the object of interest.
However, these systems need additional cabling to connect the sensors and interfere with
metallic objects commonly present in industrial setups as well as in the OR, which makes
measurements unreliable. Problem solving for measurement errors in optical trackers is often
more straightforward as an occluder can be easily removed while a metallic object may not
directly be visible which can make it hard to understand the cause of an error in these systems.
Moreover, due to their technical nature, the clinical usage is restricted. EM tracking, for
instance, cannot be used in patients with pacemakers. The team of Franz et al. [123] reviews
EM trackers for medical applications extensively and the interested reader may be referred to
their paper for more details.
We will not investigate EM tracking further, but address other possibilities to circumvent the
strong line-of-sight requirement of commonly used tracking systems in sections 7.8 and 8.1.

8Cf. Chassat and Lavallée [64], Schmerber and Chassat [368], Khadem et al. [216] for early evaluations and Wiles,
Thompson, and Frantz [452] as well as Maier-Hein et al. [270] for later ones.
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7.2.3. Natural Markers

Besides smaller and more flexible marker setups, the natural extension is to use implicit de-
coding in object features to track without physical attachment. Such a marker-free tracking
approach eliminates also the additional effort of marker-to-object calibration which adds com-
plexity and can be time-demanding (cf. section 7.7). If the camera is mounted on the object
(inside-out tracking case), a rich environment may help for navigation and provide enough
details for orientation. We discuss this specific use case in section 8.1. However, in the classical
outside-in scenario – where an object is tracked and the tracking system is statically observing
the scene – the performance of marker-based methods is still much better than the one for
markerless approaches. The medical requirements for multi-redundancy and sub-millimeter
precision can additionally be met through the use of markers.

Before we discuss modern proposals to marker-free tracking in chapter 8, we now focus on
describing an algorithm that enables a flexible, robust but accurate system with self-adhesive
circular markers of retro-reflective material.

7.3. Matching Pose and Points

Real-time pose measurements of tools and objects is a core requirement in image guided
medical applications and accurate and precise information is necessary to allow seamless
surgeries. Intraoperative navigation and multi-modality fusion can simplify the workflow of
physicians and boost diagnostic confidence levels. An algorithm for pose detection and marker
matching needs to be robust to be of practical use in such setups. While the algorithmic design
follows a pragmatic approach keeping in mind the medical use case, the OTS technology we
develop hereafter is applicable to many other problems that require accurate estimation of
position and orientation of objects in space.

In this section, we introduce the mathematical concept behind our proposed optical track-
ing systems, explain how it can quickly adapt with its self-adhesive markers to the geometry of
the tracked object and estimate the pose even under severe occlusions such that the physician
can fully concentrate on the medical aspects of the surgery rather than the technical challenges
of the tracker. The pose calculation is independent of the marker distribution and the used
algorithm is multi-redundant to enable robust pose detection with the proposed stereo camera
system. The high-resolution tracking can thereby adaptively be adjusted with additional mark-
ers depending on the surrounding circumstances. Additional to the pose estimation capability,
we present a teaching algorithm (cf. section 7.5) to autonomously build a marker model for
the object of interest or to enhance the current one. To enable compatibility with existing
solutions, the algorithm also works with traditional disposable spherical rigid body markers as
shown in section 7.1.2 as well as reusable active IREDs.
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7.3.1. Process Overview

Following the basics of the previous chapters, we use a calibrated stereo camera rig whose
cameras acquire the scene. Once the two image planes are rectified, we save the homographies
for the pixel transformation in a lookup table. Hence, we are ready for online acquisition of
rectified images. The mathematical background and a detailed discussion of these preceding
steps are given in sections 4.2 and 6.3. Using Algorithm 6.3, we can extract the 3D marker
point coordinates of the markers on the object of interest in every frame of a video sequence.
An algorithm that estimates a point set motion then uses the detected point sets of two con-
secutive frames n and n+ 1 to match them. Such a matching represents a transformation of
the point set from frame n that maps the set with a rotation and a translation approximately
onto the point set of image pair n+ 1.
The whole processing chain is illustrated in Fig. 7.8.

The matching part has so far only been explained informally and therefore needs further
mathematical explanations. These are given in the following paragraphs.

o�ine

Intrinsic & Stereo
Camera Calibration

Recti�cation
of Stereo Images

System
Calibration

online

World Coordinates 
from Recti�ed Images

Point
Detection

Frame n

World Coordinates 
from Recti�ed Images

Point
Detection

Frame n+1

Robust Coordespondence
and Pose Approximation

Point
Detection

Fig. 7.8. Processing for marker-based object tracking. In a first stage (top), the intrinsic camera parameters
are individually determined and the stereo vision system is calibrated (cf. Algorithm 4.1) such that
the binocular image pair can be rectified (cf. Algorithm 6.2). While the rectification transformations
can be calculated offline, each new incoming frame pair in the video stream (bottom) needs online
processing. After triangulation of the world coordinates (cf. Algorithm 6.3 from markers, we match
poses and corresponding points between frames or from an object model to the current measurement
(cf. Algorithm 7.3).

7.3.2. Point Set Registration

A rigid body described uniquely by its shape or certain object features such as attached mark-
ers has 6 degrees of freedom (DoF) for an arbitrary motion. These DoF consist of a three
dimensional vector for a translation in space and the three rotational parameters. Following
the insights of section 6.2, we call a description of the position and orientation of the object a
pose. The optical tracking task then boils down to the estimation of the object’s pose in each
frame. This can either be done directly from frame to frame in a relative manner as pictured
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in Fig. 7.8 or from a fixed object to the current frame by taking the information of the previous
into account or not.

In any case, we have to match two point clouds in a way that transforming the first with the
estimated pose approximates the second. Due to occlusion, errors, or mismeasurements, the
clouds are not necessarily of the same size. Thus a one-to-one correspondence is not always
guaranteed. We call these clouds

X =
�

x j ∈ R3 | 1≤ j ≤ J
	

, (7.1)

Y =
�

yk ∈ R
3 | 1≤ k ≤ K

	

. (7.2)

They are symbolized with explained steps in a translation example with blue and red dots in
Fig. 7.9. The correspondences x j ↔ yk are shown as connecting lines between the points of
the two sets. We note that not every point here has a partner. An estimated transformation
maps the blue points of set X onto the green points which then ideally lie up to measurement
error close to the red points of set Y . An example with noisy point measurements is illustrated
in Fig. 7.10.

Fig. 7.9. Two point clouds with correspondence and pose estimation. Two point sets X and Y are illustrated
in blue and red on the left. They are illustrations of two measurements of a translational motion at
different time steps. Note that the sets do not have the same cardinality due to measurement noise. The
correspondences are depicted in the middle as connecting blue lines. Not every point from set X has
a partner in Y and vice versa. The relative pose between them is then used to transform the blue set
X . The transformed set is visualized in green on the right. Even the location of non-visible points (i.e.
missing measurements from set Y ) can be determined as the points correspond to markers on a rigid
body and move coherently.

Given such two point sets we therefore may ask two questions. Firstly: what are the point
correspondences? And secondly: what is the relative pose transforming one cloud into the
other? The answers to these questions are, however, interconnected since an answer to the
first simplifies the latter task and vice versa.

Previous point set registration approaches such as iterative closest points (ICP), proposed by
Besl and McKay [23], are very fast to converge but fail in case of sparse point cloud data, high
noise and an initialization far from the correct solution: all of which issues that may arise in
our case.
Efficient ICP variants9 such as multi-scale EM-ICP Granger et al. [153] using expectation
maximization and the combination with the Levenberg-Marquardt solver by Fitzgibbon [116]
share the same problem of sensitivity to the initial guess. This issue has been addressed by
Go-ICP10 where the authors use a branch-and-bound scheme to search the entire SE (3) space
9Cf. Rusinkiewicz and Levoy [359].

10Cf. Yang, Li, and Jia [460] as well as Yang et al. [459].
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Fig. 7.10. Point cloud alignment in the presence of noise. The source object cloud is illustrated in blue (left)
and the measured target cloud in the presence of noise in red (right). Intermediate pose transformations
gradually move the estimate (green) in the middle onto the target. The final point correspondences are
shown with connecting lines (bottom).

of rigid transformations for the globally optimal ICP solution at the cost of runtime.
Other approaches use kernel correlation (KC)11 for registration in the presence of high noise
where only close points are considered for potential matches and Myronenko et al. [302]
propose coherent point drift (CPD) which is independent of the transformation model.12

This probabilistic formulation using a maximum likelihood estimation and the assumption of
motion coherence can be also applied for non-rigid registrations.
We have real-time requirements and sparse point clouds where occlusion-dependent missing
points are likely to happen. Moreover, our algorithm is required to converge even if we have
no close prior for the current pose. Thus, we take inspiration from robust point matching
(RPM) as introduced by Gold et al. [147] who use soft assignment of correspondences and
deterministic annealing for non-rigid registration of 2D point sets from written characters. We
extend the approach to efficient and robust 3D pose fitting with rigid transformations using
the specific structure of dual quaternions as developed in section 6.2.5.

In general, these rigid poses can be modeled by a rotation matrix R ∈ R3×3 and a translation
t ∈ R3. The correspondence can be expressed by a permutation matrix for which also 0-rows
and -columns are allowed. We define this match-matrix M with entries m jk by

m jk =







1, if x j ↔ yk

0, otherwise.
(7.3)

11Cf. Tsin and Kanade [422].
12Cf. also Myronenko and Song [301].
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7.3.3. Energy Functional

The addressed definitions allow us to formulate the problem as a minimization problem of an
energy functional13

min E (M,R, t) (7.4)

where the energy E can be expressed as

E (M,R, t) =
J
∑

j=1

K
∑

k=1

m jk





yk −
�

Rx j + t
�





2 −α
J
∑

j=1

K
∑

k=1

m jk. (7.5)

The first term with the Euclidean norm ‖·‖= ‖·‖2 gives the distance of the estimation Rx j + t
from the corresponding point yk which we want to minimize. Since the trivial solution of this
alone would be a non-correspondence scenario, we also use a second term which pushes the
system towards matches.
How can we understand this? Rewriting equation (7.5) yields

E (M,R, t) =
∑

j,k

m jk

�




yk −
�

Rx j + t
�





2 −α
�

. (7.6)

The parameter α can be understood as a control parameter for the noise toleration of the
equation and gives a threshold error distance for the squared distance of every pair x j, yk

where yk is the actual measurement and ŷk = Rx j + t its potential estimation. If it holds





yk −
�

Rx j + t
�





2
< α, (7.7)

for some x j , yk, it is





yk −
�

Rx j + t
�





2 −α < 0 (7.8)

and choosing m jk = 1 is favoured over m jk = 0 for a minimization. On the other hand, in case
of





yk −
�

Rx j + t
�





2
> α, (7.9)

m jk = 0 is preferred.

For further interpretations and writing simplicity, we call the residuum of this estimation

d jk =




yk −
�

Rx j + t
�



 . (7.10)

For matched points with m jk = 1 this gives exactly the distance error of the estimated point
ŷk from its partner yk within the point cloud Y .

13Cf. Gold et al. [146].
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The constraints of this minimization problem arise from the definition of the match-matrix
and are in particular

∑

k

m jk ≤ 1 ∀ j ∈ {1,2, . . . , J} (7.11)
∑

j

m jk ≤ 1 ∀ k ∈ {1, 2, . . . , K} (7.12)

m jk ∈ {0,1} ∀ j ∈ {1,2, . . . , J} , k ∈ {1,2, . . . , K} . (7.13)

The first inequality guarantees that every point x j has at most one corresponding partner in
the set Y . Vice versa, the second one makes sure that every point yk has at most one partner
in X . At last, the binary constraint assures that there is either a correspondence or not.

Altogether this gives a mixed minimization problem with a continuous part in the energy
functional and a discrete part within the constraints. Furthermore, the constraints consist of
two inequalities. In total we have 6 DoF for the pose and J · K decisions for the entries of the
match matrix. There exist general solvers for problems like this, though real-time processing
with such an algorithm is not possible if it does not take the special framework of the scenario
into account.14

In the following, we want to develop an approach to approximate a solution to this complex
problem that masters our runtime requirements. For reasons of clarity, we try to follow an
intuitive pathway were we gradually develop a solution starting from this generic energy
functional.

7.3.4. Constraint Relaxation

In order to develop a method that is able to solve the minimization in real time we transform
several pieces of the original problem.
As just mentioned, the current formulation is neither completely discrete nor fully continuous.
It is a mixed problem with three constraints, two inequalities and the binary limitation for
the entries of the match-matrix M. As a first step, we convert the inequalities into equalities
by reshaping of M. A second step then translates the entire problem into a fully continuous
setting with a discrete counterpart.

At the moment, it is allowed for the rows and columns of the match-matrix to sum up to 0.
This is the case, if there is no partner for some point from one of the sets X or Y . This brings
the two inequalities

K
∑

k=1

m jk ≤ 1 ∀ j ∈ {1, 2, . . . , J} (7.14)

J
∑

j=1

m jk ≤ 1 ∀ k ∈ {1,2, . . . , K} . (7.15)

14Cf. Mittelmann and Spellucci [289].
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By appending another row sr and another column sc to the matrix M, we get the matrix

M̂=























M

|

sc

|

− sr −























(7.16)

and can set these constraints to

K+1
∑

k=1

m̂ jk = 1 ∀ j ∈ {1, 2, . . . , J} , (7.17)

J+1
∑

j=1

m̂ jk = 1 ∀ k ∈ {1, 2, . . . , K} , (7.18)

which represents a normalization constraint on the rows and columns of the matrix. The
entries of the vectors sr and sc are called slack variables15 and they are 0 except for the case
of no corresponding points in the other set. The additional row entry is 1 if the point x j has
no partner in Y and 0 otherwise. Respectively the auxiliary column entry is 1 if the point yk

has no partner in the set X .
We establish this matrix extension only to simplify the handling of the matrixM within M̂. The
slack vectors are thus irrelevant for the actual minimization and can be neglected.

On the other hand, the constraint for the extended match-matrix entries

m̂ jk ∈ {0, 1} ∀ j ∈ {1, 2, . . . , J + 1} , k ∈ {1, 2, . . . , K + 1} (7.19)

adds the discrete part to the minimization. Interpreting now the entries m̂ jk of the matrix
M̂ as probabilities for a correspondence or non-correspondence, our match-matrix becomes a
stochastic matrix M̄ by setting

m̄ jk ∈ [0, 1] ∀ j ∈ {1, 2, . . . , J + 1} , k ∈ {1, 2, . . . , K + 1} (7.20)

together with the summation constraints.16 This gives a possibility to describe the problem in
a continuous manner. The discrete case is then a special case of this, where the probability of
two points being partners is either 1 or 0.

7.3.5. Mutual Approximation Updates

In the end, we are not interested in the correspondence probabilities of all different point pairs,
but rather want to decide if a point of one set is a partner to a certain point of the other set. How
can this decision be determined? Given some stochastic matrix M̄ with slacks, the probably

15Cf. Gold and Rangarajan [148, pp. 380–381].
16Such a matrix is also called doubly stochastic matrix (cf. Sinkhorn [381]) to make clear that the rows as well as the

columns are normalized. Since we only deal with such doubly stochastic matrices, we refrain from this distinction.
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most intuitive decision concerning the correspondence is to take the row (column) with the
highest probability. This can then either be a special point if j ∈ {1,2, . . . , J} (k ∈ {1, 2, . . . , K})
or the lack of a partner if j = J + 1 (k = K + 1). Since these probabilities depend highly on
the estimation of the pose for the problem, we are not interested in an inflexible, unilateral
discrete solution to this as the pose is not known in advance either. What we do instead is
illustrated in Fig. 7.11.

Correspondence Pose

β   

Fig. 7.11. Mutual updates for correspondence and pose. In each iteration of a step-wise approximation of the
correct solutions, the correspondence problem is considered for a fixed pose (left). A consecutive update
of the pose (right) is then again followed by a correspondence update while a confidence parameter β
is increased. This mutual update process is repeated until convergence.

We update the approximation for the stochastic correspondence matrix M̄ with all the infor-
mation of the pose we already have; this might even be none in the beginning. With this
approximation we then calculate a new estimation for the pose which gives the input for the
correspondence approximation again. The conceptual idea now is that the more loops we
do, the more precise our estimation becomes. Thus, an early approximation is ranked with
a low confidence β and the confidence of the approximation increases with the number of
iterations.

How can we model this mathematically? Formally speaking, we look for a way to find a
stochastic matrix M̄ that converges to the extendedmatch-matrix M̂ if we increase some control
parameter. We write formally

M̄ (β)
β→∞
−→ M̂ (7.21)

with the control parameter β that represents the confidence level.

As a next step, we model both parts, the correspondence and the pose estimation within
such an iteration loop separately. Let us begin with the correspondence.
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7.3.6. Correspondence Estimation

To model the correspondence approximation we have to find a formal way to describe both
ideas, the assignment of probabilities to every point pair of our setting and the incorporation
of the confidence level of the current estimate. In order to do this, we first look for a possibility
to assign a certain positive value to every pair of points which we then normalize to get a
probability.

The energy functional (7.5) can be summarized as

E=
∑

j,k

m jk

�

d2
jk −α

�

(7.22)

with the distance error d jk as defined in (7.10). If we differentiate this with respect to m jk,
we get

Q jk :=
∂ E
∂m jk

(7.23)

= d2
jk −α. (7.24)

This gives small values Q jk ∈ [−α, 0] for point pairs within the toleration domain. Outside
of this, the value Q jk > 0 increases as the error distance enlarges. As a start, we now assign
strictly positive values to the represented point combinations according to the rank ordering of
Q jk. In addition, we scale the negative value of Q jk with the parameter β > 0 which yields

q jk := exp
�

−βQ jk

�

(7.25)

= exp
�

−β
�

d2
jk −α

��

. (7.26)

The value of q jk is small for non-corresponding points and big for corresponding pairs. If we
normalize this by the sum of the row entries, for example, we get

exp
�

−βQ jk

�

∑

j
exp

�

−βQ jk

� , (7.27)

which takes value 1 for the maximal value of the row as β →∞. All other values become 0 as
β →∞. This method can be seen as the iterative counterpart for a maximization along the
row by increasing the parameter β . It is therefore called softmax and was proposed by Bridle
[40, pp. 212–213].17 We use this idea for our problem although it is not without further ado
transferable to the complete scenario. A matrix normalization in our case is not only desired
across all rows, but at the same time across all columns. Fortunately, the entries of the matrix
consisting of q jk are all strictly positive and we can thus iteratively normalize the rows and the
columns alternatingly to get a stochastic matrix with slacks that satisfies the normalization
constraints (7.17) and (7.18).18 With these ideas, we formulate Algorithm 7.1 for the update
of our stochastic correspondence matrix M̄.
17While Bridle [40] introduced this term to machine learning, the function was already used by Boltzmann [33] and

Gibbs [141].
18This is due to theorem 2 by Sinkhorn [381, p. 877] which guarantees the convergence to such a stochastic matrix.

It is only formulated for square matrices. To use this result, we can embed our problem within a larger problem by
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Algorithm 7.1. Update Correspondence Matrix with Alternating Normalization
Input parameters:
• Point sets: X =

�

x j ∈ R3 | 1≤ j ≤ J
	

, Y =
�

yk ∈ R3 | 1≤ k ≤ K
	

• Pose parameters: R, t
• Variable Parameters: β
• Fixed Parameters: tmat , ε, maximal number of loops In

Computation steps:
1. Initialize parameters: I = 1, tnorm > tmat , M̄prev = 0 ∈ R(J+1)×(K+1)

2. Prepare matrix with positive entries

• Q jk =
∂ E
∂m jk

(Equation (7.23))

3. Compute ordered positive values
• m̄ jk = exp

�

−βQ jk

�

∀ j ∈ {1, 2, . . . , J} , k ∈ {1, 2, . . . , K} (Equation (7.25))
4. Fill slack entries

• m̄ jk = 1+ ε ∀ j ∈ {1,2, . . . , J} , k = K + 1

• m̄ jk = 1+ ε ∀ j = J + 1, k ∈ {1, 2, . . . , K}

5. Normalize matrix M̄
while tnorm > tmat and I < In do

// Update M̄ by column normalization

m̄′jk =
m̄ jk

K+1
∑

k=1
m̄ jk

∀ j ∈ {1,2, . . . , J}

// Update M̄ by row normalization

m̄ jk =
m̄′jk

J+1
∑

j=1
m̄′jk

∀k ∈ {1, 2, . . . , K}

// Update loop-break conditions
Calculate matrix deviation: tnorm =





M̄− M̄prev







Save previous correspondence matrix: M̄prev = M̄
Increment iteration counter: I = I + 1

Output:
• Normalized stochastic correspondence matrix M̄
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The use of the methods softmax and the alternating normalization together is often referred to
as softassign.19 There are several publications that deal with an acceleration of such methods
based on GPU programming. Tamaki et al. [402] present a general CUDA-based implemen-
tation for point set registration and Slomp et al. [382] investigate a GPU-based method for
the application in photomosaics. The method itself has been improved for very large problems
with the help of spectral graph theory by Lozano et al. [266]. Beyond that, many extensions
are made for applications within protein structure analysis by Jain et al. [192] and shape
fitting in medical imaging tasks by Rangarajan et al. [342]. These approaches combine the
rudimental ideas of softassign with other thoughts.

For our further research, we focus on the concept of mutual approximation and look at the
processing chain illustrated in Fig. 7.12 where these ideas are part of Algorithm 7.1 represented
by the left box.
One advantage of this method is the fact that by incrementing β only after every new pose
estimation, the chance of converging to a local minimum becomes smaller. This justifies the
prior translation of the discrete part of the problem into a continuous environment.

Correspondence Pose

β   

Positivity

Softassign

Normalization

ColumnRow

Fig. 7.12. Update of correspondence matrix with softassign. In the bidirectional update process for correspon-
dence and pose (right) as shown in Fig. 7.11, the correspondence is updated via softassign (left). A
match matrix with positive entries is initialized by partial derivation of the energy functional and adding
slacks. Mutual normalization respecting the rows and columns yield convergence to a stochastic matrix.

So far, we analysed the correspondence side in detail. Let us now focus on the other component
of the approximation: the pose estimation.

extending the smaller dimension of the stochastic matrix. Choosing all suchlike created entries to be zero except
for the slacks then makes the theorem applicable in our case and we can forget about the added entries afterwards.

19Cf. Gold et al. [149, pp. 1022–1024].
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7.3.7. Pose Estimation

How is it possible to approximate a pose given two point sets and their correspondences? Let
us write down once again the energy functional from (7.5):

E (R, t) =
J
∑

j=1

K
∑

k=1

m jk





yk −
�

Rx j + t
�





2 −α
J
∑

j=1

K
∑

k=1

m jk. (7.28)

This time, E only depends on the six parameters given by R and t since the current corre-
spondence estimation from section 7.3.6 fixes the entries of M for the moment. Thus we can
write

E (R, t) =
∑

j,k

m jk





yk −
�

Rx j + t
�





2
+ C (7.29)

with the constant C ∈ R. Since we are still interested in minimizing this term for the arguments
R and t, we neglect the scalar C which does not change the solution. One possible way to
approximate the parameters we look for would thus be to use an algorithm that minimizes this
least squares problem. A potential candidate is given by the well-studied Levenberg-Marquardt
algorithm. Although we only have 6 DoF within the equation, the runtime is critical and we
therefore do not want to use such an iterative procedure in every loop. In the following, we use
the theory of (dual) quaternions (cf. sections 6.2.3 and 6.2.5) to formulate the minimization
of the energy functional as an eigenvalue problem.

We use a unit dual quaternion to represent a rotation R ∈ R3×3 and a translation t ∈ R3. To ease
the notation, we write 1 = (1,0, 0,0)T, i = (0,1, 0,0)T, j = (0,0, 1,0)T, and k = (0,0, 0,1)T as
basis elements of H to represent quaternions in vector notation. Following the ideas presented
by Walker et al. [440, pp. 361–362], we can derive from the dual quaternion Q= r+ εs ∈ DH
the representation





R 0

0T 1



=W (r)T P (r) and





t

0



=W (r)T s (7.30)

with the two matrices that arise from the quaternion r ∈H with r=
�

r1, r2, r3, r4

�T as

P (r) =



















r4 −r3 r2 r1

r3 r4 −r1 r2

−r2 r1 r4 r3

−r1 −r2 −r3 r4


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

. (7.31)

If we write a point quaternion for the point p ∈ R3 as

p=





p

0



 , (7.32)
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we can thus reformulate our energy functionalwith the point quaternions x j and yk representing
the points x j and yk. It holds

E (r,s) =
∑

j,k

m jk





yk −
�

W (r)T P (r)x j +W (r)T s
�





2
+ C (7.33)

Appendix
=
A.1
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j,k

m jk
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sTs− 2rTP
�

yk

�TW
�

x j

�

r+ 2sT
�

W
�

x j

�

− P
�

yk

��

r
�

+ C + D (7.34)

with a constant C + D ∈ R that can be neglected for the minimization. The individual steps
that yield this result can be found in appendix A.1. Without changing the minimum, we set the
constant to 0 and dividing by 2. We then rewrite the energy functional as a quadratic function
in r and s with

E (r,s) = rT
 

−
∑

j,k

m jkP
�

yk

�TW
�

x j

�

!

︸ ︷︷ ︸

C1

r+ sT
 

1
2

∑

j,k

m jk I

!

︸ ︷︷ ︸

C2

s (7.35)

+ sT
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�

W
�

x j

�

− P
�

yk

��

!

︸ ︷︷ ︸

C3

r (7.36)

= rTC1r+ sTC2s+ sTC3r. (7.37)

If we want to minimize this with respect to the unit constraints (6.29) and (6.30), we can add
Lagrange multipliers and get

E (r,s) = rTC1r+ sTC2s+ sTC3r+λ1

�

rTr− 1
�

+λ2

�

rTs
�

. (7.38)

The necessary condition for the minimization then reads

∇E= (∂rE,∂sE)T
!
= 0. (7.39)

The partial derivatives can be calculated as

∂rE=
�

C1 +CT
1

�

r+CT
3s+ 2λ1r+λ2s

!
= 0 (7.40)

and

∂sE=
�

C2 +CT
2

�

s+C3r+λ2r
!
= 0 (7.41)

sT
�

C2 +CT
2

�

+ rTCT
3 +λ2rT = 0T. (7.42)

Multiplying equation (7.42) with r from the right gives

λ2 = −rTCT
3r= rTC3r= 0 (7.43)
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where the second step is due to the fact that C3 – as the addition of two skew symmetric
matrices – is skew symmetric itself. If we insert this into (7.41), we get the following due to
the diagonality of C2:

�

C2 +CT
2

�

s= −C3r (7.44)

s= −
�

C2 +CT
2

�−1 C3r= − (2C2)
−1 C3r= −

1
2
C−1

2 C3r. (7.45)

Substituting this into equation (7.40), we end up with

�

C1 +CT
1

�

r− 1
2
CT

3C
−1
2 C3r= −2λ1r (7.46)

1
2

�

1
2
CT

3C
−1
2 C3 −

�

C1 +CT
1

�

�

︸ ︷︷ ︸

A

r= λ1r (7.47)

Ar= λ1r. (7.48)

Due to the properties of P
�

yk

�

and W
�

x j

�

from C1, we can simplify A even more.20

A= 1
2

�

1
2
CT

3C
−1
2 C3 − 2C1

�

(7.49)

=
1
4
CT

3C
−1
2 C3 −C1. (7.50)

The equation Ar = λ1r describes the eigenvalue problem of the symmetric matrix A ∈ R4×4.
Which of the four possible solutions now minimizes our energy functional? For this to see, we
multiply equation (7.40) by 1

2 which gives

−
1
2
CT

3s−λ1r=
1
2

�

C1 +CT
1

�

r (7.51)

−
1
2
sTC3 −λ1rT =

1
2
rT
�

C1 +CT
1

�

. (7.52)

Multiplication with r from the right yields

−
1
2
sTC3r−λ1 =

1
2
rT (2C1) r= rTC1r. (7.53)

On the other hand, multiplying equation (7.41) by 1
2s

T gives

−
1
2
sTC3r=

1
2
sT
�

C2 +CT
2

�

s= 1
2
sT (2C2)s= sTC2s (7.54)

Inserting now (7.53) and (7.54) into the energy functional (7.37) we get

E (r,s) = rTC1r+ sTC2s+ sTC3r (7.55)

= −
1
2
sTC3r−λ1 −

1
2
sTC3r+ sTC3r (7.56)

= −λ1, (7.57)

which is minimal for the maximal eigenvalue λ1 of A.

20For the properties of the matrices P and W, see appendix A.1.
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To find the dominant eigenvector corresponding to the largest eigenvalue, we do not have to
calculate all eigenvalues separately. Since the matrix A is real and symmetric, the eigenvectors
are orthogonal. For a speed-up of this calculation, we can therefore use a power iteration.21

For a non-degenerated start quaternion r̄0, the sequence

r̄n+1 =
Ar̄n

‖Ar̄n‖
n→∞
−→ rmax (7.58)

converges to this normalized dominant eigenvector. Finally we can determine the dual quater-
nion part smax from rmax with equation (7.45). A pose in terms of a rotation matrix R and a
translation vector t is given by the relation equation of quaternions and homogeneous trans-
formations specified in (7.30).
Let us now summarize these steps in Algorithm 7.2 for the pose estimation.

As a last step, we formally fuse both ideas, the correspondence estimation from section 7.3.6
and the quaternion-based pose estimation from section 7.3.7.

7.3.8. Fusion of Approximations

The initial idea in section 7.3.5 to tackle the problem was tomutually update both the point
correspondences and the pose while increasing the confidence level. Schematically, the
entire process can be illustrated as shown in Fig. 7.13 where we see the assignment estimation
on the left and the pose approximation on the right.

With the help of the already formulated algorithms for both sides, we write Algorithm 7.3 to
join the two parts.22 The idea for the confidence update is to choose an exponentially increasing
step size. The values for β0, βinc, and βmax can be determined empirically. We use β0 = 10−4,
βinc = 1.053, and βmax = 103 in all our experiments. In this way, we have a low confidence
level in the beginning and the confidence level increases with acceleration the more iterations
we perform. In our tests, we experience softassign convergence usually within less than 5 loops
and thus set a relaxed iteration maximum of Imax = 10.

Our next step is to combine these thoughts with the concepts of previous chapters. We focus in
particular on testing and evaluation of Algorithm 7.3 and analyse its performance for real-time
3D tracking applications.

21Cf. Deuflhard and Hohmann [87, pp. 138–139].
22A two way approximation with an increasing control parameter is also proposed by Gold et al. [149, p. 1026].
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Algorithm 7.2. Update Pose with Quaternion Method
Input parameters:
• Point sets: X =

�

x j ∈ R3 | 1≤ j ≤ J
	

, Y =
�

yk ∈ R3 | 1≤ k ≤ K
	

.
• Normalized correspondence matrix M̄ from Algorithm 7.1
• Fixed Parameters: tpow, maximal number of loops nmax

Computation steps:
1. Initialize iteration counter: n= 1

2. Quaternion initialization: r̄1 =







rmax from last run

(1, 1,1, 1)T for first run

3. Generate quaternion representation of points (Equation (7.32))

• x j =





x j

0



, yk =





yk

0



 ∀ j ∈ {1,2, . . . , J} , k ∈ {1, 2, . . . , K}

4. Compute matrices with quaternion matrices (Equation (7.31))
• C1 = −

∑

j,k
m jkP

�

yk

�TW
�

x j

�

• C2 =
1
2

∑

j,k
m jk I

• C3 =
∑

j,k
m jk

�

W
�

x j

�

− P
�

yk

��

• A= 1
4C

T
3C
−1
2 C3 −C1 (Equation (7.50))

5. Solve eigenvalue problem with power iteration (Equation (7.58))
while ‖r̄n − r̄n−1‖> tpow and n< nmax or n= 1 do

r̄n+1 =
Ar̄n

‖Ar̄n‖
Increment iteration counter: n= n+ 1

6. Save dominant eigenvector: rmax = r̄n

7. Calculate dual quaternion: smax = −
1
2C
−1
2 C3rmax (Equation (7.45))

8. Compute rotation and translation (Equation (7.30))
• R=W (rmax)

T P (rmax) [1: 3, 1: 3]
• t=W (rmax)

T smax [1: 3]

Output:
• Pose parameters: R, t
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Correspondence Pose
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Positivity

Softassign

Normalization

ColumnRow

Eigenvalue Prob.

Quaternion Method

Power Iteration

Dual Quaternion

Fig. 7.13. Incremental fusion of correspondence and pose estimation. Correspondence and pose are updated
as shown in the middle while the confidence parameter β increases. The left side illustrates the corre-
spondence step via softassign as shown in Fig. 7.12. The right side shows the pose update with the dual
quaternion method. The eigenvalue problem arising from equation (7.48) is solved with power iteration
(7.58) for the dual quaternion representing the current estimate for the rigid transformation.

Algorithm 7.3. Fast and Robust Correspondence and Pose Estimation
Input parameters:
• Point sets: X =

�

x j ∈ R3 | 1≤ j ≤ J
	

, Y =
�

yk ∈ R3 | 1≤ k ≤ K
	

• Pose parameter guess: R, t
• Scalar parameters: β0, βinc , βmax , tso f t

• Iteration parameter: maximal number of loops Imax

Computation steps:
1. Initialize iteration counter: I = 1

2. Initialize confidence parameter: β = β0

3. Initialize correspondence matrix: M̄prev = 0 ∈ R(J+1)×(K+1)

while β < βmax do
while tnorm > tso f t and I < Imax or I = 1 do

M̄← Update correspondence matrix (Algorithm 7.1)
R, t← Update pose (Algorithm 7.2)
// Update loop-break conditions
Calculate matrix deviation: tnorm =





M̄− M̄prev







Save previous correspondence matrix: M̄prev = M̄
Increment iteration counter: I = I + 1

Increment β = ββinc

4. M← Normalized stochastic correspondence matrix M̄
Output:
• Correspondence matrix M
• Pose parameters: R, t
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7.4. Evaluation and Testing

For test purposes, Algorithm 7.3 has been implemented in C++. All tests are made on the
same machine with an Intel Core i5-3320M Processor and 8 GB RAM running Windows 7
Professional, 64-bit. The rotation matrix is initialized as the identity and the initial translation
vector becomes the vector between the centres of mass of the two clouds. For consecutive fits
we use the last pose as an initialization for the rotation matrix and the translation vector.

7.4.1. Accuracy

To test the accuracy of our fit, we neglect the measurement error and calculate the root
mean square (RMS) of the fitting residuum. This is given for one fit of the clouds X =
�

x j ∈ R3 | 1≤ j ≤ J
	

and Y =
�

yk ∈ R3 | 1≤ k ≤ K
	

by

eRMS :=

√

√

√

√

√

√

√

K
∑

k=1
m jk

�

yk −
�

Rx j + t
��2

K
∑

k=1
m jk

=

√

√

√

√

∑

x j↔yk

d2
jk

m
(7.59)

with the distance error d jk and the number of matches m that arise from m jk ∈ {0,1}.

The test scenario is the turning table from OTS prototype design v.1 with the object shown in
the demo image (cf. Fig. 7.4) equipped with 6 markers. The distance from the table to the
camera system normal to its surface is ca. 70 cm and we use markers with a diameter of 5 mm.
We build a test model as described in section 7.5.1 and evaluate a randomly chosen sequence
of 100 frames during the movement. The result is shown in Fig. 7.14. The mean error is
22.54 µm with a standard deviation of 11.68 µm. The median is 20.47 µm. We observe 8

outlier measurements during our test. Upon inspection of the calculated point clouds, all
of these turn out to include fewer than 6 triangulations due to ambient illumination or part
occlusions. The worst three results include only 4 triangulations with the biggest deviation of
88.39 µm which is more accurate than the range of custom pointers tracked by commercial
multi-camera medical trackers23 and below 0.1 mm which is a negligible error for most medical
applications24. This paves the way to use cases of the proposed system.

Other commercial systems are evaluated in a comparison study of Elfring et al. [96] with a
coordinate measurement machine at a distance closer to the camera. The results are summa-
rized in Table 7.1 in terms of RMS error.

23Cf. Marinetto et al. [276].
24Cf. Elfring, Fuente, and Radermacher [96].
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Fig. 7.14. RMS error of OTS. The RMS error (blue) is shown for OTS design v.1 with a 6 markers test object using
5 mm diameter markers at a distance of ca. 70 cm on a turning table. A random movement is recorded
for 100 frames. Additional illustrations show the median (red) and mean value (black) as well as the
standard deviation region (green) for the test data.

Optical Tracking System RMS Error

NDI Polaris P4 0.381 mm

NDI Polaris Spectra (passive markers) 0.165 mm

NDI Polaris Spectra (active markers) 0.104 mm

Stryker Navigation System II 0.077 mm

Tab. 7.1. Comparison of commercial optical tracking systems. The evaluation done by Elfring et al. [96] uses
clinical pointers at a distance of up to 40 cm.

7.4.2. Runtime

The identical setting of section 7.4.1 is used to test the computational efficiency of our approach.
The calculation time is shown in Fig. 7.15.

It turns out that the mean calculation time is 5.89 ms with a standard deviation of ±5.90 ms.
The median for the tracking calculation time of 6 points is 2.32 ms. For the evaluation, every
calculation has been performed 20 times and the mean calculation time is shown here. We
discovered that the increased runtime demand for some of the frames depends on the lack
of one or several points whereas the calculation times for all the fittings with a recognition
of equally many points lie closely around the median with a maximal time deficit of 0.73 ms
compared to the median. It is worth to note that the runtime stays below 25 ms in all cases
which allows for seamless integration into real-time pipelines.
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Fig. 7.15. Fitting algorithm efficiency. The graph shows the calculation time needed to track an object with 6
markers on a turning table sequence. While all fits with measurements of 6 markers distribute tightly
around the median runtime of 2.32 ms (the close points), missing triangulations with clouds of as little
as 4 points (see the outliers) significantly increase the runtime of the algorithm. Even in these cases, a
total runtime of under 25 ms still allows for lag-free real-time applications.
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Quaternion Matrices
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Fig. 7.16. Relative runtime of fitting algorithm subroutines. Shown is the computation time for core parts of
our fitting algorithm. The calculation of the quaternion matrices takes with 31% the longest. Deriving
the energy functional costs 25% followed by the row-column normalization and the power iteration to
solve the eigenvalue problem, which both take 17% of the total time. All other processing sums up to
the remaining 10%.
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The relative calculation time of the individual processing components of Algorithm 7.3
thereby distributes as shown in Fig. 7.16. For this evaluation, we measure the total calcu-
lation time of every subroutine of the algorithm. If a part runs more than once, we note the
total runtime by summation of the individual runtime of all its calls.
It is noticeable, that for both procedures – the correspondence estimation and the pose approxi-
mation – the inner loops are in total less time demanding than their precalculation steps. Thus,
the calculation of the quaternion matrices takes longer than the actual quaternion estimation
by power iteration and the calculation of the partial derivatives of the energy functional is
computationally more complex than the alternating row-column matrix normalization.

Let us now analyse the runtime limitations of Algorithm 7.3 by running a pose estimation
for a point cloud of increasing size. For the evaluation, we artificially create a random point
set of increasing cardinality and transform the set with a random pose. The pose consists of a
translation vector t ∈ [−5, 5]3 and a rotation matrix with Euler-angles α, β , and γ ∈ [−0.1,0.1].
10±5% of the points from both sets are deleted and Gaussian noise is added. The whole fitting
process is done 10 times for every cloud size taking the identity matrix and the vector 0 ∈ R3 as
an initial guess for the rotation and translation of the pose. The results are shown in Fig. 7.17
where we add a plausibility check by calculation of the RMS error as shown on the right. The
residuum is consistent with the artificially inserted noise.
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Fig. 7.17. Time and RMS for pose estimation with different cloud sizes. Random 3D point sets of increasing
cardinality are created and transformed by random poses with added Gaussian noise on the point coor-
dinates. The time for Algorithm 7.3 shown in blue on the left depends quadratically on the number of
points (see fitted red polynomial). The RMS error on the right (blue) as well as statistical measures such
as median (red), mean (black) and standard deviation (green) are calculated in relation to the number
of points. The residuals are consistent with the artificially added noise.

