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Abstract
In this paper, we propose a semi-metric forMarkov processes that allows to bound opti-
mal values of linear Markovian stochastic optimization problems. Similar to existing
notions of distance for general stochastic processes, our distance is based on trans-
portationmetrics. As opposed to the extant literature, the proposed distance is problem
specific, i.e., dependent on the data of the problem whose objective value we want to
bound.As a result, we are able to consider problemswith randomness in the constraints
as well as in the objective function and therefore relax an assumption in the extant
literature. We derive several properties of the proposed semi-metric and demonstrate
its use in a stylized numerical example.

Keywords Stochastic optimization · Wasserstein distance · Scenario lattices

Mathematics Subject Classification 90C15 · 90C31 · 90C40 · 60J05

1 Introduction

Stochastic optimization is concerned with the solution of optimization problems that
involve random quantities as data. Consequently, the decisions x(ξ) depend on values
of a random process ξ , making stochastic optimization a problem in function spaces.
Mirroring the situation in deterministic optimization, only few stochastic optimization
problems lend itself to analytical treatment and allow for closed form solutions. In the
following, we therefore focus on discrete time problems that are solved numerically.

The theory of stochastic optimization as well as the development of solution meth-
ods made great advances in the last decades. In particular, there exists a sound theory

B David Wozabal
david.wozabal@tum.de

Adriana Kiszka
adriana.kiszka@tum.de

1 School of Management, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01573-3&domain=pdf
http://orcid.org/0000-0002-6656-9529


A. Kiszka, D. Wozabal

for two-stage stochastic optimization problems, i.e., problems with only one decision
stage in the future (see [7,53] for an overview). Consequently, two-stage stochastic
optimization is nowadays routinely applied by researchers and industry practitioners
alike. State-of-the-art methods are based on discrete representations of the, possibly
continuous, source of randomness in the form of a finite set of samples or scenarios.
This can either be achieved by sample average approaches (see [53] for an introduc-
tion) or by explicitly choosing representative scenarios. In this paper, we will focus
on the latter.

Despite the abovementioned successes, it became clear quite early that the effort
required to solve stochastic optimization does not scale well in the problem’s size.
More specifically, it has been shown that stochastic optimization problems exhibit
non-polynomial increase in complexity as the number of random variables increases
[21]. The problem underlying these difficulties is the numerical evaluation of high
dimensional integrals, which is in turn related to the problem of optimal discretization
of probability distributions.

The situation is even more complicated for multi-stage problems, where we deal
with random processes resulting in additional random variables in every stage and
the issue of finding discretizations for conditional distributions. Consequently, it was
observed in [50,51] that solving multi-stage stochastic optimization problems is often
practically intractable.

Notwithstanding these problems, there is a rich literature on multi-stage stochastic
optimization. The majority of authors use scenario trees as representation of discrete
stochastic processes (see the left panel in Fig. 1 for an illustration). In a scenario tree,
nodes represent possible states of the world and are assigned to a point in time. All
nodes at the same point in time are usually depicted at the same level of the tree. Pos-
sible transitions between nodes in consecutive stages are represented by probability
weighted arcs connecting the nodes. Consequently, the collection of transition proba-
bilities between a node and the nodes of the next stage connected by arcs describes the
distribution of the random process conditional on that node. Note that the requirement
that the resulting graph is a tree implies that every node is allowed to have exactly one
predecessor in the previous stage.

There are various ways to construct scenario trees for multi-stage stochastic pro-
grams (see [16,31] for surveys). In [28,29], a recursive application ofmomentmatching
is presented. The approach is easy to understand and apply, but suffers from an expo-
nential explosion of nodes in the resulting trees as the number of stages increases.
Furthermore, the method offers no theoretical insight regarding discretization error
made when replacing the original process with the generated tree.

The papers [37,38] propose a method for the construction of scenario trees that is
based on integration quadratures and ensures that the approximated problems based
on scenario trees epi-converge to the true infinite-dimensional problem yielding con-
vergence in optimal value as well as in optimal decisions. However, the results are
asymptotic in nature, i.e., the approximation scheme doesn’t offer guarantees for any
given discrete approximation.

Another approach is based on the principle of bound-based constructions, see [10,
18,20,32]. The idea is to construct two discrete stochastic programs which provide
upper and lower bounds on the optimal value of the original problem.

123



A stability result for linear Markovian stochastic…

Fig. 1 A scenario tree with 31 nodes representing 16 scenarios on the left and a scenario lattice with 15
nodes representing 120 scenarios on the right. The transition probabilities on the arcs are not depicted to
keep the picture legible

The results in this paper extend a stream of literature that uses probability metrics
to define notions of distance for stochastic processes and allows inference about the
accuracy of approximating trees, see [17,22,23,40–42]. The authors in [17,22] consider
a distance between discrete stochastic processes and assume that both processes are
defined on the same probability space. This assumption is relaxed in [41,42] where
a nested distance between value-and-information structures is developed, which can
be applied to continuous processes. [24,25] prove stability results using the sum of
a Lr -distance and a filtration distance to bound objective values of a certain class of
stochastic optimization problems.

Scenario trees are discrete approximations of general processes and therefore lend
themselves to the construction of a general theory of stochastic optimization. However,
the requirement that every node has only one predecessor makes it hard to construct
scenario trees with many stages that model the conditional distributions well, i.e.,
ensure that every node has a sufficient number of successors and at the same time
avoid exponential growth of the number of nodes.

A possible way out of this dilemma is to restrict the type of the stochastic opti-
mization to problems with a Markovian structure where the random processes in the
problem formulation are Markov processes [34] or, even more common, independent
[39]. In this setting the history of random variables and decisions is condensed in the
state variables of the problem and there is no need to remember the whole history of
the randomness and the decisions. This paves the way for leaner discretizations, which
we call scenario lattices in this paper and which are similar to stochastic meshes used
in option pricing [9]. In particular, a scenario lattice consists of the same building
blocks as a scenario tree, but relaxes the requirement that every node has only one
predecessor and therefore solves the problem of exponential explosion of the number
of nodes as the number of stages grows (see the right panel in Fig. 1). In the same way
that a scenario tree is a natural representation for a general discrete stochastic process,
a scenario lattice is a natural representation of a discrete Markov process.
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Even though the abovementioned problem class is quite popular, there are no theo-
retical results on how to construct optimal scenario lattices. An exception is [2,3] who
design an algorithm for the construction of scenario lattices for Brownian motions
based on ideas of optimal quantization.

We mention that there is a large and well developed theory on the approximations
of Markov decision processes (MDPs) that is concerned with similar questions as this
article. Typical formulations of MDP problems feature finite state and action states as
well as a stationary Markov process describing the randomness, which is potentially
influenced by the actions taken by the decision maker.

The setting as well as the solution methods differs from our paper in several
important ways. Firstly, methods for solving MDPs are almost exclusively based
on the discretization of the whole state space, leading to the well known curse of
dimensionality as the dimension of the state space grows. Consequently, methods to
approximate MDPs either assume a finite or countable state and action space to start
with [4,19,33,46,57,58] or discretize the state space to be able to solve the problem.

Furthermore, much of the work on approximations of MDPs deals with infinite
horizon problems relying on the fact that optimal value functions are fixed points of
the Bellman operator [11,26,46,49,57,58].

Papers that deal with continuous state spaces usually impose (Lipschitz) continuity
conditions on the probability transition kernels [4,13–15,26,36,49], which we do not
require.

The difference of our approach to the MDP literature is thus threefold: Firstly, we
keep the resource state continuous in order to be able to solve the problems on the
nodes of the scenario lattice by linear optimization. This avoids at least part of the curse
of dimensionality usually encountered in dynamic programming. Second, unlike most
of the literature on approximation of MDPs, we deal with finite horizon problems.
Lastly, we do not assume any Lipschitz continuity of the Markov kernel.

With this paper we contribute to the development of a theory for discrete approxi-
mations of Markov processes to be used in stochastic programming. In particular, we
propose a class of problem-specific semi-distances for Markov processes and show
that the objective value of a certain class of linear stochastic optimization problems
is Lipschitz continuous with respect to these distances. This lays the foundations for
constructing scenario lattices approximating generalMarkov processes that in turn can
be used to formulate approximating optimization problems. In particular, the results
in this paper can be used to control the error that results from replacing a stochas-
tic optimization problem that is formulated using a complex (possibly continuous)
Markov process by another, simpler problem using a compact scenario lattice instead
of the original process. Furthermore, we discuss a LP formulation of our distance for
discrete Markov processes, i.e., scenario lattices. We consider a multi-stage version of
the well known newsvendor problem to demonstrate how to use our results in practical
problems.

Our approach is inspired by [41] who work on optimal scenario trees and general
stochastic optimization problems. In contrast to [41], our approach is specialized to lin-
ear stochastic programswith aMarkovian structure, which results in tighter bounds for
this problem class and additionally allows for problemswhere the randomness does not
only affect the objective function but also the feasible set. The latter makes it necessary
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to adopt a different technique of proof based on stability results for linear programs
rather than the idea of transporting solutions from one problem to the other. While in
the MDP literature there are papers that model differences in feasible sets in terms of
the Hausdorff distance [26], to the best of our knowledge, we are the first to propose
stability results based on transportation distances that allow for problems where the
feasible set depends on randomness in inequality constraints: [17,22,41,42] require
the feasible set to be independent of randomness, while in [24,25] the constraints
involving random parameters are required to be equality constraints. Furthermore, we
demonstrate that our distance yields tighter bounds than [41] for problems where the
constraints do not depend on the random process.

This paper is structured as follows: In Sect. 2, we introduce some notation and
discuss the problem setup. In Sect. 3, we define the problem dependent lattice distance
and establish some of its key properties. Section 4 contains the main results of the
paper which allow to connect the lattice distance to optimal values of linear stochastic
programming problems, while Sect. 5 is devoted to the case of discretely supported
processes representable by lattices and a numerical example. Section 6 concludes the
paper.

2 Problem description

We consider a class of discrete time, finite horizon, linear stochastic dynamic program-
ming problems depending on a Markov process. The time periods in our problem are
indexed by t ∈ T = {0, 1, . . . , T }, where the values at t = 0 represents the determin-
istic start state of the problem. We partition the state space in an environmental state ξ

and a resource state S. The former is governed by a (possibly inhomogeneous)Markov
process ξ = (ξ0, ξ1, . . . , ξT ), ξt : Ωt → Rnt which is assumed to be independent of
the decisions. Examples are prices, demand for a product, or weather related variables
such as temperature. The resource state St , on the other hand, describes the part of
the state space that is influenced by the decision maker. Examples include inventory
levels, states of machinery, and contractual obligations.

