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In this paper we present a higher-dimensional seesaw mechanism. We consider a single, flat extra
dimension, where a fat brane is localized and contains the standard model (SM) fields, similar to universal
extra dimension models. There is only one Dirac fermion in the bulk, and in four dimensions it results in
two towers of Kaluza-Klein (KK) Majorana sterile neutrinos, whose mass mixing with the SM neutrinos is
suppressed due to a brane-localized kinetic term. The interaction between the sterile neutrinos and the SM
is through the usual coupling with the Higgs boson, where the coupling depends upon the compactification
radius R−1 ¼ 10−2 − 1 GeV and the width of the fat brane L−1 ¼ 2 TeV, where the latter value is chosen to
avoid LHC constraints. Due to this suppression mechanism the mass of the lightest sterile neutrinos can be
of order Oð1 − 10Þ TeV while naturally explaining the small SM neutrino mass, which in turn is easily
obtained for a large range of parameter choices. Furthermore, neutrino oscillations are not substantially
influenced by the tower of sterile KK particles. Finally, leptogenesis is investigated in this setup, and it is
viable for some values within the parameter space.

DOI: 10.1103/PhysRevD.102.095004

I. INTRODUCTION

Extra dimensions (ED) have been used to explain a
plethora of phenomena in particle physics and cosmology,
including the hierarchy [1–8] and flavor problems [9–11],
proton stability [12], the origin of electroweak symmetry
breaking [13–16], the breaking of grand unified gauge
groups [17–20], the number of fermion generations
[21–26], the seesaw mechanism [27,28], and leptogenesis
]29 ]. The standard model (SM) itself can be enlarged if its

content is promoted to fields that propagate into a compact
ED, in the so-called universal extra dimension (UED)
models. In this scenario, the zero-mode of each Kaluza-
Klein (KK) state is seen in four dimensions as the
correspondent SM particle. UED models were built in
5-D [30] and 6-D [31–34], whose compactification radius
L is constrained using supersymmetry searches at the LHC
[35], since both models can have similar phenomenology.
The current bound for the 5-D UED model is L−1 >
1.4–1.5 TeV [36–38] (forΛL ∼ 5–35, whereΛ is the cutoff
scale), while for the 6-D UED model the bound is L−1 >
900 GeV [39].
When a brane is present, kinetic terms can be induced in

it as the result of loop corrections associated with the

interaction between the fields in the bulk and localized
matter fields in the brane. The resulting induced brane-
localized kinetic term (BLKT) describes a massless field,
being effectively 4-D for distances shorter than the com-
pactification radius. Such a mechanism was studied in 5-D
for spin-2 field [40], gauge theories [41], and supersym-
metric models [42,43], giving also similar results in 6-D
[44–46]. Additionally, the localization of matter or gauge
fields in branes has been explored in other contexts, for thin
[4,47–55] and thick branes [56,57], while BLKT has been
investigated in different scenarios [58–72].
In a recent paper [73], an ED was employed along with a

finite width “fat” brane to explain the expected smallness of
the coupling between SM and a dark mediator, where this
mediator is either a vector or a scalar field. In this setup, a
fat brane was used and the interaction between the SM and
the mediators was found to be suppressed, when compared
with the coupling between these same mediators and a dark
matter candidate, confined in a separate thin brane. The
suppression mechanism is much more accentuated when a
BLKT is present. A similar result was obtained for a vector
field in the bulk, in a model with two ED [74,75].
The small value of the SM neutrino mass can be

explained if one uses the seesaw mechanism, where the
diagonalization of the neutrino mass matrix leads to a
massive mostly sterile neutrino and a very light mostly
active neutrino. This mechanism is known to be possible
using large extra dimensions [27] or warped geometry [28],
so that a natural extension of previous works [73] would be
to investigate if a fermion in the bulk, playing the role of a
sterile neutrino, has its interaction with SM suppressed in
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such a way that the seesaw mechanism can be realized. This
is the purpose of the present work. We find that the two
towers of Majorana sterile neutrinos can indeed provide the
explanation of the small SM neutrino mass through a
higher-dimensional seesaw mechanism. The lightest sterile
neutrino masses can be of order Oð1 − 10Þ TeV because
the mass mixing between the sterile neutrinos and the SM
neutrino is naturally very suppressed for a wide range of
parameter choices. Neutrino oscillations are not influenced
by the tower of sterile neutrinos since the survival prob-
ability is practically equal to one. Finally, we investigate
leptogenesis in this setup, showing that it can explain the
observed baryon asymmetry of the universe for some
values of the parameter space.
Since with the present scenario, for a type-I seesaw

framework at the TeV-scale, we aim to explain the observed
smallness of the masses of the light neutrinos through the
suppression of their Yukawa couplings employing an ED
with a fat brane and a BLKT, it is distinct from other
important realizations of the seesaw mechanism at low
scales. In particular, the so-called inverse seesaw mecha-
nism [76–84] relies on an approximately conserved lepton
number that is extended to the right-handed neutrinos. This
leads to a suppression of the lepton-number violating
Majorana masses of the light, mostly active neutrinos,
while leaving relatively large mixing angles with the
heavier, mostly sterile neutrinos. A distinct feature is
therefore the enhanced mixing of active and sterile neu-
trinos that may even lead to the observation of the heavy
neutrino states with current and planned experiments. A
particularly interesting variant of such models is based on
the left-right symmetric model (LRM) (see Ref. [79] for a
review), where intriguing phenomenology arises from the
additional Higgs mechanism at the TeV scale. In contrast,
in the present model, the new states are feebly coupled
sterile neutrinos that currently appear impossible to be
observed in combination with the rich phenomenology
implied by the presence of the ED.
This paper is organized as follows. In Sec. II we consider

a fermion in the bulk and derive the equations of motion
and wave functions. The interaction with the SM is
presented in Sec. III along with the seesaw mechanism
and the survival probability of the SM neutrino. In Sec. IV
we investigate leptogenesis and Sec. V is reserved for
conclusions.

II. NEUTRINO IN THE BULK

We consider a single, flat ED represented by an interval
0 ≤ y ≤ πR, with a fat brane localized between πr and πR,
where the SM is confined, and we assume L≡ R − r ≪ R.
There is only one generation of a Dirac fermion in the bulk
Ψðxμ; yÞ, with Dirac and Majorana mass terms. We con-
sider the induced kinetic term in the fat brane, so that the
corresponding action is [28,61]

S¼
Z

d4xdy½iΨΓA∂AΨ−mDΨΨ−mMΨΨcþLBLKT�; ð1Þ

where A ¼ 0–3; 5 is the 5-D index, mD is the Dirac mass,
mM is the Majorana mass, Γ4 ¼ iγ5 and Ψc ¼ C5ΨT is the
charge conjugated spinor, with C5 ¼ γ0γ2γ5. The BLKT in
the action is given by [61]1

LBLKT ¼ iΨ=∂Ψ · δAθðyÞR; ð2Þ

where the step-function is

θðyÞ¼ 0 for y< πr; θ¼ α for πr< y≤ πR; ð3Þ

with δA > 0 and α being a positive constant with dimen-
sions of energy. We define region I as 0 ≤ y < πr and
region II as πr < y ≤ πR. Writing the bulk sterile neutrino
as Ψ ¼ Ψ1 þ Ψ2,

2 we can expand it as a tower of
KK states

Ψ1;2ðxμ; yÞ ¼
X∞
n¼0

fðnÞ1;2ðyÞψ ðnÞ
1;2ðxμÞ: ð4Þ

Using this decomposition the 4-D action is found after
integrating out the ED, where the wave functions f1;2ðyÞ
satisfy the following orthogonality relationsZ

πR

0

dy½1þ δARθðyÞ�ðfðmÞ
1 fðnÞ1 þ fðmÞ

2 fðnÞ2 Þ ¼ δm;n; ð5Þ
Z

πR

0

dyfðmÞ
2 ∂yf

ðnÞ
1 ¼−

Z
πR

0

dyfðmÞ
1 ∂yf

ðnÞ
2 � ¼mnδm;n: ð6Þ

In order for Eq. (6) to be true, the integration by parts gives

the following coupled BC fðmÞ
1 fðnÞ2 ðπRÞ − fðmÞ

1 fðnÞ2 ð0Þ ¼ 0,
which should be satisfied for all m and n. With
the decomposition (4) and using the Majorana condi-

tion for the 4-D fields ψ ðnÞ
1 ¼ ψ ðnÞ

2 , we get the equation
of motion for the two components of the wave
function [28]

ð�∂y −mDÞfðnÞ1;2 þ ½ð1þ δARθðyÞÞmn −mM�fðnÞ2;1 ¼ 0: ð7Þ

1For simplicity, we restrict our attention for the case where
the BLKT parameter δA is the same for the two components
of the Dirac spinor ψ1, ψ2, i.e., δ1A ¼ δ2A ≡ δA, although different
contributions might be possible, as presented in [61].

