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Abstract

Energy systems worldwide are undergoing an accelerating transition from centralized and fossil-
fueled power plants to distributed and renewable energy sources. While conventional power
plants are controllable in their output, renewable energy sources are subject to the stochastic
availability of their primary energy resource. As a result, new coordination schemes for the
distributed energy production and consumption must be developed to reach the goal of a fully
decarbonized energy system. One approach envisions spatially closely located end-customers
who own roof-top photovoltaic systems, electrical heat pumps, and energy storage systems
as participants in local energy markets. A local market participation of so-called prosumers
would enable a decentralized coordination of the distributed energy supply and demand in a
fully liberalized and market-oriented manner. In this line, the European Commission proposed
energy communities as a novel regulatory framework that allows prosumers to engage in energy
trading with their neighbors. As a barrier towards implementation, the participation in energy
communities directly exposes prosumers to the uncertainty inherent to the stochastic power
generation by renewable energy sources. This induces volatile and uncertain local market-
clearing prices for energy, and thus volatility in the energy cost of prosumers. Consequently,
the success of energy communities highly depends on the willingness of prosumers to accept
stochasticity in their energy costs.

To this end, the main objective of this thesis is to propose local market design options for
energy communities that accommodate uncertainty. First, this thesis develops local market
design alternatives that enable an access economy for distributed energy resources within energy
communities. An access economy enables the flexibility utilization of a distributed energy
resource in the interest of multiple prosumers and not only in favor of the resource-owner
herself. Second, this thesis incorporates both risk and ambiguity aversion against an uncertain
future event into the decision-making problem of prosumers. A risk- or ambiguity-averse
trading decision secures a prosumer against an uncertain future event, but highly affects the local
market-clearing outcome for her competitors. Therefore, this thesis additionally proposes the
exchange of financial products among community members to prevent the unintended externality
of highly risk-averse decision making on prosumers with a low risk aversion. Methodologically,
this thesis leverages game-theoretical models as analytical tools to investigate the interaction
between individual decision makers in a market environment. This allows a rigorous and
tractable evaluation of local market design alternatives in the presence of uncertainty.

The key findings of this thesis are as follows: An access economy for distributed energy resources
enhances energy communities by substantially reducing the energy cost volatility for the majority
of prosumers. Risk-averse decision making also yields a reduction in the energy cost volatility. In
contrast, ambiguity-averse decision making does not necessarily reduce the energy cost volatility.
However, it efficiently secures a local market participant against incomplete information on
the probability distribution function describing an uncertain future event. A conservative
attitude towards uncertainty increases the own expected energy cost, and simultaneously affects
the energy cost of competitors. Nonetheless, suitable and well defined financial products
traded among community members efficiently neutralize heterogeneous risk preferences. The
findings presented in this thesis can inform and guide policy-makers as well as prosumers in
implementing energy communities accommodating uncertainty as well as individual attitudes
towards uncertainty.
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Zusammenfassung

Energiesysteme weltweit erleben eine drastische Transformation von konventionellen
Kraftwerken hin zu dezentralen und erneuerbaren Energien. Konventionelle Kraftwerke
sind steuerbar in ihrer Produktion. Im Gegensatz dazu unterliegen erneuerbare Energien
der stochastischen Verfügbarkeit ihrer Primärenergiequelle. Infolgedessen müssen neue
Koordinationsmechanismen für die dezentrale Energieerzeugung und Verbrauch entwickelt
werden, um das Ziel eines vollständig dekarbonisierten Energiesystems zu erreichen. Ein
Ansatz betrachtet nahe beieinander liegende Endkundinnen und Endkunden, die beispielsweise
Photovoltaikanlagen, elektrische Wärmepumpen und Energiespeichersysteme besitzen, als
Teilnehmerinnen und Teilnehmer an lokalen Energiemärkten. Eine Marktteilnahme von soge-
nannten Prosumentinnen und Prosumenten würde eine verteilte Koordination des dezentralen
Angebots und der dezentralen Nachfrage in einer liberalisierten und marktorientierten Weise
ermöglichen. Daher hat die Europäische Kommission Energiegemeinschaften als neuartigen
regulatorischen Rahmen vorgeschlagen. Dieser ermöglicht es Prosumentinnen und Prosumenten
lokal Energie zu handeln. Ein Hindernis für die Umsetzung von Energiegemeinschaften
besteht jedoch darin, dass die Energiegemeinschaftsmitglieder direkt der Unsicherheit
einhergehend mit der erneuerbaren Energieerzeugung ausgesetzt sind. Volatile Energiekosten
für Gemeinschaftsmitglieder sind die Folge. Daher hängt der Erfolg von Energiegemeinschaften
in hohem Maße von der Bereitschaft ab Unsicherheit in den Energiekosten zu akzeptieren.

Das Hauptziel dieser Dissertation besteht darin, lokale Marktgestaltungsalternativen unter
Berücksichtigung der individuellen Handelsstrategien unter Unsicherheiten vorzuschlagen.
Unter anderem entwickelt diese Dissertation eine Zugangswirtschaft für verteilte Energieres-
sourcen innerhalb von Energiegemeinschaften. Eine Zugangswirtschaft ermöglicht die flexible
Nutzung einer dezentralen Energieressource im Interesse mehrerer Mitglieder. Des Weiteren
werden in dieser Dissertation sowohl die Risiko- als auch die Ambiguitätsaversion gegenüber
einem unsicheren zukünftigen Ereignis in die Handelsstrategie der Prosumentinnen und Prosu-
menten mit einbezogen. Sowohl eine risiko- als auch eine ambiguitätsaverse Handelsstrategie
schützt vor einem unsicheren zukünftigen Ereignis, beeinflusst jedoch das lokale Marktergebnis
für die Wettbewerberinnen und Wettbewerber. Daher untersucht diese Dissertation zusätzlich
Finanzprodukte, die konservative Unsicherheitspräferenzen der Individuen ausgleichen. Diese
Dissertation verwendet spieltheoretische Modelle. Diese ermöglichen die präzise Abbildung
der Interaktion zwischen individuellen Entscheidungsträgerinnen und Entscheidungsträgern
innerhalb einer Marktumgebung.

Die wichtigsten Ergebnisse dieser Dissertation sind folgende: Eine Zugangswirtschaft für verteilte
Energieressourcen bereichert Energiegemeinschaften, indem sie die Energiekostenvolatilität für
die Mehrheit der Mitglieder erheblich reduziert. Eine risikoaverse Handelsstrategie reduziert
ebenfalls die Energiekostenvolatilität. Dies trifft für eine ambiguitätsaverse Handelsstrategie nicht
unbedingt zu. Sie schützt jedoch vor unvollständigen Informationen bezüglich der Wahrschein-
lichkeitsverteilung eines unsicheren Ereignisses. Eine konservative Einstellung gegenüber
Unsicherheiten erhöht die eigenen erwarteten Energiekosten und beeinflusst gleichzeitig die
Energiekosten der Wettbewerberinnen und Wettbewerber. Präzise definierte Finanzprodukte
neutralisieren jedoch heterogene Risikopräferenzen. Die in dieser Dissertation vorgestellten
Ergebnisse können sowohl politischen Entscheidungsträgerinnen und Entscheidungsträgern als
auch Prosumentinnen und Prosumenten bei der Implementierung von Energiegemeinschaften
in der Gegenwart von Unsicherheiten leiten.
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Chapter 1

Introduction

1.1 Towards a fully decarbonized and liberalized energy sector

Concerns about global warming motivate societies worldwide to transform their energy systems
from fossil fuels to renewable energy sources [1]. The deployment of these renewable energy
sources induces a change in the primary resource necessary to cover the energy demand, as well
as where and how this energy is produced. While in the past, centralized conventional power
plants supplied the majority of the energy demand, the future energy system will be characterized
by a substantial number of distributed energy resources, such as photovoltaic systems, wind
turbines, biogas power plants, and electrical heat pumps. Historically, conventional units were
controllable in their power generation, and thereby adapted their output to any change in the
electricity demand [2]. On the contrary, photovoltaic systems and wind turbines are subject to the
stochastic and intermittent availability of the solar radiation and the wind speed, and thus are less
controllable. As a result, new coordination schemes for the distributed energy supply and demand
must be developed to unlock flexibility in the energy consumption and foster its adaption to the
uncertain and volatile power generation [3].

One approach for a new coordination scheme of the distributed energy supply and demand
envisions end-customers of electrical services as active participants in local energy markets [4–7].
In particular, the development of information and communication technologies in the last 20 years
today empowers pro-active customers, the so-called prosumers, to fully control and time-shift their
energy demand [8, 9]. A prosumer may even provide her1 renewable power generation from
a roof-top photovoltaic system to others at times when the energy is not needed for her own
purposes [10–13]. To this end, the European Commission proposed, as illustrated in Figure 1.1,
energy communities as a novel regulatory framework that makes energy trading among neighbors
possible [14, 15]. Energy communities would enable a decentralized coordination of the energy
supply and demand in a fully liberalized and market-oriented manner. Thereby, prosumers could
actively decide on their response to the flexibility needs of their surrounding energy system. This
distinguishes energy communities from other coordination schemes, such as the operation of
distributed energy resources by an aggregator [16–19] or a distribution system operator [20–23].

1Throughout this thesis the pronouns “she” and “her”, and all variations thereof, refer to all types of players independent
of the gender that may be observed in real-world applications.
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2 CHAPTER 1. INTRODUCTION

Substation

Figure 1.1 Energy communities: Associations of spatially closely located prosumers, the so-called
energy communities, would enable a decentralized coordination of the distributed energy supply
and demand in a fully liberalized and market-oriented manner.

A key challenge is that the participation in an energy community exposes prosumers to uncertainty.
In particular, the power generation by local renewable energy sources at a future stage, although
in the near future, is uncertain. This induces stochasticity in the local market-clearing prices for
energy, and thus uncertainty in the energy cost of prosumers. The success of energy communities
highly depends on the willingness of prosumers to accept uncertainty in their energy cost. A local
market design that accommodates uncertainty would pave the way towards a fully decarbonized
and liberalized energy sector.

To this end, this thesis studies local market design options for energy communities accommodating
uncertainty as well as individual attitudes towards uncertainty. From a methodological perspective,
this thesis leverages game-theoretical models as analytical tools to investigate the interaction among
individual decision makers in a market environment [24]. These models enable a rigorous and
tractable evaluation of local market design alternatives and the individual decision making under
uncertainty. Thereby, findings presented in this thesis can guide prosumers and policy-makers
implementing energy communities in the presence of uncertainty.

1.2 Local energy market design alternatives accommodating uncertainty

The stochastic and intermittent power generation by a renewable energy source causes an uncertain
energy shortage or surplus for a resource owner at a future stage. In the case of a shortage, she may
purchase energy in the local market to meet her energy demand. Given a surplus, she may sell
energy in the local market, yielding additional revenue. However, the local market-clearing price for
energy depends on the community-wide energy shortage or surplus. Additional energy imports from
the distribution system may be necessary, causing the local-market clearing price to be equivalent
to the marginal import cost. In contrast, exporting energy to the distribution system results in a
local-market clearing price equal to the marginal export revenue [11]. These dependencies on the
renewable power generation induce uncertain and volatile local market-clearing prices for energy,
and thus energy cost volatility for community members.

Prosumers may seek to deploy distributed energy resources that can provide flexibility to
compensate the uncertainty and volatility inherent to the renewable power generation. In
this context, flexibility describes the potential to adequately respond to an uncertain future event
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with an alternative action than originally intended [25]. The deployment of distributed energy
resources, such as energy storage systems or electrical heat pumps, can provide this flexibility [26].
However, within an energy community, one of those resources is most likely able to serve the
flexibility needs of multiple prosumers. Therefore, an energy community should include an
economic mechanism that allows the flexibility utilization of one distributed energy resource in
favor of multiple community members [12, 27]. In any case, prosumers remain exposed to price
uncertainty arising from their local market participation at times when their energy demand cannot
be met by their own renewable power generation. Some prosumers may tolerate volatile and
uncertain energy cost. However, other prosumers may be unwilling to accept stochasticity in their
cost and prefer planning reliability as is the case today with a conventional energy supply contract.
An individual attitude towards uncertainty is a natural behavior that can also be observed in other
situations, e.g., trading on a stock exchange. However, the number of prosumers participating in a
local energy market is quite limited, and thus the individual attitude towards uncertainty of one
prosumer has significant potential to highly affect the local market-clearing outcome [28, 29]. The
individual attitude towards uncertainty of local market participants should be explicitly respected
in designing a local energy market for energy communities.

To this end, the objective to develop local market design alternatives that accommodate uncertainty
leads to the following two main research questions: How to enable an access economy for
distributed energy resources in energy communities? How to incorporate an individual attitude
towards uncertainty into the decision-making problem of community members?

1.2.1 How to enable an access economy for distributed energy resources in energy

communities?

An inadequate local market design may lead to excessive investments in distributed energy
resources, such as energy storage systems [30]. These devices are necessary to efficiently compensate
uncertain and volatile power generation [26]. In contrast, an access economy for distributed energy
resources would allow for a joint flexibility utilization. An access economy describes a market-
oriented access practice for goods or services, e.g., AirBnB for an accommodation or BlaBlaCar for a
transportation service [31, 32]. This contrasts with an access practice outside a market environment,
which is based on social norms, such as sharing within a family or a community library [33]. By
integrating an access economy into a local market design, community members would have the
possibility to pay for the access to the flexibility benefit of a distributed energy resource without
direct ownership. On the contrary, a resource owner could recover her investment cost through an
additional revenue stream enabled by the access economy. To this end, two questions arise: What
is the best local market design for an energy community that enables an access economy for
distributed energy resources? What are the implications of a local market comprising an access
economy for policy-makers?

One possible direction that enables an access economy lies in the domain of non-cooperative market
design options. In a non-cooperative market, each market participant is understood as a self-interest
seeking player who maximizes her own utility [24]. Consequently, the local market should include
an economic incentive for, e.g., an energy storage system owner to provide a share of the storage
to other prosumers. Such an economic incentive could be achieved via rights, either physical or
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financial. The concept of storage rights is closely related to the idea of transmission rights [34, 35],
which yield market participants an economic access to the interspatial energy arbitrage from the
transmission system operation. In particular, a physical storage right enables the right holder to
directly operate a share of the storage system, and thereby operational and economic access to
energy storage [27, 36–38]. In contrast, a financial storage right only yields the right holder an
economic access to energy storage through a claim on the profit realized by the intertemporal
energy arbitrage. The storage system itself is understood as a communal asset and operated by
a central entity in favor of all market participants [39, 40]. Both concepts could enable an access
economy for distributed energy resources in energy communities. However, this would mean an
additional market place for trading storage rights.

Another possible direction lies in the domain of cooperative market design options. In a cooperative
market, prosumers negotiate a priori a cost allocation rule of the total operational community
cost. The optimal output of all distributed energy resources is centrally determined according to a
predefined objective [41]. The actual economic access to energy storage depends on the choice
of the community cost allocation rule. A simple, but intuitive, cost allocation rule, e.g., based on
the peak demand of each prosumer, does not necessarily result in a cost allocation that satisfies
all community members [10]. More complex cost allocation rules, such as the Shapley value [42],
describing the average marginal cost contribution of each prosumer, or the nucleolus [43], which
minimizes the dissatisfaction of each prosumer, may suffer from a high computational burden.

1.2.2 How to incorporate an individual attitude towards uncertainty into the

decision-making problem of community members?

An access economy for distributed energy resources can partly compensate uncertainty and
volatility in the energy cost of prosumers. However, a holistic understanding of prosumers’
decision making under uncertainty is still needed to design an efficient and reliable local energy
market. In general, an uncertainty-aware player forecasts the probability distribution function of
an uncertain event. Based on her probabilistic forecast, she chooses a market participation strategy
that maximizes her uncertainty-dependent utility in expectation [44]. In practice, a player who
is exposed to uncertainty may be concerned about costly uncertainty realizations, even though
they are unlikely. This concern becomes highly relevant in the case that a market is characterized
by a small number of participants. In this case, the decision of one player strongly influences
the market-clearing outcome for her competitors. This motivates the following questions: How
to incorporate an individual attitude towards uncertainty into the decision-making problem of
prosumers? What are the economic implications arising from heterogeneous uncertainty attitudes?

One form of an attitude towards uncertainty is described by the notion of risk aversion. Given
a probabilistic forecast, a risk-averse prosumer considers, in her market participation strategy,
an increased value for the probability of a costly uncertainty realization and a decreased weight
for an advantageous event [45, 46]. The risk-adjustment of probabilities can be achieved by
incorporating a risk-measure function [47, 48] into the objective of each prosumer. Thereby, a
prosumer maximizes her uncertainty-dependent utility in risk-averse expectation. Risk-averse
decision making yields a reduction in the cost volatility, but leads to a higher cost in expectation.
In addition, it affects the energy cost of other prosumers owing to their linkage via the local energy
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market [28, 29]. However, prosumers are heterogeneously risk-averse and some players may
be willing to accept a greater cost volatility than others, while enjoying a lower energy cost in
expectation. One possibility to neutralize heterogeneous risk preferences is risk trading [46, 49–51].
Risk trading describes the exchange of financial products to transfer the cost under a specific
uncertainty realization from a highly risk-averse player to a market participant with a low risk
aversion. For this purpose, the probability distribution function of an uncertain event must be
exactly known to define a financial product for each uncertainty realization. In practice, this
knowledge is not necessarily available a priori.

Missing information on the true probability distribution function not only prevents a market
completeness for risk [52], but also induces ambiguity aversion by individuals [53]. In particular, a
prosumer may be averse against empirical data on which her probabilistic forecast is based [54].
An ambiguity-averse player considers a family of probability distribution functions, the so-
called ambiguity set, close to her empirical probabilistic forecast. Given the aversion against the
available data, the player chooses a market participation strategy in expectation of the worst-
case probability distribution function from her ambiguity set [55]. Thereby, she maximizes her
uncertainty-dependent utility in ambiguity-averse expectation. This attitude towards uncertainty
can be incorporated into the decision-making problem of prosumers through the concept of
distributionally robust optimization [56]. The individual confidence in empirical data may be
explicitly adjusted through the size of the ambiguity set. This set can be built based on, e.g., a
Wasserstein probability distance metric [57].

1.3 Thesis contributions to local energy market design options

The main objective of this thesis is to propose local market design alternatives for energy
communities that accommodate individual decision making under uncertainty. For this purpose,
non-cooperative and cooperative game-theoretical models are developed that (i) enable an access
economy for distributed energy resources in energy communities and (ii) incorporate an individual
attitude towards uncertainty into the decision-making problem of each prosumer. This thesis
analyzes the proposed local market design alternatives in terms of the local market efficiency, the
expected cost and its volatility for prosumers and the community as a whole, and in terms of
the computational time needed to numerically obtain a local market-clearing solution. Thereby,
this thesis can assist policy-makers and prosumers in implementing energy communities in the
presence of uncertainty. In the following, the main conceptual and methodological contributions
of this thesis are summarized, which are represented by Publication [A]–[C].

1.3.1 Conceptual contributions

From a conceptual perspective, this thesis proposes an access economy for distributed energy
resources in energy communities based on the example of energy storage systems. In particular,
Publication [A] develops an access economy to the benefit of energy storage based on both physical
and financial storage rights. These rights are traded within a local forward market, i.e., a marketplace
that clears well in advance to real-time. At the forward market stage, storage-owning prosumers
may actively decide on the share of storage capacity offered to others or withheld for her own
interests. In real-time, physical storage right holders directly dispatch their share of storage
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systems in local spot markets, i.e., real-time markets. Given financial storage rights, all storage
systems are dispatched by a central entity in favor of the whole community. Financial storage right
holders yield an economic access to energy storage through a claim on the intertemporal energy
arbitrage. In addition, Publication [A] develops an access economy based on a cooperative market
design in which all distributed energy resources, including storage systems, are dispatched in
real-time by a central entity. Publication [A] focuses on the Shapley value and the nucleolus as two
different community cost allocation rules determining the economic access to energy storage for
prosumers. Ultimately, Publication [A] is the first work that provides a comprehensive comparison
and discussion on how an access economy for energy communities could be enabled and which
market properties are ensured by each local market design alternative.

Beyond an access economy, this thesis incorporates individual attitudes towards uncertainty into
the decision-making problem of prosumers. In particular, Publication [B] addresses the notion
of risk aversion in energy communities. Risk-averse local market participants trade energy in a
local forward market followed by a local spot market. To prevent conservative decision making by
risk-averse individuals, Publication [B] proposes risk trading via Arrow-Debreu securities [52]. This
allows the transfer of energy cost under specific uncertainty realizations from highly risk-averse
prosumers to community members with a low risk aversion. Depending on the availability of
Arrow-Debreu securities, the local market may be fully or partially incomplete for risk, i.e., none
or only some cost realizations can be transferred, or complete for risk, i.e., all cost realizations
could be transferred. Publication [B] is the first work that offers a thorough discussion of the
economic implications of heterogeneously risk-averse prosumers who engage in energy trading in
a fully or partially incomplete, or complete, local market for risk. One necessary assumption for
complete risk trading via Arrow-Debreu securities is that the probability distribution function of
an uncertain event is exactly known. Since this is unlikely in practice, Publication [C] assesses
the impact of energy trading in a local spot market among heterogeneously ambiguity-averse
players. Each ambiguity-averse local market participant observes her empirical data describing an
uncertain event. Based on her confidence in these data, she forms an ambiguity set comprising
probability distribution functions close to the empirical probability distribution function. Given
the problem complexity, publication [C] proposes the introduction of a local forward market that
determines an energy production and consumption schedule as well as a participation plan for
responding to any community-wide energy imbalances. Eventually, Publication [C] provides, for
the first time, a discussion on ambiguity aversion in the context of local markets.

1.3.2 Methodological contributions and application results

From a methodological perspective on an access economy for distributed energy resources in
energy communities, Publication [A] proposes two generalized mathematical formulations of
non-cooperative local market design alternatives that enable an access economy via physical and
financial storage rights, respectively. These formulations allow, for the first time, a partial access
to energy storage systems, while the optimal level of access provision from the storage owner’s
perspective is determined endogenously. Furthermore, this work analytically investigates the
proposed non-cooperative market design alternatives in terms of the existence and the uniqueness
of a local market-clearing solution. Based on game-theoretical methods, Publication [A] shows
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that for each proposed non-cooperative local market design, a unique market equilibrium exists.
The equivalence of a market equilibrium problem including physical storage rights to a social
planner problem was proven previously [27]. However, Publication [A] is the first work showing
that the local market equilibrium problem comprising financial storage rights can be efficiently
solved by two sequential optimization problems. Beyond non-cooperative market design options,
Publication [A] assesses an access economy based on cooperative market design options. In
particular, this work applies the Shapley value as well as the nucleolus and interprets the resulting
community cost allocation in terms of an economic access for prosumers to energy storage.
Numerically, Publication [A] demonstrates that the non-cooperative market design alternatives
scale well as the community size increases in terms of community members. In contrast, the
cooperative market design alternatives scale poorly, and thus are more suitable for small energy
communities. Independent of the local market design in place, an access economy for energy
storage enhances energy communities by reducing the energy cost volatility for the majority of
prosumers. At the same time, the operational cost of the community as a whole remains unchanged.
Consequently, the preferred local market design enabling an access economy for distributed energy
resources highly depends on the community member preferences. This finding highlights the
importance of assessing individual risk and ambiguity preferences in energy communities.

In this regard, Publication [B] and Publication [C] incorporate risk and ambiguity aversion into
the decision-making problem of local market participants, respectively. Publication [B] applies
the well-known conditional value-at-risk [58] as a coherent risk-measure function [48] to each
local market participant. In addition, Publication [B] considers risk trading via Arrow-Debreu
securities. The collection of all risk-averse decision-making problems gives rise to a risk-averse
Nash game with risk trading. Depending on the availability of Arrow-Debreu securities, the
local market may range from a fully incomplete to a complete market for risk. Publication [B]
studies game-theoretical properties and shows that for each case, a local market equilibrium exists.
However, this work shows that in any case, multiple Nash equilibria may be found. This prevents a
distinct conclusion for policy-makers and prosumers on the local market-clearing outcomes. Lastly,
Publication [B] discusses the equivalence of the risk-averse Nash game to a social planner problem.
For heterogeneous risk aversion, this can be confirmed only given a complete market for risk.
Beyond risk aversion, Publication [C] incorporates ambiguity aversion into the decision-making
problem of local market participants based on the concept of distributionally robust optimization and
Wasserstein ambiguity sets. For the purpose of complete Wasserstein ambiguity sets, Publication [C]
considers the uncertain event to follow a continuous probability distribution function. This contrasts
with a finite and discrete probability distribution function previously considered in this thesis.
The collection of all distributionally robust decision-making problems motivates a distributionally
robust game [59–61]. This game is intractable owing to the continuous probability distribution
function. However, Publication [C] provides a tractable problem reformulation based on chance
constraints [62] and linear decision rules [63]. Publication [C] shows, for the first time, the existence
of an equivalent social planner problem to the tractable reformulation, although players may
possess asymmetric information regarding uncertainty [64]. The solution of the equivalent social
planner problem is unique. This implies the existence of a unique local market-clearing solution.

Numerical findings in Publication [B] indicate that risk trading efficiently protects prosumers with a
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low risk aversion from highly risk-averse decision making by competitors. A significant community
cost saving can be realized in the case that prosumers engage in risk trading and sufficient Arrow-
Debreu securities are available for trading. Given the case of insufficient information about the
uncertain event, and thus heterogeneous ambiguity aversion, Publication [C] identifies that local
market participants with a comparatively low utility from energy consumption are highly exposed
to the ambiguity aversion of rivals.

1.4 Thesis structure

The remainder of this Ph.D. thesis is structured as follows: Chapter 2 discusses the advent of
energy communities, provides preliminary assumptions on the local market design, and introduces
the local market structure applied throughout this thesis. Furthermore, a game-theoretical model,
which represents the local market-clearing problem of an energy community, is introduced.
Chapter 3 proposes local market design alternatives that enable an access economy for distributed
energy resources based on the example of energy storage systems. Given the finding that the
preferred choice of a local market design highly depends on the individual preference of each
community member towards her energy cost volatility, Chapter 4 incorporates risk aversion into
the decision-making problem of prosumers. In addition, this chapter discusses how risk trading
among community members may neutralize heterogeneous risk aversion. Moreover, Chapter 4
discusses ambiguity aversion against empirical data describing an uncertainty event. For this
purpose, it assumes that the uncertain event follows a continuous probability distribution function,
as opposed to a finite and discrete probability distribution function considered previously in
this thesis. Lastly, Chapter 5 concludes by summarizing the main contributions and proposing
potential future research directions arising from this thesis.

1.5 List of publications

The relevant publications summarized in this thesis are listed in the following:

[A] Niklas Vespermann, Thomas Hamacher, and Jalal Kazempour: “Access economy for stor-
age in energy communities”, in IEEE Transactions on Power Systems, forthcoming, 2020,
DOI: 10.1109/TPWRS.2020.3033999.

[B] Niklas Vespermann, Thomas Hamacher, and Jalal Kazempour: “Risk trading
in energy communities”, in IEEE Transactions on Smart Grid, forthcoming, 2020,
DOI: 10.1109/TSG.2020.3030319.

[C] Niklas Vespermann, Thomas Hamacher, and Jalal Kazempour: “On ambiguity-averse market
equilibrium”, submitted to Optimization Letters, (under review, second round), 2022.

Another publication has been prepared during the course of the Ph.D. studies, but omitted from
this thesis since it is not directly related to the primary objective.

[D] Niklas Vespermann, Matthias Huber, Simon Paulus, Michael Metzger, and Thomas Hamacher:
“The impact of network tariffs on PV investment decisions by consumers”, in 15th International
Conference on the European Energy Market (EEM) 2018, DOI: 10.1109/EEM.2018.8469944.

https://ieeexplore.ieee.org/document/9239974
https://ieeexplore.ieee.org/document/9222043/
https://ieeexplore.ieee.org/document/8469944


Chapter 2

Fundamentals of Energy Communities

This chapter provides preliminaries that are fundamental to the following chapters. Section 2.1
discusses the advent of energy communities. Section 2.2 outlines the local market structure
considered throughout this thesis. Section 2.3 introduces preliminary assumptions on the local
market design. Based on the local market structure and assumptions in place, Section 2.4 provides
a game-theoretical model representing the local market of an energy community. Lastly, Section 2.5
shows the solution existence and uniqueness for the underlying local market-clearing problem.

2.1 The advent of energy communities

Pro-active customers, the so-called prosumers, are able to control and time-shift their energy
consumption [8, 9]. Thereby, prosumers embody the potential to contribute to the necessary power
system flexibility to reach the goal of a fully decarbonized energy system. A coordination of
the distributed energy supply and demand would allow the further integration of distributed
energy resources, such as photovoltaic systems and electrical heat pumps. At the same time,
a coordination could prevent overloads in the distribution system without additional network
upgrades [65]. However, a major challenge remains: How to achieve the coordination among the
distributed energy production and consumption?

One approach envisions prosumers as participants in local energy markets [4–7]. Those mar-
kets could coordinate energy supply and demand in a fully liberalized and market-oriented
manner. However, efficient regulations that enable the local energy trading are still lacking.
The European Commission responded to this shortcoming through the renewable energy direc-
tive [14, Art. 21] and the directive on common rules for the internal market for electricity [15, Art. 16].
More specifically, the member states of the European Union have been asked to provide prosumers
with a fair market access and to make energy trading among neighbors possible. At the same time,
prosumers should not be exposed to disproportional levies and surcharges. In this line, energy
communities are proposed as a novel regulatory framework that allows prosumers to directly
engage in energy trading [15, Art. 16]. The successful implementation of energy communities
would enable prosumers to actively decide on their response to the flexibility needs of their
neighbors or the distribution system. This characteristic distinguishes the concept of an energy
community from other coordination schemes, such as an operational access to distributed energy

9
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a b c

Figure 2.1 Local energy market paradigms: Figure 2.1a shows a peer-to-peer market structure.
Prosumers, marked by blue dots, negotiate bilateral contracts. Figure 2.1b depicts an auction-based
local market design. A community manager, marked by the green dot, clears the local market,
and thereby determines energy exchanges between prosumers. Lastly, Figure 2.1c illustrates a
coalitional local market design. A community manager, indicated by the green circle, centrally
determines all energy production, consumption, and exchange activities inside the community.

resources by an aggregator [16–19] or by the distribution system operator [20–23].

Today, there is a range of pilot projects demonstrating energy communities. For example, “The
Energy Collective” project is implemented in Bofællesskabet Svalin, Denmark, and proposes a
consumer-centric local electricity market [66]. The “EnergyLab Nordhavn” project is implemented
in the Nordhavn neighborhood of Copenhagen, Denmark, and focuses besides others on a market-
based coordination of the local integrated heat and electricity system [67]. The “Pebbles” project is
implemented in Wildpoldsried, Germany, and assesses the power system integration of a local
energy market as a virtual power plant [68]. All these projects allow prosumers to directly engage
in energy trading with their neighbors through a local market. However, the market frameworks
in place highly differ in how they enable local energy trading.

2.2 A local market for energy communities

In general, local market design options for energy communities can be distinguished by three
organizational paradigms, as depicted in Figure 2.1 [4, 6]. Within a peer-to-peer market, as shown
in Figure 2.1a, prosumers negotiate fully decentralized bilateral contracts regarding local energy
exchanges [5, 69, 70]. Figure 2.1b illustrates an auction-based local market design. Prosumers submit
energy production and consumption bids to the local market. A community manager clears the
local market, and thereby determines the energy exchanges between prosumers [11, 13, 71]. In
both cases, prosumers are understood as self-interest seeking players who actively decide on their
energy production, consumption, and trades. Therefore, these paradigms lie in the domain of
non-cooperative market design options. In contrast, Figure 2.1c depicts a coalitional local market
design. A community manager centrally determines all energy production, consumption, and
exchange activities inside the energy community. This takes place according to a predefined
objective, e.g., the minimization of the total operational community cost. Prosumers are inactive
during the operational stage [10, 12, 72]. Post operation, the total community cost is systematically
redistributed among community members. This paradigm lies in the domain of cooperative market
design options.
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Peer-to-peer local market design options enable fully decentralized energy trades, and thereby the
highest degree of a market liberalization [6]. However, significant computational challenges and
communication complexity issues exist, preventing a robust system operation [73]. In contrast,
coalitional local market design options achieve a robust system operation by a central entity [12, 13].
However, since local market participants are inactive during the operational stage, this paradigm
yields the lowest degree of a market liberalization among the three alternatives. This thesis mainly
focuses on auction-based local market design options. An auction-based local market enables an
active market participation by prosumers, while ensuring a comparatively low computational
and communicational burden [11, 13]. Note that Chapter 3 also discusses coalitional local market
design options in the context of an access economy for distributed energy resources in energy
communities. However, peer-to-peer local market design options are not in the scope of this thesis
and left fully aside for future research.

Following the concept of an auction-based local market design, Figure 2.2 depicts the local market
structure considered throughout this thesis. The energy community comprises three types of
players, namely prosumers, a spatial arbitrageur, and a price-setter. Prosumers have a price-
inelastic energy demand and potentially own a roof-top photovoltaic system with an uncertain
power generation. All prosumers minimize their energy cost by meeting their price-inelastic energy
demand through the uncertain photovoltaic power generation. In the case of a shortage, prosumers
can purchase energy in the local market. In the case of a photovoltaic power generation surplus,
energy can be sold in the local market. Given a community-wide energy shortage or surplus, the
spatial arbitrageur imports and exports energy from and to the distribution system, respectively.
Lastly, the price-setter, who is a fictitious player [74], reveals local market-clearing prices evolving
under free trade and perfect competition. In detail, the price-setter reveals market-clearing prices,
which minimize the cost for buyers and maximize the revenue for sellers. In addition, such
market-clearing prices implicitly ensure the balance between the total energy supply and demand
inside the community. In a perfectly competitive market environment, the spatial arbitrageur and
the price-setter can be institutionally interpreted as a community manager who fulfills both tasks,
ensuring liquidity and revealing local market-clearing prices [75].

2.3 Preliminary assumptions on the local market design

In the following, assumptions on the local market design are introduced. These assumptions
significantly simplify the reality, but allow the formulation of tractable game-theoretical models,
and thereby enable general insights on local market design options in the presence of uncertainty.
In particular, this thesis assumes that all players participate in the local market as price-takers.
This implies that they bid according to their true cost and preferences in a perfectly competitive
local market. In addition, all players have a perfect foresight of future events. Given the small
size of an energy community, internal network constraints are neglected. However, constraints
observed by the spatial arbitrageur on the energy import and export are explicitly modeled. Owing
to the close spatial distance between prosumers, their photovoltaic power generation profiles are
assumed to be identical for all photovoltaic systems in the community. The photovoltaic power
generation is the only source of uncertainty. However, it causes the local market-clearing price to be
uncertain from the perspective of prosumers and the spatial arbitrageur. Consequently, their local
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Figure 2.2 The local market structure: The energy community comprises three types of players.
Prosumers trade energy in the local market. A spatial arbitrageur ensures liquidity. A price-setter
reveals local market-clearing prices. Given a perfectly competitive local market environment, a
combination of the spatial arbitrageur and the price-setter can be institutionally interpreted as a
community manager.

market participation strategy is uncertainty dependent. However, from the price-setters’ perspective,
the market participation of prosumers and the spatial arbitrageur is uncertain. Therefore, her
choice for a local market-clearing price is also uncertainty dependent. Throughout this thesis, the
renewable power generation as the only uncertain parameter as well as uncertainty-dependent
decision variables of players are indicated by a tilde (̃·).

For simplicity, this chapter assumes that players trade energy in a single local spot market, and thus
observe the uncertainty realization in real-time and simultaneously decide on their local market
participation strategy. However, in Chapter 3 and Chapter 4 the local spot market is preceded
by a local forward market, i.e., a marketplace that clears well in advance to real-time. In addition,
Chapter 3 considers multiple sequentially clearing spot markets, i.e., one spot market for each time
step, to account for energy storage.

At this stage, it is assumed that all players are risk- and ambiguity-neutral, and possess identical
information about the uncertain renewable power generation. The uncertainty is modeled by the
set Ω comprised of a finite number of discrete scenarios ω. Each scenario describes one specific
uncertainty realization of the renewable power generation. Chapter 4 relaxes the assumption of risk-
and ambiguity-neutral decision making, and additionally accounts for a potentially incomplete
market for risk and ambiguity, respectively. Under ambiguity aversion, Chapter 4 also relaxes
the assumption of finite and discrete scenarios and considers the uncertain renewable power
generation to follow a continuous probability distribution function.

2.4 A Nash equilibrium problem describing the local energy market

This section introduces mathematically the decision-making problem of prosumers, the spatial
arbitrageur, and the price-setter. At this stage, the potential uncertainty realizations of the renewable
power generation are independent from each other. Therefore, each player solves one optimization
problem per uncertainty realization ω ∈ Ω.

Each prosumer n ∈ N minimizes her uncertainty-dependent local spot market energy cost Jnω.



2.4. A NASH EQUILIBRIUM PROBLEM DESCRIBING THE LOCAL ENERGY MARKET 13

The prosumer n observes a, from her perspective, uncertain spot market energy price λ̃ω and
determines her uncertainty-dependent energy trade p̃nω by solving the following optimization
problem: {

Min
p̃nω

Jnω := λ̃ωp̃nω + c(p̃nω) (2.1a)

s.t. p̃nω + S̃nω −Dn = 0: φnω, (2.1b)

p̃nω ∈ Pn := {p̃nω | − Pn ≤ p̃nω ≤ Pn : χp̃
nω
, χp̃nω}

}
, ∀n ∈ N ,∀ω ∈ Ω. (2.1c)

Under each uncertainty realization ω, each prosumer n minimizes her spot market energy cost by
buying energy, i.e., non-negative values of p̃nω , and selling energy, i.e., non-positive values of p̃nω ,
according to the uncertain local spot market energy price λ̃ω (2.1a). In addition, the objective
function (2.1a) is endowed with a quadratic regularizer c(p̃nω) = 1

2βp̃
2
nω, wherein β is a small

positive constant, e.g., 10−3. A sufficiently small value for β does not alter the aggregated cost
of all prosumers in comparison to β = 0. However, this regularizer ensures mathematically the
market-clearing solution uniqueness [76]. In addition, identical prosumers incur the same energy
cost. The energy trade p̃nω of prosumer n under each uncertainty realization ω is motivated by the
need to ensure the balance (2.1c) between her uncertain photovoltaic power generation S̃nω and
her price-inelastic energy demand Dn. The trading decision p̃nω lies within a closed, convex, and
compact set Pn. This set imposes a sufficiently large lower and upper bound Pn on p̃nω , such that
the energy trade p̃nω remains unconstrained. Symbols following a colon denote the dual variables
of the respective constraints.

The spatial arbitrageur minimizes her uncertainty-dependent spot market energy import and
export cost Jar

ω . For a given, from her perspective, uncertain spot market energy price λ̃ω, the
spatial arbitrageur determines her uncertainty-dependent energy trade p̃ar

ω as follows:{
Min
p̃ar
ω

Jar
ω := (C − λ̃ω)p̃ar

ω (2.2a)

s.t. p̃ar
ω ∈ Par := {p̃ar

ω | − P ar ≤ p̃ar
ω ≤ P ar : χp̃

ar

ω
, χp̃

ar

ω }
}
, ∀ω ∈ Ω. (2.2b)

Under each uncertainty realization ω, the spatial arbitrageur imports energy, i.e., non-negative
values of p̃ar

ω , and exports energy, i.e., non-positive values of p̃ar
ω , at the fixed cost C. For energy

imports and exports she receives and pays, respectively, the uncertain spot market energy
price λ̃ω (2.2a). The trading decision p̃ar

ω lies within a closed, compact, and convex set Par, which
imposes a lower and upper bound P ar on p̃ar

ω (2.2b). These bounds describe potential network
constraints between the community and the distribution system.

Lastly, the price-setter minimizes and maximizes the uncertainty-dependent local spot market
energy cost and revenue for buyers and sellers Jps

ω , respectively. She observes, from her perspective,
uncertain spot market energy trades p̃nω and p̃ar

ω , and determines an uncertainty-dependent spot
market energy price λ̃ω by solving the following optimization problem:{

Min
λ̃ω

Jps
ω := λ̃ω(

∑
n∈N

p̃nω − p̃ar
ω ), (2.3a)

s.t. λ̃ω ∈ L := {λ̃ω | − Λ ≤ λ̃ω ≤ Λ: χλ̃
ω
, χλ̃ω}

}
, ∀ω ∈ Ω. (2.3b)
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Under each uncertainty realization ω, the price-setter chooses the spot market energy price λ̃ω,
such that the cost for energy buyers, i.e., non-negative values of p̃nω and non-positive values of p̃ar

ω ,
is minimized and the revenue for energy sellers, i.e., non-positive values of p̃nω and non-negative
values of p̃ar

ω , is maximized (2.3a). The spot market energy price λ̃ω lies within a closed, compact,
and convex set L. This set imposes a sufficiently large lower and upper bound Λ on λ̃ω , such that
the spot market energy price remains unconstrained (2.3b).

