
Lehrstuhl für Sicherheit in der Informationstechnik
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

A Hardware Benchmarking Platform for the
Standardization of Authenticated
Encryption Algorithms

Michael Theodor Tempelmeier

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Apl. Prof. Dr.-Ing. Walter Stechele

Prüfer der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. Assoc. Prof. Jens-Peter Kaps, Ph.D.

George Mason University

Die Dissertation wurde am 11.01.2021 bei der Technischen Universität München eingereicht und durch die
Fakultät für Elektrotechnik und Informationstechnik am 03.05.2021 angenommen.

Quidquid agis, prudenter agas et respice finem!

with Ada.Text_IO;

procedure Thanks is
begin

Ada.Text_IO.Put_Line("Thanks , Dad!");
end Thanks;

In memory of
Prof. Dr. Theodor Tempelmeier

(1952 – 2019)

Abstract

This thesis describes and solves the challenges of evaluating and benchmarking crypto-
graphic algorithms during the standardization process of Authenticated Encryption with As-
sociated Data (AEAD). Candidates of the CAESAR competition (Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness) serve as the data basis. AEAD
algorithms combine two properties: they can independently authenticate and encrypt/de-
crypt data. These properties are especially important for network protocols, where parts of
the data, e.g. the header information, must be protected from manipulation, but at the same
time must be readable, and thus must not be encrypted; other data, however, should not be
readable during transmission and thus must be encrypted.

This work focuses on hardware implementations on FPGAs. In contrast to software imple-
mentations, which are usually embedded in a larger software context, hardware implementa-
tions often do not provide a uniform interface, since they are often embedded in application-
specific devices. This hinders a fair comparison because different implementations are mea-
sured against different requirements. For this reason, this thesis first motivates a uniform
interface for hardware implementations. At the same time, it critically examines the current
implementations of such an interface and proposes an improved version.

In the course of this work, the previous practice of evaluating cryptographic hardware imple-
mentations during the CAESAR competition is also critically examined: Due to the lack of
a clear evaluation process, implementation flaws remained undetected until late in the com-
petition. This is demonstrated by means of a specification problem and an implementation
problem.

To overcome these problems, a low-cost, developer-friendly evaluation platform is developed.
It consists of a Xilinx PYNQ-board. The platform uses a common hardware interface and
can be used for pure functional testing as well as for advanced performance analysis. Due
to its low price and ease of use, it can be used by any hardware developer. This results in
two advantages: First, the quality of the implementations increases, since every developer
is both financially and technically able to use this platform to test his or her implementation
against a uniform set of tests; second, the results are comparable since every implementa-
tion is measured against the same assumptions.

Subsequently, this platform is used to evaluate all the finalists and a large part of the pre-
finalists of the CAESAR competition. Here, functionality; specification conformance; re-

5

source, power and energy consumption; and runtime are evaluated. It is shown that the
winners in the field of “lightweight applications” do not necessarily have “lightweight” prop-
erties and that, according to the measured data, other eliminated candidates should have
been considered as finalists.

Furthermore, this work presents an alternative for the uniform hardware interface. It turns
out that for very specific hardware software co-design applications, the presented unified
hardware interface is suboptimal. Nevertheless, for the majority of applications the advan-
tages of a uniform hardware interface outweigh. This is demonstrated on the basis of two
selected examples: “Physical Unclonable Functions” and “Network-on-Chip” applications. In
both cases the above mentioned implementations are integrated in other scientific research
areas and the uniform hardware interface allows for a fast evaluation of a large number of
different implementations.

Finally, this work results in a set of rules for comparing and creating cryptographic algo-
rithms under the aspects of good hardware optimizability and using a general hardware
interface. These rules are designed to fit the current standardization of Lightweight Crypog-
raphy (LWC) by the National Institute of Standards and Technology (NIST).

6

Zusammenfassung

Diese Arbeit beschreibt und löst die Herausforderungen bei der Evaluierung und Leistungs-
bewertung von kryptographischen Algorithmen der Klasse „Authenticated Encryption with
Assosiated Data (AEAD)“, die typischerweise während der Standardisierung auftreten. Als
Datenbasis dienen hierbei Kandidaten des CAESAR-Wettbewerbs („Competition for Au-
thenticated Encryption: Security, Applicability and Robustness“). AEAD Algorithmen verei-
nen dabei zwei Eigenschaften: Sie können unabhängig voneinander Daten verschlüsseln,
bzw. entschlüsseln und authentifizieren. Diese Eigenschaften sind insbesondere bei Netz-
werkprotokollen wichtig, da hier Teile der Daten, z.B. Metainformationen, vor Manipulation
geschützt werden müssen, aber gleichzeitig im Klartext lesbar sein müssen; andere Daten
hingegen sollen während der Übertragung nicht lesbar sein.

Diese Arbeit fokussiert sich auf Hardwareimplementierung auf Basis von FPGAs. Im Ge-
gensatz zu Softwareimplementierungen, die meistens in einem größeren Softwarekontext
eingebettet sind, ist bei Hardwareimplementierungen häufig kein einheitliches Interface vor-
gesehen, da sie oftmals als eigenständige, anwendungsspezifischen Bausteine bestehen.
Aus diesem Grund wird in dieser Arbeit zuerst ein einheitliches Interface für Hardwareim-
plementierungen motiviert. Gleichzeitig wird sich kritisch mit dessen bisheriger Implemen-
tierung auseinandergesetzt und eine verbesserte Version des Selbigen vorgeschlagen.

In diesem Zuge wird sich auch kritisch mit der bisherigen Praxis der Bewertung von kryp-
tographischen Hardwareimplementierungen während des CAESAR-Wettbewerbs befasst.
Durch das Fehlen von klaren Bewertungsprozessen blieben Implementierungsprobleme lan-
ge Zeit unentdeckt. Dies wird Anhand eines Spezifizierungs- und eines Implementierungs-
problem demonstriert.

Als Lösung dieser Probleme wird hierzu eine kostengünstige, entwicklerfreundliche Evaluie-
rungsplattform entwickelt. Sie basiert auf einem Xilinx PYNQ-Board. Sie nutzt eine einheitli-
che Hardwareschnittstelle und kann sowohl zum reinen Funktionstest als auch zur erweiter-
ten Leistungsanalyse verwendet werden. Wegen des günstigen Preises und der einfachen
Bedienbarkeit kann sie von jedem Hardware-Entwickler eingesetzt werden. Dadurch entste-
hen zwei Vorteile: Erstens steigt die Qualität der Implementierungen, da jeder Entwickler
sowohl finanziell, als auch technisch in der Lage ist, diese Plattform zu benutzen und somit
frühzeitig Fehler im Design erkennen zu können; zweitens verbessert sich die Vergleich-
barkeit der Ergebnisse, da jede Implementierung anhand der gleichen Voraussetzungen
gemessen wird.

7

Anschließend wird diese Plattform genutzt um alle Finalisten und einen Großteil der Vorfina-
listen des CAESAR-Wettbewerbs zu bewerten. Hierbei wird sowohl die Funktionalität, die
Spezifikationskonformität, der Ressourcen-, Leistungs- und Energieverbrauch als auch die
Laufzeit evaluiert. Dabei zeigt sich, dass die Gewinner im Bereich „lightweight applications“
nicht zwangsweise „lightweight“ Eigenschaften besitzen und dass gemäß der gemessenen
Daten andere, ausgeschiedene Kandidaten als Finalisten berücksichtigt hätten werden müs-
sen.

Weiterhin präsentiert diese Arbeit eine Alternative für die einheitliche Hardwareschnittstel-
le. Es zeigt sich, dass für sehr spezielle Hardware-Software-Codesign-Anwendungen, die
präsentierte einheitliche Hardwareschnittstelle suboptimal ist. Trotzdem überwiegen für das
Gros der Anwendungen die Vorteile einer einheitlichen Hardwareschnittstelle. Dies wird
nochmals anhand von zwei ausgewählten Beispielen demonstriert, wobei die oben genann-
ten Implementierungen in anderen wissenschaftlichen Kontexten („Physical Unclonable Func-
tions“ und „Network-on-Chip“-Anwendungen) eingebunden werden. Die verwendete Hard-
wareschnittstelle erlaubt dabei eine schnelle Evaluation einer Vielzahl von verschiedenen
Implementierungsvarianten.

Abschließend wird basierend auf den Ergebnissen dieser Arbeit eine Handreiche für das Ver-
gleichen und das Erstellen von kryptographischen Algorithmen unter den Gesichtspunkten
einer guten Hardwareoptimierbarkeit sowie unter Verwendung einer allgemeinen Hardware-
schnittstelle gegeben. Diese Handreiche ist darauf ausgelegt bei der aktuellen Standardisie-
rung von „leightweight Authenticated Encryption with Assosiated Data“ des National Institute
of Standards and Technology (NIST) Verwendung zu finden.

8

Contents

1 Introduction 11

2 Preliminaries 15
2.1 Authenticated Encryption with Associated Data 15
2.2 Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR) . 17
2.2.1 Functional Requirements for Submissions 17
2.2.2 Process for Determining the Final Portfolio 18
2.2.3 Examined Ciphers . 19

2.3 New Generation of Reconfigurable System-on-Chips 25

3 Challenges in Evaluating Cryptographic Competitions 29
3.1 Review Process Flaws at the Example of CAESAR 29

3.1.1 Algorithmic or Software Flaws . 30
3.1.2 Hardware Flaws . 31

3.2 The Role of the Interface . 32
3.2.1 The Example of Icepole . 33
3.2.2 Is it fair? . 38

4 Hardware APIs 41
4.1 The CAESAR-API . 41
4.2 The LWC-API . 45
4.3 Comparison and Evaluation of the APIs . 46

4.3.1 API Compliant Development Packages 46
4.3.2 Resource Analysis of Lightweight APIs 50
4.3.3 Exemplary Analysis of Published Implementations 55
4.3.4 Tweaking the Development Package 59

4.4 Summary . 60

5 A Framework for Testing CAESAR-Hardware-Implementations 61
5.1 Functional Verification using Simulations . 61
5.2 Functional Verification using Hardware Testbeds 62

5.2.1 System Design . 63
5.2.2 Validation and Testing . 65
5.2.3 Functional Behavior . 66

5.3 Resource Implications . 68

9

6 Benchmarking of CAESAR-Implementations 73
6.1 Hardware Architecture . 74
6.2 Measurement Setup . 75

6.2.1 Runtime . 75
6.2.2 Power and Energy . 75

6.3 Results . 80
6.3.1 Synthesis . 80
6.3.2 Runtime . 80
6.3.3 Power Consumption . 89
6.3.4 Energy Consumption . 93

6.4 Consequences for Ciphers . 97

7 Case Studies 99
7.1 Enhancing Authenticated Encryption with Hardware Software Codesign

Techniques . 99
7.1.1 Setup . 99
7.1.2 Results . 101

7.2 Securing Network-on-Chip Applications . 103
7.2.1 Multiprocessor Systems on Chips . 104
7.2.2 Attacks on Networks on Chips . 104
7.2.3 CAESAR Network Interface Reconfiguration 105
7.2.4 Results . 106

7.3 Authenticated Encryption based on Physical Unclonable Functions 107
7.3.1 Physical Unclonable Function . 107
7.3.2 Hardware Setup . 108
7.3.3 Results . 109

8 The Implementer’s Point of View 111

9 Conclusion 115

List of Figures 117

List of Tables 119

Acronyms 121

Bibliography 125

10

1 Introduction

When in 1997 the National Institute of Standards and Technology (NIST) initiated a public
competition to determine which block cipher algorithm should become the Advanced Encryp-
tion Standard (AES) [62], it broke new ground, since all previous cryptographic standards
were determined behind closed doors [7].

In 2000, two similar research projects were launched: NESSIE (New European Schemes
for Signatures, Integrity and Encryption) by the European Commission [50] and CRYPTREC
(Cryptography Research and Evaluation Committee) by the Japanese government [15]. They
are comparable in many respects to the AES competition run by NIST. Therefore, there were
no new groundbreaking findings during these competitions. However, they strengthened the
idea of publicly available cryptographic competitions.

Thus, subsequent contests for cryptographic standards became more and more popular,
with more algorithms submitted each time:

In 2004, another European project, called eSTREAM (ECRYPT Stream Cipher Project), was
launched by the European Network of Excellence in Cryptology (ECRYPT) [49]. In contrast
to the previous projects, eSTREAM focused on stream ciphers.

In 2007, NIST announced its second cryptographic competition: the SHA3-hashing competi-
tion. While other projects like NESSIE already included hashing to their call for submissions,
NIST chose to have a dedicated competition for hashing. Again, this competition formed a
new standard: the SHA-3 standard [20].

One of the latest concluded contests is CAESAR (Competition for Authenticated Encryption:
Security, Applicability, and Robustness) [12], which was announced in 2013 and ended in
February 2019. Its goal was to determine a portfolio of authenticated ciphers that offer ad-
vantages over AES in Galois Counter Mode (AES-GCM) in terms of performance, security,
and ease of correct implementation. Throughout the contests, candidates were evaluated
based on their security, efficiency in software, efficiency in hardware, and flexibility. In con-
trast to the other competition, CAESAR did not report to any governmental agency.

There are more competitions that are still ongoing: the NIST Post-quantum Cryptogra-
phy (PQC) project [61], started in 2016, and the NIST Lightweight Crypography (LWC)
project [60], started in 2018. While the first focuses on the new field of post-quantum cryp-

11

tography, the latter combines very well known cryptographic primitives to form lightweight
primitives which are suitable for the Internet-of-Things (IoT) era. The latter can also be seen
as a successor of CAESAR, as the specification of the encryption primitives is a subset of
CAESAR’s.

In this thesis, we focus on hardware implementations of CAESAR and LWC candidates.
One characteristic of both projects is the volume of different submissions compared to the
AES competition: In 1998, there were only 15 candidates competing for the new Advanced
Encryption Standard. Furthermore, 13 of them were based on well known structures like
Feistel Networks, or substitution-permutation networks, and only two of them were of dedi-
cated character. This made a fast decision possible, so that in 1999 five finalists could be
presented. One year later, Rijndael was chosen to become the new Advanced Encryption
Standard [82].

CAESAR on the other hand had 57 submissions, divided into more than six different cat-
egories [1] and the LWC project accepted 56 submissions [60]. This poses a serious chal-
lenge for their evaluation. Furthermore, the CAESAR and and LWC competition included
hardware benchmarking into their evaluation process because hardware implementations
gain more and more importance.

Today, high-speed co-processors are used to speed up cryptographic operations on server
CPUs, but even desktop CPUs are equipped with AES instruction set extensions. Dedicated
Field-programmable gate array (FPGA) or even Application-specific Integrated circuit (ASIC)
clusters are used for blockchain operations. More and more memory elements (e.g. hard
disks, or RAM) provide an on the fly memory encryption. Lightweight, power and energy
optimized implementations are used in IoT devices. Side-channel and fault attack protected
implementations are mandatory even for consumer products.

Taken the afore mentioned tremendous number of submissions into account, benchmarking
becomes even more challenging because there are now multiple benchmarking dimensions,
which must be applied to each submission, like security, software performance on different
processors, hardware performance on FPGAs, hardware performance on ASICs, perfor-
mance in mixed hardware software co-designs, ability for IoT applications, etc.

This thesis addresses the following points and thus contributes to the overall evaluation
process:

• We will demonstrate that one of the main challenges when benchmarking different
hardware implementations is the used interface. Thus, it is crucial to adopt a common
hardware API for all implementations. However, even a common API is not enough.
We will show that such an API can be misused to “optimize” the synthesis results of
a cipher, but actually only the implementation of the API is improved. Therefore, we
will closely analyze the CAESAR-API in terms of area cost and propose an improved

12

API, which could be used for the NIST-LWC competition.

• Next, we will motivate the need for an universal hardware testbed by showing that
more than expected (official) hardware implementations are functionally incorrect.

• For the functionally correct implementations, we will extend this testbed to allow for
benchmarking. We will present benchmarking results in terms of area, throughput,
power, and energy consumption.

• We will compare those API compliant, pure hardware results with mixed hardware
software implementations and show the advantages of both approaches.

• Finally, we will demonstrate the benefits of a fixed API implementation with an external
and internal interface: Ciphers fully equipped with the API can be easily integrated on
protocol level. We will demonstrate this at the example of a PUF-based IoT protocol.
Having also a common internal interface between the cipher and API implementation
will allow for a seamless integration of the Cipher into custom projects, without the
(communication) overhead of the API. We will demonstrate this at the example of a
NoC router.

Consequently, the thesis is organized as follows:

As preliminaries, we first explain Authenticated Encryption with Associated Data, introduce
the “Competition for Authenticated Encryption: Security, Applicability, and Robustness”, and
present the hardware platform used throughout this thesis in the next chapter.

Having dealt with the preliminaries, we carve out the challenges and problems, when eval-
uating different hardware implementations in Chapter 3. In Chapter 4, we present and an-
alyze a solution to make different implementations comparable by examining the CAESAR
hardware API and present an improved LWC hardware API.

The actual analysis of the ciphers starts in Chapter 5. In this chapter, we focus on the
functional behavior. We show, that many implementations are not functional correct. This
emphasizes the need of the presented framework. In the next chapter, this framework is
extended to allow for performance benchmarking.

Chapter 7 is an excursus to show the applicability of CAESAR ciphers in other research
domains. We show how these domains benefit from the common API presented in Chap-
ter 4.

In Chapter 8, we conclude the thesis with a very personal point of view on how things should
be done.

13

2 Preliminaries

In the following, we introduce the concepts of Authenticated Encryption with Associated
Data, the CAESAR competition, and Systems on Chips, as this thesis heavily relies on
these concepts.

2.1 Authenticated Encryption with Associated Data

Secure communication is based on two main principles: Secrecy and Authenticity. Secrecy,
the oldest cryptographic principle, ensures that a message can only be read (decrypted)
by the appropriate recipient. However, in many cases secrecy is not the (only) concern.
It is at least as important to verify that a message has not been altered intentionally or
unintentionally during its transmission.

Therefore, cryptographic protocols rely on authentication and encryption to provide con-
fidentiality, as well as integrity and authenticity. Traditionally, a Message Authentication
Code (MAC) and an encryption scheme were combined at protocol level:

• MAC-and-Encrypt, where a message is independently encrypted and authenticated.
This scheme is used amongst others by SSH [55].

• MAC-then-Encrypt, where a message is first authenticated and then together with the
resulting MAC encrypted. This scheme is used amongst others by SSL/TLS [69].

• Encrypt-then-MAC, where a message is first encrypted and then the encrypted mes-
sage is authenticated. This scheme is the recommended mode to combine an encryp-
tion algorithm with a MAC, as it is the only one that can provide indistinguishability
under adaptive chosen ciphertext attacks (IND-CCA), non-malleability under chosen
plaintext attacks (NM-CPA), and the integrity of ciphertexts (INT-CTXT) [5]. It is used
amongst others in IPsec [52], but there are extensions for TLS and SSHv2 to use this
mode [30].

While these composition approaches have obvious advantages in terms of re-usability, they
suffer from being neither efficient nor always secure and prone to implementation errors [6,

15

5, 53]. Additionally, a key separation is needed, as MAC and encryption are two distinct
cryptographic primitives and therefore need two distinct keys [51]. Otherwise the above
mentioned security goals can not be guaranteed [5]. A more modern approach is to consider
Authenticated Encryption (AE) as a cryptographic building block on its own, rather than as
the mere combination of two. For this reason and others, the NIST-recommended modes
like Counter with CBC-MAC (CCM) [18] and AES-GCM [19], as well as the ISO standard
AES in Offset Codebook 2 Mode (AES-OCB2) [71] are used.

In the following the term AE is used for algorithms that combine both principles into one sin-
gle algorithm. Typical use cases for AE are (embedded) software updates. In this scenario,
the update is confidential, as it involves Intellectual Property (IP) and at the same time, it
must be ensured that it is not altered.

In addition to authentication and encryption, several protocols require checking the integrity
and authenticity of so called Associated Data (AD), which are public data that must be au-
thenticated by the receiver, but do not contain confidential information. The most prominent
example of AD is the header of a network protocol: While the header must not be encrypted,
as it must be readable by the network router, it must be protected in terms of integrity and
authenticity. This leads to Authenticated Encryption with Associated Data (AEAD) as a build-
ing block. The most recent example for AEAD is TLS-1.3 which only allows AE algorithms
and purged all composition-based approaches, as they are considered legacy [68].

Formally, an AEAD scheme is defined as follows [1]:

Definition 1 Let k, ν, t ≥ 1, K ∈ {0, 1}k denote a secret key, N ∈ {0, 1}ν a nonce,
T ∈ {0, 1}t an authentication tag, P ∈ {0, 1}∗ a plaintext, AD ∈ {0, 1}∗ associated data,
and C ∈ {0, 1}∗ a ciphertext. An AEAD is a triple Π = (K, E ,D), with a key-generation
procedure K that returns a randomly K, an encryption algorithm EK(N,AD,P), and a de-
cryption algorithm DK(N,AD,C, T), where E outputs a pair (C, T), and D outputs either
the plaintext P or the void symbol ⊥ if the tag is invalid:

E : {0, 1}k × {0, 1}ν × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t (2.1)

D : {0, 1}k × {0, 1}ν × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗ ∪ {⊥} (2.2)

The formal definition of the decryption in Equation (2.2) is often relaxed for implementations:
As the tag verification takes place after the complete decryption and as it is often infeasible
to store the entire decrypted plaintext, the plaintext is released regardless whether the tag is
valid or not. There is only a flag set to indicate the status of the verification and appropriate
actions must be taken on system or protocol level.

16

2.2 Competition for Authenticated Encryption: Security,
Applicability, and Robustness

In the past few years, some concerns about the performance and ease of side-channel
secure implementations of AES-GCM, which had been the defacto standard for AEAD for
many years, were raised. As a result, the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR) was started with the goal to

“identify a portfolio of authenticated ciphers that (1) offer advantages over AES-GCM
and (2) are suitable for widespread adoption”. [12]

Although funded by NIST grant 60NANB12D261 and supported by the University of Illinois
at Chicago [7], it was organized by “the international cryptologic research community”, a
loose committee of 18 international researchers from eleven different countries. Secretary
of the committee and most prominent spokesman was D. J. Bernstein [12].

2.2.1 Functional Requirements for Submissions

The call for submissions [12] had very limited requirements: The submissions must support
AEAD, that provides integrity for the plaintext, the Associated Data, public message number,
and the secret message number, as well as confidentiality for the plaintext and the secret
message number. Both message numbers may impose a single-usage.

The plaintext and the secret message number had to be recoverable from the ciphertext,
AD, public message number, and key. The submissions had to support a minimum length
of 216 bytes for plaintext/ciphertext and AD. However, designers were encouraged not to
limit the maximum length. For practical reasons, most ciphers were designed to support
maximum lengths up to 264 bytes. The support for public and secret message numbers
was optional. There are no prerequisites on these numbers, except that they are only used
once with the same key. As there are no late-round candidates that made use of the secret
message number, in the following, the term nonce (number used only once) always refers
to the public message number. There was no definition for a minimum or maximum length
of the key.

Additionally, each submission was allowed to specify a family of ciphers with different param-
eter sets for each family member.

17

2.2.2 Process for Determining the Final Portfolio

In 2014, more than 50 algorithms were submitted to the competition. The competition was
designed to identify a portfolio of ciphers in three consecutive rounds. For each round, the
committee

“will issue a report that, for each selected algorithm, cites the previously pub-
lished analyses that led the algorithm to be selected. [...] an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision.” [12]

An appeal of the committee decision was not possible. However, submitters were “expected
to promptly and publicly respond to those analyses” they disagree with [12].

In the first round, the cryptographic strength of the submitted algorithms was evaluated.
Additionally, all first round candidates were required to publish a software reference imple-
mentation. Based on their findings, 28 candidates were eliminated with the announcement
of the second round in 2015.

The second round was dedicated to software implementations. Authors of the ciphers and
independent designers were invited to submit optimized software implementations for differ-
ent platforms ranging from embedded devices to servers. SUPERCOP (System for Unified
Performance Evaluation Related to Cryptographic Operations and Primitives) was used to
benchmark the different implementations [8]. It compiles the submitted code with different
compilers, for different target platforms, and with different compiler options to find the best
ones. Additionally, all authors of second round candidates were required to submit hardware
implementations written in either VHDL or Verilog. 13 candidates were eliminated during this
round in 2016.

The third round was dedicated to hardware implementations, but also software tweaks were
allowed. Again, authors and independent designers were invited to submit optimized imple-
mentations. Planned to be the last round, it was the longest round and lasted until 2018.
Nine candidates were eliminated.

With seven finalists remaining, it took another year, until the final portfolio was announced in
2019. It consists of a primary and a secondary recommendation for lightweight applications
(use case 1), and defense in depth applications (use case 3) and lists two recommendations
without a preference for high-performance applications (use case 2).

18

2.2.3 Examined Ciphers

In this thesis, we focus on fifteen different families of ciphers and in parts multiple implemen-
tations or versions of the same cipher. Those implementations cover all CAESAR finalists
and half of the second round candidates. Table 2.1 lists their parameters. In the following,
they are briefly explained to allow for a better classification throughout this thesis.

Like Abed et al. in [1], we classify them into the following groups1: block cipher based, stream
cipher based, sponge based, and dedicated algorithms. In [1], Abed et al. also provide an
overview of external cryptanalysis and security proofs of the ciphers.

Nomenclature

In the literature, there are two ways to refer to the same cipher: first, the common name
of the cipher, which may include a version number e.g. “SILC v2.0”, a data path width e.g.
“Acorn32”, or a key width e.g. “AEGIS-128”; second, the name of the (software reference)
implementation. This can be simply the same name, but without any white spaces and
upper cases or a more specific name like “aes128n12t8silcv2”. The latter contains additional
information like the used Block Cipher (BC) (AES-128), the length of the nonce (n = 12
bytes), or the length of the tag (τ = 8 bytes). The release version is indicated with a
“v” suffix; dots in the versioning are ignored, i.e. “v141” stands for “release 1.41”. This
nomenclature is often used, when the construction is very generic and allows for a variaty
of different parameters. For the SILC example, there existed also “present80n6t4silcv2”,
which uses PRESENT-80 with a six byte nonce and a four byte tag. If both names are given,
the software reference implementation is notated in parenthesizes, e.g. “AEGIS-128 v1.1
(aegis128)”. A “_”-suffix can be used to specify to distinguish optimized implementations
from the reference implementation, e.g. “aegis128_ref”, “aegis128_arm64”, etc.

Block Cipher

The following ciphers use a BC to form an AEAD scheme:

• AEZ [34] uses multiple, different instances of AES. According to the authors “writing
software for AEZ is not easy, while doing a hardware design for AEZ is far worse.” Hom-
sirikamol and Gaj confirmed that in their paper “Anything-but EaZy in Hardware” [35].
Throughout this thesis, only one – non working – implementation is used as a bad
example.

