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Abstract
We present a consistent approach that allows to solve challenging general
nonlinear fluid-structure-contact interaction (FSCI) problems. The underly-
ing formulation includes both “no-slip” fluid-structure interaction as well as
frictionless contact between multiple elastic bodies. The respective interface
conditions in normal and tangential orientation and especially the role of the
fluid stress within the region of closed contact are discussed for the general
problem of FSCI. A continuous transition of tangential constraints from no-slip
to frictionless contact is enabled by using the general Navier condition with vary-
ing slip length. Moreover, the fluid stress in the contact zone is obtained by an
extension approach as it plays a crucial role for the lift-off behavior of contacting
bodies. With the given continuity of the formulation, continuity of the discrete
system of equations for any variation of the coupled system state (which is essen-
tial for the convergence of Newton’s method) is reached naturally. As topological
changes of the fluid domain are an inherent challenge in FSCI configurations, a
noninterface fitted cut finite element method (CutFEM) is applied to discretize
the fluid domain. All interface conditions, that is the “no-slip” FSI, the gen-
eral Navier condition, and frictionless contact are incorporated using Nitsche
based methods, thus retaining the consistency of the model. To account for the
strong interaction between the fluid and solid discretization, the overall coupled
discrete system is solved monolithically. Numerical examples of varying com-
plexity are presented to corroborate the developments. In a first example, the
fundamental properties of the presented formulation such as the contacting and
lift-off behavior, the mass conservation, and the influence of the slip length for
the general Navier interface condition are analyzed. Beyond that, two more gen-
eral examples demonstrate challenging aspects such as topological changes of
the fluid domain, large contacting areas, and underline the general applicability
of the presented method.
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F I G U R E 1 Detailed view of solid-solid contact with surrounding fluid in two only slightly different states of contact (top).
Visualization of the acting force on the solid boundary by arrows. Blue arrows indicate the traction due to the fluid-structure interaction and
black arrows indicate the traction due to solid-solid contact (bottom). The following symbols are used: 1©, fluid domain resolved by
macroscopic model; 2©, solid domain; 3©, solid-solid contact zone [Color figure can be viewed at wileyonlinelibrary.com]

1 INTRODUCTION

The development of a consistent and comprehensive computational approach that allows to investigate fluid-structure
interaction (FSI) including contact1 of submersed elastic bodies is the focus of this contribution. Applications, ranging,
for example, from the dynamic behavior of biological or mechanical valves to hydrodynamic bearings and tire/wet road
contact, often require reliable formulations to solve the fluid-structure-contact interaction (FSCI) problem. As motivated
by these examples, examinations will be carried out at system scale, at which the relevant physics can be well represented
by means of the continuum mechanics theory. Challenges for corresponding numerical methods, among others, include
the handling of the occurring topological changes in the fluid domain, the numerical stability of the formulation, the
representation of a physical solution close to the interface, and the transition between FSI and contact. For a limited
range of problems, the explicit numerical treatment of contactwith surrounding fluidcan be avoided by smartly chosen
boundary conditions in the setup of the numerical problem and then solved in existing classical FSI frameworks (see,
e.g., References 1 and 2). These strategies of circumventing the general problem of FSCI, which causes quite a limitation
with respect to many applications, are not the focus of this work.

The physical processes involved in contacting bodies submersed in fluid modeled by continuum mechanics theory
did not get sufficient attention in previous developments to solve FSCI numerically. FSCI on a macroscopic length scale
is characterized by topological changes of the fluid domain. On this scale, it is important how potential fluid dynamics
effects between bodies in the zone of contacting solid interfaces are modeled. Thus, we first provide a comprehensible
clarification of the involved phenomena and discuss resulting implications for the physical modeling for a macroscopic
description of FSCI. The purely geometric classical contact condition that solid bodies are not allowed to penetrate each
other directly applies also in the presence of fluid. In contrast to that, the usual condition from dry contact that no tensile
forces can be transmitted between the contacting bodies requires deeper insight into the contacting process.

In Figure 1(top), two configurations for contact of two elastic bodies submersed in fluid are shown. Both configurations
only differ by a slightly different vertical position of the upper solid body, that is, already small displacements allow to
transfer one into the other. For a continuous formulation, small changes in the position of solid bodies should result only
in small changes of the interface traction. This aspect is highlighted in Figure 1(bottom), where the fluid is replaced by
the force acting on the respective solid boundaries. Therein, the FSI traction (indicated by blue arrows) transfers into the
contact traction (indicated by black arrows) and vice versa. For a continuous problem, the magnitude of the acting traction
is not allowed to jump at the transition between interface regions with these two types of condition. To ensure that, we
define the FSI traction on the entire interface. This applies especially for the solid-solid contact zone which is located
between the two contacting bodies (see Figure 1, interface zone 3©), even if the enclosed fluid domain is not represented
by the macroscopic fluid model. This enables a continuous transition from the contact to the FSI traction which otherwise
would not be possible. It is worth mentioning that this is not unphysical or only a “numerical trick,” as in reality fluid

1The terms “contact,” “solid-solid interaction,” or “solid-solid contact” are exclusively used for the interaction of two solid bodies/domains in this
work. Other phase boundaries, which are sometimes also referred to as “contact,” are not considered in this contribution.
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will still remain at this interface but would only be visible on a smaller length scale. The no-adhesive force condition of
classical contact mechanics can thereby be reformulated based on the difference between contact and fluid traction.

As a result of this setup increasing the fluid pressure can lift-off two contacting bodies not only in the physical world
but also in the numerical model. This effect demonstrates the importance of a defined fluid stress state at every point in
the contact zone. Depending on different criteria, fluid models of variable complexity and accuracy on the reduced dimen-
sional manifold of the contact zone can be considered. These criteria include the microstructure of the contacting surfaces
(smooth vs. rough), the quantities/processes of interest (e.g., leakage of a sealing), and the macroscopic problem configu-
ration (closed vs. open fluid domain). As this work intends to provide a general FSCI framework, a simple extension based
approach to model the fluid in the contact zone is applied herein. The general framework then allows to include also var-
ious types of alternative and more sophisticated fluid models in the contact zone in the future. For a model with greater
physical depth, the reader is, for example, referred to Reference 3, where a homogenized poroelastic layer formulation is
applied to model the fluid flow through contacting rough surfaces.

When looking at the available literature, one can note that a large portion of literature on FSCI formulations is either
interested in the analysis of heart valves2,4-12 and only a smaller set in solving a more general problem setup of FSCI.3,13-17

However, while most of those formulations work well for certain problem setups, they suffer from some restrictions
preventing their application to more general complex problem classes. In the following, we try to give a brief overview
on existing formulations but will not describe the different approaches in detail but rather point to certain features and
especially to assumptions or restrictions.

In References 2 and 9, contact in surrounding fluid does not need to be considered due to the chosen problem setup
with geometrically separated contact and fluid-structure interfaces. A penetration of the solid bodies is accepted in Refer-
ence 4 since contact is not treated explicitly. In Reference 8, contact is included, but in the presented computations only
the valve opening phase without significant influence of the contact formulation is analyzed. In Reference 15, no explicit
contact formulation is considered and a minimal distance of one mesh cell still remains between two flaps. Using reduced
modeling with included contact of the heart valve, Reference 11 avoids the requirement for a general FSCI formulation.
In Reference 3, a very general FSCI formulation for contact of rough surfaces is presented, where the interface is mod-
eled via a homogenized poroelastic layer. Such a formulation is very powerful and also well motivated by the involved
physical phenomena but it is also more complex and not always needed. In such frequent cases, the approach presented
in this article will be a better alternative.

Explicit treatment of the contact is considered in References 3,5-7, and 14 by Lagrange multiplier based contact meth-
ods, in References 8,10,13, and 16 by methods based on penalty contact contributions, and in Reference 12 by an approach
based on enforcement of equal structural velocity. Interface fitted computational meshes for discretization of the fluid
domain are enabled by approaches that require to enforce a nonvanishing fluid gap between approaching bodies and
therefore avoid topological changes in the fluid domain preventing degenerated elements.13,16 Approaches enabling the
use of a noninterface fitted discretization, which allow the consideration of “real” contact scenarios and the resulting
topological changes of the fluid domain directly, are applied in References 3-8,10-12,14, and 15. The majority of these
formulations consider dimensionally reduced structural models (i.e., membranes and shells),4-8,10-12 whereas bulky struc-
tures (i.e., structures of significant thickness as compared to the spatial resolution of the computational discretization in
the fluid domain) are only considered in References 3,14,15, and 17. The restriction to slender bodies of the noninter-
face fitted approaches is often related to issues concerning system conditioning and mass conservation errors close to the
fluid-structure interface. This is due to the fact that the discontinuity of the fluid stress between two sides of a submersed
solid typically is not represented by the discrete formulation (see, e.g., References 10 and 11), which prevents the anal-
ysis of configurations including large pressure jumps. This issue is not a fundamental limitation for noninterface fitted
FSI as shown, for example, in References 18 and 19 (without contact), but increases the complexity of such a formulation
including the underlying algorithm.

It is surprising that, except for References 3 and 17, none of the referenced works include a substantial discussion
concerning the requirement for the fluid state in the contact zone as elaborated earlier. Most works include contact just
as a constraint additional to the incorporation of FSI conditions, which is still enforced in closed contact. If such an
approach is carried out properly, it can result in a continuous FSCI formulation. Still, the strategy to recover the fluid state
in the contact zone, which is required to enforce the FSI conditions, remains an open question. For formulations which
circumvent topological changes of the fluid domain13,16 this issue does not arise directly, as there is always a numerically
motivated fluid domain in between the contacting bodies. For all other formulations that support the actual contact
of surfaces, the different approaches for the numerical solution of the fluid problem provide a nonphysical fluid state
outside the fluid domain in the contact zone by default, which builds the basis to incorporate the FSI interface conditions.
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Depending on the underlying numerical method and the respective FSCI problem, this can provide, but not necessarily
is, a sufficiently good approximation of the fluid state in the contact zone. We would like to point out that this fluid
state in the contact zone has an essential influence, for example, to the detaching behavior of contacting solid bodies, for
example, a high/low fluid pressure supports/prohibits the separation of two bodies. Another important aspect that should
be considered when applying such a strategy of incorporating contact on top of the FSI conditions is that the FSI traction
includes a tangential component. In contrast to the normal component of the FSI traction, which serves merely as an offset
to normal contact traction, the tangential component directly acts on the contacting surfaces potentially deteriorating the
solution accuracy.

In this paragraph, we would like to comment briefly on the so called “collision paradox,” which states that for incom-
pressible, viscous fluid with “no-slip” condition on smooth boundaries, contact between submersed bodies cannot occur
in finite time (see, e.g., References 20 and 21). This is in contrast to the observation of contacting solid bodies which is
also observed when bodies are submersed in fluid. A physical explanation for this paradox can be found in the missing
consideration of nonsmooth surfaces (analyzed in, e.g., References 22 and 23) arising from the rough microstructure, or
other effects on the micro scale, not considered in the macroscopic fluid model of the “no-slip” boundary condition.24

Nevertheless, even for the computational analysis of physical models where these effects are not considered, contact still
has to be considered. This is a result of the numerical solution approaches which are always accompanied by approxima-
tions of the underlying physical model when considering general configurations. If there is no explicit contact treatment
within the FSI formulation only fluid forces in the gap keep the bodies apart. But when an artificial collision of solid bod-
ies occurs, for example, during an iterative nonlinear solution procedure, there is no separation force acting as there is
no remaining fluid between these bodies. This is shown in References 4 and 7, where a penetration of surfaces can be
observed as no contact formulation is considered.

In this contribution, we present a general FSCI formulation considering flows based on the incompressible
Navier-Stokes equations interacting with nonlinear elastic solids that are not restricted to slender structural bodies.
Therein, contact is not considered as a mere additional constraint on the FSI problem, but focus is rather put on the
mutual exclusiveness of fluid-solid and solid-solid coupling. Thus, the application of fluid forces on the interface in the
zone of active contact, where typically no good representation of the fluid solution is available, is automatically elimi-
nated. The approach is applied to noninterface fitted discretizations for the fluid domain by the cut finite element method
(CutFEM), due to its ability to represent sharp discontinuities of the solution at the interface. This is of essential impor-
tance for the discrete representation of the prevalent discontinuity of the fluid stress between opposite sides of (potentially
thin) structural bodies. Hence, nonphysically high gradients arising from a continuous fluid solution representation can
be avoided (see remark in Reference 6, p 1753). Crucial for the discrete form is the continous transition from fluid-solid
to solid-solid interaction, which is achieved by the use of Nitsche-based methods for both constraints.

The CutFEM in general enables the use of noninterface fitted, fixed Eulerian meshes for the fluid discretization in
complex and deforming domains. This method is perfectly suited for handling of large interface motion and topological
changes of the computational domain, typically occurring for FSCI problems, and therefore is applied here. To enable
a determined, continuous transition from the “no-slip” condition to frictionless contact, a relaxation of the tangential
constraint is proposed, while retaining the mass-balance in normal direction. This is enabled by a flexible formulation
capable of handling the “no-slip” and the “full-slip” limit on the fluid-solid interface. CutFEM has seen great progress in
recent years and meanwhile enjoys a solid mathematical base. Initial analysis was performed for the Poisson equation,25

extended to the Stokes equation,26,27 and finally, including advection, on the Oseen equation.28,29 Therein, a so-called
“ghost penalty” stabilization30 guarantees a well-conditioned formulation for arbitrary interface positions. Successful
applications of the CutFEM on two-phase flow and FSI are presented in References 31-33 and 18,34,35, respectively.
Therein, the “no-slip” interface condition is applied weakly by a Nitsche-based method. The basis for the general Navier
interface condition applied in this work was presented for the Poisson equation in Reference 36, extended to the gen-
eral Navier boundary condition for the Oseen equation in Reference 37, and applied to enforce the tangential coupling
condition on the interface of an poroelastic solid and a viscous fluid in References 3 and 38.