2There are no chiral fermions in 5-D and chirality in 4-D is
recovered through the Z2 orbifold symmetry y → −y, where one
spinor is taken to be even under this symmetry, while the second
one is taken to be odd. As we shall see, the wave functions do not
satisfy orbifold boundary conditions (BC) in the region
πr < y < πR, therefore we do not obtain a chiral spinor. In
addition, the Dirac mass term in 4-D would be canceled if one had
used orbifold BC, which again, is not the case here.
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The first-order equations (7) can be transformed into a

second-order equation for fðnÞ2 , for example.3 This pro-
cedure gives

∂2
yf

ðnÞ
2 þ ½ðmn −mM þmnδAθðyÞRÞ2 −m2

D�fðnÞ2 ¼ 0; ð8Þ

wheremn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n=R2 þm2

D

p
þmM and the roots xn will be

determined by the appropriate transcendental equation.

Having determined fðnÞ2 , the solution is then replaced in

the respective Eq. (7), to solve for fðnÞ1 .
The solutions of Eqs. (7) and (8) are found for the two

different regions in the ED space, that is, inside the fat brane
and outside it. The solution for the wave function in region I
have the form fðnÞ2 ðyÞ¼Ancosðxny=RÞþBnsinðxny=RÞ,
but imposing that it vanishes at y ¼ 0 in order to satisfy
the coupled BC, we have the following solutions for this
region

fðnÞ1;I ðyÞ¼
Λn

mn−mM

�
mD sin

�
xny
R

�
þxn

R
cos

�
xny
R

��
; ð9Þ

fðnÞ2;I ðyÞ ¼ Λn sin

�
xny
R

�
; ð10Þ

where Λn is the normalization constant found using Eq. (5).
The wave functions in the region II have solutions of the

form fðnÞ1;2;II ¼ An cosðmnyÞ þ Bn sinðmnyÞ, where the con-
stants An and Bn for one of the components are determined
using the condition of continuity of the function and
continuity of its derivative, at y ¼ πr. The second wave
function must satisfy Eq. (7), thus the resulting solutions
are [73]

fðnÞ1;IIðyÞ ¼ fðnÞ1;I ðπrÞ cos½mnðy − πrÞ�

þ f0ðnÞ1;I ðπrÞ
mn

sin½mnðy − πrÞ�; ð11Þ

fðnÞ2;IIðyÞ¼
mn−mMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Dþm2
n

p Λn sin

�
xnπr
R

�
cos½mnðy−πrÞ�

þmnf
ðnÞ
1;I ðπrÞþf0ðnÞ1;I ðπrÞmD=mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
Dþm2

n

p sin½mnðy−πrÞ�;

ð12Þ

wherem2
n ≡ ðmn −mM þmnδAαRÞ2 −m2

D and the prime is
a derivative with respect to y.
Using Eq. (5), the normalization constant is

2Λ−2
n ¼ 2πrþ ð1þ δAαRÞ

�
AðnÞ
1 BðnÞ

1 þ AðnÞ
2 BðnÞ

2

mn
þ ðAðnÞ2

1 þ BðnÞ2
1 þ AðnÞ2

2 þ BðnÞ2
2 ÞπL

−
AðnÞ
1 BðnÞ

1 þ AðnÞ
2 BðnÞ

2

mn
cosð2mnπLÞ þ

AðnÞ2
1 − BðnÞ2

1 þ AðnÞ2
2 − BðnÞ2

2

2mn
sinð2mnπLÞ

�

−
mD½cosð2πrxn=RÞ − 1�

x2n=R2 þm2
D

þ ðx2n=R −m2
DÞ sinð2πrxn=RÞÞ

2ðx2n=R2 þm2
DÞxn=R

−
sinð2πrxn=RÞ

2xn=R
; ð13Þ

where AðnÞ
1ð2Þ and BðnÞ

1ð2Þ are the terms (obviously without the
normalization constant) that multiply the cosine and the
sine in Eq. (11) or Eq. (12), respectively.
Imposing fðnÞ1;II ¼ 0 to satisfy the remaining part of the

coupled BC, we get the transcendental equation that
determines the roots xn

tanðmnπLÞ ¼ −mn
fðnÞ1;I ðπrÞ
f0ðnÞ1;I ðπrÞ

: ð14Þ

The 4-D Lagrangian contains Dirac and Majorana
mass terms, but we can form the linear combination

NðnÞ
1 ¼ðψ ðnÞ

1 þψ ðnÞ
2 Þ= ffiffiffi

2
p

and NðnÞ
2 ¼iðψ ðnÞ

1 −ψ ðnÞ
2 Þ= ffiffiffi

2
p

, such

that they diagonalize the mass matrix. The resulting tower
of Majorana eigenstates have the corresponding physical

masses given bymðnÞ
1ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n=R2 þm2

D

p
�mM > 0, where

a hierarchy between the mass parameters and a positive
bulk Majorana mass is assumed to assure that the physical
masses are always positive.

III. SEESAW MECHANISM

There is an interaction between the bulk fermion, the
Higgs H and the SUð2ÞL doublet fermion Lf given by
λ5ΨLfHþH:c:¼ λ5;1Ψ1LfHþλ5;2Ψ2LfHþH:c:, where
λ5 is the Yukawa matrix, λ5;1ð2Þ are the correspondent
5-D Yukawa couplings and Hh.c. stands for Hermitian
conjugation. We will omit flavor indices. Since we are
interested in the interaction with conventional SM particles,
we will assume only the zeroth-KK mode for the SM fields.
After expanding the sterile neutrino in a KK tower of states,

the 4-D couplings λðnÞ
1ð2Þ are defined as

3The choice of which wave function would have a second-
order equation is arbitrary. If we had chosen fðnÞ1 instead of fðnÞ2 ,
the final solution would have a overall minus sign. The
transcendental equation (to be shown next) would still be the
same.

FAT BRANE AND SEESAW MECHANISM IN EXTRA … PHYS. REV. D 102, 095004 (2020)

095004-3



λðnÞ
1ð2Þ≡

λ4;1ð2Þ
Λ0

Z
πR

πr
dy

fðnÞ
1ð2ÞIIðyÞ
πL

¼ λ4;1ð2ÞΛn

mnπLΛ0

fBðnÞ
1ð2Þ½1− cosðmnπLÞ�þAðnÞ

1ð2Þ sinðmnπLÞg;

ð15Þ

where λ4;1ð2Þ ≡ λ5;1ð2ÞΛ0 is defined to be a 4-D dimension-
less Yukawa coupling, ðπLÞ−1=2 is the usual normalization
of the UED SM fields and recall that L is the width of the

fat brane. We plot the couplings λðnÞ1 and λðnÞ2 as functions of
the roots xn in Figs. 1–3, for different values of the
parameters. We took λ5;1ð2Þ ¼ 1 TeV−1=2 without loss of

FIG. 1. Oscillatory behavior of the couplings λðnÞ1 (left) and λðnÞ2 (right), for different values ofmD,mM, and δAα, for λ5;1ð2Þ ¼ 1 TeV−1=2,
R−1 ¼ 1 GeV, and L−1 ¼ 2 TeV.
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generality. From the figures we see that increasing either the
value of the bulk masses or δAα decreases the couplings,
while the case without BLKT in the fat brane (δAα ¼ 0)
presents the least suppressed behavior. The presence of
BLKT, therefore, makes the coupling smaller and more

suppressed, shrinking the oscillatory pattern as the combi-
nation δAα is increased. This is the same behavior found in
[73] (where the coupling was proportional to L=R, for the
lightest KK states), where here we can also see that larger
compactification radius R decreases the couplings as well.