1Abed et al. also used the groups compression function based and (non-sponge) permutation based, but non
of the late round CAESAR candidates fall into those categories.

19

Table
2.1:S

ecurity
param

eters
ofused

im
plem

entations

C
ipher

C
laim

ed
K

ey
N

once
Tag

B
lock

S
tate

M
ain

security
function

U
se

C
ase

N
am

e
S

ecurity
5,6

S
ize

6
S

ize
6

S
ize

6
S

ize
6

S
ize

6

A
E

Z
1
28

3
84

96
128

128
128

three
A

E
S

-like
structures

defense
in

depth

A
corn

1
28

1
28

1
28

128
1

293
non

linearshiftregister
lightw

eight

A
E

G
IS

-128
1
28

1
28

1
28

128
128

640
5

rounds
ofA

E
S

-128
4

high-perform
ance

A
E

G
IS

-128l
1
28

1
28

1
28

128
128

1
024

8
rounds

ofA
E

S
-128

4
high-perform

ance

A
E

G
IS

-256
2
56

1
2
5
6

2
5
6

128
128

768
6

rounds
ofA

E
S

-128
4

high-perform
ance

A
E

S
-G

C
M

1
28

1
28

1
28

128
128

128
10

rounds
ofA

E
S

-128
2

+
“H

”-m
ult.

–

A
S

C
O

N
1
28

1
28

1
28

128
64

320
6

rounds
ofperm

utation
+

sponge
lightw

eight

C
LO

C
1
28

1
28

64
64

128
128

10
rounds

ofA
E

S
-128

lightw
eight

C
O

LM
6
4

128
12

8
128

128
128

10
rounds

ofA
E

S
-128

defense
in

depth

D
eoxys-I

1
28

1
28

64
128

128
128

10
rounds

3ofD
eoxys-B

C
high-perform

ance

D
eoxys-II

1
27

1
28

1
20

128
128

128
10

rounds
3ofD

eoxys-B
C

defense
in

depth

Icepole
1
28

1
28

1
28

128
1

024
1

280
6

rounds
ofperm

utation
+

sponge
H

igh-perform
ance

Jam
bu-A

E
S

1
28

1
28

64
64

64
192

10
rounds

ofA
E

S
-128

defense
in

depth

N
orx

2
56

2
56

2
56

256
768

1
024

4
rounds

ofperm
utation

+
sponge

high-perform
ance

M
orus

1
28

1
28

1
28

128
256

1
280

shift,rotate,A
N

D
,X

O
R

high-perform
ance

O
C

B
1
28

1
28

1
28

128
128

128
10

rounds
ofA

E
S

-128
high-perform

ance

S
ILC

1
28

1
28

96
64

128
128

10
rounds

ofA
E

S
-128

lightw
eight

Tiaoxin
1
28

1
28

1
28

128
256

1
664

6
rounds

ofA
E

S
-128

high-perform
ance

dum
m

y
–

1
28

1
28

128
128

128
X

O
R

–

1
128

bitforauthenticity
2

notforA
ssociated

D
ata

3
20

rounds
forplaintext/ciphertext

4
w

ithoutkey
scheduling

5
security

decreases
forlarge

num
berofblocks

6
num

bers
are

in
bits

20

• Jambu [85] uses the blocksize of a BC as its state. This state is divided into two even
parts. One part absorbs the AD and plaintext by xoring it. The other part acts as a key
generator. By xoring this block key with the data, the data is encrypted or decrypted.
Finally, the BC is executed on the complete state and new data can be absorbed and
encrypted/decrypted. For security reasons, there is also a forward path, that bypasses
the BC and xors the absorbing halve of the state to the other halve after executing the
BC. Throughout this thesis we use JAMBU-AES, i.e. AES-128 as the BC.

• CLOC [40] is a kind of cipher block chaining mode of operation for AES-128 and
TWINE-80. In contrast to the original cipher block chaining, there are some additional
function blocks before passing data to the block cipher. Throughout this thesis, the
64-bit nonce and AES-128 version is used.

• OCB [54] stands for “offset codebook” and is a patent-registered mode of operation
for AES. In favor of the CAESAR competition, there is also a free license which is
suitable for most non military use cases2. In contrast to other modes of operation,
OCB only requires one pass of the AES BC per input and a linear masking of the
input and output. This mask can be a precomputed and stored in a table. Throughout
CAESAR OCB version 3 is used.

• SILC [41] is very similar to CLOC and also a kind of cipher block chaining mode of
operation for AES128, Present-80, and LED-80. In contrast to the original cipher block
chaining, there are some additional function blocks before passing data to the block
cipher. Throughout this thesis, the 96-bit nonce and AES128 version is used.

• AES-GCM [19] is the oldest and well-known dedicated AEAD scheme. It uses the
AES-128 BC for encryption, but heavily relies on the “H” point-multiplication for au-
thentication. Throughout this thesis AES-GCM is used as reference, as the goal of
CAESAR is to find algorithms that “offer advantages over AES-GCM”.

• Deoxys-I [43] is based on the Deoxys-BC. For 128-bit keys it uses Deoxys-BC-256 and
for 256-bit keys it uses Deoxys-BC-384. In both both cases a 64-bit nonce and 128-bit
input blocks are used. Deoxys-BC is based on the AES functions SubBytes, ShiftRows
and MixBytes. The AddRoundKey function is replaced with a AddRoundTweakey,
which is basically a Linear Feedback Shift Register (LFSR) based key scheduling.
The two Deoxys-BCs only differ in their Tweakey generation. The AEAD construction
itself is very similar to OCB. Throughout this thesis we use deoxysi128v141.

• Deoxys-II [43] is a nonce-misuse resistant mode that uses the same BC and same
general structure as Deoxys-I, but with a 120-bit nonce. To achieve its nonce-misuse
resistance, it uses a two-pass structure: In the first pass an authentication checksum
is generated. In the second pass this checksum is used as as a tweakey to encrypt/

2https://www.cs.ucdavis.edu/~rogaway/ocb/license.htm

21

https://www.cs.ucdavis.edu/~rogaway/ocb/license.htm

decrypt the message. It is the only remaining two-pass cipher in the competition.
Throughout this thesis we use deoxysii128v141.

• COLM [3] superseded AES-COPA and ELmD and combines the best of both. There
were two versions COLM127 and COLM0. However, only COLM0 is of practical rele-
vance and in the following referred to as COLM. Like Deoxys-II, it is nonce-misuse
resistant. It has a Encrypt-Linearmix-Encrypt structure: Data is first encrypted using
AES-128. For processing the AD the encrypted data is then xored. For processing
the plaintext, the output is fed to a linear mixing function ρ. The result is then again
encrypted with AES-128. ρ has a second input and a second output. This additional
output is fed to the second input for the processing of the next input block. Additionally,
like OCB, COLM applies a linear mask to its input and output.

Stream Cipher based

Acorn [84] is the only late round stream cipher. It uses a 128-bit key and a 128-bit nonce. Its
state consists of a 293-bit shift register, which is a mix of six Galois and Fibonacci LFSRs. A
feedback function uses 13 out of the 293 bits to generate an overall feedback bit. Eight out
of these 13 bits are used to generate an intermediate key bit, which is used to encrypt or
decrpyt one bit of the stream input. The overall feedback bit is xored with the input bit and
fed back to update the shift register. After the initialization the register is shifted for 1535
cycles with a constant input of one. After processing the AD, and the plaintext/ciphertext, it
is shifted for 512 cycles with a key dependent input.

Sponge-based

Figure 2.1 shows the general structure of a sponge construction. It consists of a state and
a permutation function f . The state is divided into a capacity c and a rate r. The round
function performs a permutation of the state. Typically this round function is applied several
times to form f . The (padded) input m is xored to the rate. The output of the sponge
construction is z. The individual ciphers differ in the used permutation, the width of r and c,
the padding function, the way how the construction is used to encrypt data (i.e. how m is
generated from the input (e.g. plaintext) and how the output (e.g. ciphertext) ist generated
from z) and some minor tweaks. These differences are as follows:

• ICEPOLE [58] uses a duplex construction, where m and z are not divided into two
consecutive phases, but are interleaved. The key and nonce are used to initialize the
state. There are three variants of Icepole: Icepole128, Icepole128a, and Icepole256a.
Icepole256a uses a 256-bit key, a 96-bit nonce, a 962-bit rate and a 318-bit capacity.
Icepole128a uses a 128-bit key, a 128-bit nonce, a 1026-bit rate and a 254-bit capacity.

22

m0

c

r

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

Figure 2.1: Sponge construction [42]

The odd choice of the rate is due to Icepole’s special padding, which always needs
two additional bits. Thus, subtracting the value two from the rate results in an even
power of two. This also influence the capacity, which is built to form a complete state
of 160 byte. Icepole128 uses the same parameter as Icepole128a but has additional
support for a secret message number. Throughout this thesis we use icepole128av2.

• ASCON [17] again uses the duplex construction. The state is initialized with the key,
the nonce, and a constant. Additionally, the key is used for domain separation. This
means, that the capacity is xored with the padded key and a constant between different
processing phases. There are two variants Ascon-128 (ascon-128-64) and Ascon-
128a (ascon-128-128). Both use a 128-bit key, a 128-bit nonce, and a 320-bit state.
Ascon-128a uses a 128-bit rate and a 192-bit capacity. Ascon-128 uses a 64-bit rate
and a 256-bit capacity. Throughout this thesis we use ascon128v12 as this is the
primary recommendation of the authors.

• NORX [4] is a highly parameterizable cipher. In this thesis we use norx6441v3, which
refers to a wordsize of 64 bits, 4 rounds and a parallelism of degree 1. In this con-
figuration it is a strait forward duplex construction with domain separation. It uses a
256-bit key, a 256-bit nonce, a rate of 768 bit and a capacity of 256 bits.

Dedicated structures

The following ciphers have a similar structure as a Type-3 Feistel scheme. They consist of a
multi-block state S = S0||S1||...||Sn. A message (block) M is added to one or all sub-states,
e.g. S0 := S0⊕M and the individual sub-states are updated by adding their neighbor states
e.g. Si := Si ⊕ f(Si−1).

23

Si,0

M

w

R

Si+1,0

Si,1

R

Si+1,1

Si,2

R

Si+1,2

Si,3

R

Si+1,3

Si,4

R

Si+1,4

w

Figure 2.2: Aegis-128 state update: The state update function R consists of the AES func-
tions SubBytes, ShiftRows and MixColums [88]. © 2019 IEEE [80]

Si0,1 Si1,1 Si2,1 Si3,1 Si4,1

M

Rotl xxx yy(b1)

Si1,2 Si2,2 Si3,2 Si4,2Si0,2

<<< w1

Figure 2.3: Second step of Morus’s update function: The circuit is sequentially repeated for
each substate [86]. © 2019 IEEE [80]

• AEGIS-128 (aegis128), AEGIS-128l (aegis128l), and AEGIS-256 (aegis256) [88] share
the same structure as depicted in Figure 2.2, but differ in their parameters: Aegis-128
consists of five 16-byte sub-states, uses a 128-bit key and permutes the state ten
times for initialization. Besides eight 16-byte sub-states, Aegis-128l has the same pa-
rameters as Aegis-128. Aegis-256 consists of six 16-byte sub-states, uses a 256-bit
key and permutes the state 16 times for initialization.

• The Morus family [86] has two parameters: the state size and the key size. In this
thesis morus1280128v2 is used. That means the state size is 1280 bits and the
keysize is 128 bits. Other parameters would be a 640 bit state and a 256 bit key.
This state is divided into five substates of 256 bits. Three at a time are used to update
one substate by anding two and xoring them and remaining one to the updated one.
Finally the results is rotated by a round constant. Figure 2.3 shows the update function
of the second substate.

• Tiaoxin [63] also called Tiaoxin-346 – pronounced Tiaoxin three four six – uses a 128-

24

Ti
3,0 Ti

3,1 Ti
3,2

A

M0

Ti+1
3,0 Ti+1

3,1 Ti+1
3,2

A

Ti
4,0 Ti

4,1 Ti
4,2 Ti

4,3

A

M1

Ti+1
4,0 Ti+1

4,1 Ti+1
4,2 Ti+1

4,3

A

Ti
6,0 Ti

6,1 Ti
6,2 Ti

6,3 Ti
6,4 Ti

6,5

A

M2

Ti+1
6,0 Ti+1

6,1 Ti+1
6,2 Ti+1

6,3 Ti+1
6,4 Ti+1

6,5

A

Figure 2.4: Tiaoxin-346 state update: The state update function A© consists of the AES
functions SubBytes, ShiftRows and MixColums [63].

bit key, a 128-bit nonce and can encrypt six bytes per round. It has three states T3, T4,
T6. They are composed of 3, 4, and 6 16-byte words, respectively. Figure 2.4 shows
the associated update function.

Dummy Cipher

The dummy cipher simply xors a 128-bit key, a 128-bit nonce, and a counter with a 128-
bit input block. It is used to provide a lower boundary for ciphers and to allow for testing
benchmarking frameworks. Other names are dummy1 [39] in the CAESAR competition3

and dummy_lwc [79] in the LWC competition.

2.3 New Generation of Reconfigurable System-on-Chips

As mentioned, today’s cyptographic algorithms must perform in a variety of different environ-
ments: in high-performance computing clusters, in embedded devices, in mixed hardware-
software codesigns, and in low-powered IoT-devices. With cheap hardware available, hard-
ware implementations gain more and more importance. Another factor for the increasing
interest is the spread of re-configurable Systems on Chips (SoCs). They become more and
more common, not only in ASICs, but also on FPGAs, as they combine the advantages of
a fully Programmable Logic (PL) with the flexibility of a Processing System (PS) running
arbitrary software. In Chapter 5 we will pointed out the advantages of using the PS of a SoC
to pre- and post-process data, e.g. test vectors for the actual hardware under test, which is
programmed into the PL.

3As part of the development package, there are also dummy2 to dummy5, but they are not used throughout
this thesis.

25

Therefore, we first introduce the used SoC-platform. It integrates a single or dual core ARM-
Cortex-A9 processor with an Artix-7 or Kintex-7 based .

PYNQ: Xilinx Zynq-7000 SoC

Throughout this thesis we use the Xilinx’ PYNQ, which is a portmanteau of Python and Zynq.
It combines the very successful Zynq-7000 SoC with an easy to use and program Python
interface. The hardware consists mainly of a XC7Z020 FPGA, which combines an Artix-7
based FPGA fabric with an integrated dual-core ARM Cortex-A9 [93]. Additionally, 512 MB of
DDR3 RAM, 16 MB of QUAD-SPI Flash, and a MicroSD-card slot are available. Furthermore,
the XC7Z020 also features an analog-to-digital converter (XADC), which can be used to
measure analog values like temperature or current draw. The board itself is striped to the
basics, which enables a very low (academia) price. The Arduino and Pmod input/output
interfaces can be used for additional measurement and control extensions. An Ethernet
connector enables a fast way of communication with the board, such that a realistic amount
of data can be processed without a bottleneck, like when using an UART. Since there are
only very few additional interfaces such as HDMI (in and out), USB, and analog audio (in and
out) on the board, it is very well suited for realistic power and performance measurements,
as on one side, there is no exotic hardware that influences the measurement, yet on the
other side, it has the characteristics of a complete embedded system.

The software side features a fully functional Linux, which runs a SAMBA server, a web-
server with a Jupyter notebook, and an SSH-client. Thus, it enables a very broad spectrum
of applications and use cases.

There are three particularly useful features of the PYNQ board:

On-the-fly FPGA programming

In order to use the Programmable Logic to its fullest potential at all times, the programmed
logic inside has to be changed to the current requirements of the software running on the
Processing System. This is a complex task and requires the user to either re-program the
FPGA using the appropriate vendor toolchain, or know how to use partial reconfiguration
for on-the-fly reconfiguration. PYNQ overcomes this problem by making it possible to load
overlays at runtime using a simple Python command. Overlays are precompiled bitstreams
of the desired FGPA configuration, along with a corresponding block design representation
in TCL, that can be stored on the Linux file system of the SoC.

26

Python drivers

The python driver uses the information of the block design from the TCL-file to abstract the
underlying complexity, for example, the bus communication, or the individual configuration
steps needed for a DMA transfer, and allows the user to easily address the PL from the PS.
This is especially useful for designers who want to test their design on real hardware, but
are not aware of each and every detail in a SoC.

Web-based User Interface

Additionally the Python framework provides a Jupyter notebook interface that allows proto-
typing Python code directly from the web browser.

27

3 Challenges in Evaluating Cryptographic
Competitions

In the following, we will discuss the challenges in evaluating cryptographic competitions.
Our findings are based on the CAESAR competition, but can be transferred to the NIST-
LWC competition, because –besides the official character– they are very similar in terms of
requirements and submissions. We hope, that this discussion helps to improve the currently
ongoing NIST-LWC-competition and helps to prevent some of the discovered flaws.

3.1 Review Process Flaws at the Example of CAESAR

The review process of the CAESAR competition was purely steered by the CAESAR com-
mittee. It consisted of 18 members; 17 of them with voting power. They made their selection
decisions on the basis of published analyses. Besides the problem that “an excellent algo-
rithm might fail to be selected simply because not enough analysis was available at the time
of the committee decision” [12], there was also a risk of flaws in the review process itself:

As the cryptographic community is relatively small, a pure independent evaluation was rarely
possible. Often only mutual evaluation was possible. This problem was further increased by
the huge amount of heterogeneous submissions. As a consequence, there was an overlap
between the decision-makers, the participants, and the evaluators. This resulted in four of
seven finalists having at least one author being part of the CAESAR committee.

The CAESAR competition required the authors to submit both hardware and software refer-
ence implementations. Due to the nature of the different approaches, common verification
platforms were hard to put into practice. First, there was only a common benchmarking
and verification suit for software implementations. Second, even with this tool, there was no
process to verify if the submitted reference implementation matches the specified require-
ments.

For hardware implementations there was no official verification suite, and only very late in
the competition a mandatory hardware interface was put into practice. Thus, there were un-
detected flaws in the official hardware reference implementations of late round candidates.

29

a0 a1 a2 a3 a4 a5 ... a31 a32 a33 a34 ... a58 a59 a60 a61 a62 a63

+ + +

Figure 3.1: Intended LFSR

3.1.1 Algorithmic or Software Flaws

One example for a very long undiscovered mismatch between specification and the algo-
rithm itself is ICEPOLE. It uses round constants in its κ function which are defined

“as the output of a simple 64-bit maximum-cycle Linear FeedbackShift Register
(LFSR). The polynomial representation of LFSR is x64 + x63 + x61 + x60 + 1.
The LFSR state is initialized with the 64-bit vector ‘0123456789ABCDEF’ (hex-
adecimal format) and then each cycle generates a subsequent constant.” [58]

Figure 3.1 shows the intended hardware.

However, as we have shown in [76], this is not the case. The algorithm itself does not
calculate them on the fly, but uses predefined constants, which were generated with the
following C-code1

1 # include <stdint.h>
2 int main(void)
3 {
4 uint64_t lfsr = 0x0123456789ABCDEFu;
5 unsigned bit;
6 int i = 0;
7 int number_of_rounds = 12;
8

9 printf("Initial state: %016 llX\n",lfsr);
10

11 for (i=0; i<number_of_rounds; i=i+1){
12

13 // taps: 64 63 61 60
14 // feedback polynomial: x^64 + x^63 + x^61 + x^60 + 1
15 bit = ((lfsr >> 0) ^ (lfsr >> 1) ^ (lfsr >> 3) ^ (lfsr >> 4)) & 1;
16 lfsr = (lfsr >> 1) | (bit << 63);
17

18 printf("constant [%2d] := %016 llX\n",i,lfsr);
19 }

Unfortunately, this does not generate an LFSR but a non LFSR, due to an overflow in line 16,
caused by the wrong datatype declaration in line 5. The variable bit is defined as unsigned.

1confirmed by the author Paweł Morawiecki <pawel.morawiecki@gmail.com> via email on 19.10.15, 22:24

30

a0 a1 a2 a3 a4 a5 ... a31 ∨ a32 ... a58 a59 a60 a61 a62 a63

+ + +

Figure 3.2: Implemented non LFSR

On most architectures this is equal to uint32_t. Thus, it can only contain 32 bits of data. In
the right part of line 16 the value of bit is shifted to the left by 63. This results in an overflow.
The real pity is that default compiler warnings even tell this:

l f s r . c : 1 6 : 3 6 : warning : l e f t s h i f t count >= width o f type [− Wshi f t −count −over f low]
l f s r = (l f s r >> 1) | (b i t << 63) ;

^~

Therefore, bit is not shifted by 63, but actually by 63 mod 32 = 31. Thus in line 16, the
feedback bit is not added to the most left side of lfsr but is ored in the middle. Thus resulting
in a non linear feedback shift register. Figure 3.2 shows the corresponding hardware.

Unfortunately, this was first discovered during the hardware benchmarking in the second
round of the competition.

3.1.2 Hardware Flaws

One example for a very long undiscovered erroneous hardware reference implementation,
is the CAESAR finalists Morus: The official reference hardware implementation is dated
July 20162. This implementation is also used to back up the claimed implementation and
performance results.

However, even a brief look at the VHDL code reveals the following flaws:

19 ent i ty CipherCore is

37 port (
38 −− ! Global
39 c l k : in s t d _ l o g i c ;

43 bdi : in s td _ l og i c_ v e c t o r (G_DBLK_SIZE −1 downto 0) ;

63 msg_auth_done : out s t d _ l o g i c ;
64 msg_auth_val id : out s t d _ l o g i c
65) ;
66 end ent i ty CipherCore ;

2https://www.ntu.edu.sg/home/wuhj/research/caesar/caesar.html

31

68 archi tecture s t r u c t u r e of CipherCore is

73 signal tag_rev : s t d _ l o g i c _ v ec t o r (G_DBLK_SIZE −1 downto 0) ;

125 signal msg_auth_done_s : s t d _ l o g i c ;

144 begin

148 process (c l k)
149 begin
150 i f r i s ing_edge (c l k) then

204 i f (msg_auth_done_s = ’ 1 ’) then
205 i f (tag_rev (255 downto 128) = bd i (255 downto 128)) then
206 msg_auth_val id <= ’ 1 ’ ;
207 else
208 msg_auth_val id <= ’ 0 ’ ;
209 end i f ;
210 msg_auth_done <= ’ 1 ’ ;
211

212 end i f ;
213

214 end i f ;
215 end process ;

441 end s t r u c t u r e ;

If the condition in line 204 is true, the tag is evaluated in line 205. If the tag is correct, the
corresponding output is set to one (line 206), otherwise it is set to zero (line 208). In any
case, the corresponding done-flag is set to one (line 210). These are the only lines where
the outputs of lines 63 and 64 are set. There is no line in the entire architecture, where
msg_auth_done is set to zero. Thus, if the condition of line 204 is false afterwards, e.g.
during the processing of the next message, the output is not reset.

This is a very basic error in the output handling, nevertheless the candidate made it to the
final round. Thus, hardware testing was not conducted carefully during the competition.

3.2 The Role of the Interface

When benchmarking (cryptographic) hardware implementations, the assumptions made on
the interface between the primitive and the surrounding benchmarking framework is cru-
cial. In the following we will demonstrate this at the example of ICEPOLE [58] a second
round CAESAR candidate. For doing so, we first explain an optimized implementation of
ICEPOLE. Next, we analyze the presented results and explain the pitfalls when using differ-
ent interfaces.

32

P12

key || nonce

c
ra

te

P6

pad

cSMN σSMN

P6

σ0
AD

pad

P6

σm
AD

pad

P6

pad

c0 σ0
P

pad

cn σn
P

P12

T

Initialization Processing phase Tag generation

Figure 3.3: ICEPOLE-128 © 2016 IEEE [76]

Parts of the following analysis have already been pre-published in “Michael Tempelmeier,
Fabrizio De Santis, Jens-Peter Kaps, and Georg Sigl. An area-optimized serial implemen-
tation of ICEPOLE authenticated encryption schemes. In 2016 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), pages 49–54, May 2016. doi:
10.1109/HST.2016.7495555 ”.

3.2.1 The Example of Icepole

ICEPOLE is a high-speed, hardware-oriented family of single-pass authenticated encryption
schemes based on the duplex construction as introduced in [10]. In this example, only
Icepole-128 is considered, but the results can be translated to any sponge-based block
cipher with an arbitrary state size.

Icepole-128 works on a 1280-bit state S arranged into a three dimensional 4× 5× 64-bit
cube S[x][y][z]. According to [58], bits S[x][y], which share the same axis z, are called slices,
bits S[y], which share the same axes x and z, are called rows, while bits S[z], which share
the same axes x and y, are called words. Therefore, the state can be seen alternatively as
a collection of either 64× 20-bit slices, or 256× 5-bit rows or 20× 64-bit words.

ICEPOLE-128 encrypts and authenticates variable-length messages in three phases: the
initialization phase, the processing phase, and the tag generation phase, as illustrated in
Figure 3.3. In each phase the state is transformed by a 1280-bit permutation P that is based
on the successive execution of the round function R. In the initialization phase, the permu-
tation P is denoted by P12 and transforms the initial state by applying a round function R
12 times. The initial state is obtained by filling the state with a “1280-bit pseudo-random
constant3” and then adding the secret key and the nonces to the first four words of the
state S[i][0], i ∈ {0, 1, 2, 3}. All the successive invocations of P in the processing phase
are denoted by P6. The permutation P6 transforms the current state by applying the round
function R only 6 times.

3truncated result of applying Keccak-f[1600] to an all zero input [58]

33

The round function R = κ ◦ψ ◦ π ◦ ρ ◦ µ consists of a composition of 4 linear steps denoted
by µ, ρ, π and κ and a single non-linear step denoted by ψ. The µ step transforms each
slice of the state using a Maximum Distance Separable (MDS) matrix. More formally, each
slice of the state is viewed as a column vector of 5-bit words (Zi)0≤i≤3 and is multiplied by
a constant matrix defined as follows:

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

Z0

Z1

Z2

Z3

 =

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

where all operations are performed in the finite field GF(25)/(x5+x2+1). The ρ step bitwise
rotates all 20 64-bit words of the state according to the mapping

S[z] 7→ S[z + r(x, y) mod 64], (3.1)

where the offsets r(x, y) are defined as follows:

r(0, 0) = 0, r(0, 1) = 36, r(0, 2) = 3, r(0, 3) = 41
r(0, 4) = 18, r(1, 0) = 1, r(1, 1) = 44, r(1, 2) = 10
r(1, 3) = 45, r(1, 4) = 2, r(2, 0) = 62, r(2, 1) = 6
r(2, 2) = 43, r(2, 3) = 15, r(2, 4) = 61, r(3, 0) = 28
r(3, 1) = 55, r(3, 2) = 25, r(3, 3) = 21, r(3, 4) = 56

The π step permutes the words within the state by replacing the word at position (x, y) with
the word at the position (x′, y′) according to the following rule:

(x′, y′) = (x+ y mod 4, x′ + y + 1 mod 5) (3.2)

The ψ step performs a non-linear transformation of each 5-bit row of the state (Mk)0≤k≤4

using the following boolean equations:

Zk = Mk ⊕ (¬Mk+1Mk+2)⊕ (M0M1M2M3M4)

⊕ (¬M0¬M1¬M2¬M3¬M4), 0 ≤ k ≤ 4
(3.3)

Finally, the κ step adds a round constant Cr to the word at position (0, 0) in each round
0 ≤ r < 12.