The collection of the decision-making problems (2.1)–(2.3) states a set of Nash equilibrium prob-
lems, i.e., one Nash equilibrium problem per uncertainty realization ω ∈ Ω. For each un-
certainty realization ω, the corresponding Nash game is given by Γω(Z,Kω, {Jiω}∀i∈Z). The
symbol Z states the set of all players, while Jiω denotes their respective objective function.
Furthermore, Kω = (Kn1ω × · · · ×KNω ×Kar

ω ×K
ps
ω ) defines the strategy set of the Nash game,

in which Kn1ω and KNω are the strategy sets of the first and last prosumer, respectively. The
symbol Kar

ω denotes the strategy set of the spatial arbitrageur, while Kps
ω refers to the strategy set

of the price-setter.

In order to determine a market-clearing solution, the so-called Nash equilibrium point, all decision-
making problems within the Nash game have to be solved simultaneously. A Nash equilibrium
point is found if no player deviates unilaterally from her decision given that no other player
changes her market participation strategy [24]. One possible approach determines the Nash
equilibrium point based on an equivalent formulation of the Nash equilibrium problem as a mixed
complementarity problem [75]. A mixed complementarity problem computes the point where
the Karush-Kuhn-Tucker optimality conditions of all optimization problems are simultaneously
fulfilled. For this purpose, the Karush-Kuhn-Tucker conditions of (2.1) write as follows:

∂Lnω
∂p̃nω

= λ̃ω + βp̃nω + φnω − χp̃nω + χp̃nω = 0, ∀n, ω, (2.4a)

p̃nω + S̃nω −Dn = 0, ∀n, ω, (2.4b)

0 ≤ p̃nω + Pn ⊥ χp̃nω ≥ 0, 0 ≤ Pn − p̃nω ⊥ χp̃nω ≥ 0, ∀n, ω, (2.4c)

in which Lnω denotes the Lagrangian function of (2.1). Furthermore, the Karush-Kuhn-Tucker
conditions of (2.2) are given by the following set of equations:

∂Lar

∂p̃ω
= C − λ̃ω − χp̃ω + χp̃ω = 0, ∀ω, (2.5a)

0 ≤ p̃ar
ω + P ar ⊥ χp̃

ar

ω
≥ 0, 0 ≤ P ar − p̃ar

ω ⊥ χp̃
ar

ω ≥ 0, ∀ω. (2.5b)

in which Lar
ω states the Lagrangian function of (2.2). Lastly, the Karush-Kuhn-Tucker conditions

associated with (2.3) write as follows:

∂Lps
ω

∂λ̃ω
=
∑
n∈N

p̃nω − p̃ar
ω − χλ̃ω + χλ̃ω = 0, ∀ω, (2.6a)

0 ≤ λ̃ω − Λ ⊥ χλ̃ ≥ 0, 0 ≤ Λ− λ̃ω ⊥ χλ̃ ≥ 0, ∀ω. (2.6b)

in which Lps
ω refers to the Lagrangian function of (2.3). It is worth noting that for inactive price

constraints, i.e., a sufficiently large set L in (2.3b), the dual variables χλ̃ and χλ̃ in (2.6a) become
zero. Thereby, the local spot market-clearing price revealed by the price-setter implicitly ensures
the balance between the total energy supply and demand inside the community.
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2.5 On the existence of a unique Nash equilibrium point

In economic analysis, two properties of a Nash equilibrium point are of major interest: its
existence as well as its uniqueness. Only that way, policy-makers and analysts are able to derive a
distinct conclusion from a game-theoretical model. To assess the existence and uniqueness of a
Nash equilibrium point, this thesis considers Nash games in their equivalent form of Variational
Inequality problems [77]. In detail, the Nash game Γω(Z,Kω, {Jiω}∀i∈Z), ∀ω ∈ Ω, is equivalent to
a Variational Inequality problem with the game map

Fω(xω) = [Op̃n1ω
Jn1ω(p̃n1ω), · · · ,Op̃NωJNω(p̃Nω),Op̃ar

ω
Jar
ω (p̃ar

ω ),Oλ̃ωJ
ps
ω (λ̃ω)]>, ∀ω ∈ Ω,

in which xω = [p̃n1ω, · · · , p̃Nω, p̃ar
ω , λ̃ω], ∀ω ∈ Ω, denotes the strategy vector of the game.

For the Nash game Γω(Z,Kω, {Jiω}∀i∈Z), ∀ω ∈ Ω, the strategy set Kω is closed, compact, convex,
and non-empty. The game map Fω(xω) is continuous, since all cost functions Jiω are continuously
differentiable. Therefore, a solution set to the Variational Inequality problem exists, implying the
existence of a Nash equilibrium point [77].

The singleton nature of this Nash equilibrium point can be assessed by considering the Jacobian
matrix of the game map Fω(xω) as

OxωFω(xω) =



β · · · 0 0 1
...

. . .
...

...
...

0 · · · β 0 1
0 · · · 0 β −1
1 · · · 1 −1 0


, ∀ω ∈ Ω.

The Jacobian matrix is symmetric, as highlighted by the red diagonal entries. Therefore, the
corresponding Nash game is integrable [75]. This implies that an equivalent optimization problem
solving the Variational Inequality problem exists; its objective function is given by{

θ(x) =
∫ 1

0
F (x0 + t(x− x0))>(x− x0)dt

x0→0=
∫ 1

0
t



λ̃ω + βp̃n1ω

...
λ̃ω + βp̃Nω

−λ̃ω + C

p̃n1ω + · · ·+ p̃Nω − p̃ar
ω



>

p̃n1ω

...
p̃Nω

p̃ar
ω

λ̃ω


dt (2.7a)

=
∫ 1

0

[
t
( ∑
n∈N

(λ̃ωp̃nω + βp̃2
nω)− λ̃ωp̃ar

ω + λ̃ω(
∑
n∈N

p̃nω − p̃ar
ω )
)

+ Cp̃ar
ω

]
dt (2.7b)

=
( ∑
n∈N

(λ̃ωp̃nω + βp̃2
nω)− λ̃ωp̃ar

ω + λ̃ω(
∑
n∈N

p̃nω − p̃ar
ω )
)1

2 [t2]10 + Cp̃ar
ω (2.7c)

= 1
2
( ∑
n∈N

(λ̃ωp̃nω + βp̃2
nω)− λ̃ωp̃ar

ω + λ̃ω(
∑
n∈N

p̃nω − p̃ar
ω )
)

+ Cp̃ar
ω (2.7d)

= λ̃ω(
∑
n∈N

p̃nω − p̃ar
ω ) +

∑
n∈N

1
2βp

2
nω + Cp̃ar

ω

}
∀ω ∈ Ω. (2.7e)
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Figure 2.3 The equivalence of a Nash equilibrium to a social planner solution: The Nash equilibrium
problem is mathematically equivalent to the social planner problem. This implies that any solution
to the Nash equilibrium problem is also a solution to the social planner problem and vice versa.

This yields the following optimization problem:{
Min
p̃nω,p̃ar

ω

∑
n∈N

c(p̃nω) + Cp̃ar
ω , (2.8a)

s.t. (2.1b), (2.1c), ∀n; (2.2b), (2.8b)∑
n∈N

p̃nω − p̃ar
ω = 0: λ̃ω

}
, ∀ω ∈ Ω, (2.8c)

for which the Karush-Kuhn-Tucker optimality conditions are given by the following set of equations:

∂Lsp

∂p̃nω
= (2.4a), (2.4b)–(2.4c), ∀n, ω, (2.9a)

∂Lsp

∂p̃ar
ω

= (2.5a), (2.5b), ∀ω, (2.9b)∑
n∈N

p̃nω − p̃ar
ω = 0, ∀ω, (2.9c)

in which Lsp
ω states the Lagrangian function of (2.8). A comparison of the Karush-Kuhn-Tucker

conditions (2.9) to the Karush-Kuhn-Tucker conditions (2.4), (2.5), and (2.6) confirms, for inactive
price constraints, the equivalence of the optimization problem (2.8) to the Nash equilibrium
problem (2.1)–(2.3). The objective function (2.8a) is strongly convex and quadratic. There-
fore, the solution of (2.8) is unique, implying a unique Nash equilibrium point for the Nash
game Γω(Z,Kω, {Jiω}∀i∈Z), ∀ω ∈ Ω.

In fact, the optimization problem (2.8) can be interpreted as the problem of a social planner. As
illustrated in Figure 2.3, the second welfare theorem states that the equivalence between perfectly
competitive and complete trading and a welfare optimization “is a trivial reformulation of the
usual one in welfare economics” [78, Chapter VIII]. However, note that an equivalent optimization
problem does not exist for all Nash games proposed throughout this thesis.



Chapter 3

Towards an Access Economy for Energy
Communities

Based on the game-theoretical fundamentals introduced in Chapter 2, this chapter proposes an
access economy for distributed energy resources based on the example of energy storage systems.
In particular, Section 3.1 discusses an access economy in the domain of non-cooperative market
design options. The focus is on both physical and financial storage rights that are explicitly
traded among community members. Section 3.2 proposes an access economy through a coalitional
community operation which associates with a cooperative market design. The actual economic
access to energy storage depends on the cost allocation rule in place. Lastly, Section 3.3 discusses
the most representative numerical results of Publication [A].

3.1 Non-cooperative access practices

In the domain of a non-cooperative market design, a merchant owner of an energy storage system
usually participates in the market as an intertemporal arbitrageur. An intertemporal arbitrageur
charges the storage during low-price periods and discharges it during high-price periods [79].
This results in a storage system operation exclusively in the interest of the storage owner herself.
Other community members may attempt to install an energy storage system as well to compensate
uncertainty and volatility in the renewable power generation. This would lead to excessive
investments within energy communities since one storage system is most likely able to serve
the flexibility needs of multiple prosumers. The following question arises: How to provide
an economic incentive for prosumers to jointly operate an energy storage system, while each
individual community member is a self-interest seeking local market participant?

The current practice of the transmission system operation in electricity markets in the United States
of America offers a promising approach. In energy markets applying nodal pricing, each node of
the transmission system has an individual energy price. The system operator purchases energy
at one node, transports it via transmission lines, and sells the energy at a different node. Given
that the transmission system is not congested and power losses are not taken into account, prices
are equal at all nodes. In the case that the transmission system is congested, energy prices may
differ among nodes. Consequently, the system operator collects a profit from the transportation,

17
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the so-called interspatial energy arbitrage or congestion rent [80]. However, customers of electrical
services can purchase transmission rights, either physical or financial [34, 35, 81]. Transmission
rights offer a win–win situation for both the transmission system operator and customers. On
the one hand, the transmission system operator can recover her investment cost upfront without
financially depending on the uncertain real-time operation. On the other hand, transmission rights
guarantee right holders either a share of the transportation capacity of a specific transmission line
or a claim on a share of the congestion rent collected by the transmission system operator. Thereby,
right holders can secure themselves against uncertain prices at a future stage owing to a congested
transmission system.

A similar practice can be applied to the energy storage system operation. In fact, a storage also
transports energy, but in the time dimension. Similar to the case of nodal pricing, energy prices in
time differ as well. Also similar to the transmission system operation, prices would be equivalent
over time given a sufficiently large storage system. Based on these parallels between transmission
system operation and storage system operation, a range of works proposes physical [27, 37] and
financial storage rights [39, 40]. In this line, this thesis considers, as illustrated in Figure 3.1,
physical and financial storage rights in the context of a local market for energy communities.
Storage rights are traded among community members in a local forward market, i.e., a marketplace
that clears well in advance to real-time. Thereby, a storage owner may recover her investment
cost upfront without being exposed to uncertainty in the operational stage. The forward market
for storage rights is followed by sequentially clearing spot markets for energy, i.e., one real-time
market for each time step of interest. In real-time, physical storage right holders, as depicted
in Figure 3.1a, directly dispatch their awarded share of energy storage systems, and thus yield
through an operational access, an economic access to energy storage. In contrast, under financial
storage rights, as shown in Figure 3.1b, no prosumer has an operational access to any storage
system. The energy storage systems themselves are optimally dispatched in local spot markets
by the community manager, who potentially collects a surplus from the intertemporal energy
arbitrage. This surplus is redistributed post operation among financial storage right holders, who
thereby yield an economic access to energy storage.

In the following, two game-theoretical models are developed: one for physical storage rights and
another for financial storage rights. To account for energy storage over time, the assumption of
a single local spot market, introduced in Section 2.3, is relaxed to multiple sequentially clearing
local spot markets, i.e., one spot market for each hourly time step t of the planning horizon T . In
contrast to Chapter 2, this chapter considers an energy community manager who simultaneously
fulfills the task of the spatial arbitrageur and the price-setter. Storage rights are traded once among
prosumers in the local forward market, but are valid for all uncertainty realizations ω ∈ Ω in all
local spot markets t ∈ T . This causes a coupling of the potential renewable power generation
uncertainty realizations ω ∈ Ω, as opposed to the case in the Nash equilibrium problem (2.1)–(2.3)
in Chapter 2. Therefore, each player solves the deterministic equivalent of a two-stage stochastic
decision-making problem [82]. The first stage determines storage right trades in the local forward
market, while the second stage explicitly accounts for all uncertainty realizations ω ∈ Ω and
potential recourses in local spot markets. This optimizes the objective of each player in expectation,
as noted by EΩ[·].
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Figure 3.1 Access economy through physical and financial storage rights: Figure 3.1a depicts
an access economy through physical storage rights (PSRs). These rights are traded in a local
forward market. In local spot markets, right holders directly dispatch a share of the storage system.
Similarly, as shown in Figure 3.1b, financial storage rights (FSRs) are also traded in a local forward
market. However, in local spot markets, the storage system is operated by the community manger.
The intertemporal energy arbitrage is redistributed post operation among storage right holders.

3.1.1 Trading physical storage rights for operational and economic access

Each prosumer n ∈ N minimizes and maximizes her local forward market physical storage right
cost and revenue, as well as her uncertainty-dependent energy cost in all local spot markets t ∈ T
in expectation. For given physical storage right prices µPSR

s and uncertain spot market energy
prices λ̃tω , she determines her local forward and uncertainty-dependent spot market participation
strategy by solving the following optimization problem:{

Min
xPSR
s∈Φn

,qPSR
ns ,p̃ntω,ẽnstω

−
∑
s∈Φn

µPSR
s xPSR

s +
∑
s∈S

µPSR
s qPSR

ns +
∑
t∈T

EΩ
[
λ̃tωp̃ntω + c(p̃ntω)

]
(3.1a)

s.t. xPSR
s∈Φn ∈ Es∈Φn , q

PSR
ns ∈ Q, ∀s, (3.1b)

p̃ntω + S̃ntω +
∑
s∈S

ẽnstω −Dnt = 0, ∀t, ω, (3.1c)

p̃ntω ∈ Pn, ∀t, ω, (3.1d)

ẽnstω ∈ Es(qPSR
ns ), ∀s, t, ω

}
, ∀n ∈ N . (3.1e)

Each prosumer n maximizes her forward market revenue by selling physical storage rights xPSR
s

according to physical storage right prices µPSR
s (3.1a). The prosumer n is able to sell storage

rights xPSR
s in the case that she owns a storage system s ∈ Φn. The selling decision xPSR

s

is constrained by the maximum storage system capacity Es (3.1b). At the same time, each
prosumer n can buy physical storage rights qPSR

ns from any storage system s ∈ S in the community.
Therefore, the prosumer n also minimizes her forward market cost by buying physical storage
rights qPSR

ns according to physical storage right prices µPSR
s . The buying decision qPSR

ns lies within a
sufficiently large, closed, compact, and convex set Q, such that the buying decision qPSR

ns remains
unconstrained (3.1b). Furthermore, the prosumer n minimizes her expected energy cost over all
uncertainty realizationsω ∈ Ω in all spot markets t ∈ T . In each spot market t, she pays and receives
for her spot market energy trade p̃ntω the uncertain spot market energy price λ̃tω, respectively.
Lastly, the objective function (3.1a) is endowed with a quadratic regularizer c(p̃ntω) = 1

2βp̃
2
ntω
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associated with spot market energy trades p̃ntω . Under each uncertainty realization ω and for each
time step t, the prosumer n has to ensure her individual power balance (3.1c) between her uncertain
renewable power generation S̃ntω , her demand Dnt, and her spot market energy trade p̃ntω . At the
same time, she may have operational access to storage systems and choose the storage system
operation ẽnstω in spot markets. The energy trade p̃ntω lies within a sufficiently large, closed,
compact, and convex set Pn (3.1d). The operational access to storage systems ẽnstω depends on
awarded physical storage rights qPSR

ns in the forward market and the technical characteristic of the
respective storage system s. The constraining set is given by Es(qPSR

ns ) (3.1e).

The energy community manager minimizes and maximizes the local forward market cost and
revenue for physical storage right buyers and sellers, respectively. At the same time, she minimizes
and maximizes the uncertainty-dependent local spot market cost and revenue for energy buyers
and sellers in expectation, respectively. In local spot markets, she additionally fulfills the task of the
spatial arbitrageur and minimizes the expected energy import and export cost. For given forward
market trading decisions xPSR

s and qPSR
ns as well as uncertain spot market trading decisions p̃ntω,

she determines forward market prices for physical storage rights µPSR
s , uncertainty-dependent spot

market energy prices λ̃tω , and uncertainty-dependent energy imports and exports p̃ar
tω as follows:

Min
µPSR
s ,λ̃tω,p̃ar

tω

∑
s∈S

µPSR
s (−xPSR

s +
∑
n∈N

qPSR
ns ) +

∑
t∈T

EΩ
[
Cp̃ar

tω + λ̃tω(
∑
n∈N

p̃ntω − p̃ar
tω)
]

(3.2a)

s.t. µPSR
s ∈M, ∀s, (3.2b)

λ̃tω ∈ L, ∀t, ω, (3.2c)

p̃ar
tω ∈ Par, ∀t, ω. (3.2d)

The community manager reveals forward market prices for physical storage rights µPSR
s , such that

the forward market revenue for storage right sellers xPSR
s is maximized and the forward market cost

for storage right buyers qPSR
ns is minimized (3.2a). These prices µPSR

s lie within a sufficiently large,
closed, compact, and convex setM (3.2b). At the same time, the community manager accounts
for all uncertainty realizations ω ∈ Ω in real-time and reveals spot market energy prices λ̃tω, one
for each time step t ∈ T . These prices minimize and maximize the expected spot market cost
and revenue of energy buyers and sellers, respectively. Spot market energy prices λ̃tω lie within
a sufficiently large, closed, convex, and compact set L (3.2c). Lastly, the community manager
determines for each time step t the spot market energy import and export p̃ar

tω according to the
fixed cost C. At the same time, she receives and pays the spot market energy price λ̃tω , respectively.
Energy import and export decisions p̃ar

tω lie within a closed, convex, and compact set Par (3.2d).

3.1.2 Trading financial storage rights for economic access

Following the concept of financial storage rights, prosumers do not have operational access to
storage systems. However, financial storage rights yield prosumers a claim on a share of the
merchandising surplus from the storage system operation. Each prosumer n ∈ N minimizes
and maximizes her local forward market financial storage right cost and revenue, as well as her
uncertainty-dependent energy cost in all local spot markets t ∈ T in expectation. In addition,
each prosumer accounts for her expected revenue in local spot markets according to her awarded
financial storage rights. For given financial storage right prices µFSR

s , uncertain spot market energy
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prices λ̃tω , and uncertain financial storage right values γ̃FSR
stω [39], she chooses her local forward and

uncertainty-dependent spot market participation strategy as follows:{
Min

xFSR
s∈Φn

,qFSR
ns ,p̃ntω

−
∑
s∈Φn

µFSR
s xFSR

s +
∑
s∈S

µFSR
s qFSR

ns +
∑
t∈T

EΩ
[
λ̃tωp̃ntω + c(p̃ntω)−

∑
s∈S

γ̃FSR
stω q

FSR
ns

]
(3.3a)

s.t. xFSR
s∈Φn ∈ Es∈Φn , q

FSR
ns ∈ Q, ∀s, (3.3b)

p̃ntω + S̃ntω −Dnt = 0, ∀ω, t, (3.3c)

p̃ntω ∈ Pn, ∀ω, t
}
, ∀n ∈ N . (3.3d)

Similar to (3.2a), each prosumer n minimizes her forward market cost and maximizes her forward
market revenue by buying qFSR

ns and selling financial storage rights xFSR
s according to financial

storage right prices µFSR
s (3.3a). Storage right trades are constrained in (3.3b). At the same time,

the prosumer n minimizes her expected energy cost in all spot markets t ∈ T from spot market
energy trades p̃ntω according to uncertain spot market energy prices λ̃tω. Again, the objective
function (3.3a) is endowed with a quadratic regularizer c(p̃ntω) = 1

2βp̃
2
ntω associated with spot

market energy trades p̃ntω. In contrast to (3.2a), the prosumer n additionally accounts for her
expected revenue from her awarded financial storage rights qFSR

ns in the forward market and
uncertain financial storage right values γ̃FSR

stω in spot markets. Under each uncertainty realization ω
and for each time step t, the prosumer n has to ensure her individual power balance (3.3c) without
operational access to any storage system. Again, spot market energy trades p̃ntω lie within a
sufficiently large, closed, compact, and convex set Pn (3.3d).

Similar to the case of physical storage rights, the energy community manager minimizes and
maximizes the cost and revenue for financial storage right buyers and sellers in the local forward.
At the same time, she minimizes and maximizes the uncertainty-dependent local spot market
energy cost and revenue for buyers and sellers in expectation. In addition, she minimizes the
uncertainty-dependent energy import and export cost as well as the uncertainty-dependent
intertemporal energy arbitrage from the storage operation in local spot markets, also in expectation.
For given forward market trading decisions xFSR

s and qFSR
ns , as well as uncertain spot market

trading decisions p̃ntω, the community manager chooses financial storage right prices µFSR
s ,

uncertainty-dependent spot market energy prices λ̃tω , and uncertainty-dependent energy imports
and exports p̃ar

tω . Moreover, she determines the uncertainty-dependent operation ẽstω off all storage
systems within the community. For this purpose, she solves the following optimization problem:

Min
µFSR
s ,λ̃tω,p̃ar

tω,ẽstω

∑
s∈S

µFSR
s (−xFSR

s +
∑
n∈N

qFSR
ns ) +

∑
t∈T

EΩ
[
Cp̃ar

tω + λ̃tω(
∑
n∈N

p̃ntω − p̃ar
tω +

∑
s∈S

ẽstω)
]

(3.4a)

s.t. µFSR
s ∈M, ∀s, (3.4b)

λ̃tω ∈ L, ∀t, ω, (3.4c)

p̃ar
tω ∈ Par, ∀t, ω, (3.4d)

ẽstω ∈ Es : γFSR
stω , ∀s, t, ω. (3.4e)

Similar to (3.2), the community manager determines financial storage right prices µFSR
s and spot

market energy prices λ̃tω, such that in the forward and all spot markets, the cost for buyers is
minimized and the revenue for sellers is maximized (3.4a). She also fulfills the task of the spatial
arbitrageur and identifies spot market energy imports and exports p̃ar

tω according to the fixed cost C
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and spot market energy prices λ̃tω . Financial storage right prices and spot market energy prices lie
within a sufficiently large, closed, compact, and convex setM (3.4b) and L (3.4c), respectively. Spot
market energy imports and exports p̃ar

tω lie within the closed, compact, and convex set Par (3.4d).
In contrast to (3.2), the community manager determines the operation of all storage systems s ∈ S
in sport markets. Therefore, she additionally accounts for the expected intertemporal energy
arbitrage from the operation ẽstω of all storage systems according to spot market energy prices λ̃tω .
The storage system operation ẽstω is constrained by the technical characteristic Es of the respective
storage system s (3.4e). Note that the dual variable γFSR

stω associated with the storage system capacity
constraint in (3.4e) describes the financial storage right value of the storage system s at time step t
under uncertainty realization ω. The sum of all financial storage right values γFSR

stω for one specific
storage system s represents the total intertemporal energy arbitrage realized by its operation in
spot markets under the uncertainty realization ω [39].

Publication [A] provides the proof that for both Nash equilibrium problems, either with physical
or financial storage rights, a unique market-clearing outcome exists. Moreover, this publication
shows the equivalence between the proposed Nash equilibrium problem with physical storage
rights and a single social planner problem. For the Nash equilibrium problem with financial
storage rights, this is not the case. However, Publication [A] proposes two optimization problems
that have to be solved sequentially. This solving approach enables the assessment of the local
market-clearing solution for the Nash equilibrium problem including financial storage rights.

3.2 Cooperative access practices

Another access practice to distributed energy resources, such as energy storage systems, is based
on a cooperative market design [24, 41]. Within a cooperative market design, as illustrated in
Figure 3.2, community members negotiate well in advance to real-time a community cost allocation
rule. Local spot markets, which determined the dispatch of all distributed energy resources in
the presence of a non-cooperative market design, are replaced by a centralized operation through
the energy community manager. Consequently, no prosumer has an operational access to storage
systems. However, post operation, the total community cost, including the benefit of storage
system operation, is redistributed among community members according to the cost allocation
rule agreed upon by prosumers. Thereby, the cost allocation rule in place determines the degree of
economic access individuals have to energy storage.

For the sake of an access economy through a cooperative market design, this section assumes
that all prosumers reveal their true cost, preferences, and information about their distributed
energy resources. Note that the negotiation process regarding the community cost allocation rule
is not within the scope of this thesis and left aside for future research. The coalitional operating
problem solved by the energy community manager determines the community operation for each
uncertainty realization ω ∈ Ω, separately. Therefore, the community manager solves a deterministic
optimization problem structurally identical to the social planner problem (2.8) in Chapter 2.
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Figure 3.2 Access economy through a coalitional community operation: Community members
agree a priori on a cost allocation rule, e.g., the Shapley value or the nucleolus. In real-time, all
distributed energy resources within the community are dispatched by the community manager.
Post operation, the total community cost is redistributed among all community members.

3.2.1 The coalitional operating problem

Given the true cost, preferences, and information by prosumers, the energy community manager
minimizes the total community cost under each uncertainty realization ω ∈ Ω. She determines
the optimal operation of all distributed energy resources by solving the following social planner
problem: {

Min
p̃ntω,p̃ar

tω,ẽstω,

∑
t∈T

(
Cp̃ar

tω +
∑
n∈N

c(p̃ntω)
)

(3.5a)

s.t. p̃ntω + S̃ntω +
∑
s∈Φn

ẽstω −Dnt = 0, ∀n, t, (3.5b)

p̃ntω ∈ Pn, ∀n, t, (3.5c)

ẽstω ∈ Es, ∀s, t, (3.5d)

p̃ar
tω ∈ Par, ∀t, (3.5e)∑
n∈N

p̃ntω − p̃ar
tω = 0, ∀t

}
, ∀ω. (3.5f)

Under each uncertainty realization ω, the energy community manager minimizes over all time
steps t ∈ T the cost from the energy import and export p̃ar

tω according to the fixed cost C (3.5a).
Moreover, she accounts for all quadratic regularizers c(p̃ntω) = 1

2βp̃
2
ntω associated with energy

exchanges among prosumers. The community manager ensures that for each time step t, the
power balance (3.5b) of each prosumer n ∈ N is fulfilled. In addition, she accounts for the
constraining setPn on energy exchanges among prosumers (3.5c), as well as the constraints Es on the
operation ẽstω of each storage system s ∈ S (3.5d). Moreover, she respects the constraining set Par

on energy exchanges p̃ar
tω with the distribution system (3.5e). Lastly, the equality constraint (3.5f)

defines, for each time step t, the balance between the total energy supply and demand inside the
community. The operational point determined by the community manager is unique since the
objective function (3.5a) is strongly convex and all decision variables lie within closed, convex, and
compact sets.



24 CHAPTER 3. TOWARDS AN ACCESS ECONOMY FOR ENERGY COMMUNITIES

3.2.2 On the cost allocation

The total community cost, comprising the cost and revenue from the storage system operation,
is redistributed among prosumers. Simple, but intuitive, cost allocation rules do not necessarily
result in a situation that pleases all prosumers [83]. Therefore, all possible coalitions S ⊆ N , i.e., all
possible combinations of prosumers given by S ∈ 2N , must be considered [12]. Only in this way
can a satisfactory financial burden assigned to each prosumer. However, the exponential growth
of the coalition set S ∈ 2N indicates the computational burden as the community size increases in
terms of community members.

For each coalition S and each uncertainty realization ω ∈ Ω, a cost saving function from cooperating
is given by

vω(S) =
∑
n∈S

Cnω − CSω, ∀ω, (3.6)

in which Cnω is the cost for each prosumer n ∈ S if she operates her distributed energy resources
individually [13]. The symbol CSω refers to the cost for the coalition S if prosumers operate their
distributed energy resources jointly. Based on the cost saving function, a coalitional game is given
by the pair (N , vω(S)). One important characteristic of a coalitional game is super-additivity. This
means that the value of a union of two selected coalitions, i.e., S ∈ 2N and V ∈ 2N with S ∩ V = ∅,
is not less than the sum of their separate values, i.e., vω(S) + vω(V) ≤ vω(S ∪ V) [12, 13]. This
implies that a cooperation among all prosumers, the so-called grand coalition S = N , is most
beneficial.

However, super-additivity implies neither that all players benefit individually, nor that a coop-
eration among all prosumers is stable. Incentives for prosumers may exist to leave the grand
coalition N . Therefore, three important properties have to be considered, namely efficiency, indi-
vidual rationality, and stability [13]. A cost allocation rule is efficient if it redistributes the whole
value of the grand coalitionN , i.e.,

∑
n∈N xnω = vω(N ), in which xnω is the value assigned to each

prosumer n ∈ N . Individual rationality is given if each prosumer benefits from the grand coalition
at least as much as she would gain individually, i.e., xnω ≥ vω(n). Lastly, a coalition is stable if the
cost allocation lies within the core C∗ω [12], given by

C∗ω =
{
{xnω}∀n∈N

∣∣ ∑
n∈N

xnω = vω(N ); vω(S)−
∑
n∈S

xnω ≥ 0,∀n ∈ N
}
, ∀ω. (3.7)

The equality constraint ensures an efficient cost allocation, while the inequality constraint guarantees
the stability of the grand coalition.

In Publication [A], two cost allocation rules that enable an access economy for energy storage are
considered more in detail, namely the Shapley value [84] and the nucleolus [43]. The Shapley value
describes the average marginal contribution of each prosumer to the total community cost [10, 42, 83].
However, since the Shapley value does not guarantee a stable coalition comprising all community
members, Publication [A] studies the nucleolus [12] as well. The nucleolus proposes a cost
allocation that minimizes the dissatisfaction of each individual community member, and thereby
guarantees a stable energy community.
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Figure 3.3 Expected cost and its volatility in the presence of an access economy: Numbers within
color bars refer to the expected cost in e. Numbers next to lines show the standard deviation as a
percentage of the expected cost. Note that spot refers to the benchmark case of sequentially clearing
spot markets without an access economy for energy storage systems. This figure is adapted from
Publication [A].

3.3 Assessing the potential of an access economy

To shed light on the proposed local market design alternatives, Publication [A] considers, among
other numerical analyses, the expected cost and its volatility for four representative prosumers as
well as for the community as a whole. A non-cooperative local market design without an access
economy for energy storage serves as a benchmark for evaluation. The first prosumer owns a
pohotovoltaic system, but has no storage system. The second prosumer owns a storage system,
but has no renewable power generation. The third prosumer is a pure consumer owning neither
a photvoltaic, nor a storage system. Lastly, the fourth prosumer owns both a photvoltaic and a
storage system.

Figure 3.3 shows the expected cost and its standard deviation for each prosumer and for the
community as a whole under the non-cooperative as well as the cooperative market design
alternatives. An important observation in Figure 3.3 is that under the three non-cooperative
market design alternatives, with or without storage rights, the expected cost of each prosumer
remains unchanged. Under the two cooperative market design alternatives, the expected cost of
each prosumer slightly changes, and thus depends on the technologies owned by the respective
prosumer.

The cost distribution each prosumer yields over uncertainty realizations ω ∈ Ω strongly depends
on the local market design in place. This cost volatility decreases for the majority of prosumers in
the presence of an access economy for energy storage. In particular, the first prosumer reduces
her cost volatility through storage rights, and thereby more efficiently utilizes her uncertain
photovoltaic power generation. However, the renewable power generation yields no advantage
in the cooperative market design alternatives. Renewable power generation is rewarded only
by a slight reduction in the cost volatility, while the expected revenue decreases as well. The
second prosumer remarkably reduces her cost volatility by selling storage rights, and thereby
being less exposed to uncertain local spot market-clearing prices. In the cooperative market
design alternatives, the energy storage system provides a great contribution that is rewarded by a
reduction in the expected energy cost as well as a significant decrease in the cost volatility. The
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third prosumer also reduces her cost volatility through storage rights, and thereby compensates
uncertain local spot market energy prices. However, in the cooperative market design alternatives
she yields higher expected cost, but a decrease in her energy cost volatility. Lastly, the fourth
prosumer, who owns a photovoltaic and a storage system, yields an increased revenue volatility
by selling storage rights since she cannot fully utilize her storage system to compensate her own
uncertain power generation. In the cooperative market design alternatives, the renewable power
generation and the potential of energy storage are rewarded by an increase in the expected revenue,
although the revenue volatility increases as well.

Even though individual costs change in terms of the expected value and its standard deviation, the
expected total community cost and its volatility remain unchanged for all proposed local market
design alternatives. This implies that the proposed local market design alternatives do not affect
the operational strategy of the community as a whole. However, they distinguish in the cost
allocation among prosumers, i.e., who pays whom which amount of money.

To this end, Publication [A] provides additional insights into an energy community with 16 pro-
sumers. The computational time necessary for solving the proposed local market design alternatives
highlights the limitation of cooperative market design options as the community size increases
in terms of prosumers. From a policy perspective, Publication [A] provides a comprehensive
discussion on the benefits and drawbacks of each local market design. Publication [A] concludes
that the preferred choice from the perspective of prosumers for an access economy either via
storage rights or a coalitional operation depends on three aspects: the technologies each prosumer
owns, the individual preference towards cost volatility, and the market design properties, which
are of utmost attraction to community members.



Chapter 4

On Risk and Ambiguity Preferences of
Energy Community Members

A key insight from the research on an access economy for distributed energy resources in Chapter 3
was that the preferred choice for a local market design highly depends on the individual preferences
of community members. In particular, the volatility that prosumers are willing to accept in their
energy cost. Therefore, this chapter addresses risk and ambiguity preferences of individual local
market participants. Section 4.1 incorporates the risk aversion against costly uncertainty realizations
into the decision-making problem of prosumers and proposes risk trading among community
members to neutralize heterogeneous risk aversion. Section 4.2 relaxes the assumption of an exactly
known probability distribution function and incorporates ambiguity aversion against the probabilistic
forecast into the decision-making problem of local market participants. For this purpose, Section 4.2
considers the uncertain renewable power generation to follow continuous probability distribution
function, as opposed to finite and discrete uncertainty realizations considered previously. Lastly,
Section 4.3 provides the most representative numerical results of Publication [B] and Publication [C].

4.1 Incorporating risk aversion into decision-making problems

Decision making solely in expectation of a given probability distribution function does not pay
special attention to extreme events. However, a player may be concerned about costly uncertainty
realizations at a future stage, even though they are unlikely. This preference is referred to as
risk aversion. As shown in Figure 4.1, a risk-averse player observes a probability distribution
function and explicitly assigns a higher value to the probability of a costly uncertainty realization
and a lower weight to an advantageous uncertainty realization [45, 49]. Thereby, she derives a
risk-adjusted probability distribution function describing the uncertain event. Based on this function,
she chooses a market participation strategy in risk-averse expectation. Thereby, a risk-averse
player reduces her cost volatility, but simultaneously increases her expected cost compared to a
risk-neutral decision making. Note that in practice local market participants are heterogeneously
risk-averse. This means that players have an individual risk-averse expectation of their energy
cost, even though their cost may be equivalent given a risk-neutral expectation.

27
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Figure 4.1 Risk-averse decision making: A risk-averse player assigns a higher weight to costly
events, and thereby considers a risk-adjusted probability distribution function in her decision-
making problem. In practice, local market participants are heterogeneously risk-averse. Conse-
quently, the players n1, n2 to N have an individual risk-averse expectation of their energy cost,
even though their cost may be equivalent given a risk-neutral expectation.

4.1.1 A coherent risk measure function and risk trading

To assess the impact of heterogeneous risk aversion in energy communities, this thesis incorporates
a coherent risk-measure function ρ(·) into the decision-making problem of prosumers [47, 48]. In
detail, this thesis applies the dual representation of the conditional value-at-risk [58] given by

ρ(Zω) = max
πρω

∑
ω∈Ω

πρωZω (4.1a)

s.t.
∑
ω∈Ω

πρω = 1, (4.1b)

0 ≤ πρω ≤
1
α
πΘ
ω , ∀ω. (4.1c)

The dual representation of a coherent risk-measure function ρ(·) states a constrained optimiza-
tion problem. For the conditional value-at-risk, the objective function (4.1a) maximizes an
uncertainty-dependent cost Zω through the choice of risk-adjusted probabilities πρω [45]. The
equality constraint (4.1b) ensures that the sum of all risk-adjusted probabilities is equal to one.
The lower bound of the inequality constraint (4.1c) ensures the non-negativity of risk-adjusted
probabilities πρω. The upper bound of (4.1c) allows an increased weight of uncertainty realiza-
tions ω ∈ Ω according to physical probabilities πΘ

ω , i.e., the real world observations [46], and the
parameter α ∈ (0, 1]. This parameter indicates the percentile of the conditional value-at-risk, and
thereby the risk aversion of the respective player.

Under the assumption of homogeneous risk aversion [85], all market participants have identical
risk attitudes. However, this assumption would lead to an overestimation of the local market
potential since participants are in practice heterogeneously risk-averse. Owing to their interaction
on a local energy market, the risk-averse decision making of one prosumer causes not only the
own expected energy cost to increase, but also affects the cost of her competitors. However,
some prosumers may be willing to accept a greater cost volatility, while enjoying a lower energy
cost in expectation. One possibility to neutralize heterogeneous risk aversion, and thereby to
prevent the unintended externality of highly risk-averse decision making on prosumers with a low
risk aversion, is risk trading. Risk trading describes the exchange of a financial product, e.g., an
Arrow-Debreu security, to transfer the cost under a specific uncertainty realization from a highly
risk-averse player to a player with a low risk aversion [52]. For each uncertainty realization ω ∈ Ω,
an Arrow-Debreu security is an unconstrained contract between a security seller and a security
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buyer. In a forward market, i.e., a marketplace that clears well in advance to real-time, the seller
receives a market-driven price, the so-called risk price µAD

ω . In return, the buyer receives a payment
of 1 in real-time given the specific uncertainty realization ω.

The following section proposes a risk-averse Nash equilibrium problem with risk trading. In
this game, prosumers and a spatial arbitrageur trade energy in a local forward market which
determines a tentative energy production and consumption schedule. In addition, Arrow-Debreu
securities are available for risk trading. The local forward market is followed by a single local
spot market in which the tentative schedule is adjusted according to the respective uncertainty
realization of the renewable power generation. Furthermore, local market participants yield a
revenue or a cost according to their awarded Arrow-Debreu securities. The assumptions stated
in Section 2.3 are relaxed in the sense that prosumers and the spatial arbitrageur are potentially
risk-averse. Depending on the availability of Arrow-Debreu securities, the local market may be
either fully or partially incomplete for risk, or complete for risk. This means that Arrow-Debreu
securities are either available for none, for a subset, or for all uncertainty realizations ω ∈ Ω. Similar
to the decision-making problems (3.1)–(3.4) in Chapter 3, the uncertainty realizations ω ∈ Ω of
the renewable power generation are coupled owing to the local forward market trading decision
for energy and Arrow-Debreu securities. Therefore, each local market participant solves the
deterministic counterpart of a two-stage stochastic optimization problem [82]. The first stage
associates with energy and Arrow-Debreu security trades in the local forward market. The second
stage explicitly accounts in potentially risk-averse expectation for each uncertainty realization and
respective recourses of players in the local spot market.

