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Abstract

The present thesis focuses on developing an uncertainty management framework to quantify
and subsequently mitigate the thermoacoustic modal instability risk. Acoustic solvers such as
a Helmholtz solver or a network model are coupled with flame response models to calculate
modal frequencies and growth rates. The associated flame model parameters and acoustic sys-
tem parameters are considered as input uncertainty sources, leading to the generation of the
modal instability risk.

Towards quantifying the modal instability risk, an efficient uncertainty propagation scheme is
firstly proposed to quantify the impact of an uncertain flame impulse response (FIR) model
on the calculation of the modal growth rate. This uncertainty quantification scheme is based
on a novel dimensionality reduction methodology called Active Subspace approach, which
successfully uncovered and exploited a one-dimensional representation of the original high-
dimensional FIR model, leading to a 50-fold increase in computational efficiency compared
with the conventional Monte Carlo simulation.

Later on, this one-dimensional manifold is recovered analytically via performing linearization
analysis on the thermoacoustic governing equation. As a deeper understanding is obtained re-
garding the causal relationship between the variations of FIR model coefficients and the vari-
ations of modal growth rate, it is now possible to derive an analytical uncertainty propagation
procedure to evaluate the impact of FIR model uncertainties on the thermoacoustic instabil-
ity prediction, with dramatic efficiency improvement over the previous Active Subspace study,
while avoiding any complex mathematical treatments.

In an effort to propagate uncertainties from both the acoustic system parameters and high-
dimensional flame models (including FIR model), a general surrogate-based framework is pro-
posed to efficiently perform uncertainty quantification (UQ) analysis in thermoacoustic instabil-
ity prediction. The core of the framework are Gaussian Process (GP) surrogate models, through
which an iterative procedure is developed to efficiently solve the thermoacoustic governing
equation. Two case studies are conducted to demonstrate the effectiveness of the proposed UQ
framework for both linear and nonlinear thermoacoustic instability analysis.

In addition to quantifying the modal instability risk, another important aspect of the uncertainty
management framework lays in mitigating the risk by implementing the principle of robust de-
sign. Towards that end, Gaussian Process surrogate models are firstly trained to facilitate fast
forward UQ embedded in robust design analysis. Subsequently, different tasks of robust de-
sign, ranging from fundamental risk analysis to control design and inverse tolerance design, are
systematically explored, where detailed mathematical formulations and corresponding efficient
solution strategies are provided for each of these tasks. The concept of a “risk diagram” is later

11



introduced, which displays the distribution of the modal instability risk over the entire param-
eter space and allows a convenient visualization of the connections between different robust
design goals.

The accuracy of the GP surrogate models plays a crucial role in completing the above-mentioned
robust design tasks. In practice, however, GP model uncertainty induced by the limited num-
ber of training samples may propagate downstream, thus rendering the risk calculation unreli-
able. To address this issue, the variation of the modal instability risk induced by the epistemic
GP model uncertainty is firstly quantified by leveraging the Bayesian characteristic of the GP
model. Subsequently, an active learning scheme is proposed to sequentially allocating training
samples in the vicinity of the modal stability margin, thus significantly reduced the variation of
risk calculation while maintaining the same computational budget for GP model training.

In summary, a comprehensive uncertainty management framework is developed in the present
thesis for quantifying and mitigating the thermoacoustic modal instability risk. This framework
provides practitioners with advanced dimensionality reduction and surrogate modeling strate-
gies, which can efficiently propagate uncertainties from both acoustic system parameters and
high-dimensional flame models to the modal instability risk calculation. In addition, this frame-
work categorizes various aspects of robust design in combustor thermoacoustic analysis and
offers dedicated surrogate-model-based solutions to mitigate instability risk for individual sce-
narios. Finally, this framework does not refrain from acknowledging the “imperfectness” of the
surrogate model that is largely ignored in practice. Instead, procedures are proposed to effec-
tively quantify and reduce the impact of surrogate model uncertainty on the variation of modal
instability risk calculation. Overall, the developed uncertainty management framework lays a
solid foundation for achieving reliable thermoacoustic prediction and design of the combustor.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung eines Rahmenkonzeptes zum Un-
sicherheitsmanagement fiir die Quantifizierung und die anschlieBende Minderung der Risiken
von thermoakustischen Instabilitdten. Akustische Losungsmethoden wie Helmholz-Loser
oder eine akustische Netzmodellierung werden mit Flame-Response-Modellen gekoppelt, um
Frequenzen und Wachstumsraten zu berechnen. Die dazugehorigen Parameter fiir das Flam-
menmodell und akustische Systemparameter werden als unsichere Eingangsgrof3en betrachtet,
welche zur Erzeugung eines Risikos einer modalen Instabilitét fithren.

Zur Quantifizierung des modalen Instabilitdtsrisikos wird zunichst ein effizientes Schema
zur Fortpflanzung der Unsicherheiten vorgestellt, um den Einfluss eines unsicheren Flame-
Impulse-Response-Modells (FIR) auf die Berechnung der modalen Wachstumsraten zu
untersuchen. Dieses Schema zur Quantifizierung von Unsicherheiten basiert auf neuartigen
Methoden zur Dimensionsreduktion, Active Subspace Ansatz genannt. Mittels dieser Methode
wurde eine eindimensionale Betrachtungsweise des urspriinglich mehrdimensionalen FIR-
Modells gefunden und ausgenutzt, was zu einer 50-fach groBeren Recheneffizienz im Vergleich
zu einer konventionellen Monte Carlo Simulation fiihrt.

Eine eindimensionale Betrachtungsweise konnte im Spiteren auch analytisch mittels einer Lin-
earisierung der beschreibenden thermoakustischen Gleichungen abgeleitet werden. Nachdem
ein tiefes Verstdndnis iiber die kausalen Zusammenhidnge zwischen der Variation von FIR-
Modellkoeffizienten und der Variationen der modalen Wachstumsrate erlangt werden konnte,
war es moglich, eine analytische Prozedur zur Fortpflanzung von Unsicherheiten herzuleiten,
um den Einfluss der FIR-Modellunsicherheiten auf die Vorhersage von thermoakustischen
Instabilititen untersuchen zu konnen. Dieses Vorgehen hat eine dramatische Verbesserung
beziiglich der Effizienz im Vergleich zum Active Subspace Ansatz zur Folge.

Um die Fortpflanzung der Unsicherheiten sowohl der akustischen Systemparameter als
auch des mehrdimensionalen Flammenmodells (inklusive FIR-Modell) beschreiben zu konnen,
wird ein allgemeiner Ansatz zur Ersatzmodellierung vorgestellt um effizienter eine Analyse
der Unsicherheiten bei der Vorhersage von thermoakustischen Instabilititen durchfiihren zu
konnen. Der Kern dieses Ansatzes sind Gaussian Process (GP) Ersatzmodelle, durch welche ein
iteratives Verfahren entwickelt werden kann, um die thermoakustischen Gleichungen effizient
l6sen zu konnen. An zwei Fallbeispielen wird die Effizienz des entwickelten Frameworks zur
Quantifizierung der Unsicherheiten demonstriert, sowohl fiir eine lineare als auch nichtlineare
Analyse der thermoakustischen Instabilitdten.



Ein weiterer wichtiger Aspekt des entwickelten Konzepts zum Unsicherheitsmanagement,
zusitzlich zur Quantifizierung des modalen Instabilitétsrisikos, ist die Minderung der Risiken
durch das Prinzip eines robusten Designs. Zu diesem Zweck werden die GP-Ersatzmodelle
zundchst trainiert, um eine schnelle Quantifizierung der Unsicherheiten innerhalb einer
Designanalyse zu ermoglichen. AnschlieBend werden verschiedene Aspekte eines robusten
Designs systematisch untersucht, angefangen von fundamentalen Risikoanalysen bis hin zu
Reglerentwurf und inverser Toleranzauslegung. Fiir jeder dieser Aspekte werden detaillierte
mathematische Formulierungen und korrespondierende effiziente Losungsstrategien vorgestellt.
Das Konzept eines ,,Risiko-Diagramms* wird vorgestellt, welches die Verteilung des modalen
Instabilitétsrisikos iiber den gesamten Parameterraum darstellt. Diese Darstellung erlaubt eine
anschauliche Visualisierung der Zusammenhinge zwischen verschiedenen Designzielen eines
robusten Designs.

Die Genauigkeit der GP-Ersatzmodelle spielt eine entscheidende Rolle bei der Ausfiihrung der
oben erwihnten Designaspekte. In der Praxis konnte jedoch eine Modellunsicherheit des GP-
Modells bedingt durch eine limitierte Anzahl an Daten fiir das Modelltraining dazu fiihren, dass
die Risikoanalyse unzuverldssig wird. Um dieses Problem genauer zu untersuchen, wird die
Variation des modalen Instabilitétsrisikos, welche von epistemischen GP-Modellunsicherheiten
hervorgerufen wird, zunéchst quantifiziert durch Untersuchung der Bayes’schen Charakteristik
des GP-Modells. Anschlieend wird ein aktives Lernschema fiir das GP-Modell vorgestellt.

In der vorgelegten Arbeit konnte ein umfassendes Rahmenkonzept zum Unsicherheits-
management fiir die Quantifizierung und Minderung des thermoakustischen modalen Instabil-
itdtsrisikos entwickelt werden. Dieses Konzept bietet Anwendern fortgeschrittene Strategien
zur Dimensionsreduktion und der Ersatzmodellierung. Diese Strategien liefern effizient eine
Aussage iiber die Fortpflanzung von Unsicherheiten - in den akustischen Systemparametern
und des mehrdimensionalen Flammenmodells - auf die Berechnung des modalen Instabil-
itdtsrisikos. Dariiber hinaus kategorisiert dieses Rahmenkonzept verschiedene Aspekte fiir
ein robustes Design bei thermoakustischen Analysen von Brennkammern und bietet spezielle
Losungen auf der Basis von Ersatzmodellen, um das Instabilitétsrisiko fiir einzelne Szenarien
zu mindern. Schlussendlich erkennt diese Arbeit die ,,Unvollkommenheit der Ersatzmodelle
an, was in der Praxis weitestgehend ignoriert wird. Stattdessen werden Verfahren vorgeschla-
gen, um effektiv den Einfluss von Unsicherheiten der Ersatzmodelle auf die Variation der
Berechnung des modalen Instabilitétsrisikos zu quantifizieren und zu minimieren. Das en-
twickelte Rahmenwerk fiir das Unsicherheitsmanagement bietet eine solide Grundlage fiir eine
zuverldssige thermoakustische Vorhersage und Auslegung von Brennkammern.
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1 Introduction

1.1 Motivation

Gas turbines are widely used for power generation and propulsion applications. In recent years,
increasingly stringent regulations regarding the emissions of NOX, soot and noise have led
gas turbine manufacturers to develop cleaner and more efficient combustion technologies [1].
Among various new approaches to achieve pollution control, the concept of lean-premixed com-
bustion demonstrates the most potential in practice [2]]. For combustors running in a lean, pre-
mixed mode, fuel and air are premixed before entering the combustion chamber, forming a
mixture with a lean fuel to air ratio, which leads to a lean combustion process. Since the flame
temperature is comparably low in lean combustion, the thermal NOx formation can be strongly
attenuated [3]].

However, combustion instabilities, also known as thermoacoustic instabilities, have emerged as
a serious issue in lean-premixed combustion systems [4]. Combustion instabilities are typically
caused by the coupling of the fluctuating heat release of the combustion process with naturally
occurring acoustic resonances [3]: flame heat release rate fluctuations add energy to the com-
bustor acoustic field, thus generating acoustic pressure and velocity fluctuations that propagate
in the combustor. Subsequently, the generated acoustic fluctuations may lead to oscillations of
flow structure, fuel/air ratio oscillations, etc., which in turn result in further heat release rate
fluctuations.

Lean-premixed combustor is especially prone to thermoacoustic instabilities, as the conven-
tional liner cooling system is lacking for sufficient acoustic damping, as well as the flame is
short and acoustically compact, which promotes coupling between fluctuating flame heat re-
lease and unsteady flow motion [6, [7]. Those instability phenomena could lead to intense pres-
sure oscillations with large oscillation amplitudes, thus compromising the structural integrity of
the combustion system and significantly limiting the operability of the gas turbine engine [8, 9].
As aresult, predicting thermoacoustic instability constitutes a major concern for manufacturers
when designing reliable combustion systems.

To numerically investigate the occurrence of thermoacoustic instability in the combustor, a com-
mon practice is to combine an acoustic solver with a flame response model to calculate the fre-
quency, growth rate, and structure of the thermoacoustic mode in frequency domain. This is a
typical “divide and conquer” approach [[10], where the acoustic solver describes the propagation
of the acoustic waves and the flame response model describes the response of the heat source
to flow perturbations and acts as the source term in the wave propagation equation. In practice,
acoustic network models [11-13]] or finite-element/-volume based Helmholtz solvers [14, |15]]
are extensively used as the acoustic solver. In linear regime, various flame response models can
be employed, ranging from a simple n — 7 model [16] (n denotes the gain and 7 denotes the
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time delay) in frequency domain to a more sophisticated and realistic flame impulse response
model [17,18] in time domain. In nonlinear regime, a flame describing function [[19] is usually
employed to provide flame dynamic responses at various frequencies and velocity perturbation
amplitudes.

In practice, however, obtaining a reliable calculation of the thermoacoustic eigenmodes is a
non-trivial task. First of all, due to the nonlinear nature of the governing eigenvalue equa-
tion, thermoacoustic behavior of the combustor is known to be highly sensitive [20] to small
variations in flame model parameters and acoustic boundary parameters such as the reflection
coefficients at the combustor inlet R;, and at the outlet R,,;. Secondly, in practice, uncertain-
ties are always present in those parameters [21]]: flame model parameters are usually identified
from noisy experimental or computational data. For acoustic boundary parameters, an installa-
tion of an acoustic damping device or a change of the downstream turbine working condition
could easily modify the value of R, for example. “Uncertainty” means that those parameters
may not stay at some fixed nominal values, but rather display stochastic features, or simply not
known. As a consequence, once the key parameters governing the thermoacoustic property of
the combustor deviate from their nominal values, the performance of the combustor may dete-
riorate significantly. In extreme cases, a combustor estimated as stable using the nominal input
parameters may become unstable affected by the stochastic parameter fluctuations.

Under this background, rigorously managing the uncertainties [22] present in the workflow of
thermoacoustic instability calculations constitutes an essential step towards reliable combustor
design. Specifically, competences need to be developed to efficiently propagate the input uncer-
tainties to the output of interest (e.g., modal frequency and growth rate values), as well as to
effectively mitigate the negative impact of variational output induced by the uncertain inputs.
Towards that end, instead of settling for deterministic analyses, a framework of probabilistic
system modeling has to be implemented, which provides means to account for the uncertain
inputs from a statistical point of view and minimize their impact on the thermoacoustic perfor-
mance of the combustor.

1.2 State-of-the-art

In terms of managing the uncertainties associated with thermoacoustic instability predictions,
pioneer work has been primarily focused on forward uncertainty quantification (UQ). More
specifically, the research objective is to calculate the modal instability risk Py, i.e., the prob-
ability that the mode under investigation is unstable, induced by the uncertain flame model
parameters and/or acoustic system parameters. Sampling-based Monte Carlo simulation [23] is
the most popular approach adopted to perform the above-mentioned UQ task: firstly, a large
number of realizations (~ 0(10%)) are drawn according to the statistical distributions of the un-
certain inputs. Then, for each input realization, its corresponding modal growth rate value is
calculated by calling the thermoacoustic solver. Finally, Py can be conveniently determined
by dividing the number of realizations with positive growth rate values by the total number of
realizations.