Processing of the Input

In the data processing phase, the permutation P6 is iterated to wrap the 128-bit secret mes-
sage number σSMN , the associated data blocks σADi and the plaintext blocks σPi into the
state and to generate the ciphertext blocks ci. Figure 3.3 shows the interleaved absorbing
and squeezing of data. Each block σADi and σPi has a length between 0 and 1024 bits and

34

is padded as follows: A frame bit is appended to the block, followed by "1" and a number of
"0"s to reach the required length of 1026 bits. The frame bit is used for domain separation as
follows: The frame bit is set to "1" for the last associated data block σAD and all the plaintext
blocks σPi but the last. A detailed view on the padding is not needed for understanding this
thesis and therefore out of the scope. Finally, in the tag generation phase, the permutation
P12 is iterated once more to generate a 128-bit tag T = S[0][0]] ‖ S[1][0] given by the
concatenation of the two 64-bit words S[0][0] and S[1][0].

Optimized Hardware Implementations

For optimized hardware implementations, we first analyze the optimization potential of the
individual subfunctions or building blocks. Then, based on the findings, we combine them
to form an implementation that has a high throughput, but still obtains a reasonable area
footprint. This also means, that it can make sense to use a suboptimal implementation
for a subfunction, because it enables a global optimization. Therefore, in the following, we
discuss how the different parts of the round function can be implemented:

The π step solely changes the position of the individual words within the state. Therefore,
the π step can be implemented through simple rewiring, which comes at no additional costs
in hardware, but also offers no further potential for optimization in FPGA implementations.

The ρ step performs a circular shift of each word of the state. This can be implemented
either as rewiring in parallel architectures or as shift registers in serial architectures. We use
the latter.

The µ step consists of 64 × 20 equations that operate on one slice of the state at a time.
One way to implement the µ step is to instantiate these 20 equations and iterate over them
for 64 clock cycles, thus trading area for time.

The ψ step applies the ICEPOLE S-box 256 times on all 5-bit rows of the state. The
ICEPOLE S-box can be implemented either in combinational logic by instantiating the five
boolean equations of Equation (3.3) or as a Look Up Tables (LUTs).

Finally, the κ step adds the round constants Cr. It can be implemented either as LUTs or as
a particular shift register4.

4As shown in Section 3.1.1 on page 30, κ cannot be realized by a LFSR as claimed in the original specifica-
tion [58] because it contains a nonlinearity.

35

An optimized 20-bit Slice-Serial Implementation

All but the κ and ρ steps need to access at most one bit of each word within the state at the
same time. Therefore, a very natural choice for a serialized implementation is a 20-bit sliced-
serial architecture based on the 20-bit slice representation of the state S. In the following,
every slice S[x][y] is mapped to the linear vector v by the formula v[4x + y] = S[x][y].
Figure 3.4 illustrates the architecture diagram of our 20-bit serial architecture.

20 x 64 Bit-
Shift-Register with
Initialization on Rst

π

κ

S

S
S

S

ρ

μ
Key,Nonce

20

5

5

5

5
ψ

20

1

1

19

20

20

20

20

20

20

20

20

20

I/O interface
viR voRclk enable

20

Figure 3.4: ICEPOLE: 20-bit architecture © 2016 IEEE [76]

The µ step is a straight forward serial implementation as explained in subsubsection 3.2.1.

With a 20-bit slice data path, the π step becomes trivial. It is a fixed rewiring of the 20 bits as
described in Equation (3.2). After 64 cycles all words of the state are correctly reordered.

The implementation of the ρ step is a little more complicated, as it does not change the
position of the bits within a slice, but within a word. In our slice-wise architecture the imple-
mentation of the ρ step is performed by the control logic:

The 1280-bit state is implemented using D-Flip-Flops (FFs) with input enable to control the

36

shifting operations. Hence, 64 FFs are cascaded to form 20 64-bit simple shift registers5.
The 4-to-1 20-bit multiplexer placed before the state register selects either a new input mes-
sage from outside or one of the three parts (ρ, µ, or κ ◦ ψ ◦ π) of the round function R.

Each shift register stores one word of the state and has its own enable signal. The enabled
FFs of the state are shifted by one position in each clock cycle. Thus, the ρ step takes 62
clock cycles to complete, as this is the largest offset given in Equation (3.1).

The ψ step applies the ICEPOLE S-box to each 5-bit row of the slice. Therefore, 4 instances
of the ICEPOLE S-box are needed to process all 20 bits of one slice. Each S-Box takes 5
consecutive bits of the vector v as input. The output of the S-box is concatenated to form a
20-bit vector again. In a 20-bit slice architecture, the constants of κmust be serialized as the
state words can only be addressed bit-wise. Alternatively, the constant can be generated
on-the-fly with a non linear shift register as discussed in [76]. The output of κ is XORed
with v[0] = S[0][0] one bit per clock cycle.

The π, ψ and κ steps can be performed in the same clock cycle, as they all need 64 clock
cycles and are consecutive steps in the round function R. The µ step also needs 64 clock
cycles, but is separated from the π, ψ and κ steps by the ρ step, which only needs 62 cycles
and requires access to the input and the output of the state register at the same time. The
2-to-1 multiplexer before the µ step provides a shortcut between two consecutive rounds of
R. Hence, the steps µn ◦ κn−1 ◦ ψn−1 ◦ πn−1 can be performed at the same time after the
first round, thus resulting in a speedup of 5 · 64 cycles in P6 and 11 · 64 cycles in P12.

The first round takes 64 + 62 + 64 = 190 clock cycles, while all the remaining rounds take
62 + 64 = 126 clock cycles. In total, P6 takes 190 + 5 · 126 = 820 clock cycles to complete,
while P12 takes 1576 clock cycles.

Sugarcoated Results

We synthesized our design for a low-end Xilinx Spartan-E3 FPGA (xc3s1200e-5fg400), a
high-end Xilinx Virtex 6 (xc6vcx75t-3ff784), and low-power Xilinx Artix 7 (xc7a100t-3fgg676).
For fair comparison with other FPGA and ASIC implementations no hard-coded fabric, e.g.
block RAMs, were extracted during the synthesis. As the original ICEPOLE implementation
was optimized for speed [58], we also set the optimization goal to speed for all our targets.
All results are after place-and-route with Xilinx ISE 14.7 and optimization using ATHENa

5In contrast to the original work in [76] and as an improvement, these shift registers could also be implemented
using LUTRAM and LUTROM. On a Xilinx Virtex-6 or Artix-7 FPGA a 32-bit shift register can be implemented
into one LUT using the SRL primitive [90, 92]. However, these shift registers cannot be initialized. Therefore,
an additional LUTROM is needed to store the initial value of the state. On a Xilinx Virtex-6 or Artix-7 FPGA
a 64-bit ROM can be implemented into one LUT [90, 92]. Thus, 2 × 20 + 20 = 60 LUTs and 64 additional
clock cycle are needed to replace the 1280 D-FFs. On a Spartan-3E 80 LUTs are needed [89].

37

Table 3.1: Comparison with other implementations on a Xilinx Virtex-6

Design Area [Slices] Freq. [MHZ] TP [Gbps] TP/Area [Mbps/Slice]

ICEPOLE-128 (20-bit) 274 374.95 0.434 1.584
AES-GCM [94] 350 142.76 0.127 0.363
AES-GCM [31] 217 475.00 0.278 1.281

(Automated Tool for Hardware EvaluatioN) [27]. ATHENa uses a heuristic process to test
for different synthesis options in order to archive the highest throughput, while maintaining
a reasonable size. This results in 274 slices on the Virtex 6.

We computed the throughput according to Equation (3.4), where B = 1024 is the bit-size of
the input blocks6 and C is the number of cycles which is required to process one block:

T =
B · fclk
C

(3.4)

Our design has a maximal obtainable frequency of 374.95 MHz. For large data the initial-
ization and tag generation phase (P12) can be neglected. Our 20-bit serial implementation
needs 190 + 5 · 126 = 820 cycles to process P6. Additional 64 cycles are needed to load
and store the state, at which loading blocki+1 and storing blocki take place at the same time.
Four our 20 bit implementation, this results in:

T20 =
1024 Bits · 374.95 MHz

820 + 64
= 434 Mbit/s (3.5)

Table 3.1 shows our results compared to two state-of-the-art impelmentations of AES-GCM.
As it can be seen, our implementation outperforms the others in terms of throughput (TP)
and competes in terms of area.

3.2.2 Is it fair?

The results presented in Section 3.2.1 lack comparability although they are based on as-
sumptions that are perfectly fine with the guidelines of CAESAR. However, they cannot be
generalized:

6The rate r equals B + 2, as each block is 10+ padded.

38

19
1

1
1 1

1

1

19-1
20

0

voR

20
19 18-0

viR

PAD
1 dout

din

0 1 2

0

1

Figure 3.5: ICEPOLE: 1-bit I/O Interface © 2016 IEEE [76]

First, it is assumed that data arrive in chunks of 1024 bits, sliced and reordered into 20 bits.
This could be argued by using a standard 32-bit interface, where only 20 bits are used.
However, each of the 20 bits belongs not only to a different byte, but also a different 64-bit
word. This might be justifiable for very special hardware software codesigns, but not for
general applications.

In general applications, data arrives ordered in words with aligned bytes7. Thus, the data
must be reordered. This can either be achieved implicitly by a 2D state access or explicitly
by a dedicated circuit. The first option contradicts the design as it requires r = 1026 2-to-1
multiplexers before each flip-flop and thus, eliminates the use of the shift registers. In this
case, the complete design should be revised.

Figure 3.5 shows the second option. This circuit assumes a one-bit input stream, like used
on many serial communication interfaces. The idea of this interface is to concatenate the 20
64-bit shift registers to one 1280-bit shift register.

This is depicted in the lower part of Figure 3.5: The vector voR[1− 19] of the output of the
round function R is assigned to the vector viR[0− 18] of the input of the round function R,
forming a 20× 64 = 1280 bit shift register. Thus, the loading of the state takes 1280 cycles.
1026 cycles for loading the new input including padding (input mux = 0) and 254 cycles for
shifting the capacity and aligning the input (input mux = 2).

Subsequent blocks are xored to the state (input mux = 1). As the state acts as a keystream
that is xored to the input for encryption and decryption, this xored result is also output for
decryption/encryption (output mux = 0). For the tag generation 128 bits of the state are
output (output mux = 1).

Taking this interface into account, it must be distinguished between the raw throughput T20

of the round function, shown in Equation (3.5), and the normalized throughput Tn that takes

7either in big or little endianness

39

also the reordering into account:

Tn =
1024 Bits · 374.95 MHz

820 + 1280
= 182 Mbit/s (3.6)

As the reordering takes longer than the actual processing of P6, the throughput decreases
dramatically8.

8The time for loading can be halved as the 64bit shift registers can be split into two 32bit shift registers at
no costs. It is then possible to form two 640 shift registers at the cost of 40 2-to-1 multiplexers. Assuming
the input is derived from a serializer and the input width can be doubled a throughput of 263Mbit/s can be
achieved. However, this is still far less than T20.

40

4 Hardware APIs

In this Chapter, we introduce and explain two hardware APIs. We compare them in terms
of functionality and area; and cave out the pitfalls. Finally, we demonstrate their applicability
on real world examples.

4.1 The CAESAR-API

To overcome the mentioned problems of sugarcoated results, which are technically fair but
lack inter-cipher comparability, the CAESAR committee decided, as proposed and recom-
mended by us in [76], to promote the GMU-Hardware-API [36] to be the official CAESAR
Hardware-API [38].

The top level interface consists of two input ports, one for public data input (PDI) and one
for secret data input (SDI); and one output port for data output (DO): The sole purpose of
the SDI port is to transfer the (secret) key. All other data (instructions, plaintext, ciphertext,
AD, etc.) are transfered over PDI and DO [39]. Each port consists of a data bus and two
handshake signals to control the dataflow, as shown in Figure 4.1. This toplevel is to be
defined as “AEAD”. Data is transmitted when both handshaking signals (valid and ready)
are high.

AEAD
pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

do

do_valid

do_ready

clk rst
w

sw

w

Figure 4.1: AEAD-Toplevel: PDI signals are used for sending public data input to the AEAD
core, SDI signals are used to send the key to the AEAD core, and DO signals
are used to receive data output from the AEAD core. © 2018 IEEE [77]

41

instruction = ACTKEY

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

(b)

seg_1_header

seg_1 = Tag

seg_0_header

seg_0 = Ciphertext

Status

seg_2 = Plaintext

Figure 4.2: Sequential arrangement of PDI (a) and DO (b) for an authenticated encryption

This equates to the AXI4-Stream (AXIS) [91] protocol. With small adoptions, it can also be
integrated in FIFO-based communication channels. The bus widths w and sw are defined
as w, sw ∈ {8, 16, 32} for lightweight implementations and w ∈ [32, 256] ∧ sw ∈ [32, 64] for
highspeed implementations [38].

The formats of SDI and PDI have a similar structure: they are composed of an instruction
and one or several data segments. The DO port supplies the corresponding data segments
followed by a status command. Figure 4.2 shows the sequential arrangement of the PDI and
DO port for an authenticated encryption.

Instruction and Status Format: All instructions and statuses are defined to be 16 bits
wide and include four bits of opcode or status and twelve additional reserved bits. Lightweight
implementations, using a port width smaller than 16 bit, require the division of the instruc-
tion code into several words. Quite contrary to this definition, all hardware implementations
based on the official Development Package [39] use the format shown in Figure 4.3. Thus,
for w < 16, that is w = 8, the instruction code is not divided into several words, but only one
word is sent! Figure 4.3 also lists all possible instructions and statuses.

The only possible opcode for SDI is loading a key (LDKEY), whereas PDI instructions begin
with activating the key (ACTKEY) followed by information about the encryption mode (ENC
for encryption or DEC for decryption). Each encryption or decryption is concluded by a
status word sent to the DO port. For decryption, this indicates the success or failure of the
tag verification. For encryption, this should always be success. Failures might occur in the
event of a detected fault (attack).

42

Status

Opcode
or

Status:

1110 − Success

1111 − Failure

4 w−4

Reserved

Others − Reserved

Opcode:

0010 − Authenticated Encryption (ENC)

0011 − Authenticated Decryption (DEC)

0100 − Load Key (LDKEY)

0111 − Activate Key (ACTKEY)

MSB LSB

Figure 4.3: Instruction/Status format as it is used in the official Development Package [39].
Note: In the specification the "Reserved" field is fixed to 12 bits. For w < 16,
multiple words were demanded [38], but never used in any implementation. For
w > 16, the lower bits are undefined, but expected to be zero in [39].

88

1 1 1 1

16

ReservedInfo

Segment
EOT

Partial

Last

EOI

4
MSB LSB

Segment Length

Type

Figure 4.4: Segment header format as depicted in [39].
Note: For w > 32 – although not explicitly defined – only the highest 32 bits are
used and the lower bits are treated as undefined, but expected to be zero in the
official testbench [39].

43

Table 4.1: Segment type encoding
Encoding Type Encoding Type

0000 Reserved 1000 Tag
0001 AD 1001 Reserved1

0010 Npub||AD3 1010 Length2

0011 AD||Npub3 1011 Reserved
0100 Plaintext 1100 Key
0101 Ciphertext 1101 Npub
0110 Ciphertext||Tag3 1110 Nsec2

0111 Reserved1 1111 Enc Nsec2

1 later used in NIST-LWC competition
2 not used by any last round CAESAR candidates
3 not used in any CAESAR implementation

Data Segments: There are 16 different segment types. Table 4.1 lists the definitions of
these types. However, only six of them are actually used. Each data segment starts with a
32 bit header, as shown in Figure 4.4, followed by up to 216−1 bytes of data. For more data,
multiple data segments must be sent. Four flags indicate if the current segment is:

• "partial", i.e. the current segment contains an incomplete block,

• the "end of the input" (EOI), i.e. all following segments, except the one containing the
tag, will be of size zero,

• the "end of the type" (EOT), i.e. no more segments of the current type are following,

• the "last" segment of the current instruction.

The partial flag is optional and was only required by the second round CAESAR candidate
AES-COPA. The remaining three flags were intended to provide greater flexibility: The EOI
flag provides the look-ahead information that the only following input, a cipher must pro-
cess, is the tag. Thus, all other received (empty) segments can be skipped. The "last" flag
indicates that no optional (empty) segments are following. However, no hardware implemen-
tation made use of segment types that can be omitted.

Thus, this flexibility seems to be a little bit overambitious, as the correct usage of these flags
is not obvious, and the only practical usage is a reduced latency for highspeed ciphers in
the case they process an empty input. However, this is a very rare use case at the cost of
implementation complexity.

44

4.2 The LWC-API

As the NIST LWC competition is based on CAESAR, having a similar Application Program-
ming Interface (API) is reasonable. Therefore, we proposed a similar API [45, 46]. Our
LWC-API [47] is based on and fully backwards compatible to the CAESAR-API. The most
notable extension is the support for hash algorithms.

It is tailored to lightweight cryptography and suggested to be used for benchmarking [46]
hardware implementations of algorithms competing in the NIST-LWC competition [60]. Thus,
it only supports widths w, sw ∈ {8, 16, 32}. Next, it clarifies the definitions of status/instruc-
tion segments, as depicted in Figure 4.3, for 8 and 16 bit implementation and of header
segments, as depicted in Figure 4.4. Furthermore, it adds two optional features: an addi-
tional output do_last to be compliant with Xilinx’s implementation of the AXIS protocol and
a random data input (RDI) for random data, which can be used for remasking in side-channel
resistant hardware implementations. The RDI port provides rw bits of random data. There
is no specific protocol needed and the designer can chose rw arbitrarily. Figure 4.7 shows
the toplevel of this API. It is renamed from “AEAD” to “LWC”, as hashing is supported.

LWC
do

do_valid

do_ready

clk rst

do_last

pdi

pdi_valid

pdi_ready

w

sdi

sdi_valid

sdi_ready

sw

w

rdi

rdi_valid

rdi_ready

rw

Figure 4.5: LWC-API

Protocol Extensions: The reserved encodings in the CAESAR-API are used to add sup-
port for hashing. Figure 4.6 depicts the new sequential arrangement for hashing. The
new opcode HASH ("1000") is added to the opcodes defined in Figure 4.3. The reserved
segment encodings, shown in Table 4.1, are used for hash messages ("0111") and the cor-
responding hash value ("1001").

45

(a)

seg_0_header

Status

(b)

seg_0_header

seg_0 = Hash Message

instruction = Hash

seg_0 = Hash Value

Figure 4.6: Sequential arrangement of PDI (a) and DO (b) for hashing

4.3 Comparison and Evaluation of the APIs

In 2016, the first CAESAR implementations that made use of the new CAESAR Hardware
API, were published. They are based on the “Development Package for Hardware Imple-
mentations Compliant with the CAESAR Hardware API” [26]. Although written by the same
authors as the specification of the API [38], it was stressed in [37] that

“the implementations of authenticated ciphers compliant with the CAESAR Hard-
ware API can be also developed without using any resources described in this
document, by just following directly the specification of the CAESAR Hardware
API.”

Nevertheless, this development package became the de facto standard of implementing the
hardware API, as hardly any CAESAR implementation used its own. Thus, the term API is
widely used for both, the specification and the actual implementation of the protocol.

4.3.1 API Compliant Development Packages

In order to speed up the design process of hardware implementations, the CAESAR and
LWC API both feature a corresponding development package and an Implementer’s guide [39,
79]. As the LWC development package emerged from the CAESAR package, both designs
consist of the same modules, i.e. the PreProcessor, a HeaderFifo, the PostProcessor and
the CipherCore/CryptoCore1. All modules use the AXIS _valid-_ready handshaking proto-
col, which will be discussed in more detail in Figure 6.2 on page 76.

Figure 4.7 provides an overview of the structure and the modules in the CAESAR and LWC
development packages. Each of the Pre- and PostProcessor consists of a Mealy-FSM that
takes care of the protocol parsing and allows for forwarding the data directly to the Crypto-
Core and the DO port. Thus, control signals are registered, but data signals are not. To
avoid a combinatorial path from the input (e.g. PDI) to the output (DO) data are registered
in the HeaderFifo and the CryptoCore.

1The CipherCore was renamed to CrypoCore in LWC to also incorporate the hash functionality.

46

CryptoCore

Po
st

-P
ro

ce
ss

or

Pr
e-

Pr
oc

es
so

r

HeaderFifo

pdi

pdi_valid

pdi_ready

w

sdi_ready

sdi

sdi_valid

sw

do_valid

do_ready

do
w

do_last

cmd

cmd_valid

cmd_ready

w

key

key_update

key_ready

ccsw

key_valid

bdi_ready

decrypt

hash

bdi

bdi_*

ccw

bdi_valid

*

auth

auth_valid

auth_ready

ccw

bdo_ready

bdo

bdo_**

bdo_valid

**

cmd

cmd_valid

cmd_ready

w
rdi_ready

rdi

rdi_valid

rw

* bdi control signals: _type[4], _valid bytes[ccw/8], _pad_loc[ccw/8], _size[(ccw/8)+1], _eot, _eoi, _partial
** bdo control signals: _type[4], _valid_bytes[ccw/8], _end_of_block

Figure 4.7: Modules and overview of the CAESAR/LWC Development Package

PreProcessor The main purpose of the PreProcessor is parsing segment headers to con-
trol the CryptoCore. Therefore, it receives data via the PDI and SDI ports. It then removes
the header information and stimulates the CryptoCore: The public input, like plaintext or
ciphertext, AD, or nonce is provided via the block data input (BDI) port; new keys via the key
port. In some implementations the PreProcessor also takes care of the padding and width
conversion between PDI and BDI and between SDI and key.

HeaderFifo The FIFO briefly stores and transmits instructions and segment headers to
the PostProcessor. Thus, it also provides a clock boundary. Furthermore, in some imple-
mentations, the tag is forwarded to the PostProcessor.

PostProcessor The main purpose of the PostProcessor is generating the package format
for the output. Therefore, it receives header information from the PreProcessor and data
from the CipherCore. It then combines them, sends them to the DO port and adds the status.
Furthermore, in some implementations the PostProcessor takes care of the tag comparison,
the clearing of unused portion of the ciphertext and provides a width conversion between
block data output (BDO) and DO.

Definition 2 In the following, we will distinguish between the external and internal interface.
The external interface is composed of the PDI, SDI, and DO port. The internal interface

47

Table 4.2: Feature comparison of the different development packages

CAESAR v1 CAESAR v2 LWC
HS HS LW default LW based

w ≥ 32 ≥ 32 32, 16, 8 32 16, 8
sw ≥ 32 ≥ 32 w 32 w

ccw w w w 32, 16, 8 w
ccsw sw sw w 32, 16, 8 w

multisegments 3 3 7 3

stall save 7 3 3

do_last 7 7 3

refers to the connections between the CryptoCore and the PreProcessor (BDI, key, and
control signals) and between the CryptoCore and the PostProcessor (BDO, msg_auth, and
control signals).

Although the CAESAR and LWC packages have the same structure, they differ not only in
the implemented features, but also in the way they are implemented. In the following, we
will distinguish between three different packages. Table 4.2 lists the features of the different
implementations and the parameter ranges of Figure 4.7.

CAESAR v1 (highspeed)

The very first “Development Package” [37] is based on the “Supporting Files for High-Speed
Implementations v1.2” by the Cryptographic Engineering Research Group at George Mason
University. It targets high-speed implementations and thus, it only supports bus widths≥ 32.
It provides a synchronous and an asynchronous mode. Furthermore, the Pre- and PostPro-
cessors are not limited to protocol parsing, but can optionally also take over tasks, typically
performed by the cipher itself:

• The PreProcessor can upscale multiple input words to form a complete message block
as required by the cipher. It can also be configured to take care of padding incomplete
input blocks.

• The tag comparison can be offloaded to the PostProcessor. Thus, for decryption, the
CipherCore only needs to recalculate the tag. The received tag is forwarded from the
PreProcessor to the PostProcessor, where it is compared with the one, computed by
the CipherCore.

48

We showed that this version does not comply with the specifications of the CAESAR API.
Besides several small problems, the design does not properly handle backpressure from
the DO port. If there is a backpressure, e.i. do_ready is false during tag comparison, this
backpreassure is not propagated to the CipherCore, as the msg_ready is omitted. Thus,
information is lost and the complete design stalls [39].

As a consequence, this version was superseded by the CAESAR Hardware API version 2.

CAESAR v2 (lightweight)

This version [39] fixes the bugs reported in version 1. In order to fix the backpressure issue,
the internal interface between the PostProcessor and the CipherCore needed to be replaced.
Thus, this version is not fully backwards compatible to its predecessor.

This version also adds support for lightweight ciphers. However, it only allows for widths
sw = w ∈ {8, 16, 32}. Additionally, the widths of the internal and external interfaces must
not differ. Again, this version is not compliant with the specifications of the CAESAR Hard-
ware API: While it properly realigns the 32-bit segment header from two 16-bit or four 8-bit
words, it fails to do so for the opcode and status format. As in any case, the opcode and
status information fits in one word, only one word is sent, regardless of the word size. This
violates the API specification, but still allows for functional correctness of the cipher.

Additionally, the lightweight version does not support multiple segments of the same type.
Thus, it only supports messages smaller than 216 − 1 bytes. This might be enough for most
lightweight applications, but must be considered when comparing implementations that are
fully compliant with the specification.

LWC

With the LWC package [79], we added support for hashing and extended the support for
lightweight cryptography, as required by the NIST LWC project. There are two versions:

Default: Although, besides the support for hashing, the LWC package implements the
same functionally as the lightweight CAESAR package, it is a complete rework, which is
more resource efficient and better to maintain. We clearly distinguish between the Crypto-
Core and the surrounding protocol parsing modules. Thus, the support for external tag
comparison and padding was removed from the PostProcessor and the PreProcessor. All
crpyto implementations must take care of these themselves. Furthermore, the FIFO was
replaced by a more efficient version.

