
Contents lists available at ScienceDirect

Journal of Industrial Information Integration

journal homepage: www.elsevier.com/locate/jii

Graphical modeling notation for data collection and analysis architectures in
cyber-physical systems of systems

Emanuel Trunzer⁎, Anne Wullenweber, Birgit Vogel-Heuser
Institute of Automation and Information Systems, Technical University of Munich, Garching, Germany

A R T I C L E I N F O

Keywords:
Big data in robotics and automation
Factory automation
Cyber-physical systems of systems
Systems modeling
Data collection
Graphical modeling notation

A B S T R A C T

Industrie 4.0 and data analytics blur the separation of operational and information technology that prevailed for
industrial automation over the last decades. Decentralized control systems for production plants and robot cells
collaborate actively with higher-level systems for big data analytics. In parallel, the complexity of designing and
operating a system architecture for data collection and analysis increases dramatically as more experts from
different domains get involved. Graphical modeling notations facilitate the design process by formalizing im-
plicit knowledge, but currently do not exist for the combined description of field layer and data analytics.
Modeling the system architecture, relevant constraints, and requirements early during the design process can
increase the efficiency of the system development and deployment, especially as experts with various back-
grounds are involved. In this contribution, a new graphical notation is introduced and evaluated in three in-
dustrial case-studies. The notation describes the underlying hardware and software components of cyber-phy-
sical systems of systems, the flow of data, and relevant constraints. The evaluation proved that the notation is
powerful in supporting the engineering of data collection and analysis architectures in industrial automation.
Future work is related to extending the scope of the modeling approach to include safety applications and real-
time considerations on the field level.

1. Introduction

Industrial automation is currently influenced and challenged by
various trends like Industrie 4.0 (I4.0), application of big data princi-
ples, and increasing demand for flexibility in production [1]. In contrast
to the classical system hierarchy, which clearly separates plant control
from superordinate IT systems, new paradigms and developments such
as Ethernet TSN and data analytics rapidly break up this layered
structure. This dramatically increases the complexity of designing and
maintaining connected cyber-physical systems of systems (CPSoS) [2].
For instance, complex condition monitoring applications for multiple
robots require the expert knowledge of production engineers, as well as
the algorithmic understanding of data analysts and the know-how of IT
architects to size networks and platforms [3–5]. One of the central as-
pects of I4.0 is, therefore, the integration of data and systems along the
life cycles of CPSoS, their hierarchical structure, and supply
chains [6,7].

However, due to their different understandings of specific terms in
these domains, diverse and conflicting terminology, and differing
educational backgrounds, information is lost at the interfaces of the
disciplines [8]. Visual notations and representations support

information exchange, structure existing knowledge, and increase un-
derstanding, especially for complex applications [9]. Such a graphical
notation does not exist yet for the field of data collection and analysis
architectures for CPSoS, where operational technology (OT) and in-
formation technology (IT) coalesce with their very specific character-
istics and an integration of data from various industrial information
systems is necessary. The contribution of this paper is, therefore, to
propose a graphical notation for data collection and analysis archi-
tectures that supports the engineering of industrial big data analytics
for connected and distributed automation systems.

The authors define the term system architecture as a connected
system of machines, services, and higher-level IT applications, as well
as networks with their respective hardware and software compo-
nents [10]. Additionally, the term data collection and analysis archi-
tecture is defined as such a system architecture with the purpose of
collecting and integrating data from machines in the field as well as
from superordinate IT systems for data analysis.

The remainder of this contribution is structured as follows: in the
next section, the requirements for graphical notations for data collec-
tion and analysis architectures are derived. Next, in the state-of-the-art,
the lack of graphical notations for data collection and analysis

https://doi.org/10.1016/j.jii.2020.100155
Received 20 May 2019; Received in revised form 4 May 2020; Accepted 20 May 2020

⁎ Corresponding author.
E-mail addresses: emanuel.trunzer@tum.de (E. Trunzer), anne.wullenweber@tum.de (A. Wullenweber), vogel-heuser@tum.de (B. Vogel-Heuser).

Journal of Industrial Information Integration 19 (2020) 100155

Available online 28 May 2020
2452-414X/ © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/2452414X
https://www.elsevier.com/locate/jii
https://doi.org/10.1016/j.jii.2020.100155
https://doi.org/10.1016/j.jii.2020.100155
mailto:emanuel.trunzer@tum.de
mailto:anne.wullenweber@tum.de
mailto:vogel-heuser@tum.de
https://doi.org/10.1016/j.jii.2020.100155
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2020.100155&domain=pdf

architectures is discussed. Afterward, a notation concept is developed
and evaluated in three industrial case-studies. In the last section, the
results are summarized and an outlook on further work is given.

2. Requirements for a modeling notation for data collection and
analysis architectures

Data collection architectures deal with various heterogeneous
hardware devices and related software in IT and OT that are connected
through different types of networks and fieldbuses (cf. Fig. 1 for an
example). The OT domain, with its focus on control of production cells
and robots, is bound to deterministic real-time communication between
the distributed systems. Violation of real-time-constraints could cause
malfunctions and harm to humans [11]. On the other hand, data ana-
lytics and superordinate systems from the IT domain often do not re-
quire hard real-time communication as a comparably high amount of
latency tL and jitter σJ

2 are acceptable. Therefore, such systems are often
connected via a non-real-time Ethernet. Collecting and analyzing data
from such distributed and networked systems of systems is challenging
because of the large number of connected systems (up to several hun-
dred) with often more than 1000 in- and outputs per system. Moreover,
the complexity of the underlying constraints (e.g., acceptable latency,
transmission rates of networks, constrained computing power) needs to
be considered [12]. A notation has to provide the means to model this
multitude of devices, networks, and software functionalities (R1).