Obviously, calling potentially expensive thermoacoustic solvers at every Monte Carlo iteration
would induce prohibitive computational cost for the associated UQ analysis. To address the
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efficiency problem, surrogate modeling techniques have been explored recently. In this frame-
work, only a small number of input samples and their corresponding modal growth rate values
are collected to constitute a training dataset. Subsequently, machine learning techniques are em-
ployed to train a surrogate model based on the generated training dataset, which can accurately
reproduce the solver output (within the region of training) given the same input, yet very fast
to evaluate. Subsequently, instead of using the original thermoacoustic solver, the Monte Carlo
procedure mentioned above can be directly applied to the trained surrogate model to derive Py.
Since the computational time for each iteration of Monte Carlo simulation is greatly reduced,
the efficiency and affordability of the overall UQ analysis improves significantly.

In this context, a number of pioneer work have been done to accelerate Py calculation by using
various surrogate modeling techniques:

Linear regression

Linear regression is a simple technique yet proves to be useful in various situations [24]. It is
easy to fit and convenient to interpret. It builds a linear model between the output and the inputs.
Subsequently, a Monte Carlo procedure can be directly applied to the trained linear model and
instantly obtain the probability density function (PDF) of the output. However, the limitation of
the linear regression method is also prominent: a linear model may not be sufficient to capture
the potentially highly nonlinear relationship between the modal eigenvalue and flame or acoustic
parameters, which may further compromise the accuracy of the overall UQ analysis.

Ndiaye et al. [25] adopted the linear regression method to approximate a Helmholtz solver
to facilitate affordable UQ analysis of a single swirled burner combustor. Flame gain n and
time-delay T were considered as the uncertain parameters, and their standard deviation values
were set to be 10% of their respective nominal values. Two linear models were fitted to map
from the uncertain flame model parameters to the modal growth rate of the first acoustic mode
(fo = 121Hz). The first model was directly built upon n and 7, while the second one was built
upon the real and imaginary part of the corresponding flame transfer function (FTF) evaluated
at fo. By applying a Monte Carlo procedure to the fitted linear models, improvements in the
efficiency of the UQ analysis were observed in the case studies. An interesting observation is
that the second model displayed higher approximation accuracy, which is attributed to the fact
that it incorporated physical nonlinearity by using FTF values as the input parameters.

Adjoint-based approach

Adjoint methods provide a convenient way to calculate the sensitivity of the output with respect
to all the input parameters [26]]. It has an obvious advantage in computational efficiency over
the conventional finite difference approach, as in adjoint methods, only one solve of the gov-
erning equations and one solve of the adjoint equations are sufficient to yield sensitivity to all
the parameters [27]]. Adjoint methods have been extensively used in thermoacoustic analysis
for the purpose of sensitivity analysis [20, 28-31]], stability analysis [32} 33], parametric study
[34], optimization [35, 36], as well as passive control [37]. Recently, the potential of the adjoint
methods have been further exploited to conduct UQ analysis. More specifically, the gradients
calculated by the adjoint methods are leveraged to construct a local polynomial model via Tay-
lor expansion, which facilitate instant uncertainty propagation, thus achieving several orders of
magnitude increase in computational efficiency over the conventional Monte Carlo simulation
[38]]. Note that the adjoint-based UQ analysis assumes that each input sample is a small pertur-
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bation around the nominal input values. As a result, adjoint method may only be able to handle
small input uncertainty ranges where the perturbation assumption is valid. However, Silva et al.
[34] recently proposed an adjoint-based, high-order perturbation method to efficiently calcu-
late parametric thermoacoustic maps of typical combustion chambers. By leveraging on higher
order sensitivity information, it may be possible for adjoint approaches to handle UQ analysis
with large perturbations around the nominal input values.

Magri et al. [39] applied an adjoint-based approach to a network model of an annular combustor
to obtain the sensitivity of modal growth rate with respect to uncertain flame parameters n and
7. Those sensitivity information was subsequently integrated into the Monte Carlo procedure,
yielding highly efficient quantification of the uncertainty in modal growth rate predictions. The
maximum standard deviation values investigated in [39] were set to be 10% of the nominal
values of n and 7, respectively. For the maximum standard deviation values, the second-order
adjoint method has to be employed to ensure prediction accuracy. Silva et al. [40] developed
an in-house Helmholtz adjoint solver and focused on quantifying uncertainties in thermoacous-
tic stability analysis of a turbulent premixed swirled EM2C combustor [41} 42]. In that study,
1 = (n,7,1,¢) are considered as uncertain parameters, where n and 7 are the flame model pa-
rameters, r and ¢ are the magnitude and the phase of the reflection coefficient at the combustor
outlet. Uniform distributions with a range of 0.99° ~ 1.19° were assumed for those uncertain
parameters. Consistent with [39], [40] also pointed out that a second-order adjoint method is
necessary to accurately reproduce the results yielded by applying Monte Carlo procedure to the
original Helmholtz solver. Mensa et al. [43] incorporated the adjoint perturbation theory into
acoustic network and Helmholtz solvers and presented an analytical strategy to determine the
stability margin and calculate the associated risk factor. Flame gain n and time delay T were
treated as uncertain parameters, with +10% around their respective nominal values as the con-
sidered uncertain ranges. The effectiveness of the proposed strategy was demonstrated via case
studies on a Rijke tube model and the same combustor from EM2C [41].

Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) [44, 45] enjoys mathematical elegance and has been suc-
cessfully applied to address different UQ problems in various domains [46-50]. Several open
source software packages exist that extensively documented and implemented this method [51-
54|]. PCE approximates the output of interest as a truncated sum of multivariate polynomials
orthonormal with respect to input probability density distributions [S5]. Once the weighting
coefficients of the polynomial basis terms are calculated, a surrogate model is automatically
obtained, which maps from the input parameters to the output. Depending on how exactly the
weighting coefficients are calculated, PCE can be categorized as intrusive type or non-intrusive
type. For intrusive PCE, new governing equations for the coefficients are derived based on a
Galerkin-projection reformulation of the original model equations [56]. Non-intrusive PCE, on
the other hand, treats the underlying governing computational model as “black-box and uses
sampling-based approach to compute the coefficients. Several methods exist for that purpose.
For example, projection method [S7] can be used to take advantage of the orthogonality property
of the polynomial basis. Using this method, the computation of the coefficients can then be cast
as a numerical integration problem, which can be efficiently solved using quadrature rules. As
another example, the least-square method [38]] can be employed to derive the coefficients. Using
this method, representative samples are drawn from the input distributions and their correspond-
ing outputs are calculated via the employed computational model. Subsequently, a simple linear
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regression is performed on the collected dataset to derive the weighting coefficients. Compared
to the quadrature rules with fixed quadrature points, the least-square approach has the advantage
that it allows an arbitrary number of points with flexible sampling locations.

Avdonin ef al. [39] used non-intrusive PCE to efficiently calculate Py. In a first case study,
a turbulent swirl combustor modeled [41] by the Helmholtz equation was considered. A total
of four parameters, i.e., n, 7, the magnitude and the phase of the outlet reflection coefficients,
were treated as uncertain. For each parameter, a uniform distribution extending +10% of the
nominal value was adopted to describe the uncertainty statistically. Non-intrusive PCE man-
aged to deliver highly accurate Py calculation while consuming much less computational re-
sources, compared to the conventional Monte Carlo simulation. For the second case study, the
impact of uncertain CFD model parameters on the modal growth rate predictions was consid-
ered. The simulated configuration was a laminar slit burner (Kornilov flame [60]). The CFD
simulations were used to derive the FTFs given the specific realizations of the input parame-
ters. Subsequently, those identified FTFs were fed into an acoustic network model to compute
the corresponding modal growth rate value. A total of three CFD model parameters, i.e., flow
velocity (u = 0.4 +0.02 m/s), burner plate temperature (7 = 398 + 50 K) and equivalence ratio
(¢ =0.8+0.1), as well as two acoustic system parameters, i.e., the magnitude of the reflection
coefficient at the combustor inlet R;;, = 0 ~ 0.4 and outlet R,,; = —0.4 ~ 0, were perceived as
uncertain. For both case studies, a second order expansion is found to be necessary to accurately
quantify the uncertainties in growth rate predictions.

Avdonin et al. [61] further investigated the impact of uncertain operating conditions on the dy-
namics of a premixed laminar flame by using non-intrusive PCE. In that study, flame dynamics
were represented by a flame impulse response (FIR) model, which was identified via advanced
system identification [[17] on a broadband excited CFD simulations. The same uncertain param-
eters with the same variational ranges in [59] were considered here. The study demonstrated
that by using non-intrusive PCE, it becomes affordable to quantify the variations in FIR model
coefficients induced by the uncertain operating conditions. In addition, sensitivity analysis was
conducted to understand which operating parameters contribute the most to the uncertainties
presented in the FIR model coefficients. This is possible since PCE permits a convenient cal-
culation of Sobol index [62], which is a widely employed index in global sensitivity analysis
[63]].

The above-mentioned studies only addressed UQ problems involving a small number of param-
eters (< 4). However, for practical thermoacoustic instability analysis, the flame model alone
would introduce many uncertain model parameters. For example, for an annular combustor
with multiple burners, if a simple n — 7 model is adopted for each flame, the total number of
flame model parameters will correspond to two times the number of burners, which could be
significantly larger than the number of inputs considered in the previous studies. In surrogate
modeling, it is a well-known fact that the cost of constructing an accurate surrogate model scales
exponentially with the number of input variables. This is the famous “curse of dimensionality™.
As a result, a naive application of the surrogate modeling techniques to connect primary flame
parameters and the modal growth rate would not be feasible in practices. To circumvent the
efficiency problem, a dimensionality reduction treatment prior to training the surrogate models
is often necessary. Under this framework, dimensionality reduction techniques are applied first
to extract the key parameters in the input-output relationship under investigation. A success-
ful dimensionality reduction is achieved if the number of the key parameters is smaller than
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the number of prime parameters. Subsequently, surrogate models can be trained directly on the
key parameters instead of the original high-dimensional inputs, thus potentially improving the
training efficiency and reducing the associated computational cost.

In the field of thermoacoustic UQ analysis, the Active Subspace approach [64] has been em-
ployed to reduce the flame model dimensionality. This approach aims to identify active di-
rections within the original input parameter space, such that along those directions the output
varies the most. By projecting the input samples to the identified active directions, the corre-
sponding active variables can be obtained, which manifest themselves as linear combinations
of the original inputs. Those active variables capture the essences of the relationship between
high-dimensional flame parameters and the corresponding modal growth rate values. As a re-
sult, subsequent surrogate model building only need to consider those active variables, thus
achieving dimensionality reduction and accelerating the desired uncertainty propagation pro-
cess.

Bauerheim et al. [65] adopted Active Subspace approach to calculate P¢ of the azimuthal acous-
tic mode of two coupled annual cavities. In that study, an acoustic network was derived to de-
scribe the nonlinear dispersion relation for azimuthal modes. 19 flames were considered, where
each flame is represented by an uncertain n — 7 model. As a result, a total of 38 uncertain pa-
rameters entered into the UQ analysis. This number is significantly larger than that used in the
previous studies. 5% and 10% of their mean values were assigned as the standard deviation
values of n and 7, respectively. The case studies indicated that the Active Subspace approach
managed to identify three active variables out of the original 38 inputs. Those active variables
were subsequently exploited by fitting the modal growth rate response with polynomials, which
were further fed into the Monte Carlo procedure to accelerate UQ analysis. In addition, physical
interpretations of the identified active variables were investigated in [65]], which unveils under-
lying phenomena controlling the thermoacoustic stability of the investigated configuration.

Magri et al. [39] continued the work of [65] by proposing a hybrid approach, where the potential
of Active Subspace methodology was further augmented by adjoint method in conducting UQ
analysis. In their work, adjoint method was employed for efficiently computing the gradients
to facilitate active subspace identification. As a result, fewer thermoacoustic solver calls are
needed in applying the Active Subspace approach and an overall more efficient and accurate
UQ analysis was achieved.

Another method that has received attention recently in performing thermoacoustic UQ analysis
is the intrusive PCE. Compared with its non-intrusive counterpart, the intrusive version requires
projecting the governing equations under consideration onto the space spanned by the polyno-
mial basis functions to form a new set of equations for the PC coefficients. Due to this design
of new solvers/codes, intrusive PCE is not general for various systems and may require some
overhead effort for specific applications. However, the advantage gain is that only a one-time
solution of the reformulated governing equations is needed to calculate the PC coefficients for
the model outputs. As a result, significant reduction in computational cost may be obtained as
repetitive evaluations of the original model required by non-intrusive PCE can now be avoided.

Silva et al. [66] explored the feasibility of using intrusive PCE to quantify the uncertainty of
combustion noise prediction of confined flames. In that study, a state-space model [67] was
adopted to describe the thermoacoustic properties of a turbulent swirl premixed combustor [68,
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69]. The corresponding stochastic state-space model was derived by substituting the polynomial
basis expansions into all elements of the original state-space representation of the burner. The
acoustic waves, gain and phase of the flame response, and acoustic reflection coefficients were
considered as uncertain variables that entered into the intrusive PCE analysis. Thanks to its
intrusive nature, only one solve of the stochastic state-space model is required by the PCE
to determine the PDFs of the acoustic quantities at each node of the discretized domain. A
comparison with the reference Monte Carlo simulation demonstrated the effectiveness of the
developed intrusive PCE framework. In addition, [66] also discussed how to perform global
sensitivity analysis given the computed PCE coefficients.

Despite the fact that remarkable progress has been made by the previous studies, critical gaps
still exist that worth further considerations for practical uncertainty management in thermoa-
coustic instability analysis:

First of all, small parameter variational ranges. The variational ranges for the uncertain variables
considered in the previous studies were generally small, i.e., 10% around the corresponding
nominal values, within which various techniques summarized above were demonstrated to be
effective. However, larger input parameter space is normally expected in practical thermoacous-
tic instability analysis, where the validity of the previously-reviewed approaches is unknown.
This issue becomes even more prominent in robust design where mitigating modal instability
risk is the main objective (discussed below), as larger parameter variational ranges have to be
accommodated to allow optimization routines to fully explore various parameter combinations,
thus increasing the change of locating the global optimum.

Second, non-flexible statistical descriptions of the uncertain parameters. Previous studies tended
to consider a single probability distribution type for all the investigated uncertain parameters
(e.g., uniform distribution, Gaussian distribution, etc.). In practice, however, it is not uncom-
mon to have mixed distributions for different uncertain parameters, with potentially complex
correlations between the parameters. In addition, the knowledge regarding the statistical prop-
erties of the uncertain parameters may be updated as the combustor design process evolves.
Those two observations may pose serious challenge to the PCE methodology, despite its ex-
traordinary performance reported in [359, 61, 166]. This is partially due to the fact that PCE
demands the information of the PDFs of the considered uncertain parameters for selecting the
optimum polynomial basis functions. It works the best when those PDFs are pre-defined and
independent. Otherwise, complicated isoprobabilistic transformations [70] have to be employed
to convert PDFs to their standard forms before submitted to PCE modeling.

Third, UQ analyses for sophisticated flame models are lacking. Previous studies focused exclu-
sively on quantifying modal instability risk Py induced by an uncertain n—7 model. The n—17
model is simple and easy to interpret, but possesses limited modeling capability in describing
complex flame-acoustic interaction phenomenon usually encountered in practical thermoacous-
tic instability analysis. As a result, performing UQ analysis on n —7 model may only be of
limited relevance for realistic applications.

One of the more sophisticated and realistic flame models is the flame impulse response (FIR)
model [17]. It adopts a time-domain perspective to describe the unsteady response of a flame to
acoustic or flow perturbations, which facilitates convenient physical interpretation of important
features of the flame response [18]]. Through z-transform [71], the FIR model can be easily
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converted to the flame transfer function (FTF) in frequency domain, which can be subsequently
integrated into the acoustic solvers to predict thermoacoustic behaviors of the combustor. FIR
model is commonly derived by combining CFD simulations with advanced system identification
procedures. The derived FIR model may be uncertain due to the statistical nature of the CFD
simulations, low signal-to-noise ratio, as well as the limited length of CFD time series [72]. FIR
model has already been used on several occasions, while the impact of its uncertainty on the
prediction of the thermoacoustic eigenmodes is not fully investigated yet. This may attribute to
the fact that UQ analysis with respect to FIR model constitutes a challenging high-dimensional
problem. Active Subspace approach [39,165] may shed lights on this problem, but further studies
are necessary to confirm the expectation.