FIG. 2. Oscillatory behavior of the couplings λðnÞ1 (left) and λðnÞ2 (right), for different values of mD, mM, and δAα, for
λ5;1ð2Þ ¼ 1 TeV−1=2, R−1 ¼ 100 MeV, and L−1 ¼ 2 TeV.
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The interaction in the mass eigenstate basis is

λðnÞ
1ð2ÞN

ðnÞ
1ð2ÞLfH þ H:c:, where λðnÞ1 ¼ ðλðnÞ1 þ λðnÞ2 Þ= ffiffiffi

2
p

and

λðnÞ2 ¼ −iðλðnÞ1 − λðnÞ2 Þ= ffiffiffi
2

p
. We are ignoring possible addi-

tional phases for the couplings, because it turns out that
both couplings can be turned into real numbers by a phase

adjustment, so that in what follows only the absolute value
of them is important.
After the spontaneous symmetry breaking via the Higgs

mechanism the off-diagonal mass term 1
2
m̂ðnÞ

1ð2ÞN
ðnÞ
1ð2ÞνL þ

H:c: appears in the Lagrangian, where m̂ðnÞ
1ð2Þ ≡

ffiffiffi
2

p
λðnÞ
1ð2Þv

FIG. 3. Oscillatory behavior of the couplings λðnÞ1 (left) and λðnÞ2 (right), for different values of mD, mM, and δAα, for
λ5;1ð2Þ ¼ 1 TeV−1=2, R−1 ¼ 10 MeV, and L−1 ¼ 2 TeV.

BJÖRN GARBRECHT and RICARDO G. LANDIM PHYS. REV. D 102, 095004 (2020)

095004-6



and v ¼ 246 GeV is the Higgs vacuum expectation value.
The mass term for the neutrinos can be written as
1
2
N TMN þ H:c:, where

N T ≡ ðνL; Nð0Þ
1 ; Nð0Þ

2 ; Nð1Þ
1 ; Nð1Þ

2 ;…Þ; ð16Þ

and the mass matrix is

M ¼

0
BBBBBBBBBBBB@

0 m̂ð0Þ
1 m̂ð0Þ

2 m̂ð1Þ
1 m̂ð1Þ

2 …

m̂ð0Þ
1 mð0Þ

1 0 0 0 …

m̂ð0Þ
2 0 mð0Þ

2 0 0 …

m̂ð1Þ
1 0 0 mð1Þ

1 0 …

m̂ð1Þ
2 0 0 0 mð1Þ

2 …

..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCA
: ð17Þ

Given the cutoff scale Λ, above which the theory becomes
nonperturbative, it is possible to determine how many
particles will contribute to the mass matrix. It is usually
assumed ΛL ¼ 20 for UED models [37], thus in our case,
considering L−1 ¼ 2 TeV to avoid LHC constraints, we
have Λ ¼ 40 TeV. KK particles heavier than the cutoff
scale are not present in the mass matrix, thus there are
roughly ΛR roots (sterile neutrino KK particles) below the
cutoff scale.
The characteristic eigenvalue equation detðM − IλÞ ¼ 0

that determines the physical neutrino masses is written for
the mass matrix (17) as

Y
n

ðmðnÞ
1 − λÞðmðnÞ

2 − λÞ
�
λþ

X
n

� bmðnÞ2
1

mðnÞ
1 − λ

þ bmðnÞ2
2

mðnÞ
2 − λ

��

¼ 0: ð18Þ

As can seen from the mass matrix, the smaller the couplingsbmðnÞ
1ð2Þ are, the smaller the KK masses need to be to satisfy

the neutrino massmνL ∼ 10−2 eV. If a very large number of
particles enter in the mass matrix, the seesaw mechanism
may not be achieved because there would be contributions
of a large amount of modes, increasing the smallest mass
(SM neutrino mass). Since Λ ¼ 40 TeV for L−1 ¼ 2 TeV,
the number of sterile neutrino KK states below the cutoff
scale are ΛR ∼ 4 × 104, for R−1 ¼ 1 GeV, being this
number larger for larger radii. Such a large number of
KK particles could leave the SM neutrino heavier than it
should be, unless very small 4-D Yukawa couplings λ4;1ð2Þ
are assumed. On the other hand, if the bulk Dirac mass is of
the same order of magnitude of the cutoff scale Λ
(Oð10Þ TeV), in such a way that a relatively small number
of particles contribute to the mass matrix, this issue can be
easily avoided and the seesaw mechanism can be properly
achieved.

Since the sterile neutrinos are much heavier than the off-

diagonal masses mðnÞ
1ð2Þ ≫ bmðnÞ

1ð2Þ, Eq. (18) can be simplified

because all of the eigenvalues but the correspondent one to
the SM neutrino mass are practically equal to the respective

masses, that is, mðnÞ
1ð2Þ ∼ λn. For the SM neutrino, the

corresponding eigenvalue λν is obtained from the term in
square brackets in Eq. (18), which gives the following

result after making the approximation mðnÞ
1ð2Þ ≫ λν,

λν ≈ −
X
n

�bmðnÞ2
1

mðnÞ
1

þ bmðnÞ2
2

mðnÞ
2

�
: ð19Þ

We see that the standard seesaw expression is obtained if
there is only one particle (λν ≈ −bm2

1=m1). From Eq. (19) we
also understand why a very large number of particles would
increase λν, jeopardizing the success of the seesaw
mechanism.
It is possible to have an estimate for the upper limit

of m̂ðnÞ
1ð2Þ that would give the observed neutrino mass

λν ∼ 10−2 eV. We may consider mM ∼ 0 for a moment
for simplicity. When the Majorana mass in the bulk is
absent, the two sterile neutrino towers have degenerate

mass states mðnÞ
1 ¼ mðnÞ

2 . For large values of the bulk Dirac
mass, the physical masses are roughly the same for almost
all KK states. Additionally, just to have an intuition for the

values of m̂ðnÞ
1ð2Þ, let us assume that m̂ðnÞ

1 ¼ m̂ðnÞ
2 ≡ m̂1, i.e., it

is independent of n. This is not completely true but gives a

conservative estimate, because m̂ðnÞ
1ð2Þ is smaller for small or

very large n. Therefore, in this situation Eq. (19) yields

m̂2
1 ≲ 10−11

m1

ΛR
GeV; ð20Þ

where the sum over n becomes the product of ΛR
states. For R ¼ 1 GeV, the number of states are
ΛR ∼ 4 × 104, therefore, for m1 ∼ 10 TeV we should have
m̂1 ≲ 10−5 GeV. Obviously this is just a rough estimate,
but it gives an idea of how easy the seesaw mechanism
could be satisfied within the present model, having the
lightest sterile neutrinos with masses of order 10 TeV. On
the other hand, larger compactification radii would lead to a
much larger number ΛR of states, therefore requiring
smaller couplings for the same neutrino mass.
We numerically solve Eq. (18) and gather in Table I some