4.1.2 Heterogeneous risk aversion: Risk trading among community members

Each risk-averse prosumer n ∈ N minimizes her local forward and her uncertainty-dependent
local spot market energy cost in risk-averse expectation. At the same time, she accounts for her local
forward market cost and revenue from Arrow-Debreu security trades, as well as the revenue and
cost from awarded and sold Arrow-Debreu securities under each uncertainty realization ω ∈ Ω in
the local spot market. For a given forward market energy price λ, forward market risk prices µAD

ω ,
and an uncertain spot market energy price λ̃ω , she chooses her forward and uncertainty-dependent
spot market participation strategy by solving the following optimization problem:{

Min
pn,anω,p̃nω

λpn + c(pn) +
∑
ω∈Ω

µAD
ω anω + ρn

(
λ̃ωp̃nω + c(p̃nω)− anω

)
(4.2a)

s.t. pn + p̃nω + S̃nω −Dn = 0, ∀ω, (4.2b)

{pn, p̃nω} ∈ Pn, ∀ω
}
, ∀n ∈ N . (4.2c)

Each prosumer n minimizes her energy cost from the forward market energy trade pn according
to the forward market energy price λ (4.2a). In addition, she accounts for a quadratic regu-
larizer c(pn) = 1

2βp
2
n associated with the forward market energy trade pn. Furthermore, the

prosumer n incurs a forward market cost or earns a forward market revenue associated with her
Arrow-Debreu security trades anω according to forward market risk prices µAD

ω . A positive value
for anω implies that prosumer n buys securities for the uncertainty realization ω, while a negative
value for anω indicates that prosumer n sells securities. The uncertainty-dependent spot market
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cost is endowed with the coherent risk measure function ρn(·). The spot market cost consists
of the spot market energy trade p̃nω according to the uncertain spot market energy price λ̃ω, a
quadratic regularizer c(p̃nω) = 1

2βp̃
2
nω associated with the spot market energy trade p̃nω, and a

cost or revenue from Arrow-Debreu securities anω awarded in the forward market. Under each
uncertainty realizationω, the prosumer n has to ensure her individual power balance (4.2b) between
the forward market energy trade pn, the uncertainty-dependent spot market energy trade p̃nω,
her demand Dn, and the uncertain renewable power generation S̃nω. Both the forward pn and
the spot market trading decision p̃nω lie within a sufficiently large, closed, compact, and convex
set Pn (4.2c).

The risk-averse spatial arbitrageur also participates in risk trading. She minimizes her local forward
and uncertainty-dependent local spot market cost from energy import and export in risk-averse
expectation. In addition, she accounts for her forward market cost and revenue from Arrow-Debreu
security trades as well as the revenue and cost from awarded Arrow-Debreu securities under each
uncertainty realization ω in the local spot market. For a given forward market energy price λ,
forward market risk prices µAD

ω , and an uncertain spot market energy price λ̃ω, she chooses her
forward and uncertainty-dependent spot market participation strategy as follows:

Min
par,bω,p̃ar

ω

(C − λ)par +
∑
ω∈Ω

µAD
ω bω + ρar

(
(C ′ − λ̃ω)p̃ar

ω − bω
)

(4.3a)

s.t. {par, p̃ar
ω } ∈ Par, ∀ω. (4.3b)

The spatial arbitrageur minimizes her energy cost in the forward market from the energy import
and export par according to the fixed cost C (4.3a). She receives and pays for the forward market
energy import and export the forward market energy price λ, respectively. Furthermore, the
spatial arbitrageur incurs a forward market cost or earns a forward market revenue associated
with Arrow-Debreu security trades bω according to forward market risk prices µAD

ω . A positive
value for bω indicates a demand, while a negative value for bω states a supply of securities.
Similar to risk-averse prosumers, the uncertainty-dependent spot market cost is endowed with the
risk-measure function ρar(·). The spot market cost consists of the spot market energy import and
export p̃ar

ω according to the fixed cost C ′ and the uncertain spot market energy price λ̃ω , and a cost
or revenue from Arrow-Debreu securities bω awarded in the forward market. The forward par and
the spot market trading decision p̃ar

ω lie within the closed, compact, and convex set Par (4.3b).

Lastly, the price-setter minimizes and maximizes the forward market cost and revenue for energy
and Arrow-Debreu security buyers and sellers, respectively. In addition, she also minimizes and
maximizes the uncertainty-dependent spot market cost and revenue for energy buyers and sellers
in risk-averse expectation. For given forward market pn, par, anω, and bω, as well as uncertain
spot market trading decisions p̃nω and p̃ar

ω , she reveals a forward market energy price λ, forward
market risk prices µAD

ω , and an uncertainty-dependent spot market energy price λ̃ω by solving the
following optimization problem:

Min
λ,µAD

ω ,λ̃ω

λ(
∑
n∈N

pn − par) +
∑
ω∈Ω

µAD
ω (

∑
n∈N

anω + bω) + ρ∩
(
λ̃ω(

∑
n∈N

p̃nω − p̃ar
ω )
)

(4.4a)

s.t. µAD
ω ∈ A, ∀ω, (4.4b)

{λ, λ̃ω} ∈ L, ∀ω. (4.4c)
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The price-setter chooses a forward market energy price λ, forward market risk prices µAD
ω , and an

uncertainty-dependent spot market energy price λ̃ω , such that the cost for buyers is minimized and
the revenue for sellers is maximized (4.4a). Furthermore, the price-setter applies a coherent risk
measure function ρ∩(·) to the uncertainty-dependent spot market cost and revenue. However, the
“risk aversion” of the price-setter results from the lowest common risk aversion of all community
members [49]. Forward market risk prices µAD

ω lie within a sufficiently large, closed, compact,
and convex set A (4.4b). Similarly, the forward λ and uncertainty-dependent spot market energy
price λ̃ω lie within a sufficiently large, closed, compact, and convex set L (4.4c). Thereby, prices
remain unconstrained.

The risk-averse Nash equilibrium problem (4.2)–(4.4) provides a generalized formulation of a local
energy market comprising a forward and a spot market. Depending on the parameterization of the
risk-averse Nash equilibrium problem, it is able to describe several setups including risk-neutral
as well as homogeneous or heterogeneous risk-averse local market participants. Moreover, the
risk-averse Nash equilibrium problem may range from a fully incomplete to a complete local
market for risk. This depends on the availability of a Arrow-Debreu security for each uncertainty
realization ω ∈ Ω. Publication [B] shows that for any setup, a local market-clearing solution exists.
However, the solution is not necessarily unique. Lastly, Publication [B] discusses the equivalence of
the risk-averse Nash equilibrium problem with risk trading to a risk-averse social planner problem.
For heterogeneous risk aversion, this can be confirmed only given a complete market for risk.

4.2 Incorporating ambiguity aversion into decision-making problems

Risk trading via Arrow-Debreu securities depends on the exact knowledge of the probability distri-
bution function. Only in that way can a security be defined for each uncertainty realization ω ∈ Ω.
So far, it was assumed that the true probability distribution function is exactly known and publicly
available for all local market participants. However, this is unlikely the case in practice. This leaves
the local market incomplete for risk and additionally induces ambiguity aversion by individuals
against the probabilistic forecast [53, 54]. As illustrated in Figure 4.2, an ambiguity-averse player
estimates, e.g., based on empirical data, a probability distribution function describing an uncertain
event. Depending on her confidence in her data, she builds a family of potential probability
distribution functions, the so-called ambiguity set, around the estimated one. Given the ambiguity
set, she chooses her market participation strategy in ambiguity-averse expectation, i.e., based
on the worst-case probability distribution function from her ambiguity set [55, 57]. Thereby, an
ambiguity-averse player secures herself against incomplete information about an uncertain event,
but simultaneously increases her expected cost in comparison to ambiguity-neutral expectation.
Similar to the case of risk aversion, local market participants are heterogeneously ambiguity-averse.
This means that players have an individual ambiguity-averse expectation of their energy cost, even
though their cost may be equivalent in ambiguity-neutral expectation. Also similar to the case of
heterogeneous risk aversion, an ambiguity-averse decision making by one player not only increases
her own expected energy cost, but also affects the energy cost of her competitors. However, a
suitable market product that completes the market for ambiguity, and thereby neutralizes the
externality from highly ambiguity-averse decision making on players with a low ambiguity
aversion, is not in the scope of this thesis and left aside for future research.
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Figure 4.2 Ambiguity-averse decision making: An ambiguity-averse player estimates a probability
distribution function describing an uncertain event. Depending on her confidence in the underlying
empirical data, she considers an ambiguity set and chooses her market participation strategy in
ambiguity-averse expectation. In practice local market participants are heterogeneously ambiguity-
averse. Consequently, the local market participantsn1,n2 toN have an individual ambiguity-averse
expectation of their energy cost, even though their cost may be equivalent in ambiguity-neutral
expectation.

4.2.1 Distributionally robust optimization with a Wasserstein ambiguity set

This thesis incorporates ambiguity aversion into the decision-making problem of local market
participants through a distributionally robust optimization problem [56] given by

Min
z

max
F∈D

EF [g(z, ξ)], (4.5)

in which g(z, ξ) denotes an uncertainty-dependent cost function. An ambiguity-averse player
makes a decision z in expectation EF [·] of her uncertainty-dependent cost g(z, ξ). At the same
time, she considers the uncertain parameter ξ, e.g., the renewable power generation, to follow the
worst-case probability distribution function F from her ambiguity set D. This thesis considers
an endogenously built ambiguity set via a Wasserstein probability distance metric [57]. In detail,
the ambiguity set D comprises all probability distribution functions F in the neighborhood of an
empirical probability distribution function F̂i, in which i ∈ I denotes the set of empirical data.
The distance between a probability distribution function F and the empirical one F̂i is given by a
Wasserstein distance ∆(·) as

∆(F, F̂i) = min
Π

∫ (∑
i∈I
|ξ − ξ̂i|p

) 1
pΠ(dξ, dξ̂i), (4.6a)

in which Π is a joint probability distribution function describing both the uncertain parameter ξ
and the empirical data ξ̂i. The symbol p denotes an arbitrary norm on the difference between the
uncertain parameter ξ and the empirical data ξ̂i. The marginals of the joint probability distribution
function are given by F and F̂i. Thereby, a Wasserstein ambiguity set [57] is defined as

D =
{
F ∈M(Ξ) : ∆(F , F̂i) ≤ ρ

}
. (4.6b)

The space of all probability distribution functionsM is constrained by a support. The support
is defined as Ξ = {ξ ∈ R : H ≤ ξ ≤ H}, in which the lower H and upper bound H constrain the
uncertain parameter ξ. Thereby, the worst-case probability distribution function takes realistic
values, e.g., the minimum and maximum power generation of a renewable energy source. The
non-negative parameter ρ constrains the distance between the probability distribution functions
inside the ambiguity set and the empirical probability distribution function F̂i. Therefore, ρ can be
interpreted as the confidence in the available set of empirical data.
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Based on these concepts, the next section proposes an ambiguity-averse Nash equilibrium problem.
In this game, prosumers and the spatial arbitrageur trade energy in a single local spot market. In
contrast to previous Nash equilibrium problems, the renewable power generation is considered
to be a separate local market participant and the only source of uncertainty. Moreover, this
section explicitly accounts for the utility of prosumers from energy consumption. The assumptions
stated in Section 2.3 are relaxed in the sense that prosumers and the spatial arbitrageur may be
heterogeneously ambiguity-averse. As a result, the local market may be incomplete for ambiguity.
For the sake of complete Wasserstein ambiguity sets, i.e., ambiguity sets comprising all potential
probability distribution functions in the neighborhood of an empirical one, this section assumes that
the renewable power generation S̃(ξ) depends on an uncertain event ξ. The uncertain event ξ, e.g,
the solar radiation, follows a continuous probability distribution function, as opposed to the case
of finite and discrete uncertainty realizations ω ∈ Ω in the previous Nash equilibrium problems.
Each ambiguity-averse market participant solves a distributionally robust optimization problem to
determine her local spot market utility at a future stage in ambiguity-averse expectation. Note that
for the sake of coherency with previous chapters, the following ambiguity-averse Nash equilibrium
problem is slightly changed from the formulation used in Publication [C].

4.2.2 Heterogeneous ambiguity aversion: Energy trading under continuous

probability distribution functions

The renewable power generation S̃(ξ), depending on the uncertain event ξ, has no trading decision
and receives under any uncertainty realization of ξ the uncertain local spot market energy price λ̃(ξ)
according to

λ̃(ξ)S̃(ξ). (4.7)

Each prosumer n ∈ N maximizes her uncertainty-dependent local spot market utility from energy
consumption in ambiguity-averse expectation. For a given uncertain local spot market energy
price λ̃(ξ), each prosumer n determines her uncertainty-dependent spot market participation
strategy by solving the following optimization problem:{

Min
p̃n(ξ)

max
Fn∈Dn

EFn
[
(λ̃(ξ)− Un)p̃n(ξ) + c(p̃n(ξ))

]
(4.8a)

s.t. p̃n(ξ) ∈ Pn
}
, ∀n ∈ N . (4.8b)

Each prosumer n minimizes her uncertainty-dependent negative spot market utility in ambiguity-
averse expectation (4.8a). The spot market utility consists of the spot market energy trade p̃n(ξ)
according to the uncertain spot market energy price λ̃(ξ). This yields the prosumer n the utility Un.
In addition, the spot market utility consists of a quadratic regularizer c(p̃n(ξ)) = 1

2βp̃n(ξ)2

associated with the spot market energy trade p̃n(ξ). At the same time, each prosumer n expects
the uncertain parameter ξ to follow the worst-case probability distribution function Fn from her
ambiguity set Dn. Lastly, the spot market energy trade p̃n(ξ) lies within the closed, compact, and
convex set Pn (4.8b).

The spatial arbitrageur minimizes her uncertainty-dependent local spot market cost from energy
import and export in ambiguity-averse expectation. For a given uncertain local spot market energy
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price λ̃(ξ), the spatial arbitrageur chooses her uncertainty-dependent spot market participation
strategy as follows:

Min
p̃ar(ξ)

max
F ar∈Dar

EF ar
[
(C − λ̃(ξ))p̃ar(ξ)

]
(4.9a)

s.t. p̃ar(ξ) ∈ Par. (4.9b)

The spatial arbitrageur minimizes her uncertainty-dependent spot market cost by importing and
exporting energy p̃ar(ξ) according to the fixed costC (4.9a). She receives and pays the uncertain spot
market energy price λ̃(ξ), respectively. The spatial arbitrageur expects the uncertain parameter ξ
to follow the worst-case probability distribution function F ar from her ambiguity set Dar. Her spot
market energy trade p̃ar(ξ) lies within a closed, compact, and convex set Par (4.9b).

Lastly, the price-setter minimizes and maximizes the uncertainty-dependent spot market cost
and revenue for energy buyers and sellers, respectively. For given uncertain spot market energy
trades p̃n(ξ) and p̃ar(ξ), the price-setter determines the uncertainty-dependent spot market energy
price λ̃(ξ) by solving the following optimization problem:

Min
λ̃(ξ)

λ̃(ξ)
( ∑
n∈N

p̃n(ξ)− p̃ar(ξ)− S̃(ξ)
)
. (4.10a)

λ̃(ξ) ∈ Λ. (4.10b)

Under each uncertainty realization of ξ, the price-setter chooses an uncertainty-dependent spot
market energy price λ̃(ξ), such that the cost for energy buyers is minimized and the revenue for
energy sellers is maximized (4.10a). The uncertainty-dependent spot market energy price λ̃(ξ) lies
within a closed, compact, and convex set Λ (4.10b).

The ambiguity-averse Nash equilibrium problem (4.7)–(4.10) provides a generalized problem
formulation. Depending on the characteristics of the Wasserstein ambiguity sets, players may
be ambiguity-neutral, homogeneously ambiguity-averse, or heterogeneously ambiguity-averse.
Heterogeneous ambiguity aversion may arise owing to an individual confidence in empirical data
or even asymmetric uncertainty information. The proposed ambiguity-averse Nash equilibrium
problem is intractable owing to variables depending on the continuous uncertainty realization
of ξ. This leads to an infinite-dimensional problem structure. Therefore, Publication [C] applies
linear decision rules [63, 86] to approximate the stochastic variables. Chance constraints are used
as an operator to translate infinite dimensional constraints into a single dimension [62]. These
reformulations result in a tractable distributionally robust game. Publication [C] interprets this
game as a local market design in which energy is traded in a local forward market. At the same time,
the forward market determines a market-driven contribution plan for all community members
to jointly compensate any community imbalances owing to the uncertainty realization of ξ in
real-time. Publication [C] proves that, for the tractable game, a unique market-clearing solution
exists. Moreover, Publication [C] shows the equivalence of the tractable distributionally robust
game with Wasserstein ambiguity sets to a social planner problem, although players may possess
asymmetric uncertainty information [64].
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Figure 4.3 Towards a complete market for risk: The cost distribution for market participants and
for the community as a whole depends on the market completeness for risk. Colored squares
indicate cost from the perspective of each community member in risk-averse expectation. The cost
distribution over uncertainty realizations is given by boxes, horizontal lines, and circles. Boxes
show the cost between the second and the third quartile. Horizontal lines indicate the 5th and 95th
quantile. Circles highlight outliers beyond the 5th and the 95th quantiles. This figure is adapted
from Publication [B].

4.3 The impact of individual risk and ambiguity preferences on competitors

To assess the impact of heterogeneous risk and ambiguity aversion, this section provides the most
representative numerical results of Publication [B] and Publication [C]. In particular, Publication [B]
numerically assesses heterogeneous risk aversion in energy communities. To this end, three risk-
averse setups are considered, namely a fully incomplete, a partially incomplete, and a complete
local market for risk. A risk-neutral setup serves as the benchmark for comparison. The energy
community is comprised of three prosumers. The first prosumer has a constant demand, owns
a photovoltaic system, and is moderately risk-averse. The second prosumer solely owns a
photovoltaic system, while being highly risk-averse. The third prosumer solely has a constant
demand and a low risk aversion. Lastly, the spatial arbitrageur is the least risk-averse local market
participant.

The potential of risk trading is illustrated in Figure 4.3. Moving from a fully incomplete market to
a complete market for risk, the cost distribution over uncertainty realizations ω ∈ Ω for prosumers
decreases. Given a complete market for risk, prosumers fully erase their cost volatility. However,
the spatial arbitrageur, who is the least risk-averse local market participant in this example, absorbs
the cost volatility of prosumers. Her cost volatility increases, although it remains unchanged
in expectation. Looking at the total community cost, it can be observed that moving from a
fully incomplete market to a complete market for risk reduces the expected community cost.
Furthermore, owing to risk trading, the expected community cost from the perspective of each
player converges towards a common expectation. However, the community cost volatility increases
as the local market becomes complete for risk.

This finding emphasizes that risk-trading complements energy communities in the case that
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Figure 4.4 The impact of ambiguity aversion on competitors: The expected disutility, i.e., the
negative utility, of each prosumer depends not only on her own ambiguity aversion (amb. aver.),
but also on the ambiguity aversion of her competitor. Given highly ambiguity-averse decision
making by both prosumers, the prosumer with a low consumption utility does not yield any
utility. In contrast, the prosumer with a high consumption utility still enjoys a utility from energy
consumption. This implies that a prosumer with a comparatively low consumption utility is highly
exposed to the ambiguity aversion her competitors. This figure is adapted from Publication [C].

community members are heterogeneously risk-averse. However, risk-trading highly depends on
the availability of financial products to be traded. Therefore, Publication [B] provides additional
insights into Arrow-Debreu security trades and how the market completeness for risk affects
the market participation strategy of individuals. This work shows that risk trading efficiently
protects community members with a low risk aversion from conservative decisions made by highly
risk-averse prosumers.

Given incomplete information on the probability distribution function of an uncertain event,
Publication [C] assesses the impact of an heterogeneous ambiguity aversion on competitors based
on an illustrative example comprised of two prosumers only. The first prosumer has a low utility
from energy consumption, while the second prosumer yields a comparatively higher utility from
consumption.

Figure 4.4 shows the expected disutility, i.e., the negative utility, of both prosumers depending
on their respective ambiguity aversion. As the ambiguity aversion of each prosumer increases,
their expected disutility increases as well. However, the expected disutility of one prosumer also
depends on the ambiguity aversion of her competitor. In particular, the disutility reduction for
the prosumer with a low consumption utility significantly depends on the ambiguity aversion
of the prosumer with a high consumption utility. In the case that both prosumers are highly
ambiguity-averse, the prosumer with a low consumption utility yields a utility of zero. In contrast,
the prosumer with high consumption utility is significantly less exposed to the ambiguity aversion
of the rival prosumer. Even in the case that both prosumers are highly ambiguity-averse, she still
yields a utility. This implies that a local market participant with a low consumption utility is highly
exposed to the rival ambiguity aversion.



Chapter 5

Conclusion

This thesis addressed the challenges of coordinating the distributed energy production and
consumption activities in a fully liberalized and market-oriented manner. To this end, a novel
regulatory framework of spatially close located prosumers, the so-called energy communities,
were considered. Energy communities enable prosumers to directly engage in energy trading with
their neighbors via local energy markets. However, community members are directly exposed
to the uncertainty inherent to the stochastic power generation by renewable energy sources, and
thus to uncertain local market-clearing prices for energy. Therefore, this thesis explicitly addressed
local market design options accommodating uncertainty as well as individual attitudes towards
uncertainty. First, this thesis developed non-cooperative and cooperative game-theoretical models
that enable an access economy for distributed energy resources in energy communities based
on the example of energy storage system. This allows the flexibility utilization of an storage
system in the interest of multiple community members. Second, this thesis incorporated risk
and ambiguity aversion into the decision-making problem of prosumers. In addition, this thesis
proposed the exchange of financial products to neutralize heterogeneous risk aversion, and thereby
the unintended consequences of highly risk-averse decision making on prosumers with a low risk
aversion. Based on these game-theoretical models, the proposed local market design alternatives
were analyzed in terms of the market efficiency, the expected cost and its volatility for prosumers
and the community as a whole, as well as the computational time needed to numerically solve the
local market-clearing problems. This chapter summarizes in Section 5.1 the main contributions
and findings. Based on these insights, Section 5.2 concludes with future research directions.

5.1 Summary

To enable an access economy for energy storage systems, this thesis proposed local market design
alternatives based on non-cooperative and cooperative game-theoretical frameworks. For the
given framework, it has been proven that for each non-cooperative market design, a unique
market-clearing solution exists. Moreover, this thesis proposed an efficient solving approach
for each Nash equilibrium problem based on its equivalence to a social planner problem. The
key insight from this research is that an access economy for energy storage systems enhances
energy communities by reducing the cost volatility for the majority of prosumers. It was shown
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that the total community cost is independent of the local market design. In contrast, the cost
volatility observed by each prosumer significantly depends on the local market design in place.
This implies that the proposed market design alternatives do not affect the operational strategy of
the community as a whole, but distinguish in the cost allocation among community members, i.e.,
who pays whom which amount of money. Consequently, the market design choice depends on
the preferences of community members. In particular, it depends on both the technologies each
prosumer owns as well as the magnitude of the energy cost volatility that a prosumer is willing
to accept. It also depends on the market design properties, which are of utmost attraction to
community members. Lastly, from a computational perspective, the size of an energy community
is a key factor in determining a suitable and tractable market design. From a policy perspective, all
proposed market mechanisms ensure that identical prosumers incur the same cost. This implies
that none of the local market design alternatives discriminate any market participant.

Given the importance of the cost volatility that prosumers are willing to accept, this thesis
incorporated individual attitudes towards uncertainty into the decision-making problem of local
market participants. The concepts of interest were risk and ambiguity aversion. Focusing on
risk aversion, this thesis applied the conditional value-at-risk as the risk measure function to
each individual community member. In addition, Arrow-Debreu securities were proposed as
financial products to be traded among local market participants. Based on these concepts, this
thesis proposed a generalized game-theoretical formulation of a local energy market in which
the risk aversion of local market participants can be freely chosen. Moreover, the local energy
market itself may be fully or partially incomplete, or complete for risk. It was shown that a local
market-clearing solution exists for any degree of market completeness for risk. However, the
solution is not necessarily unique in any of these cases. Lastly, this thesis discussed the equivalence
of the risk-averse Nash game with risk trading to a social planner problem. Under heterogeneous
risk aversion, this can be confirmed only given a complete market for risk.

The concept of complete risk trading via Arrow-Debreu securities necessitates that the probability
distribution function of an uncertain event is exactly known. Only in that way can a security be
defined for each uncertainty realization. However, this knowledge availability is unlikely in practice,
which leaves the local market incomplete for risk and simultaneously induces ambiguity aversion
against the probabilistic forecast. Therefore, this thesis addressed the notion of heterogeneously
ambiguity-averse local market participants. Ambiguity aversion was incorporated into the decision-
making problem of each prosumer through the concept of distributionally robust optimization
and Wasserstein ambiguity sets. For the purpose of complete Wasserstein ambiguity sets, the
assumption of finite and discrete uncertainty realizations, applied previously in this thesis, was
relaxed to a continuous probability distribution function describing an uncertain event. This thesis
proposed a generalized and tractable formulation of a distributionally robust game. Furthermore,
it has been proven that for this game an equivalent social planner problem exists with a unique
solution. This implies the existence of a unique local market-clearing outcome.

This thesis emphasized, based on numerical results, that risk trading complements energy
communities when prosumers are heterogeneously risk-averse. More specifically, risk trading
protects prosumers with a low risk aversion from conservative decisions made by highly risk-averse
local market participants. Given that sufficient Arrow-Debreu securities are available for trading,
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a significant community cost saving can be realized. Eventually, all community members benefit
individually from risk-trading. However, this thesis also discussed that, in the case of incomplete
information on the probability distribution function of an uncertain event, local market participants
may be ambiguity averse. Numerical results showed that a prosumer with a comparatively low
energy consumption utility is highly exposed to the ambiguity aversion of her competitors.

5.2 Perspectives for future research

The insights gained from the research projects summarized in this thesis open up a range of
potential future research directions related to local market design options for energy communities
exposed to uncertainty. The research on an access economy for energy communities laid out the
fundamental concepts for the design of a local market. While this thesis addressed an access
economy for energy storage systems, a promising future research direction is the generalization
of the concept of physical and financial storage rights to other distributed energy resources. In
particular, distributed energy resources, such as electrical heat pumps, thermal energy storages, or
electric vehicles, could be aggregated as a virtual storage system for which rights are available
for trading. The problem formulation in this thesis can serve as a starting point. However, the
current literature lacks a suitable aggregation approach of multiple distributed energy resources
with uncertain availability.

Given an access economy in energy communities, one can hypothesize that a community member
with operational access to distributed energy resources may have a strong incentive to manipulate
the local energy market for her own benefit. In particular, in the case that only a few community
members have operational access to distributed energy resources. The strategic behavior of
individuals should be addressed, such that a local market design for an energy community
is resilient against such threats. A starting point may be the application of the well-known
Stackelberg game through a hierarchical problem formulation [87–89] in the presence of physical
storage rights. Thereby, one can assess a situation in which a strategic prosumer anticipates the
response of her competitors. A holistic understanding of market vulnerabilities with respect
to strategic behavior by individuals would ensure the local market efficiency and incentive
compatibility.

Along the research stream of incorporating individual attitudes towards uncertainty into the
decision-making problem of prosumers, the key driver for conservative attitudes are the unlikely,
but costly, uncertainty realizations. A central research question lies in analyzing options that reduce
the energy cost volatility for prosumers. In general, the deployment of energy storage systems
levelizes energy prices over time. The charging in low-price periods causes prices to increase, while
the discharging in high-price periods drives energy prices down. Eventually, one can hypothesize
that a sufficiently large energy storage system or a sufficient number of storage systems fully erase
any volatility in local energy prices observed by prosumers. This would also erase the energy cost
volatility. The consideration of storage systems in the presence of heterogeneous risk aversion
and risk trading is of interest. In particular, research on a tipping-point is promising from which
onward risk trading via Arrow-Debreu securities becomes obsolete owing to energy storage.

An Arrow-Debreu security is a highly stylized financial product, which can be traded only for
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predefined uncertainty realizations. This implies that the probability distribution function of an
uncertain event must be exactly known in order to complete the local market for risk. However, as
discussed in this thesis, the true probability distribution function of an uncertain event, such as
the renewable power generation, is unknown. Therefore, the theoretical approach proposed in
this thesis will, in practice, leave the local market of an energy community incomplete for risk.
Research on a less stylized and more practical financial product is highly promising. This thesis
laid out a game-theoretical framework based on continuous probability distribution functions.
In this model, the true probability distribution function does not need to be exactly known. The
proposed distributionally robust game could be extended by adding a risk-measure function, e.g.,
the conditional value-at-risk, to the objective function of each individual local market participant.
The resulting problem structure should be studied in detail. Thereby, one may gain insights on how
to define a suitable financial product that completes the local market for both risk and ambiguity.
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Access Economy for Storage in Energy Communities
Niklas Vespermann, Member, IEEE, Thomas Hamacher, and Jalal Kazempour, Senior Member, IEEE

Abstract—We address the market design issue for a local en-
ergy community, comprising prosumers, consumers, photovoltaic,
and energy storage systems, all connected as a community to
a distribution grid. Our work explores different market design
options based on cooperative and non-cooperative game-theoretic
models that enable an economic access to the benefits of energy
storage for prosumers without a direct ownership of a storage
system. We compare market outcomes in terms of the community
cost as well as the individual cost. We pay special attention
to potential uncertainties, and investigate financial instruments
that allow storage systems to be utilized by multiple prosumers.
In particular, we explore a case where a prosumer that owns
a storage system provides rights, either physical or financial,
rather than participating in the local market as an arbitrageur.
Moreover, we consider a cooperative market design where energy
community members agree on the Shapley value or the nucleolus
as a community cost allocation rule. Our results show that
an access economy for energy storage systems enhances energy
communities by reducing the cost volatility for most prosumers,
while the expected operational cost of the community as a whole
remains unchanged.

Index Terms—Access economy, energy community, game the-
ory, local energy market, storage right, uncertainty

I. INTRODUCTION

A. Motivation and Aim

In the last 20 years a significant increase in the installment
of roof-top solar photovoltaic (PV) systems in residential areas
has been observed [1]. This trend is mainly driven by the aim
of decarbonizing the energy sector. Support schemes, such as
fixed feed-in tariffs, are the driving force for the increased
deployment of PV systems. However, as governments start
to cut back support schemes, new regulatory frameworks and
business models must be developed. This it the only way
investments in renewable energy sources by proactive end-
customers, the so-called prosumers1, remain economical and
beneficial for energy systems [2], [3].

One widely discussed approach is the notion of energy
communities, which allows prosumers to maximize local usage
of PV power generation via local energy exchanges, exempted
from network and other surcharges [4]. However, the inter-
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1In this work, each prosumer is a power consumer with a fixed load, who
may also locally produce renewable power by her own PV system. A prosumer
may also own an energy storage system.

mittent and volatile injection by PV systems necessitates the
deployment of energy storage systems to alleviate renewable
energy curtailment and efficiently deal with the fluctuating
power generation [5]. Nevertheless, it is more likely that within
an energy community one energy storage system is capable to
serve the needs of multiple prosumers.

To this end, we are interested in an access economy2

for energy storage systems within energy communities, i.e.,
enabling prosumers to pay for the access to benefits of
an energy storage system without its direct ownership [9].
In this regard, we assess different paradigms of an access
economy for energy storage: On the one hand, we explore
the case where a prosumer who owns an energy storage
system provides storage rights, either physical or financial,
to other community members rather than participating as an
intertemporal arbitrageur in a local energy market. On the
other hand, we analyze the case where community members
agree on a community cost3 allocation rule, while the storage
system is dispatched by a system operator.

A local energy market design that enables an access econ-
omy for energy storage systems in energy communities gives
rise to two fundamental questions: First, what do potential
market designs look like? And second, what are the regulatory
implications of an access economy for energy storage?

To answer these questions, we consider an energy commu-
nity that comprises multiple prosumers as well as an energy
community manager, who acts as a non-profit oriented system
operator. We represent uncertain PV power generation by a
finite set of discrete scenarios. We first start with a benchmark
case of a non-cooperative market design. In this case, every
prosumer who owns an energy storage system participates as
an intertemporal arbitrageur in local spot markets, where the
only product to be traded is energy. We continue with the
case, where each prosumer who owns a storage system offers
physical storage rights (PSRs) in a local forward market,
which clears once in advance to spot markets. The energy
storage system is then scheduled in spot markets according
to the underlying objective of a PSR holder. Similarly, we
consider the case of financial storage rights (FSRs). However,
under this paradigm the storage system is optimally dispatched
from a social perspective by the energy community manager.
We move beyond non-cooperative market designs and con-
sider the case of a cooperative market design, where energy
community members agree on a community cost allocation
rule among all prosumers, while energy storage as well as
PV systems are optimally utilized for the whole system. We

2We understand the access economy as an access practice to a good or a
service guided by market norms, e.g., AirBnB or BlaBlaCar, in contrast to an
access practice enabled outside the market and guided by social norms, e.g.,
intrafamily sharing, food sharing, or the community library [6]–[8].

3Community cost refers to the total operational cost of the community.
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study implications of different cost allocation rules such as the
well-known Shapley value and the nucleolus.

B. Literature Review and Contributions

The research on local energy markets has gained signif-
icant interest in the last five years. Generally, three dif-
ferent organizational paradigms of a local energy market
are proposed [10], [11], which are (i) a peer-to-peer market
structure that allows prosumers to directly engage in bilateral
contracts [12]–[14], (ii) a more structured local market with a
community manager, who administers trading activities inside
the energy community [15]–[17]4, and (iii) a highly orga-
nized paradigm, in which a group of prosumers are centrally
managed according to a predefined objective [19]–[21]. In
this work, we build non-cooperative market designs upon
the paradigm (ii) with a community manager and study an
access economy for energy storage via storage rights.5 For
cooperative market designs we follow paradigm (iii) where
all devices are optimally dispatched in favor of the whole
community by the community manager as the central entity.

The concept of storage rights, either physical or financial,
lies in the domain of non-cooperative market designs and is
highly related to the idea of transmission rights [22], [23]. In
fact, the storage owner offers storage rights to other market
participants in order to, e.g., recover investment costs upfront
or not be involved in the market operation. In the paradigm
of PSRs, a storage right holder directly dispatches a part
of the energy storage system, and thereby yields operational
as well as economic access to energy storage [24]–[27]. In
contrast, under FSRs the storage system is understood as
a communal asset and optimally dispatched by the system
operator, who potentially collects a merchandising surplus due
to intertemporal energy arbitrage. This surplus is redistributed
a posteriori among storage right holders, which again, yield
economic access to energy storage [28], [29].

Another approach that allows economic access to energy
storage lies in the domain of cooperative market designs.
Here, the challenge is to define a cost allocation rule which
results in a stable energy community in the sense of a lasting
cooperation of community members. Simple but intuitive cost
allocation rules, e.g., per capita or based on the peak demand,
fail this requirement [19]. Therefore, a more complex cost
allocation rule is studied in [30], which shows how the Shapley
value can be applied for an energy community. However,
since the Shapley value does not always result in a stable
cost allocation, [20] analyzes the nucleolus as an alternative.
Given a stable cost allocation rule, [31] moves beyond [20],
and [30] and additionally considers the investment decision
in energy storage systems, while the cost associated to the
investment and the operation are shared among prosumers.

4Note that hybrid forms combining a full peer-to-peer local market with a
local market administrator are envisioned as well [18].

5Under some assumptions, e.g., perfect competition, complete mar-
kets, rational decision-making, and interaction with existing markets, both
paradigms (i) and (ii) provide the same market outcomes [15]. Therefore, our
conclusions on the potential of storage rights can be applied to a peer-to-peer
market as well. However, the mathematical problem formulation will be
different.

All these works conclude that deploying storage systems next
to renewable energy sources within an energy community
leads to significant cost savings. However, in practice this
economic benefit depends highly on the billing mechanism
observed by individuals as discussed in [2], which studies
the impact of policy designs on local exchanges of an excess
PV power generation between community members. Both [2]
and [3] conclude that a proper policy design is necessary to
encourage an economically efficient operation of distributed
energy resources.

In contrast to [9], which studies trading of unused stored
energy among firms, we focus on prosumers, which yield an
economic access to energy storage via various local market
designs. In that direction, [26] has studied the case of an ag-
gregator, who invests in an energy storage system and provides
access to individual market participants. While [26] considers
a single entity providing access to her storage system, [27]
has studied the case of a non-cooperative local market design,
where multiple storage-owning prosumers offer PSRs. How-
ever, both [26] and [27] leave a comparison to FSRs to the
side, for which—to the best of our knowledge—no work exists
with a focus on local markets. In this paper, we propose a
mathematical formulation, which can be efficiently solved and
readily applied to questions beyond local energy markets. In
contrast to [25], [27]–[29], we provide a generalized problem
formulation for both PSR and FSR forward markets where
the storage-owning prosumer actively decides on the share of
storage capacity, which is offered to others or withheld for her
own interests. This allows a partial access to storage, such that
the optimal level of access provision from the storage owner’s
perspective is endogenously determined. To the best of our
knowledge, this is the first work in the research community
proposing such a generalized model. Lastly, [20] and [30]
consider a cooperative market design for energy communities
although they derive no conclusion about the economic access
to energy storage for individuals.

In summary, this paper extends existing concepts that enable
an access economy for storage and offers a thorough study
built upon game-theoretical approaches, ranging from non-
cooperative to cooperative setups, on local energy commu-
nities with a focus on regulatory implications.

C. Main Findings and Paper Organization

Our main findings are as follows: In a non-cooperative
market design every prosumer’s expected cost remains un-
changed, irrespective of the availability or the absence of
storage rights, either physical or financial. However, most
prosumers benefit from an access economy for energy storage
through the availability of storage rights by reducing their
cost volatility. Cooperative market designs provide a rigorous
framework for implementation although the Shapley value
suffers from stability and might leave incentives for some
prosumers to split off from the energy community. In contrast,
the nucleolus gives rise to a stable community cost allocation.
However, its calculation is highly intensive. We find that non-
cooperative market designs scale well in terms of community
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Energy community manager

Prosumer Prosumer Prosumer

· · ·

Import Export

Fig. 1: Structure of a local energy community.

members, while cooperative market designs do not, and thus
are more suitable for small energy communities.

The rest of this paper is organized as follows. In Section II
we introduce the energy community structure and conceptually
explain the non-cooperative as well as cooperative market or-
ganization. Based on our assumptions, in Section III we math-
ematically introduce individual decision-making problems and
define non-cooperative and cooperative games. Section IV
provides numerical results. Lastly, we conclude our work in
Section V and provide a discussion on our proposed local
market designs. Proofs and solving approaches are available
in Appendices A and B, while the source code can be found
in [32].

II. PRELIMINARIES

A. Energy Community Structure

We understand a local energy community as an aggregation
of a few prosumers, which are spatially located very close to
each other and physically connected to the distribution system
as a single entity [10]. Within such an energy community
we consider two types of players as illustrated in Figure 1:
On the one hand, prosumers attempt to minimize their energy
cost from meeting their demand by an uncertain and volatile
PV power generation, energy exchange, and the utilization of
an energy storage system. On the other hand, an energy com-
munity manager administers the energy community as a non-
profit oriented entity. Her task is to ensure liquidity within the
energy community by importing and exporting electricity from
and to a retailer6 for energy. Moreover, the energy community
manager reveals local market-clearing prices evolving under
free trade and perfect competition when considering a non-
cooperative market design7, and operates all devices within
the energy community in the presence of a cooperative market
design. As pointed out in Section I-B, we assume all prosumers
buy/sell energy through the community manager, and do not
exchange energy bilaterally in a peer-to-peer fashion.

B. Non-Cooperative Market Design

Figure 2a illustrates elements of non-cooperative market de-
signs. We start by a benchmark design of sequentially clearing
local spot markets. In this benchmark, the only market product
to be traded is energy. Each prosumer considers the entire
optimization horizon and individually operates her devices
according to her underlying objective and the realization of the

6A retailer is a self-interested profit-seeking entity which buys great energy
volumes at the wholesale market and sells energy to many small customers.

7In a perfectly competitive market environment the community manager
simultaneously fulfills tasks of a spatial arbitrageur and a price setter [33].

Forward market
for PSRs/FSRs

Spot market
scenarios

...

(a)

Coalition
formation

Operating
scenarios

...

(b)

Fig. 2: Elements of non-cooperative market designs are depicted in Figure 2a.
Such elements for cooperative market designs are presented in Figure 2b.

uncertain PV power generation. Prosumers pay/are paid based
on local spot market-clearing prices for exchanged energy.

We extend this non-cooperative market design and addition-
ally consider a local forward market for PSRs, which clears
once in advance to local spot markets.8 A storage-owning
prosumer sells PSRs in the forward market, and thereby
yields a revenue upfront to spot markets. In spot markets,
PSR holders directly dispatch the awarded share of an energy
storage system to minimize their individual energy cost.

Finally, we consider a local forward market, where a
storage-owning prosumer offers FSRs to other energy commu-
nity members. Unlike the case for PSRs, energy storage sys-
tems are dispatched in spot markets by the energy community
manager, which thereby yields a merchandising surplus from
intertemporal energy arbitrage. This surplus is redistributed
among FSR holders according to the realized value of FSRs
in local spot markets, i.e., the marginal contribution of a
single FSR to the merchandising surplus incurred by the
energy community manager.