For systems with a significant number of connected devices and
analyses, the flow of data becomes very complex. For both, IT archi-
tects, as well as data analysts, following the route of data through the
systems in order to size hardware nodes or determine influences on the
quality of data becomes almost impossible using only a system de-
scription. Consequently, the flow of data through the system should be
captured by the modeling notation. Additionally, relevant information
about the type of data (integer, float, etc.), as well as the state of data
(batch or streamed data), has to be represented (R2).

In order for the notation to serve as an approach during the en-
gineering and operation of a system, the requirements for, as well as the
properties of, the system need to be represented. Experts from different
domains can state distinct types of requirements which the data col-
lection and analysis architecture should fulfill. For instance, while a
data analyst can define the required sampling rate fS of a variable, an IT
architect is concerned about the security of data transmission. To
evaluate the performance of a system in operation, the actual properties

have to be compared to the defined requirements. Hence, the means of
stating requirements and properties should be part of the modeling
notation (R3).

The clarity and applicability of the notation are of high importance,
as the notation has to be usable by application engineers with their
distinct fields of expertise (IT architects, data analysts, programmers),
who are not familiar with all the aspects modeled (R4). In this con-
tribution, the principles of Moody [9] are considered as best-practices
for graphical notations because they deal explicitly with graphical no-
tations.

Table 1 summarizes the requirements.

3. State-of-the-art in CPSoS and data analysis architecture
modeling notations

Numerous researchers have investigated how I4.0 architectures
provide data collection from systems, but only a small number of
modeling approaches exist.

Architecture modeling languages provide a basis for the description
of system architectures and help during the design phases. For instance,
the international standard ISO/IEC/IEEE 42010 defines an ontology for
architecture descriptions. An architecture description consists of several
architecture views that address specific concerns, such as functionality,
usage, system features, performance, and modularity [13]. Architecture
viewpoints and model kinds constitute an architecture description

Fig. 1. Simplified network layout of a typical CPSoS consisting of IT and OT domains with various types of connected devices and networks.

Table 1
Requirements for the graphical modeling notation.

Req. Description

R1 Description of System Architecture
Notation to model the relevant hardware (e.g., PLCs, computer systems,
bus couplers), software (data analysis, forwarding, routing), and networks.

R2 Data Flow Description between Connected Systems
Connected systems form complex networks where data is flowing between
data producers, consumers, and manipulators. Notation to model these
flows and types of data (data type, type of flow).

R3 Annotations for Requirements and Properties
Timing, network protocols, and encryption requirements are relevant for
system architectures. When in operation, the actual behavior can be
captured. The notation needs to reflect these aspects.

R4 Clarity and Applicability for Application Engineering
Clarity of the notation are of major importance for accelerating the
engineering of system architectures.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

2

language (ADL).
Medvidovic and Taylor [14], as well as Malavolta et al. [15],

compare several existing ADL approaches. There is a lack of languages
that can be used for distributed control systems in conjunction with
data analysis. For instance, ArchiMate [16] defines an enterprise ar-
chitecture modeling language that is capable of modeling information
flows. However, aspects for modeling the distributed hardware archi-
tecture, specific timing requirements, and data formats for interoper-
ability are needed. On the other hand, the Architecture Analysis &
Design Language (AADL) [17], used for real-time embedded systems,
includes timing requirements, but lacks consideration of legacy devices
and does not provide a graphical notation on top of the generic UML
(Unified Modeling Language).

The Object Management Group (OMG) specifies a UML profile for
Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) [18]. The profile is tailored to describe the timing and non-
functional requirements of embedded software and hardware systems.
While the profile can be used to model the internals and behavior of
embedded systems in-depth, including scheduling, hardware resources,
and allocation, specific consideration of data analysis as well as dis-
tributed architectures are lacking. Additionally, as UML-MARTE is a
UML profile, it lacks graphical elements added to the standard UML
symbol library and relies on the available set of symbols in UML.

Other profiles for UML are UML-RT [19,20] for modeling of real-
time systems, UML4IoT [21] for the IoT domain, and the approach by
Tekinderdogan et al. [22] for the modeling of Data Distribution Service
(DDS) deployment alternatives. All three lack support for data analysis
as well as a graphical notation. Only the latter approach considers the
communication architecture but is limited to DDS.

Terzic et al. [23] present a domain-specific language (DSL) con-
sisting of a textual and a graphical representation. The DSL can be used
to describe service-oriented architectures (SOA) that communicate over
web services, but it lacks the means to describe hardware and networks.

Greifender and Frey [24] model networked control systems with a
focus on communication-based delay. However, they do not capture the
system with hardware and software components as well as additional
annotations.

In [25], as well as in further work by the same research group [26],
a modeling notation for distributed control systems (DCS) in the field of
industrial automation is proposed. In another work [8], an adapted
version of the modeling language is used for model-based engineering
of DCS. These approaches capture timing requirements but fail to
consider the data flows and the superordinate IT infrastructure in data
collection and analysis architectures.

In summary, different approaches for describing distributed systems
exist in their respective application areas. However, there is no gra-
phical notation in the CPSoS domain that provides elements for de-
scribing distributed systems from the field level to data analysis, for
properties and requirements of the systems, and data flow through
these systems.

4. Graphical modeling notation concept

The concept comprises two viewpoints for separation of the con-
cerns: one for a description of the system architecture with its hardware
and software components and networks, the other to model the flow of
data through the system. Both viewpoints can be annotated with re-
quirements and properties. Additionally, a data mapping table allows
capturing information and interdependencies related to data.