representative and plausible values of parameters that
satisfy what is expected for the seesaw mechanism
mν ∼ 10−2 eV. Other choices of parameters would give
similar results. For R−1 ¼ 100 MeV there are over 105 KK
states that contribute to the neutrino mass matrix (consid-
ering the values of bulk masses in Table I), while for R−1 ¼
1 GeV there are ∼104 states. Although the couplings are
relatively more suppressed for larger compactification radii,
they are not sufficiently small to compensate the additional
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number of KK states contributing to the neutrino mass in
Eq. (19). Therefore, in order to compensate the eventually
large number of KK states for larger R, smaller 4-DYukawa
couplings λ4;1ð2Þ are needed. We see from Table I that the
most favorable compactification radius is R−1 ¼ 1 GeV.
Smaller values of the 4-D Yukawa couplings, λ4;1ð2Þ ∼
0.01–0.1 for R−1 ¼ 1 GeV, for instance would bring
the upper limits in Table I down to smaller values,
mD ∼ 1–10 TeV, respectively. The same reasoning also
applies to obtain smaller values for the BLKT parameter
δAα. Notice that the roots xn are usually much smaller than
mD, leading to a difference between one KK state and the
next one of order ðx2nþ1 − x2nÞ=ð2mDR2Þ. The mass differ-
ence between two neighboring KK states can be much
smaller than the difference between the masses of the
two sterile neutrinos within the same KK state, that is,

mðnÞ
1ð2Þ −mðkÞ

1ð2Þ ∼ ðx2n − x2kÞ=ð2mDR2Þ ≪ mðnÞ
1 −mðnÞ

2 ∼mM,

provided that mM is not very small.
Finally, in order to understand the influence of the KK

particles on neutrino oscillations we will evaluate the total
probability of the SM neutrino oscillating into any other
sterile neutrino KK state. It is convenient to work with the
survival probability PνL→νLðtÞ, as a function of time, that
the SM neutrino is preserved [27]

PνL→νLðtÞ ¼
����X

i

jUνLij2 expðiEitÞ
����2; ð21Þ

where the energies Ei are the mass eigenvalues in our case
and UνLi are the mass eigenvectors. The gauge eigenstates
are therefore written in terms of the mass eigenstates as

N ¼ UÑ ; ð22Þ

where the mass eigenvectors U are

U ¼

0
BBBBBBBBBB@

Uν

U1;0

U2;0

U1;1

U2;1

..

.

1
CCCCCCCCCCA
: ð23Þ

Each row is the eigenvector correspondent to the eigenvalue
Ei ¼ λi, and it can be written as

Ui ¼
�
1; m̂ð0Þ

1

mð0Þ
1
−λi

; m̂ð0Þ
2

mð0Þ
2
−λi

; m̂ð1Þ
1

mð1Þ
1
−λi

; m̂ð1Þ
2

mð1Þ
2
−λi

; …; m̂ðkÞ
1

mðkÞ
1
−λi

; m̂ðkÞ
2

mðkÞ
2
−λi

; …

�
; ð24Þ

where i ≠ k. Using the parameters in Table I it is possible to

check that all the terms
m̂ðkÞ

1ð2Þ
mðkÞ

1ð2Þ−λi
are very small. Therefore, the

survival probability (21) remains very close to one, as can
be seen in Fig. 4 for some specific values of parameters,
although for other values the results are qualitatively the
same.
Due to the large sterile neutrino masses, experimental/

observational constraints do not pose challenges to this
model [85–89]. Furthermore, an interaction between
the sterile neutrinos with the weak gauge bosons

would arise from νLα ¼ Uαiνi þ ΘðnÞ
α1ð2ÞN

ðnÞ
1ð2Þ, where νi

(i ¼ 1, 2, 3) are the active neutrinos and ΘðnÞ
α1ð2Þ ≡

m̂ðnÞ
1ð2Þ=m

ðnÞ
1ð2Þ comes from Eq. (24). This admixture of

the tower of sterile neutrinos with SM neutrinos, ΘðnÞ
α1ð2Þ,

agrees with the case where there are only two sterile
neutrinos [90]. For the values presented in Table I

one can get ΘðnÞ
α1ð2Þ ≤ 10−9 (and even smaller values

for slightly smaller 4-D Yukawa couplings λ4;1ð2Þ).
Therefore the mixing of sterile neutrinos with active

FIG. 4. Survival probability as a function of time for the SM
neutrino, using the last row of values in Table I. Different values
of the parameters give quite similar results.

TABLE I. Representative set of parameters, and conservative
upper or lower limits that satisfy the SM neutrino eigenvalue
mνL ∼ 10−2 eV, for L−1 ¼ 2 TeV, and R−1 ¼ 10−2; 10−1; 1 GeV.

R−1 mD mM δAα λ4;1ð2Þ

1 GeV ≥30 TeV ≤10 TeV ≥30 TeV ≤1
100 MeV ≥30 TeV ≤10 TeV ≥30 TeV ≤0.1
10 MeV ≥30 TeV ≤10 TeV ≥30 TeV ≤0.01
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SM neutrinos is extremely small, not modifying sig-
nificantly the weak currents.

IV. LEPTOGENESIS

In this section we investigate whether baryogenesis via
leptogenesis is viable in the present model. Since the two
KK towers imply that there is a large number of sterile
neutrinos contributing to the seesaw mechanism, their
individual couplings to Higgs bosons are small compared
to the usual scenarios with no more than three sterile
neutrinos. We recall from Sec. III that the number of KK
sterile neutrinos is limited by the cutoff scale such that, in
order to avoid contributions to the masses of active
neutrinos from a very large number of sterile states, we
choose mD ≲mðnÞ

1;2 ≲ Λ, e.g., mD ¼ 30 TeV and Λ ¼
40 TeV in our parametric examples.
For this setup, notice that at high temperatures T ∼mð0Þ

1 ,
it is expected that the SM KK states also contribute as final
states in the sterile neutrino decay. As explained previously,
the number of SM KK states is ΛL (where we take ΛL ¼
20 for our parametric examples). The sterile neutrino decay
rate is therefore the sum over the rates for all final states

NðnÞ
1;2 → hðmÞ þ νðpÞ. The individual Yukawa couplings are

no longer described by Eq. (15) because they should
include, in the integral over the ED, the contribution of
the excited KK states of the Higgs and the SM neutrino.
Their corresponding wave functions are [30]

νðm>0Þðhðp>0ÞÞðyÞ ¼
XΛL

mðpÞ¼1

ffiffiffi
2

pffiffiffiffiffiffi
πL

p cos

�
mðpÞ
L

y

�
; ð25Þ

and the effective Yukawa couplings for m, n ≠ 0 become

λðn;m;pÞ
1ð2Þ ≡ 2λ4;1ð2Þ

Λ0πL

Z
πR

πr
dyfðnÞ

1ð2ÞIIðyÞ cos
�
m
L
y

�
cos

�
p
L
y

�
:

ð26Þ

It turns out, for the range of values of the parameters to be
considered here (as presented below), the Yukawa cou-
plings have practically the same order of magnitude over all
of the KK spectrum, as depicted in Fig. 5.
In UED models the mass spectrum of the SM particles is

given by mðpÞ
SM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
SM þ p2=L2

p
, where p ¼ 0; 1; 2;…

and mSM is the mass of the known SM particles. As it has
been discussed before, for our choice of parameters, there
are ΛL ¼ 20 roots below the cutoff scale, and since
L−1 ¼ 2 TeV, the excited SM KK states have masses of
approximately p=Lð≫mSMÞ. The decay rate of the sterile
neutrinos into SM KK states is of the same order of
magnitude as for the corresponding zeroth SM-mode that is
shown in Fig. 6.
Therefore, for the sake of simplicity and without loss of

generality, in the following we can use the expressions for

the sterile neutrino decay into only SM zero-modes, but to
take into account the final SM KK states as well, we
multiply the results of the SM zero-mode by the number of
kinematically allowed processes ∼ΛLðΛLþ 1Þ=2. This
estimate holds by order of magnitude since we assume

that mD ≲mðnÞ
1;2 ≲ Λ.

The parameter characteristic for leptogenesis is the
washout strength

KðnÞ
1;2 ¼

ΓðNðnÞ
1;2 → Lð0ÞHð0ÞÞ
Hj

T¼mð0Þ
1;2

¼ jλðnÞ1;2j2mðnÞ
1;2MPl

32π
ffiffiffiffiffi
g�

p
mð0Þ2

1;2

; ð27Þ

where the subscripts and superscript refer to the sterile
neutrino NðnÞ

1;2 , Γ is the decay rate in vacuum, H is the
Hubble rate, T is the temperature, g� is the number of
degrees of freedom for relativistic particles, and MPl is the
Planck mass. Due to the couplings being weak here in

comparison with the usual seesaw scenarios, ΛLðΛLþ
1Þ=2KðnÞ

1;2 ≪ 1 for typical configurations in parameter
space. This relation implies weak washout, that is, the

sterile neutrinos NðnÞ
1;2 remain far from equilibrium before

their distribution becomes Maxwell-suppressed, and each
individual sterile neutrino only washes out a small fraction
of the lepton asymmetry. Note that we assume here that the
initial abundances of the sterile neutrinos vanish.

