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Homeostasis is indispensable to counteract the destabiliz-
ing effects of Hebbian plasticity. Although it is commonly
assumed that homeostasis modulates synaptic strength, mem-
brane excitability, and firing rates, its role at the neural circuit
and network level is unknown. Here, we identify changes in
higher-order network properties of freely behaving rodents dur-
ing prolonged visual deprivation. Strikingly, our data reveal that
functional pairwise correlations and their structure are subject to
homeostatic regulation. Using a computational model, we demon-
strate that the interplay of different plasticity and homeostatic
mechanisms can capture the initial drop and delayed recovery of
firing rates and correlations observed experimentally. Moreover,
our model indicates that synaptic scaling is crucial for the recov-
ery of correlations and network structure, while intrinsic plasticity
is essential for the rebound of firing rates, suggesting that synap-
tic scaling and intrinsic plasticity can serve distinct functions in
homeostatically regulating network dynamics.

homeostasis | cortical circuits | functional correlation | synaptic scaling |
intrinsic plasticity

Neural circuits are faced with a fundamental problem: how
to allow experience to alter and refine network connectivity

during learning and experience-dependent plasticity, while still
maintaining stability of function. Generating a neural system that
is both stable and flexible is a nontrivial challenge and requires a
prolonged period of development when multiple mechanisms at
the level of single neurons and networks of neurons interact. Two
powerful and fundamentally different forms of plasticity involved
in this process are Hebbian mechanisms, which alter synap-
tic connectivity in a synapse-specific manner, and homeostatic
mechanisms that maintain stable function by globally adjusting
overall synaptic weights and neuronal excitability.

The development and refinement of visual response properties
in the primary visual cortex (V1) involves classic synapse-specific
mechanisms implementing the bidirectional form of Hebbian
plasticity, such as long-term potentiation (LTP) and long-term
depression (LTD), considered to be the cellular substrate for
learning and memory (1). Associative Hebbian plasticity, how-
ever, drives positive feedback processes that lead to unstable
network dynamics, and some form of homeostasis is needed to
compensate for this inherent instability (2, 3). A large body of
evidence shows that various homeostatic plasticity mechanisms,
including synaptic scaling and intrinsic plasticity (4, 5), operate in
the brain to maintain stability despite various internal and exter-
nal perturbations. More specifically, homeostatic plasticity can
elevate neural activity in response to sensory deprivation (6, 7)
and suppress activity under conditions of overexcitation (8, 9).

Despite great efforts to describe homeostatic mechanisms at
the single cell level, how network properties are homeostatically
regulated is largely unknown. While Hebbian and homeostatic
mechanisms operate at different timescales and can be induced
by distinct cues (10–13), how they interact within complex, highly
recurrent microcircuits, as those found in the cortex, to refine
and maintain circuit function has remained elusive. A critical

challenge has been the lack of detailed measurements of individ-
ual synaptic strengths and their potential impact on large-scale
network dynamics, especially in a highly recurrent network like
the cortex.

Here, we investigate two main questions. First, which aspects
of network function are under homeostatic control? Second, why
are there so many homeostatic mechanisms, and do they serve
redundant or unique functions? To address these questions, we
combine analysis of in vivo electrophysiological data during sen-
sory deprivation in the rodent visual cortex and computational
modeling of cortical synaptic plasticity and network dynamics.
First, we analyzed the collective activity of multiple neurons in
the monocular region of the primary visual cortex (V1m) dur-
ing a classic monocular deprivation (MD) paradigm (lid suture)
in freely behaving rats over 9 d during the critical period (14).
Earlier work demonstrated that MD induces an initial drop in
firing followed by the rates’ homeostatic recovery despite long-
lasting deprivation (14). Here, we reanalyzed these datasets to
characterize the temporal evolution of higher-order network
properties over the same 9-d period. Individual pairwise correla-
tions, including correlation structure, weakened during brief MD
but recovered during prolonged MD. Second, to understand how
the cortical network exploits diverse homeostatic mechanisms to
return firing rates and correlations to baseline (BL) after pro-
longed MD, we took advantage of a plastic spiking recurrent
network model equipped with known plasticity and homeostatic
mechanisms. Our work suggests that synaptic scaling is crucial
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Fig. 1. MD induces an initial drop in correlations followed by their homeostatic recovery. (A) The average firing rates of 80 neurons from 5 control
hemispheres (Top) and 104 neurons from 5 deprived hemispheres (Bottom) normalized to the firing rates at P26 in the light (horizontal dashed line). (B)
The average pairwise correlations of 970 pairs from 5 control hemispheres (Top) and 2,455 pairs from 5 deprived hemispheres (Bottom) normalized to
the correlations at P26 in the light (horizontal dashed line). (C) Correlation comparisons between BL and early MD (Left), between early MD and late MD
(Middle), and between BL and late MD (Right) at the single cell-pair level of one control hemisphere. Different colors represent the correlations between
different neuron types. Dashed lines are fitted regression lines crossing the origin. Upper left histograms indicate the distributions of correlation differences.
***P < 0.001 (Wilcoxon signed-rank test). (D) Same as C but for one deprived hemisphere. Here, for two hemispheres, we used MD3, and for the other
three hemispheres, we used MD2, as early MD because different animals showed the biggest drop in correlations at different times. ***P < 0.001 (Wilcoxon
signed-rank test). (E) Slopes of fitted regression lines for the correlation comparisons as in C and D for five control and five deprived hemispheres. (F) Change
in the average normalized correlations between MD3 and MD5. Each data point denotes one hemisphere. Hemispheres from the same animals are marked
with square or triangle symbols and connected by a dashed line. Data are shown as means ± SEM.

for the recovery of correlations and network structure, whereas
intrinsic plasticity is essential for the rebound of firing rates.
These results indicate that different homeostatic mechanisms act
in the brain to independently regulate distinct network features.

Results
Pairwise Correlations during the Critical Period and in Response to
MD. We first confirmed previous analysis of individual neurons
recorded in vivo in the primary visual cortex during the criti-
cal period of plasticity (postnatal day [P]24 to P32). In these
experiments, MD was performed after 3 d of BL activity and
continued for the rest of the recordings. While firing rates
of individual neurons remained relatively stable during normal
development (Fig. 1A, Top), brief 2-d MD caused the firing
rates to decrease to 40% of their BL values (Fig. 1A, Bottom)
(6, 14). However, despite prolonged MD, over the next 3 to
4 d, firing rates gradually recovered to BL after an initial over-

shoot (Fig. 1A, Bottom) (6, 14). These effects were not only
observed at the population level but also at the level of indi-
vidual neurons (14). Here, we investigated higher-order network
properties during normal development and following prolonged
MD by calculating the next statistical moment beyond the firing
rates, namely the pairwise spiking correlations between different
neuron types (Methods). Specifically, we quantified the tempo-
ral evolution of the correlation coefficient of individual neuron
pairs and of the average correlations across all pairs both during
normal development and after perturbing visual input through
MD. In control hemispheres, correlations, unlike firing rates,
increased slightly as a function of age (n = 5 animals; Fig. 1B,
Top). By contrast, in deprived hemispheres, correlations initially
dropped over the first 2 d and then gradually rebounded to
predeprivation levels (n = 5 animals; Fig. 1B, Bottom), display-
ing a similar pattern as the firing rates (Fig. 1A). As previously
reported, we observed light–dark oscillations in the correlation
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amplitudes, with higher correlations in the light and lower
correlations in the dark (15).