4.1. System viewpoint

The system viewpoint is based on the work by Vogel-Heuser
et al. [25] and extended to capture information about software func-
tionalities, additional types of signals (variables without a link to
hardware signals and models) and a unique labeling system. Table 2

shows a selection of the symbols. On the OT level, symbols for signals
from analog and digital sensors and actuators are included. Ad-
ditionally, values calculated from analysis on machine controllers, as
well as the models (parameter sets) that are part of the data analysis,
can be modeled. Annotations (arrows) link the signals and models with
to location of their generation that could either be an in-/output or
software functionality. The annotations include the type of signal/data
and a unique name on the specific device. Solid rectangles represent
hardware devices. Network and fieldbus interfaces share a diamond
shape inside these rectangles, while master interfaces, commonly found
in fieldbuses, are represented by a double diamond. If a device exhibits
computational capacity, this is represented on the very left of a device
symbol, either with the label PC or PLC. Software can only be executed
on such devices, and a dash-dotted rectangle with a label is used for the
respective software functionality (cf. Table 3). Networks are depicted as
solid lines with thinner lines connected to the interfaces. All elements
contain unique identifiers (UIDs) that identify the respective hardware
systems, software functionalities, networks, and data elements.

4.2. Data flow viewpoint

The data flow viewpoint is inspired by the data flow notation by
DeMarco’s structured analysis (SA) [27], as well as the adaption SA/RT
for real-time systems by Hatley and Pirbhai [28]. The elements of the
data flow viewpoint are given in Table 4. The notation differentiates
between data sources where data originates, and data sinks where data
is not forwarded any longer. Transducers have the ability to forward or
modify incoming data, but must provide all of these as output again. In
addition, transducers may calculate additional values that are

Table 2
System view: elements for the modeling of hard- and software components.

Symbol Description

SS AA AASS
Digital (square) or analog (circle)
sensor/actuator signals.
Calculated data/variable based on
other signals/data.
Model with parameters, e.g., from
data analysis.
Signal or variable element with type
of signal and corresponding data
type. Can be grouped to lists. UID
placeholder to be replace by a
concrete value referring to the signal.
Bus coupler with UID BC1 for
Profibus DP (UID of interface DP1)
with eight digital inputs and eight
digital outputs.

PLC (UID Machine3PLC) with
Ethernet interface and Profibus DP
master. UID of Ethernet interface is
X1P1 and the UID of Profibus DP
master interface X2.

Computer (UID Workstation) with a
single Ethernet adapter (ETH1),
running a data translation software
functionality (Adap).

Network or fieldbus (thick) with
connections to the devices (thin) and
empty UID identifier.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

3

forwarded as well. A special node called sinksource ends the flow of
entering data and does not forward the input data any longer, providing
a new set of calculated data or models to other nodes instead. The
notation differentiates between different types of flows relevant to data
analysis. While streamed data is continuously flowing from one com-
ponent to the other, often in small packages, batched data is a large
bundle of data moved only from time to time. A data stream may be
transformed into a batch of data by a system with a storage (buffer)
functionality. All modeled elements need to be related to a concrete
software functionality that executes the data handling or the networks/
hardware systems used for transporting the data.

4.3. Annotations

Annotations allow experts from different domains to structure their
requirements for the data collection architecture. Additionally, the ac-
tual behavior of an architecture in operation can be modeled as prop-
erties. This is especially useful when working in brownfield environ-
ments where specific characteristics are not easily customizable.
Table 5 summarizes the different annotation elements. The notation
differentiates between three types of property/requirement types based
on the shape of the annotations: Time-related information, for instance
communication latencies or sample rates, architectural information that
defines types of data storage or scalability of components, and data
flow-related information on protocols, semantics, or encryption. An

example of the categorized information is given in Table 6. Properties
are shown as single-bordered and requirements as double-bordered. An
additional element describes the computational capabilities of devices
if present. If an annotation refers to a system (hardware/software or
node in the data flow), it is connected to this element by a gray line
ending with a circle symbol. Alternatively, annotations that refer to
networks or data flows use a square as the line end symbol. Signals are
connected to a system by an arrow. To convey additional information, a
UML comment element is used.

Consistency between the two viewpoints is ensured by giving un-
ique identifiers to all components. Labels are placed on systems, net-
works, data flows, and nodes in the data flow viewpoint. For instance, a
data source in the data flow viewpoint shares the same unique identifier
as the hardware or software component where it was generated.
Additionally, all signals, models, and variables are labeled with unique
identifiers. In this paper, namespaces will be used to relate signals to
the hardware and software. If a diagram becomes too large, it can be
distributed over sub-diagrams. In this case, the sub-diagrams require
unique identifiers. Connections between the diagrams can then be made
with a special arrow symbol including the name of the diagram to
which the connection relates (see Table 5, last two elements).

4.4. Data mapping table

As data can be modified on its way through the architecture,

Table 3
List of possible software functionalities.

Functionality Description

AGGR Aggregation of data from different sources without changes in protocol, format, and semantic.
DA Data analysis functionality for extracting information and knowledge from data. May calculate values and models.
FORW Software functionality to forward data to another system.
LEG Existing legacy software component with an internal logic that may generate, consume, or manipulate data. If a legacy component can be decomposed into other

software functionalities, these may be used instead of the LEG label.
MC Machine control, typically a control application, running on a PLC. May calculate internal values from measurement signals.
ROUT Message routing functionality to enable communication between the heterogeneous systems. Typically a middleware.
STOR Storage functionality for saving data, information, and models.
TRANS Translation between data protocols, formats, and semantics. Used to adapt incompatible and legacy systems.
VISU Visualizes data for users (human-machine interface).

Table 4
Data flow view: elements for the modeling of data flows.

Symbol Description

Indicates that the component serves as source for the data flow. The element refers to a concrete software functionality from the system
viewpoint hosted on a hardware system. The naming scheme for UID is (UID of the hardware system).(UID of SoftwareFunctionality).

Specifies that the component serves as sink for the data flow. The element refers to a concrete software functionality from the system viewpoint
hosted on a hardware system. The naming scheme for UID is (UID of the hardware system).(UID of SoftwareFunctionality).

Indicates that the component serves as transducer for the data flow, i.e., that it provides a software functionality to convert, store, or forward
data. May calculate additional data. The element refers to a concrete software functionality from the system viewpoint hosted on a hardware
system. The naming scheme for UID is (UID of the hardware system).(UID of SoftwareFunctionality).

