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Purpose: Cardiac MR cine imaging allows accurate and reproducible assessment of 
cardiac function. However, its long scan time not only limits the spatial and temporal 
resolutions but is challenging in patients with breath-holding difficulty or non-sinus 
rhythms. To reduce scan time, we propose a multi-domain convolutional neural net-
work (MD-CNN) for fast reconstruction of highly undersampled radial cine images.
Methods: MD-CNN is a complex-valued network that processes MR data in k-space 
and image domains via k-space interpolation and image-domain subnetworks for 
residual artifact suppression. MD-CNN exploits spatio-temporal correlations across 
timeframes and multi-coil redundancies to enable high acceleration. Radial cine data 
were prospectively collected in 108 subjects (50 ± 17 y, 72 males) using retrospective-
gated acquisition with 80%:20% split for training/testing. Images were reconstructed 
by MD-CNN and k-t Radial Sparse-Sense(kt-RASPS) using an undersampled dataset 
(14 of 196 acquired views; relative acceleration rate = 14). MD-CNN images were 
evaluated quantitatively using mean-squared-error (MSE) and structural similarity 
index (SSIM) relative to reference images, and qualitatively by three independent 
readers for left ventricular (LV) border sharpness and temporal fidelity using 5-point 
Likert-scale (1-non-diagnostic, 2-poor, 3-fair, 4-good, and 5-excellent).
Results: MD-CNN showed improved MSE and SSIM compared to kt-RASPS (0.11 ±  
0.10 vs. 0.61 ± 0.51, and 0.87 ± 0.07 vs. 0.72 ± 0.07, respectively; P < .01). 
Qualitatively, MD-CCN significantly outperformed kt-RASPS in LV border sharp-
ness (3.87 ± 0.66 vs. 2.71 ± 0.58 at end-diastole, and 3.57 ± 0.6 vs. 2.56 ± 0.6 at 
end-systole, respectively; P < .01) and temporal fidelity (3.27 ± 0.65 vs. 2.59 ± 0.59; 
P < .01).
Conclusion: MD-CNN reduces the scan time of cine imaging by a factor of 23.3 and 
provides superior image quality compared to kt-RASPS.
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1  |   INTRODUCTION

Cardiac MR cine imaging with balanced steady-state free 
precession (bSSFP) allows accurate and reproducible mea-
surement of cardiac function.1 Cine images are frequently 
collected using electrocardiograph (ECG)-gated segmented 
acquisition during multiple breath-holds. For patients with 
breathing difficulties or non-sinus rhythms, real-time cine 
imaging at lower temporal and spatial resolutions is com-
monly acquired. A single-shot acquisition scheme is fre-
quently used but the spatial and temporal resolution are often 
limited. Accelerated acquisition and advanced reconstruction 
can be used to increase temporal and spatial resolutions for 
both segmented and real-time single-shot cine imaging. Over 
the past two decades, there have been continuous innovations 
in image acceleration techniques for cardiac cine imaging, 
such as view-sharing,2,3 partial-Fourier imaging,4 parallel 
imaging,5,6 and compressed sensing (CS).7-12 Parallel imag-
ing with rate 2 accelerated cine imaging is commonly ad-
opted in clinical routines. Recently, CS imaging has become 
available by vendors to reduce scan time. However, the ac-
celeration has been limited and the reconstruction remains 
to be time-consuming, which hinders the clinical workflow. 
In addition, CS reconstruction generally requires additional 
state-of-the-art hardware to accommodate the higher demand 
for reconstruction engines.12

Recent advances in deep learning-based image recon-
struction techniques provided yet another opportunity to 
achieve higher acceleration rates and improve spatial and 
temporal resolution in cardiac MRI.13-18 For cine imaging, 
both convolutional and recurrent neural networks have been 
used to suppress image domain aliasing artifacts in carte-
sian13-15 and radial16,19 sampling schemes. To enable high ac-
celeration rates, temporal correlations were exploited using 
3D convolutional kernels to learn spatio-temporal features in 
the image domain.13,16 In cartesian acquisitions, shared infor-
mation among neighboring time frames was exploited to fill 
in missing k-space lines.13,15 Schlemper et al. used a simple 
k-space data-sharing strategy before applying their cascaded 
network by filling the missing k-space lines directly from the 
nearest acquired line in the neighboring frames.13 Although 
aggregating k-space lines from different time frames reduces 
image domain aliasing, it may increase temporal blurring at 
higher acceleration rates. Convolutional networks have also 
been used to share information across time in a multi-super-
vised network on cartesian k-space acquisition.15 However, 
the additional hyperparameters associated with the multiple 

loss functions led to challenges in training, and the perfor-
mance of this network degrades at high acceleration rates 
of ≥8. To achieve higher acceleration rates, radial sampling 
can be used to allow more efficient coverage of k-space and 
offer an enhanced view-sharing strategy among time frames. 
However, view sharing in k-space using convolutional neu-
ral networks (CNN) has not been investigated for radial 
acquisitions.

In this work, we propose a multi-domain convolutional 
neural network (MD-CNN) for cine imaging with ra-
dial k-space sampling that processes the radial MR data in 
k-space, image, and time domains from multiple coils by end-
to-end training. MD-CNN performance is evaluated on a ret-
rospective gated cine imaging dataset for image quality using 
both quantitative and qualitative assessments.