We equip the probability space Ωt with the σ -algebra σt = σ(ξt ) generated by the
random variable ξt and define the path spaceΩ = Ω0×· · ·×ΩT and a corresponding
σ -algebra F = σ0 ⊗ · · · ⊗ σT . Note that we base our σ -algebras only on the random
variables ξt and not on the whole history of random variables until t as it is usually
donewhenworkingwith scenario trees. Consequently, σ0, σ1 . . . , σT is not a filtration.

Furthermore, we define the paths for which the event H ∈ σt occurs as

HΩ
t := Ω0 × Ω1 × · · · × Ωt−1 × H × Ωt+1 × · · · × ΩT

and the corresponding σ -algebra as

σΩ
t = {Ω0 × · · · × Ωt−1 × H × Ωt+1 × · · · × ΩT : H ∈ σt } = {

HΩ
t : H ∈ σt

}
.

The distribution of ξ is described by a sequence of Markov kernels and we write
Pωt−1
t for the distribution of ξt given ωt−1 ∈ Ωt−1. The kernel as a function from

123



A. Kiszka, D. Wozabal

Ωt−1 to the set of probability measures on Ωt is σt−1-measurable [45]. For a given
sequence of Markov kernels, we denote ω = (ω0, . . . , ωT ) and define the distribution
on Ω as

P(H) :=
∫

Ω0

. . .

∫

ΩT

1H (ω)PωT−1
T (dωT ) . . . Pω0

1 (dω1)P0(dω0)

for every H ∈ F .
We consider stochastic optimization problems that can be written as

V0(S0, ξ0) =
⎧
⎨

⎩
max
x,S

E

(
T∑

t=0
ct (ξt )�xt

)

s. t. (xt , St+1) ∈ Xt (St , ξt ) ∀t ∈ T

(1)

with x = (x0, . . . , xt ), S = (S1, . . . , ST+1), St ∈ Rkt and feasible sets

Xt (St , ξt ) =

⎧
⎪⎪⎨

⎪⎪⎩
(xt , St+1) :

A1,t xt ≤ b1,t (ξt ) + C1,t St
A2,t xt = St+1
A2,t xt ≤ b2,t+1
xt , St+1 ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
, (2)

which we assume to be compact. Note that the data of the problem depends on the
stochastic process ξ via the functions ξt 	→ ct (ξt ) and ξt 	→ b1,t (ξt ), whichwe assume
to be continuous.

We assume that for planning in stage t , the decision maker knows St , i.e., the
system’s resource state at the beginning of the period as well as ξt , i.e., the realization
of the Markov process in period t . Given this information the feasible set for the
decision xt as well as the definition of St+1 can be expressed using linear inequality
constraints. The decisions xt are auxiliary decision variables in stage t that are not
part of the resource state. Note that in order for the problem to be feasible b2,t+1 ≥ 0
has to hold. The combination of constraints in (1) ensures that

0 ≤ St+1 = A2,t xt ≤ b2,t+1,

i.e., that the feasible region for St+1 is box-constrained and therefore compact.

Remark 1 Usually we would expect a state transition equation of the form St+1 =
St + Axt . However, since we want to make the proposed distance independent of
the resource state, we formulate the state transition using xt . More specifically, we
assign St to a subset of variables in xt in the first constraint. The state transition is
subsequently modelled in the equality constraint using those variables instead of St .
Alternatively, we could assign St+1 to variables in xt in the equality constraint and
then formulate the state transition using the first inequality constraint. We refer to the
example in Sect. 5 for an illustration of this principle.
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Because of its recursive structure, problem (1) can be equivalently written in terms
of its dynamic programming equations using value functions, i.e.,

Vt (St , ξt ) =
{

max
xt ,St+1

ct (ξt )�xt + E (Vt+1(St+1, ξt+1)|ξt )
s. t. (xt , St+1) ∈ Xt (St , ξt )

∀t ∈ T (3)

and VT+1(ST+1, ξT+1) ≡ 0 or, more generally, a known piecewise linear concave
function. Since ξ is a Markov process and Vt as well as the decisions (xt , St+1) only
depend on the current state (St , ξt ), we call the problem a stochastic optimization
problem with Markovian structure.

If we are dealing with discrete Markov processes, the expectations of the value
functions Vt , which are concave functions of the resource state, can be written as a
minimum of finitely many affine functions. We formalize this well known fact in the
following lemma whose proof can be found for example in [34,44,52].

Lemma 1 If ξ is finitely supported, then for every realization of ξt , St+1 	→
E (Vt+1(St+1, ξt+1)|ξt ) is a concave, polyhedral function. In particular, there are
coefficients bi3,t+1(ξt ) ∈ R and row vectors Ci

3,t+1(ξt ) ∈ Rk for i = 1, . . . ,mt+1(ξt )

such that

E (Vt+1(St+1, ξt+1)|ξt ) = min
i=1,...,mt+1(ξt )

bi3,t+1(ξt ) + Ci
3,t+1(ξt )St+1,

where mt+1(ξt ) is the number of affine functions required to model

E (Vt+1(St+1, ξt+1)|ξt ) .

3 A distance for Markov processes

In order to introduce the concept of a distancebetweenMarkovprocesses,wefirst recall
the Wasserstein or Kantorovich distance for distributions [30,54]. Loosely speaking,
theWasserstein distance is defined as the total cost of passing from a given distribution
to a desired one by moving probability mass accordingly.

Definition 1 Let ξ : (Ω,A) → Rn and ξ̃ : (Ω̃, Ã) → Rn be two random vectors
with distributions P and P̃ , respectively. The Wasserstein distance of order r (r ≥ 1)
between ξ and ξ̃ is defined as

Wr (ξ, ξ̃ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf
π

⎛

⎜
⎝

∫

Ω×Ω̃

‖ξ(ω) − ξ̃ (ω̃)‖rr π (dω, dω̃)

⎞

⎟
⎠

1
r

s.t. π(H × Ω̃) = P(H) ∀H ∈ A,

π(Ω × H̃) = P̃(H̃) ∀H̃ ∈ Ã,

(4)

where the infimum is taken over all probability measures π on (Ω × Ω̃,A ⊗ Ã).
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Remark 2 Note that, following [41], we define Wr as a distance between two random
vectors ξ : Ω → Rn and ξ̃ : Ω → Rn instead of between two distributions P and P̃ .
However, in order for Wr to be well defined, information on the probability measures
P and P̃ on Ω and Ω̃ is required as can be seen from (4).

In particular, when changing P and P̃ while holding ξ and ξ̃ constant, the image
measure of ξ and ξ̃ and therefore also Wr changes. By a slight abuse of notation,
we consider ξ and ξ̃ to contain the information on the probability spaces (Ω, P) and
(Ω̃, P̃), i.e., as mappings ξ : (Ω, P) → Rn and ξ̃ : (Ω̃, P̃) → Rn in the same way
that [41] do, when defining nested distributions.

Remark 3 The above problem is bounded and an optimal transportation measure π

exists, due to weak-compactness of the set of transportation plans (see [54], Lemma
4.4). Furthermore, according to the famous Kantorovich-Rubinstein Theorem, for
r = 1, the dual of (4) can be written as the following maximization problem

W1(ξ, ξ̃ ) =
⎧
⎨

⎩
sup
f

(∫
f d P −

∫
f d P̃

)

s.t. Lip( f ) ≤ 1,

where Lip( f ) is the Lipschitz constant of f .

Clearly, for a two-stage stochastic optimization problem

v(P) =
{
inf
x

f (x) + EP (Q(x, ξ))

s.t. x ∈ X , Q(x, ξ) =
{
inf
y

g(y, ξ)

s.t. y ∈ Y(x)

with

|Q (x, ξ) − Q(x, ξ̃ )| ≤ L ‖ξ − ξ̃‖1 ∀x ∈ X , (5)

we have

v(P) − v(P̃) ≤ EP (Q(x̃∗, ξ)) − EP̃ (Q(x̃∗, ξ̃ )) ≤ L W1(ξ, ξ̃ )

where x̃∗ is the optimal solution for v(P̃). By symmetry it follows that

|v(P) − v(P̃)| ≤ L W1(ξ, ξ̃ ),

i.e., that the objective value of the two-stage stochastic program is Lipschitz continuous
with respect to W1, as long as the cost-to-go function Q is Lipschitz in ξ . This was
first recognized in [48].

The authors in [41,42] generalize these ideas to amulti-stage setting using the notion
of nested distributions which correspond to generalized scenario trees. Based on a
modified transportation problem and an assumption similar to the uniform Lipschitz
property in (5), they obtain a distance with respect to which the objective value of a
general multi-stage problem is Hölder continuous, see Sect. 4 for more details.
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We aim for a similar result for scenario lattices and problems of the form (1). Addi-
tionally, we relax one major assumption in the abovementioned approaches, namely
that randomness enters the problem only in the objective function. Observe that the
argument above hinges on the fact that the set Y does not depend on ξ . The same
restriction applies to the results on multi-period problems in [41,42].

We begin with analyzing the following simple deterministic linear optimization
problem,which is of a similar structure as (3), with the second last inequality constraint
and the second term in the objective function, y, modeling the piecewise linear value
function (see Lemma 1)

max
x∈Rn ,y∈R,z∈Rk

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c�
1 x + y :

A1x ≤ b1
A2x = z
A2x ≤ b2
1m y ≤ b3 + C3z
x, z ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (6)

Furthermore, we define 1m ∈ Rm as the column vector of ones, assume that C3 has
m rows and k columns, and assume that the other matrices and vectors are of fitting
dimension.

Firstwe prove the following resultwhich ismotivated byHoffman’s lemma [27] and
in particular its discussion in [53], Theorem 7.11 and Theorem 7.12. For what follows,
we adopt the notational convention that the addition of a vector x = (x1, . . . , xn) and a
scalar y ∈ R is to be interpreted pointwise, i.e., results in the vector (x1+y, . . . , xn+y)
and, similarly, inequalities of the form x ≤ y are interpreted pointwise as well.