Specifies that the component serves as sinksource for the data flow, i.e., that it receives data, processes it, and distributes these new data
without distribution of raw data. The element refers to a concrete software functionality from the system viewpoint hosted on a hardware
system. The naming scheme for UID is (UID of the hardware system).(UID of SoftwareFunctionality).

Signal or variable element with type of signal. Can be grouped to lists.

Data stream in the form of a continuous stream. The element refers to the network that transports the data or the respective hardware system if
two software functionalities on the same system exchange data.
Data stream in the form of batch packages. The element refers to the network that transports the data or the respective hardware system if two
software functionalities on the same system exchange data.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

4

traceability of all variables has to be ensured. Therefore, the concept of
data dictionaries [27,28] is adapted as so-called data mapping tables.
The table includes the UID of the respective data element and allows the
statement of additional information. For instance, variables may be
identified by specific variable names inside systems instead of their
UID.

In contrast to the graphical elements presented previously, the data
mapping table includes no graphical representation but serves as a
dictionary to collect and structure additional information on data ele-
ments. Table 7 summarizes the columns of the data mapping table.

5. Evaluation of the notation in three industrial CPSoS case-
studies

The evaluation of the graphical notation is carried out in industrial
case-studies. Three different and typical applications of a data collec-
tion architecture in industrial practice are modeled with the help of
industrial experts from different domains. The first use-case (A) uses a
combined cloud and edge architecture for anomaly detection. Four to
five production plants with one PLC each and several hundred in- and
outputs per PLC are connected to a common cloud environment. The
two other use-cases (B and C) describe alarm management systems for
two kinds of production machines that support operators by preventing
alarm floods and finding their root-causes. In use-case B, approximately
500,000 alarms are generated per year of operation with 200 distinct
types of alarms. The alarm management system of use-case B is hosted
in a public cloud by the original equipment manufacturer (OEM) of the
machine, which offers additional diagnostic services. Therefore, the
alarm messages of several hundreds of these machines, scattered over
multiple customers and production sites, have to be transferred to the
public cloud. In use-case C, the hosting of the alarm management
system follows a hybrid approach with both private and public clouds.
Customers can analyze data in their private cloud to ensure privacy. As
an additional service, the OEM offers to combine data with datasets
from similar machines to improve the quality of the analysis. One
machine generates between 3,600,000 and 6,000,000 alarm messages
per year, with there being approximately 40 machines per customer
and production site. A total of 500 distinct alarms exist. Several cus-
tomers connect their respective private clouds with the public cloud
offered by the OEM. All three case-studies reflect typical applications of
data collection and analysis architectures that interact with CPSoS and
bridge IT and OT. In this contribution, the complex anomaly detection
case-study (case-study A) will be discussed in more detail as an ex-
ample. At the same time, the models of case-studies B and C can be
found in full detail in the supplementary material.

Table 5
Annotations: properties, requirements, and linking elements.

Symbol Description

Actual communication or process-related
time behavior.

Specified communication or process-
related time behavior.

Actual architecture-related behavior of
networks, hardware or software.

Specified architecture-related behavior of
networks, hardware or software.

Actual data flow-related behavior of
networks, hardware or software.

Specified data flow-related behavior of
networks, hardware or software.

Annotation to describe actual
computational capabilities of devices. Top
line gives the manufacturer and name of
the device (if applicable, otherwise the
internal name of the device). Includes main
characteristics of processing unit as well as
available memory and storage. Can be used
with a double outer line to represent a
specification. Adapted from Hashemi et al.
[29].
Specification/property referring to a
network or segment.
Specification/property referring to a
hardware component or software
functionality.
Arrow to relate signals, variables, and
models to systems or nodes. Shape starts at
variable element and ends with arrow at
the system or node.
Element for additional, non-formalized
information. Based on the UML comment
construct. Can be used to describe, for
instance, the manipulation carried out by a
translator or a data analyzer.
Symbol to distribute networks on multiple
sheets (system viewpoint). Used as an
extension of a thick network line, pointing
out from the drawing sheet. Arrow has to
be used on both sheets.
Symbol to distribute information on
multiple sheets in data flow viewpoint.
Arrow links a flow of information or
annotations with another flow on a
different sheet. Arrow has to be used on
both sheets.

Table 6
Properties and specifications ((T)ime, (A)rchitecture, and (D)ata).

Type Name Description

T JITTER Information on jitter σJ
2 for data transmission from source to destination.

T LATENCY Latency tL description for data transmission from source to destination.
T PROCESS Time for processing tProc inside a system, for instance analysis or translation of semantics.
T SAMPLE RATE Sample rate fS of a component to scan the data.
T SAMPLE TIME Sample time tS of a component to scan the data.
A REDUNDANCY Information on redundancy/duplication of systems in order to improve reliability.
A N_SAMPLES Ability of a system to buffer or store a number of n samples.
A SCALABILITY Represents the number of similar configurations connected to the same network, while only giving one example.
A TYPE Specification on the type of a specific functionality, e.g., stream, batch, hybrid analysis/database.
D AUTH Authentication mechanism for establishing communication or data transfer, e.g., password-based or certificate-based.
D ENCRYPT Encryption used for securing a data transfer, e.g., AES (Advanced Encryption Standard).
D PREPROCESS Distributed preprocessing actions on involved systems, e.g., averaging or resampling.
D PRIVACY Privacy level of the transmitted data. This includes for instance normalization, resampling or the introduction of arbitrary noise.
D PROTOCOL Underlying protocol used for the communication.
D SEMANTIC Description of the underlying data semantic during transmission.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

5

5.1. Evaluation procedure

Based on the documentation provided as well as input from tech-
nical experts and IT architects, the brownfield production systems,
without any additional data analysis, were modeled using the graphical
notation. These diagrams were then adapted and extended with the
help of data analysts. They stated which data is needed for the analysis
and where the models should be deployed (edge, cloud). Additionally,
they expressed additional requirements, e.g., for allowed latencies and
sample rates.