The mean calculation times are recorded and a quadratic polynomial is fitted through the data.
This suggests that the de facto computation complexity of the fitting algorithm is O

�

n2
�

,
where n is the number of points.
We note that without a specific guess for the pose, the given algorithm is theoretically able
to track up to 24 points in real time at a frame rate of above 20 fps. This gives us a maximal
cloud size for real-time calculation. Larger clouds can still be calculated in real-time with the
algorithm, however, the set needs to be split (cf. section 7.5). It is also worth to mention, that
the convergence rate eventually increases through better initialization. Nevertheless, further
steps such as the single view processing and its image coordinate extraction (cf. Algorithm 3.5)
also require computation time, although we empirically determined the fitting procedure as
the bottle neck of the approach.
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7.4.3. Robustness

In order to evaluate the robustness of the algorithm, we again use simulated data. Increasing
the level of noise for a point cloud with 20 elements from 0.0 mm to 0.8 mm gives the results
shown in Fig. 7.18. The RMS error also increases linearly in the same range as expected while
it can be seen that the noise level affects the runtime negatively.
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Fig. 7.18. Impact of noise on fitting algorithm. Synthetic point sets with increasing noise levels from 0.0 mm to
0.8 mm are used to test the robustness of Algorithm 7.3. While the accuracy of the estimated pose (right)
decreases linearly with the level of noise, the runtime (left) is also increasing.

In a second test, we evaluate the sensitivity of the algorithm to missing points. For a fixed
noise level of 0.1 mm standard deviation, we increase the part of deleted points in the target
set Y linearly from 0 to 80 points for a configuration of 100 points in total. This has a decisive
influence on the computation time as depicted in Fig. 7.19 on the right, since the target set
becomes smaller.
The deletion of points together with an improper initial pose given by the identity matrix and
the translation vector 0 ∈ R3 cause the algorithm to fail several times in this test as we can see
in the figure on the left. At these points, the minimization of the energy functional converges
to a local minimum instead of the global one. This happens mostly if the amount of points
within the two sets X and Y differs clearly and local minima become more probable. Using a
suitable initial guess and a fitting approach with appropriate subsets as described in section 7.5
solves this issue.

We conclude this evaluation and note that the proposed pose estimation algorithm shows
robustness with respect to inter point set motion while maintaining adequate calculation per-
formance. Moreover, missing points and partial occlusion can be handled to some extendwhere
predictions in scenarios with more than 50% occlusion have to be treated with caution. The
calculated pose estimates closely reflect the measurement error and are accurate in practice in
a range of 0.02±0.01 mm at a realistic working distance suitable for applications in medical as
well as industrial setups. The algorithm is capable of real-time execution and measurements
in small point clouds. However, for clouds of significantly more than 20 points, the calculation
time may become critical. An extension for very large point clouds will be described hereafter
in section 7.5.
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Fig. 7.19. Impact of missing points on fitting algorithm. A synthetically created point set of 100 points is taken
as source set, while Gaussian noise is added to a repositioned copy of it, the target, while an increasing
amount of points are dropped. A fitting from source to target is performed and both residual error (left)
as well as calculation time (right) are measured. The illustration on the left shows that the accuracy
decreases for larger amounts of missing data while convergence for more than 50% missing points is not
always reached. On the right, it can be seen that the calculation time for identical set cardinality is small
and larger if the set amount differs. Decreasing set size in the target then again reduces the computation
time.

Besides looking into ways to deal with larger point clouds, we consecutively also add some
thoughts on procedures that help in practice and offer reliable extraction of the marker mod-
els. Moreover, we consider possible changes and show limitations of the proposed tracking
system.

7.5. Improvements and Limitations

In this section, we want to discuss two things. Firstly, we focus on the actual point sets for the
fitting process, and determine a way to train a point cloud model of a marked object. And
secondly, we develop ideas for the application of Algorithm 7.3 in case of real-time problems
with large point clouds.

We assume that a camera system as described in section 7.1 offers a video stream of a scene
with a marked object. As mentioned in the beginning of section 7.3.2, we have in principle
two different ways of treating the matching problem. Either we match the point sets from two
consecutive frame pairs or we match a virtual model cloud onto the current pair.
Due to error propagation and the often required need for an absolute pose, we investigate the
latter. Also if we want to formulate a robust algorithm in the presence of occlusion, noise, and
other unpredictable image corruptors, we would decrease its accuracy if we take two possibly
incorrect, or incomplete images. Thus, we fit a fixed point cloud that represents the known
object onto our current measurements. Let us therefore think about a way to retrieve the
model cloud.
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7.5.1. Model Cloud

If all markers of a target are clearly visible from one viewing position, we take a set of training
pictures for a static training in the following way.

Collect 3D coordinates

Write in table

Frame 1

Fig. 7.20. Collection of coordinates from first frame. All measured 3D coordinates (right) are collected in one
column of a table each.

At first, we move the calibrated camera system to an angle where the markers are in sight for
both cameras. After that, we start with the image acquisition and gather the 3D point coordi-
nates for the markers of the first considered frame pair with Algorithm 6.3. The coordinates of
every single point are then written in a different column within the first row of a table as shown
in Fig. 7.20. Afterwards, we take the second frame into account and obtain the points within
the scene (cf. Fig. 7.21). Due to measurement noise, these points are usually not exactly at
the same location as in the frame before. Thus, for every coordinate extracted from frame 2,
we look for the column whose centroid has the smallest distance to this point. If it is below a
certain threshold which represents the noise toleration of the process, we accept the point as
the one we have seen already and append the point coordinates to this column.25 If, however,
the distance is above the threshold, we add the coordinates to a new column. This can be the
case, if a point has not been recognized within the previous frame or if we retrieve a wrongly
detected point.
We repeat this procedure for every frame pair of our training set.

After this, we have a table with potentially different sized columns. In order to remove incorrect
point measurements and errors, we only accept columns with entries of at least half the size of
the number of our training frames. This means they must appear at least in half of the acquired
images. For all of the remaining columns we then exclude outliers and calculate the centroid
for the rest of the points as illustrated in Fig. 7.22. These centroids are taken as the model
point cloud for a static training case. Even though more advanced outlier and noise statistics
can be investigated to clean the measurements, this simple procedure has shown to work well
in practice.

In some scenarios, the markers of an object cannot be seen from a single viewpoint or model
training needs to be performed in a dynamic environment. This can be the case, if self-occlusion
appears, the motion of the object is somehow restricted or the scan is performed during object
motion. It is still possible to calculate a model cloud or extend an existing one with dynamic
training.
25The noise toleration depends on the resolution of the images, the marker size, the distance from the object to the

camera system, and other setup parameters. For our test with an object distance to the cameras of approximately
50 cm and a marker size of 5 mm in diameter, we choose this to be 0.1 mm.
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Fig. 7.21. Clustering of points in model table for scene without movement. The newly triangulated point cloud
(top) is processed point by point. We first scan the existing table for the closest column and add a new
row if it is close enough. Otherwise, the candidate is appended to a new column.

We can adapt the procedure described beforehand and fill the table in a different way. What
we do is to keep a dynamically changing current model with all the information we gathered
so far. In the first frame, for instance, this is just the position of all measured points. If we
now acquire a new frame pair with its point cloud, we use the fitting Algorithm 7.3 to fit the
current model points onto the new measurements. The underlying idea is that whenever there
are some markers visible on the object and the frame rate is high enough, there is no detection
of a completely new set of points with a new frame since real motion is continuous. Thus, we
always see a subset of already known points and can perform a fitting.
With the matching comes a correspondence matrix M. We use this correspondence to decide
whether a point is already known or new. In the first case, we utilize the inverse pose P−1 to get
the point in the same coordinate frame as the model cloud and append it to the corresponding
column. In the second case, we transform the newly detected point with P−1 and add it to a

Robust calculation of
column centroids

Write model cloud

Model

Fig. 7.22. Calculation of model from table. If the model table is built (top right), the source model is set up by
calculating the centroids from the individual columns after outlier removal.
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new column of the table. The whole process is shown in Fig. 7.23. The model extraction from
the table content thereafter remains the same as before where the observation thresholds may
be adjusted.
The computational complexity of this approach is higher as several fittings are necessary. We
can also collect the point coordinates in each frame in an online mode and perform the robust
model cloud calculation offline.

Even though the proposed algorithm can handle real-time tracking tasks, it has limitations. We
now focus on the natural restrictions of the process and describe ways to overcome them.

Frame 2   n

Collect 3D coordinates
P, M

New point in cloud
Correspondence ?

( M ) noyes

new columnin column

Current model New cloud

P -1 P -1

Fig. 7.23. Clustering of points in model table for scene with movement. In a dynamic environment, a pose P and
a correspondence matrix M between the current model (top left) and the observation (top right) exist.
These are calculated with the fitting algorithm and used to analyse (lower box) whether a point within
the current observation has a partner in the model cloud. Depending on this, the point is transformed
into the model reference frame by P−1 and appended to the existing observations or added as a new
model candidate.

7.5.2. Handling Large Clouds

The immanent limit of fitting Algorithm 7.3 for real-time applications is given by the size of
the point sets. In section 7.4.2 we have seen that real-time processing with a cloud size of
considerably more than 25 points is critical for a standard hardware setup. Notwithstanding,
exactly this can be essential for certain applications in interactive environments. A high marker
density on an object is mostly preferable since it also increases the robustness of the fitting
process against occlusion as Fig. 7.24 shows. For the first setup, the occluding rectangle
impedes a pose detection whereas the second denser setup offers enough visible points even
with the occluded part.

In this section we finish our algorithmic modeling and describe a way to fit large point clouds
onto each other in real time. For this to be feasible, we focus on subsets of the model cloud
and use relevant subsets within the actual measurement for a fit. Since we know that the
point cloud itself is static, the pose of a subset with a reasonably large cardinality represents
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Fig. 7.24. Marker density and robustness against occlusion. The upper (small) point setup prevents a calculation
of the pose in presence of the occluding box while the lower (larger) point setup provides enough
measurements to perform a fit even under occlusion.

the pose of the entire cloud and can provide redundancy if multiple sets are used.
Let us explain how we adroitly choose the points for the two relevant subsets.

Frame n    n+1

Estimate new coordinates
P- P-

n-1 n n+1

Collect new coordinates

n-1 n n+1

Fig. 7.25. Difference between estimated point set and measurement for new frame. The pose P− that fits the
points from frame n− 1 to n can be used to estimate the location of the points in frame n+ 1 (upper
row). A comparison of the estimates with the points in frame n+ 1 reveals missing points (lower row).
The set of matching partners reduces.

For our further thoughts, we follow the illustration in Fig. 7.25.
Let us assume we have already fitted frame pair n− 1 to n and look for a fit of frame pair n to
n+ 1. Let the relative pose from n− 1 to n be given by P−.26 A motion in space is continuous.
With an adequately high frame rate, the transformation of the points from frame n by P− is
therefore a good estimate for the position of the points in the next frame n+1. As a further step,
we get the point coordinates of frame pair n+1 with the stereo correspondence Algorithm 6.3.
Comparing their neighbourhoods with our estimates can now give either a match or a missing
point. The idea is to find a subset within the newly acquired point cloud that can be used for a
fit to a special subset of the model cloud. The representations S− and S of such subsets within
the measurements for both, frame n−1 and frame n are given in Fig. 7.26. It can be seen that
the same subset is not a good choice for the next frame in this example since it contains one
point less in the current cloud.
The size of these subsets represents the quality of the algorithm and is directly correlated to
its runtime. We look for a way to create a new subset S+ of the same size as S.

26In the beginning of our tracking procedure we initiate this with an identity rotation matrix R = I and a zero
translation vector t= 0.
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Frame n    n+1

Form subsets for �t
P-

n-1 n n+1

S- S S+P-

Fig. 7.26. Representation of subsets in frame n−1, n and subset guess for n+1. The pose estimation between
frame n− 1 and n gives two sets of corresponding points S− and S (highlighted in the middle). The set
S can be used to estimate a set S+ of points in frame n+1 (right). The cardinality of the sets may not be
the same as shown here.

Which points are potential candidates? As a start, we look in the neighbourhood of the missing
points arising from set S and pose P−. We include all points of frame n+ 1 that are in close
vicinity to these points. If it holds that |S+|= |S|, we are done. Due to errors and occlusion it is
possible that not every point of S has a partner in frame n+ 1. One such example is visualized
in Fig. 7.27. We then adapt the set S by deleting the points without partners and adding new
ones. If the transformation of an added point is in the neighbourhood of some point within
the current measurement, we add this one to S+. The process continues as long as we find
potential partners in frame n+ 1 to the newly added points of S. If this always happens, we
end up with two equally sized sets ready to use for a fit.

Image point of S under P-

New point in
neighbourhood ? noyes

delete point from S

add new point to S

add point to S+

New point in
neighbourhood ? noyes

Fig. 7.27. Creation of subsets S and S+. The estimated points from set S under the transformation P− are inves-
tigated iteratively to create the a new set S+. If they have a partner in their neighbourhood (left), this
point is added to S+. If this is not the case (right), the point is deleted from S and a new point is added
for which the process repeats.

If, however, it appears that a newly added point from S does not have a partner in the image pair
n+1, we delete it once again from the set and add a new point which has not been considered
so far. This procedure is illustrated in Fig. 7.28 and recurs until its estimated neighbourhood
matches some current coordinates of frame n + 1. These coordinates are added to the set
S+. The algorithm finally terminates when both sets S and S+ are of equal cardinality or no
triangulated points are left to be considered.
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New point in
neighbourhood ? noyes

delete point from S

add new point to S

add point to S+

add point to S+

New point in
neighbourhood ? noyes

Image point of S under P-

Fig. 7.28. Modification of subsets S and S+. The process from Fig. 7.27 repeats (right) for all the points in set S
until a set S+ of equal cardinality is reached (lower left) or all points are processed.

We note that the actual fitting is still done from a model cloud to the actual frame and not
relative from one frame pair to the next. The relative pose P− is solely given by the two poses
Pn−1 and Pn that fit the model (i.e. a subset of it) to the points of frame n−1 and n respectively.
The model cloud itself is not shown in the illustrations, but we see the representation of a part
of it and we only marked the subsets of them within the single frames for visual simplicity.
Multiple evenly distributed dynamic model subsets add redundancy and robustness to the
overall process in practice and pose averaging can be used to integrate the individual pose
estimates to a final result.27 While Algorithm 7.3 is thereby used with a relaxed error tolerance
to robustly find a solution, a fast consecutive processing with ICP (cf. section 7.3.2) iteratively
refines the pose. In total this procedure makes the fitting approach applicable to large clouds
by using smaller ones.

Now that we are able to robustly estimate the pose of an object, we investigate how to com-
municate this pose to other machines and algorithms.

7.6. Communication Interface

The optical tracker as presented in sections 7.1 is set up on an independent machine that
connects to the tracking cameras and other machines via Ethernet. In order to control the
tracker and transmit the pose of the OTS, we implement an interface that communicates via
TCP/IP over Ethernet. Over the interface, the OTS machine can receive commands from the
client and transmit measurement results.
27Cf. Hartley, Aftab, and Trumpf [164].
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7.6.1. OpenIGTLink

For both control and pose data, the OpenIGTLink protocol as proposed by Tokuda et al. [413]
is used in Version 2. OpenIGTLink is a multi-platform network communication interface
used for image-guided and robot-assisted medical interventions. The OTS machine runs an
OpenIGTLink server and every connected machine implements an OpenIGTLink client.

7.6.1.1. Message Header

The standard message header contains information about the transmitted data and specifies
its format. Following the standard protocol, the header is set up as shown in Fig. 7.29 where
the header fields follow Table 7.2.

Bytes
0   2                       14                                      34
+---+-----------------------+---------------------------------------+
| V | TYPE                  | DEVICE_NAME                           | 
+---+-----------------------+---------------------------------------+

34              42              50              58
+---------------+---------------+---------------+---------
| TIME_STAMP    | BODY_SIZE     | CRC64         | BODY
+---------------+---------------+---------------+---------

Fig. 7.29. OpenIGTLink message header structure. Every message sent follows the depicted format where the
first 58 bytes are used as a header to specify the message BODY.

Data Type Description

V Unsigned short (16bit) Version number (2)

TYPE char[12] Type name of data

DEVICE_NAME char[12] Unique object name (ObjXY)

TIME_STAMP 64-bit unsigned int Timestamp of OTS system

BODY_SIZE 64-bit unsigned int Size of message body in bytes

CRC 64-bit unsigned int 64 bit CRC for body data

Tab. 7.2. OpenIGTLink message header. The different parts of the message header contain meta information
about the message.
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7.6.1.2. Message Body

To communicate with the OTS two types of messages are used: the TRANSFORM message
sends the upper 3 rows of a homogeneous linear transformation in 4 × 4 matrix form and
specifies the current measurements for the objects (ObjXY) that are tracked while the STRING
message is used to control the OTS. Their message bodies are shown in Tables 7.3 and 7.4.

Data Type Description

R11 32-bit float Element (1,1) in 4-by-4 linear transformation matrix

R21 32-bit float Element (2,1) in 4-by-4 linear transformation matrix

R31 32-bit float Element (3,1) in 4-by-4 linear transformation matrix

R12 32-bit float Element (1,2) in 4-by-4 linear transformation matrix

R22 32-bit float Element (2,2) in 4-by-4 linear transformation matrix

R32 32-bit float Element (3,2) in 4-by-4 linear transformation matrix

R13 32-bit float Element (1,3) in 4-by-4 linear transformation matrix

R23 32-bit float Element (2,3) in 4-by-4 linear transformation matrix

R33 32-bit float Element (3,3) in 4-by-4 linear transformation matrix

TX 32-bit float Element (1,4) in 4-by-4 linear transformation matrix

TY 32-bit float Element (2,4) in 4-by-4 linear transformation matrix

TZ 32-bit float Element (3,4) in 4-by-4 linear transformation matrix

Tab. 7.3. OpenIGTLink TRANSFORMmessage body. Themessage contains the first 3 rows of a 4×4 homogeneous
linear transform. The translation units are in millimeters.

Data Type Description

ENCODING uint16 Character encoding type as MIBenum

LENGTH uint16 Length of string (bytes)

STRING uint8[LENGTH] Byte array of the string

Tab. 7.4. OpenIGTLink STRING message body. Encoding and length are defined before the string content of the
message.
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7.6.2. OTS Control

A tracking of up to three objects at the same time is set as standard and the DEVICE_NAME in
the message header (cf. Table 7.2) encodes which object pose is sent. Unique object names
are specified during training as “ObjXY”, where XY depicts a zero padded number between
00 and 20. While the information flow for TRANSFORM messages is from the OTS to the
client, STRING messages are used bidirectionally to control the optical tracker and to receive
confirmation as well as error messages. The standard set of messages is shown in Table 7.5.
This allows the client to control the OTS and to train new objects specified with index “XY”
∈ {00, 01, . . . , 20}. For instance, if “Obj07” should be retrained, the client would sent “TRA07”
which sets the OTS in training mode. After successful training of this configuration, the OTS
sends “TRF07” and tracking of the new object can be started with “STA07”.
While the successful transmission of all commands from the client is confirmed with “ACK”,
errors such as unsuccessful training, hardware failures, problematic exterior light conditions
etc. can be specified in particular error codes depending on the application.

Byte Array Message Description

STAXY Start tracking of object XY

STOXY Stop tracking of object XY

TRAXY Start training of object XY

TRFXY Training finished for object XY

STOAL Stop tracking of all objects

RST Reset optical tracking system

ACK Acknowledge message to confirm command

ERRXY Error code with number XY

Tab. 7.5. String messages for bidirectional communication between client and OTS. The client can send
various command to control the OTS while the OTS confirms the controls and can send error codes.

7.6.2.1. Start & Stop of Tracking

The OTS is set to track up to three objects at the same time. If the client sends a tracking
request (“STAXY”), the index XY of the previously trained object is specified. The server
immediately starts tracking and sends an acknowledge message (“ACK”). As long as the object
pose is determined, transform messages are sent. If the object is out of sight, no transformation
message is sent. The process can either be stopped for specific objects (“STOXY”) or for all
objects at once (“STOAL”). The system can also perform a soft reset with the command
“RST” which resets the cameras and the image processing pipeline. The command will be
acknowledged, too.
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7.6.2.2. Model Training

A new model can be taught by setting the OTS in training mode for index XY (“TRAXY”). The
server acknowledges the command (“ACK”) and starts the training. During training, the model
can be slowly moved within the working volume of the system (cf. section 7.5) to improve the
model accuracy. A successful training of model XY is confirmed by the server with (“TRFXY”).
The maximum training time is set to 30 sec and a training error can be specified as an error
code XY (“ERRXY”) that is send back by the OTS. In case that a model is already saved under
a given index, the previous model is overridden.

Now that we can communicate poses to other systems, we want to investigate methods of
interaction and collaboration. For this we take a look at co-calibration.

7.7. Tool Calibration

Tracking and communicating object poses over the network allows to calibrate multiple sensors
or cameras with respect to manipulators, tools and other sensing systems. In order to enable
such applications, we first detail the calibration of a marked stylus and consecutively discuss
robot-camera calibration procedures.

7.7.1. Pivot Calibration

In medical as well as industrial setups, the use of a tracked stylus can be beneficial to point at
some target to save its coordinates or to determine a fixed trajectory over time. Some medical
tools such as drillers naturally come with a pointy end whose location is essential in surgery.
Instead of tracking the tool tip, an OTS recognizes a marker setup somewhere rigidly attached
on the object. In order to estimate the tip location relative to the tool coordinate system and
thus relative to the marker system, a pivot or hot-spot calibration can be performed where
the tip is pointed at some fixed location as shown in Fig. 7.30 while the tool is rotated around
this pivot point.

During the process, the poses Ri , ti of the tool coordinates with i ∈ {1, . . . , n} can be recorded
with an optical tracking system. Any point p from the tool coordinate system TCS can be
calculated with respect to the world coordinate system WCS by

pWCS = RpTCS + t (7.60)
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WCS

TCS

p

Fig. 7.30. Pivot calibration setup. A tool (right) is tracked from an optical tracking system (top left). The pose of
the tool is given by the relative pose between the world coordinate system (WCS) and the tool coordinates
(TCS). The tip coordinates are stable during a pivot movement where the tool tip p is fixed while the
tool pivots around the point (semi-transparent illustration) with changing relative poses between the
reference systems.

where the pose of the tool is given by R and t.
Since the pivot point remains the same both in tool as well as world coordinates, we can
write
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(7.61)

which gives an overdetermined linear system that can be solved as a least squares problem
for pTCS (pWCS). A solution can be found for instance with a singular value decomposition or
some robust optimization method.
This allows us to use hand-held stylus-like tools with precise knowledge of their tips. We
make practical use of pivot calibration in the collaborative medical application described in
chapter 10.3.

However, for various reasons such as precision, accuracy and repeatability as well as for collab-
orative support, sensors or tools may also be held by a robotic manipulator for which further
calibration methods are needed to determine the position and orientation of all involved com-
ponents and devices in a common coordinate frame.

7.7.2. Hand-Eye Calibration

To calibrate a camera and a robotic arm such that their location is known in a common
coordinate reference, a hand-eye calibration is performed. We utilize the work of Tsai and
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Lenz [421] with its implementation in the Visual Servoing Platform (ViSP library)28 and
calibrate depending on the location of the vision sensor as shown in Fig. 7.31.
In the eye-in-hand case, the camera is moving with the end effector of the robotic manipulator.
We calibrate the static transformation between both coordinate frames by placing a marker
pattern in the field of view and performing a series of movements with the robot to determine
the pose.
Our eye-on-base routine provides the information for the relative pose between robot base
and an external optical tracking system. For this process we attach a marker on the robot end
effector and run through a series of different positions to calculate the pose.

In chapter 10.3 we make use of these calibration techniques to calibrate the different compo-
nents of a collaborative robotic arm to support a medical procedure and enable multi-modal
sensor fusion. In chapter 8.1, we leverage the hand-eye calibration routines to produce robotic
ground truth for volumetric 3D ultrasound scans. Furthermore, in chapter 7.9, we use a
calibrated robotic arm to setup a prototype for cooperative rehabilitation therapy.

While additional sensors and co-calibrated tools are beneficial in many applications, an individ-
ually placed static tracking system to observe all involved objects and tools is often problematic
in practice. The reason for this lies in the intrinsic requirement of the outside-in tracking sys-
tem to have a clear line of sight to observe all involved instruments and a considerable amount
of markers for precise tracking from the camera viewpoint. We discuss possible relaxations
for this requirement hereafter and explain an example application where more flexibility is
essential.

7.8. Line of Sight

In practical applications with various object for tracking, a single fixed optical tracking system
that observes the scene from the outside is not always sufficient to see enough details such
that a tracking of every involved component can be realized at all times. Oftentimes a stereo
tracker is put on a flexible tripod or mounted at the ceiling. Especially when humans interact in
the scene the line of sight of a single or both cameras of the stereo system can be obstructed
and tracking is lost. One solution for this problem is to co-calibratemultiple trackers that can
be placed at different locations. However, the problem remains if occluders occur close to the
object of interest which is often the case if the tracked tools are objects for interaction.
An example for such a case can be an industrial factory where hand-held devices are used
for manufacturing. And in a clinical environment, the surgery room is often populated with
multiple people that interact close to the patient while outside-in trackers are further away.
In order to ensure minimal distraction and to support with pose information in these cases,
we consider solutions to the line-of-sight issue.

Extending our thoughts from the previous chapters, we hereafter construct a dynamic camera-
in-hand marker-based stereo tracking system that is placed within the scene and observes the
objects as shown in Fig. 7.32 while being able to move. We then test this system in a medical

28Cf. Marchand, Spindler, and Chaumette [275].
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Fig. 7.31. Hand-eye calibration setups. The top part illustrates the eye-in-hand case where a camera system
(camera) is rigidly attached to the robot. The camera system observes a static calibration target marked
with retro-reflective circular markers and the calibration routine determines the poses between camera
and robot end effector (PRobot

Camera) while the pose between the end effector and the world reference frame is
provided through forward kinematics. The lower part depicts the eye-on-base case where a static optical
system (camera) observes the marked end effector of the robot and the pose of the system relative to a
world coordinate frame (PWorld

Camera) is determined while the robot pose is given. The robot frame and the
rigidly attached object reference frame do not necessarily coincide.
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setup.
In chapter 8 we consecutively extend the ideas and describe a markerless approach for inside-
out stereo tracking before we focus on the monocular case.

Dynamic
Stereo Camera

Static Outside-In
Tracking System

Interactor

Fig. 7.32. Static outside-in and dynamic camera-in-hand tracking system. A typical outside-in stereo tracking
system (top left) is statically mounted on a tripod or at the ceiling. In dynamic environments, the line of
sight can be obstructed in various ways. One common factor are people interacting in the scene (middle).
A dynamic camera system illustrated on a robotic arm (top right) allows to observe poses from within
the scene and can change its viewing angle to continuously observe the marked object depicted as an
ultrasound transducer (lower right).

7.8.1. Virtual & Dynamic Cameras

Aside of the physical extension of the tracking setup by using multiple optical systems, an
indirect extension for outside-in trackers with mirror tracking is debatable. In this case, one
or multiple mirrors that are also tracked, virtually extend the amount of optical viewing angles
as shown in Fig. 7.33. However, due to the error propagation through the pose estimation
of the planar mirror itself, the tracking quality decreases. Moreover, the physical mirror is
also not a perfect plane and manufacturing differences can lead to considerable pose quality
differences29 or require a calibration of the mirror plane.

In the following, we therefore consider another solution and turn the problem at its head by
moving the camera into the scene. The prototype evolution is shown in Fig. 7.34. A direct
translation from the marker-based outside-in concept constitutes amoveable camera-in-hand
OTS stereo variant with active ring-lights. We apply the system in practice in chapter 7.9 and
in chapter 10.3.
This first stereo setup uses two board-level GC1291M-BL cameras (SMARTEK Vision, Croatia)
equipped with miniature DSL315B-NIR fisheye lenses (Sunex, USA). The individual monoc-
ular field of view with 135◦ allows for a wide sight coverage and two IF 093 NIR band-pass
29Cf. Liu, Wu, and Wu [259].
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Fig. 7.33. Mirror tracking and virtual viewpoint. The amount of viewpoints for an optical tracking system (lower
part) can be virtually extended by placing a marked planar mirror (top) in the scene. Besides the direct
line of sight for a real object observation, an indirect view through the mirror is possible. Knowing the
pose of the mirror, it is possible to track the objects through the mirror while both the object and the
mirror can change their position and orientation.

filters (Schneider-Kreuznach, Germany) are inserted into each optical path. The direct illumi-
nation is done with two FLDR-i70A LED rings (FALCON Illumination, Malaysia) that flash at
a 875 nm wavelength. The illuminators are triggered during camera exposure by an IPSC2
strobe controller (SMARTEK Vision, Croatia) with 750 mA at 24 VDC. Both cameras acquire
synchronized images due to a hardware trigger at a frame rate of 24 Hz with an exposure time
of 1.5 ms.
To improve the energy efficiency, the hardware size and the need for strobe controlling to
steer the active illumination, we further develop a passive RGB stereo-system which can be
equally mounted on a robotic arm. To enable also flexible hand-held use, the system is then
miniaturized with a mountable and boxed RGBD sensor for inside-out tracking and further
improved in size with a board level sensor and a custom mount.

Miniature inside-out or camera-in-hand vision system such as the ones presented here can
improve the visibility restrictions often caused by line of sight loss. We provide an example
for robot supported movement therapy in chapter 7.9 and use similar hardware for robust
sensor fusion in part 10.3. However, the constant requirement for a free line of sight remains
an inherent part of any vision system and at the moment in which the vision system looses
sight, the source for the tracking information is lost. Various scholars therefore propose hybrid
modality solutions leveraging inertial measurement units (IMUs) which we briefly mention
here.

7.8.2. Visual-inertial Tracking

In case of occlusion, a vision system is unable to reliably track the object of interest. While
it is possible to interpolate and extrapolate poses (cf. section 9.1), measurements without
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Fig. 7.34. Dynamic OTS prototype evolution. The first dynamic OTS systems (top left) are a direct integration of
the marker-based outside-in concept with a significantly smaller size such that they can be mounted on a
robotic arm. A second iteration (top right) leaves out the ring LED lights to enable a passive stereo system
with similar geometry. In order to miniaturize and enable mobile hand-held applications for inside-out
usage, an RGBD sensor is used (bottom). A boxed version based on an intel RealSense D435 camera
with the dimension of 90 mm x 25 mm x 25 mm is used with a flexible mount (bottom left). It is further
miniaturized with a board-level version of the intel RealSense D430 (bottom right).

observations are limited.
One way of dealing with this is the use of non-vision hardware. Aside of EM tracking devices
as discussed in chapter 7.2.2, the hybrid use of inertial measurement units (IMUs) together
with vision system can be mutually beneficial. An IMU measures acceleration (accelerometer)
as well as angular velocity (gyroscope) which can be integrated to help the measurements of
orientation and translation in the absence of visual data or enrich the input signal in a joint
hybrid pose estimation framework.

The first visual-inertial fusion systems are used in inside-out scenarios where the requirement
is simultaneous localization and mapping (SLAM) or visual-inertial odometry (VIO).
Early works are combined with keypoint extraction pipelines to minimize the data input.
The scholars Mourikis et al. [291] propose an efficient EKF-based fusion algorithm to integrate
IMU and vision data. And Jones et al. [198] focus on robustifying the fusion to maintain
scalability. They describe experiments with correct trajectories in sequences with up to 30 km
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trajectory length. Vanishing points from parallel lines in urban scenes are used as additional
constraints for stabilization by Camposeco et al. [59]. And Leutenegger et al. [247] propose a
probabilistic cost function to optimize the fusion in a keyframe-driven nonlinear optimization
scheme. VINS-mono30 combines monocular vision and IMU tightly in a single framework that
is equipped with loop detection and pose graph optimization for long term stability while
Mur-Artal et al. [299] establish a real-time VIO system with loop closure where the already
established map can be reused.

Direct methods leverage photo-consistencies and perform visual-inertial odometry without
keypoint and feature extraction. The work of Forster et al. [119] uses pixel-intensities lever-
aging the manifold structure of the rotational group while the full geometry is estimated with
a stereo vision plus IMU setup by Usenko et al. [430] where the authors build a semi-dense
map from the joint pixel-IMU measurements. The formulation is put into sensor-centric per-
spective by Bloesch et al. [32]. They optimize a photometric loss with an iterative extended
Kalman filter (EKF) and Von Stumberg et al. [437] extend a vision-only SLAM system31 to a
hybrid fusion method and add the IMU into the coupled optimization. Previous information
is integrated with a marginalization strategy.

The vast majority of SLAM and odometry approaches that help to estimate the camera pose
with vision and IMU data do utilize the image as a static data source. This static assumption is
true for global shutter sensors. However, from a cost perspective as well as to utilize existing
hardware with pre-integrated IMUs such as mobile phones, it can be convenient to also use
low-budget vision sensors. These are rolling shutter cameras in most cases. Interpolation
techniques with specific models for rolling shutter sensors32 can be used for appropriate VIO
integration and continuous-time models. Splines33, for instance, can help to fuse rolling
shutter camera acquisitions with high-frequency accelerometer and gyroscope data. Efficient
implementations such as the EKF-based fusion pipeline from Li et al. [248] enable runtime of
these approaches on mobile devices, too.

The community for hybrid approaches grows significantly in the last years and newer datasets
help to compare approaches objectively and quantify their performance on various target do-
mains with real and synthetic data. To specifically tackle real noise and data corruption, the
dataset of Chen et al. [65] can help to analyse robustness of VIO fusion approaches and the
fully synthetic data from Cao et al. [61] aims to test above mentioned rolling shutter pipelines
with tests on the Wuhan University Rolling Shutter Visual-Inertial (WHU-RSVI) data.
The synthetic indoor dataset from Kirsanov et al. [220] aims to provide insights into pipelines
targeted at content-awareness by focusing around semantic and panoptic segmentation chal-
lenges in the presence of IMU and vision data while the NEAR dataset34 is built to investigate
the performance of VIO approaches in the context of indoor augmented (AR) and mixed reality
(MR) applications.
Indoor and outdoor scenes are provided by the TUM VI benchmark of Schubert et al. [370].
The dataset contains visual and inertial data from wide-angle stereo and IMU of real scenes

30Cf. Qin, Li, and Shen [336].
31Cf. Engel, Koltun, and Cremers [97].
32Cf. Guo et al. [155].
33Cf. Lovegrove, Patron-Perez, and Sibley [263].
34Cf. Wang et al. [442].
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in varying scenarios with highly accurate pose information from a motion capture system at
the start and end of the scenes.

While this gives a brief overview over the direction in this field, we decide to focus on the
vision-only aspects first and integrate other sensor modalities in chapter 10. We exemplify the
advantage of line-of-sight aware approaches with a prototype of a cooperative robot that can
be used in medical therapy.

7.9. Cooperative Robotic Movement Therapy

Movement therapy plays an integral part in stroke rehabilitation where repetitive motion with
active patient participation is crucial for the positive outcome. Intense similar motion steered
by the patient triggered the use of collaborative robots as therapy assistants. In this chapter,
we discuss how to use camera-in-hand tracking for training of upper limb movements in
hemiparetic patients after stroke with the help of a light-weight robotic arm. The robotic
assistant equipped with the stereo tracker supports the movement of the deficient arm while
the patient steers the robot with natural movements of the healthy arm which wears a
sleeve with retro-reflective markers.
Online model training and adjustments help to ease the interaction while the optical tracker
updates the pose of the arm within 9 ms and with a precision of 0.5 mm. A series of tests with
healthy subjects show the applicability of the approach to accurately mirror the movements
from the healthy to the potentially impaired arm.

7.9.1. Medical Background & Therapy Forms

In the year 2010, a total of 17 million people were affected by strokes globally while 33 million
post stroke patients were alive.35 Hemiparesis is affecting 80% of stroke patients.36 They suffer
from not being able to properly move one side of their upper or lower limbs. Therapy strategies
and muscle rehabilitation thus have an immediate impact on the quality of their everyday life.
There are various medical and therapeutic approaches towards limb recovery which have been
summarized in the works of Pulman et al. [334] and Basteris et al. [15]. These include
electrical stimulation, neurological therapy, mental practice and imagery, constraint-induced
movement therapy as well as mirror therapy, and repetitive task practice. Given the movements
and processes, the latter two fields can benefit from robotic support. In approaches that include
supported motion, patient participation turns out to be of significant importance both for
the immediate as well as the longer term outcomes of stroke rehabilitation, in particular
for upper-limb exercises with intensive movement.37 Current robot-mediated therapy forms
are categorized depending on the type of human-robot interaction as defined by Basteris et al.
[15]. We present a passive mirror-therapy system in which the patient controls a robotic arm
with his unimpaired arm and the robot transfers the motion onto the affected arm.
35Cf. Feigin et al. [107].
36Cf. Pulman and Buckley [334].
37Cf. Blank et al. [31].
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Previous systems such as the MIME, BFIAMT, and Bi-Manu-Track are controlled with a joystick
while U-EX07 requires the use of an exoskeleton. To the best of our knowledge, the recent
advent of flexible 3D computer vision systems has not been leveraged for robot-assisted move-
ment therapy. We therefore present the first passive mirrored upper limb rehabilitation system
that is able to transfer the movements from a guiding arm in real-time onto training moves for
the impaired arm.

7.9.2. System and Setup

This application demonstrates a first prototype as a step towards contact-free robot manip-
ulation for upper limb rehabilitation. The system is shown in Fig. 7.35 where the natural
arm movement of the healthy side is observed by the stereo camera system mounted at the end
effector of the light-weight robotic arm which observes the marked sleeve of the impaired side
to mirror the movements and train the affected limb of the hemiparetic patient which is fixed
to the robot. One difficulty lies in the robust tracking of the flexible healthy arm in real-time.
The system is not only required to work accurately but also safely and robustly. Even if the
marker is not fully in sight, the movement needs to be adequately reflected onto the impaired
arm. To realize this, the system benefits from the developed algorithms and the marker-based
tracking described before.

Fig. 7.35. Cooperative robotic movement therapy system prototype. An optical tracker (top) is attached to a
robot (right). A hemiparetic patient is able to steer the motion of the impaired arm (right) attached to the
robot end effector by movements of the healthy arm in a sleeve with retro-reflective markers (left). The
observed motion of the healthy side is mirrored by the robot in real-time which moves the hemiparetic
side.

7.9.2.1. Vision System and Robot Hardware

The hardware is depicted in Fig. 7.36. A 3D-printed custom mount with a double active
illumination LED-ring for a stereoscopic camera is attached to the robotic arm of an LBR 4+
(KUKA, Germany). A sling binds the impaired arm to the end effector of the light-weight robot.
A hand-eye calibration (cf. chapter 7.7.2) determines the transformation between camera
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coordinates and robot end effector. The used vision system hardware is the second iteration
of the dynamic OTS design as discussed in chapter 7.8.1.

Fig. 7.36. Robot with stereo camera system. A custom 3D-printed mount is attached to the robot end effector.
The mount holds the two cameras with their active ring-light illuminators. This allows the optical tracker
to view the scene from a perspective close to the robot while moving with the light-weight arm.

The potential patient wears a tightly fitted sleeve on the healthy arm which is equipped with
flat circular markers of 7 mm diameter. The retro-reflective film helps generating sub-pixel
precise measurements to accurately calculate the relative pose between the robot and the
healthy arm in order to move the robot and the impaired arm.
The robot control is run on a machine with an Intel Core i5 4690K at 3.5 GHz while the image
processing and tracking is executed within the FRAMOS Application Framework (FRAMOS
Imaging Systems, Germany) on an Intel Core i7 960 at 3.2 GHz. In order to determine the
overall system accuracy, we use the external optical tracking system Polaris Vicra (NDI, Canada)
as ground truth in all the consecutive experiments. To test the latency of the prototype, a second
robot UR-6-85-5-A (Universal Robots, Denmark) is leveraged.