To assess the degree to which correlations of individual neuron
pairs changed beyond the population level, we evaluated single
cell-pair correlations on different days. As in the earlier analy-
sis, neurons were separated into putative parvalbumin-positive
(PV+) fast-spiking units (pFS) or regular-spiking units (RSUs)
based on waveform and spiking characteristics (6, 14). Specif-
ically, we focused on three different 12-h periods recorded in
the light: 1) BL corresponding to P26; 2) a period that we called
“early MD” when the largest drop of firing rates and correlations
occurred, typically 2 or 3 d after BL (i.e., P28 or P29); and 3) a
period that we called “late MD” corresponding to the time when
the firing rates and correlations nearly recovered to BL (i.e.,
P31). As observed already for the average correlations, when
combining all neuron pairs and animals, single cell-pair corre-
lations increased during normal development covering the 6-d
period during which recordings were performed. The increase
between BL and early MD was small (n = 435 pairs; Fig. 1C, Left)
(r =0.97; P < 10−21 [Wilcoxon signed-rank test]). Correlations
at late MD were significantly greater than at early MD (n = 253
pairs; Fig. 1C, Middle) (r =0.93; P < 10−28 [Wilcoxon signed-
rank test]). The developmental increase in correlations during
the critical period became most obvious when we compared
BL versus late MD (n = 253 pairs; Fig. 1C, Right) (r =0.92;
P < 10−37 [Wilcoxon signed-rank test]). We did not observe any
obvious differences in correlations among different cell types
in that they all showed similar patterns of temporal evolution.
Moreover, almost all neuronal pairs in a control hemisphere
demonstrated an increase in correlation (Fig. 1C, Right).

Conversely, in deprived hemispheres, correlations of the
majority of individual cell pairs, independent of their type,
underwent a significant drop during early MD (n = 190 pairs;
Fig. 1D, Left) (r =0.90; P < 10−24 [Wilcoxon signed-rank
test]), followed by an increase during late MD (n = 231 pairs;
Fig. 1D, Middle) (r =0.87; P < 10−27 [Wilcoxon signed-rank
test]). The correlations during late MD recovered to a higher
level than BL (n = 190 pairs; Fig. 1D, Right) (r =0.78; P <

10−4 [Wilcoxon signed-rank test]). We summarized the gradual
increase of correlations in control hemispheres and the drop fol-
lowed by recovery in deprived hemispheres by the slopes of the
fitted regression lines of the individual pair data for each animal
(Fig. 1E). Remarkably, despite a degree of variability across ani-
mals, the drop and recovery of correlations induced by MD were
ubiquitous (SI Appendix, Fig. S1).

There are several possible mechanisms for the recovery of cor-
relations during late MD in deprived hemispheres. First, it is
possible that the correlations in the cortex simply follow the firing
rates (16), which are homeostatically regulated. However, this
scenario assumes a feedforward framework of signal transmis-
sion in which input correlations are fixed. In our experiments,
input correlations under conditions of normal vision consist
of a combination of signal and noise correlations. Closure of
the eye during MD destroys signal correlations, thus decreas-
ing overall input correlations, even though thalamic firing rates
do not change during MD (17). Therefore, the only source of
input correlations during prolonged MD is noise correlations.
Under normal vision, cortical correlations in the dark (driven
by noise input correlations) are approximately two-thirds of the
correlations in the light (driven by intact signal input correla-
tions) (15) (Fig. 1B). Combining these two results supports the
conclusion that the homeostatic recovery of firing rates cannot
explain the full recovery of cortical correlations and that network
mechanisms are likely involved.

A second possibility suggests that the increase of correlations
in deprived hemispheres could arise from the same underlying,
possibly developmental, mechanism as in control hemispheres.

To investigate this, we compared the increase in the average
correlations between early MD, when the largest drop in the
correlations occurs, and late MD, when the correlations have
mostly recovered. We found that the increase of correlations
in deprived hemispheres was consistently higher than in con-
trol hemispheres (Fig. 1F). This suggests that the increase of
correlations in deprived hemispheres does not only have a devel-
opmental, age-dependent component but also a homeostatic
recovery component in response to prolonged MD. We further
found that the correlation changes between two adjacent 12-h
light periods, as quantified by the slopes of the fitted regression
lines, were different in the deprived from the control hemisphere
in the same animals (SI Appendix, Fig. S2). This indicates that the
increase in correlations between P29 and P31, the period cor-
responding to late MD, follows different temporal dynamics in
control and deprived hemispheres.

Taken together, our results demonstrate an increase of cor-
relations in deprived hemispheres during prolonged MD that is
larger than the developmental increase of correlations in con-
trol hemispheres during normal development. Excluding other
mechanisms such as coregulation with firing rates and age depen-
dence, we propose that the recovery of correlations in deprived
hemispheres during prolonged MD is due to homeostatic mech-
anisms, which are well known to operate in response to such
perturbations (4, 5).

Network Structure after MD. While correlations at the single cell-
pair level recovered during late MD, the difference between
correlations at late MD and BL (Fig. 1D, Right) raised the
possibility that the recovered network might have a different
structure after recovery. To examine the evolution of network
structure during normal development over the critical period
and during prolonged MD, we examined the correlation matri-
ces on different days. An example experiment shows that in
the control hemisphere, the structure of the correlation matrix
remained consistent over time (n = 11 neurons; Fig. 2A),
whereas in the deprived hemisphere, the correlation structure
initially weakened and recovered to a similar structure as BL
(n = 14 neurons; Fig. 2B). MD induced heterogeneous changes
in correlation structure across animals, despite an overall ini-
tial decrease and subsequent recovery (SI Appendix, Fig. S3). To
quantify the similarity between the structure of correlation matri-
ces at distinct time points, we calculated the L1 distance between
correlations (Methods), which measures the absolute difference
between them. Combining multiple animals revealed that in both
control and deprived hemispheres, the correlation matrix at BL
is more similar to the correlation matrix at early MD relative to
randomly shuffling the latter for control (n = 609 pairs; Fig. 2C,
Left) (P< 10−58 [Wilcoxon signed-rank test]) and deprived hemi-
spheres (n = 505 pairs; Fig. 2D, Left) (P < 10−33 [Wilcoxon
signed-rank test]). Additionally, the correlation structures at BL
and late MD are more similar than chance level for control
(n = 609 pairs; Fig. 2C, Right) (P < 10−28 [Wilcoxon signed-rank
test]) and deprived hemispheres (n = 505 pairs; Fig. 2D, Right)
(P < 10−30 [Wilcoxon signed-rank test]). These results suggest
that despite a decrease in the correlation amplitude during early
MD, the correlation structure is maintained throughout MD;
hence, the network does not reorganize as correlations recover
during late MD. In line with this finding, we found that the dis-
tance between BL and early MD in deprived hemispheres was
not significantly different from that between BL and late MD
(n = 505 pairs; Fig. 2D) (P = 0.771 [Wilcoxon signed-rank test]).
However, for control hemispheres, the distance between BL and
late MD was significantly higher than that between BL and early
MD (n = 609 pairs; Fig. 2C) (P < 10−46 [Wilcoxon signed-rank
test]), due to the large increase in correlation amplitude during
development (Fig. 1C). Interestingly, the correlation matrices
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are composed of several assemblies—groups of neurons exhibit-
ing strong pairwise correlations (Fig. 2 A and B)—reminiscent
of the clustered network structure reported in previous studies
(18–21).

In conclusion, our analysis of V1 cortical activity recorded in
vivo demonstrates that the pairwise correlations, in amplitude
and structure, of these networks are homeostatically regulated
following prolonged perturbation of normal sensory experience.