In the next steps, IT architects drafted the adapted system archi-
tecture with additional data analysis components. Supplemental re-
quirements, such as data security (encryption, authentication), com-
munication (protocols, semantics), and system sizing (scalability,
capacity of a storage), were specified and added to the diagrams.

The extended diagrams were then discussed with the experts in one
joint session. This first part of the qualitative evaluation was to verify
the correctness of the models. Afterward, a structured questionnaire
with a total of 20 qualitative questions about the clarity of the graphical
notation, its syntactic constructs, and its completeness was conducted
in the joint session. The questionnaire was divided into four parts:
syntax and completeness of the system viewpoint, syntax and com-
pleteness of the data flow viewpoint, mapping between the two views
and annotation elements, and clarity of the graphical notation. In total,
seven experts, which have profound and long-term expertise in their
respective fields of application, were questioned. The selected experts
are especially qualified to evaluate the notation as they have great in-
dustrial experience in the realization of data collection and analysis
projects. Additionally, all have an interdisciplinary background from at
least two domains relevant to the use-cases (technical experts, data
analyst, IT architect, control engineer). The experts are, for instance,
heads of information technology or senior engineers for digitization in
their respective companies.

5.2. Case-study A: anomaly detection

Due to confidentiality, the boundary conditions and the con-
ceptualized architecture of case-study A are modified slightly for this
contribution (for instance, different protocols, single systems connected
to other networks, or abstraction of company-specific information re-
lated to security configurations). Fig. 2 gives the conceptualized system
architecture of the system, while Fig. 3 describes the corresponding
flow of data through the system.

A production plant communicates in real-time over a PROFIBUS DP
on the field level, which connects the PLC with various bus couplers.
Additionally, a PC with a human-machine interface (HMI) hosts a vi-
sualization of process values and is connected to the same fieldbus. The
PLC is a Siemens IPC627D industrial PC with two Ethernet ports and
one PROFIBUS DP master interface. While the variables Var1 to Var9
are measured in the field, variables Var10 to Var14 are calculated in the
machine control program that controls the plant. The PLC runs with a
cyclic sample time of =t 5S ms (cf. Figs. 2(bottom) and 3 (lower left)).
Based on Var1 to Var14 anomalies during plant operation should be
detected.

Data from the PLC is forwarded every 4th cycle (=t 20 ms)S . Two
forwarding functionalities are required on the PLC to forward in-
formation to superordinate systems and the visualization on the field
level. As a huge amount of data has to be transmitted, and network
bandwidth is limited, the raw data is compressed. Therefore, a data
analysis functionality (DA_CP, cf. system viewpoint (PLC1) and data
flow viewpoint (CaseStudy_1_Data_1, right path of data)) compresses the
raw data before transmission. A similar model is executed on the cloud
level (PC3.DA_RC) to decompress the data. The compression follows the
approach presented by Kang et al. [30]. Two similar models are exe-
cuted in parallel. If the fit of the compression model is good enough, no
data is transferred to the decompression model, which calculates values
based on the trained model. If the data deviates too much, an update of
both models is necessary. In this case-study, a different model from a set
of pre-trained models (PLC1.modelSelection) is chosen, and an offset is
calculated in the compression model based on the raw data. These two
variables are then communicated with the decompression model for
updating it (data flow viewpoint, right path of data up to PC3.DA_RC).

For the communication with superordinate systems and inside the
cloud environment (cf. system viewpoint), a middleware approach is
considered. For the case-study, MQTT is chosen as the transport pro-
tocol with a central broker (routing functionality RT on PC2 in the
system viewpoint). Unifying the protocol and semantics of data transfer
increases flexibility and simplifies the development and operation of
the architecture greatly. As the brownfield infrastructure is not capable
of communicating in the common protocol and semantics, PC1 serves as
a data adapter or wrapper between brown- and greenfield. Data adap-
ters can transparently translate between protocols, for instance, OPC
UA to MQTT, and different semantics of data, for instance, pressure in
psi instead of Pa or different variable names. In the example, TR1 not
only translates the protocol from OPC UA to MQTT, but also alters the
semantics of the data (from an information model named PLC1_UA_1 to
PF_v7). The respective identifiers represent internal information models
that are embedded into the systems and designed during the en-
gineering phase. The translators TR1 and, TR2 therefore, translate the
messages back and forth between the two protocol and semantic re-
presentations.

The decompressed data is stored inside the cloud in a storage
(PC2.ST) for analysis. A data analyzer functionality on PC4
(PC4.DA_AD) is used to train an anomaly detection model. Therefore,
based on a manual trigger by the operator through the HMI on PC5 on
the field layer (PC5.TriggerModel), the buffered data from PC2.ST is
analyzed, and a model for anomaly detection is trained. A maximum
acceptable latency of tL, max≤ 4 s between data generation and
anomaly detection is specified by the OEM to meet the production cycle
time of the production machine.

The anomaly detection model could be deployed either on the cloud
level (e.g., on PC3) or on the edge of the network (e.g., directly on
PLC1). A cloud environment is more flexible to scale according to the
actual needs of an application. However, in this case, the additional
latency tL introduced by data compression, transmission, and decom-
pression, as well as the transfer of the results back to the field level, is
unacceptable because a huge amount of data needs to be exchanged and
the additional latency constraint. Therefore, the experts decided to

Table 7
Data mapping table.