To obtain a continuous transition of the discrete formulation from fluid-structure to contact interaction, both FSI and
the treatment of contact are enforced via Nitsche’s method. A first application of Nitsche’s method to contact problems
was presented in Reference 39. More recently, the development of Nitsche-type methods for contact problems gained more
attention due to the mathematical analysis of symmetric and skew-symmetric Nitsche methods provided by References
40-42 for small deformation frictionless and frictional contact problems. In addition, Reference 43 analyzed a penalty-free
variant for the Signiorini-problem. Based on these works, Reference 44 extended Nitsche’s method to nonlinear elasticity
at finite deformation and Reference 45 to nonlinear thermomechanical problems. Most classical contact formulations
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F I G U R E 2 Fluid-structure-contact interaction (FSCI) problem setup
for two contacting bodies “1” and “2”: fluid domain ΩF, solid domain
ΩS = ΩS1 ∪ ΩS2 , fluid-structure interface ΓFS = ΓFS1 ∪ ΓFS2 , the active
(closed) contact interface ΓS,c = ΓS1 ,c ∪ ΓS2 ,c, overall coupling interface
Γ = Γ1 ∪ Γ2, and outer boundaries ΓF,D,ΓF,N,ΓS,D,ΓS,N [Color figure can be
viewed at wileyonlinelibrary.com]

employ a so-called slave-master concept introducing an inherent bias to the formulation by a (user-defined) choice of
the slave and master surface. In the context of Nitsche methods, References 44 and 46 introduced an unbiased variant.
The method proposed in Reference 45 is based on a harmonic weighting of the contact stress resulting in an almost
unbiased approach as the only bias is introduced by the applied integration rule. In this work, we will extend the method
of Reference 45 to a completely unbiased form by integrating not only on the slave but also on the master surface similar
to so-called two-half-pass algorithms.47 Finally, the transition between active and inactive contact has to be balanced
carefully with the ambient fluid traction.

The resulting formulation is discretized in time by the one-step-𝜃 scheme. Finally, the nonlinear system of equations
is solved for all unknowns, that is, nodal structural displacements, fluid velocities and pressures, by a Newton-Raphson
based procedure. Due to the strong interaction of all involved physical domains for the FSCI problem this is done
simultaneously, that is, a monolithic procedure is applied (see, e.g., Reference 48).

Recently, Reference 17 presented a Nitsche-based formulation for FSCI similar to the one derived in this article.
Therein, linear Stokes flow and linear elastic solids based on a fully Eulerian description in combination with contact to
a rigid, straight obstacle at the fluid boundary is analyzed and stability results for this formulation are shown. In contrast
to the extrapolation based strategy proposed in this contribution, which allows for complete topological changes, two
strategies based on a thin remaining fluid film are presented in Reference 17 to obtain the fluid stress in the contacting
zone.

The article is organized as follows. In Section 2, the governing equations, comprised of the structural and fluid mechan-
ics model as well as conditions on the interface in normal an tangential direction of the FSCI problem, are given. This
is followed by a presentation of the discrete formulation, including all volume and interface contributions, and the solu-
tion strategy in Section 3. Different numerical examples, capable of analyzing different aspects of the formulation, are
presented in Section 4. Finally, in Section 5, a short summary and an outlook are given.

2 GOVERNING EQUATIONS

In this section, we discuss the governing equations and conditions for all physical domains and interfaces of the FSCI
problem. A typical configuration for such a problem is shown in Figure 2. The domain Ω of the overall FSCI problem
includes the fluid domain ΩF and the solid domain ΩS. The overall coupling interface Γ consists of the fluid-structure
interface ΓFS and the active (closed) contact interface ΓS,c. The different boundaries on the outer boundary 𝜕Ω are denoted
by ΓF,D,ΓF,N,ΓS,D, and ΓS,N.

In the following, all quantities ∗ , ∗ with additional “zero”-index ∗0 , ∗0 are described in the undeformed refer-
ence/material configuration, whereas a missing index indicates the current configuration (see Reference 49 for details).
An additional “hat”-symbol ∗̂ , ∗̂ indicates time-dependent prescribed quantities at the boundaries and in the domains.
Prescribed quantities at the initial point in time t0 are indicated by the“ring”-symbol ∗̊ , ∗̊. The outer boundary of a domain
Ω∗ is specified by 𝜕Ω∗.

2.1 Structural domain 𝛀S

The displacements of every point in the hyperelastic structural domain are governed by the transient balance of linear
momentum:

http://wileyonlinelibrary.com
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𝜌S
0
𝜕2u
𝜕t2 − 𝜵0 ⋅ (F ⋅ SS) − 𝜌S

0b̂
S
0 = 0 in ΩS

0 × [t0, tE], (1)

SS = 𝜕𝜓

𝜕E
, E = 1

2
[(F)T ⋅ F − I], F = I +

𝜕u

𝜕XS . (2)

Therein, the displacement vector u = xS − XS describes the motion of a material point (with position XS at
initial time t = t0), due to deformation of the elastic body, to the current position xS. The structural density in
the undeformed configuration is denoted by 𝜌S

0, the material divergence operator by 𝜵0 ⋅ ∗, the deformation gradi-
ent by F, the second Piola-Kirchhoff stress tensor by SS, and the body force per unit mass by b̂

S
0. A hyperelastic

strain energy function 𝜓 characterizes the nonlinear material behavior and hence provides the stress-strain rela-
tion. Therein, the strain is quantified by the Green-Lagrange strain tensor E. The Cauchy stress can be expressed
by 𝝈S = 1

J
F ⋅ SS ⋅ (F)T , with J being the determinant of the deformation gradient F. This representation of solid

stress 𝝈S in the current configuration will be required for coupling of the solid domain and the fluid domain
on their common interface. Additional initial conditions for the displacement field ů and velocity field v̊S are
required:

u = ů in ΩS
0 × {t0},

𝜕u
𝜕t

= v̊S in ΩS
0 × {t0}. (3)

Finally, to complete the description of the initial boundary value problem for nonlinear elastodynamics, adequate
boundary conditions on the outer boundary 𝜕Ω0 ∩ 𝜕ΩS

0 have to be specified with the predefined displacement û on
Dirichlet boundaries ΓS,D

0 and the given traction ĥS,N
0 on Neumann boundaries ΓS,N

0 :

u = û on ΓS,D
0 × [t0, tE], (F ⋅ SS) ⋅ nS

0 = ĥS,N
0 on ΓS,N

0 × [t0, tE]. (4)

The outward-pointing reference unit normal vector on the boundary 𝜕ΩS
0 is specified by nS

0. Conditions on the remain-
ing subset of the structural boundary ΓFS

0 ∪ ΓS,c
0 = 𝜕ΩS

0 ⧵ (Γ
S,D
0 ∪ ΓS,N

0 ), where the structural domain is coupled to the fluid
domain or contact occurs will be discussed in Sections 2.3 and 2.4. This remaining subset is not part of the outer boundary
of the FSCI problem 𝜕Ω0 ∩ (ΓFS

0 ∪ ΓS,c
0 ) = ∅.

2.2 Fluid domain 𝛀F

In the fluid domain transient, incompressible, viscous flow is considered. Therefore, the governing equations are the
incompressible Navier-Stokes equations which include the balance of mass and linear momentum:

𝜌F 𝜕v
𝜕t

+ 𝜌Fv ⋅ 𝜵v + 𝜵p − 𝜵 ⋅ (2𝜇𝝐(v)) − 𝜌Fb̂
F
= 0 in ΩF × [t0, tE], (5)

𝜵 ⋅ v = 0 in ΩF × [t0, tE]. (6)

Therein, the velocity and the pressure of the fluid continuum at a specific point in space are denoted by v and p, respec-
tively. The constant fluid density is denoted by 𝜌F, the constant dynamic viscosity by 𝜇 , and the prescribed body force
per unit mass by b̂

F
. Further, the symmetric strain-rate tensor is defined by 𝝐(v) = 1

2
[𝜵v + (𝜵v)T]. Due to the present

derivative of the velocity in time, the initial velocity field v̊ has to be prescribed:

v = v̊ in ΩF × {t0}. (7)

By prescribing adequate boundary conditions on the outer boundary 𝜕Ω ∩ 𝜕ΩF, the description of the fluid problem is
completed. Thereby the fluid velocity v̂ on Dirichlet boundaries ΓF,D, or the fluid traction ĥF,N on Neumann boundaries
ΓF,N is predefined:
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v = v̂ on ΓF,D × [t0, tE], 𝝈F ⋅ nF = ĥF,N on ΓF,N × [t0, tE]. (8)

Herein, the Cauchy stress 𝝈F = −pI + 2𝜇𝝐(v) and the outward unit normal nF of the fluid domain is utilized. Again,
conditions on the remaining subset of the fluid boundary ΓFS = 𝜕ΩF ⧵ (ΓF,D ∪ ΓF,N), which equals the common interface
of fluid and structural domain, will be discussed in Sections 2.3 and 2.4. This remaining subset is not part of the outer
boundary of the FSCI problem 𝜕Ω ∩ ΓFS = ∅.

The fluid extension operator

In order to formulate the interface conditions at any point in space x on the overall coupling interface, an extension
operator x ∶ ΓFS → Γ from the fluid-structure interface ΓFS to the overall interface Γ is required. This extension is applied
for all quantities solely defined in the fluid domain ΩF and thus for all quantities on the fluid-structure interface ΓFS

which are required for the formulation of the interface constraints on Γ. In the following, the extension of any quantity *
is denoted by an additional index ∗ . Exemplary, the extension of the normal fluid stress 𝜎F

nn to a position x on Γ is defined
as follows:

𝜎F
nn, (x) =

{
𝜎F

nn(v(x), p(x)) on ΓFS

x[𝜎F
nn(v(x ), p(x ))] on ΓS,c,

with x[𝜎F
nn(v(x ), p(x ))] = 𝜎F

nn(v(x), p(x)) on ΓFS ∩ ΓS,c, (9)

where the extension origin position x is properly chosen on ΓFS. The last line in (9) represents the continuity of the
extension operator. The applied extension operator for all presented numerical examples is discussed in Section 3.4.4.
Alternative approaches to obtain fluid quantities on the overall interface Γ are briefly discussed in the Remarks 11 and 12.

2.3 Conditions on the overall coupling interface 𝚪 in normal direction

For the formulation of the interface constraints, which are split in the interface normal direction and in the tangential
plane, the solid outward unit normal n = nS will be considered. The normal component of the respective Cauchy stress
is denoted as: 𝜎S

nn = 𝝈S:Pn and 𝜎F
nn = 𝝈F:Pn, with the normal projection operator being specified as Pn ∶= n ⊗ n.

The conditions in the normal direction for purely nonadhesive structural contact configurations are given by the
classical Hertz–Signiorini–Moreau (HSM) conditions:

gn ∶= (x̌(x) − x) ⋅ n ≥ 0 on Γ × [t0, tE], (10)

𝜎S
nn ≤ 0 on Γ × [t0, tE], (11)

gn𝜎
S
nn = 0 on Γ × [t0, tE], (12)

which ensure the nonpenetration, the absence of adhesive contact forces, and the complementarity between the contact
pressure and normal gap gn. To obtain the normal gap gn, the point x̌(x) is obtained as the projection of x along its normal
n onto the opposite solid surface; in the case that no such projection exists, we assume gn → ∞. All quantities * evaluated
at this projection point will be denoted by a check ∗̌.

In the case contacting bodies are surrounded by fluid, the fluid flow in the contacting zone has to be considered
properly as discussed in the introduction. Applying the classical HSM conditions (10)-(12) directly would result in the
implicit assumption that fluid does not fill the contact zone. For such a configuration, an instantaneous change from zero
traction to the traction arising from the ambient fluid in the contact opening zone on the solid boundary would occur.
Considering, on the contrary, the presence of (physically reasonable) fluid in the contact zone (on a smaller length scale
and not resolved but just modeled at the current macroscopic scale) leads to modified HSM conditions, where a lifting of
both bodies occurs for vanishing relative traction of contact (solid) traction and ambient fluid traction. These conditions
result in a continuous transition from the FSI traction to the contact traction on the common interface of fluid and solid
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and vice versa. Then, the conditions on the interface Γ formulated for a specific point x on Γ are:

gn ≥ 0 on Γ × [t0, tE], (13)

𝜎S
nn − 𝜎F

nn, (x) ≤ 0 on Γ × [t0, tE], (14)

gn[𝜎S
nn − 𝜎F

nn, (x)] = 0 on Γ × [t0, tE]. (15)

Condition (13) enforces a positive or vanishing gap gn between two solid bodies. In condition (14), a negative or
vanishing relative traction has to be guaranteed, at least in the case without adhesive forces that is considered here. Finally,
in Equation (15), either a vanishing gap in the contact case of solid-solid interaction or a vanishing relative traction in the
case of FSI is enforced. Additionally, the dynamic equilibrium between two contacting bodies has to be formulated:

𝜎S
nn − 𝜎F

nn, = ̌𝜎S
nn − ̌𝜎F

nn, on Γ × [t0, tE]. (16)

In the contact case, due to the vanishing gap gn, the normal fluid traction equals its projection 𝜎F
nn, = ̌𝜎F

nn, and there-
fore the classical dynamic equilibrium between both contacting bodies is recovered. For the FSI case, due to the vanishing
relative traction 𝜎S

nn = 𝜎F
nn, , both sides of the equilibrium vanish and as a result Equation (16) is automatically fulfilled.

Finally, the mass balance for the motion of solid bodies connected to a fluid domain is given as:

vrel
n ∶=

(
v −

𝜕u
𝜕t

)
⋅ n = 0 on ΓFS × [t0, tE]. (17)

Herein, a vanishing normal relative velocity vrel
n is enforced solely on the interface ΓFS, which is part of the fluid outer

boundary 𝜕ΩF. Applying an extension to the normal relative velocity vrel
n, , this condition is automatically fulfilled on the

remaining subset of the interface ΓS,c and hence on the entire Γ.

Remark 1 (Influence of the fluid extension operator). It should be highlighted, that conditions (14) to (16) are expressed
by an extension of the fluid stress from the fluid-structure interface ΓFS to the contact interface ΓS,c. The fluid stress exten-
sion has an essential influence only close to the condition changing point/curve (ΓFS ∩ ΓS,c). This point is contained in
the origin from which the extension is constructed, namely the fluid domain. Thus, even the application of a simple con-
tinuous extension strategy of the fluid stress, which is by definition more accurate close to the fluid domain, provides a
sufficiently accurate fluid stress representation for a wide range of problem configurations. Still, we would like to empha-
size that the continuous extension operator is considered in this work especially to enable a clear presentation due to its
simplicity. In the case that a more accurate physical fluid solution is required in the contact zone, alternative extension
based strategies can be considered or appropriate equations to describe the fluid flow in this zone can be solved.