2  |   METHODS

2.1  |  Network architecture

MD-CNN is a fully complex-valued CNN with two main com-
ponents: k-space and image-domain subnetworks (Figure 1). 
Both subnetworks are trained end-to-end from scratch. The 
input to MD-CNN is a 4D complex-valued matrix of size Nc × 
Ntw × Nx × Ny, representing the gridded k-space of a 2D cross-
sectional image from multiple coils and across multiple con-
secutive time frames. Ntw denotes the number of time frames, 
and Nc denotes the number of coils.

2.1.1  |  k-space subnetwork

The function of this subnetwork is to refine estimations of the 
2D gridded k-space data using convolutional kernels. Missing 
k-space data are estimated by interpolation of the acquired 
MR data using multiple convolutional kernels. Correlations 
across time frames are also exploited in the form of view-
sharing via 3D convolutional kernels applied on the 2D grid-
ded k-space and a window of neighboring time frames (Ntw). 
The k-space subnetwork consists of two identical residual 
blocks of cascaded convolutional layers. Each k-space block 
consists of three 3D complex-valued convolutional layers 
(XConv)20 with 2Nc, 2Nc, and Nc kernels each of size 3 × 5 × 
5; where Nc is the number of coils. A complex rectified linear 
unit (XReLU) follows each convolutional layer. A residual 
connection is added after each k-space block to reduce the 
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large dynamic range of k-space values. The resulting k-space 
data are then transformed into the image domain using in-
verse fast Fourier transform (FFT).

2.1.2  |  Image domain subnetwork

In the image domain, shared structural information among 
neighboring time frames is exploited by two 3D XConv lay-
ers consisting of 2Nc and Nc kernels each of size 3 × 3 × 3 
with radial batch normalization (RBN) and XReLU.20 The 
resulting 3D maps (ie, 2D+time; size of Nc × Ntw × Nx × Ny) 
are projected in the 2D space, where time frames are flattened 
into channels to produce 2D feature maps.

A 2D U-Net architecture is then used to remove residual 
artifacts and combine data from different time frames and 
coils into a coil-combined output image. The U-Net sub-
network consists of contracting and expanding paths that 
can remove image artifacts at multiple resolutions. In the 
contracting path, three stages of spatial down-sampling are 

applied consisting of two 2D XConv, RBN, and XReLU lay-
ers at each stage. The number of kernels doubles after each 
down-sampling stage (32, 64, and 128, respectively). The re-
sulting feature maps pass through two XConv layers of 256 
and 128 kernels of size 3 × 3, respectively. The expansive 
path maps the output at each down-sampling stage to an anal-
ogous stage of similar map size and kernel number using skip 
connections. Up-sampling layers are used to increase the size 
of feature maps by a factor of 2 at each up-sampling stage to 
provide a clean version of the artifact-contaminated images 
at different resolution levels. The final feature maps are com-
bined using the XConv layer of one 1 × 1 kernel to generate a 
coil-combined complex-valued reconstructed image.

2.2  |  Data acquisition

The study was approved by the Beth Israel Deaconess 
Medical Center Institutional Review Board (IRB num-
ber 2001P000793). All imaging was performed on a 3T 

F I G U R E  1   Proposed multi-domain convolutional neural network (MD-CNN) pipeline. The k-space data from Nc coils acquired with 
radial trajectories are gridded onto the cartesian grid using NUFFT. To reconstruct the frame (red), multi-coil 2D k-space data from Ntw adjacent 
time frames (yellow) are fed into the MD-CNN. The output of the MD-CNN is a coil-combined reconstructed image for the target frame. MD-
CNN consists of two subnetworks: k-space and image-domain. The k-space subnetwork takes complex-valued 2D k-space input data of size 
(Nc, Ntw, Nx, Ny) to be processed by two identical residual blocks. Each block consists of three complex convolutional layers with 3D kernels of 
size (3 × 5 × 5). Each convolutional layer is followed by a complex rectified linear unit (XReLU) for activation. The resulting k-space data is 
transformed into the image domain by inverse fast Fourier transform (IFFT). In the image subnetwork, data are fed into two convolutional layers 
with 3D kernels of size (3 × 3 × 3) to exploit spatio-temporal correlations. The time dimension in the resulting 3D feature maps are flattened into 
channels to produce 2D feature maps of size (NcNtw, Nx, Ny). A 2D U-net is then used to process the 2D feature maps from NC coils and Ntw frames 
to reconstruct a coil-combined reconstructed image
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system (MAGNETOM Vida, Siemens Healthcare, Erlangen, 
Germany) using body and spine phased-array coils. Radial 
bSSFP cine data were acquired in 101 patients and 7 healthy 
subjects (108 total subjects; age 50 ± 17 y, 72 males, 
heartbeats 72 ± 15 beats/min, and weight 80.6 ± 18 kg). 
Participants provided written informed consent to use car-
diac MRI studies for research purposes. The indications for 
clinical CMR scans for our cohort are reported in Supporting 
Information Table S1, which is available online. A mid-ven-
tricular slice was imaged during breath-holding with the fol-
lowing imaging parameters: repetition time/echo time (TR/
TE) = 3.06/1.4 ms, field of view = 380 × 380 mm2, matrix 
size = 208 × 208, in-plane resolution = 1.8 × 1.8 mm2, slice 
thickness = 8 mm, flip angle = 48°, number of channels = 16 
± 1, and retrospective ECG-triggering with 25 cardiac phases 
calculated. In each patient, 196 radial views were acquired on 
average per cardiac phase with a breath-hold duration of ~14 
heartbeats.

