
Technische Universität München
Fakultät für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Adaptive and Safe Network Configurations
in Safety-Critical Systems

Cora Lisa Perner

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Darius Burschka
Prüfer der Dissertation:

1. Prof. Dr.-Ing. Georg Carle
2. Prof. Dr.-Ing. Manfred Hajek

Die Dissertation wurde am 08.04.2021 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Informatik am 06.10.2021 angenommen.

Abstract

Systems are considered to be safety-critical if their failure could cause serious damage to the
environment or injuries. When networks are in use in such systems such as the electricity
grid or on-board vehicular networks, the relevant policies and routing strategies are hard-coded
on network switches. Beyond that, they rely on additional hard-wired redundancy for safety
(i.e. ensuring that no serious damage occurs) and restricted physical access for security (i.e.
preventing unauthorised access). However, this approach is inflexible, complex to maintain and
the implementation may vary between vendors. In addition, an increasing interconnection of
safety-critical systems with the internet for convenience and added functionalities has increased
the exposure to cyber risks that cannot be addressed to date.

Emerging technology such as software-defined networking (SDN) would allow to address these
shortcomings by providing means to react dynamically to detected deviations from normal (i.e.
safe and secure) behaviour, or anomalies. Yet as this technology has not been designed for
safety-critical systems, provisions need to be made to ensure that safety-critical functionalities
can be guaranteed. However, dynamic and best-effort strategies are not acceptable for critical
system as they would result in unpredictable behaviour especially with respect to availability
and delay bounds.

Consequently, this thesis advocates the use of pre-calculated network configurations that can
be applied to react to a detected anomaly. Such configuration templates can guarantee that all
requirements of safety-critical traffic are satisfied.

Several different algorithms – both heuristic (Dijkstra) and optimal (minimum cost, minimum
link utilisation, minimum queueing delay, minimum number of forwarding table entries, and
maximum resilience) – were applied on several different network topologies to obtain such tem-
plates, and their effect on network performance investigated. As calculations are performed prior
to deployment, it can be verified whether all requirements of safety-critical traffic are ensured.
However, it was found that Dijkstra-based heuristics – even if they account for the delay bound
– result in violations of requirements. In addition, it was found that optimisation for minimum
cost provides good results for the performance characteristics investigated. In contrast, the
benefits for minimising queueing delay, link capacity or forwarding tables were minimal, and do
not justify the significant increase in calculation time.

In addition, transmission of safety-critical traffic may not be interrupted. Consequently, the
processes necessary to transfer a configuration template into a running configuration have been
studied. Using two both node- and link-disjoint paths concurrently, the path affected by a
failure can safely be reconfigured without affecting safety-critical traffic. In case of a component
failure, one of those paths can be reconfigured, thus allowing the safety-critical transmission to
continue without interruption. Moreover, as up to nine independent paths can be obtained using
the maximum resilience, further failures can be tolerated without the need to enter a degraded
mode. This would allow e.g. aircraft to continue the journey to their destination rather than
needing an emergency landing.

Beyond that, the effect of using templates in order to react to network anomalies has been
investigated. To this end, up to ten failures of network components were randomly triggered in
the network and the effect on the success of the reconfiguration was studied. It was found that
the number of necessary reconfigurations decreases with increasing failures, as isolating traffic
sources and sinks reduces the traffic to be rerouted. For the same reason, failures of switches
have a more significant impact on network traffic than link failures.

In addition to network reconfiguration (which may not always be a suitable reaction), this thesis
also presents a general control-system-based approach to react to anomalies, such as buffer
overflows. Here, the most important feature is that it is ensured that the impact of the reaction
is proportional and appropriate to the detected anomaly. This ensures that minor anomalies
(such as e.g. a slight increase in the average queueing delay) do not cause a reduction of safety
margins. Moreover, it may be the case that some anomalies or intrusions cannot be mitigated as
such an effort would likewise result in a reduction of safety margins. In safety-critical systems,
security is a means to achieve safety, but the latter always needs to come first.

Zusammenfassung

Systeme werden als sicherheitskritisch eingestuft, wenn ihr Ausfall zu schweren Umweltschäden
oder Verletzungen führen könnte. Beim Einsatz von Netzwerktechnologien im Stromnetz oder
in der Fahrzeugvernetzung werden Richtlinien und Routing-Strategien verwendet, die auf Netz-
werkswitches fest codiert sind. Darüber hinaus sind sie für die Betriebssicherheit (safety) auf
zusätzliche, fest verdrahtete Redundanz und zum Schutz vor unberechtigtem Zugriff (security)
auf eingeschränkten physischen Zugang angewiesen. Dieser Ansatz bringt Nachteile wie geringe
Flexibilität, hohe Komplexität bei der Wartung und fehlende Harmonisierung bei der Imple-
mentierung mit sich. Des Weiteren hat die zunehmende Vernetzung von sicherheitskritischen
Systemen mit dem Internet zur Erweiterung von Funktionalitäten und User Experience dazu
geführt, dass diese höheren Cyber-Risiken ausgesetzt sind.

Aufkommende Technologien wie software-defined networking (SDN) würden es ermöglichen, die-
se Nachteile zu beheben, indem sie Methoden zur Verfügung stellen, dynamisch auf erkannte
Anomalien, also Abweichungen von sicherem Verhalten (sowohl in Hinblick auf Betriebssicher-
heit als auch zum Schutz vor unberechtigtem Zugriff) zu reagieren. Da diese Technologie jedoch
nicht für sicherheitskritische Systeme konzipiert wurde, müssen Maßnahmen getroffen werden,
um sicherheitskritische Funktionalitäten gewährleisten zu können. Dynamische bzw. Best-Effort
Strategien sind jedoch für kritische Systeme nicht akzeptabel, da sie zu unvorhersehbarem Ver-
halten führen würden – insbesondere im Hinblick auf Verfügbarkeit und Latenz-Obergrenzen.

Diese Arbeit beschreibt eine Vorgehensweise, die auf erkannte Anomalien mit im Vornherein er-
mittelte Netzwerkkonfigurationen reagiert. Solche Konfigurationstemplates ermöglichen es, dass
alle Anforderungen von sicherheitskritischem Netzwerkverkehr erfüllt werden.

Hierzu untersucht diese Arbeit die Anwendung verschiedene Algorithmen – sowohl heuristi-
sche als auch optimale (minimale Kosten, minimale Auslastung von Links, minimaler Delay,
minimale Anzahl von Einträgen in Routingtabellen und maximale Resilienz) – auf verschie-
dene Netzwerktopologien zur Ermittlung der Templates. Anschließend kann die resultierende
Netzwerkperformance analysiert werden. Eine Berechnung und Bewertung der Templates findet
vor Inbetriebnahme statt, sodass sichergestellt werden kann, dass alle Anforderungen an ei-
nen sicherheitskritischen Nachrichtenaustausch erfüllt werden. Bei den auf Dijkstra basierenden
Heuristiken lässt sich feststellen, dass selbst unter Berücksichtigung von Latenzbeschränkungen
die Anforderungen von sicherheitskritischen Systemen verletzt werden. Die Optimierung auf mi-
nimalen Kosten stellte sich unter Betrachtung der untersuchten Parameter als ein geeignetes
Verfahren dar. Im Gegensatz dazu sind die Vorteile einer Minimierung des Delays, Einträgen in
Routing-Tabellen oder Link-Kapazität minimal, und rechtfertigen nicht den erheblich größeren
Aufwand an Rechenzeit.

Darüber hinaus darf die Übertragung von sicherheitskritischem Verkehr nicht unterbrochen wer-
den. Folglich wurden die Prozesse, um ein Konfigurationstemplate in ein lauffähiges Templa-
te überzuführen, untersucht. Durch die gleichzeitige Verwendung von zwei knoten- und link-
disjunkten Pfaden kann der von einem Ausfall betroffene Pfad sicher rekonfiguriert werden, ohne
den sicherheitskritischen Netzwerkverkehr zu beeinträchtigen. Im Falle eines Komponentenaus-

falls kann einer dieser Pfade rekonfiguriert werden, sodass die sicherheitskritische Übertragung
ohne Unterbrechung fortgesetzt werden kann. Zudem erlaubt dieses Vorgehen folgende Ausfälle
zu tolerieren, weil bis zu neun unabhängige Pfade unter Ausnutzung der maximalen Kapazi-
tät verwendet werden können, ohne dass das gesamte Netzwerk in einen degradierten Modus
geschaltet werden müsste. Dies würde es beispielsweise Flugzeugen ermöglichen, die Reise zu
ihrem Zielort fortzusetzen, anstatt eine Notlandung durchführen zu müssen.

Außerdem ergibt sich die Möglichkeit der Verwendung von Templates zur Reaktion auf Netzwerk-
anomalien. Zu diesem Zweck sind bis zu vierzehn Ausfälle von Netzwerkkomponenten zufällig
ins Netzwerk eingebracht und die Auswirkung auf eine erfolgreiche Rekonfiguration untersucht
worden. Es lässt sich feststellen, dass die Anzahl der notwendigen Rekonfigurationen mit zu-
nehmenden Ausfällen abnimmt, weil die Isolierung von Nachrichtenquellen und -senken den
umzuleitenden Verkehr verringert. Aus dem gleichen Grund haben Ausfälle von Switches einen
größeren Einfluss auf den Nachrichtenaustausch als Verbindungsausfälle.

Neben der Rekonfiguration des Netzwerks (die nicht immer eine geeignete Reaktion sein muss)
wird in dieser Arbeit auch ein allgemeiner regelkreisbasierter Ansatz vorgestellt, um auf Anoma-
lien, wie etwa Buffer Overflow, zu reagieren. Dabei ist das wichtigste Merkmal die Sicherstellung,
dass die Auswirkung der Reaktion angemessen zu der festgestellten Anomalie ist. Dadurch wird
sichergestellt, dass kleinere Anomalien (wie etwa eine leichte Erhöhung des durchschnittlichen
Queueing-Delays) nicht zu einer Verringerung der Sicherheitsmargen führen. Darüber hinaus
gibt es Fälle, in denen einige Anomalien oder Eingriffe nicht abgemildert werden können, weil
solche Maßnahmen ebenfalls zu einer Verringerung der Sicherheitsreserven führen würden. In
sicherheitskritischen Systemen ist Security ein Mittel, um Betriebssicherheit zu erreichen, aber
letztere muss immer an erster Stelle stehen.

Acknowledgements

First and foremost, I would like to extend my deepest gratitude to all members (past and
present) of the Chair of Network Architecture and Services for sharing their extensive
knowledge. I must specifically thank Holger Kinkelin and Marcel von Maltitz for their
insightful theoretical and practical suggestions with conducting a research project.

Equally, I am extremely grateful to my colleagues at Airbus for their valuable advice
and regular discussions in the coffee corner helping me grow as a scientist and a person.
I also wish to thank my employer and the German Ministry of Science and Research for
the beneficence that enabled the research that led to this thesis.

Beyond this, I cannot begin to express my thanks to Sascha Uhrig, who took on the
role of my mentor, for constructive and extremely helpful feedback (and the occasional
nudge to start publishing). Moreover, I would like to extend my gratitude to Markus
Klügel for his constructive and extremely helpful feedback. I must also thank Clemens
Moeser and Dominic Schupke for their practical suggestions and support. I’d like to
acknowledge the help of Fabien Geyer in the early phases of my PhD research project.

Last but by no means least, I must thank my parents for encouraging and nurtur-
ing my love for science, technology, and engineering. I would also like to extend my
sincere thanks to my family and partner for their love, support, patience, and (most
importantly) cooking. This thesis would not have been possible without you!

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Structure of This Thesis . 5
1.3 Publications in the Context of This Thesis 7

2 Background 9
2.1 Terminology . 9
2.2 Requirements . 10
2.3 SDN . 17
2.4 Addressing Incidents in Safety-Critical Systems 23
2.5 Summary . 42

3 System Model 45
3.1 General System Model . 45
3.2 Appropriateness . 48
3.3 Problem Formulation . 51

4 Generating Configuration Templates 61
4.1 Parameters Investigated . 61
4.2 Networks Under Study . 63
4.3 Heuristics . 65
4.4 Optimisation . 75
4.5 Comparison of Heuristics and Optimisation 95
4.6 Generating Templates . 108
4.7 Summary . 112

5 Using Configuration Templates 115
5.1 Network Reconfiguration . 115
5.2 Management Plane Configuration . 131

5.3 Safety Considerations . 137
5.4 Security Considerations . 140
5.5 Summary . 143

6 Discussion 145
6.1 General . 145
6.2 Data Plane . 150
6.3 Control Plane . 153
6.4 Management Plane . 153

7 Summary and Conclusions 157
7.1 System Model . 158
7.2 Generating Configuration Templates . 158
7.3 Generating Running Configurations . 160
7.4 Possible Future Work . 161

A OpenFlow Control Plane Messages 163

B Source Files 165

C Additional Results of Comparison of Algorithms 179
C.1 Heuristics . 179
C.2 Optimisation . 179
C.3 Comparison Between Optimisation and Heuristics 180

D List of Acronyms 199

II

List of Figures

1.1 Relationship between this thesis and the OSI model 5

2.1 Comparison between conventional networking and SDN 18
2.2 Resilience disciplines, amended from [168] 37

3.1 Closed-loop control system . 46
3.2 System overview . 46
3.3 Possible system states . 47

4.1 Network topologies . 66
4.2 Switch utilisation using heuristics for the avionics network 68
4.3 Link utilisation using heuristics for the avionics network 69
4.4 Relative cost using heuristics for the avionics network 70
4.5 Time delay using heuristics for the avionics network 71
4.6 Time delay using heuristics for the avionics network for |D|=1869 72
4.7 Latency distributions for the heuristics in the avionics network for |D|=1869 73
4.8 Forwarding table entries using heuristics for the avionics network 74
4.9 Path length using heuristics for the avionics network 75
4.10 Path length and resilience using heuristics for the avionics network . . . 76
4.11 Violations of requirements using heuristics for the avionics network . . . 77
4.12 Link usage using optimisation for the avionics network 86
4.13 Switch usage using optimisation for the avionics network 87
4.14 Calculation time of optimisation algorithms for the avionics network . . 88
4.15 Relative cost using optimisation for the avionics network 89
4.16 Queuing delay using optimisation for the avionics network 90
4.17 Latency distributions for the optimisation functions for the avionics network 91
4.18 Forwarding table entries using optimisation for the avionics network . . 92
4.19 Required RAM to solve the maximum resilience optimisation problem . 93
4.20 Path length using optimisation for the avionics network 94

4.21 Path length of resilient paths using optimisation for the avionics network 95
4.22 Switch utilisation using min. cost and EDF heuristic 97
4.23 Link utilisation using min. cost and EDF heuristic for the avionics network 98
4.24 Calculation time using min. cost and EDF heuristic 99
4.25 Cost using min. cost and EDF heuristic for the avionics network 100
4.26 Queueing delay using min. cost and EDF heuristic 101
4.27 Queueing delay using min. cost and EDF heuristic 102
4.28 Latency distribution using min. cost and EDF heuristic 103
4.29 Forwarding rules using min. cost and EDF heuristic 104
4.30 Path length distribution using min. cost and EDF heuristic 105
4.31 Violations using min. cost and EDF heuristic in the avionics network . . 106
4.32 Distribution of constraint violations for the ATLANTA network 107
4.33 Certification process . 112

5.1 Percentage of flows affected by a failure in the avionics network 118
5.2 Number of new forwarding rules standard path in the avionics network . 119
5.3 Number of new forwarding rules backup path in the avionics network . . 120
5.4 Number of unrecoverable flows in the avionics network (Std.) 121
5.5 Number of unrecoverable flows in the avionics network (Bu.) 122
5.6 Time required to recover from failure in the avionics network 123
5.7 Number of flows affected failures in the avionics network 124
5.8 Number of unrecoverable flows with previous failures in the avionics

network-Standard configuration . 125
5.9 Number of unrecoverable flows with previous failures 126
5.10 Time required to recover from failure in the avionics network 127
5.11 Management plane configuration . 133

C.1 Results PDH network, adapted from [142] 197
C.2 Results Di-Yuan network, adapted from [142] 198

IV

List of Tables

4.1 Number of Virtual LANs from Source a to Destination b [33] 64
4.2 Bandwidth Allocation Gap . 64
4.3 Avionics Full DupleX Switched Ethernet (AFDX) Frame Lengths [33] . . 64
4.4 Probability Distribution for ∆t = ∆tmax[d] for Critical Networks 65
4.5 Network Parameters . 65
4.6 Effect of Constraints for the ATLANTA Network – Cost 79
4.7 Effect of Constraints for the ATLANTA Network – Time 80
4.8 Effect of Constraints for the ATLANTA Network – Used Bandwidth (Link) 81
4.9 Effect of Constraints for the ATLANTA Network – Used Bandwidth (SW) 82
4.10 Effect of Constraints for the ATLANTA Network – Delay 83
4.11 Effect of Constraints for the ATLANTA Network – Path Length 84
4.12 Effect of Constraints for the ATLANTA Network – Fwd. Tab. Ent. . . . 85
4.13 Effect of Constraints for the ATLANTA Network – Resilience 85
4.14 Distribution of Maximum Resilience . 93
4.15 Number of Resilient Paths . 96
4.16 Required Configurations for Successive Failures in the AFDX Network . 109

5.1 Number of Forwarding Table Entries to be Deleted 129

A.1 Summary of Controller-to-Switch Messages 163
A.2 Summary of Asynchronous Messages . 163
A.3 Summary of Synchronous Messages . 164

C.1 Calculation Time Heuristics . 181
C.2 Path Length Heuristics . 182
C.3 Queueing Delay Heuristics . 182
C.4 Link Usage Heuristics . 183
C.5 Switch Usage Heuristics . 183
C.6 Forwarding Table Entries Heuristics . 184

C.7 Constraint Violations Heuristics . 184
C.8 Calculation Times Optimisation . 185
C.9 Cost Optimisation . 186
C.10 Path Length Optimisation . 187
C.11 Queueing Delay Optimisation . 188
C.12 Switch Utilisation Optimisation . 189
C.13 Link Utilisation Optimisation . 190
C.14 Forwarding Table Entries Optimisation 191
C.15 Number of Resilient Paths . 192
C.16 Cost Heuristic vs. Optimisation . 193
C.17 Calculation Time Heuristic vs. Optimisation 193
C.18 Path Length Heuristic vs. Optimisation 194
C.19 Queuing Delay Heuristic vs. Optimisation 194
C.20 Link Utilisation Heuristic vs. Optimisation 195
C.21 Switch Utilisation Heuristic vs. Optimisation 195
C.22 Fwd. Tab. Entries Heuristic vs. Optimisation 196

VI

Chapter 1

Introduction

Networks currently used to support the functionalities of safety-critical systems such
as airplanes or the power grid employ decentralised network management. Here, each
network switch implements policies and traffic routing. Furthermore, it needs to have
knowledge of the entire network. Consequently, any changes to the network e.g. due to
new components or traffic demands, require adaptations to every single switch. While
protocols exist to partially automate such tasks, those are vendor-dependent [22], thus
combining components of different vendors or even different hardware standards is chal-
lenging and often impossible.

Hence, this approach is complex and expensive to maintain, extend and adapt to new
technologies. Consequently, such networks can only support limited complexity and
network sizes. This is especially relevant given that safety-critical systems may remain
in operation for several decades and need to be able to adapt to significant technological
changes.

In addition to those practical considerations, information systems commonly demand
availability, confidentiality, and integrity [101]. Beyond that, safety critical systems re-
quire additional guarantees. These requirements derive from the underlying certification
demand that no single fault may result in a failure with catastrophic results [48, S.2-F-
47]. Additionally, some traffic (e.g. a braking signal) needs to arrive at its destination
within a given time.

Chapter 1: Introduction

Hence, for each safety-critical demand, the following conditions need to be satisfied:

1. Availability

2. Resilience against faults and failures

3. Timing guarantees/predictability for real-time systems

While availability is required for both safety-critical and information systems, confi-
dentiality has not traditionally been a key feature. On the contrary, for many systems
broadcasting data is an important safety feature, e.g. broadcasting clearances to all
aircraft so that contradictions can be spotted more easily. However, with an increas-
ing interconnection e.g. in the scope of the smart grid, preserving privacy becomes
increasingly important. Finally, data integrity is relevant for most critical systems, yet
previously physical access to the system in question was required. Consequently, phys-
ical security measures sufficed to ensure data integrity. This is no longer the case in
interconnected systems.

Hitherto, some safety-critical systems e.g. airplanes rely on hard-wired physical redun-
dancy to ensure resilience against faults and failures. These additional paths are sepa-
rated from the main network and bypass it completely. While this approach provides
resilience, it also increases weight and complexity. An increase in weight is problematic
for vehicular networks, as an increase in mass also increases fuel consumption. Fur-
thermore, given the same failure probability, more components make it more likely that
any one failure occurs. In addition, a more complex system is harder to analyse, thus
making it more likely for a critical defect to go unnoticed.

Yet resilience is not only the capacity to withstand unintentional faults (e.g. due to age-
ing components), but also intentional ones. Previously, security for critical systems has
been mainly considered in the context of restricting physical access to critical compo-
nents as they were not connected to the internet. Yet this approach has been called into
question when Stuxnet has been uncovered in 2010 [92]. This malicious worm infected
Siemens SP7 programmable logic controllers (PLCs) used in a plethora of supervisory
control and data acquisition (SCADA) systems and caused significant physical damage
to the Iran’s nuclear enrichment centrifuges, despite being not directly connected to the
Internet. While this infection of PLCs was widely assumed to be a targeted attack by
nation state actors, it raised the awareness of operators that even air-bridged systems
may be susceptible to cyber-infections and attacks.

Yet only a small percentage of network traffic is actually safety-critical, with a larger
quantity related to diagnostics, convenience and management. Notwithstanding, traffic

2

flows with lower requirements obviously influence those with higher demands (e.g. by
potentially congestion of the network, starving critical traffic of resources etc.).

Consequently, safety-critical systems are increasingly (and intentionally) connected to
the Internet for added functionality or convenience. For example, under the blanket
term ’smart grid’, digital meters are introduced to facilitate billing and management of
power stations. Furthermore, an increasing number of airlines and car manufacturers
provide on-board Internet access to their passengers, albeit for a premium. Together
with the increased use of commercial off-the shelf (COTS) components that are not
specifically hardened for the use in critical systems, considering network security be-
comes increasingly important. Yet due to the safety-critical application, such networks
need to be able to continue to operate even when faced with threats. Relying on hu-
man administrators is unpractical, as they might take too long to react to an event, if
they are present at all. Consequently, continued safe operation needs to be ensured by
automatically reacting to failures.

Yet currently used technology does not support such dynamic network adaptation in
response to the detection of a failure or attack. Instead, an emphasis is placed on
hard-wired physical redundancy and methods such as network calculus [106] to ensure
that critical traffic can achieve its safety goals. These methods are used to achieve
performance goals and to ensure that the critical functionality (e.g. providing control
commands to actuators for braking) can be performed safely. Additionally, critical
information flows are replicated k times and transported via different routes across the
network.

This leads to an increasing interest in mechanisms such as software-defined networking
(SDN) (cf. section 2.3). SDN allows to separate the handling of traffic from network
management. Thus, network management can be more flexible and effective [103]. In
addition to the capabilities of today’s networks, SDN permits to change the network
configuration during runtime by redirecting traffic flows. This additional flexibility
could be used to adaptively react to changes in the network that are caused by faulty
components as well as network security incidents. Consequently, interesting prospects
arise with respect to flexibility and better overall performance.

For example, if a SDN network switch is targeted by an attack, the respective node can
be isolated by rerouting traffic to avoid compromising further components. Likewise,
traffic could be temporarily redirected while an overheated component cools down. This
adaptability could allow to tolerate more failures safely without the need to enter a
degraded mode or postpone the need for a maintenance action. Hence, an operation
could be continued safely until a fault or vulnerability can be repaired, e.g. allowing a

3

Chapter 1: Introduction

data centre to continue autonomous operation until a technician can reach the affected
component or a bug fix is issued by the manufacturer.

Due to these benefits, SDN is receiving some attention in areas for which it was not
originally designed: for safety-critical applications. Yet if a network for safety-critical
applications can be made sufficiently reliable through such means, additional hard-wired
links may safely be removed. This would allow to reduce weight – highly relevant for
networks on mobile platforms such as aircraft – and complexity. As SDN it is also
one of the key features introduced with upcoming 5G standard for telecommunication
networks, it can also be used to facilitate vehicle to infrastructure (V2X) communication
for localisation, trajectory planning, or traffic flow control.

Network optimisation provides a means to incorporate these demands of critical sys-
tems while taking the limitations of SDN into account. Current network optimisation
efforts e.g. [119, 139, 161, 147] focus mainly on balancing network loads. However, for
safety-critical systems a different approach is needed. Here, the demands for network
management are based on the functionalities mentioned above rather than performance
issues. Notwithstanding, the limitations of network capacity still apply.

Satisfying the relevant constraints can be ensured by using network optimisation or
network calculus. Yet without a suitable objective function the resulting network might
still not yield the best possible performance for various metrics. While different op-
timisation goals result in varying network parameters, the effect of different objective
functions for critical systems on network performance has to date not been studied and
compared in detail.

1.1 Research Questions

Currently used networks are static and unable to respond to emerging challenges. While
SDN would enable dynamic network changes, it cannot currently be used for safety-
critical systems, as the requirements of safety-critical traffic are not taken into account.
In addition, there has been no comprehensive comparison of the impact of using different
objective functions and their impact on network performance and safety-critical traffic.
Consequently, the main research question addressed in this thesis is

How can safety-critical networks react dynamically and safely to failures?

This research question can be subdivided into two parts: how to obtain candidate
responses (configuration templates) and how to apply these responses safely (network
configurations) to address detected anomalies. This division is reflected in the structure
of this chapter and henceforth this thesis: section 1.2.1 further subdivides the research

4

1.2 Structure of This Thesis

question w.r.t. template generation, while section 1.2.2 details further issues of how
reactions to failures can be applied. The relationship between the work covered in this
thesis and the Open Systems Interconnection (OSI) model is depicted in figure 1.1.
Here, the highlighted layers indicate the focus of this thesis.

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 1.1: Relationship between this thesis and the OSI model

1.2 Structure of This Thesis

To begin with, an overall system model is presented in chapter 3. This chapter also
introduces details when a reaction can be considered to be appropriate to the detected
anomaly. As the research question itself, the remainder of this thesis is divided into two
main parts that will be detailed in the following paragraphs.

1.2.1 Generating Configuration Templates
In order to generate network configuration templates, several steps are needed. To begin
with, it is necessary to translate safety requirements into network-level requirements, as
described in section 3.3. Consequently, desired network behaviour can be determined
and thus be the foundation for future evaluation. Subsequently, in order to find the
most suitable algorithm(s) and objective function for safety-critical systems, the effect
thereof on the network and the traffic will be studied in chapter 4. To this end, several
different network topologies are investigated and the results with respect to network
performance characteristics as well as calculation performance will be detailed.

In this context, it is also important to consider the resources required to obtain network
configurations to establish whether the algorithm/method can be deployed online or
needs to be calculated beforehand, which will be discussed in detail in section 4.6.

1.2.2 Applying Configurations
Once those basic parameters and configuration templates have been established for
the data plane, the behaviour of network during the reconfiguration will be studied in

5

Chapter 1: Introduction

chapter 5. This is one of the key questions for deployment in safety-critical systems, as
safety and related constraints need to be ensured for the entire operation.

Consequently, it is necessary to study the impact of the reconfiguration on the manage-
ment plane by studying the required time and the amount of control traffic exchanged.
This allows to determine whether a separate control network is required or whether
control can be in-band. Furthermore, in order to assess the performance of the recon-
figuration, it is necessary to time the reconfiguration. In addition, to investigate the
effectiveness of the studied means to increase resilience, the impact of successive failures
need to be studied.

Beyond those performance indicators, the two major considerations with respect to
network reconfigurations are safety and security. With respect to safety, several char-
acteristics are of importance. Firstly, the reaction process needs to be accountable in
order to ensure that any (potentially) unsafe conditions can be rectified in a timely
manner. Secondly, the reaction needs to be appropriate to the detected anomaly to en-
sure that minor network issues do not have a significant impact on safety-critical traffic.
Consequently, it is also necessary to analyse the impact of the reaction on network per-
formance. Finally, it needs to be established whether the reaction has mitigated the
effect of the anomaly.

In this thesis, security is considered as a means to achieve safety. Notwithstanding,
some security properties need to be considered in the context of network configuration,
as described in section 5.1. To begin with, malicious network configurations need to be
prevented, as they could result in the loss of safety-critical traffic. As SDN centralises
control, it needs to be ensured that using this process does not introduce an additional
attack path. Finally, the effect on security on the data, control and management plane
will be investigated in section 5.2. While the main focus of those considerations is the
management plane, diverging considerations for data and control plane are made where
applicable.

1.2.3 Conclusion
This thesis concludes with remarks as well as an outlook to potential future research
directions. Here, chapter 6 provides a discussion of the results and methods used in this
thesis. Subsequently, a summary of the main findings of this thesis is given in chapter 7,
which includes details on possible ways as to how to build upon this thesis in future
research in section 7.4.

6

1.3 Publications in the Context of This Thesis

1.3 Publications in the Context of This Thesis

Some of the findings of this thesis have already been published as listed below. Specific
references will be made at the beginning of the respective chapter/section.

C. Perner. Network Optimization for Safety-Critical Systems Using Software- Defined
Networks. In: Architecture Comput. Sys. (ARCS) 2018. Ed. by Mladen Berekovic
et al. Cham: Springer International Publishing, 2018, pp. 127–138. isbn: 978-3-319-
77610-1.

C. Perner and G. Carle. Comparison of Optimization Goals for Resilient Routing. In:
2019 IEEE International Conference on Communications Workshops (ICC Workshops):
The 2nd International Workshop on 5G and Cooperative Autonomous Driving (5G Auto)
(ICC 2019 Workshop - 5G Auto). Shanghai, P.R. China, May 2019.

C. Perner, H. Kinkelin, and G. Carle. Adaptive Network Management for Safety-Critical
Systems. In: IM 2019 - IEEE/IFIP Workshop Dissect 2019. Washington D.C., USA,
Apr. 2019.

C. Perner, C. Schmitt, and G. Carle. Dynamic Network Reconfiguration in Safety-
Critical Aeronautical Systems. In 39th AIAA/IEEE Digital Avionics Systems Confer-
ence (DASC). San Antonio, USA, Oct. 2020.

7

Chapter 2

Background

This chapter describes background information relevant for the aspects covered in this
thesis. Following the definition of the key terms used in this thesis in section 2.1, the
requirements imposed on safety-critical systems by regulators as well as other relevant
parties will be presented in section 2.2, which will also include a discussion on account-
ability. Subsequently, the concept of SDN will be presented in section 2.3 including
a brief overview of previous efforts to use SDN in critical systems. Furthermore, sec-
tion 2.4 will describe the key components to ensure cyber security, both for general
cyber-physical systems and specifically for those using SDN. This chapter concludes
with a brief summary in section 2.5.

2.1 Terminology

To begin with, the key terms in this thesis will be explained: faults, failures, resilience,
cyber-physical systems and safety-critical systems.

2.1.1 Faults & Failures
In this thesis, the following definitions are used. In [83], a fault is defined as

(...) an unpermitted deviation of at least one characteristic property (fea-
ture) of a system from the acceptable, usual, standard condition,

while a failure is specified as

(...) permanent interruption of a system’s ability to perform a required
function (...)

Chapter 2: Background

Consequently, fault tolerance is the ability of a system to tolerate faults so that they
do not result in a system’s failure, while resilience is a system’s ability to continue
operation despite the presence of failures. Here, redundancy i.e. implementing the same
function several times can be used to prevent the loss of a function. Further details on
this aspect, together with the closely related concept of resilience are given below.

Finally, survivability is the ability of a system to timely fulfil its mission in the presence
of attacks or large-scale natural disasters [167].

2.1.2 Cyber-Physical Systems
In this thesis, a cyber-physical system is a system, in which a cyber system has an
impact on a real-world, physical system. An example would be a computer-controlled
braking system.

2.1.3 Safety-Critical System
Beyond that, a safety-critical system is a system whose failure can have a catastrophic
impact on humans, animals or the environment and results in serious or lethal injuries.

2.2 Requirements

For the purpose of this thesis, the requirements of three types of safety-critical systems
shall be analysed: aircraft, automotive, and the smart grid. As the aircraft sector is
highly regulated [48], the most detailed list of applicable regulations can be obtained
from the relevant regulatory authorities. Yet considering the requirements for auto-
motive is of equal importance. Firstly, because there are far more automobiles than
aircraft. Secondly, the automotive case has privacy implications that do not occur in
airplanes, as individual movement patterns are far harder to determine. Finally, due
to the extremely large networks, considering the requirements of the smart grid are
equally relevant. Moreover, similar requirements with respect to privacy are relevant in
this scenario. In addition, much more people will be affected by a malfunction in the
electricity grid compared to the other two sectors. However, shared requirements will
not be repeated.

2.2.1 Aeronautics
Aviation is (amongst others) highly vulnerable to malicious attacks as it is not separa-
ble from global communication through satellite links [43], even more so through the
adoption of open/common standards (e.g. Ethernet) for data networks [172]. In princi-
ple, security threats can be divided into two subtypes: external (mainly via satellite or

10

2.2 Requirements

wireless) and internal (i.e. from passengers, crew and maintenance personnel that have
access from within the aircraft).

An emerging challenge for aircraft security is the interconnectedness of various systems,
which in turn offers new attack paths. For example, an attacker may infiltrate air traffic
control (ATC) and then continue on to aircraft [99].

Another challenge for aircraft security is the long life-cycle of products. Aircraft are
expected to stay in service for well over 20 years, so a static security will result in
a deterioration of effective security levels over time. Equally, it is not possible from
an operational point of view to ground an aircraft to wait for a patch to a known
vulnerability, while on the other hand, airworthiness authorities will not allow an aircraft
to take off with known vulnerability [99]. Further, software needs to be designed so that
upgrades do not require re-certification of the entire software [179]. In particular, non-
safety critical systems must impact safety-critical functions.

In addition to ensuring the safety of the aircraft and its occupants, a data network also
has three basic security requirements: confidentiality (ensures privacy of end users), au-
thentication (controls access to network resources) and integrity. However, for aircraft,
network security is more important than application security [6].

In [99], the authors advocate that a designer for an aeronautical security application
should always consider the (potential) impact on all stakeholders. Equally, security
should not be based exclusively on protection from harm but rather use the concept of
integrated security: identifying all operational requirements and interdependencies.

With respect to internal threats, an important consideration is that an attacker does not
need direct access to flight controls to create a safety risk [99]. It would suffice to create
passenger panic e.g. by displaying threatening messages on the in-flight entertainment
(IFE) displays.

According to [99], classical intrusion detection systems (IDSs) are not useful to imple-
ment on aircraft, as there is no-one on board to alert and select a suitable reaction.
Pilots are not suitable for three reasons:

1. They are busy flying the aircraft

2. They have no detailed knowledge in computer security

3. They do not know how to respond

On the other hand, broadcasting every alert to the ground is also unsuitable, as a
knowledgeable attacker could easily jam the ground link. However, using autonomous
decision making methods on board would be able to mitigate these issues.

11

Chapter 2: Background

In a position paper [81] , the International Federation of Air Line Pilots’ Associations
(IFALPA) recommends that updates to software systems are protected against both
internal and external threats, and that security issues are resolved by updates shortly
after they become known. However, as aircraft are highly complex, safety-critical sys-
tems, it is necessary to prove (not least to airworthiness authorities) that the update
does not interfere with the correct operation of the system. Furthermore, the trade
body representing airlines [80] states that the likelihood of cyber-threats to the global
aviation systems is increasing, partly due to the integration of systems and processes.

Equally, the Advisory Council for Aeronautics Research in Europe (ACARE) [3] de-
mands that aircraft are able to neutralise security threats to the aircraft’s systems and
that they are - by design - resilient to both current and predicted threat evolution.
What is more, [3] also requires the entire air traffic management (ATM) system to
be able to anticipate new threats and adapt to them. Beyond that, [3] also demands
all links (communication, critical electronics and infrastructure) between aircraft and
ground systems to be resilient to both failure and cyber-threats.

Of the surveyed guidance bodies, only ACARE suggests a timeline for these items to be
developed. In [3] it suggests that by

2020 cyber security alerting mechanisms are in place,

2035 Commercial aviation systems can adapt to and overcome vulnerabilities, and

2050 It is possible to defend itself in-depth against potential cyber attacks.

In addition, Aeronautical Radio, Incorporated (ARINC) has published several standards
on cyber security. However, while some standards by this organisation are accepted as a
possible means of compliance by airworthiness authorities, they are not an airworthiness
regulation. Moreover, currently they focus on security concepts (ARINC 811), data link
security (ARINC 823), digital signatures (ARINC 835) and certificates (ARINC 842-1),
as well as logging (ARINC 852). Consequently, they do not address aspects related to
network security or indeed govern how to react to such incidents.

While there is no current regulation that gives quantitative guidance for cyber-security,
several draft regulations and letters of intent have been published by airworthiness
authorities. While these drafts are neither policy nor guidance, they can still provide a
good indication of the direction regulatory efforts will take in the upcoming years.

International Civil Aviation Organisation
The United Nation’s body for civil aviation, International Civil Aviation Organization
(ICAO) ’s published treatise on security [79] contains two paragraphs on cyber security.

12

2.2 Requirements

Those two paragraphs mandate member states to protect critical information and com-
munication technology from unlawful interference through cyber-threats. Furthermore,
it is recommended to ensure the

• Confidentiality

• Integrity

• Availability

of critical systems and data through means of e.g.

• Security by design

• Supply chain security

• Network separation

• Protection from/limitation of remote access

However, no quantitative measures are provided.

European Union
The European Aviation Safety Agency is, according to its own website’s FAQ section,
not responsible for questions related to civil aviation security [50].

While a study was launched in 2014 to address the cyber-security needs of the Sin-
gle European Sky ATM Research (SESAR), it has not been published (despite being
promised for early 2015) [159].

In addition, the technical standardisation body European Organisation for Civil Avia-
tion Equipment (EUROCAE) has prepared documents (ED-202A and ED-203) that are
considered to be guidance material for certification within the EU. However, they only
provide high-level requirements and describe procedural methods to include security in
the airworthiness design process.

United States of America
While the airworthiness authority of the United States of America, the Federal Aviation
Administration (FAA) has taken some efforts in the field cyber-security, there are no
generally applicable rules for all aircraft. The most recent strategic plan (valid until
2022) [52] aims for the development of cyber threat models for critical aeronautical
infrastructure. If an aircraft system is connected to the internet, individual regulation
is applied for that aircraft type [43]. However, the US Government Accountability Office
has repeatedly stated that further efforts need to be undertaken by the FAA to address

13

Chapter 2: Background

cyber security. In its most recent report dated October 2020 it states several key areas
for improvement [174], amongst them:

• Increasing cyber security risks to avionics system could impact flight safety in
more connected airplanes,

• Implement oversight of industry mitigation of avionics cyber security risk,

• Focus on coordination on avionics cyber security risks,

• Improvement of the certification procedures of cyber security testing.

While the FAA is stated to concur with most of the positions in this paper, it will
likely take several years until these issues are addressed and specific aeronautical cyber
security regulation is published.

2.2.2 Automotive
Most of the requirements for aircraft detailed above also apply to the automotive sec-
tor. Notwithstanding, the standards differ. For functional safety, the International
Organization for Standardization (ISO) 26262 standard [85] is used. It provides the
classification of potential hazards based on three variables:

1. Severity,

2. Exposure, and

3. Controllability.

Here, severity measures the potential impact on human health of an event, while ex-
posure describes the likelihood. Finally, controllability describes whether the impact
can be avoided by timely reaction of a human (generally the driver of the vehicle). For
each of those variables, discrete sets exist for classification. Subsequently, a measure of
required risk reduction followed by a safety goal is assigned to each potential hazard.
These safety goals are then used to derive functional safety requirements that specify
how the effects of a risk can be mitigated [60].

However, here cyber security is only included in an annex that is marked ’informative’.
It provides guidance on integrating cyber security aspects to prevent an adverse impact
on functional safety. Yet in this document, only possible interactions with cyber security
in the various stages of the product development cycle are listed. Neither quantitative
nor qualitative requirements are given. As the authors of [115] point out, there is a
significant gap in the maturity of standards in the domain between safety and security.

14

2.2 Requirements

On an international level, the United Nations Economic Commission for Europe (UNECE)
has recently published regulations [180] on the approval of automotive cyber security
and its management systems. These will become mandatory in Europe for new vehicle
types starting July 2022 and for all new vehicles produced after July 2024 [148]. In
addition, the Republic of Korea and Japan plan an adaptation [173]. Specifically, this
regulation mandates that manufacturers provide documentation related to

• Cyber security-related information throughout the supply chain;

• Risk assessment, test results and mitigations;

• Appropriate cyber security measures of the vehicle’s design;

• Detection and response to cyber security attacks;

• Logging of data related to detection and forensic capabilities of attempted or
successful cyber-attacks.

In addition, it requires that manufacturers to demonstrate a cyber security manage-
ment system for development, production and post-production phases. Beyond that,
it provides appendices listing high-level of vulnerabilities, attack methods and possible
mitigations to be considered by the manufacturers. Furthermore, the ISO/SAE 21434
[82] has been developed as an international standard for road vehicles. It establishes
minimum criteria for automotive cybersecurity engineering. Comparable to the UNECE
regulation, it considers the entire vehicle lifecycle. However, it does not specify any pre-
ferred technologies, solutions or mitigation methods. In addition, autonomous vehicles
and infrastructure requirements are not considered.

2.2.3 Smart Grid
In addition to stability and availability requirements, the smart grid is defined by the
changing nature of demands (e.g. summer/winter) and supply, especially for renew-
able energy sources (sunny/windy/overcast). Consequently, in addition to the obvious
privacy and security implications of smart meters that allow fine-grained energy con-
sumption measurements, another security aspect that needs to be considered is the
impact of demand response protocols. Those allow a bi-directional communication be-
tween consumers and suppliers to reduce the former’s consumption when demand is
high [141]. Consequently, beyond ensuring privacy of smart meters, it also needs to be
guaranteed that those requests are authentic and that their integrity can be verified.
Furthermore, no private information may be explicitly or implicitly shared.

15

Chapter 2: Background

2.2.4 Accountability
Accountability is a means to ensure both availability and reliability in safety-critical
systems. By continuously recording the system state, possible problems can be identified
and rectified in a timely manner. This can either be done after an incident or on a regular
basis during maintenance. In some critical systems such as aircraft, the recording of
several hours of past flight data is required by regulations [48]. In addition, records of
all maintenance actions need to be kept for the entire lifetime of the aircraft [49].

Currently, such records are kept in paper form. However, considering the lifetime of
several decades, it becomes evident that a paper-based record is problematic. Envi-
ronmental factors (water, fire etc.) can damage or destroy the records, and tampering
cannot be prevented.

To address some of the challenges detailed above, [99] proposes a so-called security
box, which would be the equivalent of a digital flight data recorder (DFDR) for secu-
rity breaches. To counteract privacy concerns, it is suggested to have it activated by
crew when system does something unexpected (the authors called it a ’panic button’).
IFALPA representing airline pilots [81] also recommends mandatory reporting of occur-
rences and malfunctions that could hint to a cyber-attack, either on the aircraft or on
aviation infrastructure. Equally, the advisory council for aviation research in Europe [3]
also suggest that incident data of security events is captured and made widely available
to all stakeholders, as it is done currently with safety data.

Distributed ledger technology (DLT) could provide an alternative way of record keeping.
This technology provides means to manage a digital ledger on a peer-to-peer basis and
thus without a central authority. In principle, a distributed ledger is a decentralised
database with a global state. It has gained popularity after it has been proposed as a
basis for an electronic cash system in [129]. While the original purpose of a ledger is to
track financial transactions, [130], any type of data record may be contained therein.
Data records are sequentially appended so that they are tamper-proof, i.e. cannot be
deleted or forged. The ledger is jointly maintained by several peers that need to agree
on the current state, without trusted third parties or a central authority. Consequently,
a limited number of malicious peers cannot manipulate the ledger’s state. Consequently,
it has been employed in a plethora of works, also for more general applications such as
smart contracts.

Here, each peer keeps an identical, private copy of the ledger and broadcasts information
to the others if necessary. Peers may initiate a transaction or change of the ledger’s
state, however the validity of the transaction is checked before the ledger is modified. A
consensus algorithm determines the order in which the transactions are appended to the

16

2.3 SDN

ledger. The implementation of these algorithms is system dependent. While alternative
methods exist and are commonly used for financial transactions, the most interesting
model for consensus in critical systems is based on Byzantine fault tolerance (BFT).
This allows a system to operate correctly even in the presence of errors, irrespective of
whether they have been caused intentionally or not.

2.2.5 Network Calculus
Somewhat complementary to the aspects covered in this thesis, network calculus [106]
is a mathematical method that allows to analyse the worst-case network performance.
It permits to obtain deterministic bounds to network flows, a key criterion for real-time
applications in critical systems. As it uses worst-case considerations, it generally yields
overly pessimistic results.

While there are continuous efforts to make it more realistic e.g. [59, 33] and applying it to
critical systems, there is a significant gap between the obtained worst-case performance
and average, measured performance. Consequently, this method generally results in
suboptimal network designs.

What is more, it does not provide a means to obtain the network configuration in the
first place. A candidate configuration has to be obtained by other means and may then
be verified using network calculus. In addition, it only analyses the network as a whole
and does not solve the issue of mitigating the effects of a detected anomaly.

2.3 SDN

2.3.1 Concept
In traditional networking, the network switches handling the data are also responsible
for routing and network management. Consequently, the network switches need to be
quite sophisticated and also monitor traffic of neighbouring nodes to decide which switch
they should forward any given packet to. As the network performance depends on the
algorithms employed, the implementation is usually proprietary. What is more, inter-
operability between different vendors is severely limited. Both aspects result in high
costs for network components. Additionally, new features cannot be easily added, since
every single switch would have to be replaced. Beyond that, operators of critical infra-
structure might face the challenge to source replacement parts because the implemented
technology might already be obsolete.

In contrast, one of the key features of SDN is the separation of the control plane respon-
sible for network management and the data plane that is handling the actual data. This

17

Chapter 2: Background

is done by introducing a new component, the controller, that has a global overview of
the network. In traditional networks, the control of the network and traffic flow control
within is handled by the network switches in a decentralised manner. In contrast, SDN
switches are simple affairs that merely consist of input and output ports and forwarding
table entries that tell a given switch the next destination of a packet that arrives from
a given port, with a given source and a given destination. Alternatively, a packet can
also be dropped, or if no rule is defined, the switch may request a strategy from the
controller to deal with a given packet.

If the network changes, e.g. because a link is congested or additional traffic arrives,
the controller is notified by the switches (either the affected switch or neighbours) and
can modify the network by changing the forwarding tables in the switches. The com-
munication between controller and switches can be either performed in-band i.e. using
the same network as the data, or out-of-band using a dedicated control network. The
comparison between traditional networking and SDN is illustrated in figure 2.1.

C
on

ve
n
ti

on
al

n
et

w
or

k
in

g
S

of
tw

ar
e-

D
efi

n
ed

N
et

w
or

k
in

g

Network Applications

MAC

Learning

Routing

Algorithms

Intrusion
Detection

System

Load
Balancer

SDN controller

Firewall

Figure 2.1: Comparison between conventional networking and SDN, amended from [103]

18

2.3 SDN

2.3.2 Functionalities
According to [103], the functionalities of SDN can also be logically separated in layers
or planes. As the lowest plane, the data plane is responsible for the transmission of data
packets, fragmentation of a data stream, forwarding and replications of messages with
more than one recipient (multicast).

In the layer above, the control plane, routing tables, packet handling policies and service
availability announcements are contained.

Depending on the size and requirements of a network, another optional layer may lie
beyond the control plane: the management plane. Here, additional functionalities with
respect to availability and control may be summarised. Examples of such include the
treatment of new devices, reconfigurations in failure cases and activating/deactivating
devices.

Since this centralisation would introduce a single point of failure (the controller), it is
also possible to have more than one controller. Various strategies exist to coordinate
between different controllers, e.g. dividing into several subnetworks. A more detailed
overview of those will be provided below and in section 5.3.