7.9.2.2. Tracking & Robot Control

The tracking algorithm runs two image processing pipelines for the marker extraction of the
individual camera images in parallel threads and performs Algorithm 7.3 for pose estimation.
The marker ensemble attached to the sleeve of the patient is trained with a fast one-to-multi-
shot learning procedure (cf. section 7.5.1) to flexibly use patient-specific sleeves and ensure
consistent tracking quality. For this, the patient is asked to place the healthy arm in a com-
fortable base position. Once teaching mode is active, all sleeve points are transformed into
a position-independent reference frame that is initiated from a translation of the camera co-
ordinates into the centroid of the first observation and adjusted to the patient needs. All
consecutive measurements are registered to the initial point cloud while robustly enlarging
the model with outlier rejection and parameter adjustments. The patient or medical expert
that explains the system can therefore individually decide the training duration while neither
arm movement nor marker occlusions effect the teaching result before the start of the robotic
manipulator.
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Robotic control is based around the Fast Research Interface (FRI) provided by the robot
manufacturer (KUKA, Germany). We extend this for the path planning by the open-source
robot operating system ROS38 and communicate via OpenIGTLink between the two machines
as discussed in chapter 7.6. The system uses the continuously updated TF library39 to determine
the reference frames in real-time for both the healthy arm and the robot. The control loop plans
a trajectory that aligns the end effector with the virtual reference frame from the training stage,
thus maintaining a static pose between the impaired and healthy arm. We use OMPL40 and
MoveIt!41 for self-collision avoidance and path planning where a variant of RRTConnect42 is
used as a planning backbone. The stochastic nature of the algorithm could impose a safety issue
in proximity to the patient. Thus, we control the planned trajectories of each joint and reject
path planning if a joint moves beyond a threshold close to the user. The final safe trajectory is
then asynchronously pushed to the joint-trajectory-action controller in ROS and forwarded to
FRI where trajectory updates happen every 40 ms. To ensure acceleration continuity, a quintic
spline interpolation with the current state is performed by the controller. As an additional
safety measure, both the acceleration and velocity of the robotic arm are limited to 0.8 m/s2

and 0.24 m/s respectively. The overall process control is depicted in Fig. 7.37 and enables a
smooth dynamic motion closely reflecting the natural movement of the patient’s healthy arm.

Fig. 7.37. Process control loop. The calibrated stereo vision system attached to the robot end effector (top right)
acquires synchronized images that are processed by the FRAMOS software framework (top left). The
calculated pose is used for the path planning and robot control (bottom left) within ROS and FRI which
determines the movements.

7.9.3. Experimental Validation

The parameters for the visual tracking algorithm are determined empirically as described in
chapter 7.3.8. A pose estimate is considered successful if at least 50% of the marker points are
38Cf. Quigley et al. [338].
39Cf. Foote [118].
40Cf. Sucan, Moll, and Kavraki [398].
41Cf. Chitta, Sucan, and Cousins [67].
42Cf. Kuffner and LaValle [231].
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detected and the pose error between estimation and observation is below a certain threshold.
To allow for slight deformation of the sleeve, we relax this constraint to 3 mm RMSE. The
initial learning stage that defines the model cloud is extended by an online learning stage
which is triggered once the constraints are violated for a longer period.

The accuracy of the system is evaluated in two steps. At first, we perform a stereo calibration
for the intrinsic and extrinisic parameters of the stereo system. The final mean reprojection
error is measured as 0.29 pixels.
In a second step, the overall system accuracy (i.e. stereo calibration, pose estimation and
hand-eye calibration) is calculated. An extended working volume of 600×600×400 mm3 is
chosen for this test. Since the repeatability for the forward kinematics of the robot pose ac-
cording to the manufacturer is ±0.05 mm43, we use this as ground truth to validate the system
error. While observing the sleeve target with 10 markers in a static position on a table, we
move the robotic arm along a planned trajectory within the working volume in steps of 20 mm
and record the estimated poses. The RMSE for the pose fitting is 0.21 mm ±0.25 mm while
the standard deviation for the translation error with respect to the robotic ground truth is
calculated as 0.23 mm, 0.23 mm, 0.42 mm in x, y, and z direction of the camera: A precision
not noticeable for the user during dynamic motion.
To measure the overall robustness, we firstly repeat the experiment and occlude up to 50%
of the markers without significant deviation from these results. We then train the system in
an example scenario with a user and record the RMSE of the pose estimates with respect to
the learned sleeve configuration in various robot poses while keeping the robot static. The
mean results are shown in Fig. 7.38. It can be noted that the error is below 0.5 mm within a
200 mm window around the training distance.

Fig. 7.38. Robot accuracy evaluation and practical test. The mean accuracy for the pose RMSE during a user
test is shown on the left. The robot moves to several poses following the arm while the RMSE at different
distances between 100 mm and 600 mm is recorded. The distance during marker training is highlighted
together with the area where the error is below 0.5 mm. On the right, the robot arm is shown in various
poses in a test with a medical expert where the robot is following the user movements.

43Cf. KUKA GmbH [232].
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The calculation time for the pose estimation with the 10 test markers on the sleeve is 9.42 ms
±1.44 ms. To measure the system latency, we utilize a second (reference) robot holding
a target which is observed by the application robot. Both robots are synchronized and co-
calibrated. The application robot follows the reference robot while we record the trajectories.
The setup and translational component of the motion is shown in Fig. 7.39 during a move.
The delay is measured as the relative time difference between the start of the robot motion
indicated with a vertical dashed line. We calculate an overall average latency of 318.70 ms.

A final experiment with two healthy medical experts targets the usability of the system in
movement therapy. The test persons rest the left arm in the sling and are asked to relax it fully.
Fig. 7.40 illustrates a possible test scenario. Both users then execute a series of movements
with the other arm in all possible directions and are asked for feedback on their experience.44

The testers were able to freely control the robotic arm without prior training and agree that the
robot mimics the motion of the right arm smoothly. The control mechanism has been reported
to be intuitive and steering the robot in this way found to be easy.

Reference
Robot

Application
Robot

Fig. 7.39. Robot movement latency test. Two robotic arms are deployed to measure the latency of the proposed
system. The reference robot holds a marker and moves to a set of new poses and the application robot
follows. The recorded motion is illustrated on the left for one translation component. The reference
robot is shown in blue between one of these movements. The application robot motion is illustrated in
green. The delay of the beginning of the motion (vertical bars) shows the system delay. The slow smooth
motion is due to the safety measures. The photos on the right show the robots in static positions (top),
after the motion of the reference arm (middle) and after the motion of the application robot (bottom).

7.9.3.1. Discussion and Retrospective

The presented marker-based camera-in-hand tracking system for collaborative robotic move-
ment is capable of steering an impaired arm with a healthy arm, thus enabling a first step in
the direction of touch-free movement therapy. Previous robotic rehabilitation systems either
use joystick control or exoskeletons45 while our prototype is a first demonstrator for natural
44A video of the experiments is available for download at http://campar.in.tum.de/Chair/PublicationDetail?pub=

busam2015acvr.
45Cf. Basteris et al. [15].
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Fig. 7.40. Usability test of movement therapy robot. Illustrated is a configuration similar to the usability study.
The healthy subject is attached to the robot with one arm and steers the movement with the other side.

motion steering without these constraints. The touchless real-time pipeline acts as an inter-
face for the interaction between human and machine and thus directly addresses the inherent
problem of robust recognition of the live human intent as pointed out by Rautaray et al. [343].
While the markers ensure a robust and accurate pose estimation and a safe robot control with
a latency of only 318.70 ms and a precision above 0.5 mm in a considerably large working
volume, they are also the main disadvantage of the current pipeline. However, similar perfor-
mance for human-robot interaction is not achievable with marker-free methods.46 Even though
there are similar performing marker-based tracking methods such as the ones presented by
Garrido-Jurado et al. [137], our self-adhesive fiducial system with rapid online training and
controllable rejection basin is more flexible than commonly used marker systems such as the
ones from Naimark et al. [303] or Zhang et al. [476] and calculates poses faster than other
systems.47 The ability to learn on the fly and re-adjust for sleeve motion or new users also
helps to quickly adapt the configuration.

While paving the way for more natural collaborative systems, this first concept demonstrator
allows only for simple movements and needs necessary extensions in order to compete with
available rehabilitation robots as described by Basteris et al. [15]. The current movements are
restricted to three directions of the arm that fully steer the hand movement while leaving some
slack for the rotational part with a loose fixation of the hand at the end effector. Also no extra
model is utilized for joints such as the elbow. Moreover, the force applied to the impaired arm is
currently not considered and the speed is limited for safety reasons. The tracking algorithm is
capable of tracking multiple targets at once and thus can be extended with joint-specific marker
ensembles in a multiple target tracking scenario. Furthermore, the current manipulator is a
standard robotic arm and would need some customization in order to function similar to an
exoskeleton where more complex individual muscle movements can be mirrored.

46Cf. Siddiqui and Medioni [376] as well as Buehler et al. [44].
47Cf. Fiala [112].
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The camera-in-hand solution of our tracker circumvents the line-of-sight issues commonly
appearing for static outside-in systems and the two-camera design may eventually contribute
towards patient acceptance as the stereo-setup gives a more humanoid appearance to the robot
than a single monocular camera.
A clinical study for upper limbmovement therapy can help to eventually understand the clinical
impact of such a system with the above mentioned extensions and a comparison to existing
robotic and non-robotic approaches can lead to a conclusion for the impact of natural gesture-
control and user participation for active rehabilitation in impaired hemiparetic patients.

With this example, we conclude the description of our marker-based pose estimation pipeline
and consider the next logical constraint relaxation by moving into the domain of marker-free
approaches.
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8
Markerless Pose Estimation

„Jedes enthält etwas als Objekt in sich,
obwohl nicht jedes in gleicher Weise.

– Franz Brentano
(Psychologie vom empirischen Standpunkte)1

The previous chapter described a 3D computer vision pipeline that can be used to accurately
measure rigid body motions of marked objects in space. We have seen how to utilize modern
camera hardware to build such a system and how we can co-calibrate it with other sensors
to eventually apply the system in a medical use case. Even though the camera-in-hand setup
described in chapter 7.9 moves together with the robot and accurately measures the relative
pose between camera andmarked object, a free line of sight between vision system andmarkers
is essential.

In this chapter, we focus on both these challenges, the line of sight and the markers. We first
turn our previous approach at its head and instead of pointing the cameras towards the object
of interest, we fix the vision system rigidly to the object and point the cameras away from it
into the surrounding environment (cf. section 8.1). In our medical scenario, for instance, this
can be an operation theatre. Making use of the miniature IO design developed in section 7.8.1,
we design an inside-out tracking approach that allows for camera pose estimation relative
to the surrounding. Since the vision system is fixed to the object of interest, the object motion
is identical with the camera movements.

For reasons such as space, environment and hardware wiring, it is, however, not always possible
to fix a miniature camera onto the object. While markers can facilitate high accuracy (cf.
chapter 7.4.1), their placement or appearance may also be impractical in scenarios such as
robot grasping in production lines or in certain augmented reality (AR) setups. Depending on
the use case, more relaxed accuracy requirements allow even for outside-in approaches without
markers. Consecutive thoughts address markerless object pose estimation where marker
properties are replaced by object properties (cf. section 8.2) such as geometrical information
or natural features arising from the object appearance and the help of 3D models.

1“Each includes something as object within itself, although they do not all do so in the same way.”, Franz Brentano:
Psychologie vom empirischen Standpunkte. Leipzig: Duncker and Humboldt, 1874, S.124f.

191



8.1. Inside-Out Tracking

We first analyse the possibility of using a miniature hardware vision system for object pose
estimation without markers in a medical use case scenario to show its practical relevance and
exemplify the advantages for 3D ultrasound compounding.

Continuous pose estimation for medical instruments and surgical sensors is the de facto stan-
dard of modern interventions and an essential tool for 3D ultrasound compounding where 2D
ultrasound slices are combined with their spatial pose information over time in order to compu-
tationally reconstruct the underlying 3D anatomy. External optical trackers as commonly used
suffer from line-of-sight issues as discussed in chapter 7.8. This problem becomes evident in
particular if the region of interest is difficult to access. The inside-out trackerwe propose here
aims to circumvent these obstacles and provides a practical solution. Simultaneously localizing
the camera while reconstructing the operating room allows for markerless tracking where the
camera pose is determined by its surroundings. We enable ultrasound probe tracking with the
help of visual SLAM in an interventional scenario. A miniature vision sensor with multiple
modalities (monocular, stereo, active depth sensing) is mounted on an ultrasound probe and
the cameras point into the room. It is used to relocalize its position and orientation within an
adaptive map of the operating room and tested in the interventional context of transrectal 3D
ultrasound (TRUS). State-of-the-art algorithmic pipelines for direct and feature-based visual
SLAM as well as a commercial optical tracker are compared to each other both qualitatively
and quantitatively regarding their relevant performance for anatomical volume reconstruction
and pose accuracy. A robotic manipulator serves as a ground truth pose generator to identify
pose variations and to compare all approaches.
Indirect binocular SLAM based on feature tracking shows the most promising results. The
system is tested in extensive experiments that reflect the challenging clinical environment
present during prostate ultrasound biopsies.

8.1.1. Status Quo & Medical Motivation

Tracking systems provide the rigid body transformation of one (ormultiple) targets with respect
to a common reference frame which can be the tracker itself, the patient or any pre-calibrated
coordinate frame. Medical instruments and tools are tracked to enable certain forms of medical
imaging and computer aided interventions. Accurate tracking information is a crucial element
for reliable diagnostic analysis in medical applications such as 3D ultrasound compounding.
Mechanical trackers use the physical description of their kinematic chain to provide high
precision measurements.2 Due to their expensive components and bulky setup, they are un-
suitable for dynamic clinical usage where flexibility is required.
In contrast to mechanical solutions, electromagnetic tracking systems are more flexible to
use, but they provide a limited accuracy and are known to interfere with metallic objects in
proximity to the working volume which by itself is comparably small which restricts the user
to movements in a limited space.3

2Cf. Hennersperger et al. [170].
3Cf. Kral et al. [227].
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Optical tracking systems (OTS) do not suffer from these disadvantages and enjoy widespread
use. Usually, a set of active or passive infrared markers is attached to the target and tracked
by a static external stereo camera. While the accuracy is relatively high (cf. section 7.4) and
the working volume considerably large under optimal conditions, these systems require a free
line of sight to the target. In cases with critical line-of-sight restrictions, the typical outside-in
systems are repositioned multiple times during an intervention in case of tracking loss as occlu-
sions of markers can occur while they are in use. This impacts the medical workflow severely
and can critically increase intervention time and stress on both patient and physician.
More robust systems such as the tracker presented by Busam et al. [49] work also for incom-
plete target visibility with partly occluded marker setups. Marker-visibility can be radically
reduced in different practical cases where prominent examples are freehand SPECT [173] and
freehand 3D ultrasound [109] which critically demand robust and reliable tracking solutions.
The combined requirement for both accuracy and flexibility in medical 3D imaging are ad-
dressed by a series of ideas. The system presented by Esposito et al. [101] uses a collaborative
robotic arm to assist in a medical intervention under ultrasound guidance with a camera-in-
hand system. The approach offers the advantage to automatically reposition the marker-based
tracker in a dynamical setup, however, it does not resolve the line-of-sight issue.
To reduce the need for markers in 3D ultrasound, Sun et al. [399] attempt to leverage specific
localized skin features instead. While these features can be a promising guidance, the system
is designed for a specific anatomy that provides rich enough information.

Our approach is pragmatic. Compared to previous ideas, we aim to provide a generalizable
tracking system that works autonomously without manual or case-specific feature selection
while being simple to setup and use even for novice users. We leverage the hardware iterations
from section 7.8 and make use of a miniaturized camera system that can be placed on the
object of interest where the image and video data provides us with the foundation to extract
features in the room that can be used to track the camera and estimate the object pose.

8.1.2. Inside-Out Object Tracking

We discuss the inside-out tracking system in the use case of transrectal 3D ultrasound com-
pounding as illustrated in Fig. 8.1 which shows the typical setup for a prostate fusion biopsy.
The ultrasound device is equipped with a miniature camera system whose line of sight points
away from the patient towards the rich features of the clinical environment.

8.1.2.1. Inside-Out Tracking System

To establish a generic inside-out tracking approach that is robust to different environments,
the ad hoc extracted geometric information from the scenery is vital for its pose estimation
quality. In order to realize such a system, we utilize a visual method to simultaneously map the
surrounding and localize the camera within the adaptive reconstruction (SLAM).4 We propose
to rely on characteristic features of surrounding structures to enable a cumulative construction

4Cf. Mur-Artal and Tardós [298].
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Fig. 8.1. Interventional setup for transrectal ultrasound fusion biopsy. The figure shows the examination bed
with a transrectal ultrasound phantom. The ultrasound system (right) is placed such that the cabling
allows for the intervention. We propose the combined tracking mount (lower right) on the handle of
the ultrasound probe that adds a miniature camera to the traditional rigid markers used for classical
outside-in tracking.

of the map within a previously unknown environment observed by the sensor.
SLAM methods can be separated in direct and feature-based methods, both with its charac-
teristic drawbacks and benefits. For direct SLAM approaches, the entire image information is
taken into account. The pioneering systems LSD-SLAM5 and DSO6 are prominent examples of
this kind of approach. While starting from the direct sensor measurements, the pipelines may
lead to erroneous poses under changing lighting conditions, require good initialization and
are not able to recover poses correctly for rolling shutter cameras. In contrast, feature-based
methods rely on extracted feature points. Prominent examples such as ORB-SLAM7 and its
extensions from Mur-Artal et al. [298] and Campos et al. [58] lead to more stable tracking
behaviour during illumination changes, but require a minimum amount of structure within
the scene.
Structure from motion (SfM) pipelines such as SfM learner8 and the monodepth pipeline9 as
well as their successors are also able to determine the poses between consecutive frames in a
video sequence to incrementally build a pose trajectory. However, full SLAM pipelines such as
the ones mentioned above are different. They provide an entire framework including methods
for loop closing, pose graph optimization and re-initialization which are necessary to establish
poses also after sight-loss, occlusion or incremental drift.

While different additional modalities can be used to extend visual SLAM for instance with the
inclusion of an IMU (cf. section 7.8.2), we rely here on binocular stereo vision. This has
several advantages over monocular or active depth sensing methods.10

The inside-out optical tracking system (IO-OTS) proposed here is thus relying on marker-
5Cf. Engel, Schöps, and Cremers [98].
6Cf. Engel, Koltun, and Cremers [97].
7Cf. Mur-Artal, Montiel, and Tardós [297].
8Cf. Zhou et al. [485].
9Cf. monodepth by Godard, Mac Aodha, and Brostow [144] and monodepth2 by Godard et al. [145].

10Cf. Mur-Artal and Tardós [298].
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free image data and its poses are retrieved from the SLAM backbone which allows for flexible
use in unknown environments without the need for markers. To assess the quality of the IO-
OTS, we experimentally analyse the tracking accuracy both quantitatively and qualitatively in
comparison to a commercial tracking solution with the help of robotic ground truth movements
and investigate the sample use case of freehand 3D ultrasound imaging.

To the best of our knowledge, the proposed prototype is the first system that is using SLAM for
inside-out tracking to estimate the object pose in an interventional setup which is exemplified
with 3D TRUS. Pointing the vision system away from the patient into the quasi-static room turns
the tracking idea at its head and enables a constant update of the OR map while being more
robust to partial occlusions. The line-of-sight restriction from outside-in trackers is thereby
tackled through the use of wide-angle lenses.
Aside of an improved rotational accuracy, the system also omits time-consuming intraoperative
hardware repositioning which is necessary if external outside-in tracking systems are used
and a marker visibility during the entire medical procedure is not possible. While the method
dynamically adjusts the map to environmental changes it also paves the way for seamless
multi-sensor fusion where a common map can be shared amongst multiple sensors or edge
devices to enable fast replacement and information combination.

8.1.2.2. Camera & Object Pose Estimation

Pose estimation with a moving camera in SLAM setups usually determines the camera refer-
ence frame relative to a world anchor. We, however, are interested in the use case of freehand
ultrasound where the US sensor gives the coordinate system of interest and thus need a calibra-
tion step in form of a rigid transformation as the camera is rigidly attached to the ultrasound
transducer. Hereafter, we discuss our inside-out setup for object pose estimation including
the calibration chain, detail and justify pipeline choices and finally describe the processes for
evaluation.

In interventional 3D ultrasound imaging, we seek the rigid transformation of the transducer
with respect to a common world reference frame. Let us therefore denote with TB A the trans-
formation from A to B and let the desired world reference frame be called W. Thus, the
transformation TW

US indicates the ultrasound image (US) in world coordinates. In contrast to
an outside-in tracker, the inside-out camera system is rigidly attached to the ultrasound probe
and provides a direct relation to the world reference frame with

TW
US = TW

RGB · TRGB
US (8.1)

where TW
RGB is the transformation which needs to be determined by the SLAM-based tracking

algorithm while a conventional 3D ultrasound calibration method11 can be leveraged to
determine the static transformation TRGB

US.

Our miniature camera setup is shown in Fig. 8.2 and described in detail in sections 8.1.3
and 8.1.4. The hardware provides several image modalities commonly used for visual SLAM.
Even though requiring the least amount of input data, monocular SLAM approaches need a
11Cf. Hsu et al. [185].
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Fig. 8.2. Combined miniature camera mount on ultrasound transducer. The picture shows the outside-in rigid
body marker with its metal frame which can be partly seen with the three mounted retro-reflective marker
spheres. Additional to it, a miniature multi-modal RGB-D sensor is mounted to the frame of the example
ultrasound probe. The sensor provides a monocular colour camera with rolling shutter (left), a binocular
monochrome greyscale global shutter stereo camera pair which is sensitive to the near infrared (IR)
spectrum as well as an IR pattern projector that is able to project a static dot pattern into the scene for
additional texture.

considerable amount of translation without much rotation as an initialization in the beginning
of the movement which is a restriction we want to omit to ease the use for medical users.
Additional to this, it accumulates drift errors over time which affect the pose estimation quality
and the absolute scale of the reconstruction as well as the pose trajectory remain unknown as
the necessary pairing of two video frames used for triangulation induce a non-deterministic
baseline initialization in practice for freehand motion. The latter makes it unsuitable for metric
measurements and the composition with the ultrasound calibration which ultimately prevents
the system from providing metric object poses.
The camera provides an additional depth map in real-time with an efficient implementation
of SGBM12. The depth accuracy of this RGB-D camera, however, is too noisy for high accuracy
measurements. Thus, we rely on a stereo setup and calibrate the cameras prior to our use
to determine their fixed baseline and intrinsic parameters as described in chapter 4.2. This
additionally allows for feature triangulations in rotation-only motions such as the ones common
in 3D TRUS.

To understand and compare the suitability of different SLAM-methods for the IO tracker,
we run our evaluation with publically available implementations of prominent pipelines. As a
representative of a feature methods, we apply the popular ORB-SLAM213 pipeline in its stereo
version while we rely on stereo DSO14 as a direct method.
The transrectal ultrasound setup with a phantom is shown in the clinical environment in
Fig. 8.3 together with the inside-out camera view of the left monochrome greyscale sensor. The
detected features of ORB-SLAM and reprojected sparse map points from DSO are augmented
for visualization purposes to show that a standard operation theatre provides sufficient visual

12Cf. Hirschmüller [177].
13Cf. Mur-Artal and Tardós [298].
14Cf. Wang, Schworer, and Cremers [444] who present the stereo version of the popular Direct Sparse Odometry

(DSO) pipeline from Engel et al. [97]. Note that the standard implementations of DSO and LSD-SLAM from Engel
et al. [98] cannot be used here as they are restricted to the monocular camera case.
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information for pose estimation. Surgical environments are scenes with multiple devices and
medical tools that provide visual features for camera solutions. The equipment around the
examination bed is ideal for inside-out tracking systems as feature response maps and edge
detectors provide stable responses while the same medical devices are challenging occluders
and obstacles for outside-in trackers.

TRUS on Ultrasound Phantom

IO View ORB DSO

Fig. 8.3. 3D TRUS phantom acquisition. Top: An ultrasound volume scan of a prostate phantom is performed
in the prostate biopsy operating room. The miniature camera is mounted together with the rigid body
marker of an outside-in system on a transrectal ultrasound probe. The images in the lower row show the
input and extracted data from the two SLAM methods. Bottom left: The image shows the left view of the
stereo pair from the inside-out tracker pointing away from the patient situs into the room. The response
map of ORB-SLAM (bottom, centre) shows the detected ORB features augmented in green. Bottom right:
The reprojected sparse map points from DSO are colour coded depending on their distance to the camera
(warmer colours are closer).

8.1.3. Tracker Validation

We now evaluate the accuracy of the inside-out tracking approach in comparison to a com-
mercial medical outside-in tracker and assess the advantages of feature-based SLAM against
a direct approach. A robotic manipulator thereby serves as ground truth. In a consecutive
qualitative analysis we then further exploit the clinical benefit of the system for 3D ultrasound
compounding.
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8.1.3.1. Evaluation Setup

To quantify the tracking accuracy, we attach our combined tracking mount rigidly to a robot
end effector as shown in Fig. 8.4 together with the associated reference frames. The complete
setup of all coordinate frames relevant for our evaluation is illustrated in Fig. 8.5.

RGB IR USOMEE

Fig. 8.4. Pose accuracy evaluation mount. The miniature camera is attached on the combined mount with the
optical rigid body marker (OM) at the robot end effector (EE). The mount additionally attaches both
inside-out camera and ultrasound transducer to one another to perform also qualitative evaluation with
3D US scans. Shown are the two camera reference frames for RGB (RGB) and infrared stereo pair (IR).
The latter is incident with the right IR camera. We also show the coordinate frame notation for the
ultrasound probe (US).

The camera model15 and calibrationmethod16 follow the ideas of Zhang [481] with which we
calibrate both the monocular RGB (RGB) as well as the stereo cameras (IR1, IR2). We use a
pinhole camera with two radial distortion coefficients and calculate the stereo geometry with
OpenCV.17 The hand-eye calibration18 between inside-out tracking camera (IR) and robotic
end effector (EE) is performed using the algorithm of Tsai et al. [421] in the implementation
within the framework of Marchand et al. [275] in eye-in-hand mode. Eye-on-base is used to
calibrate the external optical tracking system (OTS) to the robot base (RB).

We initially evaluate the tracking accuracy of various inside-out methods in comparison with
the external optical tracker. A 7 DoF robotic arm KUKA iiwa (KUKA Roboter GmbH, Augsburg,
Germany) serves as the tool to generate a ground truth motion with which we can compare
the different systems. This robotic manipulator guarantees for a positional reproducibility of
±0.1 mm which will turn out to be one to two orders of magnitude more precise than the
optical algorithms we test. With special attention to the medical use case, we compare to a
commercially available optical tracking system (Polaris Vicra, Northern Digital Inc., Waterloo,
Canada) based on sphericalmarkers and infrared illumination that is commonly used inmedical
applications. As inside-out tracking sensor hardware, we utilize an intel RealSense Depth
15Cf. chapter 4.1.
16Cf. chapter 4.2.
17Cf. Bradski [38].
18Cf. chapter 7.7.2.
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Fig. 8.5. Tree of reference frames for accuracy evaluation. The different reference frames are all co-calibrated
or connected via pose estimation approaches. The robot base (RB) calculates its end effector (EE)
position with the robot forward kinematics. The monocular colour camera (RGB) is calibrated with the
end effector via hand-eye calibration (eye-in-hand variant) and itself co-calibrated via a stereo calibration
with the binocular monochrome infrared stereo setup (IR) whose reference frame is incident with the
right IR camera (IR 1). All three cameras are calibrated for their intrinsic parameters and corrected
for distortion effects. The ArUco (AR) and SLAM (SR) methods map the room and allocate their world
reference coordinate frames. An external optical tracking system (OTS) is calibrated with the robot base
via hand-eye calibration (eye-on-base variant) and provides itself the pose for the optical marker (OM)
additionally attached to the end effector mount.

Camera D435 (Intel, Santa Clara, CA, USA) which provides synchronized images with a
global shutter binocular greyscale stereo system and a rolling shutter RGB camera in miniature
format.

We evaluate tracking systems for inside-out tracking with both feature-based and direct SLAM
methods against an ArUco19 marker-based inside-out method with 16× 16 cm markers and
a classical outside-in system. The miniature marker with both the optical outside-in target as
well as the miniature camera is attached to the robot as shown in Fig. 8.4 and the robot is
controlled via the Robot Operating System (ROS) while a separate machine acquires the vision
data with the intel RealSense SDK20. All systems are synchronized to a common NTP-server
with a temporal offset of t < 1 ms and images are acquired with a resolution of 640×480 pixels
at a frame rate of 30 Hz. Poses for RGB camera and tracking target are communicated via
TCP/IP over Ethernet with the publicly available library S.I.M.P.L.E.21 while image processing
and acquisition is done on a machine with an intel Core i7-6700 CPU, 64bit, 8GB RAM which
runs Ubuntu 14.04.
The surrounding conditions are equivalent to a conventional TRUS. We therefore cover the
same scanning volume and tracking time while the distance to the optical systems is identical
to the medical procedure. All evaluation results hereafter therefore directly reflect this medical

19Cf. Garrido-Jurado et al. [137].
20Cf. https://github.com/IntelRealSense/librealsense.
21Cf. https://github.com/IFL-CAMP/simple.
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use case and the error analysis provides insight into all involved components. The entire setup
is shown in Fig. 8.6.

IO Tracker

ORB-SLAM ArUco Tracking DSO Sparse SLAM Map

Evaluation Setup Left IR Right IR

Fig. 8.6. Evaluation setup and response maps. The accuracy test evaluation is done in an operation room (top
left), where the combined mount of an IO Tracker and rigid body marker with spherical IR markers (top
centre) is attached to the robot end effector. The inside-out stereo view (top right) illustrates the field
of view of the monochrome camera pair. The responses from ORB-SLAM, ArUco marker tracking and
DSO necessary to run the different SLAM algorithms are shown projected onto the image plane at the
bottom from left to right together with a sparse reconstruction.

8.1.3.2. Tracking Accuracy

The hardware setup described before is now used to evaluate the tracking accuracy quanti-
tatively. The robotic manipulator is put into gravity compensation mode to serve as a ground
truth pose acquisition system while the end effector is manipulated by a medical expert. The
test person performs a series of motions for which the pose sequences are recorded with all
systems and the forward kinematics of the robotic arm is used to generate a ground truth (GT)
sequence of the movements.

In order to compare the tracking error, we transform all pose sequences in a common reference
coordinate system. We choose the RGB coordinate system of the miniature camera at the end
effector as our common reference (see Fig. 8.5). The transformations are given by

TRGB
GT = TRGB

EE · TEE
RB (8.2)

TRGB
SR = TRGB

EE · TEE
RB · TRB

IR · TIR
SR (8.3)

TRGB
AR = TRGB

EE · TEE
RB · TRB

IR · TIR
AR (8.4)

TRGB
OTS = TRGB

EE · TEE
RB · TRB

OTS · TOTS
OM. (8.5)

With these, the accuracy of the tested systems such as the optical tracking system (OTS), the
ArUco tracking (AR) as well as the two SLAM-methods (SR), namely ORB-SLAM and DSO, can
be directly compared. In order to minimize other influences, a series of hand-eye calibrations
has been done which has proven that the residuals from the robotic hand-eye calibration is
negligible in comparison to the overall tracking error.
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We acquire a series of 5 sequences with a total of 8’698 poses and summarize the resulting
pose errors in Fig. 8.7. The translation error is measured in millimeters and the angle error
indicate the deviation of the rotation axis in degrees compared to the robotic ground truth.
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Fig. 8.7. Tracking error comparison. The box plots show the error spread for translation and angle error of
the different tracking methods (minimal and maximal measured error indicated by the black whiskers)
together with the median error (red) and the first and third quartiles (blue). The outside-in optical
tracking system (OTS) is compared to inside-out ArUco marker tracking (ArUco), ORB-SLAM and DSO.
The left plot shows the translation error distribution in millimeters while the right plot illustrates the
angle error in degrees.

The external optical tracking system provides the best translational accuracy with an error
of 1.90 ± 0.53 mm. We observe that the SLAM methods are comparable with errors of
2.65 ± 0.74 mm for ORB-SLAM and 3.20 ± 0.96 for DSO. Inside-out tracking with ArUco mark-
ers gives less accurate translation results with a residual error of 5.73 ± 1.44 mm. Analysing
the rotational result gives an interesting insight. The markerless inside-out methods provide
better results than the optical outside-in tracker with errors of 1.99 ± 1.99◦ for ORB-SLAM,
followed by 3.99 ± 3.99◦ for DSO while the OTS angle error is measured as 8.43 ± 6.35◦. The
angular results of ArUco tracking are rather noisy with a residual of 29.75 ± 48.92◦.

The evaluation suggest that the ArUco approach is viable for approximate pose estimation,
but not suitable for accurate tracking while the proposed IO-OTS solutions outperform the
commercial outside-in optical tracking system in terms of rotational accuracy and show
valuable results also for translational motion. An explanation for the accuracy gain in rotation
lies in the miniature system design of the inside-out tracking cameras where small rotations
around an arbitrary axis close to the optical centre lead to severe changes of the field of view
as illustrated in Fig. 8.8. This inside-out rotation leveraging effect is of particular interest in
applications that require a significant amount of rotational motion such as 3D TRUS where an
improvement of rotational accuracy directly translates to better 3D ultrasound reconstructions.
We therefore consecutively replace the robot with an ultrasound transducer and perform a
qualitative analysis of the system for manual 3D ultrasound scans comparing also the resulting
ultrasound compounding.
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Fig. 8.8. Rotation leveraging effect of inside-out tracking. A small motion such as a rotation close to the optical
centre of the miniature inside-out sensor (left) results in severe changes of the field of view and the
image content as shown on the right. This eases the estimation of the pose for the sensor and thus the
object rigidly attached to it. At the same time, the motion of the spherical optical markers co-attached to
the sensor is minor. These are used for pose estimation by an optical outside-in tracking system.

8.1.4. Inside-Out 3D Ultrasound

To evaluate the practical use of the tracking method, we compare the quality of ultrasound
compoundings based on poses of our markerless inside-out tracking and the commercial
outside-in optical system using retro-reflective spherical markers. The ultrasound image plane
is co-calibrated to the other tracking reference frames shown in Fig. 8.4 with the open source
ultrasound toolkit Plus22 forwhich a series of correspondence pairs are provided using a tracked
stylus pointer to retrieve the desired rigid displacement.

Based on the favourable tracking characteristics in our accuracy tests, we choose the ORB-
SLAM method to run the markerless inside-out tracking and assess the reconstruction quality
for a 3D ultrasound compounding of a phantom with a spherical structure inside. For imaging
purposes, we integrate a 128 element linear transducer (CPLA12875, 7 MHz) on the combined
trackingmount and connect it to a cQuest Cicada scanner (Cephasonics, CA, USA). The publicly
available real-time data acquisition framework SUPRA23 is deployed in conjunction with ROS,
and the calibration is performed using a stylus that is calibrated with a pivot calibration as
described in chapter 7.7.1.
We evaluate and compare the results of a sweep acquisition between the outside-in optical

22Cf. Lasso et al. [236].
23Cf. Göbl, Navab, and Hennersperger [143].
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tracker (OI) and the markerless inside-out method (IO) while we synchronize the tracker
poses of both systems to the image acquisitions with the interpolation techniques provided by
Busam et al. [50] which we detail in section 9.1.
A qualitative comparison of the compounding results as calculated with the ImFusion Suite
(ImFusion GmbH, Munich, Germany) is shown in Fig. 8.9. It can be clearly seen that the
rotational accuracy advantages of the inside-out tracking approach improves the boundary
quality of the spherical structure inside the phantom which results in a smoother surface of the
reconstructed 3D compounding. A video analysis24 with a temporal slicing of the compounding
results emphasizes this point and helps to understand the importance of rotational motion by
showing the rotational motion of a sweep for a prostate phantom with the typical transducer
used.

I.

II.

Inside-Out

I.d.I.c.I.b.I.a.

II.d.II.c.II.b.II.a.

Outside-In

Transversal Slice
Longitudinal Slice
Spatial Rendering
3D Compounding

a.
b.
c.
d.

Fig. 8.9. Qualitative tracking comparison for 3D ultrasound. A direct comparison of tracking-based 3D ultra-
sound scans is shown for a scan of a phantom with a spherical probe inside. The top row shows the
result of our inside-out tracking compared to the baseline outside-in scan shown in the bottom row. The
different images (from left to right) show computational results after compounding for a transversal
slice (a), a longitudinal slice (b), a two-plane spatial rendering (c) and the final 3D compounding. The
reconstruction in both calculations recovers the spherical nature of the phantom while the rotational
accuracy advantage of the inside-out tracker results in a more accurately defined boundary in the slices
and a smoother rendering surface structure in the final compounding.

Aside of the improved compounding quality, another advantage of the system lies in its
practical use. Without the need for spherical markers that are required to be visible from the
external tracking system, the process of installing and adjusting the tracking cameras becomes
obsolete for any use in a medical procedure. Line-of-sight problems arising from rotational
motion of the ultrasound transducer are no longer problematic and even scans with complete
rotations are feasible with the inside-out system without tracking loss which is not possible
with an outside-in tracker that needs visibility of the full rigid body marker during the entire
scan. Such procedures no longer require readjustment of the tracker or an additional reference
target if repositioning of the cameras is required. The improved rotational accuracy for such
procedures is further improved by the elimination of error propagation that are part of common
outside-in setups when repositioning is required as an additional rigid world reference frame
24The video can be found under http://campar.in.tum.de/Chair/PublicationDetail?pub=busam2018_pocus.
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in the form of a marker is typically co-calibrated to the system for instance during a 3D TRUS
procedure. Such calibrations between different markers which are necessary for a consistent
transformation chain into a common coordinate reference system introduce inaccuracies which
propagate through all measurements and ultimately hamper the pose quality.

Overall, the markerless inside-out tracking method based on visual SLAM has demonstrated its
accuracy advantage for general tracking as well as 3D ultrasound imaging. In the end, this can
benefit medical procedures such as 3D transrectal prostate fusion biopsy and other procedures
that primarily include rotational motion of the ultrasound probe. Reasoned by the accuracy
and versatility, we believe that this can pave the way to more detailed investigation of the
proposed markerless inside-out tracking method for the use in various medical procedures also
by other research groups.

8.1.5. Mobile Tracking Systems

Through the experiments, we show the advantages in term of rotational accuracy and its
benefits for the clinical use as a freehand 3D ultrasound tool are apparent. The fact that
the tracking system itself is capable to use its surrounding for orientation even in unknown
environments adds an orthogonal dimension to possible exploitation of the method. While the
inside-out tracker is shown to work in the operating room (OR), it is not bound to it. The map
that is incrementally built from the SLAM system can be initialized anywhere and does not
require additional calibration. With the miniature dimension of the sensor, a new mobility is
given to medical tracking and we are no longer bound to the use in just indoor environments,
but can also imagine the system to run outdoors where it can be used for instance by emergency
physicians as illustrated in Fig. 8.10.

Improvements of the internal image matching pipeline and speed ups using spatio-temporal
video cues as investigated in the work of Ruhkamp et al. [358] can further enhance the ease
of use of the tracking system and accelerate its acceptance in the medical domain by reducing
the computational processing load.
With its limited spatial needs, the miniature sensor can further also be put on several de-
vices that can cooperate with each other simultaneously for sensor fusion and collaborative
interaction scenarios where the common reference frame is the computed global map itself.
Investigations towards multiple systems with a common pose optimization or incremental
map updates on the edge may also benefit medical purposes beyond freehand 3D ultrasound
scans.
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Fig. 8.10. Mobile use of medical inside-out tracking. The inside-out tracker for ultrasound pose tracking can
be used in various environments. The top row shows an indoor use in an operating theatre where the
features are found on medical equipment and within the room. The pose is illustrated here as a rendering
of the ultrasound probe (centre column) and the feature points found in the sequences are visualized
in 3D (right). The lower row illustrates the use of the portable tracker outside in a setup where it is
run solely with a mobile laptop. Features in the inside-out view are found on surrounding objects which
allow to built a 3D map.
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8.2. Markerless Object Poses

The human brain is very efficient when it comes to rough estimates of position and orientation
of objects in the field of view of a person without the need of specific markers or additional
sensing other than pure sight. The degree of accuracy to which this is possible is in many cases
sufficient for observations of fast motions, for complex interactions and even for manipulations
of the visible object. This motivates us to mimic a similar approach computationally.
The aforementioned inside-out approach (see section 8.1) offers highly accurate pose esti-
mates under more flexible conditions compared to marker-based outside-in trackers through
improved mobility of miniature cameras. However, it suffers from the need of fixing the sensor
to the object. Such a preparation is not always possible in particular if the object is not known
before or many instances exist for example in a manufacturing process where multiple parts of
the same kind may be used frequently by a robotic manipulator. Thus, we focus on building a
robust vision-based object pose estimation pipeline that can be used for object pose estima-
tion in outside-in scenarios without the need of markers or additionally mounted hardware.
For the purpose of visual pose estimation, prior object information of different form can be vital:
May it be the knowledge of an observer about a similar part, a specific shape characteristic
or a visually apparent feature. We want to exploit such cues in the consecutive discussions
and start with geometric similarities and the observation that hand-made objects often share
parametrizable 3D structures in section 8.2.1. We continue with an analysis of visual possibili-
ties to create 3D object models in section 8.2.2 that can be used for comparison and learning
purposes as detailed in section 8.2.3. In a final step, we propose an automated decision process
to progressively estimate 6D object poses in section 8.2.4.