49

In addition to that, we provide a conversion feature2. Thus, a designer can configure different
widths for the internal and external interface. As a consequence, the same test framework
can be used for CryptoCore implementations with different data path widths. Width conver-
sion also allows integrating 8- or 16-bit ciphers into –in embedded systems widely used–
32-bit designs.

LW based: As the community demanded also support for 8- and 16-bit external inter-
faces, there is also a version that supports them. This version is based on the lightweight
CAESAR v2; thus having the same limitations regarding the bus widths.

4.3.2 Resource Analysis of Lightweight APIs

Parts of the following analysis have already been pre-published in “Patrick Karl and Michael
Tempelmeier. A detailed report on the overhead of hardware APIs for lightweight cryptog-
raphy. Cryptology ePrint Archive, Report 2020/112, 2020. https: // eprint. iacr. org/
2020/ 112 ”. They were presented to the National Institute of Standards and Technology at
the Lightweight Cryptography Workshop in October 2020.

With the additional features implemented, the question of how the development packages
compare in terms of resource consumption arises. On the one hand, more features require
more resources. On the other hand, an API for lightweight applications should not dominate
the resource costs of the actual cipher implementation.

In order to evaluate the effects of the additional features and the lightweight rework of the
development package, we synthesized the underlying modules of both support packages
with different I/O widths in standalone mode. That means, only the module itself without the
possibility of optimizations across module border is synthesized. For synthesis we used the
Xilinx Vivado Design Suite v.2018.3 with default synthesis parameters for an Artix-7 FPGA.
The resource consumption of FPGA designs is stated in terms of (Slice-) LUTs and (Slice-)
registers, i.e. FFs. However, there are two types of Slice-LUTs. Whereas both types can
be used for implementing logic, only one of them can be used as a memory element, i.e.
LUTRAM. Therefore, we will abbreviate the overall number of occupied Slice-LUTs as LUTs,
of which a subset will be explicitly used as LUTRAM.

2In contrast to the high-speed CAESAR package, this width conversion reduces the external interface width
to match the internal one.

50

https://eprint.iacr.org/2020/112
https://eprint.iacr.org/2020/112

PreProcessor

The PreProcessor synthesis results are shown in the upper part of Table 4.3. For the 32-bit
PreProcessor version it shows that the LWC version requires less LUTs, but two additional
FFs compared to the CAESAR design. The additional registers implement flags used for
hash support in the LWC version. The 16- and 8-bit versions both consume more LUTs.
The 16-bit version consumes one additional FF, whereas the 8-bit version saves 22 FFs.
By using the width conversions feature, additional FF are required. However, a conversion
from 32-bit to 16- or 8-bit still consumes less LUTs than a plain 16- or 8-bit version. This is
due to the fact that the 32-bit FSM implementation requires less logic than the 16- or 8-bit
implementation.

PostProcessor

The LWC PostProcessor can be implemented to make use of two different flags, either the
last_flit or the end_of_block signal, to determine the end of a transmission. They are both
passed from the CryptoCore to the PostProcessor. The last_flit version allows using mul-
tiple data segments per message, thus allowing message sizes > 216 − 1 bytes, which is
required to fulfill the NIST requirement to support at least messages of 250 − 1 bytes. The
end_of_block version, however, is more resource efficient, as it saves one 16-bit counter,
but only allows transmitting messages of size < 216 − 1 bytes, which is sufficient for most
use cases. Although the PostProcessor in the lightweight version of the CAESAR package
could make similar differentiations, the corresponding PreProcessor does not support split-
ting messages over multiple segments. Therefore, a different analysis of the PostProcessor
is omitted and the default implementation with the last_flit flag is used. The PostProcessor
synthesis results are shown in the lower part of Table 4.3.

For the last_flit configuration, the LWC PostProcessor requires in general more LUTs and
FFs compared to the CAESAR version. The only exception is the FF requirement in the
8-bit case, where the LWC version saves 11 FFs. As one can expect, using the width con-
version functionality results in an additional overhead, because the PostProcessor requires
additional resources for data alignment.

When using the end_of_block flag, the LWC PostProcessor saves a significant amount of
FFs compared to the CAESAR version, while still implementing the same functionality re-
garding message sizes. Even if the PostProcessor is configured to convert between internal
and external widths, the amount of required FFs is reduced compared to the last_flit version.
The 32- and 16-bit versions without conversion save LUTs, whereas the 8-bit version and the
ones with width conversion require more LUTs compared to the plain CAESAR versions. As
the message size of lightweight ciphers is unlikely to exceed 216−1 bytes, the end_of_block
version is the appropriate configuration in terms of efficiency.

51

Table 4.3: Resource comparison of Pre- and PostProcessor

Module
I/O Width CAESAR LWC
ext. int. LUT FF LUT FF

PreProcessor

32 32 95 33 88 35

16 16 111 24 124 25

8 8 137 56 159 34

32 16 – – 114 37

32 8 – – 111 39

PostProcessor
(last_flit)

32 32 87 20 92 28

16 16 77 21 86 22

8 8 67 42 111 31

32 16 – – 105 45

32 8 – – 112 54

PostProcessor
(end_of_block)

32 32 – – 67 12

16 16 – – 62 6

8 8 – – 78 15

32 16 – – 81 29

32 8 – – 88 38

HeaderFifo

For the LWC package, the design of the HeaderFifo has been replaced after routing prob-
lems occurred on some hardware platforms. The FIFO is designed to be implemented as a
ring buffer using distributed RAM. The development package of the CAESAR API supports a
feature where the tag verification is performed inside the PostProcessor and thus, the tag is
passed from the PreProcessor to the PostProcessor. That means, the HeaderFifo must be
large enough to buffer the tag plus the header information. For the provided dummy ciphers
the tag is 128 bits. Therefore, the minimum size of the FIFO would be 128 bits plus the size
of two additional words for the header. In other words, a 32-bit implementation of a cipher
with 128-bit tag requires a FIFO with a depth of 6 words. As the RAM is addressed in power
of two, a FIFO buffering 8 words would suffice. On Artix-7 FPGA fabrics, distributed RAM is
implemented with the “RAM32M” primitive, which requires four LUTs per primitive [92] and
is used in the 6× 32 dual port RAM configuration.

Still, the default configuration of the HeaderFifo in the CAESAR package sets the depth to

52

1024 and thus differs by a factor of 128 which leads to a suboptimal design optimization3. In
the LWC package the default configuration of the HeaderFifo is set to 4, as there is no tag
comparison in the PostProcessor. To allow for a fair comparison in Table 4.4, the CAESAR
and LWC FIFO were set to a depth of 4 words, which is the default configuration in the LWC
package. It shows that the LWC FIFO needs significantly less resources than the CAESAR
FIFO.

Table 4.4: Synthesis results for the HeaderFifo, 4 words (LWC default)

W
CAESAR LWC

LUT FF LUTRAM LUT FF LUTRAM

32 110 39 64 32 7 24
16 61 23 32 20 7 12
8 37 15 16 16 7 8

CipherCore / CryptoCore

All development packages provide a dummy cipher implementation to demonstrate the de-
signs functionality. For the AEAD scheme, they implement the same specification; whereas
the dummy cipher of the LWC package implements additional hash support. Just as for the
other modules, we synthesized the CipherCore/CryptoCore as a standalone module in order
to compare them. Since the LWC API supports hash functionality, the corresponding core
was synthesized twice. The first version is unchanged, i.e. with hash support, whereas in
the second run the CryptoCore’s hash_in port was removed. Internally tying the hash_in
flag to zero allows the synthesis tool to remove most of the logic required for hash support.

Table 4.5 shows the results for all three word sizes. It shows, that the savings of the LWC
core depend on the configuration. In the 32-bit version, the LWC saves resource even if
hash functionality is implemented. For the 8-bit case, the LWC core uses around 50 extra
LUTs when implementing hash functionality and 7 extra LUTs when deactivating it. The
reason for that difference is the impact of the LUTRAM. Whereas the CAESAR core makes
use of 5 internal RAMs, the LWC core only uses 3 RAMs, i.e. 60%. As the absolute number
of allocated LUTRAM cells decreases, the savings of the LWC core also decrease.

Comparing the LWC versions with and without hash support also shows that the absolute
cost of the additional hash support stays relatively equal. This shows that in relative terms,
additional features become more costly the smaller the overall design is.

3We will later show, that the default configuration of the HeaderFifo’s depth in the CAESAR package is ac-
countable for the bad performance of some CAESAR implementations and the problems when comparing
different implementations.

53

Table 4.5: Synthesis results of the provided CipherCore (CAESAR) and CryptoCore (LWC)

ccw/
ccsw

CAESAR LWC (without hash) LWC (with hash)
LUT FF LUTRAM LUT FF LUTRAM LUT FF LUTRAM

32 524 119 160 405 94 96 458 96 96
16 317 113 80 301 95 48 347 97 48
8 209 113 40 216 95 24 258 98 24

Bringing it together

Standalone synthesis prevents tools from optimizing logic across module borders. In order
to compare the development packages of both APIs, we synthesized the whole package with
its corresponding dummy cipher implementations. All synthesis results were obtained using
Xilinx’s Vivado-2018.3 on a Artix-7 FPGA fabric with default synthesis options. In particular,
this means ‘-flatten_hierarchy = rebuilt’, which “allows the QoR [Quality of Result] benefit
of cross-boundary optimizations, with a final hierarchy that is similar to the RTL for ease of
analysis4.” This also means that in case of resource sharing the complete structure is added
to one of the sharing modules.

First, both HeaderFifos were set to a depth of 1024, which is the default value in the
CAESAR package. The synthesis results are shown in Table 4.6a. For every width, the LWC
design consumes less resources. While only a few LUTs are saved in the 8-bit version, the
32-bit version saves 622 LUTs, which is saving of about 31% compared to CAESAR’s LUTs.
Reason for that is again, the huge amount of LUTRAM allocation in CAESAR’s HeaderFifo.
The LWC PostProcessor was configured to make use of the last_flit flag, supporting multi-
segment messages5. Hash support was enabled in the LWC version as a mechanism for
disabling hash was not intended in the original package.

In the second run, we reduced the FIFOs’ sizes, because the HeaderFifo dominated the
size of the whole design. Since in the LWC package the default value is four words, we
configure the CAESAR FIFO to its minimum possible size, which is the size of the tag plus
four additional words. As mentioned before, the depth must be a power of two. This results
in depths of 8, 16 and 32 words for the 32-, 16- and 8-bit CAESAR versions. Table 4.6b
shows the synthesis results. Now as the HeaderFifo is not the dominant factor anymore, the
resource comparison follows the observations in Table 4.5. As the design becomes smaller,
the CAESAR version’s overhead due to increased LUTRAM consumption decreases and
the additional hash support becomes an increasing factor.

4https://www.xilinx.com/support/answers/52257.html
5This is the default LWC configuration. As the lightweight CAESAR package does not support for multi-segment

messages, the LWC implementation is not only smaller, but also supports more features.

54

Table 4.6: Synthesis results of the development packages implementing the dummy cipher
for different HeaderFifo dimensions.

(a) Equally sized HeaderFifo: Depth is 1024 words.

W
CAESAR LWC

LUT FF LUTRAM LUT FF LUTRAM

32 2009 266 1184 1387 209 672
16 1226 212 592 1025 188 400
8 793 250 296 786 194 216

(b) Minimum sized HeaderFifo: CAESAR’s depth is 8, 16, 32 words; LWC’s depth is 4 words each.

W
CAESAR LWC

LUT FF LUTRAM LUT FF LUTRAM

32 771 213 224 705 166 116
16 588 185 112 564 151 60
8 458 232 56 518 170 32

Comparing the default configurations i.e. Table 4.6a for CAESAR and Table 4.6b for LWC,
respectively, it shows that the 32-bit LWC version saves around 1304 LUTs due to a large
saving in LUTRAM. For the 16- and 8-bit versions, the savings decrease but still are signifi-
cant. The same holds true for the FF savings. Table 4.7 summarizes these numbers for the
32-bit dummy implementation using default parameters. Using the CAESAR package with
default configuration for lightweight cipher comparison might therefore distort the compari-
son of ciphers because the package is likely to dominate the resource requirements.

4.3.3 Exemplary Analysis of Published Implementations

In the following, the impact of the API packages on the resource consumption of different
cipher implementations is analyzed. For evaluating the CAESAR package, the Ascon128
implementation from [29] and the SpoC-64 implementation from [81] are taken. For the LWC
package, we took the Ascon128 implementation (without hash support) from [81] and the
SpoC-64 implementation from [81]. The CAESAR and LWC variants for both, the Ascon128
and SpoC-64 implementations were configured with the same parameter set. However,
the CAESAR Ascon128 was implemented using the development package version 1.0.3,
which is a high-speed variant. The lightweight support for the CAESAR package was first
introduced in the current release 2.0. Taking the author’s claimed numbers into account, the
Ascon128 LWC version requires more cycles per associated data block (factor of 1.5) and
message blocks (factor of 1.7) compared to the CAESAR high-speed version.

55

Table 4.7: Synthesis results for the 32-bit dummy with ‘-flatten_hierarchy = rebuilt’

CAESAR LWC (without hash) LWC (with hash)
LUT FF LUTRAM LUT FF LUTRAM LUT FF LUTRAM

Toplevel 2 009 266 1 184 704 163 116 705 166 116
PreProcessor 124 33 0 128 34 0 134 35 0
PostProcessor 43 20 0 56 28 0 56 28 0
HeaderFifo 1 354 94 1 024 51 7 20 51 7 20
CryptoCore 488 119 160 469 94 96 464 96 96

In addition to that, the Gimli implementation from [75] was included to demonstrate the
package overhead for extremely constrained implementations. The hash support for the
Gimli implementation was manually deactivated6 for comparability.

Table 4.8 lists the synthesis results for the 32-bit implementations. For the CAESAR im-
plementations, Ascon128 requires less resources than SpoC-64, especially in terms of LU-
TRAM consumption. This is due to the different parameterization of the HeaderFifo. For
SpoC-64, the FIFO was configured to a word width of 32-bits and depth of 512 words. In the
Ascon128 implementation, however, the FIFO width was trimmed to 24 bits7 and the depth
set to 4 words.

For the LWC implementations with equally sized HeaderFifos, Ascon128 requires more
LUTs than the SpoC-64 implementation, but less FFs. As the Gimli implementation is
specifically designed for resource optimization, it requires less LUTs and FF than the other
implementations. The increased LUTRAM requirements come from the fact that the 384-
bit Gimli-state is implemented in LUTRAM. This reduces the amount of required FFs but
decreases performance because only parts of the state are accessible in each clock cycle.

As previously stated, the sizes of the HeaderFifos for the CAESAR implementations were
manually adjusted. The implementation from [29] for example, reduced the FIFO to its
minimum size such that functional correctness is guaranteed. Due to the different param-
eterization, Table 4.8 does not allow a fair comparison of the cipher implementations itself,
as the overhead added by the API package’s modules is not comparable. To show that, the
LUT requirements of the implementations, shown in Table 4.8, are either assigned to the
CryptoCore or to the API package modules8. For Ascon128 and SpoC-64, the assignments
are depicted in Figure 4.8. For Gimli, the assignments are depicted in Figure 4.9.

6The CryptoCore’s hash_in port was removed and an internal hash_in flag was tied to zero. This allows the
synthesis tool to trim most of the hash-logic in the CryptoCore.

7Only 24 bits of the 32-bit header word are actually used.
8This is not 100% accurate, as the hierarchy is rebuilt after optimization, but the best Xilinx’s vivado offers.

cf. https://www.xilinx.com/support/answers/52257.html

56

https://www.xilinx.com/support/answers/52257.html

Table 4.8: Resources of different ciphers implemented with the CAESAR and LWC package

Cipher LUT FF LUTRAM

C
A

E
S

A
R

Ascon1281 [29] 1595 818 42

SpoC-642 [81] 2136 876 416

LW
C

Ascon1283 [81] 1802 539 20

SpoC-643 [81] 1565 728 20

Gimli4 [75] 946 235 84

1 HeaderFifo: 24× 4
2 HeaderFifo: 32× 512
3 HeaderFifo gets optimized from 32× 4 to 24× 4.

State is implemented with FFs.
4 Hash is deactivated for comparability.

For the Ascon128 cipher, Figure 4.8a shows that the LWC CryptoCore requires more re-
sources than the CAESAR version. This overhead is mitigated by the LWC API package,
which saves around 80 LUTs and 190 FFs. Nevertheless, the CAESAR version is a high-
speed implementation, which of course adds additional overhead to the API package. Con-
sidering the whole design, the CAESAR implementation delivers more performance at less
resource consumption than the LWC implementation.

The comparison of the SpoC-64 implementations in Figure 4.8b shows a significant dif-
ference in the impact of the API modules; whereas both CryptoCore implementations are
roughly of equal size, the development packages almost differ by a factor of 4 for LUTs and
a factor of 1.7 for FFs. By taking only the CryptoCore into account, the difference in terms
of LUTs between the CAESAR implementations of Ascon128 and SpoC-64 is not as drastic
as it seemed in Table 4.8, but worse in terms of FFs.

In Figure 4.9, the same separation is done for the LWC Gimli implementation. It shows that
for small ciphers the API package has a significant impact. In this specific case, the API
package makes up around 28% of the overall LUT and 29% of the overall FF requirements.
Nevertheless, the number of resources allocated by the LWC package is the same for the
Ascon128 and the Gimli implementation. Thus, the API package adds the same overhead
for both ciphers and allows for a fair comparison.

For the SpoC-64 implementation, however, the LWC package requires less resources. One
might think that SpoC-64 allows for a better optimization, but the opposite is the case:
204 LUTs and 69 FFs for the API is very close to the sum (212 LUTs and 70 FFs) of the
resources needed by the PreProcessor, PostProcessoor and HeaderFifo. Looking at the
schematic of the synthesized SpoC-64 implementation confirms that the internal interface
is preserved. The difference of 58 LUTs is located in the PreProcessor; more specific in

57

1250

345

LUTs

458

258

CryptoCore
API

FFs

1540

262

LUTs

470

69

FFs

CAESAR LWC

(a) Ascon128 with CAESAR (left) and LWC (right)

1348

788

LUTs

659

115

CryptoCore
API

FFs

1361

204

LUTs

659

69

FFs

(b) SpoC-64 with CAESAR (left) and LWC (right)

Figure 4.8: Distribution of allocated LUTs for SpoC (4.8b) and Ascon128 (4.8a):
The CAESAR package is shown on the left, whereas the LWC package is de-
picted on the right.

684

262

LUTs

166

69

CryptoCore
API

FFs

Figure 4.9: Distribution allocated LUTs for a constrained Gimli-AEAD LWC implementation

58

Table 4.9:
LWC development package without

HeaderFifo and with the provided dummy
CryptoCore

W LUT FF LUTRAM

32 684 159 96
16 550 144 48
8 504 163 24

Table 4.10:
Resource savings without HeaderFifo and

with the provided dummy CryptoCore

W LUT FF LUTRAM

32 21 7 20
16 14 7 12
8 14 7 8

the logic of a 16-bit counter that holds the information about the remaining segments of the
current type. Looking at the corresponding schematic, this information is shared with the
CryptoCore. A out-of-context synthesis of the CryptoCore needs 62 LUTs more than the
shared CryptoCore. Thus, in total 4 LUTs are saved at the costs of attributability.

There is no clear reason why this optimization cannot be performed for Spoc-64, as 4 LUTs
are too little to manually assign them to their highlevel representation, nor does Xilinx’s
Vivado tell this. An educated guess is that cross-boundary optimizations are harder if this
boundary is also the boundary between VHDL and Verilog, which is the case for the SpoC-
64 implementation.

4.3.4 Tweaking the Development Package

The fact that different HeaderFifo dimensionings can lead to different impressions when
comparing cipher implementations brings up the question whether the FIFO is required at
all. The drawbacks of removing the FIFO is that there is a combinatorial path from the input
of the PreProcessor to the output of the PostProcessor. However, for lightweight implementa-
tions where high frequencies are not necessarily a concern, removing the FIFO would save
additional resources and improve comparability with respect to resource consumption.

When removing the HeaderFifo, it turned out that there are some implementation flaws in
the PreProcessor regarding the valid/ready handshaking. We submitted a patch9 for the
PreProcessor that fixes this issue such that the HeaderFifo can be removed. The modifica-
tion in the PreProcessor did not change the resource requirements significantly. Table 4.9
shows the synthesis results of the LWC development package without HeaderFifo and with
modified PreProcessor. Comparing these numbers with the LWC default configuration in
Table 4.6b shows that additional resources can be saved. Table 4.10 lists these resources.
Although the savings in that case are not very large, it further reduces the impact of the API
package and increases accuracy when comparing cipher implementations.

9https://github.com/GMUCERG/LWC/commit/b97c9b8

59

https://github.com/GMUCERG/LWC/commit/b97c9b8

4.4 Summary

In this chapter, we introduced the CAESAR-API and presented an enhanced version that
is suitable for the NIST-LWC-competition, called LWC-API. We had a closer look at the
actual implementations of these APIs and analyzed their area footprints, both out-of-context
and embedded in actual implementations of current ciphers. We clearly showed that the
LWC-API outperforms the CAESAR-API and that the LWC-API is suitable for lightweight
implementations.

Despite the benefits of a uniform API, it also poses a threat for misuse or misinterpretation
of the results. Thus, when presenting optimized implementation results, it is crucial to pro-
vide information about the used API-implementation and its parameters. Even though this
might not be enough for a 100 % accurate analysis, it is enough to provide a fair analysis, on
which sound decision can be made. Unfortunately, this was not always the case during the
CAESAR competition. Therefore, it is a fortiori important for the LWC competition to force
designers to list implementation results together with the details about their API implemen-
tation. We presented this position at the Lightweight Cryptography Workshop hosted by the
National Institute of Standards and Technology in October 2020.

60

5 A Framework for Testing
CAESAR-Hardware-Implementations

Having a uniform hardware API is the first step for a fair benchmarking. However, this
is not sufficient. Testing the implementations of both the algorithms and the API is also
crucial. Especially, if the challenges of Section 3.1 were taken into account, a uniform testing
concept would be needed.

In the following we will show, why a pure simulation-based testbench is not enough. We will
further propose a uniform FPGA-SoC-based test framework that overcomes the problems
of the simulation-based approach.

5.1 Functional Verification using Simulations

The development packages feature a simulation testbench that reads test vectors (TVs)
generated by the AEADTVgen1, sends them to the Unit Under Test (UUT) and compares the
received results with the ones specified in the TVs. This process is depicted in Figures 5.1a
and 5.1b.

AEADTVgen

C-ref.c
pdi.txt

sdi.txt

do.txt

python3

(a) AEADTVgen

pdi.txt
sdi.txt do.txtUUT

?=pdi

sdi

do

pass / fail

(b) VHDL-Testbench

Figure 5.1: Software verification setup

We showed in [77] that this testbench is not sufficient for hardware testing: First, the test-
bench is very inchoate. It solely relies on the quality of the TVs. Thus, even if the TVs are
well chosen and cover all corner cases, they only test the behavior of the CipherCore. They
can by design not test the behavior of the API in case of input or output stalls. As a con-
sequence, errors in the implementation of the API remained undiscovered until late in the

1https://cryptography.gmu.edu/athena/CAESAR_HW_API/caesar_hw_devpkg-1.0-3.zip
renamend to CryptoTVgen in the LWC package

61

https://cryptography.gmu.edu/athena/CAESAR_HW_API/caesar_hw_devpkg-1.0-3.zip

second round of the competition. We were the first to discover in [77] that the CAESAR-API
does not handle backpreasure accurately [39].

Additionally, the TVs generated by AEADTVgen are actually only known-answer-tests (KATs).
As they are assumed to be correct, there are no tests for faulty (e.g. altered) inputs. Thus,
the authentication part in authenticated encryption is never tested. It would be easy for the
test bench to alter the input by purpose and check whether the tag verification fails accu-
rately.

While the problems mentioned above might have been caught by an improved testbench,
the following problems cannot be solved in a pure simulation environment, as they at least
need a post synthesis simulation, which might be too hard to achieve.

Synthesis and Simulation Mismatch: Perfectly fine VHDL-Code that passes any test-
bench may still fail on real hardware as it may contain non-synthesizable constructs, or
–even worse– the same piece of code can be treated differently in synthesis and simulation.
While non-synthesizable code can be found relatively easy by a synthesis run, an actual mis-
match between simulation and synthesis is harder to catch. The most prominent example of
a synthesis and simulation mismatch are omitted signals in the sensitivity list: In simulation,
a process is only triggered if there is an 'event on a signal which is also listed in the sensi-
tivity list. During synthesis however, this list is ignored by most synthesis tools. As a result
simulation and synthesis behave differently.

Latches and Timing: Although latches are valid components, which can be synthesized
on both FPGAs and ASICs, their post-synthesis simulation might still not be accurate enough
or not account for temperature or process variations. Thus, especially on FPGAs unex-
pected spikes can lead to an erroneous behavior. One example is the suboptimal Header-
Fifo from the CAESAR package.

5.2 Functional Verification using Hardware Testbeds

In the following, we will show that although tested on the official testbench, there are many
CAESAR implementations that are not actually functional, but nevertheless used in official
benchmarkings [27].

Parts of the following analysis have already been pre-published in “Michael Tempelmeier,
Fabrizio De Santis, Georg Sigl, and Jens-Peter Kaps. The CAESAR-API in the real world
– towards a fair evaluation of hardware CAESAR candidates. In 2018 IEEE International

62

AXI Direct Memory Access

M_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI Direct Memory Access

M_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI Direct Memory Access

S_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI-Interconnect

S00_AXI M00_AXI

AXI-Interconnect

S00_AXI M00_AXI

AXI-Interconnect

S00_AXI M00_AXI

Cortex A9 ARM Cores

S_AXI_HP0

S_AXI_HP1

S_AXI_HP2

M_AXI_GP0

IRQ

AXIS-FIFO

AXIS-FIFO

AXIS-FIFO

DDRCrypto-IP

SDI

PDI

DO

config

AXI-Interconnect

M00_AXI S00_AXI

M01_AXI

M02_AXI

M03_AXI

Figure 5.2: Block diagram of the evaluation framework including the ARM Cores in the PS,
the Crypto-IP (c.f. Figure 5.3) in the PL and the interconnects © 2018 IEEE [77]

Symposium on Hardware Oriented Security and Trust (HOST), pages 73–80. IEEE, 2018”.
This is a extended version that takes more ciphers into account than the published one.

5.2.1 System Design

Our evaluation framework is based on Xilinx’ PYNQ-SoC and consists of two components.
First, there is the Programmable Logic where the Crypto-IP, AXIS-FIFOs, DMA controllers
and measurement cores are instantiated. Second, there is the Processing System which is
dominated by the two ARM Cortex A9 cores hosting a Linux.