2.3  |  Data preparation

The dataset was randomly divided into training (87 subjects) 
and testing (21 subjects) subsets. The complex-valued ref-
erence images at each time frame were reconstructed with 
all acquired 196 radial views per frame using non-uniform 
fast Fourier transform (NUFFT) implemented on the scan-
ner,21 where the complex-valued images were saved before 
writing the DICOM images. An undersampled dataset was 
synthesized by selecting a small set (eg, Nv =14 views) from 
the acquired 196 radial views at each time frame; such that 
an equivalent acquisition duration of one heartbeat per slice 

is achieved. The effective acceleration rate is 23.3 based on 
the Nyquist sampling requirement (208×

�

2
 = 327 views).22 

To create an undersampled dataset, radial views across a 
14-spokes radial trajectory (T14) were selected from the 
acquired highly sampled radial data (ie, 196 spokes). First, 
the uniform angles of T14 are calculated and matched to the 
nearest 14 angles of the 196-spokes trajectory (Figure 2). 
The selected 14 angles are considered as the undersampled 
trajectory.

To create rotated angles trajectory among different frames, 
T14 was rotated in each frame, p, with an angle θp =

p �

Nv Ntw

, 
where p is the frame index (p = 0, 1, … 24), Ntw is a window 
of neighboring time frames (eg, Ntw = 7), and Nv is the total 
number of acquired views (eg, 196) (Figure 2). To enable op-
timized k-space coverage for data sharing among consecu-
tive Ntw frames, the rotating angle θp also maintains uniform 
angular distance among all views from the Ntw neighboring 
frames. Gradient delay induced errors in the radial trajec-
tory were automatically corrected using the RING method23 
implemented from the Berkeley Advanced Reconstruction 
Toolbox (BART).24 Gradient delays were corrected in each 
time frame using only the selected 14 radial views.

The radial k-space of each frame and each coil was re-
constructed using inverse NUFFT. Coil compression was ap-
plied to obtain a fixed number of coils (Nc = 8) per frame 
using BART.25 Complex-valued gridded data from consec-
utive time frames of window size, Ntw = 7, with eight coils 
per frame were normalized in the image domain using RBN. 
Considering the periodic nature of the dynamic cardiac im-
aging, information can be shared from the last frames of the 
dynamic cine imaging to reconstruct the first frames and vice 
versa. For example, to reconstruct the first frame, a window 

F I G U R E  2   Radial undersampling using uniform-angle rotating radial trajectories. An undersampled uniform radial trajectory of 14 spokes is 
selected from the acquired highly sampled radial data (196 spokes). The radial trajectory in a frame p is rotated with an angle �p =

p�

NvN
��

, where Nv is 
the number of views per frame (eg, 14 spokes), and Ntw is the number of neighboring time frames (eg, seven frames). The undersampled radial lines 
from Ntw consecutive time frames have a uniform angular-spacing trajectory that allow optimal k-space coverage for data sharing
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of neighboring frames at indices {23, 24, 25, 1, 2, 3, and 
4} is included at the network input. Next, FFT was applied 
to obtain 2D k-spaces fed into MD-CNN to reconstruct the 
coil-combined image at a single time frame (ie, correspond-
ing to the middle frame of the input window 

⌈
Ntw

2

⌉
).

2.4  |  Network training

MD-CNN was trained with 250 epochs via a stochastic gra-
dient descent SGD optimizer with a momentum of 0.9 and 
learning rate function 0.01⌊epoch∕50⌋+1, where the learning 
rate exponentially decreases with the number of epochs. The 
batch number was 15 complex-valued data points of size 8 ×  
7 × 208 × 208. The mean-squared error loss function was 
applied to minimize reconstruction error between MD-CNN 
predictions and reference images at any time frame, t, such 
that:

where Mxy (t) is a complex-valued, coil-combined refer-
ence image at a single time point, t, reconstructed using 
all 196 acquired radial views, t∈[0, 1,…24]; Kxyw (t) is a 
complex-valued, multi-coil 2D spatial k-space gridded 
from undersampled radial acquisitions at Ntw time frames 
(ie, 2D k-space + time); A is the Fourier encoding matrix of 
the 2D FFT; Φ (. ) is a nonlinear interpolation function con-
trolled by trainable parameters, Θk; and Ψ (. ) is a non-linear 
mapping function controlled by trainable parameters, Θm, 
which take Ntw time frames as input to reconstruct a single 
frame at the output. The same network parameters, Θk and 
Θm, were trained using all time frames. During MD-CNN 
training, time frames from all patients in the training data-
set were randomized and 15 (ie, batch size) frames from 
different patients were selected to be reconstructed in each 
training iteration.

MD-CNN was implemented in Python using the PyTorch 
library version 0.41.26 All models in this work were trained 
and tested on an NVIDIA DGX-1 system equipped with 8T 
V100 graphics processing units (GPUs; each of 32 GB mem-
ory and 5120 cores), central processing unite (CPU) of 88 
core: Intel Xeon 2.20 GHz each, and 504 GB RAM. Only 
four GPUs were used to train MD-CNN. The total MD-CNN 
training time was 24 h.