Lemma 2 Let V (b1) be the optimal value of problem (6) dependent on the parameter
b1 and assume that there is a κ ≥ 0 with

∥∥∥C�
3 λ

∥∥∥∞ ≤ κ

for all Rm � λ ≥ 0 with |1�
mλ| ≤ 2. Then for any b1, b′

1 for which (6) is feasible

∣∣V (b1) − V (b′
1)

∣∣ ≤ γ (A1, A2, κ, c1)
∥∥b1 − b′

1

∥∥
1 . (7)

where γ (A1, A2, κ, c1) = maxλ∈ext(Γ ) ||λ2||∞ < ∞ and ext(Γ ) are the vertices of
the polyhedron

Γ =
⎧
⎨

⎩
(λ2, λ3, λ4, λ6, λ7) :

‖A�
1 λ2 + A�

2 (λ3 + λ4) − λ6‖∞ ≤ 1 + ‖c1‖∞
‖λ3 − λ7‖∞ ≤ 1 + κ

λ2, λ4, λ6, λ7 ≥ 0

⎫
⎬

⎭
.
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Proof We start by rewriting (6) as

max
t∈R,x∈Rn ,y∈R,z∈Rk

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t :

t − c�
1 x − y ≤ 0

A1x ≤ b1
A2x = z
A2x ≤ b2
1m y ≤ b3 + C3z
x, z ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (8)

Denote by M(b1) the set of feasible points of problem (8) and consider a point
α = (x, y, z, t) ∈ M(b1). Note that for any a ∈ Rn , ||a||1 = sup||u||∞≤1 u

�a and
define u = (u1, u2, u3, u4) with ui corresponding to the respective entries in α, i.e.,
u1 ∈ Rn , u2 ∈ R and so on. Therefore, we have

dist(α,M(b′
1)) = inf

α′∈M(b′
1)

||α − α′||1 = inf
α′∈M(b′)

sup
||u||∞≤1

u�(α − α′)

= sup
||u||∞≤1

inf
α′∈M(b′

1)
u�(α − α′).

By a change of variables defining w = (w1, w2, w3, w4) = α − α′ and using linear
optimization duality with λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7), we have

inf
α′∈M(b′

1)
u�(α − α′) = inf

w∈M̃(b′
1)

u�w = sup
λ∈M̃∗(u)

λ�
1 (t − c�

1 x − y)

+ λ�
2 (A1x − b′

1) + λ�
4 (A2x − b2) + λ�

5 (1m y − b3 − C3z) + λ�
6 (−x) + λ�

7 (−z),

where

M̃(b′
1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w :

t − c�
1 x − y ≤ w4 − c�

1 w1 − w2
A1x − b′

1 ≤ A1w1
A2w1 − w3 = 0
A2x − b2 ≤ A2w1,

1m y − b3 − C3z ≤ 1mw2 − C3w3
−x ≤ −w1
−z ≤ −w3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

M̃∗(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ :

−c1λ1 + A�
1 λ2 + A�

2 λ3 + A�
2 λ4 − λ6 = u1

−λ1 + 1�
mλ5 = u2

λ3 − C�
3 λ5 − λ7 = u3

λ1 = u4
λ1, λ2, λ4, λ5, λ6, λ7 ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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Consequently we obtain that

dist(α,M(b′
1)) = sup

||u||∞≤1,λ∈M̃∗(u)

λ�
1 (t − c�

1 x − y) + λ�
2 (A1x − b′

1)

+ λ�
4 (A2x − b2) + λ�

5 (1m y − b3 − C3z) + λ�
6 (−x) + λ�

7 (−z).
(9)

The right-hand side of (9) has a finite optimal value (since the left-hand side of (9) is
finite) and, hence, has an optimal solution (û, λ̂). It follows that

dist(α,M(b′
1)) = λ̂�

1 (t − c�
1 x − y) + λ̂�

2 (A1x − b′
1) + λ̂�

4 (A2x − b2)

+ λ̂�
5 (1m y − b3 − C3z) + λ̂�

6 (−x) + λ̂�
7 (−z).

Since α ∈ M(b1) and λ̂1, λ̂2, λ̂4, λ̂5, λ̂6, λ̂7 ≥ 0, we have

dist(α,M(b′
1)) ≤ λ̂�

2 (A1x − b′
1) = λ̂�

2 (A1x − b1) + λ̂�
2 (b1 − b′

1)

≤ λ̂�
2 (b1 − b′

1) ≤ ||λ̂2||∞||b1 − b′
1||1.

To find a bound for ||λ̂2||∞, we analyze the extreme points of the feasible set

Γ ′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ :

‖−c1λ1 + A�
1 λ2 + A�

2 λ3 + A�
2 λ4 − λ6‖∞ ≤ 1

‖−λ1 + 1�
mλ5‖∞ ≤ 1

‖λ3 − C�
3 λ5 − λ7‖∞ ≤ 1

‖λ1‖∞ ≤ 1
λ1, λ2, λ4, λ5, λ6, λ7 ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Since we know that ||λ1||∞ ≤ 1, we can replace the constraint

∥∥∥−λ1 + 1�
mλ5

∥∥∥∞ ≤ 1

with

|1�
mλ5| ≤ 2

and the constraint

∥∥∥−c1λ1 + A�
1 λ2 + A�

2 λ3 + A�
2 λ4 − λ6

∥∥∥∞ ≤ 1

with

∥∥∥A�
1 λ2 + A�

2 (λ3 + λ4) − λ6

∥∥∥∞ ≤ 1 + ‖c1‖∞.
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Then using the assumption that
∥∥C�

3 λ5
∥∥∞ ≤ κ we can substitute

∥∥∥λ3 − C�
3 λ5 − λ7

∥∥∥∞ ≤ 1

with the constraint

||λ3 − λ7||∞ ≤ 1 + κ

to increase the feasible set of problem (9), and hence increase its optimal value.
Consequently,

max
λ∈Γ ′ ‖λ2‖∞ ≤ max

λ∈Γ
‖λ2‖∞

with

Γ =
⎧
⎨

⎩
(λ2, λ3, λ4, λ6, λ7) :

‖A�
1 λ2 + A�

2 (λ3 + λ4) − λ6‖∞ ≤ 1 + ‖c1‖∞
‖λ3 − λ7‖∞ ≤ 1 + κ

λ2, λ4, λ6, λ7 ≥ 0

⎫
⎬

⎭
.

Note that the optimal value remains bounded when replacing Γ ′ with Γ , since if
there would be a ray

R =
{
λ(α) = λ0 + αλ1 : α ∈ [0,∞)

}

in Γ such that ||λ2(α)||∞ α→∞−−−→ ∞ and at the same time

∥∥∥A�
1 λ2(α) + A�

2 (λ3(α) + λ4(α)) − λ6(α)

∥∥∥∞ ≤ 1 + ||c1||∞, ∀α > 0,

this would imply that

α||(A�
1 λ12 + A�

2 (λ13 + λ14) − λ16)||∞ − ||A�
1 λ02 + A�

2 (λ03 + λ04) − λ06||∞
≤

∥∥∥A�
1 λ2(α) + A�

2 (λ3(α) + λ4(α)) − λ6(α)

∥∥∥∞
≤ 1 + ‖c1‖∞ , ∀α > 0

and therefore

||A�
1 λ12 + A�

2 (λ13 + λ14) − λ16||∞ = 0. (10)

In this case, we can define λ1′ = (0, λ12, λ
1
3, λ

1
4, 0, λ

1
6, λ

1
7) and a ray

R′ =
{
0 + αλ1′ : α ∈ [0,∞)

}
.
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Clearly, points in R′ fulfill the first constraint of Γ ′ by (10), the second one since the
first and the fifth component of λ1′ are zero, and the third since λ13 = λ17 has to hold for
R to be in Γ . This means that R′ is contained in Γ ′, contradicting the boundedness of
the original problem. Hence, the modified problems remains bounded and therefore
the maximum is taken at a vertex of the polyhedron Γ .

The polyhedral set Γ has a finite number of extreme points. Hence, ||λ̂2||∞ can be
bounded by γ (A1, A2, κ, c1) which depends on A1,A2, κ , c1 and

dist(α,M(b′
1)) ≤ ‖λ̂2‖∞

∥∥b1 − b′
1

∥∥
1 ≤ γ (A1, A2, κ, c1)

∥∥b1 − b′
1

∥∥
1 . (11)

Assume that α = (x, y, z, t) is the optimal solution of problem (8) and t = V (b1).
Let further α′ ∈ M(b′

1) be a point minimizing the distance dist(α,M(b′
1)). Then (11)

implies

∣∣t − t ′
∣∣ ≤ γ (A1, A2, κ, c1)

∥∥b1 − b′
1

∥∥
1

and we obtain

V (b1) − V (b′
1) ≤ V (b1) − t ′ = t − t ′ ≤ γ (A1, A2, κ, c1)

∥∥b1 − b′
1

∥∥
1 .

Analogously, we get

V (b′
1) − V (b1) ≤ γ (A1, A2, κ, c1)

∥∥b1 − b′
1

∥∥
1

and finally (7). ��
Remark 4 The matrix C3 represents slopes of the linear functions modeling value
function for discrete distributions (see Lemma 1). Applying Lemma 2 to the problem
(3), C3 may differ depending on the stage t and the state of the random process ξt .
Therefore, we write C3,t (ξt−1) for the matrix of slopes of the linear functions used in
the representation of E (Vt (St , ξt )|ξt−1) and choose κt (ξt−1) as follows

κt (ξt−1) = max
{∥∥∥C3,t (ξt−1)

�λ

∥∥∥∞ : λ ≥ 0, |1�
mt (ξt−1)

λ| ≤ 2
}

= 2max
i, j

|Ci j
3,t (ξt−1)|

where Ci j
3,t is the entry in the ith row and jth column of the matrix C3,t .

Remark 5 For continuous distributions the matrix C3 doesn’t exist. However, in our
formulation of the problem St 	→ E (Vt (St , ξt )|ξt−1) is a continuous function on the
compact set of permissible St for every ξt−1, hence it is Lipschitz continuous with
Lipschitz constant Lt (ξt−1) on this set. Therefore, in this case we use κt (ξt−1) =
2Lt (ξt−1) in the definition of the distance below.

An alternative proof of the above lemma could be based on the Lipschitz continuity
of the feasible set with respect to the Hausdorff metric as shown in [47,56]. However,
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the aforementioned papers do not provide any instruction for calculation of the Lips-
chitz constant, which makes it difficult to apply their results in concrete optimization
problems. Our approach does not suffer from this problem, since it allows to explicitly
bound the variation in the objective as a function of the right hand side data of the
problem (6). Next, we will prove a similar result to bound the objective value when
the objective coefficient c1 changes.