Formation of Structured Connectivity Assemblies during Training in
a Recurrent Network Model. We next asked what mechanisms
underlie the observed neuronal- and network-level changes dur-
ing normal development and following a perturbation like MD.
To understand how neural circuits exploit various synaptic plas-
ticity and homeostatic mechanisms to first decrease and then
recover both firing rates and correlations during MD, we built
a plastic recurrent network model consisting of randomly con-
nected excitatory and inhibitory spiking neurons (Methods).
Model neurons received thalamic inputs, with thalamocortical
synaptic efficacy onto inhibitory neurons set higher than onto
excitatory neurons, consistent with previous experimental stud-
ies (22–24). Neuronal and network parameters were chosen to
generate in vivo-like firing rates, with excitatory neurons firing at
5 Hz and inhibitory neurons firing at 13 Hz (6).

To generate the experimentally observed clustered correla-
tion structure (Fig. 2 A and B), we included several exper-
imentally characterized plasticity mechanisms (25) (Methods).
We first tasked the network with the imprinting of connec-
tivity assemblies starting from an initially random connectivity
(Fig. 3A, Left). In contrast to previous models that used ran-
dom, uncorrelated Poisson inputs (25) and in line with our
observation that the networks show stronger pairwise correla-
tions in the light than in the dark (15), we postulated that input
correlations—as would be generated during natural vision—
matter for the generation of clustered connections. Therefore,
we trained the recurrent network by stimulating excitatory neu-
rons with thalamocortical Poisson spiking inputs that had identi-
cal firing rates but differed in their correlation structures. For
the training, excitatory neurons were randomly grouped into
four identical assemblies, thereby simplifying network struc-
ture despite known heterogeneities in the data (SI Appendix,
Fig. S3).

Before training with correlated inputs, the initial synaptic con-
nections in the entire network were weak and identical between
any pair of neurons of the same type (Fig. 3A, Left), result-
ing in asynchronous irregular network activity (Fig. 3A, Middle)
and low correlations without clustered structure (Fig. 3A, Right).
During training, excitatory neurons within a targeted assembly
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received correlated inputs (Methods), which strengthened con-
nectivity between them through Hebbian plasticity. After train-
ing, the excitatory subnetwork became structured with stronger
synaptic connections between excitatory neurons within assem-
blies, while inhibitory neurons remained unstructured whereby
inhibition is global and nonspecifically connects to all excita-
tory neurons (Fig. 3B, Left). As a result of this structure, the
network no longer exhibited asynchronous irregular activity but
rather blocks of activity in the excitatory neurons defined as
occasional periods of high firing rate (Fig. 3B, Middle). The
structured connectivity and block activity selectively generated
high correlations between excitatory neurons within assemblies
(Fig. 3B, Right).

A Model with Persistent Hebbian LTD and Homeostatic Plasticity Can-
not Recover Correlations after MD. Using the structured model
network as a baseline following normal cortical development
after eye opening, we next wanted to investigate how this net-
work responds to a sensory perturbation resembling MD. To
achieve this, we needed to know how the inputs to the network
are modified during MD. Previous experimental studies have
reported that MD induces no change in the average firing rates
of LGN, the visual area of the thalamus (17). Therefore, to sim-
ulate MD in our model network, we kept the firing rates of LGN
inputs identical to that at BL but assumed that eye closure during
MD considerably diminished input correlations. In the model,
the excitatory neurons received uncorrelated Poisson inputs to
denote the start of MD (Fig. 4A).

In addition to these changes in input correlations, recent
experiments have revealed that brief MD (2 d) induces LTD at
thalamocortical synapses onto excitatory and inhibitory neurons,
with thalamocortical synapses onto inhibitory neurons depress-
ing more than synapses onto excitatory neurons (24). The process
of LTD is not instantaneous, so we assumed that synaptic con-

nections from the thalamus to excitatory and inhibitory neurons
undergo a linear decrease during the first 2 d of MD. To match
experimental findings, the decrease in thalamocortical connec-
tions onto inhibitory neurons was larger (Fig. 4A and Methods).
It is currently unknown when during MD this thalamocorti-
cal depression saturates, but since deprived-eye responsiveness
reaches its minimum 2 to 3 d after the onset of MD (26),
we assumed that the feedforward connections did not further
decrease after this point, while keeping the inputs uncorrelated
for the entire MD (Fig. 4A).

How does the recurrent network respond to these changes in
input correlation structure and depression of feedforward con-
nectivity strength that occur following MD? Although there are
potentially multiple ways to achieve network stability and reg-
ulate network function, there are two fundamentally different
mechanisms that have been well characterized experimentally:
homeostatic adjustment of synaptic strengths and of intrinsic
excitability (3, 27, 28). Excitatory neurons can regulate their
activity by scaling incoming synaptic strengths in response to
perturbations—a process known as synaptic scaling (4). This
scaling is bidirectional in that it can increase and decrease
synaptic strengths; it is global and operates in a multiplicative
manner. In addition to synaptic scaling, neurons can alter the
number of different ion channels to adjust intrinsic excitability,
and consequently modify their firing thresholds, in response to
perturbations (5, 13, 29).

Based on these experimental findings, in addition to Hebbian
plasticity during training, we modeled these two distinct home-
ostatic mechanisms following MD: 1) synaptic scaling, which
acts only on excitatory synapses (4, 6); and 2) intrinsic plastic-
ity, which modifies the intrinsic excitability of both excitatory
and inhibitory neurons (29, 30) (Methods). In the presence of
persistent thalamocortical LTD, as during training, and both
homeostatic mechanisms, the average firing rates of excitatory
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and inhibitory neurons in the model network first decreased to
40% of BL, because slow homeostatic mechanisms could not
overcome the feedforward synaptic depression and input decor-
relation to recover firing rates. At the time that feedforward LTD
saturated, firing rates started to increase due to homeostatic plas-
ticity, resembling the recovery to BL observed experimentally
during late MD (Fig. 4B; compare with Fig. 1A, Bottom).

Next, we investigated the evolution of higher-order aspects of
network dynamics. Similar to the analysis of our data, we focused
on two key time points after MD onset in the model: early
MD, corresponding to the largest drop of firing rates (Fig. 4B,
orange); and late MD, corresponding to the time when the fir-
ing rates recovered close to BL (Fig. 4B, yellow). The network
showed irregular spiking dynamics with different firing rates
during these two periods (Fig. 4 C and D, Left). The corre-
lations between excitatory neurons first decreased during the
period modeling early MD, as observed experimentally (Fig. 4C,
Right; compare with Fig. 2B, Middle), but did not recover during
the period corresponding to late MD (Fig. 4D, Right; compare
with Fig. 2B, Right). We speculated that this failure to recover
the correlations in the model network, despite the recovery of
firing rates, could be the result of perturbing the structured
connectivity between excitatory neurons within assemblies gen-
erated through training (Fig. 3B). Indeed, the average weights
between excitatory neurons within an assembly depressed during
the period corresponding to late MD (SI Appendix, Fig. S4).

To reveal the origin of this depression in the model network,
we investigated the specific contribution of Hebbian plasticity
and synaptic scaling to the average excitatory weight change
within assemblies. Despite the overall potentiation of excita-
tory weights within assemblies induced by synaptic scaling during
the period corresponding to early MD, continued LTD from
Hebbian plasticity dominated over homeostatic plasticity,
depressing all excitatory weights within assemblies and pre-
venting the recovery of excitatory-to-excitatory correlations (SI
Appendix, Fig. S5). In conclusion, this dominance of depres-
sion after MD prevents the recovery of structured connectivity,
and consequently correlations, between excitatory neurons in a

model with persistent Hebbian LTD despite homeostatic plas-
ticity. This suggests that the relative timing and resulting com-
petition between the two homeostatic mechanisms and ongoing
Hebbian plasticity could be important for recovering different
aspects of network dynamics.

