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Abstract�Industry 4.0 has become a general keyword over the
last years. It is based on the inclusion of automation by increasing
connectivity in various tasks during the production process.
This fact did not exclude the human’s effort whose presence
remains important, especially the interaction between humans
and robots will be a key element in the future manufacturing.
In automated production lines, we �nd both humans and robots
operating side-by-side in hybrid workplaces. The major focus
for this workplaces today and in the future is to establish a safe
work environment. However, what if safety meets �collaborative
ef�ciency�? The system presented in this paper relies on the
fusion of data coming from a Time of Flight (ToF) sensor and a
60 GHz radar sensor. The data are analyzed and evaluated using
deep learning (DL) algorithms. The purpose is to detect humans
and track their movements in the observed area. The resulted
perception system can be installed somewhere in a room or on a
moving system. A �rst demonstrator has been developed, tested
and evaluated. An additional graphical interface was developed
to show in real time the capability of the data fusion system.
The system can detect up to 5 persons in a selected area with
98% con�dentiality. The so-described system is able as well to
estimate each person DoM and the person’s instantaneous speed
and position. Based on the output of our developed system, it
is possible to de�ne industrial use cases as well as many other
different applications in different �elds.

Index Terms�sensor fusion, human/robotic collaboration, deep
learning, industry 4.0, machine learning, automated fabrication,
radar sensor, time of �ight camera

I. I NTRODUCTION

Over the last years, the industry image has been changed
from a purely manual work achieved by human workers to
automated tasks ensured mainly by machines and robotic
systems operating at 24/7. Today, the main tasks of workers
in the production are changed from operation to control tasks.
However, when a failure occurs, the human should be present
near to the failure source and must immediately solve the
problem. In a hybrid workplace, machines should observe the
human intentions and stop immediately to avoid accidents.
However, a continuous human interaction can lead to excessive
stops in the production line due to the false classi�cation of
human intentions by the machines. Researches are focusing
today on overcoming the passive usage of the sensors imple-
mented everywhere in the fabrication area. Today these sensors
are used only to inform the workers about the machine state
and to establish a safe shared workplace in order to minimize
the risk of further accidents. It is important to improve the
collaboration between humans and machines and make both
parts communicate with each other. This starts by a smart
exploitation of the information we receive from implemented
sensors. In this context, Internet of Things (IoT) [1] has
received a big interest but it remains an approach that focuses
more on establishing a harmonic communication between the
different sensors. As a result, human is partially included in
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this communication. Sensor fusion [2] is more focusing on
the perception of a dynamic environment including humans.
In fact, for settling an advanced collaborative workplace, it
is worth to use two or more sensors in one compact system
to observe the surrounding area and to collect continuously
relevant information used to guide machines and robots in
various situations.

The power of the sensor data fusion consists in ensuring a
spatial and temporal coverage extension with improvement of
the global system resolution. The reference to both redundant
and new data format helps in increasing the con�dence in
measurements and reducing ambiguities by being able to
classify objects and behaviors in a complex environment. We
develop in this paper a method combining a ToF and a Radar
sensor data. ToF gives the information about the shape and
the exact position of the target in the 3D world and the radar
con�rms this position and gives additional information about
the velocity of each moving target. Since we receive from both
sensors thousands of data, which cannot be all helpful for our
development, we refer to machine learning (ML) methods and
to deep learning (DL) in order to �lter received data and select
relevant features useful for our development.