Lemma 3 If V (c1) is the optimal value of problem (6) in dependence on the objective
value coefficient c1, then

|V (c1) − V (c̃1)| ≤ φ(A1, b1, A2, b2)||c1 − c̃1||1

with φ(A1, b1, A2, b2) = maxx∈ext(Φ) ||x ||∞ and

Φ = {x ∈ Rn : A1x ≤ b1, A2x ≤ b2, A2x ≥ 0, x ≥ 0}.

Proof Let (x∗, y∗) be an optimal solution to V (c1), then we have

V (c1) = c�
1 x

∗ + y∗ = c�
1 x

∗ + y∗ − c̃�
1 x

∗ + c̃�
1 x

∗ =
= (c1 − c̃1)

�x∗ + c̃�
1 x

∗ + y∗ ≤ ||c1 − c̃1||1||x∗||∞ + V (c̃1).

By symmetry this implies

|V (c1) − V (c̃1)| ≤ max(||x∗||∞, ||x̃∗||∞)||c1 − c̃1||1

for an optimal solution (x̃∗, ỹ∗) to V (c̃1). Notice that the set of feasible points is
invariant with respect to the parameter c1. Hence, x∗ and x̃∗ can be selected as extreme
points of the same polyhedral set

Φ = {x ∈ Rn : A1x ≤ b1, A2x ≤ b2, A2x ≥ 0, x ≥ 0}.

Φ depends on A1, b1, A2, b2 and has a finite number of vertices. Therefore ||x∗||∞
and ||x̃∗||∞ can be bounded by a constant φ(A1, b1, A2, b2) for which

|V (c1) − V (c̃1)| ≤ φ(A1, b1, A2, b2)||c1 − c̃1||1

finishing the proof. ��
Remark 6 When applying the above lemma to the problem (3), b1,t (ξt )+C1,t St corre-
sponds to the second parameter of φ. Since wewould like to avoid a dependence of our
distance on the resource state, we note that φ is increasing with respect to this parame-
ter and replace b1,t (ξt ) +C1,t St by b1,t (ξt ) +C+

1,t b2,t where C
+
1,t = (max(ci, j , 0))i, j

and ci, j are the entries in the matrix C1,t . Since St ≥ 0 and b2,t ≥ 0, we thereby
increase the size of the polyhedron Γ and thus make the bound slightly looser but
independent of St .
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Note that the problems in (3) fulfill the assumptions of Lemma 2 and Lemma 3.
Equipped with these results, we define a transportation distance between two Markov
processes. The distance is defined for a given problem of the form (1), i.e., we do not
propose one distance but a whole family of problem specific distances, which differ
in the matrices and vectors used to define the constants γ and φ in Lemma 2 and
Lemma 3. To avoid cluttered notation, we write

γt (ξt , ξ̃t ) = γ (A1,t , A2,t ,min{κt+1(ξt ), κ̃t+1(ξ̃t )}, ct (ξt ))

and

φt (ξt ) = φ(A1,t , b1,t (ξt ) + C+
1,t b2,t , A2,t , b2,t+1).

Furthermore, we omit the explicit dependence of ξ on ω wherever no confusion can
arise, i.e., write ξ instead of ξ(ω).

Remark 7 Note that to ensure measurability of φt and γt we have to use the universal
sigma algebra, which is a natural extension of the Borel sigma algebra fitting for
dynamic programming. See [6], Chapter 7 for an in-depth treatment of the subject and
[5], Appendix C for a short primer.

In particular, we mention that the vertices of the polyhedra in the proofs of Lemma
2 and Lemma 3 change continuously with the right hand sides of the linear inequality
constraints almost everywhere. The functions γt and φt are therefore Borel measurable
due to the Borel measurability of the functions ct and bt .

Furthermore, standard arguments yield that, by Borel measurability of the Markov
kernel, the functions

(St , ξt−1) 	→ E(Vt (St , ξt )|ξt−1)

are lower semi-analytic. Hence, the function

f (St , S
′
t , ξt−1) = E(Vt (St , ξt ) − Vt (S′

t , ξt )|ξt−1)

St − S′
t

is lower semi-analytic on Y × Rnt−1 with Y = {
(x, y) ∈ Rkt × Rkt : x �= y

}
. It

follows from [5], Proposition C.1 that

ξt−1 	→ κt (ξt−1) = sup
St �=S′

t

f (St , S
′
t , ξt−1)

is lower semi-analytic and therefore universally measurable.
Consequently, we interpret all integrals as integrals with respect to the unique

extensions of measures with respect to the universal sigma algebra [see [6]].

Definition 2 Let ξ and ξ̃ be two Markov processes defined on probability spaces Ω

and Ω̃ , respectively, and P and P̃ corresponding probability measures on Ω and Ω̃ .
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We define a lattice distance for the problem (1) as

DL(ξ, ξ̃ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf
π

∫

Ω×Ω̃

d(ξ(ω), ξ̃ (ω̃))π(dω, dω̃)

s.t. π
ωt−1,ω̃t−1
t (Ht × Ω̃t ) = Pωt−1

t (Ht ), (t ∈ T\{0})
π

ωt−1,ω̃t−1
t (Ωt × H̃t ) = P̃ ω̃t−1

t (H̃t ), (t ∈ T\{0})

(12)

taking the infimum over all Markov probability measures π defined on F ⊗ F̃ . We
assume that the constraints hold for almost all (ωt−1, ω̃t−1) ∈ Ωt−1 × Ω̃t−1, as well
as all Ht × H̃t ∈ σt ⊗ σ̃t and define

d(ξ, ξ̃ ) :=
T∑

t=0

min
{
dt (ξt , ξ̃t ), dt (ξ̃t , ξt )

}
, (13)

and

dt (ξt , ξ̃t ) := γt (ξt , ξ̃t )‖b1,t (ξt ) − b1,t (ξ̃t )‖1 + φt (ξ̃t )‖ct (ξt ) − ct (ξ̃t )‖1. (14)

Remark 8 Note that similar to the convention discussed in Remark 2, we require the
information on themeasures P̃ and P on the underlying probability spaces to calculate
the distance between the two Markov processes.

Remark 9 Aswill become clear in the proof of Theorem 3, both dt (ξt , ξ̃t ) and dt (ξ̃t , ξt )
can be used to construct bounds for the difference in stochastic optimization problems.
We therefore use the minimum in (13) to improve the bounds and ensure symmetry
of DL .

Note that the objective function in (12) is defined in terms of the unconditional
transport plan π between the joint distributions P and P̃ while the constraints rely on

the corresponding disintegration in the form of Markov kernels π
ωt−1,ω̃t−1
t , which are

guaranteed to exist [45] and relate to π via

π(H × H̃) =
∫

Ω×Ω̃

1H×H̃ (ω, ω̃) . . . π
ωt−1,ω̃t−1
t (dωt , dω̃t ) . . . π0(dω0, dω̃0)

for H × H̃ ∈ F ⊗ F̃ . However, since the disintegration of π into Markov kernels is
only π -almost surely unique, the constraints in (12) have to be fulfilled πt−1 almost
surely, where πt−1 is the unconditional marginal of π in stage t − 1.

Remark 10 Analogously to the Remark 3 and [41,42] the infimum in the above defi-
nition is attained due to weak-compactness of the set of transportation plans.

Next we show that there is always at least one feasible transport plan between any
two Markov processes, i.e., there are no processes with infinite distance.
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Proposition 1 The defining optimization problem of DL is always feasible. In partic-
ular, the product measure π := P ⊗ P̃ is always part of the feasible set.

Proof Let A ∈ σt+1 and B ∈ σ̃t+1 for given t and C ∈ F and D ∈ F̃ . We have

∫

C×D

Pωt
t+1(A) · P̃ ω̃t

t+1(B)π(dω, dω̃) =
∫

C

Pωt
t+1(A)P(dω) ·

∫

D

P̃ ω̃t
t+1(A)P̃(dω̃)

= P(C ∩ AΩ
t+1) · P̃(D ∩ BΩ̃

t+1) = π((C ∩ AΩ
t+1) × (D ∩ BΩ̃

t+1))

= π((C × D) ∩ (AΩ
t+1 × BΩ̃

t+1)) =
∫

C×D

π
ωt ,ω̃t
t+1 (A × B)π(dω, dω̃)

where the first equality follows from the properties of the product measure. Since the
sets A, B,C , and D are chosen arbitrarily and Pωt

t+1(A)· P̃ ω̃t
t+1(B) as well asπ

ωt ,ω̃t
t+1 (A×

B) are σt ⊗ σ̃t measurable, it follows that they coincide π -almost everywhere, i.e.,

Pωt
t+1(A) · P̃ ω̃t

t+1(B) = π
ωt ,ω̃t
t+1 (A × B).

For the particular choices A = Ωt+1 or B = Ω̃t+1, we get the conditions in problem
(12). ��

Next we show that DL is a semi-metric, i.e., that it is non-negative and symmetric.
Example 1 demonstrates that it does not fulfill the triangle inequality.

Proposition 2 If either ct or b1,t have a continuous inverse, DL is a semi-metric on
the equivalence classes of Markov processes that have the same distribution.

Proof From the non-negativity of the norms and the constants φt and γt , we obtain
that DL ≥ 0. Clearly, d(ξ, ξ̃ ) = d(ξ̃ , ξ). If π∗ is the optimal transportation plan for
DL(ξ, ξ̃ ), then π̃∗(ω̃, ω) = π∗(ω, ω̃) is the optimal transportation plan for DL(ξ̃ , ξ).
Therefore we have DL(ξ, ξ̃ ) = DL(ξ̃ , ξ).

To show

DL(ξ, ξ̃ ) = 0 ⇔ ξ = ξ̃ in distribution,

we note that one direction is trivial, since ξ = ξ̃ in distribution implies that DL(ξ, ξ̃ ) =
0.

If ct or b1,t have continuous inverses, then b1,t (ξt ) �= b1,t (ξ̃t ) or ct (ξt ) �= ct (ξ̃t ) in
distribution for any two processes ξ and ξ̃ that do not have the same distribution.

Under these circumstances, if DL(ξ, ξ̃ ) = 0, similar to [55], we can without loss
of generality assume that Ω = Ω̃ and find a measure π whose image measure on
×T

t=1R
nt is almost surely concentrated on the diagonal. This implies that ξ and ξ̃ have

the same distribution. ��
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(a) (b) (c)

Fig. 2 The three processes used in Example 1 to show that the triangle inequality of DL does not hold

Example 1 In the following example we demonstrate that the triangle inequality does
not hold in general for DL . To that end, consider a simple two-stage problem with the
objective function in period t defined by

ct (ξt )
�xt = (ξt − 8, 0)xt

where ξt is a one-dimensional random variable. The constraints in the form of (2) are
described by

A1 = (1 0 ), b1 = 0, C1 = 1, A2 = (0 1 ), b2 = 10.