The Attenuation of Hebbian LTD Together with Homeostatic Mecha-
nisms Restores Firing Rates and Correlations during Prolonged MD.
Previous work involving ocular dominance plasticity has shown
that blocking Hebbian plasticity under normal rearing or after
6 d of MD does not cause any significant change in the response
strength in the binocular region of V1, suggesting that the effects
of Hebbian and homeostatic plasticity are negligible at each
of the two steady states. These experiments also argued that
the total effect of Hebbian plasticity in the deprived eye dur-
ing the recovery phase is dominated by LTD but gradually
approaches zero when homeostatic plasticity reaches its steady
state (31). Motivated by these findings, we asked whether the
recovery of excitatory correlations during the period correspond-
ing to late MD in the model can be rescued by reducing the
effect of Hebbian LTD. We proposed that the attenuation of
Hebbian plasticity might occur through a metaplastic process
where the amplitude of LTD dynamically adapts to the history
of neuronal activity (Methods) (32, 33). Implementing meta-
plastic LTD preserved the recovery of average firing rates of
both excitatory and inhibitory neurons (Fig. 5A). Similarly, the
spiking rasters during the period corresponding to early MD
showed asynchronous irregular activity (Fig. 5B, Left). In con-
trast to the model with persistent LTD, however, the metaplastic
reduction in LTD enabled the return of structured excitatory
activity during late MD (Fig. 5C, Left). Importantly, the excita-
tory correlation structure in the model during late MD home-
ostatically recovered after its initial dilution during early MD
(Fig. 5B and Fig. 5C, Right; compare with Fig. 2B, Middle and
Right). The decrease and recovery of correlations was the same
across all neuron pairs within assemblies in our model because
the trained assemblies were identical, unlike the heterogene-
ity in the data where the correlations of different neuron pairs

B

Exc Inh

0.3

0.0

-0.3

C
or

re
la

tio
n

Exc

Inh

N
eu

ro
nsExc

Inh

N
eu

ro
ns

D Training MD

Assy. 1
Assy. 2
Assy. 3
Assy. 4
Cross assy.

Time (s)
400 800 1200 1600

Av
er

ag
e 

E
-E

 w
ei

gh
t

0.8

0.4

0.0

1.2

E

Time (s)
400 800 1200 1600

Av
er

ag
e 

I-E
 w

ei
gh

t

1.0

0.0

2.0

Training MD F

Exc
Inh

Time (s)
400 800 1200 1600

-52

Av
er

ag
e 

th
re

sh
ol

d 
(m

V
)

-50

-54

Training MD

A

1.5

1.0

0.5

Time (s)
400 800 1200 1600

0.0N
or

m
al

iz
ed

 fi
rin

g 
ra

te

Exc
Inh

Training MD

Network with attenuated LTD

Early MD

C
Exc

Inh

N
eu

ro
ns

Exc Inh
Neurons

0.3

0.0

-0.3

C
or

re
la

tio
n

0 0.2 0.4 0.6 0.8 1.0
Time (s)

Exc

Inh

N
eu

ro
ns

Late MD

Fig. 5. The model with attenuated LTD recovers excitatory and inhibitory firing rates and excitatory correlations during MD. (A) The average normalized
firing rates of excitatory (blue) and inhibitory (red) neurons. The vertical dashed line indicates the onset of MD. The horizontal dashed line indicates a
normalized firing rate of 1.0. (B, Left) Spontaneous activity of excitatory (blue) and inhibitory (red) neurons during early MD. (B, Right) Correlation matrix
during early MD indicated by the orange region in A. (C) Same as B but during late MD indicated by the yellow region in A. (D) Average excitatory-to-
excitatory weights for each assembly and across assemblies. (E) Average inhibitory-to-excitatory weights that target all excitatory neurons independent of
assembly membership. (F) Average firing thresholds of excitatory (blue) and inhibitory (red) neurons. The horizontal dashed line indicates the initial firing
threshold.

Wu et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24519

D
ow

nl
oa

de
d 

at
 D

E
R

 T
E

C
H

N
IS

C
H

E
 (

#1
57

24
15

8)
 o

n 
D

ec
em

be
r 

28
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918368117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918368117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918368117/-/DCSupplemental


underwent a varying degree of decrease and recovery (SI
Appendix, Fig. S3). Adding heterogeneity to the model
assemblies—for instance, by diversifying synaptic strengths, con-
nectivity probabilities, or sizes—might be necessary to capture
the diverse changes in correlation structures in the data. The
metaplastic down-regulation of LTD in our model shifted the
network from an LTD-dominant regime during early MD to an
LTP/LTD-balanced regime during the recovery phase. Although
this regime differs from previous studies in which the network
remains in an LTD-dominant regime during most of the recov-
ery phase (31), firing rates and correlations will recover provided
that homeostatic plasticity greatly dominates over Hebbian LTD
during the recovery phase.

We further investigated what other properties of the net-
work changed as we modeled MD. Along with firing rates and
excitatory correlations, the average excitatory weights within
assemblies manifested the same pattern of drop and rebound
(Fig. 5D), in contrast to the corresponding weights in the ini-
tial model with persistent LTD (SI Appendix, Fig. S4). Average
inhibitory onto excitatory weights also decreased during early
MD in the model (Fig. 5E), suggesting that the network reduced
the amount of inhibition to elevate the decreased firing rates
of excitatory neurons. During the period corresponding to late
MD, overall inhibition increased to balance the gradually recov-
ered excitation, keeping excitatory–inhibitory balance and avoid-
ing winner-take-all dynamics where a single strongly connected
assembly dominates the entire network (25). Furthermore, the
average firing thresholds of excitatory and inhibitory neurons in
the model network decreased as we modeled prolonged MD and
reached a steady state as the firing rates approached their BL
values (Fig. 5F).

Our experimental analysis revealed that, despite a decrease in
the correlation amplitude during early MD, correlation structure
is maintained throughout MD (Fig. 2D). Consistent with this, if
network structure is completely erased during early MD in our
model (as in the scenario without metaplastic LTD; Fig. 4), then
homeostatic synaptic scaling during late MD cannot recover exci-
tatory correlations because the backbone of recurrent circuitry
from which to rebuild them has been lost. Otherwise, synap-
tic scaling can still rescue correlations even when the intensity
or duration of LTD at thalamocortical synapses increases (SI
Appendix, Fig. S6). In particular, we found that the intensity and
duration of feedforward LTD have a different impact on the exci-
tatory synaptic weights within assemblies, which shape excitatory
correlation structure in the model. More intense and prolonged
LTD causes a larger decrease in the firing rates, enabling the
fast upscaling of excitatory synaptic weights within assemblies
that recover correlations well before firing rates (SI Appendix,
Fig. S6). Only prolonging feedforward LTD without affecting its
intensity does not decrease firing rates as much (SI Appendix,
Fig. S6), due to the lower firing thresholds of the neurons (SI
Appendix, Fig. S7). The smaller drop in firing rates constrains
the amount of synaptic upscaling, resulting in weaker excitatory
correlation structure during the recovery phase. Consequently,
network connectivity and correlations recover later than firing
rates (SI Appendix, Fig. S6). These results suggest that correla-
tion changes do not necessarily follow firing rate changes but
are the product of interacting homeostatic mechanisms at the
network level.

In summary, metaplastic regulation of LTD, together with
synaptic scaling and intrinsic plasticity, is sufficient to capture
both the recovery of excitatory and inhibitory firing rates and
excitatory correlations during MD. Maintaining network struc-
ture during early MD is necessary for synaptic scaling to recover
correlation structure during late MD. Hence, homeostatic mod-
ifications of overall synaptic weights and intrinsic excitability
cooperate with Hebbian LTD to recover several aspects of
network function following input perturbations.