2.5  |  Performance evaluation

To investigate the impact of the window size Ntw of input 
time frames, MD-CNN performance was evaluated on test-
ing dataset reconstructed at three different window sizes (Ntw 

= 5, 7, and 9 frames), where MD-CNN was trained from 
scratch at each window size. The performance of MD-CNN 
was compared with a compressed-sensing based k-t Radial 
Sparse-Sense (kt-RASPS) reconstruction method, which 
exploits the temporal sparsity of the data.11,27 The same 
undersampled dataset prepared for MD-CNN was used for 
kt-RASPS reconstruction where 14 views, corresponding to 
a temporal resolution of 42.8 ms, were selected per frame 
with a uniform-angle rotating among different frames. The 
kt-RASPS algorithm was implemented using the parallel 
imaging and compressed sensing tools in BART with GPUs 
and parallel processing. Coil sensitivities were calculated 
using the ESPIRiT method.25 kt-RASPS parameters were op-
timized on 10 randomly selected subjects from the training 
dataset, where images were evaluated to determine the opti-
mal value of the regularization level and number of iterations. 
kt-RASPS performance was evaluated over a range of regu-
larization levels (λ) from 0.01-0.1 with a step of 0.005 and 
number of iterations ranging from 25 to 100, with 25 steps. 
MD-CNN performance was also compared to the CS-based 
method proposed by Miao et al,28 in which a combination of 
locally low rank (LLR) and temporal finite differences (FD) 
were used as regularization terms. This method was used to 
reconstruct the same undersampled dataset of 14 views/frame 
with regularization parameters λLLR = 0.06 and λFD = 0.006.

To evaluate MD-CNN performance compared to other 
deep learning frameworks, a 3D U-net network16 was used to 
reconstruct the same undersampled data (ie, 14 spokes). This 
network consisted of contracting and expanding paths with 
two stages of spatio-temporal down-sampling and up-sam-
pling in each path, respectively. The radial cine data from all 
time frames was gridded using NUFFT, coil-combined, and 
fed into the U-net as a 3D volume in the image domain of 
size 208 × 208 × 24 (ie, 2D + time) with real and imaginary 
components as different channels. To allow down-sampling 
and up-sampling of the temporal dimension inside the net-
work, the temporal dimension of the input and reference data 
was reduced to 24 frames (compared to the original data of 
25 frames) using linear interpolation of all time frames. The 
mean-squared error loss function was used to train this net-
work using the stochastic gradient descent optimizer with a 
learning rate of 0.01 and 350 epochs.

MD-CNN and kt-RASPS performance was evaluated by 
quantitative and qualitative measures. Mean squared error 
(MSE) and structural similarity index measure (SSIM) were 
calculated for MD-CNN, U-net and kt-RASPS with respect 
to the reference images. The magnitude values of all images 
are normalized by the 90th percentile before assessment. Edge 
sharpness of left ventricular (LV) borders was quantitatively 
evaluated across six LV myocardial segments (based on the 
AHA 16-segment model) in all time frames. In each segment, 
edge sharpness was calculated as the maximum gradient of 
the normalized intensity profile (between 0 and 1) across this 

min
Θk,Θm

‖‖‖Mxy (t)−Ψ
(
AΦ

(
Kxyw (t) |Θk

)
|Θm

)
xy

‖‖‖
2

2
,
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segment. To avoid misleading gradients produced by noise, 
each intensity profile was fit to a high-order polynomial func-
tion of order 10.

For qualitative assessment, three readers (U.N., S.K., 
and I.C. with > 5 y of experience in cardiovascular imag-
ing) blinded to the reconstruction methods independently as-
sessed images reconstructed by MD-CNN, kt-RASPS, and 
the reference based on four different metrics: (a-b) the sharp-
ness of LV borders at end-diastolic (ED) and end-systolic 
(ES) phases, (c) temporal fidelity of LV wall motion using a 
5-point Likert scale (1-non-diagnostic, 2-poor, 3-fair, 4-good, 
and 5-excellent), and (d) residual image artifacts in the entire 
field-of-view on a 5-point scale (1-minimal, 2-mild, 3-mod-
erate, 4-severe, and 5-non-diagnostic).

Endocardial and epicardial LV myocardial borders from 
MD-CNN, kt-RASPS, and reference images in ED and ES 
frames were manually delineated by all readers. LV myocar-
dium (ie, areas between endocardial and epicardial contours) 
and LV blood pool cavity were calculated from the extracted 
contours for the three datasets (ie, reference, kt-RASPS, and 
MD-CNN). To further investigate the effect of LV border 
sharpness on manual delineation, we calculated the DICE 
index between kt-RASPS vs. reference and MD-CNN vs. ref-
erence for the LV myocardium and LV blood cavity at the ED 
and ES phases.