The complete system is shown in Figure 5.2. On the left side the Crypto-IP-Core is displayed
and on the right side the Cortex-A9 processor system. In between, three AXIS communi-
cation channels with FIFOs for PDI, SDI, and DO are visible. They are mapped to three
exclusively used, high-speed Advanced eXtensible Interface Bus (AXI) ports (HP0, HP1,
HP2) of the Cortex-A9 by the DMA controllers in the middle. At the bottom, a shared 32 bit
AXI4-Lite (AXIL) control bus connected to GP0 is used to configure the modules. Finally, the
DMA controllers can request an interrupt via the IRQ port to signal that a DMA transfer is
complete.

CAESAR-Candidate under Test

The internal structure of the Crypto-IP is shown in Figure 5.3. In the lower part of the
figure, the normal structure of the CAESAR-API is depicted. A user can plug in the desired

63

CryptoCore

Po
st

-P
ro

ce
ss

or

Pr
e-

Pr
oc

es
so

r

FIFO

pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

do

do_valid

do_ready

w

w

w

pdi counter

sdi counter

do counter

last

do_last

config IP-wrapper

Figure 5.3: CryptoCore with IP wrapper

implementation of a CAESAR candidate by simply copying the corresponding VHDL (or
Verilog) files to the source folder of the IP-Core. Two AXIS interfaces act as slaves for
the public and secret data input, and one acts as a master for the public data output. All
AXIS interfaces are set up in minimal configuration as defined in the CAESAR-API. This
means that besides the data bus, only the two handshaking signals ready and valid are
implemented. However, due to limitations of the Xilinx AXI-DMA-Controller, the AXIS DO
master needs to eventually generate a strobe pulse on the do_last signal2. As this signal
is not implemented in the CAESAR-API, an additional wrapper logic is needed. This logic is
depicted at the top of Figure 5.3. The DO counter counts the number of sent DO words. If
the number equals the expected “last” value, a strobe on the do_last line is generated3.

Two additional counters count the number of received PDI and SDI words. This is for debug-
ging only, but turned out to be quite handy. An AXIL interface is used to store the expected
value of “last” and to read out the values of the counters.

Communication Channel

The interconnection between the PS and the PL is realized with the AXI protocol. As the
Crypto-Core has FIFO-based interfaces, AXIS is used to communicate with the Crypto.
AXIS is a point to point interconnect with a flexible data width and two handshaking sig-
nals. Since the PS does not directly support AXIS, an AXIS to AXI converter is needed.
This is accomplished by the Xilinx’s AXI-DMA-Controller. It enables direct memory access
to PYNQ’s DDR3 RAM through an AXI directly connected to the memory controller inside
the PS on the one side, and a AXIS on the other side. For configuration of the DMA controller
(e.g. initiate a DMA transfer), an AXIL interconnect is used. The AXI and AXIS both support

2Xilinx AR# 60053 https://www.xilinx.com/support/answers/60053.html
3The LWC-API incorporates this features into its core such that this counter is not needed anymore.

64

https://www.xilinx.com/support/answers/60053.html

bus widths of 32, 64, 128 and 256 bits. Therefore, no width conversion is needed for the
different CAESAR candidates, only a different option during synthesis has to be selected.

Additionally, a Xilinx AXIS-FIFO IP-core is inserted in each AXIS connection between the
Crypto-IP-Core and the AXI-DMA-Controllers. They have two purposes: First, they are
needed for efficient DMA transfers, as they enable sending of multiple data to the Crypto-
IP Core in advance without the need of a separate DMA transfer for each encryption or
decryption. Second, they allow us to separate the clock domains between the Crypto-IP
and the rest of the PL.

Software Interface

A Python3.6 framework abstracts the communication with the FPGA and the configuration
of the SoC, so that the designer of a CAESAR implementation only needs to copy his/her
sources of the CAESAR-API-compatible implementation to our framework, synthesize the
project and copy the bit-file and tcl-file to the SD-card. Afterwards, the evaluation can ei-
ther be done in the web browser using Jupyter, by the provided scripts, or by customized
scripts.

5.2.2 Validation and Testing

It is easy to write test benches in a high-level design language such as Python or SystemC
and to integrate them in the design process. However, most of these test benches are
non-synthesizable and designed to run in a software-based simulator. The problem with this
approach is that they cannot be reused for testing the circuit on real hardware. Unfortunately,
writing a test bench that is synthesizable is very complex and also very inefficient, as the
synthesizable subset of the HDL is not designed for tasks like file parsing and generating
test vectors.

We overcome this problem by combining the flexibility of a software running on Zynq’s pro-
cessor with the test accuracy of a real hardware, running on the FPGA fabric, as shown in
Figure 5.4. Like in the software verification setup of Figure 5.1, the AEADTVgen script is
used to generate the TVs. Instead of a pure VHDL testbench, we use a python script to
configure and verify the UUT. These parts are located in the PS.

The UUT itself is located in the PL. PYNQ’s onbaord DDR-RAM is used to transfer data
between PS and PL using Direct Memory Access (DMA). Additionally the PS’s General
Purpose Input/Output (GPIO) pins are used for additional control logic like Interrupt Request
(IRQ) and AXIL. The shaded part of Figure 5.4 is displayed in more detail in the left part of
Figure 5.2.

65

AEADTVgen

C-ref.c

pdi.txt
sdi.txt

do.txt

python3

PS

?=

D
D

R
-R

A
M

PL

Testbench

AXI Direct Memory Access

M_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI Direct Memory Access

M_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI Direct Memory Access

S_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

mm2s_intr

AXI-Interconnect

S00_AXI M00_AXI

AXI-Interconnect

S00_AXI M00_AXI

AXI-Interconnect

S00_AXI M00_AXI

AXIS-FIFO

AXIS-FIFO

AXIS-FIFO

Crypto-IP

SDI

PDI

DO

config

AXI-Interconnect

M00_AXI S00_AXI

M01_AXI

M02_AXI

M03_AXI

c.
f.
 F

ig
.

5
.2

Figure 5.4: Test vector generation on hardware

We synthesized all eleven CAESAR-candidates provided by George Mason University [26],
as they were the first that had been extended with the CAESAR-API and fulfill the require-
ments of the third round. In order to cover all CAESAR finalists, we also examined our
own implementations [75], and the official hardware reference implementations from [59].
For better comparison, we also synthesized the provided dummy-cipher, which basically
implements an XOR functionality, and thus shows the hardware overhead for the Pre- and
Post-Processor, the Cipher Core control logic, the FIFOs, and the AXI controllers.

5.2.3 Functional Behavior

The first thing we discovered during our tests was that only two out of the eleven imple-
mentations from [26] worked as expected. Nine of them, plus the provided dummy, behave
differently on real hardware than in simulation. The same holds true for the the official hard-
ware reference implementations, taken from [59]: Both ciphers failed on our hardware tests.
Table 5.1 summarizes the status of the synthesized ciphers. Further investigations showed
that there are two main problems.

First and most important, the implementations from [26] use the Pre- and Post-Processor of
the official Development Package for the CAESAR-API in version 1.0-3 that, as presented in
Section 4.3.1, have some problems when the inputs and outputs are not transmitted in one
continuous stream, but when there are stalls. The input stall can be fixed with a patched

66

Table 5.1: Examined ciphers in simulation and on PYNQ

Implementation (software reference) Research Group Simulation On PYNQ

Acorn32 v1.1 (acorn128v2) NTU [59] 3 3†

AEGIS-128 v1.1 (aegis128) TUM [75] 3 3

AEGIS-128l v1.1 (aegis128l) GMU [26] 3 3∗

AEGIS-256 v1.1 (aegis256) TUM [75] 3 3

AES-GCM v1.0 (aes128gcmv1) GMU [26] 3 3∗

AEZ v2.1 (aezv4) GMU [26] 3 7

ASCON v2.0 (ascon128v12) GMU [26] 3 3∗

CLOC v1.2 (aes128n8t8clocv2) GMU [26] 3 7

COLM v1.0 (colm_0) GMU [26] 3 3∗

Deoxys-I v3.0 (deoxysi128v141) GMU [26] 3 3∗

Deoxys-II v3.0 (deoxysii128v141) TUM [75] 3 3

JAMBU-AES v1.0 (aesjambuv2) GMU [26] 3 3∗

NORX v3.0 (norx6441v3) GMU [26] 3 3

Morus v1.0 (morus1280128v1) NTU [59] 7 7

Morus v2.0 (morus1280128v2) TUM [75] 3 3

OCB v1.0 (aeadaes128ocbtaglen128v1) GMU [26] 3 3

SILC v2.0 (aes128n12t8silcv2) GMU [26] 3 3∗

Tiaoxin v2 (tioxinv2) GMU [26] 3 3∗

dummy1 (dummy1) GMU [26] 3 3∗

* Works only after some patches in the Cipher Core or API.
† Empty input (ε-string) and inputs lager than 2048 bytes are not working.

67

version of the Pre- and Post-Processor. To fix the output stall, a change in the handshaking
protocol between the CipherCore and the Post-Processor would be needed, and thus an
update of the package [39]. As this is a major change in the implementations, we did not
patch this, but mitigated the problem. As a workaround for our experiments, a larger DO-
FIFO that can hold up to the last but one block of a message was sufficient.

Second, some ciphers had internal problems within their implementation. Most of these are
very minor and could be fixed by the authors after we had informed them. They are marked
with an asterisk (∗). However, this does not hold true for implementations from [59]. Acorn32
stalls on an empty (ε-string) input and produces wrong results for inputs that are larger than
2048 bytes. Unfortunately, the problems with Morus – described in Section 3.1.2 – were not
fixed. Even after informing the authors of the problems, they have not published fixed ver-
sions yet. Therefore, we included our own implementation for Morus [75] for benchmarking.
For Ascon32 we stuck to the official reference implementation, as there are only a few bytes
wrong, and the expected amount of data matches. Thus, we don’t expect these performance
results to significantly change once these problems are fixed.

5.3 Resource Implications

Table 5.2 shows the synthesis results of the running implementations including the mini-
mal infrastructure shown in Figure 5.2. The three FIFOs have a depth of 64 each. For a
better comparison the used bus widths are included in the table. Table 5.3 shows the re-
sources needed for the Crypto-IP as depicted in Figure 5.3. They were obtained from an
out-of-context synthesis. As it can be seen, there is no common bus width neither for the ex-
ternal nor for the internal interface. Next, some implementations make use of the up-scaling
functionality of the high-speed variant of the CAESAR-API. This makes a fair comparison
hard.

Notwithstanding the above, we will try to give a brief interpretation of the results, based
on Table 5.3: By far the smallest designs are Jambu-AES, Acorn, and Ascon. In terms of
LUTs, Deoxys-I can also compete. They are all based on different cryptographic primitives:
Jambu-AES is a block cipher and uses AES-128 as its core; Acorn is a stream-cipher and
based on a non LFSR; and Ascon is based on a sponge construction. All met the require-
ment to be smaller than AES-GCM. The results show that non of the different cryptographic
primitives is superior by design. Considering designs that are based on AES-128, it shows
that there is a wide range of results: While Jambu-AES and Deoxys-I are (slightly) smaller
than AES-GCM, Silc is about the same size; OCB is slightly larger, and Deoxys-II and Colm
are much larger than AES-GCM. These differences are not only based on the different
AEAD-constructions but also heavily depend on the design choices for the AES core. Imple-
mentations targeting high-performance use a faster and thus larger implementation of the
AES core than implementations targeting lightweight applications.

68

Table 5.2: Resource utilization of the PL as depicted in Figure 5.2 including the correspond-
ing Crypto-IP.

Implementation Key / BDI SDI / PDI Slices1 LUTs1 Slice1 BRAM
width width2 (total) logic Registers Tile

Acorn32 v1.1 128 32 32 32 1 927 4 534 6 125 6

AEGIS-128 v1.1 128 128 128 128 4 602 13 740 8 845 15

AEGIS-128l v1.1 32 256 32 256 4 733 13 277 10 501 21

AEGIS-256 v1.1 256 128 128 128 5 251 15 623 9 621 15

AES GCM v1.0 32 128 32 32 2 477 6 349 6 621 10

ASCON v2.0 32 64 32 32 2 047 4 922 6 155 6

COLM v1.0 128 128 32 32 3 765 11 052 7 946 10

Deoxys-I v3.0 32 128 32 32 2 615 6 656 6 855 6

Deoxys-II v3.0 128 128 32 32 2 800 7 850 7 071 6

JAMBU-AES v2.0 32 64 32 32 2 039 4 884 5 956 10

NORX v3.0 32 768 32 256 4 249 10 707 12 077 21

Morus v2.0 128 256 128 256 4 904 13 465 11 225 24

OCB v1.0 32 128 32 32 2 900 7 600 6 878 10

SILC v2.0 128 128 32 32 2 602 6 557 6 479 6

Tiaoxin v2 32 256 32 256 4 827 13 076 11 024 21

dummy1 128 128 32 32 2 067 4 540 6 682 6

1 The numbers of used resources (slices, LUTs and registers) are lower than the ones
presented in [77] because the block design has been further optimized.
2 The DO width is omitted because it is the same as the PDI width.

69

Table 5.3: Crypto-IP resource utilization

Implementation Key / BDI SDI / PDI LUTs Reg. Mult. BRAM
width width logic mem FF F7 F8 Tile

Acorn32 128 32 32 32 1 139 42 1 044 5 1 0

AEGIS-128 128 128 128 128 9 006 42 1 618 3 008 1 440 0

AEGIS-128l 32 256 32 256 7 639 42 1 748 2 051 1 024 1

AEGIS-256 256 128 128 128 10 889 42 2 394 3 472 1 728 0

AES GCM 32 128 32 32 3 030 42 1 551 17 0 4

ASCON 32 64 32 32 1 519 42 1 085 0 0 0

COLM 128 128 32 32 7 683 42 2 876 1 137 256 4

Deoxys-I 32 128 32 32 1 224 42 1 612 1 0 0

Deoxys-II 128 128 32 32 3 483 1 066 2 001 769 128 0

JAMBU-AES 32 64 32 32 1 497 42 886 66 0 4

NORX 32 768 32 256 4 915 42 3 324 0 0 1

Morus 128 256 128 256 7 431 42 2 003 0 0 1

OCB 32 128 32 32 4 261 42 1 804∗ 618 160 4

SILC 128 128 32 32 3 225 42 1 409 717 256 0

Tiaoxin 32 256 32 256 7 369 42 2 271 1 539 768 1

dummy1 128 128 32 32 1 224 42 1 612 1 0 0

∗ The design contains 4 additional latches.

70

Table 5.4: Resource utilization of the interconnects

Implementation Key / BDI SDI / PDI LUTs Reg. Mult. BRAM
width width logic1 mem1 FF1 F71 F81 Tile1

Acorn32 128 32 32 32 3 103 250 5 081 1 0 6

AEGIS-128 128 128 128 128 4 410 282 7 227 1 0 15

AEGIS-128l 32 256 32 256 5 283 313 8 753 1 0 20

AEGIS-256 256 128 128 128 4 410 282 7 227 1 0 15

AES GCM 32 128 32 32 3 027 250 5 070 1 0 6

ASCON 32 64 32 32 3 111 250 5 070 1 0 6

COLM 128 128 32 32 3 077 250 5 070 1 0 6

Deoxys-I 32 128 32 32 3 024 250 5 070 1 0 6

Deoxys-II 128 128 32 32 3 051 250 5 070 1 0 6

JAMBU-AES 32 64 32 32 3 095 250 5 070 1 0 6

NORX 32 768 32 256 5 437 313 8 753 1 0 20

Morus 128 256 128 256 5 673 319 9 222 1 0 23

OCB 32 128 32 32 3 049 250 5 070 1 0 6

SILC 128 128 32 32 3 040 250 5 070 1 0 6

Tiaoxin 32 256 32 256 5 352 313 8 753 1 0 20

dummy1 128 128 32 32 3 024 250 5 070 1 0 6

1 Values are retrieved by subtracting the out-of-context synthesis results of the Crypto-IP
(depicted in Table 5.3) from the ones of the complete system (depicted in Table 5.2).

71

Since it is obvious that a larger data path requires more resources than a smaller one,
synthesis results of related works are often presented in relation to the block size, data
path width, or throughput. However, these results are often limited to the cryptographic
implementation itself, which is too simplistic.

Table 5.4 shows the resources needed for the interconnect structure of Figure 5.2 without
the resources needed for the Crypto-IP. As can be seen, a standard 32 bit interconnect in-
frastructure needs about 250 LUTs, 5070 registers, and 6 block ram tiles for storage and
3000 LUTs for logic. Correspondingly, a larger interface requires a larger interconnect struc-
ture. For a 256 bit interface, this culminates in about 6000 LUTs, 9222 registers and 23 block
ram tiles for a minimal interconnect structure. For a larger interconnect structures this ef-
fect increases. However, even for a minimal interconnect structure, these additional costs
(2600 logic LUTs, 70 memory LUTs, 4150 registers, 17 block ram tiles) are in the same di-
mension as an average cipher core and larger than lightweight cipher core implementations.
Therefore, for a fair comparision, this additional costs would need to be accounted for the
cipher.

As a consequence, we recommend that hardware benchmarking of NIST-LWC-implementa-
tions should be performed on a common 32 bit interface.

72

6 Benchmarking of
CAESAR-Implementations

Starting with the ECRYPT Stream Cipher Project (eSTREAM) [70] in 2004, software bench-
marking suites became available for a fair and comprehensive evaluation of candidates,
culminating in the SUPERCOP [8]. SUPERCOP evaluates hundreds of compilation options
to find those which result in the best performance. The purpose of ATHENa [24] and Min-
verva [22] is to accomplish the same goals, but for hardware implementations on FPGAs.
However, the inputs to these tools are only verified in simulations and never tested on ac-
tual hardware. As presented in the previous chapter, simulation-based results can lead to
a false impression. Therefore, in the following, we will go one step further and present a
low cost benchmarking framework that runs on actual hardware. We extend the framework
presented in Chapter 5 such that it can be used to benchmark the performance as well as
the power and energy consumption of any implementation compliant with the CAESAR or
LWC API.

This chapter is structured as follows: In Section 6.1 we recap the overall structure of the
setup and briefly introduce the new hardware blocks. In Section 6.2 we explain how the
measurement setup uses these blocks to obtain reliable numbers. The actual results are
presented in Section 6.3. In Section 6.4 we interpret these results and point out the conse-
quences for the individual cipher categories.

Parts of the following analysis have already been pre-published in “Michael Tempelmeier,
Georg Sigl, and Jens-Peter Kaps. Experimental power and performance evaluation of
caesar hardware finalists. In 2018 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig), pages 1–6. IEEE, 2018” and “Michael Tempelmeier, Fabrizio
De Santis, Georg Sigl, and Jens-Peter Kaps. The CAESAR-API in the real world – towards
a fair evaluation of hardware CAESAR candidates. In 2018 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 73–80. IEEE, 2018”. This is an
extended version that takes more ciphers into account than the published one and provides
a more sophisticated evaluation.

73

AXI−Int

AXI−Int

AXI−Int

AXI−Int

DMA

DMA

DMA FIFO

FIFO

FIFO

en

clk Wiz

en

Timer 0 Timer 1

clk Wiz
XADC

PowerSleep

S_AXI

S_AXI

S_AXI

M_AXI

GPIO

PS

SDI

PDI

Bus Clock Core Clock

100 − 200 MHz

Wakeup

Vcc

Vcc

100 MHz

125 MHz

100 MHz100 MHz

Measurement Clock

Crypto

DO

IP

Figure 6.1: Block diagram with three clock domains © 2018 IEEE [78]

6.1 Hardware Architecture

Like in Chapter 5, our hardware architecture is based on Xilinx’ PYNQ-board. Besides the
mentioned advantages of a SoC, we will make particular use of the integrated Xilinx analog
mixed signal module (XADC), which can be used to measure analog values in the range
of 0 – 1 volt with a precision of 12 bits. Additionally, the PYNQ board features only very little
distracting hardware.

Figure 6.1 shows the block diagram of our hardware architecture. It extends the one depicted
in Figure 5.2 by defining three separate clock domains, two timers to measure the processing
time, two clock generators (clk Wiz) to specify the clock for the Crypto-IP, and new blocks for
sleep logic and power measurement logic.

The Sleep module monitors the clocks of the PS and PL and coordinates the fall asleep
and wake-up process of the PS. It samples and filters the clock provided by the PS. This
clock has a frequency of 100 MHz during normal PS operation. When the PS is asleep, this
frequency drops to about 1 kHz and thus indicates that the PS has reached its sleep mode.
During wake-up this process is reversed: After sending a wake-up signal to the GPIO, it
waits until the PS clock is again stable at 100 MHz.

Since the clock provided by the PS depends on the power state of the PS, our design uses
the external clock provided by the PYNQ board. In contrast to the PS clock, this clock is fixed
to 125 MHz. Thus, a clock generator is needed to provide the 100 MHz system clock. This
clock is spread across multiple clock regions in order to gate certain components (green
and purple clock domain). A second clock generator is used to dynamically adjust the clock
frequency of the Crypto-IP (green clock domain).

74

The Power module logic hosts the Xilinx’s XADC macro and a logic to calculate the cur-
rent average and the maximum of the digitized values. It is explained in more detail in
Section 6.2.2.

The two timers measure the time needed to process an authenticated encryption. They are
also used to trigger the Power and Sleep module. Their exact behavior is explained in more
detail in the following sections.

6.2 Measurement Setup

6.2.1 Runtime

There are two timers in the setup: Timer 1 measures the time needed by the Crypto-IP and
its triggers are therefore located between the FIFOs and the Crypto-IP; Timer 0 additionally
includes the time needed for the bus transfers as well as possible wait cycles and thus its
triggers are located between the FIFOs and the DMA-Controllers.

Timer 1 is started by both pdi_valid and pdi_ready being high. This indicates that the
first word on the bus has been transferred (see blue data word in Figure 6.2). It is stopped
by both do_last1 and do_ready being high (see orange data word in Figure 6.2, which
indicates that the last word on the bus was successfully transmitted.

Timer 0 is started by a rising edge of the pdi_valid, which indicates that there is data
available, but not necessarily transmitted (see white data word in Figure 6.2). It is again
stopped by both do_last and do_ready being high.

6.2.2 Power and Energy

The power consumed by a device can be computed from the current I that it draws and its
supply voltage VD as P = I · VD. The energy it consumes for executing a particular task
is the integral of P over the run time. The current is measured by sensing the voltage drop
across a small shunt resistor RS . If the voltage drop is very small it can be assumed that
VD is constant. The most convenient way to measure the power consumption of the PYNQ
board is the Power Select jumper (JP5), where the user can select whether the board is
powered by the USB port or from an external source. We measure this voltage drop on an
external Printed Circuit Board (PCB), as displayed in Figure 6.3. Next, this analog value is
digitized and averaged in a dedicated measurement logic within the PL. Finally, these values

1do_last is always asserted together with do_valid

75

clk

data

last

valid

ready

Timer 1

Timer 0

Figure 6.2: AXIS handshaking: Data is transmitted, when both lines "valid" and "ready" are
high.

are transferred to the PS and analyzed. Measuring only the power consumption of the Zynq
SoC is not possible without major modifications to the board. Unfortunately, this means
we are measuring the power consumption of all devices on the PYNQ board including the
DDR memory, Ethernet controller, FTDI USB chip, audio amplifier, etc. In the following we
describe the mentioned steps in more detail and show how to deal with that error and how
it influences the measurement.

Measurement Circuit

We use the XXBX Power Shim (XBP) [44], connected to JP5, which selects the source of
the 5 Volt supply voltage (see Figure 6.3), to measure the current drawn by PYNQ. The
XBP has a 0.1 Ohm shunt resistor RS . However, that means that voltage drop across the
shunt will be very small and has to be amplified before it can be measured by an analog
to digital converter (ADC). Furthermore, the low input resistance of ADCs makes a direct
measurement unfeasible. Hence, the XBP uses a current-shunt monitor (CSM), i.e. the
INA225 from Texas Instruments. It has a programmable gain setting between 25 and 200, a
buffered output so that it can drive an ADC input, a bandwidth of 125 kHz and supports the
high-side measurements. We use ZYNQ’s own XADC to measure the output of the CSM
VCSM and set the desired gain δ using ZYNQ’s GPIO pins. The maximum analog input
voltage on PYNQ is 3.3 Volt, hence the gain must be set carefully in order not to damage
the XADC. The resolution Vres of the XADC is

Vres =
VCSMmax

2ADCbits
=

3.3 V

212
= 0.8 mV. (6.1)

76

I

5V
Conv.

JP5

Power
Select

VUSB

RS
V

S

V
D

V
CSM

Power
Reg.

ZYNQ

AGND

PYNQ

GPIO

XADC

XBP

Gain

CSM

7
 −

 1
5
 V

Figure 6.3: Block diagramm with external measurement circuit © 2018 IEEE [78]

Using a 0.1 Ohm shunt and a gain of 50, the current can be at most

Imax =
VCSMmax

RS · δCSM
=

3.3 V

0.1 Ω · 50
= 660 mA (6.2)

which is equivalent to a maximum power consumption of 3.3 Watt and measured at a reso-
lution of

Ires =
Vres

RS · δCSM
=

0.8 mV

0.1 Ω · 50
= 160µA (6.3)

which equates to 0.8 mW.

Measurement Logic (Power IP)

A VHDL module was designed to instantiate the Xilinx XADC, capture the maximum power
consumption, compute the average, and count the number of samples taken. This power
measurement IP interfaces with the PS through AXIL. Measurements can be triggered
through the hardware timers (section 6.2.1), software commands, and a push button.

The XADC is capable of approximately 1 mega samples per second (MSPS), which means,
if the Crypto-IP runs at 100 MHz, every 100 clock cycles a measurement is taken. The power
measurement IP core runs at 100 MHz which allows it to compute a new average after every
measurement as

Mk = Mk−1 +
xk −Mk−1

k
, (6.4)

where k is the measurement count, Mk is the current average and xk is the current mea-
surement. The computation of the average takes 37 clock cycles and uses a non restoring
unsigned division. As the divider uses 32-bit numbers, up to 220 measurements of 12 bits
each can be sequentially averaged without loss of precision.

77

Error Minimization

There are two kinds of biases in our setup: First, there is the additional power consumption
of the devices on the PYNQ board such as the Ethernet controller, USB chip, etc. As can be
seen in Figure 6.3, the 5 Volt input converter and the CSM are not part of that bias. Second,
also the SoC itself consumes some additional power, which again can be divided into two
parts: the PS and the rest of the PL.