Individual Homeostatic Mechanisms Have Different Functionality dur-
ing MD. To determine the distinct contributions of the different
homeostatic mechanisms for the recovery of firing rates and
correlations during prolonged MD, we selectively eliminated
each mechanism. When deactivating synaptic scaling during the
entire period of MD in the model, we found that excitatory
and inhibitory firing rates still recovered (Fig. 6A), whereas the
excitatory correlations did not (Fig. 6C). Since synaptic scaling
affects excitatory synaptic strengths, we hypothesized that the
correlations failed to recover due to the inability of the net-
work to recover its structured excitatory connectivity. Indeed, the
average weights between excitatory neurons within assemblies
remained low in the absence of synaptic scaling (SI Appendix,
Fig. S8), eliminating structured block activity (Fig. 6B) and pre-
venting the recovery of excitatory correlation structure during
late MD (Fig. 6C). This suggests that synaptic scaling on exci-
tatory synapses is indispensable for the recovery of excitatory
correlations.

Similarly, without intrinsic plasticity during the entire MD
period, neither excitatory nor inhibitory firing rates in the model
recovered (Fig. 6D). This result was independent of the recov-
ery of correlations. When the overall excitatory drive received by
a single neuron within the same assembly was weak, low firing
rates were accompanied by a poor degree of synchrony within
assemblies (Fig. 6E), resulting in weak correlations (Fig. 6F).
Increasing the overall excitation to a neuron, for instance, by
increasing the connectivity probability within assemblies, could
still generate structured block activity resulting in high corre-
lations within assemblies but without recovering firing rates,
especially for inhibitory neurons.

In conclusion, we demonstrated that two important forms of
homeostatic plasticity, synaptic scaling and intrinsic homeostatic
plasticity, are able to regulate distinct aspects of network activity.

Recovery of Inhibitory Correlations Requires Cotuning of Excitation
and Inhibition. So far, we have focused on the recovery of exci-
tatory and inhibitory firing rates through intrinsic plasticity and
correlations between excitatory neurons through synaptic scaling
on excitatory synapses. However, our results in Fig. 1 indicate
that the other types of correlations that involve the inhibitory
neurons undergo the same temporal profile during prolonged
MD, with a drop during early MD and a recovery during late
MD. Here, we investigated if the same homeostatic mechanisms
identified above have different functionality during MD by mini-
mally modifying our network architecture. In our network, the
action of inhibition is global, where inhibitory neurons non-
specifically connect to all excitatory neurons. Hence, inhibitory
neurons activate together with any excitatory assembly, result-
ing in weak excitatory–inhibitory and inhibitory–inhibitory cor-
relations. Rather than considering global inhibition, we next
modeled inhibition as cotuned with excitation where individual
assemblies of inhibitory neurons connect exclusively to individual
assemblies of excitatory neurons (Methods), inspired by recent
experiments in the visual cortex (34). Due to this cotuning of
inhibition with excitation, correlated structure emerged across
all types of neurons. The excitatory–inhibitory and inhibitory–
inhibitory correlations were high as the block activity generated
by a given cortical excitatory assembly provides a major drive to
inhibitory neurons (SI Appendix, Fig. S9).

Implementing the same protocol for inducing MD in our
model, with depression of the feedforward weights and decor-
relation of thalamocortical input, generated the same drop and
recovery of firing rates and correlations, now involving both exci-
tatory and inhibitory neurons (SI Appendix, Fig. S9). Notably,
the same two forms of homeostatic plasticity, synaptic scaling
and intrinsic homeostatic plasticity, successfully regulate distinct
aspects of network activity also in these cotuned networks (SI
Appendix, Fig. S10). Taken together, our result that homeostatic
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mechanisms regulate distinct aspects of cortical circuit dynamics
applies also to different network architectures, suggesting that
synaptic scaling and intrinsic plasticity quite generally influence
different aspects of network function.

Discussion
A key question in the field of homeostatic plasticity is which
aspects of neuronal activity are under homeostatic control.
Recent studies have shown that, despite a high degree of synap-
tic plasticity during the critical period (35), firing rates of
individual neurons remain remarkably constant during normal
development (6) and when perturbed by sensory deprivation,
rebound back to an individual set point despite continued depri-
vation (14). Here, we used in vivo data in rodent visual cortex
to investigate whether higher-order cortical network proper-
ties are under homeostatic control. We found that—distinct
from firing rates—correlations in control hemispheres increased
slightly during early development. In contrast, correlations in
deprived hemispheres initially decreased over the first 2–3 d
and then gradually recovered to predeprivation levels, including
in their structure. This recovery of correlations was indepen-
dent of the recovery of firing rates and had a homeostatic
component beyond the developmental increase of correlations.
Modeling of this process revealed that this restoration of cor-
relation structure could be accomplished through synaptic scal-
ing, while firing rate homeostasis was dependent on intrinsic
homeostatic plasticity. Together, these findings provide evidence
that functional correlation structures are subject to homeostatic
regulation.

Recovery of stimulus preference at the single cell level, as well
as network correlation structure, has also been reported dur-
ing repeated episodes of MD in the binocular region of visual
cortex, each followed by eye reopening (36). However, in these
ocular dominance plasticity studies, recovery occurring following
eye reopening is TrkB-dependent and mediated by Hebbian LTP
(37). This is mechanistically distinct from our work where recov-

ery is governed by homeostatic mechanisms and where there is
no competition between the closed and open eye.

Our modeling results suggest that the difference in the visual
input from the thalamus at MD compared to BL does not seem
to be important for cortical correlations. A proper experimental
verification of this result would require the measurement of cor-
relations in the thalamus during BL and during MD. Although
these data are currently unavailable, there are data to indirectly
verify this. Our analysis revealed that cortical correlations in
deprived hemispheres recover to their BL level after 5 to 6 d
of MD (Fig. 1B), regardless of possible correlation changes in
the thalamus. In addition, we have previously shown that correla-
tions in the dark are approximately two-thirds of the correlations
in the light when the animals are in the awake behavioral state
(15). These results suggest that correlated visual inputs only
have a modest impact on the amplitude of cortical correlations,
while recurrent connections might be the dominant contribu-
tor. Hence, following the elimination of visual input during MD,
homeostatic mechanisms such as synaptic scaling can recover
cortical correlations.

What might be the purpose of the recovered network correla-
tions? Following lid suture to induce MD, the transmitted light
through the closed eye lids is relatively weaker compared to the
predeprivation condition. Therefore, we propose that the net-
work’s homeostatic recovery of correlations might be a way to
amplify weak signals, promoting successful signal propagation to
other cortical regions (38), which is essential for the animals’ per-
ception of the sensory environment (39). We predict that the
recovery of correlation structure also has important functional
implications for information transmission across cortical hier-
archies. For instance, neurons in layer 2/3 process inputs from
neurons in layer 4 and are highly influenced by its connectivity.
If the recovered network in one layer undergoes a profound
remodeling and ends up having a completely different correla-
tion structure, adjustments in successive layers would be needed
to keep the cortical network functional.
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We cannot conclude from our data whether neurons with
higher correlations are more strongly connected. However, as
previously shown, functionally correlated neurons are more
likely to be connected and more strongly if so (18, 19). We
therefore assume that correlation strength is indicative of con-
nection strength. In that sense, the identified clusters with
strong correlations come from strongly connected assemblies
consistent with previous experimental work (18, 19, 40). How-
ever, this is only the case for excitatory neurons (identified
RSUs); since the number of sorted pFS cells was significantly
lower than RSUs, we could not investigate their correlation
structure.