II. RELATED WORK

During the last few years, human-robot interaction (HRI)
and human-robot collaboration (HRC) have gained a lot of
interest among researchers and industry. This collaboration
aims mainly at exploiting the different but complementary
skills of both the human workers and the programmable
robots in order to achieve a common goal. Establishing a safe
shared workplace in this case is important and challenging
at the same time. When previously robotic systems were
isolated in closed operating rooms in order to ensure the
safety of the human workers, today, with the appearance of
new technologies, human workers and robots can work in
the same room and the area protection is ensured with the
help of different sensor modularities implemented either on
operating robots, at a stationary positions inside the room
or both. Lidar scanners based-technology, with conformance
and certi�cation against the International Organization for
Standardization (ISO) 10218-1/2 [3] and ISO/TS 15066 [4],
remains the most exploited mean for settling a safe manufac-
tory as illustrated in [5]�[8]. These scanners work with 2D
scan and with an opening view of 270 degrees. Therefore,
these kind of sensors need to be implemented on robots in
different directions in order to ensure a total coverage of the
surrounding area. There are thousands of cobots operating
and transferring products between different stations in a fully
automated factory like semiconductor [9] and automotive [10]
industries. With this state of the art technology, we need
today more than 6 expensive scanner systems to protect the
working area covered by one robotic system operating in
only one station. In 2020, Mariane D. in [11] estimates that
the number of industrial robots will reach over 3 million,
which is almost double of the current number. Therefore,
with the current solution there would be a need of heaps of

such scanners. Such a huge number needs from the company
a high cost investment. In order to overcome these losses,
studies are currently oriented to look for alternative solutions
for better interaction between humans and robots. The major
goal is to ameliorate productivity by reducing the number
of successive stops with a minimum of collision risks. The
robot’s trajectory re-planning is one of the proposed solution
and there are various methods adopted in this purpose. Emam
Fathy Mohamed introduces in his paper [12] the utility of
creating a potential �eld in the robot workspace with repulsive
or attractive pressures on the surface of the obstacle and
the target respectively, which helps in the robot’s collision-
free path planning. However, this method could have an
indetermination when both repulsive and attractive forces are
equal or similar. The second studies axis interested in ensuring
a complementary and safe collaborative human-robot work is
based on vision monitoring. Companies like MetraLabs, LG
Business were for example among the �rst companies, which
use 3D Kinect camera or ToF systems for obstacle detection
and avoidance in the robotics �eld. The company Pilz has
developed a camera system, which they call a SafetyEYE
[15]. This system enables the con�guration of multiple safety
zones for the human-robot workspace. Various industries are
today exploiting this system to monitor the violations of these
prede�ned zones and forces of the robot, (e.g. to decrease
the speed or stop when movement is detected in a certain
zone). Flacco et al. presents in his papers [15], [16] a fast
method to calculate the distance between a number of points
and moving obstacles using a depth camera. The vision based
monitoring approach explained above uses only one 3D vision
sensor, which cannot be ef�cient in case of complicated
collaborative tasks in very dynamic environments. Therefore,
recent studies go in the direction of combining different
sensors in the same system to improve reliability regardless
the external requirements of an industrial workspace. studies
in this �eld have a focus on �nding robust solutions in mainly
the automotive area for both Advanced Driver Assistance
System (ADAS) like in the paper of Ziguo Zhong [18] and
gesture recognition applications like in [19] where authors
explain a data fusion-based system using both a radar sensor
and an RGBD camera. These outdoor applications require
a wide detecting range and a big sustainability against the
environment conditions to ensure the maximum of safety
for human lives. These environment restrictions are of more
tolerance in the industries, where machines run in lower speeds
and don’t need a high resolution to explore the environment.
Therefore, the development of the sensor platforms in this case
reveals more �exible and gives the chance to develop various
new technologies that prove reliability and high accuracy in
recent studies for different applications.

III. M ETHODOLOGY

A. Hardware Choice
Our sensor fusion based system is composed of a CamBoard

pico Monstar ToF camera [31], which is produced by the
company PMD technologies AG with a resolution 352x287
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pixels and an opening �eld of view of 100°Hx85°V. This
depth camera deliver a point cloud of the scene in its �eld of
view as well as an aligned 2D amplitude image of the same
scene. We chose a frame rate of 35fps for our application. The
ToF camera is installed in a compact system together with
a 60GHz Frequency-Modulated-Continuous-Wave (FMCW)
radar sensor with 2 transmitters and 4 receivers (2RX/4TX)
[32]. We con�gure our radar to work with a bandwidth
of 1GHz between 59.5GHz and 60.5GHz and a sampling
frequency of 200000Hz. With this con�guration, the radar
sends 24 chirps per frame and 64 samples per chirp. The used
radar operates in a maximum range of 4.5m. Both sensors
presented in the �g. 1 are based on chips produced in the
company In�neon Technologies AG.