PS power consumption The largest amount can be mitigated by suspending the PS. We
use the normal linux suspend-to-memory mode for that. Doing so, also disables parts of the
additional components of the board such as the Ethernet controller. When in sleep mode,
only the DDR3-RAM is kept awake for refreshing the data. It must be noted that the stock
PYNQ-Linux kernel does not support sleep mode and has to be re-compiled.

PL power consumption The second largest amount of unwanted power consumption
is drawn by the PL. We first deactivated the two data counter, introduced for debugging
in Chapter 5, page 64, and all status LEDs. Second, we gated or reduced all clocks that are
not needed during the power measurement. Figure 6.1 shows the different clock domains.
The PL uses the external 125 MHz clock provided by the PYNQ-board, as this clock source
is also stable when the PS is in sleep mode. This clock is fed to a Xilinx clocking wizard (i.e.
a clock generator), which provides three constant, synchronized 100 MHz clocks:

• The bus clock domain (shown in dark purple) used for communication, contains the
AXI-Interconnects, the DMA engines and the input part of the FIFOs. As there is no
communication between the PS and PL, when the PS is in sleep mode during our
measurement, this clock domain is gated, thus, reducing unwanted power consump-
tion.

• The measurement clock domain (shown in red) contains the components for the
measurements: two Xilinx timing-IP-cores as in [77] for timing measurements, the
power module, the sleep control unit for managing the sleep mode from the hardware
perspective, and the clocking wizard for the Crypto-IP.

• The third clock is used by this second clocking wizard.

This second clocking wizard creates the core clock that feeds the green clock domain, con-
taining the Crypto-IP. This clock domain can dynamically be reconfigured from the PS, which
is particularity useful as it enables a fast way to, first, determine the maximum working fre-
quency of a given implementation of a cipher, and second, to measure the power consump-
tion at different frequencies, thus also reducing the relative influence of the red clock domain,
as the time of measurement can be reduced and the SNR can be increased.

78

Reference Measurement and Error Correction For those components, that cannot be
switched off, or suspended, we made reference measurements to be able to subtract the
amount of power consumed by them from the total power consumption.

For the first reference measurement we measured the total power consumed by the PS
in sleep mode, the bus clock domain (purple) gated and core clock domain (green) also
manually gated. This gives us the power consumption of our measurement clock domain
(red) plus the static power of both bus clock and core clock domains as well as power
consumption of rest of the system. This measurement is called “Avg Idle off” (brown t) in
Figure 6.10.

For the second reference measurement we activated the core clock domain (green), but
did not process any data in the Crypto-IP. This adds the dynamic power consumption of an
idle Crypto-IP to our measurement. This measurement is called “Avg Idle on” (green s) in
Figure 6.10.

Measurement process

We tested all candidates in a temperature controlled room after a warm-up phase of one hour
with two different sets of test vectors. The first set contains five test vectors with each 1 kB
of associated data and 2 kB of plaintext. The second set again contains five test vectors with
each 1 kB of associated data, but 4 kB of plaintext. The values are chosen to be compatible
with the software evaluation framework SUPERCOP [8]. Additionally, larger values allow
more samples for the XADC.

A measurement cycle is started by the PS initiating a PDI (and if needed an SDI) DMA trans-
fer to the PL. It then sends itself to sleep, indicating that to the PL with a dedicated GPIO-Pin.
The sleep control unit notices that, and waits until the PS has reached its low power mode.
It then stops the bus clock domain, and enables the core clock domain ports of the FIFOs.
By doing so the Crypto-IP starts processing the data, Timer 1 and the power measurement
module get triggered and the measurement is started. While data is processed, the power
measurement module continuously calculates the average and maximum power consump-
tion. After the data has been processed, Timer 1 and the power measurement module get
triggered again, the measurement is stopped, the sleep control enables the bus clock do-
main and wakes up the PS. When the PS is fully running again, it initiates the DO DMA
transfer, verifies the data and reads out the values of the power measurement and timer
module.

The measurement cycles are repeated for each test vector. Subsequently, the two reference
measurements are taken. We repeated this measurement process at least 10 times for each
CAESAR algorithm and each frequency.

79

6.3 Results

We evaluated all working examples from Section 5.2.3 with the parameters (bus widths) de-
scribed in Section 5.3. In the following we present the performance of the ciphers in four
dimensions: area, throughput, power, and energy. While the first two are straight-forward re-
ports, the results for power are divided into two main categories: no data is being processed
(i.e. idle or stand-by power consumption), and power consumption during an authenticated
encryption. The energy efficiency of a cipher is the result of its power consumption and its
throughput.

6.3.1 Synthesis

Again, we synthesized all implementations using Xilinx Vivado 2017.2 with standard opti-
mization settings but with a target frequency for the core clock domain (green) of 100 MHz
and 200 MHz. The other clock domains were constraint to 100 MHz.

Except for Norx, all implementations met the timing requirements for 100 MHz. Norx failed to
meet the timing requirements due to high net delays in 10 out of its 1024 state registers due
to high congestion. As there is now a dedicated clock for the Crypto-IP, the usable area is
limited to the coresponding clock regions. Thus, in contrast to Chapter 5, the logic cannot be
spread across the PL, which makes routing more difficult. Nevertheless, the experimental
results showed that Norx runs stable at 200 MHz and therefore can be included into our
benchmarking. This also supports the results of [21].

Table 6.1 shows the resource utilization in the PL, optimized for an core clock of 200 MHz and
100 MHz. As can be seen, the difference between the 100 MHz and 200 MHz optimization
is negligible. The overhead of our measurement setup compared to the minimal setup in
Section 5.3 is about 3000 LUTs and 4000 registers.

6.3.2 Runtime

As shown in Section 3.2.2, the interface has a huge influence on the implementation results
in terms of area and speed. For an indication of whether a hardware implementation, es-
pecially considering the overhead of the API and the data transfer, is suitable for real world
scenarios, we compare the runtime of the non optimized software reference implementa-
tions executed on the PS with the runtime of the hardware implementations being executed
in the PL and called from the PS for the same test vectors. The hardware performance
measurement therefore includes all data transfers and function calls. All hardware clocks
are fixed to 100 MHz. Testvectors include empty messages (ε-string), single and multi byte

80

Table 6.1: Resource utilization of the PL as depicted in Figure 6.1 including the correspond-
ing CipherCore optimized for an AEAD clock of 100 MHz and 200 MHz.

Resources 100 Mhz Resources 200 Mhz
Algorithm LUT Regs. BRAM LUT Regs. BRAM

Acorn32∗ 7 328 10 328 18.5 7 328 10 328 18.5

Aegis128 16 652 13 105 66.5 16 695 13 126 66.5

Aegis128l 16 360 14 746 126.5 16 377 14 746 126.5

Aegis256 18 539 13 881 66.5 18 574 13 902 66.5

AES GCM 9 152 10 824 22.5 9 168 10 824 22.5

Ascon 7 713 10 358 18.5 7 713 10 358 18.5

Colm 13 846 12 149 22.5 13 844 12 149 22.5

Deoxys-I 9 440 11 058 18.5 9 454 11 058 18.5

Deoxys-II 10 662 11 274 18.5 10 681 11 274 18.5

JAMBU-AES 7 690 10 159 22.5 7 713 10 159 22.5

NORX 13 792 16 322 126.5 13 788 16 322 126.5

Morus 16 580 15 542 128.0 16 595 15 542 128.0

OCB† 10 390 11 079 22.5 10 424 11 079 22.5

SILC 9 353 10 682 18.5 9 368 10 682 18.5

Tiaoxin 16 152 15 269 126.5 16 169 15 269 126.5

dummy1 7 341 10 885 18.5 7 343 10 885 18.5

* stalls on empty input
† including 4 latches

81

messages up to 3072 bytes. As the maximum transmission units for Ethernet frames is
1500 bytes this seems reasonable. The testvectors are composed of an equal amount of
plaintext and AD.

Software Reference Figure 6.4 shows the performance of the reference implementation
in C of all ciphers; to better distinguish between the fast ciphers Figure 6.5 zooms in by a
factor of 10. As can be seen, the runtime of the reference implementation increases almost
linearly with the amount of processed data. This was expected. The results can be grouped
into three subgroups:

First, and most notable in Figure 6.4 are the slow Acorn32 and the AES-GCM reference im-
plementations. AES-GCM relies heavily on the (galois field) multiplication. In the reference
implementation this is implemented strait forward and not as t-tables. The reason for the
poor performance of the lightweight cipher Acorn32 is its bit-serial algorithm. As the refer-
ence implementation does not make use of slice-wise calculations, only one bit at a time
can be calculated.

Next, the Deoxys family can be grouped in Figure 6.4 and Figure 6.5. Both members of
the family need multiple instances of an AES-based block cipher, but with a simplified key-
schedule. As Deoyxs-II is a two-pass cipher, it needs twice as long as Deoxys-I for process-
ing the plaintext. The time needed for processing the AD stays the same.

The remaining ciphers form the last group. They are very similar in terms of their runtime;
only Ascon and Colm are slightly slower.

SUPERCOP [8] reports results in terms of cycles/byte processed on a Cortex-A9 (h2tegra)
processor for the same algorithms and sizes of test vectors (64 kB, 3072 kB), which are
between 2.45 and 7.42 times better than ours. On the Cortex-A9+NEON (odroid) platform
they are between 3.14 and 14.62 times better. Upon closer inspection of the SUPERCOP
results, it became clear that these are results of 64-bit optimized or, in the case of odroid,
NEON optimized codes.

82

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

512 1,024 1,536 2,048 2,560 3,072
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

·105

Message Length (Associated Data plus Plaintext) in Bytes

[u
s]

Figure 6.4: Latency of AEAD function called in software: Encryption is performed in software.
Time is measured on the PS including all function calls.

83

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

512 1,024 1,536 2,048 2,560 3,072
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

·104

Message Length (Associated Data plus Plaintext) in Bytes

[u
s]

Figure 6.5: Latency of AEAD function called in software (zoomed in): Encryption is per-
formed in software. Time is measured on the PS including all function calls.

84

Python Driver Figure 6.6 shows the time needed by the corresponding hardware imple-
mentation if called from PYNQ’s python framework. The runtime of the hardware implemen-
tation is more or less independent of the amount of processed data and only depends on
the used python driver.

This is because configuring the DMA controllers in python takes more time than processing
the data in hardware. The difference between the old legacy driver used in [77] and the
current DMA driver used in [78] is quite significant. The reason for this are more checks in
the current driver. It therefore is more robust, but also slower [57].

Nevertheless, the hardware implementation combined legacy driver outperforms most refer-
ence implementations when more than 128 bytes are processed. However, as the overhead
is still the dominant factor, the python framework is only suitable for testing the PL and
the different CipherCores for functionality, but not suitable for a high-performance hardware
accelerator or benchmarking.

C Driver Therefore, at the costs of ease of implementation, we use a C driver for further
benchmarking. Figure 6.7 shows the time needed for the same tasks as in Figure 6.6 but
with a driver written in C. As can be seen, the time increases linearly with a constant offset.

To further evaluate the different implementations, we used the two timers in the PL: Timer 1
measures the time needed for authenticated encryption of a message in the AEAD-IP, from
fetching data out of the PDI-FIFO to, and including, sending them back to the DO-FIFO. As
it is decoupled from the PS by the FIFOs, there is no influence from the DMA controllers.
The time measured confirms the execution time precalculated by the authors. The results
are shown in Figure 6.8. Again, the processing time increases linearly with the amount of
processed data, as expected.

Comparing the values from Figure 6.7 and 6.8 shows that the communication overhead is
constant and about 7.2 us. Thus, the CAESAR Hardware API is also suitable for a generic
hardware accelerator.

Timer 0 measures the time from DMA controller to DMA controller. Thus, it includes the
communication overhead from the perspective of the PL. As the difference between the two
timers is neglectable, only the values of of Timer 1 are shown in the diagram. The difference
is the expected delay of a few clock cycles caused by the FIFOs. The two values will only
differ significantly, if there is a backpreassure from either side. As this is not the case, our
setup is suitable for benchmarking the cipher implementations.

85

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560
[u
s]

512 1,024 1,536 2,048 2,560 3,072

60

80

100

Message Length (Associated Data plus Plaintext) in Bytes

D
M
A

d
ri
v
er

L
eg

a
cy

D
M
A

d
ri
v
er

Figure 6.6: Latency of AEAD hardware with FIFOs, DMA, and function calls in in Python:
Encryption is performed in hardware at 100 MHz. Time is measured on the PS
including the time needed for DMA transfers and function calls.

86

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

512 1,024 1,536 2,048 2,560 3,072
0

10

20

30

40

50

60

Message Length (Associated Data plus Plaintext) in Bytes

[u
s]

Figure 6.7: Latency of AEAD hardware with FIFOs, DMA, and function calls in in C: Encryp-
tion is performed in hardware at 100 MHz. Time is measured on the PS including
the time needed for DMA transfers and function calls.

87

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

512 1,024 1,536 2,048 2,560 3,072
0

10

20

30

40

50

60

Message Length (Associated Data plus Plaintext) in Bytes

[u
s]

Figure 6.8: Latency of AEAD hardware: Encryption is performed in hardware at 100 MHz.
Time is measured on the PL taking only the latency in the AEAD-IP into account
(Timer 1).

88

C Python
(LegacyDMA)

SW

101

102

103

104

105

106

L
a
te
n
cy

[u
s]

Figure 6.9: Latency for encrypting 1 kB of Associated Data and 2 kB of plaintext in hardware
with the C DMA driver and the python LatencyDMA driver; and in software (SW)

Comparison Figure 6.9 shows the latency for encrypting 1 kB of Associated Data and
2 kB of plaintext with different configurations: As previously shown, using a hardware im-
plementation together with the C-DMA driver results in the lowest latency. Using PYNQ’s
LatencyDMA Python driver still provides a notable speed-up compared to the software im-
plementations. However, there is no variance between the ciphers because the Python calls
are the dominant factor. The software (reference) implementation is by far the slowest. The
asymmetric skew is based on the outliers of the AES-GCM, Acron, and the Deoxys family.

6.3.3 Power Consumption

Figure 6.10 shows the measured maximum and average power consumption of the whole
PYNQ board (system power) when the Crypto-IP is performing authenticated encryptions at
200 MHz and the ARM core is asleep. Only the core and the measurement clocks are on.
The values are based on at least 10 measurement cycles each containing 10 authenticated
encryption processes. The ciphers can be clearly distinguished according to their power
consumption.

89

ac
or
n3
2

ae
gi
s1
28

ae
gi
s1
28
l

ae
gi
s2
56

ae
sg
cm

as
co
n

co
lm

de
ox
ys
I

de
ox
ys
II

ja
m
bu
-a
es

no
rx

m
or
us

oc
b

si
lc

ti
ao
xi
n

du
m
m
y1

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

S
y
st

em
P

ow
er

[W
at

t]

Max Power Avg Power Avg Idle off Avg Idle on

Figure 6.10: Measured maximum and average system power during authenticated encryp-
tions at 200 MHz and reference measurement with core clock turned off and on

90

Idle Power Consumption In the figure, the average power consumption when the Crypto-
IP is idle is displayed in green (s) and the average power consumption when the core clock
ia gated is shown in brown (t). It can be seen, that with a disabled core clock, the power
consumption of the system is roughly constant and only slightly depends on the different bus
sizes. This means that our presented measurement setup is reliable and the differences in
the other measurements is based on the individual cipher implementations. If the core clock
is turned on, we expected a correlation between the power consumption and the area. When
comparing Figure 6.10 with Table 5.2, this seems true for most of the ciphers. However,
there is an exception for Silc, which has a notably higher idle power consumption than the
rest. This effect can also be seen in simulation, as the 128 bit bdo line is toggling regardless
whether there are valid data on it or not. Presumably the underlying round function is not
stopped. While this seems like a good optimization in terms of resources, it is bad for power
and energy consumption. Figure 6.11 visualizes this effect. It shows the calculated power
dissipation Pcore = Pidle, on − Pidle, off of the individual ciphers in relation to the number of its
FFs.

Power Consumption during an Authenticated Encryption The average system power
and the maximum system power are displayed in red and blue in Figure 6.10. This is the
power the systems draws during an authenticated encryption and it is a metric for the ef-
ficiency of a cipher and its implementation. The error bars show the Standard Errors of
Means (SEMs):

σx̄ =
σ√
n
, (6.5)

where σ is the standard deviation, x̄ is the sample’s mean and n is the sample size. It mea-
sures the sample-to-sample variability of the sample means and predicts the accuracy of
the sample means, which is the average power consumption. As described in Section 6.2.2,
the XADC has a sample rate of 1 MSPS, which means that if the Crypto-IP runs at 200 MHz,
every 200 clock cycles a measurement can be taken. This seemed enough for the original
publication in [78], as the examined implementations were slow enough: In average 10 to 40
measurements were taken. Unfortunately, for the highspeed implementations of the Aegis
family only up to four measurements and for Norx, Morus and Tiaoxin only one measure-
ment per run were possible. Therefore, their SEMs are higher, but still small enough to allow
for a meaningful comparison.

Figure 6.12 shows the raw average system power consumption at different core frequencies.
While generally there is an increasing trend, the overall power consumption has its minimum
at 150 MHz. This is based on the fact, that the complete system including the clock genera-
tors with the external 125 MHz clock seems to work most efficient at 150 MHz. To show the
actual power needed by the AEAD-Core itself, we subtracted our idle reference measure-
ment with the core clock off (brown t) from the average power consumption. Thereby, the
power consumption of the measurement setup, the buses, the PS, and the clock generators
cancels out. Figure 6.13 shows this calculated core power consumption in relation to the
frequencies. Now, the expected increasing trend is visible.

91

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

N
u
m
b
er

of
F
li
p
F
lo
p
s

Number of Flip Flops Power Dissipation Pcore

ac
or
n3
2

ae
gi
s1
28

ae
gi
s1
28
l

ae
gi
s2
56

ae
sg
cm

as
co
n

co
lm

de
ox
ys
I

de
ox
ys
II

ja
m
bu
-a
es

no
rx

m
or
us

oc
b

si
lc

ti
ao
xi
n

du
m
m
y1

0

20

40

60

80

100

120

202

P
ow

er
[m

W
]

Figure 6.11: Flip-Flop and core power relation

92

It can be seen, that Silc again has the highest power consumption and the steepest slope.
This is expected as its power consumption is dominated by (unneeded) switching activities.
Next, Mours, Norx, Tiaoxin and Aegis128l have a notable high power consumption. The
rest of the Aegis family, COLM, OCB and the Deoxys family perform better, but still have
a higher power consumption than AES-GCM. Only Jambu-AES, Ascon, Acorn (and the
dummy cipher) perform better than AES-GCM – the gauge of the CAESAR competition

6.3.4 Energy Consumption

Especially for lightweight applications not only the power consumption is crucial, but also
the total energy needed. It depends on the power consumption and the runtime. Thus, it is
a measure for the efficiency of a cipher implementation. As Timer 1 measures the time t for
performing an authenticated encryption with 4096 bits of plaintext and 1024 bits of AD, the
energy E can be calculated as:

E = Pavg · t (6.6)

To be comparable with other works, we normalized the energy and calculate the energy per
bit ratio:

Ebit =
E

5120
=
Pavg · t
5120

(6.7)

Figure 6.14 shows the energy per bitEbit consumed at different frequencies. As can be seen,
the complete system works more efficient at higher frequencies, as the runtime decreases.
This was expected: First, like shown in Table 6.1, the utilization of the PL is roughly the
same for a target frequency of 100 MHz and 200 MHz. Second, as shown in Figure 6.13,
the power consumption does not double for a doubling of the frequency.

Comparing the individual ciphers, it is notable that Deoxys-II has a very high energy per
bit ratio compared to the other ciphers. This was expected, as Deoxys-II first authenticates
the complete message (including associated data and plaintext) and uses the generated
tag as the key for the encryption of the plaintext. (It was the only remaining two-pass al-
gorithm of the contest.) Thus, Deoxys-II has a very long runtime, compared to the other
ciphers. Next, Jambu’s Energy per bit ratio is also very high. This is based on the fact,
that the underlying cryptographic primitive is a complete AES core, but only half of the AES
block-size can be used to process the input. This trend can also be seen in Figure 6.13. Con-
cerning the CAESAR finalists, the aegis family performs best in terms of energy efficiency.
Deoxys-II, Colm, and Ascon have a higher energy per bit ratio than AES-GCM. Especially
for a lightweight winner, this is not ideal. Although the power consumption for Ascon is very
low, the high energy per bit ratio results from the long runtime of Ascon. The best energy per
bit ratio has Morus, followed by Tiaoxin and Norx. However, none of the latter candidates
made it into the final CAESAR portfolio.

93

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

100 125 150 175 200
1.05

1.10

1.15

1.20

1.25

1.30

Core Frequency [MHz]

A
ve
ra
ge

S
y
st
em

P
ow

er
[W

at
t]

Figure 6.12: Measured average system power consumption

94

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

100 125 150 175 200

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Core Frequency [MHz]

A
ve
ra
ge

C
o
re

P
ow

er
[W

at
t]

Figure 6.13: Calculated core power consumption

95

Acorn32 v1.1 (acorn128v2) Deoxys-II v3.0 (deoxysii128v141)

AEGIS-128 v1.1 (aegis128) JAMBU-AES v1.0 (aesjambuv2)

AEGIS-128l v1.1 (aegis128l) NORX v3.0 (norx6441v3)

AEGIS-256 v1.1 (aegis256) Morus v2.0 (morus1280128v2)

AES-GCM v1.0 (aes128gcmv1) OCB v1.0 (aeadaes128ocbtaglen128v1)

ASCON v2.0 (ascon128v12) SILC v2.0 (aes128n12t8silcv2)

COLM v1.0 (colm 0) Tiaoxin (tiaoxinv2)

Deoxys-I v3.0 (deoxysi128v141) dummy1 (dummy1)

100 125 150 175 200

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Core Frequency [MHz]

S
y
st
em

E
n
er
g
y
/
b
it

[m
J
/b

it
]

Figure 6.14: Total energy per bit

96

6.4 Consequences for Ciphers

The final portfolio for the CAESAR competition consists of Ascon and Acorn as primary and
secondary choice for lightweight applications; Aegis128 and OCB without a preference for
high-performance; and Deoxys-II and COLM as primary and secondary choice for defense
in depth applications. Unfortunately, there is no explanation of the CAESAR committee on
how and why they choose these candidates in 2019. The results of this chapter were pre-
published in 2018. In the following, we will analyze, whether the decisions made, are backed
up by our data from 2018.

Table 6.2 summarizes the synthesis results, the runtime (time t), the estimated power (Est.
Power) which Vivado reports under the assumption that the PS uses 85% of the power,
the measured power (Act. Power) with the PS asleep and only the core and measurement
clocks running, and the calculated energy per bit Ebit for an authenticated encryption of
1024 bytes of AD and 4096 bytes of plaintext.

The choice for the lightweight applications seems reasonable regarding the resources. The
only other candidate that needs a similar amount of resources is Jambu-AES, which per-
forms much worse in terms of runtime. However, from a pure hardware perspective, the
ranking in primary and secondary choice is not justifiable, as Acorn performs better than As-
con in all categories; especially regarding power and runtime, and thus also energy, Acorn
seems the better choice for a lightweight candidate. Further, they are based on two totally
different primitives: Acorn is based on a stream cipher construction, while Ascon is based
on a sponge construction. However, considering the fact that the used hardware implemen-
tation of Acorn stalls for empty inputs and –more severe– has problems for inputs larger than
2048 bytes, should disqualify Acorn to be a finalist. Even though these problems are most
certainly solvable without changing the results very much, it still contradicts the committee’s
selection criteria. Thus, considering that its author is part of the committee, Acorn becoming
a finalists left a stale aftertaste.

The choice for the high-performance applications is not clearly comprehensible either. Aegis-
128 performs very well in terms of time, power, and energy, while still being reasonable in
terms of resources. However, the other family members perform similarly. On the contrary,
OCB is a magnitude slower, and thus not as energy efficient as the Aegis family. Its ad-
vantage is the smaller amount of needed resources, but for high-performance applications,
the runtime should be key. Morus was dropped because there was no running implemen-
tation. However, this does not hold true for Norx and Tiaoxin, which also would have been
very promising candidates. It remains unclear, why they were dropped, as at least Norx is
sponge-based and thus, very well understood.

The focus for the defense in depth choice was the nonce-misuse mode of Deoxys-II and
Colm, which comes at the cost of resources and time.

97

Table 6.2: Summary of the results for the PYNQ-Overlay including crypto cores optimized
for 200 MHz and the corresponding results for processing 5120 bytes

Resources Power [W] Time Energy/bit
Algorithm LUT Regs. BRAM Est. Act. [us] [mJ/bit]

Acorn32∗ 7 328 10 328 18.5 1.624 1.135 6.94 1.538

Aegis128 16 695 13 126 66.5 2.127 1.188 1.74 0.404

Aegis128l 16 377 14 746 126.5 1.819 1.239 0.96 0.232

Aegis256 18 574 13 902 66.5 1.737 1.195 1.77 0.413

AES GCM 9 168 10 824 22.5 1.671 1.152 17.16 3.861

Ascon 7 713 10 358 18.5 1.628 1.144 22.65 5.061

Colm 13 844 12 149 22.5 1.798 1.186 17.95 4.157

Deoxys-I 9 454 11 058 18.5 1.74 1.175 24.33 5.582

Deoxys-II 10 681 11 274 18.5 1.746 1.200 43.43 10.177

JAMBU-AES 7 713 10 159 22.5 1.642 1.156 32.30 7.290

NORX 13 788 16 322 126.5 3.019 1.251 1.26 0.308

Morus 16 595 15 542 128.0 1.761 1.267 0.99 0.245

OCB† 10 424 11 079 22.5 1.687 1.180 19.85 4.574

SILC 9 368 10 682 18.5 1.757 1.319 16.21 4.176

Tiaoxin 16 169 15 269 126.5 1.969 1.244 1.04 0.253

dummy1 7 343 10 885 18.5 1.632 1.141 25.55 5.695

* stalls on empty input
† including 4 latches

98

7 Case Studies

In the following, we want to go one step beyond. First, we present a mixed hardware soft-
ware codesign setup, as an alternative to the API. We show, that this technique allows to
reduce the hardware overhead, as one communication channel can be saved. Additionally,
we point out, that on loosely coupled systems like SoCs, the possible savings in hardware
are limited to the basic building blocks of the cipher, as otherwise the communication over-
head becomes the dominated factor. Next, we demonstrate the advantages of the internal
interface of the API. We embed the CipherCores of two selected examples into the com-
munication structure of a Network on a Chip (NoC). Finally, we combine ciphers equipped
with the CAESAR and LWC API with a Physical Unclonable Function (PUF). There, we
demonstrate the flexibility of having different ciphers or implementations of them in IoT ap-
plications.