FIG. 5. Yukawa couplings (of the lightest sterile neutrino) as a
function of the KK SM neutrino states (m), for different KK
Higgs states (p), formD¼30TeV,mM¼10−9GeV, λ4;1ð2Þ¼10−2,
R−1 ¼ 1 GeV, L−1 ¼ 2 TeV and δAα ¼ 10 TeV. The couplings
have practically the same order of magnitude as for the SM
zeroth-mode and the results are the same for different sterile
neutrino states.
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Some studies of leptogenesis with a large number of
sterile neutrinos [91] were carried out before the relevant
reaction rates for sterile neutrinos in the relativistic regimes
were thoroughly investigated [92–94]. As a consequence,
the dynamics of leptogenesis in scenarios with many sterile
neutrinos should be reconsidered in detail, which is beyond
the scope of the present work. To obtain an estimate of the
asymmetry, we rely on the work [95]. Its main shortcoming
when applied to the present scenario is the assumption of a
hierarchical spectrum of sterile neutrinos which does not
apply to the present setup where the main contributions to
the asymmetry arise from the resonant mixing of pairs of
sterile neutrinos NðnÞ

1 and NðnÞ
2 that are close in mass. While

the resonant enhancement can be included in the appro-
priate factor describing the decay asymmetry this leaves an

inaccuracy in the efficiency factor of order one. We show in
Fig. 7 the mass hierarchy between the sterile neutrino KK
excited states and its zero-mode, for one sterile neutrino
and some representative parameter choices, although other
values give similar behavior. Nonetheless, we can make a
prediction of order one accuracy when considering only the
lightest 2n̄ of the sterile neutrinos such that these will not
wash out of most of the produced asymmetry. That is, we
set n̄ by the condition

ΛLðΛLþ 1Þ
2

X̄n
n¼0

ðKðnÞ
1 þ KðnÞ

2 Þ ≥ 1; ð28Þ

which is to be understood as an estimate.
Returning to our original discussion, for each individual

sterile neutrino, the decay asymmetry is given by

εðnÞ1;2 ¼
ΛLðΛLþ 1Þ

2

ΓðNðnÞ
1;2 → Lð0ÞHð0ÞÞ − ΓðNðnÞ

1;2 → L̄ð0ÞH̄ð0ÞÞ
ΓðNðnÞ

1;2 → Lð0ÞHð0ÞÞ þ ΓðNðnÞ
1;2 → L̄ð0ÞH̄ð0ÞÞ

≈
ΛLðΛLþ 1Þ

2

X̄n
k¼0

Im½ðλðnÞ�1;2 λðkÞ2;1Þ2�
8πjλðnÞ1;2j2

�
f

�
mðkÞ2

2;1

mðnÞ2
1;2

�
þ g

�
mðkÞ2

2;1

mðnÞ2
1;2

��
; ð29Þ

where

fðxÞ ¼ ffiffiffi
x

p �
1 − ð1þ xÞ ln

�
1þ x
x

��
; ð30Þ

gðxÞ ≈
ffiffiffi
x

p
1 − x

; ð31Þ

and where we have again included the factor accounting for
the enhancement due to the SM KK states. The expression

for gðxÞ is valid in the limit jmðkÞ
1ð2Þ −mðnÞ

2ð1Þj ≫
jΓðkÞ

1ð2Þ − ΓðnÞ
2ð1Þj, which is the case for this model. The phase

of the 4-DYukawa couplings λðnÞ1 ¼ðeiϕn
1λðnÞ1 þeiϕ

n
2λðnÞ2 Þ= ffiffiffi

2
p

and λðnÞ2 ¼ −iðeiϕn
1λðnÞ1 − eiϕ

n
2λðnÞ2 Þ= ffiffiffi

2
p

[29] is not relevant

in the following discussion, as long as Im½ðλðnÞ�1 λðkÞ2 Þ2�∼
sinðϕn

1 − ϕn
2Þ ≠ 0.

Provided we can neglect the washout by the above
assumptions, the efficiency factor in the weak washout

FIG. 6. Sterile neutrino decay rate (of the lightest particle Nð0Þ
1 )

into KK Higgs and neutrino, as a function of the KK SM neutrino
states (p ¼ 1 fixed, although it gives similar results for different
Higgs states) for mD ¼ 30 TeV, mM ¼ 10−9 GeV, λ4;1ð2Þ ¼
10−2, R−1 ¼ 1 GeV, L−1 ¼ 2 TeV and δAα ¼ 10 TeV. The
decay rate is roughly the same of the SM zeroth-mode
(m ¼ 0) and the results are analogous for different sterile neutrino
states.

FIG. 7. Masses of the sterile neutrino KK states normalized to
the mass of the lightest state, for mD ¼ 30 TeV, mM ¼
10−9 GeV, R−1 ¼ 1 GeV, L−1 ¼ 2 TeV and δAα ¼ 10 TeV.
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regime is given by κðnÞ1;2 ¼ ΛLðΛLþ1Þ
2

0.32KðnÞ
1;2 [95]. Note that

the weak washout approximation can only be applied

provided ΛLðΛLþ1Þ
2

0.32KðnÞ
1;2≪1. The contribution of NðnÞ

1;2 to

the final asymmetry then is YðnÞ
B−L;1;2¼−εðnÞ1;2κ

ðnÞ
1;2YNeqðt¼0Þ,

where YNeqðt ¼ 0Þ is the yield of a sterile neutrino in the
relativistic regime. Summing over all sterile neutrinos up to

Nðn̄Þ
1;2 , we arrive at

YB−L ¼ −
X̄n
n¼0

X2
i¼1

εðnÞi
ΛLðΛLþ 1Þ

2
0.32KðnÞ

i
T3

s
; ð32Þ

where s is the entropy density s ∼ g�T3.
The fraction involving the Yukawa couplings in εðnÞ1;2 is

very small, so that in order to compensate it, the function
gðxÞ should be large enough to eventually give the observed
baryon asymmetry [96]. The function gðxÞ is large for

mðnÞ
1 ∼mðnÞ

2 . However, since the sums are over k and n,
there is a large contribution from the KK tower of states,
and the particular combination of gðxÞ with the Yukawa
couplings such as to attain the observed asymmetry
requires a specific choice of parameters.
In order to illustrate the parametric dependence of the

asymmetry, we let one parameter free, while the other ones
are kept fixed, considering always R−1 ¼ 1 GeV and
L−1 ¼ 2 TeV for simplicity, although other values give
similar results. We evaluate the maximum number of KK
sterile neutrino states n which are not washed out, for a set
of parameters, as a function of the 4-D Yukawa couplings
and show this in Fig. 8. We take λ4;1 ¼ λ4;2, as λ4;1 ≠ λ4;2
gives similar and interpolating results for n̄.
Figures 9–11 show the baryon asymmetry as a function

of one free parameter. It can be seen that, in order to explain
the baryon asymmetry, the bulk masses should be mD ∼
30 TeV and mM ∼ 10−9 GeV, while the BLKT parameter
can have various values. Finally, in Fig. 11 the baryon

asymmetry is shown as a function of the 4-D Yukawa
couplings. Although we set λ4;1 ¼ λ4;2, for simplicity, other
values of these parameters would give essentially similar
results. While the resonant enhancement of the asymmetry

FIG. 8. Maximum number of KK sterile neutrino states n that
are not washed out, as a function of the 4-D Yukawa coupling
λ4;1 ¼ λ4;2.