2.3.3 Communication Between Switches and Controllers
As described above, the control plane provides means for information exchange between
switches and controllers. One protocol for this communication is the OpenFlow protocol.
It is vendor-independent and developed by the non-profit Open Networking Foundation.

In [133], three types of messages between the controller and switch are defined: controller-
to-switch, asynchronous and symmetric. While the first type is initiated by the con-
troller, asynchronous communication is used by the switch to update the controller
about network events and changes to the switch state. Finally, symmetric messages
may be initiated by either. Further information on the various communication types
can be found in chapter A as well as in [133].

2.3.4 SDN in Critical Systems
To use SDN in critical systems, providing resilience is a critical issue. Here, both the
control plane and the data plane need to be addressed separately.

Data Plane
Resilience of the data plane has been studied in various publications. For example,
[161] presents a framework for SDN to abstract resilience functions through so-called

19

Chapter 2: Background

management patterns to describe the interactions between different resilience mecha-
nisms. These patterns specify requirements which are satisfied through the assignment
to particular components by a combination of a knowledge-based approach and machine-
learning based approaches.

In an alternative approach, [139] investigates the recovery from failure in SDN by per-
forming run-time optimisation using iterative routing of feasible solutions until opti-
mality is achieved. However, their only constraint is the link capacity, this they do not
take the requirements of the traffic into account. A similar strategy is presented in [13].
While not using an iterative approach, it focuses on minimising operational cost when
finding a recovery path while simultaneously trying to minimise the flow operations
needed.

Other publications also investigated resilient routing for other types of networks. The
change in complexity between resilient and non-resilient IP routing has been addressed
in [70]. The authors compared various heuristic objective functions for their effect on
link utilisation and average path length. It was found that while heuristics improve
certain characteristics, others will be negatively affected. Thus special care needs to be
taken during network design to select the appropriate strategy.

Optimisation for non-resilient networks has also been a prospering research topic. Among
them, [147] focuses on minimising path length of packet forwarding and switch mem-
ory usage under the constraints of forwarding table entries. On the other hand, [137]
extends the problem by also considering the facility placement i.e. where the traffic
sources and demands are placed. While their algorithm dynamically changes traffic
routing and demands, it does not consider delay-sensitive traffic.

Non-functional safety requirements have been less frequently considered. For example,
[76] investigates a delay-constrained routing problem for a M/M/1 queue, where job
service rates follow an exponential and arrivals a Poisson distribution. In contrast,
the authors of [28] minimise the delay of the flow with the highest delay bound in the
network using shortest path and greedy algorithms as well as iterative versions thereof.

Beyond that, some papers have also investigated the safety-critical use of SDN. While
[153] reviews general challenges and security issues, [116] provides an overview of how
SDN (positively and negatively) can influence the network resilience. Finally, [146]
describes a mechanism to provide one-link fault tolerance by using the fast-failover
groups feature of OpenFlow. In addition, while not technically addressing safety-critical
systems, [72] studied SDN for deterministic networks using an in-band configuration
channel.

20

2.3 SDN

Control Plane
While the data continues to be forwarded by switches after a controller failure, new
flows or failures in the data plane cannot be dealt with. Consequently, using several
controllers to provide resilience against controller failures is a commonly used method.
However, several strategies exist to coordinate between those controllers, which will be
discussed in the following paragraphs.

In [152], the authors address both intentional (i.e. attacks) and unintentional failures of
the controller. Either one primary controller handles all the traffic and other controllers
stand by in case an anomaly is detected, or packet-in messages are used to forward
client requests to primary and secondary controllers. Either way, the switch then col-
lects the controller messages and evaluates them for inconsistencies. To this end, the
authors add components to the network to reassign controller-switch connections, to
compare controller messages at the switch, and to evaluate controller-to-controller state
synchronisation messages. They use replication of control plane computation and trans-
mission to target switches, which then need to evaluate these messages for correctness.
To avoid inconsistencies in the processing of requests of the same resource, controller
responses are delayed until the required number of control messages has been gener-
ated. Finally, an integer linear programming (ILP) problem is formulated and solved
after each controller failure detection. The constraints considered were bandwidth and
delay limits.

In contrast, [51] proposes a stepped remediation mechanism and multi-level monitoring
and integrate a production-grade distributed controller, ONOS. It essentially consists
of a collection layer where alerts from IDS systems such as Bro or Snort, OpenFlow
(OF) resource monitoring as well as standard network monitoring components such as
sFlow are gathered. They are then processed in a coordination layer that interfaces with
an application layer where additional security applications are hosted. The distributed
controller instances are clustered and then share data amongst themselves. Consensus
within each cluster is reached by using the Raft algorithm. Additionally, the monitoring
level of sample-based monitoring can be dynamically adapted. To benchmark controller
performance, cbench was used.

The concept of self-stabilisation to deal with several concurrent failures is introduced
in [26]. The authors use in-band management to recover from controller, switch, and
link failures. However, malicious controllers and the necessary countermeasures have
not been considered. Beyond that, the effects of using the Raft consensus algorithm to
coordinate the activities of several controllers on system response time is investigated in
[151]. The authors use stochastic activity networks (SANs) for modelling and numerical

21

Chapter 2: Background

evaluation of distributed SDN clusters. They assume a mechanism that monitors the
health and correctness of controllers.

In [176], the authors propose to cache flow rules and distribute them across multiple
controllers in order to mitigate controller saturation and rule modification, thus provid-
ing Byzantine fault tolerance and reduce flow setup delay. The issue of control plane
inconsistencies and their effect on network performance is highlighted in [21]. To ad-
dress this, the authors propose a distributed SDN control plane architecture. The main
feature of their proposed controller design is its strong consistency due to a replicated
data store to ensure a consistent network view. However, this method only addresses
unintentional faults, not attacks.

Some papers also consider the effect of using several controllers in critical systems. For
example, [156] discusses the use of SDN for heterogeneous and time-sensitive indus-
trial internet of things (IoT). The focus lies on the communication between distributed
SDN controllers with legacy data planes. They present a cascaded controller for time-
sensitive network (TSN) using legacy hardware. The controller is integrated into a
PLC. While the proposed architecture includes several SDN controllers, only communi-
cations between controllers governing different hierarchies of industrial applications are
considered. Resilient controllers are not investigated.

Another essential aspect for critical systems is the integration of legacy devices and
systems. This has been detailed in [65]. That work addresses the issue of legacy devices
in SDN with a focus on synchronising the controller and network management system
(NMS) for cases of bring your own device (BYOD). NMSs are used for configuration,
management, and troubleshooting in order to maintain and supervise networks. For the
synchronisation of legacy and SDN control, polling, pushing, and direct synchronisation
were investigated. A detailed overview of the security challenges associated with SDN
can be found e.g. in [157].

Using dynamic network reconfiguration in critical networks also requires traceability of
the implemented changes. This is to ensure that any potential issues are detected and
rectified as soon as possible. Amongst the few works that address this essential issue,
[1] investigated the use of ledgers for SDN. However, their application was privacy-
preserving identity management.

In [61], the impact on the performance of the underlying physical system of SDN con-
troller failures has been studied. They identified the following failure cases:

• Random failure

• Delayed response by the controller

22

2.4 Addressing Incidents in Safety-Critical Systems

• Error control messages (rule modification, deletion, and message drop)

• Infinite loops

• Resource exhaustion

Yet only the impact of those cases has been studied, and not possible mitigations.

2.4 Addressing Incidents in Safety-Critical Systems

As discussed in section 2.2, safety-critical systems require mechanisms to address inci-
dents. On a network level, SDN ’s ability to reconfigure the network during runtime
can be a means to facilitate this. This section will provide more details on how such
incidents can be addressed using SDN as well as other means available in safety-critical
systems. While the focus will lie on means to detect security events (i.e. intentional
faults and failures), detecting and mitigating safety-related events (i.e. unintentional
faults and failures) is equally important for safety-critical systems. Moreover, usually
only the effect of a fault or failure can be observed, thus it is not always possible to
clearly differentiate between the two. Consequently, this thesis will address both inten-
tional and unintentional faults and failures.

In one of the earliest works to consider reactions to incidents in safety-critical systems,
[171], the authors propose a framework for a Smart Grid SCADA system composed of
the following four key components:

• Real-time monitoring,

• Anomaly detection,

• Impact analysis, and

• Mitigation strategies.

While the authors specifically wanted to address security incidents, these components
are also required to cover safety incidents.

The first component that is required is a real-time monitoring capability. On the one
hand, any incidents need to be detected as soon as possible to limit the impact on the
system. On the other hand, it needs to be ensured that any monitoring does not delay
real-time, safety critical traffic.

Secondly, anomalies need to be detected in the monitored traffic. Here, the sensitivity of
the algorithm is crucial. A high sensitivity will result in a high false-positive rate, which

23

Chapter 2: Background

significantly increases resource usage. In contrast, low sensitivity means that incidents
go undetected.

Thirdly, it is necessary to establish the impact of the detected anomaly. Here, a variety
of parameters such as delay, resource usage etc. can be used. The detected impact can
also help to decide whether a reaction is needed at all or whether the anomaly detection
has produced a false positive.

Finally, the impact warrants a reaction, mitigation strategies are necessary to address
the detected anomaly.

In the following pages, a detailed overview of research efforts into those areas (monitor-
ing, anomaly detection, impact analysis, and mitigation) will be given.

2.4.1 Real-Time Monitoring
As detailed above, through the increased interconnections with cyber systems, critical
systems are being more and more exposed to cyber risks. Consequently, in order to guar-
antee safety-critical functionality, these systems must also be monitored and protected
by the same means as traditional cyber systems.

For monitoring, two approaches exist: either using dedicated equipment for anomaly/in-
trusion detection, or integrating monitoring functions into functional code. While the
former is commonly found in traditional computing infrastructure such as servers, in-
tegrating monitoring functions is being used in safety-critical systems to detect and
contain faults early. Notwithstanding, it may also be used to identify attacks, e.g. by
monitoring privilege escalation.

Network Anomaly Detection/Intrusion Detection
Intrusion detection systems dynamically analyse network traffic as well as artefacts such
as log files to identify changes that could point to an attack. Generally, two distinct ap-
proaches exist: either identifying known attacks (signature-based) or detecting changes
in traffic behaviour (anomaly-based). The algorithms used can vary in complexity, from
simple white- or blacklists and firewalls to complex systems that use machine learning
to dynamically react to network changes. Some techniques such as frequency analyses
also work on encrypted traffic [102]. Recent survey papers about the techniques used
include [97, 47, 124].

Irrespective of their complexity, output from such systems can either be used directly
for mitigation (e.g. by ensuring that traffic from a compromised device is dropped at the
next switch), or for more complex analyses to detect previously unknown vulnerability
and react accordingly e.g. by patching specific code.

24

2.4 Addressing Incidents in Safety-Critical Systems

Integrated Health Monitoring
Another component available in most safety-critical systems that can also be used to
detect anomalies is integrated health monitoring. In critical systems, checking whether
relevant parameters fall into specific boundaries is checked as part of functional code
execution. Consequently, if a parameter falls outside the specified operational condition,
no exception is raised, but rather the code automatically addresses the fault. In the
simplest case, the fault is simply logged, but more complex reactions such as triggering
a maintenance action if a fault recurs are also possible.

In aviation (where it is termed integrated vehicle health management (IVHM)), most
software components include checks that verify both input parameters of sensors, and
also the correct execution of code within a software function.

In addition, these small pieces of software integrated into functional components can
detect buffer overflows etc. While they are currently only used to detect the necessity
for maintenance and sensor malfunction, they can also be used as an input to detect
faults and anomalies, e.g. a switch malfunctioning due to overheating.

For aircraft, the ARINC 653 standard [7] gives details as to what information can
typically be included in health monitoring:

• Watchdog timer

• Checksums

• Memory protection

• Timer interrupts

• Privilege execution violation

• Buffer overflows

• Reasonable output

• Measurement of execution time

• Deadline misses

• Operating system (OS) monitoring functions

While this standard focusses on the detection of natural system degradation due to
ageing components, some of theses provisions (detailed below) can also be used to
detect cyber incidents.

25

Chapter 2: Background

Watchdog timers are used to regularly measure a function’s execution time. This could
be indicative of a variety of conditions, both benign and malicious. For example, it
could indicate that function is waiting for a semaphore that is not freed, or that code
is executed that is not supposed to be executed. An equally important variation are
deadline misses, where a function has not finished or information has not been trans-
mitted at a given time. This is especially relevant for real-time systems, where a given
information looses its validity after a certain time. While such outdated information is
not relevant for further program execution, it is relevant to measure the occurrence of
such events, as only a certain percentage of such information can be dropped without
being indicative of problems. Slightly different, the measurement of execution time is
used to detect continuous variations of execution time, while a watchdog or deadline
miss would only detect a hard violation. Along similar lines, timer interrupts stop the
execution of a program after a certain time.

Furthermore, checksums can be used to verify the integrity of transmitted messages.
To this end, an algorithm is applied to the message and the result appended prior to
transmission. The receiver then applies the same algorithm to the message and checks
whether the checksums match. This method can be used to detect bit-flips (most
commonly occurring due to solar radiation) or intentional tampering. It should be
noted that checksums increase the traffic flow, as they increase the length of the original
message. Additionally, the calculation of checksums requires time and computational
resources, consequently they can only be used for a certain proportion of messages.

Another group of monitoring functions relate to memory usage. Memory protection, on
the one hand, prevents a function from writing outside of its allocated memory, which
could be indicative of an attack or a code malfunction. In a similar field, buffer overflows
occur when a function tries to write more data into an allocated buffer e.g. a 64 Bit
word into a 32 Bit buffer. While some statically typed programming languages such
as Ada [84] are designed to prevent this automatically, it is important to monitor as it
could be indicative of a code malfunction. Additionally, such buffer overflows can be
intentionally triggered, thus leaving a system vulnerable if they have not been addressed
properly.

Furthermore, it is necessary to monitor whether code tries to run outside its assigned
privilege level. Such privilege execution violations could indicate an attack e.g. when a
low-priority management function tries to execute code with the highest level normally
associated with safety-critical functions.

Finally, monitoring whether outputs are reasonable is another important feature. For
example, a temperature sensor on Earth cannot encounter temperatures below −80◦C,

26

2.4 Addressing Incidents in Safety-Critical Systems

hence if such an input is detected, it can be considered to be an anomaly and the sensor
is likely malfunctioning.

2.4.2 Anomaly Detection
Anomaly detection can be used in a variety of applications, from tracking down software
bugs, vessel movements, social media analysis to medicine and network security scans
[69, 122, 111, 46, 19, 94]. Moreover, anomaly detection can also be and is frequently used
to detect abnormal situations in safety-critical systems, such as nuclear power plants,
across an airline’s fleet, in a power network etc. [see: 23, 41, 170]. However, the decision
on the correct reaction to a given anomaly usually remains with a (human) operator.
For security purposes, everything that deviates from allowable, "normal" behaviour is
considered to be an intrusion. A sample of normal system behaviour is usually obtained
by recording the system/network for some time.

Principles
Generally, the following sequence is performed by anomaly detection systems [see 87]:

1. Data acquisition

2. Data partitioning

3. Probabilistic finite state machine construction

4. State probability generation (recursively computed to approximate the dynamic
system)

5. Class information identification

To begin with, data needs to be obtained from the system. This process has already been
described in the scope of monitoring as detailed above. Subsequently, the data needs to
be partitioned, as not all data can be inspected in real-time, if the processing speed of
the anomaly detection is slower than the transmission speed of the network. Based on
the data thus obtained, a finite state machine is constructed. Depending on the data
collected during system operation, the anomaly detection system estimates in which
of the states the monitored system is at a given time. Subsequently, the classification
information is identified.

The anomaly collection logic itself can be grouped into three basic types [154]:

Heuristic This is the most common type, which may also use machine learning meth-
ods. Subsequently, a statistical analysis is performed to obtain a profile of the

27

Chapter 2: Background

system. However, malicious behaviours that are already present during the learn-
ing phases cannot be detected.

Policy-based (aka. knowledge profile) This type relies on a human expert to build
a profile of the environment based on known data. This is only manageable for
small and constrained environments.

Mixture of heuristic and policy-based This type depends on structured learning,
thus allowing to obtain a profile more quickly and with higher accuracy.

Modelling and Classification Algorithms
To distinguish between normal and abnormal behaviour, three different basic methods
can be used: statistical methods, analytical methods, and machine learning. The two
former methods are generally faster and more deterministic, but the resulting accuracy
depends on the definition of thresholds. Moreover, it is challenging to obtain the data set
used to obtain profiles of normal/acceptable behaviour. On the one hand, legitimate and
unmalicious behaviour will frequently deviate from normal profile, leading to a high false
positive rate [138, 42]. On the other hand, any undesired behaviour that is present in the
original data set will not be considered to be an anomaly during run-time. Consequently,
practical applications benefit from not only basing decisions/classifications on anomaly
arbitration because this causes a high rate of false positives but also on other factors
such as network status. It should be noted that any changes in the monitored system
also require a retraining/adaptation of the anomaly detection model. Moreover, some
models are susceptible to overfitting, where the model it too tailored to the learning set,
so it does not perform well on test data or the real system. Modelling and classification
algorithms for anomaly detection include [164, 154, 2, 100]:

Artificial neural networks are one of the earliest machine learning mechanisms and
have been theoretically discussed in the 1960’s but due to technological limitations,
the first implementations were later [109] and eventually also used for pattern
recognition [20]. They act as an computational imitation of biological/neurolog-
ical processes, consisting of a certain number of layers between the input and
output layer (which are visible to the user). They act as function approxima-
tors and consist from a sequence of decision units. While they can learn from
continuous data, multiple outputs and decision boundaries at once, but are very
inefficient when surplus data is included in the training set and can suffer from
overfitting because they can create arbitrarily complex models. Works that used
it for anomaly detection include [136, 158, 118] and for fault detection [131, 158,
128, 121, 118].

28

2.4 Addressing Incidents in Safety-Critical Systems

Bayesian models are statistical models that have several subtypes, depending on the
algorithm used. In general, they only require a small number of training samples
and can learn uncertain concepts without overfitting, but assumes that data can
be represented by single probability distribution. Several subtypes: Statistics/in-
terference: the most basic model using only statistical methods. Has been used
e.g. in [71] to obtain a patter for interaction with a network and in [37] to detect
malicious users. Naïve: tends to ignore inherent time dependencies in the behav-
iour, recent publications include [182] for anomaly detection (AD) for industrial
applications, or [186] as one of several methods used comparatively. Analysis:
here, a probability is assigned to a hypothesis. B. linear models: used in [165] to
analyse reliability (together with a support vector machine, see below). B. net-
works: for estimating the system health of industrial machines [25] to determine
when maintenance is necessary or used when monitoring of maritime vessels [122]
or, more recently, for resilience analysis [185].

Decision trees predict data labels by iterating the data through a learning tree. This
method only works with linearly separable (i.e. non-continuous) data. Like neural
network, they suffer from overfitting due to their ability to generate arbitrarily
complex models. Moreover, they do not work well with data that requires diagonal
partitioning. Furthermore, all conditional statements are sequenced. For example,
they have been used for the identification of unknown threats [44], in wireless IoT
networks [10], and in [9] to detect anomalies in SDN.

Fuzzy reasoning can not only accept binary classifications, but also values that lie
in between. Consequently, it can be used to represent more finely-tuned anomaly
classifications (e.g. giving a probability that something is an anomaly). Recent
publications include [68, 175, 86].

k-means clustering clusters data around k centres that represent the mean of those
values. The number of centres has to be defined by the user. This algorithm groups
data objects so that members of the same group are similar to each other, while
members of different groups are dissimilar [11]. This measure of similarity (also
called distance) can then be used to establish quality measures for clustering.
k-means does not need high computational power and is simple to implement,
however it is very sensitive to irrelevant data and the complexity is linear. One
of the earliest works that use this method to detect malicious activities in their
university network is [120], with more recent efforts applied on flow records [127],
together with decision trees in [58], and [32] for industrial control systems.

29

Chapter 2: Background

Markov models are used in systems with state changes. There are several subtypes of
Markov models, depending on the system characteristics (discrete or continuous),
state space and time. To obtain an accurate Markov model, it is necessary that the
anomaly detection occurs before the data-tagging, otherwise relationships between
anomalies may not be discovered. This unsupervised clustering method has a
commonly-used variant: Hidden Markov Models (HMM): method for behaviour
modelling that uses a structure of nodes with transition links to represent the
time aspect, commonly uses the Baum-Welch algorithm [17] for training and the
Viterbi algorithm [56] to find the optimal model [31], but tends to suffer from
overfitting; [189] use a HMM to distinguish faults from attacks, Markov chains: in
one of the earliest examples, [183] model temporal behaviour of anomalies, [140]
estimate the probability probability from past anomaly-free observations, while it
is applied by [78] to obtain an adaptive model of SDN intrusions.

N-Gram features work by selecting byte sequences of length n that are present in the
data and represent structural components and fragments of instruction and data.
While it has initially been used for text categorisation [29], the method soon
received attention for anomaly detection. An detailed description of n − gram
models used in intrusion detection is provided in [181]. Recent works that used
this method include [96] (in combination with a support vector machine), [112]
(for anomaly detection of flight data) and [45] (to detect privilege violations, in
combination with support vector machines).

Principal component analysis (PCA) allows to compress data and present it as
a new set of variables (termed principal components), ordered by the amount of
information content [2]. This allows to find common features in labeled data sets
(i.e. where it is known that something constitutes an anomaly). These features can
then be used for anomaly detection in online applications. While the mathematical
principles have been developed in the first half of the 20th century, its use for
analysis of computer networks came with [105], while more recent publications
using a variety of this technique include [68, 40, 54, 24]

Support Vector Machines (SVMs) classify data using labeled training samples,
work well on multi-dimensional problems and continuous features, but require
a significant amount of time to complete. [149, 187] employed this technique for
fault diagnosis, while [165] used it to investigate anomalies in data from an aircraft
manufacturer’s server and [135] to analyse aeronautical system health. With some
adaptations, it has also been used to learn from partially labeled data sets, e.g.
[177].

30

2.4 Addressing Incidents in Safety-Critical Systems

Further details on those and further methods can be e.g. obtained from [19].

Anomaly Detection Using SDN
In addition to the generic methods detailed above that work on many different types of
data, SDN itself also provides means to detect network anomalies. As reconfiguration
based on variations in network demands are a key feature of SDN, standards such as
OpenFlow natively include means to monitor the network state.

To allow the controller(s) to have a current picture of the network state, the following
information is provided by the switches, either periodically or upon request by the
controller [133]:

• Link up/down

• Switch up/down

• Keep alive message exchanges

• Statistics such as number of flows, queue size, bandwidth etc.

First of all, switches provide information to the controller if they detect that a link
connected to them is up or down. The same applies if a switch is down, while a switch
up event message is sent directly from the activated switch to the controller [133].

In addition, the controller can poll all switches regularly to send alive messages, and
provide statistics about number of flows that are being handled, queue size, bandwidth
used etc. Obviously, the polling frequency has an impact on network load, especially
if the communication between switches and controller is in-band and not on a separate
control network.

Challenges to Anomaly Detection
One of the main challenges associated with anomaly detection is that it is rather difficult
to obtain profiles of normal/acceptable behaviour during system runtime. The main
problem is to ensure that no intrusion/malware is present during that initial phase,
since these events will not be considered to be anomalies in the future. If they are
present, the running system/network will be vulnerable to these types of attacks, as
they are not considered to be abnormal.

What is more, even legitimate and non-malicious behaviour will frequently deviate from
the normal profile, leading to a high rate of false-positives [138, 42]. Thus, some authors
suggest to base decisions/classifications not only on anomaly arbitration to reduce the
rate of false positives [34].

31

Chapter 2: Background

One method to reduce this high rate of false positives is to consider human behaviour as
part of the anomaly detection system [see 107], for example the difference in traffic vol-
ume between day and night etc. However, this approach is only valid for safety-critical
systems where there is significant interaction with human beings such as the smart
grid. Notwithstanding, even traffic networks that are exclusively used for machine-
to-machine communication can vary periodically (e.g. depending on energy used in
processes in manufacturing plants, phases of flight in airplanes etc). Consequently, the
false positive rate may also be reduced in those application by taking periodicity into
account.

Another issue is that the more network traffic there is, the easier it is for malicious traffic
to hide in plain sight. Heuristic malware detection programs are usually either static
or dynamic, where static heuristics usually employ indicators such as structural anom-
alies or program disassembly, and dynamic heuristics use runtime indicators frequently
obtained from virtual environments, also called sandboxing. Both attempt to detect
zero-day attacks (i.e. to detect new malware at launch, and not only after thousands
of machines have become infected), but since both approaches have shortcomings, they
are usually combined [44]. Other approaches use more complex mathematical models,
e.g. [110] use an analysis based on game theory to predict attacks.

Known Avoidance Strategies for intrusion detection (ID) Methods
Beyond this, with more sophisticated detection mechanisms, attacking techniques have
also become more sophisticated. Consequently, they have been able to circumvent
protections by IDSs.

Five basic penetration techniques have been demonstrated by literature to be able to
evade queries by an IDS [36]. Firstly, packet splitting (including IP fragmentation and
TCP segmentation) separates IP datagrams/IP stream into non-overlapping entities,
thus bypassing the IDS, unless the (usually) small entities are reassembled by the IDS.
Secondly, denial of service (DOS) attacks may be able to slow down the rule-matching
algorithm in Snort significantly by modifying the input traffic, also know as algorithmic
complexity attack [163]. Thirdly, in duplicate insertion attacks, overlapping or duplicate
entities are used to cause inconsistencies within the IDS, if information about network
topology or the victim’s operating system is missing. Fourthly, payload mutations allow
an attacker to transform payload that the IDS would classify as malicious into equiv-
alent - but not detectable to the IDS - payload. Finally, shellcode mutation encodes,
encrypts or compresses shellcode to mask its signature, thus bypassing an IDS that
detects shellcode.

32

2.4 Addressing Incidents in Safety-Critical Systems

Some of those techniques have also been implemented as tools which facilitate and
automate such attacks. Fragroute and Sploit are able to perform packet splitting and
duplicate insertion, the latter is furthermore capable to mutate payload and shellcode.
Other tools for payload mutation are Nikto and Havij, while ADMmutate andMetasploit
can manipulate shellcode. Further details on these tools can e.g. be obtained from [36].

Beyond that, obfuscation is a technique for malware writers to obscure code so that is
it functionally identical to an original code, thus making it difficult to analyse. Since
a popular approach for anti-malware software is signature detection (i.e. comparing a
file’s content to a database of known malware signatures), this is a rather successful
attack path. Further detail on obfuscation techniques can be found in [132]. However,
obfuscation could be made a less effective tool if intrusion/malware detection algorithms
were to shift away from signature detection and towards behaviour detection of malicious
code.

Furthermore, dynamic analysis systems avoidance mechanisms are able to circumvent
code sandboxing. In this context, two main methods exist. Firstly, stalling code per-
forms unnecessary but harmless calculations until the sandbox times out. Subsequently,
malicious code is executed on the target machine [98]. Secondly, sandboxes have blind
spots. These occur as sandboxes add extra bits of code that send notifications for func-
tion or library calls, which can be detected by the malware. Moreover, between the
calls of this code, the sandbox cannot see what the program is doing, which is hence
exploited by the malware.

To conclude, while a plethora of methods exist to detect anomalies, attackers continue to
try to bypass detection mechanisms. Consequently, relying on any one method, however
good, will not result in complete system coverage.

2.4.3 Impact Analysis
Once an anomaly has been detected, the impact on the monitored system has to be
established. In principle, the impact can be matched to the satisfaction of requirements.
Consequently, the impact on

• Confidentiality,

• Integrity,

• Availability,

• Resilience against faults and failures, and

• Timing guarantees/predictability for real-time systems

33

Chapter 2: Background

can be measured with respect to their impact on safety and security.

Here, the impact of an individual anomaly on the entire safety-critical system has to be
determined for the criteria above. While the precise weights of these aspects need to
be determined individually for each safety-critical system, safety takes precedence over
security. Consequently, detected losses of confidentiality might be found more tolerable
than loss of guarantees for timing and predictability. It should also be noted that losses
of resilience are unproblematic while at least one system/network path remains to serve
the critical demand.

Based on the impact assessment, the system can determine whether an action is neces-
sary or whether the detected anomaly is considered to be a false positive. In addition,
even a detected anomaly might not require a reaction if it is transient or does not have
a detectable impact on the system.

2.4.4 Mitigation Strategies
If the impact on the system has been deemed to be sufficiently great to warrant some
adaptation to the system to mitigate the effects of the detected anomaly.

In [64], risk mitigation is defined as the risk associated with a given mitigation action in
percent. It is calculated as the product between the percentage of the attack covered by
the action and the percentage of reduction of the total incident cost through mitigation.
However, this work focusses on identifying and protecting resources rather than traffic
constraints. Moreover, the only focus is on attacks and not on failures that might also
require responses.

Self-Protecting Systems
Self-protecting systems are able to autonomously fight back intrusions in real time. They
usually merge several intrusion detection systems. Various intrusion detection methods
can be used to detect the illegal behaviour of a device. The reaction to a detected
intrusion depends on the application. It is either possible to isolate the misbehaving
device and all the software running on it by removing all the connections with the
network, or to force the failure of the incriminated device (fail-stop). Again, there
is no general recommendation on which method to prefer, it depends entirely on the
application [42].

One possible method for such a system is using the principle of the least privilege.
Here, undeclared communication channels are trapped automatically and a recovery
procedure is initiated. The authorisation of communication channels is automatically
obtained from the system’s software and hardware architecture and subsequently used

34

2.4 Addressing Incidents in Safety-Critical Systems

to generate protection rules for the system [42]. In [93], an auto-regressive integrated
moving average (ARIMA) model is used, which is efficient for short-term forecasting in
a function of the parameters of p (previous observations), derivatives of historical data
d and the correlation with previous errors (q).

Going even further, [169] propose a fully autonomic system, which in addition to be-
ing self-protecting is also self-configuring, self-healing and self-optimising. Generally
speaking, all systems that are either self-optimising, self-healing, self-protective or self-
configuring are described as autonomic [12]. These attempt to reduce the human influ-
ence on systems.

Another way to mitigate software faults, is software fault isolation. This technique mod-
ifies the client code so it can only write within a certain, designated area [38]. However,
there are dynamic analysis system avoidance methods that can bypass this isolation
technique. In addition, demonstrating safety with such a modification to running code
is highly challenging but necessary for safety-critical systems.

Another approach is taken by [104]. There, the propose the use of a network emula-
tor without the failed elements and then installing the difference ruleset between the
emulated and real network.

In contrast, hardware-based security applications can be an alternative to classical, soft-
ware based system defences. Using hardware-based security solutions is motivated by
the fact that software-based applications only have a limited throughput. What is more,
since security applications usually have a high computational cost, using hardware-based
methods frees resources in the host processor and supports a parallel execution of op-
erations. It goes without saying that hardware-based solutions are less flexible than
security software, hence it is necessary that hardware is reconfigurable, a property of
field-programmable gate arrays (FPGAs) [34].

Fault Tolerance and Resilience
Another way to address anomalies is to ensure that they do not have a negative impact
on the system. To this end, fault tolerance and resilience are used. The former ensures
that the system operates as intended despite the presence of faults. In contrast, the
latter provides an alternative to the failed component. Here, it needs to be ensured
that the failure does not affect all redundant part simultaneously, e.g. by using differ-
ent manufacturers, different coding teams, different means of power supply etc. The
following paragraphs will provide more detail on those concepts.

Initial studies into fault tolerance by von Neumann and Shannon in the 1950s [126]
focussed on the telephone switching system. Subsequently, being able to continue to

35

Chapter 2: Background

operate despite the presence of faults quickly became of interest for critical systems in
aerospace in the mid-1960s with Jet Propulsion Laboratory’s self-testing and repairing
computer [15].

To prevent a random, individual fault from resulting in a system failure, redundancy is
used. To support this, various techniques exist for both hardware [114] and software
[150, 35] components, strategies which have been used since the 1970s. Notwithstand-
ing, fault tolerance cannot address correlated failures, consequently it is necessary but
not sufficient to provide resilience. Various authors have studied the dependability of
networks. For example, [30] present a framework to study how dependable networks
are and how they perform under perturbations.

In order to effectively prevent a single cause to affect all layers of redundancy and ensure
surviveability, diversity in as many aspects as possible is required. While not trivial to
quantify, [168] formalised it using set theory and state machines as follows:

Survivability =



S

E

D

V

T

P


(2.1)

where S are acceptable service specifications, E potential and D actual system degrada-
tion due to external challenges, V describes the relative ordering between acceptable and
actual service values, T valid transitions between service states under a given challenge
and P the probability that services need to satisfy dependability requirements.

In addition, it needs to be considered that system need to remain operable despite
an interruption to connectivity. This disruption tolerance is especially relevant in the
context of an in-band SDN control channel, where connection to the controller might
be temporarily unavailable if data plane communication takes priority.

Resilience is one of the key properties of a safety-critical system. Figure 2.2 gives an
overview about the various sub-disciplines that affect resilience. Here, the dependability
is further subdivided into aspects relating to reliability, maintainability, and safety, while
security needs to consider aspects of confidentiality and non-repudiation (proof of the
integrity and origin of data). Equally, quality of service, availability, and integrity need
to be taken into account.

36

2.4 Addressing Incidents in Safety-Critical Systems

Dependability

Security

Reliability Maintainability Safety

Availability Integrity

Confidentiality Non-repudiability

Quality of Service

Figure 2.2: Resilience disciplines, amended from [168]

While not considering safety-critical networks in particular, [162] is one of the earliest
works that considers resilience to faults and failures as well malicious attacks. Based on
the model proposed in that work, this thesis considers resilience as the property of the
network that allows to maintain an acceptable level of service in the presence of malicious
attacks, human mistakes (e.g. misconfigurations), and software and hardware faults.
While their original definition also includes large-scale natural disasters, this aspect will
not be considered in this thesis, as only large and distributed critical systems such as
the power grid needs to satisfy this criterion. Furthermore, [162] proposes a framework
that describes a closed-loop control mechanism to allow networks to adapt and improve.

With respect to modelling and predicting dynamic system behaviour, various methods
exist. For example, [185] utilise a Bayesian network. Another example, [155] and
further developed in [161], a framework is proposed to manage resilience in networks.
In addition, the authors argue the following aspects of resilience:

• malicious attacks,

• software and hardware faults,

• human mistakes (e.g. misconfigurations)

• large-scale natural disasters

In [39] the impact on resilience of a (not necessarily SDN) controller in a self-adaptive
network is considered.

Resilience in SDN has also been a prospering research topic. Generally speaking, SDN
can adapt to changes in its system, environment or goals. One of the first approaches into
controlling software has been performed by IBM in its autonomic computing initiative
[95] with a control layer know as monitor, analyse, plan, execute (MAPE). While not

37

Chapter 2: Background

specifically related to SDN, [39] investigated the resilience of such systems, pointing out
that this lack of resilience is one of the major inhibitors of commonly using self-adaptive
systems. The authors of this paper focus on the impact of controller failures on critical
middleware for power plants caused by malformed inputs from measurement probes.
They also aim to establish the impact of controller failures on resilience and modelled
as discrete-time Markov chains.

Using a method introduced in [13], [14] formulate integer programs employing combina-
tions of minimum cost and minimum number of operations to investigate the trade-off
between path cost and flow operations. They also propose algorithms with computa-
tional complexity similar to Dijkstra’s algorithm. The authors also stipulate that it is
safer to leave existing forwarding table entries and merely give back-up paths a higher
priority. In this case, it was found that a lower improvement in operation cost is to be
expected.

However, due to the centralisation of the controller, [55] propose to synchronise the net-
work’s state information among multiple controllers. In [178], ResilientFlow is proposed
to address large-scale link failures in SDN. To this end, modules are deployed on every
switch so that switches may maintain their control channel i.e. the logical connection
to the controller. These modules are permitted to modify flow table entries to this end.

Rerouting Traffic
In addition, SDN provides the means to reroute traffic to react to network changes.
Consequently, this capability can also be used to mitigate the effect of node and link
failures by rerouting traffic so that the failed components are no longer used. This
method requires that there is sufficient link capacity available to deal with the additional
traffic on the remaining paths.

Heuristic Algorithms: A plethora of heuristic algorithms to dynamically reroute traffic
during runtime have been presented in literature. However, as safety-critical systems
generally require performance guarantees and often deterministic behaviour for certifi-
cation, such algorithms are not suitable. Hence only algorithms and implementations
with path computations performed prior to deployment will be discussed in the following
paragraphs.

The authors of [117] devise an algorithm that calculates reliable shortest end-to-end
paths. In this work, reliability is defined as "a link between any two source/destination
nodes with more shared edges", consequently the path with the highest number of shared
edges from all paths between source and destination is considered to be the most reliable
as the recovery time would be increased otherwise.

38

2.4 Addressing Incidents in Safety-Critical Systems

Backup paths are computed in advance in [5] to ensure network connectivity in the
presence of individual node or link failures. To this end, the adjacency matrix of the
failed component is used to calculate shortest paths using Dijkstra’s or the Bellman-
Ford [18] algorithm. However, creating node and link disjoint paths are not the focus of
this work. Yet to ensure that there is no single cause of failure, this is a key requirement.
Another closely-related concept are tuples. Tuples are lists of elements and can be used
to reduce the number of packet specification rules. If rules they match closely, the usage
of tuples has a predictable search time [34].

In [66], network design in response to link failures is considered. This work aims to
minimise the cost subject to capacity constraints using a stochastic approach. While
this work aims to minimise the number of shared links between standard and backup
paths, single causes of failure may still occur.

Policy-based configurations and interactions between various resilience mechanisms on
a high level of abstraction are introduced in [161] by the name of management patterns.
These patterns describe how mechanisms such as firewalls need to be reconfigured to
mitigate the effects of a detected network anomaly. As such, they are defined in terms of
roles that represent OpenFlow functionality, and are hence associated with management
functionality. Such management patterns are created offline prior to deployment, and
assigned to the respective application instances during runtime. The case study of this
work was monitoring web traffic and dropping traffic originating from malicious hosts.

Yen’s algorithm [184] provides a means to find k shortest paths. It has been used by
[147] to obtain feasible solutions to provide alternate paths when needed. The most
appropriate path for failure restoration is then selected based on a model of network
flows by performing network-wide, multi-objective performance optimisation. Yet the
authors aim to separate performance and correctness in this approach, while those two
properties are intertwined in critical systems.

In contrast, [91] propose to maximise rule sharing between flows to different endpoints to
limit ternary content-addressable memory (TCAM) usage. Subsequently, the rules are
distributed across the network using a heuristic approach to facilitate changes in network
policies. However, traffic requirements are not taken into account. Thus employing a
heuristic algorithm may result in some constraints being violated. In addition, the
capacity of the TCAM is only a significant problem for large networks or those with
many distinct flows.

Furthermore, [113] developed a framework that uses pre-computed paths for failure re-
covery to reduce the need for online computation. To this end, three different class
of heuristics are used. Firstly, variants of the blind geographic routing (BGR) and

39

Chapter 2: Background

k-shortest paths algorithms are used to obtain at least two edge-disjoint paths. Subse-
quently, those paths that satisfy requirements are selected for implementation. However,
it was found that BGR can generally only provide two paths i.e. only one backup path.
Secondly, shortest-path first algorithms are combined with a link cost function based
on link cost as well as link performance. Thirdly, machine learning algorithms have
been combined with search heuristics to obtain reactive search strategies. While this
strategy continuously improves results, it is computationally expensive and it cannot
be guaranteed that all requirements are satisfied during iteration.

In addition, [125] investigated resilience against single link failure while considering the
TCAM limit. This work compared two heuristics: forward local rerouting and backward
local routing. The former computes backup paths for each of the links in the primary
path. If a failure occurs, the path with the smallest number of additional switches is
selected. The latter only computes one backup path, but one that is both node and
link disjoint. For benchmarking, the authors also formulated an optimisation problem
for minimal cost (based on switch memory and bandwidth consumption of the backup
path).

Beyond that, the dynamic use of pre-defined responses to address security incidents
has also been studied previously e.g. [75, 63]. However, the focus of these works is
on selecting the most suitable response rather than obtaining candidate responses that
satisfy given requirements.

In [74], a framework is presented that abstracts network optimisation constraints based
on path properties. While near-optimal solutions can thus be obtained much more
quickly than using standard optimisation, excluding single causes of failure or consid-
ering timing constraints is complex in such a setup.

In his PhD thesis, [4] proposes an algorithm for resilience against single link/node failure
based on shortest paths using Dijkstra’s or the Bellman-Ford algorithm [18]. However,
this work does not consider traffic constraints.

Objective Functions: In addition to the heuristics presented above, various authors also
studied optimisation functions. There are several different optimisation goals that can
be identified from literature. These will briefly be described in the following paragraphs.

By far the most commonly studied objective function isminimum cost. For example, the
authors of [139] investigate failure recovery in a resilient SDN network by performing
run-time optimisation using iterative routing of feasible solutions until the minimum
cost is obtained. However, the only constraint in their formulation is the link capacity,
while traffic requirements are not taken into account.

40

2.4 Addressing Incidents in Safety-Critical Systems

A comparable approach is described in [13]. While not employing an iterative method,
the authors focused on minimising operational cost from the available shortest paths in
failure cases.

Along similar lines, [76] investigates a delay-constrained routing problem minimising
the cost while not considering resilience.

In [137], the minimum cost problem is extended by also taking the facility placement cost
into account i.e. where the traffic sources and demands are placed. While dynamical
changes of traffic routing and demands are considered, delay-sensitive traffic is not.

In contrast, objective functions that aim to minimise path length have been studied less
frequently. Among those, [147] focuses on minimising path length of packet forwarding
and switch memory usage under the constraint of forwarding table entries for non-
resilient networks. Failure recovery that minimises path length has been studied by
[27]. This study found the backup path to generally be at least twice as long as the
primary path.

Another objective function of interest for critical systems is minimum delay. Amongst
the works studying this problem, [28] minimises the delay of the flow with the highest
delay bound in the network using shortest path and greedy algorithms as well as iterative
versions thereof. This is done in the context of using deterministic network calculus
during the design phase of safety-critical systems.

Especially for large networks, optimising for a minimum amount of forwarding rules per
switch has been studied due to the impact on TCAM memory that also affects power
consumption. Publications [188] and [91] are examples of this approach. While the
former aims to automatically and optimally place rules for a distributed firewall func-
tionality, constrained by the maximum capacity of the switches, the latter investigates
fast-failover/multipath routing without rule migrations by optimising rule sharing.

In [8] the link utilisation is minimised. The authors use a fully polynomial time approx-
imation scheme rather than linear optimisation due to the faster runtime required for
deploying the mechanism online.

Beyond that, [88] introduce a method to find the maximum resilience under capacity
constraints and scaled rerouting which is then maximised. While the paper takes ca-
pacity constraints as well as serving all users into account, latency is not considered.
What is more, no hard guarantees are made with respect to resilience. Consequently,
the proposed approach is not suitable for critical systems.

41

Chapter 2: Background

Some authors have also compared the effect of different objective functions on network
performance. Amongst them, [16] used linear programming (LP) to compare various
objective functions from literature for the non-resilient case. For evaluation of the
respective functions, parameters for link utilisation as well as weighted mean queuing
and transmission delay were used. It was found that shortest path algorithms result
in a high maximum link utilisation. In the investigated cases, the occurring delay was
negligible because of high link capacity. However, their results are not applicable to
safety-critical systems, since they allow arbitrarily splitting one flow across different
paths through the network, which reduces resilience.

Additionally, [70] compared various heuristic objective functions for their effect on link
utilisation and average path length. The investigated functions are either based on cost
(including an extension to Fortz’ algorithm [57]) or on link utilisation and have been
analysed both for single-link failure resilience and for the non-resilient case. This work
also found that shortest paths algorithms significantly increase link utilisation, while
those heuristics that take link utilisation into account yield longer paths, on average.
Comparable effects have been reported for both the resilient and the non-resilient case.
However, the effect on the timing behaviour of the traffic demands has not been studied.

2.5 Summary

This chapter has highlighted the necessity of using new technologies to address safety
and security issues in critical systems. The key constraints affecting such systems (avail-
ability, resilience, timing/predictability) have been presented.

Furthermore, the key ideas behind SDN as well previous efforts to use SDN in critical
systems have been described for both data and control plane. The differences between
traditional networking and SDN have been illustrated.

In addition, failure recovery from both intentional (i.e. attacks) and unintentional
failures has been discussed. Here, the four basic steps of system monitoring, anomaly
detection, impact assessment and effect mitigation to address failures in safety-critical
systems have been described. A detailed literature review has been performed.

However, important research topics remain that are not addressed in current literature.
Firstly, to the best of the author’s knowledge, no comprehensive comparison between
different algorithms to obtain alternate paths that mitigate network failures has been
performed.

42

2.5 Summary

Secondly, published research only focuses on some of the constraints that affect safety-
critical systems. However, to provide safety-critical networks, all aspects need to be
considered to prevent traffic loss.

Thirdly, the safe rollout of configuration changes in safety-critical systems has not been
studied in detail.

Yet without addressing these issues, it is not possible to react to component failures by
dynamically adapting the network. However, this capability is essential to address the
increasing risk that safety-critical systems face through the exposure to cyber threats.

Consequently, this thesis will study these topics in detail to address these challenges.
More specifically, it will be investigated how SDN can enable safety-critical networks to
react dynamically and safely to failures.

43

Chapter 3

System Model

This chapter provides information on how network configurations can be obtained in
safety-critical systems. The first section in this chapter, section 3.1 provides the math-
ematical model used in this thesis. Subsequently, the network model, as well as cor-
responding constraints and the formulation of optimisation functions is presented in
section 3.3. Furthermore, the algorithms for two heuristics used for comparison with
optimisation functions are provided.

3.1 General System Model

This section develops the overall system model used in this thesis. In addition, it
introduces the concept of appropriateness, where the severity of a reaction is matched
to that of an incident.

3.1.1 Basic System Model
As described in the previous chapter, in order to react to failures appropriately, the
following components are necessary:

• Sensing

• Anomaly detection

• Impact Assessment

• Mitigation

This corresponds to the standard implementation of a closed-loop control system as
depicted in figure 3.1. For a network within the context of safety-critical systems, the

Chapter 3: System Model

plant corresponds to the network, while the control parameters are network properties
such as latency, resilience and resource usage. The sensing element corresponds to SDN
controllers and potentially additional intrusion detection and/or IVHM. Finally, the
possible control input consists of network configurations, as well as security responses
such as blacklisting, increased logging frequency etc. This relationship is depicted in
figure 3.2.

Disturbances

Sensor

Controller Plant OutputReference
value

Figure 3.1: Closed-loop control system

Faults &
Attacks

Sensing

(SDN controllers,

intrusion detection,
IVHM)

Performance
requirements

Control

(Rerouting,

security responses)

Plant

Figure 3.2: System overview

For safety-critical systems, two properties are of interest to determine the system’s state:
safety and security. Consequently, the system can be in one of the following four states
at any given time:

• s1: Safe and secure

• s2: Safe and not secure

• s3: Not safe and secure

• s4: Not safe and not secure

46

3.1 General System Model

State transitions can occur either because of component failures or because of attacks.
It should be noted that security incidents can have an impact on safety, e.g. by causing
a buffer overflow at a network switch.

Consequently, the system is modelled as a Finite State Machine as a tuple (Σ, S, s0, δ, F)
with the state-transition function δ defined as follows:

δ : S × Σ→ S (3.1)

where Σ is the input set and S is the set of states so that s1, s2, s3, s4 ∈ S with the
initial state s0 ∈ S. It is assumed that the system is safe and secure upon initialisation,
i.e. s0 = s1. Finally, the set of final states is denoted by F .

The relation between the system states and the impact on the system is shown in
figure 3.3. Here, the colours denote the effect on the system. In the context of safety-
critical systems, lack of security is considered to be less critical than lack of safety as
long as critical functions are not negatively affected.

Not Safe

Not Safe

Security

S
a
fe
ty

Secure

Not Secure

Safe

Secure

Safe

Not Secure

Not Safe

Not SafeSecure

Not Secure

Safe

Secure

Safe

Not Secure

Figure 3.3: Possible system states

47

Chapter 3: System Model

3.2 Appropriateness

It is clearly undesirable that a minor change within the network state s1 results in a com-
plex reconfiguration of the entire network. Consequently, the term of appropriateness
is defined here.