2.4 Conditions on the overall coupling interface 𝚪 in tangential direction

In the tangential direction, frictionless solid-solid contact in combination with the general Navier boundary condition as
a kinematic constraint between solid bodies and the fluid domain is considered for simplicity of presentation. Then, the
following conditions have to be fulfilled on the interface Γ:

𝝈S ⋅ n ⋅ Pt = 0 on ΓS,c × [t0, tE], (18)

(𝝈F ⋅ n − 𝝈S ⋅ n) ⋅ Pt = 0 on ΓFS × [t0, tE], (19)(
v −

𝜕u
𝜕t

+ 𝜅𝝈F ⋅ nF
)
⋅ Pt = 0 on ΓFS × [t0, tE]. (20)

Herein, the tangential projection operator is specified by Pt ∶= I − n ⊗ n. While condition (18) represents the vanish-
ing tangential traction component on the contact interface ΓS,c, condition (19) enforces the dynamic equilibrium between
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solid and fluid on interface ΓFS. As these two conditions can coincide at the common point ΓS,c ∩ ΓFS only in the case
of a vanishing tangential fluid traction (𝝈F ⋅ n ⋅ Pt = 0), the general Navier boundary condition (20) with a varying slip
length is applied. This condition includes the no-slip boundary condition for a vanishing slip length 𝜅 = 0, which is the
common interface condition, successfully applied for macroscopic problem setups. Nevertheless, on smaller scales, due
to characteristics such as surface roughness or wettability, an interfacial velocity slip can be observed in a large number
of experiments.24 In this contribution, the main emphasis of applying the general Navier boundary condition is to guar-
antee continuity for transitions between FSI and frictionless contact solid-solid interaction and to enable a relaxation of
the tangential constraint close to the contacting zone. To obtain these properties, an infinite slip length 𝜅 = ∞ is specified
close to the common point ΓS,c ∩ ΓFS, whereas a vanishing slip length still allows the consideration of the no-slip condi-
tion for the majority of the fluid-structure interface ΓFS representing the macroscopic modeling point of view. Further
details on the specification of the slip length 𝜅 for the presented formulation are given in Section 3.3.

Remark 2 (Continuity of the formulation considering frictional contact). It should be pointed out that also for the
case when frictional contact is considered, specific treatment of the tangential constraints will be required to result in
a continuous problem formulation. This issue arises due to the fact that the fluid wall shear stress on a fluid-structure
interface is not automatically equal to the tangential stress resulting from sliding friction of two contacting struc-
tures on a macroscopic view. To specify one potential solution to this, in the case of a friction model with vanishing
tangential interface traction at the condition changing point/curve ΓFS ∩ ΓS,c, applying the presented strategy directly
results in a continuous problem also for frictional contact. The presented general Navier conditions yields a zero
tangential fluid traction at the condition changing point ΓFS ∩ ΓS,c. Hence, to ensure continuity, a solid contact fric-
tion model has to provide a vanishing tangential traction at this point as well. For instance, this can be achieved
using a Coulomb friction law (friction coefficient 𝔉) based on the relative normal stress with the total friction bound
𝔉 ⋅ (𝜎S

nn − 𝜎F
nn, ).

3 DISCRETE FORMULATION

In this section, the discrete formulation applied to the numerical solution of the FSCI problem is presented. The spatial dis-
cretization of the continuous problem, presented in the previous section, is based on the FEM and temporal discretization
by the one-step-𝜃 scheme is applied. First, the semi-discrete weak forms directly derived from the governing equations,
including additional fluid stabilization operators, are given. To account for topological changes in the fluid domain, an
elementary feature occurring for the FSCI problems, the CutFEM is applied to the discretization of the fluid equations and
is thus discussed in the following. Therein, details on the determination of a consistent discrete set of fluid domain and
fluid-structure interface for the contact case are given. The interface conditions, which are split in normal and tangential
direction, are incorporated by Nitsche-based approaches. For the normal direction, a single interface traction represen-
tation is proposed, automatically incorporating the fluid-structure and contact conditions. A detailed explanation of the
resulting contributions by this normal interface traction is given by analyzing the different cases. Further, a Nitsche-based
formulation to incorporate the tangential fluid-structure interface condition including potential slip is presented. The
specification of the slip length parameter on the interface to enable a continuous transition from fluid-structure coupling
to frictionless contact is discussed. Finally, all contributions are treated in a single global system of equations and solved
monolithically. Additional details on the solution procedure of the FSCI problem are given at the end of this section. To
shorten the presentation only some aspects that help understanding the approach are discussed here, while many more
details can be found in the referenced literature for the particular building block methods.

In the following, all quantities, including the primary unknowns, the test functions in the weak form, the domains
and interfaces, as well as derived quantities, are discretized in space. Still, no additional index h is added to these dis-
crete quantities for the sake of brevity of presentation. The expressions (∗, ∗)Ω and ⟨∗, ∗⟩𝜕Ω denote the 2-inner products
integrated in the domain Ω and on the boundary/interface 𝜕Ω, respectively.

3.1 Weak forms for the domains 𝛀S
,𝛀F

The weak forms for the structural domain S, the fluid domain F, and the overall coupled problem FS can be derived
from Equations (1) and (5)-(6), respectively.
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S[𝛿u,u] =

(
𝛿u, 𝜌S

0
𝜕2u
𝜕t2

)
ΩS

0

+ (𝜵0𝛿u,F ⋅ SS)ΩS
0
− (𝛿u, 𝜌S

0b̂
S
0)ΩS

0
− ⟨𝛿u, ĥS,N

0 ⟩ΓS,N
0

(21)

F[(𝛿v, 𝛿p), (v, p)] =
(
𝛿v, 𝜌F 𝜕v

𝜕t

)
ΩF

+ (𝛿v, 𝜌Fv ⋅ 𝜵v)ΩF − (𝜵 ⋅ 𝛿v, p)ΩF

+(𝝐(𝛿v), 2𝜇𝝐(v))ΩF − (𝛿v, 𝜌Fb̂
F
)ΩF − ⟨𝛿v, ĥF,N⟩ΓF,N + (𝛿p,𝜵 ⋅ v)ΩF (22)

FS[(𝛿u, 𝛿v, 𝛿p), (u, v, p)] = S[𝛿u,u] +F[(𝛿v, 𝛿p), (v, p)]
−⟨𝛿u,𝝈n⟩Γ + ⟨𝛿v∅,𝝈n⟩Γ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=FS,n
Γ +FS,t

Γ

. (23)

Herein, (𝛿u, 𝛿v, 𝛿p) are the corresponding test functions of the primary unknowns (u, v, p). The discrete solution space
is created by a spatial discretization consisting of elements containing piece-wise polynomials in an element reference
coordinate system which are continuous on the inter-element boundaries. For the pressure p and for each component of
the vector-valued quantities fluid velocity v and solid displacement u the discrete approximation space is directly con-
structed by these functions. All test functions are discretized by the same space as their corresponding primal unknowns.
Modifications of these spaces for the incorporation of strong Dirichlet boundary conditions on ΓS,D

0 and ΓF,D are per-
formed in the usual way. For the structural displacements, an interface fitted discretization is applied, meaning that the
elements fill the entire domainΩS. Details on the discretization of the fluid domain, which is noninterface fitted, are given
in Section 3.1.2.

As a central part of the formulation, the unique interface traction 𝝈n introduces the Nitsche-based methods to incor-
porate the FSI and contact interface conditions. Its specification will be discussed in Sections 3.2 and 3.3. Inserting 𝝈n in
(23) results basically in a consistent stress term and an additional penalty term integrated on the interface Γ. This allows to
include the respective dynamic equilibrium in normal direction (14)-(16), as well as in tangential direction (18), and (19)
directly in the weak form. As the interface conditions (13)-(20) require a separate treatment of normal and tangential con-
straints, the normal component 𝜎nn and the tangential component 𝝈n ⋅ Pt of the interface traction 𝝈n = 𝜎nn ⋅ n + 𝝈n ⋅ Pt
are treated separately in Sections 3.2 and 3.3. It should also be noted that the interface integrals on the overall discrete
interface Γ in (23) are always evaluated on the entire interface specified by the solid domain boundaries. Thus, even
for geometrically overlapping contact interfaces, the interface integrals are evaluated twice (with an opposite normal
vector).

To extend the interface contribution onΓFS arising from partial integration of the viscous and pressure contributions in
domain ΩF to the overall interface Γ, an additional definition of the fluid test functions

(
𝛿v∅, 𝛿p∅

)
on the whole interface

Γ is consulted. For the additional interface contributions in (23) vanishing fluid test functions outside of the fluid domain
ΩF are considered:

(𝛿v∅, 𝛿p∅) =

{
(𝛿v, 𝛿p) in ΩF

0 otherwise.
(24)

3.1.1 Stabilization of the discrete fluid formulation

In addition to the naturally arising terms of the fluid weak form (22), discrete stabilization operators have to be added to
control convective instabilities, to ensure discrete mass conservation, and to guarantee inf-sup stability for equal order
interpolation of velocity and pressure:

F [(𝛿v, 𝛿p), (v, p)] = F
v [𝛿v, (v, p)] + F

p [𝛿p, (v, p)]. (25)

Different realizations of these stabilization operators are possible, including residual-based stabilization and
face-oriented stabilization. In Reference 50, a comparison of various techniques for stabilization of the incompressible
flow problem is given. For the presented numerical examples in Section 4, face-oriented stabilization operators are chosen
(for details see Reference 29).
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F I G U R E 3 Basic problem setup for the applied CutFEM, structural domain ΩS = ΩS1 ∪ ΩS2 embedded in the fluid domain ΩF. A
noninterface fitted discretization  =  F ∪ ΓFS ∪  0 represents the fluid domain ΩF by a set of elements in  F and the physical sub-domain
 F
ΓFS of the elements in ΓFS . The nonphysical domain, which equals the structural domain ΩS, consists of a set of elements in  0 and the

nonphysical sub-domain  0
ΓFS of the elements in ΓFS . For all inner element faces ΓFS of  F ∪ ΓFS , which are connected to one element in ΓFS ,

the “ghost penalty” stabilization is applied [Color figure can be viewed at wileyonlinelibrary.com]

3.1.2 The CutFEM utilized for discretization of the fluid domain 𝛀F

As discussed in the introduction, the CutFEM is applied for the discretization of the fluid domain allowing for a fixed
Eulerian computational mesh. Herein, the boundaries and interfaces of the fluid domain are not required to match the
boundary of the computational discretization. This beneficial feature of the CutFEM allows the direct handling of large
motion or deformation of the solid domain ΩS and even topological changes of the fluid domain ΩF as it is typically occur-
ring for FSCI problems. The discretization concept is visualized for an exemplary contacting configuration in Figure 3.
The typical small penetration of contacting solid bodies in the discrete solution is visualized exaggerated in this figure.
This aspect is left aside here and is discussed in detail in Section 3.1.3.

All solid domains ΩS1 and ΩS2 are discretized boundary and interface matching. The fluid discretization is specified
to cover the entire fluid domain ΩF and is not matching to the interface ΓFS. As shown by the exemplary configuration in
Figure 3, the outer boundaries of the fluid domain often match the discretization boundary, which does not necessarily
have to be. Then, the physical fluid domain ΩF results from “cutting out” the nonfluid domain which is specified by the
boundary of the solid domain 𝜕ΩS and potential nonmatching outer boundaries.

In the following, a brief overview on the most important aspects for application of the CutFEM to the FSCI problem
is given. The treatment of all interface conditions is not included here, but presented in Sections 3.2 and 3.3. A general
overview of this method is given in Reference 51 including references for further details.

The integration of the 2-inner products in the fluid weak form (22) has to be performed solely in the physical fluid
domain. This domain is described by the outer fluid boundaries ΓF,D and ΓF,N as well as the deforming position of the
interface ΓFS including its solid outward unit normal vector n. By separation of the fluid discretization, which is constant
in time, in different sets of elements, the numerical integration of (22) can be realized. The computational fluid mesh
consists of the sets of elements which are not intersected by the interface ΓFS and affiliated to the fluid domain  F or
affiliated to the nonfluid (solid) domain  0 as well as the set of all remaining elements in ΓFS which are intersected by
the interface ΓFS. This domain ΓFS is split into the physical fluid part  F

ΓFS and the nonfluid (solid) part  0
ΓFS , which can be

identified by the unit solid outward solid normal vector n. For the “nonintersected” elements in  F
ΓFS standard Gaussian

quadrature is applied, whereas no integration has to be performed on elements in  0
ΓFS . For the numerical integration of the

physical fluid sub-domain  F
ΓFS of the intersected elements, the method described in Reference 52, where the divergence

theorem is utilized repeatedly, is applied. No integration has to be performed on the remaining sub-domain  0
ΓFS .

Due to the arbitrary relative position of the deformed interface ΓFS and the fixed computational fluid mesh, any geo-
metric intersection configuration has to be treated properly. In fact, intersections leading to very small contributions of
single discrete degrees of freedom to the weak form (22) are critical. If not handled appropriately, these configurations can
lead to an ill-conditioned resulting system of equations or a loss of discrete stability arising from the weak incorporation of
interface conditions presented in Sections 3.2 and 3.3. These issues can be tackled by additional weakly consistent stabi-
lization operators added to the weak form (22). Therein, in principle, any nonsmoothness of the discrete extension of the
solution into the nonfluid domain  0

ΓFS is penalized. Single degrees of freedom with vanishing contribution in the weak
form (22) are then still defined by the smooth extension of the solution, even if there is no physical relevance left. This kind

http://wileyonlinelibrary.com
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of stabilization is called “ghost penalty” stabilization and was first presented in Reference 30 for the Poisson’s problem.
The method which is applied here for the stabilization of the fluid equations is analyzed in Reference 29. The operators
(26) added to the fluid weak form therein penalizes jumps of normal derivatives of the velocity v and the pressure p:

F [(𝛿v, 𝛿p), (v, p)] = v(𝛿v, v) + p(𝛿p, p). (26)

These operators are integrated on a selected set of inner element faces ΓFS marked in Figure 3 by red lines.