FIG. 9. Baryon asymmetry YB as a function of the
bulk Majorana mass mM, for a specific set of parameters. The
observed value of the baryon asymmetry is obtained for
mM ∼ 8 × 10−10 GeV.

FIG. 10. Baryon asymmetry YB as a function of the bulk Dirac
mass (top) and the BLKT parameter δAα (bottom), while the other
parameters are fixed. The baryon asymmetry is only obtained for
mD ∼ 30 TeV.
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can be naturally achieved for small values of mM, we note
that the model does not predict a preferred value for the
baryon asymmetry. Rather, the freedom of choice for the
parameters leads to a wide range of predictions around
the observed value.
The result (32) can be compared with the well-known

realizations of resonant leptogenesis in the absence of ED,
where one should of course set n̄ ¼ 0. More importantly,

while in the present case KðnÞ
i ≪ 1 given the light neutrino

masses and the large number ΛL of KK states contributing
to the seesaw mechanism, in the absence of ED the washout

strength generically satisfies Kð0Þ
i ≳ 30, barring the decou-

pling of individual sterile neutrinos [97]. (We set n ¼ 0
because in this case, there are no KK modes. In addition,
one typically assumes a small number, i.e., two or three
sterile neutrinos). Hence, as stated above, in the ED
scenario with BLKT, we are in the weak washout regime
of leptogenesis whereas without ED, resonant leptogenesis
typically takes place in the strong washout regime. In that

case, the factor ∼KðnÞ
i in Eq. (32) gets replaced with

∼1=Kð0Þ
i , where the order one coefficients and higher order

corrections are discussed in the literature [95,96]. Both the
dynamics and the parametric outcome in the present
scenario of leptogenesis are therefore different when
comparing with the case without ED.

V. CONCLUSIONS

In this paper we have shown that the seesaw mechanism
can occur in an ED scenario for sterile neutrinos as light as
1–10 TeV, for instance. We have considered a flat and
single ED with a fat brane at one end of the interval, where

the SM is confined, thus having a spectrum similar to UED
models in 5-D. Only a Dirac fermion is present in the bulk
and due to the BLKT the interaction between the resulting
two towers of 4-D Majorana sterile neutrinos and the Higgs
can be very suppressed. Thus, it is not that the sterile
neutrinos are very massive in order to explain the SM
neutrino mass. We have presented illustrative calculations
using compactification radii of R−1 ¼ 10−2, 10−1 and
1 GeV, and a brane thickness of L−1 ¼ 2 TeV, the latter
value chosen to avoid LHC constraints. Taking these radii,
we have set conservative lower or upper bounds on the bulk
Dirac and Majorana masses, the BLKT parameter (δAα)
and the 4-D Yukawa couplings λ4;1ð2Þ. These examples are
representative for other plausible values of parameters that
would give similar results. The most favorable compacti-
fication radius is R−1 ¼ 1 GeV because it allows 4-D
Yukawa couplings of order one for a mass of the lightest
sterile neutrino of order 30 TeV, while for the other radii the
couplings must be smaller. Masses of the lightest sterile
neutrinos of order Oð1 − 10Þ TeV easily satisfy the
required SM neutrino mass if the 4-D Yukawa couplings
are some orders of magnitude smaller, such as 10−2 − 10−1.
In addition, neutrino oscillation experiments do not

impose challenges to the model, because the SM neutrino
practically does not oscillate into any other sterile neutrino
KK state. The present setup can also explain the observed
baryon asymmetry of the Universe through leptogenesis,
but that prediction is not generic where smaller and larger
values by order of magnitude can result from the plausible
range of parameters. Additional fermions in the bulk, with
different flavors, would give similar results and, although
it is beyond the scope of the present work, atmospheric
and solar neutrino mass splitting can easily be accom-
modated in this model and will be investigated in the
future.
Finally, potential signatures for this model include

searches for UED particles, where the cascade decay of
SM KK particles constrains the UED compactification
radius L. Missing energy from additional KK states (from
sterile neutrinos) may be expected to be seen along with
UED KK particles, if their masses are low enough. In this
case, it would be possible to infer the necessary 4-D
Yukawa couplings to produce the seesaw mechanism.
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FIG. 11. Baryon asymmetry as a function of the 4-D Yukawa
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BJÖRN GARBRECHT and RICARDO G. LANDIM PHYS. REV. D 102, 095004 (2020)

095004-12



[1] I. Antoniadis, Phys. Lett. B 246, 377 (1990).
[2] K. R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B

436, 55 (1998).
[3] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R.

Dvali, Phys. Lett. B 436, 257 (1998).
[4] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.

Lett. B 429, 263 (1998).
[5] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370

(1999).
[6] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook,

H. D. Kim, and D. Pinner, Phys. Rev. Lett. 117, 251801
(2016).

[7] M. T. Arun, D. Choudhury, and D. Sachdeva, J. Cosmol.
Astropart. Phys. 10 (2017) 041.

[8] M. T. Arun, D. Choudhury, and D. Sachdeva, J. High
Energy Phys. 01 (2019) 230.

[9] K. Agashe, G. Perez, and A. Soni, Phys. Rev. D 71, 016002
(2005).

[10] S. J. Huber, Nucl. Phys. B666, 269 (2003).
[11] A. L. Fitzpatrick, G. Perez, and L. Randall, Phys. Rev. Lett.

100, 171604 (2008).
[12] T. Appelquist, B. A. Dobrescu, E. Ponton, and H.-U. Yee,

Phys. Rev. Lett. 87, 181802 (2001).
[13] N. Arkani-Hamed, H.-C. Cheng, B. A. Dobrescu, and L. J.

Hall, Phys. Rev. D 62, 096006 (2000).
[14] M. Hashimoto, M. Tanabashi, and K. Yamawaki, Phys. Rev.

D 64, 056003 (2001).
[15] C. Csaki, C. Grojean, and H. Murayama, Phys. Rev. D 67,

085012 (2003).
[16] C. A. Scrucca, M. Serone, L. Silvestrini, and A. Wulzer, J.

High Energy Phys. 02 (2004) 049.
[17] A. Hebecker and J. March-Russell, Nucl. Phys. B625, 128

(2002).
[18] L. Hall, Y. Nomura, T. Okui, and D. Smith, Phys. Rev. D 65,

035008 (2002).
[19] T. Asaka, W. Buchmuller, and L. Covi, Nucl. Phys. B648,

231 (2003).
[20] T. Asaka, W. Buchmuller, and L. Covi, Phys. Lett. B 563,

209 (2003).
[21] B. A. Dobrescu and E. Poppitz, Phys. Rev. Lett. 87, 031801

(2001).
[22] M. Fabbrichesi, M. Piai, and G. Tasinato, Phys. Rev. D 64,

116006 (2001).
[23] N. Borghini, Y. Gouverneur, and M. H. G. Tytgat, Phys.

Rev. D 65, 025017 (2001).
[24] M. Fabbrichesi, R. Percacci, M. Piai, and M. Serone, Phys.

Rev. D 66, 105028 (2002).
[25] J. M. Frere, M. V. Libanov, and S. V. Troitsky, J. High

Energy Phys. 11 (2001) 025.
[26] T. Watari and T. Yanagida, Phys. Lett. B 532, 252 (2002).
[27] K. R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys.

B557, 25 (1999).
[28] S. J. Huber and Q. Shafi, Phys. Lett. B 583, 293 (2004).
[29] A. Pilaftsis, Phys. Rev. D 60, 105023 (1999).
[30] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Phys. Rev.

D 64, 035002 (2001).
[31] B. A. Dobrescu and E. Ponton, J. High Energy Phys. 03

(2004) 071.
[32] G. Burdman, B. A. Dobrescu, and E. Ponton, J. High

Energy Phys. 02 (2006) 033.

[33] E. Ponton and L. Wang, J. High Energy Phys. 11 (2006)
018.

[34] G. Burdman, B. A. Dobrescu, and E. Ponton, Phys. Rev. D
74, 075008 (2006).

[35] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
04 (2015) 116.

[36] N. Deutschmann, T. Flacke, and J. S. Kim, Phys. Lett. B
771, 515 (2017).