Fourth, a general UQ framework for considering combined uncertain acoustic parameters and
uncertain high-dimensional flame models is lacking. In the paradigm of combining acoustic
solvers with flame models to predict thermoacoustic instability, uncertainties may originate
from both the acoustic side and the flame side, with the flame side potentially containing a
high number of uncertain parameters. Previous studies were either dealt with uncertainties in
both acoustic system parameters and simplistic n — 7 models for flame dynamics [25) 40, 43,
59, 161, 166], or solely focused on tackling uncertainties from high-dimensional flame models
[39] 65]]. As a result, a more general UQ framework than the previously-reviewed methods
is necessary to deliver effective thermoacoustic UQ analysis in realistic settings. Although the
Active Subspace approach [39,165] has demonstrated its capability in performing dimensionality
reduction for high-dimensional flame models, a naive application of the approach to the mixed
sources of uncertainty may not produce fruitful results. This may due to the fact that acoustic
parameters and flame parameters are governed by different physical mechanisms. Consequently,
a linear combination of the mixed parameters may not be sensible and may mislead the desired
UQ analysis. In summary, currently available UQ techniques may be insufficient to address
UQ problems with uncertainties coming from both acoustic parameters and high-dimensional
flame models. Novel solutions are much needed for realizing affordable and reliable uncertainty
management for thermoacoustic instability analysis in practical settings.

Fifth, UQ techniques for nonlinear thermoacoustic instability analysis are lacking. Previous
studies focused exclusively on performing UQ investigations on linear thermoacoustic insta-
bility analysis, where the objective was to quantify the variations of modal frequencies and
growth rates induced by the uncertain inputs. For nonlinear thermoacoustic instability predic-
tions, Palies ef al. [42] and Silva et al. [15] showed that an accurate prediction of limit cycle
frequency and amplitude could be easily compromised by the uncertainties embedded in the
system acoustic damping and nonlinear flame response model. However, to the author’s knowl-
edge, no rigorous UQ study has been done yet to quantify the variations of limit cycle frequency
and amplitude induced by the uncertain acoustic flame model parameters. Consequently, it is
unclear whether or not the previously-reviewed approaches are still effective when extending
to performing UQ analysis in nonlinear settings. Considering the vital importance of obtaining
reliable limit cycle predictions for practical combustor design, relevant strategies need to be
developed to accurately and efficiently address uncertainty propagation problems in nonlinear
thermoacoustic instability analysis.

Sixth, uncertainties contained in the surrogate models are not considered. The accuracy of a
surrogate model relies heavily on the amount of training samples [73]]. In practice, as the inves-
tigated parameter space becomes larger, a larger number of training samples is usually expected
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to guarantee that the trained surrogate model is accurate. Meanwhile, as the fidelity of the ther-
moacoustic solver becomes higher, the induced computational cost to generate each training
sample also becomes higher. As a consequence, it is not uncommon that only a small number
of training samples can be afforded in many practical cases, thus leading to a potentially “in-
accurate” surrogate model. This surrogate model uncertainties may propagate downstream and
compromise the reliability of the modal instability risk calculations [74]]. Unfortunately, the sur-
rogate model uncertainty is largely ignored in previous studies, despite the fact that surrogate
models have been widely adopted as the workhorse of thermoacoustic UQ analysis. In order
to obtain robust modal instability risk predictions, relevant schemes need to be developed to
quantify and reduce the surrogate model uncertainty.

Finally, investigations regarding mitigating the modal instability risk are lacking. Merely quan-
tifying the modal thermoacoustic instability risk is not the end goal. Another important task
would be to mitigate the modal instability risk, which can be perceived as a natural second step
after risk quantification. This is in the domain of robust design [75], where the objective is to
optimize the design parameters such that the performance of the system under investigation is
insensitivity to various input uncertainties. Robust design task is also known as optimization
under uncertainty [76]], since an UQ module has to be integrated into the optimization routine,
which computes the statistics of the outputs that can be fed into the objective and/or constraint
functions. In the context of thermoacoustic instability analysis, however, UQ studies and op-
timization investigations were conducted separately and a synergy between these two aspects
is lacking in previous works. For example, efforts have been made to suppress thermoacoustic
instability by configuration optimizations in [[77-80]. However, those studies only approached
the optimization problems via a deterministic point of view. Consequently, the robustness of
their optimized results may be challenged by the uncertainties present in the data or the model
[81]. On the other hand, previously-reviewed studies in UQ analysis solely focused on develop-
ing efficient uncertainty propagation strategies to quantify the modal instability risk Py, without
any discussion of how to mitigate those risks. It is worth mentioning that an integration of UQ
and optimization into the robust design framework is a non-trivial task, as it poses more strict
requirements on the employed UQ schemes. This is mainly due to the following two reasons:
first of all, robust design demands that the employed UQ scheme is very efficient with negligible
computational cost, as a full UQ study has to be conducted at each iteration of the optimiza-
tion routine. Secondly, robust design demands that the employed UQ scheme is valid over a
relatively large parameter space, as the optimization routine needs to explore various parameter
combinations to increase the chance of identifying the global optimum.

1.3 Scope

To fill the gap between what has already been achieved and what is required in practice, this
thesis focuses on developing a comprehensive uncertainty management framework for ther-
moacoustic instability analysis in practical settings. This uncertainty management framework
consists of a risk quantification part and a risk mitigation part. The risk quantification part ad-
dresses the issue of how to efficiently propagate uncertainties from uncertain flame and acoustic
parameters to the prediction of the modal eigenvalues, while the risk mitigation part addresses
the issue of how to eliminate the instability risk by implementing the principles of robust design.

9
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The present thesis consists of the following deliverables:

1. Developing dimensionality reduction strategies to efficiently quantify the modal instabil-
ity risk Py induced by an uncertain high-dimensional FIR model [82, [83]]. The FIR model
is considered to be identified via applying advanced system identification routines on the
broadband-excited CFD time series.

2. Developing online monitoring routines to assess the confidence in FIR model identification
as longer CFD time series become available [83]]. This is beneficial for practitioners as it
helps to determine the required length of the CFD simulations to obtain FIR model identifi-
cation with satisfactory confidence.

3. Developing a general surrogate-based framework for efficiently and accurately performing
uncertainty propagation in thermoacoustic instability predictions [84]. This framework is
designed to accommodate uncertain parameters with large variational ranges and flexible
statistical descriptions. In addition, this framework is capable of considering uncertainties
from both high-dimensional flame models and acoustic system parameters.

4. Performing UQ studies for nonlinear thermoacoustic instability predictions [84]. Here, the
research goal is to quantify the variations of limit cycle frequency and amplitudes induced
by an uncertain FDF dataset and other uncertain acoustic system parameters. This dataset
describes flame frequency response (gain and phase) at different combinations of forcing
frequency and velocity perturbation amplitude. Its uncertainty is caused by imperfect data
collection process, i.e., noisy experimental measurements are only available at limited forc-
ing frequencies and velocity amplitudes.

5. Identifying various risk mitigation tasks in thermoacoustic instability analysis, and providing
mathematical formulations and surrogate-based solution strategies for each task [83].

6. Quantifying the variation of the modal instability risk prediction induced by the uncertain
surrogate model [86]. Here, the uncertainty presented in the surrogate model is caused by
the limited number of training data.

7. Developing effective surrogate model training scheme that can sequentially enrich the train-
ing dataset and significantly reduce the epistemic uncertainty of the surrogate model, thus
achieving a more robust calculation of the modal instability risk[86].

To better highlight the gaps in thermoacoustic UQ analysis that the present thesis aims to ad-
dress, Fig.[I.I|summarizes the established UQ methods, remaining issues, as well as the current
effort to address those issues.

10
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Established UQ techniques Remaining issues Current objectives

v’ Linear regression i.; Parameter statistical properties are ¢-=-====» O Consider FIR uncertainties
too simple agpeit

¥ Adjoint-based approach i1 Only consider n-r model N
-« "%+ O Develop general surrogate-
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for reliable FIR identifications is
v' Active subspace unknown :
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i.: Only focus on linear mitigating instability risk

thermoacoustic analysis

i.i Combined uncertainties from
acoustics and high-dimensional
flame models are neglected

%
-+ O Quantify and mitigate surrogate
model uncertainty

»
: No strategy is proposed to mitigate
the instability risk

i%: Uncertainty in surrogate modeling *
is not considered

Figure 1.1: A summary of the established UQ methods, remaining issues and the current effort
to address those issues in thermoacoustic instability analysis.

Constrained by the scope of the present thesis, only a limited number of topics are addressed in
a larger field of uncertainty quantification in thermoacoustic instability analysis. Topics that are
not discussed in this thesis include:

1. Inverse uncertainty propagation and global sensitivity analysis.

Inverse uncertainty propagation and global sensitivity analysis constitute two important tasks
in the broader context of uncertainty quantification, in addition to forward uncertainty quantifi-
cation and robust design. Inverse uncertainty propagation aims to derive the input uncertainty
from observed noisy output data [[87]. “Inverse” here represents that the information is flowing
from the output to the input. Bayesian statistics [[88] are commonly adopted for realizing inverse
uncertainty propagation, where one’s prior belief of the input parameter distributions is updated
by learning from the observed output data, thus arriving at the posterior distribution of the input
parameters. In the context of thermoacoustic instability analysis, Yu et al. [89,90] employed a
Bayesian method called ensemble Kalman filter [91] to derive the parameters of a reduced-order
model that describes the dynamics of a premixed flame from high-fidelity experimental and/or
simulation data. Through Bayesian statistics, the uncertainty of the parameter inference can be
easily and robustly obtained.

Global sensitivity analysis (GSA) [63] aims to investigate which uncertainty source contributes
the most to the variation of the output. Conceptually, GSA differs from adjoint-based local
sensitivity analysis [38], since GSA assess the impact of inputs on the output by looking at the
entire input space rather than at a point in that space. Variance decomposition approaches (e.g.,
Sobol indices) are frequently adopted to deliver GSA, where the total variance of the simulation
output is partitioned into components attributable to each uncertainty source and its interaction

11



Introduction

with other uncertainty sources [92]. In the context of thermoacoustic instability analysis, [61]]
and [66] used Sobol indices calculated by the PCE method to rank the parameters according to
their contributions to the variance of the output of interest.

The current thesis only focuses on forward uncertainty propagation and risk mitigation aspect of
uncertainty quantification. The input distributions are either assumed or directly obtained from
upstream analysis procedures. Therefore, no inverse uncertainty propagation study is conducted
to derive the input distributions. However, considering the fact that accurately and robustly char-
acterizing the probability distributions of the uncertain input parameters lays the foundation for
all the subsequent UQ analysis, further efforts should be put into developing effective schemes
of inverse uncertainty propagation for thermoacoustic instability analysis. Nevertheless, it is
worth emphasizing that the UQ strategies proposed in the framework of the current thesis are
independent of specific input parameter distributions. Therefore, those strategies would remain
valid when the considered input distributions are derived from advanced inverse uncertainty
propagation procedures in future studies.

As for GSA, considering that the identification of important/unimportant parameters is not a
primary goal of the present thesis, only [82] briefly touched upon this topic and no system-
atic GSA study is further performed. However, GSA may deliver several benefits: first of all,
GSA could be leveraged to identify key parameters controlling the thermoacoustic instability;
secondly, by ignoring those “unimportant” parameters identified by the GSA, reduced number
of parameters will enter into the subsequent UQ analysis, thus a potential dimensionality re-
duction can be achieved; finally, the ranking results produced by the GSA could inform how
to prioritize resources in reducing the uncertainties in different input sources, thus potentially
achieving a maximum reduction in output uncertainty. Therefore, future studies are desired to
further explore the potential of GSA in thermoacoustic instability analysis.

2. Solver verification and validation.

Verification and validation (V&V) aim to assess the credibility and establish the quality of the
computational model [93-935]. Verification is concerned with the characterization of the nu-
merical errors (e.g., discretization, iteration, and computer round-off) and demonstrating that a
simulation code correctly solves the underlying mathematical model equations. Therefore, ver-
ification procedure tackles the numerical uncertainty, which is largely an exercise of computer
science and mathematics and it usually involves comparisons of the simulation code with some
exact analytical solutions [38]]. Validation, on the other hand, tackles the model form uncertainty
and it demonstrates that the results of the simulation code accurately reflect the actual physi-
cal process. Validation is largely an exercise of physics and engineering and usually involves
comparisons of the simulation results with experimental measurements [38].

In practice, V&V is carried out before the standard UQ analyses that quantifies the variation
of the model output induced by the uncertain model inputs, as the reliability of the underlying
computational model needs to be fully assessed before it can be used to drive the subsequent UQ
analyses. In the current thesis, the employed thermoacoustic solvers, i.e., an acoustic network
model and a Helmholtz solver, have already been verified and validated in [96] and [40], re-
spectively, although not conducted in a probabilistic framework. Since the current thesis mainly
focuses on developing procedures to quantify and mitigate model output uncertainty directly
induced by the model inputs, the underlying thermoacoustic solvers are simply assumed to

12
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be perfect such that no solver uncertainty presents. As a consequence, the fidelity of the UQ
analyses performed in the present thesis only approximates the fidelity of the employed ther-
moacoustic solvers. Future studies should investigate solver verification and validation issues
from a probabilistic point of view to gain further insights regarding the solver numerical errors
and discrepancies between solver outputs and physical reality. Subsequently, those quantified
numerical errors and model bias should be integrated into the UQ procedures developed in the
present thesis to achieve more robust and reliable thermoacoustic instability analysis and design.

3. Potentiality of other surrogate modeling techniques than Gaussian Process.

The present thesis mainly employs the Gaussian Process (GP) as the surrogate modeling tech-
nique, which is a variant of the supervised machine learning methods [97]]. Other methods
under this category include polynomial regression [98], polynomial chaos expansion (PCE),
support vector machines (SVM) [99-101]], decision trees [[102], neural networks [103-105],
etc. In the context of thermoacoustic instability analysis, in addition to the work reviewed pre-
viously where PCE were adopted [59, 61, 166], Jaensch et al. [106,107] investigated the capabil-
ity of neural networks for deducing nonlinear flame response models from a CFD simulations.
An ensemble of neural networks were trained in that study to derive information regarding the
modeling uncertainty. McCartney et al. [108]] compared the capability of various machine learn-
ing approaches in interpolation and extrapolation of flame describing function, and performed
preliminary UQ analyses to assess the impact of FDF approximation errors on the prediction of
limit cycle amplitudes. In a broader context of UQ, PCE, SVM and neural networks have also
been employed to facilitate efficient uncertainty propagation and risk calculation [49,|109,110].
GP is chosen in the present thesis due to its accuracy, flexibility, easy-to-train, easy-to-interpret,
relatively low computational cost, and most importantly, it naturally provides estimates of the
prediction uncertainty, which is a rare property among other surrogate models [38]]. Neverthe-
less, future studies are desired to thoroughly compare the strengths and weaknesses of GP with
other surrogate modeling techniques in terms of aiding the uncertainty management in thermoa-
coustic instability analysis. Moreover, it is worth exploring the possibility of combining various
techniques instead of relying on just one specific technique. This may help to obtain further gain
in the accuracy and efficiency of surrogate modeling. For example, GP and PCE were combined
in [[111], where the PCE model is used as the general trend term in the GP formulations. This
integration is possible thanks to the flexibility and extensibility of the GP approach. Case studies
showed that the performance of the new approach is better than, or at least as good as the indi-
vidual approaches for small training samples. Other examples of combining various surrogate
modeling techniques can be found in [112-114]].