2.6  |  Data analysis

Normal data distributions were expressed in the form of mean 
± SD. The two-sided Student’s t-test compared continuous 
variables between different reconstruction methods. Analysis 
of variance or Kruskal-Wallis tests were used as appropriate 
for comparison of multiple groups. For comparison of cate-
gorical data, the Chi-squared test was used. Significance was 
declared at two-sided P-values < .05. For pairwise compari-
sons following a three-group inferential test, a Bonferroni 
correction was used. Bland-Altman plots assessed agree-
ment between different readers. Statistical analyses were 
conducted using MATLAB (2017a, The MathWorks Inc., 
Natick, Massachusetts, United States).

3  |   RESULTS

MD-CNN performance increased as window size increased, 
as indicated by the decreasing MSE (0.125 ± 0.09, 0.11 ± 
0.1, and 0.106 ± 0.1) and increasing SSIM (0.85 ± 0.072, 
0.87 ± 0.067, and 0.87 ± 0.062) for Ntw = 5, 7, and 9, re-
spectively. MD-CNN reconstructed data also showed similar 
temporal fidelity for the three window sizes with increased 
flickering artifacts at Ntw = 5 compared to seven and nine 
frames (Supporting Information Video S1). A window size 

of seven frames was, therefore, used in the rest of our experi-
ments due to its similar performance to Ntw = 9 with lower 
reconstruction time and memory requirements, and improved 
performance compared to Ntw = 5. Supporting Information 
Figure S1 shows the MSE for MD-CNN images in the train-
ing and testing datasets at each of the 250 training epochs. 
Both training and testing MSE consistently decreased as 
the number of training epochs increased, indicating a ro-
bust performance and minimal overfitting of the MD-CNN. 
Parameters tuning for kt-RASPS yielded minimal streaking 
artifacts and maximal temporal fidelity at λ = 0.025 and #it-
erations = 50 (Supporting Information Videos S2 and S3).

Figure 3 shows examples from two subjects and compares 
the images (and their corresponding k-space) after different 
stages of the MD-CNN reconstructions. Comparing the input 
and output of the 1st and 2nd blocks of the k-space subnet-
work (columns 1–3), the k-space convolutional subnetwork 
gradually estimated the missing data at more k-space loca-
tions by interpolating values near the acquired k-space data 
and neighboring time frames. K-space interpolation reduced 
streaking artifacts in the corresponding images while main-
taining image sharpness. The image subnetwork further re-
duced streaking artifacts and improved image sharpness and 
contrast (column 4). The final MD-CNN-reconstructed im-
ages demonstrated a similar contrast as the reference images 
(column 5).

Cine images from undersampled radial data were recon-
structed by NUFFT, kt-RASPS, U-net, and MD-CNN com-
pared to the reference images (Figure 4). MD-CNN, U-net, 
and kt-RASPS reconstructions showed less pronounced 
streaking artifacts than NUFFT images. Similar to reference 
images, MD-CNN images preserved anatomical sharpness 
and contrast of the myocardium compared to kt-RASPS, 
and less residual artifacts compared to U-net. Cine imaging 
movies for two additional cases reconstructed by LLR+FD, 
kt-RASPS, MD-CNN, and reference showed improved tem-
poral fidelity of MD-CNN network compared to CS methods 
(Supporting Information Videos S4 and S5) and reduced re-
sidual streaking artifacts compared to the 3D U-net. Figure 
5 shows MD-CNN reconstructions from one subject at dif-
ferent undersampling rates: 14, 16, and 20 spokes per frame 
compared to the corresponding reference image. X-t plots 
and Supporting Information Video S6 showed increased tem-
poral fidelity as undersampling rate decreases indicated by 
less blurring in the LV wall at 20 spokes compared to recon-
structions with 14 spokes per frame.

MD-CNN showed lower MSE and improved SSIM com-
pared to kt-RASPS and U-net (P < .01 for both) (Table 1). 
The intensity profiles of MD-CNN reconstructed images 
also showed higher sharpness across the blood-myocar-
dium at different segments than kt-RASPS at ED and ES 
frames (Figure 6, and Supporting Information Figure S2, 
respectively). MD-CNN maintained the blood-myocardium 
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contrast of small anatomic structures such as papillary mus-
cles, as indicated by the intensity profiles in segment 4 of 
Figure 6. Per-segment LV sharpness is illustrated in the 
bull’s-eye plot with mean ± SD for each segment calculated 
over all time frames in the testing dataset. MD-CNN im-
ages had better LV sharpness in all segments compared to 
kt-RASPS (P < .01) (Table 1).

Qualitative assessments of LV border sharpness, temporal 
fidelity, and residual artifacts are reported in Table 2. The 
sharpness of the LV myocardium at end-diastole and end-sys-
tole was significantly improved in MD-CNN reconstruction 
compared to kt-RASPS reconstruction (3.87 ± 0.66 vs. 2.71 
± 0.58, and 3.57 ± 0.58 vs. 2.56 ± 0.60 for end-diastole 
and end-systole, respectively; P-value < .01). LV myocar-
dium sharpness was higher in ED frames compared to ES 

MD-CNN and kt-RASPS, potentially due to less cardiac mo-
tion at end-diastole. MD-CNN reconstructed images exhib-
ited less temporal LV wall blurring compared to kt-RASPS 
(P-value < .01). Residual artifacts were reduced in MD-CNN 
images indicating the network’s ability to recover image 
sharpness while suppressing artifacts.