It is worth noting that in contrast to [26], community mem-
bers separately bid—depending on their needs—to get eco-
nomic access to charging, discharging, and reservoir devices
of an energy storage system. Both PSRs and FSRs decompose
in charging, discharging, and energy capacity rights [25], [28].
This formulation enables an additional degree of freedom with
respect to the economic access practice of storage rights, since
it is not necessarily the case that prosumers need a fixed ration
of charging, discharging, and energy rights.

C. Cooperative Market Design

Figure 2b depicts the cooperative market design, where
we consider as the community cost allocation rule (i), the
Shapley value, and (ii), the nucleolus. Prosumers anticipate
the expected cost from joining a coalition given the cost
allocation rule energy community members agree on before
the operational stage. Note that we do not endogenously
consider this negotiation process, but rather assume that the
decision for either the Shapley value or the nucleolus is made
upfront to the optimization horizon. During operation, all
devices are optimally dispatched for the energy community
as a whole by the energy community manager. Based on
the realization of the uncertain PV power generation, the
community cost is systematically distributed among energy
community members according to the predefined cost alloca-

8Storage rights, either physical or financial, are valid for the entire opti-
mization horizon, which can—without loss of generality—span the period of
a day, a month or a year.
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tion rule [17], [20], [30].

D. Additional Assumptions

We assume all prosumers as well as the energy community
manager participate as price-takers in perfectly competitive
local forward and spot markets, and bid according to their
true cost/utility.9 While each price-taker prosumer minimizes
her own energy cost, the community manager fulfills her tasks
in the interest of the community as a whole. Furthermore,
given the small size of an energy community we consider a
single-node local system, and thus neglect network constraints
within the energy community. However, we consider the
capacity limitation of the single network that connects the
whole community to the distribution system. All players are
risk-neutral and have symmetric information on the uncer-
tain PV power generation, which is the only source of the
uncertainty, although other sources of the uncertainty can be
incorporated in the same manner. We represent the uncertain
PV power generation by a set of discrete and a finite number of
scenarios ω ∈ Ω. To avoid pricing non-convexities and in line
with [9], [25], and [27], binary variables indicating the status
of storage systems are not considered.10 Lastly, we consider
hourly time steps in the spot market.

III. MATHEMATICAL FORMULATION

In Section III-A we formulate non-cooperative games
among players, while Section III-B provides the mathematical
formulation of cooperative games. The operator E[·] refers to
the expected value given the uncertain PV power generation.
Symbols followed by a colon denote dual variables of the
respective constraints.

A. Non-Cooperative Market Design

For non-cooperative games, we introduce one optimization
problem per prosumer as well as one optimization problem for
the community manager. All these optimization problems have
to be solved simultaneously, yielding a pure Nash equilibrium
problem, whose solution is a Nash equilibrium point. Aligned
with findings of seminal works such as [38] and [39], we
will show that each proposed Nash equilibrium problem—
assuming no market failures—can be equivalently solved by a
single optimization problem, or sequential ones, maximizing
the social welfare.

In the following, we start with a Nash equilibrium problem
with local spot markets only, and extend it later by adding a
forward market for (i) PSRs, and (ii) FSRs.

1) Spot Markets: Here, we develop a non-cooperative mar-
ket design with spot markets only, and thus no storage rights
to be traded in the forward market. The optimal operation and
energy trades are determined in sequential spot markets, one
market per hour, wherein devices are exclusively dispatched
by respective prosumers. Since there is no forward market

9Relevant works that consider an energy storage system exhibiting market
power as a price-maker player are available in [34]–[36].

10Note that under some conditions, which hold in our model, this does
not result in simultaneous charging and discharging of energy storage sys-
tems [37, Prop. 2].

affecting spot market trades under all scenarios, prosumers
make their spot decisions for each scenario ω independently
from other scenarios. Therefore, the decision-making problem
of each prosumer is deterministic, although her decision vari-
ables are indexed by ω and subject to the PV power generation
realized under the underlying scenario.

Let us consider a set of time periods t ∈ T , a set of
prosumers n ∈ N , and a set of energy storage systems indexed
by s ∈ S . The set Φn indicates storage systems belonging
to prosumer n. Under each scenario ω of local spot market
realizations, prosumer n minimizes her energy cost for the
given spot market prices λtω as{

Min
ΞS
n

∑

t

(
λtωpntω︸ ︷︷ ︸
Energy cost

+
1

2
βp2

ntω
︸ ︷︷ ︸
Regularizer

)
(1a)

subject to

pntω + Sntω +
∑

s∈Φn

(p↓stω − p↑stω)−Dnt = 0, ∀t, (1b)

− Pn ≤ pntω ≤ Pn, ∀t, (1c)

estω= es(t−1)ω + η↑sp
↑
stω− η↓sp↓stω, ∀s∈Φn, 1< t< |T |, (1d)

estω = Eini
s , ∀s ∈ Φn, t = 1, t = |T |, (1e)

0 ≤ p↑stω ≤ P
↑
s, : γ↑

stω
, γ↑stω, ∀s ∈ Φn, t, (1f)

0 ≤ p↓stω ≤ P
↓
s, : γ↓

stω
, γ↓stω, ∀s ∈ Φn, t, (1g)

0 ≤ estω ≤ Es : γe
stω
, γe
stω, ∀s∈Φn, t

}
∀n∈N , ω∈Ω, (1h)

where the set of variables ΞS
n includes pntω as well

as {p↑stω , p↓stω, estω} ∀s ∈ Φn. Each prosumer n pays/is paid
based on the local spot market-clearing price λtω for ex-
changed energy pntω at time period t under scenario ω.
Note that market-clearing prices λtω are treated as parameters
within (1), but they are variables in the Nash equilibrium
problem (1)–(2). Note that problem (2) refers to the energy
community manager’s problem, which we provide later in
this section. A positive value of pntω indicates a demand,
while a negative value states a supply of energy. The first
term in (1a) represents energy cost. Moreover, without loss of
generality, we consider a quadratic regularizer in (1a), where β
is a small positive constant, e.g., 10−3, to ensure a strictly
convex objective function.11 Institutionally, this regularizer can
be interpreted as a transaction cost arising from energy trades.

Each prosumer n has to ensure her individual power bal-
ance (1b). The inelastic deterministic demand Dnt has to be
met by traded energy pntω , PV power generation Sntω , power
charged p↑stω , and discharged p↓stω from the energy storage
system s ∈ Φn at each time step t and scenario ω. Note
that Sntω is the sole uncertain parameter of the problem.
Constraint (1c) restricts energy trades by the parameter Pn.12

11A value β = 0 makes the objective function linear and multiple solutions
may exist in terms of prosumers’ cost, although the community cost will be
the same across all solutions. Very small values for β, e.g., 10−3, do not
alter the community cost. However, we achieve a unique solution for the Nash
equilibrium problem, where identical players incur the same cost [40].

12We introduce theoretical bounds Pn on energy exchanges to achieve
closed and compact decision sets for players. This is necessary for conclusions
on existence of a game solution [41]. However, we select sufficiently large
values for Pn, and check a posteriori that (1c) is always inactive.
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Constraints (1d)–(1h) define the operational region of the
energy storage system s. The state of charge variable estω
is given by (1d), where parameters η↑s and η↓s denote charging
and discharging efficiencies, respectively. Without loss of
generality, (1e) enforces the energy stored estω in the last
time period, i.e., t = |T |, to be equal to the initial state of
charge Eini

s . The energy stored for the beginning of the next
time horizon will be zero if (1e) is relaxed.13 Finally, (1f)–(1h)
restrict the level of energy charged, discharged, and stored
by capacity limits P

↑
s, P

↓
s , and Es, respectively. We use dual

variables associated to (1f)–(1h) later when we introduce a
forward market for FSRs.

Given trading decisions pntω of prosumers, the community
manager clears local spot markets under each scenario ω by
minimizing the operational cost of the community as{

Min
ΘS

∑

t

[
Ctp

i
tω−Rtpe

tω︸ ︷︷ ︸
Community cost

+λtω
(∑

n∈N
pntω− pi

tω+ pe
tω

)

︸ ︷︷ ︸
Buyers’ spot market cost / Sellers’ spot market revenue

]
(2a)

subject to

0 ≤ pi
tω ≤ P

i
, ∀t, (2b)

0 ≤ pe
tω ≤ P

e
, ∀t, (2c)

− Λ ≤ λtω ≤ Λ, ∀t
}
∀ω ∈ Ω, (2d)

where the variable set is ΘS = {pi
tω , pe

tω , λtω}. Note that
market-clearing prices λtω are variables in (2), and therefore,
also in the Nash equilibrium problem (1)–(2), although they
are parameters in (1). In the objective function (2a), the
energy community manager minimizes the cost incurred by
purchasing power pi

tω and the revenue obtained by selling
power pe

tω from and to a retailer for energy. She imports
energy at the cost Ct and exports at the price Rt.14 Thereby,
the energy community manager ensures liquidity of local spot
markets. Moreover, the community manager is in charge of
setting local spot market-clearing prices λtω by minimizing the
cost of energy buyers while maximizing the revenue of energy
sellers. Note that from the community manager’s perspective,
demands are pntω ≥ 0 as well as the energy export pe

tω . In
contrast, the sources of supply are pntω ≤ 0 as well as the
energy import pi

tω .
Energy imports and exports are constrained in (2b)–(2c)

by upper bounds P
i

and P
e
, corresponding to the poten-

tial capacity limitation of the network between the whole
community and the distribution system. Local spot market-
clearing prices are constrained in (2d) by Λ.15 It is worth
noting that the energy community manager chooses local
market-clearing prices such that energy supply and demand
are perfectly balanced.16

Definition 1. Based on (1) and (2), we define the non-

13Alternatively, [42] includes a reward term in the objective function asso-
ciated with the foreseen value of the stored energy in the beginning of the
next time horizon. However, it might be challenging to estimate such a value.

14For Rt ≤ Ct, energy import appears if there is an energy shortage within
the community, while export takes place if there is an energy excess.

15Again, by theoretical bounds we achieve compact and closed decision
sets to mathematically prove the existence of the Nash equilibrium solution.

cooperative Nash game Γspot(Z,K, {Ji}∀i∈Z), where Z is the
set of all players and Ji their respective objective function.
K=(K1×· · ·×KN ×Km) denotes the strategy set of the
game, where Kn is the strategy set of prosumer n∈N and Km
the strategy set of the energy community manager.

Proposition 1. Due to strictly convex objective functions and
closed convex decision sets for all players, a unique Nash
equilibrium for the non-cooperative Nash game Γspot(·) exists.

Proof 1. We provide the proof in Appendix A-A. �

Remark 1. We solve the non-cooperative Nash game Γspot(·)
using its equivalent formulation as a single optimization prob-
lem, provided in Appendix A-A.

2) PSR Forward Market and Spot Markets: We extend the
previous local market design and consider the case wherein
a storage-owning prosumer offers PSRs to other prosumers.
Recall that storage rights to be traded in the forward market
are valid for the entire optimization horizon and scenarios,
and thus are not indexed by t and ω. This results in a two-
stage stochastic program where local forward market trades
for PSRs are here-and-now decisions, while local spot market
trades are wait-and-see decisions until the realization of the
uncertain PV power generation is observed. Unlike (1), where
each prosumer optimizes her local spot market trades for
each scenario separately, here each prosumer minimizes her
expected cost, accounting for all scenarios at once.

For given PSR prices, i.e., a charging right price µP↑s , a
discharging right price µP↓s , and an energy capacity right
price µPe

s , as well as hourly spot market prices λtω , each
prosumer n minimizes her expected energy cost by buying and
selling PSRs in the local forward market and trading energy
in local spot markets. This problem writes as{

Min
ΞP
n

∑

s∈Φn

( µP↑
s x

P↑
s + µP↓

s x
P↓
s + µPe

s x
Pe
s︸ ︷︷ ︸

Revenue in forward market for PSR sellers

)

+
∑

s

[
µP↑
s q

P↑
ns+ µP↓

s q
P↓
ns+ µPe

s q
Pe
ns︸ ︷︷ ︸

Cost in forward market for PSR buyers

+
1

2
β(qP↑

ns

2
+ qP↓

ns

2
+ qPe

ns

2
)

︸ ︷︷ ︸
Regularizer

]

+
∑

t

Eω
[

λtωpntω︸ ︷︷ ︸
Cost in spot markets

+
1

2
βp2

ntω
︸ ︷︷ ︸
Regularizer

]
(3a)

subject to

− P ↑s ≤ xP↑
s ≤ 0, ∀s ∈ Φn, (3b)

− P ↓s ≤ xP↓
s ≤ 0, ∀s ∈ Φn, (3c)

− Es ≤ xPe
s ≤ 0, ∀s ∈ Φn, (3d)

0 ≤ qP↑
ns, q

P↓
ns, q

Pe
ns ≤ Q

P
, ∀s, (3e)

16This can be mathematically shown by taking the derivative
of the Lagrangian function of (2) with respect to λtω . It writes
as

∑
n∈N

(
pntω − pi

tω + pe
tω

)
− χ

tω
+ χtω = 0, ∀t, ω, where χ

tω
and χtω are dual variables corresponding to lower and upper bounds of (2d),
respectively. For inactive price constraints yielding χ

tω
= χtω = 0, the total

supply equals to the total demand at any time step t and in every scenario ω.
However, active price constraints may lead to “economic curtailments” and
market inefficiencies as discussed in [43].
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pntω+Sntω+
∑

s

(p↓nstω− p↑nstω)−Dnt = 0, ∀t, ω, (3f)

(1c), ∀t, ω, (3g)

enstω=ens(t−1)ω+η↑sp
↑
nstω−η↓sp↓nstω,∀s, 1< t< |T |, ω,(3h)

enstω =
qPe
ns

Es
Eini
s , ∀s, t = 1, t = |T |, ω, (3i)

0 ≤ p↑nstω ≤ qP↑
ns, ∀s, t, ω, (3j)

0 ≤ p↓nstω ≤ qP↓
ns, ∀s, t, ω, (3k)

0 ≤ enstω ≤ qPe
ns, ∀s, t, ω

}
∀n ∈ N , (3l)

where ΞP
n = {xP↑

s∈Φn
, xP↓
s∈Φn

, xPe
s∈Φn

, qP↑
ns, q

P↓
ns, q

Pe
ns, pntω, p

↑
nstω ,

p↓nstω, enstω}. The first two lines of the objective function (3a)
maximize the revenue and minimize the cost of prosumer n
in the local forward market obtained from buying and sell-
ing PSRs, which consist of charging, discharging, and energy
rights. In addition, the last line of (3a) minimizes her expected
cost in spot markets incurred by energy trades. For the sake
of a general formulation, we consider that each prosumer n
is able to sell PSRs in the case that she owns a storage
system s ∈ Φn, and at the same time, she can buy PSRs from
any storage system s in the community belonging to herself
or other prosumers. This allows modeling a prosumer, who
can partially provide other prosumers with access to her own
storage system, and uses the rest of the energy storage system
for her own benefit. For this purpose, we differentiate between
physical charging, discharging, and capacity right quantities of
storage system s ∈ Φn to be sold by prosumer n, i.e., non-
positive variables xP↑

s , x
P↓
s , and xPe

s , and those PSR quantities
to be bought by prosumer n from any storage system s belong-
ing to herself or others, i.e., non-negative variables qP↑

ns, q
P↓
ns,

and qPe
ns. PSR prices µP↑

s , µ
P↓
s , and µPe

s as well as spot market
prices λtω are parameters within (3), while they are variables
within the Nash equilibrium problem (3)–(4). We provide the
problem (4) of the energy community manager later in this
section. Similar to (1a), we consider quadratic regularizers,
weighted by a small positive factor β in (3a) for both PSR
and energy quantities.

Constraints (3b)–(3d) restrict the amount of PSR quan-
tities to be sold. Constraints (3e) impose a theoretical up-
per bound Q

P
to PSR quantities to be bought. Based on

awarded PSRs, prosumer n dispatches the storage system s in
local spot markets through (3f)–(3l). Storage-related variables
are indexed by n. For example, enstω denotes the stored
energy belonging to prosumer n in storage system s at time t
under scenario ω, although the energy storage system s itself
may not belong to that prosumer. Moreover, each prosumer
has access and also restores the initial state of charge Eini

s

according to her awarded capacity rights (3i). It is worth
noting that for operational access to a storage system a
prosumer needs to award all types of physical rights, i.e.,
charging right qP↑

ns, discharging right qP↓
ns, and energy right qPe

ns.
Otherwise, charging p↑nstω or discharging p↓nstω cannot take
place since equality constraint (3h) or (3i) would be violated.
Eventually, the set of constraints (3h)–(3l) ensures that in-
dividual operational strategies of an energy storage system

according to the objective of PSR holders are in line with
the physical operational region of the storage system itself.

Given local forward market decisions of pro-
sumers, i.e., xP↑

s , xP↓
s , xPe

s , qP↑
ns, q

P↓
ns, q

Pe
ns and their trading

decisions pntω in local spot markets, the energy community
manager minimizes the operational cost of the community as

Min
ΘP

∑

s

[
µP↑
s (xP↑

s +
∑

n∈N
qP↑
ns)+µ

P↓
s (xP↓

s +
∑

n∈N
qP↓
ns)+µ

Pe
s (xPe

s +
∑

n∈N
qPe
ns)

︸ ︷︷ ︸
Buyers’ forward market cost / Sellers’ forward market revenue

]

+
∑

t

Eω
[
Ctp

i
tω−Rtpe

tω+ λtω
(∑

n∈N
pntω− pi

tω+ pe
tω

)]
(4a)

subject to
(2b)–(2d), ∀t, ω, (4b)

−MP ≤ µP↑
s , µ

P↓
s , µ

Pe
s ≤M

P
, ∀s, (4c)

where the variable set is ΘP = {µP↑
s , µ

P↓
s , µ

Pe
s , p

i
tω, p

e
tω, λtω}.

In contrast to (2a), the objective function (4a) additionally
maximizes the revenue for PSR sellers and minimizes the
cost for PSR buyers by revealing forward market-clearing
prices µP↑

s , µ
P↓
s , and µPe

s based on the expectation about spot
market scenarios. Such prices are constrained by a theoretical
bound M

P
in (4c). Similar to (2), the problem (4) ensures

the power balance in the community as well as the balance
between sold and bought rights, provided that price constraints
are not binding.17

Definition 2. Based on (3) and (4) we define the non-
cooperative Nash game ΓPSR(Z,K, {Ji}∀i∈Z), where Z is the
set of all players and Ji their respective objective function.
K=(K1×· · ·×KN ×Km) denotes the strategy set of the
game, where Kn is the strategy set of prosumer n∈N and Km
the strategy set of the energy community manager.

Proposition 2. Similarly as for Γspot(·), a unique Nash equi-
librium for the non-cooperative Nash game ΓPSR(·) exists.

Proof 2. The proof is available in Appendix A-B. �

Remark 2. We solve ΓPSR(·) in its equivalent formulation as
a single optimization problem, provided in Appendix A-B.

3) FSR Forward Market and Spot Markets: We follow the
concept introduced by Taylor in [28], defining FSR values in
terms of dual variables associated with physical capacity and
energy constraints of an energy storage system.

For given FSR prices µF↑
s , µ

F↓
s , µ

Fe
s , spot market prices λtω

as well as FSR values γ↑stω, γ
↓
stω, γ

e
stω each prosumer n

minimizes her expected cost from FSR trades in the local
forward market and energy exchanges in spot markets as{

Min
ΞF
n

∑

s∈Φn

( µF↑
s x

F↑
s + µF↓

s x
F↓
s + µFe

s x
Fe
s︸ ︷︷ ︸

Revenue in forward market for FSR sellers

)

17For example, by taking the derivative of the Lagrangian function associ-
ated to (4) with respect to µP↑

s and assuming price constraints (4c) are inactive,
one can conclude that xP↑

s +
∑

n∈N qP↑
ns = 0, ∀s.
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+
∑

s

[
µF↑
s q

F↑
ns+ µF↓

s q
F↓
ns+ µFe

s q
Fe
ns︸ ︷︷ ︸

Cost in forward market for FSR buyers

+
1

2
β(qF↑

ns

2
+ qF↓

ns

2
+ qFe

ns

2
)

︸ ︷︷ ︸
Regularizer

]

+
∑

t

Eω
[

λtωpntω︸ ︷︷ ︸
Cost in spot markets

+
1

2
βp2

ntω
︸ ︷︷ ︸
Regularizer

−
∑

s

( γ↑stωq
F↑
ns+ γ↓stωq

F↓
ns+ γe

stωq
Fe
ns︸ ︷︷ ︸

Revenue in spot markets from FSR values

)

]
(5a)

subject to

− P ↑s ≤ xP↑
s ≤ 0, ∀s ∈ Φn, (5b)

− P ↓s ≤ xP↓
s ≤ 0, ∀s ∈ Φn, (5c)

− Es ≤ xPe
s ≤ 0, ∀s ∈ Φn, (5d)

0≤ qF↑
ns, q

F↓
ns, q

Fe
ns≤Q

F
, ∀s, (5e)

pntω + Sntω −Dnt = 0, ∀t, ω, (5f)

(1c), ∀t, ω
}
∀n ∈ N , (5g)

where ΞF
n={xF↑

s∈Φn
, xF↓
s∈Φn

, xFe
s∈Φn

, qF↑
ns, q

F↓
ns, q

Fe
ns, pntω}. Simi-

lar to (3a), the objective function (5a) maximizes the revenue
and minimizes the cost of prosumer n from FSR trades in
the local forward market as well as her expected cost from
energy trades in local spot markets. Also similar to (3),
we differentiate between financial charging, discharging, and
capacity right quantities to be sold by a prosumer in the
case that she owns a storage system s ∈ Φn, i.e., non-
positive variables xF↑

s , x
F↓
s , and xFe

s , and those FSR quantities
to be bought by a prosumer from any storage system s, i.e.,
non-negative variables qF↑

ns, q
F↓
ns, and qFe

ns. These amounts are
constrained by (5b)–(5e). FSR prices µF↑

s , µ
F↓
s , µFe

s , FSR val-
ues γ↑stω, γ

↓
stω, γ

e
stω as well as spot market prices λtω are

parameters within (5), while they are variables within the Nash
equilibrium problem (5)–(6). We provide problem (6) later in
this section.

Problem (5) with FSRs is different in two ways com-
pared to problem (3) with PSRs. First, each prosumer ad-
ditionally accounts in (5a) for the expected revenue from
awarded FSRs qF↑

ns, q
F↓
ns, q

Fe
ns according to realized FSR val-

ues γ↑stω, γ
↓
stω, γ

e
stω in local spot markets. And second, each

prosumer has to ensure her individual power balance in (5f)
without an operational access to an energy storage system.

Given prosumers’ trading decisions in the FSR forward
market, i.e., xF↑

s , x
F↓
s , x

Fe
s , q

F↑
ns, q

F↓
ns, and qFe

ns, as well as their
energy exchanges in spot markets pntω, the community man-
ager minimizes the operational cost of the community as

Min
ΘF

∑

s

[
µF↑
s (xF↑

s +
∑

n∈N
qF↑
ns)+µ

F↓
s (xF↓

s +
∑

n∈N
qF↓
ns)+µ

Fe
s (xFe

s +
∑

n∈N
qFe
ns)

︸ ︷︷ ︸
Buyers’ forward market cost / Sellers’ forward market revenue

]

+
∑

t

Eω
[
Ctp

i
tω−Rtpe

tω

+ λtω
( ∑

n∈N
pntω − pi

tω + pe
tω +

∑

s

(p↓stω − p↑stω)
)

︸ ︷︷ ︸
Buyers’ spot market cost / Sellers’ spot market revenue

]
(6a)

subject to
(1d)–(1h), ∀s, t, ω, (6b)
(2b)–(2d), ∀t, ω, (6c)

−MF ≤ µF↑
s , µ

F↓
s , µ

Fe
s ≤M

F
, ∀s, (6d)

where the set of primal variables is ΘF ={µF↑
s , µF↓

s , µFe
s , pi

tω,
pe
tω , λtω , p↑stω , p↓stω , estω}. Moreover, γ↑stω, γ

↓
stω , and γe

stω are
dual variables of each storage system associated with its charg-
ing, discharging and reservoir capacity constraints (1f)–(1h)
within (6b), referring to as “FSR values” [28].

The main difference of (6) compared to the problem (4)
with PSRs is that the community manager operates all energy
storage systems. In contrast to (4a), the third line of (6a)
determines the charging and discharging levels of storage
systems. Therefore, the energy community manager enforces
the import/export and price constraints (6c)–(6d), and also the
operational region of all energy storage systems within the
energy community (6b).

Definition 3. Based on (5) and (6) we define the non-
cooperative Nash game ΓFSR(Z,K, {Ji}∀i∈Z), where Z is the
set of all players and Ji their respective objective function.
K=(K1×· · ·×KN ×Km) denotes the strategy set of the
game, where Kn is the strategy set of prosumer n∈N and Km
the strategy set of the energy community manager.

Proposition 3. Again, a unique Nash equilibrium for the non-
cooperative Nash game ΓFSR(·) exists.

Proof 3. The proof is stated in Appendix A-C. �

Remark 3. In contrast to Γspot(·) and ΓPSR(·), the non-
cooperative Nash game ΓFSR(·) cannot be solved as a single
convex optimization problem due to products of FSR volumes
and values in (5a). However, ΓFSR(·) can be either solved as
a mixed complementarity problem [33] or by two sequential
optimization problems as formulated in Appendix A-C.

B. Cooperative Market Design

In this section, we pay attention to cooperative market
designs for energy communities, where prosumers agree on
a community cost allocation rule. The energy community
manager determines the optimal dispatch of all devices for
each scenario of uncertain PV power generation ω as{

Min
Φ

∑

t

(
Ctp

i
tω −Rtpe

tω +
∑

n∈N

1

2
βp2

ntω

)
(7a)

subject to
(1b)–(1c), ∀n, t, (7b)
(1d)–(1h), ∀s, t, (7c)
(2b)–(2c), ∀t, (7d)
∑

n∈N
pntω − pi

tω + pe
tω = 0: λtω, ∀t

}
∀ω, (7e)
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where the variable set is Φ = {pntω, p↑stω, p↓stω, estω, pi
tω, p

e
tω}.

The objective function (7a) minimizes the community cost
from importing and exporting energy. Constraints (7b) and (7c)
define the operational region for each prosumer and energy
storage systems. Constraint (7d) describes bounds for energy
imports and exports. Finally, (7e) enforces the power balance
of the energy community as a whole.

To derive the financial burden for each prosumer, we first
have to consider all coalitions S⊆N , i.e., all possible com-
binations of prosumers given by S∈2N .18 The case where
all prosumers cooperate with each other is called the grand
coalition S = N . For each coalition S we define a cost saving
function

v(S) =
∑

n∈S
Cn − CS , (8)

where Cn is the cost for each prosumer n ∈ S if she operates
her devices individually, and CS is the cost for coalition S if
prosumers operate their devices jointly.

A coalitional game is now given by the pair (N , v).
One important characteristic of our coalitional game is
super-additivity. This means that the value of a union
of two selected coalitions, i.e., S ∈ 2N and V ∈ 2N

with S ∩ V = ∅, is not less than the sum of their separate
values, i.e., v(S) + v(V) ≤ v(S ∪ V) [17]. Given that the
importing cost Ct is higher than the exporting price Rt, our
coalitional game is super-additive [44].19 Thus, a cooperation
among all prosumers, i.e., the grand coalition N , is most
beneficial. However, super-additivity does not imply that all
players benefit individually, or that a cooperation among all
prosumers is stable.20

Therefore, we have to consider three important properties,
that have to be fulfilled by a cost allocation rule, namely effi-
ciency, individual rationality, and stability. A cost allocation
rule is efficient if it redistributes the whole value, i.e., the
cost saving, of the grand coalition N , i.e.,

∑
n∈N xn = v(N ),

where x ∈ RN is the payoff vector and xn the payment to
player n ∈ N . Individual rationality is given if each player
benefits from the grand coalition at least as much as she
would gain individually, i.e., xn ≥ v({n}). Finally, a coalition
is stable if the cost allocation lies within the core C [20], given
by

C =
{

x|
∑

n∈N
xn = v(N ), v(S)−

∑

n∈S
xn ≥ 0,∀n∈N

}
, (9)

where the equality constraint ensures an efficient cost alloca-
tion, while the inequality constraint guarantees the stability of
the grand coalition.

In the following we consider two cost allocation rules,
namely the Shapley value [45] and the nucleolus [46].

1) Shapley Value: The Shapley value [45] states the av-
erage marginal contribution of each prosumer n∈S to coali-

18The exponential growth of the power set indicates the computational
challenge as the size of the energy community increases in terms of energy
community members.

19Given Ct ≥ Rt, the total community cost is a concave function in
dependence of the number of energy community members.

20In this context, stable means that no incentive for prosumers to leave the
grand coalition exists.

TABLE I: Properties of non-cooperative and cooperative local market designs.

Spot PSR+Spot FSR+Spot Shapley Nucleolus

Operational access 7 3 7 7 7
Economic access 7 3 3 3 3

Market efficiency 3? 3? 3? 3 3
Individual rationality 3 3 3 3 3
Revenue adequacy 3 3 3 3 3
Incentive compatibility 3? 3? 3? 3?? 3??

Stability 3 3 3 7 3

Computational time Low Low Low High High
? Given the assumption of a perfectly competitive market environment.

?? Given that prosumers reveal their true costs/utilities.

tions S ∈ 2N as

φn(v) =
∑

S∈2N ,∀n∈S

(|S| − 1)!(N − |S|)!
N !

[
v(S)− v(S\{n})

]
, (10)

where N is the total number of prosumers. Note that the Shap-
ley value is not necessarily a stable cost allocation rule [20].

2) Nucleolus: The nucleolus minimizes the excesses of all
coalitions, and thereby the dissatisfaction of prosumers. In
contrast to the Shapley value the nucleolus yields a stable
coalition among all prosumers [46]. We provide the mathe-
matical program to calculate the nucleolus in Appendix B.

C. Properties of Local Market Designs

We summarize properties of non-cooperative and coopera-
tive market designs in Table I. Except for the market design
with spot markets only, all other local market designs enable an
access economy for energy storage, although they differ highly
in their approach: On the one hand, the concept of a forward
market for PSRs enables an operational access for individuals,
who yield economic access via a direct utilization of an energy
storage system. On the other hand, a forward market for FSRs
as well as cooperative market designs leave the operation of
energy storage systems exclusively to the energy community
manager, while prosumers benefit via a redistribution of the
generated value from intertemporal energy arbitrage.

Table I also provides the list of desirable economic market
properties that are satisfied or jeopardized under different mar-
ket designs. The first property is market efficiency, implying
that market outcomes align with the social welfare maxi-
mization. This property is given by definition for cooperative
market designs. However, for non-cooperative market designs
this only holds under the assumption of a perfectly competitive
market environment. The second desirable property is individ-
ual rationality, implying that no prosumer is left with a neg-
ative utility. The third property is revenue adequacy, meaning
that the energy community manager has no financial deficit.
Both properties are fulfilled by all market designs. Lastly,
the fourth desirable property is incentive compatibility, i.e.,
all prosumers bid according to their true costs/utilities. This
property is only ensured under perfect competition.

All local market designs ensure stability in the sense that
there is no incentive for prosumers to leave the energy
community, except for the Shapley value, for which this
cannot be generally guaranteed [17]. Finally, we note that
non-cooperative market designs computationally scale well
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Fig. 3: Input data: Plot 3a shows the expected PV power generation and
the demand for each prosumer. Plot 3b depicts prices for importing and
exporting electricity.

in terms of energy community members, while cooperative
market designs do not due to the exponential increase in
possible coalitions as we show later in Section IV-B.

IV. NUMERICAL STUDY

We apply all game-theoretic models introduced in Sec-
tion III to numerically assess different alternatives of an eco-
nomic access to storage systems in energy communities. In the
following we explain the method used to generate PV power
generation scenarios in Section IV-A. In Section IV-B we
discuss scalability issues and report the computational time
as the size of an energy community increases in terms of the
number of prosumers. We then present an illustrative exam-
ple in Section IV-C, where we consider four representative
prosumers to shed light on the individual and the community
cost under different local market designs. A sensitivity analysis
in terms of the uncertainty is presented in Section IV-D,
where we gradually increase the variance of the underlying
probability distribution. Finally, in Section IV-E we consider
an energy community with 16 prosumers and multiple energy
storage systems, which differ in their round-trip efficiency.

Throughout these analyses, we consider a time horizon of
24 hours. The local forward market for trading storage rights
is cleared once before the given time horizon, while local spot
markets are cleared for every hour. As input data, Figure 3a
shows the expected PV power generation as well as the daily
demand profile of each prosumer. In the illustrative example
we assume that the demand profiles of all prosumers are
identical, while in Section IV-E we slightly change the demand
of each added prosumer by up to 20%. Again as input data,
Figure 3b provides the hourly importing and exporting prices
for electricity observed by the energy community manager.

A. Modeling Uncertainty

The uncertain nature of the PV power generation Sntω∀n, t
is modeled via a set of scenarios ω ∈ Ω that accounts for an
intertemporal structure of the PV power availability [47]. To
obtain this set of scenarios over the optimization horizon T ,
we first generate a random vector X = (X1, X2, ..., XT )>,
following a multivariate Gaussian distribution Xω ∼ N (µ0,Σ)
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Fig. 4: Market design with spot markets only: Expected community cost
marked in black and its standard deviation illustrated by the shaded area
are shown as a function of the number of scenarios. The red curve shows the
Wasserstein distance between each set of scenarios and its predecessor.

with Xω being the ωth realization of the random vector.
The vector of mean values µ0 is a 1× T zero vector. The
covariance matrix Σ is a symmetric T × T matrix, whose
diagonal elements are equal to 1, and whose off-diagonal
elements are calculated in the same way suggested in [48], i.e.,

Σ = exp
(−|t− t′|

ν

)
, 0 ≤ t, t′ ≤ T , (11)

where the range parameter ν controls the strength of correla-
tion of random variables across time steps.

Applying the inverse probit function Φ(·) and the predictive
cumulative distribution function F̂t(·) on each time step t of
the ωth realization of the random vector Xω , one normalized
PV power generation trajectory stω ∈ [0, 1] per scenario ω
spanning the optimization horizon T is obtained through the
following transformation:

stω = F̂−1
t (Φ (Xω)) , ∀t, ∀ω. (12)

The probability density function f̂t is modeled by a Beta dis-
tribution B(µt, σ

2). We normalize the trajectory µt shown in
Figure 3a and consider this path as the conditional expectation
of the stochastic process describing the PV power generation.
Moreover, we set the variance to σ2 = 0.025.

By applying this method, an arbitrary number of PV power
generation scenarios around the expected trajectory can be
sampled. However, in order to appropriately select the number
of scenarios characterizing the PV power generation uncer-
tainty, we provide in Figure 4 the evolution of the expected
community cost and its standard deviation for the market
design with only spot markets as the number of scenarios
increases. It also shows the Wasserstein distance between each
set of scenarios and its predecessor. Accordingly, we find out
that from 500 scenarios onward changes hardly ever take place.
Therefore, we choose 500 scenarios to properly represent the
underlying probability distribution of PV power generation.
Note that all scenarios are equiprobable.

B. Computational Aspects

One important property for a local energy market design
is its computational scalability, especially in cases with a
comparatively high number of community members. We have
solved all optimization problems with Gurobi Optimizer 9.0.1
under Python 3.7.6 using a 314 GB-RAM computer with
72 cores, each clocking at 2.3 GHz. In the case of cooperative
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Fig. 5: Computational time as a function of the number of prosumers in
the community. The plot 5a corresponds to non-cooperative market design
alternatives, while the plot 5b associates with the cooperative ones.

games, we have parallelized the computation of coalitions
across 72 cores. Recall that all source codes are available
in [32].

Figure 5 shows the computational time as the number
of prosumers gradually increases from 4 to 16. The non-
cooperative market design with a forward market for FSRs
scales nicely with the number of community members, as the
computational time remains within seconds, see Figure 5a.
Unlike the case of FSRs, the computational time for the case
of PSRs increases up to 5 minutes, since we compute the
dispatch of many small energy storage systems as a result of
providing operational access to PSR holders. For cooperative
market designs shown in Figure 5b, we observe that the
computational time increases exponentially up to 36 hours.
This effect is mainly driven by the exponential increase in the
number of possible coalitions of community members by 2N .
Calculating the nucleolus is slightly more time consuming
than the Shapley value, although the difference is negligible
compared to the determination of solutions for all possible
coalitions in the first place.

C. Illustrative Example with Four Prosumers

Let us consider a community with four prosumers,
namely n1, n2, n3, and n4. Prosumer n1 owns a PV system,
but has no storage. Prosumer n2 owns a storage system, but
has no renewable power generation. Prosumer n3 is a pure
consumer owning neither a PV nor a storage system. Finally,
prosumer n4 owns a PV and a storage system. The storage sys-
tems belonging to prosumer n2 and n4 are of 10-kWh energy
capacity, 4.5-kW charging and discharging power capacity,
and have a round-trip efficiency of 0.9. The initial state of
charge Eini

s of both energy storage systems is equal to zero.
The PV system of prosumer n4 is identical to that of n1.
The daily demand profile is assumed to be identical for all
prosumers as shown in Figure 3a.

In our non-cooperative market designs the access economy
is enabled through either PSRs or FSRs. However, these
two paradigms fundamentally follow different approaches.
While PSRs enable economic access via operational access
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Fig. 6: Market-clearing prices and awarded quantities of physical charging
rights (PCR), discharging rights (PDR), and energy rights (PER), as well as
those of financial charging rights (FCR), discharging rights (FDR), and energy
rights (FER) in percentage of the total available energy storage capacity in
the community. Numbers below percentage values indicate the absolute value
of tota PSR/FSR quantities bought by prosumers n1 to n4.

for each right holder, FSRs enable economic access through
a claim to the intertemporal energy arbitrage earned by the
energy community manager, where right values are determined
based on the limiting components of an energy storage system.
Therefore, PSR and FSR quantities awarded by prosumers
differ as shown in Figure 6. According to this figure, charging
and discharging right prices for both PSRs and FSRs are zero,
while energy rights have a price of e0.42/right.

The market outcomes of the forward market for PSRs are
shown in Figure 6a. Prosumers n1 and n4 award a slightly
greater share of physical charging, discharging, and energy
rights compared to prosumers n2 and n3, who award equal
shares. Thereby, prosumers n1 and n4 reduce spot market
activities and optimally utilize their PV systems for meeting
their own demand. Note that prosumers have to award all
types of rights, i.e., physical charging, discharging, and energy
rights, to get operational, and thereby economic access to
energy storage systems.

Figure 6b illustrates the forward market outcomes for FSRs.
Here, no prosumer awards financial discharging rights, since
the value of those rights in spot markets is zero. However,
financial charging and energy rights have positive values, from
which all prosumers award equal shares.

Figure 7 shows market outcomes for non-cooperative market
designs with respect to the expected cost/revenue of energy
community members incurred/earned in local forward and spot
markets as well as the community cost as a whole.

In detail, Figure 7a corresponds to a market design with
spot markets only. According to this figure, on the one hand
prosumer n1 incurs a cost in spot markets from meeting
demand in time periods when PV power is not sufficiently
available. On the other hand, she receives a revenue from
selling energy when her PV power generation exceeds her own
demand. Prosumer n2, who owns a storage system, incurs a
cost in spot markets from supplying her demand and charging
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Fig. 7: Expected cost/revenue of community members and the community cost
under non-cooperative market designs. Plot 7a corresponds to a market design
with spot markets only. Plot 7b considers a forward market for trading PSRs,
while plot 7c takes a forward market for trading FSRs into account.

the energy storage system. Moreover, she earns a revenue
by discharging the storage system and selling her energy
excess in local spot markets. Prosumer n3 solely incurs a
cost from meeting her demand. Finally, prosumer n4, who
owns a PV and a storage system, incurs a cost from charging
the storage system while earning a revenue from discharging
the storage and selling the excess power generation from
the PV system. By operating both PV and storage systems,
prosumer n4 earns the highest profit among all prosumers. The
energy community manager has a cost due to importing and
a revenue for exporting energy, although her financial balance
is zero.

Figure 7b associates with a market design including a local
forward market for trading PSRs. Prosumers n2 and n4 as
storage-owning community members earn a revenue in the
forward market by selling PSRs. All prosumers, including n2

and n4, incur some cost in the forward market by buying PSRs.
This shows that prosumers n2 and n4 provide a partial access
to other prosumers, and operate a part of the storage system in
local spot markets for their own benefit. By awarding PSRs,
the amount of energy exchanges in spot markets, and thus cost
for prosumers in those markets, decrease as, e.g., prosumer n1

now has access to a storage system, and more efficiently
utilizes her own PV system for meeting her own demand.