Remark 3 (Existence of the discrete fluid test functions in the ghost domain). It should be highlighted that the dis-
crete test functions (𝛿v, 𝛿p), in contrary to definition (24), do not vanish in the ghost domain  0

ΓFS , and are evaluated on
the inter-element faces for the face-oriented stabilization and “ghost penalty” stabilization (25) and (26) outside of the
physical fluid domain ΩF.

3.1.3 Consistent fluid domain 𝛀F and fluid-structure interface 𝚪FS representation
for the contacting case

The weak form (22) is solely integrated in the physical domain ΩF. This domain is characterized by the nonmoving outer
boundaries ΓF,D and ΓF,N as well as the moving fluid-structure interface ΓFS. The discrete motion of the interface ΓFS

is given by the general interface Γ and hence by the motion of the solid domain ΩS. It is essential to evaluate the over-
all weak form on a consistent pair of domain ΩF and interface ΓFS. This aspect is straight-forward as long as no contact
between solid bodies occurs, but should be discussed in detail for the case of contacting discrete bodies. The contacting
scenario illustrated in Figure 4 results in partial overlap of both solid domains due to the discrete approximation. There-
fore, in a first step all parts of the interface Γ which are overlapping—identified by the solid unit outward solid normal
vector n—are removed from the “intersection” interface. The corresponding fluid domain ΩF ∪ ΩF

∗ potentially includes
small fluid fractions occurring from the discrete contact formulation. To avoid these “islands,” the purely numerically
occurring segments on the current “intersection” interface are removed additionally, leading to the consulted interface
ΓFS. For sufficiently spatially resolved computational meshes, the identification can be simply performed by a predefined
maximal ratio of the element size compared to the actual size of the bounding box containing a single fluid fraction.
Finally, the intersection of the computational fluid mesh is performed with this interface ΓFS, resulting in a physical fluid
domain ΩF which does not include the domain ΩF

∗ . The discrete contact interface is then defined by: ΓS,c = Γ ⧵ ΓFS.

3.2 Nitsche-based method on the overall coupling interface 𝚪 in normal direction

All interface conditions in normal direction (13)-(17) are incorporated by Nitsche-based methods. To demonstrate that
the formulation enables a continuous transition between the FSI and contact conditions, one(!) representative interface
traction 𝜎nn = 𝝈n ⋅ n in normal direction is specified which fulfills the following criteria. Insertion of 𝜎nn in the weak
form (23) results always in a Nitsche-based method including a consistent interface stress term and a consistent penalty

F I G U R E 4 Detailed (exaggerated) view of the discrete contacting zone of two solid bodies ΩS1 and ΩS2 . Due to the discrete contact
formulation, small fluid fractions ΩF

∗ can emerge, which are not considered part of the fluid domain ΩF. The fluid-structure interface ΓFS

(blue line) is constructed accordingly to this fluid domain ΩF. The remaining part of the interface Γ is the contact interface ΓS,c. With the
scalar value  introduced in Section 3.2, the interface is split into four cases (I∕ΓFS,−; II∕ΓS,c,+; III∕ΓFS,+; IV∕ΓS,c,−) [Color figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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term which comply with the interface conditions (13)-(17). The value of 𝜎nn changes continuously for any change of the
system state (u, v, p). It is unique in the sense that it depends only on the system state (u, v, p) at the spatial position
(which potentially has to be evaluated by an extension) and the interface normal direction and, for example, not on the
type of interface on which it is evaluated. Defining the normal interface traction to:

𝜎nn = min [(𝜎F
nn, + 𝛾F vrel

n, ), (𝜎
S
nn + 𝛾Sgn)], (27)

with two sufficiently large parameters 𝛾F > 0 and 𝛾S > 0 and a representative solid stress 𝜎S
nn, allows the fulfillment of

these requirements. The first term of the minimum in (27) corresponds to enforcing the classical FSI conditions as it is
“active” for an existing fluid domain gn > 0 in combination with a vanishing relative traction 𝜎S

nn − 𝜎F
nn, ≈ 0 and relative

velocity vrel
n, ≈ 0. The second term of the minimum is “active” for a vanishing gap gn ≈ 0 and a negative relative traction

𝜎
S
nn − 𝜎F

nn, < 0 and enforces the classical conditions of closed contact. The transition of these two types of conditions,
which are combined by the minimum function, is continuous. If no feasible projection exists or the distance exceeds a
certain predefined limit and as a consequence the projection is not evaluated, we assume gn → ∞ and as a result the FSI
condition is enforced. In the following, a detailed discussion for both sides of the minimum function is given.

In the case that the second term of the minimum in (27) is “active,” the conditions of closed contact are incorporated.
For this case, the balance of linear momentum across the closed contact interface, in which condition (16) reduces to
𝜎S

nn = ̌𝜎S
nn, is accommodated for by using the same representative solid stress 𝜎S

nn on both sides of the potential contact
surfaces. In the most simple case, one of the two potentially contacting solids, for example, ΩS1 is designated as a so-called
slave side and the representative solid stress is chosen as the discrete stress representation of that side 𝜎S

nn = 𝜎
S1
nn. An

explicit choice of a slave side, however, results in an inherent bias between the two solid sides. To obtain an unbiased
formulation, an arbitrary convex combination 𝜎S

nn = 𝜔𝜎
S1
nn + (1 − 𝜔)𝜎S2

nn of the stress representations of the two solid sides
can be used based on a weight 𝜔 ∈ [0, 1]. If this weight is determined independently of the numbering of the contacting
solids (i.e., invariant with respect to flipping the slave and master side), the resulting algorithm is unbiased. Two possible
choices for unbiased method are either choosing 𝜔 = 1

2
44,46 or using harmonic weights determined based on material

parameters and mesh sizes.45,53 Additionally, the interface contribution resulting from 𝛾Sgn is required to ensure a stable
numerical formulation and to enforce the no-penetration constraint required by (13) in combination with (15). At this
point, we would like to highlight that the integration of the (structural) interface integral is performed on the entire
interface Γ with the displacement test function at this respective point. For bodies in contact, this entails that one actually
integrates twice on the (closed) contact interface, that is, once for each of the contacting surfaces with only the respective
test function taken into account. This is in contrast to classical applications of Nitsche’s method for two body contact
problems44,46 which integrate over one or both of the contacting surfaces with the jump of the test functions. Our method
relates more closely to the so-called two-half-pass algorithms used in Gauss-point-to-segment (GPTS) penalty contact
formulations47 with the difference being the inclusion of the consistent stress term. The approach presented here includes
two advantages: first, multi-body and self contact are naturally included. Second, and more importantly, it allows to
perform decisions of “active” and “inactive” contact separately on the two surfaces in contact. This is crucial to enable a
continuous transition to the FSI condition since in general the effective fluid traction (𝜎F

nn, + 𝛾F vrel
n, ) is slightly different

on the two surfaces for the discrete formulation. Appendix A discusses the relation of the presented contact treatment in
comparison to existing Nitsche contact algorithms.

In the case that the FSI condition is enforced, the normal interface traction is represented uniquely by the normal fluid
traction 𝜎F

nn. Thus, the essential dynamic equilibrium (14) in the case equal to zero and equilibrium (16) due to vanishing
contributions on both sides separately are fulfilled . For this choice, a properly scaled, consistent penalty contribution
𝛾Fvrel

n is added to guarantee discrete stability of the formulation and to enforce the constraint (17). In addition to the
resulting traction and penalty contribution, a skew-symmetric adjoint consistency term is added to the weak form (23):

FS,n
Γ,Adj[(𝛿v, 𝛿p), (u, v)] = ⟨𝛿p∅n − 2𝜇𝝐(𝛿v∅)n, v

rel
n,n⟩Γ. (28)

This term allows the direct balance of the contribution of the fluid pressure in addition to the viscous contribution,
when introducing 𝜎F

nn in (23). Due to the inherent constraint (17), this additional contribution does not alter the con-
sistency of the formulation. When enforcing the FSI conditions, also a representation of the interface traction by the
corresponding solid stress would be possible, but is not considered in the following. The resulting Nitsche-based formu-
lation given by (27), (28), and (23) is similar to the approach in Reference 17, which was applied to a problem of reduced
complexity.
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Remark 4 (Activation of the contact conditions). Basically, the use of the representative solid stress 𝜎S
nn could lead to

a unintended activation of the second term of the minimum (contact formulation) in (27). For two interfaces Γ1 and Γ2
with a significant distance between them (gn > 0) and a different value of the fluid stress on both sides (e.g., 𝜎F1

nn > 𝜎
F2
nn),

which implies a different value of the solid stress on both sides (e.g., 𝜎S1
nn > 𝜎

S2
nn), it might occur that on Γ1 the inequal-

ity 𝜎F1
nn + 𝛾Fvrel

n > 𝜔𝜎
S1
nn + (1 − 𝜔)𝜎S2

nn + 𝛾Sgn holds true. As a consequence the contact conditions would be enforced on Γ1.
Nevertheless, this aspect is more of theoretical interest and due to several reasons this behavior was never observed in
any numerical computation. Since a sufficiently large Nitsche penalty parameter 𝛾S is required anyway, a quite significant
difference of the fluid stress 𝜎F1

nn and 𝜎F2
nn is required to trigger this behavior for an essential gap. Assuming a reasonable

computational accuracy, the difference of the fluid stress 𝜎F1
nn and 𝜎F2

nn will be small for a small gap gn and increase with
increasing gap gn. On the other hand, for configurations which include a large distance between both interfaces in com-
bination with almost independent fluid solutions on both interfaces these considerations have practically no relevance
since the distance between the interface exceeds a predefined limit and, thus, gn → ∞ is assumed.

A demonstration of the different resulting interface contributions

This paragraph does not add new components to the numerical formulation, but it is meant to provide a boarder discussion
of the previously introduced contributions and its implications. To demonstrate the arising interface contributions from
incorporation of the normal interface traction (27) into the weak form (23), the boundary integral on the interface Γ is
split into the solid-solid contact “+” and the FSI “−” parts:

⟨∗, ∗⟩Γ,+ =

{⟨∗, ∗⟩Γ if  ≤ 0
0 otherwise

, ⟨∗, ∗⟩Γ,− =

{
0 if  ≤ 0⟨∗, ∗⟩Γ otherwise

,

with (u, v, p) = (𝜎S
nn + 𝛾Sgn) − (𝜎F

nn, + 𝛾F vrel
n, ). (29)

Remark 5 (Relation between the interfaces ΓS,c, ΓFS and Γ,+, Γ,−). For the continuous problem presented in Section 2,
integration on the interface subsets Γ,+ and Γ,− coincidences with an integration on the contact interface ΓS,c and the
fluid-structure interfaceΓFS, respectively. Due to the discrete error, this relation does not hold for the discrete formulation,
where in general a deviation between these interfaces will occur.

In definition (29), the sign of the scalar  indicates, which side of the min[] function in (27) represents the normal
interface traction. In addition to this split of interface Γ in the “+” and “−” parts, a purely geometric split into interfaces
ΓFS and ΓS,c was described in Section 3.1.3. As the interface ΓFS is part of the outer fluid boundary 𝜕ΩF, the fluid state
(v, p) and the corresponding test functions (𝛿v, 𝛿p) are directly defined on this interface without any extension required.
Combining these two different subdivisions when performing the integration of the normal traction (23) on the interface
Γ leads to four cases (I − IV) which finally needs to be dealt with:

⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩Γ = ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩Γ,+ + ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩Γ,− = ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩ΓS,c,+
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case II

+ ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩ΓS,c,−
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case IV

+ ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩ΓFS,+
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case III

+ ⟨𝛿v∅ − 𝛿u, 𝜎nnn⟩ΓFS,−
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case I

. (30)

A visualization of these four cases for a specific discrete contact configuration is given in Figure 4. In the following,
the resulting contributions, which have to be evaluated, are depicted. Vanishing contributions are not included and the
extension operator is just applied in the case no direct representation of the corresponding quantity is available on the
relevant segment. Further, the skew-symmetric adjoint consistency term introduced in (28) is included, to include all
interface contributions evaluated in the normal direction:

FS,n
Γ [(𝛿u, 𝛿v, 𝛿p), (u, v, p)] +FS,n

Γ,Adj[(𝛿v, 𝛿p), (u, v)] = I + II + III + IV with:

I = ⟨𝛿v − 𝛿u, 𝜎F
nnn⟩ΓFS,− + ⟨𝛿v − 𝛿u, 𝛾Fvrel

n n⟩ΓFS,− + ⟨𝛿pn − 2𝜇𝝐(𝛿v)n, vrel
n n⟩ΓFS,−, (31)

II = ⟨−𝛿u, 𝜎S
nnn⟩ΓS,c,+ + ⟨−𝛿u, 𝛾Sgnn⟩ΓS,c,+, (32)
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III = ⟨𝛿v − 𝛿u, 𝜎S
nnn⟩ΓFS,+ + ⟨𝛿v − 𝛿u, 𝛾Sgnn⟩ΓFS,+, (33)

IV = ⟨−𝛿u, 𝜎F
nn,n⟩ΓS,c,− + ⟨−𝛿u, 𝛾F vrel

n,n⟩ΓS,c,−. (34)

Herein, contribution I equals the classical Nitsche-based method for the imposition of the mass conservation on an
fluid-structure interface as applied in References 18 and 35. This method includes an interface traction representation by
the fluid stress, a penalty term which is consistent due to the includes mass conservation (17), and the skew symmetric
viscous and pressure adjoint consistency term which also includes (17).

The evaluated terms in summand II coincide in principle with Nitsche-based methods for classical contact problems,
for example, applied in References 44-46. Here, the interface traction is represented by a one-sided or two-sided weighted
solid stress of both contacting bodies with an additional penalty term including the no penetration condition included in
(13) and (15). No adjoint consistency terms are applied. Due to the vanishing fluid test functions (𝛿v∅, 𝛿p∅), no contribution
to the fluid weak form occurs.