7.1 Enhancing Authenticated Encryption with Hardware
Software Codesign Techniques

The following section is a summary of “Michael Tempelmeier, Maximilian Werner, and Georg
Sigl. Using hardware software codesign for optimised implementations of high-speed and
defence in depth CAESAR finalists. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 228–237, 2019”. In this work, we present five
optimized implementations on a Xilinx-Zynq7200 SoC for the high-speed and defense in
depth finalists of the CAESAR competition. We eliminated the standard interfaces used
during the competition. Through optimized interfaces between hardware and software we
reduced the used programmable logic, while maintaining high performance.

7.1.1 Setup

Figure 7.1 shows the setup. In contrast to the CAESAR-API, there are no dedicated chan-
nels for SDI, PDI, and DO, but only one data channel per direction and one configura-
tion channel. As one Xilinx’s DMA controller can serve memory-mapped-to-stream (MM2S)
reads and stream-to-memory-mapped (S2MM) writes, we only need one controller for our

99

Cortex A9 ARM Cores

AXIS-FIFO

S_AXI_ACP

M_AXI_GPO

AXI-Interconnect

S00_AXI M00_AXI

S01_AXI

AXI Direct Memory Access

M_AXIS_MM2S

S_AXI_LITE

M_AXI_MM2S

M_AXI_S2MM

AXI-Interconnect

M00_AXI S00_AXI

M01_AXI

S_AXIS_S2MMAXIS-FIFO

Cipher Core

S_AXI_LITE

S_AXIS

M_AXIS

PSPL

Figure 7.1: Hardware software co-design setup © 2019 IEEE [80]

two communication channels. The DMA controller acts as master (M_AXI) for the commu-
nication with the ARM Cores (memory-mapped side). The read and write channels are
combined in an AXI-interconnect module and connected to the Accelerator Coherency Port
(ACP), which is the fastest communication port of the ARM Cortex. The Cipher Core re-
ceives data on its slave port (S_AXIS) from the DMA controller and sends data back on its
master port (M_AXIS). An AXIL interconnect is used to configure the DMA controller and
the Cipher Core. It is controlled by the general purpose output (GPO) of the ARM Cortex.

Table 7.1: Resource utilization of the setup depicted in Figure 7.1

Module LUTs FFs BRAM

DMA 1 666 2 281 3
Interconnect 0 519 693 0
Interconnect 1 561 654 0
FIFO 0 49 126 1.5
FIFO 1 50 126 1.5∑

2 845 3 880 6

Table 7.1 shows the resource utilization needed for the interconnects. As can be seen, only
2/3 of the resources of the minimal 32 bit setup, as presented in Table 5.4 in Section 5.3 are
needed.

For the software side we used the official software API. By doing so, the used implementa-
tion (software vs. hardware software co-design) is abstracted for the user and either imple-
mentation can be plugged in. Due to the loosely coupled PS-PL-communication, the com-
munication overhead plays an important role. To minimize the communication overhead, we
decided to process the basic building blocks of a cipher either in hardware or in software,
and not to split off individual subfunctions. Thus, we transfer data only once and not multiple
times between the PL and PS.

In particular, the basic building blocks of the ciphers are the round function, the tag gen-
eration and verification and the padding. The round function is the computational most
expensive part of a cipher and therefore assigned to the hardware. Additionally, parallelisms
can be exploited much better in hardware. While the padding rules of the ciphers are very

100

0 512 1,024 1,536 2,048 2,560 3,072
0

50

100

150

message size in byte (AD+MSG)

ti
m
e
in
u
s

Aegis -128 Aegis -256
Morus-640 Morus-1280

(a) Bare-metal results, running at 650 MHz

0 512 1,024 1,536 2,048 2,560 3,072
0

50

100

150

message size in byte (AD+MSG)

ti
m
e
in
u
s

Aegis -128 Aegis -256
Morus-640 Morus-1280
Colm

(b) Linux results, running at 650 MHz

Figure 7.2: ARM CORTEX-A9 software performance at 650 MHz

simple, their implementations in hardware are quite expensive, which is why this part is more
suitable for software than for hardware. For the tag generation and verification it depends
on the cipher: the tag can be a part of the state after the final round and comes for free;
it can involve another pass of the block cipher, or there might be the need for some dedi-
cated function. Therefore, we implement it depending on the cipher either in hardware or in
software.

7.1.2 Results

We implemented two high-speed families and one defense in depth candidate of CAESAR
using hardware software co-design techniques to minimize the overhead of the hardware
API and to optimize the overall performance on a Xilinx Zynq-7020 SoC. As a reference, we
use the already presented software and hardware implementations of Chapter 6. Figure 7.2
shows the runtime performance of the Aegis and Morus family as a bare-metal and linux
application on the PS of the PYNQ Z1 board. The performance of Colm is only displayed for
the linux application, as it relies on software libraries that are not available for ARM Cortex A9
bare-metal applications. Figure 7.3 shows the performance of the available, corresponding
hardware implementations. The numbers are the same as in Figure 6.5.

Table 7.2 lists the resources needed for our implementations. They are all designed to
support a frequency of at least 150 Mhz. The hardware software co-design implementation
of the Ageis and Morus family needs only about 50 % of the slices of a pure hardware
implementation. The amount of FFs is slightly increased, while there are drastic savings in
the number of LUTs.

Due to the high degree of parallelism, the hardware software co-design implementation of
Colm has a significant higher area footprint compared to the one presented in Section 5.3.

101

0 512 1,024 1,536 2,048 2,560 3,072

20

40

60

message size in byte (AD+MSG)

ti
m
e
in
u
s

Aegis-128
Aegis-256
Colm
Morus-1280

Figure 7.3: Latency of hardware implementations including the CAESAR-Hardware-API,
running at 100 MHz on a Zynq-7200; DMA calls are performed in C.
Note: The plot for Morus was not presented in [80] because there was no pub-
lished working version of Morus at that time.

Table 7.2: Resource utilization of the CipherCores

Implementation HW/SW Hardware
LUT FF LUT FF

Aegis-128 5 199 2 656 9 048 1 618

Aegis-256 6 247 3 044 10 931 2 394

Morus-640 1 995 2 016 n.a. n.a.

Morus-1280 3 558 3 693 7 473 2 003

Colm 46 760 19 715 7 725 2 876

102

0 512 1,024 1,536 2,048 2,560 3,072

20

40

60

message size in byte (AD+MSG)

ti
m
e
in
u
s

Aegis -128 Aegis -256
Morus-640 Morus-1280
Colm

Figure 7.4: Latency of HW/SW implementations: Hardware is running at 150 MHz, software
at 650 MHz.

Figure 7.4 summarizes the times needed by all our implementations for an authenticated
encryption at different message sizes. Compared to pure software implementations, this is
a speed-up of factor 15 for Colm, a factor of up to 1.9 for Morus, and a factor of up to 2.7 for
Aegis.

7.2 Securing Network-on-Chip Applications

The following section is a summary of “Siavoosh Payandeh Azad, Michael Tempelmeier,
Gert Jervan, and Johanna Sepúlveda. CAESAR-MPSoC: Dynamic and efficient MPSoC
security zones. In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 477–482, 2019”.

Dynamic security zones in Multiprocessor System on Chip (MPSoC) have been used to
isolate sensitive applications from possible attackers. These physical wrappers are usu-
ally configured through programmable hardware firewalls. Previous works have shown the
efficiency of this security mechanism against a wide variety of attacks. However, the secu-
rity zone configuration is performed in an unprotected way, exposing the system to attacks
caused by rogue firewall update. In this work we propose CAESAR-MPSoC, an enhanced
MPSoC able to ensure the protected configuration of the firewalls through encrypted and
authenticated reconfiguration packets. To this end, we present two contributions. First, we
integrate two CAESAR hardware IP cores, ASCON and AEGIS, into a MPSoC. Finally,

103

MemDSP

CPU

I/O

I/O

Figure 7.5: MPSoC: The individual tiles are connected to a 2D mesh NoC.

we evaluate the area and cost of CAESAR-MPSoC. The results show that our solution is
feasible and effective to allow the protected and efficient security zone configuration.

7.2.1 Multiprocessor Systems on Chips

MPSoCs are an extension of SoCs: A typical FPGA-SoC consists of a PL and a PS. Fig-
ure 7.5 shows the structure of a typical MPSoC. It consists of a number of heterogeneous
PSs, on-chip memories, Inputs/Outputs (IOs), and dedicated hardware accelerators. Typi-
cally, there is no dedicated PL. User specific logic must be integrated during manufacturing.
These individual components are called tiles connected by a NoC. There are different typolo-
gies for NoCs. The most prominent ones are meshes, rings, tori, and octagons. However,
more complex structures like stacked NoCs are possible [32]. Each tile has a Network Inter-
face (NI) to connect to a router of the NoC.

7.2.2 Attacks on Networks on Chips

User specific tiles, or user specific software running on one of the tiles, pose a serious threat
to the whole MPSoC. Malicious code can allow an adversary to take over the complete
system. Most works assume the NoC to be trusted and instantiate firewalls between the
routers and tiles [72, 73, 14, 28].

In more sophisticated NoCs, the routers (especially their routing schemes) can be reconfig-
ured to improve overall performance. This introduces a new attack vector. Miss-configured
routers can be exploited in various ways: simplest the routing scheme can be deactivated.

104

CryptoCore

Firewall

FIFOFirewall

Firewall

FIFO

Controller

Packetizer

Depacketizer

to NoC

from NoC

from Tile

to Tile

Figure 7.6: CAESAR equipped Network Interface

As a consequence the complete system stalls. Only the works of [2], [11], [74] consider
the NoC as a possible malicious component. However, the proposed security mechanisms
of [2] and [11] are based on XORing the plain-text with a static key throughout the lifetime
of the NoC and thus must considered as beeing broken by design. In [74] an encrypted
tunnel-based communication was introduced, but without authentication. In contrast, we
propose a CAESAR-based security concept for MPSoCs that allows for both: authenticity
and secrecy. Furthermore, we use the internal interface of the CAESAR-API. Thus, the
used cryptographic algorithm and implementation is exchangeable. Finally, we present a
proof-of-concept analysis with the CAESAR finalists aegis and ascon and show the appli-
cability for high-speed and lightweight MPSoCs.

7.2.3 CAESAR Network Interface Reconfiguration

Figure 7.6 depicts the block diagram of the CAESAR-NI. We only use the CryptoCore
without the API. The CryptoCore is shared between the packetizer and depacketizer units.
This means that the same NI cannot be receiving and sending reconfiguration packets at
the same time. As reconfiguration occurs rarely, this is not an issue. Upon receiving a
reconfiguration packet, the NI decrypts and authenticates the reconfiguration messages and
updates its firewalls.

In this work we considered a 4 × 4 wormhole switching network based on Bonfire-frame-
work [67]. Each router’s FIFO has a 4 flit deep buffer and the network interface has a
32 flit deep buffer in each direction. The network has been partitioned into three security
zones, where each zone is managed by a single security manager. In each zone, a master
node broadcasts the reconfiguration package to its zone. The size of the packet payload is
constrained to 128 bits which reconfigures only a single firewall entry.

105

Table 7.3: Area overhead evaluation

Combinatorial Sequential Total Overhead
(µm2) (µm2) (µm2) (%)

Baseline 27 316.8 29 185.2 56 502.0 –

CAESAR (AEGIS) 176 001.3 37 389.2 213 390.6 277.6

CAESAR (ASCON) 34 134.5 33 008.6 67 143.2 18

Table 7.4: Critical path overhead evaluation

Critical Path Delay (ns) Overhead (%)

Baseline 4.08 –

CAESAR (AEGIS) 4.81 17.8

CAESAR (ASCON) 4.04 –

7.2.4 Results

The experiments show that reconfiguration of the baseline1 system takes 1840 clock cycles
on average. However using AEGIS core, it takes 2064 cycles on average to reconfigure
the network, considering all different traffic patterns. At the same time the average network
reconfiguration time for ASCON is 2260 cycles. Which means that ASCON is on average
10 % slower than AEGIS.

Using high-speed Aegis, the overall latency for normal traffic and reconfiguration traffic in-
creases by 41 % and 12 %, respectively. Using lightweight Ascon, the overall latency for
normal traffic and reconfiguration traffic increases by 84 % and 23 %, respectively. For other
traffic pattern, the difference between the two ciphers decreases2. Table 7.3 shows the area
overhead for a 4× 4 MPSoC. As expected, the overhead of the high-speed cipher Aegis is
far grater than the lightweight cipher Ascon. However, it also shows that the security over-
head – especially for Ascon – is still tolerable. Table 7.4 shows the impact of both ciphers
on the critical path. Ascon has no impact. Aegis’s impact is acceptable.

Using the internal interface of the CAESAR-API other CAESAR or LWC implementations
can be tested in future works.

1This means no other traffic is involved.
2Exact numbers can be found in [64].

106

7.3 Authenticated Encryption based on Physical Unclonable
Functions

The following section is a summary of “Christoph Frisch, Michael Tempelmeier, and Michael
Pehl. PAG-IoT: A PUF and AEAD enabled trusted hardware gateway for IoT devices. In
2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 500–505, 2020”.

Low-cost cryptographic security solutions are essential to protect resource-constrained de-
vices or their respective data in the emerging IoT. By connecting an ever-increasing amount
of “things” such as sensors or various embedded devices, the IoT has emerged along with
new benefits and attack vectors. In this network of devices, IoT gateways serve as a con-
nection point between the various end nodes like sensors and actuators on one side, and
a cloud or users on the other side. The gateways control the data flow while also providing
security features such as authentication and encryption. Hence, it is important to find secure
realizations for such gateways which at the same time are low-cost.

Besides lightweight ciphers, PUFs can also be valuable in the IoT setting [13]. They are
promising security primitives because they provide a low-cost and universally feasible an-
chor of trust in hardware, e.g. by storing device-unique keys [56]. In comparison to secure
non-volatile memory (NVM), PUFs additionally are not susceptible to attacks when turned
off and they are even feasible for small technology nodes.

We propose a novel low-cost realization of a secure gateway that combines PUF with AEAD.
Unlike [25], which proposes a PUF protocol based on an AEAD scheme, this work utilizes
the associated data in conjunction with a PUF.

7.3.1 Physical Unclonable Function

During the manufacturing process of a device there are unpredictable and uncontrollable
variations. This causes a fingerprint-like, unique, and unpredictable characteristic for each
device. A PUF utilizes this aspect by measuring a device-specific response. The measure-
ment result, and thus the response, depends on the intrinsic process variations as well as on
a possibly applied challenge which configures the PUF. For the approach presented in this
work, the PUF is not limited to a specific PUF primitive or a certain amount of possible chal-
lenges. We only require that the PUF responses are different for each user who connects
to our trusted hardware gateway. These different responses per user can be achieved by
a kind of virtualization of the PUF: Either a separation of the challenge-response space for
different users for Multi-Challenge PUF (MCPUF) or a segmentation of the address space
of a Single-Challenge PUF (SCPUF) or a combination of both solves this problem.

107

SDI-Wrapper

ECC

PUF

Crypto Core

Po
st

-P
ro

ce
ss

or

Pr
e-

Pr
oc

es
so

r

FIFO
PAG-IoT
controller

decrypted
message

encrypted
message

co
p
y

of

as

so
ci

at
ed

 d
at

a

Figure 7.7: PAG-IoT hardware setup

We select an XOR SUM-PUF [95] for our proof-of-concept implementation, which is an
MCPUF. Because a PUF response varies slightly due to noise, operation conditions, and
aging, usually a helper data algorithm with an error correcting code (ECC) is employed to
reliably reproduce the original PUF response. This post-processing step is necessary for
PAG-IoT, such that we briefly recall the most important aspects:

1. A sufficient amount of PUF response bits must be generated. For MCPUF, a challenge
is used as a seed, e.g., of a suitable LFSR to derive more challenges. This sequences
of challenges defines the overall PUF response.

2. In the enrollment phase, helper data are determined. Basically, the helper data ensure
that later on a key can be reproduced reliably. In [65], several designs for helper data
algorithm (HDA) are discussed.

3. In the reproduction phase, the helper data map the errors in the reproduced PUF
response to a codeword, such that error correction can be applied. Finally, the original
secret is derived.

7.3.2 Hardware Setup

The cryptographic heart of the PAG-IoT (PUF and AEAD enabled trusted hardware gateway
for IoT devices) consists of a PUF for the key generation and an AEAD module. The purpose
of the AEAD module is twofold: First, it is used for normal encryption, decryption, and
authentication of messages. Second, the challenge and the helper data act as AD. As
helper data are the only input an attacker can control, their integrity must be enforced to
mitigate attacks on the PUF.

108

Again, the CAESAR-API is used in our design. By doing so, the AEAD algorithm is inter-
changeable. The PAG-IoT controller extracts the AD from the data stream. It then uses
the AD to derivative a challenge for the PUF and to provide the helper data for the error
correction module. This modules generates the cryptographic key from the PUF’s response.
The SDI-Wrapper adds the Load Key instruction and sends the package to the AEAD mod-
ule. The AEAD module decrypts and authenticates the complete message and releases the
messages. If the helper data were tampered, the tag will not match and appropriate actions
can be taken.

7.3.3 Results

To demonstrate the flexibility of the CAESAR-API, we synthesized the design with three
different ciphers on a PYNQ Z1 board at 100 Mhz: Aegis [87] and Ascon [16] were chosen
as they are the high-speed and lightweight finalists of the CAESAR competition. Gimli [9]
is a round 2 NIST-LWC candidate. The latter demonstrates the benefits of the backwards
compatibility of the LWC-API. Aegis and Gimli are our own implementations from [75], Ascon
is a bug-fixed version from [26].

As can be seen in Figure 7.8, all three ciphers are a reasonable choice. They pose a trade-
off between area and latency and are in the same dimension as the other components of
the PAG-IoT.

109

S
U

M
P

U
F

S
R

A
M

P
U

F
*

[8
3]

R
O

P
U

F
[5

6]

R
ep

+B
C

H

R
ep

+L
D

P
C

[6
6]

D
S

C
+V

ite
rb

i
[3

3]

A
E

G
IS

[7
5]

A
S

C
O

N
[2

6]

G
IM

LI
[7

5]

100

101

102

103

S
iz

e
[s

lic
es

]

S
U

M
P

U
F

S
R

A
M

P
U

F
*

[8
3]

R
O

P
U

F
[5

6]

R
ep

+B
C

H

R
ep

+L
D

P
C

[6
6]

D
S

C
+V

ite
rb

i
[3

3]

A
E

G
IS

[7
5]

A
S

C
O

N
[2

6]

G
IM

LI
[7

5]

100

101

102

103

104

105

106

107

La
te

nc
y

[c
yc

le
s]

Figure 7.8: Size and latency for possible realizations of PUF, ECC, and AEAD.
∗Note that an SRAM PUF [83] is not implemented in slices but in uninitialized
BRAM on FPGAs.

110

8 The Implementer’s Point of View

Considering our experiences with implementing new cryptographic algorithms on hardware,
especially in the face of competitions with a lot of heterogeneous submissions, there are a
few points worth mentioning.

Comparing different algorithms

1. Define a common interface with a fixed, but mandatory set of functions. This means
one common bus width and keeping cryptographic functions (like padding or message
authentication) separate from protocol functions. As shown in Section 4.3.2, this is
mandatory for a clear assignment of the resources to either the CryptoCore or the
API, and thus, an independent comparison of the individual components. Further, as
shown in Section 5.3, a common bus widths prevents that different implementations
require different interconnect structures, and thus ensures that all implementations
require the same amount of external resources.

2. Define one or multiple common hardware architectures on which benchmarking is per-
formed. A loosely coupled SoC like the Zynq-7000 series has different requirements
for mixed hardware software implementations than a tightly coupled RISC-V environ-
ment. Thus, inter-platform results are hard to compare.

3. Either provide a thoroughly designed and tested (hardware) testbench, or ensure that
(hardware) implementations are actually working. Finalists that have obvious imple-
mentations flaws, like shown in Section 3.1, disqualify themselves for any kind of
benchmarking.

4. When comparing different (hardware) implementations, carefully analyze whether the
differences are in the actual cryptographic primitive, in the surrounding protocol pars-
ing, or in the system assumptions. As shown in Section 4.3.3, absolute numbers might
lead to a false impression about the (in)efficiency of an implementation.

111

Designing algorithms

1. Algorithms that need the absolute size of a message are problematic if this number
must be either determined by the implementation itself (for example, if the length in-
formation is incorporated into the tag), or if there are algorithmic dependencies on
the messages size. Both result in a counter. Considering state-of-the-art message
sizes [60], this counter must be up to 264 bits. Things get even worse, if the same
information is also needed for the Associated Data.

2. Two-pass algorithms are hard to benchmark; especially if they provide a significant
security enhancement. For a fair benchmarking, the message must either be buffered
or retransmitted for the second pass. Thus, either the size of this additional buffer
(up to 264 bytes) would have to be accounted to the implementation size, or the time
needed for retransmission would have to be accounted to the overall runtime. In the
CAESAR and LWC competition this was often not the case or implementations limited
the length of the message [46, 38].

3. If possible avoid designing algorithms that need a two dimensional state access. This
is for example the case if one subfunction of the round function needs to access the
same bits of different words and another subfunction needs to access one complete
word. This is particularly important for small, but fast serial implementations.

4. As shown in Section 5.3, the width of the data path does not only affect the cipher itself
(size, performance), but also the surrounding elements like FIFOs, DMA-controllers,
interconnects, etc. Thus, this parameter accounts multiple times for the overall system
size and performance.

Implementing and using algorithms with respect to the CAESAR-API or LWC-API

1. Having a fixed set of control signals for the CryptoCore, i.e. the internal interface, al-
lows for a fast prototyping, as it is clear which information is provided and which infor-
mation must be calculated from the inputs. However, the information encoded in "eot",
"eoi", "last", and "partial" should be enhanced. We suggest to either use more control
signals for the look-ahead information of omitted, empty segments, or –preferred– not
to omit any empty segments. Although, this introduces a possible latency of two clock
cycles under rare conditions, it simplifies understanding the behavior of the interface,
which is more significant than making the most of the performance. As discussed
in Section 6.4, even the official hardware reference implementation of the CAESAR
finalist Acorn struggles with empty inputs.

2. Having a compact external interface allows for an easy integration into larger systems.
Especially the dedicated key interface (SDI) is very useful for connecting on-chip key

112

storage (e.g. a PUF or a secure on chip memory) with the CryptoCore, as there is no
need for an input multiplexing. This was demonstrated in Section 7.3.

3. The disadvantage of the API is that it does not allow for mixed hardware software
co-designs, or highly optimized, tightly coupled co-processors. However, this is not
needed in the first benchmarking phase of cryptographic competitions. Here, it is
more important to narrow down the number of candidates. Thus, the advantages of
the API predominate.

113

9 Conclusion

In this thesis, we demonstrated the problems and the need of defining a hardware API for a
fair benchmarking of hardware (cryptographic) implementations. We proposed some exten-
sions to the CAESAR-API to fulfill the requirements of the NIST-LWC-competition. Further,
we analyzed different support packages, that implement the CAESAR API and our pro-
posed LWC API, and showed that the implementation of our hardware API is of reasonable
size. The LWC development package is open source and available on GitHub1.

Next, we evaluated the implementation of eleven third-round CAESAR candidates. We
showed that there are some (partly major) problems in those implementations. Thus, point-
ing out that independent, mutual testing is crucial not only in simulation but on real hardware,
as even some implementations of the third-round candidates behave differently on real hard-
ware than in simulation. Therefore, we proposed a Zynq-based hardware evaluation frame-
work for candidates participating in the CAESAR competition. This framework can not only
be used as an evaluation platform, but also as dynamically reconfigurable hardware accel-
erator for CAESAR candidates. The framework is also open source and freely available2 to
allow interested designers to test and validate their designs based on the PYNQ evaluation
board from Xilinx.

Finally, we showed how ciphers, equipped with the CAESAR or LWC-API, can be integrated
into other research domains and that the advantages of the API predominate its disadvan-
tages.

Although, the evaluation was mostly based on the CAESAR competition, the results and
especially the pitfalls can be transferred to the NIST-LWC-competition. We hope, that es-
pecially our works regarding the LWC-API and regarding a fair benchmarking process are
considered during the NIST-LWC-competition. Some of the results like the API itself are
most likely endorsed by NIST for its final round of the LWC competition.