Column name Description

VariableUID Unique identifier of a data element across all systems. It corresponds to the Name-attribute of the SA/RT [28].
SystemSpecificVariableUID Unique identifier of a data element used in a specific system.
SystemUID Unique identifier of the system the SystemSpecificVariableUID is valid for. Adapted Member of-attribute of the SA/RT [28].
DerivedFromVariableUID If data is based on other data (calculated, derived, composite, or used in the model), the original unique identifier of these data elements

(VariableUIDs) can be given here. Otherwise empty. It can be multiple separated by commas.
Description Optional description of a variable. It corresponds to the Comments-attribute of the SA/RT [28].
Type Type of the variable, signal, or model, for instance, float, integer, boolean, or model.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

6

execute the model directly on PLC1 using the raw data to minimize
communication overhead. This implies that the model
PC8.AnomalyDetection has to be transferred through the different layers
of the architecture and translated to the legacy representation (see
highlighted path of data in the data flow viewpoint in
CaseStudy_1_Data_2). The model then analyzes raw data with a sample
time of =t 100 msS and calculates the probability of an anomaly
(PLC1.AnomalyRating). This value is visualized on the HMI of PC5 to
support the operator. Validation of the actual properties and the ful-
fillment of the defined requirements have to be carried out either by
simulation or in operation through monitoring.

The data mapping table (cf. excerpt in Table 8) serves as a dic-
tionary and allows to trace the specific data elements through the
systems. Furthermore, the DerivedFromVariableUID column reveals in-
terdependencies between the data elements, e.g., in case a new data
element is calculated based on multiple input data elements (cf.
PLC1.AnomalyRating). The data mapping table can also be used to re-
flect data mappings that are necessary due to incompatible information
models in a translator, e.g., the mapping of two data elements that flow
into the translator to a single data element that flows out. In case
changes to the system are planned, the data mapping table can be used
to identify possible problems and to anticipate them during the redesign
phase.

5.3. Case-studies B and C: alarm analysis

The full diagrams that depict the system and data flow viewpoints of
case-studies B and C can be found in the supplementary material of this
contribution.

5.4. Evaluation results

This section describes the evaluation results based on the summar-
ized expert feedback for the three case-studies A, B, and C.

At first, the completeness of the graphical notation and its elements
was evaluated for both viewpoints. All experts pointed out that all re-
levant information could be captured and structured using the notation.
Both the system architecture, with its hardware and software elements
(R1), as well as the data flow through the system (R2), could be ex-
pressed and structured. The differentiation between hardware devices
and software functionality that is executed on this hardware in the
system viewpoint was considered as very helpful to structure the system
by all experts. The same is valid for the data flow viewpoint, where the
distinction between the types of data handling (source, sink, transducer,
and sinksource) is useful to follow the flow of data. Combining the two
viewpoints, the data can easily be traced through the associated hard-
ware and software systems. This greatly reduces the complexity when
designing and sizing data collection and analysis architectures for all
involved parties. Furthermore, the number of different constructs and
symbols is relatively low and makes the notation manageable (R4).

Concerning the annotations as an essential part of the graphical
notation during the specification and design of system architectures, the
expert opinion was positive as well (R3). Especially for complex con-
nected production cells and robots, latency requirements or protocol
constraints can easily be structured and exchanged. All experts con-
sidered the categorizing of annotations (time, architecture, and data) as
very helpful to separate concerns. Minor concerns were related to the
absolute number of symbols, especially in extensive data flow view-
points (raised by two experts). Here, the number of annotations can be
huge in confined space. Grouping of annotations and references to

Fig. 2. Combined edge and cloud architecture (case-study A) modeled in the system viewpoint. Production machine with anomaly detection on edge level, cloud
environment for model training, and data adapter in between to translate protocol and semantics.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

7

multiple data streams or nodes in the data flow will be considered for
future versions of the notation. Furthermore, an interactive graphical
editor may overcome this limitation as visibility of elements could be
adjusted on-the-fly to provide experts only with the needed

information.
Experts had no problem differentiating between the different types

of elements and annotations. Additionally, utilization of the same fa-
mily of shapes for the specification of properties and requirements was

Fig. 3. Case-study modeled in the data flow viewpoint. The diagram is distributed over two sheets for better overview, arrows link the two sheets.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

8

pointed out as helpful without compromising the perceptual discrimin-
ability (R4) [9]. Nevertheless, four of the experts emphasized that the
usage of color would be beneficial for differentiating the symbols of the
notation.

In summary, the graphical notation is a powerful approach to
structure information during the engineering and operational phases of
cyber-physical systems of systems. In contrast to existing approaches,
the notation can capture information from the OT as well as the IT
domains. It contains constructs for the combined hardware and soft-
ware architecture as well as the stream of data through all connected
systems on different levels of the system hierarchy.

6. Conclusion and outlook

The introduction of I4.0 principles, the convergence of IT and OT,
and the application of big data concepts in industrial automation dra-
matically increase the complexity of CPSoS and information integration
from industrial systems. Aspects from a multitude of different dis-
ciplines have to be considered, especially when conceptualizing data
analysis projects for production plants. Experts from these disciplines,
with their varied knowledge and backgrounds, are all involved in the
process of designing such an industrial data analysis architecture. In
this contribution, a graphical modeling notation, which can support the
engineering of interdisciplinary data collection and analysis archi-
tectures needed in the future, was developed and evaluated. The no-
tation foresees two different viewpoints that describe the system ar-
chitecture and the flow of data through the system, as well as a set of
annotations to further specify and describe the architecture. The eva-
luation was carried out based on three different industrial case-studies
together with domain experts. The evaluation consisted of a main
functional part, in which the completeness of the modeling notation
was considered, and a clarity part. The graphical notation proved to be
a powerful approach to model distributed control systems in industrial
automation. In contrast to existing approaches, it provides both a gra-
phical notation as well as the means to structure information from IT
and OT.

Still, the graphical notation can be extended in future work. At first,
as it is based on the notation by Vogel-Heuser et al. [25], the modeling
constructs could be unified between the different approaches to capture
data analysis architectures (this approach), DCS [25] as well as safety
aspects [26]. This could extend the scope of the notation dramatically
while maintaining almost the same level of complexity.

Second, an extension of the graphical notation towards modeling of
system dynamics can be of interest. This would allow experts to capture
the internal behavior of systems as well as increase the understanding
of conditional data forwarding. As the modeling notation is currently
limited to a static view, modeling of the system dynamics can sig-
nificantly increase the extent of the models and the information con-
tent. Possible directions could be the incorporation or adaption of UML
activity or sequence diagrams into the modeling notation.