Finally, contributions III and IV arise solely close to the condition changing point/curve  = 0 and the common
point/curve of both interface ΓS,c ∩ ΓFS. The impact of these summands compared to contributions I and II is relatively
small and so making use of a simple extension of the fluid quantities in (34) is acceptable. Still, both contribution have to
be applied to ensure continuity of the discrete problem for a transition from FSI to contact and to guarantee geometrically
fitting interface conditions applied onto the fluid domain.

Remark 6 (Application of a different representation for contribution III). For all numerical examples presented in
Section 4, an alternative formulation of contribution III is applied due to algorithmic reasons. Therein, the contributions
of Nitsche contact II are completed by a fluid-sided interface traction representation for the fluid domain.

III =⟨𝛿v, 𝜎F
nnn⟩ΓFS,+ + ⟨𝛿v, 𝛾Fvrel

n n⟩ΓFS,+ + ⟨𝛿pn − 2𝜇𝝐(𝛿v)n, vrel
n n⟩ΓFS,+

+⟨−𝛿u, 𝜎S
nnn⟩ΓFS,+ + ⟨−𝛿u, 𝛾Sgnn⟩ΓFS,+. (35)

By comparison of contributions (33) and (35), the coincidence of both formulations at the condition-changing point
 = 0 and for fulfilled mass balance (17) can be directly seen. As the impact of contribution III is generally small and
arises solely close to  = 0, this modification does not have a significant influence onto the performance of the presented
formulation.

Remark 7 (Determination of the solid penalty parameter 𝛾S). For Nitsche’s method, the parameter 𝛾S = 𝛾S
0𝜙

S with a
sufficiently large, positive constant 𝛾S

0 is required to establish discrete stability of the formulation. Therein, material- and
mesh-dependencies of 𝛾S are considered in 𝜙S by a local generalized eigenvalue problem as presented, for example, in
Reference 45. Larger values of 𝛾S

0 improve the constraint enforcement (gn = 0), while smaller values typically reduce the
error of the consistent stress representation (𝜎S

nn). For the FSCI problem, additional aspects have to be considered. The
influence of case IV (see (34)) should be minimized, as it incorporates the extended fluid solution and switching between
the cases II and IV during the nonlinear solution procedure should be reduced. A small penalty parameter 𝛾S supports
this behavior as it turns out to reduce the ratio of  ≤ 0 on the interface ΓS,c. As a result, a small but still numerical
stable constant 𝛾S

0 is beneficial for solving the FSCI problem. This aspect is not critical as the constant 𝛾S
0 is not problem

dependent for a properly defined scaling 𝜙S and the same value can be kept for all computation (𝛾S
0 = 1.0 for all presented

numerical examples).

Remark 8 (Determination of the fluid penalty parameter 𝛾F). The penalty term in (27) with the parameter 𝛾F = 𝛾F
0 𝜙

F
n h−1

Γ
balances viscous, convective, and temporal contributions according to Reference 29 and so enables a discrete stable formu-
lation. Therein, 𝛾F

0 is a sufficiently large positive constant, hΓ an appropriate element volume to interface area ratio, and
𝜙F

v a scaling taking into account the different flow regimes. For the determination of the constant 𝛾F
0 , constraint enforce-

ment as well as the resulting interface stress error is important. Additionally, for the computed numerical examples, it
was observed, that a small penalty parameter 𝛾F

0 is beneficial for the FSCI problem as it incorporates an inherent relax-
ation of the kinematic constraints especially close to the point of changing conditions ( = 0) and hence improves the
performance of the nonlinear solution procedure. The relevance of this aspect depends highly on the complexity of the
considered problem configuration and increases for a reduced accuracy of the applied numerical integration procedure
on the interface Γ.



16 AGER et al.

Remark 9 (Applied numerical integration procedure on the interface Γ). For the numerical integration of the contribu-
tions (31)-(35) on the interface, nonsmooth and noncontinuous functions on single solid boundary elements have to be
integrated. These kinks and jumps potentially occur due to element boundaries of the contact partner or on the inter-
section of the interface with fluid element boundaries. To enable an accurate numerical integration, each solid boundary
element has to be split by all other element boundaries involved and a numerical integration rule has to be specified,
for example, by triangulation, on these segments (see, e.g., Reference 54). For the numerical examples presented in the
following, this most accurate approach was not applied. Instead, the numerical integration points on the interface Γ
are constructed to account for the intersection of the interface with fluid element boundaries solely. To account for the
integration of the discontinuous solid stress in the contacting case, an increased number of integration points is applied.

3.3 Nitsche-based method on the overall coupling interface 𝚪 in tangential direction

The tangential component of the interface traction𝝈n has to fulfill the traction free condition (18) due to the consideration
of frictionless contact on the contact interface ΓS,c:

𝝈n ⋅ Pt = 0 on ΓS,c. (36)

Further, the dynamic equilibrium (19) and the Navier slip boundary condition (20) have to be fulfilled on the
fluid-structure interface ΓFS. A representation of the unique tangential interface traction by:

𝝈n ⋅ Pt =

[
−

(𝛾F
t,0)

−1hΓ

𝜅𝜇 + (𝛾F
t,0)−1hΓ

𝝈F ⋅ nF + 𝜇

𝜅𝜇 + (𝛾F
t,0)−1hΓ

(
v −

𝜕u
𝜕t

)]
⋅ Pt on ΓFS, (37)

complies with these condition. For the limit cases no-slip (slip length 𝜅 = 0) and free-slip (slip length 𝜅 = ∞), the tangen-

tial interface traction reduces to 𝝈n ⋅ Pt =
[
−𝝈F ⋅ nF + 𝜇

(𝛾F
t,0)−1hΓ

(
v − 𝜕u

𝜕t

)]
⋅ Pt and 𝝈n ⋅ Pt = 0, respectively. Incorporating

of the tangential interface traction in the weak form (23) and adding an additional consistent skew-symmetric adjoint
term results in the contributions:

FS,t
Γ [(𝛿u, 𝛿v), (u, v)] = −⟨𝛿v − 𝛿u,𝝈F ⋅ nF ⋅ Pt⟩ΓFS

+ 𝜇

𝜅𝜇 + (𝛾F
t,0)−1hΓ

⟨
𝛿v − 𝛿u,

[
v −

𝜕u
𝜕t

+ 𝜅𝝈F ⋅ nF
]
⋅ Pt

⟩
ΓFS

(38)

FS,t
Γ,Adj[𝛿v, (u, v)] = −

(𝛾F
t,0)

−1hΓ

𝜅𝜇 + (𝛾F
t,0)−1hΓ

⟨
−2𝜇𝝐(𝛿v) ⋅ nF,

[
v −

𝜕u
𝜕t

+ 𝜅𝝈F ⋅ nF
]
⋅ Pt

⟩
ΓFS
. (39)

It can be directly seen that this formulation is consistent, as the term in the first line includes the naturally aris-
ing fluid stress applied on fluid and solid boundary due to the balance (19) and the additional terms include directly
the constraint (20). Theses additional terms are present to guarantee a discrete stable formulation and to enforce the
kinematic constraint. They balance the destabilizing effects of the viscous boundary integral occurring in line one and
the term of similar structure in line two. The penalty parameter in tangential direction 𝛾F

t,0 needs to be a positive and
sufficiently large constant. This Nitsche-based contribution for the general Navier interface condition is based on the
formulation presented and analyzed in Reference 36 for the Poisson problem and Reference 37 for the linearized fluid
problem. It was successfully applied to enforce the coupling conditions between a poroelastic structure and fluid flow in
References 3 and 38.

Definition of the slip length 𝜿

As motivated already in Section 2.4 for the overall problem, the no-slip interface condition 𝜅 = 0 on ΓFS has to be applied.
Solely close to the contacting zone, a relaxation of this constraint is designated. A continuous transition between the
tangential FSI condition (19)-(20) and the tangential frictionless contact condition (18) can be guaranteed for an infinite



AGER et al. 17

slip length 𝜅 = ∞ on ΓFS ∩ ΓS,c. The applied interpolation between these limiting points is given by

𝜅 =
⎧⎪⎨⎪⎩

0 if gn > h
𝜅0h

[
h
gn
− 1

]
if h ≥ gn > 0.

∞ otherwise

(40)

Herein, the minimal value of the gap gn between two solid interfaces to apply the no-slip interface condition is spec-
ified by the fluid element size h. The interpolation function can be specified by the constant reference slip length 𝜅0. It
should be pointed out that for a reduction of the fluid element size h, also the range of influence for this modification
compared to a pure no-slip condition is reduced. For small scales, an alternative formulation for the slip length in relation
(40) due to the underlying physical slip can improve the accuracy of the interface condition. A second advantage of allow-
ing a certain amount of slip on the interface is to avoid blockage of single fluid elements between approaching surfaces
due to the insufficient discrete solution space. This aspect is less essential for a weak enforcement of the interface condi-
tion by Nitsche’s method with an appropriately chosen penalty parameter 𝛾F

t,0 than for a strong enforcement of interface
conditions (see Reference 55 for a comparison of strong enforcement and weak imposition of fluid boundary conditions).
To give an example, in Reference 5, this issue is resolved by a modification of the fluid-structure interface constraint close
to contact.

3.4 Overall formulation for the coupled FSCI problem

Finally, by making use of the corresponding interface traction representation in normal (27) and in tangential (36)-(37)
direction in the weak form (23) of the overall coupled problem, and summing up all additional contributions including
interface adjoint consistency terms and discrete stabilization contributions, the following semi-discrete weak form of the
FSCI problem has to be solved. Find (u, v, p) such that ∀(𝛿u, 𝛿v, 𝛿p):

FS[(𝛿u, 𝛿v, 𝛿p), (u, v, p)] +F [(𝛿v, 𝛿p), (v, p)] +F [(𝛿v, 𝛿p), (v, p)]

+FS,n
Γ,Adj[(𝛿v, 𝛿p), (u, v)] +FS,t

Γ,Adj[𝛿v, (u, v)] = 0. (41)

For discretization of the weak form (41) in time, the one-step-𝜃 scheme is applied to the occurring time
derivatives in solid (21) and fluid weak form (22) with an equal time integration factor 𝜃. This procedure leads
to a nonlinear system of equations of form n = 0 for each discrete instance in time (index n) in the inter-
val [t0, tE]. An iterative solution scheme based on a Newton-Raphson procedure is applied to solve this nonlinear
system:

Ci
n ⋅ Δ𝔵i+1

n
= −i

n, 𝔵i+1
n

= 𝔵i
n
+ Δ𝔵i

n
, Cn ≈

𝜕n

𝜕𝔵
n

. (42)

Herein, all equations arising from the overall weak form (41) are included inn and and all unknowns 𝔵
n
= [𝔲n, 𝔳n, 𝔭n

]
(including the structural displacement, fluid velocity, and pressure) are solved and updated in every iteration step simul-
taneously. The matrix Cn includes the essential linearizations of the residual vector n with respect to the unknowns 𝔵

n
.

For a sufficiently small value of a residual norm ||i
n|| < 𝜖, the current iteration state approximates the solution state for

this timestep 𝔵i+1
n

= 𝔵
n
. Based on the previously computed solution state, the solution at the next discrete instance in time

is computed by another Newton-Raphson iteration procedure. It should be highlighted that the discrete solution space
of the fluid pressure and velocity potentially changes between different iteration steps or time steps. As a consequence,
a procedure to transfer the previously evaluated solution state to the current solution space is required for the nonlin-
ear solution procedure and the discrete time integration. Details on this procedure and the overall solution algorithm for
the CutFEM-based FSI, which builds the basis for the algorithm applied herein, are presented in Reference 35. From an
algorithmic point of view, solely the evaluation of different contributions on the interface varies from the presentation
therein.
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In the following, we present algorithmic details for the monolithic solution algorithm, applied for the computation
of the subsequently presented numerical examples. The configurations of the presented examples (except for the first
validation example) are chosen to challenge the presented FSCI formulation. Thus, it is ensured that the fluid-structure
coupling, the solid-solid contact, as well as the change between these conditions have an essential impact to the overall
problem. To guarantee a strong interaction between the structures and the fluid, equal initial densities are considered
within all domains. Specific strategies to enable a robust solution of the resulting highly nonlinear problems are discussed
in the following.

3.4.1 Damping strategy for the update procedure

A simple damped update procedure of the vector of unknowns 𝔵i+1
n

= 𝔵i
n
+ 𝜔i

nΔ𝔵i
n

in (42) with parameter 𝜔i
n = [0.0, 1.0]

turned out to be beneficial for the convergence behavior. The damping parameter at the initial iteration of each timestep
step is set to 𝜔0

n = 1.0. Based on the relative change of the residual norm ||i
n||∕||i−1

n || between single iterations, the
damping parameter is reduced for an increasing residual norm and vice versa.

3.4.2 Update strategy for geometric intersection

A simple procedure to avoid deterioration of the convergence behavior in the Newton-Raphson procedure due to
“algorithmic”-discontinuities arising from geometric tolerances in the algorithm intersecting the interface ΓFS and the
computational fluid domain ΩF is applied. Herein, the geometric intersection (includes the creation of numerical inte-
gration points in the physical fluid domain ΩF and on the fluid-structure interface ΓFS) is just updated as long as the
maximal displacement increment ||Δ𝔲i

n||∞ > 𝜖geom in an iterations step exceeds a specified valued. For the remaining
iteration steps, the intersection information of the previous iteration step is applied.

3.4.3 Solution space update strategy

As explained in detail in Reference 35, the solution space is updated dynamically within the iterative solution procedure
for solving the system of nonlinear equations. For classical FSI computations without structural contact, applying this
procedure typically results in a constant solution space after few iterations. Nevertheless, including contact increases the
sensitivity of the formulation with respect to changing solution spaces. This aspect can result in periodically repeating
changes of the solution space within the iterative solution procedure for specific geometric configurations and so pro-
hibits the convergence of the scheme. The reason for this behavior is a discontinuity in the discrete formulation, which
arises due to the change in the considered set of faces in the weakly consistent “ghost penalty” stabilization (26) and the
face-oriented fluid stabilization (25). The influence of this effect onto the convergence of the Newton-Raphson based pro-
cedure is especially relevant in the case when two physical fluid domains are merged or separated. Thus, when exceeding
a maximum number of iterations in the nonlinear solution procedure, no reduction in the computational nodes carrying
fluid degrees of freedom is performed anymore. The fluid solution space is then just enlarged within the actual timestep.
To retain a solvable system of equations, the “ghost penalty” stabilization and the face-oriented fluid stabilization has to
include the faces connecting all additional degrees of freedom to the physical domain. This strategy leads to a constant set
of faces considered for the stabilization during the Newton-Raphson based procedure and as a result avoids the occurring
discontinuity in the discrete formulation. With this modification, the consistency of the formulation is not touched. Only
some additional fluid degrees of freedom, which represent an extension of the solution in the nonphysical domain, are
appended to the system. To ease the use of this strategy, the discrete fluid solution space is constructed by a maximum of
one set of fluid unknowns on each node in the presented computations in the following. As long as no slender solid bod-
ies are considered, this restriction still results in an appropriate discrete fluid solution space (for more details on multiple
sets of fluid unknowns on single computational nodes see Reference 28).