To dissect the role of various homeostatic mechanisms to
restore firing rates and correlations to BL despite prolonged
MD, we built and analyzed a computational model with spiking
neurons and biologically realistic plasticity rules. Upon training
with correlated input patterns (41), imitating the BL condi-
tion in which animals receive normal visual inputs, the net-
work exhibited structured spontaneous activity and developed
stronger correlations within assemblies. Our model showed that
decreasing thalamocortical connection strength (24) and decor-
relating input patterns during MD degraded synaptic weights and
decreased firing rates and correlations. This was accompanied
by a depression in excitatory synaptic weights within assemblies
and overall inhibitory synaptic weights in the model. Although
experiments have not found significant changes in the strength
of recurrent excitation within layer 4 (42), in layer 2/3, there
is a general depression of excitatory input (28); a more sys-
tematic analysis that includes measurements within and across
assemblies would be necessary to reveal selective depression of
some connections.

Other modeling studies have investigated the interaction
between Hebbian and homeostatic plasticity for the stable for-
mation and maintenance of Hebbian assemblies in the con-
text of memory storage and recall (43–45), which are different
from the sensory deprivation paradigm studied here. Interest-
ingly, a recent modeling framework for the homeostatic recovery
from visual deprivation proposed that the disinhibitory effect of
inhibitory plasticity, rather than synaptic scaling, can drive the
recovery of firing rates and correlations in specific subnetworks
of excitatory neurons (46), based on experimental results (40).
We did not observe such specificity in our data, and inhibitory
plasticity in our model was insufficient to recover either firing
rates or correlations, necessitating instead intrinsic plasticity and
synaptic scaling.

Our modeling results indicated that attenuating the depres-
sion effect of Hebbian plasticity was required to maintain clus-
tered network structure during the process of recovery. This
suggests that the effect of Hebbian plasticity becomes atten-
uated during prolonged MD, which then allows homeostatic
plasticity to “catch up” and restore network properties. This
is consistent with several experimental findings. For example,
brief MD leads to occlusion of LTD in layer 4 in the pri-
mary visual cortex (24, 47), while homeostatic strengthening of
CA1 synapses in the hippocampus is accompanied by a reduced
ability of synapses to exhibit LTP (48). Furthermore, during
MD, the effects of Hebbian plasticity, which is originally LTD-
dominant, become negligible as homeostatic plasticity reaches its
steady state (31).

Importantly, in the face of ongoing plasticity, we found that
two different forms of homeostatic plasticity can serve dis-
tinct functions in recovering network function. First, intrin-
sic plasticity as a mechanism that affects individual neuron
properties, such as the firing threshold, is essential for the
rebound of firing rates. Since it does not act directly on the
synaptic weights, it has no significant impact on the recov-
ery of correlations. We implemented intrinsic plasticity by
adjusting the firing threshold, which effectively shifts the neu-

ronal input–output function to keep the model sufficiently gen-
eral. Biophysically, intrinsic plasticity can be implemented by
changes in the density and function of voltage-gated channels
(5, 49, 50).

Unlike intrinsic plasticity, synaptic scaling regulates synaptic
strengths directly and is crucial for the recovery of correlation
and network structure in the model. Mechanistically, this reg-
ulation is fundamentally distinct from Hebbian plasticity. The
regulating process involves an enhanced accumulation of
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor (AMPAR) in the postsynaptic membrane, which can
be mediated by the proinflammatory cytokine tumor-necrosis
factor-α (TNF-α) produced by glia (10), the immediate-early
gene Arc (11), β3 integrins (51), and other molecules. Crucially,
the scaling is bidirectional, global, and operates in a multiplica-
tive manner (4), although there is some evidence for dendritic
branch-specific scaling in some neocortical cell types (52). Dur-
ing recovery, multiplicative scaling potentiates synaptic weights
within assemblies more than across assemblies in our model, pre-
serving the relative strength of synaptic inputs and enabling the
recovery of correlation structure.

The distinct functional roles fulfilled by synaptic scaling and
intrinsic plasticity apply in the context of the present constella-
tion of plasticity rules. We found that synaptic scaling alone is
insufficient to recover the firing rates in our model, especially
inhibitory firing rates. The critical model assumption that derives
this conclusion is that excitatory and inhibitory connections onto
inhibitory neurons do not change during MD (SI Appendix, Sup-
plementary Text). However, increasing synaptic strengths also
boosts neuronal responses, which raises the possibility that
synaptic scaling alone might be able to recover firing rates with
a different combination of plasticity rules. One straightforward
possibility to recover the firing rates of inhibitory neurons is
either to increase the total excitation to inhibitory neurons,
for example, by upscaling the excitatory-to-inhibitory connec-
tions, or to decrease the total inhibition to inhibitory neurons,
for example, by downscaling the inhibitory-to-inhibitory connec-
tions. Interestingly, synaptic scaling onto inhibitory neurons was
recently found to organize model recurrent networks around
criticality, independently of firing rates (53). This suggests that
homeostatic plasticity in excitatory elements might be important
for the recovery of firing rates and correlations, while plasticity in
inhibitory elements for the recovery of criticality. It still remains
to be tested whether and how excitatory and inhibitory connec-
tions onto inhibitory neurons change in the context of home-
ostatic regulation in vivo. We highlight that including spiking
neurons in our model and training the BL network with corre-
lated inputs enabled us to study the emergence, dilution, and
recovery of correlation structure during prolonged MD, which
is not possible in the unstructured randomly connected networks
studied in other models (53), even if firing rates recover. Further-
more, our implementation of Hebbian and homeostatic plasticity
with appropriate biologically motivated timescales suggests a
nontrivial cooperation between Hebbian and homeostatic plas-
ticity, with the first being attenuated while the latter is in full
operation.

In conclusion, our analysis reveals an important, previously
unidentified network feature that is homeostatically regulated
during perturbation of normal circuit dynamics in the visual
cortex. The finding that not only the average correlations but
also the correlation structure recover has interesting implica-
tions for the recovery of computations in these circuits that might
be encoded in nonrandom connectivity patterns. Moreover, our
network model with spiking neurons and experimentally charac-
terized homeostatic mechanisms allowed us to dissect the role
of each on different aspects of network dynamics, suggesting
that different homeostatic mechanisms serve unique, rather than
redundant, functions.
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Table 1. Neuron model parameters

Symbol Value Unit Description

Urest −70 mV Resting membrane potential
Uexc 0 mV Excitatory reversal potential
Uinh −80 mV Inhibitory reversal potential
τ ref 5 ms Duration of refractory period
τm

exc 20 ms Membrane time constant of excitatory neurons
τm

inh 10 ms Membrane time constant of inhibitory neurons
τampa 5 ms AMPA decay time constant
τgaba 10 ms GABA decay time constant
τnmda 100 ms NMDA decay time constant
α 0.5 - Receptor weighting factor

-, no units.

Methods
Firing Rates. To obtain the normalized firing rate evolution for different
animals, the firing rates of each animal were normalized to the average
firing rate at P26 during the light period. Note that, here, the analysis
of firing rates was restricted to MD5 because for the higher-order net-
work feature analysis (the pairwise correlations), the number of available,
continuously recorded cells beyond this period was insufficient. Therefore,
although the firing rates still seem to be above BL at MD5—a trend identi-
cal to that reported in the previous study (14)—they eventually return to BL
by MD6 (14).