8.2.1. Geometric Parametrization

Primitive parametric shapes are oftentimes the building blocks of industrially manufactured
goods. As a result, it is in many cases possible to describe the geometric structure of everyday
objects as a composition of these simple forms. Poses can be estimated by surface reconstruc-
tion and parameter fitting. This allows for a description with adequate shapes that deform
under parameter changes. While object geometry is frequently a result of computer aided
design (CAD) whose models can be used for the purpose of pose estimation from 3D sensor
data25, also biological structures follow such forms approximately. In contrast to the scenario
where the best 6D pose parameters are estimated to fit a known shape onto some measurement,
geometric primitives function as a basis to gradually setup a 3D model in its own pose more
generically.
Besides low-parametric 1D and 2D primitives such as points, lines and ellipses, many simple
shapes in 3D space such as planes, spheres, cylinders can be described as 3D quadrics. These
forms have attracted many researchers in the past26 and are still a branch of active investi-
gations.27 The difficulty lies in the task of solving a combined detection and fitting problem
where the goal is to detect the primitive in a cluttered 3D scene and fit its parameters to best
match measurements from a 3D sensor even under occlusions and partial visibility.
25Cf. Birdal and Ilic [29].
26Cf. Miller [285], Cross and Zisserman [75], and Andrews and Séquin [6].
27Cf. Birdal et al. [26].
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We consecutively give a brief overview over the related work in the area of compositionality
and fitting with parametric shapes.

8.2.1.1. Literature Overview

The literature of instance-agnostic pose retrieval methods can be separated into parametric
fitting methods, primitive detectors and their shape decomposition counterparts, and more
recently also class-level shape and pose estimators.

Parametric fitting methods use a given parametric model and approximate its parameters
to best match the observation. Prominent generic examples are second order surfaces such
as quadrics28 and superquadrics.29 For 3D data, their characteristics help to estimate surface
normals and curvature30 and iterative methods for local surface fitting31 can be used for mesh
segmentation. The knowledge of quadric parameters can also be applied to practical vision
tasks such as robotic grasping32 and feature extraction from face images.33 Fitting algorithms
for quadrics are the focus of different investigations since the 1990s. The pioneering work of
Taubin [407] approximates the geometric distance necessary for the parameter optimization
with a Taylor approximation in order to efficiently fit a quadric. Through implicit use of local
surface information, the method could be improved by Blane et al. [30]. Tasdizen [404]
robustified the approach with a regularizer based on surface normals. A probabilistic approach
using a Bayesian prior is chosen by Beale et al. [17]. All these methods, however, require
nine or more points for the parameter fit. More recently, in the works of Birdal et al. [26]
and Birdal et al. [27], we propose a solution that only requires four oriented points using
tangential surface information as an additional constraint rather than a regularizer. With the
novel construction, it is further possible to develop a voting strategy for parameter estimation
that only requires three such points while being robust to higher levels of sensor noise. This
approach also enables to detect the quadric primitive in a cluttered point cloud which was
traditionally considered a separate task.

Shapes are often considered to be built out of atomic primitives.34 While shape decomposi-
tion methods abstract complex 3D shapes into simple volumetric primitives such as cuboids35

or learn to decompose into atomic superquadric elements36, primitive detection approaches
follow the other direction to find the primitves in sensor data.
Aside of cuboids and general (super-)quadrics, such primitive units can be planes, spheres,
cylinders, cones, andmanymore. Planes can be robustly detected via Hough voting.37 However,
for more complex shapes, RANSAC-based ideas such as Globfit38 were used early on. Plane
detection can be improved with region growing and regularization enhances robustness.39 Re-
28Cf. Cross and Zisserman [75].
29Cf. Leonardis, Jaklic, and Solina [243].
30Cf. Zhao et al. [483].
31Cf. Yan, Liu, and Wang [458].
32Cf. Uto et al. [431] as well as Pas and Platt [322].
33Cf. You and Zhang [465].
34Cf. Fidler, Boben, and Leonardis [113].
35Cf. Tulsiani et al. [424].
36Cf. Paschalidou, Ulusoy, and Geiger [323].
37Cf. Borrmann et al. [34].
38Cf. Li et al. [250].
39Cf. Oesau, Lafarge, and Alliez [314].
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cent methods also investigate plane detection in large scenes and incremental measurements.40

Cylinder detection is investigated by Qiu et al. [337] and the team of López-Rubio et al. [262]
target ellipsoids with a non-linear optimization approach. Also hybrid methods that investi-
gate paraboloid and hyperboloid41 as well as cylinder and sphere42 together are investigated.
While formulations can be efficient, these pipelines are type-specific and consider objects of
particular properties or deconstruct an unknown object into specific atomic units.

Pose estimation of such generic objects provides an interesting research direction. Information
on the object of interest is, however, commonly available in practical scenarios before the
acquisition. Oftentimes, even a prior video and offline calculations can be realized before
object poses need to be estimated. From an application side, this is even more interesting as
the addition of a depth camera or point cloud extraction hardware at test time may be more
difficult or costly to add. In contrast to the classical geometric methods as mentioned before,
we consequently want to focus on the case, where there is no explicit depth information present
at test time and analyse a scenario with monocular video data only. To still be able to leverage
prior information, we rely on 3D models of the object before we start our pose estimation
routines. To understand the model extraction process with the help of vision sensors and
to see how this has been addressed so far, we examine existing pose datasets and their 3D
models.

8.2.2. 3D Models & Pose Datasets

To compare different tracking and detection methods for rigid pose estimation, various datasets
have been proposed. Usually a reference frame is provided either by markers or hardware
tools such as a turning table or a robotic manipulator. While marker boards are the most
commonly used choice, this can also be done with more precise tracking systems as shown in
Fig. 8.11 which illustrates a typical setup. The reference frame is typically used to register a
manually adjusted 6D pose to later acquisitions while the object remains in the same position
relative to this reference. Extrinsic co-calibration of different sensors enables the use of multiple
modalities.

LineMOD43 and its occlusion extension44 are arguably the most widely used datasets for 6D
pose detection. They provide 3D models from 15 household objects acquired with a Prime-
Sense RGB-D Carmine sensor (PrimeSense, Israel) and their 3D meshes that are recovered
with multi-view reconstruction. A common reference frame is extracted from a static marker
board on which the objects are placed. It can be used to propagate manually annotated ground
truth poses across a sequence.
More recently HomebrewedDB45 uses three of LineMOD objects and adds 30 higher quality 3D
models that are extracted with a commercial structured light 3D scanner (Artec Eva, Artec3D,
Luxembourg). While the reference is also done with a planar marker board,46 the scenes are
40Cf. Fang, Lafarge, and Desbrun [103] as well as Czerniawski et al. [77].
41Cf. Andrews et al. [6].
42Cf. Sveier et al. [401].
43Cf. Hinterstoisser et al. [174].
44Cf. Brachmann et al. [37].
45Cf. Kaskman et al. [203].
46Cf. Garrido-Jurado et al. [137].
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Fig. 8.11. Hardware and acquisition setup for 6D pose dataset. A typical setup to acquire a pose dataset is
shown. Multiple sensors acquire the same scene: A depth camera (black sensor on top left) provides
distance measures. In this case, a Kinect 2 (Microsoft, Redmond, US) uses indirect time-of-flight (ToF)
sensing to acquire a depth map (colour coded on the right). The developed optical tracking system (OTS,
see chapter 7.1) uses two infrared ring LEDs and a band-pass filter to acquire a stereo image pair in
the infrared (IR) spectrum (bottom left). It provides the pose of the marker setup in the current frame.
An additional binocular RGB stereo camera pair acquires RGB images (bottom right). All cameras are
co-calibrated. The scene consists of a reference board (centre) which provides reference coordinates that
are static with respect to diverse objects placed on top while the relative pose to the camera is changed.
The toy truck is shown as an example object here in detail (top right). While the retro-reflective markers
help to provide reliable and accurate pose measurements, they appear as artifacts with incorrect depth
values in the ToF depth map.

more cluttered and acquired under different illumination conditions.
Other datasets focus on textured as well as texture-less objects in slight clutter47 and under
heavy occlusion.48 A more industrial setup of a warehouse is used in the dataset of Rennie
et al. [345] whose 3D models are extracted with photogrammetry and a monocular camera.
The pose ground truth is annotated in a semi-manual process from a human annotator and
with the help of depth data similar to the process done by Hodaň et al. [179] who propagate
information with ICP alignment in their TUD Light and Toyota Light setups. The latter work
also summarizes a series of datasets in the BOP 6D Pose Benchmark.
More industrial objects are proposed in the T-Less dataset49 where the authors present 30
partly symmetric and texture-less objects together with manually created 3D CAD models and
3D scans. Their local reference frame is defined with the help of markers from the ARToolK-
itPlus.50 Manually created 3D models are also used for the industrial objects in the MVTec
ITODD dataset from Drost et al. [92] such that errors from model reconstruction are fully
eliminated at the cost of realism. They also leverage a semi-manual annotation approach with
ICP refinement on their high quality depth data extracted for objects on a turning table that
provides a reference system.

47Cf. Tejani et al. [408].
48Cf. Doumanoglou et al. [91].
49Cf. Hodaň et al. [178].
50Cf. Wagner [439].
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While these setups show large variability and the ground truth labels are often of high quality,
the objects are all acquired from individual camera viewpoints that are not temporally con-
nected through a video sequence.
The team of PoseCNN,51 however, presents a dataset that includes 92 video sequences includ-
ing 21 household objects from the YCB set52 ready to evaluate also 6D pose trackingmethods.
The YCB models are acquired with five RGB-D sensors and five high resolution RGB cameras
that are placed in optimal positions around a turntable.53 This allows for very accurate and high
resolution 3D model that are manually aligned to the initial video frame. The authors of
PoseCNN do not use a marker board as a reference and propagate the initial pose automatically
through the short video sequences with the help of a depth sensor and some fitting pipeline.
Not always does this result in visually accurate ground truth positions and orientations as we
discuss in section 8.2.4. Pixel-perfect ground truth poses and depth measurements without
markers are given for the YCB objects in the synthetic data from Tremblay et al. [418] and with
many additional occlusion cases in the extension by Jalal et al. [193] who use an elaborate ren-
dering pipeline for high quality images and depth maps. The domain gap between synthetic
and real data, however, provides additional challenges for 6D pose estimation pipelines54 and
even clever domain adaptation and randomization techniques55 fall short behind training on
real sensor data.
The real video RGB-D data, on the other side, provides a possibility to leverage additional
spatio-temporal constraints, but suffers from ground truth accuracy drawbacks and error prop-
agation of automatic annotation methods. Reference marker boards prevent the images from
having natural surroundings and free interactions with a human. Moreover, they need to be ex-
cluded in order to not be recognized during training. A way to circumvent the shortcomings of
real acquisitions without the need for a marker board is to not provide a stable reference frame
on a board, but to use high quality marker-based pose annotations directly on the objects.

The team of Garon et al. [136] proposes to use miniature retro-reflective spherical markers
with the motion capture system Vicon MX-T40 (Vicon, Oxford, UK). This allows them to
improve their previous video dataset56 which is using flat markers on a board as reference
and ICP for propagating pose annotations in temporal sequences. Additional high quality 3D
models are acquired with a handheld 3D scanner of 1 mm voxel resolution (Creaform GoScan,
Creaform Inc., Lévis, Canada), and a manual cleaning in a post-processing step provides high
resolution models with no visible artifacts. The poses are acquired with eight cameras and
3 mm markers on the objects serve as reference frame to which the models are registered. The
footprint of the markers (see also Fig. 8.11) is removed from the depth images in an elaborate
process to not provide artificial signals that can be picked up by learning basedmethods trained
on this dataset. Aside of plain views, the so acquired RGB-D videos include severe occlusions
and clutter.

51Cf. Xiang et al. [454].
52Cf. Calli et al. [56].
53The acquisition hardware setup is described by Singh et al. [380].
54Cf. Zakharov et al. [470].
55Cf. Zakharov, Kehl, and Ilic [469].
56Cf. Garon and Lalonde [135].
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8.2.3. Visual Pose Estimation

With 3D object models and datasets to test pose estimation pipelines, one can evaluate the
versatile approaches presented in this domain. The capability of interacting with objects in
our 3D world and to understand the surrounding geometry correctly only from pixel data is a
crucial element for successful vision systems. At their core lies relative position and orientation
estimation. As this process is immanent for every real 3D camera application, many different
solutions have been proposed to estimate rigid object and camera poses. Before we suggest a
novel solution to monocular 6D pose estimation, we give a detailed overview of the field and
discuss relevant challenges and put open questions in context.

8.2.3.1. From Markers to Features

Early works as discussed in section 7.2 directly apply marker-based systems to track objects.
Typical augmented reality applications are driven by markers such as AR-Tag57, ArUcO58, AR-
Toolkit59 or AprilTag60. Similar to our proposed OTS from chapter 7, they can provide reliable
and accurate tracking performance which makes these systems an attractive choice to calculate
world anchors in dataset acquisition pipelines for marker-free methods (see section 8.2.2).
Such systems are also used for sensor fusion as for example by Esposito et al. [101] and they
can be extended to high accuracy systems.61 Reliable and robust detection is of particular
interest in the medical domain,62 where our self-adhesive markers allow flexible usage.63

Object-marker calibration can be intricate and time-consuming in practice and feature extrac-
tors are a practicable alternative. In an ideal scenario, markers can then be fully replaced by
automatically extracted keypoint structures encoded by natural object features in images. The
goal of extraction pipelines is twofold, to detect points that describe significant and salient
structures within the image on one hand while being invariant to image changes on the other
hand. Such changes can be of geometric nature such as image translation, rotation as well
as scale and viewpoint changes of the camera, but also influenced by exterior factors such
as illumination changes, sensor noise or caused by seasonal variations of the surrounding.
An ideal feature is a local structure that is highly distinctive and repeatable in order to be
accurately and reliably detected under many image perturbations to enable a robust retrieval
without confusion. Moreover, the quantity of features in an image is adequate to guarantee
such properties and it can be described in a compact fashion that is efficient to compute.

57Cf. Fiala [111].
58Cf. Garrido-Jurado et al. [137].
59Cf. Kato and Billinghurst [204].
60Cf. Olson [316].
61Cf. Birdal, Dobryden, and Ilic [28].
62Cf. Esposito et al. [102].
63Cf. Busam et al. [49]
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8.2.3.2. Feature Extraction Pipeline

The feature extraction pipeline commonly consists of a detection stage to find keypoints
to which a consecutive description stage assigns a feature value. The same keypoints in
different images are then matched in amatching stage. A saliency function typically assigns a
reliability score to each pixel to highlight significant structures such a corners or blobs. Its local
maxima define the keypoint locations after non-maximum-suppression. They can usually be
characterized in terms of location, orientation, characteristic scale and their reliability score.

Early detectionmethods rely on gradient-based techniques to find corner structures.64 Template-
based methods such as SUSAN65, FAST(ER)66, and AGAST67 improve upon the early corner
detectors by utilizing machine learning and binary classifiers for efficient detection. Scale-
space68 analysis paved the way to blob detectors that calculate extrema in image pyramids
with differential operators and scale-normalized extensions.69 Such operators are efficiently
approximated in pipelines such as SIFT70 and SURF.71

Plenty of different detection methods have been suggested. A categorization of different meth-
ods is done in the survey of Li et al. [249] while Schmid et al. [369] evaluate different interest
point detectors.72 TILDE73 tackles the problem of illumination changes through learning on
real data while patch-based CNNs are used within the encoder-decoder network MagicPoint74

which is fully trained on synthetic noisy primitives. The recent Key.Net75 combines the strengths
of both hand-crafted and learning pipelines in a unified hybrid detector.

Prominent descriptors include the descriptor part of the feature extraction pipeline from SIFT
and binary descriptors such as BRIEF76, BRISK77, ORB78, and FREAK79 that can be matched
efficiently using Hamming distances. The efficiency of these methods make them a common
backbone for camera pose estimation80 where they are used to match against a precomputed
feature database.81 Tracking applications such as the one described in section 8.1 benefit from
the rotation accuracy of such systems in inside-out camera setups.
Deep learning based descriptors can be trained as soft binary classifiers and show advantages
over hand-crafted pipelines.82 Metric learning with triplet margin loss and hard negative min-

64Cf. Moravec [290] as well as Harris and Stephens [162].
65Cf. Smith and Brady [383].
66Cf. Rosten and Drummond [354] for FAST and Rosten, Porter, and Drummond [355] for FASTER.
67Cf. Mair et al. [271].
68Cf. Lindeberg [257].
69Cf. Lindeberg [258].
70Cf. Lowe [264].
71Cf. Bay, Tuytelaars, and Van Gool [16].
72Further evaluations are done also in the more recent works by Tuytelaars and Mikolajczyk [425] as well as in the

works of Mikolajczyk et al. [283], Miksik and Mikolajczyk [284], Lee and Park [242], Salahat and Qasaimeh
[361].

73Cf. Verdie et al. [434].
74Cf. DeTone, Malisiewicz, and Rabinovich [85].
75Cf. Barroso-Laguna et al. [13].
76Cf. Calonder et al. [57].
77Cf. Leutenegger, Chli, and Siegwart [246].
78Cf. Rublee et al. [356].
79Cf. Alahi, Ortiz, and Vandergheynst [5].
80Cf. Mur-Artal, Montiel, and Tardós [297], Mur-Artal and Tardós [298] as well as Campos et al. [58].
81Cf. Wu et al. [453] as well as Li, Snavely, and Huttenlocher [252].
82One of the first methods in this direction was L2-net that was presented by Tian, Fan, and Wu [410].
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ing83 is a common training strategy. Recent pipelines such as R2D284 train dense descriptors
to estimate additionally both repeatability and reliability of the features.
The rise of modern RGB-D sensors also triggered the design of 3D descriptors85 aside of image-
only methods. While these methods can help for accurate object retrieval even in cluttered
scenes86 and recent data-based approaches also work on large point sets,87 we focus here on
2D methods.

Joint descriptor-detector pipelines can also be learnt88 and inclusion of structure frommotion
and depth sensing allows for unsupervised training89. SuperPoint90 extends MagicPoint to joint
descriptor-detector estimation and self-supervised learning through homography warping of
input images. More robustness can be won by using a single feature map for both description
and detection91 and separate interaction between both stages can help during training.92

In the matching stage, the task is to compare the feature descriptors and find corresponding
keypoints in different images or from model renderings in a pose estimation scenario. While
k nearest neighbours in descriptor space can be found with a brute force searching strategy
or via radius-search within a hypersphere of a specific radius, more efficient methods usually
involve Kd-trees. There are various approximate nearest neighbour search strategies93 many
of which are integrated in the Flann library.94

In order to robustly detect the matches in the presence of outliers, simple tests exists. David
Lowe proposed in the SIFT pipeline a simple ratio test to withdraw ambiguous matches if the
score of the second best match is above a certain threshold. Cross check validation where
the matches need to be mutually agreeing by matching from image A to B and vice versa
can be an additional outlier removal strategy. More sophisticated robust matchers make use
of grid-based motion statistics (GMS)95 to enable high precision matches with low recall.
DynaMiTe96 deploys a dynamic model with temporal constraints to efficiently extend GMS in
time. The advent of graph convolutional neural networks (GNNs) enables also learnt matching
approaches. SuperGlue97 for instance solves an optimal transport problem and leverages a
GNN that can be directly connected to learning based detector and descriptor stages to solve
a matching problem end-to-end in the presence of heavy noise and image variations.

Once the matches are found between object and observation, the pose can be calculated. The
Perspective-n-Point (PnP) algorithm or one of its efficient variants (e.g. P3P or EPnP)98 can
be used to recover the 6D pose from multiple 2D-3D correspondences. RANSAC99 helps to

83Cf. Mishchuk et al. [288].
84Cf. Revaud et al. [346].
85Cf. Rusu et al. [360] as well as Tombari, Salti, and Di Stefano [414].
86Cf. Mian, Bennamoun, and Owens [281].
87Cf. Saleh et al. [362].
88Cf. Yi et al. [463].
89Cf. Ono et al. [317].
90Cf. DeTone, Malisiewicz, and Rabinovich [86].
91Cf. Dusmanu et al. [93].
92Cf. Barroso-Laguna et al. [14].
93Cf. Fukunaga and Narendra [126], Beis and Lowe [18] as well as Silpa-Anan and Hartley [379].
94Cf. Muja and Lowe [292].
95Cf. Bian et al. [24].
96Cf. Ruhkamp et al. [358].
97Cf. Sarlin et al. [363].
98Cf. Ke and Roumeliotis [209] for P3P and for n points cf. Hesch and Roumeliotis [172] as well as Lepetit, Moreno-

Noguer, and Fua [245].
99Cf. Fischler and Bolles [115].
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estimate the pose in the presence of noise by random subset sampling of putative matches.
The estimated pose is supported by an increasing subset of matches within an iterative process
that aims to find an inlier consensus set. Robust metrics100 such as the Huber loss or the Tukey
biweight function also improve convergence and robustness in learning setups and can help
to solve the pose estimation problem when formulated in an optimization framework even
when the calculated features are ambiguous and lack descriptiveness. There exist various
strategies to train a network within such an optimization framework in order to estimate the
pose directly from input images. We briefly categorize them.

8.2.3.3. Pose Classification & Regression

Rotations densely populate a non-Euclidean space and there are multiple parametrization
for the Riemannian manifold described by them as we have seen in section 6.2.101 On the
unit quaternion hypersphere for instance, the geodesic distance is not compliant with the
Euclidean L-p norm in its 4D-embedding and the parametrization constitutes a double cover
of the rotation group SO (3) impeding 6D pose regression networks.102 Some works therefore
discretize the problem and learn a classifier. The work of Kehl et al. [210] for instance
discretizes the space in angular intervals and treat the rotation estimation as a classification
problem. Template matching strategies are used by Hinterstoisser et al. [174] for viewpoint
estimation and improvements103 achieve a sub-linear matching complexity in the number of
objects by hashing.

Different learning based methods are used to train a regressor for pose estimation. The
scholars Brachmann et al. [37] as well as Tejani et al. [408] use random forests. CNNs for
RGB-D based pose estimation are applied by both Kehl et al. [211] as well as Wang et al. [441].
While these methods need additional depth information, some works report results solely using
RGB images104 without the need for additional depth. To realize a 6D pose estimation pipeline,
these methods are usually separated into three stages similar to the earlier feature extraction
pipelines105: 2D detection, 2D keypoint extraction, 6D pose estimation. The work of Tekin
et al. [409] is based on YOLO106 and thus provides a single shot method. After bounding
box corner or keypoint detection, the 6D pose is generally estimated with PnP as mentioned
above.

Additional information in the form of semantic segmentation priors is used by Hu et al. [187]
as well as Xiang et al. [454] while Do et al. [89] extend Mask-RCNN107 with an extra branch
for pose estimation.

100Cf. Barron [11].
101Cf. also Busam et al. [50].
102Cf. Zhou et al. [487].
103Cf. Cai, Werner, and Matas [55], Kehl et al. [213] as well as Hodaň et al. [180].
104Cf. Crivellaro et al. [74], Kehl et al. [210], Rad and Lepetit [339], Xiang et al. [454], Sundermeyer et al. [400].
105Cf. Kehl et al. [210], Sundermeyer et al. [400], Rad and Lepetit [339].
106Cf. Redmon et al. [344].
107Cf. He et al. [166].
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8.2.3.4. Robust Pose Refinement & Limitations

For robust pose detection from pixel-wise object correspondences, PnP can be used within a
RANSAC loop. This is combined with dense correspondences from Zakharov et al. [471] while
Peng et al. [326] design a pixel-wise voting network to vote for specific keypoints and Li et al.
[254] treat translation and rotation estimation separately. Further works specifically target
the problem of 6D pose estimation under severe occlusion.108 To improve upon the estimated
pose, Li et al. [251] propose an RGB-based refinement strategy. Many methods, however,
refine their RGB results with additional depth information using ICP.109

While these methods all improve the accuracy of pose estimators, the data is a bottleneck.
Decently sized training sets with reliable pose annotations are difficult to produce (see section
8.2.2) while synthetic renderings seem a rather time-efficient solution. Thus, it is interesting
to capitalise on synthetic data, however, with the given domain adaptation issues. The model
performance is mostly hampered by the domain gap created through synthetic-only data train-
ing which is addressed with the help of depth maps by Rad et al. [340] whileRad et al. [341]
applies a learnt feature transformation.

Independent of the amount of training data, additional issues arise by the nature of the problem.
The projection operator that projects the 3D scene onto the 2D image plane is a surjection and
not injective. Thus, the projection is not invertible and we loose information when observing
an object as exemplified in Fig. 8.12. While the image content is enough to estimate the 6D pose
of the object in some cases, a natural pose ambiguity arises in other cases from the missing
information. To give an example: We can clearly define a rigid pose to a cup with a handle from
a given image when the handle is visible (see Fig. 8.12). The moment, the handle becomes
occluded by the cup itself and is not visible in the image anymore its pose becomes inherently
ambiguous. If the handle is not visible from the camera perspective an infinite amount of
6D poses provide a solution to the estimation problem as they all are indistinguishable under
projection. One way to deal with this is to replace a unique pose estimation with a probability
estimation of possible pose hypotheses. We propose an estimation of a likely pose distribution
given a single RGB image in ourwork ofManhardt et al. [272] where we explicitly deal with the
presence of a single instantiation during training rather than the knowledge of the distribution
itself. Solving the case through estimation of multiple likely hypothesis, it is possible to retrieve
a visual ambiguity score to detect the presence of ambiguous cases. As a side product, we
further retrieve a viewpoint dependent estimate for the axis of ambiguity. While this is a
general limitation of the 6D pose estimation problem from a single camera view, we do not
always observe pose ambiguities in practice as object texture and more complex geometry
often resolve the issue.

8.2.3.5. Model-agnostic Poses

The main training strategy for 6D pose estimators is to train one network per object. Trans-
ferring pose knowledge to unseen objects even when they look similar is intricate and training

108Cf. Oberweger, Rad, and Lepetit [312] as well as Fu and Zhou [125].
109Cf. section 7.3.2.
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Fig. 8.12. Ambiguous and unique object poses under projection. The cup object (front) is here illustrated under
three different perspectives that are shown with images acquired from different perspectives (left, centre,
right). The frustums illustrate the camera position and the image plane. The left and centre image are
indistinguishable without the handle of the cup in sight; so are all images taken from similar camera
poses along the connecting grey line. The right most image defines a unique pose of the object which is
possible due to the handle being in sight. The same is true for all similar camera poses along the dashed
line for which the handle is visible in the images.

multiple objects together with the same network leads to resulting predictions that are unreli-
able.110 Approaches to circumvent this downside involve the use of deformable shape models
and annotations in the training dataset which can generalize to some extend across object
instances.111

A new branch of works to bridge the gap between instance-based pose estimation and generic
shape retrieval has just started recently. Class-level 6D pose estimation considers objects
of a specific category, such as cups, cameras, laptops and so on. The task is to estimate the
metric pose and shape of the object in sight in the absence of a 3D model. A non-parametric
data-driven way leveraging recent advances in deep learning is thereby used to approximate
both 6D pose and object geometry for a specific category. The first approach from Wang et al.
[443] in this direction uses a monocular RGB image and a depth map to recover metric pose
and shape. The CPS pipeline112 goes one step further and uses only the RGB data for the same
task.
It is correct that these methods are not agnostic to the object class. However, instead of heavily
relying on the depth information or point cloud data as required by most of the more generic
methods, this can pave the way to more general methods that do not require additional depth
sensing or other prior shape information for the object of interest.

On another end, CorNet113 focuses on the objects geometry instead and tries to detect model-
agnostic corners. While this is more robust, it is in spirit similar to early pose estimation
approaches that detect significant points. We follow a different path and learn a discrete

110Cf. Kaskman et al. [203].
111Cf. Pavlakos et al. [325].
112Cf. Manhardt et al. [274].
113Cf. Pitteri, Ilic, and Lepetit [330].
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set of decisions that lead to the correct pose in section 8.2.4. This provides the flexibility
of object-specific training as well as object-agnostic decisions trained with a heterogeneous
dataset which we want to analyse specifically on video data where temporal information can
be leveraged.

8.2.3.6. Temporal Tracking

Tracking of 3D object poses using temporal information has been presented with the help
of depth maps and point clouds. It can be realized with ICP and its variants.114 These methods
are very sensitive to their initialization.115 They rely on an the initial pose which is required
to be close to the correct prediction and often fail in the presence of heavy noise and clutter.116

To stabilise tracking with depth maps, additional intensity information117 or a robust learning
procedure118 can help. The current methods need one CNN trained per objects119 or are bound
to specific geometrical constraints such as planar objects.120 PoseRBPF121 is an efficient RGB-
only tracker using a particle filter that helped to achieve state-of-the-art results on the YCB
dataset.122

We want to consecutively focus on a novel, model-agnostic approach to monocular pose es-
timation that can benefit from temporal data. Inspired by classical temporal trackers whose
optimization procedure usually include incremental pose updates, we formulate iterative up-
dates as an action decision process. We will see that this formulation allows to reach a wide
convergence basin independent of the object model. While we largely benefit from temporal
information in terms of computation time, our method can also be used to detect the pose
with multiple seeds intuitively.

8.2.4. Pose Estimation as Action Decision Process

Object pose estimation from monocular RGB images is an integral part of robot vision and
augmented reality. Robust and accurate pose prediction of both object rotation and transla-
tion is a crucial element to enable precise and safe human-machine interactions and to allow
visualization in mixed reality.
Previous 6D pose estimation methods treat the problem either as a regression task or discretize
the pose space to classify. We reformulate the problem as an action decision process where
an initial pose is updated in incremental discrete steps that sequentially move a virtual 3D
rendering towards the correct solution. A neural network estimates likely moves from a
single RGB image iteratively and determines so an acceptable final pose. In comparison to
previous approaches that learn an object-specific pose embedding, a decision process allows
114Cf. Rusinkiewicz and Levoy [359] as well as Segal, Haehnel, and Thrun [372].
115Cf. Zhang [479].
116Cf. Garon, Laurendeau, and Lalonde [136].
117Cf. Held et al. [169], Yuheng Ren et al. [466], Joseph Tan et al. [200] as well as Kehl et al. [212].
118Cf. Tan and Ilic [403].
119Cf. Garon and Lalonde [135].
120Cf. Wang and Ling [445].
121Cf. Deng et al. [82].
122Cf. Xiang et al. [454].

8.2 Markerless Object Poses 217



for a lightweight architecture while it naturally generalizes to unseen objects. Moreover, the
coherent action for process termination enables dynamic reduction of the computation cost
if there are insignificant changes in a video sequence. While other methods only provide a
static inference time, we can thereby automatically increase the runtime depending on the
object motion. We fully train and test the lightweight network on a consumer laptop using
only synthetic data with pixel-perfect annotations and evaluate robustness and accuracy of
our action decision network on real video scenes with known and unknown objects and show
how this can improve the state-of-the-art on YCB videos123 significantly.124

8.2.4.1. Motivation

We live in a 3D world. Every object with which we interact has six degrees of freedom to move
freely in space, three for its orientation and three for its translation. Thus, the question to
determine these parameters naturally arises whenever we include a vision system observing
the scene. A single camera will only observe a projection of this world. Thus, recovering such
3D information constitutes an inherently ill-posed problem which has drawn attention of many
vision experts in the past.125 The motives for this can be different: One may want to extract
scene content for accurate measurements126, camera localization127 or 3D reconstruction.128

Another driver can be geometric image manipulation129 or sensor fusion.130 Also human-robot
interaction131 and robot grasping132 require estimation of 6D poses.

The rise of low-cost RGBD sensors helped development of 6D pose detectors133 and trackers.134

More recently, the field also considers methods with single RGB image input as discussed in
the literature overview before. The best performing methods for this task135 are all data-driven
and thus require a certain amount of training images. Annotating a large body of data for
this kind of task is cumbersome and time-intensive which yields to either complex acquisition
setups or diverse annotation quality.136 A variety of reconstruction methods allow to provide
high quality 3D models of the objects with the datasets.137 The majority of pose estimation
pipelines such as the work of Tekin et al. [409], Xiang et al. [454] as well as Peng et al. [326]
are all trained on real data. Besides difficult and time-consuming pose annotations, this
brings two further drawbacks. On one hand, the networks adjust to the individual sensor noise
of the acquisition hardware drastically hampering generalization capabilities.138 On the other
hand, every real annotation has its own errors introduced either by the used ground truth

123Cf. Xiang et al. [454].
124The accompanying paper can be found as a preprint from Busam, Jung, and Navab [52].
125Cf. Kato and Billinghurst [204], Lepetit, Moreno-Noguer, and Fua [245], Hinterstoisser et al. [174], Mur-Artal,

Montiel, and Tardós [297], Xiang et al. [454].
126Cf. Birdal, Dobryden, and Ilic [28].
127Cf. Mur-Artal and Tardós [298].
128Cf. Knapitsch et al. [223].
129Cf. Holynski and Kopf [182] as well as Busam et al. [51].
130Cf. Esposito et al. [101].
131Cf. Busam et al. [49].
132Cf. Drost et al. [92].
133Cf. Brachmann et al. [37], Kehl et al. [211], Wang et al. [441].
134Cf. Tan and Ilic [403] as well as Garon, Laurendeau, and Lalonde [136].
135Cf. Peng et al. [326], Zakharov, Shugurov, and Ilic [471], Hodaň et al. [179].
136Cf. Garon, Laurendeau, and Lalonde [136].
137Cf. Xiang et al. [454], Garon, Laurendeau, and Lalonde [136], Tekin, Sinha, and Fua [409].
138Cf. Kaskman et al. [203].

218 Chapter 8 Markerless Pose Estimation



sensor system or by the human annotator. These errors propagate to every model trained on
it. Modern 3D renderers, however, can produce photorealistic images in high quantity with
pixel-perfect ground truth. Some recent scholars therefore propose to leverage such data139

and fully train on synthetic images. Most widely used evaluation datasets140 provide single
image acquisitions and more recently, video sequences141 with pose annotations are available
even though video data is the natural data source in applications.

8.2.4.2. Novelty & Contribution

We leverage the temporal component in video data to accelerate our pose estimation perfor-
mance and propose an RGB pose estimation pipeline by taking inspiration from the reinforce-
ment learning approach proposed for 2D bounding box tracking142 where the authors frame
the problem with consecutive discrete actions for an agent. In contrast to these methods, we
propose a pose estimation pipeline with a large convergence basin that can run a single net-
work with multiple seeds as a pose detection pipeline omitting the use of another model. We
frame 6D pose estimation as an action decision process realized by applying a network that
determines a sequence of likely object moves as shown in Fig. 8.13.

At first, an initial pose is used to render the 3D model. Both the rendering and the current
image are cropped around the virtual pose and fed to a lightweight CNN. The network
predicts a pose action to move the rendering closer to the real object. All 13 possible actions
are illustrated in Fig. 8.14. The stepsize is hereby fixed and predefined. It determines the
accuracy of the process and the convergence speed. In case the process continues, the pose
is modified according to the action and the new rendering is fed back into the pipeline with
a new crop to move the estimation incrementally closer to the observation. This goes on
until either the stop criterion fires or the maximum number of iterations is reached.
If our input is a video stream, we can use the pose retrieved at frame t − 1 as an initial pose
for frame t which can greatly reduce the computation time as the amount of iterations is
determined by the pose actions needed between the initial pose and the result. An example is
shown in Fig. 8.15 where the rendering is moved until stop is predicted. This pose initializes
the next frame.

139Cf. Kehl et al. [210], Sundermeyer et al. [400], Zakharov, Shugurov, and Ilic [471].
140Cf. Hinterstoisser et al. [174] as well as Brachmann et al. [37].
141Cf. Xiang et al. [454] as well as Garon, Laurendeau, and Lalonde [136].
142Cf. Yun et al. [467].
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Fig. 8.13. Action decision process for 6D pose estimation. To estimate the pose of a real object, a virtual object
is rendered with an initial pose (top from right). For illustration purposes we visualize the synthetic
renderings of an example object in green and the real observations in original orange colour. Both image
and rendering are cropped (RoI in pink, top left). A lightweight action decision network determines
an incremental move to bring the rendering closer to the real observation. The updated pose is used to
iteratively modify the rendering.

6 Positive Directions 6 Negative Directions Stop

tx ty tz rx ry rz -tx -ty -tz -rx -ry -rz s
1 2 3 4 5 6 7 8 9 10 11 12 13
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Fig. 8.14. Pose actions for pose updates. There are 13 possible actions (top): 6 pose actions to move in positive,
6 to move in negative direction, and one action for stop. In each process iteration loop, the next best
action is predicted. On the bottom, we illustrate three example actions where the current rendering is
shown in green, the observation in original orange colour and the effect of the predicted action as stated
in the top right corner of the box is depicted with pink arrows.
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Fig. 8.15. Action decision process for object tracking. Consecutive frames in a video sequence have a similar
pose if the framerate is high enough. The final pose from frame t − 1 predicted after n actions (top
left) initializes the pose rendering at frame t in a video sequence. Multiple actions (bottom) bring the
rendering (green) closer to the observation (orange) until the stop action is detected (bottom right).
The result is accepted as the estimation for frame t and used as an initial guess for frame t+1 (top right).
The green colour is only chosen for illustration purposes.
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Improving pose estimation with iterative inference has previously been explored by Li et al.
[251] where a refinement network is iteratively applied to refine a pose predicted by an
estimator such as PoseCNN.143 However, the performance of their method actually decreases
if more than two iterations are used while our pose estimation is gradually improved. In
summary, our contribution is fourfold:

1. We reformulate 6D pose estimation as an action decision process and
design a lightweight CNN architecture for this task that generalizes to
unseen objects.
2. We iteratively apply our shallow network to optimize the pose and
deploy a change-aware dynamic complexity reduction scheme to improve
inference cost.
3. We provide an RGB-only method that is able to improve the state-of-the-
art for video pose estimation while being able to track objects in presence
of noise and clutter.
4. We provide a data augmentation scheme to render high-quality images
of 3D models on real backgrounds under varying clutter and occlusion.

In the remainder of this section, we present our method and network architecture in detail
before we report an extensive analysis and evaluation.

8.2.4.3. Learning Action Decisions

Our target is to optimize an action decision CNN to decide for iterative discrete actions to move
a rendered 3D model to the observed position of the according object in an image sequence
as shown in Fig. 8.13. An initial pose is used to crop the image with the projected bounding
box of the object. We discretize the set of possible actions to move or not to move a 3D object
depending on the six degrees of freedom for rigid displacement in space. The 13 possible
actions are divided into six pose actions for positive parameter adjustment, six for negative
changes and an action to stop the process (i.e. not to move the object). For each of these
actions, we set units depending on an image and a current crop: The movements for t x , t y

are measured in pixels and determine movements of the bounding box. The parameters rx ,
ry , rz are measured in degrees and tz is determined as the diameter in pixels of the current
bounding box. An action can change the position and size of the crop. The image crop is
always rescaled to a quadratic n× n patch of the same size as the rendering.

We decide to implement the action decision CNN with a lightweight architecture that allows
for training on a consumer laptop. The MoveIt architecture which realizes this is shown in
detail in Fig. 8.16. An attention mechanism is implemented as guidance for the network
to focus on relevant image regions and ignore occlusions. This attention map is learnt in
an unsupervised way during training to mask the embedded feature tensor and to realize a
weighted global average pooling. We train the model end-to-end with synthetic data where a
random action vector is created, normalized and a softmax cross entropy loss between logits

143Cf. Xiang et al. [454].