The percentage error of the extracted LV myocardial area 
in MD-CNN images was lower than in kt-RASPS images, 
with a 9% and 4% decrease at ED and ES frames relative 
to reference images, respectively (P-value < .01) (Table 3). 
The LV cavity area extracted from MD-CNN also showed 
improved DICE index and reduced percentage error com-
pared to that of the kt-RASPS images at both ED and ES 
frames with respect to the reference images. Figure 7 and 
Supporting Information Figure S3 shows agreement between 

F I G U R E  3   Performance of the k-space subnetwork in two subjects. The k-space data are shown at different stages of the network: the 
gridded input k-space, after the 1st and 2nd residual blocks of the k-space subnetwork, the k-space of MD-CNN reconstruction, and the k-space 
of the reference image (rows 1 and 3). The corresponding images are also shown (rows 2 and 4). The k-space gaps are gradually filled and the 
corresponding streaking artifacts of input images are suppressed after k-space interpolation in 1st and 2nd k-space blocks (columns 2 and 3). The 
final MD-CNN reconstructed images have further reduced artifacts and improved image quality similar to the reference images. The k-space of the 
input, k-space block-1, and kspace block-2 are taken from a single coil. All k-space data are presented on a logarithmic scale
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readers segmenting the LV myocardial area from kt-RASPS, 
MD-CNN, and reference images. MD-CNN showed higher 
agreement between readers (ie, smaller limits of agreement) 

similar to that of reference images (Supporting Information 
Table S2). MD-CNN takes 1.6 ± 0.35 s to reconstruct a set of 
25 frames of one slice compared to 5.4 ± 1.1 s for kt-RASPS.

F I G U R E  4   Representative reconstructions by NUFFT, kt-RASPS, U-net, and MD-CNN compared to the reference images for two subjects at 
end-diastolic and end-systolic phases, as well as x-t plots across all time frames

F I G U R E  5   Representative reconstruction by MD-CNN at different undersampling rates: 14, 16, and 20 spokes per frame compared to 
reference image. X-t plots of the reconstructed images at each undersampling rate (bottom row) shows the temporal fidelity across all time frames. 
Temporal fidelity increases as undersampling decreases (magenta arrows)
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4  |   DISCUSSION

In this study, we developed a multi-domain network that pro-
cesses MR data in both k-space and image domains with an 
end-to-end training process. In general, all k-space operations 
can be performed in the image domain and vice versa; for ex-
ample, convolving a kernel to an image is equivalent to mul-
tiplying this kernel’s response to the k-space of that image. 
However, in the context of CNN, all operations are based 
on convolutional kernels only; hence, certain operations are 

feasible to be performed in the k-space and others in the image 
domain using CNN. The k-space subnetwork performs an in-
terpolation of the input 2D k-space using shared information 
among adjacent frames to provide an enhanced estimation of 
missing k-space data, particularly at locations far from the ac-
quired radial lines (ie, gaps among radial lines). Filling such 
k-space gaps is crucial for suppressing image domain's streak-
ing artifacts. Although conventional gridding techniques use 
single hand-crafted kernel to interpolate MR signals at all 
k-space locations, the performance of such kernels degrades 

T A B L E  1   Quantitative assessment of image quality by mean-squared error (MSE), structural-similarity index measure (SSIM), and LV 
myocardial sharpness for kt-RASPS, 3D U-net, and MD-CNN reconstructed images with respect to the reference

Method kt-RASPS U-net MD-CNN Reference P-value

MSE 0.61 ± 0.51* 0.13 ± 0.16 0.11 ± 0.10 – <.01

SSIM 0.72 ± 0.07* 0.84 ± 0.08* 0.87 ± 0.067 – <.01

Quantitative LV myocardial sharpness 0.12 ± 0.04*§  0.16 ± 0.06§  0.17 ± 0.06§  0.21 ± 0.07 <.01

All values are reported as mean ± SD.
§P-value < .01 compared to Reference; *P-value < .01 compared to MD-CNN. 

F I G U R E  6   Quantification of the left ventricular (LV) edge sharpness at six myocardial segments in GRAS, MD-CNN, and reference images. 
A, Sample reconstructed images at end-systole by the three methods (kt-RASPS, MD-CNN, and Reference) showing the six segments at which LV 
sharpness was quantified and the intensity profiles corresponding to each segment of the sample images. B, The bull’s eye plot shows the value of 
the quantified LV edge sharpness at the six different segments of the myocardium with mean ± SD calculated over all time frames of the testing 
dataset
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rapidly at higher acceleration rates, leaving large k-space gaps 
and hence more streaking artifacts. The amount and shape of 
such artifacts are largely determined by the design of the grid-
ding kernel and the undersampling rate. CNN, on the other 
hand, offers an efficient k-space interpolation strategy that op-
timizes multiple convolutional kernels on many training sam-
ples to determine the proper interpolation weights specific to 
the undersampling scheme used. Additionally, the non-linear 
activation functions used after each convolutional layer in 
CNN may allow a spatially variant interpolation process, in 
which the high- and low-frequency k-space content can be in-
terpolated differently.