Additionally, a graphical editor is planned to make drafting and
using the models easier, allowing the graphical notation to be em-
bedded in the engineering workflow. Moreover, colors could increase
the perceptual discriminability, and the visibility of elements could be

made adjustable. A subsequent step would be the introduction of a
corresponding meta-model, in order to establish a domain-specific
language (DSL). With such a DSL, the modeled information could be
formalized and serve as a basis for a model-driven generation of the
code for the communication inside the modeled architecture. As the
systems, as well as the flow of data and the underlying protocols, can be
characterized, the communication logic could be automatically gener-
ated to increase efficiency during the realization of data collection and
analysis architectures.

CRediT authorship contribution statement

Emanuel Trunzer: Conceptualization, Methodology, Investigation,
Writing - original draft, Visualization. Anne Wullenweber:
Methodology, Investigation, Writing - original draft, Visualization.
Birgit Vogel-Heuser: Conceptualization, Resources, Writing - review &
editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This contribution is part of project “M@OK” (machine@onli-
neknowledge), which has received funding by the Bavarian Ministry of
Economic Affairs, Energy and Technology (StMWi) under grant number
IUK566/001. The authors thank Continental Reifen Deutschland
GmbH, Dorst Technologies GmbH & Co. KG, GROB-WERKE GmbH &
Co. KG, and HAWE Hydraulik SE for their participation in the evalua-
tion.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.jii.2020.100155

References

[1] H. Kagermann, Change through Digitization: value Creation in the Age of Industry
4.0, in: H. Albach, H. Meffert, A. Pinkwart, R. Reichwald (Eds.), Management of
Permanent Change, Springer Fachmedien Wiesbaden, Wiesbaden, 2015, pp. 23–45.

[2] M. Dotoli, A. Fay, M. Miśkowicz, C. Seatzu, An overview of current technologies and
emerging trends in factory automation, Int. J. Prod. Res. (2018) 1–21, https://doi.
org/10.1080/00207543.2018.1510558.

[3] I. Avazpour, J. Grundy, L. Zhu, Engineering complex data integration, harmoniza-
tion and visualization systems, J. Ind. Inf. Integr. 16 (2019) 100103, https://doi.
org/10.1016/j.jii.2019.08.001.

[4] B. Vogel-Heuser, D. Hess, Guest editorial industry 4.0–prerequisites and visions,
IEEE Trans. Autom. Sci. Eng. 13 (2) (2016) 411–413, https://doi.org/10.1109/
TASE.2016.2523639.

[5] E. Trunzer, I. Kirchen, J. Folmer, G. Koltun, B. Vogel-Heuser, A flexible architecture
for data mining from heterogeneous data sources in automated production systems,
2017 IEEE International Conference on Industrial Technology, (2017), pp.
1106–1111, https://doi.org/10.1109/ICIT.2017.7915517.

[6] Reference architecture model industrie 4.0 (RAMI4.0), Deutsches Institut für

Table 8
Excerpt from the data mapping table of the case-study. Additional columns and definition of all variables omitted, indicated by (...).

VariableUID SystemSpecific VariableUID SystemUID DerivedFrom VariableUID ...

PLC1.Var1 Var1 PLC1 ...
...
PC8. AnomalyModel PC8 PLC1.Var1, ...
AnomalyDetection ...
PLC1. AnomalyResult PLC1.DA_RA PLC1.Var1, ...
AnomalyRating ...,

PC8.AnomalyDetection

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

9

https://doi.org/10.1016/j.jii.2020.100155
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0001
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0001
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0001
https://doi.org/10.1080/00207543.2018.1510558
https://doi.org/10.1080/00207543.2018.1510558
https://doi.org/10.1016/j.jii.2019.08.001
https://doi.org/10.1016/j.jii.2019.08.001
https://doi.org/10.1109/TASE.2016.2523639
https://doi.org/10.1109/TASE.2016.2523639
https://doi.org/10.1109/ICIT.2017.7915517

Normung e.V. Std. 91,3452016.
[7] D. Gürdür, F. Asplund, A systematic review to merge discourses: interoperability,

integration and cyber-physical systems, J. Ind. Inf. Integr. 9 (2018) 14–23, https://
doi.org/10.1016/j.jii.2017.12.001.

[8] A. Fay, B. Vogel-Heuser, T. Frank, K. Eckert, T. Hadlich, C. Diedrich, Enhancing a
model-based engineering approach for distributed manufacturing automation sys-
tems with characteristics and design patterns, J. Syst. Softw. 101 (2015) 221–235,
https://doi.org/10.1016/j.jss.2014.12.028.

[9] D. Moody, The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering, IEEE Trans. Softw. Eng. 35 (6) (2009)
756–779, https://doi.org/10.1109/TSE.2009.67.

[10] E. Trunzer, A. Calà, P. Leitão, M. Gepp, J. Kinghorst, A. Lüder, H. Schauerte,
M. Reifferscheid, B. Vogel-Heuser, System architectures for industrie 4.0 applica-
tions, Prod. Eng. 13 (3) (2019) 247–257.

[11] P.A. Laplante, S.J. Ovaska, Real-Time Systems Design and Analysis, John Wiley &
Sons, Inc, Hoboken, NJ, USA, 2011, https://doi.org/10.1002/9781118136607.

[12] M. Wollschlaeger, T. Sauter, J. Jasperneite, The future of industrial communication:
automation networks in the era of the internet of things and industry 4.0, IEEE Ind.
Electron. Mag. 11 (1) (2017) 17–27, https://doi.org/10.1109/MIE.2017.2649104.

[13] Systems and software engineering – architecture description, 2011, International
Organization for Standardization Std. 42,010.