222 Chapter 8 Markerless Pose Estimation



R
G
B

R
G
B

M
A
S
K

D
E
P
T
H

Input
128 x 128 x 8

Feature Extraction
Convolutional Layers with ReLu Activation
[ K - S - C ]
[ IN ]

Attention
Module

Kernel Size, Stride, Channels
Instance Normalization

Action Detection
[ GAP]
[ FC ]

[ AM ]

Global Average Pooling
Fully Connected Layers wit ReLu
+ w/o Activation
Arg Max

3
-
1
-
3
2

I
N

3
-
1
-
3
2

I
N

3
-
2
-
6
4

I
N

3
-
1
-
6
4

I
N

3
-
1
-
1
2
8

I
N

3
-
2
-
1
2
8

I
N

4
-
1
-
1
2
8

I
N

4
-
1
-
2
5
6

I
N

4
-
2
-
5
1
2

I
N

4
-
1
-
1

G
A
P

5
1
2

F
C

2
5
6

F
C

1
3

A
M

Fig. 8.16. MoveIt architecture. The input (top left) is the RGB video frame cropped (red) and concatenated with
the rendered RGB, rendered depth and rendered segmentation mask (green). A series of convolutional
layers with ReLu activations are used to extract an embedding (upper right block). An unsupervised
attention mask (lower left) focuses the features in case of partial occlusions before a global average
pooling layer. Two fully connected layers extract the set of action logits from which the most probable is
selected with argmax (bottom right). Kernel size (K), stride (S), and channel amount (C) are indicated
for the convolutional layers with K-S-C.

and labels is utilized to optimize the probability error in this mutually exclusive and discrete
action classification task.

Usually the iteration process is stopped with the stop action in frame t and the last pose is
used to initialize the process in frame t + 1 as shown in Fig. 8.15. As we discretize the pose
steps, the stop criterion, however, is not always met perfectly. Moreover, the decision boundary
between the stop criterion and some close action may lead to oscillations between two or
multiple predictions close to the correct result. To cope with this in practice, we can also stop
the process early if we encounter oscillations and if an intermediate pose has been predicted
already in the same loop or if a maximum number of iterations is reached.

8.2.4.4. Training on Synthetic Data

To train our model, we create a synthetic dataset generation pipeline where we render the
3D models with changing backgrounds and varying poses in clutter and occlusion on top of
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real images. Following Kehl et al. [210] we use images from the MS COCO dataset144 as
background. We randomly pick 40k images from it and use the high quality 3D models from
YCB145 and the models from Linemod146 to render the objects during training in various poses
on top of the images as shown in Fig. 8.17.

Fig. 8.17. Synthetic dataset creation. High quality 3D models from YCB (top left) and 3D models from Linemod
(top right) are rendered in various poses on top of 2D images fromMS COCO (bottom left). Augmentation
in form of blur, light changes and occlusions is added (bottom centre). A comparison image from the
real dataset is shown (bottom right).

Data Augmentation. We augment the renderings in different ways with occluders, crops,
image blur as well as material and light changes before placing it on top of the COCO images.
As our network operates on cropped images patches of size 128× 128 pixels, we perform the
augmentation on these patches, too. An augmentation example is shown in Fig. 8.17. We
synthetically generate 50k images for each YCB object and 50k images for each Linemodmodel.
To do so, we simulate two different kinds of blur to augment the data with TensorFlow. In
75% of the cases, we randomly add motion blur and in 25% of training scenarios a radial
blur. Both are generated with a mean of µ = 0 and σ = 0.05 standard deviation for all
three colour channels. Variety in the exposures are augmented through changes of bright-
ness, contrast and saturation values in the range of [0.95,1.25]. For object material and
light augmentation, we leverage the unity147 engine and simulate 20% of unlit material and
80% of standard material (i.e. metallic in the range of [0, 0.85] and glossiness/smoothness
in [0, 0.8]). Light is augmented with five point lights at random positions with an inten-
sity drawn from [0.5,1.5]. We change the light colour randomly by picking one colour from
C = {blue, cyan, green, magenta, red, yellow, white} at every capture and set the same colour
for all five lights. The colour brightness for the light is randomly enhanced offering subtle
additional variation in contrast to the intensity changes. Then we do a random crop of the
rendering patch with 128× 128 pixels to a height and width within [96, 128] and resize the
144Cf. Lin et al. [256].
145Cf. Xiang et al. [454].
146Cf. Hinterstoisser et al. [174].
147Cf. Haas [158].
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patch to a value within [32,64]. To simulate occlusion, we render 20k patches from YCB and
Linemod models with random poses from which we pick four samples at each training step.
Firstly, they all are processed by the aforementioned blur and colour augmentation scheme. In
50% of the cases, we do not occlude the patch. In the other cases we use these four samples
for occlusion. With a 12.5% chance we respectively select either one, two or three occluders at
random or use all four. Finally, we crop the entire masked region of the augmentation pipeline
in 25% of the cases to simulate another occlusion scenario where we select the cropped region
patch height and width randomly from [72,96]. We apply this procedure to generate 50k im-
ages for each YCB object and 50k images for each Linemod model. We consider these images
as our synthetic ground truth.

To simulate also the initial pose seeds, we produce a variety of 3D renderings without any
augmentation a set of actions away from the related synthetic ground truth patch. We want
our method to work particularly well close to the correct result where it is crucial to take the
right decisions in order to converge. For this reason instead of rendering random seeds evenly
distributed in pose space, we pay close attention near the ground truth by providing more
training data in this region. We group the pose seeds in five clusters: 10k each for YCB and
Linemod. The first cluster contains small misalignment in only one action direction, where
each action has an equal chance of 1/13 to be picked, also the stop-action. For the step size it
holds t x , t y ∈ [1, 5], tz , ri ∈ [1,4]∀i. The second group consists of larger misalignment in only
one direction with equal chance. For this we chose t x , t y ∈ [5, 30], tz ∈ [1,15], ri ∈ [4,20]∀i.
The third group is mixed where we have one larger misalignment in one direction and the
remaining actions are random small misalignment (e.g. t x = 10 and all other directions are
randomly chosen as in group one). The fourth and fifth groups are a random small and a
random large mix of misalignments from groups one and two.

Training Modes & Attention. We train networks for each YCB model (object-specific train-
ing) and one networkwithmixed training including all YCB and Linemodmodels (multi-object
training). Fig. 8.18 shows the unsupervised training of our attention map on the same image
after different number of iterations for training with cracker box. It can be seen, that the
attention mask first focuses on high gradient object regions (250 iterations) before the mask
emphasizes on the overall object geometry excluding big occlusion patches (6k iterations).
Finally it learns to exclude the finer occluder details such as the front part of the drill (15k
iterations).

8.2.4.5. Experimental Evaluation

We implement the model using the 3D renderer from unity148 with a customized version of
the ML-agent toolkit149 to seamlessly support our model, load training, provide visualizations
for debugging purposes and run all our experiments. We combine it with TensorFlow (1.7.1
tensorflow-gpu) and use TensorFlow 1.10.0 for training to have the necessary functionality
support. The batch size is set to 32 and we use the ADAM150 optimizer with a learning rate
of 10−4 and exponential decay of 5% every 1k iterations. We trained all our models until
148We use unity version 2018.3.6f1, Unity Technologies [429].
149Cf. Juliani et al. [201].
150Cf. Kingma and Ba [219].
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Rendered Input RGB, Depth, Segmentation MaskRGB Input

Attention Map after # of Training Iterations

250 6k 15k

Fig. 8.18. Unsupervised training of attention map. The input RGB (top left) as well as the three input renderings
(top right) are shown together with the results of the unsupervised training of the attention map after
different numbers of training steps (bottom).

convergence (i.e. 25k iterations for object-specific training and 50k for multi-object training).
All our experiments as well as training and dataset creation is done on a consumer laptop
with an Intel Xeon E3-1505Mv6 CPU and an Nvdia Quadro P5000 mobile GPU.

Dataset Choice. High quality pose annotations are usually acquired with fiducial markers,
manual annotation or a combination of both as discussed in section 8.2.2. This process is very
time-consuming and thus video annotations for 6D pose estimation are not easily retrieved. In
order to produce the marker-free video pose dataset YCB151, the authors manually annotated
only the poses of all the objects in the first frame of a sequence and refine them with an
algorithm based on Signed Distance Functions. The ground truth labels for the rest of the
frames within the sequences are retrieved by camera trajectory estimation with a depth-based
tracker and the constraint for constant relative object poses within the scene. This eliminates
possible fiducial marker cues that could eventually provide a signal to a learning-based method
at the cost of not being able to freely move the objects. While this allows also for larger frame
sets, the quality of the annotations can vary. The Laval152 video dataset circumvents this issue
through the use of a motion capture system and retro-reflective markers attached to the real
objects in the scene. A post-processing step in their pipeline cures the depth images by removing
strong artifacts that arise from marker reflections to provide cleaned depth images also for
RGB-D methods. We test our models on these two datasets and evaluate both quantitatively
and qualitatively. We note that the models in the YCB dataset are part of our training, while
the objects from Laval are entirely unseen.

Quantitative & Qualitative Evaluation. For all quantitative experiments, we follow the pro-
tocol of Garon et al. [136] and reset the pose estimation with the annotated pose every 15

frames. The maximum number of action steps per frame is set to 30. At first, we test our
networks trained on individual YCB models and compare with their ground truth poses. The

151Cf. Xiang et al. [454].
152Cf. Garon, Laurendeau, and Lalonde [136].
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result is reported in comparison with the state-of-the-art153 in Tab. 8.1 columns two to six. We
utilize the 3D metrics for ADD and ADI (for symmetric objects) relative to the object diameter
as proposed by Hinterstoisser et al. [174]. An extensive comparison with absolute thresholds is
provided in the appendix A.2 and more qualitative examples can be found in a supplementary
video online.154

We note an average improvement of 9.94% compared to Oberweger, Rad, and Lepetit [312]
for our method and investigate the failure cases. While most of them seem visually plausible,
we still observe a significant accuracy variance between the video sequences in YCB which
we further analyze. It turns out that the annotations for some of the objects are slightly
shifted as shown in Fig. 8.19. Our method – in contrast to others with which we compare
in Tab. 8.1 – is fully trained on synthetic data. Thus, we cannot learn an annotation offset
during training time due to the fact that our training setup provides pixel-perfect ground truth.
Further investigations revealed that the ground truth annotation quality is a common issue
amongst multiple video sequences in this dataset.
We believe that the main source for this is that an incorrect annotation in the first frame
propagates constantly through the entire sequence, and the manual label was only given
in frame one.155 We correct this shift such that the annotation visually overlaps the RGB
observation by one single, constant translation delta for each of the sequences and rerun the
evaluation. The results are shown in the last column of Tab. 8.1, where also the accuracy of our
method improves significantly to a margin of 28.64% over the state-of-the-art. The corrected
annotations ease the comparison between synthetic and real data training on this dataset and
help to improve future pipelines.

GT Ours Ours OursGT GT

RGB RGB RGB 3D3D3D

Fig. 8.19. Annotation quality of YCB data. The input image is shown together with our prediction and the ground
truth annotation. Arrows and 3D visualization are added to detail the difference in these cases where our
estimation is considered incorrect in comparison with the provided pose annotation, but visually aligns
with the object.

The metric used for the evaluation (Tab. 8.1) is the standard ADD measure156 relative to
the object diameter where a pose estimate is considered successful if its ADD value is below
10% of the object diameter. The final ADD score is calculated by the percentage of frames
with such a successful estimation. Tables A.1, A.2, A.3 in appendix A.2 additionally compare
the area under the ADD threshold curve (AUC) for varying absolute thresholds from zero to
0.1 m.157 The extensive study in comparison with the state-of-the-art shows that our method
153Cf. Xiang et al. [454], Fu and Zhou [125], Hu et al. [187], Oberweger, Rad, and Lepetit [312].
154The video can be found under http://campar.in.tum.de/Chair/PublicationDetail?pub=busam2020_moveIt.
155Cf. Xiang et al. [454].
156Cf. Hinterstoisser et al. [174].
157Cf. Xiang et al. [454].
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compares favourable on the standard benchmark (Ours OS) and significantly better with the
shift-correction.

Model PC [454] HMP [125] SD [187] HM [312] Ours OS Ours + Shift

002_master_chef_can 3.60 40.10 33.00 75.80 7.70 91.88

003_cracker_box 25.10 69.50 46.60 86.20 88.36 97.76

004_sugar_box 40.30 49.70 75.60 67.70 58.35 91.95

005_tomato_soup_can 25.50 36.10 40.80 38.10 38.23 57.99

006_mustard_bottle 61.90 57.90 70.60 95.20 87.74 98.49

007_tuna_fish_can 11.40 9.80 18.10 5.83 47.90 52.89

008_pudding_box 14.50 67.20 12.20 82.20 58.68 76.00

009_gelatin_box 12.10 59.10 59.40 87.80 37.08 89.20

010_potted_meat_can 18.90 42.00 33.30 46.50 45.99 60.61

011_banana 30.30 19.30 16.60 30.80 74.02 90.43

019_pitcher_base 15.60 58.50 90.00 57.90 99.40 100.00

021_bleach_cleanser 21.20 69.40 70.90 73.30 95.04 95.30

024_bowl 12.10 27.70 30.50 36.90 99.44 99.44

025_mug 5.20 12.90 40.70 17.50 45.35 76.59

035_power_drill 29.90 51.80 63.50 78.80 52.77 97.35

036_wood_block 10.70 35.70 27.70 33.90 52.28 63.48

037_scissors 2.20 2.10 17.10 43.10 63.33 81.11

040_large_marker 3.40 3.60 4.80 8.88 39.53 41.73

051_large_clamp 28.50 11.20 25.60 50.10 64.01 82.83

052_extra_large_clamp 19.60 30.90 8.80 32.50 88.02 91.37

061_foam_brick 54.50 55.40 34.70 66.30 80.83 80.83

Average 21.26 38.57 39.07 53.11 63.05 81.75

Tab. 8.1. Evaluation on the YCB dataset with our object-specific models, AD{D|I}.We compare the percentage
of frames for which the 3D AD{D|I} error is < 10% of the object diameter as suggested by Hinterstoisser
et al. [174]. Symmetric objects are shown in italic letters.

Generalization and Ablation. Given these problematic initial annotations, we refrain from
further interpretation of the results and investigate another dataset.158 To the best of our
knowledge, we are the first RGB-onlymethod to report object-specific results on the challenging
sequences of Laval where we test the generalization capabilities of our multi-object model.
Please note that the objects of the Laval dataset have not been seen during training. The
results are summarized in Tab. 8.2 where we also ablate the rendered depth input channel,
and Fig. 8.21 shows an example scenario. We follow the evaluation protocol of Garon et al.
[136] and report separately the average error for translation and rotation.

Tab. 8.2 shows that our multi-object model generalizes well to the unseen objects of this
dataset where the ground truth is acquired with a professional tracking system. Both models
are able to track the unseen object in translation. While the full model provides close results
both for translation and rotation, the ablated model focuses only on the translation compo-
nent and predicts stop once the object centre is aligned with only weak corrections for the
rotation. Without the depth rendering, the rotational error is significantly larger. Rendering
158Cf. Garon, Laurendeau, and Lalonde [136].
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the synthetic depth helps with respect to the rotational accuracy. This can be explained by the
fact that moving the object in a close proximity to the observation does not require detailed
understanding of depth while rotating it correctly is more intricate. In practice we observed
that the network first aligns the object in t x and t y before correcting rotations and tz values.
We leverage this observation as a tracker initialization after an analysis for robustness and
convergence of the method.

8.2.4.6. Robustness & Convergence

The performance of conventional trackers largely depends on the difference between the
correct pose and the initialization.159 As their paradigm is temporally consistent motion in the
videos, oftentimes close-to-correct poses are available from the result of the previous frame or
they re-initialize with another algorithm.160 Their sensitivity to the initialization can result in
drift or tracking loss if the seed pose is too far off. Recent methods severely suffer, for instance,
if the bounding box overlap is below 50%.161 Moreover, most conventional 3D trackers are
not able to detect whether their estimation is correct or not. In contrast to these methods, we
propose a pose estimation pipeline with a large convergence basin that is able to detect its
own drift by analysing the number of steps and our stopping criterion.

We test the convergence radius of ourmodel by providing different initial poses with gradually
increasing deviation from the correct result. After manually checking the ground truth poses
of the YCB dataset, we decided to run a robustness test with power drill on all keyframes
from video sequence 50 which provides reliable annotations. We prepare initial poses by
deteriorating the ground truth annotations with increasing noise from the correct result to an
initialization which is 270 actions apart. This is done by adding actions to the GT pose with
the state

�

t x , t y , tz , rx , ry , rz

�

in the form of:

∆ ·
�

m(t x), m(t y), m(tz), m(rx), m(ry), m(rz)
�

, (8.6)

where m(s) = m · sgn (X ) , (8.7)

for all state variables s. We vary the value m ∈ {0, ..., 45} and X is drawn from the uniform distri-
bution U(−1,1) and determines the direction of corruption. The parameter ∆= 6 determines
the deterioration increment for our test.

We use the individually trained model and set the stepsize for all actions to three. Then we
run the method and record the average ADD accuracy score as well as the average number of
steps in case the model converges to the correct solution. We randomly reduce the amount of
keyframes for m ∈ {25, ..., 30} to 25% and for m ∈ {31, ..., 45} to 10% to avoid unreasonably
long computations. If convergence is not reached within 200 steps, we treat the run as a
fail. The results are summarized in Fig. 8.20. Note that even for a large deviation of m = 12

which is significantly larger than the deviation found in the video sequence, our accuracy is
ADD= 73.8%. Moreover, we can also see reasonable convergence in cases with 50% or fewer

159Cf. Akkaladevi et al. [4].
160Cf. Deng et al. [82].
161Cf. Garon and Lalonde [135] as well as Garon, Laurendeau, and Lalonde [136].
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Ours full Ours w/o D

Occlusion 0% 15% 30% 45% 0% 15% 30% 45%

Clock

T[mm] 14.02 20.54 25.85 51.92 9.39 9.96 32.58 15.91

R[deg] 9.40 10.84 12.74 17.05 29.15 27.92 30.72 28.40

Cookie Jar

T[mm] 3.82 5.99 9.52 15.18 1.79 2.75 11.62 5.95

R[deg] 6.48 17.82 18.22 15.89 28.77 18.18 24.30 19.02

Dog

T[mm] 12.09 28.37 55.48 77.91 6.10 10.76 33.89 15.62

R[deg] 11.70 14.21 22.43 23.80 20.75 26.81 24.22 22.53

Dragon

T[mm] 22.47 29.39 36.37 40.06 25.69 25.13 27.71 30.65

R[deg] 3.34 4.89 11.65 13.39 27.16 36.40 37.61 30.94

Shoe

T[mm] 9.72 17.91 24.33 37.34 44.61 19.90 38.04 41.90

R[deg] 5.84 9.26 17.89 16.91 62.78 39.47 43.50 24.73

Turtle

T[mm] 5.92 9.91 12.91 23.92 5.53 6.37 16.14 12.63

R[deg] 7.09 14.87 14.87 14.11 18.31 20.13 26.03 24.97

Walkman

T[mm] 8.74 18.93 31.98 45.13 11.63 15.63 20.12 31.30

R[deg] 6.97 11.33 21.17 22.26 40.68 44.47 50.18 45.14

Watering Can

T[mm] 14.67 21.66 18.68 33.26 11.61 20.54 20.96 26.10

R[deg] 11.89 19.80 23.43 33.54 38.89 40.85 36.30 35.23

Tab. 8.2. Evaluation results on Laval dataset for different levels of noise.We compare the full model to a model
without rendered depth input.
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bounding box overlap where other methods162 struggle and drift.
We use this wide convergence basin to show that our framework can be modified without
retraining to also provide an initial pose close to the correct one after further investigation of
failure cases and runtime.

m = 1 m = 10 m = 40

m =  1    4    7   10   13   16   19   22   25   28   31   34   37   40   43  45

160 Average Accuracy

Average # of Steps
120

80
40

0

......

Fig. 8.20. Sensitivity of pose decision process to initial pose. The average ADD score (orange) is shown for
increasing deviations from the ground truth while the average number of steps the method needed for
convergence is illustrated in blue. For deviations with m≥ 43 the method did not converge within 200
steps. The lower part illustrates some examples with increasing deterioration as used as an initialization
for the robustness test.
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Fig. 8.21. Pose estimation examples on Laval dataset.We show some prediction examples from the Laval dataset.
Upper row: Example predictions of unseen objects. Lower row: Self-occluded fine details (left), low
texture (middle) and occlusions (right) can cause pose estimation failure for unseen objects.

Failure Cases. Even though the convergence of our method is reliable in most cases, the
network capacity is limited. This results in pose estimation failures in case of heavy occlusions
and fine detailed geometry. Moreover, we share the issue with other RGB-only methods that
low-textured objects are difficult to estimate reliably which results in drift in some cases as
depicted in Fig. 8.21 together with further examples.

Runtime. The structure of our approach allows for automatic dynamic runtime improve-
ments in case of limited motion present in the scene. Since the number of iteration steps is
162Cf. Garon and Lalonde [135].
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non-static and the 3D rendering is negligible for this comparison, the overall runtime depends
on two parameters: the action decision cycle and the number of actions. In our current imple-
mentation, the runtime for one loop in the cycle breaks down in the image preprocessing done
on CPU and the inference on the GPU. We performed a runtime test averaging 512 iterations.
The results are shown in Tab. 8.3.

Average Runtime on CPU GPU Total

Average Runtime in ms 14.6 5.2 19.8

Tab. 8.3. Average runtime of action decision process cycle.

Given the average of 4.2 actions on our YCB tests, we report an overall average runtime of
83.16 ms or 12 fps. Note that all tests are done on a laptop and the runtime could be increased
if a more powerful desktop machine is used or the image processing was also ported to the
GPU.

8.2.4.7. Initialization & Detection

Tracking is often done by detection163 or with the help of a depth map.164 However, Deng et al.
[82] recently proposed an RGB-only tracking solution.
Other pose refinement models like the ones introduced by Manhardt et al. [273] for Kehl
et al. [210] or Li et al. [251] for Xiang et al. [454] require an initial detector. We empirically
observed that the model tends to first align the rendering for the translation and performs
rotation actions afterwards. We make use of this observation and run our network without
retraining with multiple seeds as a pose detection pipeline omitting the use of another
model. For this, we randomly chose an object pose and seed the image at different locations by
changing t x and t y for the pose. We then run one iteration of the network in every location and
record just the values for t x and t y . We normalize the 2-vector given these inputs and generate
a sparse vector field V on top of the image as shown in Fig. 8.22 where we place these vectors
at the seed centres. This vector field is rather random for non-overlapping regions while its flux
points toward the projection centre of the object if visible. Applying a divergence operation
W = ∇ · V on the smoothed vectors allows to find the object centre as the maximum of W.
Analyzing W helps also to determine a valuable bounding box size for a first crop. Running the
method on a coarsely discretized rotation space in this crop allows to find an initial rotation
as shown in Fig. 8.22 where the minimum number of iteration positively correlates with a
possible starting rotation. As the initial seeds can be calculated independent from each other,
this process can also be parallelized.

163Cf. Crivellaro et al. [74] as well as Xiang et al. [454].
164Cf. Garon, Laurendeau, and Lalonde [136].
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Fig. 8.22. Initial point & rotation seeding. The predictions for t x and t y generate a vector field over the image
(top left) whose divergence (top right) determines the initial point. Seeding a random rotation at this
point allows to calculate the initial pose. The necessary number of iterations before stop is predicted
is plotted (bottom) against different seeds at a certain deviation from this rotation in just one action
parameter (in this case rz ). A good initialization in the example is +5 actions away where the curve has
its minimum.

8.2.4.8. Retrospective & Outlook

We reformulated 6D pose estimation as an action decision process and presented a pipeline to
solve it as a generic task without the need for object-specific training. The method provides
a dynamic runtime complexity depending on the inter-frame motion to increase runtime
performance and it generalizes to unseen objects. However, while improving the state-of-the-
art for RGB-based video pose estimation, it still struggles in challenging cases for unseen objects.
Currently we search for the next best pose in every step. An interesting direction for future
research could be to integrate built up knowledge over time leveraging e.g. reinforcement
learning.

In this chapter, we studied the minimal case where the only source of information for our
6D pose estimation comes from pixel intensities of captured unseen environments leveraging
greyscale binocular stereo in an inside-out setup or unseen objects with outside-in vision and
a monocular RGB camera. We now want to make use of pose estimators as developed so
far in order to practically fuse sensor information. For this, we also tackle pose noise and
interpolation to enable a synchronized combination of multi-modal information in the next
chapter.
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Part IV

Sensor Fusion





9Pose Modifications

„Don’t complain about things
you’re are not willing to change.

– English Proverb

A plethora of sensors are available in our everyday life. With the advances in modern smart-
phones and intelligent cars, videos, images, GPS and many other sensors are more mobile than
ever before and their data provides inherent information on their location and relative poses.
When we want to combine information from multiple spatial locations, we have to answer a
set of questions to align the input from diverse sources correctly in order to improve the overall
output or combine information to gain further insight.

Independent of the sensor modality or sensing frequency it is essential to know the relative
pose between the devices to represent the data in a common reference frame. If the various
sensors are mobile, this can be a dynamic parameter and accurate pose estimation methods
help for better fusion. In an ideal setup, the acquisition is synchronized. From a hardware
perspective this can be realized with sensors of the same acquisition frame rate and a trigger
mechanism analogously to the stereo setup described in section 7.1.1. However, the hardware
of acquisition devices is often closed and a software trigger remains the only option or it is
necessary to run devices in streaming or free-run mode where no active triggering is possible.
Moreover, the nature of the acquisition or the exposure process may not allow for real-time
image broadcasting or it adds a slight delay. This results in images and poses often being
provided at different times and with inconsistent frequencies or even with changing temporal
offset. Online use of fusion systems severely suffer from these discrepancies that manifest in
jitter, lag and incorrect augmentations which ultimately can harm a medical diagnosis.
To pragmatically address this, we investigate necessary pose corrections to provide compu-
tational synchronization through pose modification with interpolation and extrapolation
methods and minimize the noise from optical tracking systems in this chapter. We then discuss
how various sensor inputs can improve overall pose estimates and consecutively analyse spatial
combinations of input signals in chapter 10.

The pose estimation pipeline is the backbone for spatially correct modality fusion. As such, it
is important to know the pose of involved sensors at a given time correctly and accurately in
order to place images in a joint visualization at the right place.
The time of a calculated pose usually does not coincide with the time of the sensor acquisition.
In order to efficiently assign a pose to an acquired image, we correct its parameters in an online
approximation step using time-based geometric interpolation and extrapolation methods
which we present in section 9.1. We further aim to remove noise from the pose estimation step
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using temporal smoothness constraints tailored for our (dual) quaternion pose parametrization
in section 9.2 before we finally discuss ways to improve the signal through input and output
consistencies in section 9.3.

9.1. Interpolation and Synchronization

The use of multiple devices and machines together with communication-induced lags and
differentmeasurment frequencies causes images and pose estimations to be acquired at unequal
times. While the optical tracking system as defined in section 7.1 operates at a frequency above
20 fps with an exposure time of only 1.5 ms, other modalities such as the ones typically used
in nuclear medical imaging can require much longer integration times in the order of seconds.
On the other side of the spectrum, IMUs acquire information with more than 100 Hz1 and
event cameras provide an asynchronous stream of measurements up to the order of kHz.2

We identify fast tracking as an essential part in real-time 3D vision pipelines and improve the
acquisition rate of optical tracking systems computationally. This allows to keep the advan-
tages of accurate and reliable measurements while overcoming sensor limitations and physical
constraints due to exposure time. Moreover, we address the problem of transmission lags and
latencies by signal series extrapolation using the mathematical foundation of (dual) quater-
nions built in sections 6.2.3 and 6.2.5.
We leverage the fact that our OTS uses a dual quaternion based pose parametrization in its
backbone algorithm as described in section 7.3 and introduce quaternionic upsampling in
section 9.1.2 to increase the pose frequency on the fly.
We formulate different upsampling strategies on Riemannian manifolds to describe poses as
points on a multidimensional hypersphere and a quadric in (dual) quaternion space. We in-
terpolate piecewise continuous curves along geodesics and study computational complexity
and accuracy of the results. Quaternionic upsampling allows for unified interpolation and
extrapolation of pose series with just one parameter where linear variations directly translate
into continuous pose changes with pose rates of over 4 kHz. Extrapolations with an accuracy of
128 µm and 0.5◦ can be realized online. While the method is designed for our optical tracking
system and leverages the internal pose parametrization, it is generic and can speed up any
6 DoF rigid pose tracker or 3 DoF rotation estimation system.

9.1.1. Quaternion Interpolation Techniques

Losing pose information due to communication lag and data corruption is a relevant problem
that limits the use of applications that depend on robotic manipulators and optical systems in
practice.3 Pose extrapolation can be an adequate tool to prevent tracking failures and mitigate
pose loss through dead reckoning in small temporal windows. Through time stamp based
pose calculations one can interpolate poses in retrospect to further help alignment of pose and
1Cf. Potter et al. [333].
2Cf. Scheerlinck, Barnes, and Mahony [367] as well as Gallego et al. [132].
3Cf. Johnson and Somu [197].
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image streams and to synchronize movements of individual coordinate frames in real-time.4

Computational increase of pose acquisition rates helps also multi-modal systems where data
streams such as visual and inertial sensors provide information on different time scales.5

The fact that a quaternion rotation representation avoids gimbal lock6 makes the parametriza-
tion interesting for interpolation tasks. Geodesic trajectories on the 3-dimensional hypersphere
S3 have been presented by Shoemake [374] as an efficient first order interpolation of rotations.
The method is often referred to as spherical linear interpolation (SLERP) when sampled at
constant speed. Interpolation applications on quaternion space H are also used in computer
animations7 and in virtual reality scenarios.8

Dual methods are not as frequently explored for pose interpolation despite their advantages.
The graphics community uses dual quaternions more often. Kuang et al. [230] use DH1

for real-time motion animation of clothed body movements and Kavan et al. [207] apply the
advantageous dual formulation for skinning. Dual methods are used in computer animation
for smooth blending9 and in Busam et al. [50], we describe how to extrapolate movements
in real-time vision systems with dual quaternions. Moreover, complex hierarchical rigid body
transforms can be efficiently represented with DH1.10

Interpolation between key frames is an essential ingredient in computer animation11 where
computationally efficient and physically plausible methods are important and the task has
similar requirements to our pose parameter interpolation where an initial and an end pose
determine intermediate poses. Instead of direct estimation of interior points on the Lie group
between measurements, other approaches focus on optimization of support quaternions to fit
an interpolated trajectory. Aside of our investigation, extrapolation with quaternions is not
much explored. One of the few works by Chui et al. [70] explores a virtual reality application.
They estimate a first initial pose for a smooth trajectory which is consecutively refined in the
context of repetitive motion.

Higher order pose interpolation can also be efficiently implemented and used to describe
continuous time pose trajectories.12 Interpolation techniques for quaternions are started
with the work of Shoemake [375] who proposes a bilinear parabolic blending scheme of four
base quaternions which are positioned at the corners of a quadrangle. According to the con-
struction scheme, it is sometimes referred to as spherical cubic spline quadrangle (SQUAD).13

The resulting curve has C1-continuity. Also Barr et al. [10] use multiple quaternions and
interpolate a spline including velocity constraints and Kim et al. [218] form a spline on SO (3)
with a cumulative basis. Their B-spline curve has local control and is C2. A tension parameter
is explored by Nielson [306] who performs key-frame animation with ν-quat splines. Spline
Fusion14 uses a continuous time representation to combine IMU and vision data from a rolling
shutter camera as also done by Patron-Perez et al. [324]. They use a cumulative B-spline on

4Cf. Esposito et al. [101].
5Cf. Foxlin et al. [121].
6Cf. Lepetit and Fua [244].
7Cf. Kavan [205].
8Cf. Song et al. [388].
9Cf. Pennestrì and Valentini [327].

10Cf. Kenwright [214].
11Cf. Parent [320].
12Cf. Haarbach, Birdal, and Ilic [157].
13Cf. Dam, Koch, and Lillholm [78].
14Cf. Lovegrove, Patron-Perez, and Sibley [263].
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SE (3). An arbitrary spline order can be calculated on Lie groups with the work of Sommer
et al. [387] and a survey of higher order interpolation techniques is formulated by Haarbach
et al. [157].

Visual-inertial SLAM methods benefit from a change of the representation from discrete poses
to a continuous representation.15 Since the IMU acquires signals at a much higher frequency,
it is helpful to interpret the rolling shutter camera sensor as a higher frequency signal in their
formulation. Despite the improvement, singularities in their interpolation scheme remain.16

Direct interpolation on SE (3) can be detrimental from a practical perspective and it can be
helpful to split non-robotic motion interpolation tasks into rotation and translation.17

9.1.2. Quaternionic Upsampling

We investigate a unified approach that is capable of both interpolation between past measure-
ments and extrapolation of future poses in (dual) quaternion space with which both rotation
and translation can be efficiently computed. This represents to the best of our knowledge the
first method that uses a combined physical motivation and differential geometry approach for
joint interpolation and extrapolation of 6 DoF rigid body movements.

We start off by defining a general upsampler in pose space which is used to define a set of meth-
ods for interpolation and extrapolation. The methods build on established pose parametriza-
tions as discussed in section 6.2 and are consecutively evaluated.

Definition 9.1
An upsampler γ ∈ C0 from two transformations φ1 and φ2 of pose parameter space Q can be
defined as

γ :Q×Q×R+0 →Q (9.1)

(φ1,φ2,τ) 7→ γ (φ1,φ2,τ) (9.2)

with

γ (φ1,φ2, 0) = φ1, (9.3)

γ (φ1,φ2, 1) = φ2. (9.4)

Our observation range is τ ∈ [0,1] and the interval [0,∞] provides the sampling space. We
interpolate with τ ∈ [0,1] and perform an extrapolation for τ > 1. Since optical tracking
systems operate at constant frame rates, we mostly extrapolate with τ ∈ (1,2) before the new
pose measurements arrives around τ = 2. A longer dead reckoning phase, however, can be
necessary in case of network lag, occlusions or other disruptions. Interpolation constitutes a
refinement of poses between twomeasurements and extrapolation gives an estimate beyond the

15Cf. Furgale, Barfoot, and Sibley [128] as well as Furgale et al. [129].
16Cf. Haarbach, Birdal, and Ilic [157].
17Cf. Ovrén and Forssén [318].
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observable range. If the pose is parametrized by a separate rotation and translation component,
the translation part is equally treated with a linear interpolation between the supporting
estimates. More elaborate techniques beyond linear interpolation can preserve additional
kinematic properties other than continuous motion. This can be continuity in the velocity or
angular momentum ultimately leading to Cn-continuous pose interpolations. For efficiency
reasons, we want to concentrate on C0-continuity and focus on the more complex rotation
part first before we jointly encapsulate both translation and rotation in a joint upsampling and
pose refinement formulation with dual quaternions.

We develop a set of upsampling strategies in the next sections. The angular velocity v of a
potentially upsampled pose sequence (φn)n that uses parameter space Q can be visualized
using centred averages

v :Q→ R (9.5)

φi 7→ v (φi) :=
‖φi −φi−1‖+ ‖φi −φi+1‖

2
. (9.6)

Note that a sequence of n samples does not provide angular velocity values for v (φ0) and
v (φn) with this definition.

To visually compare the results of 6 DoF pose upsamplers, we concentrate on the more inter-
esting rotational part. Leveraging quaternion representations for visualization here is intricate
as quaternion space H has 4 dimensions. We instead separately illustrate a projection of the
rotation axis onto the sphere S2 together with an angular velocity plot. For a pose sequence
of four example poses we show in Fig. 9.1 the results of different upsamplers we discuss con-
secutively together with their individual rotation angle change. Further examples and the
effect of different upsampling strategies on rigid body motion for an object are exemplified in
a supplementary video which is available online.18

9.1.3. Euler Angles & Rotation Matrices

The generic formulation allows also to interpolate non-quaternion rotation representations
such as Euler angles and rotation matrices. Suppose we use the parameter vector for Euler
angles ai =

�

αx
i ,αy

i ,αz
i

�

where two rotations are given by a1 and a2, we can frame Euler angle
Linear Upsampling as

EuLUp (a1,a2,τ) := (1−τ)a1 +τa2. (9.7)

An interpretation of the resulting interpolations can be counter-intuitive as the trajectory of
the rotation axis may not follow the shortest path from its source to its target position. In
fact, it may take a detour. This inhibits the physical interpretation of the result as shown in
Fig. 9.1.

18The video can be found under http://campar.in.tum.de/Chair/PublicationDetail?pub=busam2016_3dv.
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Fig. 9.1. Pose upsampling methods and resulting velocity. The three pose upsampling methods EuLUp, LUp,
SLUp are compared for the four pose observations 1, 2,3, 4. The spheres illustrate the rotation axis with the
green points indicating the orientation of the axis at start and end of the interpolation. The accompanying
graphs visualize the velocity v of the interpolatedmotion where the time steps t ∈ {1,2, 3,4} coincide with
the pose observations. The interpolation with EuLUp (left) causes nonlinear velocity changes together
with an axis motion that is not following the shortest path between interpolation points. The interpolated
rotation axes in LUp (centre) follow the shortest path. However, the velocity increases and decreases
between pose measurements with the maximum velocity in the middle. SLUp (right) results in constant
rotation velocity between poses and shortest path motion.

A potential direction could be the use of rotation matrices. If we interpolate on the parameter
space of matrices, we can formulate element-wise linear upsampling for rotation matrices as

MLUp (M1,M2,τ) := (1−τ)M1 +τM2, (9.8)

with Mi ∈ R3×3, i ∈ {1, 2} and the constraints MT
i = M−1

i as well as det (Mi) = 1. There is no
guarantee that the resulting matrix Mτ =MLUp (M1,M2,τ) fulfills the orthonormal constraint
and is therefore not necessarily an element of SO (3). Geometry changes and object scaling
immediately cause problems in this case andwe do not want to investigate re-orthogonalization
methods here. Thus, we consider the space of quaternions H1 as a next step.

9.1.4. Quaternions

Normalized Linear Upsampling (LUp) between the quaternion rotations q1 and q2 in H can
be written as

LUp
�

q1,q2,τ
�

:=
(1−τ)q1 +τq2




(1−τ)q1 +τq2







. (9.9)

The interpolated rotations are given by the points on the straight line connecting the quater-
nions q1 and q2 in H which are normalized. However, the described trajectory follows the
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shortest path in H connecting these points before normalization rather than staying in H1. In
Fig. 9.2 we illustrate the process where the interpolated points are projected onto the sphere
H1. The resulting trajectory on H1 coincides with the geodesic describing the shortest path
from q1 to q2. The projection step, however, causes a variation in sampling rate on this trajec-
tory resulting in a continuous increase of angular velocity until the middle point and an equal
decrease afterwards. The interpolation method involves little computation and it can still serve
as an efficient solution in time-critical applications where a large amount of interpolations need
to be calculated or hard runtime constraints limit the allowed computation complexity. For
extrapolation, this may be problematic as illustrated also in Fig. 9.2.

θLUp

θSLUp

q1

0

2

interpolation

extrapolation

q1

Fig. 9.2. Linear (LUp) and Spherical Linear (SLUp) upsampling in H1. We illustrate a partial cut through the
quaternion hypersphere H1 on which the two quaternions q1 and q2 lie. Interpolation steps for direct
upsampling (SLUp) along the geodesic thin line in H1 produce equidistant points along the arc. The
faster linear upsampling (LUp) is reached by interpolation (and extrapolation) on the straight line with
consecutive projection onto the arc through normalization. While both interpolation methods retrieve
points along the geodesic, the interpolated rotations can vary. For the same interpolant τ ∈ R+0 two
results can have different geodesic distance from q1 and q2 as illustrated here in blue and pink colour
for the angles θSLUp and θLUp. This discrepancy increases with the distance between the line and the arc
making extrapolations with LUp far beyond q2 impractical.

We further want to describe the interpolation along the geodesic line and use the definitions
for the exponential and logarithm map in quaternion space as introduced in chapter 6.2.6 to
define an exponentiation for unit quaternions:

Definition 9.2
For q ∈H1, we define the exponentiation of q with the real exponent τ ∈ R+0 as

qτ := exp (τ log (q)) . (9.10)
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With this definition, we can look at a unit quaternion r ∈H1 of the form

r := [cos (θ ) , sin (θ )v] (9.11)

with v ∈ R3, ‖v‖= 1 and θ ∈ R. It holds with τ ∈ R+0 :

rτ = exp (τ [0,θv]) (9.12)

= [cos (τθ ) , sin (τθ )v] (9.13)

and we can write Spherical Linear Upsampling for the quaternions q1,q2 ∈H1 as

SLUp
�

q1,q2,τ
�

:= q1 ·
�

q̄1 · q2

�τ
. (9.14)

The upsampling method SLUp interpolates along the great arcs on the quaternion hypersphere
in H1 using the geodesic path between q1 and q2 and extrapolates further along the arc. The
basis for SLUp is the interpolation step which was first introduced by Shoemake [374] as
Spherical Linear Interpolation (SLERP).
In Fig. 9.1, we see the change of the angular velocity for the projection dependent LUp inter-
polation in an example case in comparison with the SLUp method which provides a constant
speed while both their interpolation paths along the geodesic remain the same. We combine
translational and rotational components now and transfer the ideas to dual quaternion space
DH.