In order to avoid minor traffic delays in less critical systems affecting safety-critical
systems, it is necessary for the severity of the response to be proportional to the severity
of a detected anomaly as follows:

m ∈M ∝ s ∈ S (3.2)

whereM is the set of possible mitigations and S the possible network states.

First of all, the impact of the detected anomaly on the network needs to be established.
To this end, the network state s is considered to be a tuple that consists of a safety
state J and a security state I.

The safety state J is composed as follows:

J =



µ∆t
|da|
|da(s)|
cij

cv


, (3.3)

where µ∆ is the average time delay experienced by the flows, da are affected non-critical
flows, while da(s) are affected critical flows. cij and cv are the link and switch capacity,
respectively.

To complement this, the security state I consists of

I =


Integrity
Privacy

Trustworthiness

 . (3.4)

While common security models also include availability, this factor has already been
included in the safety state. Consequently, it is not necessary to consider it again.
The safety state J is only applicable to the data plane, as safety-critical traffic can be
affected here. In contrast, the security state J exists separately for the data, control
and management plane, as security incidents on each plane have different ramifications
on the network state. Consequently, as the impact of a security incident is different

48

3.2 Appropriateness

depending on which plane it occurs on, the corresponding subset of mitigation methods
m, differs, demanding separate treatment. In addition, a safety-related incident can
also have an impact on the security state. However, as mentioned before, this impact
is considered to be less significant that security-related incidents that impact safety.

The same considerations that have been deliberated above for detected anomalies also
apply for the reaction. However, unlike the classification of anomalies which are based
on the measured network states, the classification of reactions can only be based on the
potential impact. Here it is necessary to also include a feedback loop to make sure that
the impact estimation is as accurate as possible.

3.2.1 Effect on SDN Planes
As this thesis considers a SDN network, these states themselves apply to the three
different planes: data, control and management plane. This will be detailed in the
following paragraphs.

Firstly, both anomaly and mitigation can have impact on the data plane, e.g. because a
path has to be rerouted across a slightly more used link. While configuration templates
guarantee that the delay bounds hold, increased delays are possible. In addition, re-
source usage might also be affected. This gives the impact of a mitigation effort Em on
the data plane P as a tuple of queuing delay as well as link and switch capacity. Besides,
in in-band control networks, the bandwidth of the communication between controller
and switches also needs to be taken into account, yielding

E(d) =


∆t
cij

cs

bwof

 . (3.5)

Thirdly, the control plane is also affected by the mitigation effort because forwarding
table entries need to be modified. Consequently, the effect on the control plane can be
described by the cardinality of the set of flows Dr affected by the reconfiguration and
by the cardinality of the set of new forwarding tables Rr that need to be installed:

P(c) =
(
|d|
|r|

)
. (3.6)

Finally, the effect on the management plane is more complex to describe. Here, the
removal or addition of a component has an impact on the time tc, complexity lc, and
amount of traffic bwc that needs to be exchanged to reach a consensus, as well as the

49

Chapter 3: System Model

impact on resilience R in the management plane. This gives

P(m) =


tc

lc

bwc

R

 . (3.7)

Notwithstanding, to ensure that the reconfiguration is appropriate to the current net-
work state, the possible reactions are divided into four different subsets, corresponding
to the four basic network states (s1, s2, s3, s4) above. Consequently, while only minor
modifications are permissible when the system is safe and secure (i.e. in state s1), with
an increasingly degrading network state more and more reactions become available, until
the full reaction set is permissible when the network is neither safe nor secure (s4).

Formally, this can be described as follows:

m =



n1

1

 ∈M1 ⊆M if S = s1n2

1

 ∈M1 +M2 ⊆M if S = s2n3

1

 ∈M1 +M2 +M3 ⊆M if S = s3n4

1

 ∈M if s = s4

(3.8)

Consequently, any reaction m can be selected from a subset consisting of n reactions
forming subsets (M1..4). While designing reactions, the expected impact Emexpected has
to be established on the parameters described above. Subsequently, they can be matched
into the corresponding reaction subsetM.

This ensures that the mitigation efforts are proportional to the impact of the detected
anomaly, as required by equation (3.2).

Thus, we obtain associated properties for each such mitigation m. The potential impact
P with respect to improvements to safety Psafe and security Psec so that

P =
(
Psafe

Psec

)
.

50

3.3 Problem Formulation

3.3 Problem Formulation

After describing the modelling of the overall system states in the previous section, the
model of the plant will be detailed. For the purpose of this thesis, we consider the plant
to be a safety-critical network. The network model used in the remainder of this thesis
in section 3.3.1.

3.3.1 Network Model
In this work, networks are modelled as a graph G = {V,E} that consists of nodes V
that correspond to the network switches. Each node v ∈ V has a throughput cv as well
as a number of entries to the forwarding table rv associated with it. The links in the
network e(i, j) ∈ E are considered to be directed edges from switch i to switch j with
i, j ∈ V . Each such link has a corresponding capacity cij and cost wij of using this link.
Generally, the associated properties are considered to be independent, so that cij 6= cji

and wij 6= wji.

This network is used to transport the traffic demands d ∈ D from a source s connected
to switch a ∈ V to a destination t connected to switch b ∈ V . Each such demand
consists of a required bandwidth bwd as well as the maximum delay ∆tmax d that can
be tolerated until the traffic must have arrived at its destination. In addition, kd node1

and link-disjoint paths must be provided, where kd ≥ 2. This ensures that no single
cause of failure in the network causes the traffic to be lost.

However, as sources/destinations cannot be easily connected to more than one switch, it
is assumed that failures of those nodes are mitigated through other means, e.g. several
instances of critical computers. Such means are already incorporated in D and hence
they do not need to be considered separately in the model. Consequently, each demand
is a tuple that consists of the following components: d = (ad, bd,bwd,∆tmaxd, kd).

In addition, three properties of the network need to be taken into account. Firstly,
the memory on a SDN switch is limited [91]. Consequently, only a limited number
of forwarding rules rmax can be stored at each switch. The number of rules r stored
also affects the power consumption and hence heat that needs to be dissipated, which
is an important consideration for mobile platforms such as airplanes or other vehicles.
Secondly, each switch can only handle a limited number of traffic at any given time.

1v 6= a, b

51

Chapter 3: System Model

This results in each switch having a maximum capacity cmax. Thirdly, a similar limit
applies for links, giving the maximum bandwidth bwmax for each link.

Thus a software-defined network consisting of a number of network switches, with a
given topology and links between them is considered. It is assumed that traffic de-
mands are known beforehand and do not change dynamically during operation. Hence,
the following demand set consists of the maximum traffic that needs to be served con-
currently. Across this network a number of demands needs to be routed. This network
consists of network switches s ∈ S, with the number of forwarding rules rs and the
throughput of the switch cs. The network links (i, j) ∈ L have a capacity c[i, j] of the
link (i, j) and cost a[i, j] of using this link. This network is used to satisfy the demands
contained in D. As this thesis is concerned with safety-critical traffic, all demands in
the set need to be met by the network.

Beyond the requirements originating from the traffic demands, three constraints apply.
Firstly, the maximum number of forwarding rules rmax that may be placed at each
switch. Secondly, the maximum capacity cmax that each switch can handle. Thirdly,
the maximum bandwidth bwmax of each link.

Several variables need to be introduced to account for the routing of each such demand.
The node sequence Pr,d = {e(a,m), . . . , e(n, b)} denotes the r-th disjoint path through
the network that the respective traffic demand has to transverse. Here, r ∈ Rd =
{1, . . . , kd} enumerates the number of resilient paths required.

Beyond that, the binary flow variable x[r, d, i, j] ∈ X indicates whether a specific link
is used by the demand on its r-th path:

x[r, d, i, j] =

1 (i, j) ∈ Pr,d

0 (i, j) /∈ Pr,d

(3.9)

Multipath routing would reduce the available resilience, as fewer disjoint paths are thus
available. Consequently, it is not considered in this model.

For safety-critical and real-time traffic, another important factor is the delay experienced
by a flow. The delay model proposed in this thesis follows the definition described in
[73] and uses

∆t =
∑

ei,j∈E

(tpp + tt)
∑
v∈V

(tpr + tq[d]) (3.10)

i.e. the sum of propagation tpp, transmission tt, processing tpr and queueing tq. Gener-
ally, the most significant factor is the queueing delay, while propagation, transmission
and processing delay depend on fixed, physical properties of the respective hardware.

52

3.3 Problem Formulation

To linearise the multiplication of the variable x to consider queueing delay, an auxiliary
variable y is introduced so that it will take the following values depending on whether
the flow is placed across a particular link:

y[r, d, i, j] =


∑

d∈D

∑
r∈Rd

x[r,d,i,j]·bwd

cmax(i) (i, j) ∈ Pr,d

0 otherwise
(3.11)

Here, the worst-case of all paths being served concurrently is used. This ensures that
there is no violation of the real-time traffic in any possible combination of applied
configurations. Hence the queueing delay experienced by a flow can be determined

∆tq[r, d] =
∑

e(i,j)∈Pr,d

y[r, d, i, j] (3.12)

by summarising the values of y over all links that the flow is transversing.

3.3.2 Constraints
As this network needs to transport safety-critical traffic, there are several constraints
that apply to the problems detailed above. Firstly, to ensure resilience all demands have
to be routed k times

∀d ∈ D :
∑

r∈Rd

∑
e(da,j)∈E

x[r, d, ad, j] = kd (3.13)

from the node a to which the source is attached. The same applies to all requests that
need to arrive at the node b that is connected to the destination:

∀d ∈ D :
∑

r∈Rd

∑
e(i,db)∈E

x[r, d, i, bd] = kd. (3.14)

To guarantee that all flows are forwarded between those endpoints, incoming flows and
those originating at the switch need to be forwarded:

∀r ∈ Rd,∀d ∈ D,∀v ∈ V :
∑

e(j,v 6=bd)∈E

x[r, d, j, v] =
∑

e(v 6=ad,j)∈E

x[r, d, v, j]. (3.15)

This does not apply to flows that are destined for the respective switch. Furthermore,
the maximum available capacity cmax at the node

∀v ∈ V :
∑

r∈Rd

∑
d∈D

∑
e(v,j)∈E

x[r, d, v, j] · dbw≤cmax (3.16)

53

Chapter 3: System Model

and the maximum capacity bwmax at each link

∀e(i, j) ∈ E :
∑

r∈Rd

∑
d∈D

x[r, d, i, j] · dbw ≤ bwmax[i, j] (3.17)

must be less than the combined bandwidth demands of all flows using the given com-
ponent. Formally, as this model considers directed links, the capacity limit applies to
e(i, j) and e(j, i) independently.

Additionally, as has been detailed above, the TCAM in the switches is limited. Hence,
the number of outgoing flows needs to be less than the maximum number of forwarding
table entries that can be contained in the memory:

∀v ∈ V :
∑

r∈Rd

∑
d∈D

∑
e(v,j)∈E

x[r, d, v, j] ≤ rmax. (3.18)

Beyond that, the delay experienced needs to be less than the delay ∆tmax d permissible
for this flow: ∑

e(i,j)∈E

y[r, d, i, j] ≤ ∆tmax d. (3.19)

Furthermore, as resilience is a key requirement for safety-critical systems, equation (3.20)
guarantees that at most one flow uses a specific link, thus ensuring that no links are
shared between resilient flows:

∀d ∈ D,∀e(i, j) ∈ E :
∑

r∈Rd

x[r, d, i, j] +
∑

r∈Rd

x[r, d, j, i] ≤ 1, (3.20)

Likewise, equation (3.21) guarantees that no switches are shared between resilient flows,
safe the origin and destination. As mentioned above, failures of ad and bd need to be
addressed through the demand set.

∀d ∈ D, v ∈ V :
∑

r∈Rd

∑
e(v,j)∈E

x[r, d, v, j] ≤

kd if v ∈ {ad, bd}}

1 otherwise
(3.21)

All resilience constraints are derived from the application of SDN to safety-critical traffic.
In equation (3.20), the pessimistic case of a physical failure affecting both flow directions
is assumed. Yet where applicable, different formulations may easily be made.

3.3.3 Optimisation Problem
As described in chapter 2, there has been no detailed study to date that compares various
algorithms to obtain routings to mitigate the effects of network component failures. To

54

3.3 Problem Formulation

ensure that safety-critical demands are satisfied, it is necessary that the constraints as
addressed above (equation (3.13) until equation (3.21)) are considered. Consequently,
this gives the following optimisation problem:

minimize f

s.t. ∀d ∈ D :
∑

r∈Rd

∑
e(da,j)∈E

x[r, d, ad, j] = kd

∀d ∈ D :
∑

r∈Rd

∑
e(i,db)∈E

x[r, d, i, bd] = kd

∀r ∈ Rd, ∀d ∈ D,∀v ∈ V :
∑

e(j,v 6=bd)∈E

x[r, d, j, v] =
∑

e(v 6=ad,j)∈E

x[r, d, v, j]

∀v ∈ V :
∑

r∈Rd

∑
d∈D

∑
e(v,j)∈E

x[r, d, v, j] · dbw≤cmax

∀e(i, j) ∈ E :
∑

r∈Rd

∑
d∈D

x[r, d, i, j] · dbw ≤ bwmax[i, j]

∀v ∈ V :
∑

r∈Rd

∑
d∈D

∑
e(v,j)∈E

x[r, d, v, j] ≤ rmax∑
e(i,j)∈E

y[r, d, i, j] ≤ ∆tmax d

∀d ∈ D,∀e(i, j) ∈ E :
∑

r∈Rd

x[r, d, i, j] +
∑

r∈Rd

x[r, d, j, i] ≤ 1

∀d ∈ D, v ∈ V :
∑

r∈Rd

∑
e(v,j)∈E

x[r, d, v, j] ≤

kd if v ∈ {ad, bd}}

1 otherwise
(3.22)

In the problem statement above, f can be one of the following five different primary
objective functions: minimum cost as provided in equation (3.23), minimum queueing
delay as given equation (3.24), minimum number of forwarding table entries described in
equation (3.25), maximum resilience as provided in equation (3.26) as well as a variant
on minimum cost listed in equation (3.27) from literature. In this case, cost is calculated
as a function of link utilisation. The resulting routings are investigated and compared
in the following chapter.

The optimisation functions f can be expressed as follows with the minimum cost as the
sum of the costs of using a specific link with the bandwidth required:

min
x

∑
r∈R

∑
d∈D

∑
e(i,j)∈E

we(i,j) · x[r, d, i, j] · dbw, (3.23)

55

Chapter 3: System Model

and the minimum queueing delay as

min
x

∑
d∈D

∆t. (3.24)

Beyond that, the minimum number of forwarding table entries can be established from
the number of flows leaving the respective switches:

∀v ∈ V min
x

∑
d∈D

∑
r∈R

∑
e(v,j)∈E

x[r, d, v, j], (3.25)

and the maximum resilience as
max

∑
d∈D

dk. (3.26)

Fortz et al. [57] proposed an objective function for minimum link usage that uses the
link utilisation to derive cost so that links become costlier with increased link usage as
follows:

we(i,j) =



1 for 0 ≤ x < 1/3
3 for 1/3 ≤ x < 2/3
10 for 2/3 ≤ x < 9/10
70 for 9/10 ≤ x < 1
500 for 1 ≤ x < 11/10
5000 for 11/10 ≤ x <∞

(3.27)

Otherwise, the objective function is identical to equation (3.23).

There may be more than one solution that provides the same value for the primary
objective functions given above. To ensure that the comparison with respect to the var-
ious performance characteristics is fair, secondary optimisations need to be performed.
While the objective functions detailed above are being used again here, three additional
secondary objective functions need to be introduced to cover all performance character-
istics.

The bandwidth of the links used is minimised as follows:

min
e

∑
r∈R

∑
d∈D

x[r, d, i, j] · dbw. (3.28)

A similar formulation is used for the bandwidth used at the switches:

min
v

∑
r∈R

∑
d∈D

x[r, d, v, j] · dbw. (3.29)

56

3.3 Problem Formulation

Additionally, the path length can be minimised thus:

min
d

∑
r∈R

∑
eij ∈ Ex[r, d, i, j]. (3.30)

The formulation for minimum cost, minimum delay and minimum number of forwarding
table entries follows equation (3.23), equation (3.24) and equation (3.25) respectively.
In addition to the constraints given above, the result of the primary objective function
is given as a constraint so that for both minimum cost functions, the constraint is given
as
∑
r∈R

∑
d∈D

∑
e(i,j)∈E

we(i,j) · x[r, d, i, j] · dbw = min
x

∑
r∈R

∑
d∈D

∑
e(i,j)∈E

we(i,j) · x[r, d, i, j] · dbw,

(3.31)
for the minimum delay as ∑

d∈D

∆t = min
x

∑
d∈D

∆t, (3.32)

for the minimum number of forwarding table entries as

∀v ∈ V
∑
d∈D

∑
r∈R

∑
e(v,j)∈E

x[r, d, v, j] = ∀v ∈ V min
x

∑
d∈D

∑
r∈R

∑
e(v,j)∈E

x[r, d, v, j], (3.33)

and for the maximum resilience as
∑
d∈D

dk = max
x

∑
d∈D

dk. (3.34)

3.3.4 Heuristics
For comparison with the optimisation functions of the previous section, four heuristics
were investigated: the shortest path and Dijkstra algorithm commonly used for routing.
While a variety of heuristics for routing have been investigated in literature, most are
based on Dijkstra’s algorithm (cf. section 2.4) and only include minimal adaptations to
suit a specific application.

Hence, two simple heuristics that focus on some aspects of critical systems were addi-
tionally investigated. The first considers the network capacity and is abbreviated as
Heur. Capa. in figures. It is based on Dijkstra’s algorithm until the link capacity is
exceeded, at which point that link can be no longer used. If no route can be found using
links with capacity available, complete topology becomes available again.

57

Chapter 3: System Model

In contrast, the second heuristic (Heur. EDF in figures) implements a simple earliest
deadline first (EDF) schedule, where the path with the smallest resulting latency is
selected for placement first and the placement of successive flows must not violate the
requirements of the previous ones. For this, all loop-free paths are calculated and the
one with the smallest latency selected. The complete algorithm for the EDF heuristic
is provided by algorithm 3.1.

These algorithms are used to calculate two paths, where the second one is link-disjoint
from the first.

Listing 3.1: Earliest-Deadline First (EDF)

1 # so r t demands by timing requirement
2 sorted_demands=sort_demands_by_timing ()
3 # i t e r a t e over a l l demands
4 f o r d in sorted_demands :
5 # obta in a l l loop−f r e e paths between
6 # source and de s t i n a t i on node :
7 get_al l_simple_paths (source , d e s t i n a t i on)
8 # ca l c u l a t e the r e s u l t i n g l a t ency o f a l l
9 # paths based on the l i n k usage :

10 ca l cu l a t e_ la t ency (l ink_usage)
11 # order the paths by ascending
12 # latency :
13 ordered_paths=sort_by_latency ()
14 # make lowest l a t ency path
15 # de f au l t path and next
16 # backup path :
17 de f au l t=ordered_paths [0]
18 backup=ordered_paths [1]
19 # add s e l e c t e d paths to l i n k
20 # usage :
21 update_link_usage (de fau l t , backup)

Listing 3.2: Capacity-constrained heuristic

1 # i t e r a t e over a l l demands
2 f o r d in demands :
3 # obta in s ho r t e s t path between
4 # source and de s t i n a t i on node ,
5 # with standard topology
6 de f au l t=get_shortest_path (topo , source , d e s t i n a t i on)
7 # ca l c u l a t e backup path
8 # remove p from topology
9 topo2=topo−de f au l t

10 backup=get_shortest_path (topo2 , source , d e s t i n a t i on)
11 # add s e l e c t e d paths to l i n k

58

3.3 Problem Formulation

12 # usage :
13 update_link_usage (de fau l t , backup)
14 # remove l i n k from topology i f capac i ty
15 # i s exceeded :
16 i f l ink_usage [l i n k]>=max_capacity :
17 topo−=l i n k
18 topo2−=l i n k

3.3.5 Summary
This chapter presented the network model used. Subsequently, both general networking
constraints (demand placement, flow continuity, capacity limits of links and switches)
and constraints specific to the use of SDN in critical systems (TCAM capacity, resilience,
delay bound) were discussed.

In addition, the formulation of five primary objective functions (minimum cost, mini-
mum queueing delay, minimum number of forwarding table entries, maximum resilience
as well as a variant on minimum link utilisation) has been given.

For comparison with these objective functions, two heuristic algorithms (EDF and con-
strained capacity) are introduced and discussed. Both are based on Dijkstra’s shortest
path algorithm, but either route the demands with the smallest delay bound first or
remove links from the network if they are exceeding capacity.

59

Chapter 4

Generating Configuration Templates

In order to find the most suitable way to generate network configurations, the effect
of different algorithms and objective functions on network behaviour has to be inves-
tigated. While heuristics can provide results quickly and require fewer computational
resources than optimisation, results from heuristics are harder to predict. Consequently,
this chapter investigates whether quality criteria (cf. section 4.1) can be satisfied and
whether hard constraints are violated. This allows to find which algorithms are suitable
to calculate resilient paths in safety-critical systems.

To this end, the analysed network parameters are detailed and an overview about the
network topologies and traffic characteristics of the studied networks is provided.

Subsequently, the results of using the heuristic methods and optimisation functions
presented in section 3.3 to obtain network configurations are provided. Next, a compar-
ison between the results obtained through heuristics and optimisation is performed and
the main results summarised. This chapter concludes with describing how the network
configurations calculated can be used to react to detected network failures in section 4.6.

4.1 Parameters Investigated

In this chapter, the effect of the following parameters (ordered alphabetically) is com-
pared:

• Bandwidth of

– Links

– Switches

Chapter 4: Generating Configuration Templates

• Calculation time

• Cost

• Delay

• Forwarding table entries

• Memory usage during calculation

• Path length

The bandwidth used by deploying various routing algorithms has been investigated,
because it provides information on how well they could scale to future demands, which
may require more bandwidth.

To a limited degree, the same is also true for the calculation time, however the O values
are generally known and provide sufficient information on complexity. However, it is of
interest to provide an insight into whether such calculations can be performed online or
need to be performed offline prior to deployment.

Small variations in cost are generally negligible for critical systems, where the focus is
being placed on safety. Notwithstanding, significant differences do matter, hence it is
studied here.

Of greater importance is the delay that the traffic demands experience. As real-time
traffic is constrained by delay bounds, whether or not they can be achieved is an im-
portant selection criterion for a candidate algorithm.

The usage of the TCAM memory by the number of forwarding table entries has been
investigated due to its effect on power consumption [188]. On mobile safety-critical
networks such as on-board aircraft or cars, heat dissipation caused by this is a significant
issue. For the analyses below, it has been assumed that up to 8,000 forwarding rules
can be contained in each SDN switch, as current switches can support between 2,000
and 20,000 rules [77, 90, 89, 166].

The rational behind looking into memory usage is to determine whether available re-
sources are sufficient for onboard calculation. As computing resources – like all elements
of critical systems – have to undergo a stringent and lengthy certification procedure,
they are generally not as powerful as contemporary consumer goods. As mentioned
above, heat dissipation is an additional constraint to putting very powerful computing
resources in mobile systems or not easily accessible systems.

In contrast, path length is investigated because longer paths make it more likely that
a flow is affected by any failure, under the assumption that components have similar

62

4.2 Networks Under Study

failure probabilities. Furthermore, it also provides an insight into the distribution of
demands across the network and whether considering delay bounds affects this.

This chapter is structured as follows: section 4.2 describes the key features of the net-
work topologies under study, while the comparison between heuristics is given in sec-
tion 4.3. Subsequently, the different objective functions for optimisation are compared
in section 4.4. This chapter concludes with a comparison between the most efficient
objective function and the most suitable section 4.5.

Most of the following figures depicting results are presented as boxplots of the respective
algorithms. These plots depict the mean as a solid line while quartiles and whiskers indi-
cate statistical distributions. Outliers are shown as dots. When there was no difference
between different runs (e.g. for memory usage), dotplots are provided.

If the results have been comparable across different network topologies, the results of
only one network will be presented hereafter. The results of all calculations are provided
in appendix C.

4.2 Networks Under Study

To compare the effects of algorithm performance, several different network topologies
with varying numbers of demands, links and nodes were investigated. Of those, only
the avionics network is used for safety-critical traffic. The remaining topologies are
frequently used in literature.

4.2.1 Avionics Network
The avionics network used hereafter is based on the description in [33]. It has been de-
signed to represent the onboard network connecting the flight-critical systems of a mod-
ern transport category airplane. The main properties of this network are summarised
in table 4.1, table 4.2, and table 4.3. From these values, the bandwidth requirement per
flow is defined as

∀d ∈ D : dbw = Framelength
bandwidth allocation gap(BAG) (4.1)

The number of virtual local area networks (VLANs) does not match between the tables
due to multicast, i.e. the same demand being replicated and routed differently. Hence,
the corresponding distribution is used across the number of demands investigated. For
the following experiments, the number of demands has been increased in regular intervals
between 98 and 1868, i.e. the full demand set as provided in [33]. This allows to study
the effect of varying demand sets. As the maximum bandwidth could not be obtained

63

Chapter 4: Generating Configuration Templates

from literature, it has been assumed that both links and switches can use up to 109 Bit
i.e. one Gigabit.

Table 4.1: Number of Virtual LANs from Source a to Destination b [33]

a/b 1 2 3 4 5 6 7 8
1 71 78 34
2 72 77 34
3 90 212 35 42 52
4 97 134 37 35 48
5 80 72 64
6 82 61 52
7 52 47 59 67
8 51 45 43 52

The latency requirements in table 4.4 are based on the information for flight data
recording in [49, AMC CAT.IDE.A.190], which gives a good overview of the expected
time criticality.

4.2.2 Standard Networks
As mentioned above, four network topology instances that are commonly used in lit-
erature (ATLANTA, Di-Yuan, DFN and NOBEL-GERMANY) were investigated with
the relevant information (traffic demands, link capacity, link cost) obtained from the
SND-LIB [134] library in addition to the avionics network described in the previous
section. This database contains several network instances, each consisting of the re-
spective topology, network demands as well as link capacities and cost associated with
using those links.

The main properties of these instances are provided in table 4.5, while the network
topologies are depicted in figure 4.1.

Table 4.2: Bandwidth Allocation Gap

BAG Number
ms of VLANs
2 20
4 40
8 78
16 142
32 229
64 220
1280 255

Table 4.3: AFDX Frame Lengths [33]

Frame length Number
(bytes) of VLANs
0-150 561
151-300 202
301-600 114
601-900 57
901-1200 12
1201-1500 35
>1500 3

64

4.3 Heuristics

Table 4.4: Probability Distribution for ∆t = ∆tmax[d] for Critical Networks

∆t 125 25 500 1000 2000 4000 8000
P(∆t) in percent 2.5 7.5 15 50 15 7.5 2.5

However, these topology instances do not consider resilient routing. This imposes ad-
ditional demands on the network as more traffic has to be transported. Consequently,
the highest link capacities available (with the corresponding costs) were selected. As
these traffic instances do not include a resilience requirement, dk = 2 has been assumed
for the minimisations and heuristics and dk ≥ 2 for the maximum resilience objective
function.

Likewise, this data set does not include values for the maximum permissible delay. To
the best of the author’s knowledge, no data with respect to common latency distribution
has been published, most likely as it is either proprietary for current or unknown for
future applications. Hence, it has been assumed that it follows a Gaussian distribution,
as very little traffic such as warnings of imminent danger is highly critical. Low priority
traffic such as temperature readings are equally rare.

For the following studies, this has been set to have the parameters of µ = n · |D|, n =
{1 . . . 10} and σ = |V | for the different topologies, with ten iterations each. If at least one
problem for a given µ has been infeasible, the remaining problems were not considered.
This also allows to study the effect of varying proportions of extremely time-critical
traffic. If results do not differ significantly between the networks under study, only
results of one network are presented henceforth. The remaining results can be obtained
from appendix C.

Table 4.5: Network Parameters

Network Nodes Links Demands
Avionics 8 15 98-1869

ATLANTA 15 22 210
DFN 10 45 90

Di-Yuan 11 42 22
NOBEL-EU 28 41 200

PDH 11 34 244

4.3 Heuristics

As a benchmark, the shortest path and Dijkstra algorithm of Python’s networkx soft-
ware package were used. Additionally, the two heuristics, Heur. Capa. and Heur. EDF
as defined in section 3.3.4 were implemented. Those were selected, as the capacity and

65

Chapter 4: Generating Configuration Templates

(a) avionics (b) ATLANTA (c) DFN

(d) Di-Yuan (e) Nobel-Germany (f) PDH

Figure 4.1: Network topologies

latency requirements were observed to be frequently violated by applying the Dijkstra
algorithm. Since heuristics – unlike optimisation – do not guarantee that all constraints
are satisfied, the adherence to constraints is studied for these algorithms.

In this section, only the results for the avionics network and key results from other
networks will be presented in the main part of this thesis. The complete results for
heuristics for all networks under study can be found in appendix C.1.

Since the latency requirements have been randomly generated (cf. section 4.2), ten
problem instances were created and solved for each network.

The key results of this section have been published in [142] and [144]. Both publi-
cations only discusses a subset of the performance characteristics given in this thesis.
Crucially, [142] does not include results on constraint violations by heuristics. While
this is included in [144], this paper only includes comparisons for link usage and TCAM
memory usage. Moreover, the papers only gives a very brief summary of the findings,

66

4.3 Heuristics

while this thesis provides a systematic and detailed discussion and also provides the
results for a more different network. Finally, both papers also include a comparison
with an objective function and do not exclusively focus on the comparison of heuristics.
Consequently, all of the text contains significant differences and changes compared to
the papers.

4.3.1 Bandwidth
Studying the used bandwidth is interesting for two reasons: firstly, it allows to analyse
resource usage. Secondly, it permits to judge how many resources remain available so
that the network can adapt to future needs with different demand sets. As mentioned
above, the bandwidth used has been investigated separately for switches and links.

The resulting switch usage is shown in figure 4.2, while the link usage for the avionics
network is depicted in figure 4.3. With respect to the link usage, there is very little
difference between Dijkstra and constrained capacity heuristics. This is because the
maximum capacity is not reached, consequently the link is not removed from the network
and thus, the Dijkstra element of the algorithm is dominant.

In contrast, the minimum link utilisation for the EDF algorithm is about 27.3% higher
while the maximum link utilisation is 4.5% lower for 98 demands. This ratio rises to
39.9% and 10.1% for 1869 demands, respectively. Consequently, the higher number
of demands with according delay bounds limits the difference between minimum and
maximum link utilisation.

With respect to the switch usage, there is again no difference between Dijkstra and
constrained capacity heuristics. Yet in this case, the EDF heuristic yields higher switch
utilisation (between 71.7% to 36.1% for the minimum and 3.5% to 7.7% for the maximum
with increasing number of demands). This is most likely as the algorithm only considers
the queueing delay at the link, consequently a less congested link is selected. However,
this does not reduce the switch utilisation as the traffic at the switch remains the same.
There, avoidance of congested links means that less critical traffic has to accept longer
paths, with in turn results in a higher amount of traffic that has to be handled at the
switches.

In this network, the maximum bandwidth is not reached by any of the algorithms,
consequently no capacity constraints are violated. In addition, while the EDF heuristic
displays a slightly higher maximum bandwidth used at the switches, the maximum
link usage is slightly higher for the other two heuristics. Hence, the difference between
heuristics with respect to utilised bandwidth is not significant to prefer one over the
other for the generation of configuration templates.

67

Chapter 4: Generating Configuration Templates

0.00

0.05

0.10

0.15

0.20
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Sw
itc

h
ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.2: Switch utilisation using heuristics for the avionics network

4.3.2 Cost
Figure 4.4 shows that the cost varies between the methods. The shortest paths are
more expensive to use for the network topologies investigated, and especially penalised
in the SND-LIB. Consequently, as the EDF heuristic limits the number of flows on those
links by placing only the most critical demands there, this algorithm generates lower
cost. It should be noted that for the avionics network this effect could be observed even
though the cost of using any one link are identical. Moreover, as the ATLANTA network
includes a link that comes close to its capacity limits, the capacity constrained algorithm
gives a cost that is about 1.5% lower than that using the EDF algorithm. However, it
is interesting to observe that Dijkstra and lim. capacity do not show variance between
the different runs for ATLANTA and Nobel-Germany networks.

68

4.3 Heuristics

0.0

0.2

0.4

0.6

0.8
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Li
nk

ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.3: Link utilisation using heuristics for the avionics network

While small variations in cost are generally negligible for critical systems, significant
differences do matter. However, the differences in resulting cost were small, consequently
there is no specific preference of any heuristic algorithm with respect to this aspect.

4.3.3 Time Delay
The time delay ∆t of the PDH network only differs in the resilient case. Here, the EDF
yields a lower delay for some of the most critical paths, resulting in a lower average
delay.

In contrast, for the avionics network, Dijkstra’s algorithm results in the smallest mean
delay, but also shows the largest variance of the heuristics. From figure 4.5 it can be
observed that the maximum queueing delay obtained for the EDF heuristic increases in
a stepwise manner, while the others increase linearly. Furthermore, up to 1476 demands,
the EDF yields significantly lower queueing delays than Dijkstra’s. Above this value,
the increased number of demands makes it more likely that a critical demand is placed

69

Chapter 4: Generating Configuration Templates

0.0e+00

5.0e+08

1.0e+09

1.5e+09
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

R
el
at
iv
e
co
st

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.4: Relative cost using heuristics for the avionics network

upon any one link. If violations cannot be prevented, the algorithm returns again to the
full topology. Consequently, above this value, the delay bound is no longer a limiting
factor, giving higher queueing delay to most demands, and not just the less critical ones.

Here, a low queueing delay is desirable, as it reduces the likelihood of delay bound
violations. Moreover, the lower the queueing delay, the more traffic can be added
without resulting in violations. Consequently, the EDF heuristic is the most suitable
of the investigated heuristics to generate templates. However, all heuristics resulted in
violations of the delay bound for the avionics network, which will be analysed in detail
below.

To show this effect more clearly, figure 4.7 depicts the density distribution of the re-
sulting latencies. As this network does operate far from capacity limits, the results for
the capacity const. heuristic are identical to those of Dijkstra’s algorithm, and hence
hidden in the plot by the latter. While Dijkstra’s algorithm generally results in a lower

70

4.3 Heuristics

0

500

1000

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Q
ue
ue
in
g
de
la
y
in

m
s

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.5: Time delay using heuristics for the avionics network

mean latency as well as a smaller variance, the most critical timing constraints are being
violated, as shown later. The EDF heuristic yields a smaller variance in the latency and
the density has two main peaks rather than Dijkstra’s four. Here, the increased delay
for the backup path (as the shortest path is already occupied by the primary path) is
the cause. As the path with the smallest queueing delay is selected for each demand,
the paths are more evenly routed across the network. Yet constraint violations could
only be prevented by not placing further demands if they would violate existing, more
critical paths.

4.3.4 Forwarding Table Entries
The number of forwarding rules required to be saved on the switches is depicted in
figure 4.8. Among the heuristics, Dijkstra’s algorithm yields shortest paths, thus fewer
rules need to be saved in the forwarding tables of the switches. Taking into account
the delay bound, as done by the EDF heuristic leads to longer paths and thus more

71

Chapter 4: Generating Configuration Templates

250

500

750

1000

1250

1 2
Path ID

Q
ue
ue
in
g
de
la
y
in

m
s

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.6: Time delay using heuristics for the avionics network for |D|=1869

switch memory being used. While literature [91] has proposed to share rules between
different demands, as different levels of criticality need to be considered separately to
avoid less critical demands affecting more critical ones, the potential benefit its limited
for critical systems. Notwithstanding, the EDF algorithm used on the avionics network
distributes traffic much more evenly across the network than Dijkstra’s. Consequently,
the variance between the required memory of the least and most used switch is lower.

Here, the number of forwarding rules to be stored is not only a hard limit imposed by
memory constraints but also affects energy consumption and heat dissipation. Con-
sequently, Dijkstra’s algorithm is the most suitable for mobile systems, where this is
especially relevant. However, the differences between the algorithms is not especially
large.

72

4.3 Heuristics

0.0000

0.0005

0.0010

0.0015

0.0020

0 500 1000
Delay in ms

D
en
sit

y

Functions
Capacity const.
Dijkstra
EDF

Figure 4.7: Latency distributions for the heuristics in the avionics network for |D|=1869. Capacity
const = Dijkstra

4.3.5 Memory Usage During Calculation
While there are some differences in the memory consumption (with EDF requiring the
most as all loop-free paths are being calculated), the overall memory usage by the
heuristics is very low (a few MB). Hence, memory consumption is not a limiting factor
with respect to selecting a heuristic algorithm that can also be deployed online.

4.3.6 Path Length
As depicted in figure 4.9, EDF gives longer paths if a more critical demand’s delay bound
would otherwise be violated. With an increase in the number of demands, it is more
likely that a critical demand is preventing a shorter path being used. For all algorithms
investigated, the secondary (backup) paths are longer than the primary (default) paths,
as shown in figure 4.10.

73

Chapter 4: Generating Configuration Templates

0

500

1000

1500
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Fw
d.

ta
bl
e
en
tr
ie
s

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.8: Forwarding table entries using heuristics for the avionics network

While longer paths make it more likely that a path is affected by any failure, even for
EDF, the majority of demands use the direct path. Only for the backup path, longer
paths are used. Consequently, EDF is only less preferential for multiple failures.

4.3.7 Violation of Constraints
In figure 4.11, the number of delay bound violations for the avionics network is shown.
While the EDF heuristic yields significantly lower mean number of violations than Dijk-
stra’s algorithm (µ=447.3 vs. µ=841.5), it is still unacceptable for safety-critical traffic
that over 20% of demands have their delay bounds violated. In addition, for different
topologies or demand sets, violations of infrastructure constraints may occur even if the
delay bound is not as critical as for avionics. With respect to the nobel-germany net-
work, only latency violations could be recorded for Dijkstra and Lim. capa. EDF didn’t
result in violations. In this case, no differences between the two objective functions has
been observed. While a mean of 1.4 violations only occurred for the tightest latency vi-

74

4.4 Optimisation

1

2

3

4
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Pa
th

le
ng

th

Algorithms
Capacity const.
Dijkstra
EDF

Figure 4.9: Path length using heuristics for the avionics network

olations that could still be solved, it is unacceptable for the demands of a safety-critical
system to be thus violated. Yet it might be acceptable for non-safety-critical systems
such as mission computers.

Moreover, it has been observed for the networks not depicted that the capacity-limited
heuristic tends to result in delay bound violations, while the EDF heuristic causes the
capacity limit to be exceeded. Consequently, no heuristic is able to provide configu-
ration templates for safety-critical traffic. However, one could consider using the EDF
algorithm to provide resilience to mission-critical traffic until no more traffic could be
routed without violating constraints.

4.4 Optimisation

In addition to the heuristics described above, five optimisation functions have been
compared using the same criteria.

75

Chapter 4: Generating Configuration Templates

1

2

3

4

1 2
Path ID

Pa
th

le
ng

th
Algorithms

Capacity const.
Dijkstra
EDF

Figure 4.10: Comparison of path length and resilience using heuristics for the avionics network

Beyond those, the number of available node- and link-disjoint paths is studied here to
see how many failures could be tolerated before some network traffic is lost.

The same ten problem instances as for the heuristics have been used here. Where the
respective performance characteristic was not the objective function, secondary optimi-
sations have been performed with the result of the first optimisation as a constraint.
Thus where several solutions for the primary optimisation exist, the comparison is fair
with respect to the selected performance goal.

The key results of this section have already been published in [143]. However, this thesis
gives a more comprehensive insight into the problem by specifically analysing the effect
of specific constraints on the performance. Additionally, the paper only considered some
of the parameters that are detailed below.

76

4.4 Optimisation

0

250

500

750

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Mean Delay

N
um

be
r
of

vi
ol
at
io
ns

Type
Queueing delay

Figure 4.11: Violations of requirements using heuristics for the avionics network

4.4.1 Computing Resources
For the results given in the following paragraphs, the commercial Gurobi [67] solver has
been used on the following machines:

1. Ubuntu 16.04, 48 GB of RAM and a 12-core Intel Xeon CPU W3690 @ 3.47GHz

2. CentOS 6.9, 256 GB of RAM and a 24-core Xeon CPU E5-2667 0 @ 2.90GHz

While the open-source GNU linear programming kit (GLPK)[62] has also been used
initially, it was found that due to internal memory limitations that limit the number of
constraints, this solver could only deal with up to about 1120 demands for the minimisa-
tions in the present formulation of the optimisation problem. A more detailed analysis
of the computing resources needed is given in section 4.4.8.

77

Chapter 4: Generating Configuration Templates

The more powerful machine was used for the avionics problems, as the large demand
set exceeded the available memory of the smaller machine from about 700 demands
onwards.

4.4.2 Effect of Additional Constraints
As the application of SDN to critical system requires some additional constraints, the
addition thereof to a standard routing problem has been studied in more detail. The
effect of adding these constraints on the investigated performance characteristics is
provided in table 4.6 to table 4.13 for each of the studied objective functions, here for
the ATLANTA network. In these tables, the full demand set carries no extra indication,
while the term sim. indicates a simplified demand set using just capacity limits. In
addition, the following abbreviations are used: R indicates the resilience constraint
being applied, norm. the usage of the normalised objective function as given in [57],
while DB indicates limiting the delay bound, and FTE the forwarding table entries,
respectively.

It has been observed that the resilience constraints have the most significant impact on
all performance characteristics. This is to be expected since constraint doubles number
of demands that need to be placed.

In contrast, including forwarding tables does not have a pronounced effect for most
functions, as they generally do not operate near maximum capacity. An exception
here is the minimum number of forwarding table entries function, since the two have
opposite goals, with latency reducing the average path length and forwarding table
increasing it. The latency requirement affects the minimum number of forwarding table
entries objective function, since there are some flows that would otherwise violate the
requirements.

4.4.3 Bandwidth
As mentioned above, the bandwidth required by the various routing strategies provides
information on how well the network can handle additional demands. In figure 4.12,
the distribution of link usage is shown. As expected, for most networks the maximum
resilience yields the highest resource usage, since it allocates the most traffic on the
network, both link and switch usage are the highest. However, for the ATLANTA
network, the minimum link usage actually gives in the highest maximum usage, while
the mean is the lowest. As only the sum of all link usages is minimised, the high usage of
one link is compensated by low usage of others. Additionally, as only very high usage is
penalised by this function, it does not yield good results in the low and medium usage,
as it is the case for the networks studied in this work.

78

4.4 Optimisation

Table 4.6: Effect of Constraints for the ATLANTA Network – Cost

Network Min. Median Mean Max.
Lim. capa. 12576.8 12576.8 228·109 1.52·1012

Lim. capa. (norm.) 159.767 159.767 159.767 159.767
Lim. capa. (DB) 106.055 108.321 109.333 114.797

Lim. capa. (DB,R) 11736.3 12245 253·109 1.52·1012

Max. res. 1.86·1012 1.87·1012 1.88·1012 1.92·1012

Max. res. (DB,R) 1.40·1012 1.49·1012 1.48·1012 1.53·1012

Max. res. (FTE) 1.69·1012 1.69·1012 1.69·1012 1.69·1012

Max. res. (sim.) 1.80·1012 1.80·1012 1.80·1012 1.80·1012

Min. cost 1.00·1012 1.43·1012 1.39·1012 1.491·1012

Min. cost (DB) 3.46·1011 3.46·1011 3.46·1011 3.46·1011

Min. cost(FTE) 3.46·1011 3.46·1011 3.46·1011 3.46·1011

Min. cost(R) 9.99·1011 9.99·1011 9.99·1011 9.99·1011

Min. cost(sim.) 3.46·1011 3.46·1011 3.46·1011 3.46·1011

Min. fwd. tab. 1.65·1012 1.72·1012 1.74·1012 1.85·1012

Min. fwd. tab. (DB) 5.58·1011 6.07·1011 6.60·1011 1.06·1012

Min. fwd. tab. (FTE) 5.25·1011 5.25·1011 5.25·1011 5.25·1011

Min. fwd. tab. (R) 1.47·1012 1.47·1012 1.47·1012 1.47·1012

Min. fwd. tab. (sim.) 5.25·1011 5.25·1011 5.25·1011 5.25·1011

Min. delay 1.43·1012 1.53·1012 1.53·1012 1.65·1012

Min. delay (FTE) 5.28·1011 5.83·1011 6.01·1011 6.97·1011

Min. delay (sim.) 5.00·1011 5.56·1011 5.52·1011 5.85·1011

In contrast, for the avionics network, the minimum cost results in much lower usage, as
the link usage is directly linked with the cost for this network. Furthermore, minimum
queueing delay and minimum forwarding table entries objective functions also give lower
usage, since both algorithms prefer short paths (see below), which in turn leads to an
even distribution across the network and hence to an overall lower link usage.

Similar results can be observed for the bandwidth required at the switch, as depicted
in figure 4.13. For the DFN network, even the most demanding maximum resilience
uses at most half of the available capacity. This objective function experiences a high
variance that can be explained by an imbalanced demand set. There is a significant
difference between switches that are connected to sources of many traffic demands and
hence have to handle significantly more traffic than those that are mainly forwarding
traffic.

The minimum latency objective displays a higher minimum and mean usage with less
variance between the different switches. This is because this algorithm ensures that
queueing delay is minimised for all demands, consequently it is aiming to distribute

79

Chapter 4: Generating Configuration Templates

Table 4.7: Effect of Constraints for the ATLANTA Network – Time

Network Min. Median Mean Max.
Lim. capa. 1.318 1.333 80.11 526.532

Lim. capa. (norm.) 1.263 1.269 1.282 1.399
Lim. capa. (DB) 18.288 19.321 19.629 21.17

Lim. capa. (DB,R) 248.692 322.572 399.517 900.511
Max. res. 301.4 361.6 416.68 608.2

Max. res. (FTE) 7.1 10.35 9.87 13.3
Max. res. (sim.) 2.8 2.9 2.92 3.1

Min. cost 468.5 537.6 581.525 726.2
Min. cost (DB) 30.4 39.7 40.011 47.4
Min. cost(FTE) 0.3 0.3 0.32 0.4
Min. cost(R) 4.7 5.15 5.74 7.3

Min. cost(sim.) 0.3 0.3 0.3 0.3
Min. fwd. tab. 312.1 327.35 364.25 551

Min. fwd. tab. (DB) 8313.8 14726.9 14669.67 18691.2
Min. fwd. tab. (FTE) 0.2 0.2 0.2 0.2
Min. fwd. tab. (R) 3.5 5.3 4.78 6

Min. fwd. tab. (sim.) 0.1 0.1 0.1 0.1
Min. delay 217.5 253.7 265.45 321.1

Min. delay (R) 1317.9 1318.05 1318.11 1318.4
Min. delay (sim.) 12.6 14.8 15.19 20

traffic as evenly as possible across the network. This strategy is also reflected in the
lower bandwidth requirement of the links as shown above.

The slight differences between the different runs of the minimum number of forward-
ing table entries for the Deutsches Forschungsnetz (DFN) network is most probably
related to specific values of the individual demand sets. Only the DFN network shows
a significant variation between sets. Other than that, this objective provides the lowest
maximum usage for this aspect, with a slightly elevated minimum usage compared to
other minimisations objectives.

With respect to resource utilisation, no variation could be observed with varying the de-
lay bound. Consequently, tighter delay bounds do not have an effect of the distribution
of link utilisation.