Considering the three random processes presented in Fig. 2 and using definition
(12), we obtain the following values of the lattice distance between every pair of
processes

DL(ξ (1), ξ (2)) = 59.8, DL(ξ (2), ξ (3)) = 19.8, DL(ξ (1), ξ (3)) = 88.

We refer to Sect. 5 for a detailed description on how to calculate the distances. Hence,
we have

DL(ξ (1), ξ (2)) + DL(ξ (2), ξ (3)) = 59.8 + 19.8 = 79.6 < 88 = DL(ξ (1), ξ (3))

confirming that the triangle inequality does not hold.

4 Bounding linear Markov decision problems

In this section, we show how the lattice distance DL can be used to approximate
linear stochastic programming problems with a Markovian structure as defined in (1).
We start by showing that every Markov process can be approximated to an arbitrary
precision by a discrete process in Theorem 1. We proceed by proving Theorem 3 in
which we show that optimal values of problems in (1) are Lipschitz continuous with
respect to DL . These two results in combination imply that DL can, in theory, be used
to find discrete Markov processes (scenario lattices) that, when used in optimization
problems, lead to an arbitrary close approximation of the objective values.
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In order to show Theorem 1, we require the following result demonstrating that
distances between any pair of Markov processes can be approximated to an arbitrary
precision by distances where one of the processes is replaced by a discrete approxima-
tion. Forwhat follows,we denote byLp(Ω×Ω̃, π) theLebesgue space of p-integrable
functions.

Lemma 4 Let

θt (ξt , ξ̃t ) = min{dt (ξt , ξ̃t ), dt (ξ̃t , ξt )} (15)

and π be transportation plan that minimizes DL(ξ, ξ̃ ) for two given processes ξ and
ξ̃ . If for all 0 ≤ t ≤ T , θt (ξt , ξ̃t ) ∈ Lp(Ωt × Ω̃t , πt ) for some p > 1 and there is a
x0t ∈ Rnt such that

∫

Ω×Ω̃

θt (ξt , x0t ) ν(dω, dω̃) < ∞ (16)

for all feasible transportation plans ν, then there is a sequence of discrete approxi-

mations (ξ̃ k)k∈N such that DL(ξ, ξ̃ k)
k→∞−−−→ DL(ξ, ξ̃ ).

Note that the condition p > 1 ensures that the space Lp(Ω × Ω̃, π) is reflexive,
which is used for the proof of Lemma 5 below, which in turn is required for the proof
of Lemma 4.

Theorem 1 Every Markov process ξ for which (16) holds can be approximated arbi-
trarily well in terms of DL by a discrete process, i.e., there are discrete Markov

processes (ξ k)k∈N such that DL(ξ, ξ k)
k→∞−−−→ 0.

Proof Use ξ instead of ξ̃ in Lemma 4 and note that θ(ξt , ξt ) = 0 for the transportation
plan that does not transport anything. Therefore the conditions of Lemma 4 are fulfilled

and DL(ξ, ξ k)
k→∞−−−→ 0 follows. ��

Note that this result is purely theoretical showing that, loosely speaking, discrete
Markov processes are dense with respect to DL . In particular, the crude discretization
used below to show Lemma 4 does not yield efficient approximations of Markov
processes.

Remark 11 We note that similar to the tree distance proposed in [41], the empirical
distribution does not converge to the true distribution in DL . This follows essentially
by the same argument that is given in [43] in Proposition 1. Modifications of the
distance based on non-parametric estimates addressing this issue as in [43] would be
in principle possible but are out of the scope of this paper.

To prove Lemma 4, we define discrete approximations ξ̃ k of ξ̃ . We start by noting
that since θt is continuous, it is uniformly continuous on Bk

t := Bt (0, k) × Bt (0, k),
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where Bt (0, k) is the ball of radius k around 0 inRnt . Now, for each k define a discrete
random variable ξ̃ kt : Ω̃t → Rnt with atoms ξ̃ kt,m and

Ek
t,m =

{
ω̃t ∈ Ω̃t : ξ̃ kt (ω̃t ) = ξ̃ kt,m

}

such that

|θt (ξt (ωt ), ξ̃t (ω̃t )) − θt (ξt (ωt ), ξ̃
k
t (ω̃t ))| ≤ k−1, ∀ωt ∀ω̃t : ξ̃t (ω̃t ) ∈ Bt (0, k)

and ξ̃ kt (ω̃t ) = x0t for all ω̃t such that ξ̃t (ω̃t ) /∈ Bt (0, k). Furthermore, define corre-
sponding Markov kernels as

P̃
ξ̃ kt−1,m
t,k (ξ̃ kt, j ) =

∫

Ek
t−1,m

P̃ ω̃t−1
t (Ek

t, j ) P̃t−1(dω̃t−1)

and the functions

f tk (ν) =
∫

Ωt×Ω̃t

θt (ξt , ξ̃
k
t ) νt (dωt , dω̃t ), f t0 (ν) =

∫

Ωt×Ω̃t

θt (ξt , ξ̃t ) νt (dωt , dω̃t )

for νt ∈ Lq(Ωt × Ω̃t , πt ) with q−1 + p−1 = 1 the unconditional distributions of the
transportation plan ν in stage t .

In Lemma 5, we will show that the approximations defined above epi-converge to
the objective function of the optimization problem defining the lattice distance. Epi-
convergence is the weakest notion of convergence of functions that allows to conclude
that convergence of objective functions implies the convergence of optimal solutions
and is defined as follows.

Definition 3 (epi-convergence) A sequence of functions fn : X → R defined on a
metric space X epi-convergences to a function f : X → R, if for each x ∈ X

lim inf
n→∞ fn(xn) ≥ f (x) for every xn → x and

lim sup
n→∞

fn(xn) ≤ f (x) for some xn → x .

We write fn
epi−→ f .

We will additionally require the notion of barrelled spaces, which are exactly the
spaces where the uniform boundedness principle is valid which we will use in the
proof of Lemma 4.

Definition 4 (barrel, barrelled space) A closed set B ⊆ X in a real topological vector
space X is a barrel, if and only if the following conditions hold
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1. B is absolutely convex, i.e.,

x1, x2 ∈ B ⇒ λ1x1 + λ2x2 ∈ B

for |λ1| + |λ2| = 1.
2. B is absorbing, i.e., for every x ∈ X there is a α > 0 with x ∈ αB.

A locally convex vector space is called barrelled, if and only if every barrel is a
neighborhood of zero.

Theorem 2 (Uniform boundedness principle, Theorem III.2.1 in [8]) Let X be a bar-
relled locally convex vector space and Y be an arbitrary locally convex vector space.
A collection F of continuous linear functions f : X → Y is bounded pointwise, i.e.,

{ f (x) : f ∈ F} ⊆ Y

is bounded for all x ∈ X, if and only if the functions are equi-continuous, i.e., for
every neighborhood V ⊆ Y of zero there is a neighborhood of zero U ⊆ X, such that

f −1(V ) ⊆ U , ∀ f ∈ F .

Lemma 5 If the integrability conditions (16) hold for ξ and ξ̃ , then

T∑

t=0

f tk
epi−→

T∑

t=0

f t0 as k → ∞.

Proof Define

f tkn(ν) =
∫

Ωt×Ω̃t

θt (ξt , ξ̃
k
t )1Bn

t
(ξt , ξ̃t ) νt (dωt , dω̃t )

f t0n(ν) =
∫

Ωt×Ω̃t

θt (ξt , ξ̃t )1Bn
t
(ξt , ξ̃t ) νt (dωt , dω̃t ).

Fix ε > 0. By integrability of θt with respect to νt and an application of the dominated
convergence theorem, it follows that there is a compact set Kt ⊂ Rnt ×Rnt for every
t = 0, . . . , T such that

∫

Ωt×Ω̃t

θt (ξt , x0t )1Kc
t
(ξt , ξ̃t ) νt (dωt , dω̃t ) < ε,

∫

Ωt×Ω̃t

θt (ξt , ξ̃t )1Kc
t
(ξt , ξ̃t ) νt (dωt , dω̃t ) < ε.
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Now choose k ∈ N such that Kt ⊆ Bk
t and k > ε−1 and note that

| f tkn(ν) − f t0n(ν)| ≤
∫

Ωt×Ω̃t

|θt (ξt , ξ̃ kt ) − θt (ξt , ξ̃t )|1Bk
t
(ξt , ξ̃t ) νt (dωt , dω̃t )

+
∫

Ωt×Ω̃t

θt (ξt , ξ̃t )1Bn
t \Bk

t
(ξt , ξ̃t ) νt (dωt , dω̃t )

+
∫

Ωt×Ω̃t

θt (ξt , x0t )1Bn
t \Bk

t
(ξt , ξ̃t ) νt (dωt , dω̃t ) ≤ 3ε,

i.e., f tkn → f t0n uniformly for all n. Note further that

f t0 = lim
n

f t0n = lim
n

lim
k

f tkn = lim
k

lim
n

f tkn = lim
k

f tk

where the two limits can be exchanged because of the uniform convergence shown
above and the first equality follows by the monotone convergence theorem. As the
convergence holds for every t = 0, . . . , T , we obtain that

T∑

t=0

f t0 = lim
k

T∑

t=0

f tk .

Lp(Ω ×Ω̃, π) is reflexive and therefore the weak topology is barrelled (see [35], The-

orem23.22). Since
∑T

t=0 f tk →
T∑

t=0
f t0 weakly, the set

{∑T
t=0 f tk ,

∑T
t=0 f t0

}
is weakly

bounded and therefore weakly equi-continuous by the uniform boundedness principle.

Since
{∑T

t=0 f tkn : n ∈ N0

}
is equi-continuous, it is equi–lower semi-continuous and

∑T
t=0 f tk

epi−→ ∑T
t=0 f t0 (see [12], Theorem 2.18). ��

Proof (Lemma 4) Because of the epi-convergence proved in Lemma 5, we obtain (see
[1], Theorem 2.5)

DL(ξ, ξ̃ k) = min
ν∈Υ

T∑

t=0

f tk (ν) → min
ν∈Υ

T∑

t=0

f t0 (ν) = DL(ξ, ξ̃ ).