Considering that successive time frames have simi-
lar structural information, k-space interpolation across the 
time dimension (using 3D convolution kernels) also allows 
spoke sharing among neighboring frames with similar image 
content. Data sharing in turn allows for better estimation of 
k-space values at more locations on k-space gaps, thereby 
reducing streaking artifacts. To exploit shared information 
across the time dimension in the form of spokes sharing, 
the radial trajectory was rotated from frame to frame at a 
small angle (1.8°) that maintained a uniform angular spacing 
among neighboring frames.29,30 The importance of k-space 
processing in our network was demonstrated by assessing 
the resulting k-space of each residual block in the k-space 
subnetwork. The blocks of the k-space subnetwork gradually 
filled the missing values in k-space and led to significantly 
reduced streaking artifacts in the reconstructed images while 
maintaining fine image details and sharpness.

The refined k-space data are transformed into the image 
domain using inverse FFT for further processing via the im-
age-subnetwork. To guarantee a proper flow of gradients 
between the two subnetworks for the back-propagation al-
gorithm during training, a differentiable FFT operation was 
implemented using native PyTorch functions. Maintaining 
complex-valued MR data throughout the MD-CCN interme-
diate layers was also necessary to allow a proper transfor-
mation of data between the k-space and image domain. To 
process complex-valued data, a complex convolutional net-
work was used to maintain the proper combination of real 
and imaginary components of complex MR data throughout 
all network layers.

In the image-subnetwork, the improved myocardi-
um-blood contrast, artifact suppression, and sharp edges in 
the MD-CNN output images are likely associated with the 
ability of the image-subnetwork to compensate for vari-
able k-space density and suppress more residual artifacts. 
Considering the incoherent residual (streaking) artifact pat-
terns among different frames, the 3D convolution layers in 
this subnetwork enable further removal of residual artifacts 
by sharing spatio-temporal correlations among neighboring 
frames, similar to compressed sensing.12,16

MD-CNN images had superior image quality than kt-
RASPS and U-net on all quantitative measures. MD-CNN 
was trained to produce images that minimally differ from ref-
erence images in pixel value, such that quantitative measures 
are implicitly biased toward the MD-CNN-reconstructed 
images compared to kt-RASPS images. To alleviate this 

Method kt-RASPS MD-CNN Reference

Sharpness of LV borders at 
end-diastole

2.71 ± 0.58*§  3.87 ± 0.66§  4.71 ± 0.52

Sharpness of LV borders at 
end-systole

2.56 ± 0.60*§  3.57 ± 0.58§  4.60 ± 0.58

Temporal fidelity of wall 
motion

2.59 ± 0.59*§  3.27 ± 0.65§  4.65 ± 0.51

Residual artifacts 2.63 ± 1.09§  2.38 ± 0.81§  1.81 ± 0.82
§P-value < .01 compared to Reference; 
*P-value < .01 compared to MD-CNN. 

T A B L E  2   Qualitative assessment 
of LV border sharpness at end-diastolic 
and end-systolic cardiac phases, temporal 
fidelity of myocardial wall motion, and 
residual artifacts in kt-RASPS, MD-CNN, 
and reference images

Method Phase kt-RASPS MD-CNN P-value

DICE index of LV 
myocardium

Diastole 0.77 ± 0.12 0.84 ± 0.05 <.01

Systole 0.83 ± 0.06 0.88 ± 0.07 <.01

DICE index of LV 
endocardium

Diastole 0.97 ± 0.01 0.98 ± 0.03 .011

Systole 0.96 ± 0.01 0.97 ± 0.01 <.01

Percentage error of LV 
myocardial area (%)

Diastole 21.4 ± 19.1 12.0 ± 13.1 <.01

Systole 13.8 ± 13.3 9.4 ± 8.0 <.01

Percentage error of LV 
endocardial area (%)

Diastole 4.5 ± 4.0 3.6 ± 3.3 .15

Systole 7.3 ± 6.2 5.2 ± 4.3 <.01

T A B L E  3   DICE index and percentage 
error of LV myocardial and endocardial 
areas at end-diastolic and end-systolic 
phases extracted from kt-RASPS and 
MD-CNN images with respect to reference 
images
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bias, kt-RASPS, MDC-CNN, and reference images were 
normalized by the 90th percentile before MSE and SSIM 
calculations. In addition, to alleviate the impact of myocar-
dium-blood contrast differences on LV sharpness quantifica-
tions, each intensity profile across the LV myocardium was 
standardized separately from 0 to 1 before the sharpness cal-
culations. In addition, MD-CNN allows further suppression 
of the residual streaking artifacts compared to the 3D U-net. 
This is mainly due to the ability of the k-space interpolation 
subnetwork to provide cleaner images to the image-domain 
subnetwork, unlike the U-net that processes cine data in the 
image domain only.

In the qualitative assessment, MD-CNN images also 
demonstrated improved LV edge sharpness at ED and ES 
phases and reduced temporal blurring compared to kt-
RASPS images. This was also indicated by greater agree-
ment among readers assessing the extracted LV areas from 
MD-CNN vs. kt-RASPS reconstruction. These results also 
reflect higher confidence among readers to accurately 
segment the sharp LV borders from MD-CNN images. 
Although the temporal fidelity of MD-CNN reconstruc-
tion at 14 views was assessed as fair by the readers, higher 
temporal fidelity can be obtained by including more views 
(optimally observed at 20 views per frame). Both methods 

F I G U R E  7   Bland-Altman plots showing inter-observer agreement of three comparisons: Reader 1 vs. Reader 2, Reader 2 vs. Reader 3, and 
Reader 1 vs. Reader 3 of the extracted LV myocardial areas in kt-RASPS, MD-CNN, and reference images. Biases and limits of agreement for each 
comparison are reported in Supporting Information Table S2
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showed similar residual artifact content, but the artifacts 
were different in nature. Kt-RASPS endorsed streak-
ing artifacts, while flickering artifacts were observed in 
MD-CNN.