Figure 7c corresponds to the market design with a local
forward market for trading FSRs. In contrast to the case
with PSRs, the community manager collects a merchandising

surplus from scheduling all energy storage systems in spot
markets. This surplus is redistributed a posteriori among
FSR holders according to the resulting FSR values and
awarded shares.

An important observation made in Figure 7 is that under
all three non-cooperative market designs, with or without
rights, the overall expected cost for each community member
incurred in local forward and spot markets is unchanged.
In expectation, prosumer n1 and prosumer n4 earn e5.45
and e9.65, while prosumer n2 and prosumer n3 pay e1.12
and e5.32, respectively. The community manager is budget-
balanced, and the expected community revenue is e8.66.
However, each community member yields a cost distribution
across the 500 scenarios of uncertain PV power generation,
which depends on the local market design in place. This
difference is illustrated in Figure 8, which shows the expected
cost and its standard deviation for each prosumer under non-
cooperative and cooperative market designs.

According to Figure 8, prosumer n2, who owns a storage
system, remarkably reduces her cost volatility by selling stor-
age rights. Her cost standard deviation decreases from 30.4%
to 17.0%. The reason for such a reduced cost volatility is that
by selling rights, prosumer n2 participates less in spot mar-
kets with volatile prices induced by the uncertain PV power
generation. Moreover, under cooperative market designs her
cost volatility reduces even further to 9.7% under the Shapley
value. The cost/revenue volatility for prosumers n1 and n3

also reduces compared to a non-cooperative market design
without an access economy for energy storage. For the case
of either PSRs or FSRs, both prosumers n1 and n3 are sole
right buyers. Here, prosumer n1 experiences a slight revenue
volatility reduction from 50.8% to 47.9%, since her uncer-
tain PV power generation predominates her relatively small
amount of awarded storage rights. Under cooperative market
designs prosumer n1 earns an expected revenue slightly lower
than that under non-cooperative market designs. However, the
revenue volatility reduces as well. Prosumer n3, who is a
pure load, observes a slight increase in her expected cost
under cooperative market designs, although her cost volatility
remarkably decreases by up to 70% when considering the
Shapley value as the cost allocation rule. Lastly, prosumer n4,
who owns a PV and a storage system, experiences an increased
revenue volatility by 6% due to selling storage rights in
non-cooperative market designs. Her cost volatility is the
lowest under a non-cooperative market design without an
access economy for energy storage, since it is the only case
wherein she fully schedules her storage to tackle the PV power
generation uncertainty. When she offers storage rights to others
or participates in a cooperative market design, less storage
capacity is available for her individual needs, and thus her
revenue volatility increases. However, her expected revenue
slightly increases under cooperative market designs by 2%.

It is worth noting that although we observe changes in
individual costs in terms of the expected value and the
standard deviation, Figures 7 and 8 indicate that the expected
community cost as a whole and its volatility remain unchanged
across all proposed local market designs.
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Fig. 9: Plot 9a shows the expected cost µ and its standard deviation σ,
highlighted by shaded areas, for each prosumer under sole spot markets.
Plot 9b depicts the case for a FSR forward and spot markets. Plot 9c graphs
the cooperative market outcomes with the nucleolus as the cost allocation rule.

D. Impact of the Uncertainty

We assess the impact of the uncertainty by gradually in-
creasing the variance σ2 of the underlying probability distri-
bution from 0.01 to 0.1 as shown in Figure 9. Generally, as the
variance of the uncertain PV power generation increases the
cost/revenue volatility for all prosumers increases too. How-
ever, while prosumer n2, who owns a storage system, observes
a decrease in her expected cost, prosumer n3, who is a pure
load, experiences an increase in her expected cost. Similarly,
prosumers n1 and n4, which both own a PV system, incur a
reduction in their expected revenue as the variance increases.
These trends hold true for all proposed local market designs.
Finally, we note that on the one hand the revenue volatility for
prosumers n2 and n4, who both own PV systems, increases the
most under the cooperative market design with the nucleolus
as the cost allocation rule. On the other hand, the increase in
the cost volatility for prosumers n1 and n3 is the lowest under
this local market design.

E. Energy Community with 16 Prosumers

In this section we keep our initial four prosumers unchanged
and add twelve new prosumers, resulting in an energy com-
munity with 16 prosumers in total. Six out of 16 prosumers
own a PV system each, two prosumers own a storage system
each, six prosumers are pure demands, while each of the
remaining two prosumers owns both PV and storage systems.

TABLE II: PSR and FSR prices for storage systems s1 to s4 in [e/right].
Equal right prices for all storage systems are highlighted in blue, while
unequal prices are shown in red.

s1 s2 s3 s4

Physical charging right 0.020 0.020 0.020 0.020
Physical discharging right 0.027 0.027 0.027 0.027
Physical energy right 0.513 0.513 0.461 0.461
Financial charging right 0.018 0.018 0.018 0.018
Financial discharging right 0.027 0.027 0.027 0.027
Financial energy right 0.514 0.514 0.463 0.463

Each new prosumer has the same load pattern as depicted in
Figure 3a, although the whole demand profile is randomly
increased/decreased by up to 20%. The two newly added
storage systems, namely s3 and s4, have a round-trip efficiency
of 0.8, which is slightly lower than that of two existing storage
systems s1 and s2 with a round-trip efficiency of 0.9. Finally,
we consider for all energy storage systems an initial state of
charge Eini

s equal to zero.
Figure 10 shows the expected cost of each prosumer under

different local market designs, where we group prosumers by
technologies they own. A general trend that we observe is
similar to our previous observations made in Figure 8. The
expected cost for individual prosumers under non-cooperative
market designs remains unchanged. PV-owning prosumers
benefit from cooperative market designs by an increase in their
expected profit, while the storage-owning prosumers and pure
loads experience a slight increase in their expected cost.

Here, we draw attention to FSR and PSR prices as given in
Table II. Right prices for existing storage systems s1 and s2 are
slightly higher than those for newly added storage systems s3

and s4. The reason for lower right prices obtained for s3

and s4 is their comparatively lower efficiency with respect
to s1 and s2. This holds true for both PSRs and FSRs. In
addition, physical charging right prices are slightly higher
than financial ones, while the opposite holds true for energy
right prices.

V. CONCLUSION

This work provides and analyzes various local market
design alternatives for local energy communities, ranging
from non-cooperative to cooperative game-theoretic setups. In
particular, this work explores market design alternatives that
enable an access economy for energy storage systems. We
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observe that an access economy for such devices enhances
energy communities by reducing the cost/revenue volatility
of most prosumers. Each market design alternative ensures
some desirable market properties, while jeopardizing others.
Therefore, there is not a specific market design that out-
performs other alternatives. This work does not derive an
absolute conclusion on which of the proposed market designs
is more appealing. Rather, we provide a framework which
allows market regulators and policy makers to evaluate the
implications of each market design for energy communities.
The choice of a market design depends on the preference of
energy community members, in particular the magnitude of
cost/revenue volatility they are willing to accept. In addition,
it depends on which market properties are most attractive to
members of a given energy community. Finally, the size of
an energy community is a key factor in determining a market
design, because the computational time significantly increases
in the case of cooperative market designs as the number of
prosumers grows.

One key finding of our analyses is that the expected
community cost as well as the cost volatility of the whole
community across scenarios representing uncertainty are in-
dependent of the local market design. Consequently, proposed
local market designs do not affect the operational strategy
of PV and energy storage systems, energy exchanges among
prosumers as well as energy imports, and exports to and from
the energy community. However, what distinguishes various
market designs is the cost allocation among energy community
members, i.e., who pays to whom which amount of money.
In the case of non-cooperative market designs, the expected
cost of each prosumer is unchanged over all non-cooperative
market designs, although the cost distribution across scenarios
is dependent on the market design in hand. The cost volatility
reduces when either PSRs or FSRs are available. In coop-
erative market designs the expected costs of individuals and
the standard deviation of those costs change, depending on
technologies belonging to prosumers as well as the number of
energy community members. Consequently, prosumers’ pre-
ferred choice for either a non-cooperative market design with
storage rights or a cooperative market design depends on three
aspects, namely the technologies they own, their individual
preference on whether they are indifferent of the cost volatility
or not, as well as the size of the energy community.

From a policy perspective we note that all proposed local
market designs enable an access economy for storage systems.
In all market design alternatives explored in this paper, we find
that identical prosumers incur the same cost, which implies
that no market participant will be discriminated. However, we
hypothesize that energy storage owners may have a strong
incentive for manipulating markets, especially if there are only
a few players in the community owning storage. Therefore, a
market mechanism should be resilient against potential market
power to be exercised by storage owners. Note that exercising
market power by storage owners is not a concern in the non-
cooperative market design with FSRs, as well as cooperative
market designs. The reason for this is that in such market
design alternatives energy storage systems are operated not by
their owners, but by the energy community manager in favor
of the whole community.

As a potential area of research, it would be of interest to take
into account risk-averse prosumers, and also consider their
potential strategic behaviors. In addition, the computational
issue of cooperative market designs needs to be tackled by
developing a computational scheme for all coalitions based
on, e.g., an approximation for some coalitions given results
for other coalitions.

APPENDIX A
PROOFS AND SOLVING APPROACHES

The proofs are based on equivalent forms of Variational
Inequality (VI) problems and strict monotonicity of players’
preferences [41].

A. Proof of Proposition 1

We state problem Γspot(·) of finding a Nash equilibrium as
a VI(F,K) with the game map

F (z) = [O1J1(z1, z−1), · · · ,OmJm(zm, z−m)]>,

where z = [pntω, p
↑
stω, p

↓
stω, estω, p

i
tω, p

e
tω, λtω] denotes the

strategy vector. For game Γspot(·) the strategy set Ki is
compact, convex, and non-empty. Moreover, game map F (z)
is continuous, since all cost functions Ji∈Z are continuously
differentiable. Thus, a solution set SOL(K,F ) exists.

To show the singleton nature of the solution set SOL(K,F )
we consider the Jacobian matrix of F (z) as
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The above Jacobian matrix is symmetric, highlighted by the
red diagonal entries, meaning that the corresponding game is
integrable [33]. This implies that an equivalent optimization
problem solving the VI(F,K) exists, whose objective function
is given by

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt

=
∑

t∈T

(
Ctp

i
tω −Rtpe

tω +
∑

n∈N

1

2
βp2

ntω

)
. (13)

The non-cooperative Nash game Γspot(·) can be solved as

{Min
Φspot

(13) (14a)

subject to
(1c)–(1h), ∀n, t, (14b)
(2b)–(2c), ∀t, (14c)
(7e), ∀t }, ∀ω, (14d)

where Φspot = {pntω, p↑stω, p↓stω, estω, pi
tω, p

e
tω}. We derive

the cost incurred by prosumers and the energy community
manager by evaluating objective functions (1a) and (2a) at
the solution of (14). Note that the objective function (13)
is quadratic and convex. This confirms that a unique Nash
equilibrium point for the Nash game Γspot(·) exists. �

B. Proof of Proposition 2

Following Appendix A-A we state ΓPSR(·) as VI(F,K) with

F (z) = [O1J1(z1, z−1), · · · ,OmJm(zm, z−m)]>,

where z=[xP↑
s , x

F↓
s , x

Pe
s , q

P↑
ns, q

P↓
ns, q

Pe
ns, pntω, p

↑
nstω, p

↓
nstω, enstω,

µP↑
s , µ

P↓
s , µ

Pe
s , p

i
tω, p

e
tω, λtω] denotes the strategy vector. The

corresponding Jacobian matrix writes as

0 0 0 0 0 0 0 0 0 0 · · · 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 · · · 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 · · · 0 0 1 0 0 0

0 0 0 β 0 0 0 0 0 0 · · · 1 0 0 0 0 0

0 0 0 0 β 0 0 0 0 0 · · · 0 1 0 0 0 0

0 0 0 0 0 β 0 0 0 0 · · · 0 0 1 0 0 0

0 0 0 0 0 0 πωβ 0 0 0 · · · 0 0 0 0 0 πω

0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
...

...
...

...

1 0 0 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 −πω
0 0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 πω

0 0 0 0 0 0 πω 0 0 0 · · · 0 0 0 −πω πω 0







OzF (z) =

(3a)

(4a)

The above Jacobian matrix is symmetric. This shows there
exists an equivalent optimization problem, whose objective

function is

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt

=
∑

n∈N

∑

s∈S

1

2
β(qP↑

ns

2
+ qP↓

ns

2
+ qPe

ns

2
)

+
∑

t∈T
Eω
[(
Ctp

i
tω −Rtpe

tω +
∑

n∈N

1

2
βp2

ntω

)
. (15)

Accordingly, the non-cooperative Nash game ΓPSR(·) can
be solved using an equivalent optimization as

Min
ΦPSR

(15) (16a)

subject to
(3b)–(3l), ∀n, t, ω (16b)
(4b), ∀t, ω (16c)
(7e), ∀t, ω, (16d)

where ΦPSR ={xP↑
s , xP↓

s , xPe
s , qP↑

ns, q
P↓
ns, q

Pe
ns, pntω , p↑nstω , p↓nstω ,

enstω , pi
tω , pe

tω}. We derive the cost incurred by prosumers
and the energy community manager by evaluating objective
functions (3a) and (4a) at the solution of (16). Again, since
the objective function (15) is quadratic and convex, a unique
Nash equilibrium point exists. �

C. Proof of Proposition 3

Finally, we state problem ΓFSR(·) of finding a Nash equi-
librium as a VI(F,K) with the game map

F (z) = [O1J1(z1, z−1), · · · ,OmJm(zm, z−m)]>,

where z = [xF↑
s , x

F↓
s , x

Fe
s , q

F↑
ns, q

F↓
ns, q

Fe
ns, pntω, µ

F↑
s , µ

F↓
s , µ

Fe
s , p

i
tω,

pe
tω, λtω, p

↑
stω, p

↓
stω, estω]> denotes the strategy vector. We

consider the Jacobian matrix of F (z) as

0 0 0 0 0 0 0 · · · 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 · · · 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 · · · 0 0 1 0 0 0 0 0 0

0 0 0 β 0 0 0 · · · 1 0 0 0 0 0 0 0 0

0 0 0 0 β 0 0 · · · 0 1 0 0 0 0 0 0 0

0 0 0 0 0 β 0 · · · 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 πωβ · · · 0 0 0 0 0 πω 0 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
...

...
...

...

1 0 0 1 0 0 0 · · · 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 · · · 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 · · · 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 · · · 0 0 0 0 0 −πω 0 0 0

0 0 0 0 0 0 0 · · · 0 0 0 0 0 πω 0 0 0

0 0 0 0 0 0 πω · · · 0 0 0 −πω πω 0 πω −πω 0
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
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


OzF (z) =

(5a)

(6a)

Since the above Jacobian matrix is symmetric, an equivalent
optimization problem solving the VI(F,K) exists, whose
objective function is

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt

=
∑

n∈N

∑

s∈S

1

2
β(qF↑

ns

2
+ qF↓

ns

2
+ qFe

ns

2
) +

∑

t∈T
Eω
[
Ctp

i
tω −Rtpe

tω

+
∑

n∈N

(1

2
βp2

ntω −
∑

s∈S
(γ↑stωq

F↑
sn + γ↓stωq

F↓
ns+ γe

stωq
Fe
ns)
)]

(17)
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The objective function (17) comprises bi-linear terms as
products of FSRs awarded by prosumers and FSR values
realized from the storage operation. However, we can decom-
pose (17) and solve the non-cooperative Nash game ΓFSR(·) by
two sequential optimization problems. The first optimization
problem (18) minimizes the total system cost, and determines
energy exchanges and the optimal dispatch of all devices for
each spot market scenario ω as

Min
ΦFSR1

∑

t∈T
Eω
[
Ctp

i
tω −Rtpe

tω +
∑

n∈N

1

2
βp2

ntω

]
(18a)

subject to
(2b)–(2c), ∀t, ω, (18b)
(5f)–(5g), ∀n, t, ω, (18c)
(6b), ∀s, t, ω, (18d)∑

n∈N
pntω−pi

tω+pe
tω+
∑

s∈S
(p↑stω−p↓stω)=0:λtω,∀t, ω, (18e)

where the set of decision variables includes ΦFSR1 = {pntω,
pi
tω, p

e
tω, p

↑
tω, p

↓
tω, etω}.

Given optimal FSR values (γ↑?stω, γ
↓?
stω, γ

e?
stω), we derive the

FSR trading decisions. The second optimization problem (19)
minimizes the expected negative revenue from awarding FSR
as

Min
ΦFSR2

∑

n∈N

∑

s∈S

(1

2
β(qF↑

ns

2
+ qF↓

ns

2
+ qFe

ns

2
)

−
∑

t∈T
Eω
[
γ↑?stωq

F↑
ns+ γ↓?stωq

F↓
ns+ γe?

stωq
Fe
ns

])
(19a)

subject to
(5b)–(5d), ∀s ∈ Φn, (19b)
(5e), ∀n, s, (19c)

xF↑
s +

∑

n∈N
qF↑
ns = 0 : µF↑

s , ∀s, (19d)

xF↓
s +

∑

n∈N
qF↓
ns = 0 : µF↓

s , ∀s, (19e)

xFe
s +

∑

n∈N
qFe
ns = 0 : µFe

s , ∀s, (19f)

where the set of decision variables is ΦFSR2 = {xF↑
s , x

F↓
s , x

Fe
s ,

qF↑
ns, q

F↓
ns, q

Fe
ns}.

Given FSR (xF↑
s , x

F↓
s , x

Fe
s , q

F↑
ns, q

F↓
ns, q

Fe
ns) and spot mar-

ket pntω trading decisions, the local forward (µF↑
s , µ

F↓
s , µ

Fe
s )

and spot λtω market-clearing prices as well as FSR val-
ues (γ↑stω, γ

↓
stω, γ

e
stω), we derive each prosumer’s and the

energy community manager’s cost by evaluating objective
functions (5a) and (6a) at these values. Note that objective
functions (18a) and (19a) are strongly convex. Thus, a unique
optimal solution exists, implying that there is a unique Nash
equilibrium solution to the Nash game ΓFSR(·). �

APPENDIX B
CALCULATING THE NUCLEOLUS

According to [20] and [46], we solve an optimization
problem to determine the nucleolus as

ε1 = min
ε,πn

ε (20a)

subject to∑

n∈N
πn − v(N ) = 0, (20b)

0 ≤ πn, ∀n, (20c)

v(S)−
∑

n∈N
πn ≤ ε, ∀S /∈ {N , ∅}. (20d)

Constraint (20b) ensures the efficient allocation, while (20d)
ensures that the excess of any coalition is lower than or equal
to the maximum excess ε1. Based on (20) we define Θ as the
set of coalitions for which (20d) is binding.

For l > 1 we determine the maximum excess over all
coalitions that are not binding in the previous iteration as

εl = min
ε,πn

ε (21a)

subject to
(20b)–(20c), (21b)

v(S)−
∑

n∈N
πn ≤ εk, ∀S ∈ Θk,∀k ∈ [1, l − 1], (21c)

v(S)−
∑

n∈N
πn ≤ ε, ∀S /∈ {Θk,N , ∅},∀k ∈ [1, l − 1].(21d)

Constraints in (21b) ensure the efficient allocation. Con-
straint (21c) ensures that excesses binding in the previous
iteration are binding, while (21d) sets the maximum excess ε
for all remaining coalitions.
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Risk Trading in Energy Communities
Niklas Vespermann, Student Member, IEEE, Thomas Hamacher, and Jalal Kazempour, Senior Member, IEEE

Abstract—Local energy communities are proposed as a reg-
ulatory framework to enable the market participation of end-
consumers. However, volatile local market-clearing prices, and
consequently, volatile cost give rise to local market participants
with generally heterogeneous risk attitudes. To prevent the
increased operational cost of communities due to conservative
trading decisions in the forward stage, e.g., a day-ahead market,
we propose risk trading in energy communities via financial
hedging products, the so-called Arrow-Debreu securities. The
conditional value-at-risk serves as our risk measure for players
to study different degrees of market completeness for risk. We
define a risk-averse Nash game with risk trading and solve the
Nash equilibrium problem for an incomplete market for risk as
a mixed complementarity problem. We show that such a Nash
equilibrium problem reduces to a single optimization problem
if the market is complete for risk. Numerical findings indicate
that a significant community cost saving can be realized when
players engage in risk trading and sufficient financial hedging
products are available. Moreover, risk trading efficiently protects
less risk-averse players from highly risk-averse decision-making
of rival players.

Index Terms—Arrow-Debreu security, conditional value-at-
risk, energy community, market completeness for risk, mixed
complementarity problem, risk trading, two-stage stochastic Nash
equilibrium problem

I. INTRODUCTION

A. Motivation and Aim

The development of distributed energy resources and the
progress in information and communication technologies em-
power end-consumers to engage in energy trading. Local
energy communities are proposed as a regulatory frame-
work that allows the market participation of these proactive
consumers, the so-called prosumers [1]–[3]. Energy trading
within a local energy community enables its members to
efficiently utilize distributed energy resources, such as roof-top
photovoltaic (PV) systems, battery storage units, and thermal-
electric appliances. In this way, community members are
expected to reduce their energy cost [4].

However, the uncertainty inherent to the intermittent injec-
tion of small-scale renewable energy sources such as PV sys-
tems causes increased price variability within the energy
community. As a result, the volatility of energy cost for local
energy market participants, the so-called players, increases.

Generally, energy markets are organized in a temporally
sequential manner to ensure a cost-efficient matching of supply
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and demand given the physical requirements of the techni-
cal system, such as the instantaneous balance of electricity
production and consumption. In this context, players make
decisions in a forward market, e.g., a day-ahead market,
before the realization of an uncertain event. The potential
realizations of the uncertainty in a spot market, e.g., a real-
time market, induce volatile prices, i.e., the spot market price
might be comparatively higher or lower than the forward
market price depending on the realization of the uncertain
event. This price volatility leads to a cost volatility for players,
giving rise to risk-averse preferences.1 At the stage before
uncertainty realization, i.e., the forward market, a risk-averse
player tends to make conservative decisions such that the
volatility of her overall cost is reduced in both markets.
This risk-averse decision-making comes with the cost of an
increased disbenefit, i.e., a higher cost or a lower profit for
individual players as well as a higher operational cost for the
whole energy community.

Under the common assumption of homogeneous risk aver-
sion [6], all players have identical risk attitudes. However, in
practice we rather observe heterogeneous risk aversion, where
individual players have different risk preferences, such that
some players are willing to accept a greater cost volatility
induced by an uncertain event, e.g., the power generation of
renewable energy sources, and thereby, a greater risk than
others. Consequently, if less risk-averse players could take
over the cost volatility of highly risk-averse players, these
highly risk-averse players are able to make less conservative
forward market decisions while ensuring a low cost volatility.
As a result, the total cost of the energy community as well as
disbenefits of risk-averse players resulting from conservative
forward market decisions decrease.

To this purpose, we propose risk trading within local energy
communities as a vehicle for the cost volatility transfer. Risk
trading describes the exchange of financial hedging products
in a market to reduce the cost volatility by a different mean
than conservative forward market decisions. However, this
transfer depends highly on the availability of financial hedging
products. In this context, local energy markets might range
from a fully incomplete market for risk, where no financial
hedging products are available, to a complete market for
risk [7], in which all potential realizations of the uncertainty
can be hedged. Both degrees of market completeness for
risk constitute extremes, while intermediate cases are those
in which risk trading is possible only for a part of potential

1Risk aversion is a natural attitude of decision-makers, which can be
observed not only in long-term planning decision-making problems but also
in short-term operational ones. However, since operational decisions are made
more often, e.g., on an hourly basis, decision-makers are able to adjust their
risk preferences over time. They can even learn how to play in dynamic games
with risky payoffs [5].
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realizations of the uncertainty.
The concept of risk trading gives rise to two important

market-driven questions: First, how to define and implement a
financial hedging product for energy communities to transfer
the cost volatility from highly risk-averse to less risk-averse
players? Second, does a potentially unique market equilibrium
under heterogeneous risk aversion and risk trading exist?

To answer these questions, we consider a two-stage stochas-
tic decision-making process for heterogeneously risk-averse
energy community members, who engage in risk trading. The
first stage corresponds to trading decisions in a local forward
market for energy and financial hedging products. The second
stage represents trading decisions in a local spot market,
where the uncertain PV power generation is characterized
through a set of discrete scenarios. We apply the well-known
Conditional Value-at-Risk (CVaR) [8] as the risk measure for
players, and then define a risk-averse non-cooperative Nash
game with risk trading based on the collection of all play-
ers’ decision-making problems. Next, we solve the resulting
two-stage stochastic Nash equilibrium problem as a mixed
complementarity problem [9]. However, for the special case
of a complete market for risk, we solve a single two-stage
stochastic optimization problem, which is equivalent to the
Nash equilibrium problem. We eventually evaluate different
degrees of market completeness for risk in terms of individual
costs and total community cost.

B. Literature Review
Neglecting risk aversion causes a systematic overestimation

of benefits as shown in [10], where heterogeneously risk-
averse players are considered for a generation expansion
planning problem. Reference [11] discusses the effect of
different risk preferences on market-clearing outcomes. Risk-
averse stochastic producers avoid the forward market, which
causes the system cost and market-clearing prices to increase.
However, if risk trading among players is available, the cost
volatility can be shifted through risk trading to less risk-
averse players as discussed in [12]. Thereby, even highly risk-
averse players make moderate forward market decisions, since
the volatile cost is hedged. Thus, market-clearing prices and
the system cost decrease. Reference [13] even highlights the
potential benefits of risk trading in the case of ill-designed
electricity markets.

From a methodological perspective, [14] and [15] link
heterogeneous risk aversion and complete as well as incom-
plete markets for risk by stating the problem as a risk-averse
Nash equilibrium problem with risk trading. If the market is
incomplete for risk, multiple equilibria may exist [16], which
are differently stable and may have different system cost as
discussed in [17]. However, if the market is complete for
risk, [14], [15], and [18] show how a risk-averse social planner
solution can be interpreted as a perfectly competitive risk-
averse Nash equilibrium, where sufficient hedging products
are available.

The principles for market clearing and risk trading in an en-
ergy community are not different than those in other electricity
markets, e.g., the transmission-level wholesale markets. How-
ever, since the number of players in local energy markets is

quite limited, their heterogeneous risk preferences potentially
have a great impact on market outcomes. In this context of
heterogeneous risk aversion in energy communities the recent
work [19] addresses the impact of risk trading on the notion of
fairness among community members. Moreover, [20] studies
heterogeneous risk-averse prosumers, where risk trading is
based on a distributed implementation of financial products.
A risk-averse equilibrium is computed given a generalized
potential game structure.

However, a great challenge remains in defining an appli-
cable financial product that enables risk trading. Here, [21]
studies a local energy market on the distribution system level,
i.e., a market organization layer above energy communities,
where financial hedging rights are proposed to reduce the
price volatility due to distribution network constraints. More-
over, [22] considers the simultaneous trading of energy and
the uncertain part of power generation by PV systems. Note
that financial products proposed by [21] and [22] leave the
market partially incomplete for risk [23].

C. Contributions and Paper Organization

To the best of our knowledge, there are only two works in
the existing literature that account for heterogeneously risk-
averse players in the context of local energy communities.
While [19] focuses on the notion of fairness, our work places
strong emphasis on game-theoretical analyses and properties.
In addition, [20] studies the risk-averse equilibrium based on
a generalized Nash equilibrium problem, while we provide
a formulation which yields a Nash equilibrium problem,
and therefore rigorous conclusions on the solution existence
and uniqueness. Moreover, [19] and [20] neglect a thorough
analysis of different degrees of market completeness for risk.

Methodologically, we move beyond [14] and [15] and
mathematically prove that no equivalent optimization problem
necessarily exists in the case that the market is incomplete
for risk, while the degree of incompleteness—either fully or
partially—is arbitrary. Moreover, in contrast to [14], [15],
and [18], we show that although for the complete case an
equivalent optimization problem exists, multiple Nash equi-
libria might still be found.

From the application perspective, we offer a thorough study
on local energy communities with a focus on risk-averse
prosumers, who engage in risk trading. Based on our numer-
ical results, we identify that prosumers with a deterministic
demand avoid the uncertain spot market, while prosumers with
stochastic generation tend to postpone trading decisions to
the spot market, where the realization of the uncertain power
generation is observed. Moreover, by risk trading a significant
community cost saving can be realized, while all players yield
reduced disbenefits.

The remainder of this paper is organized as follows. In
Section II we introduce the structure of the energy community
and describe methods for representing risk aversion and risk
trading. We present risk-neutral optimization problems and
start by defining a risk-neutral Nash game in Section III. In
Section IV we extend risk-neutral optimization problems by
adding the CVaR as a risk measure for players as well as
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risk trading among energy community members and define
the risk-averse Nash game with risk trading. In Section V
we present and discuss numerical results. We conclude our
work in Section VI. Mathematical proofs of propositions are
provided in Appendix A. Appendix B includes the resulting
mixed complementarity problem. Lastly, Appendix C provides
the formulation for a risk-averse social planner optimization
problem whose solution is equivalent to a risk-averse Nash
game in the case that the market is complete for risk.

II. PRELIMINARIES

A. Energy Communities

We understand a local energy community as an aggregation
of a few prosumers, which are spatially located very close
to each other and physically connected to the distribution
system as a single entity. For example, energy communities
were recently demonstrated through “The Energy Collective”
project [24] implemented in Bofællesskabet Svalin, Denmark,
the “EnergyLab Nordhavn” project [25] implemented in the
Nordhavn neighborhood of Copenhagen, Denmark, as well
as the “pebbles” project [26] implemented in Wildpoldsried,
Germany. These projects enable prosumers to directly engage
in energy trading with their neighbors via a local energy
market within the energy community. This is one key aspect
that the European Commission asks its member states for by
the renewable energy directive, Article 21 [27].

Local markets for energy communities should be differ-
entiated from any other market schemes on the distribution
system level that may geographically cover a whole feeder or
even a suburb. Distribution-level markets might be designed
for trading energy [28] or flexibility [29], taking into account
power losses and technical constraints such as limits on nodal
voltage magnitudes and apparent power flow of lines. We
treat local markets for energy communities as one market-
organization layer below any distribution-level market, and
rather see the energy community as a whole as a potential
market participant in such distribution-level markets. However,
we leave the explicit consideration for future research.

B. Definitions

In this study we consider a local forward as well as a
local spot market, and represent the probability distribution
of an uncertain realization in the spot market by a finite
number of discrete scenarios ω ∈ Ω. Each scenario embodies
a collection of the PV power generation for all prosumers
under that scenario. Prior to the uncertainty realization, the
local forward market determines the energy production and
consumption schedule for each community member for, e.g.,
the next day, as well as a local forward market-clearing price.
In real time when the uncertainty is realized, any deviations
from the local forward market schedule are balanced in the
local spot market, providing a local spot market-clearing price.

In the local forward market, risk-neutral players make
decisions based on physical probabilities πΘ

ω of uncertain
realizations, i.e., empirical real-world observations [15]. Risk-
averse players, however, observe physical probabilities and
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Fig. 1: Plot 1a shows the structure of the energy community, where explicitly
considered players are marked in blue. Plot 1b depicts the two-stage stochastic
decision-making process of energy community members.

increase/decrease the weight of some scenarios to derive risk-
adjusted probabilities πρω [10], which describe their individual
risk preferences on uncertain realizations. In fact, a risk-averse
player treats risk-adjusted probabilities as her individual de-
cision variables, such that she considers comparatively higher
weights for scenarios under which she incurs a high cost, or
achieves a low profit. Similarly, she considers comparatively
lower weights for scenarios, resulting in a low cost, or a high
profit. Note that the sum of risk-adjusted probabilities should
still be equal to one. By decision-making based on resulting
risk-adjusted probabilities, the risk-averse player reduces her
cost volatility at the cost of increased disbenefits.

To outweigh conservative forward market decisions and to
reach a consensus among energy community members on
risk preferences, we consider risk trading via a financial
market product, the so-called Arrow-Debreu security [30].2

For each scenario ω ∈ Ω, an Arrow-Debreu security is an
unconstrained contract between a security buyer and a seller
in the forward market. Both the buyer and seller are local
energy community members. The buyer pays to the seller in
the forward market based on a market-driven price, the so-
called risk price µω , whose value is lower than or equal to 1.
In return, the buyer receives from the seller a payment of 1
in the spot market if scenario ω realizes. For example, if a
prosumer buys 100 securities from another prosumer for a
given scenario ω, she should pay e100µω but will be paid
back e100 if that scenario occurs. We will show later in
Section V how risk-adjusted probabilities converge towards
a consensus on risk preferences if risk trading is possible.

C. Local Market Structure

Within the energy community we explicitly consider three
types of players as illustrated in Figure 1a, namely pro-
sumers, a spatial arbitrageur and a price setter. Moreover,
Figure 1b schematically depicts the underlying two-stage
stochastic decision-making process of each player.

Prosumers, who potentially have an inelastic demand and
own PV systems with an uncertain power generation, buy
and sell energy as well as Arrow-Debreu securities in the

2While the definition of Arrow-Debreu securities in [30] is based on a
discretization of an uncertain event, recent efforts have been made to consider
risk trading for a continuous probability distribution of an uncertain event [31].
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local forward market. At the same time, they anticipate all
possible local spot market realizations ω ∈ Ω, i.e., the spot
market-clearing price and the uncertain PV power generation
in scenario ω, as well as their respective response in terms of
energy trades and the cost/revenue from buying/selling Arrow-
Debreu securities for each scenario ω.

In the case of a shortage or a surplus of energy the spatial
arbitrageur imports and exports energy from and to the energy
community. Since an energy community supplies and demands
fairly small energy volumes, a direct access for the spatial ar-
bitrageur to the wholesale market is rather unlikely. Therefore,
we consider a retailer3, who serves as an intermediary for the
energy community. The spatial arbitrageur decides on energy
imports and exports as well as her Arrow-Debreu security
trades in the local forward market. She also takes into account
all possible realizations of local spot market-clearing prices as
well as her optimal recourse in terms of energy imports and
exports and the cost/revenue from Arrow-Debreu securities for
each scenario ω.

Finally, a price setter, who is a fictitious player [32], reveals
local market-clearing prices evolving under free trade and
perfect competition. In detail, the price setter reveals a local
forward market-clearing price for energy and prices for Arrow-
Debreu securities given trading decisions by prosumers and
energy imports/exports by the spatial arbitrageur. At the same
time, she anticipates the recourse by prosumers due to the
uncertain PV power generation as well as the optimal response
by the spatial arbitrageur and reveals a spot market-clearing
price for each scenario ω ∈ Ω.4

D. Towards a Complete Market for Risk

We study four different cases as summarized in Table I. In a
case wherein all players are risk-neutral, a Nash equilibrium is
determined by an optimization problem. The fully incomplete
case constitutes a setting where prosumers and the spatial
arbitrageur are heterogeneously risk-averse and no financial
hedging products are available. We relax the constraint on
the availability of hedging products and consider a partially
incomplete market for risk, where some realizations of the
uncertain PV power generation can be hedged. For these two
cases of an incomplete market for risk, we rely on solving
the Nash equilibrium problem as a mixed complementarity
problem along with its challenges [16], [17], such as potential
multiplicity, instability, and computational burden. However,
if the market is complete for risk, i.e., all realizations of
uncertain PV power generation can be hedged, the Nash
equilibrium problem reduces to an equivalent optimization
problem [18]. According to [15], expected disbenefits decrease
as we move from a fully incomplete to a complete market for
risk, as illustrated in the last column of Table I.

3A retailer is a self-interested profit-seeking entity which buys great energy
volumes at the wholesale market and sells energy to many small customers.

4In a perfectly competitive market environment the spatial arbitrageur and
the price setter can be interpreted as a community manager, who simultane-
ously fulfills both tasks, ensuring liquidity and revealing prices [9].

TABLE I: Problem overview with respect to the degree of risk trading.

Risk attitude Risk trading Problem type Expected disbenefits

Neutral - Optimization∗ ?
Averse Fully incomplete Equilibrium+ ? ? ??
Averse Partially incomplete Equilibrium+ ? ? ?
Averse Complete Optimization∗ ??
∗Equivalent Nash equilibrium problem exists.
+Equivalent optimization problem does not necessarily exist.

E. Overview of the Conditional Value-at-Risk

The seminal work [33] defines coherent risk measures ρ(·)
of an uncertain disbenefit function Zω . We will apply the dual
representation of a coherent risk measure defined by [34] as

ρ(Zω) = max
πρω∈D

∑

ω∈Ω

πρωZω, (1a)

where the risk set D defines the feasible region for risk-
adjusted probabilities πρω . For the CVaR as a coherent risk
measure in particular, the risk set DCVaR [10] is given by

DCVaR =
{
πρω :

∑

ω∈Ω

πρω = 1, 0 ≤ πρω ≤
1

α
πΘ
ω

}
, (1b)

where the equality constraint ensures that the sum of risk-
adjusted probabilities is still equal to one. The lower bound
of the inequality constraint ensures that all risk-adjusted
probabilities πρω are non-negative. The upper bound allows
increasing the weight of some scenarios according to physical
probabilities πΘ

ω and the risk aversion parameter α ∈ (0, 1]
indicating the percentile of the CVaR measure. For the special
case α= 1, risk-adjusted probabilities are equal to physical
probabilities, which represents a risk-neutral attitude.

In fact, (1a) with the risk set (1b) states a constrained
optimization problem that determines risk-adjusted probabil-
ities according to the risk aversion expressed by the CVaR.
This optimization problem is an equivalent representation of
the CVaR metric expressed by the well-known linear program-
ming problem [8] as

ρCVaR(Zω) = min
ζ

{
ζ +

1

α

∑

ω∈Ω

πΘ
ω

(
Zω − ζ

)+}, (1c)

which states the weighted mean deviation from the αth quan-
tile, where ζ denotes the value-at-risk. However, implementing
the CVaR by (1c) causes the objective function to be non-
smooth, i.e., non-continuously differentiable, owing to the pos-
itively defined term in (·)+, and thus, limits our possibilities
for deriving optimality conditions to draw conclusions on the
uniqueness of the equilibrium point in game-theoretic models.

Remark 1. In Section IV we combine the dual representation
of a coherent risk measure (1a) with the risk set of the
CVaR (1b) when introducing the generic framework of a risk-
averse Nash equilibrium problem with risk trading. This allows
us to use a framework that relies on analyzing the resulting
game-theoretic models in their equivalent forms of Variational
Inequality (VI) problems [35]. This VI representation enables
us to draw conclusions on the existence and uniqueness of a
game solution. For the case of a complete market for risk,
we apply the CVaR metric (1c) in the equivalent optimization
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problem of the Nash equilibrium problem. This allows us
to efficiently solve the equivalent optimization problem and
derive numerical values of trades and prices.

F. Assumptions

We assume that all players are price takers, resulting in
a perfectly competitive local energy market. The PV power
generation is the only source of uncertainty, though other
sources of uncertainty can be incorporated in the same manner.
Owing to the low spatial distance, we assume that all PV
systems have the same power generation profile and players
possess the same information on scenarios as well as identical
beliefs on physical probabilities πΘ

ω .5 Furthermore, owing to
the size of the energy community and the fact that spatial
distances and trade volumes are relatively small, we neglect
network constraints within the energy community. However,
network constraints between the energy community and the
distribution system, which are observed by the spatial arbi-
trageur are of interest and are modeled in this work. Results
change in a way that a network congestion and consequently
limited energy imports or exports affect local forward and spot
market-clearing prices. Moreover, we consider the local market
clearing for a single hour only, since we do not consider any
technology with time-coupling constraints, e.g., energy storage
units. A problem extension to consider multiple time steps
is mathematically straightforward, though it complicates the
solution interpretation on how risk trading affects local energy
market outcomes. Lastly, we consider two trading floors,
e.g., day-ahead and real-time, only, and exclude additional
floors, such as intraday markets. The possibility of peer-
to-peer trading among prosumers within the community is
also discarded.

In the next two sections we introduce the mathematical
formulation of each player’s problem. We start by describing
a risk-neutral energy community in Section III. In Section IV,
we extend the risk-neutral problem formulation to a setting
with risk-averse players and risk trading.

Notation: We use a tilde, i.e., (̃·), for those symbols associ-
ated with the local spot market. Symbols followed by a colon
denote dual variables of respective constraints. We use these
dual variables when we derive Karush-Kuhn-Tucker (KKT)
conditions of optimization problems in Appendix B.

III. MARKET CLEARING WITH RISK-NEUTRAL PLAYERS

In a risk-neutral setting, each prosumer n ∈ P minimizes
her expected energy cost Jn of meeting the demand as
{

Min
pn,p̃nω

Jn= λpn︸︷︷︸
Forward market

cost

+
1

2
βp2

n
︸ ︷︷ ︸

Regularizer

+
∑

ω∈Ω

πΘ
ω

(
λ̃ωp̃nω︸ ︷︷ ︸

Spot market
cost

+
1

2
βp̃2

nω
︸ ︷︷ ︸
Regularizer

)
(2a)

s.t. pn + p̃nω + S̃nω −Dn = 0 : φ̃nω, ∀ω, (2b)

− Pn ≤ pn ≤ Pn : χp
n
, χp

n, (2c)

− Pn ≤ p̃nω ≤ Pn : χp̃
nω
, χp̃

nω, ∀ω
}
∀n. (2d)

5A relevant model accounting for asymmetric information about scenarios,
but without modeling risk aversion, is available in [36].