Generally, all optimisation functions are suitable to generate configuration templates
with respect to the bandwidth used, as all are below the maximum limit. Notwith-
standing, in those cases where only one failure needs to be tolerated, the minimum
cost provides the lowest resource usage. Yet in most critical systems, it is not sufficient
to tolerate only one failure. Here, the maximum resilience objective function is more

80

4.4 Optimisation

Table 4.8: Effect of Constraints for the ATLANTA Network – Used Bandwidth (Link)

Network Min. Median Mean Max.
Lim. capa. 0 19.09·103 21.5·103 43.65·103

Lim. capa. (norm.) 4.286·103 19.69·103 21.29·103 43.53·103

Lim. capa. (DB) 0 6.58·103 7.82·103 26.56·103

Lim. capa. (DB,R) 0 24.87·103 23.24·103 43.65·103

Max. res. 4.47·103 32.39·103 29.88·103 40·103

Max. res. (DB,R) 5.303·103 25.38·103 23.82·103 39.94·103

Max. res. (FTE) 7.772·103 29·103 26.78·103 40·103

Max. res. (sim.) 4.134·103 35.68·103 28.79·103 40·103

Min. cost 4.134·103 22.12·103 22.79·103 40·103

Min. cost (DB) 1.057·103 4.287·103 6.376·103 23.86·103

Min. cost(FTE) 1.057·103 4.287·103 6.376·103 23.86·103

Min. cost(R) 4.134·103 13.69·103 17.73·103 40·103

Min. cost(sim.) 1.057·103 4.287·103 6.376·103 23.86·103

Min. fwd. tab. 5.142·103 27.84·103 26.72·103 40·103

Min. fwd. tab. (DB) 298·100 8.646·103 10.47·103 39.12·103

Min. fwd. tab. (FTE) 252·100 7.287·103 8.297·103 24.96·103

Min. fwd. tab. (R) 5.426·103 27.26·103 23.06·103 40·103

Min. fwd. tab. (sim.) 252·100 7.287·103 8.297·103 24.96·103

Min. delay 4.811·103 24.78·103 24.61·103 40·103

Min. delay (FTE) 338·100 8·103 10.21·103 39.82·103

Min. delay (sim.) 78.52·100 8.267·103 9.357·103 33.13·103

suitable, as it provides the maximum number of failure tolerance, while still accepting
the capacity constraints.

4.4.4 Calculation Time
To study whether runtime optimisation is possible, it is necessary to study calculation
times. As the satisfaction of all constraints is guaranteed with optimisation, there is
no prior reason that these cannot be performed during operation. Here, the calculation
was aborted when the gap between the current solution and the optimal solution was
less than 1 percent.

From figure 4.14, it can be observed that due to the larger number of free variables
and the interdependence between them, the minimum queueing delay and maximum
resilience have the largest difference between mean and maximum calculation time.
While calculation times forminimum latency are all within the same order of magnitude,
the max. resilience and minimum forwarding table entries require – on average – up
to 100 times the calculation time of the minimum cost objective function. It should be

81

Chapter 4: Generating Configuration Templates

Table 4.9: Effect of Constraints for the ATLANTA Network – Used Bandwidth (SW)

Network Min. Median Mean Max.
Lim. capa. 27.38·103 123.5·103 126.1·103 219.7·103

Lim. capa. (norm.) 46.06·103 120.5·103 124.9·103 217·103

Lim. capa. (DB) 8.582·103 44.79·103 45.88·103 104.4·103

Lim. capa. (DB,R) 25.7·103 147.5·103 136.4·103 237.2·103

Max. res. 26.07·103 178.9·103 175.3·103 316.9·103

Max. res. (DB,R) 34.65·103 137.1·103 139.7·103 261.3·103

Max. res. (FTE) 35.02·103 145.8·103 157.1·103 263.3·103

Max. res. (sim.) 16.98·103 177.2·103 168.9·103 316.9·103

Min. cost 16.98·103 128.1·103 133.7·103 271.6·103

Min. cost (DB) 7.805·103 24.57·103 37.41·103 103.7·103

Min. cost(FTE) 7.805·103 24.57·103 37.41·103 103.7·103

Min. cost(R) 16.98·103 82.57·103 104·103 212.9·103

Min. cost(sim.) 7.805·103 24.57·103 37.41·103 103.7·103

Min. fwd. tab. 31.11·103 165.4·103 156.8·103 257.4·103

Min. fwd. tab. (DB) 9.725·103 55.92·103 61.45·103 160·103

Min. fwd. tab. (FTE) 12.65·103 45.74·103 48.68·103 128.2·103

Min. fwd. tab. (R) 26.37·103 146.1·103 135.3·103 236.6·103

Min. fwd. tab. (sim.) 12.65·103 45.74·103 48.68·103 128.2·103

Min. delay 26.24·103 142.1·103 144.4·103 282.3·103

Min. delay (FTE) 8.163·103 57.28·103 59.92·103 135·103

Min. delay (sim.) 9.196·103 52.46·103 54.9·103 143.9·103

noted that this figure has been zoomed in to only show the mean and quartile. The
complete results can be found in the appendix (C.2).

Unlike with the resource usage, tightening of the delay bound significantly increases
calculation times for the networks investigated. Here, the most significant impact can
be observed on the maximum resilience objective function. As expected, the calculation
time increases with the number of demands, for the minimum cost, the median calcu-
lation time increases by a factor of 13 between n = 98 and n = 1869. Yet the largest
increase can again be observed for the maximum resilience objective function, where
the median increases from 72.92 seconds to 3.044·103 seconds.

As the calculation times are significant even for average cases, performing online optimi-
sations only upon the occurrence of a failure is not a feasible strategy for safety-critical
systems. While feasible solutions that satisfy all constraints but are not optimal may be
obtained more quickly, the lack of suitable computing resources (especially for networks
on vehicles such as cars and aircraft) make it improbable that those calculations will
be performed during system operation. Beyond that, current certification requirements
do not allow for non-deterministic system behaviour, which is problematic as there may

82

4.4 Optimisation

Table 4.10: Effect of Constraints for the ATLANTA Network – Delay

Network Min. Median Mean Max.
Lim. capa. 14 165 177.1 463

Lim. capa. (norm.) 14 149 158.271 435
Lim. capa. (DB) 3 56 63.721 190

Lim. capa. (DB,R) 16 159 173.461 427
Max. res. 0.174 138.529 172.065 724.981

Max. res. (DB,R) 17 121 143.774 541
Max. res. (FTE) 24 160 169.805 441
Max. res. (sim.) 15 157.06 183.246 651.781

Min. cost 7 165.338 193.775 654.793
Min. cost (DB) 2 40 42.133 99
Min. cost(FTE)2 40 42.133 99
Min. cost(R) 7.513 128.244 132.188 283.348
Min. fwd. tab. 6.958 263.603 276.407 688.306

Min. fwd. tab. (DB) 2 83 103.486 579
Min. fwd. tab. (FTE) 4 66.5 75.919 182
Min. fwd. tab. (R) 7 213.946 247.174 689.368

Min. fwd. tab. (sim.) 4 66.5 75.919 182
Min. delay 15.048 206.564 211.666 593.081

Min. delay (FTE) 0 1 77.644 746

be more than one optimal solution to any given problem, and solvers would need to be
certified to produce deterministic results.

With respect to calculation time, theminimum link utilisation is the most predictable, as
it does not produce significant outliers, albeit with a slightly higher mean. Consequently,
it is the most suitable optimisation to generate templates in cases where very frequent
updates to both the topology and the demand set occur. However, in more static
safety-critical systems, the increased calculation time of the maximum resilience may
be justified by the additional backup paths it provides.

4.4.5 Cost
In figure 4.15, a comparison with respect to cost is shown. For the avionics network, the
minimum link usage calculated the cost as done in literature. As all links are far from
being fully utilised, it is lowest for this case. As expected, the minimum cost yields
the lowest number and maximum resilience the highest amongst the other objective
functions. While the remaining functions are within the same order of magnitude, the
minimum cost using the minimum queueing delay is nearly 27% lower than that of the
minimum link usage.

83

Chapter 4: Generating Configuration Templates

Table 4.11: Effect of Constraints for the ATLANTA Network – Path Length

Network Min. Median Mean Max.
Lim. capa. 1 4 4.016 11

Lim. capa. (norm.) 1 4 3.886 10
Lim. capa. (DB) 1 3 3.202 9

Lim. capa. (DB,R) 1 4 3.926 10
Max. res. 1 101 101.972 209

Max. res. (DB,R) 1 105 105.794 209
Max. res. (FTE) 1 105 105.917 209
Max. res. (sim.) 1 98 99.471 209

Min. cost 1 3 2.669 7
Min. cost (DB) 1 3 2.571 5
Min. cost(FTE) 1 3 2.571 5
Min. cost(R) 1 3 3.114 9

Min. cost(sim.) 1 3 2.571 5
Min. fwd. tab. 3 12 10.561 19

Min. fwd. tab. (DB) 1 3 3.975 15
Min. fwd. tab. (FTE) 1 3 3.338 8
Min. fwd. tab. (R) 1 4 4.79 15

Min. fwd. tab. (sim.) 1 3 3.338 8
Min. delay 1 11.5 10.949 22

Min. delay (FTE) 1 4 4.36 22
Min. delay (sim.) 1 7 7.229 19

For the other networks, the link costs from SND-LIB are used. While the objective of
minimum link usage is also to reduce cost, only link usage close to the capacity limit is
significantly penalised. Thus, the resulting cost for this function is between 25%-50%
higher than for minimum cost, if the network does not operate close to capacity, as it
is the case for the DFN network.

Regarding the maximum resilience, the increasingly smaller delay bound affects the
cost by reducing the number of resilient paths, which in turn reduces the resulting cost.
Consequently, there is little difference to the other objective functions in those networks
wherever the number of resilient paths is close to two.

In contrast, the aim to reduce the number of flows per link in order to minimise queueing
delay results in more expensive links to be used by the minimum latency function, which
in turn raises the cost.

With respect to the effect of the latency bound, it can be observed that tighter latency
bounds result in higher cost. Yet the values vary between the networks and functions.

84

4.4 Optimisation

Table 4.12: Effect of Constraints for the ATLANTA Network – Forwarding Table Entries

Network Min. Median Mean Max.
Lim. capa. 43 119 112.44 179

Lim. capa. (norm.) 60 110 108.8 173
Lim. capa. (DB) 18 39 44.833 78

Lim. capa. (DB,R) 38 117 109.933 172
Max. res. 83 282.5 263.133 453

Max. res. (DB,R) 39 122 116.293 190
Max. res. (FTE) 47 148 131.6 190
Max. res. (sim.) 30 146 135.533 219

Min. cost 30 221 212.022 368
Min. cost (DB) 14 32 36 72
Min. cost(FTE) 14 32 36 72
Min. cost(R) 30 83 94.467 176

Min. cost(sim.) 14 32 36 72
Min. fwd. tab. 57 335 293.693 436

Min. fwd. tab. (DB) 14 58 55.653 138
Min. fwd. tab. (FTE) 14 48 46.733 87
Min. fwd. tab. (R) 28 167 136.933 198

Min. fwd. tab. (sim.) 14 48 46.733 87
Min. delay 89 294.5 302.187 516

Min. delay (FTE) 16 61 61.047 159
Min. delay (sim.) 27 104 101.2 183

For the Nobel-Germany network, the difference is about 0.3% for the minimum cost
function, but 2.4% for the minimum queueing delay.

With respect to the resulting cost, the selection of the most suitable objective function
to generate configuration templates depends on the definition. As the minimum link
utilisation function calculates cost based on link utilisation, it is only efficient if this is
significant. In contrast, if the true link costs as per definition are used, the minimum
cost is better suited. Obviously, using more paths is more expensive as well, thus the
maximum resilience will result in the most expensive templates. Notwithstanding, for
safety-critical system, this increased cost may be justified by the additional resilience

Table 4.13: Effect of Constraints for the ATLANTA Network – Resilience

Network Min. Median Mean Max.
Max. res. 2 2 2.338 3

Max. res. (DB,R) 1 2 2.133 3
Max. res. (FTE) 1 2 2.133 3
Max. res. (sim.) 2 2 2.338 3

85

Chapter 4: Generating Configuration Templates

0.00

0.25

0.50

0.75
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Li
nk

ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.12: Link usage using optimisation for the avionics network

provided. In addition, this calculation does not take into account potential savings by
reducing or avoiding other means of resilience, such as additional hard-wired paths.

4.4.6 Delay
Transmission, propagation and processing delay do not vary significantly between objec-
tive functions as they depend on hardware or topology characteristics. Consequently,
these delay components are identical for all objective functions and hence of limited
interest for the comparison of the different objective functions. Thus the analysis in the
following paragraphs is for the average queueing delay that the routing of the demand
yields. Consequently, the delay experienced by the demands in the avionics network
can be simplified to

∆t[r, d] = ∆tq[r, d] =
∑

e(i,j)∈Pr,d

∑
r ∈ R

∑
d ∈ Dx[r, d, i, j] · bwd

cmax(i) . (4.2)

86

4.4 Optimisation

0.0

0.2

0.4

0.6
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Sw
itc

h
ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.13: Switch usage using optimisation for the avionics network

As the latency requirements for the remaining networks are only depending on the
number of demands, the bandwidth is not considered here, which gives

∆t[r, d] = ∆tq[r, d] =
∑

e(i,j)∈Pr,d

∑
r∈R

∑
d∈D

x[r, d, i, j]. (4.3)

The resulting distribution of queueing delay is depicted in figure 4.16. Here, the min-
imum link usage yields the highest average delay for the minimising functions where
kd = 2. This higher average delay is caused by the fact that the objective function only
aims to reduce very crowded links operating near their maximal capacity. As this is not
the case in the networks presented here, the average delay is higher. Notwithstanding,
it should be noted that all constraints with respect to queueing delay are satisfied.

On the other hand, minimum cost, minimum queueing delay and minimum forwarding
table entries cause demands to be more evenly distributed across the network, resulting

87

Chapter 4: Generating Configuration Templates

0

1000

2000

3000

4000
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

C
al
cu
la
tio

n
tim

e
in

se
co
nd

s
Algorithms

Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.14: Calculation time of optimisation algorithms for the avionics network

in a smaller delay for the demands. However, it could be observed that theminimum cost
yields a significantly lower maximum queueing delay than the minimum queueing delay.
This is because the former explicitly considers the amount of traffic to be transported,
while the latter minimises the number of demands across the network.

Obviously the minimum queueing delay is the most efficient for generating templates
with low queueing delay. Yet the minimum cost optimisation also results in low queue-
ing delay, thus making it equally suitable while also performing well in other aspects.
This can be shown in further detail by comparing the density distribution as given in
figure 4.17. Of the optimisation functions, the minimum cost the highest density of
very short paths, as it punishes link usage even more severely than the minimum la-
tency function. However, the density of the former rises again for very high delays above
600 ms, while the density of the other functions continuously decreases with increasing
delay. The flattest curve is displayed by the maximum resilience, where the peak of

88

4.4 Optimisation

0.0e+00

5.0e+06

1.0e+07

1.5e+07
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

R
el
at
iv
e
co
st

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.15: Relative cost using optimisation for the avionics network

density is also several hundred milliseconds later. However, a significantly higher traffic
volume is transported here.

4.4.7 Forwarding Table Entries
In figure 4.18, the distribution of the number of forwarding table entries is shown per
switch for the avionics network. Here, the maximum resilience yields the lowest value,
despite having to route significantly more traffic. However, as no resources are shared
between resilient paths, fewer forwarding rules need to be installed on every switch.
Notwithstanding, the minimum link utilisation gives the highest value.

The maximum resilience is also the only function where an impact of varying latency
constraints can be shown. For DFN, tighter latency constraints limit the number of
node- and link-disjoint paths, consequently also reducing the amount of forwarding
rules necessary. However, this effect could not be observed in all investigated networks.
With tightening latency constraints, σ also increases with some significant outliers at

89

Chapter 4: Generating Configuration Templates

0

1000

2000

3000
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Q
ue
ue
in
g
de
la
y
in

m
s

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.16: Queuing delay using optimisation for the avionics network, outliers hidden for clarity

the lower end, as the demands with the tightest latency constraints limit the number
of demands placed on their link and hence also the number of forwarding rules. Yet
even for the maximum number of resilient paths, less than 5% of the available TCAM
memory is used.

With respect to creating configuration templates that are efficient with respect to re-
ducing TCAM memory usage and thus energy consumption and heat dissipation, min-
imum cost and minimum forwarding table entries. However, despite having to route
significantly more traffic, the maximum resilience is also efficient while providing more
resilience to the network.

4.4.8 Memory Usage
In figure 4.19, the amount of random access memory (RAM) that was required to solve
the maximum resilience problem is depicted. The memory usage has been measured
using time -v. In this context, the avionics network has been selected since it has the

90

4.4 Optimisation

0.000

0.005

0.010

0.015

0.020

0 250 500 750 1000
Delay in ms

D
en
sit

y

Functions
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.17: Latency distributions for the optimisation functions for the avionics network for |D| =
1869, cropped for clarity

most demands and the increasing demand set also allows to better assess the scalability
of the problem. The smallest demand sets (98 demands) require very little memory, but
the full demand set requires nearly 120 GB of RAM to hold all constraints and variables.
This necessitates high-performance hardware, that will not be available during operation
for safety-critical systems. Consequently, the required calculations need to be performed
in advance and the results provided to the SDN controller to reconfigure the network as
needed if a failure is detected.

All other optimisation functions require about the same amount of memory. Conse-
quently, where calculation resources are limited, they are all equally suitable.

4.4.9 Path Length
Results with respect to path length are provided in figure 4.20. This figure shows that
the optimisation for minimum link usage results in paths that are almost as long as

91

Chapter 4: Generating Configuration Templates

0

1000

2000

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Fw
d.

ta
bl
e
en
tr
ie
s

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.18: Forwarding table entries using optimisation for the avionics network

for the maximum resilience function, while routing less traffic. The effort to reduce
link usage by evenly distributing traffic across the network results in long paths, even
if the maximum capacity limit is not being reached. However, this behaviour makes it
more likely that a demand is affected by a failure thus reducing resilience and is hence
undesirable for safety-critical systems. Similarly, the minimum forwarding table entries
objective function also produces longer paths. By reducing the number of rules on
the switches, longer paths are encouraged. Notwithstanding, the median is two for all
objective functions investigated. On the other hand, both minimum queueing delay and
minimum cost functions result in comparatively short paths. This is because longer
paths results in more delay for the individual flows which is not encouraged by the
minimum queueing delay function. Along similar lines, using several links is generally
more expensive than using just one as far as the minimum cost function is concerned.
Moreover, unlike for the heuristics, there is no significant difference with respect to
path length between primary and backup path for the minimisation, as depicted in

92

4.4 Optimisation

0

5000

10000

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

M
em

or
y
U
sa
ge

in
M
B

Algorithms
Min. link
Max res.
Min. cost
Min. fwd.
Min. lat.

Figure 4.19: Required RAM to solve the maximum resilience optimisation problem for the avionics
network

figure 4.20. Consequently, when trying to obtain configuration templates, all functions
are equally suitable.

4.4.10 Maximum Resilience
Table 4.14: Distribution of Maximum Resilience

Network Min Mean Max
ATLANTA 2 2.3 3

DFN 3 8.9 9
NOBEL-GERMANY 2 2.4 4

In table 4.14, the maximum number of node- and link-disjoint paths obtainable in the
respective networks is shown. From this table, it is evident that network topology has
the most significant impact on the number of available paths.

93

Chapter 4: Generating Configuration Templates

2.5

5.0

7.5

10.0

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Pa
th

le
ng

th

Algorithms Min. link Max res. Min. cost Min. fwd. Min. lat.

Figure 4.20: Path length using optimisation for the avionics network, outliers hidden for clarity

Yet this number is not indicative for how many failures can be tolerated before traffic
is lost, since any one path may use more than one node and/or link. Nevertheless, it
is essential for safety-critical communication that no common cause of failure affects
resilient paths. Otherwise, several alternative network configurations could be turned
unusable by a single failure.

Iterating through all possible failure cases is also unrealistic, especially when more than
one failure is affecting the network, which is especially relevant for security-related
incidents.

Yet surprisingly, the number of demands does not have a significant effect on the max-
imum resilience that can be provided, as shown in table 4.15, at least not for the
avionics network. This is most likely because the demand data set already incorporates
redundancy. Consequently, the paths can all be used simultaneously without violating
constraints, especially considering that only little traffic needs to be transported.

94

4.5 Comparison of Heuristics and Optimisation

2.5

5.0

7.5

1 2 3 4 5
Path ID

Pa
th

le
ng

th

Algorithms Min. link Max res. Min. cost Min. fwd. Min. lat.

Figure 4.21: Path length of resilient paths using optimisation for the avionics network, outliers hidden
for clarity

All other optimisation functions only provide two paths. While some demands can also
only be served two demands, the mean case has one additional for the avionics network,
while still guaranteeing that requirements with respect to queueing delay and capacity
are satisfied. Consequently, in those safety-critical systems where the maximum fault
tolerance is desirable, themaximum resilience objective function is the most suitable one
to calculate configuration templates, even if this results in higher resource utilisation.

4.5 Comparison of Heuristics and Optimisation

The main results presented in this chapter have already been published in [142], albeit
not for the network topology presented hereafter. The comparison for resulting queueing
delay has already been published in [144].

95

Chapter 4: Generating Configuration Templates

Table 4.15: Number of Resilient Paths

Network Nr. of Demands Min. Median Mean Max.
Avion. 98 3 3 3.351 5
Avion. 196 2 3 3.324 5
Avion. 295 2 3 3.365 5
Avion. 393 2 3 3.349 5
Avion. 492 2 3 3.334 5
Avion. 590 2 3 3.345 5
Avion. 688 2 3 3.367 5
Avion. 787 2 3 3.341 5
Avion. 885 2 3 3.353 5
Avion. 984 2 3 3.339 5
Avion. 1082 2 3 3.34 5
Avion. 1180 2 3 3.354 5
Avion. 1279 2 3 3.356 5
Avion. 1377 2 3 3.351 5
Avion. 1476 2 3 3.348 5
Avion. 1574 2 3 3.357 5
Avion. 1672 2 3 3.357 5
Avion. 1771 2 3 3.35 5
Avion. 1869 2 3 3.352 5

In this section, the results for the best-performing minimisation (minimum cost) will
be compared to those of the heuristics. This function has been selected as the previous
section has shown that good results for the investigated performance characteristics can
be thus obtained. Wherever relevant, other optimisation functions will be included in
the comparison as well.

4.5.1 Bandwidth
To begin with, the distribution of bandwidth utilisation at the switches is shown in
figure 4.22. Here it can be observed that – in most cases – the heuristic requires more
than twice the bandwidth at certain switches compared to the optimisation. The only
exception to this rule is for n ≤ 295. Due to the low number of demands and hence
low bandwidth requirements, the delay bound of the most critical demands does not yet
become a limiting factor. Consequently, the cost minimisation results in cheaper (i.e.
less used in the case of the avionics network) paths, an effect that can also be observed
in the results for the link utilisation as described below.

As the heuristic uses shortest paths until it is limited by the delay bound of more critical
demands, the variance between most and least used switch is also significantly larger.

96

4.5 Comparison of Heuristics and Optimisation

However, for the avionics topology it also has to be noted that the demands are not
equally distributed across the network (cf. table 4.1). Consequently, the variance be-
tween utilised bandwidth for those switches that serve primarily as origin/destination
and those that are primarily used in transit is larger for this topology than for others.
As depicted in figure 4.23, the heuristic utilises more bandwidth at the link than the

0.00

0.05

0.10

0.15

0.20

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Sw
itc

h
ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
EDF
Min. cost

Figure 4.22: Switch utilisation using min. cost and EDF heuristic for the avionics network

optimisation function. As the cost is directly calculated from the link utilisation, the
optimisation aims to minimise this parameter. This also results in a smaller increase
with the size of the demand set compared to the heuristic. In the latter case, the vari-
ance between the least used and the most used link is also greater. As the heuristic
algorithm limits the number of additional resources that can be placed together with a
timing-critical demand, those paths with less critical demands become more used. Con-
sequently, with respect to utilised bandwidth, optimisation is more suitable to obtain
configuration templates as it uses the available resources more efficiently.

97

Chapter 4: Generating Configuration Templates

0.0

0.2

0.4

0.6

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Li
nk

ut
ili
sa
tio

n
in

pe
rc
en
t

Algorithms
EDF
Min. cost

Figure 4.23: Link utilisation using min. cost and EDF heuristic for the avionics network

4.5.2 Calculation Time
The comparison of calculation time is given in figure 4.24. For clarity, this plot has been
cropped, consequently one outlier for n = 196 demands is not depicted. Overall, it can
be observed that the optimisation takes significantly longer to be calculated. Especially,
with an increasing demand set, the problem becomes harder to solve optimally, thus
increasing the calculation time. While the calculation of the heuristic also increases with
the size of the demand set, the maximum calculation time is slightly more than half
a second, so it would not preclude online deployment. The optimisation, on the other
hand, requires several minutes. In addition, the presence of an outlier with 2792.04
seconds at n = 196 shows that constraints of individual problems have an even more
significant impact on the calculation time. As an average calculation time is thus hard
to predict, an online deployment is unrealistic in safety-critical systems.

Hence, heuristics are more suitable to obtain configuration templates quickly.

98

4.5 Comparison of Heuristics and Optimisation

0

50

100

150

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

C
al
cu
la
tio

n
tim

e
in

se
co
nd

s

Algorithms
EDF
Min. cost

Figure 4.24: Calculation time using min. cost and EDF heuristic for the avionics network

4.5.3 Cost
The distribution of cost for the avionics network is depicted in figure 4.25. It can be
observed that the heuristic results in higher cost for all sizes of demand set. What is
more, for the optimisation there is only a factor 6.63 between minimum and maximum
cost (i.e. between smallest and largest demand set). In contrast, for the heuristic,
the factor is 523.04, with a larger distribution within the demand set. Here, it can be
observed that less critical demands need to accept longer paths to prevent negatively
affecting more critical paths on the shortest path. As the cost is proportional to the
path length for this network, the cost optimisation also produces shorter paths than the
heuristic.

Thus, with respect to cost, optimisation yields cheaper configuration templates.

99

Chapter 4: Generating Configuration Templates

0.0e+00

5.0e+08

1.0e+09

1.5e+09
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

R
el
at
iv
e
co
st

Algorithms
EDF
Min. cost

Figure 4.25: Cost using min. cost and EDF heuristic for the avionics network

4.5.4 Delay
In figure 4.26, the variation of the queueing delay with the size of the demand set
is depicted. In addition, figure 4.27 gives the factorisation for primary and secondary
paths. For n ≤ 295, the optimisation gives a higher maximum latency than the heuristic.
In those cases, only very few demands are critically bound and the resource usage is not
high enough to trigger the delay bound, as there are also no violations for the heuristics
in those sets. Consequently, the cost minimisation objective becomes dominant thus
yielding longer paths.

Yet as more demands need to be routed, the delay bound limits the opportunities of the
optimisation algorithm to limit cost and in turn also the latency. Hence, the increase
in the size of the demand set for the optimisation algorithm are far less significant for
the optimisation than for the heuristic.

100

4.5 Comparison of Heuristics and Optimisation

0

500

1000

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Q
ue
ue
in
g
de
la
y
in

m
s

Algorithms
EDF
Min. cost

Figure 4.26: Queueing delay using min. cost and EDF heuristic for the avionics network

Figure 4.28 shows the density function for the avionics network in the comparison be-
tween min. cost and the EDF heuristic. This figure illustrates the much higher density
of very low delays using the optimisation function compared to the heuristic. Still, the
optimisation function allows to consider the various constraints and prevent violations,
unlike the heuristic.

4.5.5 Forwarding Table Entries
With respect to the distribution of forwarding rules on the switches, the difference
between heuristics and optimisation is even more pronounced than for the bandwidth
optimisation, as shown in figure 4.29. The effective lack of a delay bound for n ≤ 295
again affects the optimisation by yielding slightly higher values for the smallest demand
sets. Yet for the demand sets beyond, the optimisation very slightly increases the
number of forwarding rules required.

101

Chapter 4: Generating Configuration Templates

0

500

1000

1 2
Path ID

Q
ue

ue
in

g
de

la
y

in
m

s
Algorithms

EDF
Min. cost

Figure 4.27: Queueing delay using min. cost and EDF heuristic for the avionics network for |D| = 1869

In contrast, the number of forwarding rules increases exponentially for the heuristic.
While not a problem for the demand sets present, for larger demand sets it could
quickly become a problem, as the TCAM memory is limited to about 8000 rules. For
the largest demand set in the avionics network, the heuristic required up to 4.5 times
the number of forwarding rules than the optimisation. Consequently, the optimisation
is better suited to obtain configuration templates with respect to efficient use of TCAM.

4.5.6 Path Length
As depicted in figure 4.30, the mean path length for the heuristic is twice that of the
optimisation, even if the maximum path length is greater for the latter. As the size of the
demand set does not have a noticeable impact on the path length, the corresponding plot
has not been included for clarity. However, with increasing demand set size, the impact
of the longer path becomes more significant on the other parameters investigated, e.g.
cost or queueing delay. In contrast, while a few (less critical) demands have to accept
longer paths with the optimisation, the effect on overall algorithmic performance is

102

4.5 Comparison of Heuristics and Optimisation

0.000

0.005

0.010

0.015

0 500 1000
Delay in ms

D
en
sit

y

Functions
EDF
Min. cost

Figure 4.28: Latency distribution using min. cost and EDF heuristic for the avionics network for
|D| = 1869

negligible. Consequently, using optimisation is more suitable to generate configuration
templates with short paths.

4.5.7 Violations
As depicted in figure 4.31, the inclusion of latency constraints is also relevant for opti-
misation functions. Here, the min. link utilisation function has been performed without
latency constraints. While no violations were recorded for either algorithm for the two
smallest demand sets, the EDF algorithm already violates constraints at n = 295 de-
mands. As more demands need to be placed, the number of violations also increases.
Interestingly, the optimisation function gives – on average – fewer mean violations until
n = 1476 demands. As the cost for the optimisation is defined as a step function, an
increased demand set will result in more demands being placed on a link until the next
step in the cost function is reached.

103

Chapter 4: Generating Configuration Templates

0

500

1000

1500
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Fw
d.

ta
bl
e
en
tr
ie
s

Algorithms
EDF
Min. cost

Figure 4.29: Forwarding rules using min. cost and EDF heuristic for the avionics network

Consequently, the number of critical demands that are being violated increases likewise.
Yet as the demand set is not equally distributed across the network, the violations by
Dijkstra’s algorithm eventually level off. On the other hand, the min. link utilisation
aims to equally distribute additional demands equally across the network (to keep as
many links as possible at the lowest cost). Consequently, the maximum number of
violations is nearly 60% higher for the optimisation than for the EDF heuristic when
the optimisation does not consider the maximum delay.

Hence, when real-time traffic needs to be transported in a safety-critical system, it
is absolutely necessary that the according constraint is included into the optimisation
problem. While this significantly increases calculation time, it is the only way to ensure
that templates can satisfy the timing requirement of safety-critical traffic.

104

4.5 Comparison of Heuristics and Optimisation

1

2

3

4
98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Nr. of demands

Pa
th

le
ng

th

Algorithms
EDF
Min. cost

Figure 4.30: Path length distribution using min. cost and EDF heuristic for the avionics network

4.5.8 Effect of Varying Delay Bounds
As mentioned above, for some network topologies, the effects of varying the delay bound
have been studied. However, if at least one problem could not be solved without vio-
lating some constraints, it is not included in this analysis.

Optimisation
Calculation Time: One of the most significant effects could be observed for the calcula-
tion time. As an increasing number of time-critical flows need to be routed, the problem
becomes more complex to solve, thus increasing the calculation time. This effect could
also be observed for the avionics network with the number of demands, even though no
specific variation of latency constraints has been performed.

Resilience: Interestingly, no discernible impact on the number of available resilient
paths has been observed.

105

Chapter 4: Generating Configuration Templates

0

100

200

300

400
29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

Mean Delay

N
um

be
r
of

vi
ol
at
io
ns

Algorithm
EDF

Figure 4.31: Violations using min. cost and EDF heuristic in the avionics network

Queueing Delay: For the DFN network, an impact on the queueing delay could be
observed for the maximum resilience objective function. As the tighter delay bounds
reduced the number of resilient paths, the queueing delay reduces in turn.

In addition, for the ATLANTA network and the min. latency objective function, a
decreasing mean delay bound also resulted in a decrease of the queueing delay. However,
other topologies – while displaying some variance – did not exhibit such behaviour.
Consequently, with respect to the queueing delay, the impact of a specific topology is
at least as significant as that of specific delay bounds.

Heuristics
As neither Dijkstra nor the shortest path heuristic consider the delay bound, it is not
expected that the varying latency constraints have any impact on performance. The
only conceivable impact would be on the number of violations. This has been observed
for the ATLANTA network as depicted in figure 4.32. Moreover, until a mean delay

106

4.5 Comparison of Heuristics and Optimisation

bound of 840 ms, only the link capacity constraint is being violated, while the tightest
constraint investigated µ = 630 also experienced a significant number of delay bound
violations. Similarly, for the Nobel-Germany network, the only violations occur for
the tightest mean delay bound µ = 484 (delay bound violations). However, as shown
by the variation between the different experiments for the EDF functions, individual
problems have a more significant impact on the number of violations. Notwithstanding,
especially for the EDF functions, tighter constraints are significant, as eventually no
further demands can be placed without violating constraints, while the optimisation
functions can consider all constraints.

8

9

10

11

12

13

63
0

84
0

10
50

12
60

14
70

16
80

18
90

21
00

Mean Delay

N
um

be
r
of

vi
ol
at
io
ns

Type
Queueing delay
Link capacity

Figure 4.32: Distribution of constraint violations for the ATLANTA network

To summarise, while heuristics provide network configurations quickly, they result in
violation of timing or capacity constraints and are thus unsuitable for critical systems.

However, due to the significant computational resources required in solving optimisation
problems, they cannot be performed upon detection of a failure or security incident.

107

Chapter 4: Generating Configuration Templates

Hence, candidate routings together with other possible reactions to anomalies need to
be established before a system becomes operation.

Yet such candidate routings can and need to be changed during runtime of a critical
system, which may well span several decades. Consequently, a mechanism needs to be
developed to ensure that safety-critical systems have suitable candidate responses at
their disposal when anomalies are detected.

4.6 Generating Templates

For most of today’s IT systems, it does not matter if transmission is briefly interrupted
or some of the traffic is lost. Contrary to that, if networks of safety-critical systems
were to drop some traffic during reconfiguration, it could have dire consequences, e.g.
if a braking signal or a shutdown command for a power plant is lost or delayed.

Consequently, due care is needed during reconfiguration to prevent the loss of traffic for
those parts of the network that are unaffected by the failure.

As shown in the previous chapter, heuristics cannot be applied to generate network
configurations. Rather, the routing problem needs to be formulated as an optimisation
problem. While the minimum cost function yielded very good results with respect to
network performance, it only provided one backup path. To ensure that a failure mid-
transmission does not cause traffic to be lost, both the standard and the backup path
need to be served concurrently e.g. through flow replication. Thus, while one failure
would be tolerable through such means, more complex failure scenarios as they occur
during cyber attacks could not be addressed.

Consequently, the results provided by the maximum resilience objective function are
used as it provides the maximum number of disjoint paths and thus the highest number
of faults that can be mitigated.

While the basic concept of configuration templates has already been published in [144],
this thesis provides a more detailed description. Specifically, it advocates the need for
such templates in a more concise way and provides the distinction from fail-safe states.
In addition, it explores some further usages of heuristics, and thus goes above and
beyond the discussions in the paper.

4.6.1 Running vs. Possible Configurations
However, it is important to make the distinction between a running configuration and
the set of disjoint possible configurations that are thus obtained. This is due to the
safety-critical nature of the applications for which they have been designed.

108

4.6 Generating Templates

As detailed in previous chapters, the maximum resilience algorithm provides the max-
imum number of resilient paths for each demand. Consequently, it may be the case
that not all flows have the same number of resilient paths available. Furthermore, while
creating individual templates for single failures is possible, it would be increasingly hard
to create templates for successive failures. This would require a plethora of different
configurations that consider all possible combinations, and would consequently also re-
quire significant memory. To illustrate this, table 4.16 shows the number of network
configurations required to address every possible failure case for up to five failures in
the avionics networks.

Table 4.16: Required Configurations for Successive Failures in the AFDX Network

Failures Templates required
1 24
2 552
3 12,144
4 255,024
5 5,100,480

In addition, as no traffic must be lost during reconfiguration, a possible configuration
may not be applied directly unto the network. Rather, due care needs to be exercised in
order to ensure that the transfer from one running configuration to the other is smooth.

4.6.2 Configuration Templates
Consequently, the concept of configuration templates has been introduced. A template
is the collection of possible paths that are guaranteed to not interfere with each other
and satisfy all requirements. Here, the results of the optimisation problem are templates
of configurations, and not configurations that may directly be applied on the network.
Depending on previous failures and on the current network state, forwarding rules are
deleted on some nodes while new ones are installed.

Consequently, the paths provided by the maximum resilience objective functions are
divided into two distinct configuration templates:

Standard The default path, e.g. the shortest path, lowest latency etc. and n backup
paths used to ensure that the required failure tolerance is reached.

Remainder Any remaining paths are put in this template to be available in case of
failures.

Here, the paths that are included in the standard template are served concurrently
from system initialisation onwards. Thus, the safety-critical traffic continues to flow

109

Chapter 4: Generating Configuration Templates

over the unaffected route if a failure occurs. This allows sufficient time to select a
suitable path of the remainder to restore the resilient path. Consequently, the safety-
critical traffic continues to be transported uninterrupted and reconfiguring the backup
path allows that there are again two resilient paths available.

This process can be repeated for successive failures until no more paths are available in
this template. Only failures after this point result in performance degradation, because
sufficient resilience against future failures is ensured.

Formally, the maximum resilience algorithm provides Pr,d paths where |P | = k. If a
failure f is detected, one such path is selected so that ∀f ∈ F : f 6∈ P .

4.6.3 Configuration Templates Versus Fail-Safe States
Technically, to a limited extent a similar approach is already taken for most critical
systems. Fail-safe states are presently used to safely transition into a system state
where critical functions continue to work, albeit in a possibly degraded mode. This is in
line with a requirement derived from availability, graceful degradation [160]. Thus the
system does not fail suddenly and completely but rather gradually reduces functionality
in order to preserve as much of the system’s critical functionality as possible.

Fail-safe states address specific failure cases or attacks. For example, alternate control
laws can be introduced that allow more control input from operators if computers cannot
automatically cope with multiple sensor failures. Another option is to simply drop
everything except the most critical traffic at switches.

Current certification regulation e.g. [48] requires that all possible failure conditions
should be thought of and mitigated before the system enters into service. However,
this approach is not feasible for cyber threats as new attack vectors may emerge during
system operation. Consequently, a more dynamic approach is needed.

4.6.4 Templates and Heuristics
However, as mentioned in the introduction, not all traffic in a safety-critical system is
also safety-critical. Even if critical networks are segregated from non-critical networks,
information related to diagnostics and monitoring may still be required to be trans-
ported. While it is possible to arbitrarily define very high delay bounds (in the second
range), they might still have a detrimental effect on safety-critical traffic.

Consequently, one option would be to only consider safety-critical traffic for the cal-
culation of configuration templates. Previous sections (section 4.3) have shown that
heuristics are unsuitable to calculate configuration templates. Notwithstanding, after a

110

4.6 Generating Templates

failure, heuristics such as EDF could be used to route non-critical traffic while ensuring
non-interference with safety-critical traffic. In order to do this, the heuristics presented
in this thesis would have to be adapted so that only non-violating paths are posted.
Consequently, not the complete set of non-critical demands would be routed, but only
those where non-interference can be guaranteed.

This would serve as a complement to existing strategies such as traffic prioritisation
through VLAN tagging. As it has been shown that significant spare resources exist, this
would enable to use them more efficiently, even in the presence of failures.

Furthermore, the heuristics need to be carefully designed with respect to functionality,
especially if several aspects are being combined (e.g. delay bounds with capacity lim-
its). Previous chapters have shown that considering only one or the other may lead to
violations of capacity or delay bounds.

Consequently, in some critical systems (especially those that need to be certified), even
non-determinism of uncritical traffic may not be acceptable due to the potential impact
on critical functions.

4.6.5 Certification of Configuration Templates
The aim of the configuration templates presented in this chapter is to present generic
reactions to detected anomalies that aim to mitigate failure cases that have not been
considered specifically during system design. Hence, they work as an extension to fail-
safe states, but without necessarily reducing system performance. When a fault or
attack has been detected, a different template not using the affected component can be
applied on the network, thus allowing a continued safe operation.

Consequently, the process of generating configuration templates is as follows:

1. Maximum resilience optimisation problem is solved for a given network configu-
ration

2. Necessary certification authorities certify that templates are safe

3. Templates are loaded into a template storage and checked for access by critical
system

4. (Templates are withdrawn from the template store if they are outdated)

To begin with, templates are generating by solving the maximum resilience optimisa-
tion function as described in the previous chapter. Depending on the system, not all
constraints may be relevant, e.g. the latency constraint may not be relevant for a smart
grid because it operates on different timescales than a real-time vehicular network.

111

Chapter 4: Generating Configuration Templates

Secondly, the certification authorities investigate the safety properties of the network
configurations. This process is comparable to current certification methodology. How-
ever, rather than using paper-based accountability processes, digital processes such as
DLT are being used.

Thirdly, the templates are loaded into a database that is accessible by the SDN con-
troller. Obviously, prior to loading a variety of parameters are being checked, such as
the validity of signatures and the applicability to the system.

Additionally, configuration templates may also be outdated, e.g. because components
are added or removed during the decades of operation of most safety-critical systems.
Hence, a mechanism to remove such outdated templates also needs to be included.
An overview of this process is provided in figure 4.33. This ensures that the system

Manufacturer

Airworthiness
Authority

Operator

Proposed
configuration

approve

Certified
configuration

reject

Rejected/

configuration

outdate

Configuration management system

Interface

Statistics, anomalies...

deprecated

critical
system

Figure 4.33: Certification process

always has configuration templates available that can provide maximum resilience to
the network. In addition, a similar process could be envisaged specifically to react to
security incidents, which will likely require more frequent updates.

4.7 Summary

To summarise, while heuristics can result in good performance with respect to some
characteristics and also provide fast routing, their violation of timing constraints make
them unsuitable for use for safety-critical traffic demands. Beyond that, it has been
shown that the EDF heuristic results in violations of the resource usage while the lim.

112

4.7 Summary

capacity heuristic causes delay bound violations. Consequently, for safety-critical traffic,
neither heuristic is suitable.

However, this chapter has also shown that due to the significant resources required in
solving optimisation problems, it is not feasible to perform them only when a failure
or security incident has been detected. Consequently, candidate routings together with
other possible reactions to anomalies need to be calculated before a safety-critical sys-
tem comes in operation. While a variation of the delay bound has been investigated, it
was found that the most significant impact is on the calculation time. For the other pa-
rameters investigated, particularities of a given routing problem have a more significant
impact on performance than the mean delay bound.

In addition, this chapter has also shown that is infeasible to create a tailored configu-
ration for every possible failure. Consequently, the use of configuration templates has
been presented. To this end, an optimisation algorithm for maximum resilience has
been employed to generate candidate responses that can then be selected as needed
during operation. Finally, a possible application of heuristics for best-effort placement
of non-critical demands has been presented.

113

Chapter 5

Using Configuration Templates

This chapter describes how the configuration templates can be used to react to detected
anomalies. To this end, the templates are used to react to intentionally triggered failures
and the effect of this process studied, as detailed in section 5.1. Subsequently, the impact
of using configuration templates on the management plane are given in section 5.2, with
safety-related considerations in section 5.3 and security-related in section 5.4. The main
findings of this chapter are summarised in section 5.5.

5.1 Network Reconfiguration

The experimental setup in which the data plane reconfigurations were performed are
given in section 5.1.1.

To analyse the impact of network reconfigurations on the control plane, different prop-
erties will be investigated. To begin with, the impact of the failure (i.e. the number
of flows affected by a failure) is studied in section 5.1.2. Whether the anomaly could
be mitigated successfully, and how long it takes until all demands are rerouted is in-
vestigated in section 5.1.3 and section 5.1.4, respectively. Additionally, the potential
impact of the number of previous failures on those parameters will be investigated in
section 5.1.5.

Furthermore, the amount of control traffic between controllers and switches will be
analysed in section 5.1.6 in order to determine whether in-band or out-of band control
networks make more sense in this context.

Beyond that, strategies and the impact of deleting forwarding rules prior to the recon-
figuration are discussed in section 5.1.8. A condensed version of this section has been

Chapter 5: Using Configuration Templates

published previously in [145]. However, the paper only provides a basic overview of the
concept, but does not include the detailed analyses that are presented in this thesis.
Specifically, the paper does not address the impact on strategies to delete rules and
control traffic necessary for the proposed solution.

5.1.1 Experimental Setup
The avionics network has been replicated in the OpenSource mininet network emulation
orchestration system [123]. End-hosts, links, routers and switches are virtually executed
on a single Linux kernel. It has been run natively on a machine running Ubuntu 16.04,
with 48 GB of RAM and 12 cores due to the large number of traffic flows.

Mininet is started as a python shell script (cf. Listing B.1). It initialises the network,
and creates four hosts per demand. Two of those represent the source of the demands
attached to the source switch in the network and the other two are attached to the
last switch in the network. Subsequently, the appropriate forwarding rules from the
initial configuration as described in the previous chapter are installed on the respective
switches.

As soon as this has finished, switches and/or links start to arbitrarily fail. To this
end, a small attacker program has been implemented in python that reads the network
topology and then terminates a random element (cf. Listing B.3). This process is
encased in an infinite loop, with a random waiting time between events.

A third python script acts as an adaptive controller (cf. Listing B.2) that is built on
top of a standard POX controller. This script reacts to the OpenFlow events detected
by the controller. Firstly, the script detects which flows (both of the standard and the
backup path) have been affected by the failure. To this end, it iterates over the initial
configuration template.

Secondly, the candidate paths are evaluated. Here, it is checked whether any previous
failures could render a candidate response unusable or whether the failed component is
a source or destination switch. If this is the case or no candidate paths without failed
components can be obtained, the demand is unrecoverable. Otherwise, the forwarding
rules leading to or from the failed component are deleted (see section 5.1.8) and the
forwarding rules necessary for recovery are installed.

For installation, the controller orders the modification of forwarding rules at the re-
spective switches with an individual update for each forwarding rule. As the paths
are required to be node-disjoint, strategies for rule-sharing are not beneficial in this
context. Here, the rules on the switches that are directly connected to the respective
hosts (ad, bd) are modified first. Subsequently, the rules for intermediate switches are

116

5.1 Network Reconfiguration

updated. The respective switch reports the successful installation of the new forward-
ing rule. Subsequently, now redundant forwarding rules are deleted from the switches.
While this latest step is important to keep forwarding tables as short as possible, it is
not itself time-critical, as there is again redundancy. Consequently, the duration of this
final step has not been included in the timing analyses below.

5.1.2 Impact on Demands
Figure 5.1 shows the distribution of demands affected by a failure. For the purpose of
this analysis, failures of links have been considered unidirectionally, that means a failure
of the link (2,4) will not affect the traffic on link (4,2). It can be observed that a link
failure affects far fewer demands than a switch failure.

Contrary to the scenario chosen for deriving the templates which focused on avoiding a
failure of the physical link, during operation, failures due to overuse or DOS are far more
likely. As those do not influence traffic flow in both directions, it is three times more
likely that a failure affects a given switch than a given link. Consequently, the mean
number of flows disrupted by a link failure is approx. 10.26%, while this value rises to
62.05% of demands that are impacted. Please note that the numbers may exceed 100%
for the switch failure, if a source/destination switch is affected.

Yet as there are end-devices attached to the switches, a failure obviously affects all
demands originating from or destined for those switches.

5.1.3 Success of Configuration Changes
Beyond that, figure 5.2 shows the number of new forwarding rules that need to be
installed to recover the standard path, while the distribution for the backup path are
shown in figure 5.3. As depicted, the restoration of the backup path requires – on
average – about four times as many new forwarding rules. This is due to several reasons.
Firstly, switch failures can only be recovered if neither the source or destination switch
has failed. As the standard path is mostly the direct connection between source and
destination, it cannot be affected by a failure of a transit switch, which is not the case
for the backup path.

Secondly, due to the requirement that paths are node- and link-disjoint, a completely
new path is selected, rather than just a local detour around the failed switch. This in
turn leads to more forwarding rules that need to be updated in order to restore the
backup path compared to the standard path. An analysis on the number of flows
that could not be recovered is given in figure 5.4 and figure 5.5. As shown in table 4.1,
no switch in the avionics network is only used for forwarding. Consequently, all traffic

117

Chapter 5: Using Configuration Templates

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0

25

50

75

100

Number of demands

A
ffe

ct
ed

flo
w
s
in

pe
rc
en
t

Figure 5.1: Percentage of flows affected by a failure in the avionics network

118

5.1 Network Reconfiguration

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0

200

400

600

Number of demands

N
ew

fw
d.

ru
le
s
(S
td
)

Figure 5.2: Number of new forwarding rules standard path in the avionics network

119

Chapter 5: Using Configuration Templates

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0

500

1000

1500

2000

Number of demands

N
ew

fw
d.

ru
le
s
(B

ac
ku

p)

Figure 5.3: Number of new forwarding rules backup path in the avionics network

120

5.1 Network Reconfiguration

that originates from or is destined for a switch that is affected by a failure cannot be
restored. In addition, as not all demands have the same number of paths available, a
previous failure might have already severed the original link. The effect of such previous
failures is discussed in section 5.1.5.