Remark 10 (Discontinuity of the discrete interface contribution). To give a comprehensive overview it should be men-
tioned that also the viscous interface contributions in (23) can be discontinuous in the FSI case when the interface is
parallel to the underlying fluid element boundary which is crossed. For this specific case, an instantaneous change of the
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interface area in the fluid element occurs also for small interface motion. Since the viscous traction is based on the fluid
velocity gradient, which is discontinuous between fluid elements, a discontinuity of the fluid residual occurs.

3.4.4 Applied extension operator

In Sections 2.3 and 3.2, an extension operator x is required to extend the scalar fluid quantities, normal stress, relative
normal velocity, and fluid Nitsche penalty parameter from the fluid-structure interface to the contact interface ΓFS → ΓS,c.
In the numerical examples presented, a very simple operator is applied. Herein, starting from the coordinate x on interface
ΓS,c, the closest point x to ΓFS ∩ Γc is computed. At this point, the scalar quantity is evaluated. Then a constant extension
is applied and as a result the computed value of the scalar quantity equals the extension. This approach, which is based
on a single point on ΓFS ∩ Γc for each extension operation, potentially results in discontinuities of the extended scalar
field. Nevertheless, since the extended quantities are mostly only essential close to the fluid domain this aspect is often
not critical. The constant extension from the closest point is only one possibility to specify the extension operator. As long
as the continuity criteria in (9) is fulfilled, alternative specifications can be utilized without requiring any modification
to the presented overall formulation.

Remark 11 (Alternatives to the proposed extension strategy for fluid filled contact zones). This kind of extension includes
the modeling assumption that the contacting zone is filled with fluid. As long as the influence of this extension on the
computational model is limited to the neighborhood of the fluid domain, this approximation of the fluid solution seems
sufficient. If a better fluid solution on the contact interface is required, a physical model has to be solved to avoid the
extension. Depending on the requirements for this solution, potential models are based on the Reynolds equation56 or a
poroelastic layer.3

Remark 12 (Alternative to the proposed extension strategy for vanishing fluid in the contact zones). If vanishing fluid in
the contact zone is modeled, a continuous extension from the physical fluid solution to a vanishing fluid solution (zero
ambient pressure) depending on the distance to the fluid domain can be applied alternatively. When making use of this
approach, it has to be guaranteed that gaps emerging from opening contact in this zone of vanishing fluid solution are not
considered as part of the fluid domain ΩF to avoid a nonphysical model. Such a configuration equals classical structural
contact mechanics and therefore is not considered in the following.

4 NUMERICAL EXAMPLES

In the following section, three numerical examples with focus on different aspects of computationally solving FSCI
problems are presented. To start with, the falling, contacting, and lifting of a rounded stamp is analyzed to verify the
principal processes present in all FSCI configurations. The examination of an elastic pump proves the applicability
of the framework to handle topological changes of the fluid domain including significantly different fluid solutions
between the separated domains. Finally, a flow-driven squeezed elastic structure is analyzed, which includes highly
dynamic mechanisms, large contact areas, and numerous contacting and lift-off processes. For all examples presented
in this section, four-noded bi-linear quadrilateral elements are applied for the spatial discretization of all solid domains
and fluid domains. The constants for the Nitsche penalty parameters are 𝛾S

0 = 1 and 𝛾F
0 = 𝛾F

t,0 = 35 if not denoted
otherwise.

4.1 Falling, contacting, and lifting of a rounded stamp

The first presented numerical example, a simple configuration, including the falling, contacting, and lifting of a rounded
stamp, is considered to analyze basic properties of the presented formulation. Due to the symmetry of this configuration,
just the half rounded stamp ΩS2 and fluid domain ΩF are considered.

Problem description
The geometric setup and basic boundary conditions are visualized in Figure 5. The solid domain ΩS1 is rigid and fixed
in space by a Dirichlet boundary condition on the overall domain. In the initial phase, the stamp is exposed solely to
a prescribed constant-in-time Neumann load on the boundary ΓS,N in negative y-direction (see Figure 5 (right)), which
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F I G U R E 5 Geometry and boundary conditions for the falling, contacting, and lifting of a rounded stamp. Due to the symmetry of the
configuration, only the part with x ≤ 0 is considered (left). The prescribed, time-dependent external loads ĥS,N

0 and ĥF,N are given in the
diagram (right) [Color figure can be viewed at wileyonlinelibrary.com]

induces the falling motion. After a certain time, contact between the solid domainsΩS1 andΩS2 will occur and a stationary
state will be established subsequently. Finally, after t = 1000, a Neumann fluid load is prescribed in the normal direction
of the boundary ΓF,N. This load increases linearly in time as indicated in Figure 5 (right). The fluid material parameters
are specified as density 𝜌F = 10−3 and dynamic viscosity 𝜇 = 1.0. The solid density in the undeformed configuration is
equal to the fluid density 𝜌S

0 = 10−3. A Neo-Hookean model with the hyperelastic strain energy function

𝜓 = c[tr((F)T ⋅ F) − 3] + c
𝛽
((J )−2𝛽 − 1), c = E

4(1 + 𝜈)
, 𝛽 = 𝜈

1 − 2𝜈
, (43)

describes the material behavior of the solid domain ΩS2 , with Young’s modulus E = 100 and Poisson’s ratio 𝜈 = 0.0. To
analyze the presented formulation, two different spatial resolutions are applied. For the “coarse” variant, the fluid mesh
consists of 16× 24= 384 elements (in −1.5≤ x ≤ 0 and 0≤ y≤ 1) and the solid mesh of domain ΩS2 is created by 400 ele-
ments. In the “fine” variant, 64× 96= 6144 fluid elements and 6400 elastic solid elements are used. The weighting of the
solid contact stress is purley based on the domain ΩS2 due to the rigid domain ΩS1 . The reference slip length is set to
𝜅0 = 0.1 for all compuations including the Navier slip condition. The discretization in time is performed with the Back-
ward Euler scheme (𝜃 = 1.0), with three different sizes of the timestep (Δt = 0.01 for t ∈ [0, 20], Δt = 0.2 for t ∈ [20,420],
Δt = 2.0 for t ∈ [420, 2500]) to account for the varying dynamic of the analyzed system.

Numerical results and discussion
In Figure 6, the vertical displacement of the spatial point with initial position XS = (0, a) of the solid domain ΩS2 is
depicted. Comparing the “fine” and “coarse” discretizations shows a good agreement down to a gap of approximately two
coarse fluid elements (vertical displacement uy(0, a) = −0.375), where both variants start to deviate significantly. Solely
the “slip” variant leads to a fundamentally different impact behavior, which is clear due to the nonphysical boundary
condition applied to the viscous fluid. All variants lead to contact in finite time, even though this phenomenon is not
expected for the no-slip variants theoretically (see References 20 and 21). The explanation for this (realistic) behavior lies
in the inherent constraint relaxation arising from the weak imposition by Nitsche’s method. As soon as the solution can
no longer be resolved sufficiently, a tangential slip occurs numerically also for the no-slip model. To substantiate this
explanation, a variant with increased tangential penalty parameter 𝛾F

t,0 = 1000𝛾F,std
t,0 (with the parameter of the standard

configuration given by 𝛾F,std
t,0 ) is computed, which reduces the numerical slip and thus results as expected in a slower

approach velocity.
In the following, the difference between the no-slip condition and the Navier slip condition of the computed solution

is discussed. As expected, the Navier slip variant results in an increased velocity, starting from fluid gaps smaller than
one fluid element (see definition of the slip length in Section 3.3). Still, the difference between both approaches is not
substantial (compared to the error between “coarse” and “fine” resolution). While this simple configuration allows to
solve the FSCI problem for both interface conditions, applying the Navier slip condition seems to be beneficial for general
configurations in two aspects. First, independent of the approach applied for the imposition of the interface condition, a
controlled way of relaxation of the tangential constraint can be incorporated. Second, this type of condition is required to
allow for a continuous problem formulation on the interface.

http://wileyonlinelibrary.com
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F I G U R E 6 Vertical displacement of the spatial point with initial position XS = (0, a) of the solid domain ΩS2 for different computed
variants over time (left overview, right detail): “noslip fine” (slip length on the interface ΓFS specified to 𝜅 = 0, computed with the “fine”
discretization variant), “navslip fine” (slip length on the interface ΓFS as defined in Section 3.3 (𝜅0 = 0.1), computed with the “fine”
discretization variant), “noslip” (slip length on the interface ΓFS specified to 𝜅 = 0, computed with the “coarse” discretization variant),
“navslip” (slip length on the interface ΓFS as defined in Section 3.3 (𝜅0 = 0.1), computed with the “coarse” discretization variant), “noslip
incpen” (configuration as “noslip” with increased tangential Nitsche penalty constant 𝛾F

t,0 by a factor of 1000), “navslip incpen”
(configuration as “navslip” with increased tangential Nitsche penalty constant 𝛾F

t,0 by a factor of 1000), “slip” (slip length on the interface ΓFS

specified to 𝜅 = ∞, computed with the “coarse” discretization variant). The horizontal black dash-dotted lines (thick lines for coarse mesh)
indicate the fluid element boundaries [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Comparison of computed flow rates
and flow rate errors for the “coarse” and “fine” mesh
resolution for the Navier slip interface condition. Herein,
Φ is the flow rate on boundary ΓF,N, Φ1

err the overall flow
rate error, and Φ2

err the flow rate error on the interface ΓFS

[Color figure can be viewed at wileyonlinelibrary.com]

The overall flowrate on boundary ΓF,N and two different flow rate errors are visualized in Figure 7 including relaxation
by the Navier slip interface condition and in Figure 8 applying the no-slip interface condition. Herein, the flow rate Φ
through boundary ΓF,N, the fluid displacement rate on the interface ΓFS given by the fluid velocity v or the solid velocity
𝜕u
𝜕t

is computed as:

Φ =
||||∫ΓF,N

v ⋅ n dΓF,N|||| , ΦF
ΓFS =

||||∫ΓFS
v ⋅ n dΓFS|||| , ΦS

ΓFS =
|||||∫ΓFS

𝜕u
𝜕t

⋅ n dΓFS
||||| . (44)

Due to the fluid incompressibility, all three rates have to be equal when taking into account the exact solution of the
underlying problem. Analyzing the flow rates Φ in Figure 7, an initial decrease of the fluid flow due to the deceleration
of the structure in domain ΩS2 for the approaching bodies can be observed. After a short-time raise at the point of first
contact (at t = 268.2 for the coarse mesh and t = 616 for the fine mesh), the flow rate decreases to small magnitudes. At
t = 1000, the fluid load at ΓF,N starts linearly increasing, which results in a quick rise in the flow rate. As soon as contact is
released (at t = 2166 for the coarse mesh and t = 2290 for the fine mesh), the structure in ΩS2 moves in positive y-direction
and so the flow increases. To quantify the numerical error, two flow rate errors are considered:

Φ1
err = |ΦS

ΓFS − Φ|, Φ2
err = |ΦS

ΓFS − ΦF
ΓFS |. (45)
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F I G U R E 8 Comparison of computed flow rates
and flow rate errors for the “coarse” and “fine” mesh
resolution for the no-slip interface condition. Herein, Φ
is the flow rate on boundary ΓF,N, Φ1

err the overall flow
rate error, and Φ2

err the flow rate error on the interface ΓFS

[Color figure can be viewed at wileyonlinelibrary.com]

Herein, Φ1
err indicates errors in the overall mass balance, and Φ2

err characterizes the mass balance errors due to the
weak imposition of the interface condition by the Nitsche method. When analyzing the overall mass balance Φ1

err, an
unexpectedly small error for this mesh resolution can be observed. An explanation to this effect is given in the following.
The discrete fluid mass balance is comprised of the divergence term in (22), the weakly consistent face-oriented stabiliza-
tion operators (25) and “ghost-penalty” stabilization operators (26), and the skew-symmetric adjoint consistency term on
the interface (28). Partial integration of the divergence term in (22) for the fluid balance of mass is performed and the
resulting terms are combined with adjoint consistency term the (28) in (46).

Discrete fluid balance of mass: (𝛿p,𝜵 ⋅ v)ΩF

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
from (22)

− ⟨𝛿pn, vrel
n n⟩ΓFS

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
from (28)

+ F
⏟⏟⏟
from (25)

+ F
⏟⏟⏟
from (26)

=

−(𝜵𝛿p, v)ΩF + ⟨𝛿p, v ⋅ n⟩𝜕ΩF − ⟨𝛿p, vrel
n n ⋅ n⟩ΓFS +F +F =

−(𝜵𝛿p, v)ΩF + ⟨𝛿p, v ⋅ n⟩𝜕ΩF⧵ΓFS +
⟨
𝛿p,

𝜕u
𝜕t

⋅ n
⟩

ΓFS
+F +F . (46)

It can be observed that the fluid velocity in the boundary integral in the second line is replaced by the solid veloc-
ity on the interface ΓFS. The skew-symmetric adjoint consistency term (28) acts therefore as a compensation term
for the violation of the balance of mass on the fluid-structure interface. Hence, the error Φ1

err is not influenced by
the accuracy of the FSI constraint enforcement but is solely attributed to the stabilization terms from the CIP and
the GP stabilization. In addition, the finite convergence tolerance of the nonlinear solution procedure yields per-
turbations in the error level depending on the remaining residual. Finally, the interface error Φ2

err is observed to
be significantly larger than the overall error Φ1

err. Comparing the “coarse” and the “fine” mesh resolution allows
the analysis of the spatial convergence of this error. For the time range with similar flow rates (Φ coarse ≈ Φ
fine), a reduction in the error, approximately of second order with respect to the fluid mesh element size h, can
be observed.