4. Other uncertainty modeling techniques than probability theory.

Parameter uncertainties can be modeled by a variety of concepts. Conventional probability the-
ory is the most popular approach to measure uncertainty, where each of the uncertain parameters
is associated with a probability density function (PDF) [87]]. In practice, however, it is not un-
common that assigning PDFs to uncertain parameters is not straight-forward. This issue may
arise when the knowledge of a practitioner regarding the input parameters is limited: either a
specific PDF form cannot be decided in the first place, or the form of PDF is determined but
the parameters of this PDF cannot be decided [74]. Under this background, other concepts to
represent uncertainty have been devised, including Bayesian hierarchical models, probability-
boxes, evidence theory, fuzzy distributions, etc [115]. Compared with the probability theory,
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other uncertainty representation approaches allows a clear separation of aleatory uncertainty
(natural variability) and epistemic uncertainty (lack of knowledge) [116]], therefore possessing
better modeling capability in practical applications.

The current thesis adopts the conventional probability theory to describe input parameter uncer-
tainties. Further studies are desired to investigate using other uncertainty formulations in uncer-
tainty management of thermoacoustic instability analysis. Nevertheless, it is worth mentioning
that the dimensionality reduction schemes [82, |83]], as well as the surrogate-based techniques
for uncertainty propagation [[84] and risk mitigation [85] developed in the current thesis are in-
dependent of specific descriptions of the uncertain input parameters. As a result, the proposed
procedures would still be valid when more sophisticated uncertainty measurement approaches
are used in future studies.

5. Uncertainty management for annular combustors.

The current thesis only considers uncertainty presented in predicting thermoacoustic insta-
bilities for longitudinal combustor configurations. In practice, annular combustors are widely
adopted in modern gas turbines. However, as indicated in the work of [65], a prominent chal-
lenge in conducting UQ analysis for annular configurations is the associated high number of un-
certain parameters. For example, although only a simple two-parameter n — T model is adopted
for each burner in [63], the total number of uncertain parameters under investigation accumu-
lates to 38, as there were 19 burners in the considered annular configuration. As a result, when
sophisticated flame models with more parameters are employed for each burner, this multipli-
cation effect would be even more dramatic, thus posing a significant challenge for performing
thermoacoustic UQ analysis in annular combustor. In addition, transverse modes exist alongside
longitudinal modes in annular combustors [S]. Those two types of modes have different physics
in the coupling between the acoustics and the flame response. As a result, distinct stochastic
features of the eigenvalues of transverse and longitudinal modes could be observed under the
same input parameter uncertainties. This could potentially lead to problems in performing ther-
moacoustic robust design for annular combustor, as it is non-trivial to optimize tunable system
parameters to mitigate the instability risks for both transverse and longitudinal modes. Finally,
due to a more complex geometry, solving eigenvalue equations for an annular combustor is
potentially much more expensive than a longitudinal combustor, given the same acoustic mod-
eling approaches (e.g., network model, Helmholtz solver, etc.). As a result, fewer samples may
be afforded in surrogate model training, thus leading to a larger surrogate model uncertainty that
may compromise the reliability of the UQ analysis. Despite the above-mentioned challenges for
performing UQ in annular combustors, the uncertainty quantification and risk mitigation strate-
gies developed in the current thesis could serve as foundations for designing more advanced
approaches that specifically address the issues encountered in annular configurations.

6. Uncertainty propagation from CFD simulations to flame model identifications.

The flame models adopted in predicting thermoacoustic instability can be identified from high-
fidelity CFD simulations. For example, the FIR model investigated in [82-84] is identified via
applying advanced system identification procedures on broadband-excited velocity and heat
release rate fluctuation time series obtained from CFD simulations [[117]. During the FIR model
identification process, due to low signal-to-noise ratios in turbulent combustion (low-quality
training data), finite length of the CFD time series (limited training data), etc., the estimated
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FIR model will inevitably contain uncertainties (characterized by the confidence intervals of the
coefficients). The main objective of [82H84] is to quantify the modal instability risk induced by
the uncertain FIR model, whose uncertainty is originated from the model identification process.

However, the derived uncertain FIR model considered in [82-84] is based on a single CFD
simulation with deterministic values for boundary conditions, turbulent combustion models, as
well as other CFD parameters. In reality, it is rarely the case that those CFD parameters could
be uniquely identified. Consequently, any variation/uncertainty in those CFD parameters could
lead to another set of FIR model [61] with different uncertainty descriptions. As a result, in
addition to the identification process, the CFD data generation process also contributes to the
uncertainties in the FIR model.

Uncertainties in CFD simulations have long been recognized in the community, as evident by
the work of [118]]. Those uncertainties usually originate from simplified geometries, initial and
boundary conditions, as well as the employed physical models (e.g., turbulent models) [[119].
Recently, focus has been shifted to evaluate the impact of uncertain turbulent models on the
reliability of the CFD simulations [[120-124], as turbulent modeling constitutes a major source
of uncertainty in CFD simulations. Parametric uncertainties in turbulent combustion modeling
has also been investigated in [125H129]. In the field of thermoacoustic instability analysis, rig-
orous UQ study to investigate the impact of CFD simulation uncertainty has not yet received
enough attention, except the work of [61], where the uncertainties in boundary conditions (flow
velocity, burner plate temperature, and equivalence ratio) were propagated to FIR model iden-
tification. Other works such as [130] only conducted sensitivity studies to investigate how the
flame transfer function of a laminar premixed flame would change when the flame speed, the
expansion angle of the burnt gases, the inlet air temperature, the inlet duct temperature, and the
combustor wall temperature are varying.

There are two challenges associated with propagating uncertainties from CFD simulations to the
flame model identification: first of all, each run of CFD simulation could induce very high com-
putational cost. Consequently, the available computational budget would only permit acquiring
a limited number of samples, which poses a serious challenge for applying any data-driven ap-
proaches for surrogate modeling and dimensionality reduction. As a result, novel UQ schemes
working in the small data regime have to be developed and benchmarked in future studies. Sec-
ondly, a concurrent consideration of flame model uncertainties originated from both the CFD
data generation process and the flame model identification process is not straight-forward. These
two processes are coupled in a serial manner, with the CFD data generation happens first and
the flame model identification happens later in the calculation chain. Uncertainty propagation
through the interface of these two processes is especially challenging [61], and specific UQ
formulations have to be developed in the future work.

1.4 Structure of the thesis

The main results of the current thesis were presented at conferences and in journals. Major pub-
lications that summarize the results of this dissertation are reproduced in the appendix. Through-
out the manuscript the major publications are labelled. Table[I.|explains the label and provides
a short description of each paper. The first three studies summarized in Table [I.1] contribute
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to the risk quantification aspect of the uncertainty management framework investigated in the
current thesis, while the later two studies contribute to the risk mitigation aspect.

Table 1.1: Labels and short descriptions of the papers included in the present thesis.

Label Paper Title Description

uantification and propagation of ) ) e
Q jeatiofl and propag: Calculating modal instability risk
uncertainties in identification of

ASMEI18 induced by uncertain FIR model via

flame impulse response for .
pulse response . the Active Subspace approach
thermoacoustic instability analysis

Evaluating the impact of uncertainty

in flame impulse response model on Calculating modal instability risk

ISC18 . . .. induced by uncertain FIR model via
thermoacoustic instability prediction: an analviical approach
A dimensionality reduction approach y pp
A Gaussian-Process-based framework for Developing a general surrogate-based
high-dimensional uncertainty quantification framework that can address UQ problems
ISC20 .. .. o1 o1 or . . )
analysis in thermoacoustic instability with high-dimensional uncertain flame
prediction models

Exploring various tasks of robust
design in thermoacoustic instability
analysis and developing efficient

Efficient robust design for thermoacoustic
ASMEI19 instability analysis: A Gaussian Process

approach solution strategies for each task

Reliable calculation of thermoacoustic Quantifying and reducing the impact
ASME?20 instability risk using an imperfect of the epistemic surrogate model

surrogate model uncertainty on the risk calculation

In order to highlight the interconnection between publications and facilitate convenient compar-
1sons of different aspects of the developed UQ strategies that are discussed dispersively among
publications, the main content of the publications is re-organized into the following chapters.
Chapter 2 provides essential background for the adopted acoustic solvers and flame models,
with a special focus on discussing the origination of the flame model uncertainty. Chapter 3 de-
picts a bigger picture of uncertainty management, which puts the work conducted in the thesis
into perspective. Chapter 4 and 5 discuss the surrogate modeling techniques and dimensionality
reduction techniques developed in this thesis. The investigations of different aspects of those
techniques are scattered in various publications. Chapter 4 and 5 aim to give an overview of
those ingredients to form a more complete picture. Chapter 6 gives a summary on the outcome
of each publication. The interconnection between the individual publications as well as how
they contribute to the overall thesis are highlighted. Finally, Chapter 7 concludes the thesis and
discuses potential directions for further investigation.
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2 Thermoacoustic Framework

This chapter provides essential information for the thermoacoustic modeling techniques adopted
in the current thesis. It starts with a presentation of the details of the combustor configurations,
followed by introducing the employed acoustic solvers and the flame models. A summary of
the thermoacoustic modeling details of the included publications is given in Table

Table 2.1: Thermoacoustic models employed in the included publications

Publication = Combustor Acoustic solver Flame model

ASME18 BRS Network model FIR
ISC18 BRS Network model FIR
ASME19 BRS Network model T — 0 model
ASME20 BRS,EM2c ewworkmodel o el
Helmholtz solver
ISC20 EM2C Helmholtz solver  FIR, FDF

2.1 Combustor configuration

Two combustor configurations are considered in this thesis to perform UQ analysis. The first
configuration is the BRS burner (Fig. [2.1)), which represents a turbulent premixed swirl burner
test rig. This configuration contains a plenum, followed by a duct with an axial swirl gener-
ator, as well as a combustion chamber. In the present thesis, a thermal power of 30 kW and
an equivalence ratio of ¢ = 0.77 of perfectly premixed methane-air mixture are considered.
Previously, this configuration has been adopted to conduct stability map studies [[131, [132], in-
trinsic thermoacoustic instability studies [133], and flame model identification studies, either
via experimental investigations [134], or numerical investigations [117]]. In the present thesis,
four publications have adopted this configuration for different purposes: in paper-ASME18 and
paper-ISC18, BRS configuration is adopted to propagate uncertainties from an uncertain FIR
model to the predictions of the modal growth rate. In paper-ASME19, the focus is on investigat-
ing various robust design tasks in mitigating thermacoustic instability risks. Finally, in paper-
ASME?20, BRS configuration is employed again to develop procedures to quantify and reduce
the impact of uncertain surrogate models on the reliability of risk calculation. Instability risks
of the first quarter-wave mode and the intrinsic thermoacoustic mode [133]] are considered for
all studies except paper-ASME20, where only the first quarter-wave mode is of interest.
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Figure 2.1: Sketch of the BRS burner.

Another configuration adopted in the present thesis is a turbulent swirled laboratory-scale test
rig [42], which is depicted in Fig. This combustor has been widely investigated in the
context of thermoacoustic instabilities [[15, 41} 42]. This axisymmetric configuration contains
a cylindrical plenum, a convergent duct with a swirl generator, and a cylindrical combustion
chamber.

In the present thesis, two works have adopted this configuration for different purposes: in paper-
ISC20, the focus is to benchmark the effectiveness of the proposed surrogate-based UQ scheme
in addressing high-dimensional linear/nonlinear thermoacoustic uncertainty propagation prob-
lems. There, configuration C11 [15] is chosen with a plenum length of [} = 224mm and a
combustion chamber length of I3 = 200mm. The operation condition “A” is considered, which
has a flame total power of 1.94kW and a mean flow velocity of 2.67m/s.

In paper-ASME?20, the focus is to benchmark the effectiveness of the employed active learning
scheme to train a GP model with minimum epistemic uncertainty in terms of instability risk
calculation. There, configuration C04 [15] is chosen with a plenum length of [, = 124.8mm
and a combustion chamber length of I3 = 400mm. The operation condition “B” is considered,
which has a flame total power of 3.03kW and a mean flow velocity of 4.16m/s.

For both studies, the first longitudinal thermoacoustic mode of the test rig is the mode of interest.
In paper-ASME?20, its associated modal instability risk is calculated. In paper-ISC20, for the
linear case study, its associated modal frequencies and growth rate values are calculated. For
the nonlinear case, its associated limit cycle frequencies and amplitudes are calculated.

70 mm

Flame tube

78 mm — Swirler

67.5 mm

Upstream
manifold

=" ¥

L

Figure 2.2: Sketch of the EM2C burner.
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2.2 Acoustic solver

2.2 Acoustic solver

Thermoacoustic instability is a typical multi-physics/multi-scale phenomenon, encapsulating
elements of fluid dynamics, combustion, as well as aeroacoustics. To perform effective ther-
moacoustic instability analysis, a common modeling approach employs a strategy of “divide
and conquer”. More specifically, an acoustic tool is adopted to model the acoustic wave prop-
agation inside of the combustion system. In addition, a flame model is adopted to describe the
response of flame heat release rate to the flow perturbations. Flame model can be inserted into
the acoustic tool to constitute the source term. By solving the obtained thermoacoustic eigen-
value problem, the modal structure as well as the corresponding modal resonance frequency
and growth rate values can be estimated. Section 2.2 overviews the acoustic tools employed in
the current thesis, i.e., a low-order acoustic network model and an in-house Helmholtz solver.
Section 2.3 focuses on introducing the employed flame models.

2.2.1 Network model

Network models are efficient tools to predict and interpret thermoacoustic eigenmodes of the
combustion system [96]. They are based on the assumption of linear and time-harmonic acous-
tics and its analysis is usually performed in frequency domain. In this approach, the combustion
system is represented as various acoustic elements connected with each other. Each of those
elements has an associated acoustic transfer matrix T, which links the characteristic wave am-
plitudes f and g at the inlet plane and the outlet plane of the element:

fout] [Tu lel [fln]
= = ) 2.1
8out Ty T 8in ( )
with f and g defined as:
1 1(p_
Fes(PE iy, g=1(Z_w) (2.2)
2\pc 2\pc

Here, p denotes density and ¢ denotes the speed of sound. The characteristic wave f is trav-
eling in the downstream direction, while the characteristic wave g is traveling in the upstream
direction.

Figure [2.3] depicts the low-order network model representing the BRS burner test rig introduce
in Section 1. This network model is adopted in paper-ASMEIS8, paper-ISC18, paper-ASME19,
and paper-ASME?20. In addition to two boundary elements at the inlet and the outlet, this net-
work model contains three duct elements (i.e., plenum, swirler tube, combustion chamber), two
area jumps (one connecting plenum and swirler tube and the other one connecting swirler tube
and combustion chamber), as well as one flame element.
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n 0

Closed end Area jump 1 Combustion chamber

Vimi: e

Plenum Swirler tube Area jump 2 Flame Open end

Figure 2.3: The acoustic network model for the BRS burner. Flow from left to right.