Note that the feasible set Υ can w.l.o.g. be assumed the feasible set of DL(ξ, ξ̃ ), since
for every feasible transportation plan for DL(ξ, ξ̃ k) there exists a plan that is feasible
for DL(ξ, ξ̃ ) yielding the same objective. ��

Next we prove the main result of the paper establishing that the optimal value
of the stochastic optimization problem associated to DL is Lipschitz with respect to
DL . We first note the following useful lemma assuming that it : Ωt × Ω̃t → Ωt ,
ĩt : Ωt × Ω̃t → Ω̃t are natural projections for t = 0, . . . , T .
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Lemma 6 For a measurable function f : Ωt → R and measures Pt , P̃t , πt that fulfill
the conditions in (12), we have

Eπt ( f ◦ it ) = EPt ( f ).

Proof The result clearly holds for functions f = 1A with A ∈ Ωt and therefore, by
the usual argument, also for general measurable functions. ��
Theorem 3 Let ξ and ξ̃ be Markov processes and V0 be the value function for a
stochastic optimization problem of the form (1), then

|V0(S0, ξ0) − Ṽ0(S0, ξ̃0)| ≤ DL(ξ, ξ̃ ).

Proof We start by choosing ε > 0 arbitrary. If the process ξ is continuous, we define
an ε-exact approximation of the value functions. To this end, we note that since for
every ξt−1, St 	→ E(Vt (St , ξt )|ξt−1) is a continuous function on the compact set of
permissible decisions St , it is Lipschitz continuous with Lipschitz constant Lt (ξt−1).
By concavity of St 	→ E(Vt (St , ξt )|ξt−1) there exists a supergradient C

St
3,t (ξt−1) and

by continuity there is an open neighborhood U(St ) of St such that

|E(Vt (S, ξt )|ξt−1) − bSt3,t (ξt−1) − CSt
3,t (ξt−1)S| ≤ ε, ∀S ∈ U(St ).

with bSt3,t (ξt−1) = E(Vt (St , ξt )|ξt−1).

By compactness, the set of feasible St can be covered by a finite open cover U i =
U(Sit )with corresponding b

i
3,t (ξt−1) andCi

3,t (ξt−1) for i = 1, . . . ,mt (ξt−1) such that

|E(Vt (S, ξt )|ξt−1) − min
i

bi3,t (ξt−1) + Ci
3,t (ξt−1)S| ≤ ε, ∀ feasible S.

Clearly, it follows that

κ̂t (ξt−1) := max
i, j

|Ci, j
3,t (ξt−1)| ≤ 2Lt (ξt−1) (17)

and therefore κ̂t (ξt−1) ≤ κt (ξt−1) = 2Lt (ξt−1). An analogous argument holds for
process ξ̃ . Note that if ξ or ξ̃ are discrete, we can choose ε = 0 and κ̂t = κt or ˆ̃κt = κ̃t ,
since the value function approximation constructed above can be made exact due to
Lemma 1.

Defining

δ1t (ξt , ξ̃t ) = γ (A1,t , A2,t ,min{κ̂t+1(ξt ), ˆ̃κt+1(ξ̃t )}, ct (ξt ))‖b1,t (ξt ) − b1,t (ξ̃t )‖1
δ2t (ξt , ξ̃t ) = φ(A1,t , b1,t (ξ̃t ) + C+

1,t b2,t , A2,t , b2,t+1)‖ct (ξt ) − ct (ξ̃t )‖1
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as well as δt (ξt , ξ̃t ) = δ1t (ξt , ξ̃t ) + δ2t (ξt , ξ̃t ), we note that

VT (ST , ξT ) = max
{
cT (ξT )�xT : (xT , ST+1) ∈ XT (ST , ξT )

}

≥ max
{
cT (ξT )�xT : (xT , ST+1) ∈ XT (ST , ξ̃T )

}
− δ1T (ξT , ξ̃T )

≥ max
{
cT (ξ̃T )�xT : (xT , ST+1) ∈ XT (ST , ξ̃T )

}
− δT (ξT , ξ̃T )

= ṼT (ST , ξ̃T ) − δT (ξT , ξ̃T ), (18)

where first inequality follows fromLemma 2 and second fromLemma 3 andRemark 6.
Note that since VT+1 ≡ 0, κT+1(ξT ) = κ̃T+1(ξ̃T ) = 0. Exchanging the order of steps
in which Lemma 2 and Lemma 3 are applied yields

ṼT (ST , ξ̃T ) − δT (ξ̃T , ξT ) ≤ VT (ST , ξT )

and exchanging the roles of VT and ṼT finally results in

|ṼT (ST , ξ̃T ) − VT (ST , ξT )| ≤ min
{
δT (ξT , ξ̃T ), δT (ξ̃T , ξT )

}
=: ΔT (ξT , ξ̃T ).

Proceeding to the next stage, we assume w.l.o.g. that

min{κ̂T (ξT−1), ˆ̃κT (ξ̃T−1)} = ˆ̃κT (ξ̃T−1).

Then for all ξT−1 ∈ ΩT−1, ξ̃T−1 ∈ Ω̃T−1 we have

VT−1 (ST−1, ξT−1) =
{
max cT−1 (ξT−1)

� xT−1 + EPT (VT (ST , ξT ) |ξT−1 )

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

=
{
max cT−1 (ξT−1)

� xT−1 + EπT (VT (ST , ξT ) ◦ iT |ξT−1, ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

≥
{
max cT−1 (ξT−1)

� xT−1 + EπT (ṼT (ST , ξ̃T ) ◦ ĩT − ΔT |ξT−1, ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

=
{
max cT−1 (ξT−1)

� xT−1 + EP̃T
(ṼT (ST , ξ̃T )|ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

− EπT (ΔT |ξT−1, ξ̃T−1)

≥
⎧
⎨

⎩

max cT−1 (ξT−1)
� xT−1 + γ̃ − ε

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− EπT (ΔT |ξT−1, ξ̃T−1)

≥
⎧
⎨

⎩

max cT−1 (ξT−1)
� xT−1 + γ̃

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST
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− ε − EπT (ΔT |ξT−1, ξ̃T−1) − δ1T−1(ξT−1, ξ̃T−1)

≥

⎧
⎪⎨

⎪⎩

max cT−1(ξ̃T−1)
�xT−1 + γ̃

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− ε − EπT (ΔT |ξT−1, ξ̃T−1) − δT−1(ξT−1, ξ̃T−1)

≥

⎧
⎪⎨

⎪⎩

max cT−1(ξ̃T−1)
�xT−1 + γ̃ + ε

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− 2ε − EπT (ΔT |ξT−1, ξ̃T−1) − δT−1(ξT−1, ξ̃T−1)

≥ ṼT−1(ST−1, ξ̃T−1) − 2ε − EπT (ΔT |ξT−1, ξ̃T−1) − δT−1(ξT−1, ξ̃T−1)

where the second equality follows by Lemma 6, the first inequality from (18), the
following equality again from Lemma 6 and the subsequent inequalities follow from
Lemma 2 and Lemma 3 and (17). As in the derivation of (18), we can exchange the
order in which Lemma 2 and Lemma 3 are applied to get the above inequality with
δT−1(ξT−1, ξ̃T−1) replaced by δT−1(ξ̃T−1, ξT−1). Exchanging the roles of VT−1 and
ṼT−1 we obtain

|ṼT−1(ST−1, ξ̃T−1) − VT−1(ST−1, ξT−1)| ≤ EπT (ΔT (ξT , ξ̃T )|ξT−1, ξ̃T−1)

+ ΔT−1(ξT−1, ξ̃T−1) + 2ε.

Proceeding by backward induction, and noting that the distance DL is non-
decreasing when replacing κ̂t (ξt−1) by κt (ξt−1) and ˆ̃κt (ξt−1) by κ̃t (ξ̃t−1), we arrive
at

|Ṽ0(S0, ξ̃0) − V0(S0, ξ0)| ≤ DL(ξ, ξ̃ ) + 2T ε

and since ε > 0 was arbitrary, the result follows. ��
Remark 12 Linear stochastic optimization problems without randomness in the con-
straints are special cases of the problems for which [41] provide stability results
analogous to Theorem 3. Hence, a comparison of the two types of results for this
problem class is of interest.

The authors in [41] show that for their nested distance DT , a convex set X, and a
general objective function h : X × Ω → R

|min
x∈XE(h(x, ξ)) − min

x∈XE(h(x, ξ̃ ))| ≤ L DT (ξ, ξ̃ )

assuming that there is a constant L such that

|h(x, ξ) − h(x, ξ̃ )| ≤ L ‖ξ − ξ̃‖1, ∀x ∈ X, ∀ (ω, ω̃) ∈ Ω × Ω̃.
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Defining Gt = σ(ξ0, . . . , ξt ), G̃t = σ(ξ̃0, . . . , ξ̃t ) as the σ -algebras generated by the
history of the processes, the distance DT for arbitrary stochastic processes is defined
as

DT (ξ, ξ̃ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf
π

∫

Ω×Ω̃

‖ξ − ξ̃‖1 π (dω, dω̃)

s.t. π(A × Ω̃|Gt ⊗ G̃t ) = P (A |Gt ) , ∀A ∈ GT

π(Ω × Ã|Gt ⊗ G̃t ) = P̃( Ã|G̃t ), ∀ Ã ∈ G̃T .

(19)

In this paper, we treat the special case h (x, ξ) =
T∑

t=0
ct (ξt )� xt for which L can

be calculated as L = max
t

Lctφt assuming that the functions ct are Lipschitz with

constants Lct andφt is the function calculated inLemma3.Note thatφt is deterministic
in the case of a deterministic feasible set.

It is easy to see that for two Markov processes the permissible transportation plans
π for DT and for DL are equivalent. Assume that π∗ is an optimal transportation plan
for DT , then we have

DL(ξ, ξ̃ ) ≤
∫

Ω×Ω̃

T∑

t=0

φt‖ct (ξt ) − ct (ξ̃t )‖1 π∗ (dω, dω̃)

≤
∫

Ω×Ω̃

T∑

t=0

φt Lct ‖ξt − ξ̃t‖1 π∗ (dω, dω̃)

≤ L
∫

Ω×Ω̃

‖ξ − ξ̃‖1 π∗ (dω, dω̃) = L DT (ξ, ξ̃ ).

The above calculations show that our bound is tighter than DT for problemswhere both
bounds are applicable, i.e., linear stochastic optimization problems with deterministic
feasible set X.