To give a comprehensive view of the balance of mass for this FSCI formulation, the results for the appli-
cation of the no-slip condition on the entire interface are also given in Figure 8. No significant difference
between both results can be observed. Due to the logarithmic axis scaling, a deviation for the small flow rates
(600≤ t ≤ 1000) after contact established can be observed. As this difference does not essentially influence the
lift-off procedure afterward, the principal discussion done for the Navier slip condition holds also for the no-slip
condition.

In the following, the spatial convergence behavior of the formulation with a focus on contact is analyzed. For studies
that do not include contact the reader is referred, for example, to References 18 and 35. Therefore, various computational
meshes for the fluid and structural discretization are created based on the discretization variants “coarse” and “fine” by
merging (four into one) or splitting (one into four) all bilinear elements. The respective element size for the considered
meshes is approximately h≈ 1/8, 1/16, 1/32, 1/64. In Figure 9, the vertical displacement of the initial point XS = (0, a) of
the solid domain ΩS2 is shown. While in the initial phase no difference between the variants is observable, for a remaining
gap smaller than 2h, a significant deceleration due to the insufficient fluid solution space occurs. The finer the spatial
resolution, the later contact establishes. Still, this configuration also demonstrates that there is no lower limit of the
element size h such that contact will not occur in finite time. Due to the inherently included contact treatment in the
FSCI formulation, this does not lead to a significant deviation from the exact solution where no penetration of solid bodies
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F I G U R E 9 Vertical displacement of the spatial
point with initial position XS = (0, a) of the solid domain
ΩS2 for computational meshes with different spatial
resolution over time. Computed with the Navier slip
interface condition [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 10 Computed average overall interface traction, FSI traction, and Contact traction for computational meshes with different
spatial resolution over time. Computed with the Navier slip interface condition. The overall traction includes all contributing of cases I − IV ,
the FSI traction includes case I, and the contact traction includes cases II − IV (specified in the interface contributions (31)-(35)). The average
traction is reconstructed from the nodal interface contributions of (31)-(35)) to the overall weak form on the solid mesh divided by the
interface area on the circular part of ΓFS2 [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Error of the average overall interface traction of the coarser computational meshes based on a comparison to the values
computed with the finest discretization h≈ 1/64 [Color figure can be viewed at wileyonlinelibrary.com]

occurs. For the computational mesh with h≈ 1/8, a small penetration of the solid bodies in the contact phase can be
observed. A comparison of the different computations for the lift-off process reveals similar behavior as for the contacting
process.

In Figure 10, the computed average interface traction ∫ΓFS2
circ
||𝝈n||dΓ∕∫ΓFS2

circ
1dΓ on the circular part of the interface ΓFS2

circ ⊂

ΓFS2 for all considered computational meshes is shown. Due to the different points in time where contact or lift-off is
initiated, the FSI traction and the contact traction differ significantly for all performed computations. Nevertheless, the
overall traction, which is effectively acting on the interface, is almost equal for all variants. This aspect demonstrates
that including a contact formulation allows to retain physical meaningful behavior of the formulation also for the case of
prevalent numerical errors. The difference of the computed average overall interface traction of the coarser discretizations
to the finest computation mesh is shown in Figure 11. In general, a convergence behavior for increasing spatial resolution
can be observed. Nevertheless, due to the temporal shift of the essential processes especially in the initial and final phase,
this is not true for every point in time.

To analyze the influence of the Nitsche penalty constant 𝛾S
0 , computations with different parameters 𝛾S

0 = 0.1, 1, 10,100
are performed. For computations with a smaller value of the penalty constant 𝛾S

0 = 0.01, the nonlinear solution proce-
dure did not converge, which is in agreement with the requirement for a sufficiently large contact 𝛾S. In Figure 12, the
computed local gap gn and the effective interface traction 𝜎S

nn + 𝛾Sgn for contact, corresponding to case II in Section 3.2,
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F I G U R E 12 Computed
local gap gn (left) and effective
interface traction 𝜎S

nn + 𝛾Sgn

(right) at t = 1000 for different
Nitsche penalty constants
𝛾S

0 = 0.1, 1, 10,100. The dotted
line corresponds to the interface
ΓFS1 and the solid line to
interface ΓFS2 [Color figure can
be viewed at
wileyonlinelibrary.com]

are shown. For the smallest value 𝛾S
0 = 0.1, a large penetration of the contacting bodies occurs and additionally in a rel-

atively large interface area with positive gap contact is enforced. With increasing penalty constant 𝛾S
0 , the amount of

penetration of the contacting bodies reduces drastically. Nevertheless, as discussed in Remark 7, to reduce the influ-
ence of the extended fluid state in the contact zone and to allow for a certain amount of constraint relaxation, which
is beneficial for the performance of the nonlinear solution procedure, a small but numerically robust parameter is pre-
ferred. For the effective interface traction 𝜎S

nn + 𝛾Sgn, no significant difference of the variant with 𝛾S
0 ≥ 1 can be observed.

For these variants, the effective interface traction is almost equal on both contacting interfaces (comparing the dotted
and continuous lines) and, thus, the balance of linear momentum in the contact zone is fulfilled. In contrast to that,
for 𝛾S

0 = 0.1 and x ≤−0.25, a deviation of the effective interface traction on both sides of the interface due to the devi-
ating interface normal vectors is observable. As a consequence of these findings, the constant is set to 𝛾S

0 = 1 for all
computations.

In Figure 13, a detailed view of the contacting zone for different points in time is given. Three different types of traction
are visualized by arrows, namely, the overall traction, the FSI traction, and the contact traction. At t = 100 (first row in
Figure 13), the body ΩS2 approaches ΩS1 and as a result a high pressure peak occurs in the smallest constriction. This peak
is almost equal to the FSI traction concluding that viscous traction is not significant. At t = 340 (second row in Figure 13),
the majority of the external load is carried by the contact traction. For the overall traction, the continuous transition of
FSI traction and contact traction can be seen. An essential part of the external load at t = 2020 (third row in Figure 13) is
carried by the FSI traction, but due to the fluid inertia there is still contact at the area around x = 0. Finally, at t = 2420, the
structural body ΩS2 completely lifted again and so the lowest pressure and FSI traction can be identified in the smallest
constriction.

4.2 Elastic pump

In the following example, an elastic fluid pump powered by an external load is analyzed. This configuration includes
large deformation of the solid domain and a periodically changing topological connection of the fluid domain. Large
fluid pressure discontinuities when crossing the valves occur which need to be represented properly by the fluid
solution space.

Problem description
The geometric setup and basic boundary conditions are depicted in Figure 14. The solid domain ΩS is designed to pump
fluid in the domain ΩF from the fluid inflow boundary Γin to the fluid outflow boundary Γout. The structural part includes
two valves consisting of two flaps each to control the flow direction. The fluid flow is driven by the change of volume in
the fluid chamber placed between the two valves. The pump is powered by a time-dependent periodic traction in normal
direction which is prescribed as Neumann condition on the circular solid boundary Γp as ĥS,N = −20A(1 − cos(40𝜋t)) ⋅ n,
with A= 1.0 for t ∈ [0, 0.15] and A= 1.5 for t ∈ [0.15, 0.3]. In the tangential plane of Γp, zero traction is prescribed. There-
fore, the pump is driven for three periodic cycles with a constant amplitude of the external load, followed by three periodic
cycles with an external load increased by 50%. Both the solid and the fluid are subject to a gravitational body force in
negative y-direction: 𝜌S

0b̂
S
0 = 𝜌Fb̂

F
= [0,−1]T. On the fluid boundaries Γin and Γout, the hydrostatic pressure is prescribed
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F I G U R E 13 Visualization of the computed falling, contacting, and lifting process of the rounded stamp for the Navier slip interface
condition at four instances in time. The color code in the fluid domain visualizes the computed fluid pressure and the color code of the
arrows the respective traction magnitude. The arrows visualize the interface traction separated in three groups. The overall traction includes
all contributing of cases I − IV , the FSI traction includes case I, and the contact traction includes cases II − IV (specified in the interface
contributions (31)-(35)). The visualization of the traction is reconstructed from the nodal interface contributions of (31)-(35)) to the overall
weak form on the solid mesh [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 14 Geometry and boundary conditions for the
elastic pump

by a Neumann boundary condition in x-direction (ĥF,N
⋅ n = y), whereas zero velocity in y-direction is prescribed by a

Dirichlet type boundary condition.
As material parameters, the fluid density is 𝜌F = 10−3 and the dynamic viscosity is 𝜇 = 10−4. The mate-

rial behavior of the solid continuum is given by the Neo-Hookean model with the strain energy function
(43) and a Young’s modulus E = 2000 and Poisson’s ration 𝜈 = 0.3. The initial density in ΩS equals the fluid
density 𝜌S

0 = 𝜌F = 10−3.
The fluid domain is discretized by a structured mesh consisting of 240× 54= 12960 (in 0.0≤ x ≤ 1.5 and

−0.1755≤ y≤ 0.1755) elements which is unfitted to the interface ΓFS. The solid domain is discretized fitted to the inter-
face ΓFS by 4648 elements (shown in Figure 15 (upper left)). A contact stress based on harmonic weighting between
the stress representation of both solid domains, as discussed in Section 3.2, is applied. Due to the almost equal mate-
rial parameters and mesh sizes of all contacting interfaces, this approach results approximately in a mean weighting
𝜔 ≈ 0.5. The reference slip length is set to 𝜅0 = 0.1. The temporal discretization is performed with 𝜃 = 1.0 and a time step
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F I G U R E 15 Visualization
of the computed fluid velocity
and pressure and the computed
deformation of solid domain for
t ∈ [0.1, 0.15]. In the left column,
the color code represents the
fluid pressure, whereas, in the
right column, the fluid velocity
magnitude is represented.
Additionally, the black bars at
the inflow boundary Γin and
outflow boundary Γout indicates
the computed fluid velocity at
the corresponding boundary.
Five points in time are
represented by the rows, which
are from top to bottom
t = 0.1, t = 0.106, t = 0.11, t = 0.125,
and t = 0.135 [Color figure can
be viewed at
wileyonlinelibrary.com]

size of Δt = 0.0002 for t ∈ [0, 0.1698] and Δt = 0.0001 for t ∈ [0.1698, 0.3], to account for changing system dynamics, is
applied.

Numerical results and discussion
In Figure 15, the computed fluid velocity and pressure as well as the computed deformation for t ∈ [0.1, 0.15] are pre-
sented. These results correspond with the third load cycle and already exhibit a periodic response to the periodic external
load with an amplitude of A= 1.0. Starting with t = 0.1, where no external load on Γp is applied, the left valve is closed and,
due to the pressure gradient in the right valve, a flow into the fluid chamber occurs. In the next point in time t = 0.106,
a compression of the fluid chamber resulting in an increasing pressure due to the external load is observable. Due to the
geometry of the two valves, an opening motion of the left valve and a closing motion of the right valve is induced. As
both valves are still open at this point in time fluid, mass leaves the chamber through both valves and finally leads to an
back flow at the inflow boundary. This behavior has changed at t = 0.11, where the right valve prevents fluid flow as it is
closed. It can be seen that the occurring pressure jump between both sides of the right valve can be well represented by
the provided fluid function space. The resulting force of the discontinuous fluid pressure leads to a deformation of the
right valve into positive x-direction. At the same time, the flaps of the left valve are opened by the fluid pressure and allow
for a large fluid flow which finally leads to a high flow rate at the boundary Γout. At t = 0.125, the volume in the chamber
is almost minimal and as a consequence the structural velocity on Γp nearly vanishes. Therefore, the fluid pressure gra-
dients decrease and both valves relax toward the initial geometry. At t = 0.135, the external load reduces and leads to an
increasing volume in the fluid chamber. Consequently, the pressure in the chamber drops and induces a closing motion
of the left valve. A peak of the fluid pressure between the two left flaps occurs due to the acceleration of fluid mass. The
closed left valve prevents flow through the left valve, and the discontinuous pressure is carried elastically by the flaps.
The right valve is opened by the pressure difference on both sides of the flaps and allows for fluid flow into the chamber.
As the pumping motion is almost periodical, the results computed for t = 0.15 are not distinguishable from the solution
at t = 0.1 and thus are not shown.

To quantify the output of the examined pump, the computed flow rates at the inflow boundary Γin and outflow
boundary Γout are presented in Figure 16 (left). First, the time interval t ∈ [0.1, 0.15], with a periodic external load of
amplitude A= 1, is analyzed. While the first cycle is still dominated by the start-up process from a system initially in
rest, the flow rates of the second and third cycle are very similar. Therefore, the cycle t ∈ [0.1, 0.15] can be classified
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F I G U R E 16 Computed flow rates at the inflow boundary Γin and the outflow boundary Γout . The normal vector therein is oriented in
negative x-direction, which is the design flow direction of the pump (left). Transported volume through the inflow boundary Γin and the
outflow boundary Γout computed in a post-processing step where an integration in time of the flow rates is performed (right) [Color figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 17 Visualization of the computed fluid velocity and pressure and the computed deformation of solid domain for
t ∈ [0.15, 0.2]. The color code represents the fluid velocity magnitude, and the black bars at the inflow boundary Γin and outflow boundary
Γout indicate the computed fluid velocity at the corresponding boundary. Four points in time are represented from top-left to bottom-right
t = 0.167, t = 0.174, t = 0.19, and t = 0.194 [Color figure can be viewed at wileyonlinelibrary.com]

as the periodic response to the periodic load with A= 1 and was already discussed in detail previously. Now, analyzing
the subsequent interval t ∈ [0.15, 0.3] with A= 1.5, after a transition phase in the fourth load cycle the pump exhibits
again an almost periodic behavior for the last two load cycles. It can be seen that oscillations with higher frequen-
cies occur than for the smaller load amplitude, which is tackled by a reduced time step size in the time integration
scheme.