(a) (b)

Fig. 1: (a) 60 GHz radar sensor module (Project Soli web-
site,2019) [32]. (b) CamBoard pico Monstar [31]

B. Data Preprocessing

Before starting the fusion approach, it is important to
analyze the data coming from both sensors separately and
modify their format depending on our fusion goals. While
using depth and amplitude matrices from the ToF camera, we
have used the re�ected signals of the detected targets for each
radar antenna. Radar’s signal processing starts with creating
Intermediate Frequency (IF) signal by mixing the re�ected
and transmitted signal. It is a sinusoidal signal and includes
phase (� ) and frequency (f) components as can be seen in the
following equation.

IF = sin � 1(2�f t + �) (1)

It is later used in radar signal processing chain for creating
useful information in fusion. In this section, we focus on the
processing of the radar raw data and its transformation in
relevant information exploited for our development. The data
�ow from both sensors is illustrated in the �g. 2

1) Range Doppler Map (RDM):It includes both the range
and the velocity information of the targets around peaks. The
following steps show how it is generated.

a) Range FFT:Fast Fourier Transform (FFT) is the most
common technique used in digital signal processing. In FMCW
radars, FFT of IF will give us information about the range of
the target. IF signal frequencies of each object in front of
radar will be proportional to its range. Therefore, applying
this algorithm will create peaks in several locations for each
target on FFT signal, which is called range FFT.

Fig. 2: Sensors’ data �ow chart: from raw data until human
detection and tracking

b) Range Doppler/ 2D-FFT:It is important to have the
frequency component of the IF signal in order to calculate
the range, however it is not enough to �nd out small dis-
placements. In this case, phase of the IF signal can be used to
distinguish closely located targets. It is also possible to extract
velocity while utilizing period of the radar TX signal from the
following phase difference formula.

�� =
4�vT c

�
(2)

If there are multiple objects in the same range with different
velocities, the peak value in range-FFT includes phase com-
ponents of each target. Similar to range FFT, doppler FFT can
be applied to resolve these objects. The result is called range-
Doppler Map (RDM) presented in the Fig. 3. We construct
one RDM for each of the four antennas.

(a) (b)

Fig. 3: (a) RDM with 2 detected targets, (b) RDM construction
from IF radar signal

2) Direction of Arrival (DoA) estimation:
a) Range Angle Map (RAM):The radar sensor provided

by the company In�neon Technologies AG is a sensor with 2x2
URA array shape, which contains four antennas. To create the
range angle map we use only two either horizontal or vertical
antennas’ signals. Due to the low angle resolution of the sensor
due to the limited number of antennas, an accurate DoA of the
detected targets is dif�cult to estimate. Therefore, we adopt an
additional algorithm in order to improve our estimation.

b) Minimum Variance Distortionless Response (MVDR)
beamformer:MVDR [20] or also known as Capon algorithm
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is used for DoA estimation. Capon beamformer is an enhanced
version of the Bartlett method [20]. For targets that are close
to each other, Capon provides more precise peaks than Bartlett
algorithm. It maximizes the sensitivity in one direction only.
An illustration of both algorithms’ performances is presented
in Fig.4

Fig. 4: Comparison of the capon and the Bartlett beam formers
for range angle construction

Based on multiple test, we choose to apply Capon algorithm
in order to have more precise detection of the moving target
in the radar sensor view and therefore better angle estimation.