5 Implementation for finite scenario lattices

In this section, we focus on the computation of DL for two finitely supported Markov
processes. In Sect. 5.1, we detail all necessary steps to compute DL , provide a formal
algorithm for the computation, and discuss computational issues. In Sect. 5.2, we
discuss a simple example demonstrating the bounding property of DL and provide a
comparison to the tree distance of [41].
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5.1 Computation of DL

In this section, we show that, similar to the case of the classical Wasserstein distance
and [41], the distance can be computed by solving a linear optimization problem to
find the optimal transport plan π .

We represent two discrete Markov processes ξ and ξ̃ by scenario lattices. To that
end, at every stage t ∈ T we define the probability spaces

Ωt = {i ∈ N : 1 ≤ i ≤ Nt } , Ω̃t =
{
ĩ ∈ N : 1 ≤ ĩ ≤ Mt

}

where Nt and Mt are the number of atoms of the unconditional distributions Pt and P̃t ,
respectively. The conditional transition from a given state i (ĩ) at time (t −1) to a state
j ( j̃) at time t is described by a conditional probability Pi

t ( j) and P̃ ĩ
t ( j̃), respectively.

The optimal transport plan π is a Markov process on Ω which is fully described
by the conditional probabilities

π

(

(ωt , ω̃t ) = (i, ĩ)

∣∣∣∣
t−1×
s=1

(ωs, ω̃s)

)

= π
ωt−1,ω̃t−1
t (i, ĩ), ∀(i, ĩ) ∈ Ωt × Ω̃t .

The measure π can therefore be represented by a set of non-negative matrices

π
ωt−1,ω̃t−1
t ∈ R|Ωt |×|Ω̃t | with π

ωt−1,ω̃t−1
t (i, ĩ) the element in row i and column ĩ for

(i, ĩ) ∈ Ωt × Ω̃t and

∑

(i,ĩ)∈Ωt×Ω̃t

π
ωt−1,ω̃t−1
t (i, ĩ) = 1.

We furthermore denote by πt the unconditional distributions at time t .
To be able to compute the lattice distance as linear program, we define

τ
ωt−1,ω̃t−1
t (i, ĩ) = π

ωt−1,ω̃t−1
t (i, ĩ)πt−1(ωt−1, ω̃t−1), ∀(i, ĩ) ∈ Ωt × Ω̃t

as well as πt−1(ωt−1, ω̃t−1) as decision variables. For given (ωt−1, ω̃t−1) and (i, ĩ),
the constraints in the definition of DL can therefore be written as linear constraints in
these variables as

τ
ωt−1,ω̃t−1
t ({i} × Ω̃t ) = Pωt−1

t (i) πt−1(ωt−1, ω̃t−1),

τ
ωt−1,ω̃t−1
t (Ωt × {ĩ}) = P̃ ω̃t−1

t (ĩ) πt−1(ωt−1, ω̃t−1)

where τ
ωt−1,ω̃t−1
t ({i} × Ω̃t ) = ∑

ω̃t∈Ω̃t
τ

ωt−1,ω̃t−1
t (i, ω̃t ) and τ

ωt−1,ω̃t−1
t (Ωt × {ĩ}) is

defined analogously.
Hence, given two discrete processes ξ and ξ̃ as well as θt (ξt (ωt ), ξ̃t (ω̃t )), DL(ξ, ξ̃ )

can be computed as the following linear optimization problem in the variables
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τ
ωt−1,ω̃t−1
t (i, ĩ) and πt (ωt , ω̃t )

DL(ξ, ξ̃ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
T∑

t=1

∑

ωt ,ω̃t

θt (ξt (ωt ), ξ̃t (ω̃t )) πt (ωt , ω̃t )

s.t. τ
ωt−1,ω̃t−1
t ({i} × Ω̃t ) = Pωt−1

t (i)πt−1(ωt−1, ω̃t−1)

τ
ωt−1,ω̃t−1
t (Ωt × {ĩ}) = P̃ ω̃t−1

t (ĩ)πt−1(ωt−1, ω̃t−1)

πt (ωt , ω̃t ) = ∑
ωt−1,ω̃t−1

τ
ωt−1,ω̃t−1
t (ωt , ω̃t )

πt−1(ωt−1, ω̃t−1) = ∑
ωt ,ω̃t

τ
ωt−1,ω̃t−1
t (ωt , ω̃t )

(20)

where the constraints hold for all (ωt−1, ω̃t−1) ∈ Ωt−1 × Ω̃t−1 and for all (i, ĩ) ∈
Ωt × Ω̃t for all t ∈ T\ {0} and π0(1, 1) := 1. Note that the third set of constraints
ensures that the unconditional probabilities in πt sum to one, while the last set of
constraints ensures that the probably mass of πt−1(ωt−1, ω̃t−1) is distributed amongst
the successors of (ωt−1, ω̃t−1), i.e., that the stages are properly connected.

Note that, since we model the conditional probabilities π
ωt−1,ω̃t−1
t (i, ĩ) only depen-

dent on the state of the process in (t − 1), the feasible measures π are automatically
Markov.

Since (20) is a linear program it can be efficiently solved. However, in order to do
so, the θt (ξt , ξ̃t ) have to be computed. Since θt (ξt , ξ̃t ) only depends on the values of
the two processes ξ and ξ̃ and are thus independent of the probabilities π , they can be
obtained offline.

In order to compute θt (ξt , ξ̃t ), the constants γt (ξt (ωt ), ξ̃t (ω̃t )) and φt (ξt (ωt )) and
φt (ξ̃t (ω̃t )) are required. These quantities are maxima of || · ||∞ over the vertices of the
polyhedra Γt andΦt defined in Lemma 2 and Lemma 3 and dependent on the constant
problem data A1,t , A2,t , b2,t+1, C1,t , as well as the random data b1,t , ct , and κt .

Candidates x+ for vertices of a polyhedron Λ = {
x ∈ Rk : Ax ≤ b

}
with A ∈

Rm×k can be found choosing a subset I ⊆ {1, . . . ,m} with |I | = k and solving
AI x+ = bI where AI ∈ Rk×k and bI are the submatrices of A and b with rows i ∈ I ,
respectively. x+ is a vertex of Λ if it fulfills Ax+ ≤ b.1

The number of vertices grows exponentially with the number of constraints in the
linear problems on the nodes. However, the type of problems that are solved using the
decomposition approaches described in Sect. 2 usually have a large number of stages
but rather small nodal problems. Furthermore, in most problems the data on the left
hand side of the problem A1,t , A2,t , b2,t+1, C1,t does not vary with the stage or the
randomness and some of the right hand sides remain constant as well. Hence, once
can precompute the value of ||x+||∞ for all vertices where the right hand side does
not change and store the factorization of the left hand side matrix for all the vertices
where the right hand side is random in order to efficiently compute x+ for varing b.
This together with the limited problem size on the nodes makes the computation of γt
and φt computationally relatively cheap even for larger scenario lattices.

1 Note that m has to be necessarily greater than k, since otherwise optimization problems defining γt and
φt would be unbounded.
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Algorithm 1 Computation of DL

Require: Data A1,t , A2,t , b2,t , C1,t , functions ct , b1,t , κt for all t ∈ T

1: for t ∈ T do
2: Define Aγ , bγ , Aφ , bφ such that Γt = {

x : Aγ x ≤ bγ

}
and Φt = {

x : Aφx ≤ bφ

}

3: MD
γ ← −∞, MD

φ ← −∞, Iγ ← ∅, Iφ ← ∅
4: for I ⊂ {

1, . . . , Nγ,t
}
with |I | = Kγ,t do � deterministic vertices LU for γ

5: if bIγ (ξt , ξ̃t ) ≡ bIγ ∈ RKγ,t then � rhs deterministic

6: x Iγ solves AI
γ x

I
γ = bIγ

7: if Aγ x Iγ ≤ bγ then MD
γ ← max(MD

γ , ||x Iγ,2)||∞)

8: else � rhs stochastic
9: Store LU factorization of AI

γ in (P I
γ , L I

γ ,U I
γ )

10: Iγ ← Iγ ∪ {I }
11: end if
12: end for
13: for I ⊂ {

1, . . . , Nφ,t
}
with |I | = Kφ,t do � deterministic vertices and LU for φ

14: if bIφ(ξt ) ≡ bIφ ∈ RKφ,t then � rhs deterministic

15: x Iφ solves AI
φx

I
φ = bIφ

16: if Aφx
I
φ ≤ bφ then MD

φ ← max(MD
φ , ||x Iφ ||∞)

17: else � rhs stochastic
18: Store LU factorization of AI

φ in (P I
φ , L I

φ,U I
φ )

19: Iφ ← Iφ ∪ {I }
20: end if
21: end for
22:
23: for ωt ∈ Ωt do � compute φt (ξt )

24: φt (ξt (ωt )) ← MD
φ

25: for I ∈ Iφ do
26: Use (P I

φ , L I
φ,U I

φ ) to solve AI
φx

I
φ = bIφ(ξt (ωt ))

27: if Aφx
I
φ ≤ bφ then φt (ξt (ωt )) ← max(φt (ξt (ωt )), ||x Iφ ||∞)

28: end for
29: end for
30:
31: for ω̃t ∈ Ω̃t do
32: φt (ξ̃ (ω̃t )) ← MD

φ

33: for I ∈ Iφ do � compute φt (ξ̃t )

34: Use (P I
φ , L I

φ,U I
φ ) to solve AI

φx
I
φ = bIφ(ξ̃t (ω̃t ))

35: if Aφx
I
φ ≤ bφ then φt (ξ̃t (ω̃t )) ← max(φt (ξ̃t (ω̃t )), ||x Iφ ||∞)

36: end for
37: for ωt ∈ Ωt do
38: γt (ξt (ωt ), ξ̃t (ω̃t )) ← MD

γ

39: for I ∈ Iγ do � compute γt (ξt (ωt ), ξ̃t (ω̃t ))

40: Use (P I
γ , L I

γ ,U I
γ ) to solve AI

γ x
I
γ = bIγ (ξt (ωt ), ξ̃t (ω̃t ))

41: if Aγ x Iγ ≤ bγ then γt (ξt (ωt ), ξ̃t (ω̃t )) ← max(γt (ξt (ωt ), ξ̃t (ω̃t )), ||x Iγ,2||∞)

42: end for
43: Compute θt (ξt (ωt ), ξ̃t (ω̃t )) according to (14) and (15).
44: end for
45: end for
46: end for
47: Compute DL (ξ, ξ̃ ) according to (20)
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We provide pseudocode for the calculation of DL in Algorithm 1. The algorithm
loops over the stages t of the problem and iteratively computes the constants γt and
φt .