To make a statement on the performance of the pump, the volume transported through the pump is presented in
Figure 16 (right). It can be seen that in each cycle the transported volume through Γin at first is smaller than through
Γout mainly due to the volume change in the fluid chamber. The difference in the transported volume is smaller for
A= 1 than for A= 1.5 as larger deformation occurs. Analyzing the transported volume per cycle, it can be seen that, for
the smaller amplitude, each cycle transports approximately 0.074, whereas the higher load amplitude leads to a slight
transport opposite to the design flow direction.

To generate understanding for this phenomenon, four exemplary points in time with load amplitude A= 1.5 are
selected and shown in Figure 17. Compared to the load with amplitude A= 1.0, higher fluid velocities occur leading to
higher pressures and finally an increase of the interface traction, at t = 0.167. This fluid state leads to a nonsymmetric
deformation of the flaps in the right valve. As it can be seen at t = 0.174, finally the lower flap snaps through and as a result
the right valve does not prevent flow properly anymore. For t ∈ [0.1791, 0.1822], contact between the upper and lower
part of the fluid chamber occurs, prohibiting the flow in the chamber. At t = 0.19, the lower flap of the right valve starts
to snap back, whereas the left valve is exposed to large nonsymmetric deformation. Finally at t = 0.194, the left valve has
snap-through, allowing for flow opposite to the design flow direction. In short, a load amplitude of A= 1.5 is beyond the
maximal load resulting in a proper operation of the elastic pump.
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F I G U R E 18 Geometry and boundary
conditions for the flow-driven squeezed elastic
structure (left). Visualization of the
discretization for the solid domains ΩS1 and ΩS2

with black lines indicating element boundaries
(right)

Nevertheless, from a computational point of view, it is noteworthy that the presented formulation demonstrates
to be applicable also for these rather complex scenarios and hence promises to be a rather general tool. Processes
beyond the intended design can be computed without requiring changes to the problem setup. In this example, unex-
pected deformation and topological changes to the fluid domain were handled without any modifications to the
problem setup.

4.3 Flow-driven squeezed elastic structure

In the following, a configuration is considered where an initially cylindrical elastic bodyΩS2 is squeezed through an elastic
structure ΩS1 by the load of the surrounding fluid flow. This configuration is designed to test the formulation’s capability
to handle frequent changes between the fluid-structure interface and the contact interface including large contacting
areas and essential topological changes.

Problem description
The problem setup of the this example, including all dimensions and basic boundary conditions, is visualized in Figure 18
(left). All dimensions of solid body ΩS1 , which are not explicitly indicated in this figure, are defined by symmetry and
replication of the given dimensions (e.g., all unspecified radii are equal to r2).

On the inflow boundary Γin, a time-dependent, parabolic velocity profile v̂ = [0,−100(1 − x2)4000t]T

for t ∈ [0.0, 0.00025] and v̂ = [0,−100(1 − x2)]T for t ∈ [0.00025, 0.016] is prescribed as Dirichlet bound-
ary condition. On the outflow boundary Γout, a zero traction Neumann boundary condition is
prescribed.

The material properties of the incompressible fluid are specified by the density 𝜌F = 10−6 and the dynamic viscosity
𝜇 = 10−5. The initial density in both solid domains equals the fluid density 𝜌S

0 = 𝜌F = 10−6. Similar to the numerical
examples presented previously, a Neo-Hookean material model with strain energy function (43) is considered for both
solids. The parameters of the material model in the squeezed domain ΩS2 are given by ES2 = 100 and 𝜈S2 = 0.3, whereas
the outer domain ΩS1 has an increased stiffness by ES1 = 200 and 𝜈S1 = 0.3.

The structured computational mesh applied for the discretization of the fluid domain consists of 120× 300= 36000
bilinear elements(in −1≤ x ≤ 1 and 0≤ y≤ 5). The solid domain is discretized fitted to the interface ΓFS by 4890 elements
in domain ΩS1 and by 1562 elements in domain ΩS2 . The solid discretization is given in Figure 18 (right). Compared to the
examples presented previously, the penalty parameters constants 𝛾F

0 and 𝛾F
t,0 are divided by a factor of 7, in order to relax

the kinematic constraints and thus support the nonlinear solution procedure (see Remark 8). With this modification,
the penalty parameters are still large enough to provide discrete stability of the formulation. A contact stress based on
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F I G U R E 19 Visualization of the
computed fluid velocity and the
computed deformation of solid domains.
The color code represents the fluid
velocity magnitude. Different points in
time are represented from top-left to
bottom-right with t = 0.0005,
t = 0.001, t = 0.003, t = 0.004, t = 0.005,
t = 0.006, t = 0.0065, t = 0.007 in the first
row and t = 0.0075, t = 0.009, t = 0.01,
t = 0.0105, t = 0.011, t = 0.0145,
t = 0.015, t = 0.016 in the second row.
The red frame indicates the area of the
detailed views in Figure 20 [Color figure
can be viewed at wileyonlinelibrary.com]

harmonic weighting between the stress representation of both solid domains, as discussed in Section 3.2, is applied. The
reference slip length is set to 𝜅0 = 0.1. The temporal discretization is preformed with 𝜃 = 1 and a time step size of Δt =
0.00002 for t ∈ [0, 0.0056] and Δt = 0.000005 for t ∈[0.0056, 0.016] to account for the varying dynamic of the coupled
system.

Numerical results and discussion
In Figure 19, the computed fluid velocity and the computed deformation of solid domains are presented for different
points in time. Following the different snapshots, the motion of the solid domain ΩS2 can be observed. In the ini-
tial phase (0< t< 0.00324), a vertical motion of ΩS2 is induced by the fluid flow. At t = 0.00324 contact between ΩS2

and the right part of ΩS1 occurs. Starting from t = 0.00386, additional contact between ΩS2 and the left part of ΩS1

establishes. Therefore, the topology of the fluid domain changes from one connected domain, to two separated fluid
domains. In the subsequent phase (0.00386< t< 0.006), the pressure in the upper fluid domain increases, which leads
to a squeezing process of ΩS2 and a deformation of ΩS1 and thus a storage of elastic energy. For t> 0.0065, an accel-
eration in vertical direction of ΩS2 can be observed by the transfer of the elastic energy via contact forces. Finally at
t = 0.00668, contact between both solid bodies is released and a single connected fluid domain reoccurs. Reestablishing
contact at t = 0.00713 of ΩS2 and the right part of ΩS1 , this principal process repeats for two additional cycles. Never-
theless, due to the varying geometric setup around the three smallest constrictions, the physical process is not repeated
exactly and thus the robustness of the algorithm is tested for this challenging configuration. Finally, at t = 0.015155,
both solid domains separate for the last time. In the remaining period, the fluid traction is exclusively acting on the
interface 𝜕ΩS2 .

To give a more detailed view of the computed process, the fluid solution as well as the interface traction for four
exemplary points in time are shown in Figure 20. First, the point in time just before contact occurs t = 0.003 is discussed.
Due to the small cross-section of the connection between the upper and lower part of the fluid domain, the pressure
in the upper part is already increased. Therefore, an essential fluid flow can be observed between ΩS2 and the left part
of ΩS1 . The distance in the smallest constriction for the right part leads to an increased fluid pressure compared to the
ambient pressure and thus an FSI traction separating the two bodies occurs. At t = 0.005, contact between both solid
domains is established in two positions. Due to the inflow on Γin, the pressure in the upper part of the fluid domain is
increased, which leads to an increased FSI traction on the affected part of the interface. Although the maximal contact
traction is significantly higher than the FSI traction, there is a continuous transition along the interface. The y-components
of the resulting FSI force and contact force are almost in balance, and as a result only a very slow motion of the sys-
tem (see fluid velocity) is observed, continuously adapting to the increasing pressure difference. At t = 0.0065, this state
changed fundamentally. Due to the deformation based change of the contact interface orientation, the resulting contact
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F I G U R E 20 Visualization of the computed fluid velocity and pressure, the computed deformation of solid domains, and the interface
traction. The color code represents the fluid pressure and the black arrows in domain ΩF indicate the fluid velocity. The blue arrows on Γ
represent the FSI traction (case I) and the orange arrows on Γ visualize the contact traction (case II − IV). The visualization of the traction is
reconstructed from the nodal interface contributions of (31)-(35) to the overall weak form on the solid mesh. Four points in time are
represented from top-left to bottom-right t = 0.003, t = 0.005, t = 0.0065, and t = 0.007. The position of each detailed view in the overall
problem is marked in Figure 19 by a red frame [Color figure can be viewed at wileyonlinelibrary.com]

force accelerates the solid body in ΩS2 , and with it the surrounding fluid, in negative y-direction. The fluid pressure in
the upper part of the flow domain drops, whereas the pressure in the lower part increases resulting in an almost con-
stant FSI traction acting on 𝜕ΩS2 . Finally, at t = 0.007, contact is released and the structural body in ΩS2 approaches the
second barrier. This process leads again to an increased local fluid pressure and thus a growth of the related FSI trac-
tion. Due to the structural motion the pressure in the left chamber is raised, which results in a fluid flow out of the
fluid chamber. This description of the computed physical process highlights the capabilities of the presented formu-
lation to predict the physical processes in FSCI without requiring a specific treatment whenever topological changes
occur.

In Figure 21 (left), the computed flow rates at the inflow boundary and outflow boundary are presented. While the
prescribed flow rate at the inflow is constant in time after the initial ramp up phase, the flow rate at the outflow bound-
ary is massively influenced by the overall system. Three phases can be observed where a lower outflow rate (than the
inflow rate) is followed by a peak of the flow rate. These can be identified as the phases where the solid domains are com-
pressed due to increasing pressure as ΩS2 blocks the flow. These phases are always followed by the highly dynamic process
of squeezing through. To analyze the overall balance of mass, the transported volume through the inflow- and outflow-
boundary is given in Figure 21 (right). The difference between the transported volume of outflow and inflow results from
the compression or expansion of the solid domains. As no systematical increase of this difference in time can be recog-
nized, no relevant loss in mass occurs. This behavior is expected as discussed in the first presented numerical example in
Section 4.1.

5 CONCLUSION

In this contribution, we presented a consistent formulation to solve general FSCI problems numerically. Topological
changes of the fluid domain are enabled by the CutFEM with noninterface fitted discretization. A weak incorporation of
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F I G U R E 21 Computed flow rates at the inflow boundary Γin and the outflow boundary Γout . The normal vector therein is oriented in
negative y-direction, which is the main flow direction of the overall configuration (left). Transported volume through the inflow boundary Γin

and the outflow boundary Γout computed in a post-processing step where an integration in time of the flow rates is performed (right) [Color
figure can be viewed at wileyonlinelibrary.com]

the governing interface conditions by approaches based on Nitsche’s method allows the formulation of a continuous dis-
crete problem even for changing interface conditions. To specify the fluid stress in the region of closed contact, we propose
and apply an extension approach. The continuous transition between the “no-slip” and frictionless contact condition in
tangential interface orientation is enabled by a general Navier interface condition with a specific law for the slip length.

In a first numerical example, the fundamental process in FSCI problems, the contacting and lifting of a convex elastic
structure in fluid is analyzed. Therein, the suitability of applying the general Navier interface condition in comparison
to a “no-slip” interface condition is evaluated. The positive effect of a skew-symmetric fluid adjoint consistency interface
term to the fluid mass conservation is observed and discussed. In two more general examples, the treatment of challenging
aspects by the formulation is demonstrated. This includes the representation of large discontinuities of the fluid stress
between opposite sides of the structure. Further, large deformation and essential topological changes of the fluid domain
as well as large contacting areas are considered.

Still, some aspects for solving general FSCI problems are left to future work. This includes strategies for improving the
spatial resolution close to the interface, for examining physically more sophisticated fluid stress representations in the
contact zone compared to the simple extension based approach used so far, and for extending the formulation to frictional
contact.
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APPENDIX A. DISCUSSION OF THE TWO-HALF-PASS NITSCHE CONTACT ALGORITHM

To illustrate the proposed two-half-pass Nitsche contact algorithm, let us have a closer look on the resulting formu-
lation. Consider two elastic bodies with the domains ΩS1 and ΩS2 with the potential contact boundaries Γ1 and Γ2 in the
current configuration. At this point, it is not necessary to include FSI, multi-body, or self-contact. Instead, the discussion
is based on a purely structural, two-body contact problem. In that case, (41) reduces to

S[𝛿u,u] − ⟨𝛿u,𝝈n⟩Γ = 0. (A1)

Therein, S[𝛿u,u] includes the inertia, internal forces, and Neumann boundary conditions of both bodies, see (21).
Moreover, the inner product on Γ = Γ1 ∪ Γ2 (see Figure 4) includes integration over both potential contact surfaces. With
(27) (and in the absence of ambient fluid), we obtain

S[𝛿u,u] − ⟨𝛿u1,min [0, (𝜎S
nn + 𝛾Sgn)]n1⟩Γ1

−⟨𝛿u2,min [0, (𝜎S
nn + 𝛾Sgn)]n2⟩Γ2 = 0. (A2)

In a continuous problem, in closed contact (i.e., the involved min is unequal to zero), we have that the contacting
part of both interfaces Γ1 and Γ2 coincide and the two normal vectors are exactly opposing one another: n1 = −n2. In
the discrete setting, this may no longer hold exactly. Still, for smooth surfaces in contact, we can still assume n1 ≈ −n2
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and geometrically overlaying interfaces Γ1 and Γ2, at least in the vicinity of closed contact. Therefore, (A2) can be
approximated as

S[𝛿u,u] − ⟨𝛿u1 − 𝛿u2,min [0, (𝜎S
nn + 𝛾Sgn)]n1⟩Γ1 = 0, (A3)

wherein integration of the contact integral is performed over Γ1 only. When choosing 𝜎S
nn = 𝜎

S1
nn, this is exactly the biased

two-body Nitsche contact method discussed in Reference 44 and for a contact stress 𝜎S
nn based on harmonic weights one

obtains the method discussed in Reference 45.
The transition from (A3) to (A2) allows for independent decisions of “active” and “inactive” contact on the two con-

tacting surfaces which is crucial in the case of FSCI (see discussion in Section 3.2). This, however, comes at the expense
of n1 ≈ −n2 holding only approximately. As a consequence, the balance of linear momentum is no longer guaranteed
exactly across the contact interface, which is a common drawback of two-half-pass algorithms.47