3) 2D CA-CFAR vs. 2D OS-CFAR:CFAR stands for Con-
stant False Alarm Rate is an adaptive thresholding algorithm
which is used in radar signal processing to detect peaks (targets
in our case) while neglecting background noise. During our
developments, we consider the computation time as one of our
main constraint. Therefore, we choose to work with the Cell
Averaging (CA) CFAR algorithm, which is robust enough in
homogeneous environment [24], shows good performance in
pure noise situations and it is faster than the Ordered Statistics
(OS) CFAR algorithm [25].

4) DBSCAN:DBSCAN [26] can identify noisy clusters of
arbitrary shape and size. For each received frame we construct
four RDMs (4 RX) and one RAM and then we apply for
each the 2D CA-CFAR algorithm and �nally the DBSCAN
clustering algorithm. In the �rst phase, we detect regions of
peaks designating the detected moving targets. In the second
phase, we cluster the peaks into one peak. For each CFAR
region, we de�ne initially random clusters’ centers inside
the region, afterwards we draw around each initial point a
boundary with radius equal to a chosen epsilon value. We go
through all density reachable points from each starting point
and we de�ne a cluster each time we �nd a minimum number
of data points inside the drawn boundary. After matching the
peaks between RDMs and with the RAM based on the range
values, we extract the corresponding velocity values from the
RDM and the corresponding angle of arrival values from the
RAM.

5) 1D CA-CFAR: Since we ignore the exact number and
locations of our targets in the radar map, we run the 2D CFAR
algorithm, which uses sliding windows, over the whole RDM
to determine the range and velocity of each target. The whole

algorithm spends 1.8s for each of the 4 antennas regardless
the number of the moving targets. In order to optimize the
computation time spent in this phase, we consider only the
�rst antenna (we believe that detected targets are seen at the
same time in the same place with the same velocity by all the
antennas) and we refer to the 1D CFAR algorithm. Therefore,
from the RDM we create a new 1D signal, which presents
the mean over velocities for each range slot. We apply to this
signal 1D CFAR to �nd peaks and note their corresponding
ranges. Fig. 5 illustrates the method explained above.

Fig. 5: Targets’ detection using only 1D CFAR. (a) 2D RDM
with detected targets. (b) 1D signal extracted from RDM with
CFAR peaks

6) Cartesian coordinates calculation:We construct two
RAMs the horizontal RAM, which uses the two horizontal
antennas and the vertical RAM, which uses the two vertical
antennas. We apply 1D CFAR to signals corresponding to the
ranges computed in the previous section. From the horizontal
RAM, we determine azimuth angle and from the vertical
RAM, we determine the elevation angle. In the end, we
calculate the 3D cartesian coordinates of each detected target
by applying the following function:

� : IR 4 ! IR 3

(r 1; � 1; r 2; � 2) ! (x; y; z) = ( r 1sin� 1; r 2sin� 2;
r 1sin� 1 + r 2sin� 2

2
)

(3)

Where (r 1; � 1) and (r 2; � 2) are the parameters extracted
for each target from respectively the horizontal RAM and the
vertical RAM.

The whole process from RDMs and RAMs construction
until cartesian coordinates calculation takes only 0.004s. As
a result, the system is around 450 times faster compared to
the system using the old approach.

C. Sensor calibration

In order to get data from both sensors on the same coordi-
nate system, we start by calibrating data on the x, y and z axes.
We install both sensors side by side and we track the center
of a spherical ball moving in all directions in front [21]. We
use a sphere rather than any other form in order to guarantee a
unique re�ection from the same target especially on the radar
map.
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D. Fusion Approach
We adapt in this paper an early fusion feature based ap-

proach. From the ToF camera, we consider both depth and
amplitude images. From the radar, we consider the detected
targets with their 3D positions and velocities. The fusion
approach is illustrated by the �g.6.

Fig. 6: human detector training architecture

The following sections explain in details the adopted fusion
procedure.