At the inlet and outlet, the boundary conditions are described by the associated reflection coef-
ficients, which can be written as the follows:

Rin=d Ry = B0 23)
8in fout
For the duct element, the associated acoustic transfer matrix can be expressed as:
-slic
0 L
our | {0 e 2], 2.4)
Sout 0 e 8in

where eigenfrequency s = 0+ jw, [ is the duct length, and c is the sound speed. The axial swirler
is assumed to be acoustically transparent, thus the swirler tube is treated as a pure duct. For area
jump element, the associated transfer matrix can be written as:

l+a 1-a
l-a 1+a

fout] _
8out

8in ’ ( .5)

with a being the area ratio. Any losses occurring in area change are not considered here. For

the combined elements of flame and area jump, linearizing the quasi-1D mass, momentum, and
entropy equations in the low Mach number regime would yield [9]:

p; =p., (2.6)

-1) .
Aqul; = Ayu, + (Yyﬁ )Q’, 2.7

where y denotes the ratio of specific heats, A denotes the cross-sectional area, and subscripts u
and d represent upstream and downstream, respectively. Here, the heat release rate fluctuations
Q' can be related to the velocity fluctuations via a flame model F (Eq. (2.16))). Therefore, the
transfer matrix for the combined elements of flame and area jump can be expressed as:

fout]_ ;¢ +a+add) ;E-a-abd) [ﬁn] 2.8)

Sout]  |3E—a—abF) ;E+a+abF)||gin
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2.2 Acoustic solver

where a = A,/ Ag, and { = pyc,/pgcq 1s the ratio of specific acoustic impedances. By assem-
bling the individual transfer matrices discussed above, a homogeneous system of equations for
f and g can be obtained [96]:

1 —Rin 0 ol[fa] Jo
0 0 —Rour 1 8in 0
-9 2.9
T T -1 0 | | four 0 2.9)
Ty To 0 —1| | 8our 0
)

where the subscripts in and out denote the cross-sectional planes at the combustor inlet and the
outlet. By letting the determinant of matrix .4 be equal to zero, the corresponding characteristic
equation can be obtained:

T2 = Rout T2 + RinTo1 — RinRour T11 =0, (2-10)
through which the frequencies and the growth rates of the thermoacoustic modes can be com-
puted.

It is worth mentioning that the adopted network model (Fig. [2.3) is a rather simple yet practical
model, such that a conventional Monte Carlo simulation is entirely feasible to serve as the
benchmark results for UQ analysis. Nevertheless, the UQ procedures developed in the entire
thesis are non-intrusive in nature, thus independent of the specific employed acoustic solver.

2.2.2 Helmbholtz solver

Helmholtz solvers are extensively used for investigating the thermoacoustic instabilities [14,
150 [135]]. This approach of obtaining thermoacoustic eigenmodes starts with a linearization of
the Euler equation and an assumption of low Mach number flows, followed by employing the
modal transformations for the acoustic pressure and heat release rate:

p'(x, 1) = p(x) exp(-si), (2.11)

g (x, 1) = q(x) exp(—s1), (2.12)

which yields an inhomogeneous Helmholtz equation for the acoustic pressure perturbation [9]:

V(EVp)—s*p=sly-1)q). (2.13)
N——— N——r
Ap F()p

Here, ¢ = Q/ V¢, where Q denotes the global heat release rate and V¢ is the volume of the flame
region. The flame heat release constitutes the source term in Eq. (2.13)), which can be linked to
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the velocity fluctuation ;. ¢ via a flame response model (Eq. (2.16)), and further linked to p, f
through the momentum conservation @,.f = Vp,er/(sp), with p being the mean-flow density.
By assuming that the flame is acoustically compact, the gain and phase can be considered to be
uniform within the flame region and zero elsewhere. This is a valid assumption as Silva et al
[15] showed that the influence of the flame spatial distribution on the eigenvalue prediction is
negligible in compact flames. Robin conditions are used at the boundaries:

1(1-R)
Vp+ Bp=0, h =§—-—, 2.14
p+pp where  p=s-o— (2.14)
B(s)p

where R is the reflection coefficient at a given boundary.

Combining Eq. (2.13) and Eq. (2.14), the nonlinear eigenvalue equation can be obtained as:

[of — F6(s) + B(s)|p = 5P, (2.15)

where p is the eigenvector describing the mode structure of a given eigenmode of the combus-
tion system, and «f, A(s) and 98(s) are the matrices containing the finite-volume discretization
of the corresponding terms indicated in Eq. (2.13)) and Eq. (2.14). Modal frequency and growth
rate can be obtained by solving the nonlinear eigenvalue problem Eg. via an iterative
scheme based on the secant algorithm [136]. This Helmholtz solver is adopted in paper-ISC20
and paper-ASME20. More numerical implementation details of the solver can be found in [40].

2.3 Flame response model

Flame response model describes the flame heat release rate response Q' to the velocity pertur-
bations u pata reference position upstream of the flame [[17] in frequency domain:

: u/
Q_Trelg (2.16)

Q - lzref

where .F denotes the flame response model. Here fluctuations Q' and u, 7 are normalized with

respect to their mean value é and i, f, respectively.

In general, flame response model & takes in a complex frequency s = 0 + jw, where o and
w denote the modal growth rate and frequency, respectively, and outputs flame gain value G
and phase value ¢. By integrating into the acoustic governing equations and acting as a source
term, flame response model facilitates a calculation of thermoacoustic eigenmodes in frequency
domain.

The current thesis employs three different types of flame response models: a flame impulse re-
sponse (FIR) model for linear thermoacoustic instability analysis; a distributed time lag model
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(T — o model) with a presumed functional form proposed by Komarek et al. [[134], also for lin-
ear thermoacoustic instability analysis; a flame describing function (FDF) model for nonlinear
thermoacoustic instability analysis.

2.3.1 FIR model

Compared with the simple frequency-independent n — 7 model that is widely adopted in the
thermoacoustic community, the flame impulse response model represents a more sophisticated
and realistic flame model that works in linear regime. In general, impulse response model com-
pletely describes the dynamic properties of a linear, time-invariant, single-input-single-output
system [96]. Its model structure has the following form:

ylk] = G(q) ulk] + e[k], (2.17)

where u[k], y[k], and e[k] denote the discrete input, output, and noise term, respectively. For
the G(g) term, it can be written as follows:

G@)=ho+mqg  +hag?+..+hg_ng LY, (2.18)

with g7 " x[k] = x[k— n] acting as the backward-shift operator, L denotes the “model order”, i.e.,
the order of the polynomial, and /;’s are the impulse response model coefficients. When using
the above-mentioned impulse response model to describe flame dynamics, the corresponding
flame impulse response (FIR) model can be written as:

L-1
F = Z hke_](k+l)At(w_]U), (219)
k=0

where hjy denotes the FIR model coefficient that needs to be identified and At represents the
sampling interval. FIR model facilitates convenient physical interpretations of the relevant flow-
flame interaction mechanisms [[137]. In addition, identification procedures have already been
established to efficiently derive FIR model from CFD time series data [17]: First of all, CFD
simulation of the combustor under investigation is acoustically excited using a broadband sig-
nal. Then, the global heat release rate fluctuation signal Q' and the velocity fluctuation signals
u, pata reference position upstream of the flame are recorded. Finally, advanced system iden-
tification procedures are applied to those collected signals to derive the FIR model. For a more
comprehensive overview of the applications of system identification to aero/thermoacoustics,
readers can refer to the work of [[17, 72, [138]].

In practice, the identified FIR model may be uncertain due to both data quality issue and data
quantity issue. Regarding the data quality issue, the employed CFD simulation, e.g., large eddy
simulation (LES), is not deterministic. As a consequence, each run of the CFD simulation would
generally not yield the exact same results. The stochasticity of the CFD simulations may intro-
duce uncertainties to the identified FIR model. Also, when turbulent combustions are consid-
ered, a relatively high level of combustion noise is frequently encountered in practice. Mean-
while, the broadband forcing signal cannot have a too high amplitude (as a rule of thumb, < 10%
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of the mean velocity value) to prevent nonlinear effects. As a result, the signal-to-noise ratio in
a turbulent combustion environment is rather low, thus contributing uncertainties to the FIR
model identification. Regarding the data quantity issue, obviously, only limited length of CFD
time series can be obtained in practice due to the constrain of the available computational bud-
get, which also induce uncertainties in FIR model identification. In summary, due to the noisy
Q’ and u’r of signals, and limited time series length, the identified FIR model coefficients hj’s
will be uncertain. Fortunately, system identification procedures automatically provide estimates
of the uncertainty of h;’s, and attach a multivariate Gaussian distribution to describe the statis-
tical property of those coefficients. Detailed identification procedure as well as the derivation of
the identification uncertainty are discussed in [83]].

In paper-ASME18 and paper-1SC18, the adopted FIR model is identified from real LES sim-
ulations of the BRS burner (Fig. . The global heat release rate fluctuation signal Q' and
velocity fluctuation signal u’, 7 were produced by Tay-Wo-Chong et al. [139]. By using the
algorithm outlined in [140], the nominal values as well as the covariance matrix (an indicator
of uncertainty) of hy’s can be obtained. Figure displays the identified FIR model with the
associated 95% confidence interval. A total of 16 coefficients are employed for this FIR model.
For both publications, the focus is on developing novel dimensionality reduction strategies to
efficiently propagate uncertainties from the identified FIR model coefficients to the prediction
of the modal growth rate values. More details regarding the proposed dimensionality reduction
strategies are discussed in Chapter 3.

750
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Figure 2.4: Impulse response model identified from LES data. Each discrete stem represents
one coefficient hy. Upper and lower dot lines are the 95% confidence interval.

Paper-1SC20 has also performed an UQ study on an uncertain FIR model. In that study, the em-
ployed FIR model is not identified from real LES simulations. Instead, surrogate Q' and u, f
signals are generated by inserting a reference FIR model [15] and a colored combustion noise
model derived from a real LES study [141] into a time-domain thermoacoustic network model
[142]. Subsequently, an uncertain FIR model can be identified by applying the system identi-
fication technique on the generated artificial data. This “surrogate data” approach is beneficial
as it offers a flexible way to design an FIR model with a desired uncertainty level to assess

the effectiveness of the proposed UQ strategy. Figure [2.5] displays the identified FIR model
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2.3 Flame response model

with the associated 95% confidence interval. A total of 65 coefficients are employed for this
FIR model, since the focus of the paper-ISC20 is to develop a general framework to handle
high-dimensional thermoacoustic UQ problems. More details are discussed in Chapter 3.

0.2
0.15
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0.05

Amplitude

0 0.005 0.01 0.015 0.02 0.025 0.03
Time (s)

Figure 2.5: The FIR model employed in paper-ISC20. Each discrete stem represents one coef-
ficient hy; upper and lower bounds constitute the 95% confidence interval.

2.3.2 17-0 model

Paper-ASMEI9 and paper-ASME20 have employed a distributed time lag model proposed by
Komarek et al. [134] and further validated by Oberleithner e al. [143]. This flame response
model is essentially an FIR model designed specially for swirling flame dynamics. A sketch of
this model is shown in Fig. [2.6] Based on the parametrization of this model, we name it 7 — o
model.
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Figure 2.6: Sketch of the T — o model adopted in paper-ASME19 and paper-ASME20. This
flame model considers flame response to both axial velocity fluctuations and swirl number fluc-
tuations.

The 7 — 0 model treats the shape of the flame impulse response as a decomposition of three
Gaussian distributions, where one positive (+) Gaussian representing the flame response to
axial velocity fluctuations, and one positive (+) alongside a negative (—) Gaussian representing
the flame response to swirl number fluctuations. This flame model determines the coefficients
of the overall flame impulse response by using 5 parameters: 7., T1, 01, Ts; and 7. Notice that
this parametrization is slightly different from what is adopted in [134]: first of all, 7., which
denotes the time for an inertial wave traveling from the swirler to the flame base [144], are now
explicitly expressed and can be used as a tuning parameter for the purpose of risk mitigation
[134]]. Secondly, this new parametrization ensures a continuous shape of the flame impulse
response under the variational model parameters. For other parameters besides 7., 71 and o0
represent the mean and standard deviation of the Gaussian distribution corresponding to the
flame response to the axial velocity fluctuations. 75 and 75 denote the characteristic time lags
for the flame response to the swirl number fluctuations. By assuming that the standard deviations
of the positive/negative Gaussian distributions are one third of 75 and 74, respectively, one can
relate the FIR model coefficients hy’s to the model parameters as follows:

2 2 2
At _ (kAt—;l) At _ (kAt—;z) At _ (kAt—;o,]
hy = e 1 4+ e 22 — e % | kel[l,2,..N], (2.20)
o1V2n o2V 271 o3V271

where N is the number of FIR coefficients, and

T2:TC+TSI T3:T0+T32
’ ’ (2.21)
02=T5/3, 03=75/3,

In practice, 7., 71, 01, Ts1 and T can be calibrated from CFD time series. However, due to the
exact reasons discussed above when identifying FIR model using system identification tech-
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niques, data quality and data quantity issues will lead to an imperfect calibration of those pa-
rameters, thus inducing parametric uncertainties. In paper-ASME19, a bootstrap analysis is ap-
plied to surrogate time series of flame heat release rate and velocity fluctuations to derived the
mean and covariance of each model parameter.

2.3.3 FDF model

The above-mentioned FIR model and 7 — o model are only valid in the linear regime. When
the velocity perturbations are with high amplitudes, nonlinear effects would dominant the flame
dynamic behaviors. Under this circumstance, the flame response to velocity perturbation would
not only be a function of forcing frequencies, but also a function of velocity amplitudes. This
observation motivates an use of a flame describing function (FDF) to describe the nonlinear
flame dynamics, which contains a dataset of flame gain G and phase ¢ values at discrete forcing
frequencies and amplitudes [[19]:

./ ul
& _ e G(w, |2) exp (jp(w, |0]) (2.22)

Q Uref

By integrating the FDF model with an acoustic solver, nonlinear features of thermoacoustic
instabilities can be predicted, such as the limit cycle frequency and amplitude of the mode
under investigation [15]].

To numerically derive the FDF model, the conventional way is to force the CFD simulations
using harmonic signals at a grid of forcing frequencies and amplitudes. Subsequently, Fourier
analysis can be adopted to post-process the response signals of heat release rate and velocity
fluctuations at each specific combination of forcing frequency and amplitude, thus obtaining the
corresponding flame gain and phase value. For more recent and advanced FDF identification
approaches (e.g., neural networks), readers are referred to [106}107].

Following the conventional way of identifying FDF model, the obtained FDF dataset may be un-
certain since in practice measurements have measurement error/uncertainties and could only be
made at limited combinations of forcing frequencies and amplitudes. Meanwhile, to ensure the
accuracy when using FDF model to predict limit cycles, it is preferred to have a fine grid of FDF
values at various frequencies and amplitudes, which can be interpolated from the limited noisy
measurements of the FDF data. Obviously, interpolating from uncertain FDF data will make
the whole FDF dataset uncertain, which will further propagate downstream to compromise the
reliability of limit cycle predictions. One of the main goals of paper-ISC20 is to investigate this
uncertainty propagation problem in nonlinear thermoacoustic analysis. More details regarding
the strategies to deliver this UQ analysis is discussed in Chapter 4.
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3 Uncertainty Management

In the context of model-based predictive analytics and design, uncertainty management can be
broadly defined as a management framework to identify, quantify, and mitigate uncertainties
associated with models, numerical algorithms, and predicted quantities of interest, which fa-
cilitates reliably understanding and predicting physical phenomena and making informed deci-
sions and designs. Uncertainty management expands on the well-known concept of uncertainty
quantification: in addition to characterizing various sources of uncertainty and propagating the
characterized uncertainties through the predictive models to the outputs of interest, which are
the main goals of uncertainty quantification, uncertainty management serves an extra purpose of
mitigating the negative impact of the input uncertainties on the reliability of the output predic-
tion. As a result, uncertainty management can be considered as a combination of the uncertainty
quantification and the uncertainty mitigation.

This chapter serves as an introduction to the practice of uncertainty management and provides
context for a better understanding of the publications included in the current thesis. The remain-
der of this chapter is organized as follows. To begin with, sources of uncertainty and their char-
acterizations in computational science and engineering are reviewed. Later on, major steps in
practical uncertainty management are described. Finally, challenges associated with uncertainty
management are briefly discussed. Table [3.1] overviews the uncertainty analyses performed in
the publications included in the present thesis.

Table 3.1: Summary of the uncertainty analyses considered in the included publications.