In line 2, we write polyhedra defined in Lemma 2 and Lemma 3 as a system of
linear inequalities with single vectors and matrices Aγ , bγ , Aφ , and bφ . This is merely
for notational convenience in the rest of the algorithm. We assume that there are in all
Nγ,t and Nφ,t inequalities defining Γt and Φt , respectively.

We define Kγ,t and Kφ,t as dimensions of Γt and Φt . In lines 4–12 and 13–21 we
iterate over all sets of size Kγ,t and Kφ,t of linear inequalities defining the polyhedra.
The solution to the corresponding system of linear equalities defines a vertex if it
fulfills all the rest of the constraints. We evaluate the norm of those vertices that do
not depend on random data and keep track of the maximum, while we store the LU
factorization of the systems whose right hand sides are random. Note that for the
computation of γt , we only require the norm of the components that correspond to λ2
in Lemma 2, which we denote by x Iγ,2 for a specific set of inequality constraints I . We
also remark that for γt all vertices except the origin depend on the randomness unless
either κt is independent of the randomness (stagewise independence) or the objective
is deterministic.

In line 23–29 we compute φt (ξt ) by solving the linear systems Iφ for all possible
realizations of ξt using the stored LU factorizations. In line 37–44 we compute φt (ξ̃t )

for the realizations of ξ̃t and additionally compute γt (ξt , ξ̃t ).
Given these quantities we easily obtain θt (ξt , ξ̃t ) in line 43 and finally DL in line

47. Note that if either Γt or Φt are independent of the stage, or at least identical in
some stages, the algorithm can be modified by changing the outer loop in line 1 in an
obvious way to avoid repetitive computations.

5.2 The flowergirl problem

As a demonstration, we consider a multi-stage extension of the classical newsvendor
problem – the problem of a flowergirl selling flowers, facing a random demand and
a random sales price with the possibility to store excess flowers for the next periods.
The problem has (T + 1) stages, with stage t = 0 being the deterministic start state.
In every stage t , we start with the inventory level St limited by the storage capacity S̄t .
After the demand ξ1t and the price ξ2t become known in stage t , the flowergirl sells x2t
flowers and places an order x1t for flowers to be delivered from a wholesaler for a price
p on the next day. If the available quantity exceeds the demand, the flowergirl adds
the excess to her inventory for sale in (t + 1). Due to the perishable nature of flowers,
a fraction of k ∈ (0, 1) of the stored flowers are spoilt on the next day. The order in
stage t has to be placed without knowing the random demand ξ1t+1. On the next day
the flowers can be sold at a market price ξ2t+1 not known on day t . The flowergirl starts
in period t = 0 without any stock and no demand, i.e., S0 = 0 and ξ10 = 0.

The decisions in every stage consist of the number of flowers to order for the next
stage x1t , the number of flowers to sell x2t , and the inventory level of the next day
x3t . Note that, as described in Remark 1, the environmental state variable St+1 is
represented by x3t so as to make the feasible set fit (2).
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The storage equation consequently is

x3t = (1 − k) · (St − x2t ) + x1t , ∀t = 0, . . . , T .

The sales decisions are constrained by the random demand as well as the storage level,
i.e.,

x2t ≤ min
{
ξ1t , St

}
, ∀t = 0, . . . , T , a.s.

Furthermore, we impose the following constraints

x3t = St+1, x3t ≤ S̄t+1, x1t , x
2
t , x3t , St+1 ≥ 0, ∀t = 0, . . . , T .

The flowergirl maximizes her expected profit, which is given by

E

(
T∑

t=0

ξ2t x
2
t − px1t

)

.

For our numerical example, we consider the three-stage version of the problem,
i.e., the problem with T = 2. Further, we choose k = 0.1, p = 5 and the vector of
storage capacities S̄ = (S̄0, S̄1, S̄2, S̄3) = (0, 11, 9, 0). To rewrite the problem to the
form in (1), we define ct (ξt ) = (−p, ξ2t , 0)� and the vectors and matrices appearing
in the constraints as

A1,t =

⎛

⎜⎜
⎝

0 1 0
0 1 0

−1 (1 − k) 1
1 −(1 − k) −1

⎞

⎟⎟
⎠ , b1,t (ξt ) =

⎛

⎜⎜
⎝

ξ1t
0
0
0

⎞

⎟⎟
⎠ , C1,t =

⎛

⎜⎜
⎝

0
1

(1 − k)
−(1 − k)

⎞

⎟⎟
⎠ ,

A2,t = (
0 0 1

)
, b2,t = ( S̄t ).

As the function ct and the matrices A1,t , A2,t and C1,t have the same form for all
stages, we can ignore the index t .

Next, we find the constants κt (ξt−1), which depend on the slopes of the value
functions. Note that, in every period t , the flowergirl can either sell all flowers for
the price ξ2t or hold them for sale in future periods, in which case part of the flower
will perish. In the last period κT+1(ξT ) = 0, since the flowers are worthless at the
end of planning while in period (T − 1), stored flowers can be sold in period T , i.e.,
κT (ξT−1) = 2E(ξ2T |ξT−1). In periods t < (T −1), flowers can either be sold in period
t + 1 or carried on to period t + 2, in which case they have to be evaluated using the
respective value function. This yields the approximation

κt (ξt−1) = 2E(max{ξ2t , (1 − k)κt+1(ξt )}|ξt−1).

This logic can be recursively applied to find all the constants κt .
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(10, 0)

(13, 12)

(12, 10)

(9, 11)

(15, 8)

(12, 9)

(10, 11)

(8, 13)

(a) First Markov Process ξ

(10, 0)

(13, 12)

(9, 11)

(15, 8)

(10, 11)

(8, 13)

(b) Second Markov Process ξ̃

Fig. 3 Depiction of the two Markov processes used for the numerical calculation of the flowergirl example

Putting everything together, the problem can be formulated as

Vt (St , ξt ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
xt ,St+1

c(ξt )�xt + E (Vt+1 (St+1, ξt+1) |ξt )
s. t. A1xt ≤ b1,t (ξt ) + C1St

A2xt = St+1
A2xt ≤ b2,t+1
xt , St+1 ≥ 0

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
xt ,St+1

c(ξt )�xt + γ

s. t. A1xt ≤ b1,t (ξt ) + C1St
A2xt = St+1
A2xt ≤ b2,t+1
1mt+1(ξt )γ ≤ b3,t+1(ξt ) + C3,t+1(ξt )St+1
xt , St+1 ≥ 0.

Weconsider the twoMarkov processes ξ and ξ̃ presented in Fig. 3a, bwith transition
probabilities

P1 = (
0.5523 0.0871 0.3605

)
, P2 =

⎛

⎝
0.5489 0.0005 0.2901 0.1606
0.4576 0.0004 0.2067 0.3353
0.3953 0.0403 0.2681 0.2962

⎞

⎠ ,

P̃1 = (
0.6374 0.3626

)
, P̃2 =

(
0.5529 0.2855 0.1626
0.4364 0.2838 0.2797

)
.

To bound the difference in the optimal values, we calculate DL(ξ, ξ̃ ). As detailed
in Algorithm 1, the constant γt (ξt , ξ̃t ) can be obtained by maximizing ‖λ2‖∞ over the
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extreme points of the polyhedron

Γ =

⎧
⎪⎨

⎪⎩
(λ2, λ3, λ4, λ6, λ7) :

∥∥A�
1 λ2 + A�

2 (λ3 + λ4) − λ6
∥∥∞ ≤ 1 + ‖ct (ξt )‖∞

‖λ3 − λ7‖∞ ≤ 1 + min
{
kt+1(ξt ), κ̃t+1(ξ̃t )

}

λ2, λ4, λ6, λ7 ≥ 0

⎫
⎪⎬

⎪⎭
.

Similarly, the constant φt (ξt ) = φ(A1, b1,t (ξt )+C+
1 b2,t , A2, b2,t+1) can be found by

maximizing ‖x‖∞ over the extreme points of the polyhedron

Φ = {
x : A1x ≤ b1,t (ξt ) + C+

1 b2,t , A2x ≤ b2,t+1, A2x ≥ 0, x ≥ 0
}
.

Having calculated γt and φt , we proceed by computing θt (ξt , ξ̃t ) using (13) and (14).
Then we can determine the joint distribution π that minimizes the distance between
processes by solving the linear optimization problem (20).

The resulting optimal transportation plan yields a distance of DL(ξ, ξ̃ ) = 7.03.
The optimal value of our problem for ξ is equal to 126.59 and for ξ̃ the optimal value
equals 129.16 resulting in a difference of 2.58. Hence, our bound overestimates the
difference in the optimal values by 4.45.

Lastly,we compare the performance of DL to the performance of the nested distance
defined in [41,42]. For this calculation, it is necessary to simplify the problem to make
the constraints independent of the randomness. To this end, we fix the demand at each
stage. In particular, we assume that the demand is equal to 0, 11, and 9 in the stages
t = 0, 1, and 2, respectively. For this simplified setup, we obtain DL(ξ, ξ̃ ) = 3.94
and DT (ξ, ξ̃ ) = 4.31 demonstrating that for our problem DL provides a tighter bound
than DT (see also Remark 12).

6 Conclusions

Stochastic optimization problems with a Markovian structure strike a good balance
between the complexity of the underlying randomness and the expressiveness of the
corresponding problem class. In particular, since scenario lattices offer leaner dis-
cretization structures than scenario trees, the unfavorable computational properties of
general stochastic optimization problems can be, in part, mitigated.

In this paper, we define a family of problem dependent semi-distances for lin-
ear stochastic optimization problems with Markovian structure that can be used to
bound objective values. We also show that every Markov process can, in theory, be
approximated to arbitrary precision in terms of the defined distances. Therefore, the
concepts in this paper can be used to find arbitrary precise discrete approximation of
complicated problems, possibly with continuous state spaces.

Furthermore, we contribute to the literature on transportation distances by an
approach that is capable of dealing with randomness in the constraints. This necessi-
tates a different technique of proof, since the transport of solutions between problems
becomes impossible in this framework. We therefore base our results on stability
results for linear programs.
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In this paper we laid the foundations for a theory drivenmethod to generate scenario
lattices. Further research is required to find computationally efficient ways to do so
and to evaluate the outcomes on real world problems.
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