The first term in the objective function (2a) states the
cost incurred from power trades in the local forward market.
Positive values of pn indicate a demand while negative values
state a supply. Each prosumer n pays/is paid based on the local
forward market-clearing price λ for her energy exchange pn.
The second term in (2a) states a regularizer [37] for for-
ward market trades, where β is a small positive constant6,
e.g., 10−3. Institutionally, this regularizer can be interpreted
as a transaction cost arising from trades. The third and fourth
terms of (2a) refer to the expected cost and the regularizer in
the local spot market, weighted by physical probabilities πΘ

ω .
The prosumer n pays/is paid based on the local spot market-
clearing price λ̃ω for her power exchange p̃nω in scenario ω.
Note that market-clearing prices λ and λ̃ω are parameters
within (2), while they are variables in the Nash equilibrium
problem, i.e., the collection of all prosumers’ n ∈ P , the spa-
tial arbitrageur’s, and the price setter’s optimization problems,
which are solved simultaneously.

For each scenario ω, the prosumer n has to ensure the
satisfaction of her individual power balance, enforced by (2b).
Her demand Dn has to be met by the power exchange pn
in the forward market, p̃nω in the spot market, and her
PV power generation S̃nω , which is a scenario-dependent
parameter. Finally, (2c) and (2d) restrict power exchanges
within the energy community by parameters Pn. We introduce
theoretical bounds Pn on power exchanges to achieve a
closed and compact decision set for all players [12]. This
will be necessary later for proving the existence of the game
solution [35]. However, we select sufficiently large values
for Pn, and check the equilibrium solution a posteriori to
ensure (2c) and (2d) are always inactive.

Furthermore, the spatial arbitrageur Par minimizes her
expected cost Jar from trading energy between the energy
community and a retailer for energy as

Min
pi,pe,p̃i

ω,p̃
e
ω

Jar =
(
C i − λ

)
pi

︸ ︷︷ ︸
Forward market import cost

−
(
Ce − λ

)
pe

︸ ︷︷ ︸
Forward market export cost

+
∑

ω∈Ω

πΘ
ω

[ (
C̃ i − λ̃ω

)
p̃i
ω︸ ︷︷ ︸

Spot market import cost

−
(
C̃e − λ̃ω

)
p̃e
ω︸ ︷︷ ︸

Spot market export cost

]
(3a)

s.t. 0 ≤ pi ≤ P i
: χpi

, χpi
, (3b)

0 ≤ pe ≤ P e
: χpe

, χpe
, (3c)

0 ≤ p̃i
ω ≤ P

i
: χp̃i

ω
, χp̃i

ω , ∀ω, (3d)

0 ≤ p̃e
ω ≤ P

e
: χp̃e

ω
, χp̃e

ω , ∀ω. (3e)

The first term of the objective function (3a) corresponds to
the cost in the forward market from importing power pi at the
fixed price C i while being paid at the local forward market-
clearing price λ. Similarly, the second term represents the
cost from exporting energy pe at the forward market-clearing
price λ, while receiving the fixed exporting price Ce. The risk-

6Very small values for β do not alter the total operational cost of the energy
community in comparison to β = 0. However, β = 0 yields linear objective
functions, and may give rise to multiple trading solutions for players [38]. We
introduce regularizers to ensure strictly monotone objective functions. This
allows us to draw conclusions on the uniqueness of the solution. In fact, a
very small value for the regularizer ensures identical cost for players, who
have identical risk preferences, production, and consumption profiles.
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neutral spatial arbitrageur weights local spot market scenarios
according to physical probabilities πΘ

ω . The third and fourth
terms of (3a) resemble the cost from energy arbitrage between
the energy community and the retailer under each scenario of
the spot market, where C̃ i and C̃e are fixed importing and
exporting prices, respectively. Constraints (3b)–(3e) set bounds
for importing P

i
and exporting P

e
power to and from the

energy community.
Finally, for given values of pn, pi, pe, p̃nω, p̃

i
ω, and p̃e

ω , the
price-setter Pps derives forward and spot market-clearing
prices, i.e., λ and λ̃ω , as

Min
λ,λ̃ω

Jps = λ
( ∑

n∈N
pn − pi + pe)

︸ ︷︷ ︸
Buyers’ forward market cost / sellers’ forward market revenue

+
∑

ω∈Ω

πΘ
ω

[
λ̃ω
( ∑

n∈N
p̃nω − p̃i

ω + p̃e
ω

)

︸ ︷︷ ︸
Buyers’ spot market cost / sellers’ spot market revenue

]
(4a)

s.t. −Λ ≤ λ ≤ Λ : χλ, χλ, (4b)

−Λ ≤ λ̃ω ≤ Λ : χλ̃
ω
, χλ̃ω, ∀ω. (4c)

The first line of the objective function (4a) minimizes
the cost for energy buyers and maximizes the revenue for
energy sellers in the local forward market. By sellers, we
refer to producers and energy imports. Similarly, by buyers,
we refer to consumers and energy exports. The second line
minimizes/maximizes the expected cost/revenue in the local
spot market, where each scenario is weighted by the physical
probability πΘ

ω . Constraints (4b) and (4c) set the lower and
upper bounds on market-clearing prices7. Note that in the
case that (4b) and (4c) are inactive, the KKT conditions
of (4) enforce power balance conditions within the energy
community in both forward and spot markets.

Definition 1. Given optimization problems (2)–(4), we define
Γ(Z,K, {Ji}∀i∈Z) as the risk-neutral non-cooperative Nash
game, where Z = (P ∪ Par ∪ Pps) is the set of all players.
K = (K1× · · · ×KP ×Kar×Kps) denotes the strategy set
of the game, where Ki is the strategy set of player i ∈ Z .

Proposition 1. For the risk-neutral non-cooperative Nash
game Γ(·) an equivalent optimization problem exists. In addi-
tion, the Nash equilibrium solution is unique.

Proof 1. We provide the proof in Appendix A-A. �

IV. MARKET CLEARING WITH RISK-AVERSE PLAYERS
AND RISK TRADING

We extend optimization problems of risk-neutral pro-
sumers n ∈ P and the risk-neutral spatial arbitrageur Par
by adding the coherent risk measure function ρ(·) as stated
in (1a) over local spot market scenarios. The risk set of each
player DCVaR is built upon the CVaR measure as defined

7Again, we theoretically consider a price floor and a price cap to achieve a
compact and closed decision set for the price-setter, and thereby, to mathemat-
ically prove the solution existence. In our numerical study, we will consider
a very large value for parameter Λ to ensure bounds are inactive. We refer
the interested reader to [39], addressing how an active price cap may cause
market inefficiency.

Risk-neutral Nash game Γ(·)
Prosumers n ∈ P :
Spatial arbitrageur Par:
Price-setter Pps:

(2)
(3)
(4)

Risk-averse Nash game Γρ(·)
Prosumers n ∈ Pρ :
Spatial arbitrageur Par,ρ:

Price-setter Pps,∩:

(5),(6)
(7),(8)
(9),(10)

Risk aversion
and

risk trading

Fig. 2: By adding risk aversion and risk trading to the risk-neutral Nash game,
each player simultaneously solves two optimization problems within the risk-
averse Nash equilibrium problem with risk trading.

in (1b). Moreover, we introduce risk trading among prosumers
and the spatial arbitrageur. Finally, we extend the optimization
problem of the price-setter Pps such that she clears the market
and respects prosumers’ and the spatial arbitrageur’s risk pref-
erences when revealing local market-clearing prices. Figure 2
depicts the affiliation of optimization problems moving from
the risk-neutral Nash game Γ(·) with one optimization problem
per player to the risk-averse Nash game Γρ(·) with risk trading,
where we consider two optimization problems per player.

We first start with risk-averse prosumers n ∈ Pρ. Each
prosumer is able to hedge the risk induced by the uncertain
PV power generation in scenario ω by trading Arrow-Debreu
securities anω in the local forward market. We develop two
optimization problems related to each risk-averse prosumer.
These two problems are solved simultaneously within the
Nash equilibrium problem. The first problem of prosumer n
minimizes her risk-adjusted expected cost Jρ1n by determining
her trading decisions pn, p̃nω , and anω while risk-adjusted
probabilities πρnω are given. The second one exhibits the
dual representation (1a) of the CVaR as risk measure func-
tion ρCVaR(·) and determines risk-adjusted probabilities, while
her trading decisions are treated as fixed parameters. The first
problem writes as

{
Min

pn,p̃nω,anω
Jρ1n = λpn +

1

2
βp2

n +
∑

ω∈Ω

µωanω

︸ ︷︷ ︸
Forward market hedging cost/revenue

+
∑

ω∈Ω

πρnω
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω︸︷︷︸
Hedging cost/revenue in ω

)
(5a)

s.t. (2b)–(2d)
}
∀n. (5b)

Compared to (2a) in the risk-neutral setting, the objective
function (5a) includes risk-adjusted probabilities πρnω instead
of physical ones. It also comprises one additional free variable
per scenario, i.e., Arrow-Debreu security anω , and two addi-
tional cost/revenue components related to such securities. The
first line of (5a) includes

∑
ω∈Ω µωanω , which refers to the

total cost/revenue of prosumer n over scenarios in the local
forward market, obtained by trading securities anω at the risk
price µω . A positive value for anω implies that prosumer n
buys securities in the forward market for scenario ω, and
thereby lowers her associated risk under that scenario. In
contrast, a negative value for anω means that prosumer n
sells securities in the forward market, and therefore is willing
to accept a higher risk under scenario ω. Note that similar
to λ and λ̃ω , the risk price µω is a parameter in (5), while it
is a variable within the Nash equilibrium problem. Note also
that anω and µω are Nash equilibrium variables in the forward
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stage, though they are indexed by scenario ω. If scenario ω
occurs in the local spot market, the seller/buyer of security anω
pays/is paid at price 1, as given in the second line of (5a).

The second optimization problem corresponding to each
risk-averse prosumer n ∈ Pρ resembles the risk measure func-
tion ρCVaR(·), takes her scenario-indexed trading decisions p̃nω
and anω into account as parameters, and endogenously deter-
mines her risk-adjusted probabilities πρnω as
{

Min
πρnω

Jρ2n = −
∑

ω∈Ω

πρnω
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω
)

(6a)

s.t.
∑

ω∈Ω

πρnω − 1 = 0 : φρn, (6b)

0 ≤ πρnω ≤
1

αn
πΘ
ω : χρ

nω
, χρnω, ∀ω

}
∀n, (6c)

where the objective function (6a) minimizes the negative
expected cost in the local spot market by optimally choosing
values for risk-adjusted probabilities πρnω . Note that according
to the definition of a coherent risk measure in (1a), the ob-
jective function (6a) maximizes the disbenefit for prosumer n
in the local spot market by increasing the weight of the worst
scenarios. Constraints (6b) and (6c) set the bounds of risk-
adjusted probabilities πρnω according to the risk set DCVaR

n of
each risk-averse prosumer n.

Similarly, as for risk-averse prosumers we consider two opti-
mization problems for the risk-averse spatial arbitrageur Par,
who is also able to participate in risk trading. In fact, she
minimizes her risk-adjusted expected cost Jar,ρ1 as

Min
pi,pe,p̃i

ω,p̃
e
ω,bω
Jar,ρ1=

(
C i − λ

)
pi −

(
Ce − λ

)
pe +

∑

ω∈Ω

µωbω

︸ ︷︷ ︸
Forward market hedging cost/revenue

+
∑

ω∈Ω

πarω
[(
C̃ i − λ̃ω

)
p̃i
ω −

(
C̃e − λ̃ω

)
p̃e
ω − bω︸︷︷︸

Hedging cost/revenue in ω

]
(7a)

s.t. (3b)–(3e). (7b)

Compared to (3a) in the risk-neutral model, the first line
of (7a) includes the total cost/revenue for the spatial arbi-
trageur from trading Arrow-Debreu securities bω at the risk
price µω in the local forward market. The second line refers
to her expected cost in the local spot market weighted by risk-
adjusted probabilities πarω , including the hedging cost/revenue
under each scenario ω.

Similar to (6), the second optimization problem of the
spatial arbitrageur within the Nash equilibrium problem de-
termines her risk-adjusted probabilities πarω , while treating
her scenario-indexed trading decisions p̃i

ω , p̃e
ω , and bω as

parameters. This problem writes as

Min
πarω

Jar,ρ2=−
∑

ω∈Ω

πarω
[(
C̃ i−λ̃ω

)
p̃i
ω−
(
C̃e−λ̃ω

)
p̃e
ω−bω

]
(8a)

s.t.
∑

ω∈Ω

πarω − 1 = 0 : φar, (8b)

0 ≤ πarω ≤
1

αar
πΘ
ω : χar

ω
, χarω , ∀ω. (8c)

The objective function (8a) minimizes the negative expected
local spot market cost Jar,ρ2 by choosing πarω . Constraints (8b)
and (8c) ensure bounds for risk-adjusted probabilities πarω

according to the risk set DCVaR,ar of the risk-averse spatial
arbitrageur.

Finally, the price-setter Pps,∩ also considers two optimiza-
tion problems within the Nash equilibrium problem. In the
first optimization problem, she minimizes the risk-adjusted
expected cost for energy/security buyers, maximizes the risk-
adjusted expected revenue for energy/security sellers, and
determines market-clearing prices λ, λ̃ω and µω as

Min
λ,λ̃ω,µω

Jps,∩1= λ
(∑

n∈N
pn− pi + pe)+

∑

ω∈Ω

µω
(∑

n∈N
anω + bω

)

+
∑

ω∈Ω

π∩ω
[
λ̃ω
( ∑

n∈N
p̃nω − p̃i

ω + p̃e
ω

)]
(9a)

s.t. (4b)–(4c), (9b)

−M ≤ µω ≤M : χµ
ω
, χµω, ∀ω. (9c)

For given values of Arrow-Debreu securities anω traded by
prosumers n ∈ Pρ as well as securities bω traded by the spatial
arbitrageur for scenarios ω ∈ Ω, the price-setter chooses risk
prices µω , such that the cost for buyers is minimized and the
revenue for sellers is maximized. Moreover, she weights cost
in the local spot market according to system-wide risk-adjusted
probabilities π∩ω , which are considered as parameters in (9).
Constraint (9c) imposes theoretical lower and upper bounds
for risk prices µω .

In the second optimization problem, the price-setter deter-
mines the system-wide risk-adjusted probabilities π∩ω given
scenario-indexed trading decisions p̃nω , p̃i

ω , and p̃e
ω , as

well as risk sets of prosumers DCVaR
n and the spatial arbi-

trageur DCVaR,ar as

Min
π∩
ω

Jps,∩2 = −
∑

ω∈Ω

π∩ω
[
λ̃ω
( ∑

n∈N
p̃nω − p̃i

ω + p̃e
ω

)]
(10a)

s.t.
∑

ω∈Ω

π∩ω − 1 = 0 : φ∩, (10b)

0 ≤ π∩ω ≤
1

α∩
πΘ
ω : χ∩

ω
, χ∩ω , ∀ω. (10c)

Aligned with the definition of a coherent risk measure
in (1a), the objective function (10a) maximizes disbenefits.
In other words, it minimizes the expected energy revenue
of sellers and maximizes the energy cost of buyers in the
local spot market, aiming at determining system-wide risk-
adjusted probabilities π∩ω . Constraints (10b) and (10c) ensure
bounds for system-wide risk-adjusted probabilities π∩ω , given
the risk set DCVaR,∩. The risk set DCVaR,∩ is formed based
on the intersection of risk sets of prosumers and the spatial
arbitrageur. In fact, this risk set corresponds to the risk set of
the least risk-averse player as described in [14]. This implies
that α∩ in (10c) is equal to min{α1, · · · , αN , αar}.
Definition 2. Given (5)–(10), we define Γρ(Z,K, {Ji}∀i∈Z)
as the risk-averse non-cooperative Nash game, where Z =
(Pρ ∪Par,ρ ∪Pps,∩) is the set of all players. K=(K1×· · ·×
KPρ1,2 ×Kar,ρ1,2×Kps,∩1,2) denotes the strategy set of the
game, where Ki is the strategy set of player i∈Z .

Remark 2. The risk-averse Nash game Γρ(·) with risk trading
provides a generalized representation. By adjusting the risk
aversion parameter of players, i.e., α1, · · · , αPρ , αar, and
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TABLE II: A summary of problems to be solved.

Problem

Fully incomplete Mixed complementarity problem (15)–(20)
Partially incomplete Mixed complementarity problem (15)–(20)
Complete Optimization (21), followed by optimization (22)
Neutral Optimization (12)

the availability of Arrow-Debreu securities, Γρ(·) is able to
describe several game setups, including both risk-neutral and
risk-averse Nash games. The risk-averse setups range from
a fully incomplete market for risk, where no Arrow-Debreu
security is available for trading, to a complete market for
risk, where Arrow-Debreu securities are available for trading
in all scenarios. The intermediate setups represent partially
incomplete markets for risk, where Arrow-Debreu securities
are only available for trading in a subset of scenarios.

Proposition 2. If the risk-averse non-cooperative Nash
game Γρ(·) is either fully or partially incomplete for risk,
then no equivalent optimization problem necessarily exists. In
addition, multiple Nash equilibria may exist.

Proof 2. We provide the proof in Appendix A-B. �
Proposition 3. If the risk-averse non-cooperative Nash
game Γρ(·) is complete for risk, then an equivalent optimiza-
tion problem exists, where all players reach a consensus on
risk-adjusted probabilities due to unconstrained risk trading.
This is in line with the findings of [14], [15], and [18]. How-
ever, multiple Nash equilibria may still exist, since objective
functions are not strongly convex in anω and bω .

Proof 3. We provide the proof in Appendix A-C. �
Remark 3. We reformulate the risk-averse Nash game Γρ(·)
with risk trading as a mixed complementarity problem [9] by
concatenating KKT conditions from all optimization problems
within Γρ(·), i.e., optimization problems (5)–(10). Appendix B
provides the full formulation of the resulting mixed com-
plementarity problem. This mixed complementarity problem
contains bilinear terms due to products of risk-adjusted prob-
abilities and trading decisions, resulting in a mixed non-linear
complementarity problem. However, it can be solved using
PATH [40] or other mixed complementarity problem solvers.

Remark 4. The risk-averse Nash game Γρ(·) with a complete
market for risk can be solved in the same way as stated in
Remark 3. However, Proposition 3 shows that an equivalent
optimization problem for such a problem exists, which is
a risk-averse social planner problem endowed with the risk
measure function ρ∩(·) and the risk set DCVaR,∩. We provide
such an optimization problem related to our risk-averse Nash
game Γρ(·) with a complete market for risk in Appendix C.
By solving this convex optimization we avoid computational
issues, coming along with solvers for mixed complementarity
problems as highlighted in [17].

According to Remark 3 and Remark 4, we solve optimiza-
tion problems for the risk-neutral Nash game Γ(·) and for the
risk-averse Nash game Γρ(·) when the market is complete for
risk. In contrast, we solve mixed complementarity problems

TABLE III: Average computational time in seconds.

Fully incomp. Partially incomp. Complete Neutral

6 Scenarios 2.1 1.8 0.4 0.2
500 Scenarios 437.1 891.0 5.1 4.0

associated with Γρ(·) when the market is partially or fully
incomplete for risk. We provide a summary of problems to be
solved in Table II.

V. NUMERICAL STUDY AND DISCUSSION

We apply models presented in Sections III and IV to analyze
the impact of heterogeneous risk aversion within an energy
community. We start with an illustrative example with 6 sce-
narios to gain insights into risk trading. In the second part, we
turn our attention to a problem with 500 scenarios, where we
shed light on the payment flows among energy community
members in the local forward and spot markets. Moreover,
we gradually increase the risk aversion of one prosumer to
highlight the implication for rival players.

Throughout this section, we consider three players,
namely n1, n2, and n3, in addition to the spatial arbitrageur ar.
Player n1 is a prosumer who owns a stochastic PV system with
a mean power generation of 6 kW while having a deterministic
demand of 10 kW. Player n2 owns a stochastic PV system
only, with a mean power generation of 6 kW. Finally, player n3

is an inelastic demand, with a deterministic load of 10 kW.
We consider the spatial arbitrageur to be the least risk-averse

player with αar = 0.9. Player n1 is moderately risk-averse
with α1 = 0.5. Player n2 is highly risk-averse with α2 = 0.3,
while player n3 is slightly risk-averse with α3 = 0.7. The
fixed importing price C i in the local forward market for the
spatial arbitrageur is e0.5/kW, while she receives a price Ce

of e0.25/kW for exporting electricity in the forward market.
In the local spot market, the fixed price for importing C̃ i

is e0.75/kW, while the exporting price C̃e is e0.125/kW. This
incentivizes the energy community to optimally settle in the
forward market, since costs are lower and revenues are higher.
The regularizer is set to β = 0.01. The lower and upper bounds
for power trades and clearing prices—if unequal to zero—are
chosen such that those bounds are never binding8. Lastly, for a
partially incomplete market for risk, Arrow-Debreu securities
are available for a third of the scenarios only.

A. Computational Issues

We use Gurobi Optimizer 9.0.1 under Python 3.7.6 to solve
optimization problems, and PATH [40] under GAMS 24.6 to
solve mixed complementarity problems. All these problems

8Note that upper bounds on imports and exports for the spatial arbitrageur
represent the network capacity constraint between the energy community and
the distribution system. These bounds, if active, alter local market-clearing
prices. In particular, if upper bounds for energy imports and exports are
binding and the energy community exhibits an energy surplus, local market-
clearing prices decrease, while in the case of an energy shortage local
market-clearing prices increase. Therefore, the network congestion changes
the cost/revenue of players n1 to n3, while the spatial arbitrageur earns a profit
from energy arbitrage. This profit comes from the price difference between
the local market-clearing price and the buying/selling price of the retailer.
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Fully
incomplete

λ
[e/kWh]

PV
[kW]

πΘ λ̃ω
[e/kWh]

µω
[e/AD]

πρn1
πρn2

πρn3
πar

0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.374
0.125
0.125
0.125

-
-
-
-
-
-

0.333
0.333
0.106
0.000
0.000
0.227

0.556
0.000
0.000
0.000
0.000
0.444

0.238
0.238
0.238
0.238
0.000
0.048

0.179
0.174
0.092
0.185
0.185
0.185

Partially
incomplete 0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.618
0.125
0.125
0.125

-
0.167
0.167

-
-
-

0.333
0.185
0.143
0.000
0.006
0.333

0.326
0.185
0.143
0.000
0.000
0.346

0.234
0.185
0.143
0.000
0.196
0.238

0.185
0.185
0.143
0.183
0.150
0.154

Complete 0.50

0.0
2.4
6.1
8.9
9.2
9.6

0.167
0.167
0.167
0.167
0.167
0.167

0.750
0.750
0.750
0.430
0.125
0.125

0.167
0.167
0.167
0.167
0.167
0.167

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

0.185
0.185
0.185
0.185
0.185
0.075

Given physical
probabilities

Resulting risk-adjusted probabilities for
4 players (3 prosumers and spatial arbitrageur)

Fig. 3: Forward λ, spot λ̃ω , and Arrow-Debreu (AD) security µω market-
clearing prices as well as risk-adjusted probabilities per player resulting from
the stochastic PV power generation, which is reported per player, under dif-
ferent degrees of market completeness for risk, i.e., fully incomplete, partially
incomplete, and complete. Equally weighted scenarios among four players are
indicated in blue, while differently weighted scenarios are indicated in red.

are solved on a 8 GB-RAM computer clocking at 2.40 GHz.
Note that all source codes are available in our online compan-
ion [41].

Optimization problems in general and mixed complementar-
ity problems with at least one risk-neutral player scale well as
the number of scenarios increases. Table III provides the com-
putational time required to solve the underlying problem. For
the case of 6 scenarios the computational time remains within
seconds, while for the case of 500 scenarios the computational
time needed by the PATH solver significantly increases. We
observe computational challenges in the PATH solver when the
problem size increases with respect to the number of scenarios.
For such a case, an alternative solution algorithm is to use a
decomposition approach, e.g., an alternating direction method
of multipliers, to compute a risk-averse Nash equilibrium [42],
though we leave it for future research.

We emphasize that the proposed Nash equilibrium prob-
lem does not serve as a tool for clearing a local energy
market, where computational time significantly matters, but
rather provides a framework for analyzing the implications
of heterogeneous risk aversion and risk trading within local
energy communities.

B. Illustrative Example with 6 Scenarios

Figure 3 presents the PV power generation S̃nω as scenario-
dependent input data, as well as optimization/Nash equilibrium
problem outcomes for different degrees of market complete-
ness for risk, including forward λ and spot λ̃ω market-clearing
prices, risk prices µω , and risk-adjusted probabilities of dif-
ferent players, i.e., πρnω and πarω . In the fully incomplete case,
risk-adjusted probabilities vary highly among players. The
most risk-averse player n2 weights the scenario with zero PV
power generation the most with πρn2ω1

= 0.556, since no
revenues are achieved. Interestingly, the weight of the scenario
with the highest PV power generation is increased since this
event causes the local spot market-clearing price to reduce,
which also induces lower revenues. A similar behavior, but

TABLE IV: Power schedules in the local forward market [kW].

n1 n2 n3 Spatial arbitrageur

Fully incomplete 3.72 -2.27 5.34 6.79
Partially incomplete 2.91 -2.15 4.89 5.65
Complete 2.00 -2.99 4.86 3.87
Neutral 1.67 -3.33 4.68 3.03
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n1 n2 n3 ar

ω6

Fig. 4: Arrow-Debreu (AD) security trades among the three players n1 to n3

and the spatial arbitrageur (ar) for all scenarios ω1 to ω6 in the forward stage
of a complete local energy market for risk.

less extreme, is observed for player n1. In contrast, player n3,
who is a sole consumer, increases weights for scenarios with
high spot market-clearing prices while accordingly reducing
weights of scenarios with low spot market-clearing prices.
As we move towards the complete case, for scenarios where
Arrow-Debreu securities are available, players reach a con-
sensus on risk-adjusted probabilities, marked in the partially
incomplete and complete cases in blue.

Based on risk-adjusted probabilities given in Figure 3, play-
ers adjust their forward market trades, as listed in Table IV.
If the market is fully incomplete for risk, player n2, who
owns a stochastic PV system, reduces her local forward market
trades and postpones trading decisions to be made in the local
spot market when the realization of PV power generation
is observed. In contrast, player n3, who has a deterministic
load, prefers meeting the majority of her demand in the local
forward market, and thereby avoids the price volatility over
local spot market scenarios. Player n1 has a stochastic PV
power generation as well as a deterministic load. We observe
that she meets her demand in the local forward market while
postponing decisions regarding PV power generation to the
local spot market. The spatial arbitrageur imports/exports
to/from the energy community according to trading strategies
of players n1 to n3.

Risk trading outweighs heterogeneous risk aversion and
shifts risk-adjusted forward trades towards observations in
a risk-neutral setting. Figure 4 illustrates the Arrow-Debreu
security trades in the forward stage for each scenario in a
complete market for risk, which allow reaching a consensus
on risk preferences. All three players n1 to n3 buy Arrow-
Debreu securities for scenario ω1 with the lowest PV power
generation, while the least risk-averse player, who in our case
is the spatial arbitrageur, is the only Arrow-Debreu security
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Fig. 5: Cost distribution over scenarios ω1 to ω6 for players as well as for the community as a whole in dependence of the degree of market completeness
for risk. Colored markers refer to the risk-adjusted expected cost from each player’s perspective. The distribution of the cost over scenarios is given by boxes,
horizontal lines, and circles. Each box highlights the cost between the second and the third quartile. Horizontal lines show the 5th and 95th quantiles. Finally,
circles indicate outliers below the 5th and beyond the 95th quantiles.

seller. However, for the following scenarios, we observe
the opposite trend. In most cases, risk-averse players n1

to n3 emerge as Arrow-Debreu security sellers, while the
spatial arbitrageur appears as a Arrow-Debreu security buyer.
Therefore, players n1 to n3 erase their cost volatility, while
the spatial arbitrageur absorbs it. Thus, unconstrained risk
trading leads to a consensus on risk-adjusted probabilities
corresponding to the risk preference of the least risk-averse
player, i.e., the spatial arbitrageur.

The effect of risk trading on the cost distribution as well
as the distribution of the total community cost is shown in
Figure 5. Moving from a fully incomplete market to a complete
market for risk, the cost distribution for players reduces to
the point where in the complete case costs in all scenarios
are identical. However, since the spatial arbitrageur absorbs
the cost volatility of players n1 to n3, her cost volatility
increases. Nevertheless, her expected cost remains unchanged.
If all players are risk-neutral, they realize the lowest disbenefit.
Similarly, looking at the total community cost we observe
that moving from a fully incomplete market to a complete
market for risk, the total expected community cost reduces
by 5%, while the community cost volatility increases. This cost
reduction as a result of completing the market for risk confirms
findings by [15] as discussed in Section II-D. Moreover,
owing to risk trading, the expected community cost from
each player’s perspective converges towards a common belief,
indicating a consensus on risk preferences.

C. Assessing Risk Aversion with 500 Scenarios

In this section we assume the spatial arbitrageur to be
risk-neutral, i.e., αar = 1, because we expect the spatial
arbitrageur to be a necessary automated service for the energy
community in a similar way as the price setter clears the
local market. Moreover, this assumption allows us to solve
mixed complementarity problems with the PATH solver under
GAMS without any computational issues as the number of
scenarios increases.

Figure 6 illustrates the evolution of the expected community
cost and its standard deviation in the risk-neutral Nash game
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Fig. 6: Expected community cost and standard deviation highlighted by the
shaded area in the risk-neutral Nash game. The Wasserstein distance shows
the convergence against a good representation of the probability distribution
as the number of scenarios increases.

with the number of scenarios. Moreover, we show the Wasser-
stein distance [43] between each set of sampled scenarios and
its predecessor. Based on these numerical findings, we observe
that from 500 scenarios onward changes arising from one ad-
ditional scenario representing uncertain PV power generation
hardly take place. Therefore, we choose 500 discrete scenarios
to approximate the underlying continuous probability distribu-
tion of PV power generation.

Figure 7 presents the expected cost of all players as well
as the total community cost. It provides details of costs
specifically incurred in the local forward and spot markets
by trading energy and Arrow-Debreu securities. Figure 7a
corresponds to a fully incomplete market for risk, where
players n1 to n3 incur the highest cost among all cases.
This causes the expected community cost with 8.39e to be
comparatively high too.

As risk trading is possible for one-third of 500 scenarios,
Figure 7b illustrates how players n1 to n3 reduce their energy
trades in the local forward market and increase more profitable
activities in the local spot market, though subject to the PV
power generation uncertainty. This uncertainty is partially
hedged by awarded Arrow-Debreu securities. Note that the
cost for all players n1 to n3 as well as the community cost de-
crease to some extent in comparison to those costs in the fully
incomplete case. In particular, the expected community cost
decreases from 8.39e in the fully incomplete case to 7.62e
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Fig. 7: Expected cost of players n1, n2, n3 and the spatial arbitrageur
over 500 scenarios incurred by trading energy and Arrow-Debreu (AD)
securities in local forward and spot markets. Plot 7a corresponds to a fully
incomplete market for risk, plot 7b associates with a partially incomplete
market for risk, and lastly, plot 7c refers to a complete market for risk.

in the partially incomplete case, implying a 9.18% saving in
the community cost.

Figure 7c shows results for a case wherein the local energy
market is complete for risk, i.e., risk trading is possible
for all 500 scenarios. The three players n1 to n3 as well
as the community as a whole incur the lowest cost among
all three cases. In particular, the expected community cost
drops to 5.53e, i.e., a 34.09% saving in the community cost
compared to a fully incomplete market for risk. Moreover, this
plot shows that energy trades in the local forward market have
been reduced even further, while the engagement of players n1

to n3 in the local spot market has been increased. It is worth
noting that the expected cost of each player in the local spot
market is fully compensated by Arrow-Debreu securities. This
causes a significant cost volatility for the spatial arbitrager,
who is the greatest security seller in this case study.

Finally, we note that the spatial arbitrageur yields a zero cost
in expectation in all three cases. In particular, since constraints
on energy imports and exports are never binding, the local
forward and spot market-clearing prices are equal to importing
and exporting prices. Moreover, the revenue of the spatial
arbitrageur from selling Arrow-Debreu securities in the local
forward market are fully balanced with her expected cost in
the local spot market for compensating the security buyers.

In the following, we gradually increase the risk aversion of
one of the players, e.g., player n1, and investigate impacts on
her rivals. Figure 8a shows such an effect on the expected
cost as well as the cost standard deviation. For the fully
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Fig. 8: Cost under an increasing risk aversion of player n1. Plot 8a graphs
observations for a fully incomplete market for risk, while plot 8b illustrates
the situation for a complete market for risk. Marked lines refer to the expected
cost while shaded areas highlight the cost standard deviation.

incomplete case the expected cost for player n1 increases
significantly as her risk aversion α1 increases. However,
owing to her risk-adjusted forward market position the cost
standard deviation decreases. Moreover, we observe that the
risk aversion of player n1 impacts the expected cost and the
cost standard deviation of players n2 and n3. Player n3 incurs
comparatively lower expected cost, while her cost standard
deviation increases. The reason for this is that player n1 trades
her stochastic PV power generation in the local spot market,
and thereby lowers the local spot market-clearing price from
which player n3 profits.

As noted previously, if the market is complete for risk, risk-
averse players n1 to n3 fully erase their cost volatility, while
the spatial arbitrageur absorbs all the cost volatility as graphed
in Figure 8b. Thus, the standard deviation of players n1 to n3

is zero, while the spatial arbitrageur experiences a remarkable
cost volatility, though with an expected value of zero.

VI. CONCLUSION AND FUTURE WORK

This work proposes risk trading within energy communities
to outweigh market inefficiencies arising from heterogeneously
risk-averse community members. We have formulated a two-
stage stochastic Nash equilibrium problem and show differ-
ent solution approaches depending on the degree of market
completeness for risk. Risk trading complements local en-
ergy markets within energy communities when players have
heterogeneous risk preferences. Risk trading protects players
with slight risk aversion from conservative decisions made by
highly risk-averse players. As a result, a significant system
cost saving can be realized, while disbenefits for all players
are reduce.

This work opens a wide range of research questions to
be addressed in the future. The role of an energy storage
system should be considered, since energy arbitrage over time
can reduce the volatility of local market-clearing prices, and
therefore the cost volatility for players by a different mean
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than risk trading. In addition, the small number of energy
community members gives rise to potential strategic behavior
by some local market participants. This aspect should not
be neglected in designing a suitable risk trading product. If
the spatial size of an energy community increases, network
constraints within the community and resulting power losses
have to be respected too. In addition, it is of interest to include
the possibility of peer-to-peer energy trading among prosumers
within the energy community. Another interesting research
direction is to explore risk trading among retailers/aggregators
on a distribution system level, i.e., one level above energy
communities. Furthermore, we note that Arrow-Debreu se-
curity is a highly stylized financial product, which can only
be traded for predefined scenarios. Therefore, the probability
distribution of an uncertain event must be certainly known
to complete the market for risk. Research on a less stylized
product is of interest for determining an optimal trade-off
between market completeness for risk and applicability of a
financial product. Lastly, from a computational perspective,
research on different solution algorithms for Nash equilibrium
problems, e.g., based on various decomposition algorithms,
is promising.

APPENDIX A
PROOFS

Proofs are based on equivalent forms of Variational In-
equality (VI) problems and strict monotonicity of players’
preferences [35].

A. Proof of Proposition 1

We state the problem Γ(·) of finding a Nash equi-
librium as a VI(F,K) with the game map F (z) =

[O1J1(z1, z−1), · · · ,OarJar(zar, z−ar),OλJλ(zλ, z−λ)]>, where
z = [p1, p̃1ω, · · · , pi, pe, p̃i

ω, p̃
e
ω, λ, λ̃ω] denotes the strategy vec-

tor. For the game Γ(·) the strategy set Ki is compact, convex,
and non-empty. Moreover, the game map F (z) is continuous,
since all cost functions Ji∈Z are continuously differentiable.
Therefore, a solution set SOL(K,F ) exists.

To show the singleton nature of the solution set SOL(K,F )
we derive the Jacobian matrix of F (z) as

β 0 · · · 0 0 0 0 1 0

0 πΘ
ω β · · · 0 0 0 0 0 πΘ

ω

...
. . . . . .

...
...

...
...

...
...

0 0 · · · 0 0 0 0 −1 0

0 0 · · · 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 −πΘ
ω

0 0 · · · 0 0 0 0 0 πΘ
ω

1 0 · · · −1 1 0 0 0 0

0 πΘ
ω · · · 0 0 −πΘ

ω πΘ
ω 0 0







OzF (z) = .

Jn

Jar

Jps

The Jacobian matrix above is symmetric indicated by the
blue diagonal entries, meaning that the corresponding game
is integrable [9]. This implies that an equivalent optimization
problem solving the VI(F,K) exists, whose objective function
is given by

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt =

C ipi − Cepe +
∑

n∈N

1

2
βp2

n

+
∑

ω∈Ω

πΘ
ω

(
C̃ ip̃i

ω − C̃ep̃e
ω +

∑

n∈N

1

2
βp̃2

nω

)
, (11)

which motivates the optimization problem

Min.
pn,pi,pe,p̃nω,p̃i

ω,p̃
e
ω

(11) (12a)

s.t. (2b), (2c), (3b), (3d). (12b)

The objective function of the resulting optimization problem
is convex and quadratic. This confirms that a unique Nash
equilibrium point for the risk-neutral Nash game Γ(·) exists. �

B. Proof of Proposition 2

Following Appendix A-A we state Γρ(·) as VIρ(F,K) with
F (z) =[O1J

ρ1
1 (z1, z−1),O1J

ρ2
1 (z1, z−1),· · ·,OarJar,ρ1(zar, z−ar),

OarJar,ρ2(zar, z−ar),OpsJps,∩1(zps, z−ps),OpsJps,∩2(zps, z−ps)]
>,

where z = [p1, p̃1ω, a1ω, π
ρ
1ω, · · · , pi, pe, p̃i

ω, p̃
e
ω, bω, π

ar
ω , µω, λ, λ̃ω,

π∩ω ] denotes the strategy vector of the game. Moreover, to
apply tools from VI we assume constraints on Arrow-Debreu
security trades, although they are never binding. We write the
Jacobian matrix as

β 0 0 0 · · · 0 0 0 0 0 0 0 1 0 0

0 βπρnω 0 0 · · · 0 0 0 0 0 0 0 0 πρnω 0

0 0 0 −1 · · · 0 0 0 0 0 0 1 0 0 0

0 0 1 qn · · · 0 0 0 0 0 0 0 0 0 0

...
. . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 · · · 0 0 0 0 0 0 0 1 0 0

0 0 0 0 · · · 0 0 0 0 0 C̃ i 0 0 −πarω 0

0 0 0 0 · · · 0 0 0 0 0 −C̃e 0 0 πarω 0

0 0 0 0 · · · 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 · · · 0 0 −C̃ i C̃e 1 qar 0 0 0 0

0 0 1 0 · · · 0 0 0 0 1 0 0 0 0 0

1 0 0 0 · · · −1 1 0 0 0 0 0 0 0 0

0 π∩ω 0 0 · · · 0 0 −π∩ω π∩ω 0 0 0 0 0 0

0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 q∩







OzF (z) = ,

Jρ1n

Jρ2n

Jar,ρ1

Jar,ρ2

Jps,∩1

Jps,∩2

where qn = − 1
πρnω

(λ̃ωp̃nω− 1
2βp̃

2
nω), qar = 1

πarω
λ̃ω(p̃i

ω− p̃e
ω),

q∩ = − 1
π∩
ω

( 1
2βp̃

2
nω + C̃ ip̃i

ω − C̃ep̃e
ω). Since the market is

incomplete for risk, players potentially apply different risk-
adjusted probabilities. Therefore, the Jacobian matrix of Γρ(·)
is asymmetric as highlighted by the red entries. Thus, an
equivalent optimization problem does not necessarily exist. �

C. Proof of Proposition 3

If the market is complete for risk, all players apply iden-
tical risk-adjusted probabilities, i.e., πρnω = πarω = π∩ω . This
observation is based on the equivalence by the zero-gradient
conditions with respect to Arrow-Debreu securities among all
players for the case of unconstrained risk trading as given in
Appendix B. Thus, the Jacobian matrix of Γρ(·) is symmetric,
with a skew symmetric inner part. An equivalent optimization
problem solving VIρ(F,K) exists. Its objective is given by

θ(z) =

∫ 1

0

F (z0 + t(z − z0))>(z − z0)dt =
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C ipi − Cepe +
∑

n∈N

1

2
βp2

n

+
∑

ω∈Ω

π∩ω
(
C̃ ip̃i

ω − C̃ep̃e
ω +

∑

n∈N

1

2
βp̃2

nω

)
, (13)

where π∩ω ∈ DCVaR,∩. This gives rise to

Min.
pn,pi,pe,p̃nω,p̃i

ω,p̃
e
ω

(13) (14a)

s.t. (2b), (2c), (3b), (3d). (14b)

However, we cannot derive a conclusion on the solution
uniqueness, since Arrow-Debreu security trades are not explic-
itly stated in the optimization problem. Therefore, the objective
function (13) is not strongly convex in anω and bω . �

APPENDIX B
MIXED COMPLEMENTARITY PROBLEM

We reformulate the Nash equilibrium problem as a mixed
non-linear complementarity problem, which solves the risk-
averse Nash game Γρ(·) with risk trading. In the following,
we provide this problem by concatenating the KKT conditions
associated with prosumers’ optimization problems (5)–(6), the
spatial arbitrageur’s optimization problems (7)–(8), and the
price setter’s optimization problems (9)–(10). Note that L
refers to the Lagrangian function of the underlying optimiza-
tion problem.