Notwithstanding, it should be noted that yet another failure on the final running path
would finally sever the link between source and destination.

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0

200

400

600

800

Number of demands

U
nr
ec
ov
er
ab

le
de
m
an

ds
(S
td
)

Figure 5.4: Number of unrecoverable flows in the avionics network – Standard configuration

5.1.4 Time Required
In figure 5.6 the time until successful reconfiguration is depicted. It should be noted
that this is the time required until all flows affected by a failure have been rerouted,
not the time for individual rule installation. In addition, the time measured here is the
elapsed time until the instructions have been sent to the switches by the controller, not
until they have reported the successful installation back to the controller.

121

Chapter 5: Using Configuration Templates

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0

300

600

900

Number of demands

U
nr
ec
ov
er
ab

le
de
m
an

ds
(B

ac
ku

p)

Figure 5.5: Number of unrecoverable flows in the avionics network – Backup configuration

122

5.1 Network Reconfiguration

For the full demand set, the mean reconfiguration time is less than 2.5 seconds. However,
for some switch failures, up to 10 seconds are required. This is because the traffic in
the demand set has not been equally distributed.

Yet it should be noted that traffic continues to flow uninterrupted using either standard
or backup path. The node- and link-disjoint formulation of configuration templates
ensures this. Consequently, the only concern would be a disruption of this path while
the configuration is ongoing. While this scenario is extremely unlikely for failures due
to natural causes, appropriate measures such as advanced intrusion detection systems
need to be taken to ensure that such an intentional failure is equally unlikely.

Link Switch

98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69 98 19
6

29
5

39
3

49
2

59
0

68
8

78
7

88
5

98
4

10
82

11
80

12
79

13
77

14
76

15
74

16
72

17
71

18
69

0.0

2.5

5.0

7.5

10.0

Number of demands

El
ap

se
d
T
im

e
fo
r
R
ec
on

fig
ur
at
io
n
in

se
c

Figure 5.6: Time required to recover from failure in the avionics network

5.1.5 Impact of Successive Failures
In addition, the impact of several successive failures has been studied. Here, figure 5.7
shows how many flows are affected by a failure, depending on how many previous failures
have occurred. The distribution remains constant for the first few failures (n ≤ 7), then

123

Chapter 5: Using Configuration Templates

drops for n > 7 ≤ 12 and then rises again. The first few failures do not have a
significant impact on restored paths. However, this is because switch failures cause the
isolation of hosts directly connected to that switch. Hence, as the number of failures
increases, the number of affected flows decreases as the demands of isolated hosts are
already disconnected the network. Finally, as even more failures affect the paths of the
remaining flows, these become increasingly impacted.

Link Switch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

500

1000

1500

Previous failures

A
ffe

ct
ed

flo
w
s

Figure 5.7: Number of flows affected failures in the avionics network

Success
To establish the effect of a failure, it is also relevant to consider how many flows cannot
be recovered because the host is isolated. This isolation can either occur due to the
failure of the switch to which it is connected or by the successive failure of all links that
connect the switch to the network. This is depicted in figure 5.8 for the standard path
and figure 5.9 for the backup path. In both cases, with increasing previous failures, the
number of flows affected by a link failure increases, while the number for flows affected

124

5.1 Network Reconfiguration

by a switch failure decreases. This is because link failures affect available backup paths,
while switch failures affect the demand overall as the demand cannot be incorporated
into the network. Consequently, the number of demands decreases over time, which in
turn reduces the number of demands that are affected by a previous failure.

Link Switch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

200

400

600

800

Previous failures

U
nr
ec
ov
er
ab

le
de
m
an

ds
(S
td
)

Figure 5.8: Number of unrecoverable flows with previous failures in the avionics network-Standard
configuration

Timing
As depicted in figure 5.10, the recovery time varies with the number of previous failures.
As the number of demands reduces with preceding failures, the time needed to reconfig-
ure the network also reduces. For the avionics network, previous failures do not increase
the search time for a path unaffected by those failures measurably. Notwithstanding,
especially for a larger scale network such as the electricity grid – where a plethora of
options may be available – this can be a significant factor.

125

Chapter 5: Using Configuration Templates

Link Switch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

300

600

900

Previous failures

U
nr
ec
ov
er
ab

le
de
m
an

ds
(B

ac
ku

p)

Figure 5.9: Number of unrecoverable flows with previous failures in the avionics network-Backup
configuration

126

5.1 Network Reconfiguration

Link Switch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0

2.5

5.0

7.5

10.0

Previous failures

El
ap

se
d
T
im

e
fo
r
R
ec
on

fig
ur
at
io
n
in

se
c

Figure 5.10: Time required to recover from failure in the avionics network

127

Chapter 5: Using Configuration Templates

5.1.6 In-band Versus Out-of-Band Control Network
The analysis of the forwarding rules detailed in the previous section already provided
some insight into the amount of command traffic that needs to be sent. Yet in order
to truly analyse the impact of using SDN in safety-critical systems, the impact of using
in-band versus out-of-band traffic needs to be considered. On the one hand, by using an
in-band control network conflicts between control traffic and payload could arise. On
the other hand, a separate control network increases the weight and complexity of a
system. Consequently, it is relevant to analyse the impact of the presented solution on
the control plane in addition to the impact on the data plane.

Strategies such as VLANs are available to ensure that the amount of control traffic is
limited. However, it should be noted that such methods could increase the time needed
the reconfigure the network. Consequently, the time span during which an additional
failure could potentially not be tolerated increases. Yet this could be mitigated by
increasing the number of redundant paths that are served concurrently for the most
critical demands.

Moreover, the (expected) number of control traffic also needs to be considered for the
design and optimisation of network traffic and included in the optimisation problem
as additional demands. While this would lead to an overdimensioned network, for
safety-critical networks such as the avionics network it is necessary to ensure that the
safety-critical messages on the data plane are not negatively affected.

In addition, a separate control network would significantly increase complexity and
weight, with the former being undesirable for safety-critical systems and the latter for
mobile systems. Beyond that, for an in-band network, the resilience of the data plane
has already been verified if the max. resilience function is used.

Deleting All Rules Prior to Rerouting
As said, the first option would be to delete all forwarding rules prior to deploying new
ones. In OpenFlow, there is no difference between the process of adding and deleting
forwarding rules. Consequently, the same considerations as for installing forwarding
rules apply. Obviously, deleting all forwarding rules beforehand ensures that only the
current and relevant forwarding rules are installed. This is especially relevant for those
systems that are dynamic and where the TCAM is used close to capacity. Now obviously,
deleting all forwarding rules beforehand increases the time needed for reconfiguration,
as the timing analyses above only considered the installation of new forwarding rules,
not the removal.

128

5.1 Network Reconfiguration

As depicted in table 5.1, for the avionics network, very little reconfiguration is necessary.
For the backup path, only one intermediate flow needs to be deleted in the average case.
In addition, the rule at the switch linking the network to the target resource needs to
be changed. For n = 1869, only about two percent of flows require two intermediate
rules to be deleted. Yet this number is significantly higher if obsolete forwarding rules
from remaining paths (i.e. neither primary nor backup) need to be deleted. However,
for the avionics network, only 17.62% of flows have more than one path remaining for
reconfiguration. This is due to the network topology and the requirement that resilient
paths must be node- and link-disjoint. Moreover, as shown previously, the number of
demands that need to be reconfigured decreases with an increasing number of failures.

Table 5.1: Number of Forwarding Table Entries to be Deleted

Configuration Min. Median Mean Max.
Backup 2 2 2.019 3

Remainder 2 3 3.027 6

Selectively Deleting
In contrast, as all paths are node- and link-disjoint, the modifications as performed in
the experiments above would suffice to ensure that traffic is no longer routed to the failed
component after the entries in the first and last switch of the path has been modified.
Consequently, the time needed to reconfigure the network is reduced or stays the same
if there is a direct link between source and destination switch. While the amount of
control traffic does not change, the removal of obsolete rules can be delayed so that only
a minimum amount of bandwidth is consumed at any given time.

As seen in table 5.1, for the avionics network, this would only reduce the amount of
the control traffic by a third for paths not included in the initial configuration, as
the mean path length is two for n = 1869 demands. In addition, unused rules could
also be a security risk if an attacker uses now unused paths to introduce malicious
traffic. Furthermore, in large/dynamic networks this approach would not be practical,
as forwarding tables are limited in size. Consequently, flow tables should be cleaned up
to ensure that there is space for introducing new flows or reconfiguration.

Notwithstanding, it is possible to delay the deletion of intermediate forwarding rules,
especially for in-band control networks. However, this strategy only makes a difference
if there is at least one switch between source and destination.

129

Chapter 5: Using Configuration Templates

5.1.7 Control Traffic
According to the specification [133], each OpenFlow message contains a 32 Bit header,
followed by the payload as follows:

• 32 Bit ingress port address

• 48 Bit OpenFlow Ethernet source address

• 48 Bit OpenFlow Ethernet destination address

• 16 Bit Ethernet type

• 8 Bit Protocol number

• 32 Bit IPv4 source address

• 32 Bit IPv4 destination address

• 128 Bit IPv6 source address

• 128 Bit IPv6 destination address

• 13 Bit VLAN ID

• 16 Bit TCP source address

• 16 Bit TCP destination address

• 16 Bit UDP source address

• 16 Bit UDP destination address

Consequently, each modification/deletion requires 581 Bit of traffic that needs to be
exchanged. For the avionics network with n = 1869, up to 991 rules need to be modi-
fied/added for a link failure and 2286 rules for a switch failure. Thus, up to 575 kb of
control traffic need to be transmitted for a link failure and up to 1.32 Mb for a switch
failure.

For the avionics network, this amount of control traffic does not warrant an additional
control network. Furthermore, this network is the on-board network of an aircraft.
Reducing weight and complexity is one of the chief goals in aircraft design, hence an
additional network would only be warranted if it would significantly increase safety. As
the low bandwidth required would not significantly interfere with safety-critical traffic
(especially if prioritised accordingly), it is not necessary in this case. Notwithstanding,
this bandwidth requirement will need when generating optimisation templates.

130

5.2 Management Plane Configuration

This chapter considers a sample network on-board an aircraft. Nevertheless, especially
for large-scale networks such as the smart grid with significantly more nodes, the control
traffic might be significant. In those cases, it would be possible to limit the control traffic
to a certain bandwidth to limit the queueing delay of safety-critical traffic.

Moreover, from a security perspective, it needs to be considered that a common trans-
mission medium exists. Consequently, network level attacks such as DOS or replay
attacks affect both data and control plane. Thus, in such attack scenarios, a controller
could not post a modify-rule message to cut an attacker from the network. However, in
safety-critical systems, one could consider other strategies such as only allowing mod-
ifications e.g. while the vehicle is parked. Notwithstanding, it needs to be included in
the analysis.

5.1.8 Strategies to Delete Forwarding Rules
Beyond considering approaches to add forwarding rules, it is also necessary to investigate
how to delete the rules that became obsolete as a component has failed. As mentioned
before, the message size is identical for modification and deletion. In addition to reduc-
ing the bandwidth on the network, as the TCAM memory is limited, deleting obsolete
forwarding rules is especially relevant for networks with a large number of flows.

In principle there are two strategies that can be employed: either deleting all obsolete
rules prior to deploying the backup paths or selectively rerouting. The advantages and
disadvantages of these strategies will be discussed in the following paragraphs. As the
shortest path has been chosen as the primary path, only one forwarding rule needs to
be deleted/changed (at the switch linking the target to the network). Consequently,
differences in strategy will only matter for backup paths.

5.2 Management Plane Configuration

After discussing how a reaction can be performed in the data plane and analysing the
impact on the control plane, this section describes the impact on the management plane.

The following considerations have been split into two parts: safety section 5.3 and secu-
rity section 5.4. This has been done to consider resilience and accountability separately
from issues such as data privacy. For safety-critical systems, security is one of several
means to ensure safety.

The selected reaction needs to be appropriate to the impact on the network. As described
in section 3.2, the impact of the mitigation effort affects data plane, control plane as well

131

Chapter 5: Using Configuration Templates

as management plane. However, as the decision as to whether a reaction is triggered is
taken in the management plane, it will be discussed here.

In the previous section, reactions to failed network components were discussed. Here,
a network reconfiguration has been deemed necessary so that safety-critical traffic can
reach its destination. Consequently, the controller can directly trigger the reconfigu-
ration without interaction with the management plane. This decreases the response
time and consequently reduces the chance that there is a second failure during the
reconfiguration.

However, in the general case, it cannot be assumed that the impact of the anomaly and
a potential reaction is as straightforward to establish. In addition, malicious devices
could falsely report failure of other devices to cause unnecessary reconfiguration or
ensure that traffic is routed via them. Consequently, a more complex design of the
management plane is required. The overall system layout is shown in figure 5.11. As
depicted, there are three types of equipment that serve as sensors: IVHM, SDN, and IDS.
A detailed description of the data thus available has already been given (cf. chapter 2).

However, it should be noted that not only complete failures can be detected by the SDN
controller but also issues such as an increase in the queueing delay at an interface. In
addition, reports by the health management system or intrusion detection are collected
in the management plane and could trigger a reconfiguration or other reaction. These
sensors provide the input to the ’controller’ of the closed-loop control system as de-
picted in figure 3.2. This functionality of the management plane again consists of three
functions: anomaly detection, reaction finding and reaction implementation. Here, the
anomaly detection component decides whether the event reported by one of the sensors
is indeed an anomaly. Subsequently, the reaction finding process determines whether a
reaction is needed and if so, what it should be. Finally, the reaction implementation
component interacts with the control plane to trigger the execution of the determined
interaction. The functionality of the latter two components will be described in more
detail below.

5.2.1 Finding an Appropriate Reaction
Once an anomaly has been detected, the next step is establishing a suitable reaction to
mitigate the effects of the anomaly. In section 3.2, the concept of appropriateness has
been introduced. As mentioned, the impact of the anomaly is compared to the potential
impact of a configuration change. If there is no significant positive benefit, no reaction
should be performed. In addition, if the reaction to a purely security-related incident
would have a negative impact on a safety-critical functionality, the reaction should not

132

5.2 Management Plane Configuration

SDN Switch

SDN Switch

SDN Switch

Anomaly Detection

SDN IDS-AlertsIVHM

Data Plane

SDN
Controller

SDN
Controller

SDN
Controller

Devices Devices

Control Plane

Anomalies+

proposed reactions

Reaction division

Consensus

Control messages

messages

Management Plane

Figure 5.11: Management plane configuration

be implemented. Moreover, it may be the case that no response can be performed online,
because a given anomaly can only be mitigated offline, e.g. by physically replacing the
component or patching software. Thus, degraded modes are by no means obsolete using
the mechanism described henceforth, but they serve as an additional level to increase
the availability of safety-critical functionality.

For the safety-critical networks studied in this thesis, the following characteristics de-
termine whether a proposed reaction is appropriate:

• impact of anomaly on network performance (throughput, latency...)

• impact of reaction on network performance

133

Chapter 5: Using Configuration Templates

• amount of flows that need to be rerouted

• critical traffic that is affected

• false positives/negatives

First of all, it is necessary to establish whether the failure had any measurable impact
on network performance. If this is not the case, either the failure affected a component
that did not handle any traffic, or it has been a false positive. In both cases, no
reconfiguration should be performed.

Secondly, the (at this point) theoretical impact of the suggested configuration needs
to be established. Here, the potential benefit of the network reconfiguration such as
lower link usage, rerouting around a failed component has to be balanced against the
impact of a network reconfiguration such as number of forwarding tables that need to
be changed. In addition, the possibility of false positives (see below) needs to be taken
into account.

Thirdly, the amount of flows that need to be rerouted is of importance. A slightly in-
creased buffer size does not necessarily call for a reconfiguration that affects a significant
proportion of flows. In this context, it is required to consider that the installation of
new forwarding tables takes time. Thus, another, more significant anomaly cannot be
addressed while this network configuration takes place. Consequently, the number of
flows that need to be rerouted and the number of forwarding table entries that need to
be changed is significant.

Fourthly, the amount of critical traffic that is affected needs to be considered. If only
less critical traffic (e.g. maintenance data) is affected, a network reconfiguration may
not be necessary. On the other hand, even if just a few demands of most critical traffic
is affected, a reconfiguration that rectifies this issue may be called for.

Finally, no matter how thorough the system design, both false positives and false nega-
tives can occur. Consequently, steps need to be taken to ensure that neither negatively
influence safety. Here, it is especially relevant that false positives – whether they are
benign or caused by a malicious controller – do not result in network reconfigurations
that negatively affect critical flows.

All these parameters have an impact on whether the reaction is appropriate. Any event
can result in either a change within the network state or cause a state transition to
occur. For anomalies that results in a state transition, the new reaction set is used e.g

134

5.2 Management Plane Configuration

if security a security incident has been detected:

s1 → s2 :
(
n2

1

)
∈M1 +M2 ⊆M (5.1)

For the safety-critical systems considered in this thesis, the state transitions with respect
to safety can be clearly defined. Here, any violation of the requirements defined in the
optimisation problem results in a state transition from s1 to s3 or s4 i.e. from safe and
secure to not safe and (not) secure.

In addition, the traffic patterns of safety-critical systems are generally well-defined and
do not need to consider dramatic variations in traffic patterns, as opposed to Inter-
net services. Consequently, it is comparatively easy to detect gradual changes that
are indicative of an emerging problem, if not already detected by IVHM mechanisms.
Moreover, it should be noted that the theoretical latency distributions used to obtain
configuration templates (i.e. by using the maximum resilience objective function) are
worst-case assumptions with all resilient paths being served concurrently. Consequently,
if the measured latency distribution and resource utilisation reaches this worst case
value, corrective actions should already be considered to ensure that no safety-critical
increase in delay and utilisation is reached. To this end, a suitable reaction from M1

may be selected, as the network is still in s1 at this time.

Notwithstanding, it should be noted that other, unrelated failures (such as engine fail-
ures) could also result in an increase or change of traffic. Obviously, such emergency
states need to be considered when designing anomaly detection, to avoid aggravating
the safety state of the system.

With respect to security, a similar approach may be taken. However, unlike the well-
defined, hard transitions that apply with safety (a missed deadline is a missed deadline),
the state transitions with respect to security are more more difficult to define. This is
on the one hand caused by an uncertainty in the sensors, such as intrusion detection
systems. On the other hand, a loss in confidentiality cannot be easily quantified. Here,
it is necessary to link outputs of ID systems to the confidence of the output. Here, it
is beneficial that the sensors are being applied to safety-critical systems. This allows
to have far more detailed information on quality indicators such as precision and recall.
Consequently, those can be used to add the respective uncertainty, which in turn allows
to judge the impact of the detected security anomaly. This is especially relevant when
resilient systems establish a different conclusion on the network state, such as different
SDN controllers.

135

Chapter 5: Using Configuration Templates

After establishing the impact of the detected anomaly on the network for the safety
and security parameters as given in chapter 3, the current system state at time t can
be established as s(t) ∈ S, S = s1, s2, s3, s4. Subsequently, the available reactions need
to be assigned to the corresponding network states. The following actions are sample
reactions that could be available in an avionics network as employed for the network
reconfiguration in section 5.1, assigned to the according mitigation set m, as detailed in
equation (3.8):

• m1

– Doing nothing

– Log incident

– Report item for maintenance/trigger maintenance action

• m2

– Temporarily increasing packet inspection rate/adapt firewall

– Permanently increasing packet inspection rate/adapt firewall

• m3

– Reconfigure network

– Enter degraded mode

– Alert operator

• m4

– Block traffic

– Isolate parts of the network

If the network is safe and secure (i.e. in s1), the first possible reaction is to do nothing.
This reaction is suitable for transient anomalies that are caused by external events,
such as individual bit flips due to the effects of solar radiation. These anomalies will
not have a negative effect on the system, and hence do not need to be addressed. If this
is not sufficient, a log of the incident can be generated and stored for further analysis.
Depending on available systems, the frequency of occurrence, and the information as-
sociated, this report can either be periodically offloaded or immediately transmitted to
a supervising entity (e.g. an operations centre). Moreover, if a component is defective
but safety not affected (e.g. because it is one of three redundant systems), the item can
also be reported for maintenance and/or an according maintenance action triggered.

136

5.3 Safety Considerations

This option is also available to mitigate minor security vulnerabilities that do not have
a detrimental impact on safety.

If the network is no longer secure but still safe, reactions with a more profound impact
become available. If a loss of confidentiality or integrity is likely, the frequency of in-
spections from intrusion detection systems may be increased. As this results in delays of
the traffic, these measures can be introduced either temporarily or (if more severe) per-
manently. Together with logging (as available in m1), this could provide a more detailed
insight into an intrusion, and thus help to patch relevant vulnerabilities. In addition,
firewall rules (if present) could be adapted to limit or block external communication, if
this communication link is not safety-relevant. For example, in an aircraft, passenger
internet could be blocked, while crew links to air traffic control need to remain intact.

Going beyond this, if the system is no longer safe or if safety margins are significantly re-
duced so that a loss of safety is imminent (e.g. if two out of three redundant components
fail), the reactions of set m3 become available, in addition to m1 and m2. In this re-
action set, the network reconfiguration as detailed in the previous section are included.
While ongoing transmissions are not negatively affected, a reconfiguration limits the
number of resilient paths available for future reconfigurations. Hence, it should only be
considered if the detected anomaly significantly reduced safety margins. Furthermore,
this mitigation set also includes the option to enter a degraded mode, where only the
most critical operations continue. In the aircraft example, this would be the functions
related to flight control. Concurrently, it is generally necessary to alert an operator to
the fact that the system went into a degraded mode. Depending on the system, this
operator would be able to initiate further recovery protocols not deemed suitable for
automatic execution.

Finally, if the unsafe state has been caused by a security incident, it is possible to
block traffic or isolate parts of the network, to allow as much traffic as possible to be
transmitted while containing the event. However, such an extreme mitigation should
only be performed as a last resort, as it can have a significant impact on safety. As an
additional safeguard, it could be considered that such an action is only performed after
confirmation of an operator (if present), but without further manual action by them.

5.3 Safety Considerations

SDN features a logically centralised controller. However, that does not mean that there
can only be one controller in the network, which would be a single cause of failure.
Notwithstanding, it should be noted that the data plane continues to operate if a con-
troller fails, but no changes to routing can be performed. False negatives are far less

137

Chapter 5: Using Configuration Templates

likely in the safety context (see section 5.4 for the security context), as benign failures
likely result in some impact on the network state that may easily be detected. An
exception here are intermittent failures, that may go undetected for a period of time.
However, such failures e.g. radiation are generally self-correcting and do not need any
high-level response, at least if sufficient resilience is available in the network.

5.3.1 Strategies for Controller Resilience
There are several possible strategies to allocate controllers to the network.

• Primary/secondary controller

• Subnetwork division (overlapping/non-overlapping)

• Consensus amongst controllers

Firstly, it is possible to have one primary controller that is responsible for the entire
network and a secondary controller that is either in hot or cold standby to take over
if the first controller fails. However, with this arrangement, only complete failures can
be mitigated, while transient faults and security incidents are not considered. What
is more, a suitable mechanism needs to be designed that can reliably detect when a
handover from primary to secondary controller is necessary. Finally, with this configu-
ration, an attacker could sequentially target the respective controllers to cause a system
failure.

Secondly, the network can be subdivided into different subnetworks. Here, both scenar-
ios where the network boundaries overlap and where they do not can be envisaged. In
both cases, due care needs to be taken with system design so that critical components
are distributed across the system in a way that prevents loss of critical traffic with any
one controller failure. With overlapping subnetworks, more resilience can be provided
against non-malicious failures, as the second controller can seamlessly overtake failures
of the first. What is more, this strategy of overlapping networks is already used in
some critical systems, e.g. the hydraulic networks of aircraft, where control surfaces are
supplied by at least two different hydraulic lines.

The third option is technically only a variant of the second. Here, several controllers are
responsible for the network and need to come to a conclusion together. Consequently,
such a configuration would offer Byzantine fault tolerance, as a majority of controllers
needs to be corrupted to prevent correct system operation from a security perspective.
From a safety perspective, n− 1 controller failures can be tolerated.

138

5.3 Safety Considerations

5.3.2 Time Required for Consensus
The system proposed in this thesis introduces an extra checking feature, to ensure that
the reconfiguration is safe. While this process does not negatively influence the run-
ning configuration (since only either standard or backup path are rerouted), another
failure during this process cannot be tolerated and could result in traffic loss. Conse-
quently, there is a balance between the time required for the reconfiguration and the
thoroughness.

5.3.3 Accountability
While previous work (cf. section 2.3) covered some strategies to coordinate different
controllers, one key feature has not been addressed: accountability.

Just as every current maintenance effort in a safety-critical system has to be logged, all
controller actions on the data plane would need to be accounted for. This permits to
detect both rogue controllers and any potential problems with current configurations so
that they can be rectified as soon as possible.

To this end, the following information needs to be collected:

• Which component detected an anomaly?

• Which controller has proposed which reaction (if any)?

• Which controller has implemented which reaction?

• Which switch reported that it has implemented a change to the forwarding tables?

• When did those events occur?

• Network state snapshots.

First of all it is important to record when an anomaly (of whatever kind) has been
detected. Along with SDN controllers, other components such as IDSs and integrated
health management components could also report anomalies. This record allows to
see if the reaction is justified, up-to-date and useful. What is more, recording such
anomalies allows to investigate possible correlations between different anomalies, that
may require different responses if faults occur individually. Beyond that, it helps to
avoid false positive reactions, if the anomaly does not have a measurable impact on the
network.

Secondly, it needs to be recorded which controller has proposed a reaction. If one
controller consistently produces disagreeing reactions, it might be indicative that the
controller is defective or has been corrupted. Consequently, it is important that decisions

139

Chapter 5: Using Configuration Templates

are recorded to ensure that timely maintenance action can be performed to replace or
patch the defective controller.

For the same reason, each implemented reaction needs to be recorded. Additionally, this
record also allows to verify that no unauthorised configuration changes are implemented.

Beyond that, the switches report that they have successfully changed the content of
their forwarding tables. If all switches report that the changes have been performed
and the network state still does not improve, the implemented reaction did not bring
the intended results. This means that either another reaction needs to be performed or
that the configuration templates are no longer useful and hence need to be recalculated.

Adding a time stamp to all events further adds the possibility to correlate various events.
In addition, if one controller detects an event significantly earlier or later, this could
provide additional insights, especially for security events.

Finally, it is important that regular snapshots of the network state are recorded. As
mentioned above, this allows to supervise various components and also helps with the
decision making process. Furthermore, regularly monitoring the network state allows to
detect a slowly degrading network state e.g. due to ageing components, that may not
otherwise be found in time.

5.4 Security Considerations

5.4.1 Authorisation
To ensure that a malicious controller cannot negatively impact system operation, it is
necessary that any changes to the network are authorised. As a single authorisation
instance would face the security exposure risks as a single controller, a distributed
approach is needed.

In this context, the multi-party authorisation (MPA) model can be used. Here, multiple
parties need to review and authorise actions prior to their execution. Otherwise, the
action is not permitted. To govern the authorisation process, either pre-formulated poli-
cies or spontaneous negotiations may be used. Common governing criteria include the
number of authorisations required, and identity/role of specific authorisation entities.

A formal definition of MPA has been established in [108, sec. 2.3]. The following
properties need to be met according to her definition by an authorisation protocol:

Agreement Honest entities agree on the content subject to the request.

Validity Honest entities process the request initiated without modifications.

140

5.4 Security Considerations

Temporal order Authorisations are granted in the order defined.

Non-triviality The protocol is not permitted to abort the process.

In the context of SDN controllers in critical systems, this means that the controllers
need to concur on the configuration template that is to be implemented. Furthermore, it
needs to be ensured that no different configuration template is introduced in the process.
Beyond that, the order of approvals needs to be followed. Finally, it is not allowed that
the process terminates without obtaining a reaction to the detected anomaly. However,
it is permissible that the outcome of the consensus is that no reaction is necessary, e.g.
because only a minimal increase in the queueing delay has been observed.

Additional reactions, such as an increased logging frequency may also be implemented
directly at the component. However, since they do not have an influence on the safety-
critical traffic, participation in the consensus process is not necessary as such.

5.4.2 Privacy
Some critical systems mainly process technical data, hence data privacy concerns only
play a minor role. Notwithstanding, privacy also needs to be considered in this context.
Where data privacy is especially important (e.g. in the smart grid), additional means
such as encryption need to be considered.

However, as data is persistently recorded, and safety-critical systems are in operation
for significant periods of time, it may be the case that encryption means are becoming
obsolete during the operation. With the increase of computational power or new al-
gorithms, older encrypted entries may no longer be sufficiently protected. While some
data may no longer be required to be private at this point, this effect should nevertheless
be considered.

Consequently, collecting data needs to be kept to a minimum, especially considering
the likeliness of false positives. On the other hand, it is important to record all the
necessary data to be able to reproduce a security incident in as much detail as possible.
As mentioned before, this allows to prevent the incident from having an impact again
or to other systems. To prevent an attacker from interfering with such forensic details,
it is necessary that they are recorded in a tamper-proof way. Notwithstanding, the
accountability requirement for safety can be seen to be orthogonal to data privacy.

5.4.3 Attacks on the Controllers
While those elements delay the reaction to a detected anomaly, it is very important from
a security point of view given that this system could also be exploited. The following

141

Chapter 5: Using Configuration Templates

attack paths can be envisioned. Firstly, a necessary reaction can be prevented from
being executed by n malicious controllers.

Secondly, one controller can spoof the necessity to react to a failure, while no such
failure has taken place. This can on the one hand result in the flooding of the reconfig-
uration interface by too many requests being sent. On the other hand, it can trigger a
reconfiguration that is not necessary, thus degrading system performance, to the point
where no more safe reconfigurations can take place.

5.4.4 Completeness
Furthermore, it may be the case that a security issue is correctly detected, but the pro-
posed reaction would negatively impact safety-critical systems. In those cases, an attack
may have to be tolerated. An example for such a case is a minor security incident that
would require significant reconfigurations, comparable to the scenario written above.

Additionally, a security incident may not be completely mitigated during operation,
because the function is provided by the affected component which is safety-critical.
Here, it may be necessary to tolerate an attack for a given period of time, until either
a patch can be provided or the affected component can be replaced. While component
diversity should reduce the chance of several safety-critical components being affected
by a critical vulnerability at the same time, previous experience such as with Stuxnet
shows that it needs to be considered.

Beyond that, as mentioned above, both false negatives and false positives of IDS can
occur. From a security perspective, false negatives are especially concerning. Unlike
e.g. flooding, which can be detected on a network performance level, more sophisticated
attacks may not necessarily effect the network in a way that can easily be detected.
Consequently, a malicious entity may prepare a more sophisticated attack. However,
once an attack has been launched, it can be detected from a system level and hence
mitigated, if the safety critical functionalities are affected. If this is no longer possible,
it is necessary to resort to degraded modes.

5.4.5 Integrity
Message integrity itself can be ensured using signing mechanisms already included (al-
beit optional) in SDN. However, replay attacks of previous configuration changes need
to be prevented. Especially when further failures have occurred, configuring based on
a previous configuration template can have a detrimental effect on safety.

142

5.5 Summary

5.4.6 Network Attacks
Beyond those aspects that are of specific relevance to SDN, it should also be noted that
most common network attacks can also be relevant. Consequently, the methods such
as encryption need still be used in SDN networks. In addition, fingerprint attacks and
DOS have also been performed successfully in SDN. Further details on possible attacks
and mitigations can be obtained from [157].

5.5 Summary

After describing the experimental setup, this chapter has analysed the impact of dy-
namic network reconfiguration on the control plane. It has been shown that for the
AFDX network, switch failures have a far more severe impact on the network than link
failures. As devices that are originators of demands are attached to only one switch, a
failure thereof obviously results in the loss of the demand, with is not the case for link
failures.

Moreover, the impact on the data plane for in-band control networks has been discussed.
It has been found, that for the AFDX network, an in-band control network would not
have a detrimental effect on safety-critical traffic. Finally, methods to delete forwarding
rules prior to installing new forwarding rules have been discussed.

Furthermore, the necessary considerations for control plane resilience have been pre-
sented. Considerations for safety and security were discussed.

The impact on safety, resilience, accountability and appropriateness of a reaction were
detailed. Focusing on appropriateness of a reaction, a model that matches the expected
impact of a reconfiguration to the network state has been presented. This allows to
reduce unnecessary severe reactions to minor issues.

Beyond that, issues related to the security of the system have been discussed. Here,
maliciously acting controllers, data privacy and the completeness of an implemented
reaction have been considered. The latter also includes considerations on the accuracy
of both the detection and mitigation of an attack.

143

Chapter 6

Discussion

This chapter discusses the approach taken in this thesis, and is divided into four parts.
Section 6.1 considers general points, while section 6.2, section 6.3 and section 6.4 discuss
issues related to the data, control and management planes, respectively.

6.1 General

This section discusses the general approach followed in this thesis, which can be further
subdivided into theoretical and practical considerations.

6.1.1 Theoretical
To begin with, process, the model used and the algorithms are considered.

Non-Deterministic Process in a Safety-Critical System
One of the most serious impacts of a dynamic reconfiguration is on determinism, which
has been an important criterion for safety certification. While predictable process-
es/reactions are sufficient to address safety incidents, this does not apply to security
incidents. If processes are deterministic, an intruder could establish this fairly quickly
and change their behaviour accordingly. Consequently, the designed reactions will no
longer sufficiently protect the network. In order to prevent this, the selection of an
appropriate reaction must include a certain element of randomness, and hence being no
longer deterministic.

By dividing the set of possible reactions into four parts that correspond to the network
state, the process described in this thesis ensures that the impact of the reaction is
proportional to that of the incident. This assures that the reaction does not have a

Chapter 6: Discussion

more detrimental effect on the system than the original incident. Furthermore, it still
offers some protection against intruders, as they cannot be certain which reaction will
be selected by the system. As the response set increases depending on the impact on
the system. Hence, the more serious the effects of the incident, the harder it gets for an
attacker to predict the reaction.

In addition, if the reactions are not hard-coded, the system may also address incidents
(both safety and security) that were not foreseen at the design stage. While testing
in safety-critical systems is far more stringent than in other commercial IT systems,
unexpected failures may still occur. Consequently, a system that focuses on the network
state (as described in this thesis) rather than individual events is more likely able to
continue its operation without relying exclusively on human operators.

Notwithstanding, while the reconfiguration is in progress and until the switches have
reported successful implementation to the controller, the state of the flow tables is
not defined. Consequently, it needs to be ensured that the complete path has been
configured before the first packet is sent on its way.

For this, several approaches exist. On the one hand, the network could default to
dropping all traffic that does not have a rule associated. However, this would prevent
the identification of new devices, which is not desired in mobile networks or the smart
grid, where new users are added continuously. On the other hand, unnecessary control
traffic will be broadcast if switches have to ask the controller(s) how a flow should be
handled while the reconfiguration occurs. While the delay experienced by the arriving
flow is not critical (because it is already served by another, node- and link- disjoint
path) the control channel could become saturated or critical traffic could be delayed or
dropped due to insufficient bandwidth (for in-band control networks). Consequently,
the advantages and disadvantages of the reconfiguration strategies need to be carefully
considered and tailored to the requirements of the individual system.

In the context of the avionics network presented in this thesis, new devices will only be
added when the aircraft is being maintained (i.e. on the ground), as most avionics bays
are hard to access during flight. Consequently, while the aircraft is operating, dropping
all unidentified traffic by default is preferable from a security context. Notwithstanding,
such events need to be logged, so that they can be analysed later on.

Hence, a network reconfiguration would only be triggered in response to a detected
component failure or attack. As the configuration templates fulfil all requirements of
safety-critical traffic, if a reaction is deemed to be appropriate (see below), the recon-
figuration is guaranteed not to interfere with critical demands.

146

6.1 General

While the selection process itself is deterministic, the reconfiguration is not, as the
selected alternate paths not only depend on the last failure, but also on any previous
ones. Consequently, the process is not deterministic. This can be seen as problematic
in a safety-critical system, as the state transitions are not pre-defined.

However, all configuration templates are safe and also consider the worst case scenario
with respect to the delay bound. As the reconfiguration process ensures that two node-
and link-disjoint paths are always available, at least one path continues to route traffic
without being interrupted. Consequently, while the reconfiguration is not deterministic,
no safety-critical traffic is negatively affected.

Notwithstanding, a conflict between safety (which requires determinism) and security
(which cannot be too predictable lest an intruder may exploit the very fact) remains.

6.1.2 Model
Another important aspect of this thesis is how the investigated safety-critical systems
have been modelled. In this thesis, the reconfiguration process has been modelled as
a simple control system problem, where both attacks and (unintentional) failures are
considered to be simple disturbances. While it is a standard way to deal with failures,
the part of an attacker is simplified by this approach, as it does not reflect the active
participation and active interest to cause a failure.

While game theory is commonly used in the security domain to address the interplay
between an attacker and a defender, this approach cannot be used in this context.
In safety-critical systems, the attacker and defender abide by different rules as the
defender may have to tolerate an attack if a reaction could compromise a safety-critical
functionality. What is more, game theory does not address how the players play. An
attacker follows only a subset of rules of the defender, since the latter is constrained
by the safety-critical functionality that must not be affected. Consequently, a game-
theoretic approach is not suitable as different sets of rules for either player cannot be
incorporated in the model.

Moreover, in most cases it is hard to distinguish between intentional and unintentional
failures. On a network level, only the effect of either can be observed. Consequently,
a game-theoretic model considering only an interplay between attacker and defender
would also be an insufficient representation, as it cannot address failures that have not
been caused intentionally as there is no ’benefit’ for either player in this case.

Hence, the model used in this thesis strikes a balance between modelling safety and
security incidents by focussing on the impact of the system rather than on the cause of
the disturbance.

147

Chapter 6: Discussion

Algorithms & Functions
Another theoretical aspect that needs to be considered are the algorithms and (objec-
tive) functions used to obtain configuration templates. This work only considers basic
optimisation functions and heuristics, and not approaches specifically designed to a
given critical system. However, individual critical systems will differ significantly from
each other and consequently the focus of the optimisation functions will differ.

Moreover, even for critical systems, published algorithms generally improve one aspect
of the basic algorithm – such as Dijkstra’s – to adapt it to their specific needs. Thus,
the comprehensive comparison and effects of algorithms facilitates the selection of a
suitable algorithm for a specific application. By focusing on basic properties that are
relevant to safety-critical systems, choosing an algorithm and then tailoring it to a
specific application is facilitated compared to using a specific algorithm from literature
that has already been tailored to another application.

With respect to the optimisation problem, this thesis additionally provides a general set
of constraints that can be applied to a specific system. If needed, minor modifications
such as different resilience requirements for different subsets of demands may be easily
made.

6.1.3 Practical Considerations
Beyond those theoretical points, there are also practical issues that need to be consid-
ered.

SDN Technology
To begin with, the used technology (SDN) should be analysed. Here, a potential issue
is that SDN is a fairly new technology. Consequently, failure statistics and reliability
data lack historical data. Hence, they may not be representative for a critical system
that will be in operation for several decades.

In addition, it cannot be guaranteed that the shortcomings described for current systems
(difficulty to source replacement parts, obsolete technology) will not affect SDN to the
same degree. While new(er) technologies such as P4 can also be used to implement
SDN and previous versions of the OpenFlow standard have been downward compatible,
no guarantees exist that this will be the case for the operation scope of most critical
systems.

However, current systems face all those shortcomings and in addition do not allow to
react to detected failures. Yet the ability to react to detected security incidents has
been identified as an important measure to deal with an increasing exposure to cyber

148

6.1 General

risk. Consequently, continuous use of current systems is only appropriated in legacy
systems that cannot easily be updated to include reactive technology. However, it is
still important that those systems are protected by passive measures to reduce their
vulnerability.

Capacity
Another issue is that the system presented in this thesis requires significant spare re-
sources in order to provide additional resilience. While it can be added during operation
when spare resources exist, it will often have to be considered in the design stage. This
is due to the effect on resource usage if more demands have to take a specific route
to address a failure. However, the model does not incorporate methods that facilitate
design stage considerations, but rather needs to be iteratively integrated in the design
stage.

Yet, as safety-critical systems tend to be built upon gradually, this issue is less prob-
lematic here than for more dynamic, non-critical systems. Even new critical systems
tend to be based on prior designs. In addition, while a system may not be designed a
priori for adaptive network management, the mechanisms presented in this thesis may
still be used to increase network resilience.

In addition, as seen for the avionics network, safety-critical systems tend to be designed
with significant spare resources. As future operational requirements cannot be easily
anticipated and replacing hardware is generally more expensive that using more capable
links, such design approaches are commonly used for critical systems. Consequently,
this spare capacity can be used to address failures initially. Notwithstanding, it should
be considered that adding further traffic can also reduce the ability of the network to
tolerate failures due to capacity constraints.

6.1.4 Number of Failures Tolerated
This work has introduced a system that can address up to ten successive component
failures, caused by both intentional and unintentional events. Moreover, it provides a
mechanism to find an appropriate reaction to other events (such as unexpected network
flows). While extends previous work by covering both failures and attacks, a key problem
remains: only a limited number of failures can be tolerated before some demands can
no longer be rerouted and performance degradation has to be accepted.

Regardless of complexity, no network will be able to tolerate an unlimited amount of
failures. The mechanism presented in this thesis ensures that the network is being kept
operational until suitable repairs can be carried out. This would e.g. allow a system to
be kept operational until a suitable maintenance facility is available. Hence, a vehicle

149

Chapter 6: Discussion

could continue its journey to its intended destination or a part of the smart grid could
wait until the power plant is scheduled for maintenance rather than ceasing to supply
parts of the city. Likewise, it would prevent the need of an emergency landing of an
aircraft thus allowing it to continue its journey an airport where the spare parts are
available.

Such a capability would be especially relevant for security incidents, where systems
could safely continue operation until a safe software release is certified.

6.1.5 Networks
This thesis covered various network topologies to investigate the effects of varying size of
the demand set, the mean delay bound and the network topology. Yet only one network
(the avionics network) is an actual representative of critical systems. Furthermore, the
latency distributions of the remaining networks may not be representative of real delay
bounds found in critical systems. Consequently, despite efforts to parametrise both
delay bounds and network topologies, it can be argued that the networks and traffic
investigated are not representative of those found in safety-critical systems.

However, to the best of the author’s knowledge, no further demand sets and correspond-
ing network topologies for safety-critical systems are publicly available. This is most
likely because most critical systems are proprietary and hence no corresponding data
has been published. The only exception in this context is the demand set used for the
avionics network, where at least the distributions and ranges have been published.

6.2 Data Plane

Beyond those general considerations, some additional ones specifically apply to the data
plane.

6.2.1 Delay Model
In this thesis, the queueing delay is modelled as a sum of all possible flows over a spe-
cific link. Hence, this model assumes that all resilient paths will be used simultaneously.
However, in practice, at most two configurations will be served concurrently. Thus, it
guarantees that delay bounds will be violated while avoiding having to consider all pos-
sible path combinations. Due to the large number of independent demands, considering
all combinations would result in a significant number of constraints. This makes the
optimisation problem more complex, which may in turn increase computational time.

150

6.2 Data Plane

Furthermore, the optimisations performed in this thesis simplified the delay model by
not including transmission, processing, and propagation delay. For the avionics network
topology the effect of this simplification on the results is negligible, as the dimension of
the network is small. Notwithstanding, this may not be the case for physically larger,
safety-critical networks such as the smart grid or the backbone network of an Internet
service provider (ISP).

Notwithstanding, accurately modelling network delays is a vast, separate research topic
(network calculus) and complementary to the problem addressed in this thesis.

6.2.2 Capacity
The method described in this thesis assumes that the traffic transported is known before-
hand. Consequently, it is well-suited for safety-critical systems that do not experience
rapid and unexpected variations. Furthermore, it is also suited for those that have to
undergo stringent certification procedures, which also require detailed design documents
to be submitted such as in aviation.

However, there may also be critical networks where the assumption of a deterministic
traffic quantity does not hold. For example, in a smart power grid, the power distribu-
tion of renewable energy sources may fluctuate depending on weather. In addition, the
demand is also subject to fluctuations based on the time of day or seasons.

Notwithstanding, even in those systems, the margin of error is generally know and
accordingly, the optimisation could be performed for several different scenarios (e.g.
summer vs. winter). In addition, continuous optimisation may be performed or best-
effort heuristics be employed additionally to guarantee best possible service if the current
network state differs significantly from worst-case scenarios are not suitable.

Either way, the method presented herein may serve as a basis, even if additional work
or adaptations may be needed for some critical systems.

6.2.3 Resilience
The algorithm used in this thesis obtains the maximum number of node- and link-
disjoint paths available. This satisfies a key requirement for safety: that no single fault
may result in the failure of a safety-critical system/component.

However, it could be argued that it would be more suitable for critical systems to have a
dedicated, pre-determined configuration template for every possible failure. This would
significantly reduce the capacity requirements and also remove some elements dedicated
to deal with unexpected events.

151

Chapter 6: Discussion

Yet, especially with respect to security, such an approach could be problematic. To begin
with, it is very hard to consider all possible issues before deployment. In addition,
as previous experience has shown, it is entirely conceivable that potential issues are
forgotten or neglected because they are not considered to have a significant impact if
they occur.

Furthermore, this approach would also impact safety. While creating individual tem-
plates for single failures is an option, it would be increasingly hard to create templates
for successive failures. This would require a plethora of different configurations that
consider all possible combinations (as detailed in table 4.16), and would consequently
also require significant memory.

Beyond that, if the templates are sufficiently different to deal with more than one
failure at a time, a reconfiguration would affect all flows and not just those that have
been interrupted by the failure. This would require a redesign of the reconfiguration
mechanism, as it needs to be ensured that no ongoing transmissions of critical traffic
are being interrupted.

In addition, this thesis can address successive, individual failures of network compo-
nents and respond accordingly. However, this means that only one reconfiguration can
be performed at any given time. As long-term failure statistics for SDN hardware are
unknown, it may be possible that another failure occurs while the previous reconfigu-
ration is still in progress due to the delay of the consensus. However, different values
for k can be assumed if the current requirement that no single cause of failure results
in catastrophic events proves to be insufficient.

Another issue related to resilience is the fact that the formulation of constraints is thus
that all resilient paths could be used concurrently without violations. Consequently,
one could argue to simply use all paths concurrently rather than performing a complex
reconfiguration that needs additional equipment and processes while providing the same
nominative resilience. However, such an approach would be problematic on two counts.
Firstly, using the entire TCAM memory would significantly increase energy consumption
and can consequently result in insufficient heat dissipation. Secondly, it is also an issue
with respect to security, e.g. a denial of service attack on a switch could not be isolated.

6.2.4 Inefficient Resource Usage
Using the optimisation algorithms presented in this thesis to obtain configuration tem-
plates ensures that no link and no switch will operate beyond their capacity limit. Yet
the resource usage is very unevenly distributed across the network. As shown in chap-
ter 4, some links may not be used at all while others operate near the capacity limit.

152

6.3 Control Plane

This is partially because the resilience constraint is formulated considering that a failure
in link eij also affects the link eji. While this assumption is incorrect if the link is flooded,
it is valid for any physical problem with the cable, e.g. due to chafing. As the latter
would consist a single cause of failure (that has to be prevented in critical system) the
more conservative formulation has been selected.

6.3 Control Plane

One of the fundamental aspects of this thesis is that no distinction is made between
safety and security incidents, while previous work only considers one or the other. Fun-
damentally, it is a decision between cause and effect. When focussing on the cause, the
options with respect to responses are limited. Moreover, it is generally only possible to
observe an anomaly and not the cause thereof. Even if some attacks have profiles that
cannot be observed for unintentional failures, the focus of this thesis is on mitigating
the effects of the failure.