[37] J. Beuria, A. Datta, D. Debnath, and K. T. Matchev,
Comput. Phys. Commun. 226, 187 (2018).

[38] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[39] G. Burdman, O. J. P. Eboli, and D. Spehler, Phys. Rev. D 94,
095004 (2016).

[40] G. R. Dvali, G. Gabadadze, and M. A. Shifman, Phys. Lett.
B 497, 271 (2001).

[41] G. R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000).

[42] A. Hebecker, Nucl. Phys. B632, 101 (2002).
[43] H.-C. Cheng, K. T. Matchev, and M. Schmaltz, Phys. Rev. D

66, 056006 (2002).
[44] G. R. Dvali and G. Gabadadze, Phys. Rev. D 63, 065007

(2001).
[45] G. Dvali, G. Gabadadze, X.-r. Hou, and E. Sefusatti, Phys.

Rev. D 67, 044019 (2003).
[46] G. Dvali, G. Gabadadze, and M. Shifman, Phys. Rev. D 67,

044020 (2003).
[47] G. R. Dvali and S. H. H. Tye, Phys. Lett. B 450, 72 (1999).
[48] G. Alencar, R. R. Landim, M. O. Tahim, and R. N. Costa

Filho, Phys. Lett. B 739, 125 (2014).
[49] G. Alencar, Phys. Lett. B 773, 601 (2017).
[50] G. Alencar, R. R. Landim, C. R. Muniz, and R. N. Costa

Filho, Phys. Rev. D 92, 066006 (2015).
[51] G. Alencar, C. R. Muniz, R. R. Landim, I. C. Jardim, and

R. N. Costa Filho, Phys. Lett. B 759, 138 (2016).
[52] G. Alencar, I. C. Jardim, R. R. Landim, C. R. Muniz, and

R. N. Costa Filho, Phys. Rev. D 93, 124064 (2016).
[53] G. Alencar, I. C. Jardim, and R. R. Landim, Eur. Phys. J. C

78, 367 (2018).
[54] L. F. Freitas, G. Alencar, and R. R. Landim, J. High Energy

Phys. 02 (2019) 035.
[55] S. Fichet, J. High Energy Phys. 04 (2020) 016.
[56] A. De Rujula, A. Donini, M. B. Gavela, and S. Rigolin,

Phys. Lett. B 482, 195 (2000).
[57] H. Georgi, A. K. Grant, and G. Hailu, Phys. Rev. D 63,

064027 (2001).
[58] M. Carena, T. M. P. Tait, and C. E. M. Wagner, Acta Phys.

Pol. B 33, 2355 (2002).
[59] M. Carena, E. Ponton, T. M. P. Tait, and C. E. M. Wagner,

Phys. Rev. D 67, 096006 (2003).
[60] F. del Aguila, M. Perez-Victoria, and J. Santiago, Acta Phys.

Pol. B 34, 5511 (2003).
[61] F. del Aguila, M. Perez-Victoria, and J. Santiago, J. High

Energy Phys. 02 (2003) 051.
[62] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Rev. D

68, 045002 (2003).
[63] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, J. High

Energy Phys. 08 (2003) 034.
[64] A. Datta, U. K. Dey, A. Shaw, and A. Raychaudhuri, Phys.

Rev. D 87, 076002 (2013).

FAT BRANE AND SEESAW MECHANISM IN EXTRA … PHYS. REV. D 102, 095004 (2020)

095004-13

https://doi.org/10.1016/0370-2693(90)90617-F
https://doi.org/10.1016/S0370-2693(98)00977-0
https://doi.org/10.1016/S0370-2693(98)00977-0
https://doi.org/10.1016/S0370-2693(98)00860-0
https://doi.org/10.1016/S0370-2693(98)00466-3
https://doi.org/10.1016/S0370-2693(98)00466-3
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.117.251801
https://doi.org/10.1103/PhysRevLett.117.251801
https://doi.org/10.1088/1475-7516/2017/10/041
https://doi.org/10.1088/1475-7516/2017/10/041
https://doi.org/10.1007/JHEP01(2019)230
https://doi.org/10.1007/JHEP01(2019)230
https://doi.org/10.1103/PhysRevD.71.016002
https://doi.org/10.1103/PhysRevD.71.016002
https://doi.org/10.1016/S0550-3213(03)00502-9
https://doi.org/10.1103/PhysRevLett.100.171604
https://doi.org/10.1103/PhysRevLett.100.171604
https://doi.org/10.1103/PhysRevLett.87.181802
https://doi.org/10.1103/PhysRevD.62.096006
https://doi.org/10.1103/PhysRevD.64.056003
https://doi.org/10.1103/PhysRevD.64.056003
https://doi.org/10.1103/PhysRevD.67.085012
https://doi.org/10.1103/PhysRevD.67.085012
https://doi.org/10.1088/1126-6708/2004/02/049
https://doi.org/10.1088/1126-6708/2004/02/049
https://doi.org/10.1016/S0550-3213(02)00016-0
https://doi.org/10.1016/S0550-3213(02)00016-0
https://doi.org/10.1103/PhysRevD.65.035008
https://doi.org/10.1103/PhysRevD.65.035008
https://doi.org/10.1016/S0550-3213(02)00976-8
https://doi.org/10.1016/S0550-3213(02)00976-8
https://doi.org/10.1016/S0370-2693(03)00644-0
https://doi.org/10.1016/S0370-2693(03)00644-0
https://doi.org/10.1103/PhysRevLett.87.031801
https://doi.org/10.1103/PhysRevLett.87.031801
https://doi.org/10.1103/PhysRevD.64.116006
https://doi.org/10.1103/PhysRevD.64.116006
https://doi.org/10.1103/PhysRevD.65.025017
https://doi.org/10.1103/PhysRevD.65.025017
https://doi.org/10.1103/PhysRevD.66.105028
https://doi.org/10.1103/PhysRevD.66.105028
https://doi.org/10.1088/1126-6708/2001/11/025
https://doi.org/10.1088/1126-6708/2001/11/025
https://doi.org/10.1016/S0370-2693(02)01536-8
https://doi.org/10.1016/S0550-3213(99)00377-6
https://doi.org/10.1016/S0550-3213(99)00377-6
https://doi.org/10.1016/j.physletb.2003.12.012
https://doi.org/10.1103/PhysRevD.60.105023
https://doi.org/10.1103/PhysRevD.64.035002
https://doi.org/10.1103/PhysRevD.64.035002
https://doi.org/10.1088/1126-6708/2004/03/071
https://doi.org/10.1088/1126-6708/2004/03/071
https://doi.org/10.1088/1126-6708/2006/02/033
https://doi.org/10.1088/1126-6708/2006/02/033
https://doi.org/10.1088/1126-6708/2006/11/018
https://doi.org/10.1088/1126-6708/2006/11/018
https://doi.org/10.1103/PhysRevD.74.075008
https://doi.org/10.1103/PhysRevD.74.075008
https://doi.org/10.1007/JHEP04(2015)116
https://doi.org/10.1007/JHEP04(2015)116
https://doi.org/10.1016/j.physletb.2017.06.004
https://doi.org/10.1016/j.physletb.2017.06.004
https://doi.org/10.1016/j.cpc.2017.12.021
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.94.095004
https://doi.org/10.1103/PhysRevD.94.095004
https://doi.org/10.1016/S0370-2693(00)01329-0
https://doi.org/10.1016/S0370-2693(00)01329-0
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0550-3213(02)00253-5
https://doi.org/10.1103/PhysRevD.66.056006
https://doi.org/10.1103/PhysRevD.66.056006
https://doi.org/10.1103/PhysRevD.63.065007
https://doi.org/10.1103/PhysRevD.63.065007
https://doi.org/10.1103/PhysRevD.67.044019
https://doi.org/10.1103/PhysRevD.67.044019
https://doi.org/10.1103/PhysRevD.67.044020
https://doi.org/10.1103/PhysRevD.67.044020
https://doi.org/10.1016/S0370-2693(99)00132-X
https://doi.org/10.1016/j.physletb.2014.10.040
https://doi.org/10.1016/j.physletb.2017.09.014
https://doi.org/10.1103/PhysRevD.92.066006
https://doi.org/10.1016/j.physletb.2016.05.062
https://doi.org/10.1103/PhysRevD.93.124064
https://doi.org/10.1140/epjc/s10052-018-5829-6
https://doi.org/10.1140/epjc/s10052-018-5829-6
https://doi.org/10.1007/JHEP02(2019)035
https://doi.org/10.1007/JHEP02(2019)035
https://doi.org/10.1007/JHEP04(2020)016
https://doi.org/10.1016/S0370-2693(00)00479-2
https://doi.org/10.1103/PhysRevD.63.064027
https://doi.org/10.1103/PhysRevD.63.064027
https://doi.org/10.1103/PhysRevD.67.096006
https://doi.org/10.1088/1126-6708/2003/02/051
https://doi.org/10.1088/1126-6708/2003/02/051
https://doi.org/10.1103/PhysRevD.68.045002
https://doi.org/10.1103/PhysRevD.68.045002
https://doi.org/10.1088/1126-6708/2003/08/034
https://doi.org/10.1088/1126-6708/2003/08/034
https://doi.org/10.1103/PhysRevD.87.076002
https://doi.org/10.1103/PhysRevD.87.076002