The KKT conditions associated with (5) are as follows. Note
that in order to obtain a closed and compact decision set, we
consider theoretical lower and upper bounds on Arrow-Debreu
security trades in the form of −Y ω ≤ anω ≤ Y ω, ∀n, ω,
whose dual variables are χa

nω
and χa

nω , respectively.

∂L
∂pn

= λ+ βpn +
∑

ω∈Ω

φ̃nω − χp
n

+ χp
n = 0, ∀n, (15a)

∂L
∂p̃nω

=πρnω
(
λ̃ω+βp̃nω

)
+φ̃nω− χp̃

nω
+ χp̃

nω= 0, ∀n, ω, (15b)

∂L
∂anω

= µω − πρnω − χa
nω

+ χa
nω = 0, ∀n, ω, (15c)

0 ≤ pn − Pn ⊥ χp
n
≥ 0, ∀n, (15d)

0 ≤ Pn − pn ⊥ χp
n ≥ 0, ∀n, (15e)

0 ≤ p̃nω − Pn ⊥ χp̃
nω
≥ 0, ∀n, ω, (15f)

0 ≤ Pn − pp̃
nω ⊥ χp̃

nω ≥ 0, ∀n, ω, (15g)

0 ≤ anω + Y ω ⊥ χa
nω
≥ 0, ∀n, ω, (15h)

0 ≤ Y ω − anω ⊥ χa
nω ≥ 0, ∀n, ω, (15i)

pn + p̃nω + S̃nω −Dn = 0, ∀n, ω. (15j)

The KKT conditions associated with (6) are
∂L
∂πρnω

= −
(
λ̃ωp̃nω +

1

2
βp̃2

nω − anω
)

+ φρn − χρnω + χρnω

= 0, ∀n, ω, (16a)
0 ≤ πρnω ⊥ χρnω ≥ 0, ∀n, ω, (16b)

0 ≤ 1

αn
πΘ
ω − πnω ⊥ χρnω ≥ 0, ∀n, ω, (16c)

∑

ω∈Ω

πρnω − 1 = 0, ∀n. (16d)

The KKT conditions corresponding to (7) are as follows.
Again, in order to achieve a closed and compact decision set,
we consider theoretical lower and upper bounds on Arrow-
Debreu security trades of the spatial arbitrageur in the form
of −Y ω ≤ bω ≤ Y ω, ∀ω, whose dual variables are χb

ω
and χb

ω , respectively.

∂L
∂pi = C i − λ− χpi

+ χpi
= 0, (17a)

∂L
∂pe = −Ce + λ− χpe

+ χpe
= 0, (17b)

∂L
∂p̃i

ω

= πarω
(
C̃ i − λ̃ω

)
− χp̃i

ω
+ χp̃i

ω = 0, ∀ω, (17c)

∂L
∂p̃e

ω

= −πarω
(
C̃e − λ̃ω

)
− χp̃e

ω
+ χp̃e

ω = 0, ∀ω, (17d)

∂L
∂bω

= µω − πarω − χb
ω

+ χb
ω = 0, ∀ω, (17e)

0 ≤ pi ⊥ χpi ≥ 0, (17f)

0 ≤ P i − pi ⊥ χpi ≥ 0, (17g)

0 ≤ pe ⊥ χpe ≥ 0, (17h)

0 ≤ P e − pe ⊥ χpe ≥ 0, (17i)

0 ≤ p̃i
ω ⊥ χp̃i

ω
≥ 0, ∀ω, (17j)

0 ≤ P i − p̃i
ω ⊥ χp̃i

ω ≥ 0, ∀ω, (17k)

0 ≤ p̃e
ω ⊥ χp̃e

ω
≥ 0, ∀ω, (17l)

0 ≤ P e − p̃e
ω ⊥ χp̃e

ω ≥ 0, ∀ω, (17m)

0 ≤ bω + Y ω ⊥ χb
ω
≥ 0, ∀ω, (17n)

0 ≤ Y ω − bω ⊥ χb
ω ≥ 0, ∀ω. (17o)

The KKT conditions corresponding to (8) are

∂L
∂πarω

= −
[(
C̃ i − λ̃ω

)
p̃i
ω −

(
C̃e − λ̃ω

)
p̃e
ω − bω

]
+ φar

− χar
ω

+ χarω = 0, ∀ω, (18a)

0 ≤ πarω ⊥ χarω ≥ 0, ∀ω, (18b)

0 ≤ 1

αar
πΘ
ω − πarω ⊥ χarω ≥ 0, ∀ω, (18c)

∑

ω∈Ω

πarω − 1 = 0. (18d)

The KKT conditions associated with (9) are
∂L
∂λ

=
∑

n∈N
pn − pi + pe − χλ+ χλ= 0, (19a)

∂L
∂λ̃ω

= π∩ω
(∑

n∈N
p̃nω− p̃i

ω+ p̃e
ω

)
− χλ̃

ω
+ χλ̃ω= 0, ∀ω, (19b)

∂L
∂µω

=
∑

n∈N
anω + bω − χµω+ χµω = 0, ∀ω, (19c)

0 ≤ Λ + λ ⊥ χλ ≥ 0, (19d)

0 ≤ Λ− λ ⊥ χλ ≥ 0, (19e)

0 ≤ Λ + λ̃ω ⊥ χλ̃ω ≥ 0, ∀ω, (19f)

0 ≤ Λ− λ̃ω ⊥ χλ̃ω ≥ 0, ∀ω, (19g)
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0 ≤M + µω ⊥ χµω ≥ 0, ∀ω, (19h)

0 ≤M − µω ⊥ χµω ≥ 0, ∀ω. (19i)

Finally, the KKT conditions associated with (10) are

∂L
∂π∩ω

= −λ̃ω
( ∑

n∈N
p̃nω − p̃i

ω + p̃e
ω

)
+ φ∩ − χ∩

ω
+ χ∩ω

= 0, ∀ω, (20a)
0 ≤ π∩ω ⊥ χ∩ω ≥ 0, ∀ω, (20b)

0 ≤ 1

α∩
πΘ
ω − π∩ω ⊥ χ∩ω ≥ 0, ∀ω, (20c)

∑

ω∈Ω

π∩ω − 1 = 0. (20d)

The resulting mixed complementarity problem is the collec-
tion of conditions (15)–(20).

APPENDIX C
COMPLETE MARKET FOR RISK

We solve the risk-averse Nash game with a complete market
for risk based on a risk-averse social planner problem, which
minimizes the negative expected risk-adjusted system cost as

Min
Ξ

C ipi − Cepe +
∑

n∈N

1

2
βp2

n

︸ ︷︷ ︸
Community cost in the forward market

−φ∩ +
1

α∩
∑

ω∈Ω

πΘ
ω χ
∩
ω

︸ ︷︷ ︸
CVaR metric (1c)

(21a)

s.t. (2b)–(2c), (3b)–(3d), (21b)

φ∩+ C̃ ip̃i
ω − C̃ep̃e

ω +
∑

n∈N

1

2
βp̃2

nω

︸ ︷︷ ︸
Community cost in the spot market

≤ χ∩ω : µω, ∀ω, (21c)

0 ≤ χ∩ω , ∀ω, (21d)

where Ξ = {pn, pi, pe, p̃nω, p̃
i
ω, p̃

e
ω, φ

∩, χ∩ω}. The objective
function (21a) minimizes the total community cost in the
forward market as well as the total expected community cost
in the spot market, which are endowed with the CVaR metric
introduced in (1c). The variable φ∩ shows the value-at-risk,
and χ∩ω is a non-negative auxiliary variable. Constraints (21c)
and (21d) ensure the non-negativity of CVaR-related variables,
where the dual variable µω of (21c) corresponds to system-
wide risk-adjusted probabilities [10], and thus, risk prices.

Given the optimal values obtained for a risk-adjusted so-
cial plan (pn, p

i, pe, p̃nω, p̃
i
ω, p̃

e
ω), as well as risk prices µω ,

forward λ, and spot λ̃ω market-clearing prices, we solve the
following optimization problem to derive values for Arrow-
Debreu securities traded, i.e., anω and bω:

Min
Φ

∑

n∈N

(∑

ω∈Ω

µ∗ωanω − φρn +
1

αn

∑

ω∈Ω

πΘ
ω χ

ρ
nω

︸ ︷︷ ︸
Prosumer’s CVaR metric (1c)

)

+
∑

ω∈Ω

µ∗ωbω − φar +
1

αar

∑

ω∈Ω

πΘ
ω χ

ar
ω

︸ ︷︷ ︸
Spatial arbitrageur’s CVaR metric (1c)

(22a)

s.t. φρn + λ̃∗ωp̃
∗
nω +

1

2
βp̃∗2nω − anω

︸ ︷︷ ︸
Prosumer’s spot market cost

≤ χρnω, ∀n, ω, (22b)

φar+
(
C̃ i− λ̃∗ω

)
p̃i,∗
ω −

(
C̃e− λ̃∗ω

)
p̃e,∗
ω − bω︸ ︷︷ ︸

Spatial arbitrageur’s spot market cost

≤ χarω , ∀ω, (22c)

0 ≤ χρnω, ∀n, ω, (22d)
0 ≤ χarω , ∀ω, (22e)

where Φ = {anω, φρn, χρnω, bω, φar, χarω }. Parameters denoted
by (·)∗ correspond to values obtained from the risk-averse
social planner problem (21). The first line of the objective
function (22a) corresponds to Arrow-Debreu security trades
by risk-averse prosumers, while the second line refers to the
spatial arbitrageur’s trades. Constraints (22b) and (22c) define
the CVaR metric for each prosumer and the spatial arbitrageur,
respectively. Lastly, (22d) and (22e) ensure the non-negativity
of CVaR-related variables.
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1 Introduction

This article considers a perfectly competitive market for a single commodity
that clears well in advance of the realization of an uncertain event ξ. This event
is a common source of uncertainty for all market players, namely y1, y2, ..., Y .
These players are uncertainty-aware, and forecast the probability distribu-
tion f(ξ) describing the uncertain event ξ. Based on the individual probabilis-
tic forecast, each player solves a stochastic optimization problem to determine
her optimal market participation strategy, aiming to maximize her expected
payoff. The collection of individual optimization problems results in a stochas-
tic Nash equilibrium problem, whose solution provides the market-clearing
outcome.

1.1 Ambiguity aversion: definition and its heterogeneity

One extreme case in modeling the common source of uncertainty is to assume
that the true probability distribution f(ξ) is known and publicly available for
all players. This case is illustrated in Figure 1(a). However, it is rather unlikely
that this assumption holds true in reality.

Pursuing a more general case, we relax the assumption on the availability
of the true probability distribution f(ξ) and generate a family of potential
distributions, the so-called ambiguity set. This case is depicted in Figure 1(b).
In this case, the players are ambiguity-averse [1], [2], meaning that they en-
dogenously determine the worst-case distribution in their ambiguity set, and
optimize their market participation strategy problem against such a distri-
bution.1 Although this case offers a more general framework for modeling
uncertainty compared to the extreme case in Figure 1(a), it is not the most
general case as it assumes homogeneous ambiguity aversion, i.e., an identical
ambiguity set for all players.2

The most general case, schematically depicted in Figure 1(c), is the one
wherein every market player possesses her own private empirical data and
builds her individual ambiguity set, which is not necessarily identical to that of
other players. The rationale behind this case is that even if the empirical data
are publicly available, market players may still differently build their individual
ambiguity sets, reflecting their heterogeneous confidence in those empirical
data. Hereafter, we call this case as the one with heterogeneous ambiguity
aversion.

1 Another potential generalization of the first case would be the case in which players
possess different probability distribution functions and each one believes that her function
is the true one. However, this would lead to a discussion on asymmetric information about
an uncertain event [3], whereas this work focuses on ambiguity aversion against an uncertain
event.

2 Note that in this case the worst-case distribution of players, in contrast to their ambi-
guity set, is not necessarily identical.
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Fig. 1: Plot 1(a) shows the case in which all players know the true probability distribution.
Plot 1(b) illustrates the case in which the true distribution is unknown and thus players
consider an ambiguity set, although it is identical for all. Plot 1(c) refers to the case in which
each player forms her own individual ambiguity set, resulting in heterogeneous ambiguity
aversion.

1.2 Ambiguity aversion via distributionally robust chance-constrained
optimization

We use a distributionally robust optimization approach [4]–[6] to include indi-
vidual ambiguity sets within stochastic decision-making problems of players.
This gives rise to a generalized formulation of a distributionally robust Nash
equilibrium problem. We apply a Wasserstein probability distance metric to
build individual ambiguity sets [7], [8]. Unlike the illustration in Figure 1, the
ambiguity set of each player includes an infinite number of probability dis-
tributions that are sufficiently close to the empirical distribution. With this
approach, each ambiguity-averse player maximizes her payoff in expectation
with respect to the worst-case probability distribution in her ambiguity set.

The stochastic optimization problems of players may include their opera-
tional constraints. This is the case of market players in physical systems, e.g.,
energy or transportation systems. In the case the uncertain parameter ap-
pears in constraints, the resulting optimization problem will embody an infi-
nite number of probabilistic constraints, since every constraint should be ful-
filled for any realization drawn from the worst-case probability distribution.
Aiming to achieve a tractable problem formulation, we enforce probabilistic
constraints in the form of distributionally robust chance constraints [9], [10].
We decompose the uncertain event L(ξ) into a deterministic forecast L and
a stochastic component ξ, showing the uncertain forecast error. Additionally,
we recast uncertainty-dependent decision variables using an affine policy [11].
By introducing a linear reformulation of distributionally robust objective func-
tions [7] as well as applying the worst-case Conditional Value-at-Risk (CVaR)
approximation of distributionally robust chance constraints [9], [12], we de-
fine a tractable convex Nash game. For this Nash game, we show—given a
quadratic regularizer in the objective function of certain players as well as
convex and compact strategy sets for all players—the existence of a unique
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Nash equilibrium point. In addition, we provide the mathematical formulation
of an equivalent single and convex optimization problem that can be efficiently
solved.

1.3 State of the art, contributions, and paper organization

From a mathematical point of view, the work at hand generally lies in the
domain of stochastic Nash games [13]–[16]. More precisely, this work models
payoff functions by distributionally robust expected values and reformulates
stochastic strategy sets through distributionally robust chance constraints,
resulting in a distributionally robust Nash game [8], [10], [17]–[20]. The exist-
ing works on distributionally robust games can be divided into two research
strands. The first one includes those works that build ambiguity sets using
moments, e.g., mean and covariance, whose values are captured from the em-
pirical data. Examples of such works are [10], [17], [18] and [19]. The research
works within the second strand, e.g., [8], [19], [20], define ambiguity sets based
on probabilistic distance metrics, e.g., Wasserstein metric. In both strands
the possible existence of a Nash equilibrium point was proven [10], [19]. In
addition, [8] and [10] show the equivalence of a distributionally robust chance-
constrained Nash game to a single optimization problem.

From a conceptual perspective, our work investigates a market equilibrium
given ambiguity-averse market players: The article at hand offers for the first
time a comprehensive problem formulation of a market in which players may
be ambiguity-averse and are subject to the same source of uncertainty. De-
pending on the parameterization of individual Wasserstein ambiguity sets, the
proposed tractable Nash game is able to model various circumstances in which
all players are (i) ambiguity-neutral, (ii) homogeneously ambiguity-averse,
and (iii) heterogeneously ambiguity-averse owing to individual confidence in
empirical data and/or access to private empirical data.

From a methodological perspective, differently to [20] that studies a gen-
eralized distributionally robust Nash equilibrium problem with coupling con-
straints, we consider a pure distributionally robust Nash equilibrium problem
in which market players are only linked through their payoff functions. Their
decision sets are independent of each other. Similar to [8] and [10] we are inter-
ested in providing an analytical proof for the existences of a Nash equilibrium
point. While [8] and [10] address a general game-theoretic framework, this
work relies on an affine policy, the worst-case CVaR approximation of distri-
butionally robust chance constraints, and quadratic regularizers, and thereby,
proves the existence and uniqueness of a Nash equilibrium point. Furthermore,
we show that for the underlying Nash game built upon Wasserstein ambiguity
sets, the Nash equilibrium point coincides with the solution of a single op-
timization problem that can be efficiently solved by commercial solvers. Our
numerical results highlight that the realized utility of a market player with a
comparatively low consumption utility highly depends on the degree of ambi-
guity aversion of the rival market players.



On ambiguity-averse market equilibrium 5

Price-
setter

Elastic
demand n1

. . .
Elastic

demand N

Inelastic
demand

Spatial
arbitrageur

Import Export

Fig. 2: Market structure with four types of players, namely a price-inelastic stochastic de-
mand, a number of price-elastic demands, a spatial arbitrageur and a fictitious price-setter.

The remainder of this paper is laid out as follows. In Section 2 we intro-
duce the distributionally robust Nash equilibrium problem. Section 3 provides
the problem reformulation based on distributionally robust chance constraints
and an affine policy. In Section 4 we provide a linear reformulation of distribu-
tionally robust objective functions as well as the worst-case CVaR constraints
as approximation of distributionally robust chance constraints, and define a
tractable Nash game. We discuss numerical results in Section 5. Section 6
concludes. The methodology for the linear reformulation of objective func-
tions and the worst-case CVaR approximation of chance constraints as well as
all mathematical proofs are available in four appendices. The source code is
publicly available in [21].

2 Problem statement

We consider a perfectly competitive local market.3 Four types of players exist,
as illustrated in Figure 2. The first type of players is a single price-inelastic
demand, representing the aggregation of all inelastic demands—these demands
are willing to buy electricity an any price. This player is a pure stochastic
load without a decision variable. The second type of players corresponds to a
number of price-elastic demands n ∈ N indicated by (·)Ed, who maximize their
own consumption utility. The third type of players is a single spatial arbitrageur
indicated by (·)Ar, who maximizes her profit from importing and exporting the
trading commodity between the local market and the outside, e.g., a wholesale
market. Thereby, she ensures liquidity of the local market. The last player is
a single price-setter, who is a fictitious player [22], indicated by (·)Ps, who
reveals social welfare maximizing prices.

An example of such a market is a local energy market inside an energy
community, in which a number of spatially closely located households own-
ing rooftop photovoltaic systems with uncertain power generation trade elec-
tricity [23], [24]. Such a local market may contribute to matching electric-

3 The assumption of a perfectly competitive local market provides a benchmark estimation
on the market impact of ambiguity aversion. In practice, market power in an imperfect
competition can be an issue in a local market, although it is left aside to be addressed in
future research.
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ity supply and demand without stressing the surrounding infrastructure, e.g.,
high-voltage transmission and low-voltage distribution networks. In addition,
a local energy market would allow the direct market participation of compar-
atively small entities, which usually do not have access to wholesale markets.
However, the efficiency of such a local market significantly depends on the
uncertainty and risk aversion of the market participants [25].

We model the ambiguity-averse decision-making problem of a given player
through a distributionally robust optimization problem of the form

Min
z

max
F∈D

EF [g(z, ξ)], (1)

where g(z, ξ) is an uncertainty-dependent disutility function. In detail, the
player in question makes the decision z in expectation EF [·] of her disutil-
ity g(z, ξ), given the uncertain parameter ξ. This parameter follows the worst-
case probability distribution F that is endogenously selected from the am-
biguity set D. Throughout this work we indicate parameters and variables
depending on the uncertain event ξ by a tilde, i.e., (̃·).

2.1 Distributionally robust Nash equilibrium problem

The consumption of the price-inelastic aggregated demand is the only source of
uncertainty in this work, denoted by L̃(ξ) including the one and only stochastic
parameter ξ.4 Given the market-clearing price λ̃(ξ) under any realization of ξ,
this demand pays

λ̃(ξ)L̃(ξ). (2)

For the same given market-clearing price λ̃(ξ), each price-elastic demand n
minimizes her expected disutility as

{
Min
d̃n(ξ)

max
FEd

n ∈DEd
n

EFEd
n

[
λ̃(ξ)d̃n(ξ)− Und̃n(ξ)

]
(3a)

s.t. 0 ≤ d̃n(ξ) ≤ Dn

}
, ∀n ∈ N , (3b)

where the variable d̃n(ξ) is her consumption, whose value is enforced by (3b)
to lie between zero and the maximum consumption level Dn. The parame-
ter Un in the objective function (3a) indicates the value of one unit of the
trading commodity for demand n. Accordingly, Und̃n(ξ) gives the total value
that demand n gains by consuming d̃n(ξ), whereas λ̃(ξ)d̃n(ξ) is the total pay-
ment of this price-elastic demand. This player builds the ambiguity set DEd

n

and minimizes her expected disutility under the worst-case probability distri-
bution FEd

n .
Similarly, the spatial arbitrageur minimizes her expected disutility as

Min
p̃(ξ)

max
FAr∈DAr

EFAr

[
Cp̃(ξ)− λ̃(ξ)p̃(ξ)

]
(4a)

4 Later in Section 3.2 we decompose the uncertain price-inelastic demand L̃(ξ) into a
deterministic component L and a separate stochastic component ξ.
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s.t. − P ≤ p̃(ξ) ≤ P , (4b)

where the variable p̃(ξ) denotes the amount of the trading commodity to be
imported to—if p̃(ξ) > 0—or exported from—if p̃(ξ) < 0—the local market,
both at an identical fixed cost C. This cost shows the price of the commod-
ity outside the local market. If p̃(ξ) > 0, the arbitrageur buys the trading
commodity outside the local market at price C and sells it back in the local
market at price λ̃(ξ). Similarly, if p̃(ξ) < 0, the arbitrageur buys the trading
commodity from the local market at price λ̃(ξ) and sells it back outside the
local market at price C. The constraint (4b) sets the bound P on p̃(ξ), in-
dicating the potential capacity limit of the trade between the local and the
outside market. One can hypothesize that the market-clearing price λ̃(ξ) will
be equal to C if this constraint is non-binding, otherwise it may take a dif-
ferent value. The arbitrageur builds the ambiguity set DAr and minimizes her
expected disutility under the worst-case probability distribution FAr.

Finally, for given trading decisions d̃n(ξ) and p̃(ξ) the price-setter deter-
mines the market-clearing price λ̃(ξ) by maximizing the utility of all players
as

Max
λ̃(ξ)

λ̃(ξ)
(
p̃(ξ)−

∑

n∈N
d̃n(ξ)− L̃(ξ)

)
. (5)

The price-setter chooses the price λ̃(ξ) in (5) under any realization of ξ such
that the cost for buyers is minimized and the revenue for sellers is maximized.

Recall that the price λ̃(ξ) is given in the optimization problem (3) of each
price-elastic demand and in the optimization problem (4) of the spatial arbi-
trageur. In contrast, the price λ̃(ξ) is a variable in the optimization problem (5)
of the price-setter, while variables in (3) and (4), i.e., d̃n(ξ) and p̃(ξ), are given
in (5). This makes these three problems interconnected, such that they should
be solved at once.5 The collection of optimization problems (3), (4) and (5)
constitutes the distributionally robust Nash equilibrium problem.

2.2 Wasserstein ambiguity sets

This section explains how to build the ambiguity set DEd
n for each elastic

demand n as well as the ambiguity set DAr for the spatial arbitrageur. The
ambiguity set DEd

n comprises all probability distributions FEd
n in the neigh-

borhood of a central empirical probability distribution F̂Ed
n , for which i ∈ IEd

n

5 The reason for considering such a fictitious player, i.e., the price-setter, is that without it,
all other players, i.e., price-inelastic aggregated demand, price-elastic demands, and spatial
arbitrageur, will be linked via a common constraint, namely the demand-supply balance
equality. It would result in a generalized Nash equilibrium problem with shared constraints,
for which the proof of existence and uniqueness of a Nash equilibrium point is not necessarily
straightforward. In contrast, the chosen problem structure comprising the fictitious price-
setter yields a pure Nash equilibrium problem, for which the existence and uniqueness of
a Nash equilibrium point can be proven in a straightforward manner. With this fictitious
player, the strategy of each player still implicitly depends on the strategy of each other
player through the price-setter’s decision variable λ̃(ξ).
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denotes the set of empirical samples, e.g., historical observations, available to
the respective elastic demand n. Following [7], we measure the distance be-

tween a distribution FEd
n and the empirical distribution F̂Ed

n based on the
Wasserstein distance ∆(·, ·) as

∆(FEd
n , F̂Ed

n ) = min
ΠEd

n

∫ ( ∑

i∈IEd
n

|ξ − ξ̂Ed
ni |p

) 1
p

ΠEd
n (dξ, dξ̂Ed

ni ), ∀n, (6a)

in which ΠEd
n is a joint probability distribution of the uncertain parameter ξ

and empirical data ξ̂Ed
ni with marginals FEd

n and F̂Ed
n , respectively. The sym-

bol p refers to an arbitrary norm6 to be applied on the difference between the
uncertain parameter ξ and empirical data ξ̂Ed

ni .

Similarly, the spatial arbitrageur has access to her own individual empirical
samples i ∈ IAr, which are not necessarily identical to those of other players.
We measure her Wasserstein distance ∆(·, ·) as

∆(FAr, F̂Ar) = min
ΠAr

∫ ( ∑

i∈IAr

|ξ − ξ̂Ar
i |p

) 1
p

ΠAr(dξ, dξ̂Ar
i ). (6b)

We now define Wasserstein ambiguity sets DEd
n and DAr as

DEd
n =

{
FEd
n ∈ M(Ξ) : ∆(FEd

n , F̂Ed
n ) ≤ ρEd

n

}
, ∀n, (6c)

DAr =
{
FAr ∈ M(Ξ) : ∆(FAr, F̂Ar) ≤ ρAr

}
, (6d)

in which the support Ξ = {ξ ∈ R : H ≤ ξ ≤ H} restricts the uncertain param-
eter ξ by a lower bound H and an upper bound H, such that the worst-case
probability distribution takes realistic values. We assume that all players have
perfect and common information about the support. Lastly, the non-negative
parameters ρEd

n and ρAr in (6c) and (6d), the so-called Wasserstein radii, limit
the distance between probability distributions FEd

n and FAr within ambiguity

sets and empirical probability distributions F̂Ed
n and F̂Ar, respectively.

Figure 3 illustrates the implication of empirical probability distributions F̂Ed
n

and F̂Ar as well as the choice of ρEd
n and ρAr, describing the confidence in

those empirical distributions, and therefore the aversion against ambiguity in
the empirical data [2], [26].7

6 We will apply later in Appendix A the infinity norm to derive a linear reformulation.
7 In the case the intersection of ambiguity sets of different players is empty, the underly-

ing Nash equilibrium problem might be infeasible. However, the feasibility can be restored
by allowing involuntarily curtailment of the price-inelastic aggregated demand L̃(ξ) while
considering a significant cost (penalty) incurred by not fully supplying such a demand. This
work has only focused on cases wherein the intersection of ambiguity sets is not empty, and
leaves the potential issue of feasibility restoration for the future work.
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F̂Ed
n1

=F̂Ed
N =F̂Ar

0=ρEd
n1

=ρEd
N =ρAr

F̂Ed
n1

=F̂Ed
N =F̂Ar

0<ρEd
n1

=ρEd
N =ρAr

ρAr

ρEd
n1

ρEd
N

F̂Ed
n1

=F̂Ed
N =F̂Ar

0<ρEd
n1

̸=ρEd
N ̸=ρAr

ρAr

ρEd
n1

ρEd
N

F̂Ed
n1

̸=F̂Ed
N ̸=F̂Ar

0<ρEd
n1

̸=ρEd
N ̸=ρAr

ρAr

ρEd
n1

ρEd
N

(a) (b) (c-1) (c-2)

Fig. 3: The Wasserstein ambiguity sets DEd
n and DAr can represent four different circum-

stances. In the first case there is no ambiguity, and therefore all players consider a single
and common probability distribution, see plot 3(a). In the second case there is homogeneous
ambiguity aversion among all players, see plot 3(b). In the third case there is heterogeneous
ambiguity aversion among players owing to their individual confidences in common empirical
data, see plot 3(c-1). Finally, in the fourth case there is heterogeneous ambiguity aversion
among players owing to not only their individual confidences but also their individual em-
pirical data, see plot 3(c-2).

3 Towards computational tractability

The distributionally robust Nash equilibrium problem (3)–(5) is computation-
ally intractable, since it optimizes over infinite-dimensional variables d̃n(ξ),
p̃(ξ), and λ̃(ξ), subject to infinite-dimensional constraints (3b) and (4b). To
achieve tractability, we apply some convex reformulations as illustrated in
Figure 4. For the sake of clarity, this figure includes the inelastic demand,
although there is no optimization problem for this player. In Section 3.1 we
use distributionally robust chance-constrained programming [7] to cope with
the infinite-dimensional nature of constraints (3b) and (4b). We then intro-
duce an affine policy [11] in Section 3.2 to decompose uncertainty-dependent
decision variables, and analytically derive the market-clearing price in Sec-
tion 3.3. Based on a linear reformulation of distributionally robust objective
functions [7] as well as the worst-case CVaR approximation of distributionally
robust chance constraints [9], [12], [27] we define a tractable Nash game.8

3.1 Distributionally robust chance constraints

We consider a generic individual distributionally robust chance constraint of
the form

min
F∈D

PF [h(z, ξ) ≤ 0] ≥ 1− ϵ, (7)

8 The methodology to linearly reformulate a distributionally robust objective function [7]
as well as the worst-case CVaR approximation of a distributionally robust chance con-
straint [9], [12], [27] is available in Appendix A.
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( Inelastic Demand:

Elastic Demand n ∈ N :

Spatial arbitrageur:

Price setter:

Equilibrium
problem

(2)

(3)

(4)

(5)

Chance
constraints

(8)

(9)

Affine
policy

(10b)

(11)

(12)

(13)

Reformulation,
approximation

(18)

(20)

Nash
game

(16) )

(18)

(20)

(21)

Fig. 4: By introducing distributionally robust chance constraints, applying an affine policy,
and reformulating objective functions as well as approximating chance constraints, we de-
rive a tractable Nash game corresponding to the distributionally robust Nash equilibrium
problem (3)–(5).

where the decision z is made under the worst-case probability distribution F
that is endogenously determined from the given ambiguity set D. The proba-
bility PF [·] of the probabilistic constraint h(z, ξ) ≤ 0 to be fulfilled is greater
than or equal to 1− ϵ. Note that ϵ is a parameter to be tuned by the respec-
tive decision-maker, whose value lies between zero and one. Accordingly, we
rewrite constraints (3b) as

min
FEd

n ∈DEd
n

PFEd
n

[
0 ≤ d̃n(ξ)

]
≥ 1− ϵ, ∀n, (8a)

min
FEd

n ∈DEd
n

PFEd
n

[
d̃n(ξ) ≤ Dn

]
≥ 1− ϵ, ∀n. (8b)

Similarly, constraints (4b) are rewritten as

min
FAr∈DAr

PFAr

[
− P ≤ p̃(ξ)

]
≥ 1− ϵ, (9a)

min
FAr∈DAr

PFAr

[
p̃(ξ) ≤ P

]
≥ 1− ϵ. (9b)

Without loss of generality, we consider identical ϵ in all aforementioned
chance constraints.9

3.2 Affine policy

We decompose the uncertain event, i.e., the consumption L̃(ξ) of the aggre-
gated inelastic demand, as

L̃(ξ) = L+ ξ. (10a)

The parameter L is the nominal, e.g., tentative, inelastic demand, which is
independent of uncertainty. However, ξ is the uncertain deviation, either pos-
itive or negative, from L at a future stage. Substituting (10a) in (2) yields the
consumption cost of the inelastic demand as

λ̃(ξ)(L+ ξ). (10b)

9 Assigning different values for ϵ motivates a case where market players are heteroge-
neously risk averse against the violation risk of operational constraints. This risk aversion is
beyond the scope of this work, and therefore we consider an identical value ϵ for all players,
which can be interpreted as a case with homogeneously risk-averse players.
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We apply an affine policy [11] to decisions made by price-elastic demands
and the spatial arbitrageur. Accordingly, the probabilistic decision variables d̃n(ξ)
and p̃(ξ) are approximated by

d̃n(ξ) = dn − αEd
n ξ, ∀n, (10c)

p̃(ξ) = p+ αArξ, (10d)

where variables dn and p are nominal trades given the expected inelastic de-
mand L. In addition, the free variables, i.e., either positive or negative, αEd

n

and αAr, the so-called participation factors, are in per-unit and show the linear
response of the price-elastic demand n and the spatial arbitrageur at a future
stage to the uncertain deviation ξ, respectively. In other words, they indicate
the contribution of the corresponding player to offset any supply–demand im-
balance at the future stage, when the uncertainty ξ is realized. For example,
consider a deviation ξ > 0, meaning that the realized consumption of the in-
elastic demand is more than the tentative one. According to (10c) and (10d),
the price-elastic demand n and the spatial arbitrageur would respond to this
deviation by decreased consumption—ensured by the minus in (10c)—and by
additional imports—enforced by the plus in (10d)—, respectively.

By introducing distributionally robust chance constraints (8a) and (8b),
and by applying the affine policy used in (10c), problem (3) of each price-
elastic demand n reads

{
Min

dn,αEd
n

max
FEd

n ∈DEd
n

EFEd
n

[(
λ̃(ξ)− Un

)(
dn − αEd

n ξ
)]

(11a)

s.t. min
FEd

n ∈DEd
n

PFEd
n

[
0 ≤ (dn − αEd

n ξ)
]
≥ 1− ϵ, (11b)

min
FEd

n ∈DEd
n

PFEd
n

[
(dn − αEd

n ξ) ≤ Dn

]
≥ 1− ϵ

}
, ∀n. (11c)

Similarly, we rewrite problem (4) of the spatial arbitrageur using (9a), (9b),
and (10d) as

Min
p,αAr

max
FAr∈DAr

EFAr

[(
C − λ̃(ξ)

)(
p+ αArξ

)]
(12a)

s.t. min
FAr∈DAr

PFAr

[
− P ≤ p+ αArξ

]
≥ 1− ϵ, (12b)

min
FAr∈DAr

PFAr

[
p+ αArξ ≤ P

]
≥ 1− ϵ. (12c)

Lastly, substituting (10a), (10c), and (10d) in (5) yields

Max
λ̃(ξ)

λ̃(ξ)
(
p+ αArξ −

∑

n∈N
(dn − αEd

n ξ)− L− ξ
)
. (13)
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3.3 Analytical derivation of market-clearing prices

This section focuses on the unconstrained problem (13), whose optimality
condition imposes

∂L(13)

∂λ̃(ξ)
=(p+ αArξ)−

∑

n∈N
(dn − αEd

n ξ)− (L+ ξ) = 0, (14a)

where L(13) denotes the Lagrangian function of (13). Given the response of
the spatial arbitrageur αAr as well as the response of elastic demands αEd

n ,∀n,
the equality constraint (14a) holds true for any realization of ξ if

αArξ +
∑

n∈N
αEd
n ξ = ξ ⇔ αAr +

∑

n∈N
αEd
n = 1, (14b)

p−
∑

n∈N
dn − L = 0. (14c)

The equality constraints (14b) and (14c) are derived by separating ξ-
dependent uncertain and ξ-independent nominal terms in (14a). Thereby,
the equality constraints (14b) imposes that the total response of the spa-
tial arbitrageur and the price-elastic demands should be able to fully offset
the supply–demand imbalance at the future stage.10 In addition, the equality
constraint (14c) imposes that all nominal demands should be fully supplied.

The analytical procedure from (13) to (14b)-(14c) suggests that one could
also decompose the probabilistic market-clearing price λ̃(ξ) to two determinis-
tic variables λB and λE. Therefore, we rewrite the optimization problem (13)
of the price-setter by a collection of two deterministic optimization problems
as

Max
λB

λB
(
αAr +

∑

n∈N
αEd
n − 1

)
, (14d)

Max
λE

λE
(
p−

∑

n∈N
dn − L

)
. (14e)

Since the optimality conditions of (14d) and (14e) are identical to the equal-
ity constraints (14b) and (14c), any λE and λB are optimal solutions of (14d)
and (14e) as long as these optimality conditions are fulfilled. The variable λE

provides the deterministic market-clearing price for the underlying commod-
ity. In addition, λB provides the payment due to balancing services, i.e., the
payment to remunerate price-elastic demands and the spatial arbitrageur for
their response to any supply–demand imbalance.

10 Note that αEd
n , ∀n and αAr are free variables meaning that they can be either positive

or negative and even greater than the absolute value of 1 as long as their summation is
equal to 1. Thereby, an elastic demand could, for example, increase her consumption, i.e.,
αEd
n < 0, although the local market faces a deficit in supply given by a deviation ξ > 0 as

long as any other player, e.g., the spatial arbitrageur by αAr > 1 or another elastic demand,
offsets the demand increase.
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Eventually, given that (14b) and (14c) hold, we can replace the terms
including the price λ̃(ξ) in (10b), (11a) and (12a) as

λ̃(ξ)L = λEL; λ̃(ξ)ξ = λB, (15a)

λ̃(ξ)dn = λEdn; λ̃(ξ)αEd
n ξ = λBαEd

n , (15b)

λ̃(ξ)p = λEp; λ̃(ξ)αArξ = λBαAr. (15c)

4 A tractable Nash game

We revisit our distributionally robust Nash equilibrium problem given the
analytical prices derived in Section 3.3.

Price-inelastic demand

The payment of the inelastic demand (10b) recasts as

λEL+ λB, (16)

indicating that the inelastic demand is charged at the price λE for the nominal
consumption L. In addition, she pays λB for the balancing services, as she
deviates ξ from her nominal consumption L.

Price-elastic demand

Next, we revisit the optimization problem (11) of the price-elastic demand n.
Pursuing an equilibrium solution existence and uniqueness, we make two slight
changes. First, we arbitrarily introduce theoretical lower and upper bound A
on the participation factor αn. The rationale behind these bounds is to achieve
a compact and closed strategy set, which is required later for the equilibrium
solution existence proof. However, we select sufficiently large values for these
bounds, and check a posteriori that these constraints are non-binding. Sec-
ond, we add a quadratic regularizer [28] in the form of c(z, x) = 1

2β(z + x)2

to the objective function, in which β is a sufficiently small positive constant,
e.g., 10−3. A sufficiently small value for β will alter negligibly the social wel-
fare of the market in comparison to β = 0. However, this quadratic regular-
izer, which can be institutionally interpreted as a transaction cost arising from
trades, ensures an identical payoff for identical players. In addition, this regu-
larizer yields a strongly monotone objective function, which is necessary later
to achieve a unique equilibrium solution. The revisited problem (11) writes as

{
Min

dn,αEd
n

(
λE − Un

)
dn − λBαEd

n + c(dn, α
Ed
n ) + max

FEd
n ∈DEd

n

EFEd
n

[
Unα

Ed
n ξ

]
(17a)

s.t. (11b)–(11c), (17b)

−A ≤ αEd
n ≤ A

}
, ∀n, (17c)
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in which the last ξ-dependent term in the objective function (17a) as well
as the distributionally robust chance constraints (11b) and (11c) make the
problem still intractable. We follow the convex reformulation technique pro-
posed in [7] for a distributionally robust objective function. In addition, we
use the worst-case CVaR constraints as an approximation of distributionally
robust chance constraints [9], [12], and therefore, provide—except of the reg-
ularizer c(dn, α

Ed
n ) in the objective function—a purely linear approximation

for (17).