Consequently, for most incidents, the distinction is irrelevant. Whether a switch failed
because it overheated or because it has been infected with malicious software, a net-
work reconfiguration is needed to restore resilience. However, more complex attacks
– especially when several components fail simultaneously – may require specific treat-
ment. Notwithstanding, it is not generally the case that an independent consideration
is necessary, especially in cases where only the result and not the cause of a detected
anomaly can be identified.

6.4 Management Plane

6.4.1 Safety
The mechanism presented in this thesis allows to select a response that is proportionate
to the currently observed network state. Moreover, if a reconfiguration is deemed nec-
essary, configuration templates ensure that the requirements of safety-critical traffic are
not violated. This allows to tolerate more failures and security incidents than current
systems. Notwithstanding, the system is not predictable in the sense that has tradition-
ally been valued in the certification processes of critical systems, which requires fully
deterministic systems.

With respect to safety, the usage of SDN could be considered to be problematic, as it
has not been designed for safety-critical systems. Consequently, the mean time between
failures might be lower than for currently used systems. Some of the more serious effects
can be mitigated through the use of the mechanism presented in this thesis, still the

153

Chapter 6: Discussion

question remains why such a system should be used in a safety-critical environment. Yet
currently certified systems do not provide any way to adapt to a changing environment,
be it due to safety or to security incidents.

As already mentioned (cf. chapter 1), adaptions to running safety-critical systems are
complex, because the switches have to be physically accessed to adapt to new opera-
tional environments. Especially with respect to cyber-physical safety-critical systems,
the continuous evolution and interconnection with the internet increases the exposure
of critical systems to cyber risks. Given how long they are in operation and how quickly
threats evolve, it would be exceedingly complex to keep non-adaptable systems working
reliably. Consequently, with an emerging exposure to security threats, current, un-
adaptable system may in fact be less reliable overall. However, numeric analyses of this
relationship are necessary in the scope of certification, even if they are beyond the scope
of this thesis.

Hence, it is necessary that a balance between adaptability and reliability is found in
safety critical systems. Previously, certification authorities for some critical systems only
had minimal requirements with respect to security [53]. However, various international
and national bodies are considering the introduction of more stringent requirements. Yet
effective cyber defence requires adaptability lest it becomes predictable to the attacker.
Consequently a paradigm change needs to occur towards adaptability, even if individual
components may be less reliable.

6.4.2 Security
With respect to security, the approach presented in this thesis enables to protect a
safety-critical system from the effects of an attack. Notwithstanding, the attack(er)
itself may still be present in the system, which could result in further damage. However,
more complex defences on the management plane that address the attack(er) itself would
require resources that may not be readily available. Even in traditional IT systems, there
is a constant evolution of attacks, which may result in defences lagging behind. Due
to the lengthy certification process, this effect is aggravated in safety-critical systems.
Those are more likely to use legacy devices with low computational powers and may
operate with critical vulnerabilities for a longer time since any patch would require to
demonstrate non-interference to existing systems.

Beyond that, mobile systems such as aircraft or vehicles are also limited in the resources
they can provide to such demanding computations.

Furthermore, the mechanism developed in this thesis has been designed as a means to
ensure safety. Thus, security is not desirable for its own sake, but to allow continued safe

154

6.4 Management Plane

operation. Consequently, it is of greater importance that the effect of a vulnerability can
be mitigated than actively combatting the attack. This is also why potential reaction
sets have been grouped by their impact on safety. If a reaction would cause a reduction
in safety margins, it must not be performed, even if this would allow an attack to
continue.

155

Chapter 7

Summary and Conclusions

Networks currently in use for safety-critical systems such as the electricity grid or on-
board vehicular networks rely on network switches to implement policies and routing
strategies. In addition, the most critical paths (e.g. to provide braking) are usually
backed up by further, hard wired paths that are not part of the network. However,
such networks are limited with respect to complexity, lack of scalability and implemen-
tations can vary between different vendors. As critical systems may be in operation for
decades, these limits severely impact on the ability of such systems to adapt to changing
operational conditions as well as future, potentially more bandwidth-hungry demands.

Yet new strategies and technologies such as SDN would permit more flexible network
management by separating the traffic handling from network management. Conse-
quently, switches are only responsible for traffic forwarding and the traffic management
is handled by one or more separate entities, the controller. As the controller is aware of
the current network state, this arrangement can be used to adaptively react to changes
in the network, caused by either faulty components or by security incidents.

Hence, more failures may be safely tolerated without the need to enter a degraded
mode or postpone the need for a maintenance action. This would allow a continued,
safe operation until a fault or vulnerability can be repaired, e.g. allowing an aircraft
to complete its journey rather than forcing it to perform an emergency landing. In
addition, if this mechanism results in a sufficiently reliable network, hard wired links
may safely be removed thus reducing weight – highly relevant for mobile platforms such
as automobiles or aircraft – and complexity.

Chapter 7: Summary and Conclusions

Consequently, the main research question that has been addressed in this thesis is How
can safety-critical networks react dynamically and safely to failures? This research
question has been further subdivided into obtaining candidate responses (configuration
templates) and how to apply these responses safely (network configurations) to address
detected anomalies.

This chapter provides a summary of the main findings of this thesis. It is divided into
three sections that correspond to the main parts of this thesis: section 7.1 summarises
the basic system model, while section 7.2 and section 7.3 summarise the generation of
configuration templates and running configurations, respectively.

7.1 System Model

To this end, the overall system model has been introduced in chapter 3. Here, the
network of a safety-critical system has been modelled as the plant of a standard control
system, with failures and attacks acting as disturbances. The SDN controller as well as
IDS and IVHM act as sensors in this context. The system controller consists of com-
ponents that address safety and security issues such as reconfigurations of the firewall
as well as the SDN controller that can address data plane failures, irrespective of the
cause.

Beyond that, it is clearly undesirable that a minor change in network state results in a
complex reconfiguration of the entire network. Consequently, the measure of appropri-
ateness has been defined. This ensures that the severity of the response is proportional
to that of the detected anomaly. To this end, subsets of reactions are created according
to the impact, and matched to a corresponding system state. Hence, only less severe re-
actions are available to the controller if the system is safe and secure, while all reactions
are available if the system is not.

However, dynamic and best-effort strategies are not acceptable for critical systems, as
they would result in unpredictable behaviour especially with respect to availability and
delay bounds. Consequently, this thesis proposes the use of configuration templates that
are calculated prior to deployment to guarantee that all demands of safety-critical traffic
are satisfied and demonstrated to certification authorities.

7.2 Generating Configuration Templates

This general model is further detailed in section 3.3, where the network model is pro-
vided. Beyond that, the routing problem for a safety-critical system is given. To this

158

7.2 Generating Configuration Templates

end, both general networking constraints and constraints specific to the use of SDN in
critical system were discussed.

In addition, five primary objective functions (minimum cost, minimum latency, mini-
mum number of forwarding table entries, maximum resilience as well as a variant on
minimum link utilisation) have been detailed.

Beyond that, two heuristic algorithms (EDF and constrained capacity) have been intro-
duced and discussed. Both are based on Dijkstra’s shortest path algorithm, but either
order the demands with respect to the delay bound and route accordingly or remove
links from the network topology if they are either exceeding capacity.

Subsequently, in chapter 4 these algorithms and functions have been used to generate
network configurations. The resulting configurations were then compared with respect
to their impact on several performance characteristics (bandwidth of links and switches,
calculation time, cost, delay, forwarding table entries, memory usage during calculation
and path length). To allow fair comparison between the optimisation algorithms when
multiple solutions exists, secondary optimisations for all network performance charac-
teristics have been performed when they were not the primary objective function.

It has been found that while heuristics can result in good performance with respect
to resource usage and also provide results quickly, they violate timing constraints and
are thus unsuitable for use in critical systems. Here, it could be observed that the
templates generated with heuristics are not suitable for safety-critical systems as the
routings thus obtained would violate timing constraints. While the EDF algorithm
produced the smallest number of such violations, they are still unacceptable for safety-
critical systems.

However, as significant resources are required to solve the formulated optimisation prob-
lems, it is not feasible to perform them on demand when a failure or security incident has
been detected. Consequently, candidate routings together with other possible reactions
to anomalies need to be calculated prior to deployment.

In contrast, the templates generated using optimisation all satisfied the given require-
ments. Notwithstanding, significant differences with respect to network performance
could be observed. It was found that minimum forwarding table entries and minimum
queueing delay require significantly longer calculation times and only provide modest
improvement of their respective optimisation goal compared to minimum cost. While
minimum link usage is calculated much more quickly, other performance characteristics
are more similar to maximum resilience than the other minimisations, even though the
latter provides more paths.

159

Chapter 7: Summary and Conclusions

Based on these results, a mechanism has been described in section 4.6 to ensure that
safety-critical systems have suitable candidate responses at their disposal when anom-
alies are detected. As the maximum resilience also provides a maximum failure tol-
erance, the templates thus generated were used to recover from failures in a network
emulated using mininet. To this end, the two shortest paths were selected as an initial
configuration, and additional paths were used to obtain an additional backup path in
case a component of the primary paths fail. This permits to provide additional resilience
and hence a safe continuation of network service for the critical system as only one path
is reconfigured at any time.

7.3 Generating Running Configurations

The final part of this thesis describes how the resulting configuration templates can be
used to react to detected network anomalies.

To this end, methods are discussed in chapter 5 to ensure that configuration templates
are safely translated into running configurations to mitigate the effect of detected anom-
alies. To accomplish this, the safety-critical avionics network has been replicated in the
mininet network emulator.

In this experimental framework, several control plane properties were studied in sec-
tion 5.1. Here, the success of the mitigation with the amount of flows that can be
rerouted as well as the necessary amount of time have been investigated. Furthermore,
the effect on mitigation when several failures occur successively has been examined.
Beyond that, the amount of control traffic that needs to be exchanged has been studied
in order to establish the suitability of an in-band control network. Subsequently, suit-
able strategies to delete forwarding rules prior to the reconfiguration and the impact
thereof have been detailed. It has been found that link failures have a less serious im-
pact as fewer flows are affected. In contrast, as switch failures also affect the connection
to end-devices, it is much more likely that a demand cannot be rerouted. Moreover,
the number of previous failures only increases the number of unrecoverable flows up to
a certain point (10 failures for the avionics network). Afterwards, as the number of
end-devices still attached to the network decreases, the number of affected flows drops.

Similar considerations for the management plane were made in section 5.2. The effect
of using configuration templates has been studied especially with respect to safety and
security considerations. While the use of SDN can improve data plane security by being
able to isolate affected components, due care needs to be exerted to ensure that mali-
cious controllers do not cause unauthorised and unnecessary reconfigurations. As one
centralised controller would be a single point of failure, several controllers are connected

160

7.4 Possible Future Work

to form a logically centralised controller. Consequently, the focus here has been on coor-
dination and control between these different controllers as a means to ensure safety and
security. Notwithstanding, it should be noted that for safety-critical systems, security
is one of several means to ensure safety.

In addition, safety demands that a minor anomaly such as a slight increase in queueing
delay does not result in a major reconfiguration. Consequently, a model has been
introduced that matches the potential impact of the reaction to the potential benefit
thereof. This ensures that events can be handled appropriately.

7.4 Possible Future Work

With respect to possible further work, the following points are discussed in more detail:
certification, delay model, hardware, and multiple failures.

7.4.1 Certification
One key next step in order to use the system presented in this thesis is certification.

If the configuration templates are obtained using linear optimisation, it is guaranteed
that the safety constraints are fulfilled if a solution exists. However, more work is needed
to demonstrate to certification authorities that the reconfiguration is safe with respect
to the control and management plane.

Currently, certification authorities such as the European Aviation Safety Agency (EASA)
and FAA consider determinism to be a key factor in deeming a new system to be safe.

As neither the consensus algorithm nor the implementation of the rerouting follow this
approach, future work could provide measures to demonstrate that non-deterministic
systems can still be safe.

While the measure of appropriateness guarantees that there are no disproportionate
responses, it needs to be demonstrated notwithstanding that the system is sufficiently
robust not to trigger reconfigurations when they are unnecessary. However, as all con-
figuration templates are guaranteed to be safe, non-determinism in this process should
not cause significant issues.

In addition, for certification, it needs to be demonstrated that the reconfiguration
process itself is safe. In this context, special care needs to be taken to ensure that no
forwarding rules for critical traffic are deleted while traffic is still en-route. Moreover, if
the control traffic is exchanged in-band and could interfere with safety-critical traffic, it
needs to be demonstrated that control traffic does not interrupt critical transmissions.

161

7.4.2 Delay Model
As mentioned previously, this thesis uses a very conservative delay model. Consequently,
the work presented in this thesis could be extended by using less pessimistic calculations
for delay. One way to do this could be to use the methods from network calculus where
probabilities are used to obtain more realistic delays.

As the usage of individual paths has been mostly constrained by the delay bound of
more critical flows, more flows could benefit from shorter paths, making routing more
efficient.

In addition, a less pessimistic delay model could also result in more available paths, as
more flows could be handled without violating constraints.

Furthermore, the results of chapter 5 could be used to analyse which paths are served
concurrently. This analysis could then be used to obtain the most likely combinations
of demands that concurrently use the same resources. Hence, a more realistic queueing
model could be obtained without having to iterate over all possible demand combina-
tions.

7.4.3 Hardware
Beyond that, future work could include measuring the reliability of specific hardware in
order to investigate the reliability. While the system presented in this thesis can address
a higher failure rate of network components than current systems, obtaining concrete
data for failure probability could be relevant to assure certification authorities that the
system is safe.

In addition, if the failure probability of the network is sufficiently low, additional hard-
wired redundancy could be removed to reduce weight and complexity.

7.4.4 Multiple, Simultaneous Failures
This thesis only considers one fault to occur at any given time. However, especially se-
curity incidents may result in more than one failure, e.g. if switches of one manufacturer
share a firmware vulnerability.

While hard- and software diversification should protect the system from a critical failure
in such a case, future work could build upon this thesis by considering multiple failures
at any one time. This would be an especially worthwhile undertaking in the context
that multiple failures would also have a more serious impact on the network than a
single failure.

162

Chapter A

OpenFlow Control Plane Messages

Table A.1: Summary of Controller-to-Switch Messages

Request Reply Frequency
Features Identity and general features Generally upon establish-

ing the OF channel
Configuration (Set/ Query) Config. params Unspecified
Modify-State (flow tables,
switch port properties)

- As necessary

Read-State Configs, statistics, abilities
(gen. multipart)

As necessary

Packet-out of specific port - As necessary
Barrier (relation between
messages)

- Upon changes/terminated
operations

Role-Request of a controller None As necessary
Asynchronous Message Fil-
tering (if multiple controllers)

None Generally upon establish-
ing the OF channel

Table A.2: Summary of Asynchronous Messages

Request Reply Frequency
Transfer packet control Possible: packet-out As necessary
Flow-Removed - Upon

OFPFF_SEND_FLOW_REM
Port-Status - Upon changes of port sta-

tus (e.g. Port down, link
down)

Error - When problems occur

Chapter A: OpenFlow Control Plane Messages

Table A.3: Summary of Synchronous Messages

Request Reply Frequency
Hello Hello Upon establishing connec-

tion
Echo Echo To verify connection/mea-

suring latency and band-
width

Experimenter - placeholder for additional
functionalities in future
versions

164

Chapter B

Source Files

Listing B.1: Network Initialisation

2 import time
import thread

4 import random
import argparse

6 import numpy as np
import l ogg ing

8 import copy

10 from mininet . topo import Topo , MultiGraph
from mininet . net import Mininet

12 from mininet . c l i import CLI
from mininet . node import RemoteControl ler , Ryu , OVSKernelSwitch , UserSwitch , Host

14 from mininet . u t i l import dumpNodeConnections
from mininet . c l ean import cleanup

16 from mininet . l og import l g as mininet_log
from mininet . l i n k import Link , TCLink

18
import j son

20 import r eque s t s as rq

22 import networkx as nx
import matp lo t l ib

24 matp lo t l ib . use (’Agg ’)
import matp lo t l ib . pyplot as p l t

26
from networkx . r eadwr i t e import json_graph

28 import websocket
from i t e r t o o l s import combinations

30 import bo t t l e
from mul t ip ro c e s s i ng import Process

32
from func t oo l s import p a r t i a l

34
from comlib import ∗

36

38 " " " To change l o c a t i o n o f c on f i gu r a t i on f i l e s , s earch f o r "TODO"
" " "

40
" " " Global s e t t i n g s :

42 " " "
Set g l oba l l og l e v e l

44 log = logg ing . getLogger (" mininet ")
Url f o r Ryu c o n t r o l l e r REST i n t e r f a c e

Chapter B: Source Files

46 rc_rest = ’ http :// l o c a l h o s t :8080 ’

48
de f bo t t l e run (seed=None , ∗∗kwargs) :

50 " " " Wrapper to i n i t i a l i z e the random number generator in the bo t t l e p roce s s
" " "

52 i f seed != None :
random . seed (seed)

54 np . random . seed (seed)
bo t t l e . run (∗∗ kwargs)

56

58 de f bott lewrap (∗ dargs , ∗∗dkwargs) :
" " " Decorator to n i c e l y inc lude func t i on s which return boolean in bo t t l e

60 " " "
success_proba = 1

62 i f ’ success_proba ’ in dkwargs :
success_proba = dkwargs [’ success_proba ’]

64
de f decorate (f) :

66 @bott le . route (∗ dargs , ∗∗dkwargs)
de f bo t t l ed (∗ args , ∗∗kwargs) :

68 i f success_proba < 1 and random . random () > success_proba :
b o t t l e . abort (501 , ’ random␣ f a i l u r e ␣ o f ␣ ’ + f .__name__)

70
r e t = f (∗ args , ∗∗kwargs)

72 i f type (r e t) == bool :
i f r e t :

74 return ’OK’
e l s e :

76 bo t t l e . abort (500 , f .__name__ + ’ ␣ returned ␣False ’)
re turn r e t

78
return f

80
return decorate

82 " " " Helper func t i on to determine whether mininet i s up and running remotely
" " "

84 @bottle . route (’ / ping ’)
de f bping (mn=None) :

86 i f mn i s None :
g l oba l gmn

88 mn = gmn
i f mn i s None :

90 bo t t l e . abort (500 , " Mininet ␣not␣ i n i t i a l i z e d ␣ yet ")
i f not mn. bu i l t :

92 bo t t l e . abort (500 , " Mininet ␣not␣ bu i l t ␣ yet ")
i f ha sa t t r (mn, " a l l_booted ") and not mn. al l_booted :

94 bo t t l e . abort (500 , " Mininet ␣not␣ f u l l y ␣booted␣ yet ")
re turn " pong "

96
−−−

98 " " " Helper func t i on to obta in network topology remotely
" " "

100 @bottlewrap (’ / get_topology ’)
de f get_topology (mn=None) :

102 i f mn i s None :
g l oba l gmn

104 mn = gmn
G = build_graph (mn, as_str=False)

106 return json_graph . node_link_data (G)

108 @bottlewrap (’ /get_mac_<name>’)
de f get_host_mac (name) :

110 g l oba l gmn
return gmn . host (name) .MAC()

112
" " " Helper func t i on to c l e a r a l l f low e n t r i e s from a given switch

114 " " "

116 @bottlewrap (’ / c l ea r_a l l_ f l ow_ent r i e s/<dpid>’)
de f c l ea r_a l l_ f l ow_ent r i e s (dpid) :

118 " " " Remove a l l f low e n t r i e s from a given switch

166

" " "
120 r = rq . d e l e t e (rc_res t + (’ / s t a t s / f l owentry / c l e a r/%d ’ % in t (dpid)))

re turn r . status_code == 200
122

124 " " " Remove f low e n t r i e s from k i l l e d switch and stop i t :
" " "

126 @bottlewrap (’ / ki l l_switch_<number>’)
de f k i l l_ sw i t ch (number) :

128 f a i l ed_sw i t ch=number . r ep l a c e (" (" , " ") . r ep l a c e (") " , " ")
req_status=c l ea r_a l l_ f l ow_ent r i e s (i n t (gmn . switch (’ s ’+s t r (f a i l ed_sw i t ch)) . dpid))

130 gmn . switch (’ s ’+number) . stop ()
gmn . switch (’ s ’+number) . de lSwitch ()

132 get_topology (mn=gmn)
return req_status

134
@bottlewrap (’ /node/<name>/stop ’)

136 de f node_stop (name) :
g l oba l gmn

138 return gmn . nameToNode [name] . stop (d e l e t e I n t f s=False)

140 @bottlewrap (’ /write_mininet_topo ’)
de f write_mininet_topo () :

142 g l oba l gmn
to={ ’ nodes ’ : gmn . topo . g . node , ’ edges ’ : gmn . topo . g . edge}

144
with open (’ /tmp/mininet_topo . j son ’ , ’w ’) as f :

146 j son .dump(to , f , indent=2)
with open (’ /tmp/mininet_ips ’ , ’w ’) as f :

148 f o r name , node in gmn . nameToNode . i t e r i t em s () :
f . wr i t e (name + "\ t " + s t r (node . IP ()) + "\n")

150

152 @bottlewrap (’ /node/<name>/s t a r t ’ , success_proba =0.9999)
de f node_start (name) :

154 g l oba l gmn
return gmn . nameToNode [name] . s t a r t (gmn . c o n t r o l l e r s)

156

158 @bottlewrap (’ / l i n k/<node1>/<node2>/down ’)
de f link_down (node1 , node2) :

160 g l oba l gmn
gmn . con f i gL inkStatus (node1 , node2 , "down")

162

164 @bottlewrap (’ / l i n k/<node1>/<node2>/up ’ , sucess_proba =0.9999)
de f link_up (node1 , node2) :

166 g l oba l gmn
gmn . con f i gL inkStatus (node1 , node2 , "up ")

168

170 @bottlewrap (’ / switch/<dpid>/s t a r t ’ , success_proba =0.9999)
de f switch_start (dpid) :

172 g l oba l gmn
gmn . dpidToNode [dpid] . s t a r t (gmn . c o n t r o l l e r s)

174 return i n s t a l l_ s t a t i c_ r ou t e s ()

176
@bottle . route (’ / network_status ’)

178 de f network_status (mn=None) :
i f mn i s None :

180 g l oba l gmn
mn = gmn

182 h = {}

184 G = build_graph (mn)
connec t i v i t y = []

186 f o r i , j in combinations (mn. switches , 2) :
i f i not in G or j not in G:

188 cont inue
conne c t i v i t y . append (nx . loca l_node_connect iv i ty (G, i , j))

190 i f l en (c onne c t i v i t y) > 0 :
h [’ connectivity_switches_mean ’] = np .mean(conne c t i v i t y)

167

Chapter B: Source Files

192 h [’ connect iv ity_switches_min ’] = np . min (conne c t i v i t y)
e l s e :

194 h [’ connectivity_switches_mean ’] = 0
h [’ connect iv ity_switches_min ’] = 0

196
connec t i v i t y = []

198 f o r i , j in combinations (mn. hosts , 2) :
c onne c t i v i t y . append (nx . loca l_node_connect iv i ty (G, i , j))

200 i f l en (c onne c t i v i t y) > 0 :
h [’ connectivity_hosts_mean ’] = np .mean(conne c t i v i t y)

202 h [’ connectivity_hosts_min ’] = np . min (conne c t i v i t y)
e l s e :

204 h [’ connectivity_hosts_mean ’] = 0
h [’ connectivity_hosts_min ’] = 0

206
num_active_switches = 0

208 f o r s in mn. sw i t ches :
r = rq . get (rc_rest + (’ / s t a t s / desc/%d ’ % in t (s . dpid)))

210 i f r . status_code != 200 :
cont inue

212 num_active_switches += 1
h [’ a v a i l a b i l i t y_ sw i t c h e s ’] = num_active_switches / f l o a t (l en (mn. sw i tches))

214
return h

216
−−−

218 # Build network graph
@bottlewrap (’ /build_graph ’)

220 de f build_graph (mn=None , save_graph_png=True , as_str=False , p l o t=True) :
t i t l e=’ I n i t i a l ␣network ’

222 i f mn==None :
g l oba l gmn

224 mn = gmn
t i t l e= ’ Current ␣ topology ’

226 " " " Build the graph o f the network
" " "

228 i f as_str :
t r a n s f = lambda x : x # t r an s f= s t r l # po s s i b l e a l t e r n a t i v e : s t r (l en (x))

230 e l s e :
t r a n s f = lambda x : x

232 G = nx . Graph ()
nodes = se t ()

234 f o r s in mn. sw i t ches :
r = rq . get (rc_rest + (’ / s t a t s / desc/%d ’ % in t (s . dpid)))

236 i f r . status_code != 200 :
cont inue

238 G. add_node (t r an s f (s) , type=" switch ")
nodes . add (s)

240
f o r l in mn. l i n k s :

242 i f not l . i n t f 1 . isUp () :
cont inue

244 i f l . i n t f 1 . node not in nodes :
cont inue

246 i f l . i n t f 2 . node not in nodes :
cont inue

248 G. add_edge (t r an s f (l . i n t f 1 . node) , t r an s f (l . i n t f 2 . node) , i n t e r f a c e s={t r an s f (l . i n t f 1 . node
) : t r a n s f (l . i n t f 1) , t r an s f (l . i n t f 2 . node) : t r an s f (l . i n t f 2) })

250
Save a p i c tu r e o f the network

252
nx . draw (G, hosts , nodeco lor=’b ’)

254 i f p l o t :
" " "

256 host s =[]
sw i t ches =[]

258 f o r h in mn. host s :
G. add_node (t r an s f (h) , type="host ")

260 nodes . add (h)
f o r node in G. nodes () :

262 i f G. node [node] [’ type ’]== ’ host ’ :
hos t s . append (G. node [node])

168

264 e l i f G. node [node] [’ type ’]== ’ switch ’ :
sw i t ches . append (G. node [node])

266 " " "

268 i f save_graph_png :
p l t . f i g u r e ()

270 nx . draw_networkx (G) # networkx draw ()
p l t . s a v e f i g (" nx . png ")

272 e l s e :
p l t . show ()

274 return G

276
de f afdx_topology (network , c on f i gu r a t i on=None) :

278 "Add␣ swi tches "
de f get_switch (nr) :

280 i f nr==1:
switch=switch1

282 i f nr==2:
switch=switch2

284 i f nr==3:
switch=switch3

286 i f nr==4:
switch=switch4

288 i f nr==5:
switch=switch5

290 i f nr==6:
switch=switch6

292 i f nr==7:
switch=switch7

294 i f nr==8:
switch=switch8

296 return switch

298 switch1=network . addSwitch (’ s1 ’)
switch2=network . addSwitch (’ s2 ’)

300 switch3=network . addSwitch (’ s3 ’)
switch4=network . addSwitch (’ s4 ’)

302 switch5=network . addSwitch (’ s5 ’)
switch6=network . addSwitch (’ s6 ’)

304 switch7=network . addSwitch (’ s7 ’)
switch8=network . addSwitch (’ s8 ’)

306

308 "Add␣ l i n k s ␣between␣ swi t ches "
Eq . f o r port nr : input /output (1/2) ∗100+ source_switch∗10+ target_switch ∗1

310 t=network . addLink (switch1 , switch8 , port1=118 , port2=218)
network . addLink (switch8 , switch1 , port1=181 , port2=281)

312 network . addLink (switch1 , switch2 , port1=112 , port2=212)
network . addLink (switch2 , switch1 , port1=121 , port2=221)

314 network . addLink (switch1 , switch3 , port1=113 , port2=213)
network . addLink (switch3 , switch1 , port1=131 , port2=231)

316
network . addLink (switch2 , switch8 , port1=128 , port2=228)

318 network . addLink (switch8 , switch2 , port1=182 , port2=282)
network . addLink (switch2 , switch4 , port1=124 , port2=224)

320 network . addLink (switch4 , switch2 , port1=142 , port2=242)

322 network . addLink (switch3 , switch8 , port1=138 , port2=238)
network . addLink (switch8 , switch3 , port1=183 , port2=283)

324 network . addLink (switch3 , switch4 , port1=134 , port2=234)
network . addLink (switch4 , switch3 , port1=143 , port2=243)

326 network . addLink (switch3 , switch5 , port1=135 , port2=235)
network . addLink (switch5 , switch3 , port1=153 , port2=253)

328 network . addLink (switch3 , switch7 , port1=137 , port2=237)
network . addLink (switch7 , switch3 , port1=173 , port2=273)

330
network . addLink (switch4 , switch8 , port1=148 , port2=248)

332 network . addLink (switch8 , switch4 , port1=184 , port2=284)
network . addLink (switch4 , switch6 , port1=146 , port2=246)

334 network . addLink (switch6 , switch4 , port1=164 , port2=264)
network . addLink (switch4 , switch7 , port1=147 , port2=247)

336 network . addLink (switch7 , switch4 , port1=174 , port2=274)

169

Chapter B: Source Files

338 network . addLink (switch5 , switch6 , port1=156 , port2=256)
network . addLink (switch6 , switch5 , port1=165 , port2=265)

340 network . addLink (switch5 , switch7 , port1=157 , port2=257)
network . addLink (switch7 , switch5 , port1=175 , port2=275)

342
network . addLink (switch6 , switch7 , port1=167 , port2=267)

344 network . addLink (switch7 , switch6 , port1=176 , port2=276)

346 return network

348 de f create_hosts_and_links (gmn, con f i gu ra t i on , conf ig_type) :

350 f o r demand in con f i gu r a t i on [conf ig_type] :
pr in t (demand)

352 vlan_base = get_vlan_base (conf ig_type)
source , de s t ina t i on , NULL = parse_input (con f i gu ra t i on , config_type , demand)

354 h_s = gmn . addHost (get_host_name (config_type , demand , s_t=’ s ’) , c l s=VLANHost , vlan=
vlan_base+in t (demand))

h_t = gmn . addHost (get_host_name (config_type , demand , s_t=’ t ’) , c l s=VLANHost , vlan=
vlan_base+in t (demand))

356 # Eq . f o r port number : 1/2∗100+ vlanbase+demand
gmn . addLink (h_s , gmn . switch (’ s ’+s t r (source)) ,

358 port1=100+vlan_base+in t (demand) ,
port2=200+vlan_base+in t (demand))

360
gmn . addLink (gmn . switch (’ s ’+s t r (d e s t i n a t i on)) , h_t ,

362 port1=100+vlan_base+in t (demand) , port2=200+vlan_base+in t (demand))
with open (’ /tmp/mininet_mac ’ , ’ a ’) as f :

364 #pr in t (s t r (get_host_name (config_type , demand , s_t=’ s ’)) + "\ t " + s t r (h_s .MAC()) +
’\n ’)

#pr in t (s t r (get_host_name (config_type , demand , s_t=’ t ’)) + "\ t " + s t r (h_t .MAC()) +
’\n ’)

366 f . wr i t e (s t r (get_host_name (config_type , demand , s_t=’ s ’))+"\ t "+s t r (h_s .MAC())+’\n ’)
f . wr i t e (s t r (get_host_name (config_type , demand , s_t=’ t ’))+"\ t "+s t r (h_t .MAC())+’\n ’)

368
return gmn

370
de f main (args) :

372 g l oba l gmn
g l oba l c on f i gu r a t i on

374
Cleanup mininet be f o r e s t a r t i n g

376 cleanup ()

378 #TODO change paths here
c on f i gu r a t i on=read_conf ig (f i l ename=" /home/ tancs / i n i t i a l_ c o n f i g u r a t i o n . csv " ,

380 de fau l t_f i l ename=" i n i t i a l_ c o n f i g u r a t i o n . csv ")
END TODO

382
Remote c o n t r o l l e r

384 # > ryu−manager −−observe−l i n k s ryu . app . gui_topology . gui_topology ryu . app . rest_conf_switch
#o f_c t r l r = RemoteControl ler (’ c0 ’ , ip = ’127 . 0 . 0 . 1 ’ , port=6633)

386 o f_c t r l r = Ryu(’ ryu ’ , ’−−observe−l i n k s ’ , ’ ryu . app . gui_topology . gui_topology ’ , ’ ryu . app .
rest_conf_switch ’)

388 gmn = Mininet (c o n t r o l l e r=o f_ct r l r , topo=afdx_topology (Topo ()) , autoStat icArp=True , l i n k=
TCLink , switch=OVSKernelSwitch)#, switch=OVSKernelSwitch)#added , l i n k=TCLink , switch=
OVSKernelSwitch l i n k =. . , switch , removed topology and autoStat icArp=true

390
gmn . al l_booted = False

392

394
Star t mininet

396 gmn . s t a r t ()

398 # Small pause in order f o r mininet to bootup everyth ing
gmn . waitConnected ()

400 gmn=create_hosts_and_links (gmn, con f i gu ra t i on , ’ standard ’)
gmn=create_hosts_and_links (gmn, con f i gu ra t i on , ’ backup ’)

402 to={ ’ nodes ’ : gmn . topo . g . node , ’ edges ’ : gmn . topo . g . edge}

170

404 with open (’ /tmp/mininet_topo . j son ’ , ’w ’) as f :
j son .dump(to , f , indent=2)

406 with open (’ /tmp/mininet_ips ’ , ’w ’) as f :
f o r name , node in gmn . nameToNode . i t e r i t em s () :

408 f . wr i t e (name + "\ t " + s t r (node . IP ()) + "\n")

410 gmn . dpidToNode = {}
with open (’ /tmp/mininet_dpid ’ , ’w ’) as f :

412 f o r sw in gmn . sw i tches :
gmn . dpidToNode [sw . dpid] = sw

414 gmn . dpidToNode [i n t (sw . dpid)] = sw
f . wr i t e (sw . name + "\ t " + sw . dpid + "\n")

416 gmn . al l_booted = True
Export topology f o r a t tacke r and recovery

418
Sta r t s the webserver f o r remote c o n t r o l l i n g mininet

420

422 # I n s t a l l r oute s f o r standard and backup path

424 forwarding_rule_counter= in s ta l l_ fo rward ing_tab l e_ent r i e s (con f i gu ra t i on , conf ig_type="
standard " , r e con f=False)

p r in t (b co l o r s .HEADER + " I n s t a l l e d ␣ "+s t r (forwarding_rule_counter)+ " ␣ forwarding ␣ r u l e s ␣on␣
swi tches ␣ f o r ␣ standard ␣path " + bco l o r s .ENDC)

426 forwarding_rule_counter= in s ta l l_ fo rward ing_tab l e_ent r i e s (con f i gu ra t i on , conf ig_type="
backup " , r e con f=False)

p r in t (b co l o r s .HEADER + " I n s t a l l e d ␣ "+s t r (forwarding_rule_counter)+ " ␣ forwarding ␣ r u l e s ␣on␣
swi tches ␣ f o r ␣backup␣path " + bco l o r s .ENDC)

428
bo t t l e . debug ()

430 h = Process (t a r g e t=bott l e run ,
kwargs=d i c t (seed=random . ge t randb i t s (32) , host=’ 0 . 0 . 0 . 0 ’ , port=8888)) # ,

qu i e t=not args . bottle_debug))
432 h . s t a r t ()

434 pr in t (b co l o r s .OKGREEN + "Mininet ␣up . ␣\ n I n i t i a l i s i n g ␣ forwarding ␣ t ab l e s . " + bco l o r s .ENDC)
Custom command l i n e i n t e r f a c e with added commands

436 c l a s s CLIext (CLI) :
de f do_ki l l_switch (s e l f , number) :

438 " Cal l ␣ i n s t a l l_ s t a t i c_ r ou t e s () "
k i l l_ sw i t ch (number)

440 # Sta r t s the command l i n e i n t e r f a c e

442 get_topology (mn=gmn)
CLIext (gmn)

444
gmn . stop ()

446 h . terminate ()

448 # −−−

450 i f __name__ == "__main__" :
with open (’ /tmp/mininet_mac ’ , ’w ’) as f :

452 f . wr i t e (" ")
par s e r = argparse . ArgumentParser (d e s c r i p t i o n=’Mininet ␣wrapper ’)

454 par se r . add_argument (’−−seed ’ , he lp=’ Seed␣ f o r ␣random . seed ’ , type=int , d e f au l t =0)
par s e r . add_argument (’−−verbose ’ , he lp=’ Verbose␣ l o g s ’ , a c t i on=’ store_true ’)

456 par se r . add_argument (’−−bott l e−debug ’ , he lp=’Adds␣ logg ing ␣ to ␣ bo t t l e ’ , a c t i on=’ store_true ’)
args = par se r . parse_args ()

458 # l i t t l e t r i c k to ensure that l i s t o f f a i l e d components i s empty at the s t a r t o f the
program

with open (’ /home/ubuntu−lab /Documents/decade_demo/home/mininet / demo_fi les / f a i l e d . txt ’ , ’w ’
) as f :

460 f . wr i t e (’ ’)
random . seed (args . seed)

462 np . random . seed (args . seed)

464 logg ing . bas i cCon f i g ()
i f args . verbose :

466 log . s e tLeve l (l ogg ing .DEBUG)
#mininet_log . setLogLeve l (" debug ")

468 mininet_log . setLogLeve l (" i n f o ")

171

Chapter B: Source Files

e l s e :
470 log . s e tLeve l (l ogg ing . INFO)

logg ing . getLogger (" u r l l i b 3 ") . s e tLeve l (l ogg ing .ERROR)
472

main (args)

Listing B.2: Adaptive Controller
1 #!/ usr /bin /python

3 import time
import random

5 import argparse
import r eque s t s as rq

7 import l ogg ing
import numpy as np

9 from comlib import ∗
from ryu . c o n t r o l l e r import ofp_event

11 from ryu . c o n t r o l l e r . handler import set_ev_cls

13 from mul t ip roc e s s i ng import Process

15 import websocket as websk # https :// github . com/ l i r i s /websocket−c l i e n t
import time

17
log = logg ing . getLogger (" c o n t r o l l e r ")

19
−−

21
Mininet REST API base u r l

23 mn_url = ’ http : / / 1 2 7 . 0 . 0 . 1 : 8 8 8 8 ’
Url f o r Ryu c o n t r o l l e r REST i n t e r f a c e

25 rc_rest = ’ http :// l o c a l h o s t :8080 ’
ryu_ws_url = ’ws :// l o c a l h o s t :8080/ v1 .0/ topology /ws ’

27
switch_leave_reca l l_de lay = 2

29 l ink_de l e t e_reca l l_de lay = 2

31 " " " Reroute when switch f a i l u r e has been detected , us ing e i t h e r new con f i gu r a t i on
that has been added by consensus o f the d i s t r i bu t ed l edge r or the d e f au l t f i l e

33 " " "
de f r e route_swi t ch_fa i lu r e (switch_id) :

35 f a i l ed_sw i t ch=s t r (i n t (switch_id))
recover_from_fa i lure (f a i l ed_sw i t ch)

37 return

39 de f r e r ou t e_ l i nk_ fa i l u r e (name) :
recover_from_fa i lure (name . r ep l a c e (’ s ’ , " "))

41 return

43 de f get_network_status () :
r = rq . get (mn_url + " /network_status ")

45 return j son . l oads (r . t ext)

47 " " " de f ge t_topo logy_di f f e r ence s (expected_topo , current_topo) :
f a i l e d ={’ s ’ : [] , ’ l ’ : [] }

49 # compare f a i l u r e −f r e e network with current network con f i gu r a t i on
pr in t (expected_topo . sw i t ches ())

51 pr in t (current_topo . sw i t ches ())
f o r s in expected_topo . sw i t ches () :

53 i f s not in s e t (current_topo . sw i t ches ()) :
f a i l e d [’ s ’]+=[s]

55 f o r l in expected_topo . g . edge :
i f l not in s e t (current_topo . g . edge) :

57 f a i l e d [’ l ’]+= l
p r in t f a i l e d

59 return f a i l e d
" " "

61
de f recover_from_fa i lure (f a i l e d) :

63
#TODO change paths here

172

65 con f i gu r a t i on=read_conf ig (f i l ename=" /home/ tancs / i n i t i a l_ c o n f i g u r a t i o n . csv " ,
de fau l t_f i l ename=" i n i t i a l_ c o n f i g u r a t i o n . csv ")

67 # END TODO
log . i n f o (b co l o r s . FAIL+’ Fa i l u r e ␣ detected ! ’+bco l o r s .ENDC)

69 # rq . get (mn_url+’/build_graph ’)
i f l en (f a i l e d) <5:

71 f a i l u r e_type = ’ switch ␣ ’
e l s e :

73 f a i l u r e_type = ’ l i n k ␣ ’
l og . i n f o (b co l o r s .HEADER+’ Recovering ␣ from␣ f a i l u r e ␣ o f ␣ ’+fa i l u r e_type +f a i l e d+" ␣ . . . "+bco l o r s .

ENDC)
75 counter_deleted=0

try :
77 a l l _ f a i l e d=g e t_ i d e n t i f i e r s (’ f a i l e d ’)

except IOError :
79 a l l _ f a i l e d={}

a l l _ f a i l e d [f a i l e d]={}
81 # cr ea t e d i c t i ona ry o f demands that need to be rerouted

demands_2_reroute={ ’ standard ’ :{} , ’ backup ’ :{}}
83 failed_demands={ ’ standard ’ : {} , ’ backup ’ :{}}

unrecoverab le={ ’ standard ’ : 0 , ’ backup ’ :0}
85 forwarding_rule_counter={ ’ standard ’ : 0 , ’ backup ’ :0}

get prev ious f a i l u r e s from f i l e
87 prev_fa i l ed =[]

with open (’ /home/ubuntu−lab /Documents/decade_demo/home/mininet / demo_fi les / re su l t s_2 . csv ’ ,
’ r ’) as f :

89 f o r l i n e in f :
p rev_fa i l ed . append (l i n e . r s t r i p (" \n"))

91 # i d e n t i f y which route s are a f f e c t e d by the f a i l u r e
f o r conf ig_type in [’ standard ’ , ’ backup ’] :

93 f o r demands in con f i gu r a t i on [conf ig_type] :
check whether cur rent demand i s a f f e c t e d by the f a i l u r e

95 # NB: t h i s w i l l c ease to work i f the switch names can are non unique e . g . 11 and 1
i f c on f i gu r a t i on [conf ig_type] [demands] . f i nd (f a i l e d) !=−1:

97 counter_deleted+=1
failed_demands [conf ig_type] [demands]= con f i gu r a t i on [conf ig_type] [demands]

99 # i t e r a t e over a l t e r n a t i v e route s in the c on f i gu r a t i on f i l e
f o r a l t e r n a t i v e s in range (l en (c on f i gu r a t i on [’ remainder ’] [demands])) :

101 " " " check whether a l t e r n a t i v e s are a f f e c t e d by switch f a i l u r e ,
e i t h e r because o f another (unre la ted) f a i l u r e , or because

103 a switch connect ing to a host i s a f f e c t e d
" " "

105
a l t e r n = [False f o r i in range (l en (a l l _ f a i l e d))]

107 f c=0
check a l l t e r n a t i v e route s f o r f a i l e d components

109 i f demands not in demands_2_reroute [conf ig_type] :
f o r f a i l e d in a l l _ f a i l e d :

111 i f c on f i gu r a t i on [’ remainder ’] [demands] [a l t e r n a t i v e s] . f i nd (f a i l e d)
==−1:
f o r pf in prev_fa i l ed :

113 i f c on f i gu r a t i on [’ remainder ’] [demands] [a l t e r n a t i v e s] . f i nd (
pf)==−1:
a l t e r n [f c] = True

115 f c+=1
i f a l t e r n == [True f o r i in range (l en (a l l _ f a i l e d))] :

117 demands_2_reroute [conf ig_type] [demands]= con f i gu r a t i on [’ remainder ’
] [demands] [a l t e r n a t i v e s]

" " "
119

i f c on f i gu r a t i on [’ remainder ’] [demands] [a l t e r n a t i v e s] . f i nd (f a i l e d)==−1:
121 demands_2_reroute [conf ig_type] [demands]= con f i gu r a t i on [’ remainder ’] [

demands] [a l t e r n a t i v e s]
" " "

123
i f demands not in demands_2_reroute [conf ig_type] :

125 unrecoverab le [conf ig_type]+=1
i f counter_deleted >0:

127 log . i n f o (b co l o r s .HEADER+s t r (counter_deleted)+’ ␣demand(s) ␣need␣ to ␣be␣ rerouted ’+bco l o r s .
ENDC)

f o r c on f i g s in demands_2_reroute :
129 i f demands_2_reroute [c on f i g s] !={} :

173

Chapter B: Source Files

forwarding_rule_counter [c on f i g s]= in s ta l l_ fo rward ing_tab l e_ent r i e s (
demands_2_reroute , conf ig_type=con f i g s , r e con f=False)

131 log . i n f o (b co l o r s .OKGREEN+" I n s t a l l e d ␣ "+s t r (forwarding_rule_counter [c on f i g s])+ "
␣ forwarding ␣ r u l e s ␣ to ␣ recove r ␣ "+con f i g s+ " ␣ route s . ␣\n"+bco l o r s .ENDC)

f o r ura in unrecoverab le :
133 i f unrecoverab le [ura] >0:

l og . warn (bco l o r s . FAIL+s t r (unrecoverab le [ura])+’ ␣demand(s) ␣ could ␣not␣be␣
rerouted ␣ f o r ␣ the ␣ ’+ ura+ ’ ␣ route s . ’+bco l o r s .ENDC)

135 e l s e :
l og . i n f o (b co l o r s .OKGREEN+’ ␣Al l ␣demands␣ could ␣be␣ rerouted ␣ f o r ␣ the ␣ ’+ura+’ ␣

route s . ’+bco l o r s .ENDC)
137

e l s e :
139 log . i n f o (b co l o r s .OKGREEN+’No␣demand(s) ␣need␣ to ␣be␣ rerouted ! ␣ Fa i l u r e ␣does ␣not␣ a f f e c t ␣

running ␣ con f i gu r a t i on . ␣ ’+bco l o r s .ENDC)
with open (’ /home/ubuntu−lab /Documents/decade_demo/home/mininet / demo_fi les / re su l t s_2 . csv ’ ,

’ a ’) as f :
141 f . wr i t e (f a i l e d . r ep l a c e (" , " , "−")+" , "+s t r (counter_deleted)+" , "+ s t r (

forwarding_rule_counter [’ standard ’])+" , "+ s t r (forwarding_rule_counter [’ backup ’])+
" , "+s t r (unrecoverab le [’ standard ’])+" , "+ s t r (unrecoverab le [’ backup ’])+"\n")

wr i te f a i l e d components to f i l e
143 with open (’ /home/ubuntu−lab /Documents/decade_demo/home/mininet / demo_fi les / f a i l e d . txt ’ , ’ a ’

) as f :
f . wr i t e (f a i l e d+’\n ’)

145 return unrecoverab le

147
last_sensor_val = [0]

149 act ion_args = {}

151 last_switch_leave_event = {}
last_l ink_event = {}

153
de f opf_msg (ws , msg) :

155 g l oba l las t_sensor_val

157 # Acknowledges the message
ws . send (’ {" id " : ␣ 1 , ␣ " j sonrpc " : ␣ " 2 . 0 " , ␣ " r e s u l t " : ␣ " "} ’)

159 obj = json . l oads (msg)
log . debug (obj)

161 # log . i n f o (" openflow : " + obj [" method "])

163 t s = time . time ()

165 i f obj ["method "] == " event_switch_leave " :
Record the l a s t event from th i s switch

167 dpid = obj [" params "] [0] [" dpid "]
last_switch_leave_event [dpid] = { " t s " : ts , " params " : obj [" params "] [0] }

169
last_sensor_val = [1]

171 re route_swi t ch_fa i lu r e (dpid)
Process (t a r g e t=rq . get (mn_url+’ /build_graph ’))

173 return

175 i f obj ["method "] == " event_l ink_delete " :
We f i r s t need to determine i f t h i s l i n k event i s l i nked to a switch which has f a i l e d

177 dpid1 = obj [" params "] [0] [" dst "] [" dpid "]
i f dpid1 in last_switch_leave_event :

179 d e l t a t = t s − last_switch_leave_event [dpid1] [" t s "]
i f d e l t a t < switch_leave_reca l l_de lay :

181 return

183 dpid2 = obj [" params "] [0] [" s r c "] [" dpid "]
i f dpid2 in last_switch_leave_event :

185 d e l t a t = t s − last_switch_leave_event [dpid2] [" t s "]
i f d e l t a t < switch_leave_reca l l_de lay :