9.1.5. Dual Quaternions

The representation of rigid body motion with dual quaternions has some efficiency and com-
pactness advantages over using homogeneous matrices.19 We leverage this to define an efficient
upsampler.
Analogously to the quaternion case and with the concepts and definitions of the differential
operators from chapter 6.2.5, we formulate an exponentiation on DH1.

Definition 9.3
For Q ∈ DH1, we define the exponentiation of Q with the real exponent τ ∈ R+0 as

Qτ := exp (τ log (Q)) . (9.15)

A unit dual quaternion Q ∈ DH1 can be written in its standard form given in equation (6.64)20

as

Q= [cos (Θ) , sin (Θ)V] (9.16)

19Cf. Funda, Taylor, and Paul [127].
20Cf. Daniilidis [80].
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with the dual entities Θ ∈ DR and V ∈ DH1 from quatations (6.60) and (6.61) defined as

Θ = θ + εθε (9.17)

V= v+ εvε. (9.18)

We can then write

Qτ (6.64)
= exp (τ log ([cos (Θ) , sin (Θ)V])) (9.19)
(6.86)
= exp (τVΘ) (9.20)
(6.84)
= cos (τΘ) + sin (τΘ)V (9.21)

with the dual trigonometric operators from equations (6.62) and (6.63).
This can then be interpreted with the screw linear displacement view on dual quaternions
(cf. Fig. 6.8) where a linear variation of the interpolant τ ∈ R+0 causes a linear change of the
translation component in the direction of v together with a rotation about the screw axis with
constant speed.

Extending SLUp with this insight into dual quaternion space, allows to formulate screw linear
upsampling ScLUp. Let us consider the two dual quaternions Q1 and Q2 of unit length in
displacor form as proposed in equation (6.31) with

Q1 = r1 +
ε

2
t1r1 (9.22)

Q2 = r2 +
ε

2
t2r2 (9.23)

together with the interpolant τ ∈ R+0 . Then we can define

ScLUp (Q1,Q2,τ) :=Q1 ·
�

Q−1
1 ·Q2

�τ
, (9.24)

where Q−1
1 ∈ DH1 represents the inverse displacement. Since t̄= −t, we can also write

Q−1
1 = r̄1 +

ε

2
r̄1t̄1 = Q̄1 (9.25)

and thus it holds

�

Q̄1 ·Q2

�τ
=
��

r̄1 +
ε

2
r̄1t̄1

�

·
�

r2 +
ε

2
t2r2

��τ

(9.26)

=
�

r̄1r2 +
ε

2
(r̄1t2r2 − r̄1t1r2)

�τ

(9.27)

=
�

r̄1r2 +
ε

2
r̄1 (t2 − t1) r2

�τ

(9.28)

which represents the rigid displacement between Q1 and Q2. Thus, ScLUp gives the shortest
path with a screw linear displacement between the two dual quaternions. Equidistant samples
of parameters τ ∈ R+0 then result in a translation and rotation with constant speed interpolating
between Q1 and Q2 for τ ∈ [0,1] and extrapolation with a screw linear motion for τ > 1.

Instead of treating translation in R3 and rotation with a quaternion from H1 separately, this
allows for unified upsampling in DH1 resulting in an efficiency advantage over the former ap-
proaches as we analyze hereafter. However, for critical high speed applications and constraint
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hardware with limited computation capabilities, an approximate solution that safes computa-
tion time may be required. Taking the attractive computational savings from LUp into account,
we also approximate an interpolation using a normalized Dual quaternion Linear Upsampling
(DLUp). The approach is used for interpolation in 3D animation21 where dual quaternion
linear blending (DQLB) improves the frame rate and helps to refine character poses.22 In our
case, the approximation reads as

DLUp (Q1,Q2,τ) :=
(1−τ)Q1 +τQ2

‖(1−τ)Q1 +τQ2‖
. (9.29)

If the displacement between pose measurements is not too far and the update rate for pose
estimates is fast, DLUp closely approximates ScLUp while being more efficient. However,
angular differences between the two methods of up to 8.15◦ for interpolation scenarios are
possible.23

9.1.6. Pose Stream Synchronization

With the tools we have developed so far, it is possible to compute poses between measurements
and beyond the latest estimate. This is a core necessity for systems built from various sensor that
are not perfectly synchronized in time or run at different sampling rates. However, to leverage
the upsampling methods, it is crucial that the different systems are temporally calibrated such
that different data can be fused with the correct time stamps. If various pose estimation
systems are involved, a temporal calibration is possible by automatically finding a constant
temporal offset that solves the optimization problem

min
∆t∈R





P (t)WA − P (t +∆t)WB




 (9.30)

for the poses P in some world reference system W when they come from the two estimations A
and B. This is illustrated in Fig. 9.3 where the shift of the belayed measurements from system
B is shown with a constant temporal offset. While the sampling rate of one system may vary,
pose upsampling in t or a continuous time assumption allows to calculate a constant delay.

Such a temporal offset can arise from delays caused by the runtime of different pose estimation
algorithms that do not correct the time stamp of the estimated displacement or do not provide
temporally corrected poses. It can also be influenced by network delays when the optical
tracking systems send the pose over an interface such as the one described in chapter 7.6 and
thus can depend on the network traffic. Non-synchronized system clocks additionally affect
the time offset when several computers are involved. Such delays are in practice not constant
and vary during a measurement procedure in particular if we use pose estimations from a
closed system. We therefore generally take a two step approach where we first synchronize
the clocks of the involved machines and consecutively minimize a constant offset continuously
if necessary. If we have full control of the pose estimation pipeline we can minimize the
correction steps by using the time stamp of the image acquisition from our OTS as the time
stamp of the calculated pose rather than the time when the pose has been calculated.
21Cf. Feng and Wan [108].
22Cf. Kavan et al. [206].
23Cf. Kavan and Žára [208].
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Fig. 9.3. Time shift of pose streams. An object motion is captured by the two pose estimation systems A and B
in the same world reference coordinates. The object motion at different time steps for the two systems is
shown in grey and blue colour and the pose samples taken from the tracking systems by pose estimation
are illustrated as circles. The measurements from system A are slightly ahead and the time shift is shown
as ∆t.

A synchronization of involved clocks is also not necessary a sole calculation of a constant
offset as the clocks may slightly change for instance due to embedded synchronizations with
standard time server over the internet. We synchronize the clocks of various computers at the
operating system (OS) level leveraging the commonly used NTP protocol.24 This is a pragmatic
solution when multiple computers are located in the same local network and can be connected
via Ethernet. The procedure allows the clocks of multiple machines to converge to a minimum
time difference below 1 ms which can be maintained. After convergence, we have a shared
clock and can directly compare measurements by their individual time stamps.

9.1.7. Extrapolation Accuracy

Now it is possible to temporally calibrate systems such as robot and OTS and we are able to
maintain the synchronization. With this, we study the different upsampling strategies com-
paring the methods for EuLUp, LUp, and SLUp in an accuracy assessment and testing the
computational efficiency also for DLUp and ScLUp. To interpolate the translational compo-
nent for the quaternion and rotation-only methods, we perform a separate linear upsampling
on the translation component in R3. The translation component is also linearly upsampled in
the dual methods, but they provide a more efficient way for upsampling. Thus, we study them
in a consecutive experiment targeting the effect of their advantageous computation complexity
in practice.

All methods are tested with poses provided from three different optical tracking systems which
are pre-calibrated. We use a commercially available OTS (Polaris, Northern Digital Inc., Wa-
terloo, Canada) which provides poses at 60 Hz together with two prototypes of the system de-
scribed in chapter 7.25 One of them is using a stereo setup with two 2 MPix cameras (SMARTEK

24Cf. Mills [286].
25Cf. Busam et al. [49].
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Vision, Croatia) that acquire images and pose measurements at 15 Hz. The other one uses
two VGA cameras (SMARTEK Vision, Croatia) and runs at 30 Hz. The 2D image process-
ing pipeline and the 6D pose tracking algorithm is implemented in the FRAMOS Application
Framework (FRAMOS Imaging Systems, Germany). All trackers run on the same computation
platform with an Intel Core i7-4770K at 3.5 GHz. For reliable ground truth pose estimates, we
utilize a second machine controlling an industrial robotic manipulator (LWR4+, KUKA Gmbh,
Augsburg, Germany) and its forward kinematics. This provides a baseline with a precision
of 0.05 mm and a sampling rate of 1 kHz.26 Similarly to the approach in chapter 8.1.2, we
install a combined marker with markers for all three tracking systems at the end effector of
the robot.

During our tests, themanipulator ismoved by a human operator while the robotic arm runs
in gravity compensation mode with zero stiffness. The robot and the tracking systems are
connected via the ROS27 framework while the tracking systems transfer the poses via TCP/IP
with the OpenIGTLink API.28 The Fast Research Interface (FRI) connection of the robot is open
at a 10 ms rate, in order to sample its position at 100 Hz. All systems are calibrated in time
using a ground-truth synchronization clock provided via NTP with a time offset smaller than
1 ms. The output is recorded with the rosbag utility of ROS and then converted to CSV format
for post-processing and statistical evaluation. The Cartesian position of the end effector is
derived from the sampled joint position through the KDL library solver.29

Hand-eye calibration30 is used for co-calibration between robot and the tracking systems using
the algorithm of Tsai et al. [421] in eye-on-base variant. For each hand-eye calibration, we
use 20 pose samples and the calibration pipeline implemented in the ViSP library.31

Additional to the current pose estimates, the different upsampling strategies are implemented
to send poses in real-time for future displacements at time stamps with (+5, +20, +100,
+500 ms). All upsamplers are provided only with two poses for the current and the previous
measurement from the individual tracker and constantly provide pose extrapolations. The
underlying poses used for the extrapolation accuracy experiment only change when a new
pose is provided by the tracking system.

After recording the pose streams of the tracking systems and the extrapolations, an evalu-
ation of the data is performed. The results are summarized in Fig. 9.4 for the translation
component and Fig. 9.5 for the rotations. An accuracy evaluation for the different native
pose streams is shown together with the tested extrapolations. A first analysis reveals that the
pose predictions for the future estimates with +5, +20, +100 ms stay within the range of the
robotic ground truth. Further looking into the 100 ms estimates shows that the tracker with
15 Hz performs best with an accuracy of 128±5.7µm and 0.5±0.3◦ using SLUp. This improves
the accuracy compared to the 60 Hz OTS by a factor of two although it calculates the poses
only one fourth of the time. Compared to the commercial optical tracking system, we believe
that its improved accuracy is a result of the sub-pixel precise algorithmic pipeline32 which
cannot fully unfold its potential with the low resolution VGA cameras due to the comparably
low pixel count. This still holds true even though the average calibration error in pixel units

26Cf. KUKA GmbH [232].
27Cf. Quigley et al. [338].
28Cf. Tokuda et al. [413] and compare with chapter 7.6.1.
29Cf. Smits, Bruyninckx, and Aertbeliën [384].
30Cf. chapter 7.7.2.
31Cf. Marchand, Spindler, and Chaumette [275].
32Cf. Busam et al. [49].
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was smaller for the VGA camera system: The 15 Hz tracker was calibrated with an average
error of 0.49 pixels while the 30 Hz tracker had only an average error of 0.23 pixels. A similar
relative pattern for the tracking systems can be seen for extrapolations with +500 ms where
the major error amplitude is due to the movement within this time span. While the median
error of the 30 Hz tracker is smaller than the others in this case, its extrapolation precision is
slightly worse than its 15 Hz pendant. The 15 Hz tracker provides the best approximation here
with SLUp which additionally provides a physically interpretable constant angular velocity by
design.
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Fig. 9.4. Translation error of pose estimates for different future extrapolations. Three tracking systems that
run at 15 Hz, 30 Hz, and 60 Hz provide poses (±0 ms) that are used to extrapolate future translations
after +5, +20, +100, +500 ms. The box plot shows their median translation error in millimeters (red)
together with their interquartile range (blue) for the native measurements (left) and the different linear
extrapolation with an increasing extrapolation step.

9.1.8. Efficiency Evaluation

We further empirically test the computational efficiency of all proposed upsampling methods
by implementing the upsamplers in C++ using Eigen33 with its quaternion class which we
extend to be able to use all necessary dual quaternion methods. For both interpolation and
extrapolation the number of FLOPS is the same. Thus, we fix two poses and test all methods
for interpolation between them. We report the average pose frequency of 10’000 runs in
Table 9.1 which is calculated with the same machine we used for the accuracy tests. The result
of our optical tracking algorithm from chapter 7.3 can be provided in dual quaternion form,
but we test the rotation-only methods by splitting the information into translation and rotation
component first. The split methods EuLUp, LUp, and SLUp that perform separately translation
33Cf. Guennebaud, Jacob, et al. [154].
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Fig. 9.5. Rotational error of pose estimates for different future extrapolations. Three tracking systems that
run at 15 Hz, 30 Hz, and 60 Hz provide poses (±0 ms) that are used to extrapolate future rotations after
+5, +20, +100, +500 ms. The box plot shows their median rotation error in degrees (dotted blue circle)
together with their interquartile range (bold blue) for the native measurements (left) and different
extrapolations strategies using the upsampling methods EuLUp, LUp, and SLUp with an increasing
extrapolation step each.

and rotation upsampling are slower than the joint upsamplers. The dual quaternion methods
DLUp and ScLUp jointly estimate translation and rotation along the Riemannian manifold
DH1 which significantly improves computational efficiency. While we saw that the physical
motivation behind SLUp provides reliable extrapolation results, it performs slowest amongst the
tested methods. However, its dual counterpart ScLUp can provide accurate interpolations and
extrapolations also at high frequencies paving the way to seamless integration with IMUs.

EuLUp LUp SLUp DLUp ScLUp

469 Hz 306 Hz 236 Hz 4.55 kHz 2.53 kHz

Tab. 9.1. Efficiency evaluation for different upsampling strategies. We compare the proposed upsamplers re-
garding their runtime. The results report the average pose frequency of the methods for 10’000 runs. The
computed time for the rotation-only methods EuLUp, LUp, and SLUp involves also the split into rotation
and translation and a separate linear interpolation for the translation.

To conclude this part, we observe that pose accuracy can be more important than pose mea-
surement rate for optical trackers in scenarios with the speed of natural hand motion where
the necessary missing poses can be upsampled reliably and efficiently. Accurate trackers can
further provide useful pose estimates also for future displacements. With the experiments,
one may consider the decision for a fast tracking system under these circumstances differently.
Hence an accurate though slower system can potentially provide both speed and accuracy for
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free if the considered movement is not on a significant other scale than the tracking frequency.
Quaternionic upsampling can reliably predict human handmotion with a precision of 0.1 mm
and 0.5◦ even up to 100 ms in the future. The discussed upsampling approach for 6D pose
interpolation and extrapolation only requires one linear sampling parameter. While the most
efficient solution leverages dual quaternion displacement parametrization, the method is not
bound to it and can be used for any tracking system to improve its pose frequency or help to
fuse it in time with other sensors.

A possible extension of the method could address the smoothness of the estimated curve. While
the upsampler currently provides constant velocity between pose measurements, the angular
velocity jumps at the interpolation points. Considering multiple past pose estimations in a
series could help to provide a smoother and physically plausible solution with the drawback to
include older pose information. One direction could be an investigation on how to conserve
mathematically smoothness constraints or physical entities such as angular momentum, and
the pose history can also be considered to reduce the pose estimation noise and improve the
robustness of the optical tracking pipeline. In the subsequent sections, we look in this direction
and consider pose sequences with noise and formulate a regularization framework with local
control.

9.2. Pose Denoising

Noise is unavoidable in real applications and optical tracking systems suffer from different
amounts of inaccuracies. A temporal stream of poses can help to minimize the pose error and
improve vision applications and 3D camera systems. In the following sections, we investigate a
novel pose filter based on robust local regression that utilizes the Riemannian structure
of the (dual) quaternion pose space. We use differential geometry operators to formulate a
principal component regression on the locally linearized pose space of rigid body displacements.
With the concepts of chapter 6.2.6, we numerically process a temporally connected set of pose
estimates with a Lie algebra and the exponential and logarithm maps such that the pose
trajectory is smoothed with local control. In contrast to other filter methods, we directly
treat displacements on the 6-dimensional quadric defined by DH1 in the real projective space
RP7. Exploiting the pose space structure, we formulate a set of different filters including
an iterative outlier-aware reweighting scheme. The theoretical contribution is supported by
an experimental evaluation on both synthetic and real pose data which proves the practical
relevance of the system for camera pose filtering and tracking trajectory denoising.

Accurate pose measurements are the fundamental backbone of many 3D computer vision
pipelines and correct estimation of rotation and translation for rigid body motion is crucial
for tasks such as camera localization, 3D reconstruction or robotic applications. Every pose
estimation algorithm provides displacements with some form of error depending on various
factors and outlier-free, precise pose estimates constitute an important aspect for the choice of
a system independent of the sensor or modality used for data acquisition. A tracking stream
naturally provides an ordered set of temporally aligned poses that can be processed sequen-
tially. Optical tracking systems such as the ones discussed in chapters 7.3, 8.1.2, and 8.2.4
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all provide discrete pose trajectories independent of whether they utilize markers or measure
without object modifications or whether they view from outside-in or track the camera in
an egocentric inside-out setting and solve a SLAM problem. We formulate a motion smooth-
ing framework that synthesizes a novel camera trajectory based on the calculated per frame
displacements and improves the pose estimations to better match the underlying motion.

We motivate our filter pipeline with a moving window of local linear regressions exemplified
with a 2D signal. Suppose we consider a 2D signal of measurements as in Fig. 9.6. A robust
line fit can help here to correct a noisy signal point by projection onto a common regression
line that can be estimated for example with an outlier-aware robust linear least squares fit.
We can apply the same regression idea on a temporal sequence of the signal as illustrated in
Fig. 9.7 where we choose a temporally adjacent subset of current noisy measurements as local
support for a robust linear regression and correct one measurement in the set before moving
the local window in time. If the process is iterated by moving the local window over the
measurement sequence, we receive a denoised and corrected trajectory where the local control
is guaranteed by the window size.34 In the following, we establish a pipeline to linearize the
pose space locally and perform a similar smoothing where we denoise the pose measurements
on trajectories in DH1. Before we investigate this new manifold denoiser and model a set of
variants, we take a look at some related literature.

support

measurement

correction

Fig. 9.6. Measurement correction with linear regression for 2D signal. One measurement of a 2D signal shown
here with black circles is corrected via projection (dashed blue line) onto a robustly detected linear
regression line (blue) that is calculated with a robust linear fit of all support measurements including
the one that is to be corrected. The corrected measurement is drawn in turquoise.

9.2.1. Related Pose Regression Models

We use dual quaternions to represent spatial displacements and denoise the poses along tra-
jectories in DH1. An essential tool for various 3D computer vision tasks is accurate and reliable
pose data that can be retrieved with regression models and interpolation.35 Real-time blending
with unit dual quaternions can be achieved in computer graphics using approximations based
34Cf. Fox [120].
35Cf. Parent [320].
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corrected trajectory

local regression line

local support

noisy measurements

Fig. 9.7. Denoising with local linear regression for temporal 2D signal. A temporal sequence of a 2D signal
is shown in (black)from left to right. A local support window of seven noisy measurements (black box
lower right and circles upper left) around the current signal point is chosen to for robust linear regression
(blue). The current measurement is then corrected by projection (dashed blue line) onto the current line
and the support window is shifted to include the next measurement before the process is repeated. All
corrected points (exemplified with three turquoise circles) provide the corrected measurement trajectory
(turquoise trajectory).

on the L2-norm in the embedding space R8, but the manifold of dual quaternions is not an
Euclidean space. In a similar fashion, Torsello et al. [417] use an optimization framework
leveraging the Riemannian metric with diffusion principles for multiview image registration.
Likewise, we use the Riemannian structure of DH1 together with differential geometry opera-
tors to apply Euclidean smoothing approaches on the locally linearized tangent space.

Previous denoising methods study the problem intensively in joint rotation and translation
space H1 ×R3.36 Gaussian smoothing is proposed for rotation parametrization with non-dual
quaternions37 and Srivatsan et al. [390] design a linear Kalman filter to act on dual quaternion
space by modeling the noise for the displacement estimates. An Extended Kalman Filter (EKF)
for denoising on SE (3) is proposed by Filipe et al. [114]. Other scholars apply pose denoisers
for camera video stabilization38 and utilize pose smoothing in the robotics domain.39 Pose
regression is used with a Kalman filter on a quaternion sequence in a virtual reality application
by LaViola [237] who tracks human hands and heads, and a fusion approach with inertial and
magnetic sensors is proposed with a filtering technique in the work of Yun et al. [468].

9.2.2. Local Regression Geodesics

It is crucial to consider the pose parametrization landscape in order to achieve a pipeline that is
able to perform a meaningful local linear regression as pose space is non-Euclidean. 6D poses
can be parametrized in different ways as discussed in chapter 6.2. Homogeneous matrices or
quaternion and vector parametrizations usually treat rotation and translation separately. We
36Cf. Farenzena, Bartoli, and Mezouar [104] as well as Jia and Evans [195].
37Cf. Ng et al. [305].
38Cf. Jia and Evans [195].
39Cf. Farenzena, Bartoli, and Mezouar [104].
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utilize again a joint dual quaternion representation and leverage the shape of the pose space
to constrain our filter locally. Aside of the computational efficiency of the dual quaternion
representation as shown in part 9.1, we also gain numerical stability for the regressions by
choosing re-normalization over re-orthogonalization of matrices.40 We can additionally make
use of the differential geometric aspects discussed in chapter 6.2.6 and leverage the exponential
and logarithm operators to linearize the space and to design a smoothing pipeline for pose
sequences that is robust to measurement noise.

The noise models of an optical tracking system or a given pose estimation algorithm can be
intricate. It depends on various factors such as calibration steps, jitter and the blur from a rolling
shutter sensor, but can also be influenced by other sources such as the velocity of the camera
motion or the scene illumination. The resulting noise with all these interdependent error
sources is highly non-linear and very difficult to model adequatly. It is possible to chose an input
dependent filtering approach to reduce statistical noise with a Kalman filter. However, setting
all parameters is not always trivial in applications. For this reason, we design a non-parametric
regularization method without specific models for the individual error sources and leverage
a manifold-aware regularization from dual quaternion pose space where screw linear
motions are the underlying displacements. We constitute a linear regression where we first
select a local set of poses adjacent in time. A simple linear regression as motivated in Fig. 9.6
with the pose parameters is not possible as the pose space itself is not Euclidean. As a result, we
perform the regression with geodesics instead of lines in the embedding space. Since we only
consider a local neighbourhood of poses, we can linearize the pose space around the centre
point in a temporal pose window by establishing the tangent space to the pose manifold there
as illustrated in Fig. 9.8. All relevant points from the local window can then be mapped with
the logarithm map into the Euclidean tangent space where a principal component regression
can be performed seamlessly. The centre point can then be corrected via a projection onto the
line and remapping onto the pose manifold with the exponential map brings a corrected pose.
An example is depicted in Fig. 9.9 and the iteration of the process can be used to denoise the
entire pose sequence. Note that the choice for the centre point is arbitrary, but produces a
filter which is equally considering past and future pose measurements. If the task is also to
minimize the pose stream delay, only taking previous poses works in the same vein.

We further model a principal component analysis (PCA) for the linear regression on tangent
spaces and formulate the filter for rotations using quaternions and for joint pose parametriza-
tions with dual quaternions. An experimental investigation indicates that weighted PCA on
the Riemannian pose manifold provides adequate denoising for accurate pose estimation sys-
tems while iteratively reweighted least squares (IRLS) smoothing on DH1 improves fidelity
in presence of pose outliers. The intrinsic screw linear pose regularization through the dual
quaternion quadric smoothing further improves the signal to noise ratio for higher levels of
noise.

40Cf. Belta and Kumar [19].
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Fig. 9.8. Local linearization of moving measurement window. The left image shows the window selection of a
subset (orange) of pose estimations (turquoise) around a centre point (blue) on the pose manifold. The
right image illustrates the local linearization around the centre point by constructing the tangent space
to the Riemannian manifold. Poses are mapped onto the tangent space with the logarithm map.

Fig. 9.9. Robust geodesic regression on tangent space. The pose measurements on the tangent space are used
for an outlier-aware robust linear regression. The regression line is drawn in black and represents a
geodesic on the manifold. The centre point holding the tangent space is then projected onto the line
(red) and mapped back on the Riemannian pose manifold with the exponential map. It is the final
denoised pose. The process is iterated with a moving window.
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9.2.3. Robust Quaternion Pose Filters

The differential operator for the logarithm map from chapter 6.2.6 helps to linearize the pose
manifold locally and apply principal component regression in the Euclidean tangent space
for both the rotation group SO (3) and the rigid body motions SE (3). The centre point of
the local window can be corrected in the tangent space and be seamlessly mapped back with
the exponential map utilizing parallel transport and the Lie algebra to the Lie group. The
detour through the tangent space allows to represent geodesics from the manifold with lines
in the linearized space. In order to apply robust motion stabilization, we perform an iterative
application of the process on a moving window of poses.

The following section details the design of our robust denoiser for (dual) quaternions. We
filter the temporal discrete pose signal in order to stabilize the estimated motion via geodesic
regression leveraging lines in tangent space. We constitute (weighted) PCA and an iterative
reweighting least squares optimization scheme (IRLS).
The sequential pose estimations with temporal dependency define a trajectory in pose space.
The path in DH1 is in general noisy, non-linear and includes outlier measurements. Without
further assumptions on the motion or physical constraints given by the application, the velocity
can vary and the sampling rate may not be regular. These factors generally impede the design
of noise models and complicate parameter tuning of filters. Our algorithm for path smoothing
instead is parameter-free and regresses pose sequences robustly which make it a flexible tool
of practical relevance.

In our local tangent space window, we consider the trajectory as linear. Our task is to estimate
the linear dependency between the data points X and the responses y for the regression such
that

y= Xβ + ε (9.31)

is fulfilled with the regression coefficient β and the error term ε where

E [ε | X] = 0, (9.32)

Cov [ε | X] = C (9.33)

with the covariance matrix C. One way to write an optimization function for this problem is
using generalized least squares minimization as

β∗ = argmin
β
(y−Xβ)TC−1(y−Xβ). (9.34)

The solution to this quadratic problem can be expressed analytically as

β∗ = (XTC−1X)−1XTC−1y. (9.35)

If the error terms are all uncorrelated, the covariance matrix is diagonal and we solve a
weighted least squares problem. The exact covariances are rarely known in practice and
we need to estimate the covariance matrix C usually.
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An uneven temporal sampling of the data can lead to a different consideration for the criteria
of a suitable linear regression which, for instance, maximizes the variance with a principle
component analysis (PCA). The principal component of the local window X would then be
a suitable solution and we can consider the singular value decomposition (SVD)

X= USVT (9.36)

of X with the unitary matrix U, the diagonal matrix S with the singular values, and the right
singular vectors V. The column entries of V define an orthonormal basis of eigenvectors for
XTX and the i-th principle component is given by the i-th entry under the transformation XV.
A dimensionality reduction can be achieved by keeping only the first k principle components
using the first k columns of V. The principle components are then given by

XVk with Vk = (v1 · · ·vk) . (9.37)

We smooth the pose sequence by taking the central point c from the pose window and project
the other points onto the principal component line given by the first principle component as
illustrated in Fig. 9.9 before we move the pose window further over the measurements. While
this approach assumes the poses to locally follow a Gaussian distribution, the global error can be
different and is not explicitly modeled here. PCA can be done on Euclidean spaces, but cannot
be directly applied to Riemannian manifolds such as DH1 for dual quaternions which are not
Euclidean. Even the regression of a great arc on the hypersphere H1 has ambiguities.41 In the
local moving window, the central point c is known and can be used to hold the tangent space
TcDH1 which is populated with the local neighbourhood of dual quaternion measurements
after the mapping by the logarithm operator. The Riemannian manifold structure of the
pose space allows for this as it locally behaves like an Euclidean space, where we can apply
the aforementioned PC-regression or a geodesic least squares fitting. The pose path is then
smoothed by projection of c onto the regression line in TcDH1 before mapping the corrected
point back to the Riemannian manifold of dual quaternions with the exponential operator. In
our further investigations, we refer to this regression as plain PCA filter.

The poses which are in closer proximity to the centre c of the window are more relevant for
the current linear approximation since the assumption quality for the local linearity of the
motion decreases with the distance to c. Weighting the pose measurements according to their
distance with a Gaussian as

w0
i = exp

�

−
1
2
(xi − c)TD(xi − c)

�

(9.38)

using theMahalanobis distance with the positive semi-definite matrixD thenmodels a decaying
influence of points further from the centre. We reference to this together with the previous
ideas as weighted principal component analysis (wPCA).

The developed concepts so far can still fail in the presence of pose outliers. To tackle also this
case, we leverage an iterative process that updates the weights of the measurements for the
next iteration based on the reciprocal residuals given in the current iteration step. This process

41Cf. Buss and Fillmore [54].
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is known as iteratively reweighted least squares (IRLS) fitting. We update our weights
with

wi+1 = 1/max
�

δ,
1
K

K
∑

k=1

|rk
i |
�

. (9.39)

where the small number δ > 0 prevents division singularities and the residual rk
i is the fitting

error of pose parameter k in step i. The number K ∈ {3,4, 8} defines the embedding space
dimensionality of our pose parametrization. It is K = 3 to denoise translation vectors, K = 4

is used for rotations described by quaternions and we utilize K = 8 for displacements with
dual quaternions. The algorithm for the local regression with iterative weight updates
is summarized in Algorithm 9.1. In the special case of N = 1 with weights according to
equation (9.38) and no updates, it defines wPCA. Further initializing all weights with the
same value gives the PCAmethod. We compare these three approaches for principal component
regression in Fig. 9.10 schematically.

PCA Weighted PCA IRLS

Fig. 9.10. Linear regression methods for tangent space line fitting. The three proposed methods for principal
component regression in the tangent space are illustrated. The selected window of pose measurements
is depicted in turquoise. The resulting linear fit is shown in black. On the left, we see a classical principal
component analysis on the selected pose measurements where the weight for each point is equal. The
centre part shows a weighted PCA version where the weight decays with a Gaussian function according
to the distance from the centre point. On the right, we show the intermediate results of an iterative
reweighted least squares (IRLS) fit with N = 5 iterations for the sample set of poses with increasing
opacity for the intermediate to final calculated lines.

Finally, Algorithm 9.2 details the overview of the pose denoising process which is independent
of the pose parametrization used. All previous concepts can be leveraged for the three cases of
translation, rotation and joint pose denoising by replacing the differential operators for non-
dual quaternion space H1 and by using the identity maps for the Euclidean case of translations
with vectors in R3. We leverage this aspect in our consecutive experiments by comparing joint
representations with separate treatment of translation and rotation.

9.2.4. Synthetic Data Validation

We compare the proposed variants of our robust quaternion pose filters with each other and
against a linear Kalman filter on two different datasets. The first experiment investigates

258 Chapter 9 Pose Modifications



Algorithm 9.1. Iterative Reweighted Least Squares for Weighted PCA Correction
Input parameters:
• Local pose window: X= (Xi) with Xi ∈ RK

• Prior weights: w0 = (1, . . . , 1)T

• Number of iterations loops: N ∈ N
• Small robustifier: δ = 10−4

Computation steps:
Initialize weights: w=w0

for j = 1 to N do
// Estimate current linear regression line
l←weighted_pca (X,w)
// Orthogonal projection of poses X onto line l
X↓ = orthog_proj (X, l)
Calculate residuals: r= X−X↓
// Update weights with equation (9.39)
w= 1/max

�

δ, 1
K ‖r‖1

�

// Dampen weight estimates
w=w�w0/





w�w0






Select projected centre point: Xc = X↓c
Output:
• Corrected centre point: Xc

Algorithm 9.2. Local PC-Regression Geodesics based Pose Denoiser
Input parameters:
• Kernel size for local window: 2n+ 1 with n ∈ N
• Pose sequence: X= (Xi) with i ∈ {1, . . . , m} as part of a larger sequence such that we
can always select a local window

Computation steps:
for j = 1 to m do

// Select local pose window
X̂= (Xi) with i ∈ { j − n, . . . , j + n}
// Map window into tangent space at X j

X̂⊥ = logX j

�

X̂
�

// Perform IRLS for wPCA correction on tangent space
X⊥c = irls_wpca

�

X̂⊥
�

(Algorithm 9.1)
// Map corrected pose back onto Riemannian manifold
Xc = expX j

�

X⊥c
�

Update corrected pose sequence: X̄ j = Xc

Output:
• Corrected pose sequence: X̄=

�

X̄i

�

with i ∈ {1, . . . , m}
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the ability of the denoiser to recover synthetically generated poses in the presence of outlier
measurements and the second test applies the denoising methods on real data where we
leverage the hand motion dataset from Busam et al. [50] which we described in chapter 9.1.

To evaluate the manifold denoiser we simulate a motion trajectory to which we synthetically
add noise in order to evaluate accuracy and robustness by comparing the regressed displace-
ments with the initial ground truth rotation and translation.
We randomly select five rotations Ri , i ∈ {1, . . . , 5}with five rotation axes vi ∈ R3 and according
rotation angles θi ∈ [0,2π]. A selection of five random translations ti ∈ [0, 1]3 is also chosen.
We interpolate all three components, axes, angles, and translation using cubic splines and
parametrize the resulting pose sequence components in quaternion H1, dual quaternion DH1

as well as in Euclidean space R3 for the translation. Pose filtering is performed on the joint
space DH1 and applied twice by independent denoising on the rotation and translation compo-
nent in H1×R3. For the analysis of the regression, artificial noise is added to the ground truth
pose trajectory directly to angles, axes and translation vectors by sampling from the uniform
distribution in [−σ,σ] with σ = 0.02. Outliers are randomly added to 5% of the simulated
pose measurements with a significantly higher noise using σ = 0.2.
The resulting noisy pose sequences with outliers are tested with the methods using PCA, wPCA,
IRLS on quaternion and Euclidean space H1 ×R3 and with dual PCA, dual wPCA, dual IRLS
on DH1. The results are additionally compared with the denoising of a linear Kalman filter. In
all tests, we select a window size of 19 poses and leverage the Kalman filter from Welch et al.
[448] as implemented in MATLAB42 with covariances for the process and measurement noise
of rotations in [0.5,2] and translations in [0.2,1].

An example pose series with the denoised results of dual IRLS is shown in Fig. 9.11 and an
overview comparing the resulting accuracy of the proposed denoisers as well as the linear
Kalman filter can be found in Fig. 9.12. The Kalman filter values are chosen in a way that
the pose signal can be recovered without over-smoothing. In comparison to the other filters,
it only considers half of the window size as future measurements are not part of the filter
input. It notably suffers more from the severe outliers than our other proposals resulting
in a performance decrease compared to them. The local PCA approaches reduce the error
significantly. Compared to this, the Gaussian weights of wPCA slightly improve the mean error
with a result of 0.37±0.55◦ rotation error and 0.010±0.020 for translation. The full potential
of the joint dual quaternion treatment manifests in the results from the IRLS method where
the average error outperforms all other methods while the improvement for its non-dual
counterpart is minimal with only 2.1 ·10−3. The space of dual quaternions DH1 helps to reduce
the influence of outliers significantly which results in a median improvement of 4.3 · 10−3 and
0.26◦. From our perspective, this is achieved through the restriction of the local neighbourhood
in joint space where the linear tangent space regression puts more constraints on the pose
sequence than a separate neighbourhood treatment in H1 ×R3 where the effect of an outlier
can be more influential. We noticed that the adjustment of the parameters for the Kalman
filter requires time and technical expertise for tuning while the only parameter that needs to
be chosen for the proposed methods is the size of the local window which directly reflects both
motion speed and pose measurement sampling rate.
The interested reader may be pointed to a video of the synthetic temporal signal where the

42Cf. MathWorks [277].
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denoising method is best illustrated with motion data which shows the temporal pose stream
with added noise together with the effect of denoising.43
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Fig. 9.11. Dual quaternion pose filter on synthetic data. A synthetically generated pose sequence (black) is
compared to the result of denoising with our dual IRLS method (turquoise). The rotation is analysed
on the left where the axis projection onto S2 is shown (top left) and both angular (dark green) and axis
error (turquoise) are shown (bottom left). From the translation trajectory (top right), the noise is is
clearly visible together with the spiky outliers while the denoised signal is significantly smoother. The
translation error is also visualized (bottom right).

9.2.5. Denoising Poses from Optical Tracker

We further assess the quality of our denoisers on real data to refine and improve the tracking
stream of optical pose measurements. Tracking accuracy plays a crucial role in collaborative
robotics, thus we investigate the dataset from chapter 9.1 with ground truth from a medical
robotic arm.44 The dataset comprises a set of human manipulations of a robotic end effector
that follows the hand motion with zero stiffness in gravity compensation mode. During the
procedure, the end effector is tracked with our optical tracking algorithm as described in
chapter 7.3 where we record ground truth poses of the co-calibrated end effector through its
forward kinematics. For evaluation, we process the 30 Hz data sequence with the different
denoisers and compare against this ground truth. The results are summarized in Fig. 9.13
with the same naming convention as before.
43A video can be found online under http://campar.in.tum.de/Chair/PublicationDetail?pub=busam2017_mvr3d.
44Cf.Busam et al. [50].
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Fig. 9.12. Accuracy evaluation of different pose denoising methods on synthetic data. We show box plots for
the results of the proposed pose filters in comparison with a linear Kalman filter on synthetically generated
noisy pose sequences with outliers. The data noise is added as a reference for validation. The left figure
shows the angular error which is given by the residual for the rotation axis in degrees while the right
figure illustrates the translation deviation. All proposed pose filters reduce the data noise and the dual
IRLS method shows the smallest error. The Kalman filter result is not reducing the data noise in presence
of outliers.

The best performance is achieved with wPCA while the difference between dual and non-
dual method is marginal. The non-dual results of wPCA with 0.7 ± 1.4◦ (median 0.5◦) and
11.2± 3.9µm (median 11.4µm) gives the minimal error while our IRLS method performance
is mediocre with an accuracy between PCA and wPCA in both the quaternion (13.0µm, 0.6◦

median) and dual quaternion case (14.1µm, 0.6◦ median). The results achieved with a linear
Kalman filter are acceptable and do not significantly change when heuristic parameter fine-
tuning is applied. Using dual space denoising let to a significant improvement in our synthetic
experiments where outliers were present in the pose measurements. A similar advantage of
the joint space filter cannot be observed here as the optical tracking provides already highly
accurate poses with limited outliers where the constraint for the signal on the joint space is
not required. The higher pose quality also influences the IRLS result as the weights for poses
of similar importance are equally reduced. As a result, the non-dual regression methods where
rotation and translation are treated separately are preferable over joint methods when reliable
pose data is given.

9.2.6. Qualitative Evaluation on RGB-D Data

For a qualitative comparison of different window sizes, we use a video acquisition from an
RGB-D camera that is moved around an object while KinectFusion45 is applied to retrieve a

45Cf. Newcombe et al. [304].
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Fig. 9.13. Accuracy evaluation of different pose denoising methods on real data. We show box plots for the
results of the proposed pose filters in comparison with a linear Kalman filter on the collaborative robot
motion data from chapter 9.1. The left figure shows the angular error which is given by the residual for
the rotation axis in degrees while the right figure illustrates the translation deviation in millimeters. The
best results are achieved with wPCA.

map and the according camera poses. The extraction process for the poses is shown in Fig. 9.14
with some example images and depth maps.

The retrieved displacements are then processed with our pose denoiser and a variable window
size w is applied. The results can be seen in Fig. 9.15 where a window size of w= 15 frames
only affects minor pose jitter, while w = 30 already changes the pose sequence more visibly
in the areas with more rapid movement and w = 60 produces a smooth motion that varies
significantly from the initial camera poses. While such a large window size may not be helpful
for pose denoising, it can be an improvement for video stabilization and hyperlapse motion
shots. The choice of the window parameter thus has to be chosen depending on the video
frame rate or the pose estimation frequency if the poses are not directly provided from the
video stream. While higher sampling rates allow to resolve better in time another factor is also
the motion speed of either camera or object where a slow motion results in the same effect as
a high pose frequency. Finally, prior knowledge of the reliability of the provided pose stream
can be used to adjust the window parameter such that maximal pose denoising and minimal
over-smoothing can be reached.