Pairwise Correlations. Each spike train was binned into spike counts of bin
size 100 ms, generating a vector of spike counts for each cell. The spike-
count correlation coefficient ρ for a pair of neurons was computed in 30-min
episodes using a sliding window of 5 min. We averaged these values for each
pair every single half day (12 h), thus computing the correlation coefficient
for light and dark conditions separately:

ρX,Y =
E[(X−µX )(Y −µY )]

σXσY
,

where X and Y represent the spike-count vectors of two cells, respectively;
µX and µY are the means of X and Y ; σX and σY denote the standard devia-
tions of X and Y ; E is the expectation. This produced the matrices of pairwise
spike-count correlations on different half days. Just like the firing rates, to
generate the normalized correlation curve across animals, the correlations
of each animal were normalized to the average correlations at P26 during
the light period.

The correlation matrices in Fig. 2 A and B were clustered using hierarchi-
cal clustering during BL, and the same neuron order was preserved at later
time points.

Quantification of Changes in Correlation Structure. We first generated a shuf-
fled matrix A′ by redistributing the off-diagonal entries of the original
matrix A while keeping the matrix A′ symmetric. Then, we computed the
absolute difference between the shuffled matrix A′ and the correlation
matrix at BL B:

M = |A′− B|.

The elements of the upper triangular part of M were used to form a vector
of the absolute difference, known as the L1 distance, between correlations.
Vectors from different animals were then concatenated into a single vector.
During shuffling, only the elements corresponding to a given animal were
shuffled, i.e., animal identity was preserved.

Neuron and Network Model. Single neurons were modeled as leaky
integrate-and-fire with membrane potential of neuron i, Ui , given by (54):

τ
m dUi

dt
= (Urest−Ui) + gext

i (t)(Uexc−Ui) + ginh
i (t)(Uinh−Ui),

where τm is the membrane time constant, and Urest is the resting potential.
The neuron elicited a spike when its membrane potential reached the spik-
ing threshold Uthr. After a spike, the membrane potential was reset to Urest.
The neuron also had a refractory period τ ref after a spike. Inhibitory neu-
rons also followed the same integrate-and-fire formalism but with a shorter

membrane time constant. The values of all neuron model parameters are
listed in Table 1.

The network model consisted of 800 excitatory and 200 inhibitory
leaky integrate-and-fire neurons, which were randomly connected with a
probability of 20%. Excitatory neurons were randomly grouped into four
nonoverlapping groups. Each excitatory and inhibitory neuron received
external excitatory input from 1,000 neurons firing with Poisson statistics
at an average firing rate of 5 Hz, with synaptic strength Jext→E and Jext→I,
respectively.

Excitatory synapses have a fast AMPA component and a slow N-methyl-D-
aspartic acid (NMDA) component. Dynamics of excitatory conductances are
given by:

τ
ampa dgampa

i

dt
=−gampa

i +
∑
j∈exc

JijSj(t),

τ
nmda dgnmda

i

dt
=−gnmda

i + gampa
i ,

gexc
i (t) =αgampa

i (t) + (1−α)gnmda
i (t).

Here, Jij is the synaptic strength from neuron j to neuron i. If the connection
does not exist, Jij was set to 0. Sj(t) is the spike train of neuron j, which is
defined as Sj(t) =

∑
k δ(t− tk

j ), where δ is the Dirac delta function and tk
j ,

the spikes times k of neuron j. α is a weighting parameter. Dynamics of
inhibitory conductances are given by:

τ
gaba dginh

i

dt
=−ginh

i +
∑
j∈inh

JijSj(t).

The values of all network parameters are listed in Table 2.

Training Procedure. We implemented the network in three stages: initial-
ization stage, a training stage, and an MD stage. All plasticity except
for excitatory-to-excitatory plasticity was present in the first 100 s of the
simulation to initialize the network and obtain network activity before
training.

Subsequently, the training process started. During training, correlated
stimuli were presented sequentially to each assembly for 1 s, with 3-s gaps
in between stimulus activations. While correlated stimuli were presented
to 1 assembly, the remaining neurons received inputs from 1,000 indepen-
dent neurons firing with Poisson statistics at an average firing rate of 5 Hz.
The firing rate of the correlated inputs was also 5 Hz. Correlated inputs for
the training were generated following previous studies (33, 55). Specifically,
we used a copying probability of 0.4 from individual uncorrelated Pois-
son source trains and a copying probability of 0.6 from a common Poisson
source, all with the same firing rates.

The weight matrix obtained after training was used to induce MD in
the simulations. MD simulations started with 3 s without plasticity when
inhibitory spike timing-dependent plasticity (iSTDP) was activated, while
other plasticity and homeostatic mechanisms were activated at 10 s. At the
same time, the feedforward connections onto excitatory and inhibitory neu-
rons linearly decreased by 8 and 15% from 10 to 210 s and, afterward, were
kept fixed.

Table 2. Network model parameters

Symbol Value Unit Description

NE 800 - Number of excitatory neurons
NI 200 - Number of inhibitory neurons
p 0.2 - Connectivity probability
JEE 0.2 - Initial E-to-E connection weight
JEI 2.0 - Initial I-to-E connection weight
JIE 0.2 - E-to-I connection weight
JII 2.0 - I-to-I connection weight
JEE
min 0.0 - Minimal E-to-E connection weight

JEE
max 1.2 - Maximal E-to-E connection weight

JEI
min 0.0 - Minimal I-to-E connection weight

JEI
max 6.0 - Maximal I-to-E connection weight

Jext→E 0.78 - Initial external-to-E connection weight
Jext→I 0.85 - Initial external-to-I connection weight

E, excitatory; I, inhibitory. -, no units.
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Table 3. Plasticity model parameters

Symbol Value Unit Description

rE
0 5 Hz Target firing rate of excitatory neurons

rI
0 13 Hz Target firing rate of inhibitory neurons
τ+ 16.8 ms Time constant of presynaptic detector
τ− 33.7 ms Time constant of faster postsynaptic detector
τ slow 114 ms Time constant of slower postsynaptic detector
A− 0.0071 - Amplitude of LTD
A+ 0.0065 - Amplitude of LTP
τ iSTDP 0.02 s Time constant of synaptic trace for iSTDP
ηiSTDP 1 - Learning rate of iSTDP
τest 20 s Time constant of firing rate estimator
τ ss 200 s Time constant of synaptic scaling
ηip 0.00125 mV/s Learning rate of intrinsic plasticity

-, no units.

Plasticity. To form the clustered correlation structure observed experimen-
tally, we followed previous modeling studies (25) and modeled the plasticity
of excitatory-to-excitatory synapses using triplet STDP (32) of inhibitory-to-
excitatory synapses using iSTDP (56, 57) and also included heterosynaptic
plasticity operating on excitatory-to-excitatory synapses.

The triplet STDP rule describes synaptic plasticity based on triplets of
spikes and captures experiments where the rate of pre- and postsynaptic
neurons varies (58). The triplet STDP rule enables the formation of bidirec-
tional connections, a necessity for the formation of clustered architectures
(41, 59). According to this rule, the synaptic strength from excitatory neuron
j to excitatory neuron i follows:

dJEE
ij

dt
=−z−i (t)A−Sj(t) + z+j (t)A+zslow

i (t− ε)Si(t).

Here, A− and A+ are the amplitude of the weight change induced by a
post–pre pair or a post–pre–post triplet of spikes. ε is a small positive con-
stant. The synaptic traces for neuron i (and similarly for neuron j) z+i (t),

z−i (t), and zslow
i (t) evolve according to

dzn
i

dt =−
zn
i

τn + Si(t) with different time
constants τn, where n = {+,−, slow}.