[65] A. Datta, U. K. Dey, A. Raychaudhuri, and A. Shaw, Phys.
Rev. D 88, 016011 (2013).

[66] U. K. Dey and T. S. Ray, Phys. Rev. D 88, 056016 (2013).
[67] U. K. Dey and T. S. Ray, Phys. Rev. D 93, 011901(R)

(2016).
[68] U. K. Dey and T. Jha, Phys. Rev. D 94, 056011 (2016).
[69] S. Dasgupta, U. K. Dey, T. Jha, and T. S. Ray, Phys. Rev. D

98, 055006 (2018).
[70] C.-W. Chiang, U. K. Dey, and T. Jha, Eur. Phys. J. Plus 134,

210 (2019).
[71] T. G. Rizzo, J. High Energy Phys. 07 (2018) 118.
[72] T. G. Rizzo, J. High Energy Phys. 10 (2018) 069.
[73] R. G. Landim and T. G. Rizzo, J. High Energy Phys. 06

(2019) 112.
[74] R. G. Landim, Eur. Phys. J. C 79, 862 (2019).
[75] R. G. Landim, Eur. Phys. J. C 80, 124 (2020).
[76] D. Wyler and L. Wolfenstein, Nucl. Phys. B218, 205

(1983).
[77] R. Mohapatra and J. Valle, Phys. Rev. D 34, 1642 (1986).
[78] R. Mohapatra, Phys. Rev. Lett. 56, 561 (1986).
[79] R. N. Mohapatra, Nucl. Phys. B908, 423 (2016).
[80] G. Branco, W. Grimus, and L. Lavoura, Nucl. Phys. B312,

492 (1989).
[81] M. Gonzalez-Garcia and J. Valle, Phys. Lett. B 216, 360

(1989).
[82] J. Kersten and A. Y. Smirnov, Phys. Rev. D 76, 073005

(2007).
[83] A. Abada, C. Biggio, F. Bonnet, M. Gavela, and T. Hambye,

J. High Energy Phys. 12 (2007) 061.

[84] M. Gavela, T. Hambye, D. Hernandez, and P. Hernandez, J.
High Energy Phys. 09 (2009) 038.

[85] A. Atre, T. Han, S. Pascoli, and B. Zhang, J. High Energy
Phys. 05 (2009) 030.

[86] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu.
Rev. Nucl. Part. Sci. 59, 191 (2009).

[87] M. Drewes, Int. J. Mod. Phys. E 22, 1330019 (2013).
[88] M. Drewes and B. Garbrecht, Nucl. Phys. B921, 250

(2017).
[89] P. D. Bolton, F. F. Deppisch, and P. Bhupal Dev, J. High

Energy Phys. 03 (2020) 170.
[90] T. Asaka, S. Eijima, and H. Ishida, J. High Energy Phys. 04

(2011) 011.
[91] M.-T. Eisele, Phys. Rev. D 77, 043510 (2008).
[92] D. Besak and D. Bodeker, J. Cosmol. Astropart. Phys. 03

(2012) 029.
[93] B. Garbrecht, F. Glowna, and M. Herranen, J. High Energy

Phys. 04 (2013) 099.
[94] I. Ghisoiu and M. Laine, J. Cosmol. Astropart. Phys. 12

(2014) 032.
[95] B. Garbrecht, P. Klose, and C. Tamarit, J. High Energy

Phys. 02 (2020) 117.
[96] M.-C. Chen, in Proceedings of Theoretical Advanced Study

Institute in Elementary Particle Physics: Exploring New
Frontiers Using Colliders and Neutrinos (TASI 2006):
Boulder, Colorado (World Scientific, Hackensack, USA,
2007), pp. 123–176.

[97] A. Pilaftsis and T. E. Underwood, Nucl. Phys. B692, 303
(2004).

BJÖRN GARBRECHT and RICARDO G. LANDIM PHYS. REV. D 102, 095004 (2020)

095004-14

https://doi.org/10.1103/PhysRevD.88.016011
https://doi.org/10.1103/PhysRevD.88.016011
https://doi.org/10.1103/PhysRevD.88.056016
https://doi.org/10.1103/PhysRevD.93.011901
https://doi.org/10.1103/PhysRevD.93.011901
https://doi.org/10.1103/PhysRevD.94.056011
https://doi.org/10.1103/PhysRevD.98.055006
https://doi.org/10.1103/PhysRevD.98.055006
https://doi.org/10.1140/epjp/i2019-12607-1
https://doi.org/10.1140/epjp/i2019-12607-1
https://doi.org/10.1007/JHEP07(2018)118
https://doi.org/10.1007/JHEP10(2018)069
https://doi.org/10.1007/JHEP06(2019)112
https://doi.org/10.1007/JHEP06(2019)112
https://doi.org/10.1140/epjc/s10052-019-7376-1
https://doi.org/10.1140/epjc/s10052-020-7697-0
https://doi.org/10.1016/0550-3213(83)90482-0
https://doi.org/10.1016/0550-3213(83)90482-0
https://doi.org/10.1103/PhysRevD.34.1642
https://doi.org/10.1103/PhysRevLett.56.561
https://doi.org/10.1016/j.nuclphysb.2016.03.006
https://doi.org/10.1016/0550-3213(89)90304-0
https://doi.org/10.1016/0550-3213(89)90304-0
https://doi.org/10.1016/0370-2693(89)91131-3
https://doi.org/10.1016/0370-2693(89)91131-3
https://doi.org/10.1103/PhysRevD.76.073005
https://doi.org/10.1103/PhysRevD.76.073005
https://doi.org/10.1088/1126-6708/2007/12/061
https://doi.org/10.1088/1126-6708/2009/09/038
https://doi.org/10.1088/1126-6708/2009/09/038
https://doi.org/10.1088/1126-6708/2009/05/030
https://doi.org/10.1088/1126-6708/2009/05/030
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1142/S0218301313300191
https://doi.org/10.1016/j.nuclphysb.2017.05.001
https://doi.org/10.1016/j.nuclphysb.2017.05.001
https://doi.org/10.1007/JHEP03(2020)170
https://doi.org/10.1007/JHEP03(2020)170
https://doi.org/10.1007/JHEP04(2011)011
https://doi.org/10.1007/JHEP04(2011)011
https://doi.org/10.1103/PhysRevD.77.043510
https://doi.org/10.1088/1475-7516/2012/03/029
https://doi.org/10.1088/1475-7516/2012/03/029
https://doi.org/10.1007/JHEP04(2013)099
https://doi.org/10.1007/JHEP04(2013)099
https://doi.org/10.1088/1475-7516/2014/12/032
https://doi.org/10.1088/1475-7516/2014/12/032
https://doi.org/10.1007/JHEP02(2020)117
https://doi.org/10.1007/JHEP02(2020)117
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029