In summary, the presented pose denoisers use local regression on the pose space to minimize
influence of noise and outliers in the pose stream. Using concepts from differential geometry
such as the exponential and logarithm maps help to study the problem in the tangent space
to the pose manifold where a robust linear regression can be used to determine the principal
component and gradually correct the pose sequence either on joint dual quaternion space
DH1 or separately for rotation and translation in H1 ×R3. Our experimental evaluation has
shown that the constraints of the dual space formulation can improve the robustness of
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Depth

Poses

RGB

Fig. 9.14. Camera pose extraction with KinectFusion. We leverage a video sequence acquired with a sensor that
captures both RGB and depth images as shown in the upper row. The depth maps are processed with the
KinectFusion algorithm and the RGB images are only shown as reference. The extracted poses are saved
as visualized with the coordinate axes (lower row) for the different frames in the video. We visualize
also the teddy object as reference. A full acquisition around the object is performed where the right most
column shows the last frame and its result.

the denoising. The pose processing further allows for local control where the only parameter
that is set is the window size to define the local influence of a pose change. The method
can be used for outlier aware denoising and pose trajectory smoothing without the need
of an explicit noise model. Using a local linearization has, however, the downside to require
the pose sampling to be adequately dense around the tangent space to ensure a reliable
regression. If the system is applied online in a real-time setup where half a window of lag
is not acceptable, one can either cut the window into half and use only past points for the
regression or leverage extrapolation techniques similar to the concepts from chapter 9.1 to
minimize the lag. Formulating the regression as a continuous pose model that uses pose
timestamps as additional inputs could therefore also be an interesting future direction that
may increase robustness of visual odometry pipelines. A possible extension of the denoiser
could include pose uncertainties to weight the local displacements. These could come from
feature reprojection residuals in tracking applications such as the feature-based SLAM used in
chapter 8.1 or from the mean backprojection error of a 3D localization approach.

An important ultimate outcome of pose denoising is the increase of the pose estimation quality
which plays an integral role when different modalities are fused in space. Before we leverage
accurate pose estimates for data fusion, we briefly address also pose improvement strategies
that follow other ideas in particular in the context of multiple modalities and consistency
formulations.
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w = 30 w = 60

Source w = 15

Fig. 9.15. Effect of different pose window sizes on filtered poses. The plot shows the result of wPCA on the
teddy sequence with the extracted poses as shown in the source case (top left). The window size w
affects the poses. An increase from w= 15 (top right), w= 30 (bottom left) and w= 60 (bottom right)
gradually applies a smoothing to the resulting pose trajectory.

9.3. Pose Improvements

Spatial sensor fusion requires accurate pose knowledge. The better the position and orientation
of various sensors is known, the more reliable becomes the data when their signals are spatially
joined. In the past, many scholars proposed ideas to improve upon the initial pose estimation
quality with different thoughts. To be able to give a holistic view of the field as a preparation
of poses in the presence of multiple input signals, we briefly touch two concepts to enhance
pose quality through the formulation of consistency loops that can also help as training signals
in data-driven pipelines. The first one focuses on the intrinsic consistencies within various
predictions from the same input and the other takes into consideration extrinsic consistencies
where multiple sensor inputs are checked for agreement and discrepancies.
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9.3.1. Task Consistency

Task consistency is the underlying concept for intrinsic methods where different tasks help
each other during learning or inference. This is not limited to pose estimation only but stands
as a general concept where, for instance, the knowledge of surface normals can help to esti-
mate depth as the information of the surface structure constraints depth variation and depth
information implicitly contains surface normal information through differentiation. Two tasks
may also have different outcomes. An object detector may tell there is a sphere while a depth
mapper detects similar values which suggest a planar surface. This is inconsistent and at least
one of the estimates must be false. In these cases, an improvement of one estimate results
in an improvement of the other which can simplify and speed up the learning of these pre-
dictions while it can improve the overall accuracy that can be reached. Many scholars have
explored cross-task consistencies in the past where 3D correspondences are used by Zhou
et al. [486] and multi-view consistency is used to help both pose and shape estimation in
the work of Tulsiani et al. [423]. Agreement between depth and flow estimates are used by
Zou et al. [488] and the team of Dwibedi et al. [94] leverages temporal consistency cycles.
The time component can also be used to design self-supervision losses where pose and depth
estimates need to agree in a temporal window.46 Oftentimes the dependency between tasks
is obvious as in the examples above. However, a mutual or single-sided benefit can also arise
from non-trivial dependencies. An extensive empirical task-dependency test in this regard
is considered by Zamir et al. [473]. Taking the consistency cycles one step further, we can
argue that consistency among many tasks improves the individual ones. This can be enforced
forming a large number of consistency cycles which significantly improve the results.47

While the output of a prediction algorithm forms the consistencies in all these case, the input
can also be considered.

9.3.2. Modality Consistency

Combining multiple input signals can benefit an estimation outcome and can help to over-
come drawbacks of individual sensors. In the context of line-of-sight considerations, we had a
look in chapter 7.8.2 into the visual-inertial odometry literature where the signal of an IMU
is combined with vision data to improve pose estimation and visual dead reckoning scenar-
ios. Amongst classical parametrization, the dual quaternion formulation we consider improves
visual-inertial tracking in AR setups.48 Other input modalities also lead to extrinsic consis-
tency cycles as their measurements must agree in the same situation. In the context of depth
estimation for instance, a sparse signal arising from a LiDAR sensor can be combined with
RGB information to complete a dense depth map.49 Both signals mutually improve each others
single task of estimating depth. The same holds true if a commodity RGB-D sensor is used.50

Synthesized images of another modality can thereby improve the results on real data51 and
even a feature hallucination of a non-existing modality adds side information relevant for the
46Cf. Godard et al. [145].
47Cf. Zamir et al. [472].
48Cf. Varghese, Chandra, and Kumar [433].
49Cf. Uhrig et al. [427].
50Cf. Zhang and Funkhouser [477].
51Cf. Lopez-Rodriguez, Busam, and Mikolajczyk [261].
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accuracy of a task.52 For pose estimation pipelines, we have already seen in chapter 8.2.3 that
an additional depth modality can help to significantly boost the accuracy of RGB-only methods
which has been used frequently in the literature.

The improvement of pose estimation pipelines with co-modalities certainly remains an open
topic that can be further explored and is certainly worth to mention here. However, it is not
the main focus of this dissertation. Equipped with the ability to temporally synchronize poses
from various sources and reliable displacement measurements, we specifically target now the
application of accurate pose signals for the task of sensor fusion to enrich the image information
by geometric fusion of multiple modalities.

52Cf. Hoffman, Gupta, and Darrell [181].
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10Spatial Modality Fusion

„Like art, revolutions come
from combining what exists
into what has never existed before.

– Gloria Steinem
(Moving Beyond Words)1

Imaging modalities are omnipresent in our world and coexist with many other pose-relevant
sensors. Monocular and stereo setups of monochrome and RGB cameras are included in
mobile smartphones together with GPS sensors and IMUs that operate accelerometers and
gyroscopes. More recent mobile devices integrate active depth sensors2 with structured light
cameras or time-of-flight technology. Surveillance cameras measure with thermal imaging3 or
use multispectral methods4 and autonomous car prototypes are equipped with LiDAR remote
sensors.5 Medical diagnoses are often based on radiology where tomographic images such as
X-ray computed tomography (CT), magnetic resonance imaging (MRI) or ultrasound (US)
scans use penetrating waves or the magnetic moment. Amongst others, nuclear medicine
also leverages positron emission tomography (PET) and single photon emission tomography
(SPECT) by using gamma rays.
All these imaging methods provide a rich source of information which is oftentimes treated
separately, but can mutually benefit each other.

We aim to combine sensor data from different sources to enhance the mutual information
value. There are several reasons why somebody may be interested in sensor fusion.
On one hand, we can use multiple modalities as input to improve the accuracy or robustness
of a specific task. 6D pose estimation, for instance, benefits from additional IMU data that
helps and robustifies visual SLAM and SfM pipelines as discussed in chapter 7.8.2. Besides
the support with additional information if one of the inputs is not providing data, e.g. if the
line of sight is occluded and the visual signal is blocked, the combination of multiple input
signals provides a way to leverage consistencies to improve reliability through redundancy.
On the other hand, visual signals can also be used to augment and recombine simultaneously
acquired information from various sources in a spatially correct manner. This is of particular
interest if different imaging sources provide data which is not mutually present, for instance
from different parts of the electromagnetic spectrum. If the relative pose is known, also more

1Moving beyond words: Age, rage, sex, power, money, muscles: Breaking boundaries of gender. New York: Simon
and Schuster, 1994. Part 4: The Masculinization of Wealth, p.196.

2Cf. Park et al. [321].
3Cf. O’Conaire et al. [308].
4Cf. Denman et al. [84].
5Cf. Cao et al. [62].
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orthogonal sensing technologies can be combined. An RGB image of an opaque object, for
example, can be augmented with information from its inside using an additional tomographic
scan that leverages a penetrating wave to visualize information inside the object. An RGB image
of an opaque object, for example, can be augmented with information from its inside using
an additional tomographic scan that leverages a penetrating wave to visualize information
inside the object. The core element to realize such multi-modal spatial sensor fusion tasks
are high-performance visual pose computation algorithms and 3D vision systems. To prove
the use of our pose estimation ideas and algorithms in practice, we investigate applications
for spatial modality fusion in three different domains which require individual features from
accurate optical pose measurements and tracking systems.

We start with industrial manufacturing in section 10.1 where an optical tracking system ob-
serves the motion of a robotic head that uses a laser to melt metal for additive manufacturing.
It brings together the 3D geometric shape of the manufactured object using a structured light
stereo system with a thermal profile acquired from another perspective for quality and process
monitoring. Accurate poses are a requirement in this setup for correct spatial alignment and
multi-redundant high quality 3D reconstruction.
A second investigation - detailed in section 10.2 - focuses on mobile augmented reality in a
medical environment. An optical tracker provides poses of a smartphone and an ultrasound
transducer. Calibrations are used to bring both the ultrasound images and the RGB video
sequence from the smartphone camera into the same reference system where the live ultra-
sound acquisition is overlayed on the images for guided ultrasound positioning. Due to the
low computation capabilities and data transmission bottlenecks for the edge device, we rely
on accurate poses at low frequencies and pose upsampling for temporal synchronization.
The final use case deals with a setup in cooperative medical robotics for breast cancer staging
where a radioactive tracer is injected into the breast tissue. It travels through the directional
lymphatic system and gathers in the sentinel lymph node from which a biopsy has to be taken
with a needle under ultrasound guidance. A camera-in-hand optical tracking system thereby
helps to combine the anatomical information from a handheld ultrasound scanner with the
radioactive information acquired by a gamma camera mounted on a robotic manipulator that
collaborates with the physician. The setup is described in section 10.3 and requires reliable
real-time poses with minimal lag for a safe and seamless interaction.

The essence of analyzing these orthogonal use cases is to explore the generalization capabilities
of the developed ideas in practice. Spatial combination of multiple inputs thereby serves as a
common denominator and allows to fuse relevant information from multiple sources.

10.1. Use Case 1: Industrial Manufacturing

Leveraging the accuracy of the high performance optical tracking system from chapter 7, we
apply it for quality and heat control in industrial manufacturing. The project SYMBIONICA6

investigates the additive manufacturing of smart prosthetics with functional and geometrical
6The project “SYMBIONICA – Next Generation Bionics and Smart Prostetics” was funded between 2015 and 2018
with Horizon 2020 as an EU-Project under H2020-EU.2.1.5.1. - Technologies for Factories of the Future, Project
Reference: 678144.
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customization. Within the project, a machine is built for additive manufacturing with multiple
materials using deposition and ablation processes. A metallic powder is heated by a focused
high energy laser to 3D print a component layer-by-layer through melting. To monitor the
quality of the resulting component, a check is performed where a stereo vision system and
a pattern projector extract the fine geometric details of the component. The geometry is
combined with its thermal profile acquired through the use of a co-calibrated thermal sensor.

thermal
cam

coated
�lters

protection
case

cam
right

cam
left

projector

Fig. 10.1. Vision box for thermal and geometric part inspection. The vision box is shown with an open blend
on the left. A thermal infrared (IR) camera is monitoring the heat dissipation of the manufactured part.
It is co-calibrated with a stereo camera setup (cam right, cam left) and a projector between the stereo
sensors. The case (right) protects the electronics from hot flying particles throughout the deposition
process. The filter glass is used for protection of the sensors with a band-pass filter in their sensitive
spectrum. It can be noted that the coated filter for the thermal camera is not transparent for the visible
spectrum as can be seen from the image, but passes longer wavelengths.

The vision inspection box for this process is shown in Fig. 10.1. All camera intrinsics as well
as the extrinsic parameters of the stereo-system are calibrated7 and the stereo images are
rectified.8 For a stable calibration, the stereo cameras are sandwiched between two carbon
plates that show minimal thermal expansion. The vision box is then co-calibrated with the
robot forward kinematics through hand-eye calibration9 and co-calibrated with the external
optical tracking system to be able to measure everything in a common reference frame.
After deposition of several layers, an inspection is triggered where the vision box is moved
to several positions around the workpiece while it is tracked with sub-millimeter precision
by our optical tacking system with attached retro-reflective markers to retrieve a position
and rotation accuracy beyond the forward kinematics of the robot. This allows to combine
individually extracted point clouds acquired from the structured light system (cf. section 6.1.1)
and the infrared camera in one reference frame.
The structured light system consists of two stereo vision cameras together with a projector
placed in the middle that projects a sequential pattern structure into the scene to extract a local
point cloud. The consecutive projections of the calibrated projector allow for sub-pixel precise
correspondence matches between the rectified images and highly accurate triangulations of
the workpiece surface. A third thermographic camera is co-calibrated to the remaining two
sensors and acquires in each scan an additional image which allows to extract a combined point
cloud in reference coordinates that includes information on the heat dissipation of the part.
The system can then compare the manufactured part with the planned CAD design and can
readjust or ablate the workpiece in case of deviations. The additional heat measures identify
heat sinks or bridges and also monitor the time necessary for a cool down of the part until the
process can continue.
7Cf. section 4.2.
8Cf. section 6.3.3.
9Cf. section 7.7.2.
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The windows with a coated glass protects the vision box from high energy reflections from
the melt pool outside the measurable spectrum of the cameras during the manufacturing and
protects the sensor from flying particles during the process. Electromagnetic waves in the
visible spectrum can pass the lower coating where the projector-stereo system is located. The
visible spectrum is blocked by the filter glass before the thermal camera to minimize noise.
Its coating, however, lets through radiation of longer wavelengths in the infrared spectrum to
enable thermal measurements.

rototilt table

vision box

nozzle

vision box

Fig. 10.2. SYMBIONICA addititive and subtractive manufacturing machine. The SYMBIONICA machine (left)
produces next generation fully personalized bionics and smart prosthetics through additive and subtrac-
tive manufacturing. The workpiece is deposited on the rototilt table which has two degrees of rotational
freedom. The robotic head (details on right) is able to move along three translational axes (up-down,
right-left, front-back) towards the table. Metallic powder is blown through the nozzle and melted with
a focused laser beam that shines through the middle part during the manufacturing. The vision box is
used for geometric and thermal inspection during the process and is tracked with an external tracking
system.
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Fig. 10.3. Use cases for personalized medical parts. The SYMBIONICA machine addresses manufacturing of
prosthetics and implants. Morphologically adjusted parts can be printed with the machine with multiple
materials. These include a prosthetic foot (left), an implant of a hip (second from left), a knee implant
(second from right), and a dorso lumbar body cage (right).

The entire machine with a close up of the nozzle together with the vision box is illustrated in
Fig. 10.2 where it is placed in a 4 × 4 × 3 m3 cabin which is filled with a reaction suppressing
gas during operation. The part manufacturing happens on a rototilt table of 600 mm diameter
below a robotic head that can translate in three spatial directions and holds the vision system
for quality control and inspection. The entire system has five degrees of freedom: three for
the deposition head movements and two from the rototilt table. The head can travel 800 mm
in both horizontal X- and Y-direction and 1200 mm vertically.
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After automatic inspection and comparison with the planning models, the geometry of the
result is controlled with a closed loop inspection and an individualized prosthesis is tailored
to the body properties of a patient. The part can be adjusted to fit the dynamic and static
needs of a patient with morphological and geometrical part customization. A co-engineering
platform allows for interaction during the prosthesis planning where use case projects involve
a prosthetic foot (Ottobock, Duderstadt, Germany), a multi-material hip and knee implant
(Medacta International SA, Castel San Pietro, Switzerland), and a dorso lumbar body cage
(Sintea Plustek, Assago MI, Italy) as illustrated in Fig. 10.3.

A first prototype of a similar vision box with an optical tracking system is adjusted for another
machine of significantly larger working volume up to 4000 × 1500 × 750 mm3 in the BO-
REALIS10 project in order to demonstrate additive and subtractive manufacturing processes
for complex metal parts. The demonstration cases for this project range from an automotive
gearbox (DIAD Group ES, Torino TO, Italy) for the motorsport sector, a hand surgery prosthesis
(Sintea Plustek, Assago MI, Italy) for med tech to an accessory drive train main housing (Avio
Aero, Colleferro, Rome, Italy) in aerospace engineering. The machine is shown in Fig. 10.4.

B O R E A L I S   M a c h i n e

vision box
mount

nozzle

deposition space

Fig. 10.4. BOREALISmachine for 3Dmetal part manufacturing. The image shows the BOREALISmachine during
setup. The left image illustrates the spatial extension of the machine where the human control panel
can be used by standing in front of it. The comparably small vision box mount is indicated on the right
image. The nozzle is here shown above a deposition space before a rototilt table is mounted.

Both systems are successfully deployed and the manufacturing of the parts shows a possible
use case for spatial sensor fusion where thermal imaging is combined with 3D surface
extraction from structured light. The accurate pose estimation with an optical tracking
system thereby enables a quality control from combined multiple perspective measurements
in a robotic setup.

10.2. Use Case 2: Mobile Augmented Reality

Edge devices have limited computation capabilities and augmented reality scenarios demand
synchronize content from various sources. In this second application we focus on the combi-
nation of RGB video from a mobile device with ultrasound imagery in a real-time augmen-

10The project “BOREALIS – Enlightening Next Generation Material” was funded between 2015 and 2017 with Horizon
2020 as an EU-Project under H2020-EU.2.1.5.1. - Technologies for Factories of the Future, Project Reference:
636992.
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tation setup which leverages an optical tracking system that continuously estimates the poses
of both the mobile device and the ultrasound transducer.

Augmenting ultrasound images in their spatial location can help for teaching anatomy to novice
users and enables holistic surgery planning in the presence of multiple modalities. If the system
is capable for real-time feedback, it can be interesting for ultrasound guided interventions and
guided needle and tool injections. This form of augmentation has a long history where Bajura
et al. [9] already propose an augmented reality system in 1992 which required a considerable
amount of hardware and an head mounted display (HMD). Ultrasound guidance can help for
biopsies where the team around State et al. [391] proposed an early system leveraging an
HMD. They used visual-magnetic tracking for the display and a mechanical tracker for the
ultrasound transducer. More modern AR systems have a measurable influence on the accuracy
of biopsies.11 While the pose estimation is commonly done with the help of outside-in tracking
systems, also inside-out attachments to the ultrasound probe exist.12

We want to utilize a single commodity smartphone for the computation and exemplify
the procedure with the de-facto standard for medical outside-in tracking leveraging the pose
upsampling and synchronization methods developed in section 9.1. Other scholars did show
elaborate systems based on mobile augmented reality using iOS and Android platforms before.
In the work of Kiss et al. [221], for instance, the team shows a tablet version for augmentations
of cardiac anatomy that can be used for teaching the anatomy of the human heart. In their
setup, the orientation of the ultrasound transducer is tracked with the help of an IMU and
Palmer et al. [319] extend the concept with visual markers that are printed on paper. We
rely instead on a more accurate optical tracker with retro-reflective rigid body markers and
pre-calibration to bring all involved components in a common reference frame in order to
perform pose-guided anatomical scans where a target pose is provided as a landmark to start
anatomical inspection and help novice users.

An annotated view of the augmented scenario as rendered on the mobile phone screen is shown
with all involved components in Fig. 10.5. We use an optical tracking system for continuous
pose estimation of twomarkers that are rigidly attached to themobile phone and the ultrasound
transducer. The mobile phone camera is calibrated13 and the attached marker is co-calibrated
to the RGB reference view with a hand-eye calibration14. We use a modified version of ViSP15

to run in Java on our mobile phone. For calibration between the ultrasound image and the
marker of the ultrasound probe, we use the PLUS16 framework as described in section 8.1.4.
With the OTS measurements, we can then describe all poses in the coordinate system of the
RGB camera on the mobile phone. The relevant reference frames are illustrated in Fig. 10.6.

A pose-aware rendering of live ultrasound data augmented on top of the RGB image of the
mobile phone is then reached in several steps. We communicate all poses and the ultrasound
images over Wi-Fi via OpenIGTLink17 where we leverage a Java implementation of the pro-

11Cf. Rosenthal et al. [353].
12Cf. Stolka et al. [396].
13Cf. section 4.2.
14Cf. section 7.7.2
15Cf. Marchand, Spindler, and Chaumette [275].
16Cf. Lasso et al. [236].
17Cf. section 7.6.
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Fig. 10.5. Augmented reality setup on RGB image from mobile phone. The image shows the medical setup
where an optical tracking system (OTS) computes the poses of both the mobile device and the ultrasound
(US) transducer. The current ultrasound image is augmented at the spatial correct location in its current
pose while a predefined target pose defines a structure of the phantom that is to be explored. The
coordinate frames thereby help to adjust the handheld device. The displacement between the current
and the target pose is overlayed on top left in millimeters and degrees for rotations around the axes. The
pattern board on the lower right is used for hand-eye calibration of the mobile phone. Black borders
around the image arise from the camera calibration which corrects the image for distortions.
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Fig. 10.6. Reference frames and calibration processes of mobile AR setup. The image shows the involved refer-
ence frames in our medical AR setup. The optical tracking system (OTS) depicted in the centre constantly
provides poses for the markers attached to the mobile phone (left) and the ultrasound transducer (right).
Before we start the real-time application, we calibrate the RGB camera of the mobile phone and use the
OTS poses to perform a hand-eye calibration (eye-in-hand variant) by observing a static pattern which is
visible in Fig. 10.5. The marker on the ultrasound transducer is calibrated via a stylus (see section 8.1.4)
to the ultrasound image. This allows to describe all poses in the RGB camera system.
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tocol to run on Android.18 For the augmentation we utilize OpenGL ES 2.019 for rendering
and use a Polaris Vicra (Northern Digital Inc., Waterloo, Canada) for tracking. Due to the
low computational power, we leveraged a simple time synchronization of the poses with the
upsampler from section 9.1 where an incoming ultrasound image time stamp determines the
time for which a pose is calculated based on the last estimates. The mobile phone used for
our tests is a Samsung Galaxy J5 (2016) running Android 6.0 Marshmallow with API level
23. The device integrates a 5.2” display with a resolution of 1280× 720. It uses a Qualcomm
MSM8916 Snapdragon 410 (28 nm) chipset and a 1.2 GHz Quad-core Cortex-A53 CPU as
well as an Adreno 306 GPU and 2 GB internal RAM. The main camera provides wide angle
RGB images with 13 MP and up to full HD video of 1920× 1080 at 30 fps through a 28 mm
lens with F1.9. We use screen resolution images for all our experiments.

In order to validate the setup, we perform a small user study with six medical experts which
are asked to find a nylon wire cross in a phantom under ultrasound and AR-guidance in
two different ways where we provide a target pose in which the wire crossing is visible as
reference. In a real setup such an approximate pose could come from a preoperative planning
that indicates the position of an anatomical structure to be scanned in detail. There are two
wires attached in the phantom that span a plane. The goal is to align the ultrasound image
with the phantom in such a way that this plane becomes incident with the US scan and a cross
is visible in the ultrasound image with the cross section being visible in the image centre.
In the first test, we augment the ultrasound image on the RGB view and provide guidance to
the target pose only with the numerical information shown in the upper left part of Fig. 10.5.
The second attempt is done with the additional guidance of showing the current and target
reference coordinate axes. A view of the experimental setup is shown in Fig. 10.7.

We measure the time from a start signal until the medical expert signalizes to have finished
the task which turns out to be a correct alignment in all but one cases. After this test we give
the experts time to familiarize themselves with the augmentation until they feel comfortable
and rerun both experiments. The results are summarized with their average localization time
in Fig. 10.8. While the self-teaching does not significantly improve the speed for the guidance
with coordinate frame augmentation, it improves the results upon the numeric guidance from
14.95 sec to 11.30 sec. However, the average times for the visual pose guidance with 8.26 sec
before and 7.77 sec after training indicate that the AR coordinate support is more helpful
than showing the numerical deviations. At the same time, the close durations before and after
training prove that the coordinate frame alignment is more intuitive.

Due to the low computational power of the edge device, our first prototype was realized with
an average frame rate of approximately 1 fps mainly influenced by the rendering time which
increased the difficulty of the alignment process for our expert group. A correct temporal pose
synchronization with quaternionic upsampling at low frame rates is crucial to minimize the
jitter of the rendered ultrasound image and the augmented reference frames. The successful
finish of the test shows that this can be realized with the proposed techniques. For a future
version of the demonstrator, further rendering optimization could be investigated or the mobile
phone could be exchanged with a head mounted display.

18Cf. Lakshminarayanan [234].
19Cf. Munshi, Ginsburg, and Shreiner [296].
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Fig. 10.7. Experimental setup for wire phantom alignment. The mobile phone is fixed in front of the phantom
while the user is asked to align the ultrasound image with a plane given by two wires inside the water
bath. The numerical values (top left of the screen) show the deviation from a target helper pose which
is augmented here (red-green-blue) in comparison with the current pose (magenta-yellow-cyan). The
current ultrasound image is overlayed as anatomical guidance.
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Fig. 10.8. Positive feedback from themedical experts. The plot shows the average time required for the alignment
of an ultrasound image with a wire phantom. Two different augmentations are tested: Numerical
guidance shows the parameter deviation as numbers while coordinate frame guidance shows a current
and target reference frame close to the goal pose (see Fig. 10.7). The first set of experiments (no training)
is done by the medial experts without spending time with the system beforehand while the second set of
experiments (after training) is done after getting familiar with it.
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10.3. Use Case 3: Cooperative Medical Robotics

The medical sector provides a plethora of imaging devices targeting different aspects of diag-
nostic scenarios. We leverage the reliability and efficiency of the camera-in-hand tracking
system presented in section 7.9 for a real-time combination of ultrasound and nuclear
imaging in a collaborative medical setup.
Our proposed framework constitutes an intraoperative system that combines multiple imaging
modalities in real-time to guide the surgeon during a breast cancer staging procedure. We
program a medical robotic manipulator to position a gamma camera in such a way that its
information can be spatially fused with the anatomical data the physician is investigating with
a handheld ultrasound scanner such that a needle punch biopsy can be performed in a simu-
lated interventional setup under multi-modal imaging guidance with combined live nuclear
and anatomical information.

In the following, we provide the idea, implementation, and the prototype tests of a medical
collaborative system that uses a camera-in-hand optical system mounted jointly with a radioac-
tive sensor on a lightweight robotic arm to realize a real-time fusion of 2D ultrasound with 2D
gamma imaging. The machine allows for automatic co-modality support of the surgeon during
an anatomical scan which is applied for sentinel lymph node needle biopsy to demonstrate its
practical relevance. We briefly introduce the medical background for breast cancer staging with
sentinel lymph node biopsies in section 10.3.1 and describe our system and its components in
part 10.3.2 before we detail the studies and evaluation in section 10.3.3.
The results have been presented in an oral and poster presentation at the International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention MICCAI 201520 and
have been extended for a journal version published in the International Journal of Computer
Assisted Radiology and Surgery IJCARS 201621 which received the IJCARS MICCAI 2015 Spe-
cial Issue Best Paper Award.22 The joint work combines robotics and 3D computer vision. This
thesis contributes the computer vision part of the collaborative system while the first author
was responsible for the robotics side of the demonstrator.

10.3.1. Medical Motivation

Breast cancer manifests through a series of symptoms such as a lump in the breast tissue or
a change of the breast shape caused by an abnormal local cell growth. While it affects both
male and female patients, the risk factor for women is significantly higher.23 It is the most
common cancer in female patients24 and the mortality rate varies strongly with the growth
properties of the cancer and its spread. The investigated 5-year survival rate for cancer with
only local growth lies at 99%.25 This rate drastically decreases when the tumor spreads and
forms metastases in different sites within the body often through the directional lymphatic

20Cf. Esposito et al. [101].
21Cf. Esposito et al. [102].
22The figures are reprinted here with the permission of Springer Nature.
23Cf. Fentiman, Fourquet, and Hortobagyi [110].
24Cf. Siegel, Miller, and Jemal [378].
25Cf. Siegel et al. [377].
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system resulting in a 5-year survival rate of only 26% after metastasizing. Thus, staging the
severity of the cancer is a crucial factor for the outcome and measures of a medical treatment.
This process involves an assessment of the magnitude of the primary cancer together with an
evaluation of the extend of its spread.

The medical treatment usually involves an intervention in which the tumor is removed (lum-
pectomy) or the breast is amputated (mastectomy).26 Since the cancer can spread through
the lymphatic system that connects to a set of lymph nodes in the axillary region, an axillary
lymph node dissection can be additionally performed. A significant amount of 10 to 40 lymph
nodes are removed in this surgical procedure and consecutively examined for their pathological
characteristics.27 Since some decades, it is known that the closest lymph nodes indicate the
likelihood for metastases reliably.28 Removal of these so-called sentinel lymph nodes (SLNs)
can stop the cancer spread29 and an analysis of their tissue with histopathological measures
is useful to stage the cancer.30 Thus, a punch biopsy that provides sentinel lymph node tissue
can be used as a minimally invasive procedure for reliable breast cancer staging in oncology.
While being less invasive than an open surgery, the current imaging technologies prevent
needle punch biopsies from being an equally reliable procedure.31 A medical expert can use
an ultrasound scan to retrieve the anatomical information and identify lymph nodes in the
respective body part.32

For the National Cancer Institute © (2020) Terese Winslow LLC, U.S. Govt. has certain rights

Fig. 10.9. Sentinel lymph node biopsy and tumor removal for breast cancer treatment. A tracer is injected
into the breast tissue close to the tumor (left). Common substances involve nuclear tracers and visible
dye. The tracer fluid travels through the directional lymphatic system (centre) and makes it possible to
detect the sentinel nodes with a probe or in an open surgery. The identified sentinel nodes can then be
removed together with the tumor (right).

The detection of small lymph nodes, however, is intricate and a reliable retrieval of axillary
nodes with a size below 5mm cannot be guaranteed33 while some of themmay still be necessary
indicators for the staging.34 The anatomical structure of multiple dozens of lymph nodes close
to each other in the axilla region requires additional information for the correct identification

26Cf. Whelan et al. [451].
27Cf. Lin et al. [255].
28Cf. Valagussa, Bonadonna, and Veronesi [432].
29Cf. Krag et al. [225].
30Cf. Krag et al. [226].
31Cf. Joseph, Oepen, and Friebe [199].
32Cf. Hoskins, Martin, and Thrush [184].
33Cf. Tate et al. [405].
34Cf. Obwegeser et al. [313].
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of the first lymph nodes connected to the tumor tissue.35 To identify sentinel nodes, one can
use multi-redundant tracers to support the search. A common procedure is a tracer injection
close to the primary tumor in the breast tissue as illustrated in Fig. 10.9. The tracer fluid then
spreads through the directional lymphatic system and accumulates in the sentinel nodes which
can then be identified and removed together with the tumor. Such tracers can consist of visible
blue dye, fluorescent or radioactive material. Visible dye colours the sentinel nodes with a
fluid like patent blue V (Bleu Patenté V, Guerbet, Brussels, Belgium) and is a direct indicator in
open surgeries. Fluorescent material can also be used up to a tissue depth of 2 cm to indicate
the lymph node position more accurately36 and a radio-tracer such as Tc99m -nanocolloid emits
high energy gamma rays which can be used as a redundant factor for radio-guidance in open
surgery.37 While the former two require a close visible inspection, the advantage of the latter
is that it still indicates the direction of the node even without an open surgery. In order to
measure the radioactive signal, freehand SPECT can be used to detect gamma particles. While
early methods use a 1D sensor with acoustic feedback, 2D gamma cameras are also used in
oncology.38 These measure the low amount of incoming gamma particles as events on a 2D
grid. Similar to the exposure time of a vision sensor, we can integrate this signal over time into
a visible 2D heat map indicating the directions for the incoming gamma rays. The unstructured
spatial fusion of nuclear imaging with co-modalities such as ultrasound, however, is challenging.
A physician observing the anatomical information with an ultrasound transducer in one and
a gamma camera in the other hand then receives the information of a 2D slice through the
tissue on one screen with a spatial resolution allowing to identify small structures (US) while
he additionally receives a low resolution gamma image (e.g. 16× 16 pixels) as a projection of
the radiation into the 2D camera sensor (gamma) on another screen. Even if both images are
shown on the same monitor a pure cognitive fusion of the modalities remains very difficult
and the hands of the surgeon are both occupied with the imaging devices ultimately not
allowing for a biopsy under guidance from both modalities. Additional lymph nodes that are
located close to each other reduce the likelihood of a correct identification of the single sentinel
lymph node or multiple sentinel nodes.

Interventional methods to combine ultrasound imaging with the information from a gamma
camera exist39 and 3D ultrasound has been combined with freehand SPECT by the team of
Okur et al. [315]. Their system, however, requires two subsequent scans and is prone to tissue
deformation during a 3D ultrasound compounding or the respective gamma extraction which
is performed offline. While providing a solution for spatial fusion of both modalities, it still
requires the biopsy to be performed solely using ultrasound. Furthermore, the external tracking
system used in their case comes with all the line of sight drawbacks discussed in chapter 7.8. A
spatially correct fusion requires a third hand to hold the gamma camera. One solution could be
that a human assistant holds the gamma device. This increases the complexity of the cognitive
fusion process drastically and includes another stress component for the surgeon. We propose
to utilize a robotic assistant to provide the functional information of the tracer by adjusting
the gamma camera displacement at a constant relative pose to the manual ultrasound scan. In
this way, the surgeon can fully concentrate on the ultrasound images and the anatomy of the
patient without changing the procedure of ultrasound guidance for the needle punch biopsy.

35Cf. Bugby, Lees, and Perkins [45].
36Cf. Vorst et al. [438].
37Cf. Vidal-Sicart and Valdés Olmos [435].
38Cf. Bricou et al. [39].
39Cf. Wendler et al. [449].
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Additional to that, we are then able to augment the nuclear information on the ultrasound
image in real-time providing an additional radioactive heat map on top of the images for a live
functional and anatomical scan.
We describe the individual system components as well as the control and visualization pipelines
in the next section.

10.3.2. Collaborative US-Gamma Imaging

We equip a robotic manipulator with a gamma camera to measure radioactivity of a radioactive
tracer injected in a breast tissue phantom. A camera-in-hand stereoscopic tracking provides
the relative pose between a handheld ultrasound transducer of a physician and the gamma
camera that is rigidly attached to the end effector. The robot then positions the gamma camera
perpendicular to the ultrasound imaging plane such that we can combine the two modalities
in an augmented multi-modal visualization. The full system is shown in Fig. 10.10 during
an example run of a sentinel lymph node biopsy with a punch biopsy needle on a phantom.
The collaborative robotic pipeline and the individual components of the system are described
hereafter.

Collaborative
Robot

Phantom

MultimodalVisualisation

Ultrasound
Transducer

Biopsy
Needle

Fig. 10.10. Collaborative robotic punch needle biopsy under multi-modal guidance. A medical expert examines
a phantom (centre) in the form of an upper part female torso which includes synthetic lymph nodes,
some of which are filled with a radioactive tracer. A punch needle biopsy is performed here under
both ultrasound and gamma guidance. The needle (left) is inserted into the synthetic tissue while an
ultrasound transducer (bottom) provides anatomical information. The probe with self-adhesive circular
markers is tracked by a camera-in-hand vision system which is jointly mounted with a gamma camera
on the robotic flange (top) that follows the examiner. The modalities are spatially fused and a joint
multi-modal image is visualized live (right). The lymph nodes are visible as white blobs and radioactive
measurements are augmented in red with an opacity proportional to their intensity inside the field of
view of the gamma camera which is indicated in blue.

In order to realize a sentinel lymph node biopsy under multi-modal guidance, we construct a
camera mount for a robotic arm that holds a gamma camera together with the stereo tracking
system from section 7.9. Running the tracking algorithm from section 7.3, we are capable to
reliably and robustly detect and track themarkers attached to a handheld ultrasound transducer
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Fig. 10.11. High-level system components for collaborative modality fusion system. Three workstations run
different components of the collaborative fusion system. Visualization and robot control is done on
the robot and visualization workstation (top) which integrates the robot control via ROS (left) and
the joint multi-modal visualization of both gamma and ultrasound within CAMPVis (right) which is
provided with the relative pose between gamma camera and ultrasound. Image processing, optical pose
estimation and pose tracking is done on the tracking workstation (lower left) which runs an instance
of the FRAMOS software framework. It sends poses of the tracked ultrasound transducer to ROS. The
ultrasound acquisition and imaging is done on an ultrasound machine (lower right) running Plus. It
provides the ultrasound image and its meta data to CAMPVis.

while a surgeon is performing an ultrasound scan with it. Calibration procedures for rigidly
attached components allow to steer the robot through iterative manipulation of its end effector
in such a way that the gamma camera is positioned orthogonal to the ultrasound image plane
while the physician is manually adjusting the ultrasound transducer. The medical expert then
has a free hand to extract tissue with a punch biopsy needle from a correctly identified sentinel
lymph node in a lymph node cluster that is highlighted through a radio-tracer under joint
multi-modal guidance.

The involved high-level system components are illustrated in Fig. 10.11. An UltraSonix RP
system (Ultrasonix, MA, USA) is used in research mode with a C5/60 curvilinear probe and
the Ultrasonix Ulterius SDK on a dedicated ultrasound workstation for acquisition and pro-
cessing of the US sensor data. We use the ultrasound toolkit Plus40 as in section 8.1.4 and
communicate images and ultrasound meta data such as pixel spacing via an OpenIGTLink
server that provides the data over a Gigabit Ethernet connection (cf. section 7.6).
The OpenIGTLink interface is also used on the tracking machine to provide the US poses.
The workstation runs the algorithm of Busam et al. [49] as detailed in section 7.3 inside the
FRAMOS Imaging Systems (FIS) framework (FRAMOS GmbH, Taufkirchen, Germany). The
stereo tracker estimates the pose of the marked ultrasound transducer relative to the master
camera and performs quaternionic upsampling41 to super-sample the hardware acquisition
frequency and ease temporal synchronization. The machine is attached to its cameras via
Ethernet with a PCI Express card and uses a second port for connection with the robot control
system that also renders the augmented ultrasound images.
40Cf. Lasso et al. [236].
41Cf. section 9.1.
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The robot and visualization workstation handles the robot control with ROS42 and is con-
nected to the robot via Ethernet. Respecting all calibrated transformations, the poses are
internally provided to the visualization part. For this, an instantiation of CAMPVis43 is set up
to augmented the multi-modal image output. It connects via Ethernet to the ultrasound image
server which feeds the images. All machines are synchronized via NTP44 to be able to use time
stamp information from a synchronized clock and to stabilize the system against oscillation
effects caused by delays.45

The tracking system hardware constitutes the same components as the described in section 7.9
and we leverage a KUKA LWR iiwa R800 robotic arm (KUKA Roboter GmbH, Augsburg, Ger-
many) with the KUKA Sunrise control software. The radioactivity is detected with a 2D Crystal-
Cam gamma camera (Crystal Photonics, Berlin, Germany) attached to a customized 3D printed
mount that rigidly attaches also the camera-in-hand tracker. For the medical experimentation,
we utilize a standard punch biopsy needle (HistoCore 250 mm, BIP GmbH, Germany).

10.3.2.1. System Coordinates & Calibration

For all involved components we require to know their spatial relationship to be able to fuse the
data. The relevant coordinate reference frames are summarized in Fig. 10.12 where the world
anchor and static reference frame is the robot base. We calibrate all involved components to
each other such that they can be described in robot base coordinates.