According to iSTDP, the synaptic strength from inhibitory neuron j to
excitatory neuron i follows:

dJEI
ij

dt
= η

iSTDP(xi − 2r0
i τ

iSTDP)Sj(t) + η
iSTDPxjSi(t),

where xi and xj are the synaptic traces of the postsynaptic excitatory neu-

ron i and presynaptic inhibitory neuron j, which are described by
dxi
dt =

− xi
τ iSTDP + Si(t), with r0

i , τ iSTDP, and η denoting the target firing rate of neu-
ron i (and similarly for neuron j), the time constant of the synaptic trace and
the learning rate of iSTDP, respectively.

Excitatory-to-inhibitory connections and inhibitory-to-inhibitory connec-
tions were nonplastic since their plasticity has been much less investigated
experimentally and computationally. All plastic weights were subject to
upper bounds.
Heterosynaptic plasticity. We also modeled normalization in the form of
heterosynaptic plasticity, which ensures that the sum of all incoming excita-
tory synaptic weights at each postsynaptic excitatory neuron is kept below
a target (60). This form of normalization has been found to be essen-
tial in maintaining clustered structures upon their formation (25). Hence,
the synaptic strength from excitatory neuron j to excitatory neuron i was
modified according to heterosynaptic plasticity as follows:

JEE
ij (t)← JEE

ij (t)−
1

NE
i

∑
j

JEE
ij (t)− β

∑
j

JEE
ij (0)

,

where NE
i is the number of nonzero elements. As heterosynaptic plasticity

also imposed a constraint on the excitatory-to-excitatory synaptic weight,
β was set to 1.08 so that JEE

ij becomes approximately JEE
max . Heterosynaptic

plasticity was implemented every 1 s and only acting when the
∑

j JEE
ij (t)

was larger than β
∑

j JEE
ij (0).

Metaplasticity. The amplitude of LTD for neuron i, A−i , follows:

A−i ←A−i
xest

i

τestr0
i

.

Here, xest
i denotes the firing-rate estimator defined as

dxest
i

dt =−
xest
i

τest + Si(t),

with τest being the integration time constant of xest
i . If the firing rate of

a neuron was close to its target, r0
i , then

xest
i

τestr0
i
≈ 1. Metaplasticity was

implemented every 30 s. Furthermore, A−i was bounded below by 15% of
its initial value to ensure that the effect of Hebbian plasticity eventually
becomes negligible, as shown previously (31).
Homeostatic mechanisms: synaptic scaling and intrinsic plasticity. The evo-
lution of synaptic strength from excitatory neuron j to excitatory neuron i
via synaptic scaling is given by:

τ
ss dJEE

ij

dt
= JEE

ij

(
1−

xest
i

τestr0
i

)
,

where τ ss represents the time constant of synaptic scaling.
The firing threshold of neuron i regulated by intrinsic plasticity is

given by:
dUthr

i

dt
= η

ip

(
xest

i

τest
− r0

i

)
,

where ηip is the learning rate of intrinsic plasticity. Initial firing threshold
was set to −50 mV.

The values of all plasticity parameters are listed in Table 3.

Cotuned Network. The cotuned network model consisted of 800 excitatory
and 200 inhibitory neurons. Excitatory and inhibitory neurons were divided
into four nonoverlapping groups. The connectivity probability within the
same groups is 20%. Inhibitory neurons exclusively connected with excita-
tory neurons in the same group. The simulations started with 3 s without
plasticity when iSTDP was activated, while other plasticity and homeostatic
mechanisms were inactivated for the first 210 s. After that, other plasticity
and homeostatic mechanisms were activated. The feedforward connections
onto excitatory and inhibitory neurons linearly decreased by 4 and 8% from
210 to 410 s. From 410 s onward, feedforward connections were kept fixed.
For the sake of simplicity, we implemented metaplasticity differently from
the original model. Instead of dynamically modifying the LTD amplitude,
here, we disabled Hebbian plasticity at 410 s. Parameters used in cotuned
network models, which are different from the original model, are listed in
SI Appendix, Table S1.

Simulations. Data analysis and numerical simulations were performed in
Python and Julia. All differential equations were implemented by Euler
integration with a time step of 0.1 ms.

Data Availability. The code used for data analysis and model simulations
is available at GitHub (https://github.com/comp-neural-circuits/homeostasis).
The data is available at Figshare (https://figshare.com/projects/Homeostasis/
80936).
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neural spike trains increases with firing rate. Nature 448, 802–806 (2007).

17. M. L. Linden, A. J. Heynen, R. H. Haslinger, M. F. Bear, Thalamic activity that drives
visual cortical plasticity. Nat. Neurosci. 12, 390–392 (2009).

18. H. Ko et al., Functional specificity of local synaptic connections in neocortical
networks. Nature 473, 87–91 (2011).

19. L. Cossell et al., Functional organization of excitatory synaptic strength in primary
visual cortex. Nature 518, 399–403 (2015).

20. R. Perin, T. K. Berger, H. Markram, A synaptic organizing principle for cortical
neuronal groups. Proc. Natl. Acad. Sci. U.S.A. 108, 5419–5424 (2011).

21. Y. Yoshimura, J. L. Dantzker, E. M. Callaway, Excitatory cortical neurons form fine-
scale functional networks. Nature 433, 868–873 (2005).

22. S. J. Cruikshank, T. J. Lewis, B. W. Connors, Synaptic basis for intense thalamocortical
activation of feedforward inhibitory cells in neocortex. Nat. Neurosci. 10, 462–468
(2007).

23. X.-Y. Ji et al., Thalamocortical innervation pattern in mouse auditory and visual
cortex: Laminar and cell-type specificity. Cereb. Cortex 26, 2612–2625 (2015).

24. N. J. Miska, L. M. Richter, B. A. Cary, J. Gjorgjieva, G. G. Turrigiano, Sensory experience
inversely regulates feedforward and feedback excitation-inhibition ratio in rodent
visual cortex. eLife 7, e38846 (2018).

25. A. Litwin-Kumar, B. Doiron, Formation and maintenance of neuronal assemblies
through synaptic plasticity. Nat. Commun. 5, 5319 (2014).

26. M. Y. Frenkel, M. F. Bear, How monocular deprivation shifts ocular dominance in
visual cortex of young mice. Neuron 44, 917–923 (2004).

27. G. Turrigiano, Too many cooks? Intrinsic and synaptic homeostatic mechanisms in
cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

28. M. E. Lambo, G. G. Turrigiano, Synaptic and intrinsic homeostatic mechanisms coop-
erate to increase L2/3 pyramidal neuron excitability during a late phase of critical
period plasticity. J. Neurosci. 33, 8810–8819 (2013).

29. M. S. Grubb, J. Burrone, Activity-dependent relocation of the axon initial segment
fine-tunes neuronal excitability. Nature 465, 1070–1074 (2010).

30. E. Campanac et al., Enhanced intrinsic excitability in basket cells maintains excitatory-
inhibitory balance in hippocampal circuits. Neuron 77, 712–722 (2013).

31. T. Toyoizumi, M. Kaneko, M. P. Stryker, K. D. Miller, Modeling the dynamic interaction
of Hebbian and homeostatic plasticity. Neuron 84, 497–510 (2014).

32. J. P. Pfister, W. Gerstner, Triplets of spikes in a model of spike timing-dependent
plasticity. J. Neurosci. 26, 9673–9682 (2006).

33. J. Gjorgjieva, C. Clopath, J. Audet, J. P. Pfister, A triplet spike-timing-dependent
plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order
spatiotemporal correlations. Proc. Natl. Acad. Sci. U.S.A. 108, 19383–19388 (2011).

34. P. Znamenskiy et al., Functional selectivity and specific connectivity of inhibitory
neurons in primary visual cortex. bioRxiv DOI: http://dx.doi.org/10.1101/294835
(4 April 2018).
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