[14] N. Medvidovic, R.N. Taylor, A classification and comparison framework for soft-
ware architecture description languages, IEEE Trans. Softw. Eng. 26 (1) (2000)
70–93, https://doi.org/10.1109/32.825767.

[15] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What industry needs from
architectural languages: asurvey, IEEE Trans. Softw. Eng. 39 (6) (2013) 869–891,
https://doi.org/10.1109/TSE.2012.74.

[16] The Open Group, ArchiMate 3.0.1 specification, 2017, [Online]. Available: http://
pubs.opengroup.org/architecture/archimate3-doc/.

[17] Architecture Analysis & Design Language (AADL), 2017, SAE International Std.
AS5506C.

[18] Object Management Group, UML profile for MARTE: Modeling and analysis of real-
time embedded systems, [Online]. Available: https://www.omg.org/spec/MARTE/
1.1/PDF.

[19] B. Selic, Using UML for modeling complex real-time systems, in: G. Goos,
J. Hartmanis, J. van Leeuwen, F. Mueller, A. Bestavros (Eds.), Languages,
Compilers, and Tools for Embedded Systems, Lecture Notes in Computer Science,
1474 Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 250–260, , https://

doi.org/10.1007/BFb0057795.
[20] R. Grosu, M. Broy, B. Selic, G. Stefnescu, What is behind UML-RT? in: H. Kilov,

B. Rumpe, I. Simmonds (Eds.), Behavioral Specifications of Businesses and Systems,
Springer US, Boston, MA, 1999, pp. 75–90, , https://doi.org/10.1007/978-1-4615-
5229-1_6.

[21] K. Thramboulidis, F. Christoulakis, UML4IoT—a UML-based approach to exploit IoT
in cyber-physical manufacturing systems, Comput. Ind. 82 (2016) 259–272,
https://doi.org/10.1016/j.compind.2016.05.010.

[22] B. Tekinerdogan, T. Çelik, Ö. Köksal, Generation of feasible deployment config-
uration alternatives for data distribution service based systems, Comput. Stand.
Interfaces 58 (2018) 126–145, https://doi.org/10.1016/j.csi.2018.01.002.

[23] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, I. Luković, Development and
evaluation of microbuilder: amodel-driven tool for the specification of rest micro-
service software architectures, Enterp. Inf. Syst. 3 (5) (2018) 1–24, https://doi.org/
10.1080/17517575.2018.1460766.

[24] J. Greifeneder, G. Frey, DesLaNAS - a language for describing networked automa-
tion systems, 2007 IEEE Conference on Emerging Technologies & Factory
Automation (EFTA 2007), 25.09.2007–28.09.2007, IEEE, 2007, pp. 1053–1060,
https://doi.org/10.1109/EFTA.2007.4416899.

[25] B. Vogel-Heuser, S. Feldmann, T. Werner, C. Diedrich, Modeling network archi-
tecture and time behavior of distributed control systems in industrial plant auto-
mation, 37th Annual Conference of the IEEE Industrial Electronics Society, (2011),
pp. 2232–2237, https://doi.org/10.1109/IECON.2011.6119656.

[26] M. Sollfrank, B. Vogel-Heuser, M. Fahimipirehgalin, Integration of safety aspects in
modeling of networked control systems, Proc. IEEE International Conference on
Industrial Informatics, IEEE Press, Emden, 2017, pp. 405–412.

[27] T. DeMarco, Structured Analysis and System Specification, 21st ed., Yourdon
Computing Series, Yourdon Press, Englewood Cliffs, 1979.

[28] D.J. Hatley, I.A. Pirbhai, Strategies for Real-Time System Specification, Dorset
House Publ, New York, NY, 1988.

[29] M. Hashemi Farzaneh, S. Feldmann, C. Legat, J. Folmer, B. Vogel-Heuser, Modeling
multicore programmable logic controllers in networked automation systems, IECON
2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, IEEE,
2013, pp. 4398–4403, https://doi.org/10.1109/IECON.2013.6699843.

[30] W. Kang, K. Kapitanova, S.H. Son, RDDS: a real-time data distribution service for
cyber-physical systems, IEEE Trans. Ind. Inf. 8 (2) (2012) 393–405, https://doi.org/
10.1109/TII.2012.2183878.

E. Trunzer, et al. Journal of Industrial Information Integration 19 (2020) 100155

10

https://doi.org/10.1016/j.jii.2017.12.001
https://doi.org/10.1016/j.jii.2017.12.001
https://doi.org/10.1016/j.jss.2014.12.028
https://doi.org/10.1109/TSE.2009.67
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0009
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0009
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0009
https://doi.org/10.1002/9781118136607
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/TSE.2012.74
http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/MARTE/1.1/PDF
https://doi.org/10.1007/BFb0057795
https://doi.org/10.1007/BFb0057795
https://doi.org/10.1007/978-1-4615-5229-1_6
https://doi.org/10.1007/978-1-4615-5229-1_6
https://doi.org/10.1016/j.compind.2016.05.010
https://doi.org/10.1016/j.csi.2018.01.002
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1109/EFTA.2007.4416899
https://doi.org/10.1109/IECON.2011.6119656
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0021
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0021
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0021
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0022
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0022
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0023
http://refhub.elsevier.com/S2452-414X(20)30030-3/sbref0023
https://doi.org/10.1109/IECON.2013.6699843
https://doi.org/10.1109/TII.2012.2183878
https://doi.org/10.1109/TII.2012.2183878

	Graphical modeling notation for data collection and analysis architectures in cyber-physical systems of systems
	Introduction
	Requirements for a modeling notation for data collection and analysis architectures
	State-of-the-art in CPSoS and data analysis architecture modeling notations
	Graphical modeling notation concept
	System viewpoint
	Data flow viewpoint
	Annotations
	Data mapping table

	Evaluation of the notation in three industrial CPSoS case-studies
	Evaluation procedure
	Case-study A: anomaly detection
	Case-studies B and C: alarm analysis
	Evaluation results

	Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References