A first step involves a camera calibration of both stereo cameras and their relative pose
following the calibration steps described in section 4.2. Knowing their relative poses allows
for image rectification46 and to run the stereo tracking algorithm from section 7.3. We attach
self-adhesive retro-reflective circular markers to the ultrasound transducer and train a marker
setup for the attached marker as described in section 7.5.1 by manually moving the transducer
in the line of sight of the vision system. Varying the pose of the robotic arm lets us change
the position and orientation of the robot end effector. As both the gamma camera and the
camera-in-hand tracking system are rigidly attached to the robot flange, their relative pose is
static. While observing a fixed object on the table as shown with the ultrasound transducer in
Fig. 10.13, we can run a hand-eye calibration routine (eye-in-hand variant) when moving
the end effector around it.47 This provides the relative pose between the robot flange which
we know by the forward kinematics of the robot and the tracking system. The remaining poses
towards the gamma camera and the gamma image plane can be retrieved from the CADmodel
of the 3D mount and its internal description.
An external Polaris Vicra tracker (Northern Digital Inc., Waterloo, Ontario, Canada) is then co-
calibrated with a rigid body marker attached to the end effector utilizing a hand-eye calibration
in eye-on-base variant. Using a pointer with a marker visible to it, we can perform a pivot
calibration48 and determine the ultrasound calibration for the relative poses between the

42Cf. Quigley et al. [338].
43Cf. Schulte zu Berge et al. [371].
44Cf. section 9.1.
45Cf. Corke and Good [73].
46Cf. section 6.3.3.
47Cf. chapter 7.7.2.
48Cf. section 7.7.1.
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Fig. 10.12. Relevant coordinate reference frames and calibration routines. We illustrate the most notable coor-
dinate systems and involved calibration processes. The bigger boxes define rigidly attached components
for the robot (left) and the ultrasound transducer (right). The robot is attached to the robot base (lower
left) and its dynamic arm with the associated forward kinematics defines the position of its end effector.
At the robot flange, we rigidly attach the gamma camera as well as the camera-in-hand stereo vision
system. The 3D mount and the gamma CAD model define the pose towards the gamma tip and its
image. A hand-eye calibration (eye-in-hand variant) is used to calibrate the pose to the rigidly attached
camera-in-hand system which is calibrated for its intrinsic and extrinsic parameters. It constantly tracks
the pose of self-adhesive markers attached to the ultrasound probe (dashed line). An external tracking
system (bottom, centre) is co-calibrated with it and thus with the robot base in a hand-eye calibration
step (eye-on-base variant). A pointer with a rigidly attached spherical marker is calibrated with a pivot
calibration and used to determine the poses on the ulrasound probe (right) between ultrasound tip and
its image using Plus. The pose tree which starts at the static robot base can be used to determine the
relative pose between marker coordinates and ultrasound tip. We can vary the target pose (dashed line
in the centre) through motions of the robotic arm.

ultrasound tip and the ultrasound image by pointing to several locations within the ultrasound
image. The metallic pointer is visible in the ultrasound image andwe can leverage the freehand
calibration provided in the Plus ultrasound framework.49 The remaining pose between the
trained ultrasound marker system and the ultrasound tip as pointed by the pointer is then
calculated using the pose tree from robot base to the marker coordinates and from robot base
to the ultrasound tip. The so calculated relative pose is determined via pose averaging with
the Weiszfeld algorithm50 and an input of ten poses to minimize error propagation.
The entire calibration process takes time and is valid until the individual components are
detached. In a typical setup, the calibration of the camera intrinsics and extrinsics requires
approximately 30 min, object training needs 5 min, and the hand-eye routines require 10 min
each. The pivot calibration costs 10 min and the ultrasound calibration requires around 30 min.
The remaining spatial calibration needs another 10 min. In total, the calibration procedure
takes about 1 h 45 min if all components function perfectly without errors. This does not
include the manual CAD estimates.

The external tracker can finally be neglected as it only helps to simplify the calibration with
existing material such as the pointer. We end up with two relevant dynamic components which
are illustrated in boxes in Fig. 10.12. On one hand, we can manoeuvre the ultrasound probe
while the vision system can track its pose. This causes a change between the gamma image
and the ultrasound image reference frame. On the other hand, we can actively steer the robotic
arm which also changes this relative pose. The other relative displacements are static and
remain the same. To support a medical expert in an anatomical scan, we do not intervene the
49Cf. Lasso et al. [236].
50Cf. Hartley, Aftab, and Trumpf [164].
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Fig. 10.13. Calibration setup for component co-calibration. The picture shows the setup for a calibration between
the individual components. The robotic arm (left) is brought to different poses such that the tracked
poses of the camera-in-hand tracker (top, centre) towards the self-adhesive markers on the ultrasound
transducer vary and a hand-eye calibration (eye-in-hand variant) can be performed. An additional marker
attached to the end effector allows for co-calibration with the external tracker (top right). The tip of the
pointer (lower right) is calibrated with a pivot calibration such that the external tracker can determine
its tip position via the spherical rigid body marker. Since the tip is visible in an ultrasound image, it can
be used to calibrate the ultrasound image to its tip. The entire process requires multiple steps.

manual adjustment necessary for the anatomical scan, but vary the robotic arm in such a
way that the relative pose between the gamma image and the ultrasound image is kept
relatively constant.
We define the relative pose between them by aligning their centres and demand co-planarity
between the image planes. Following the same convention as in chapter 8.1.2, we denote the
transformation from A to B with TB A. The target pose of the robotic flange with respect to the
ultrasound image is then defined by

TUS
flange = TUS

gamma · Tgamma
flange, (10.1)

where the transformation TUS
gamma between the gamma camera and the ultrasound probe is

given by the ideal plane-to-plane displacement and Tgamma
flange is static and predetermined by

our CAD calibration.
The remaining relevant coordinate frames are illustrated in Fig. 10.14 and we can express the
ultrasound reference frame at time t in robot base coordinates with

Tbase
US (t) = Tbase

flange (t) · Tflange
OTS · TOTS

marker (t) · Tmarker
US, (10.2)

where Tmarker
US comes from the ultrasound and pose tree calibration, TOTS

marker is provided
by the optical tracker, Tflange

OTS comes from the hand-eye calibration, and Tbase
flange is defined
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through the forward kinematics of the manipulator. This allows to describe the next best robot
pose of the robot flange at time t + 1 in dependency of the quasi-static pose between gamma
and ultrasound image and the latest pose estimation as

Tbase
flange (t + 1) (10.3)

= Tbase
US (t) · TUS

flange (10.4)

= Tbase
flange (t) · Tflange

OTS · TOTS
marker (t) · Tmarker

US · TUS
gamma · Tgamma

flange. (10.5)

Ultrasound
Image

Robot
Base

Robot
Flange

Gamma
Image

Optical Tracking
System

Marker
Coordinates

tracking

target

pose

gamma

US

markerOTS

Fig. 10.14. Reference frames for robot control. The left side shows the relevant reference frames for the robot
control where the three bigger blue boxes indicate rigidly attached coordinate systems. The robot base
(lower left) is connected with the end effector that consists of the camera-in-hand optical tracking system
(OTS) and the gamma camera which are both rigidly attached to the robot flange. The OTS tracks the
ultrasound transducer via its attached markers (dashed line). The relative pose between gamma and US
(indicated with the arrows) is required to be relatively constant. The coordinate system abbreviations of
the non-robotic components are visualized on the right.

Constant updates of the next best robot motion are calculated with most recent tracking data
and the current flange information. For safety reasons and to minimize vibrations and oscil-
lations, we denoise the poses51 with a pose average over a window of ten poses and actively
manipulate the robot pose only if the computed residual displacement compared with the
current robot pose exceeds a certain threshold. This decision does not harm the accuracy of
our visualization as all the relative poses are known at any time in order for a correct spatial
fusion of the modalities.

For the multi-modal visualization, we require also the transformation between the image
coordinates. The gamma coordinates, and thus the radioactive events can be described in
ultrasound coordinates as

TUS
gamma (t) = TUS

marker · Tmarker
OTS (t) · TOTS

flange · Tflange
gamma. (10.6)

The gamma camera is constructed out of multiple scintillation chambers arranged in a 2D
array.52 While it is possible to adopt complex gamma camera modeling53 for the device at
hand that target the needs of 3D reconstruction, we adopt a simple model motivated by the 2D
detector array where we used a parallel projection orthogonal to the gamma image plane to
project the measured events onto the ultrasound image plane with the help of the relative pose
from equation (10.6). The idea is illustrated in Fig. 10.15 which also shows an augmentation
51Cf. section 9.2.
52Cf. Knoll et al. [224].
53Cf. Matthies et al. [278].
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Fig. 10.15. Projection of gamma camera events onto ultrasound plane. The anatomical information is examined
with an ultrasound probe as a slice through a phantom (left). The field of view of the ultrasound
transducer is visualized with black lines. Measurements for various depths are shown with the overlayed
US image illustrating two lymph node phantoms (bright blobs). The robotic arm holds the gamma
camera (right). It measures the radioactivity with a set of detectors arranged in a 2D grid. We project
detected events orthogonal to the grid onto the ultrasound image plane (red arrow) where we visualize
them in red. It is visible that one of the nodes contains a radiotracer.

example. We empirically determine a valuable plane-to-plane distance for the relative pose as
d < 15 cm to make a standard amount of radiotracer clearly visible and set d = 13 cm for all
our experiments as a trade off between proximity and collision avoidance. A resulting position
setup for the respective components is exemplified in our evaluation in Fig. 10.21.

10.3.2.2. Multi-modal Visualization

The events are made visible using the CAMPVis54 framework with the visualization pipeline
depicted in Fig. 10.16. The gamma camera is directly attached to the visualization workstation
via USB and runs a method to provide the gamma events relevant for the rendering. The latest
ultrasound image together with meta data is interfaced via OpenIGTLink from the ultrasound
machine. And the relative pose for the co-modality fusion is provided out of ROS. We then
augment the events by integration over time on the ultrasound image where we vary the
integration time from 0.5 sec to 3 sec depending on the activity decay of our radio isotope. In
proportion to the amount of measured events, we adjust the opacity of the augmentation and
denoise the gamma signal by cutting off integrated measures below a specified threshold. To
add a spatial distribution effect for the events, we apply a 2D Gaussian profile on the projected
events that approximately represents the probability for the detected events in space and eases
interpretation of the augmented image. The multi-modal visualization with a graphical user
interface to manipulate relevant parameters is shown in Fig. 10.17. A consecutive validation
evaluates the system.

54Cf. Schulte zu Berge et al. [371].
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Fig. 10.16. Visualization pipeline overview for US-Gamma augmentation. The visualization framework is pro-
vided with an ultrasound image and its meta data (left) from an ultrasound server via OpenIGTLink. The
poses are also communicated via OpenIGTLink (centre). Tracking is provided by the FRAMOS Imaging
Systems (FIS) framework (top) to ROS which gives the necessary relative pose to a merger method. The
gamma camera (right) sends events to a gamma provider which prepares the information for the gamma
overlay. The merger method ultimately composes the augmented image. The entire pipeline operates in
real-time.

Fig. 10.17. Multi-modal visualization and GUI for spatial US-Gamma fusion. The graphical user interface allows
for runtime manipulation of specific pipeline properties (left). It is shown here that selected properties
for the gamma camera rendering such as the integration time and threshold value can be changed during
execution. The resulting visualization is shown on the right where the ultrasound image shows two
phantom nodes (brighter blobs on top). The line of sight for the gamma camera projected onto the
ultrasound image is indicated by a blue area and the radioactivity is augmented in red. The isotope can
be localized in the right node.
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10.3.3. Experimental Validation

We assess the use and quality of the proposed collaborative robotic assistant in a series of tests.
A first test investigates the feasibility of functionality-enhanced ultrasound images in a toy
setup which is quantitatively validated in a second study. A third experiment validates the use
of the system for sentinel lymph node biopsy in an expert assessment where we compare the
classical approach of cognitive fusion against the augmentation with spatial modality fusion
on a phantom.

10.3.3.1. Feasibility Study

In a first feasibility study, we leverage a prototype setup to understand the capabilities of
joint US-Gamma imaging.55 The main goal of this preliminary test is to find the minimum
distance for two phantom nodes that allows to distinguish which one of them uses a radiotracer.
The experimental setup is illustrated in Fig. 10.18, where two neighbouring lymph nodes are
simulated with spherical containers of 1 cm diameter each. One of them (the cold node) is
filled with pure water while the other contains a fluid with 0.5 MBq of Tc99m to simulate a
sentinel lymph node with a radiotracer (hot node). Both containers are put in a plastic box
which is filled with water for acoustic ultrasound coupling and they are brought gradually closer
to each other. As shown in Fig. 10.18, even when both spheres are put next to each other
touching each others surface, the hot node can clearly be identified in the Gamma-enhanced
ultrasound view indicating a reliable test setup for more complex procedures.

Hot
Node

Cold
Node

Hot
Node

Cold
Node

Gamma
FoV

Fig. 10.18. Feasibility test for multi-modal spatial fusion. To spherical containers of 1 cm diameter are placed in
a box (left) which is filled with water. One of them (hot node) is filled with a fluid with 0.5 MBq of

Tc99m while the other (cold node) is filled with water. They are brought gradually closer to each other as
indicated by the blue arrow. An ultrasound scan through the water is performed using a prototype of our
system. The resulting visualization of spatial US-Gamma fusion is shown on the right where the Gamma
field of view is indicated in blue. Even when the spheres touch each other, the hot node can clearly be
distinguished from the cold node by looking at the overlayed radioactivity shown in red.

10.3.3.2. Accuracy Assessment

To validate the accuracy of the spatial fusion approach, we use a similar setup as for the time
measurements with a second robot in chapter 7.9. We utilize the spheres and the box from
55Cf. Esposito et al. [101].
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our feasibility study before. A UR5 (Univeral Robots, Odense, Denmark) robotic arm is set up
to hold the ultrasound transducer in the experiment to reliably navigate the probe around the
phantom in order to quantify the error of the fusion system while our robot assistant follows
with the gamma camera. One sphere is filled again with a radiotracer. We use 3 MBq of Tc99m

and navigate the robotic arm manually to various poses in which we acquire ten spatially fused
US-Gamma images slicing through the hot node with an event integration time of 2 sec. The
target is to compare an annotation of the sphere centre with an annotation of the point of
highest radioactive measurement on the ultrasound image and investigate the overall deviation
due to calibration and approximation steps.

After starting with measurements in ground position, we translate the ultrasound probe which
is slightly immersed in water along the horizontal ultrasound image direction to both sides
with a displacement of up to 21 mm compared to the ground position such that the sphere
is still part of the ultrasound image and our robotic assistant does not collide with the box
phantom. At the extreme points of the translational motion, we acquire ten joint images each.
Then rotations along all three coordinate axes are performed where the ultrasound transducer
is rotated clockwise and counterclockwise around the coordinate axes with a deviation of up
to 22.4◦. A total of 60 measurements are taken at the extreme positions. We note that the used
robot poses reflect extreme positions of the ultrasound transducer beyond motions an examiner
would require. The anatomical centres and points of highest activity of all measurements are
annotated and the metric deviation is calculated from the pixel distances. We measure an
average error of 0.7 mm in ground position. Table 10.1 summarizes the results under individual
variation of translation and rotation. Over all tests, the average error can be reported as
1.12±0.57 mm with a median error of 1.00 mm. This is significantly lower than the minimum
threshold of 5 mm for lymph nodes visibility over which the anatomical structure can be reliably
detected in patients.56 We therefore conclude that the influence of the system error is small
enough to allow for an expert assessment with a synthetic breast phantom.

Variation in Translation Rotation

Average Error 1.05 mm 1.15 mm

Tab. 10.1. Average deviation for multi-modal augmentation. Compared is the average error under translation
and rotation of the ultrasound probe.

10.3.3.3. Expert Validation with Biopsy

After the preliminary tests, we analyse an expert assessmentwith a biopsy phantom for which
we ask five medical experts to perform a punch needle biopsy on a phantom. The subjects
involved in the study are two professional gynaecologist and three independent medical re-
searchers. We prepare two phantoms with synthetic hot and cold nodules and consecutively
ask for a punch needle biopsy under functional and anatomical guidance. A first run is done
with cognitive spatial fusion of the modalities where a handheld gamma camera and an ultra-
sound probe are used and a second run is performed with the help of our collaborative robot.
We quantitatively compare both runs following a specified protocol.
56Cf. Obwegeser et al. [313].
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The two phantoms are formed to represent the anatomy of the female upper torso around
the axilla region. We build the phantoms out of a mixed gelatine-agar material57 and put 11
(respectively 12 synthetic nodules) inside at different locations and distances. The reason for
setting up two different phantoms is that we want to test the methods in two independent
runs where it is not possible for the subjects to remember the nodule locations. To reliably
simulate a haptic difference, we choose a higher concentration of agar-gelatine for the nodules
and add a radiotracer to 4 (respectively 5) of them with 3 MBq of Tc99m each. Additionally, we
mark the nodules with food colour to distinguish the subtracted tissue from the punch needle
biopsy. We mark cold nodules with blue and hot nodules with red colour and insert them at a
subcutaneous depth of approximately 2 cm for a realistic setup. We cut open one prototype
phantom after the experiment and show it together with an example biopsy of a cold node in
Fig. 10.19. In Fig. 10.20 a SPECT-CT scan of one of the phantoms is shown where the active
nodes can be clearly distinguished.

Nodules

Subtracted
Tissue

Punch Biopsy
Needle

Fig. 10.19. Open phantom with three cold nodules and a punch biopsy example. We biopsied a prototype
phantom with a punch biopsy needle (bottom) and cut it open for illustration of the three visible nodules
(top). The subtracted phantom tissue leaves a visible blue colour in the open punch needle compartment
(centre).

In the first run, each medical expert is given a gamma camera and a handheld ultrasound
transducer to examine the first phantom. A punch biopsy needle for tissue extraction is also
provided. Gamma and ultrasound images are visualized live on two different screens and a
cognitive spatial fusion of the modalities is necessary in order to distinguish hot from cold
nodules after finding the relevant anatomical structure. In order to free a hand, all subjects
decided to perform the biopsy under US-guidance only while using the second hand for the
biopsy. Our collaborative robot is used in a second run where it holds the gamma camera and
the functional information is blended in our visualization framework on top of the ultrasound
image on a single screen. The biopsy is then performed under multi-modal guidance.

57Cf. Dang et al. [79].
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5 cm

Hot node

Cold node

Fig. 10.20. SPECT-CT scan of breast-axilla phantom with lymph nodes. A SPECT-CT scan is shown for one of the
phantoms with 12 lymph nodes. The 5 hot nodes (orange) can be clearly seen while the remaining ones
are slightly indicated by a corona and density variations.

For all tests, the experts are given time to get familiar with the system and we initiate the
experiments when the subject indicates to be ready to start. We then ask them to count the
number of visible lymph nodes and identify hot nodes. Finally, a biopsy of a potentially hot
node is performed which the expert can freely choose. We validate the outcome of the biopsy
with the food colour and record the inspection time and the biopsy duration. Additionally,
the subjective confidence for each hot node identification is put to protocol and we ask for a
individual difficulty assessment of the entire procedure one and two where both values are
measured on a scale from 0 to 5. The results are summarized in table 10.2 while Fig. 10.21
depicts the dimensions of the entire setup at the start of the second run.

Procedure Cognitive Fusion Our System Improvement

Inspection Time [min : sec] 13 : 13 8 : 55 +32.5%

Identified Nodes on US 87.3% 85.0% −2.3%

Correct Hot Nodes 75.0% 88.0% +13.0%

False Positive Rate 43.3% 0% +43.3%

Confidence 86.2% 88.0% +1.8%

Biopsy Time [min : sec] 5 : 12 2 : 46 +46.8%

Success Rate 0% 80% +80.0%

Subjective Ease-of-Use 1.8/5 4.4/5 +52.0%

Tab. 10.2. Average results of expert user biopsy. The table compares the result of our expert study with anatomical
assessment and punch needle biopsy on a breast phantom for cognitive modality fusion versus multi-
modal fusion with collaborative robotic assistant. Note the significant improvement of the procedure
time and accuracy.

Besides a significantly faster identification of the nodes, also the biopsy time is improved by a
large margin with the collaborative spatial fusion while at the same time the accuracy of the
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Fig. 10.21. Setup of involved hardware components for expert validation. At the start of the second run, the
medical expert is given an ultrasound transducer to examine the phantom (bottom) while the robotic
arm (left) assists the intervention by holding both the tracking system (top) and the gamma camera
(centre) above the examined anatomy.

assessment increases. Summing the time spent for inspection and biopsy, we note that a total
of 6 min 44 sec is saved in average with the novel procedure which is a time improvement
of 36.6%. Moreover, no single node was incorrectly described as a hot sentinel node with
the robotic setup. Besides the subjective simplification of the procedure with the assistant,
the objective success rate of the biopsy improved by 80%. It is worth noting that the only
incorrect biopsy was caused by a system failure where the robot reached its joint limits during
the preparation for the biopsy by the subject. The medical expert then decided to perform
the biopsy under ultrasound guidance only. This let to a confusion of two close nodes which
resulted in a biopsy of the cold node. The fact that no punch needle biopsy in the first run
could correctly subtract tissue from a hot node indicates the difficulty of the cognitive fusion
process. The high confidence level for the hot node identification process paired with the false
positive rate is alarming from a diagnostic perspective as it can ultimately lead to an incorrect
treatment of early stage metastases.

Overall, this case study shows that live spatial fusion of functional and anatomical data can
have an impact on the quality and efficiency of medical procedures. Accurate poses can
help to reach a correct spatial alignment even in complex calibration chains as we have seen
by the feasibility study. The second experiment revealed that the accuracy can be maintained
even under changing poses of the ultrasound probe. The impact of the decrease for false
positives and the encouraging feedback from the medical experts motivate to explore the
procedure not only in this controlled synthetic environment but also in a larger medical study
with patients being involved. An interesting question could be to assess the learning curve
of novice users in this context. We believe that the intuitive use of the system that made
it directly usable by all our subjects is a great factor for wider acceptance. A flexible real-
time tracking system that can deal with partial marker occlusion usually present in handheld
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scans is essential for this and can ultimately effect the impact on other medical treatments
where the current hardware may still be too bulky. A reliable system can also enable safe
robotic collaboration in the absence of a robotic expert. The significant improvements for
complex spatial fusion systems, however, come with the burden of a large calibration overhead.
Exploring alternative calibration procedures that do not require time-consuming preparation
with specified calibration targets or investigations to update and maintain the calibration
quality with online measurements seem a promising direction. Aside of an improved ergonomic
handling, one can investigate miniaturization of the tracking design similar to the re-design
approaches studied in chapter 7.8 and attach some needle guidance tool to simplify the biopsy
procedure. A further step towards a safer and more intelligent robotic collaborator could also
include a feature extension for spatial awareness through multi-view depth estimation that
helps to avoid collisions.

With these case studies, we have seen that accurate real-time optical tracking systems can have
a significant impact on practical problems in different sectors where time synchronization,
pose interpolation and denoising play a substantial role. We want to conclude this thesis with
a brief retrospective of the subjects touched here and a short summary of open problems in the
field that are of applied and theoretical interest to indicate some potential future directions.
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Part V

Conclusion & Outlook





11Prospects

„There is no real ending.
It’s just the place
where you stop the story.

– Frank Herbert

We conclude this thesis with a brief summary and meditation about the proposed pipelines and
results before we dialectically discuss their limitations and look ahead to potential solutions
and interesting research directions to overcome these restrictions. A final thought on the
practical relevance of 6D pose estimation for interdisciplinary projects in the future finishes
our journey.

11.1. Retrospective

After an initial discussion of the basic hardware and software concepts used in computer vision
systems (chapter 2), we detailed the steps of a 2D image processing pipeline to robustly and
reliably detect circular markers in an image with sub-pixel precision (chapter 3). We leveraged
the algorithm in an optimization framework for accurate camera calibration (chapter 4) and
described the fundamental concepts and training for data driven approaches with neural
networks (chapter 5).

We then left the 2D image plane in chapter 6 and focused on 3D computer vision. After
laying the foundation to describe 6D poses with dual quaternions, we further investigated the
differential geometric aspects of the parameter space and reviewed classical and convolutional
approaches for stereoscopic depth estimation with probabilistic concepts. Accurate binocular
triangulation of markers served as the input for a robust optical tracking algorithm based
on dual quaternions which we formulated and validated in chapter 7. The real-time optical
tracking system (OTS) leverages a flexible online marker training which was prototyped with
self-adhesive retro-reflective markers and IR illumination. We instantiated the hardware in
two systems, an outside-in and a camera-in-hand OTS. A medical validation was done with
the latter using a collaborative robot for movement therapy. Consecutively, we went one step
further to markerless pose estimation (chapter 8) where we analyzed a miniaturized stereo
system for inside-out tracking with SLAM in the operating room and consecutively redefined
the standard paradigm for classical 6D pose estimation. While detection or regression are
common approaches to solve the problem, we leverage machine learning to estimate a next
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best pose and reformulate the problem as a decision process. Using a reinforcement signal from
a small neural network to move a virtual object gradually closer to an observation allowed to
reach highly accurate monocular 6D poses even for unseen objects that were not used during
the synthetic-only training.

Our final part focused on the poses of optical 6D estimation systems (chapter 9) and their
application in practice (chapter 10). We first examine ways to efficiently interpolate poses to
estimate displacements between measurements and pragmatically extrapolate future motion
to decrease lags in real-time pipelines and to synchronize systems. We effectively use the
Riemannian structure of pose space for denoising of estimation sequences in the presence of
outlier measurements before we combine these concepts for sensor fusion.
To illustrate the wide applicability of the developed concepts, we chose three orthogonal
applications where multiple modalities are combined with different goals in an industrial,
medical and robotics setup. With our optical tracking system and the necessary accurate
pose descriptions, we managed to showcase solutions to all three problems despite intricate
co-calibration requirements.

11.2. Limitations & Future Directions

Even though we see a current trend towards more general forms of 6D pose estimation1 where
the displacement of unseen object instances can be measured, it remains an open problem
to accurately estimate the poses of objects not present during training. These methods already
generalize to different object instances of the same class, such as a laptop with a slightly dif-
ferent shape or a cup that has another form. However, they fail for completely new objects.
Ourmarkerless method (chapter 8) provides a solution to track objects of an unknown class that
are entirely different from the training examples as we change the pose estimation paradigm
and learn a decision process comparing between a 3D model and an observation. The pose
accuracy for known objects, however, is still superior compared to unseen examples and the
requirements of a 3D model remains. It would be interesting to see investigations where the
learning and testing processes are entangled in a joint dynamic system that refines, adjusts
and updates a 3D model with current measurements aiming towards CAD-free pose estimation
of unknown objects with high accuracy. One could try to generate the information and the
updates even synthetically and save them directly in the 3D model files as variable appearance
signatures using spatial descriptors. These ideas ultimately blend between the disciplines of
object pose estimation and spatial reconstruction.
A simple online training step for the model is already part of our marker-based optical tracking
algorithm (chapter 7) where we see a significant gap between marker approaches and marker-
less methods although RGB images provide many more pixel measurements. Even though the
monocular methods without markers are very robust, this shows that the descriptive power of
current pipelines still falls short compared to marker approaches. We believe that this gap will
trigger a series of further investigations in the future bringing markerless methods closer
to the pose estimation performance currently possible with markers.

1Cf. Wang et al. [443].
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The core tracking backbone we designed in chapter 7 allows to relax its tolerance towards
deformations. We demonstrated this flexibility with a use case for robot movement therapy.
While this led to the necessary results for the application, the core pose description is still rigid
and could be further explored towards non-rigid motions with higher degree of freedom that
are also capable to describe motions of objects that change shape with different dynamics. This
is of severe practical relevance as full rigidity is an approximation that only holds for certain
objects and with human interaction, object appearance and geometry can change. The same
dynamics hold true for the inside-out approaches discussed in chapter 8. While our intrinsic
assumption is a mostly rigid environment, the situation can drastically change not only in an
operating room, where people and tools move, but also beyond these scenes. Defining a fixed
world anchor for SLAM approaches in dynamic environments is difficult and most methods
nowadays either ignore non-rigid motion2 or specifically model non-rigid object deformations.3

This leaves space to explore joint approaches that combine the benefits of both worlds while
still being able to run efficiently with the aim of camera self-localization.

With the availability of depth sensors even on mobile devices, it can also be an interesting
direction to explore the geometric nature of scenes and their topology more thoroughly. At
the moment, our pose pipelines fully rely on monocular or stereoscopic images where the
designed pipelines triangulate point clouds either from markers or 2D features. An acquisition
of full depth maps either directly with a depth camera or indirectly following multi-view cues
could be leveraged to make the algorithm more aware of the environment or enable the use
of geometric constraints for self-supervision through cycle consistencies. An outcome can be a
data-driven approach which is free from the synthetic training where ground truth is required.
Moreover, depth information has a direct impact on pose estimation applications in augmented
reality where not only more realistic light changes can benefit from scene geometry under-
standing, but we can also use geometric cues for occlusion aware augmentations in mixed
reality pipelines.
Applications can further benefit from exploring and improving the efficiency and runtime
of the proposed pipelines. While we managed to design algorithms that run on a laptop
(chapter 8) and improved the sampling rate of pose pipelines (chapter 9.1), real applications
can further benefit from processing that reduces the interface lag by moving the computation
closer to the edge. One direction could be to explore the possibility for pose estimation algo-
rithms to either run on dedicated hardware such as an ASIC or FPGA or leverage embedded
and mobile vision platforms with neural processing units.4

The sensor fusion approaches we consider in chapter 10 focus around spatial fusion ofmultiple
modalities. Accurate fusion and the pose improvement strategies from chapter 9.3 enable a
set of novel applications and improved augmentations where we use the estimated poses to
combine different modalities. At the core, the myriad of sensing devices not only in medical
applications but also in general multi-sensor setups is highly interconnected. From our point
of view, a further explicit exploration of this interconnectivity can solve a set of problems and
improve pose estimation accuracy and reliability far beyond what is possible with individual
sensor treatment which can result in better modality combination.
A direction could be to aim for global consistency where all sensors in a specific environment
contribute data and we look for plausible consistency cycles among them. An inside-out device
2Cf. Bescos et al. [22].
3Cf. Bozic et al. [36].
4Cf. Dinelli et al. [88].
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that suffers from drift during its temporal self-localization can then benefit from a stable global
outside-in tracker that observes its pose in particular displacements while another modality
such as an ultrasound device that explores an anatomy must see similar structures if it is held
in similar poses. Such a framework – if modeled probabilistically – can then be optimized
not only amongst different sensors but also across different modalities ultimately outputting
better individual poses. One can then retrieve the pose between a specific sensor and a target
without direct line-of-sight contact even along an indirect path in a pose graph that does not
involve this direct edge. Knowing and modeling the reliability of specific sensors for the task
at hand then contributes in better overall poses. An IMU can for instance greatly improve the
rotation accuracy measured by an outside-in tracker that observes the object it is attached to
while its translation estimates may be erroneous. These could then again benefit from the
measurements of outside-in tracking consequently leading to a better pose.
A future intelligent interaction between such devices in the OR could also greatly benefit the
semantic understanding of the surrounding where tools provide their data to a global system
that leverages poses and images to optimize for a specific task. While fully autonomous
understanding of the surrounding actions may be a far fetched goal, a simpler framework
could aim for improved self-localization with multi-modal sensor fusion for interactive use
in collaborative environments. A robotic manipulator could thereby actively decide for the
optimal position of tracking systems or a single camera to retrieve the best environment map
for orientation or the best reconstruction of an object of interest by moving the camera or
another sensor autonomously at specific locations that benefit the global understanding of the
scene.
Such an intelligent, holistic environment and self-understanding can then not only benefit the
poses measured but could lead to significant practical advantages. In all our implementations
throughout this thesis, co-calibration was always necessary between sensors and we moved
various calibration targets to different locations running a variety of hand-eye, tool, intrinsic
and extrinsic calibration routines. If we have a shared common map that is distributed and
optimized among the entire swarm of sensors, we can then also explore auto-calibration setups
via this map where the calibration constraints could be deduced from the map itself containing
scene geometry and appearance. Furthermore, re-calibration and online adjustments via such
a shared and potentially multi-modal map can be investigated.

11.3. Epilogue

Rigid object pose estimation is an essential task for robotics, automation as well as augmented
and mixed reality applications. We have used computer vision systems and explored the under-
lying mathematical and algorithmic concepts for pose computation in single and multi-modal
setups that enabled high performance 3D vision systems. These systems can be used across
scientific disciplines which we exemplified in various medical setups. Marker-based approaches
benefit from the fundamental concepts of multi-view geometry and the precise mathematical
description of camera sensing. Such pipelines can lead to highly accurate pose estimation
results while data-driven algorithms can be the tool of choice to make these estimations robust
and adjustable to specific objects. We strongly believe that a synthesis of geometric knowl-
edge with neural network support can lead to significant improvements in the domain in the
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future. The proposed pose treatments and changed tracking paradigm presented in this thesis
can be a solid basis to further explore ideas in this direction while we think that the medical
use cases can be a motivation to have not only scientific but also social impact. Moreover, the
developed hardware and software that lead to the optical tracking system can be a baseline
for future research.
During all our case studies, we noticed that current setups often suffer from the requirement of
expert knowledge or need a multidisciplinary team in practice to be realized. An exploration
of auto-calibration and map sharing of sensing tools can contribute towards a democratization
of these technologies at the interface between academic and practical disciplines.
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Part VI

Appendix





AMathematical Derivations &

Complementary Results

A.1. Dual Quaternion Energy Functional

The energy functional for the pose estimation from section 7.3.7 can be rewritten in terms of
quaternions. For this purpose it is beneficial to analyse the quaternion matrices
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from (7.31) in more detail. We note that for two arbitrary quaternions r,s ∈H it holds

P (r)s=W (s) r (A.2)

W (r)TW (r) =W (r)W (r)T = rTr I (A.3)

P (r)W (s)T =W (s)T P (r) (A.4)

with the identity matrix I ∈ R4×4.

Leaving out the constant, these equations can simplify the energy functional from equa-
tion (7.33) for the unit dual quaternion Q= r+ εs with
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∑
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Using the constraint rTr = 1 of the dual quaternion and equation (A.3) again gives further
simplifications such that
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with the constant value D ∈ R.

A.2. Additional YCB Comparison

Additional to Tab. 8.1, where the standard ADD metric1 is analysed, we compare in Tables A.1,
A.2 and A.3 the area under the ADD threshold curve (AUC) for varying absolute thresholds
from zero to 0.1m in direct comparison with other pipelines.2 In line with the previous results,
our method compares favourable with respect to this metric on the standard benchmark (Ours
OS) and significantly better with the shift-correction.

1Cf. Hinterstoisser et al. [174].
2Cf. Xiang et al. [454].
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Model 3DC [454] PC [454] CPC [63] PRBPF [82] Ours OS + Shift

002_master_chef_can 12.30 50.90 62.32 63.30 65.61 91.15

003_cracker_box 16.80 51.70 66.69 77.80 84.34 90.74

004_sugar_box 28.70 68.60 67.19 79.60 78.43 91.05

005_tomato_soup_can 27.30 66.00 75.52 73.00 66.83 76.06

006_mustard_bottle 25.90 79.90 83.79 84.70 86.05 94.03

007_tuna_fish_can 5.40 70.40 60.98 64.20 65.90 69.12

008_pudding_box 14.90 62.90 62.17 64.50 79.00 83.01

009_gelatin_box 25.40 75.20 83.84 83.00 82.92 92.78

010_potted_meat_can 18.70 59.60 65.86 51.80 75.21 79.44

011_banana 3.20 72.30 37.74 18.40 84.99 90.19

019_pitcher_base 27.30 52.50 62.19 63.70 85.14 94.22

021_bleach_cleanser 25.20 50.50 55.14 60.50 89.27 90.68

024_bowl 2.70 6.50 3.55 28.40 85.89 87.03

025_mug 9.00 57.70 45.83 77.90 78.95 87.83

035_power_drill 18.00 55.10 76.47 71.80 76.56 91.95

036_wood_block 1.20 31.80 0.12 2.30 48.62 53.52

037_scissors 1.00 35.80 56.42 38.70 79.78 83.99

040_large_marker 0.20 58.00 55.26 67.10 73.27 75.31

051_large_clamp 6.90 25.00 29.73 38.30 56.09 65.97

052_extra_large_clamp 2.70 15.80 21.99 32.30 67.31 78.06

061_foam_brick 0.60 40.40 51.80 84.10 86.52 86.70

Average 13.02 51.74 53.55 58.35 76.03 83.47

Tab. A.1. Evaluation on the YCB dataset with our object-specific models, AUC01. We compare the area under
the ADD threshold curve (AUC) for varying thresholds from zero to 0.1m. Symmetric objects are shown
in italic letters.
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Model RKF [349] HM [312] R&C [328] Dope [419] Ours OS + Shift

002_master_chef_can 54.60 81.90 76.70 - 65.61 91.15

003_cracker_box 57.60 83.60 82.90 55.90 84.34 90.74

004_sugar_box 84.10 82.10 86.40 75.70 78.43 91.05

005_tomato_soup_can 68.30 79.80 57.40 76.10 66.83 76.06

006_mustard_bottle 79.00 91.50 86.70 81.90 86.05 94.03

007_tuna_fish_can 43.50 48.70 69.70 - 65.90 69.12

008_pudding_box 50.30 90.20 68.80 - 79.00 83.01

009_gelatin_box 74.80 93.70 73.00 - 82.92 92.78

010_potted_meat_can 50.30 79.10 74.60 39.40 75.21 79.44

011_banana 8.20 51.70 68.80 - 84.99 90.19

019_pitcher_base 77.80 69.40 83.80 - 85.14 94.22

021_bleach_cleanser 59.30 76.20 78.30 - 89.27 90.68

024_bowl - 3.60 1.50 - 85.89 87.03

025_mug 69.10 53.90 57.90 - 78.95 87.83

035_power_drill 71.40 82.90 81.50 - 76.56 91.95

036_wood_block - 0.00 0.00 - 48.62 53.52

037_scissors - 65.30 75.40 - 79.78 83.99

040_large_marker - 56.50 59.80 - 73.27 75.31

051_large_clamp - 57.20 75.30 - 56.09 65.97

052_extra_large_clamp - 23.60 20.40 - 67.31 78.06

061_foam_brick - 32.10 37.00 - 86.52 86.70

Average 60.59 62.05 62.66 65.80 76.03 83.47

Tab. A.2. Evaluation on the YCB dataset with our object-specific models, AUC02. We compare the area under
the ADD threshold curve (AUC) for varying thresholds from zero to 0.1m. Symmetric objects are shown
in italic letters.
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Model HMP [125] MT [442] D-IM [251] PV-N [326] Ours OS + Shift

002_master_chef_can 75.80 62.70 71.20 81.60 65.61 91.15

003_cracker_box 78.00 80.90 83.60 80.50 84.34 90.74

004_sugar_box 76.50 83.80 94.10 84.90 78.43 91.05

005_tomato_soup_can 72.10 60.40 86.10 78.20 66.83 76.06

006_mustard_bottle 78.90 85.10 91.50 88.30 86.05 94.03

007_tuna_fish_can 51.60 75.40 87.70 62.20 65.90 69.12

008_pudding_box 85.60 17.70 82.70 85.20 79.00 83.01

009_gelatin_box 86.70 79.90 91.90 88.70 82.92 92.78

010_potted_meat_can 70.10 55.00 76.20 65.10 75.21 79.44

011_banana 47.90 59.60 81.20 51.80 84.99 90.19

019_pitcher_base 71.80 96.10 90.10 91.20 85.14 94.22

021_bleach_cleanser 69.10 89.40 81.20 74.80 89.27 90.68

024_bowl - 49.50 8.60 - 85.89 87.03

025_mug 43.40 87.70 81.40 81.50 78.95 87.83

035_power_drill 76.80 96.40 85.50 83.40 76.56 91.95

036_wood_block - 43.80 60.00 - 48.62 53.52

037_scissors 42.90 60.20 60.90 54.80 79.78 83.99

040_large_marker 47.60 87.50 75.60 35.80 73.27 75.31

051_large_clamp - 90.70 48.40 - 56.09 65.97

052_extra_large_clamp - 88.10 31.00 - 67.31 78.06

061_foam_brick - 26.30 35.90 - 86.52 86.70

Average 67.18 70.30 71.66 74.25 76.03 83.47

Tab. A.3. Evaluation on the YCB dataset with our object-specific models, AUC03. We compare the area under
the ADD threshold curve (AUC) for varying thresholds from zero to 0.1m. Symmetric objects are shown
in italic letters.
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