Uncertainty Uncertainty Monte Carlo
Task
source type scheme
ASMEI18 Input data  Epistemic  Quantification LHS

ISC18 Input data  Epistemic  Quantification LHS

Publication

Epistemic . )
ISC20 Input data Aleatory Quantification LHS
ASMEI9  Inputdata  PSEMIC ypisation Halton
Aleatory sequence
ASMEpg Inputdata - Epistemic e oo, Random

Model form  Aleatory sampling

3.1 Characterization of uncertainty sources

Thanks to the rapid development in high-performance computing and algorithmic advances,
computer simulations are able to reproduce the process of complex systems in greater details,
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thus gradually becoming an indispensable part in analysis and design in many engineering do-
mains. This point can be best seen in the rapid development of digital twin technology [145],
where computer simulations play a crucial role to create digital replicas of the real-world phys-
ical processes and systems and achieve improved productivity in manufacturing and increased
reliability of the products. Computational models, which describe the behaviors of the complex
natural processes and usually display itself as a set of governing equations, are at the core of the
simulations. Those models are solved using numerical schemes (e.g., finite difference, finite el-
ement, etc.) in the simulations, from which valuable insights of the characteristics of the system
under investigation can be obtained.

In practice, however, performing reliable simulations are non-trivial tasks: various sources of
uncertainty exist in the simulation process, and their stochastic nature could easily deviate the
simulation outputs from the true physical process. The common uncertainty sources encoun-
tered in computer simulations can be broadly classified into the following three categories [87]]:

1. Input data uncertainty

* Geometry uncertainty, induced by e.g., manufacturing tolerance [22], geometry simpli-
fication to facilitate simulation, etc.

* Model parameter uncertainty, e.g., empirical parameters in turbulence models [122],
parameters in flame models used in thermoacoustic instability analysis [25]], etc. Those
parameters are usually calibrated from noisy observations, therefore containing uncer-
tainty.

* Boundary conditions, e.g., combustor wall temperatures in combustion simulations
[130], etc.

* Initial conditions, e.g., the initial pressure, temperature, velocity fields may not be pre-
cisely known in unsteady CFD simulations.

2. Model form uncertainty

Model form uncertainty is also known as model bias or model discrepancy [146]. This uncer-
tainty source comes from the fact that the computational model is only an approximation to
the true physical process, and this approximation may either result from our lack of knowl-
edge - certain physical phenomena are not properly modelled in the simulation code, or it
may result from a limited computational budget, e.g., only 2D simulation is performed in-
stead of 3D simulation.

3. Numerical error

Discretization error, round-off error, coding error/bugs introduce numerical uncertainties in
a computer simulation [[147, [148]].

It is a common practice to classify various sources of uncertainty into two categories, 1.e.,
aleatory and epistemic uncertainty [149} 150].

Aleatory uncertainty arises due to inherent variation or randomness. In principle, aleatory uncer-
tainty cannot be reduced by additional physical or experimental knowledge. Generally, aleatory
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Figure 3.1: Summary of the uncertainty sources and their characterizations encountered in com-

putational science and engineering.

uncertainty is defined in a probabilistic framework, i.e., the uncertain variables are treated as
a random vector, where a joint probability density function (PDF) is assigned to describe their
statistical properties. Among various sources of uncertainty mentioned above, geometry uncer-
tainty induced by manufacturing tolerance belongs to this category.

Epistemic uncertainty arises due to a lack of knowledge, e.g., simplified model assumptions,
missing physics, etc. In principle, epistemic uncertainty can be reduced if sufficient knowledge
is gained via experiments, higher fidelity solvers, etc. Epistemic uncertainty is usually tackled
by probability-box analysis [151], Dempster-Shafer theory [[152], etc. By using Bayesian rea-
soning [[153]], it is also possible to model epistemic uncertainty using a probability distribution,
since probability represents a degree of belief in Bayesian paradigm. Among various sources
of uncertainty mentioned above, model parameter and form uncertainty, boundary and initial
condition uncertainty belong to this category. For numerical errors, they can be converted into
epistemic uncertainties as discussed in [94]].

A summary of the uncertainty sources and their characterizations discussed above is given in

Fig.B.1]

3.2 Uncertainty management in practice

Various uncertainties merge with each other throughout the entire process of computer simula-
tions. As a result, properly managing those uncertainties becomes a necessity to obtain meaning-
ful and reliable analysis results. Under this background, the practice of uncertainty management
has received increasing attention in recent years, bringing synergy between probability theory,
statistics, computational mathematics, as well as disciplinary sciences [22]]. In the following,
the overall framework of uncertainty management is firstly introduced. Later on, two main ob-
jectives of uncertainty management, i.e., forward uncertainty quantification and risk mitigation,
that the current thesis is focused on, are described in detail, along with their applications in the
relevant publications.
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Figure 3.2: Summary of the main steps involved in uncertainty management.

3.2.1 Uncertainty management framework

The main steps of practical uncertainty management are summarized in Fig. [3.2] Detailed de-
scriptions of each step are given in the following.

Uncertainty identification

Uncertainty identification constitutes the first step towards uncertainty management in com-
putational science and engineering. In this step, the parameters which are uncertain are firstly
determined, followed by classifications of their uncertainty nature (i.e., aleatory or epistemic).
Finally, proper probabilistic models are assigned to quantify the uncertainty of the investigated
parameters. Depending on the uncertainty nature, different identification treatments are pro-
posed for aleatory and epistemic uncertainties. Specifically, for aleatory uncertainties, joint
probability density functions are determined to describe their statistical distributions. In case
when only marginal distributions of the parameters are known, copula techniques [[154] can be
employed to describe their dependency. For epistemic uncertainties, probability-box, Dempster-
Shafer evidence theory, fuzzy theory, etc. [115] are all available methods to characterize the
lack-of-knowledge.

Uncertainty identification can be either based on the available data or the expert judgement. In
case when data is scarce, Bayesian statistics [[155] may be used to aggregate expert judgement
(prior information) and scarce data to achieve the goal.

Forward uncertainty propagation

This step propagates all the input data uncertainties (defined in the previous step) to the outputs
of interests via running simulations. As a result, one can assess the impact of uncertain input on
the reliability of output prediction. More technical details is discussed in Section 3.2.2.

Global sensitivity analysis

This step aims to rank the “importance” of the uncertain parameters in terms of driving the
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output variations. Global sensitivity analysis apportions the total variance of the simulation
output to different uncertain parameters and their interactions. The outcome of this sensitivity
analysis is usually summarized in the form of the so-called Sobol indices [63]. Parameters
with larger Sobol index values contribute more to the variation of the simulation output, while
parameters with smaller Sobol index values basically play no role. Obtaining this sensitivity
information is useful for achieving dimensionality reduction (e.g., by fixing the values of non-
contributive parameters to their respective nominal values), as well as prioritizing resources to
potentially realize maximum reduction in output uncertainty (e.g., by reducing the uncertainties
of the most contributive parameters).

Robust design

This step mitigates the adverse effects of various uncertain input sources on the output pre-
diction. The goal of this step could be either reducing the output variation (i.e., reducing the
standard deviation value of the output distribution) or reducing the probability that the out-
put value exceeds a certain threshold, namely, the failure risk. In general, those goals can be
achieved by either directly reducing the uncertainty level of the input parameters, or optimizing
the system to make it less sensitive to the changes in the inputs. The outcome of the robust
design analysis would usually inform how much reduction of uncertainties in the input sources
is required. This information could be fed into the Uncertainty identification step to help de-
termine the amount of resources to allocate to better characterize the input uncertainty sources,
thus forming a circular process as shown in Fig.[3.2]

The current thesis focuses on reducing the failure risk, i.e., thermoacoustic instability risk, by
optimizing the thermoacoustic system under investigation to enhance its robustness with respect
to various input uncertainties. More technical details is discussed in Section 3.2.3.

3.2.2 Forward uncertainty quantification

The primary goal of forward uncertainty quantification is to assess the variation of the out-
put under the influence of various input uncertainties [156-158]]. “Forward” here means that
uncertainty information is flowing from inputs, through the computational model, towards the
output. Depending on one’s objective, the focus could be on simply estimating the mean and
variance of the output, or the probability of the output value exceeding a certain threshold (e.g.,
modal growth rate value larger than zero), or the entire probability density function (PDF) of
the output.

The workhorse of forward uncertainty quantification is the sampling-based Monte Carlo method
[159]. It involves drawing random samples from input probability distributions and employ-
ing the computational model to calculate the corresponding response of each sample. Relevant
statistics of the output can then be inferred based on the obtained ensemble of results. Monte
Carlo method has a very straight-forward implementation and its non-intrusive nature (i.e., no
need to modify the underlying computation model) has earned its widespread usage.

However, the main drawback of the Monte Carlo method is the slow convergence [87]. For ex-
ample, when using the Monte Carlo approach to estimate the mean of a random variable based
on an ensemble of its realizations, the root mean squared error of the mean estimation is o/v' N,
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where o denotes the standard deviation of the random variable and N represents the number of
samples. This observation states that the estimation error of the mean converges at the order of
N~Y2_In other words, one more decimal digit of accuracy would require a 100-fold increase
in computation. Apparently, this observation poses a serious challenge for computationally ex-
pensive models. On the other hand, the dimension of the input x does not appear in o/v/N,
meaning that Monte Carlo procedure does not suffer from the curse of dimensionality. This fact
makes Monte Carlo a competitive method for high-dimensional uncertainty propagation tasks.

In practice, Monte Carlo simulation can be implemented in the following way:
Step 1: Generate samples x;,i = 1,..., N from input distributions;
Step 2: For each sample x;, run the model to obtain the corresponding output y; = f(x;);

Step 3: Based on the ensemble of outputs y;,i = 1,..., N, estimate the statistics of interests, e.g.,
mean, standard deviation, quantile, etc.;

Step 4: Visualize the results by using histogram, density plot and boxplot, etc.

In the current thesis, Monte Carlo method is used in all of the included publications to perform
forward uncertainty quantification analysis. The main objective is to calculate the thermoacous-
tic instability risk Py, which is defined as the probability that a thermoacoustic mode is unstable.
In practice, P¢ can be simply computed as the portion of samples with positive modal growth
rate values.

In the following, an example is given to demonstrate the application of forward uncertainty
quantification in the current thesis. In this example, a network model (Fig. combined with
a flame impulse response model (Fig. are employed as the thermoacoustic model. Coeffi-
cients of the impulse response model are considered as the uncertain parameters. The Monte
Carlo approach is adopted to propagate flame model uncertainties to the growth rate predic-
tion of the quarter wave mode of the combustor. A visual demonstration of the workflow is
shown in Fig. where the Monte Carlo steps outlined previously are highlighted with the
corresponding numbers.
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Figure 3.4: Estimated distribution of the modal growth rate induced by the uncertain flame im-
pulse response model. The estimation is based on Monte Carlo approach with 20000 coefficient
samples.
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Figure 3.3: A visual display of the workflow of the Monte Carlo approach.

Results of the estimated distribution of the modal growth rate is presented in Fig. [3.4] which
are based on 20000 coefficient samples and an equal number of network model calculations.
Based on the portion of the samples with positive growth rate values, the instability risk Py is
calculated as 24.1%.
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3.2.3 Sampling schemes

As mentioned above, vanilla Monte Carlo method is “sample-hungry”, i.e., it requires a large
number of samples (~ 0(10%)) in order to reach a reliable statistical inference. To reduce the
required number of samples while maintaining the inference accuracy, other advanced sampling
schemes that having better space-filling properties [160] than the simple random sampling are
preferred in practice.

There are two popular types of space-filling strategies:

1. Latin Hypercube sampling (LHS) [161]

To generate M samples for N input variables, this method first divides the range of each
input variable into M equally probable intervals. Subsequently, M sample points are placed
such that each of the M intervals in each dimension are only sampled once. To make this
idea concrete, consider generating 4 LHS samples for 2 input variables x; and x,. Figure
provides one possible way to allocate samples, where there is only one sample in each row
and column. Figure[3.5]is also called Latin square design. When extending this idea to higher
dimensions, a “square” concept in 2D space becomes a “hypercube” in multi-dimensions
space, thus earning its name of Latin Hypercube Sampling.

X
Io ><

X

L1

Figure 3.5: A Latin Hypercube design for two random variables.

2. Low-discrepancy sampling [[162]

Another approach to generating space-filling designs is by using quasi-random sequences.
Those sequences are seemingly random points (thus “quasi”) designed to fill the space as
evenly as mathematically possible. Generally, the uniformity of a set of points is measured by
discrepancy: sampling points forming clumps and leaving voids have high discrepancy val-
ues, while sampling points that leave no large gaps possess low discrepancy values. Hence,
quasi-random sequences are also called low-discrepancy sequences. Due to their extraor-
dinary space-filling capability, low-discrepancy sampling method can often achieve a high
accuracy with far fewer samples, thus effectively decreasing the computational cost when
compared with the vanilla Monte Carlo method. Two popular sampling methods that fall
under this category are Halton sequences and Sobol sequences [38]].

In the following example, sample designs generated by naive random sampling, Latin Hyper-
cube sampling, Halton sequences, and Sobol sequences are compared. To allow convenient
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visualization, only two random variables are considered, each of which follows independent
a uniform distribution within the range of [0 1]. Here it can be seen that naive random sam-
pling forms clusters and leave large gaps within the parameter space. In contrast, LHS and in
particular low-discrepancy sequences display much better space-filling property.
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Figure 3.6: Samples generated by various sampling scheme.

In practice, as a rule of thumb, low-discrepancy sequences are the preferred choice when the
input parameter space is lower than 8 dimensions [38]. For higher dimensions, low-discrepancy
sequences tend to generate samples with strong correlations, with large gaps of unfilled space.
Meanwhile, LHS yields more consistent results across different dimensions. As a result, LHS
is more favored for high input numbers.

Another consideration in practice is sample enrichment, i.e., adding new samples to the existing
designs [163]. In reality, it is rarely the case that a practitioner could foretell the required sample
size for achieving a satisfactory Monte Carlo simulation. As a result, it is imperative that the
practitioner could flexibly generate additional samples based on the analysis results obtained
from the initial sample design. For Halton and Sobol sampling method, sample enrichment
corresponds to selecting the next elements of the respective sequences; for LHS, sample enrich-
ment can be achieved via nested Latin hypercube design [164], so that the enriched sample set
forms a (pseudo-) Latin Hypercube sampling.

3.2.4 Risk mitigation

Risk mitigation aims to eliminate the system failure risk (e.g., thermoacoustic instability risk)
given the input uncertainties [[165, [166]]. One way to achieve this goal is by implementing the
principles of robust design, i.e., carefully selecting design parameters of the system such that
the system output is insensitivity to various input uncertainties [[167]].
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In the context of thermoacoustic instability analysis, risk mitigation serves as a natural second
step after forward uncertainty quantification, where the instability risk is quantified. A visual
comparison of those two types of analyses is shown in Fig.
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Figure 3.7: Uncertainty propagation aims to quantify the modal instability risk, while the goal
of risk mitigation is to eliminate the modal instability risk.

In the current thesis, risk mitigation processes are formulated as an integration of optimization
analysis and UQ analysis, as illustrated in Fig. [3.8] The skeleton of the overall risk mitigation
methodology is an optimization routine, where a global optimization algorithm is adopted to
search for the design parameters which optimize the objective function while conforming to
constraint functions. At its core, an UQ analysis is performed at each optimization iteration
to determine the instability risk given the most recent design parameters and uncertain input
parameters. The calculated risk values are then used to construct objective and constraint func-
tions, thus closing the loop for the overall optimization routine. Therefore, in the overall uncer-
tainty management framework, accurate uncertainty quantification constitutes the cornerstone
for a reliable risk mitigation.
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Figure 3.8: An illustration of the methodology for risk mitigation.
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In the current thesis, three risk mitigation scenarios, i.e., ideal control design, realistic control
design, and tolerance design, are identified for the thermoacoustic instability analysis. In the
following, an example is given to consolidate the concepts of those risk mitigation tasks and
illustrate how they are connected with each other. In this example, a network model (Section
2.2.1) combined with the flame impulse response model proposed by Komarek et al. [[134] (Sec-
tion 2.3.2) are employed as the thermoacoustic model. Flame model parameters 71,01, 751, Ts2
are considered as the uncertain parameters. For 7, and R,,; (the magnitude of the reflection
coefficient at the combustor outlet), their treatment depends on the requirement of the individ-
ual design task. When 7. and R, are fixed to their nominal values, the uncertainty embedded
in 71,01, Tg, Ts2 Would result in instability risks for both quarter wave mode of the combustor
(cavity mode) [133]] and the intrinsic thermoacoustic mode (ITA mode) [133]]. The following de-
sign tasks aims to mitigate the instability risk for both modes by optimizing 7. and the trade-off
between the allowable uncertainty level of 7. and R,,;.