187 return

189 # We determine i f we have a l ready t r ea t ed the l i n k event or not , s i n c e f o r each
Ethernet l i n k f a i l u r e , we get an event f o r both d i r e c t i o n s

key = (obj [" params "] [0] [" dst "] ["name"] , obj [" params "] [0] [" s r c "] ["name"])
191 i f key in last_l ink_event :

d e l t a t = t s − last_l ink_event [key] [" t s "]

174

193 i f d e l t a t < l ink_de l e t e_reca l l_de lay :
re turn

195
last_l ink_event [(key [1] , key [0])] = { " t s " : t s }

197 node1 = obj [" params "] [0] [" s r c "] ["name"]
node1 = node1 [: node1 . f i nd ("−eth ")]

199 node2 = obj [" params "] [0] [" dst "] ["name"]
node2 = node2 [: node2 . f i nd ("−eth ")]

201 last_sensor_val = [2]
r e r ou t e_ l i nk_ fa i l u r e (" (" + s t r (node1) + " , ␣ " + s t r (node2) + ") ")

203 Process (t a r g e t=rq . get (mn_url+’ /build_graph ’))
re turn

205
de f opf_onopen (ws) :

207 log . i n f o (’ Connection␣with␣OpenFlow␣ c o n t r o l l e r ␣ e s t ab l i s h ed ’)
ws . opf_ok = True

209
de f opf_onclose (ws) :

211 i f ha sa t t r (ws , " opf_ok ") and ws . opf_ok :
l og . warn (bco l o r s .WARNING+’ Connection␣with␣OpenFlow␣ c o n t r o l l e r ␣ c l o s ed ’+bco l o r s .ENDC)

213
de f main (retry_delay=2) :

215 check_mininet_status (mn_url=mn_url , l og=log)

217 log . i n f o (’ Trying␣ to ␣ connect ␣ to ␣OpenFlow␣ c o n t r o l l e r ’)
whi le 1 :

219 ws = websk .WebSocketApp(ryu_ws_url , on_message=opf_msg , on_open=opf_onopen , on_close=
opf_onclose)

t ry :
221 ws . run_forever ()

except KeyboardInterrupt :
223 break

time . s l e ep (retry_delay)
225

−−−
227

i f __name__ == "__main__" :
229 par se r = argparse . ArgumentParser (d e s c r i p t i o n=’Mininet ␣wrapper ’)

par s e r . add_argument (’−−seed ’ , he lp=’ Seed␣ f o r ␣random␣number␣ generator ’ , type=int , d e f au l t
=0)

231 par se r . add_argument (’−−verbose ’ , he lp=’More␣ verbose ␣ l o g s ’ , a c t i on=’ store_true ’)
args = par se r . parse_args ()

233
random . seed (args . seed)

235 np . random . seed (args . seed)

237 logg ing . bas i cCon f i g ()
i f args . verbose :

239 log . s e tLeve l (l ogg ing .DEBUG)
e l s e :

241 log . s e tLeve l (l ogg ing . INFO)
logg ing . getLogger (" u r l l i b 3 ") . s e tLeve l (l ogg ing .WARNING)

243
main ()

Listing B.3: Attacking Script
1 #!/ usr /bin /python

3 import time
import random

5 import argparse
import r eque s t s as rq

7 import l ogg ing
import numpy as np

9 from comlib import ∗
from mul t ip ro c e s s i ng import Process

11
log = logg ing . getLogger (" a t tacke r ")

13
−−

15

175

Chapter B: Source Files

Mininet REST API base u r l
17 mn_url = ’ http : / / 1 2 7 . 0 . 0 . 1 : 8 8 8 8 ’

19 # −−

21 " " "
de f remote_mininet (path , ∗∗kwargs) :

23 r = rq . get (mn_url + path , ∗∗kwargs)
i f r . status_code == 200 :

25 return True
log . warn (" Remote mininet : " + path + "\n" + r . t ext)

27 return False
" " "

29
de f stop_node (name) :

31 return remote_mininet (’ /node/%s/ stop ’ % name)

33
de f link_down (node1 , node2) :

35 return remote_mininet (’ / l i n k/%s/%s/down ’ % (node1 , node2))

37 # −−

39
def nodestop_chaos_loop (seed , nodes , f a i l r a t e) :

41 i f seed != None :
Note : We only need to seed the random number generator i f we s t a r t t h i s func t i on in

a new proce s s
43 random . seed (seed)

45 whi le 1 :
d e l t a t = 1 . / random . expovar ia te (f a i l r a t e)

47 log . i n f o (b co l o r s .HEADER+’ next ␣ attack ␣on␣ swi tches ␣ in ␣ ’+ s t r (i n t (d e l t a t)) +’ ␣ s ’ +bco l o r s
.ENDC)

time . s l e ep (d e l t a t)
49 node = random . cho i c e (nodes)

log . i n f o (b co l o r s . FAIL+’ ␣ t a r g e t i ng ␣ switch ␣ ’ + node+bco l o r s .ENDC)
51 stop_node (node)

time . s l e ep (2)
53

55 de f linkdown_chaos_loop (seed , l i nk s , f a i l r a t e) :
i f seed != None :

57 # Note : We only need to seed the random number generator i f we s t a r t t h i s func t i on in
a new proce s s

random . seed (seed)
59

whi le 1 :
61 d e l t a t = 1 . / random . expovar ia te (f a i l r a t e)

l og . i n f o (b co l o r s .HEADER+’ next ␣ attack ␣on␣ l i n k s ␣ in ␣ ’+ s t r (i n t (d e l t a t)) +’ ␣ s ’ +bco l o r s .
ENDC)

63 time . s l e ep (d e l t a t)
l i n k = random . cho i c e (l i n k s)

65 output=s t r (l i n k) . r ep l a c e (’u ’ , " ") . r ep l a c e (’ s ’ , ’ ’) . r ep l a c e (’ \ ’ ’ , ’ ’)
l og . i n f o (b co l o r s . FAIL+’ ␣ t a r g e t i ng ␣ l i n k ’ + s t r (output)+bco l o r s .ENDC)

67 link_down (∗ l i n k)
time . s l e ep (2)

69
−−

71

73 de f main (args) :

75 check_mininet_status (mn_url=mn_url , l og=log)

77 topo , i p s l = read_mininet_topo ()

79 i f args . sw_fa i l r a t e > 0 :
Process (t a r g e t=nodestop_chaos_loop , args=(random . ge t randb i t s (8) , topo . sw i t ches () , args

. sw_fa i l r a t e)) . s t a r t ()
81

i f args . l i n k_ f a i l r a t e > 0 :

176

83 Process (t a r g e t=linkdown_chaos_loop , args=(random . ge t randb i t s (9) , topo . l i n k s () , args .
l i n k_ f a i l r a t e)) . s t a r t ()

85 # −−

87 i f __name__ == "__main__" :
par s e r = argparse . ArgumentParser (d e s c r i p t i o n=’Mininet ␣ a t tacke r ’)

89 par s e r . add_argument (’−−seed ’ , he lp=’ Seed␣ f o r ␣random . seed ’ , type=int , d e f au l t =0)
par s e r . add_argument (’−−verbose ’ , he lp=’ Verbose␣ l o g s ’ , a c t i on=’ store_true ’)

91 par se r . add_argument (’−−sw−f a i l r a t e ’ , he lp=’ Fa i l u r e ␣ ra t e ␣ o f ␣ sw i t ches ’ , type=f l o a t , d e f au l t
=20)

par s e r . add_argument (’−−host−f a i l r a t e ’ , he lp=’ Fa i l u r e ␣ ra t e ␣ o f ␣ host s ’ , type=f l o a t , d e f au l t
=0)

93 par se r . add_argument (’−−l ink−f a i l r a t e ’ , he lp=’ Fa i l u r e ␣ ra t e ␣ o f ␣ l i n k s ’ , type=f l o a t , d e f au l t
=20)

args = par se r . parse_args ()
95

random . seed (args . seed)
97 np . random . seed (args . seed)

99 l ogg ing . bas i cCon f i g ()
i f args . verbose :

101 log . s e tLeve l (l ogg ing .DEBUG)
e l s e :

103 log . s e tLeve l (l ogg ing .DEBUG)
logg ing . getLogger (" u r l l i b 3 ") . s e tLeve l (l ogg ing .WARNING)

105
main (args)

177

Chapter C

Additional Results of Comparison of
Algorithms

This chapter provides for the network topologies that have not been included in the
main part of this thesis because limited new information could be gained from them.
For completeness’ sake, they are included herein.

C.1 Heuristics

As the varying delay bound is not taken into account by Dijkstra’s algorithm or the
limited capacity, it is not included in the results detailed in table C.1 to table C.7.
For the mean number of violations, no difference could be observed from varying the
delay bound. Note that the nobel-germany network has been abbreviated to n-g in some
tables.

C.2 Optimisation

As shown in the tables (table C.8 to table C.15) below, there is no difference for most
investigated parameters between the different delay bounds. In these cases, only the
results minimum and maximum delay bounds are listed. The comparison where the
(albeit small) impact of a varying delay bound could be observed is for the number of
resilient paths.

Chapter C: Additional Results of Comparison of Algorithms

C.3 Comparison Between Optimisation and Heuristics

In figure C.1 and figure C.2, the results for the optimisation for minimum cost have
been obtained using the GLPK solver. Hence, they are denoted as such in the figures.
In addition, they contain results from Python’s shortest paths algorithm. As they
are identical for all the cases investigated, they have been omitted for the remainder of
the results.

180

C.3 Comparison Between Optimisation and Heuristics

Table C.1: Calculation Time Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

atlanta dijkstra - 0.153 0.162 0.166 0.221
atlanta EDF 630 0.144 0.158 0.16 0.186
atlanta EDF 840 0.14 0.149 0.155 0.178
atlanta EDF 1050 0.138 0.143 0.144 0.16
atlanta EDF 1260 0.136 0.144 0.149 0.192
atlanta EDF 1470 0.137 0.141 0.145 0.16
atlanta EDF 1680 0.135 0.142 0.143 0.156
atlanta EDF 1890 0.137 0.143 0.143 0.148
atlanta EDF 2100 0.14 0.141 0.144 0.159
atlanta Lim. capa. - 0.153 0.162 0.166 0.221
dfn dijkstra - 0.086 0.1 0.103 0.131
dfn EDF 90 104.152 106.236 108.376 116.568
dfn EDF 180 103.644 104.777 105.901 109.526
dfn EDF 270 99.723 101.031 101.123 103.343
dfn EDF 360 99.343 100.896 101.015 103.976
dfn EDF 450 97.943 100.557 100.508 103.73
dfn EDF 540 98.455 100.662 101.506 108.979
dfn EDF 630 98.28 102.766 102.721 105.965
dfn EDF 720 97.733 102.81 102.038 105.098
dfn EDF 810 97.797 101.193 102.518 114.052
dfn EDF 900 99.761 100.893 100.851 102.926
dfn Lim. capa. - 0.086 0.1 0.103 0.131

nobel-germany dijkstra - 0.098 0.106 0.121 0.316
nobel-germany EDF 484 0.211 0.263 0.29 0.549
nobel-germany EDF 605 0.212 0.234 0.237 0.265
nobel-germany EDF 726 0.176 0.216 0.219 0.272
nobel-germany EDF 847 0.173 0.178 0.181 0.214
nobel-germany EDF 968 0.179 0.183 0.183 0.192
nobel-germany EDF 1089 0.175 0.182 0.182 0.191
nobel-germany EDF 1210 0.174 0.179 0.183 0.214
nobel-germany Lim. capa. - 0.098 0.106 0.121 0.316

181

Chapter C: Additional Results of Comparison of Algorithms

Table C.2: Path Length Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

atlanta dijkstra - 1 3 3.348 7
atlanta EDF - 1 3 3.037 8
atlanta Lim. capa. - 1 3 3.34 7
dfn dijkstra - 1 1.5 1.5 2
dfn EDF - 1 2 1.509 3
dfn Lim. capa. - 1 1.5 1.5 2

nobel-germany dijkstra - 1 3 3.393 8
nobel-germany EDF - 1 3 3.081 8
nobel-germany Lim. capa. - 1 3 3.393 8

Table C.3: Queueing Delay Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

atlanta Dijkstra - 30 291 294.819 709
atlanta EDF 630 34 205 209.419 597
atlanta EDF 2100 34 205 209.419 597
atlanta Lim. capa. - 30 286.5 292.883 704
dfn Dijkstra - 2 16 14.433 34
dfn EDF 90 4 10 9.211 21
dfn EDF 900 4 10 9.211 21
dfn Lim. capa. - 2 16 14.433 34

nobel-germany Dijkstra - 13 153 163.066 464
nobel-germany EDF 484 13 124 127.902 334
nobel-germany EDF 1210 13 124 127.902 334
nobel-germany Lim. capa. - 13 153 163.066 464

182

C.3 Comparison Between Optimisation and Heuristics

Table C.4: Link Usage Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

dfn Dijkstra - 1.413·103 18.44·103 36.56·103 199.2·103

dfn EDF 90 2.5·103 23.26·103 36.76·103 191.2·103

dfn EDF 900 2.5·103 23.26·103 36.76·103 191.2·103

dfn Lim. capa. - 1.413·103 18.44·103 36.56·103 199.2·103

n-g Dijkstra - 44 142 189.4 500
n-g EDF 484 44 144 176.8 510
n-g EDF 1210 44 144 176.8 510
n-g Lim. capa. - 44 142 189.4 500

atlanta Dijkstra - 8.488·103 34.99·103 45.48·103 114.6·103

atlanta EDF 630 10.9·103 32.75·103 41.58·103 108.1·103

atlanta EDF 2100 10.9·103 32.75·103 41.58·103 108.1·103

atlanta Lim. capa. - 8.488·103 35.86·103 45.15·103 111.4·103

Table C.5: Switch Usage Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

dfn Dijkstra - 140.5·103 250.4·103 274.2·103 814.1·103

dfn EDF 90 131.8·103 275·103 330.8·103 868.5·103

dfn EDF 900 131.8·103 275·103 330.8·103 868.5·103

dfn Lim. capa. - 140.5·103 250.4·103 274.2·103 814.1·103

n-g Dijkstra - 126 224 301.5 740
n-g EDF 484 132 314 421 1.02·103

n-g EDF 1210 132 314 421 1.02·103

n-g Lim. capa. - 126 224 301.5 740
atlanta Dijkstra - 16.29·103 55.6·103 69.89·103 166·103

atlanta EDF - 23.16·103 81.86·103 97.24·103 212.2·103

atlanta Lim. capa. - 16.29·103 53.42·103 69.67·103 164·103

183

Chapter C: Additional Results of Comparison of Algorithms

Table C.6: Forwarding Table Entries Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

dfn Dijkstra - 36 44.5 45 62
dfn EDF 90 50 54 54.328 62
dfn EDF 900 50 54 54.328 62
dfn Lim. capa. - 36 44.5 45 62

nobel-germany Dijkstra - 10 56 62.529 128
nobel-germany EDF 484 28 64 87.708 204
nobel-germany EDF 1210 28 64 87.708 204
nobel-germany Lim. capa. - 10 56 62.529 128

atlanta Dijkstra - 58 122 121.733 199
atlanta EDF 630 74 174 170.047 290
atlanta EDF 2100 74 174 170.047 290
atlanta Lim. capa. - 58 121 121.533 200

Table C.7: Constraint Violations Heuristics

Network Heuristic Mean
Delay

Min. Median Mean Max.

nobel-germany Dijkstra 484 1 1 1.4 2
nobel-germany Dijkstra 1210 1 1 1.4 2
nobel-germany EDF 484 0 0 0 0
nobel-germany Lim. capa. 484 1 1 1.4 2
nobel-germany Lim. capa. 1210 1 1 1.4 2

atlanta Dijkstra 630 9 9 9.256 13
atlanta Dijkstra 2100 9 9 9.256 13
atlanta EDF 630 8 9 9.35 11
atlanta EDF 2100 8 9 9.35 11
atlanta Lim. capa. 630 9 9 9.167 12
atlanta Lim. capa. 2100 9 9 9.167 12

184

C.3 Comparison Between Optimisation and Heuristics

Table C.8: Calculation Times Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 16.42 16.42 16.42 16.42
dfn Min. link. util 900 16.42 16.42 16.42 16.42
dfn Max. res. 90 86.13 172.3 594.9 5.112·103

dfn Max. res. 900 86.13 172.3 594.9 5.112·103

dfn Min. cost 90 19.63 63.26 59.15 276.5
dfn Min. cost 900 19.63 63.26 59.15 276.5
dfn Min. fwd. rules 90 19.64 31.16 49.29 204.8
dfn Min. fwd. rules 900 19.64 31.16 49.29 204.8
dfn Min. delay 90 5.2 138.3 4.156·103 34.77·103

dfn Min. delay 900 5.2 138.3 4.156·103 34.77·103

n-g Min. link. util 484 47.85 47.85 47.85 47.85
n-g Min. link. util 1210 47.85 47.85 47.85 47.85
n-g Max. res. 484 21.28 21.82 4.988·103 35.21·103

n-g Max. res. 1210 21.28 21.82 4.988·103 35.21·103

n-g Min. cost 484 32.57 60.83 66.89 136.4
n-g Min. cost 1210 32.57 60.83 66.89 136.4
n-g Min. fwd. rules 484 31.98 42.55 45.39 118.2
n-g Min. fwd. rules 1210 31.98 42.55 45.39 118.2
n-g Min. delay 484 2.2 104.9 5.479·103 89.86·103

n-g Min. delay 1210 2.2 104.9 5.479·103 89.86·103

atlanta Min. link. util 630 526.5 526.5 526.5 526.5
atlanta Min. link. util 2100 526.5 526.5 526.5 526.5
atlanta Max. res. 630 43.23 113.3 567.8 56.76·103

atlanta Max. res. 2100 43.23 113.3 567.8 56.76·103

atlanta Min. cost 630 126 2.068·103 5.97·103 154·103

atlanta Min. cost 2100 126 2.068·103 5.97·103 154·103

atlanta Min. fwd. rules 630 121 242.5 1.631·103 155.5·103

atlanta Min. fwd. rules 2100 121 242.5 1.631·103 155.5·103

atlanta Min. delay 630 3.9 105.2 4.539·103 154.7·103

atlanta Min. delay 2100 3.9 105.2 4.539·103 154.7·103

185

Chapter C: Additional Results of Comparison of Algorithms

Table C.9: Cost Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 48.21·109 48.21·109 48.21·109 48.21·109

dfn Min. link. util 900 48.21·109 48.21·109 48.21·109 48.21·109

dfn Max. res. 90 161.2·109 172.8·109 172.3·109 172.8·109

dfn Max. res. 900 161.2·109 172.8·109 172.3·109 172.8·109

dfn Min. cost 90 30.2·109 30.2·109 30.2·109 30.2·109

dfn Min. cost 900 30.2·109 30.2·109 30.2·109 30.2·109

dfn Min. fwd. rules 90 30.23·109 30.23·109 30.23·109 30.23·109

dfn Min. fwd. rules 900 30.23·109 30.23·109 30.23·109 30.23·109

dfn Min. delay 90 30.22·109 30.22·109 30.22·109 30.22·109

dfn Min. delay 900 30.22·109 30.22·109 30.22·109 30.22·109

n-g Min. link. util 484 354.7·106 354.7·106 354.7·106 354.7·106

n-g Min. link. util 1210 354.7·106 354.7·106 354.7·106 354.7·106

n-g Max. res. 484 441.2·106 441.2·106 441.2·106 441.2·106

n-g Max. res. 1210 441.2·106 441.2·106 441.2·106 441.2·106

n-g Min. cost 484 302.7·106 302.7·106 302.8·106 304.3·106

n-g Min. cost 1210 302.7·106 302.7·106 302.8·106 304.3·106

n-g Min. fwd. rules 484 304.7·106 304.7·106 304.7·106 304.7·106

n-g Min. fwd. rules 1210 304.7·106 304.7·106 304.7·106 304.7·106

n-g Min. delay 484 304·106 304·106 304·106 304·106

n-g Min. delay 1210 304·106 304·106 304·106 304·106

atlanta Min. link. util 630 1.524·1012 1.524·1012 1.524·1012 1.524·1012

atlanta Min. link. util 2100 1.524·1012 1.524·1012 1.524·1012 1.524·1012

atlanta Max. res. 630 1.512·1012 1.636·1012 1.628·1012 1.73·1012

atlanta Max. res. 2100 1.512·1012 1.636·1012 1.628·1012 1.73·1012

atlanta Min. cost 630 1.006·1012 1.007·1012 1.007·1012 1.009·1012

atlanta Min. cost 2100 1.006·1012 1.007·1012 1.007·1012 1.009·1012

atlanta Min. fwd. rules 630 1.014·1012 1.015·1012 1.015·1012 1.017·1012

atlanta Min. fwd. rules 2100 1.014·1012 1.015·1012 1.015·1012 1.017·1012

atlanta Min. delay 630 978.6·109 978.6·109 978.6·109 978.6·109

atlanta Min. delay 2100 978.6·109 978.6·109 978.6·109 978.6·109

186

C.3 Comparison Between Optimisation and Heuristics

Table C.10: Path Length Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 1 2 2.211 6
dfn Min. link. util 900 1 2 2.211 6
dfn Max. res. 90 1 2 1.889 7
dfn Max. res. 900 1 2 1.889 7
dfn Min. cost 90 1 1.5 1.5 2
dfn Min. cost 900 1 1.5 1.5 2
dfn Min. fwd. rules 90 1 1.5 1.5 2
dfn Min. fwd. rules 900 1 1.5 1.5 2
dfn Min. delay 90 1 2 1.507 3
dfn Min. delay 900 1 2 1.507 3
n-g Min. link. util 484 1 4 3.909 12
n-g Min. link. util 1210 1 4 3.909 12
n-g Max. res. 484 1 4 4.728 15
n-g Max. res. 1210 1 4 4.728 15
n-g Min. cost 484 1 3 3.36 8
n-g Min. cost 1210 1 3 3.36 8
n-g Min. fwd. rules 484 1 3 3.36 8
n-g Min. fwd. rules 1210 1 3 3.36 8
n-g Min. delay 484 1 3 3.414 10
n-g Min. delay 1210 1 3 3.414 10

atlanta Min. link. util 630 1 4 3.983 10
atlanta Min. link. util 2100 1 4 3.983 10
atlanta Max. res. 630 1 4 4.324 16
atlanta Max. res. 2100 1 4 4.324 16
atlanta Min. cost 630 1 3 3.345 9
atlanta Min. cost 2100 1 3 3.345 9
atlanta Min. fwd. rules 630 1 3 3.332 7
atlanta Min. fwd. rules 2100 1 3 3.332 7
atlanta Min. delay 630 1 4 3.836 13
atlanta Min. delay 2100 1 4 3.836 13

187

Chapter C: Additional Results of Comparison of Algorithms

Table C.11: Queueing Delay Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 1 28 34.144 97
dfn Min. link. util 900 1 28 34.144 97
dfn Max. res. 90 19 83 87.272 310
dfn Max. res. 900 19 83 87.272 310
dfn Min. cost 90 1 8 7.345 17
dfn Min. cost 900 1 8 7.345 17
dfn Min. fwd. rules 90 1 6 6.422 23
dfn Min. fwd. rules 900 1 6 6.422 23
dfn Min. delay 90 1 4 4.933 8
dfn Min. delay 900 1 4 4.933 8
n-g Min. link. util 484 4 96.5 104.917 272
n-g Min. link. util 1210 4 96.5 104.917 272
n-g Max. res. 484 10 138 154.519 492
n-g Max. res. 1210 10 138 154.519 492
n-g Min. cost 484 3 78.5 89.021 256
n-g Min. cost 1210 3 78.5 89.021 256
n-g Min. fwd. rules 484 3 81 89.789 254
n-g Min. fwd. rules 1210 3 81 89.789 254
n-g Min. delay 484 2 100 107.488 230
n-g Min. delay 1210 2 100 107.488 230

atlanta Min. link. util 630 16 163 177.112 427
atlanta Min. link. util 2100 16 163 177.112 427
atlanta Max. res. 630 17 143 164.333 758
atlanta Max. res. 2100 17 143 164.333 758
atlanta Min. cost 630 6 133 134.342 332
atlanta Min. cost 2100 6 133 134.342 332
atlanta Min. fwd. rules 630 9 129 130.706 301
atlanta Min. fwd. rules 2100 9 129 130.706 301
atlanta Min. delay 630 12 126 128.164 296
atlanta Min. delay 2100 12 126 128.164 296

188

C.3 Comparison Between Optimisation and Heuristics

Table C.12: Switch Utilisation Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 210.1·103 514.2·103 521.2·103 846·103

dfn Min. link. util 900 210.1·103 514.2·103 521.2·103 846·103

dfn Max. res. 90 1.32·106 1.622·106 1.861·106 3.892·106

dfn Max. res. 900 1.32·106 1.622·106 1.861·106 3.892·106

dfn Min. cost 90 112.8·103 257.4·103 329·103 902.3·103

dfn Min. cost 900 112.8·103 257.4·103 329·103 902.3·103

dfn Min. fwd. rules 90 117.9·103 268.9·103 329·103 840.6·103

dfn Min. fwd. rules 900 117.9·103 268.9·103 329·103 840.6·103

dfn Min. delay 90 206.8·103 429.4·103 453.3·103 872.8·103

dfn Min. delay 900 206.8·103 429.4·103 453.3·103 872.8·103

n-g Min. link. util 484 244 372 522.4 1.096·103

n-g Min. link. util 1210 244 372 522.4 1.096·103

n-g Max. res. 484 540 832 843.1 1.44·103

n-g Max. res. 1210 540 832 843.1 1.44·103

n-g Min. cost 484 172 300 445.2 1·103

n-g Min. cost 1210 172 300 445.2 1·103

n-g Min. fwd. rules 484 156 272 445.2 1.004·103

n-g Min. fwd. rules 1210 156 272 445.2 1.004·103

n-g Min. delay 484 332 452 627.3 1.328·103

n-g Min. delay 1210 332 452 627.3 1.328·103

atlanta Min. link. util 630 27.38·103 147.5·103 137.8·103 219.7·103

atlanta Min. link. util 2100 27.38·103 147.5·103 137.8·103 219.7·103

atlanta Max. res. 630 43.88·103 180.3·103 177.1·103 310.6·103

atlanta Max. res. 2100 43.88·103 180.3·103 177.1·103 310.6·103

atlanta Min. cost 630 16.98·103 84.02·103 103.3·103 213.5·103

atlanta Min. cost 2100 16.98·103 84.02·103 103.3·103 213.5·103

atlanta Min. fwd. rules 630 16.98·103 82.31·103 103.3·103 218.9·103

atlanta Min. fwd. rules 2100 16.98·103 82.31·103 103.3·103 218.9·103

atlanta Min. delay 630 43.11·103 134.1·103 128.7·103 243.4·103

atlanta Min. delay 2100 43.11·103 134.1·103 128.7·103 243.4·103

189

Chapter C: Additional Results of Comparison of Algorithms

Table C.13: Link Utilisation Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 0 1.746·103 28.96·103 264.7·103

dfn Min. link. util 900 0 1.746·103 28.96·103 264.7·103

dfn Max. res. 90 33.43·103 78.54·103 103.4·103 283.2·103

dfn Max. res. 900 33.43·103 78.54·103 103.4·103 283.2·103

dfn Min. cost 90 289 3.368·103 18.28·103 135·103

dfn Min. cost 900 289 3.368·103 18.28·103 135·103

dfn Min. fwd. rules 90 126 8.331·103 18.28·103 227.3·103

dfn Min. fwd. rules 900 126 8.331·103 18.28·103 227.3·103

dfn Min. delay 90 1.3·103 18.46·103 24.81·103 128.6·103

dfn Min. delay 900 1.3·103 18.46·103 24.81·103 128.6·103

n-g Min. link. util 484 0 82 85.38 210
n-g Min. link. util 1210 0 82 85.38 210
n-g Max. res. 1210 32 118 129.8 334
n-g Min. cost 484 4 65 72.77 222
n-g Min. cost 1210 4 65 72.77 222
n-g Min. fwd. rules 484 2 61 72.77 220
n-g Min. fwd. rules 1210 2 61 72.77 220
n-g Min. delay 484 0 113 104.2 196
n-g Min. delay 1210 0 113 104.2 196

atlanta Min. link. util 630 0 26.68·103 23.48·103 43.65·103

atlanta Min. link. util 2100 0 26.68·103 23.48·103 43.65·103

atlanta Max. res. 630 9.057·103 31.43·103 30.86·103 40·103

atlanta Max. res. 2100 9.057·103 31.43·103 30.86·103 40·103

atlanta Min. cost 630 4.134·103 15.65·103 17.68·103 40·103

atlanta Min. cost 2100 4.134·103 15.65·103 17.68·103 40·103

atlanta Min. fwd. rules 630 4.134·103 16.27·103 17.6·103 40·103

atlanta Min. fwd. rules 2100 4.134·103 16.27·103 17.6·103 40·103

atlanta Min. delay 630 6.074·103 17.77·103 20.64·103 42.47·103

atlanta Min. delay 2100 6.074·103 17.77·103 20.64·103 42.47·103

190

C.3 Comparison Between Optimisation and Heuristics

Table C.14: Forwarding Table Entries Optimisation

Network Function Mean
delay
lim.

Min. Median Mean Max.

dfn Min. link. util 90 26 36.5 39.8 59
dfn Min. link. util 900 26 36.5 39.8 59
dfn Max. res. 90 146 153 170.601 277
dfn Max. res. 900 146 153 170.601 277
dfn Min. cost 90 18 24 27 40
dfn Min. cost 900 18 24 27 40
dfn Min. fwd. rules 90 18 23.5 27 43
dfn Min. fwd. rules 900 18 23.5 27 43
dfn Min. delay 90 18 34 32.4 35
dfn Min. delay 900 18 34 32.4 35
n-g Min. link. util 484 19 47 55.647 120
n-g Min. link. util 1210 19 47 55.647 120
n-g Max. res. 484 23 67 76.444 192
n-g Max. res. 1210 23 67 76.444 192
n-g Min. cost 484 10 40 47.824 109
n-g Min. cost 1210 10 40 47.824 109
n-g Min. fwd. rules 484 8 38 47.824 107
n-g Min. fwd. rules 1210 8 38 47.824 107
n-g Min. delay 1210 30 55 60.941 114

atlanta Min. link. util 630 43 119 111.533 172
atlanta Min. link. util 2100 43 119 111.533 172
atlanta Max. res. 630 34 136 136.061 232
atlanta Max. res. 2100 34 136 136.061 232
atlanta Min. cost 630 30 84 94.232 173
atlanta Min. cost 2100 30 84 94.232 173
atlanta Min. fwd. rules 630 30 94 93.288 171
atlanta Min. fwd. rules 2100 30 94 93.288 171
atlanta Min. delay 630 28 161 127.4 186
atlanta Min. delay 2100 28 161 127.4 186

191

Chapter C: Additional Results of Comparison of Algorithms

Table C.15: Number of Resilient Paths

Network Function Mean
delay
lim.

Min. Median Mean Max.

atlanta dijkstra 630 1 2 2.322 3
atlanta dijkstra 840 1 2 2.33 3
atlanta dijkstra 1050 1 2 2.33 3
atlanta dijkstra 1260 1 2 2.331 3
atlanta dijkstra 1470 1 2 2.333 3
atlanta dijkstra 1680 2 2 2.332 3
atlanta dijkstra 1890 1 2 2.333 3
atlanta dijkstra 2100 1 2 2.332 3
dfn dijkstra 90 9 9 9 9
dfn dijkstra 180 9 9 9 9
dfn dijkstra 270 9 9 9 9
dfn dijkstra 360 5 9 8.984 9
dfn dijkstra 450 7 9 8.998 9
dfn dijkstra 540 3 9 8.983 9
dfn dijkstra 630 9 9 9 9
dfn dijkstra 720 9 9 9 9
dfn dijkstra 810 7 9 8.997 9
dfn dijkstra 900 9 9 9 9
n-g dijkstra 484 1 2 2.39 4
n-g dijkstra 605 1 2 2.39 4
n-g dijkstra 726 1 2 2.388 4
n-g dijkstra 847 1 2 2.393 4
n-g dijkstra 968 1 2 2.388 4
n-g dijkstra 1089 1 2 2.39 4
n-g dijkstra 1210 1 2 2.392 4

192

C.3 Comparison Between Optimisation and Heuristics

Table C.16: Cost Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 100.4·109 105.5·109 105.7·109 114.2·109

dfn EDF 900 100.4·109 105.5·109 105.7·109 114.2·109

dfn Min. cost 90 30.2·109 30.2·109 30.2·109 30.2·109

dfn Min. cost 900 30.2·109 30.2·109 30.2·109 30.2·109

nobel-germany EDF 484 6.069·109 6.279·109 6.285·109 6.545·109

nobel-germany EDF 1210 6.069·109 6.279·109 6.285·109 6.545·109

nobel-germany Min. cost 1210 302.7·106 302.7·106 302.7·106 304.3·106

atlanta EDF 630 42.89·1012 44.81·1012 44.83·1012 47.05·1012

atlanta EDF 2100 42.89·1012 44.81·1012 44.83·1012 47.05·1012

atlanta Min. cost 630 1.005·1012 1.007·1012 1.007·1012 1.009·1012

atlanta Min. cost 2100 1.005·1012 1.007·1012 1.007·1012 1.009·1012

Table C.17: Calculation Time Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 97.73 101.4 102.7 116.6
dfn EDF 900 97.73 101.4 102.7 116.6
dfn Min. cost 90 19.63 63.26 59.15 276.5
dfn Min. cost 900 19.63 63.26 59.15 276.5

nobel-germany EDF 484 173.5·10−3 184.5·10−3 210.8·10−3 548.8·10−3

nobel-germany EDF 1210 173.5·10−3 184.5·10−3 210.8·10−3 548.8·10−3

nobel-germany Min. cost 1210 32.57 60.83 66.89 136.4
atlanta EDF 630 135·10−3 143.3·10−3 148·10−3 192.1·10−3

atlanta EDF 2100 135·10−3 143.3·10−3 148·10−3 192.1·10−3

atlanta Min. cost 630 126 2.068·103 5.97·103 154·103

atlanta Min. cost 2100 126 2.068·103 5.97·103 154·103

193

Chapter C: Additional Results of Comparison of Algorithms

Table C.18: Path Length Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 1 2 1.509 3
dfn EDF 900 1 2 1.509 3
dfn Min. cost 90 0 1.5 1.5 3
dfn Min. cost 900 0 1.5 1.5 3

nobel-germany EDF 484 1 3 3.081 8
nobel-germany EDF 1210 1 3 3.081 8
nobel-germany Min. cost 1210 1 3 3.36 9

atlanta EDF 630 1 3 3.037 8
atlanta EDF 2100 1 3 3.037 8
atlanta Min. cost 630 1 3 3.349 9
atlanta Min. cost 2100 1 3 3.349 9

Table C.19: Queuing Delay Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 4 10 9.211 21
dfn EDF 900 4 10 9.211 21
dfn Min. cost 90 1 8 7.345 17
dfn Min. cost 900 1 8 7.345 17

nobel-germany EDF 484 13 124 127.902 334
nobel-germany EDF 1210 13 124 127.902 334
nobel-germany Min. cost 1210 3 78 89.018 256

atlanta EDF 630 34 205 209.419 597
atlanta EDF 2100 34 205 209.419 597
atlanta Min. cost 630 5 131 132.72 332
atlanta Min. cost 2100 5 131 132.72 332

194

C.3 Comparison Between Optimisation and Heuristics

Table C.20: Link Utilisation Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 2.5·103 23.26·103 36.76·103 191.2·103

dfn EDF 900 2.5·103 23.26·103 36.76·103 191.2·103

dfn Min. cost 90 289 3.368·103 18.28·103 135·103

dfn Min. cost 900 289 3.368·103 18.28·103 135·103

nobel-germany EDF 484 44 144 176.8 510
nobel-germany EDF 1210 44 144 176.8 510
nobel-germany Min. cost 1210 4 65 72.77 222

atlanta EDF 630 10.9·103 32.75·103 41.58·103 108.1·103

atlanta EDF 2100 10.9·103 32.75·103 41.58·103 108.1·103

atlanta Min. cost 630 4.134·103 15.28·103 17.65·103 40·103

atlanta Min. cost 2100 4.134·103 15.28·103 17.65·103 40·103

Table C.21: Switch Utilisation Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 131.8·103 275·103 330.8·103 868.5·103

dfn EDF 900 131.8·103 275·103 330.8·103 868.5·103

dfn Min. cost 90 112.8·103 257.4·103 329·103 903.7·103

dfn Min. cost 900 112.8·103 257.4·103 329·103 903.7·103

nobel-germany EDF 484 132 314 421 1.02·103

nobel-germany EDF 1210 132 314 421 1.02·103

nobel-germany Min. cost 1210 172 300 445.2 1·103

atlanta EDF 630 23.16·103 81.86·103 97.24·103 212.2·103

atlanta EDF 2100 23.16·103 81.86·103 97.24·103 212.2·103

atlanta Min. cost 630 16.98·103 82.87·103 103.5·103 216·103

atlanta Min. cost 2100 16.98·103 82.87·103 103.5·103 216·103

195

Chapter C: Additional Results of Comparison of Algorithms

Table C.22: Fwd. Tab. Entries Heuristic vs. Optimisation

Network Heuristic Mean
delay
lim.

Min. Median Mean Max.

dfn EDF 90 50 54 54.328 62
dfn EDF 900 50 54 54.328 62
dfn Min. cost 90 18 24 27 40
dfn Min. cost 900 18 24 27 40

nobel-germany EDF 484 28 64 87.708 204
nobel-germany EDF 1210 28 64 87.708 204
nobel-germany Min. cost 1210 10 40 47.828 109

atlanta EDF 630 74 174 170.047 290
atlanta EDF 2100 74 174 170.047 290
atlanta Min. cost 630 30 83 93.761 176
atlanta Min. cost 2100 30 83 93.761 176

196

C.3 Comparison Between Optimisation and Heuristics

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF
3

4

5

6

7

×1010 Cost

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

5

10

15

20

25

Flow table entries

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1

2

3

4

5

6

7

8

9

∆t (Std)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

∆t (Res)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1000

2000

3000

4000

5000

6000

7000

8000

Used capacity (SW)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

0

200

400

600

800

1000

1200

1400

1600

Used capacity (Link)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1.0

1.2

1.4

1.6

1.8

2.0

Number of hops (Std)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1

2

3

4

5

6

7

8

9

Number of hops (Res)

Figure C.1: Results PDH network, adapted from [142]

197

Chapter C: Additional Results of Comparison of Algorithms

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

4.0

4.5

5.0

5.5

6.0

6.5
×107 Cost

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

5

10

15

20

25

Flow table entries

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1

2

3

4

5

6

7

8

∆t (Std)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

5

10

15

20

25

30

∆t (Res)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

20

40

60

80

100
Used capacity (SW)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

0

5

10

15

20

25
Used capacity (Link)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

1.0

1.2

1.4

1.6

1.8

2.0

Number of hops (Std)

GLPK Dijkstra Shortest Heur. Capacity Heur. EDF

2

4

6

8

10

12

Number of hops (Res)

Figure C.2: Results Di-Yuan network, adapted from [142]

198

Chapter D

List of Acronyms

ACARE Advisory Council for Aeronautics Research in Europe. A private-public
partnership European advisory body for aeronautics.

AD Anomaly detection.
AFDX Avionics Full DupleX Switched Ethernet.
ARIMA Auto-regressive integrated moving average.
ARINC Aeronautical Radio, Incorporated.
ATC Air traffic control.
ATM Air traffic management.
BAG Bandwidth allocation gap.
BFT Byzantine fault tolerance.
BGR Blind geographic routing.
BYOD Bring your own device. Including user-owned devices into networks rather

than providing them by design.
COTS Commercial off-the shelf.
DDoS Distributed denial of service.
DFDR Digital flight data recorder. Mandatory crash- and fire-protected hard

drive that records flight data parameters so that an accident flight can be
analysed and reconstructed.

DFN Deutsches Forschungsnetz.
DLT Distributed ledger technology.
DOS Denial of service.
EASA European Aviation Safety Agency.
EDF Earliest deadline first.
EUROCAE Time-sensitive network.

Chapter D: List of Acronyms

FAA Federal Aviation Administration.
FPGA Field-programmable gate array.
GLPK GNU linear programming kit.
HMM Hidden Markov Models.
ICAO International Civil Aviation Organization.
ID Anomaly detection.
IDS European Aviation Safety Agency.
IFALPA International Federation of Air Line Pilots’ Associations. An international

non-profit organisation representing pilots.
IFE In-flight entertainment. Computer system that provides entertainment to

passengers on airliners. Passengers interact with it using little screens
attached to their seat.

ILP Integer linear programming.
IoT Internet of things. Connecting sensors, controllers etc. to the internet.
ISO International Organization for Standardization.
ISP Internet service provider.
IVHM Integrated vehicle health management.
LP Linear programming.
MAC Medium access control.
MAPE Monitor, analyse, plan, execute.
MPA Multi-party authorisation.
NMS Network management system.
OF OpenFlow. Open communication protocol for SDN.
OS Operating system.
OSI Open Systems Interconnection. Reference model for layered network ar-

chitectures.
PCA Principal component analysis.
PLC Programmable logic controller.
QAR Quick access recorder. Device that records the same data set as a DFDR,

but not protected. Used for maintenance purposes.
RAM Random access memory.
SAN Stochastic activity network. A graphical high-level language to describe

system behaviour.
SCADA Supervisory control and data acquisition.
SDN Software-defined networking. Technology that separates the forwarding of

data packets from routing.
SVM Support Vector Machine.
TCAM Ternary content-addressable memory. Memory that holds forwarding rules

in SDN switches.

200

TCP Transmission control protocol. Stream-oriented, reliable, transport layer
protocol.

TSN Time-sensitive network.
UDP User datagram protocol. Datagram-oriented, unreliable transport layer

protocol.
UNECE United Nations Economic Commission for Europe.
V2X Vehicle to infrastructure. Communication between vehicle and infrastruc-

ture such as mobile networks.
VLAN Virtual local area network.

201

Bibliography

[1] A. G. Abbasi and Z. Khan. “VeidBlock: Verifiable Identity Using Blockchain and
Ledger in a Software Defined Network”. In: Companion Proceedings of the 10th
International Conference on Utility and Cloud Computing. UCC ’17 Companion.
Austin, Texas, USA: ACM, 2017, pp. 173–179. isbn: 978-1-4503-5195-9. doi:
10.1145/3147234.3148088.

[2] M. Abu Alsheikh et al. “Machine Learning in Wireless Sensor Networks: Al-
gorithms, Strategies, and Applications”. In: Communications Surveys Tutorials,
IEEE 16.4 (2014), pp. 1996–2018.

[3] ACARE. “Ensuring Safety and Security”. In: Strategic Research & Innovation
Agenda. Advisory Council for Aviation Research and Innovation in Europe, 2012.

[4] N. van Adrichem. “Resilience and Application Deployment in Software-Defined
Networks”. PhD thesis. TU Delft Network Architectures and Services, 2017. doi:
10.4233/uuid:318d88af-e25e-4a7e-8d37-18770fe980c4.

[5] N. van Adrichem, F. Iqbal, and F. Kuipers. “Computing Backup Forwarding
Rules in Software-Defined Networks”. In: 2016 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). 2016, pp. 179–
185. doi: 10.1109/NFV-SDN.2016.7919495.

[6] Aeronautical Radio, Inc. Aircraft Data Network - Part 5 - Network Domain
Characteristics and Interconnection. Tech. rep. ARINC, 2005.

[7] Aeronautical Radio, Inc. Avionics Application Standard Software Information.
Tech. rep. ARINC, 2007.

[8] S. Agarwal, M. Kodialam, and T. V. Lakshman. “Traffic Engineering in Software
Defined Networks”. In: 2013 Proceedings IEEE INFOCOM. 2013, pp. 2211–2219.
doi: 10.1109/INFCOM.2013.6567024.

[9] P. Amangele et al. “Hierarchical Machine Learning for IoT Anomaly Detection
in SDN”. In: 2019 International Conference on Information Technologies (In-
foTech). 2019, pp. 1–4.

https://doi.org/10.1145/3147234.3148088
https://doi.org/10.4233/uuid:318d88af-e25e-4a7e-8d37-18770fe980c4
https://doi.org/10.1109/NFV-SDN.2016.7919495
https://doi.org/10.1109/INFCOM.2013.6567024

[10] A. Amouri, V. Alaparthy, and S. Morgera. “Cross Layer-Based Intrusion De-
tection Based on Network Behavior for IoT”. In: 2018 IEEE 19th Wireless and
Microwave Technology Conference (WAMICON). 2018, pp. 1–4.

[11] P. Andritsos et al. “LIMBO: Scalable Clustering of Categorical Data”. In: EDBT.
Springer. 2004, pp. 123–146.

[12] H. Arora, B.K. Mishra, and T.S. Raghu. “Autonomic-Computing Approach to
Secure Knowledge Management: A Game-Theoretic Analysis”. In: Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 36.3
(2006), pp. 487–497. issn: 1083-4427. doi: 10.1109/TSMCA.2006.871724.

[13] S. Astaneh and S.S. Heydari. “Multi-Failure Restoration with Minimal Flow Op-
erations in Software Defined Networks”. In: 2015 11th International Conference
on the Design of Reliable Communication Networks (DRCN). 2015, pp. 263–266.
doi: 10.1109/DRCN.2015.7149024.

[14] S. Astaneh and S.S. Heydari. “Optimization of SDN Flow Operations in Multi-
Failure Restoration Scenarios”. In: IEEE Transactions on Network and Service
Management 13.3 (2016), pp. 421–432. issn: 1932-4537. doi: 10.1109/TNSM.
2016.2580590.

[15] A. Avizienis. “Design of Fault-Tolerant Computers”. In: Fall Joint Computer
Conference. 1967, pp. 733–743.

[16] S. Balon, F. Skivée, and G. Leduc. “How Well Do Traffic Engineering Objec-
tive Functions Meet TE Requirements?” In: IFIP-TC6 Networking Conference
(Networking). May 2006.

[17] L.E. Baum et al. “A Maximization Technique Occurring in the Statistical Analy-
sis of Probabilistic Functions of Markov Chains”. In: The Annals of Mathematical
Statistics 41.1 (1970), pp. 164–171.

[18] R. Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathematics 16
(1958), pp. 87–90.

[19] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita. “Network Anomaly De-
tection: Methods, Systems and Tools”. In: Communications Surveys Tutorials,
IEEE 16.1 (2014), pp. 303–336. issn: 1553-877X. doi: 10.1109/SURV.2013.
052213.00046.

[20] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford: Clarendon Press,
1995.

[21] F. Botelho et al. “Design and Implementation of a Consistent Data Store for a
Distributed SDN Control Plane”. In: 2016 12th European Dependable Computing
Conference (EDCC). 2016, pp. 169–180. doi: 10.1109/EDCC.2016.12.

204

https://doi.org/10. 1109/TSMCA. 2006. 871724
https://doi.org/10.1109/DRCN.2015.7149024
https://doi.org/10.1109/TNSM.2016.2580590
https://doi.org/10.1109/TNSM.2016.2580590
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/EDCC.2016.12

[22] M. Bouet, K. Phemius, and J. Leguay. “Distributed SDN for Mission-Critical
Networks”. In: 2014 IEEE Military Communications Conference. 2014, pp. 942–
948. doi: 10.1109/MILCOM.2014.162.

[23] S. Budalakoti, A.N. Srivastava, and M.E. Otey. “Anomaly Detection and Di-
agnosis Algorithms for Discrete Symbol Sequences with Applications to Air-
line Safety”. In: Systems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on 39.1 (2009), pp. 101–113. issn: 1094-6977. doi:
10.1109/TSMCC.2008.2007248.

[24] J. Camacho et al. “Group-Wise Principal Component Analysis for Exploratory
Intrusion Detection”. In: IEEE Access 7 (2019), pp. 113081–113093.

[25] F. Camci and R.B. Chinnam. “Health-State Estimation and Prognostics in Ma-
chining Processes”. In: Automation Science and Engineering, IEEE Transactions
on 7.3 (2010), pp. 581–597. issn: 1545-5955. doi: 10.1109/TASE.2009.2038170.

[26] M. Canini et al. “Renaissance: A Self-Stabilizing Distributed SDN Control Plane”.
In: 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). 2018, pp. 233–243. doi: 10.1109/ICDCS.2018.00032.