1) Dataset creation and annotation:Since there is not a
dataset for indoor applications available for both ToF and
radar, we create our own dataset. We install our system with
both sensors and run it to get synchronized data inside the
cleanroom at the wafer fabrication site of In�neon Tech-
nologies Dresden. Data sampling is sequential and run on a
raspberry pi3 board with sampling frequency of 1 sample/s.
Our focus is to detect persons. Therefore, we collect samples
from humans with different shapes and postures in different
places inside the cleanroom. We collect as well samples
from different persons outside the cleanroom to enhance our
detection performance. In the end we collect 1500; One sample
is an xml �le that contains synchronized raw data from both
sensors. Before moving to the training phase, we parse the
generated xml �les and create out of the raw data images
fused and then used for training the person detection model.

2) Radar Image:From the raw data in the radar map, we
construct a so called radar image, which has the same shape
information from the ToF images but with additional informa-
tion about the moving object’s velocity. The construction of
the radar image follows the steps summarized in the �g.7.

Fig. 7: Radar image construction �ow

From radar, we detect random points from the detected ob-
jects in front. For each target point, we calculate as explained
in III-B6 the 3D position and the radial velocity. Based on
this values we construct for each frame a 200x200 voronoi
diagram, which relies on the segmentation of the frame into
regions in the pixel scale and affect to each of this region an
intensity value proportional to the velocity of the target inside

this region. The construction of one voronoi diagram takes
around 1s. Due to the real time constraints of our application,
we look for accelerating the built of such diagram by using
only the x values from the detected targets for the construction
of the voronoi diagram’s regions. As a result, we obtain a
voronoi diagram with rectangular areas. Both old and modi�ed
voronoi diagram are depicted in the Fig. 8 .

(a) (b)

Fig. 8: Voronoi diagram of three detected targets (depicted by
black points): (a) old method, (b) modi�ed diagram

With this new approach, the diagram creation is 100 times
faster than before. It is important to affect each velocity from
the radar to its corresponding object. Therefore, we start by
resizing the voronoi diagram to the ToF size. Afterwards, we
use a 2D binary image that we construct from the ToF depth
image to mask the resized voronoi diagram. As a result, we
get a 2D radar image with both shape and velocity information
of the objects present in the aligned radar and ToF view.

3) 3-channel inputs:From ToF we receive depth images,
each presents the z values from the point cloud in each pixel.
We consider as well an aligned amplitude image, which is a 2D
matrix where pixels present the strength of the re�ected signal
from the active illumination unit. From radar we construct the
so called radar image. Our created dataset is composed of 1500
3-channel samples (depth, amplitude, radar). We structure Our
dataset as follows: 1200 samples for training, 150 samples for
validation and 150 samples for testing. The dataset result is
used to train a model for human detection.

4) Direction of movement estimation:In order to under-
stand more the human behavior, we track his movements by
estimating his direction of movement (DoM). For this purpose,
we test and evaluate two different approaches.

a) Lukas Kanade optical �ow:We base our calculation
on the amplitude image and search for the optical �ow
regarding each pixel. In fact, we apply the Lukas Kanade
algorithm, which is a sparse optical �ow algorithm that allows
the tracking of features in consecutive images. Changes in the
brightness are used to de�ne the movement of each feature.
During the testing phase, we consider the pixels inside the
bounding box around the detected person from the amplitude
channel. We start by searching for the relevant Harris features’
inside the region of interest in the �rst frame. Afterwards,
we track these features brightness change in the next frame.
Finally, the average displacement on both x and y direction is
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calculated and we consider this value as the general DoM of
the detected person.