1. Ideal control design (Q1)

“Using . as a control factor, what is the minimum modification of T to eliminate the
instability risk of both cavity and ITA mode simultaneously?”

This task treats 7. as the design variable and it seeks for the minimum modification of 7,
from its nominal value to eliminate the instability risk of both cavity and ITA modes. In
practice, T, can be modified by adjusting the distance between the swirler and the flame
base. For this task, R, is assumed to be fixed to its nominal value.

This optimization problem can be expressed as:

min f(re) = (Te=7c)°
subject to : P](f) (1) <0.1% 3.1
P}C) (Te) <0.1%

min
c

max

T c

ST,<T
In the first line, the optimization objective is given, which is to minimize the modification
of 7. In the following two lines, PP and p© represent the instability risk of cavity mode
and ITA mode, respectively. Note that the goal of eliminating instability risk is formulated
as constraints instead of objectives. The benefit of this treatment is that the well-posedness
of the optimization problem is ensured, i.e., only a single optimum exist. The final line states
the searching range for 7.. Overall, Eq. (3.1) constitutes a single-variable, nonlinear con-
strained optimization problem. Efficient global optimization algorithms, like pattern search
algorithm [[168]], are available to solve Eq. (3.1).

2. Realistic control design (Q2)

“In practice, T, cannot be perfectly controlled. Meanwhile, |R,,;| is also uncertain. How
would these affect the decision made previously”

Compared to the previous task, this task goes one step further towards reality in the following
two aspects: first of all, this task considers the fact that 7. can not be perfectly controlled.
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Instead, it assumes a Gaussian distribution for 7., i.e., T, ~ =/V(T'C,(O.O5T(C’)2). Here, 7. is
assigned to the mean and 5% of 70 is assigned to the standard deviation. This treatment is
more realistic since 7, can be easily affected by the convective velocity in the swirler tube.
Secondly, this task drops the assumption that |R,,;| value is perfectly known. This is also
more realistic since the turbine operating conditions, which largely dictate the |R,,;| value,
are inherently uncertain.

The corresponding mathematical formulations can be expressed as:

min f(7,) = (T, —19?
T

C

subject to: P}D (Te, |Routl) £0.1% 3.2)
P (e, |Rour) <0.1%

Te ~ N (T¢, (0.0572)2)
|Rout| ~ %(RE,R(*])

Here the goal is to optimize the mean value 7, under the constraint that instability risk of
both modes are sufficiently small. The optimization objective is given in the first line, which
is to minimize the modification of 7.. The following two lines states the optimization con-
straints that P and P'© are sufficiently small. Line 4 mimics the situation that 7, cannot be
perfectly controlled and a Gaussian distribution is used to represent its statistical fluctuation.
The final line states that |R,,;| follows a uniform distribution within the known lower bound
Rz and the known upper bound Rz‘]. As a result, in addition to the uncertain 71,071, Ts1,Ts2,
uncertainties embedded in 7. and |R,,;| also have to taken into account when calculating the
modal instability risks. Same as Q1, Eq. (3.2) constitutes a single-variable, nonlinear con-
strained optimization problem. Efficient global optimization algorithms like pattern search
algorithm [[168]] could be adopted to solve Eq. (3.2).

. Tolerance design (Q3)

“Given that the instability risk of both modes are sufficiently small, what are the maximum
allowable uncertain ranges for t. and |Ryy¢|?”

Q3 differs from Q1 and Q2 in that it approaches the risk mitigation from the perspective of
an “inverse problem”: it seeks the maximum permissible uncertain ranges of the parameters
while conforming to the constraints on the modal instability risks. This is beneficial in prac-
tice since it enhances the understanding of the trade-off between the turbine and combustor
operational uncertainties.

The mathematical formulations for this task can be written as follows:
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Oz,
max floz)= 20
min g(Ry) = A
Ry |Rourl®
subject to: P}” (Ter | Rous]) < 0.1% (3.3)

P}C) (Tes [Rousl) <0.1%

Te~ N (TP (04,)%)
|Rout| ~ %(RL»R(*])

This task treats the o, (standard deviation of 7.) and Rz (lower bound of |R,,;|) as the
design variables, as they serve as the indicators for the variational ranges of 7. and |Ryy¢/|.
The corresponding optimization objectives are given in the first two lines of Eq. (3.3)), where
0, 1s maximized (equivalent to maximizing the uncertain range of 7.) while R; is mini-
mized (equivalent to maximizing the uncertain range of |R,,;|). The next two lines are the
usual constraints that the modal instability risks are sufficiently small. The last two lines
of Eq. (3.3) describe the statistical distributions of 7. and |Ryy;|. For 7., a Gaussian dis-
tribution is considered with the mean being 7" !, which is the optimum 7. value obtained
from Q2, and the standard deviation being o ;. For |Ry,|, an uniform distribution is consid-
ered with lower bound Ry and known upper bound R;;. Unlike Q1 and Q2, Q3 constitutes
a multi-objective, multi-variate, nonlinear constrained optimization problems. As a result,
multi-objective global optimization algorithms [[169] are required to determine the Pareto
front [170], which allows a convenient visualization of the trade-offs between those two
objectives.

3.3 Challenges and solutions

This section aims to discuss the major challenges commonly encountered in implementing the
uncertainty management framework and briefly overview the dedicated strategies to alleviate
those challenges that are developed in the current thesis. Detailed descriptions of those strategies
are given in the next two chapters.

3.3.1 High computational cost

Due to the employment of Monte Carlo approach, practical implementation of uncertainty man-
agement framework usually involves repetitively running the simulation code, with different
realizations of uncertain sources as the inputs. As already discussed in Section 3.2.1, Monte
Carlo approach possesses low convergence rate, thus a large number of simulation runs are re-
quired to obtain a reliable estimation of the modal instability risk. Obviously, the resulting high
computational cost would be unbearable for practical usage.

As discussed in Section 3.2.2, space-filling sampling schemes, including Latin hypercube sam-
pling and low-discrepancy sequences, are proposed to reduce the required sample number while
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maintaining the inference accuracy. Compared with the naive random sampling scheme, those
space-filling sampling schemes can achieve higher convergence rate, thus leading to a more
efficient uncertainty quantification.

Additionally, variance reduction sampling strategies [38]] are investigated specifically for cal-
culating the the probability of the output exceeding a certain threshold, such as calculating the
modal instability risk given input uncertainties. Importance sampling [[171] and subset sam-
pling [172] are two popular choices under this category: importance sampling introduces an
auxiliary sampling density that outweighs the instability region. By drawing samples from this
auxiliary density instead of the input probability density, more samples can be allocated in the
importance region (e.g., instability region), therefore reducing the variance of instability risk
calculation and improving the UQ efficiency. For subset sampling, it calculates a series of risk
values with intermediate stability margins. Those intermediate risk values can be then combined
to yield the desired result via conditional probability. Since each intermediate risk calculation
problem is simpler to solve, the overall convergence rate of the subset sampling scheme is much
higher than direct Monte Carlo approach, thus reducing the required number of samples.

Despite the fact that advanced sampling schemes have led to improvement on the efficiency
of performing UQ analysis, they still struggle to meet the needs of practical uncertainty man-
agement, especially for the risk mitigation tasks, where an UQ analysis has to be performed
at each optimization iteration. Under this background, another methodology called “surrogate
modeling” [[173]] has been heavily investigated in recent years and has showed its potential in
delivering accurate and efficient uncertainty management in realistic settings.

Surrogate modeling is strongly connected to the disciplines of machine learning [[174]. It aims
to “learn” a relationship between the inputs and outputs of the computer simulation, and em-
bed this relationship into a surrogate model, which is cheap to evaluate. Afterwards, Monte
Carlo can be directly applied to this cheap-to-run surrogate model, thus potentially saving a
considerable amount of computational budget. As reviewed in Section 1.2, surrogate modeling
techniques like linear regression, polynomial chaos expansion, etc., have already been employed
in accelerating the uncertainty propagation in thermoacoustic instability analysis. The current
thesis has employed Gaussian Processes [175] as the surrogate model to achieve efficient ther-
moacoustic uncertainty management. Technical details of Gaussian Process and its applications
in uncertainty quantification and risk mitigation are discussed in Chapter 4.

3.3.2 Curse of dimensionality

The curse of dimensionality refers to the phenomenon that the computational cost to fit an accu-
rate surrogate model grows exponentially when the number of uncertain parameters increases
[176]]. In thermoacoustic instability analysis, sophisticated flame response models are usually
high-dimensional, such as a flame impulse response (FIR) model with 15 ~ 50 model coeffi-
cients, or a flame describing function (FDF) with tens to hundreds of discrete flame response
data points at different combinations of velocity amplitude and forcing frequency. High dimen-
sionality prohibits a direct construction of the surrogate model to map from inputs to the output
of interest. Therefore, dimensionality reduction techniques [177, [178] are required to extract
only the essential elements from the original high-dimensional inputs, thus facilitating afford-
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able surrogate model constructions.

Broadly speaking, dimensionality reduction techniques can be data-driven or physics-informed.
Data-driven approaches are “black-box” in nature, i.e., they require no insights regarding the
physical system under investigation. By probing the system using carefully selected samples,
data-driven approaches can potentially uncover a low-dimensional representation of the orig-
inal input-output relationship, thus achieving dimensionality reduction. Physics-informed ap-
proaches, on the other hand, relies heavily on a solid understanding of the underlying physical
process. Domain knowledge injected by the physics-informed approaches may significantly
help distinguish the redundancy and the essentials of the input-output mapping, thus realizing
dimensionality reduction.

In summary, data-driven approaches are general applicable to different problems but may
require a significant amount of training samples for each application. Physics-informed ap-
proaches are much more efficient as domain knowledge replaces the role of data in discovering
the low-dimensional manifold, but may only be valid for the specific type of problem under
investigation, thus not general applicable.

The current thesis adopted both a data-drive approach and a physics-informed approach to cir-
cumvent the high-dimensional uncertainty quantification problems commonly encountered in
thermoacoustic instability analysis. Technical details of those approaches as well as their com-
parisons are summarized in Chapter 5.
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4 Surrogate Modeling

As discussed in Section 3.3, one possible way to alleviate the high computational cost associ-
ated with Monte Carlo simulations is the use of surrogate models. Surrogate modeling technique
has its root in machine learning domain. By carefully selecting a small number of training sam-
ples and obtaining their corresponding outputs, surrogate modeling technique aims to construct
a cheap-to-run yet accurate surrogate model that can capture the essence of the input-output
relationship of a potentially expensive computational model. Subsequently, Monte Carlo simu-
lations can be directly applied to the trained surrogate model, thus achieving accurate UQ with
negligible cost. A visual illustration of the surrogate-based forward uncertainty quantification

is shown in Fig.

Various surrogate modeling techniques with their applications in thermoacoustic instability
analysis were reviewed in Section 1.2. In this section, the focus is on the Gaussian Process
(GP) [1'75] models, which is the main surrogate modeling technique adopted in the current the-
sis. GP stands out among other surrogate modeling techniques [179] as it is flexible, accurate,
and most importantly, it provides estimates of the prediction uncertainty at testing locations
[180]. This key feature facilitates a quantification of the modal instability risk calculation [74],
as well as developing active learning scheme to efficiently train the GP model [181].

In the context of thermoacoustic instability analysis, Schneider et al. [[182] proposed a real-time
modeling approach based on GP to estimate the pressure pulsation amplitudes of an annular
combustor. The accuracy of their strategy was further verified on the measured data for various
operating conditions. Chattopadhyay et al. [183),[184] employed GP models to predict combus-
tor instability at untried operational conditions and successfully benchmarked their results with

Input
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Probability

~ 0(10%)
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Figure 4.1: Surrogate models, which are built upon a small number of carefully collected train-
ing data, are capable of enabling highly efficient Monte Carlo simulations.
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Table 4.1: Summary of the technical details of the employed GP models.

Parameter Training sample

Publication Training scheme Reference solver

number number
ASME19 6 102 Space-filling Network model
6 193 . Network model
ASME20 3 53 U-learning Helmbholtz solver
ISC20 5 150 EPE learning  Helmholtz solver

the experimental data. In addition to the thermoacoustic investigations, GP has also been widely
adopted in other domains. An overview of employing GP in the context of surrogate modeling
can be found in [73]]. Applications of GP modeling specifically in robust design can be found
in [185) [186]. Recently, the basic form of GP has been further enriched to possess more ad-
vanced features. For example, gradient-enhanced GP [187-189]], which can assimilate the gra-
dient information of the training samples to further improve the GP accuracy; PCE-enhanced
GP [58, [111], which combines the respective modeling strength of a GP model and a polyno-
mial chaos expansion model, therefore leading to a more accurate and reliable surrogate model;
Multi-fidelity GP [190} [191], which aggregates training data produced by solvers with different
fidelities, leading to a surrogate model with the same accuracy as the high-fidelity solver, while
demanding significantly reduced computational effort; Multivariate GP [192], which trains a
single GP model to estimate multiple correlated outputs. By transferring the knowledge across
related outputs, Multivariate GP has the potential to achieve improved prediction quality.

In the following, the fundamentals of GP modeling are briefly reviewed, followed by intro-
ducing three different GP model training schemes. Details of the GP models employed by the
included publications are summarized in Table d.1]

4.1 GP fundamentals

For supervised machine learning, the goal is to train a surrogate model based on the collected
training dataset & = {(x?, f (x)),i =1: N}, and predict the function output f* € RN"*1 at the
test dataset X* € RN *D , where N* denotes the number of testing locations and D denotes
the dimension of input vector x. Common techniques to construct the surrogate model is by
assuming a parametric representation for the function f and focus on identifying the underlying
surrogate model parameters 6. In contrast, Gaussian Process take a different approach: it defines
a Gaussian prior over the function f and uses training dataset & to update the assumed prior to
arrive at the posterior over the function f.

4.1.1 GP formulations

In practice, the Gaussian prior is defined over the function values at an arbitrary set of points
X1,.., XN, such that each f(x;) is a random variable and their ensemble f(x;),..., f(xy) follows
a multivariate Gaussian distribution. f(x;),..., f(xn) constitutes a realization of the Gaussian
Process, which is defined as an infinite collection of random variables, where any finite number
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of them follows a multivariate Gaussian distribution [[175]]. This connection between Gaus-
sian processes and joint Gaussian random variables significantly enhances the mathematical
tractability and makes GP a very popular surrogate modeling technique.

Due to the assumption of a GP prior, the distribution of the ensemble f = (f(xy,..., f(xn)) is
fully characterized by a mean function p(x) and a covariance matrix K, i.e.,

wx) =E[f(x)], 4.2)
Kij =E[(f(x;) — p(x)) (f (x;) — u(x))], 4.3)

where K;; denotes the elements of the covariance matrix K. In practice, the mean p(x) is simply
set as some unknown constant 71, since the GP is flexible enough to model the mean arbitrarily
well. For the covariance matrix K, a kernel function x (x;, x;) is employed to define its elements
K;;, which governs the spatial correlation between inputs x at different locations.

Suppose one has observed a training dataset 2 = {(x/, f(x)),i = 1 : N} and aims to predict
[ at the test dataset X*. Firstly, notice that by the definition of Gaussian process, the joint
distribution of f and f* has the following form:

ol (& E)

where K = x(X,X) € RV*N represents the covariance matrix between the training samples,
K* = x(X,X*) € RN*N" represents the covariance matrix between the training samples and
the testing samples, K** = x(X*,X*) € RN *N" represents the covariance matrix between the
testing samples. By resorting to the standard formulas for conditioning Gaussian distributions
[97], the distribution of f* given the observed training dataset can be written as:

p=m+KTK(y-1m) 4.5)
Z* — K** —K*TK_IK*,

where p* can be used as the prediction mean and £* describes the corresponding prediction
uncertainty. 1 here denotes a vector of ones of dimension D.