1https://github.com/GMUCERG/LWC
2https://gitlab.lrz.de/tueisec/PYNQ-CAESAR

115

https://github.com/GMUCERG/LWC
https://gitlab.lrz.de/tueisec/PYNQ-CAESAR

List of Figures

2.1 Sponge construction . 23
2.2 Aegis-128 state update . 24
2.3 Second step of Morus’s update function . 24
2.4 Tiaoxin state update . 25

3.1 Intended LFSR . 30
3.2 Implemented non LFSR . 31
3.3 ICEPOLE-128 . 33
3.4 ICEPOLE: 20-bit architecture . 36
3.5 ICEPOLE: 1-bit I/O Interface . 39

4.1 AEAD-Toplevel . 41
4.2 Sequential arrangement of PDI (a) and DO (b) for an authenticated encryption 42
4.3 Instruction/Status format as it is used in the official Development Package . . 43
4.4 Segment header format . 43
4.5 LWC-API . 45
4.6 Sequential arrangement of PDI (a) and DO (b) for hashing 46
4.7 Modules and overview of the CAESAR/LWC Development Package 47
4.8 Distribution of allocated LUTs for SpoC and Ascon128 58
4.9 Distribution of allocated LUTs for Gimli . 58

5.1 Software verification setup . 61
5.2 Block diagram of the evaluation framework 63
5.3 CryptoCore with IP wrapper . 64
5.4 Test vector generation on hardware . 66

6.1 Block diagram with three clock domains . 74
6.2 AXIS handshaking . 76
6.3 Block diagramm with external measurement circuit 77
6.4 Latency of AEAD function called in software 83
6.5 Latency of AEAD function called in software (zoomed in) 84
6.6 Latency of AEAD hardware with FIFOs, DMA, and function calls in Python . . 86
6.7 Latency of AEAD hardware with FIFOs, DMA, and function calls in C 87
6.8 Latency of AEAD hardware (core only) . 88
6.9 Latency of AEAD for encrypting 3 kB of data with different drivers 89
6.10 Measured maximum and average system power 90

117

6.11 Flip-Flop and core power relation . 92
6.12 Measured average system power consumption 94
6.13 Calculated core power consumption . 95
6.14 Total energy per bit . 96

7.1 Hardware software co-design setup . 100
7.2 ARM CORTEX-A9 software performance at 650 MHz 101
7.3 Latency of hardware implementations including the CAESAR-Hardware-API . 102
7.4 Latency of HW/SW implementations . 103
7.5 Example of a NoC-connected MPSoC . 104
7.6 CAESAR equipped Network Interface . 105
7.7 PAG-IoT hardware setup . 108
7.8 Size and latency of PUF, ECC, and AEAD. 110

118

List of Tables

2.1 Security parameters of used implementations 20

3.1 Comparison with other implementations on a Xilinx Virtex-6 38

4.1 Segment type encoding . 44
4.2 Feature comparison of the different development packages 48
4.3 Resource comparison of Pre- and PostProcessor 52
4.4 Synthesis results for the HeaderFifo, 4 words (LWC default) 53
4.5 Synthesis results of the provided CryptoCores (CAESAR and LWC) 54
4.6 Synthesis results for different HeaderFifo dimensions. 55
4.7 Synthesis results for the 32-bit dummy . 56
4.8 Resources of ciphers implemented with the CAESAR and LWC package . . . 57
4.9 LWC development package without HeaderFifo and with dummy CryptoCore . 59
4.10 Resource savings without HeaderFifo and with dummy CryptoCore 59

5.1 Examined ciphers in simulation and on PYNQ 67
5.2 Resource utilization of the PL as depicted in Figure 5.2 69
5.3 Crypto-IP resource utilization . 70
5.4 Resource utilization of the interconnects . 71

6.1 Resource utilization of the PL as depicted in Figure 6.1 81
6.2 Summary of the results for the PYNQ-Overlay including crypto cores opti-

mized for 200 MHz and the corresponding results for processing 5120 bytes . 98

7.1 Resource utilization of the setup depicted in Figure 7.1 100
7.2 Resource utilization of the CipherCores . 102
7.3 Area overhead evaluation . 106
7.4 Critical path overhead evaluation . 106

119

Acronyms

AD Associated Data

AEAD Authenticated Encryption with Associated Data

AE Authenticated Encryption

AES Advanced Encryption Standard

AES-GCM AES in Galois Counter Mode

AES-OCB2 AES in Offset Codebook 2 Mode

API Application Programming Interface

ASIC Application-specific Integrated circuit

ATHENa Automated Tool for Hardware EvaluatioN

AXI Advanced eXtensible Interface Bus

AXIL AXI4-Lite

AXIS AXI4-Stream

BC Block Cipher

BDI block data input

BDO block data output

CAESAR Competition for Authenticated Encryption: Security, Applicability, and
Robustness

CCM Counter with CBC-MAC

121

CRYPTREC Cryptography Research and Evaluation Committee

CSM current-shunt monitor

DMA Direct Memory Access

DO data output

ECC error correcting code

ECRYPT European Network of Excellence in Cryptology

eSTREAM ECRYPT Stream Cipher Project

FF Flip-Flop

FPGA Field-programmable gate array

GPIO General Purpose Input/Output

HDA helper data algorithm

IO Input/Output

IoT Internet-of-Things

IP Intellectual Property

IPsec Internet Protocol Security

IRQ Interrupt Request

ISO International Organization for Standardization

KAT known-answer-test

LFSR Linear Feedback Shift Register

LUT Look Up Table

LWC Lightweight Crypography

MAC Message Authentication Code

122

MCPUF Multi-Challenge PUF

MPSoC Multiprocessor System on Chip

MSPS mega samples per second

NESSIE New European Schemes for Signatures, Integrity and Encryption

NI Network Interface

NIST National Institute of Standards and Technology

NoC Network on a Chip

nonce number used only once

NVM non-volatile memory

PAG-IoT PUF and AEAD enabled trusted hardware gateway for IoT devices

PCB Printed Circuit Board

PDI public data input

PL Programmable Logic

PQC Post-quantum Cryptography

PS Processing System

PUF Physical Unclonable Function

RDI random data input

SCPUF Single-Challenge PUF

SDI secret data input

SEM Standard Error of Mean

SoC System on Chip

SSH Secure Shell

123

SSL Secure Sockets Layer

SUPERCOP System for Unified Performance Evaluation Related to Cryptographic
Operations and Primitives

TLS Transport Layer Security

TP throughput

TV test vector

UUT Unit Under Test

XADC Xilinx analog mixed signal module

XBP XXBX Power Shim

124

Bibliography

[1] Farzaneh Abed, Christian Forler, and Stefan Lucks. General classification of the
authenticated encryption schemes for the CAESAR competition. Cryptology ePrint
Archive, Report 2014/792, 2014. https://eprint.iacr.org/2014/792.

[2] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. Fort-NoCs: Mit-
igating the threat of a compromised NoC. In Proceedings of the 51st Annual De-
sign Automation Conference, DAC ’14, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2730-5. doi: 10.1145/2593069.2593144. URL http://doi.acm.org/10.1145/
2593069.2593144.

[3] Elena Andreeva, Atul Luykx, and Bart Mennink. COLM v1. Submission to the CAESAR
competition, 2016.

[4] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3. 0. submis-
sion to CAESAR (2016). Submission to the CAESAR Competition, 2015.

[5] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. Journal of Cryptology, 21
(4):469–491, Oct 2008. ISSN 1432-1378. doi: 10.1007/s00145-008-9026-x. URL
https://doi.org/10.1007/s00145-008-9026-x.

[6] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryp-
tion in SSH: Provably fixing the SSH binary packet protocol. ACM Transactions on
Information and System Security (TISSEC), 7(2):206–241, May 2004.

[7] Daniel J. Bernstein. Failures of secret-key cryptography. Invited Talk at FSE 2013 (20th
International Workshop on Fast Software Encryption), 2013.

[8] Daniel J. Bernstein and Tanja Lange. SUPERCOP: System for unified performance
evaluation related to cryptographic operations and primitives. Online, 2006. http://
bench.cr.yp.to/supercop.html.

[9] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Florian
Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Standaert,
Yosuke Todo, and Benoît Viguier. Gimli, 2019. URL https://gimli.cr.yp.to/.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In Selected
Areas in Cryptography (SAC 2012), volume 7118 of LNCS, pages 320–337. Springer,
2012.

125

https://eprint.iacr.org/2014/792
http://doi.acm.org/10.1145/2593069.2593144
http://doi.acm.org/10.1145/2593069.2593144
https://doi.org/10.1007/s00145-008-9026-x
http://bench.cr.yp.to/supercop.html
http://bench.cr.yp.to/supercop.html
https://gimli.cr.yp.to/

[11] Travis Boraten and Avinash Karanth Kodi. Packet security with path sensitization for
NoCs. In 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016.

[12] CAESAR secretary. CAESAR: Competition for authenticated encryption: Security, ap-
plicability, and robustness. http://competitions.cr.yp.to/caesar.html, July 2012. Project
Website.

[13] Baibhab Chatterjee, Debayan Das, and Shreyas Sen. RF-PUF: IoT security enhance-
ment through authentication of wireless nodes using in-situ machine learning. In
2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 205–208. IEEE, 2018.

[14] Pascal Cotret, Guy Gogniat, and Johanna Sepúlveda. Protection of heterogeneous
architectures on FPGAs: An approach based on hardware firewalls. Microprocessors
and Microsystems, 42, 2016.

[15] CRYPTREC Secretariat. CRYPTREC: Cryptography research and evaluation commit-
tee. https://www.cryptrec.go.jp/en/development.html, 2020. Project Website.

[16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
con v1.2. Submission to the CAESAR Competition, 2016. https://ascon.iaik.tugraz.at/
index.html,.

[17] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1. 2. Submission to the CAESAR Competition, 2016.

[18] Morris Dworkin. Recommendation for block cipher modes of operation: The CCM
mode for authentication and confidentiality. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38c.pdf, May 2004. Online.

[19] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) for confidentiality and authentication, Nov 2007.

[20] Morris J. Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. Technical report, 2015.

[21] Farnoud Farahmand, Ekawat Homsirikamol, and Kris Gaj. A Zynq-based testbed for
the experimental benchmarking of algorithms competing in cryptographic contests. In
International Conference on ReConFigurable Computing and FPGAs, ReConFig, De-
cember 2016. doi: 10.1109/ReConFig.2016.7857148.

[22] Farnoud Farahmand, Ahmed Ferozpuri, William Diehl, and Kris Gaj. Minerva: Auto-
mated hardware optimization tool. In 2017 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), pages 1–8, 2017.

[23] Christoph Frisch, Michael Tempelmeier, and Michael Pehl. PAG-IoT: A PUF and AEAD
enabled trusted hardware gateway for IoT devices. In 2020 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 500–505, 2020.

126

http://competitions.cr.yp.to/caesar.html
https://www.cryptrec.go.jp/en/development.html
https://ascon.iaik.tugraz.at/index.html
https://ascon.iaik.tugraz.at/index.html
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

[24] Kris Gaj, Jens-Peter Kaps, Venkata Amirineni, Marcin Rogawski, Ekawat Homsirikamol,
and Benjamin Y. Brewster. ATHENa – automated tool for hardware evaluation: Toward
fair and comprehensive benchmarking of cryptographic hardware using FPGAs. In 20th
International Conference on Field Programmable Logic and Applications - FPL 2010,
pages 414–421. IEEE, 2010.

[25] Gerben Geltink. Concealing KETJE: A lightweight PUF-based privacy preserving au-
thentication protocol. In International Workshop on Lightweight Cryptography for Secu-
rity and Privacy. Springer, 2016.

[26] George Mason University, Cryptographic Engineering Research Group. CERG source
code webpage. https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_
codes, snapshot from October 2019.

[27] George Mason University, Cryptographic Engineering Research Group. ATHENa Au-
tomated Tool for Hardware EvaluatioN. http://cryptography.gmu.edu/athena/, 2019.
Project Website.

[28] Miltos D. Grammatikakis, Kyprianos Papadimitriou, Polydoros Petrakis, Antonis Pa-
pagrigoriou, George Kornaros, Ioannis Christoforakis, Othon Tomoutzoglou, George
Tsamis, and Marcello Coppola. Security in MPSoCs: A NoC firewall and an eval-
uation framework. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 34(8):1344–1357, Aug 2015. ISSN 0278-0070. doi: 10.1109/
TCAD.2015.2448684.

[29] Graz University of Technology, Institute of Applied Information Processing and Com-
munications. IAIK GITHUB repository. https://github.com/IAIK/ascon_hardware/tree/
master/caesar_hardware_api_v_1_0_3/ASCON_ASCON, snapshot from January 15,
2020.

[30] Peter Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS) and Data-
gram Transport Layer Security (DTLS). RFC 7366, September 2014. URL https:
//rfc-editor.org/rfc/rfc7366.txt.

[31] AES-GCM Core family for Xilinx FPGA. Helion Technology, 2011. http://
www.heliontech.com/downloads/aes_gcm_8bit_xilinx_datasheet.pdf.

[32] Andreas Herkersdorf, Stefan Wallentowitz, and Thomas Wild. Integrated multicore pro-
cessors, 2012.

[33] Matthias Hiller, Meng-Day Yu, and Georg Sigl. Cherry-picking reliable PUF bits with
differential sequence coding. IEEE Transactions on Information Forensics and Security,
11(9):2065–2076, 2016.

[34] VT Hoang, T Krovetz, and P Rogaway. AEZ v4. 2: Authenticated encryption by enci-
phering. Submission to the CAESAR competition, 2016.

127

https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes
https://cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes
http://cryptography.gmu.edu/athena/
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON
https://rfc-editor.org/rfc/rfc7366.txt
https://rfc-editor.org/rfc/rfc7366.txt
http://www.heliontech.com/downloads/aes_gcm_8bit_xilinx_datasheet.pdf
http://www.heliontech.com/downloads/aes_gcm_8bit_xilinx_datasheet.pdf

[35] Ekawat Homsirikamol and Kris Gaj. AEZ: Anything-but EaZy in hardware. In Interna-
tional Conference on Cryptology in India, pages 207–224. Springer, 2016.

[36] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Ma-
lik Umar Sharif, and Kris Gaj. GMU Hardware API for Authenticated Ciphers. Cryp-
tology ePrint Archive, Report 2015/669, 2015. http://eprint.iacr.org/.

[37] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, and Kris
Gaj. Implementer’s guide to the CAESAR hardware API. http://cryptography.gmu.edu/
athena/CAESAR_HW_API/CAESAR_HW_Implementers_Guide_v1.0.pdf, May 2016.
Online.

[38] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand,
Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. CAESAR hardware API. Cryptol-
ogy ePrint Archive, Report 2016/626, 2016. https://eprint.iacr.org/2016/626.

[39] Ekawat Homsirikamol, Panasayya Yalla, Farnoud Farahmand, William Diehl, Ahmed
Ferozpuri, Jens-Peter Kaps, and Kris Gaj. Implementer’s guide to hard-
ware implementations compliant with the CAESAR hardware API version 2.0,
2017. URL https://cryptography.gmu.edu/athena/CAESAR_HW_API/CAESAR_HW_
Implementers_Guide_v2.0.pdf.

[40] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and E Kobayashi. CLOC:
Compact low-overhead CFB. Submission to the CAESAR competition, 2014.

[41] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. SILC:
simple lightweight CFB. Submission to the CAESAR competition, 2014.

[42] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

[43] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1. 41. Sub-
mission to the CAESAR competition, 2016.

[44] Jens-Peter Kaps. eXtended eXternal Benchmarking eXtension (XXBX). SPEED-B -
Software performance enhancement for encryption and decryption, and benchmarking,
Oct. 2016. Utrecht, invited talk.

[45] Jens-Peter Kaps. Hardware benchmarking framework for lightweight cryptogra-
phy, October 2019. URL https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/
ho1OiRPGRLE/hpIIeJR7CwAJ.

[46] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Farnoud Farahmand, Ekawat
Homsirikamol, and Kris Gaj. A comprehensive framework for fair and efficient bench-
marking of hardware implementations of lightweight cryptography. Cryptology ePrint
Archive, Report 2019/1273, 2019. https://eprint.iacr.org/2019/1273.

[47] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Ekawat Homsirikamol, and Kris
Gaj. Hardware API for lightweight cryptography. Technical report, Tech. Rep., Oct,
2019.

128

http://eprint.iacr.org/
http://cryptography.gmu.edu/athena/CAESAR_HW_API/CAESAR_HW_Implementers_Guide_v1.0.pdf
http://cryptography.gmu.edu/athena/CAESAR_HW_API/CAESAR_HW_Implementers_Guide_v1.0.pdf
https://eprint.iacr.org/2016/626
https://cryptography.gmu.edu/athena/CAESAR_HW_API/CAESAR_HW_Implementers_Guide_v2.0.pdf
https://cryptography.gmu.edu/athena/CAESAR_HW_API/CAESAR_HW_Implementers_Guide_v2.0.pdf
https://www.iacr.org/authors/tikz/
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/ho1OiRPGRLE/hpIIeJR7CwAJ
https://groups.google.com/a/list.nist.gov/d/msg/lwc-forum/ho1OiRPGRLE/hpIIeJR7CwAJ
https://eprint.iacr.org/2019/1273

[48] Patrick Karl and Michael Tempelmeier. A detailed report on the overhead of hardware
APIs for lightweight cryptography. Cryptology ePrint Archive, Report 2020/112, 2020.
https://eprint.iacr.org/2020/112.

[49] Katholieke Universiteit Leuven, Department Electrical Engineering, Division SCD/-
COSIC.

[50] Katholieke Universiteit Leuven, Department Electrical Engineering, Division SISTA/-
COSIC. NESSIE: New european schemes for signatures, integrity, and encryption.
https://www.cosic.esat.kuleuven.be/nessie/, 2020. Project Website.

[51] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edi-
tion. Chapman & Hall/CRC, 2nd edition, 2014. ISBN 1466570261.

[52] Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, December 2005.
URL https://rfc-editor.org/rfc/rfc4303.txt.

[53] Hugo Krawczyk. The order of encryption and authentication for protecting communi-
cations (or: how secure is SSL?). Cryptology ePrint Archive, Report 2001/045, 2001.
http://eprint.iacr.org/2001/045.

[54] Ted Krovetz and Phillip Rogaway. OCB (v1. 1). Submission to the CAESAR Competi-
tion, 2016.

[55] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253, January 2006. URL https://rfc-editor.org/rfc/rfc4253.txt.

[56] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. PUFKY: A fully func-
tional PUF-based cryptographic key generator. In International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2012.

[57] Cathal McCabe. Performance of transfer()-method of legacydma vs. dma, De-
cember 2017. URL https://groups.google.com/d/msg/pynq_project/ZNglipv4yog/
fD2FedHBDAAJ. Xilinx University Program Manager EMEA.

[58] Paweł Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz, Josef
Pieprzyk, Marcin Rogawski, Marian Srebrny, and Marcin Wójcik. Icepole v2. Sub-
mission to the CAESAR competition, 2015.

[59] Nanyang Technological University, School of Physical and Mathematical Sciences,
Division of Mathematical Sciences. NTU CAESAR submission webpage. http://
www3.ntu.edu.sg/home/wuhj/research/caesar/caesar.html, snapshot from June 2018,
2018.

[60] National Institute of Standards and Technology. LWC project website. https://
csrc.nist.gov/projects/lightweight-cryptography, 2020. Lightweight Cryptography.

[61] National Institute of Standards and Technology. PQC project website. https://
csrc.nist.gov/projects/post-quantum-cryptography, 2020. Post-Quantum Cryptography.

129

https://eprint.iacr.org/2020/112
https://www.cosic.esat.kuleuven.be/nessie/
https://rfc-editor.org/rfc/rfc4303.txt
http://eprint.iacr.org/2001/045
https://rfc-editor.org/rfc/rfc4253.txt
https://groups.google.com/d/msg/pynq_project/ZNglipv4yog/fD2FedHBDAAJ
https://groups.google.com/d/msg/pynq_project/ZNglipv4yog/fD2FedHBDAAJ
http://www3.ntu.edu.sg/home/wuhj/research/caesar/caesar.html
http://www3.ntu.edu.sg/home/wuhj/research/caesar/caesar.html
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

[62] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin,
James Foti, and Edward Roback. Report on the development of the Advanced En-
cryption Standard (AES). Technical report, Computer Security Division Information,
Technology Laboratory, NIST, Oct 2000.

[63] Ivica Nikolic. Tiaoxin-346. Submission to the CAESAR Competition, 2014.

[64] Siavoosh Payandeh Azad, Michael Tempelmeier, Gert Jervan, and Johanna Sepúlveda.
CAESAR-MPSoC: Dynamic and efficient MPSoC security zones. In 2019 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pages 477–482, 2019.

[65] Michael Pehl, Matthias Hiller, and Georg Sigl. Information Theoretic Security and Pri-
vacy of Information Systems, chapter Secret Key Generation for Physical Unclonable
Functions. Cambridge University Press, 2017.

[66] Michael Pehl, Christoph Frisch, Peter Christian Feist, and Georg Sigl. KeLiPUF: a key-
distribution protocol for lightweight devices using physical unclonable functions. In 17th

escar Europe : embedded security in cars. 2019. doi: 10.13154/294-6676.

[67] Project Bonfire. https://github.com/Project-Bonfire/Bonfire, 2019. Accessed: 2019-02-
03.

[68] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018. URL https://rfc-editor.org/rfc/rfc8446.txt.

[69] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, August 2008. URL https://rfc-editor.org/rfc/rfc5246.txt.

[70] Matthew Robshaw and Olivier Billet. New Stream Cipher Designs, The eSTREAM
Finalists, volume 4986 of LNCS. Springer, 2008.

[71] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In Advances in Cryptology – ASIACRYPT 2004, volume 3329
of LNCS, pages 16–31. Springer, 2004.

[72] Johanna Sepúlveda, Guy Gogniat, Daniel Flórez, Jean-Philippe Diguet, Cesar Zeferino,
and Marius Strum. Elastic security zones for NoC-based 3D-MPSoCs. In Electronics,
Circuits and Systems (ICECS), 2014 21st IEEE International Conference on, pages
506–509. IEEE, 2014.

[73] Johanna Sepúlveda, Daniel Flórez, and Guy Gogniat. Reconfigurable security ar-
chitecture for disrupted protection zones in NoC-based MPSoCs. In Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2015 10th International Sympo-
sium on, pages 1–8. IEEE, 2015.

[74] Johanna Sepúlveda, Andreas Zankl, Daniel Flórez, and Georg Sigl. Towards pro-
tected MPSoC communication for information protection against a malicious NoC.
Procedia Computer Science, 108:1103 – 1112, 2017. ISSN 1877-0509. URL http:

130

https://github.com/Project-Bonfire/Bonfire
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc5246.txt
http://www.sciencedirect.com/science/article/pii/S1877050917307068
http://www.sciencedirect.com/science/article/pii/S1877050917307068
http://www.sciencedirect.com/science/article/pii/S1877050917307068

//www.sciencedirect.com/science/article/pii/S1877050917307068. International Con-
ference on Computational Science, ICCS 2017.

[75] Technical University of Munich, Department of Electrical and Computer Engineering,
Chair of Security in Information Technology. TUMEISEC crypto implementation reposi-
tory. https://gitlab.lrz.de/tueisec/crypto-implementations/, git checkout 4f054dc5.

[76] Michael Tempelmeier, Fabrizio De Santis, Jens-Peter Kaps, and Georg Sigl. An area-
optimized serial implementation of ICEPOLE authenticated encryption schemes. In
2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 49–54, May 2016. doi: 10.1109/HST.2016.7495555.

[77] Michael Tempelmeier, Fabrizio De Santis, Georg Sigl, and Jens-Peter Kaps. The
CAESAR-API in the real world – towards a fair evaluation of hardware CAESAR can-
didates. In 2018 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 73–80. IEEE, 2018.

[78] Michael Tempelmeier, Georg Sigl, and Jens-Peter Kaps. Experimental power and per-
formance evaluation of caesar hardware finalists. In 2018 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2018.

[79] Michael Tempelmeier, Farnoud Farahmand, Ekawat Homsirikamol, William Diehl,
Jens-Peter Kaps, and Kris Gaj. Implementer’s guide to hardware implementations
compliant with the hardware API for lightweight cryptography, 2019. URL https:
//cryptography.gmu.edu/athena/LWC/LWC_HW_Implementers_Guide.pdf.

[80] Michael Tempelmeier, Maximilian Werner, and Georg Sigl. Using hardware software
codesign for optimised implementations of high-speed and defence in depth CAESAR
finalists. In 2019 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 228–237, 2019.

[81] Virginia Tech, Signatures Analysis Laboratory. VTSAL GITHUB repository. https://
github.com/vtsal?tab=repositories, snapshot from January 13, 2020.

[82] Rüdiger Weis. Der Advanced Encryption Standard (AES), 2008.

[83] Alexander Wild and Tim Güneysu. Enabling SRAM-PUFs on Xilinx FPGAs. In 2014
24th International Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE, 2014.

[84] Hongjun Wu. ACORN: a lightweight authenticated cipher (v3). Submission to the
CAESAR competition, 2016.

[85] Hongjun Wu and Tao Huang. The JAMBU lightweight authentication encryption mode
(v2. 1). Submission to the CAESAR competition, 2016.

[86] Hongjun Wu and Tao Huang. The authenticated cipher MORUS (v2). Submission to
the CAESAR competition, 2016.

131

http://www.sciencedirect.com/science/article/pii/S1877050917307068
http://www.sciencedirect.com/science/article/pii/S1877050917307068
http://www.sciencedirect.com/science/article/pii/S1877050917307068
http://www.sciencedirect.com/science/article/pii/S1877050917307068
https://gitlab.lrz.de/tueisec/crypto-implementations/
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Implementers_Guide.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Implementers_Guide.pdf
https://github.com/vtsal?tab=repositories
https://github.com/vtsal?tab=repositories

[87] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm. In
Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected Areas in Cryptography
– SAC 2013. Springer Berlin Heidelberg, 2014. ISBN 978-3-662-43414-7.

[88] Hongjun Wu and Bart Preneel. AEGIS: a fast authenticated encryption algorithm (v1.1).
Submission to the CAESAR competition, 2014.

[89] Xilinx. Spartan-3 generation FPGA user guide (UG331), ver. 1.8, 2011.

[90] Xilinx. Virtex FPGA configurable logic block (UG364), ver. 1.2, 2012.

[91] Xilinx. AXI reference guide (UG761), ver. 13.4, 2012.

[92] Xilinx. 7 series FPGAs configurable logic block (UG474), ver. 1.8, 2016.

[93] Zynq-7000 SoC Data Sheet: Overview. XILINX, 7 2018. v1.11.1.

[94] Panasayya Yalla, Ekawat Homsirikamol, and Jens-Peter Kaps. Comparison of multi-
purpose cores of Keccak and AES. In DATE 2015, Mar 2015.

[95] Meng-Day Yu and Srinivas Devadas. Recombination of Physical Unclonable Functions.
35th Annual GOMACTech Conference, March 2010.

132

Credits:

Figures 2.2, 2.3, 3.3, 4.1, 6.1, 6.3 and 7.1 reprinted with permission of IEEE. Sections 3.2, 5.2 and 7.1 to 7.3,

Chapter 6, and Figures 3.4, 3.5 and 5.2 partially reprinted with permission of IEEE.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse

any of the Technical University of Munich’s products or services. Internal or personal use of this material

is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/

publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. If

applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies

of the dissertation.

133

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

	Introduction
	Preliminaries
	Authenticated Encryption with Associated Data
	Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
	Functional Requirements for Submissions
	Process for Determining the Final Portfolio
	Examined Ciphers

	New Generation of Reconfigurable System-on-Chips

	Challenges in Evaluating Cryptographic Competitions
	Review Process Flaws at the Example of CAESAR
	Algorithmic or Software Flaws
	Hardware Flaws

	The Role of the Interface
	The Example of Icepole
	Is it fair?

	Hardware APIs
	The CAESAR-API
	The LWC-API
	Comparison and Evaluation of the APIs
	API Compliant Development Packages
	Resource Analysis of Lightweight APIs
	Exemplary Analysis of Published Implementations
	Tweaking the Development Package

	Summary

	A Framework for Testing CAESAR-Hardware-Implementations
	Functional Verification using Simulations
	Functional Verification using Hardware Testbeds
	System Design
	Validation and Testing
	Functional Behavior

	Resource Implications

	Benchmarking of CAESAR-Implementations
	Hardware Architecture
	Measurement Setup
	Runtime
	Power and Energy

	Results
	Synthesis
	Runtime
	Power Consumption
	Energy Consumption

	Consequences for Ciphers

	Case Studies
	Enhancing Authenticated Encryption with Hardware Software Codesign Techniques
	Setup
	Results

	Securing Network-on-Chip Applications
	Multiprocessor Systems on Chips
	Attacks on Networks on Chips
	CAESAR Network Interface Reconfiguration
	Results

	Authenticated Encryption based on Physical Unclonable Functions
	Physical Unclonable Function
	Hardware Setup
	Results

	The Implementer's Point of View
	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