A few considerations may have contributed to inferior 
reconstruction by kt-RASPS in this study. The kt-RASPS 
method is more suitable for real-time imaging applications 
where a large number of frames are available (>>25), 
so that sufficient sparsity along the time dimension is 
achieved. However, in our reconstruction problem, only 
25 phases were available for reconstruction, which may 
have led to additional blurring in kt-RASPS images. The 
limited number of frames in our data also led to faster kt-
RASPS reconstruction times compared to the real-time 
applications.12 On the other hand, the proposed MD-CNN 
method is able to exploit redundancy in a small number 
of adjacent frames (seven in the experiments) and thereby 
efficiently reduce undersampling artifacts. In addition, the 
rotation angle in this study is uniform, as opposed to the 
golden-angle rotation that is widely used in real-time appli-
cations.12,22 However, the uniform trajectories exhibit bet-
ter characteristics that allow equidistant spacing between 
views when compared to golden-angle trajectories.

Our study has some limitations. Only one slice at mid-LV 
was acquired per patient, which was not sufficient to calcu-
late LV functional parameters (eg, LV volumes and ejection 
fraction). All patients studied were in sinus rhythm, and gen-
eralization of the reconstruction techniques in patients with 
irregular rhythms was not studied.

5  |   CONCLUSION

The proposed multi-domain network uses k-space and 
image domain processing units to efficiently reconstruct 
highly undersampled radial cine MR data. MD-CNN ex-
ploits the spatio-temporal correlations among neighboring 
time frames and multiple coils to enable higher accelera-
tion rates.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

VIDEO S1 MD-CNN sample reconstruction of all time 
frames at three different neighboring window sizes (Ntw = 
5, 7, and 9 frames) from the left side to the right side, re-
spectively. The flickering artifacts are suppressed at larger 
window sizes (eg, 7 (middle) and 9 (right)) while the tempo-
ral fidelity did not degrade at these large window sizes when 
compared to a window size of 5
VIDEO S2 K-t radial sparse-sense (kt-RASPS) sample re-
construction of all time frames at three different values of 
regularization weights (λ = 0.01, 0.025, and 0.1) from the 
left side to the right side, respectively. The reconstructed 
data with low regularization values (λ = 0.01) showed a high 
level of streaking artifacts, and increased temporal blurring 
at higher regularization levels (λ = 0.1), while data at λ = 
0.025 showed minimal streaking artifacts with relatively high 
temporal fidelity
VIDEO S3 K-t radial sparse-sense (kt-RASPS) sample recon-
struction of all time frames at 3 different values of regulariza-
tion weights (#iterations = 25, 50, and 100) from the left side 
to the right side, respectively. The image quality increases at 
#iterations = 50 compared to that at #iterations = 25, while 
image quality was maintained at #iterations = 50 and 100
VIDEO S4 Representative reconstruction at 14 spokes/frame 
of undersampled data from one subject at all cardiac phases 
by different reconstruction methods: the locally low rank 
and temporal finite differences compressed sensing method 
(LLR+FD), k-t radial sparse-sense (kt-RASPS), 3D U-net, 
the proposed MD-CNN network, and reference data, from 
left to right, respectively
VIDEO S5 Representative reconstruction at 14 spokes/
frame of undersampled data from another subject at all car-
diac phases by different reconstruction methods: the locally 
low rank and temporal finite differences compressed sensing 
method (LLR+FD), k-t radial sparse-sense (kt-RASPS), 3D 
U-net, the proposed MD-CNN network, and reference data, 
from left to right, respectively
VIDEO S6 Representative reconstruction at 14, 16, and 20 
spokes/frame of undersampled data from one subject at all 
cardiac phases by the proposed MD-CNN network. Temporal 
fidelity increases as number of spokes increase
FIGURE S1 Mean squared error (MSE) for MD-CNN im-
ages in the training and testing datasets at each of the 250 
training epochs
FIGURE S2 Sample reconstructed images at end-systole by 
the three methods (kt-RASPS, MD-CNN, and Reference) 
showing the six segments at which LV sharpness was quanti-
fied and the intensity profiles corresponding to each segment 
of the sample images
FIGURE S3 Bland-Altman plots showing inter-observer 
agreement of each comparison: Reader#1 vs. Reader#2, 
Reader#2 vs. Reader#3, and Reader#1 vs. Reader#3 of the 
extracted LV myocardial areas in kt-RASPS, MD-CNN, and 
reference images, separately
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TABLE S1 Clinical indications for clinical cardiac MR scans 
of our patient cohort
TABLE S2 Biases and limits of agreement of the Bland-
Altman plots for inter-observer agreement of 3 compari-
sons: Reader#1 vs. Reader#2, Reader#2 vs. Reader#3, and 
Reader#1 vs. Reader#3 of the extracted LV myocardial areas 
in kt-RASPS, MD-CNN, and reference images
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