[27] A. Capone et al. “Detour Planning for Fast and Reliable Failure Recovery in
SDN with OpenState”. In: 2015 11th International Conference on the Design
of Reliable Communication Networks (DRCN). 2015, pp. 25–32. doi: 10.1109/
DRCN.2015.7148981.

[28] B. Cattelan and S. Bondorf. “Iterative Design Space Exploration for Networks
Requiring Performance Guarantees”. In: 2017 IEEE/AIAA 36th Digital Avionics
Systems Conference (DASC). 2017, pp. XX–XX.

[29] W.B. Cavnar, J. M. Trenkle, et al. “N-Gram-Based Text Categorization”. In:
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval. Vol. 161175. 1994.

[30] E.K. Çetinkaya et al. “Modelling Communication Network Challenges for Future
internet Resilience, Survivability, and Disruption Tolerance: A Simulation-Based
Approach”. In: Telecommunication Systems 52.2 (2013), pp. 751–766. issn: 1572-
9451. doi: 10.1007/s11235-011-9575-4.

[31] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection for Discrete Se-
quences: A Survey”. In: IEEE Transactions on Knowledge and Data Engineering
24.5 (2012), pp. 823–839.

[32] C. Chang, W. Hsu, and I. Liao. “Anomaly Detection for industrial Control Sys-
tems Using K-Means and Convolutional Autoencoder”. In: 2019 International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM). 2019, pp. 1–6.

205

https://doi.org/10.1109/MILCOM.2014.162
https://doi.org/10.1109/TSMCC.2008.2007248
https://doi.org/10.1109/TASE.2009.2038170
https://doi.org/10.1109/ICDCS.2018.00032
https://doi.org/10.1109/DRCN.2015.7148981
https://doi.org/10.1109/DRCN.2015.7148981
https://doi.org/10.1007/s11235-011-9575-4

[33] H. Charara et al. “Methods for Bounding End-To-End Delays on An AFDX
Network”. In: 18th Euromicro Conference on Real-Time Systems (ECRTS’06).
2006, 10 pp.–202. doi: 10.1109/ECRTS.2006.15.

[34] H. Chen, Y. Chen, and D.H. Summerville. “A Survey on the Application of
FPGAs for Network infrastructure Security”. In: Communications Surveys Tu-
torials, IEEE 13.4 (2011), pp. 541–561. issn: 1553-877X. doi: 10.1109/SURV.
2011.072210.00075.

[35] L. Chen and A. Avizienis. “N-Version Programming: A Fault-Tolerance Approach
to Reliability of Software Operation”. In: 8th Symposium on Fault-Tolerant Com-
puting. Vol. 111. 1978, pp. 3–9. doi: 10.1109/FTCSH.1995.532621.

[36] T. Cheng et al. “Evasion Techniques: Sneaking through Your Intrusion Detec-
tion/Prevention Systems”. In: Communications Surveys Tutorials, IEEE 14.4
(2012), pp. 1011–1020. issn: 1553-877X. doi: 10.1109/SURV.2011.092311.
00082.

[37] A.K. Chorppath, T. Alpcan, and H. Boche. “Bayesian Mechanisms and Detection
Methods for Wireless Network with Malicious Users”. In: IEEE Transactions on
Mobile Computing 15.10 (2016), pp. 2452–2465.

[38] C.S. Collberg and C. Thomborson. “Watermarking, Tamper-Proofing, and Obfuscation-
Tools for Software Protection”. In: Software Engineering, IEEE Transactions on
28.8 (2002), pp. 735–746.

[39] J. Cámara et al. “Robustness-Driven Resilience Evaluation of Self-Adaptive Soft-
ware Systems”. In: IEEE Transactions on Dependable and Secure Computing 14.1
(2017), pp. 50–64. issn: 1545-5971. doi: 10.1109/TDSC.2015.2429128.

[40] T. Dang et al. “Trend-Adaptive Multi-Scale PCA for Data Fault Detection in
IoT Networks”. In: 2018 International Conference on Information Networking
(ICOIN). 2018, pp. 744–749.

[41] S. Das et al. “Multiple Kernel Learning for Heterogeneous Anomaly Detection:
Algorithm and Aviation Safety Case Study”. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM. 2010, pp. 47–56.

[42] N. de Palma et al. “Self-Protection in a Clustered Distributed System”. In: Par-
allel and Distributed Systems, IEEE Transactions on 23.2 (2012), pp. 330–336.
issn: 1045-9219. doi: 10.1109/TPDS.2011.161.

[43] G.L. Dilingham, G.C. Wilshusen, and N. Barkakati. FAA Needs a More Compre-
hensive Approach to Address Cybersecurity as Agency Transitions to NextGen.
Tech. rep. United States Government Accountability Office, 2015.

206

https://doi.org/10.1109/ECRTS.2006.15
https://doi.org/10. 1109/SURV. 2011. 072210. 00075
https://doi.org/10. 1109/SURV. 2011. 072210. 00075
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10. 1109/SURV. 2011. 092311. 00082
https://doi.org/10. 1109/SURV. 2011. 092311. 00082
https://doi.org/10.1109/TDSC.2015.2429128
https://doi.org/10. 1109/TPDS. 2011. 161

[44] T.E. Dube et al. “Malware Target Recognition of Unknown Threats”. In: Systems
Journal, IEEE 7.3 (2013), pp. 467–477. issn: 1932-8184. doi: 10.1109/JSYST.
2012.2221913.

[45] P. Duessel et al. “Tracing Privilege Misuse Through Behavioral Anomaly Detec-
tion in Geometric Spaces”. In: 2020 13th International Conference on Systematic
Approaches to Digital Forensic Engineering (SADFE). 2020, pp. 22–31.

[46] I. El Naqa. “Detection and Prediction of Radiotherapy Errors”. In: Machine
Learning in Radiation Oncology: Theory and Applications. Ed. by I. El Naqa,
R. Li, and M.J. Murphy. Springer, 2015.

[47] M.F. Elrawy, A.I. Awad, and H.F.A. Hamed. “Intrusion detection systems for
IoT-based smart environments: a survey”. In: Journal of Cloud Computing 7.1
(2018), p. 21. issn: 2192-113X. doi: 10.1186/s13677-018-0123-6.

[48] European Aviation Safety Agency. Certification Specifications and Acceptable
Means of Compliance for Large Aeroplanes. Tech. rep. CS-25 and AMC. https:
//www.easa.europa.eu/official-publication/certification-specifications,
Accessed 11.12.2017. EASA.

[49] European Aviation Safety Agency. Commission Regulation (EU) No 965/2012 on
air operations and related EASA Decisions (AMC & GM and CS-FTL.1). Tech.
rep. Regulation (EU) 965/2012. https://www.easa.europa.eu/document-
library/regulations, Accessed 11.12.2017. EASA.

[50] European Aviation Safety Agency. What does the Agency not do? https://www.
easa.europa.eu/faq/19225, Accessed 20.03.2021.

[51] L. Fawcett et al. “Tennison: A Distributed SDN Framework for Scalable Network
Security”. In: IEEE Journal on Selected Areas in Communications 36.12 (2018),
pp. 2805–2818. issn: 0733-8716. doi: 10.1109/JSAC.2018.2871313.

[52] Federal Aviation Administration. FAA Strategic Plan FY 2019–2022. Tech. rep.
FAA, 2019.

[53] Federal Aviation Administration. Special Conditions: Boeing Model 787-8 Air-
plane; Systems and Data Networks Security-Protection of Airplane Systems and
Data Networks from Unauthorized External Access. Tech. rep. https://www.
federalregister.gov/documents/2007/12/28/E7-25075/special-conditions-
boeing-model-787-8-airplane-systems-and-data-networks-security-
protection-of, Accessed 20.03.2021. FAA.

[54] G. Fernandes Jr et al. “Network Anomaly Detection Using IP Flows with Princi-
pal Component Analysis and Ant Colony Optimization”. In: Journal of Network
and Computer Applications 64 (2016), pp. 1–11.

207

https://doi.org/10. 1109/JSYST. 2012. 2221913
https://doi.org/10. 1109/JSYST. 2012. 2221913
https://doi.org/10.1186/s13677-018-0123-6
https://www.easa.europa.eu/official-publication/certification-specifications
https://www.easa.europa.eu/official-publication/certification-specifications
https://www.easa.europa.eu/document-library/regulations
https://www.easa.europa.eu/document-library/regulations
https://www.easa.europa.eu/faq/19225
https://www.easa.europa.eu/faq/19225
https://doi.org/10.1109/JSAC.2018.2871313
https://www.federalregister.gov/documents/2007/12/28/E7-25075/special-conditions-boeing-model-787-8-airplane-systems-and-data-networks-security-protection-of
https://www.federalregister.gov/documents/2007/12/28/E7-25075/special-conditions-boeing-model-787-8-airplane-systems-and-data-networks-security-protection-of
https://www.federalregister.gov/documents/2007/12/28/E7-25075/special-conditions-boeing-model-787-8-airplane-systems-and-data-networks-security-protection-of
https://www.federalregister.gov/documents/2007/12/28/E7-25075/special-conditions-boeing-model-787-8-airplane-systems-and-data-networks-security-protection-of

[55] P. Fonseca et al. “A Replication Component for Resilient OpenFlow-Based Net-
working”. In: 2012 IEEE Network Operations and Management Symposium. 2012,
pp. 933–939. doi: 10.1109/NOMS.2012.6212011.

[56] G.D. Forney. “The Viterbi Algorithm”. In: Proceedings of the IEEE 61.3 (1973),
pp. 268–278.

[57] B. fortz and M. Thorup. “Internet Traffic Engineering by Optimizing OSPF
Weights”. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Com-
munications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064). Vol. 2. 2000, 519–528 vol.2.
doi: 10.1109/INFCOM.2000.832225.

[58] S.R. Gaddam, V.V. Phoha, and K.S. Balagani. “K-Means+ID3: A Novel Method
for Supervised Anomaly Detection by Cascading K-Means Clustering and ID3
Decision Tree Learning Methods”. In: Knowledge and Data Engineering, IEEE
Transactions on 19.3 (2007), pp. 345–354. issn: 1041-4347. doi: 10.1109/TKDE.
2007.44.

[59] F. Geyer. “End-to-End Flow-Level Quality-of-Service Guarantees for Switched
Networks”. PhD thesis. Technical University of Munich, 2015.

[60] M. Gharib et al. “Dealing with Functional Safety Requirements for Automo-
tive Systems: A Cyber-Physical-Social Approach”. In: Critical Information in-
frastructures Security. Ed. by G. D’Agostino and A. Scala. Cham: Springer In-
ternational Publishing, 2018, pp. 194–206. isbn: 978-3-319-99843-5.

[61] U. Ghosh et al. “A Simulation Study on Smart Grid Resilience Under Software-
Defined Networking Controller Failures”. In: Proceedings of the 2nd ACM Inter-
national Workshop on Cyber-Physical System Security. CPSS ’16. Xi’an, China:
ACM, 2016, pp. 52–58. isbn: 978-1-4503-4288-9. doi: 10.1145/2899015.2899020.

[62] GNU Linear Programming Kit. https://www.gnu.org/software/glpk, Ac-
cessed 20.03.2021.

[63] G. Gonzalez-Granadillo et al. “Towards an Automated and Dynamic Risk Man-
agement Response System”. In: Sec. IT Sys. Ed. by Billy Bob Brumley and
Juha Röning. Cham: Springer International Publishing, 2016, pp. 37–53. isbn:
978-3-319-47560-8.

[64] G. Gonzalez Granadillo et al. “Selection of Mitigation Actions Based on Finan-
cial and Operational Impact Assessments”. In: 11th International Conference on
Availability, Reliability and Security (ARES). 2016.

[65] N. Gray et al. “Evaluation of a Distributed Control Plane for Managing Heteroge-
neous SDN-enabled and Legacy Networks”. In: 2018 IEEE Seventh International
Conference on Communications and Electronics (ICCE). 2018, pp. 361–366. doi:
10.1109/CCE.2018.8465724.

208

https://doi.org/10.1109/NOMS.2012.6212011
https://doi.org/10.1109/INFCOM.2000.832225
https://doi.org/10.1109/TKDE.2007.44
https://doi.org/10.1109/TKDE.2007.44
https://doi.org/10.1145/2899015.2899020
https://www.gnu.org/software/glpk
https://doi.org/10.1109/CCE.2018.8465724

[66] C. Grosan, A. Abraham, and B. Helvik. “Building Multiobjective Resilient Net-
works (Invited Paper)”. In: May 2008, pp. 204–209. isbn: 0-7695-3114-8. doi:
10.1109/UKSIM.2008.31.

[67] Gurobi Optimization Inc. Gurobi Optimizer Reference Manual. https://www.
gurobi.com, Accessed 20.03.2021.

[68] A. Hadri, K. Chougdali, and R. Touahni. “A Network Intrusion Detection Based
on Improved Nonlinear Fuzzy Robust PCA”. In: 2018 IEEE 5th International
Congress on Information Science and Technology (CiSt). 2018, pp. 636–641.

[69] S. Hangal and M.S. Lam. “Tracking Down Software Bugs Using Automatic
Anomaly Detection”. In: Proceedings of the 24th International Conference on
Software Engineering. ACM. 2002, pp. 291–301.

[70] M. Hartmann et al. “Objective Functions for Optimization of Resilient and Non-
Resilient IP Routing”. In: 2009 7th International Workshop on Design of Reli-
able Communication Networks. 2009, pp. 289–296. doi: 10.1109/DRCN.2009.
5339993.

[71] N. Heard and P. Rubin-Delanchy. “Network-Wide Anomaly Detection Via the
Dirichlet Process”. In: 2016 IEEE Conference on Intelligence and Security In-
formatics (ISI). 2016, pp. 220–224.

[72] P. Heise, F. Geyer, and R. Obermaisser. “Self-Configuring Deterministic Network
with in-Band Configuration Channel”. In: 2017 Fourth International Conference
on Software Defined Systems (SDS). 2017, pp. 162–167. doi: 10.1109/SDS.
2017.7939158.

[73] J.L. Hellerstein et al. Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[74] V. Heorhiadi, M.K. Reiter, and V. Sekar. “Accelerating the Development of
Software-Defined Network Optimization Applications Using SOL”. In: CoRR
abs/1504.07704 (2015). https://dblp.uni- trier.de/rec/bib/journals/
corr/HeorhiadiRS15, Accessed 02.05.2017.

[75] N. Herold et al. “An Optimal Metric-Aware Response Selection Strategy for In-
trusion Response Systems”. In: Foundations and Practice of Security: 8th Inter-
national Symposium, FPS 2016, Quebec, Canada, October 24-26, 2016. Springer
International Publishing, 2016.

[76] H. Hijazi, P. Bonami, and A. Ouorou. “Robust Delay-Constrained Routing in
Telecommunications”. In: Annals of Operations Research 206.1 (2013), pp. 163–
181. issn: 1572-9338. doi: 10.1007/s10479-013-1371-y.

[77] H. Huang et al. “Joint Optimization of Rule Placement and Traffic Engineering
for QoS Provisioning in Software Defined Network”. In: IEEE Transactions on

209

https://doi.org/10.1109/UKSIM.2008.31
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/DRCN.2009.5339993
https://doi.org/10.1109/DRCN.2009.5339993
https://doi.org/10.1109/SDS.2017.7939158
https://doi.org/10.1109/SDS.2017.7939158
https://dblp.uni-trier.de/rec/bib/journals/corr/HeorhiadiRS15
https://dblp.uni-trier.de/rec/bib/journals/corr/HeorhiadiRS15
https://doi.org/10.1007/s10479-013-1371-y

Computers 64.12 (2015), pp. 3488–3499. issn: 0018-9340. doi: 10.1109/TC.
2015.2401031.

[78] T. Hurley, J.E. Perdomo, and A. Perez-Pons. “HMM-Based Intrusion Detection
System for Software Defined Networking”. In: 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA). 2016, pp. 617–
621.

[79] ICAO. Annex 17 to the Convention on International Civil Aviation: Security.
Safeguarding International Civil Aviation Against Acts of Unlawful Interference.
Tech. rep. Annex 17. ICAO, 2017.

[80] International Air Transport Association. Position Paper on Cybersecurity. 2015.
[81] International Federation of Air Line Pilots’ Associations. Cyber Threats: Who

Controls Your Aircraft? Position paper. 2013.
[82] International Standardization Organization. Road Vehicles – Cybersecurity En-

gineering. Tech. rep. ISO/SAE DIS 21434. ISO, 2020.
[83] R. Isermann. Fault-Diagnosis Systems. Springer, 2006.
[84] ISO. Information Technology – Programming Languages – Ada. Tech. rep. 8652:2012.

ISO, 2012.
[85] ISO. Road Vehicles – Functional Safety – Part 2: Management of Functional

Safety. Tech. rep. 26262-2. ISO, 2018.
[86] H. Izakian and W. Pedrycz. “Anomaly Detection and Characterization in Spa-

tial Time Series Data: A Cluster-Centric Approach”. In: Fuzzy Systems, IEEE
Transactions on 22.6 (2014), pp. 1612–1624. issn: 1063-6706. doi: 10.1109/
TFUZZ.2014.2302456.

[87] X. Jin et al. “Anomaly Detection in Nuclear Power Plants via Symbolic Dynamic
Filtering”. In: Nuclear Science, IEEE Transactions on 58.1 (2011), pp. 277–288.
issn: 0018-9499. doi: 10.1109/TNS.2010.2088138.

[88] O. Kabadurmus and A.E. Smith. “Evaluating Reliability/Survivability of Ca-
pacitated Wireless Networks”. In: IEEE Transactions on Reliability 67.1 (2018),
pp. 26–40. issn: 0018-9529. doi: 10.1109/TR.2017.2712667.

[89] N. Kang et al. “Optimizing the One Big Switch Abstraction in Software-Defined
Networks”. In: Proc. 8th Int. Conf. Emerging Networking Experiments and Tech-
nologies (CoNEXT). 2013.

[90] Y. Kanizo, D. Hay, and I. Keslassy. “Palette: Distributing Tables in Software-
Defined Networks”. In: 2013 Proc. IEEE INFOCOM. 2013, pp. 545–549.

[91] P.G. Kannan et al. “Raptor: Scalable Rule Placement over Multiple Path in
Software Defined Networks”. In: 16th Int. IFIP TC6 Netw. Conf. 2017.

210

https://doi.org/10.1109/TC.2015.2401031
https://doi.org/10.1109/TC.2015.2401031
https://doi.org/10.1109/TFUZZ.2014.2302456
https://doi.org/10.1109/TFUZZ.2014.2302456
https://doi.org/10.1109/TNS.2010.2088138
https://doi.org/10.1109/TR.2017.2712667

[92] S. Karnouskos. “Stuxnet Worm Impact on industrial Cyber-Physical System Se-
curity”. In: IECON 2011 - 37th Annual Conference of the IEEE industrial Elec-
tronics Society. 2011, pp. 4490–4494. doi: 10.1109/IECON.2011.6120048.

[93] M. Karthi and K. Sakthipriya. “Self-Protect Computing Systems Towards Model-
Based Validated Autonomic Approach”. In: International Journal of Scientific
& Engineering Research 6.3 (2015), pp. 302–306.

[94] H. Kasai, W. Kellerer, and M. Kleinsteuber. “Network Volume Anomaly Detec-
tion and Identification in Large-Scale Networks Based on Online Time-Structured
Traffic Tensor Tracking”. In: IEEE Transactions on Network and Service Man-
agement 13.3 (2016), pp. 636–650.

[95] J.O. Kephart and D.M. Chess. “The Vision of Autonomic Computing”. In: Com-
puter 36 (2003), pp. 41–50.

[96] W. Khreich et al. “An Anomaly Detection System Based on Variable N-Gram
Features and One-Class SVM”. In: Information and Software Technology 91
(2017), pp. 186–197.

[97] C. Kiennert et al. “A Survey on Game-Theoretic Approaches for Intrusion De-
tection and Response Optimization”. In: ACM Comput. Surv. 51.5 (Aug. 2018),
90:1–90:31. issn: 0360-0300. doi: 10.1145/3232848.

[98] C. Kolbitsch, E. Kirda, and C. Kruegel. “The Power of Procrastination: Detection
and Mitigation of Execution-Stalling Malicious Code”. In: Proceedings of the
18th ACM Conference on Computer and Communications Security. ACM. 2011,
pp. 285–296.

[99] R. Kölle, G. Markarian, and A. Tartar. Aviation Security Engineering: A Holistic
Approach. Artech House, 2011.

[100] S.B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised Machine Learning:
A Review of Classification Techniques”. In: Emerging Artificial Intelligence Ap-
plications in Computer Engineering: Real Word AI Systems with Applications
in EHealth, HCI, information Retrieval and Pervasive Technologies. Ed. by I.G.
Maglogiannis et al. Frontiers in artificial intelligence and applications. IOS Press,
2007.

[101] P. Kotzanikolaou and C. Douligeris. “Computer Network Security: Basic Back-
ground and Current Issues”. In: Network Security. John Wiley & Sons, Ltd, 2006.
Chap. 1, pp. 1–12. isbn: 9780470099742. doi: 10.1002/9780470099742.ch1.

[102] T. Kovanen, G. David, and T. Hämäläinen. “Survey: Intrusion Detection Systems
in Encrypted Traffic”. In: Internet of Things, Smart Spaces, and Next Generation
Networks and Systems. Ed. by Olga Galinina, Sergey Balandin, and Yevgeni
Koucheryavy. Cham: Springer International Publishing, 2016, pp. 281–293. isbn:
978-3-319-46301-8.

211

https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1145/3232848
https://doi.org/10.1002/9780470099742.ch1

[103] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”. In:
Proceedings of the IEEE 103.1 (2015), pp. 14–76. issn: 0018-9219. doi: 10.1109/
JPROC.2014.2371999.

[104] M. Kuzniar et al. “Automatic Failure Recovery for Software-Defined Networks”.
In: Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN) (2013).

[105] A. Lakhina, M. Crovella, and C. Diot. “Diagnosing Network-Wide Traffic Anom-
alies”. In:ACM SIGCOMM Computer Communication Review 34.4 (2004), pp. 219–
230.

[106] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic
Queing Systems for the Internet. Vol. 2050. Lecture Notes in Computer Science.
Springer, 2001. doi: 10.1007/3-540-45318-0.

[107] T. Leckie and A. Yasinsac. “Metadata for Anomaly-Based Security Protocol
Attack Deduction”. In: Knowledge and Data Engineering, IEEE Transactions
on 16.9 (2004), pp. 1157–1168. issn: 1041-4347. doi: 10.1109/TKDE.2004.43.

[108] W. Lin. “Secure Multi-Party Authorization in Clouds”. https://etd.ohiolink.
edu/!etd.send_file?accession=osu1429041745, Accessed 06.03.2018. PhD
thesis. The Ohio State University.

[109] R.P. Lippmann. “An Introduction To Computing with Neural Nets”. In: ASSP
Magazine, IEEE 4.2 (1987), pp. 4–22.

[110] P. Liu and L. Li. A Game Theoretic Approach to Attack Prediction. Tech. rep.
PSU-S2-2002-001. Penn State Cyber Security Group, 2002.

[111] Y. Liu and S. Chawla. “Social Media Anomaly Detection: Challenges and Solu-
tions”. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. 2015, pp. 2317–2318.

[112] Y. Liu, J. Lv, and S. Ma. “A Real Time Anomaly Detection Method Based on
Variable N-Gram for Flight Data”. In: 2018 IEEE 20th International Conference
on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS). 2018, pp. 370–376.

[113] M. Luo et al. “An Adaptive Multi-Path Computation Framework for Centrally
Controlled Networks”. In: Computer Networks 83 (2015), pp. 30 –44. issn: 1389-
1286. doi: https://doi.org/10.1016/j.comnet.2015.02.004.

[114] R.E. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redundancy to
Improve Computer Reliability”. In: IBM J. Res. Dev. 6.2 (Apr. 1962), pp. 200–
209. issn: 0018-8646. doi: 10.1147/rd.62.0200.

[115] G. Macher et al. “Automotive SPICE, Safety and Cybersecurity Integration”. In:
Computer Safety, Reliability, and Security. Ed. by S. Tonetta, E. Schoitsch, and

212

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/TKDE.2004.43
https://etd.ohiolink.edu/!etd.send_file?accession=osu1429041745
https://etd.ohiolink.edu/!etd.send_file?accession=osu1429041745
https://doi.org/https://doi.org/10.1016/j.comnet.2015.02.004
https://doi.org/10.1147/rd.62.0200

F.n Bitsch. Cham: Springer International Publishing, 2017, pp. 273–285. isbn:
978-3-319-66284-8.

[116] C. Mas Machuca et al. “Technology-Related Disasters: A Survey Towards Disaster-
Resilient Software Defined Networks”. In: 2016 8th International Workshop on
Resilient Networks Design and Modeling (RNDM). 2016, pp. 35–42. doi: 10.
1109/RNDM.2016.7608265.

[117] A. Malik, B. Aziz, and M. Bader-El-Den. “Finding Most Reliable Paths for
Software Defined Networks”. In: 2017 13th International Wireless Communi-
cations and Mobile Computing Conference (IWCMC). 2017, pp. 1309–1314. doi:
10.1109/IWCMC.2017.7986474.

[118] C. Manikopoulos and S. Papavassiliou. “Network Intrusion and Fault Detection:
A Statistical Anomaly Approach”. In: Communications Magazine, IEEE 40.10
(2002), pp. 76–82. issn: 0163-6804. doi: 10.1109/MCOM.2002.1039860.

[119] H. Mao et al. “Resource Management with Deep Reinforcement Learning”. In:
Proceedings of the 15th ACM Workshop on Hot Topics in Networks. ACM. 2016,
pp. 50–56.

[120] D.J. Marchette. “A Statistical Method for Profiling Network Traffic.” In: Work-
shop on Intrusion Detection and Network Monitoring. 1999, pp. 119–128.

[121] H. Marzi. “Real-Time Fault Detection and Isolation in Industrial Machines Using
Learning Vector Quantization”. In: Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture 218.8 (2004), pp. 949–
959. doi: 10.1243/0954405041486109.

[122] S. Mascaro, A.E. Nicholso, and K.B. Korb. “Anomaly Detection in Vessel Tracks
Using Bayesian Networks”. In: International Journal of Approximate Reasoning
55.1, Part 1 (2014). Applications of Bayesian Networks, pp. 84 –98. issn: 0888-
613X. doi: https://dx.doi.org/10.1016/j.ijar.2013.03.012.

[123] Mininet. https://mininet.org/, Accessed 20.03.2021.
[124] R. Mitchell and I.-R. Chen. “A Survey of Intrusion Detection Techniques for

Cyber-Physical Systems”. In: ACM Comput. Surv. 46.4 (Mar. 2014), 55:1–55:29.
issn: 0360-0300. doi: 10.1145/2542049.

[125] P.M. Mohan, T. Truong-Huu, and M. Gurusamy. “Fault Tolerance in TCAM-
Limited Software Defined Networks”. In: Computer Networks 116 (2017), pp. 47
–62. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2017.02.009.

[126] E. Moore and C. Shannon. “Reliable Circuits Using Less Reliable Relays”. In:
Journal of the Franklin institute 262.3 (1956), pp. 191–208.

[127] G. Münz, S. Li, and G. Carle. “Traffic Anomaly Detection Using k-Means Cluster-
ing”. In: Leistungs-, Zuverlässigkeits- und Verlässlichkeitsbewertung von Kommu-
nikationsnetzen und Verteilten Systemen, 4. GI/ITG-Workshop MMBnet. 2007.

213

https://doi.org/10.1109/RNDM.2016.7608265
https://doi.org/10.1109/RNDM.2016.7608265
https://doi.org/10.1109/IWCMC.2017.7986474
https://doi.org/10. 1109/MCOM. 2002. 1039860
https://doi.org/10.1243/0954405041486109
https://doi.org/https://dx.doi.org/10.1016/j.ijar.2013.03.012
https://mininet.org/
https://doi.org/10.1145/2542049
https://doi.org/https://doi.org/10.1016/j.comnet.2017.02.009

[128] Y.L. Murphey et al. “Model-Based Fault Diagnosis in Electric Drives Using Ma-
chine Learning”. In: IEEE/ASME Transactions on Mechatronics 11.3 (2006),
pp. 290–303. issn: 1083-4435. doi: 10.1109/TMECH.2006.875568.

[129] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf, Accessed 23.02.2018.

[130] H. Natarajan, S.K. Krause, and H.L. Gradstein. Distributed Ledger Technol-
ogy (DLT) and Blockchain. https://documents.worldbank.org/curated/
en /177911513714062215 / pdf/ 122140 - WP - PUBLIC- Distributed- Ledger-
Technology - and - Blockchain - Fintech - Notes . pdf, Accessed 23.02.2018.
Washington, D.C., USA.

[131] S. Ntalampiras. “Fault Identification in Distributed Sensor Networks Based on
Universal Probabilistic Modeling”. In: Neural Networks and Learning Systems,
IEEE Transactions on 26.9 (2015), pp. 1939–1949. issn: 2162-237X. doi: 10.
1109/TNNLS.2014.2362015.

[132] P. O’Kane, S. Sezer, and K. McLaughlin. “Obfuscation: the Hidden Malware”.
In: Security Privacy, IEEE 9.5 (2011), pp. 41–47. issn: 1540-7993. doi: 10.1109/
MSP.2011.98.

[133] Open Networking Foundation.OpenFlow Switch Specification. https://opennetworking.
wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf,
Accessed 20.03.2021. 2013.

[134] S. Orlowski et al. “SNDlib 1.0 – Survivable Network Design Library”. In: Net-
works 55.3 (2010), pp. 276–286. issn: 1097-0037. doi: 10.1002/net.20371.

[135] N. Oza, J.P. Castle, and J. Stutz. “Classification of Aeronautics System Health
and Safety Documents”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews) 39.6 (2009), pp. 670–680. issn: 1094-6977.
doi: 10.1109/TSMCC.2009.2020788.

[136] M. Ozay et al. “Machine Learning Methods for Attack Detection in the Smart
Grid”. In: IEEE Transactions on Neural Networks and Learning Systems 27.8
(2016), pp. 1773–1786.

[137] D. Papadimitriou, D. Colle, and P. Demeester. “Mixed-Integer Optimization for
the Combined Capacitated Facility Location-Routing Problem”. In: 2016 12th
International Conference on the Design of Reliable Communication Networks
(DRCN). 2016, pp. 14–22. doi: 10.1109/DRCN.2016.7470830.

[138] D. Parikh and T. Chen. “Data Fusion and Cost Minimization for Intrusion Detec-
tion”. In: Information forensics and Security, IEEE Transactions on 3.3 (2008),
pp. 381–389. issn: 1556-6013. doi: 10.1109/TIFS.2008.928539.

[139] S. Paris, G.S. Paschos, and J. Leguay. “Dynamic Control for Failure Recovery
and Flow Reconfiguration in SDN”. In: 2016 12th International Conference on

214

https://doi.org/10.1109/TMECH.2006.875568
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
https://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
https://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed-Ledger-Technology-and-Blockchain-Fintech-Notes.pdf
https://doi.org/10.1109/TNNLS.2014.2362015
https://doi.org/10.1109/TNNLS.2014.2362015
https://doi.org/10. 1109/MSP. 2011. 98
https://doi.org/10. 1109/MSP. 2011. 98
https://opennetworking.wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf
https://opennetworking.wpengine.com/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf
https://doi.org/10.1002/net.20371
https://doi.org/10.1109/TSMCC.2009.2020788
https://doi.org/10.1109/DRCN.2016.7470830
https://doi.org/10. 1109/TIFS. 2008. 928539

the Design of Reliable Communication Networks (DRCN). 2016, pp. 152–159.
doi: 10.1109/DRCN.2016.7470850.

[140] I.C. Paschalidis and Chen Y. “Anomaly Detection in Sensor Networks Based on
Large Deviations of Markov Chain Models”. In: 2008 47th IEEE Conference on
Decision and Control. 2008, pp. 2338–2343.

[141] A. Paverd, A. Martin, and I. Brown. “Security and Privacy in Smart Grid De-
mand Response Systems”. In: Smart Grid Security. Ed. by J. Cuellar. Cham:
Springer International Publishing, 2014, pp. 1–15. isbn: 978-3-319-10329-7.

[142] C. Perner. “Network Optimization for Safety-Critical Systems Using Software-
Defined Networks”. In: Architecture Comput. Sys. (ARCS) 2018. Ed. by Mladen
Berekovic et al. Cham: Springer International Publishing, 2018, pp. 127–138.
isbn: 978-3-319-77610-1.

[143] C. Perner and G. Carle. “Comparison of Optimization Goals for Resilient Rout-
ing”. In: 2019 IEEE International Conference on Communications Workshops
(ICC Workshops): the 2nd International Workshop on 5G and Cooperative Au-
tonomous Driving (5G Auto) (ICC 2019 Workshop - 5G Auto). Shanghai, P.R.
China, May 2019.

[144] C. Perner, H. Kinkelin, and G. Carle. “Adaptive Network Management for Safety-
Critical Systems”. In: IM 2019 - IEEE/IFIP Workshop Dissect 2019. Washington
D.C., USA, Apr. 2019.

[145] C. Perner, C. Schmitt, and G. Carle. “Dynamic Network Reconfiguration in
Safety-Critical Aeronautical Systems”. In: 2020 AIAA/IEEE 39th Digital Avion-
ics Systems Conference (DASC), pp. 1–8. doi: 10 . 1109 / DASC50938 . 2020 .
9256497.

[146] T. Pfeiffenberger et al. “Reliable and Flexible Communications for Power Sys-
tems: Fault-tolerant Multicast with SDN/OpenFlow”. In: 7th IFIP on New Tech-
nologies, Mobility and Security (NTMS). 2015.

[147] S. Prabhu et al. “Let Me Rephrase That: Transparent Optimization in SDNs”.
In: Proceedings of the Symposium on SDN Research. SOSR ’17. Santa Clara, CA,
USA: ACM, 2017, pp. 41–47. isbn: 978-1-4503-4947-5. doi: 10.1145/3050220.
3050226.

[148] Publications Office. Regulation (EU) 2019/2144 on Type-Approval Requirements
for Motor Vehicles. Tech. rep. Regulation (EU) 2019/2144. European Parliament
and Council, 2016.

[149] S. Rajasegarar et al. “Quarter Sphere Based Distributed Anomaly Detection in
Wireless Sensor Networks”. In: Communications, 2007. ICC ’07. IEEE Interna-
tional Conference on. 2007, pp. 3864–3869. doi: 10.1109/ICC.2007.637.

215

https://doi.org/10.1109/DRCN.2016.7470850
https://doi.org/10.1109/DASC50938.2020.9256497
https://doi.org/10.1109/DASC50938.2020.9256497
https://doi.org/10.1145/3050220.3050226
https://doi.org/10.1145/3050220.3050226
https://doi.org/10.1109/ICC.2007.637

[150] B. Randell. “System Structure for Software Fault Tolerance”. In: Proceedings of
the International Conference on Reliable Software. 1975, pp. 437–449.

[151] E. Sakic and W. Kellerer. “Response Time and Availability Study of RAFT
Consensus in Distributed SDN Control Plane”. In: IEEE Transactions on Net-
work and Service Management 15.1 (2018), pp. 304–318. issn: 1932-4537. doi:
10.1109/TNSM.2017.2775061.

[152] E. Sakic, N. Ðerić, and W. Kellerer. “MORPH: An Adaptive Framework for
Efficient and Byzantine Fault-Tolerant SDN Control Plane”. In: IEEE Journal
on Selected Areas in Communications 36.10 (2018), pp. 2158–2174. issn: 0733-
8716. doi: 10.1109/JSAC.2018.2869938.

[153] K. Sampigethaya. “Software-Defined Networking in Aviation: Opportunities and
Challenges”. In: Integrated Communication, Navigation, and Surveillance Con-
ference (ICNS), 2015. 2015, pp. 1–21. doi: 10.1109/ICNSURV.2015.7121310.

[154] C. Sample and K. Schaffer. “An Overview of Anomaly Detection”. In: IT Pro-
fessional 15.1 (2013), pp. 8–11. issn: 1520-9202. doi: 10.1109/MITP.2013.7.

[155] A. Schaeffer-Filho et al. “A Framework for the Design and Evaluation of Network
Resilience Management”. In: 2012 IEEE Network Operations and Management
Symposium. 2012, pp. 401–408. doi: 10.1109/NOMS.2012.6211924.

[156] S. Schriegel, T. Kobzan, and J. Jasperneite. “Investigation on a Distributed SDN
Control Plane Architecture for Heterogeneous Time Sensitive Networks”. In:
2018 14th IEEE International Workshop on Factory Communication Systems
(WFCS). 2018, pp. 1–10. doi: 10.1109/WFCS.2018.8402356.

[157] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “SDN Security: A Survey”. In:
2013 IEEE SDN for Future Networks and Services (SDN4FNS). 2013, pp. 1–7.
doi: 10.1109/SDN4FNS.2013.6702553.

[158] F. Simmross-Wattenberg et al. “Anomaly Detection in Network Traffic Based on
Statistical inference and α-Stable Modeling”. In: Dependable and Secure Com-
puting, IEEE Transactions on 8.4 (2011), pp. 494–509. issn: 1545-5971. doi:
10.1109/TDSC.2011.14.

[159] Single European Sky ATM Research. Study Launched to Address Cyber-Security
in SESAR. https : / / www . sesarju . eu / index . php / newsroom / all - news /
cyber-security-study, Accessed 20.03.2021.

[160] J. Smith. “Certification of on-line learning neural networks”. In: Proceedings of
ASC 2003 (2003).

[161] P. Smith et al. “Management Patterns: SDN-Enabled Network Resilience Man-
agement”. In: 2014 IEEE Network Operations and Management Symposium (NOMS).
2014, pp. 1–9. doi: 10.1109/NOMS.2014.6838323.

216

https://doi.org/10.1109/TNSM.2017.2775061
https://doi.org/10.1109/JSAC.2018.2869938
https://doi.org/10.1109/ICNSURV.2015.7121310
https://doi.org/10.1109/MITP.2013.7
https://doi.org/10.1109/NOMS.2012.6211924
https://doi.org/10.1109/WFCS.2018.8402356
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1109/TDSC.2011.14
https://www.sesarju.eu/index.php/newsroom/all-news/cyber-security-study
https://www.sesarju.eu/index.php/newsroom/all-news/cyber-security-study
https://doi.org/10.1109/NOMS.2014.6838323

[162] P. Smith et al. “Network Resilience: A Systematic Approach”. In: IEEE Com-
munications Magazine 49.7 (2011), pp. 88–97. issn: 0163-6804. doi: 10.1109/
MCOM.2011.5936160.

[163] R. Smith, C. Estan, and S. Jha. “Backtracking Algorithmic Complexity Attacks
Against a NIDS”. In: Computer Security Applications Conference, 2006. AC-
SAC’06. 22nd Annual. IEEE. 2006, pp. 89–98.

[164] A.A. Sodemann, M.P. Ross, and B.J. Borghetti. “A Review of Anomaly Detec-
tion in Automated Surveillance”. In: Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on 42.6 (2012), pp. 1257–1272.
issn: 1094-6977. doi: 10.1109/TSMCC.2012.2215319.

[165] V.A. Sotiris, P.W. Tse, and M.G. Pecht. “Anomaly Detection Through a Bayesian
Support Vector Machine”. In: Reliability, IEEE Transactions on 59.2 (2010),
pp. 277–286. issn: 0018-9529. doi: 10.1109/TR.2010.2048740.

[166] B. Stephens et al. “PAST: Scalable Ethernet for Data Centers”. In: Proc. 8th Int.
Conf. Emerging Networking Experiments and Technologies (CoNEXT). 2012,
pp. 49–60.

[167] J.P.G. Sterbenz et al. “Evaluation of Network Resilience, Survivability, and Dis-
ruption Tolerance: Analysis, Topology Generation, Simulation, and Experimen-
tation”. In: Telecommunication systems 52.2 (2013), pp. 705–736. doi: 10.1007/
s11235-011-9573-6.

[168] J.P.G Sterbenz et al. “Resilience and Survivability in Communication Networks:
Strategies, Principles, and Survey of Disciplines”. In: Computer Networks 54.8
(2010), pp. 1245–1265.

[169] R. Sterritt and D. Bustard. “Towards An Autonomic Computing Environment”.
In: Proceedings of the 14th International Workshop on Database and Expert Sys-
tems Applications (DEXA’03). IEEE. 2003, pp. 699–703.

[170] C. Ten, J. Hong, and C. Liu. “Anomaly Detection for Cybersecurity of the Sub-
stations”. In: Smart Grid, IEEE Transactions on 2.4 (2011), pp. 865–873. issn:
1949-3053. doi: 10.1109/TSG.2011.2159406.

[171] C. Ten, G. Manimaran, and C. Liu. “Cybersecurity for Critical Infrastructures:
Attack and Defense Modeling”. In: Systems, Man and Cybernetics, Part A: Sys-
tems and Humans, IEEE Transactions on 40.4 (2010), pp. 853–865. issn: 1083-
4427. doi: 10.1109/TSMCA.2010.2048028.

[172] N. Thanthry and R. Pendse. “Aviation Data Networks: Security Issues and Net-
work Architecture”. In: Aerospace and Electronic Systems Magazine, IEEE 20.6
(2005), pp. 3–8. issn: 0885-8985. doi: 10.1109/MAES.2005.1453803.

[173] UN Regulations on Cybersecurity and Software Updates to Pave the Way for
Mass Roll Out of ’Connected Vehicles’. https : / / unece . org / press / un -

217

https://doi.org/10.1109/MCOM.2011.5936160
https://doi.org/10.1109/MCOM.2011.5936160
https://doi.org/10.1109/TSMCC.2012.2215319
https://doi.org/10.1109/TR.2010.2048740
https://doi.org/10.1007/s11235-011-9573-6
https://doi.org/10.1007/s11235-011-9573-6
https://doi.org/10.1109/TSG.2011.2159406
https://doi.org/10. 1109/TSMCA. 2010. 2048028
https://doi.org/10. 1109/MAES. 2005. 1453803
https://unece.org/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll-out-connected-vehicles
https://unece.org/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll-out-connected-vehicles

regulations - cybersecurity - and - software - updates - pave - way - mass -
roll-out-connected-vehicles, Accessed 22.03.2021.

[174] United States Government Accountability Office. Aviation Cybersecurity. FAA
Should Fully Implement Key Practices to Strengthen Its Oversight of Avionics
Risks. Tech. rep. GAO–21–86. GAO, 2020.

[175] M. Usman, V. Muthukkumarasamy, and X. Wu. “Mobile Agent-Based Cross-
Layer Anomaly Detection in Smart Home Sensor Networks Using Fuzzy Logic”.
In: Consumer Electronics, IEEE Transactions on 61.2 (2015), pp. 197–205. issn:
0098-3063. doi: 10.1109/TCE.2015.7150594.

[176] H.Z. Wang et al. “A Secure and High-Performance Multi-Controller Architecture
for Software-Defined Networking”. In: Frontiers of Information Technology &
Electronic Engineering 17.7 (2016), pp. 634–646. issn: 2095-9230. doi: 10.1631/
FITEE.1500321.

[177] Y. Wang and S. Chen. “Safety-Aware Semi-Supervised Classification”. In: Neural
Networks and Learning Systems, IEEE Transactions on 24.11 (2013), pp. 1763–
1772. issn: 2162-237X. doi: 10.1109/TNNLS.2013.2263512.

[178] T. Watanabe et al. “ResilientFlow: Deployments of Distributed Control Channel
Maintenance Modules To Recover SDN From Unexpected Failures”. In: 2015 11th
International Conference on the Design of Reliable Communication Networks
(DRCN). 2015, pp. 211–218. doi: 10.1109/DRCN.2015.7149015.

[179] C. Wilkinson. Obsolescence and Life Cycle Management for Avionics. Tech. rep.
Research performed by Honeywell Aerospace. Federal Aviation Authority, 2013.

[180] Working Party on Automated/Autonomous and Connected Vehicles. UN Regu-
lation on Uniform Provisions Concerning the Approval of Vehicles with Regard
To Cyber Security and of their Cybersecurity Management Systems. Tech. rep.
United Nations Economic and Social Council, 2020.

[181] C. Wressnegger, Daniel Schwenk G.and Arp, and Konrad Rieck. “A Close Look
on n-Grams in Intrusion Detection: Anomaly Detection vs. Classification”. In:
Proceedings of the 2013 ACM Workshop on Artificial intelligence and Security.
AISec ’13. Berlin, Germany: Association for Computing Machinery, 2013, 67–76.
isbn: 9781450324885. doi: 10.1145/2517312.2517316.

[182] D. Wu et al. “LSTM Learning with Bayesian and Gaussian Processing for Anom-
aly Detection in Industrial IoT”. In: IEEE Transactions on Industrial Informatics
16.8 (2020), pp. 5244–5253.

[183] N. Ye. “A Markov Chain Model of Temporal Behavior for Anomaly Detection”.
In: In Proceedings of the 2000 IEEE Workshop on Information Assurance and
Security. 2000, pp. 171–174.

218

https://unece.org/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll-out-connected-vehicles
https://unece.org/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll-out-connected-vehicles
https://unece.org/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll-out-connected-vehicles
https://doi.org/10.1109/TCE.2015.7150594
https://doi.org/10.1631/FITEE.1500321
https://doi.org/10.1631/FITEE.1500321
https://doi.org/10.1109/TNNLS.2013.2263512
https://doi.org/10.1109/DRCN.2015.7149015
https://doi.org/10.1145/2517312.2517316

[184] J.Y. Yen. “An Algorithm for Finding Shortest Routes From All Source Nodes To
A Given Destination in General Networks”. In:Quart. Appl. Math. 27 (1969/1970),
pp. 526–530.

[185] N. Yodo, P. Wang, and Z. Zhou. “Predictive Resilience Analysis of Complex Sys-
tems Using Dynamic Bayesian Networks”. In: IEEE Transactions on Reliability
66.3 (2017), pp. 761–770. issn: 0018-9529. doi: 10.1109/TR.2017.2722471.

[186] M. Zaman and C. Lung. “Evaluation of Machine Learning Techniques for Net-
work Intrusion Detection”. In: NOMS 2018 - 2018 IEEE/IFIP Network Opera-
tions and Management Symposium. 2018, pp. 1–5. doi: 10.1109/NOMS.2018.
8406212.

[187] J. Zhang, J. Cao, and F. Gao. “Fault Diagnosis for Multivariable Non-Linear Sys-
tems Based on Non-Linear Spectrum Feature”. In: Transactions of the Institute
of Measurement and Control (2016). doi: 10.1177/0142331215625766.

[188] S. Zhang et al. “An Adaptable Rule Placement for Software-Defined Networks”.
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks. 2014, pp. 88–99. doi: 10.1109/DSN.2014.24.

[189] C. Zhou et al. “Design and Analysis of Multimodel-Based Anomaly Intrusion
Detection Systems in Industrial Process Automation”. In: Systems, Man, and
Cybernetics: Systems, IEEE Transactions on (2015). issn: 2168-2216. doi: 10.
1109/TSMC.2015.2415763.

219

https://doi.org/10.1109/TR.2017.2722471
https://doi.org/10.1109/NOMS.2018.8406212
https://doi.org/10.1109/NOMS.2018.8406212
https://doi.org/10.1177/0142331215625766
https://doi.org/10.1109/DSN.2014.24
https://doi.org/10.1109/TSMC.2015.2415763
https://doi.org/10.1109/TSMC.2015.2415763

	Introduction
	Research Questions
	Structure of This Thesis
	Publications in the Context of This Thesis

	Background
	Terminology
	Requirements
	SDN
	Addressing Incidents in Safety-Critical Systems
	Summary

	System Model
	General System Model
	Appropriateness
	Problem Formulation

	Generating Configuration Templates
	Parameters Investigated
	Networks Under Study
	Heuristics
	Optimisation
	Comparison of Heuristics and Optimisation
	Generating Templates
	Summary

	Using Configuration Templates
	Network Reconfiguration
	Management Plane Configuration
	Safety Considerations
	Security Considerations
	Summary

	Discussion
	General
	Data Plane
	Control Plane
	Management Plane

	Summary and Conclusions
	System Model
	Generating Configuration Templates
	Generating Running Configurations
	Possible Future Work

	OpenFlow Control Plane Messages
	Source Files
	Additional Results of Comparison of Algorithms
	Heuristics
	Optimisation
	Comparison Between Optimisation and Heuristics

	List of Acronyms