(a)

(b)

Fig. 9: Direction of movement estimation based on optical �ow
relevant Harris feature tracking on the left average direction
magnitude on the right in (a), and on centroid tracking method
(c)

b) Bounding boxes tracking:The algorithm consists in
tracking the center of each bounding box resulting from the
detection phase. For each new target means each new bounding
box around the detected human, we attribute a unique ID.
Each time a new target appears in the system view, a new ID
will be assigned to it. From one frame to the next frame, one
target keeps the same ID. Fig. 9 illustrate the output from both
methods tested in real time.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. System outputs

Our developed system aims to detect humans running
around and to track their movements. In this paper, we limit
our work to visualize the system outputs in real time. Fig. 10
illustrates one frame where we detect one person in the area.
The detection rate is displayed on top of the bounding box and
in the middle the depth value (d) in meters and the velocity
value (v) in meters per second are shown. The DoM of the
person is displayed with the red arrow in the center of the
human body.

Fig. 10: Human detection and tracking fusion system outputs

B. System evaluation

In this section, we focus on the evaluation of the radar image
constructed in the section III-D2 as well as the comparison
of the performances of the 3 tested Convolutional Neural
Networks (CNN)-based neural networks used for human de-
tection. Finally, we evaluate the outputs from our whole fusion
system.

a) Radar image:The radar image is a combination of
visual features coming from the ToF camera aligned with
targets detected by the radar sensor. The result is a masked
voronoi diagram fusing both shape and velocity information.
Examples from two voronoi diagrams and their corresponding
so-called radar images are presented in �g.11.

(a) (b)

(c) (d)

Fig. 11: examples of voronoi diagram (on the second colomn)
and resulted radar images (on the �rst colomn )

In the second raw of the graph, we have a misinterpretation
of velocity pixels; the person (on the right) shows on a part of
his body velocity value that belongs to the other person (on the
left). This failure happens mainly in the scenario when persons
are close to each other due to the low angle resolution of the
radar sensor.

b) Direction of movement evaluation:In this section, we
compare both approaches explained in the section III-D4 for
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estimating the DoM of the detected persons. Therefore, we
calculate two metrics, which are the average angle error (AAE)
and the inference time. The AAE is calculated as follows:

AAE = arccos

 
ucue + vcve + 1

p
(u2

c + v2
c + 1)( u2

e + v2
e + 1)

!

(4)

where (ue,ve) and (uc,vc) are the estimated and the
reference displacement values (ground truth values)
respectively on the x and y axis in the 2D image.

Our test consists in testing different sequences of successive
images with standard movements (moving left, moving right,
moving forward, moving backward).We compare the predicted
directions from the two approaches with the ground-truth
references. The results of both of the techniques are presented
for a single target in TABLE.I. For the Lucas Kanade tests, we
have used different number of features selected from images.
Neighboring size of 30x30, 15x15, 5x5 and 1x1 pixels are used
to get features in these tests. The aim of these neighboring
size is to reduce the effect of the features that are inside the
bounding box but not on the human body.

TABLE I: Direciton of movement techniques evaluation

AAE in radians Inference time in seconds
Centroid tracking 0.146 0.007

Lukas Kanade 30x30 1.18 0.003
Lukas Kanade 15x15 1.24 0.005
Lukas Kanade 5x5 1.41 0.032
Lukas Kanade 1x1 1.48 0.819

Only the points inside the detected bounding boxes are
considered in all tests. Inside one bounding box, beside the
human target, there are also some pixels, which belong to
the background. These pixels confuse the DoM estimation
algorithm. This explain why the 30x30 neighboring window
performs better than the other Lucas Kanade window’s sizes
since there are only a few points which doesn’t belong to
the target. However, the Lukas Kanade algorithm still doesn’t
perform well in the case of non-rigid corps tracking, like
tracking a person, since there are some parts of the body
moving in totally different directions simultaneously. This
disadvantage is overcame with the centroid based tracking
algorithm since only the centroid (one pixel) of the bounding
box is tracked.