Based on (22) and (23), we write the decision-making problem of the elastic
demand n as

{
Min
ΞEd

n

JEd
n =

(
λE− Un

)
dn− λBαEd

n + c(dn, α
Ed
n ) +ϕEd

n ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni (18a)

Reformulation of (17a):

s.t. Unα
Ed
n ξ̂Ed

ni +
∑

b∈B
γEd
nbi

(
Hb −Qbξ̂

Ed
ni

)
≤ σEd

ni : ζEd.1a
ni , ∀i, (18b)

− ϕEd
n ≤

∑

b∈B
Qbγ

Ed
nbi − Unα

Ed
n ≤ ϕEd

n : ζEd.1b

ni
, ζ

Ed.1b

ni , ∀i, (18c)

0 ≤ γEd
nbi : ζEd.1c

nbi , ∀b, i,(18d)
CVaR approximation of (11b):

τEd
n +

1

ϵ

(
ϕEd

n
ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

)
≤ 0 : ζEd.2a

n , (18e)

− dn + αEd
n ξ̂Ed

ni − τEd
n +

∑

b∈B
γEd1
nbi

(
Hb−Qbξ̂

Ed
ni

)
≤ σEd

ni : ζ
Ed.2b
ni , ∀i, (18f)

∑

b∈B
γEd2
nbi

(
Hb −Qbξ̂

Ed
ni

)
≤ σEd

ni : ζEd.2c
ni , ∀i, (18g)

− ϕEd

n
≤

∑

b∈B
Qbγ

Ed1
nbi

− αEd
n ≤ ϕEd

n
: ζEd.2d

ni
, ζ

Ed.2d

ni , ∀i, (18h)

− ϕEd

n
≤

∑

b∈B
Qbγ

Ed2
nbi

≤ ϕEd

n
: ζEd.2e

ni
, ζ

Ed.2e

ni , ∀i, (18i)

0 ≤ γEd1
nbi

: ζEd.2f
nbi , ∀b, i, (18j)

0 ≤ γEd2
nbi

: ζEd.2g
nbi , ∀b, i,(18k)

CVaR approximation of (11c):

τEd
n +

1

ϵ

(
ϕ
Ed

n ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

)
≤ 0 : ζEd.3a

n , (18l)

dn− αEd
n ξ̂Ed

ni −Dn− τEd
n +

∑

b∈B
γEd1
nbi

(
Hb−Qbξ̂

Ed
ni

)
≤ σEd

ni :ζ
Ed.3b
ni , ∀i, (18m)

∑

b∈B
γEd2
nbi

(
Hb −Qbξ̂

Ed
ni

)
≤ σEd

ni : ζEd.3c
ni , ∀i, (18n)
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− ϕ
Ed

n ≤
∑

b∈B
Qbγ

Ed1
nbi + αEd

n ≤ ϕ
Ed

n : ζEd.3d

ni
, ζ

Ed.3d

ni , ∀i, (18o)

− ϕ
Ed

n ≤
∑

b∈B
Qbγ

Ed2
nbi ≤ ϕ

Ed

n : ζEd.3e

ni
, ζ

Ed.3e

ni , ∀i, (18p)

0 ≤ γEd1
nbi : ζEd.3f

nbi , ∀b, i,(18q)
0 ≤ γEd2

nbi : ζEd.3g
nbi , ∀b, i, (18r)

Constraint (17c):

−A ≤ αEd
n ≤ A : ζEd.4a

n
, ζ

Ed.4a

n

}
, ∀n, (18s)

where ΞEd
n = {dn, αEd

n , ϕEd
n , σEd

ni , γ
Ed
nbi, τ

Ed
n , ϕEd

n
, σEd

ni , γ
Ed1
nbi

, γEd2
nbi

, τEd
n , ϕ

Ed

n , σEd
ni ,

γEd1
nbi , γ

Ed2
nbi }, ∀n ∈ N , and |IEd

n | returns the cardinality of set IEd
n . Symbols

followed a colon denote the dual variable of the respective constraint. We
will need those dual variables later when we derive the Karush-Kuhn-Tucker
conditions in Appendix C.2.

Spatial arbitrageur

Similarly, we revisit the optimization problem (12) of the spatial arbitrageur,
yielding

Min
p,αAr

(
C − λE

)
p− λBαAr + c(p, αAr) + max

FAr∈DAr
EFAr

[
CαArξ

]
(19a)

s.t. (12b)–(12c), (19b)

−A ≤ αAr ≤ A, (19c)

whose linear approximation writes as

Min
ΞAr

JAr =
(
C− λE

)
p− λBαAr+ c(p, αAr) + ϕArρAr+

1

|IAr|
∑

i∈IAr

σAr
i (20a)

Reformulation of (19a):

s.t. CαArξ̂Ar
i +

∑

b∈B
γAr
bi

(
Hb −Qbξ̂

Ar
i

)
≤ σAr

i : ζAr.1a
i , ∀i, (20b)

− ϕAr ≤
∑

b∈B
Qbγ

Ar
bi − CαAr ≤ ϕAr : ζAr.1b

i
, ζ

Ar.1b

i , ∀i, (20c)

0 ≤ γAr
bi : ζAr.1c

bi , ∀b, i (20d)
CVaR approximation of (12b):

τAr +
1

ϵ

(
ϕArρAr +

1

|IAr|
∑

i∈IAr

σAr
i

)
≤ 0 : ζAr.2a, (20e)

−P− p− αArξ̂Ar
i − τAr+

∑

b∈B
γAr1
bi

(
Hb−Qbξ̂

Ar
i

)
≤ σAr

i : ζAr.2b
i , ∀i, (20f)

∑

b∈B
γAr2
bi

(
Hb −Qbξ̂

Ar
i

)
≤ σAr

i : ζAr.2c
i , ∀i, (20g)
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− ϕAr ≤
∑

b∈B
Qbγ

Ar1
bi

+ αAr ≤ ϕAr : ζAr.2d

i
, ζ

Ar.2d

i , ∀i, (20h)

− ϕAr ≤
∑

b∈B
Qbγ

Ar2
bi

≤ ϕAr : ζAr.2e

i
, ζ

Ar.2e

i , ∀i, (20i)

0 ≤ γAr1
bi

: ζAr.2f
bi , ∀b, i, (20j)

0 ≤ γAr2
bi

: ζAr.2g
bi , ∀b, i,(20k)

CVaR approximation of (12c):

τAr +
1

ϵ

(
ϕ
Ar
ρAr +

1

|IAr|
∑

i∈IAr

σAr
i

)
≤ 0 : ζAr.3a, (20l)

p+ αArξ̂Ar
i − P − τAr+

∑

b∈B
γAr1
bi

(
Hb −Qbξ̂

Ar
i

)
≤ σAr

i : ζAr.3b
i , ∀i, (20m)

∑

b∈B
γAr2
bi

(
Hb −Qbξ̂

Ar
i

)
≤ σAr

i : ζAr.3c
i , ∀i, (20n)

− ϕ
Ar ≤

∑

b∈B
Qbγ

Ar1
bi − αAr ≤ ϕ

Ar
: ζAr.3d

i
, ζ

Ar.3d

i , ∀i, (20o)

− ϕ
Ar ≤

∑

b∈B
Qbγ

Ar2
bi ≤ ϕ

Ar
: ζAr.3e

i
, ζ

Ar.3e

i , ∀i, (20p)

0 ≤ γAr1
bi : ζAr.3f

bi , ∀b, i,(20q)
0 ≤ γAr2

bi : ζAr.3g
bi , ∀b, i, (20r)

Constraint (19c):

−A ≤ αAr ≤ A : ζAr.4a, ζ
Ar.4a

, (20s)

where ΞAr = {p, αAr, ϕAr, σAr
i , γAr

bi , τ
Ar, ϕAr, σAr

i , γAr1
bi

, γAr2
bi

, τAr, ϕ
Ar
, σAr

i ,

γAr1
bi , γAr2

bi }.

4.1 Price-setter

Lastly, the optimization problem (13) of the price-setter is revisited by a deter-
ministic problem comprising (14d) and (14e), but with theoretical constraints.
This optimization problem writes as

Max
λE,λB

JPs = λE
(
p−

∑

n∈N
dn − L

)
+ λB

(
αAr +

∑

n∈N
αEd
n − 1

)
(21a)

s.t. − Λ ≤ λE ≤ Λ : ζPs.E, ζ
Ps.E

, (21b)

− Λ ≤ λB ≤ Λ : ζPs.B, ζ
Ps.B

. (21c)

Recall that the sufficiently large parameter Λ constitutes theoretical bounds,
such that the feasible set is closed and compact, which is required later for the
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proof of the equilibrium solution existence. In our numerical study, we check
a posteriori that these bounds are inactive.

Definition 1 Based on the decision-making problems (18), (20), and (21),
we define the tractable Nash game Γ (Z,K, {Ji}∀i∈Z) corresponding to the
distributionally robust Nash equilibrium problem (3), (4), and (5). The sym-
bol Z is the set of all players, and Ji their respective payoff function, i.e.,
{{JEd

n }∀n∈N , JAr, JPs}. The symbol K = (KEd
n1

× · · · × KEd
N × KAr × KPs)

denotes the strategy set of the game, where KEd
n is the strategy set of the

price-elastic demand n ∈ N , KAr is the strategy set of the spatial arbitrageur,
and lastly KPs is the strategy set of the price-setter.

Proposition 1 For the Nash game Γ (Z,K, {Ji}∀i∈Z) a Nash equilibrium
point exists.

Proof 1. We provide the proof in Appendix B. ■

Proposition 2 For the Nash game Γ (Z,K, {Ji}∀i∈Z) an equivalent convex
optimization problem exists, whose global solution is unique and, thereby, gives
a unique Nash equilibrium point.

Proof 2. We provide the proof in Appendix C. ■

Remark 1 Note that our proofs rely on the affine policy, the worst-case CVaR
approximation of distributionally robust chance constraints11, and the quadratic
regularizer. In detail, the affine policy allows for a linear reformulation of
distributionally robust objective functions, and—along with the worst-case
CVaR approximation—the definition of a tractable and convex Nash game.
The quadratic regularizer is needed to obtain strict monotonicity of players’
preferences, which we take advantage of to prove uniqueness of the Nash equi-
librium point.

Remark 2 This article generalizes the findings in [3] by showing that although
different players may have access to different empirical data and are heteroge-
neously ambiguity-averse, an equivalent optimization to the competitive mar-
ket equilibrium problem still exists.

5 Numerical results and discussion

This section numerically analyzes the implications of heterogeneous ambigu-
ity aversion on local market-clearing outcomes. To identify the Nash equilib-
rium point, i.e., market-clearing outcomes, we solve the single optimization

11 Given that ϵ ≤ N−1 in (11b), (11c) as well as in (12b), (12c)—with N noting the number
of samples applied—the CVaR representation of distributionally robust chance constraints
is in this case according to [12] an exact representation of distributionally robust chance
constraints.
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Price-
setter

Dn1= 10 u.
Un1= e0.6 p.u.

Dn2= 10 u.
Un2= e0.7 p.u.

L = 15 u.
ξ = N(0, 3)

P = 30 u.
C = e0.5 p.u.

Import Export

Fig. 5: Case study: A local market with two elastic demands, namely n1 (green) and n2

(blue), an aggregated inelastic demand (yellow), and the spatial arbitrageur (red). The
maximum consumption as well as the import/export capacity are given in units (u.). The
import cost and export revenue as well as the consumption utility are expressed in e per
unit (e p.u.).

problem (26), which is—according to Proposition 2—equivalent to the Nash
game Γ (Z,K, {Ji}∀i∈Z). This optimization problem is a convex quadratic pro-
gram that can be solved by available commercial solvers such as the Gurobi
Optimizer or the IBM CPLEX Optimizer. Without the quadratic regularizer
in the objective function, this single optimization problem becomes a linear
program. All source codes are available in our online companion [21].

Let us consider a local market for a general commodity. Figure 5 illustrates
the players in the game as well the arbitrarily selected input data. In detail,
a spatial arbitrageur is restricted to import and export a given commodity
up to a maximum quantity P of 30 units at a fixed cost C of e0.5 per unit.
This restriction is imposed by the physical network constraints. Two elastic
demands, namely n1 and n2, may consume a maximum quantityDn of 10 units
each. The elastic demand n1 gains a utility Un1

of e0.6 per unit, while n2 earns
a slightly higher utility Un2

of e0.7 per unit. The aggregated inelastic demand
expects to consume L = 15 units, while her uncertain deviation ξ follows
a multivariate Gaussian distribution N(µ, σ), with a mean of µ = 0 and a
standard deviation of σ = 3.

From N(µ, σ) we draw 105 random samples, and provide the spatial arbi-
trageur as well as the elastic demands n1 and n2 with 500 randomly selected
samples, the so-called training data. These training samples for different play-
ers are not necessarily identical. We will use 104 number of the remaining sam-
ples later as test data. Given the training data, we solve the Nash equilibrium
problem and determine the optimal values for quantities p, dn1

, dn2
, participa-

tion factors αAr, αEd
n1

, αEd
n2

, price λE and balancing service payment λB. Given
the test data, we compute a posteriori the expected out-of-sample disutility
of the players. Note that we do not solve another optimization problem for
the out-of-sample computations, since the optimal values of the participation
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Fig. 6: Evolution of quantities to be traded (plot 6a), participation factors (plot 6b), and
expected out-of-sample disutility as well as its standard deviation highlighted by the shaded
area (plot 6c) as a function of the radius.

factors have been already determined.12 We set the regularizer to β = 10−6,
and the violation probability of the chance constraints to ϵ = 0.05.

5.1 The impact of ambiguity aversion

Two elastic demands n1 and n2 and the spatial arbitrageur contribute to off-
setting any consumption deviation ξ of the inelastic demand from her nominal
consumption L. Based on their expectation on ξ the spatial arbitrageur and
two elastic demands make an individual trade-off between the quantity of the
commodity to be bought and their participation factor. This trade-off highly
depends on their individual belief on the deviation ξ. As the ambiguity set for
a specific player enlarges, she contributes more actively to balancing services.

12 We assume that the market applies a real-time schedule determined in the forward stage.
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This effect is illustrated in Figure 6, where the radius of all players is as-
sumed to be identical, i.e., ρEd

n1
= ρEd

n2
= ρAr. This assumption will be relaxed

later. By increasing the radius, players become more ambiguity-averse. Mean-
while, all players possess the same empirical data, i.e., F̂Ed

n1
= F̂Ed

n2
= F̂Ar,

yielding homogeneous ambiguity sets. As the ambiguity aversion of all players
increases, all players reduce their quantity of the commodity to be traded as
shown in Figure 6a. However, we observe that this decrease is less steep for
the elastic demand n1, since her utility from consumption is slightly lower
than that of n2. The commodity price λE falls as the ambiguity aversion in-
creases. Figure 6b shows the evolution of the participation factors αAr, αEd

n1
,

and αEd
n2

. As the ambiguity aversion increases the elastic demand n2 as well
as the spatial arbitrageur provide a greater contribution to balancing services.
Meanwhile, the elastic demand n1 proportionally reduces her participation,
although starting from a significantly higher value. The balancing price λB

rises as the ambiguity aversion increases. Lastly, we observe in Figure 6c that
the expected disutility only slightly changes, whereas its standard deviation,
indicated by the shaded area around the expected disutility, is positively cor-
related to the participation factor.

5.2 On heterogeneous ambiguity aversion

In the following we are interested in exploring the impact of heterogeneous
ambiguity aversion. For this purpose, we assume the radius of the spatial
arbitrageur to be ρAr = 0.1. At the same time, we gradually increase the
radius of both elastic demands.

Figure 7 illustrates the expected disutility, i.e., the negative utility, of elas-
tic demands n1 and n2, respectively, as a function of own as well as rival
ambiguity aversion. As own ambiguity aversion of a demand increases her ex-
pected disutility increases as well. However, it also depends on the ambiguity
aversion of the rival. According to Figure 7a, corresponding to demand n1,
her expected disutility significantly depends on the ambiguity aversion of the
elastic demand n2. Given a high ambiguity aversion of both elastic demands,
player n1 does not earn any utility. In contrast, as shown in Figure 7b, the
disutility of the elastic demand n2 hardly depends on the rival ambiguity aver-
sion. Given a high ambiguity aversion of both elastic demands, she still earns
a utility from consumption. These observations highlight that a player with a
comparatively low consumption utility is highly exposed to the rival ambiguity
aversion.

6 Conclusion

We studied a perfectly competitive local market, in which players trade a single
commodity while being subject to the same source of uncertainty. These play-
ers could be heterogeneously ambiguity-averse by having individual knowledge
about and confidence in empirical data describing the uncertain event. We pro-
posed a generalized formulation of a distributionally robust Nash equilibrium
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Fig. 7: Expected disutility of the elastic demand n1 and n2 as a function of the radius of
the own and the rival’s ambiguity sets.

problem and applied a Wasserstein distance metric to model the ambiguity
set of each player. Through the application of distributionally robust chance
constraints, an affine policy and a quadratic regularizer, we defined a tractable
Nash game. We mathematically proved that for this game an equivalent single
optimization problem exists, whose solution is unique. This implies the exis-
tence of a unique Nash equilibrium point. Numerical results indicated that a
player with a comparatively low consumption utility is highly subject to rival
ambiguity aversion.

A Linear approximation

For the linear reformulation, we follow [7] and reformulate a distributionally robust objective
function of the form max

F∈D
EF

[
Cαξ

]
as

min
ϕ,σi,γbi

ϕρ+
1

|I|
∑

i∈I
σi (22a)

s.t. Cαξ̂i +
∑

b∈B
γbi

(
Hb −Qbξ̂i

)
≤ σi, ∀i, (22b)

∣∣∑

b∈B
Qbγbi − Cα

∣∣ ≤ ϕ, ∀i, (22c)

γbi ≥ 0, ∀b, i, (22d)

where ϕ, σi and γbi are auxiliary variables, and |I| returns the cardinality of set I. Set B
contains the bounds on ξ, i.e., max(ξ̂i, ∀i) and min(ξ̂i, ∀i). ParameterQb is a vector of [1,−1].
The absolute value | · | in (22c) results from the dual of the infinity-norm applied in (6a).

As discussed in [9] a distributionally robust chance constraint can be conservatively
approximated by a constraint including the CVaR at level ϵ. According to [12, Proposition 1]
and [27], a distributionally robust chance constraint of the form min

F∈D
PF

[
B−αξ ≤ 0

]
≥ 1−ϵ

can be approximated as a CVaR constraint max
F∈D

PF − CVaRϵ
[
B − αξ

]
≤ 0. Applying the
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dual of an infinity norm as our arbitrary choice, such a CVaR constraint reduces to the
following set of linear equations:

τ +
1

ϵ

(
ϕCVaRρ+

1

|I|
∑

i∈I
σCVaR
i

)
≤ 0, (23a)

B − αξ̂i − τ +
∑

b∈B
γb1
bi

(
Hb −Qbξ̂i

)
≤ σCVaR

i , ∀i, (23b)

∑

b∈B
γb2
bi

(
Hb −Qbξ̂i

)
≤ σCVaR

i , ∀i, (23c)

∣∣∑

b∈B
Qbγ

b1
bi + α

∣∣ ≤ ϕCVaR, ∀i, (23d)

∣∣∑

b∈B
Qbγ

b2
bi

∣∣ ≤ ϕCVaR, ∀i, (23e)

γb1
bi , γ

b2
bi ≥ 0, ∀b, i, (23f)

where τ , ϕCVaR, σCVaR
i , γb1

bi and γb2
bi are auxiliary variables.

B Proof of proposition 1

This proof is based on [29, Theorem 1], which states that a solution set to the compet-
itive equilibrium problem exists given that the strategy set of each player is convex and
compact. In addition, the objective function of each player needs to be continuous. For the
game Γ (Z,K, {Ji}∀i∈Z) the strategy set K comprising the stratgey set of each player is
closed, compact, convex, and non-empty. Moreover, all objective functions Ji∈Z are contin-
uously differentiable. Consequently, a solution to the competitive Nash equilibrium problem
exists. ■

C Proof of proposition 2

In the following, we show the existence of an equivalent single optimization problem to
the Nash game Γ (Z,K, {Ji}∀i∈Z), whose optimal solution coincides with the Nash equi-
librium point. The rationale behind the proof of this equivalence is that the Karush-Kuhn-
Tucker (KKT) conditions of the Nash game Γ (Z,K, {Ji}∀i∈Z) and of the single optimization
problem are identical. In addition, we show that the global solution to the single optimization
problem is unique, which implies the existence of a unique Nash equilibrium point.

C.1 Towards a single optimization problem

We first derive the objective function of the single optimization problem based on individual
cost functions (16), (18a) and (20a) as

λEL+ λB

︸ ︷︷ ︸
(16)

+
∑

n∈N

( (
λE − Un

)
dn − λBαEd

n + c(dn, α
Ed
n ) + ϕEd

n ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

︸ ︷︷ ︸
(18a)

)

+
(
C − λE

)
p− λBαAr + c(p, αAr) + ϕArρAr +

1

|IAr|
∑

i∈IAr

σAr
i

︸ ︷︷ ︸
(20a)

. (24)
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With the first-order coefficient for λE and λB of the price-setter’s problem (21) equal
to zero, the function (24) reduces to

∑

n∈N

(
−Undn + c(dn, α

Ed
n ) + ϕEd

n ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

︸ ︷︷ ︸
Elastic demand n

)

+ Cp+ c(p, αAr) + ϕArρAr +
1

|IAr|
∑

i∈IAr

σAr
i

︸ ︷︷ ︸
Spatial arbitrageur

. (25)

Based on the function (25) we propose the single optimization problem

Min
ΞCp

∑

n∈N

(
− Undn + c(dn, α

Ed
n ) + ϕEd

n ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

)

+ Cp+ c(p, αAr) + ϕArρAr +
1

|IAr|
∑

i∈IAr

σAr
i (26a)

s.t. p−
∑

n∈N
dn − L = 0 : λE, (26b)

αAr +
∑

n∈N
αEd
n − 1 = 0 : λB, (26c)

(18b)–(18s), ∀n, (26d)

(20b)–(20s), (26e)

where ΞCp = {dn, p, αEd
n , αAr, ϕEd

n , σEd
ni , γ

Ed
nbi, ϕ

Ar, σAr
i , γAr

bi , τEd
n , ϕEd

n
, σEd

ni , γ
Ed1
nbi

, γEd2
nbi

,

τEd
n , ϕ

Ed
n , σEd

ni , γ
Ed1
nbi , γEd2

nbi , τAr, ϕAr, σAr
i , γAr1

bi
, γAr2

bi
, τAr, ϕ

Ar
, σAr

i , γAr1
bi , γAr2

bi }. Note

that λE states the dual variable of the equality constraint (26b), while λB presents the dual
variable of the equality constraint (26c).

C.2 Karush-Kuhn-Tucker conditions

We continue by comparing the KKT conditions of the Nash game Γ (Z,K, {Ji}∀i∈Z) with
those of the single optimization problem (26). The KKT conditions associated with (18) are
as follows.

∂LEd
n

∂dn
= λE − Un + βdn +

1

|IEd
n |

∑

i∈IEd
n

(
− ζEd.2b

ni + ζEd.3b
ni

)
= 0, ∀n, (27a)

∂LEd
n

∂αEd
n

= −λB + βαEd
n +

1

|IEd
n |

∑

i∈IEd
n

(
ζEd.1a
ni Unξ̂

Ed
ni + ζEd.1b

ni
Un − ζ

Ed.1b
ni Un

+ ζEd.2b
ni ξ̂Ed

ni + ζEd.2d
ni

− ζ
Ed.2d
ni − ζEd.3b

ni ξ̂Ed
ni − ζEd.3d

ni
+ ζ

Ed.3d
ni

)

− ζEd.4a
n

+ ζ
Ed.4a
n = 0, ∀n, (27b)

∂LEd
n

∂ϕEd
n

= ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

(
− ζEd.1b

ni
− ζ

Ed.1b
ni

)
= 0, ∀n, (27c)

∂LEd
n

∂σEd
ni

=
∑

i∈IEd
n

1

|IEd
n | − ζEd.1a

ni = 0, ∀n, i, (27d)
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∂LEd
n

∂γEd
nbi

= ζEd.1a
ni

(
Hb −Qbξ̂

Ed
ni

)
− ζEd.1b

ni
Qb + ζ

Ed.1b
ni Qb − ζEd.1c

nbi = 0, ∀n, b, i, (27e)

∂LEd
n

∂τEd
n

= ζEd.2a
n − 1

|IEd
n |

∑

i∈IEd
n

ζEd.2b
ni = 0, ∀n, (27f)

∂LEd
n

∂ϕEd
n

= ζEd.2a
n

1

ϵ
ρEd
n

+
1

|IEd
n |

∑

i∈IEd
n

(
− ζEd.2d

ni
− ζ

Ed.2d
ni − ζEd.2e

ni
− ζ

Ed.2e
ni

)
= 0, ∀n, (27g)

∂LEd
n

∂σEd
ni

=
1

ϵ

1

|IEd
n | ζ

Ed.2a
n − ζEd.2b

ni − ζEd.2c
ni = 0, ∀n, i, (27h)

∂LEd
n

∂γEd1
nbi

= ζEd.2b
ni

(
Hb −Qbξ̂

Ed
ni

)
− ζEd.2d

ni
Qb + ζ

Ed.2d
ni Qb − ζEd.2f

nbi = 0, ∀n, b, i, (27i)

∂LEd
n

∂γEd2
nbi

= ζEd.2c
ni

(
Hb −Qbξ̂

Ed
ni

)
− ζEd.2e

ni
Qb + ζ

Ed.2e
ni Qb − ζEd.2g

nbi = 0, ∀n, b, i, (27j)

∂LEd
n

∂τEd
n

= ζEd.3a
n − 1

|IEd
n |

∑

i∈IEd
n

ζEd.3b
ni = 0, ∀n, (27k)

∂LEd
n

∂ϕ
Ed
n

= ζEd.3a
n

1

ϵ
ρEd
n

+
1

|IEd
n |

∑

i∈IEd
n

(
− ζEd.3d

ni
− ζ

Ed.3d
ni − ζEd.3e

ni
− ζ

Ed.3e
ni

)
= 0, ∀n, (27l)

∂LEd
n

∂σEd
ni

=
1

ϵ

1

|IEd
n | ζ

Ed.3a
n − ζEd.3b

ni − ζEd.3c
ni = 0, ∀n, i, (27m)

∂LEd
n

∂γEd1
nbi

= ζEd.3b
ni

(
Hb −Qbξ̂

Ed
ni

)
− ζEd.3d

ni
Qb + ζ

Ed.3d
ni Qb − ζEd.3f

nbi = 0, ∀n, b, i, (27n)

∂LEd
n

∂γEd2
nbi

= ζEd.3c
ni

(
Hb −Qbξ̂

Ed
ni

)
− ζEd.3e

ni
Qb + ζ

Ed.3e
ni Qb − ζEd.3g

nbi = 0, ∀n, b, i, (27o)

0 ≤ −Unα
Ed
n ξ̂Ed

ni −
∑

b∈B
γEd
nbi

(
Hb −Qbξ̂

Ed
ni

)
+ σEd

ni ⊥ ζEd.1a
ni ≥ 0, ∀n, i, (27p)

0 ≤ ϕEd
n +

∑

b∈B
Qbγ

Ed
nbi − Unα

Ed
n ⊥ ζEd.1b

ni
≥ 0, ∀n, i, (27q)

0 ≤ −
∑

b∈B
Qbγ

Ed
nbi + Unα

Ed
n + ϕEd

n ⊥ ζ
Ed.1b
ni ≥ 0, ∀n, i, (27r)

0 ≤ γEd
nbi ⊥ ζEd.1c

nbi ≥ 0, ∀n, b, i, (27s)

0 ≤ −τEd
n − 1

ϵ

(
ϕEd
n

ρEd
n +

1

|IEd
n |

∑

i∈IEd
n

σEd
ni

)
⊥ ζEd.2a

n ≥ 0, ∀n, (27t)

0 ≤ dn − αEd
n ξ̂Ed

ni + τEd
n −

∑

b∈B
γEd1
nbi

(
Hb −Qbξ̂

Ed
ni

)
+ σEd

ni ⊥ ζEd.2b
ni ≥ 0, ∀n, i, (27u)

0 ≤ −
∑

b∈B
γEd2
nbi

(
Hb −Qbξ̂

Ed
ni

)
+ σEd

ni ⊥ ζEd.2c
ni ≥ 0, ∀n, i, (27v)

0 ≤ ϕEd
n

+
∑

b∈B
Qbγ

Ed1
nbi

− αEd
n ⊥ ζEd.2d

ni
≥ 0, ∀n, i, (27w)
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0 ≤ −
∑

b∈B
Qbγ

Ed1
nbi

+ αEd
n + ϕEd

n
⊥ ζ

Ed.2d
ni ≥ 0, ∀n, i, (27x)

0 ≤ ϕEd
n

+
∑

b∈B
Qbγ

Ed2
nbi

⊥ ζEd.2e
ni

≥ 0, ∀n, i, (27y)

0 ≤ −
∑

b∈B
Qbγ

Ed2
nbi

+ ϕEd
n

⊥ ζ
Ed.2e
ni ≥ 0, ∀n, i, (27z)

0 ≤ γEd1
nbi

⊥ ζEd.2f
nbi ≥ 0, ∀n, b, i, (27aa)

0 ≤ γEd2
nbi

⊥ ζEd.2g
nbi ≥ 0, ∀n, b, i, (27ab)

0 ≤ −τEd
n − 1

ϵ

(
ϕ
Ed
n ρEd

n +
1

|IEd
n |

∑

i∈IEd
n

σEd
ni

)
⊥ ζEd.3a

n ≥ 0, ∀n, (27ac)

0 ≤ −dn + αEd
n ξ̂Ed

ni +Dn + τEd
n

−
∑

b∈B
γEd1
nbi

(
Hb −Qbξ̂

Ed
ni

)
+ σEd

ni ⊥ ζEd.3b
ni ≥ 0, ∀n, i, (27ad)

0 ≤ −
∑

b∈B
γEd2
nbi

(
Hb −Qbξ̂

Ed
ni

)
+ σEd

ni ⊥ ζEd.3c
ni ≥ 0, ∀n, i, (27ae)

0 ≤ ϕ
Ed
n +

∑

b∈B
Qbγ

Ed1
nbi + αEd

n ⊥ ζEd.3d
ni

≥ 0, ∀n, i, (27af)

0 ≤ −
∑

b∈B
Qbγ

Ed1
nbi − αEd

n + ϕ
Ed
n ⊥ ζ

Ed.3d
ni ≥ 0, ∀n, i, (27ag)

0 ≤ ϕ
Ed
n +

∑

b∈B
Qbγ

Ed2
nbi ⊥ ζEd.3e

ni
≥ 0, ∀n, i, (27ah)

0 ≤ −
∑

b∈B
Qbγ

Ed2
nbi + ϕ

Ed
n ⊥ ζ

Ed.3e
ni ≥ 0, ∀n, i, (27ai)

0 ≤ γEd1
nbi ⊥ ζEd.3f

nbi ≥ 0, ∀n, b, i, (27aj)

0 ≤ γEd2
nbi ⊥ ζEd.3g

nbi ≥ 0, ∀n, b, i, (27ak)

0 ≤ A+ αEd
n ⊥ ζEd.4a

n
≥ 0, ∀n (27al)

0 ≤ −αEd
n +A ⊥ ζ

Ed.4a
n ≥ 0, ∀n (27am)

where LEd
n is the Lagrangian function of (18).

The KKT conditions corresponding to (20) write

∂LAr

∂p
= C − λE + βp+

1

|IAr|
∑

i∈IAr

(
− ζAr.2b

i + ζAr.3b
i

)
= 0, (28a)

∂LAr

∂αAr
= −λB + βαAr +

1

|IAr|
∑

i∈IAr

(
ζAr.1a
i Cξ̂Ar

i + ζAr.1b
i

C − ζ
Ar.1b
i C

− ζAr.2b
i ξ̂Ar

i − ζAr.2d
i

+ ζ
Ar.2d
i + ζAr.3b

i ξ̂Ar
i + ζAr.3d

i
− ζ

Ar.3d
i

)

− ζAr.4a + ζ
Ar.4a

= 0, (28b)

∂LAr

∂ϕAr
= ρAr +

1

|IAr|
∑

i∈IAr

(
− ζAr.1b

i
− ζ

Ar.1b
i

)
= 0, (28c)

∂LAr

∂σAr
i

=
∑

i∈IAr

1

|IAr| − ζAr.1a
i = 0, ∀i (28d)

∂LAr

∂γAr
bi

= ζAr.1a
i

(
Hb −Qbξ̂

Ar
i

)
− ζAr.1b

i
Qb + ζ

Ar.1b
i Qb − ζAr.1c

bi = 0, ∀b, i (28e)
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∂LAr

∂τAr
= ζAr.2a − 1

|IAr|
∑

i∈IAr

ζAr.2b
i = 0, (28f)

∂LAr

∂ϕAr
= ζAr.2a 1

ϵ
ρAr

+
1

|IAr|
∑

i∈IAr

(
− ζAr.2d

i
− ζ

Ar.2d
i − ζAr.2e

i
− ζ

Ar.2e
i

)
= 0, (28g)

∂LAr

∂σAr
i

=
1

ϵ

1

|IAr| ζ
Ar.2a − ζAr.2b

i − ζAr.2c
i = 0, ∀i, (28h)

∂LAr

∂γAr1
bi

= ζAr.2b
i

(
Hb −Qbξ̂

Ar
i

)
− ζAr.2d

i
Qb + ζ

Ar.2d
i Qb − ζAR.2f

bi = 0, ∀b, i, (28i)

∂LAr

∂γAr2
bi

= ζAr.2c
i

(
Hb −Qbξ̂

Ar
i

)
− ζAr.2e

i
Qb + ζ

Ar.2e
i Qb − ζAr.2g

bi = 0, ∀b, i, (28j)

∂LAr

∂τAr
= ζAr.3a − 1

|IAr|
∑

i∈IAr

ζAr.3b
i = 0, (28k)

∂LAr

∂ϕ
Ar

= ζAr.3a 1

ϵ
ρAr

+
1

|IAr|
∑

i∈IAr

(
− ζAr.3d

i
− ζ

Ar.3d
i − ζAr.3e

i
− ζ

Ar.3e
i

)
= 0, (28l)

∂LAr

∂σAr
i

=
1

ϵ

1

|IAr| ζ
Ar.3a − ζAr.3b

i − ζAr.3c
i = 0, ∀i, (28m)

∂LAr

∂γAr1
bi

= ζAr.3b
i

(
Hb −Qbξ̂

Ar
i

)
− ζAr.3d

i
Qb + ζ

Ar.3d
i Qb − ζAr.3f

bi = 0, ∀b, i, (28n)

∂LAr

∂γAr2
bi

= ζAr.3c
i

(
Hb −Qbξ̂

Ar
i

)
− ζAr.3e

i
Qb + ζ

Ar.3e
i Qb − ζAr.3g

bi = 0, ∀b, i, (28o)

0 ≤ −CαArξ̂Ar
i −

∑

b∈B
γAr
bi

(
Hb −Qbξ̂

Ar
i

)
+ σAr

i ⊥ ζAr.1a
i ≥ 0, ∀i, (28p)

0 ≤ ϕAr +
∑

b∈B
Qbγ

Ar
bi − CαAr ⊥ ζAr.1b

i
≥ 0, ∀i, (28q)

0 ≤ −
∑

b∈B
Qbγ

Ar
bi + CαAr + ϕAr ⊥ ζ

Ar.1b
i ≥ 0, ∀i, (28r)

0 ≤ γAr
bi ⊥ ζAr.1c

bi ≥ 0, ∀b, i (28s)

0 ≤ −τAr − 1

ϵ

(
ϕArρAr +

1

|IAr|
∑

i∈IAr

σAr
i

)
⊥ ζAr.2a ≥ 0, (28t)

0 ≤ P + p+ αArξ̂Ar
i + τAr −

∑

b∈B
γAr1
bi

(
Hb −Qbξ̂

Ar
i

)
+ σAr

i ⊥ ζAr.2b
i ≥ 0, ∀i, (28u)

0 ≤ −
∑

b∈B
γAr2
bi

(
Hb −Qbξ̂

Ar
i

)
+ σAr

i ⊥ ζAr.2c
i ≥ 0, ∀i, (28v)

0 ≤ ϕAr +
∑

b∈B
Qbγ

Ar1
bi

+ αAr ⊥ ζAr.2d
i

≥ 0, ∀i, (28w)

0 ≤ −
∑

b∈B
Qbγ

Ar1
bi

− αAr + ϕAr ⊥ ζ
Ar.2d
i ≥ 0, ∀i, (28x)

0 ≤ ϕAr +
∑

b∈B
Qbγ

Ar2
bi

⊥ ζAr.2e
i

≥ 0, ∀i, (28y)
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0 ≤ −
∑

b∈B
Qbγ

Ar2
bi

+ ϕAr ⊥ ζ
Ar.2e
i ≥ 0, ∀i, (28z)

0 ≤ γAr1
bi

⊥ ζAr.2f
bi ≥ 0, ∀b, i, (28aa)

0 ≤ γAr2
bi

⊥ ζAr.2g
bi ≥ 0, ∀b, i, (28ab)

0 ≤ −τAr − 1

ϵ

(
ϕ
Ar

ρAr +
1

|IAr|
∑

i∈IAr

σAr
i

)
⊥ ζAr.3a ≥ 0, (28ac)

0 ≤ −p− αArξ̂Ar
i + P + τAr −

∑

b∈B
γAr1
bi

(
Hb −Qbξ̂

Ar
i

)
+ σAr

i ⊥ ζAr.3b
i ≥ 0, ∀i, (28ad)

0 ≤ −
∑

b∈B
γAr2
bi

(
Hb −Qbξ̂

Ar
i

)
+ σAr

i ⊥ ζAr.3c
i ≥ 0, ∀i, (28ae)

0 ≤ ϕ
Ar

+
∑

b∈B
Qbγ

Ar1
bi − αAr ⊥ ζAr.3d

i
≥ 0, ∀i, (28af)

0 ≤ −
∑

b∈B
Qbγ

Ar1
bi + αAr + ϕ

Ar ⊥ ζ
Ar.3d
i ≥ 0, ∀i, (28ag)

0 ≤ ϕ
Ar

+
∑

b∈B
Qbγ

Ar2
bi ⊥ ζAr.3e

i
≥ 0, ∀i, (28ah)

0 ≤ −
∑

b∈B
Qbγ

Ar2
bi + ϕ

Ar ⊥ ζ
Ar.3e
i ≥ 0, ∀i, (28ai)

0 ≤ γAr1
bi ⊥ ζAr.3f

bi ≥ 0, ∀b, i, (28aj)
0 ≤ γAr2

bi ⊥ ζAr.3g
bi ≥ 0, ∀b, i, (28ak)

0 ≤ A+ αAr ⊥ ζAr.4a ≥ 0, (28al)

0 ≤ −αAr +A ⊥ ζ
Ar.4a ≥ 0, (28am)

where LAr is the Lagrangian function of (20).
Lastly, the KKT conditions of (21) write

∂LPs

∂λE
= p−

∑

n∈N
dn − L− ζPs.E + ζ

Ps.E
= 0, (29a)

∂LPs

∂λB
= αAr +

∑

n∈N
αEd
n − 1− ζPs.B + ζ

Ps.B
= 0, (29b)

0 ≤ Λ+ λE ⊥ ζPs.E ≥ 0, (29c)

0 ≤ −λE + Λ ⊥ ζ
Ps.E ≥ 0, (29d)

0 ≤ Λ+ λB ⊥ ζPs.B ≥ 0, (29e)

0 ≤ −λB + Λ ⊥ ζ
Ps.B ≥ 0, (29f)

where LPs is the Lagrangian function of (21).
Similarly, the KKT conditions of the single optimization problem (26) are given by

(27a)–(27am), (30a)

(28a)–(28am), (30b)

p−
∑

n∈N
dn − L = 0, (30c)

αAr +
∑

n∈N
αEd
n − 1 = 0, (30d)
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Note that the KKT conditions of the single optimization problem (26) is a collection
of the KKT conditions corresponding to optimization problems (18) and (20) with two ad-
ditional equality constraints, namely (30c) and (30d). However, given that the constraints
on λE and λB in the price-setters’ optimization problem (21) are non-binding, the equal-
ity constraints (30c) and (30d) are equivalent to the derivatives with respect to λE (29a)
and λB (29b) of the price-setter’s problem.

Consequently, for non-binding constraints on λE and λB the solution of the single op-
timization problem (26) is equivalent to the solution of the Nash game Γ (Z,K, {Ji}∀i∈Z),
and vice versa.

C.3 Uniqueness of the Nash equilibrium point

We note that the objective function (26a) of the single optimization problem is strictly

convex given by the quadratic term c(dn, αEd
n ) and c(p, αAr) indicating strict monotonicity

of players’ preferences [30]. Owing to strict convexity of the objective function (26a) and the

convex and compact strategy set (26b)–(26e), the single optimization problem (26) yields a

unique solution. Since (26) is equivalent to the original Nash game Γ (Z,K, {Ji}∀i∈Z), the

Nash equilibrium point is also unique. ■
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