c) Human detection:In this paper we compare three
neural networks used for human detectors training, which are:
faster RCNN [27], YOLOv3 [28] and Retinanet [27]. For
consistent comparison, we use the same dataset. The Nets are
compared regarding the inference time and the mean average
precision for both50%and75% Intersection over Union (IoU)
between ground truth and the predicted objects. In order to
accelerate the training convergence, we use pretrained weights
on the COCO dataset and �ne tune them on our own dataset.
All chosen Networks are CNN-based networks. For YOLOv3
we use Darknet53 as a features extraction network and

Resnet50 for both Faster RCNN and Retinanet.
Our dataset is composed of training samples divided into
80% for training 10% for validation and10% for testing (for
evaluation). Each of the neural networks cited above is trained
three times in order to enhance the robustness of the trained
human models. The performance of the trained models is
summarized in the TABLE.II.

TABLE II: Trained neural network performances

IoU Model Precision Recall AP FPS
FRCNN resnet50 0.99 0.98 0.98 13.7

50% IoU YOLOv3 darknet53 0.99 0.99 0.98 29.2
Retinanet resnet50 0.98 0.97 0.95 14.4
FRCNN resnet50 0.88 0.90 0.87 13.7

75% IoU YOLOv3 darknet53 0.89 0.89 0.81 29.2
Retinanet resnet50 0.85 0.84 0.81 14.5

The precision metric, which describes the prediction per-
formance of the trained model and the recall metric, which
de�ne the ability of how ground truth values are found when
testing the trained model, are calculated as follows:

P recision =
T P

T P + F P
(5)

Recall =
T P

T P + F N
(6)

where TP is the True Positive detection rate (there is a
person and it is detected), FP is the False Positive rate (there is
no person but there is detection), and FN is the False Negative
rate (there is a person and it is not detected). Starting from the
results presented in the TABLE. II, the faster RCNN network,
which gain a lot of interest in the research �eld over the last
years has the highest mean average precision value compared
to the other networks. This is the advantage of the two-stage
network with Region Proposal Network (RPN) [27], however
as a trade-off, faster RCNN is slower than the other networks.
On the other hand, YOLOv3 has a small inference time but
with slightly less precision. For a real-time transmission of the
fusion system output the human model trained on YOLOLv3
based Darknet 53 is considered for our system development. In
this case, the system has the highest frame rate and a relatively
high accuracy.

d) Comparison to the state-of-the-art solution:In this
section we compare our system performance to the state-of-
the-art solution (safety scanners) regarding functionalities and
testing run-time. TABLE III summarizes the results from the
two solutions comparison.

While our proposed solution outperform the state-of-the-art
solution in terms of human detection and tracking capabilities,
it presents a lower frame rate. This can be explained by the
voluminous network (YOLOv3 Darknet53-based network) we
were using for human detection. We could run our system with
up to 3.5fps on Nvidia Geforce GTX 1060 GPU. This frame
rate should be optimized in the future to reach at least 5fps
in order to respect the real time constraint for a real industrial
application.
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TABLE III: Comparison between state-of-the-art and proposed
solutions

performance metrics safety laser scanner Our fusion system
Obstacle detection + +
Human detection - +

Human localisation - +
Velocity estimation - +

DoM estimation - +
Testing frame rate - +

CONCLUSION

We present in this paper a 3D fusion system based on the
combination of data coming from a 3D ToF camera and a 60
GHz radar sensor. The data is fused on the feature level and
the system is trained to detect persons walking around with
a con�dence up to98%. Besides detection and positioning
of humans in the 3D workplace, the system tracks them and
gives information about each person’s speed and DoM. The
system works with a frame rate of 3.5fps, which should be
improved by optimizing the considered algorithms in order to
reach the real time requirements for uploading the system in a
real use case. Besides, the system presents velocity estimation
errors in case of multi-targets detection. In fact, the low angle
resolution of the used radar results in the misinterpretation
of each person velocity especially in crowded areas where
people are very close to each other. Therefore, in a next step
we plan to try different fusion approaches (e.g. late fusion) to
improve the system robustness or to think about more sensors
integration depending on the application restrictions.
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