The kernel function x (x*, x/) constitutes a crucial ingredient for a GP predictor, as it is a measure
of the “similarity” between the function outputs at two different predicting locations. To be
eligible as a kernel function, x (x, x") must be symmetric and positive definite. For mathematical
convenience, the kernel function is often assumed to be stationary, meaning that the magnitude
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of the kernel function solely depends on the shift between the inputs:

x(x,x)=x(x—-x). (4.6)

In addition, the multi-dimensional kernel function x(x — x') is often assumed to be constructed
as a tensor product of one-dimensional kernel functions:

D
K(x—x) =[] xi(x; — x5). 4.7)

i=1

This treatment has a direct physical implication as it allows tailored correlation structures for
individual input parameter, which may convey very different physical meaning. Popular choices
for the kernel function include cubic kernel, exponential kernel, Gaussian kernel, as well as
Matérn kernel. A comprehensive discussion and comparison of various kernel functions can be
found in [1735]].

In the current thesis, the Gaussian kernel function [[193] is adopted for GP model building. This
kernel function can be written as the follows:

D
— Y Oxlxx—xp)°
k=1

x(x,x") = oexp , (4.8)

where o2 denotes the process variance and 0} represents the hyperparameter that controls the
spatial correlation strength between the predicting locations within dimension k [173]. Figure
illustrates how the choice of 6 affects the correlation. It can be seen that a low 0 value
signifies a low rate of decay of correlation in the corresponding dimension, thus suggesting
that the function f is rather “inactive” along that dimension. On the contrary, a high 0 value
signifies a high rate of decay of correlation in the corresponding dimension, thus suggesting
that the function f is rather “active” along that dimension. By inspecting the elements of 0, it
is possible to rank the importance of the input variables, which could be helpful in terms of
performing sensitivity analysis or dimensionality reduction.

4.1.2 Hyperparameter estimation

In practice, the kernel parameters o and @ as well as the constant mean function m are esti-
mated from the training data. Towards that end, an empirical Bayes approach [97] is adopted to
find the parameters such that the likelihood of obtaining the observations is maximized. For any
given parameter set (m, 02,0), the likelihood function L can be obtained from Eq. @.1):

1 _
L(y|X,m,0%,0) = Xp —ﬁ(y—lm)TR Yy-1m)|, (4.9)

o) PR

where R;; = exp[— Zle Hk(x,"c—xi)z], which is also known as the correlation matrix. In practice,
the logarithm of Eq. (4.9) is maximized instead to avoid round-off error:
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Figure 4.2: Correlation strength varies with different values of 6.

D D 1
log(L(y|X, m,0%,0)) = — Eln(Zn) - Eln(az) -3 In(|R))

1
——y-1m)' R (y-1m). (4.10)
20
Analytical expressions exist for the optimum values of m and o:

m=0TR'H1TR 1y 4.11)

—~ 1
aZ:B(y—lm)TR‘l(y—lm), (4.12)

which are obtained by setting the derivatives of Eq. (4.10) with respect to m and ¢ to zeros.

For 0, its estimation requires solving an auxiliary optimization problem:

~ D — 1
0 = argmax |——In(c?)— =In(|R|)|. (4.13)
0 2 2

The optimization problem expressed in Eq. (4¢.13) can be solved either via local search meth-
ods (e.g., gradient-based approaches) or global search methods (e.g., evolutionary algorithms).
Local optimization methods tend to converge faster and require only fewer objective function
evaluations, but may only yield local minima that lead to an inaccurate GP model. Global op-
timization methods involve a significantly higher computational cost, but may be more robust
against local minima and able to locate the global minima. In the current thesis, a multi-start
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global optimization approach [194] is adopted to estimate the optimum 6. This approach ini-
tially generates an array of feasible values of . Subsequently, local optimizers are run starting
from each of the initial @ value. Finally, the 8 value that yields the minimum objective function
value is considered to be the optimum.

It is worth mentioning that numerical instability issues usually emerge when inverting the R
to calculate the likelihood function L. This issue is especially prominent when the distances
between the training samples x; are small. To circumvent this problem, a nugget term 9 is
conventionally added to the main diagonal of R [1935], such that

Rij=1+17. 4.14)

An example of training a GP model to approximate the function y = xsin(x) is illustrated in Fig.
@ For that case, a total of 5 samples are chosen at x = 0,2,4,6,8, respectively. The Gaussian
kernel (([#.8)) is adopted for the model training. The associated hyperparameters o2 and 6 are
estimated via employing a hybrid Genetic Algorithm [193]], where the final solution of the
Genetic Algorithm [196]] is used as a starting point for an Interior point local optimization
approach [197]]. In addition, a nugget 9 = 10719 is used in to avoid numerical instability
issues in matrix conversion.

Three main characteristics of the GP model can be observed in Fig. first of all, GP model
perfectly interpolates the training data, i.e., GP predictions exactly pass through the correspond-
ing function values at the training samples with zero uncertainty. Second, the prediction uncer-
tainty estimated by the GP model increases as it moves further away from the training data.
Finally, GP model is not reliable when performing extrapolation, which is evident in the re-
gion of 8 ~ 10. As a consequence, if possible, GP model should only be used for performing
interpolation.

4.2 GP training schemes

The prediction quality of the GP model relies heavily on how the training samples are allocated
in the input parameter space. In practice, it is difficult to predict how many samples are required
to train a satisfactory GP model, as the sample number depends on the investigated parameter
number and their ranges, as well as the complexity of the function that the GP model aims
to approximate. Considering the potentially high computational cost associated with obtaining
the training dataset, it is often preferable to adopt a sequential sampling scheme for GP model
training, i.e., new training samples are sequentially added to the current training dataset. In the
current thesis, three different sequential sampling schemes are employed to train the GP model:
Section 4.2.1 discusses a training scheme that sequentially enrich the training dataset by filling
the input parameter space. Section 4.2.2 introduces a training scheme that actively learns the
“landscape” of the underlying function by sequentially allocating new samples to the location
where maximum GP prediction error is expected. Finally, Section 4.2.3 explains another active
learning scheme that is specifically designed for achieving reliable risk calculations.
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15}

Figure 4.3: A GP model is trained to approximate the one-dimensional function y = xsin(x).
The red dashed line is obtained via directly evaluating the function, the red dots are the training
samples, the black line is the GP predictions, and the shaded area is 95% confidence interval
estimated by the GP model.

4.2.1 Space-filling scheme

A naive way to distribute training samples is to allocate them as evenly as possible in the input
parameter space, so that the obtained training samples are representative of all the regions in the
parameter space. Since this space-filling scheme distributes computational effort evenly over
the entire parameter space, oversampling may happen in the regions where f displays rather
“regular” behavior, while undersampling may happen in the regions where f displays rather
“irregular” behavior. As a result, a potentially large number of training samples may be required
to train a GP model with sufficient accuracy.

In practice, low-discrepancy sequences are usually employed to ensure that training samples can
be added sequentially. In paper-ASME19, the Halton sequence is adopted to generate training
samples. As introduced in Section 3.2.2, the Halton sequence possesses excellent space-filling
property and its construction naturally allows sample enrichment. To determine when to termi-
nate the sample enrichment process, the leave-one-out cross-validation (LOOCV) error [98] of
the GP model is monitored during the training process. LOOCYV error estimates the generaliza-
tion error of the GP model, which can be written as:

D . —~ .
Loocvzlz (y’—f(‘”), (4.15)
Dizl

where D is the total number of training samples, y’ denotes the known function output at x, and
f9 denotes the prediction at x* via the GP model constructed upon all the training samples
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Figure 4.4: Workflow of employing space-filling scheme to sequentially train a GP model.

except (x’, y%). A saturated LOOCYV error indicates that the GP model training has converged.

The workflow for using the space-filling scheme to train GP model is given as follows. A visual
illustration is given in Fig.[4.4]

Step 1: Use Halton sequence to determine the initial sampling plan and calculate the corre-
sponding function outputs of those initial samples. As a rule of thumb, Loeppky et al. [198]
suggested 10 samples for each input variable are required (= 10D) when using GP to approxi-
mate the target function. Empirical experience shows that a third of 10D is a good candidate for
the initial sample size [85].

Step 2: Train the GP model based on the generated training samples.

Step 3: Calculate the LOOCYV error to judge the prediction accuracy of the newly trained GP
model.

Step 4: If the calculated LOOCYV error is above the pre-defined threshold, add one more sample
to the current training dataset using Halton sequence.

Step 5: Repeat Step 2 to Step 4 until the LOOCYV error satisfies the required prediction accu-
racy.

Paper-ASME19 follows the above-mentioned workflow to train GP models to approximate an
acoustic network model. For 6 input variables, a total of 102 samples are used to reach the target
prediction accuracy. The GP models trained in paper-ASME19 are used to tackle various robust
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thermoacoustic design tasks. More details are provided in Section 3.2.3.

4.2.2 [EPE-learning scheme

Compared with the naive space-filling scheme, a more efficient way to distribute training sam-
ples is by allocating the new sample to the location where GP has the largest prediction error
[199]. This is possible since GP model naturally estimates the prediction variance (Eq. (4.5))),
which serves as an indicator of the expected prediction error. This sampling scheme is in direct
contrast to the naive space-filling scheme in that it actively searches for the regions inside of
the parameter space where the GP model has not yet reached a satisfactory prediction accuracy.
As a result, more samples will be allocated to the regions where f displays complex behaviors,
while fewer samples will be allocated to the flat regions of f.

The key ingredient for performing the active GP training is the learning function, which selects
new samples based on pre-defined learning criterion. For the current learning scheme, the em-
ployed learning criterion is to select the next sample that maximizes expected prediction error
(EPE) [200]. EPE is derived from the bias-variance decomposition that is well-known in the
field of machine learning. The EPE criterion balances the local exploitation and the global ex-
ploration of the input parameter space: local exploitation tends to allocate samples in regions
with large prediction errors, while global exploration tends to allocate samples in unexplored
regions associated with large prediction variance [173]]. By assimilating information from both
prediction bias and prediction uncertainty, EPE criterion is able to gather very informative sam-
ples and has the potential to significantly improve the GP model training efficiency. Effective-
ness of the EPE criterion has been benchmarked for functions with diverse characteristics [200].
Here, a brief derivation of the EPE expression is given in the following. Thorough discussions
regarding the properties of EPE can be found in Liu et al [200].

Consider the prediction error in a squared form:

Lx) = (y(x) —94P(x))?, (4.16)

where y(x) is the observed function output at x and 4% (x) is the GP prediction at the same
location. The expected value of prediction error can be written as:

ELZ(x)] =(E[y(x)] - E[92(x)])?
+E[(G 2P (x) —E[92P(x)])%]
+E[(y(x) —E[y(x)])?], (4.17)

where the first term on the right-hand side is the bias term, which represents the average differ-
ence between the GP prediction and the actual function output; the second term is the variance
of the GP prediction (Eq. (4.5))); the third term is the noise of the data. Since the current thesis
only considers deterministic thermoacoustic models, i.e., each run of the thermoacoustic mod-
els with the same inputs will yield the exact same output, this term equals zero. Therefore, Eq.
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(4.17) can be re-organized to obtain the desired EPE expression:

EPE(x) = (y(x) — 92 (x))* + var(x) . (4.18)
\ 7 PR 2/
bias? variance

In practice, to evaluate EPE value at an arbitrary location x, the variance term in Eq. (4.18]) can
be directly obtained from Eq. (4.3). However, for the bias term, since the true function output
y(x) is unknown, it has to be estimated from the current training data and the trained GP model.
In the current thesis, LOOCYV is adopted to estimate the bias term with the following steps:

Step 1: the cross-validation errors at all training sample locations x’ are estimated as

e2y(xh) = (y(x) - Fi')?, i=1,2,..,N, (4.19)

Step 2: For an arbitrary location x, its closest (in terms of Euclidean distance) training sample
is identified and the corresponding cross-validation error is assigned to e%v(x):

eZCV(x):eZCV(xi), minlx—xil i=12,..,.N (4.20)
1

By replacing the bias term with the cross-validation error, the final EPE expression can be
written as:

EPE(x) = eZCV(x) + var(x). 4.21)

To avoid the potentially high computational cost associated with optimizing Eq. (4.21) over
continuous x, in practice, a pool of pre-generated candidate samples (~ 0(10%)) is usually em-
ployed, so that the EPE criterion only has to be applied to those discrete candidate samples and
the sample with the maximum EPE value is chosen as the new enrichment sample. The can-
didate samples are usually generated via space-filling sampling scheme (e.g., Latin Hypercube
sampling) to ensure that they are representative of the function over the entire parameter space.
The workflow for using the EPE-learning scheme to train the GP model is given as follows. A
visual illustration of the workflow is given in Fig. #.5]

Step 1: Generate L samples Xy as a pool of candidate samples for sample enrichment.

Step 2: Generate m initial training samples using space-filling sampling scheme. Employ ther-
moacoustic solver to calculate their corresponding modal eigenvalue.

Step 3: Construct the initial GP model using the collected training dataset.

Step 4: Based on the current GP model, calculate the EPE values of the candidate samples Xy
using Eq. (4.21)), identify the sample with the largest EPE value, enrich the current training
dataset with this sample, employ thermoacoustic solver to calculate its corresponding modal
eigenvalue.

Step S: Update the GP model with the enriched training dataset.
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Figure 4.5: Workflow of employing EPE-learning scheme to sequentially train a GP model.

Step 6: Repeat Step 4 - Step 5 until the current largest EPE value drops below 5% of the largest
EPE value recorded in the first iteration.

Paper-ISC20 follows the above-mentioned workflow to train GP models to approximate a 3D
Helmholtz solver. For 5 input variables, a total of 150 samples are used to reach the target
prediction accuracy. The GP models trained in paper-ISC20 are used to construct surrogate
equations to achieve dimensionality reduction for performing thermoacoustic UQ problems
involving high-dimensional flame models. More details are provided in Section 5.3.

4.2.3 U-learning scheme

Computing thermoacoustic modal instability risk P constitutes one of the major goals in the
current thesis. Py is defined as the probability that a thermoacoustic mode is unstable, under the
influence of various input uncertain parameters. In surrogate-model-based Monte Carlo simu-
lation, Pf can be expressed as:

1 nmc
Pr=— ) I(fx'), (4.22)
nMmc =1

where nyc denotes the total number of Monte Carlo samples, x’ represents the ith Monte
Carlo sample, and f(x") is the GP prediction of the modal growth rate value at x*. I(x) is an
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indicator function that equals zero if x < 0 and equals one if x > 0. In Eq. (4.22)), GP prediction
f(xi) is uncertain according to Eq. (4.5). As a consequence, those uncertain GP predictions will
propagate through Eq. (#.22), resulting in an uncertain Py. However, note that only the sign
of f(xi) contribute to the Py calculation in Eq. (#.5). Therefore, not all uncertain f(xi) will
lead to a change in Py calculation, only the samples that are close to the stability margin, i.e.,
samples with f(xi) values close to zero. This observation suggests that when constructing the
GP model, instead of improving the GP prediction accuracy everywhere inside of the parameter
space, which is the goal of the space-filling scheme and the EPE-learning scheme, efforts should
be put into making GP model particularly accurate in the vicinity of the stability margin.

Towards that end, the U-learning scheme [201] is adopted to sequentially allocate training sam-
ples in the vicinity of the stability margin. The workflow of the U-learning scheme is the same
as the EPE learning scheme, except a U learning function is used instead of the EPE learning
function. The U-learning function is expressed as follows:

_ | (%)

U(x) )

(4.23)

where p(x) denotes the mean of the GP prediction at x and o(x) denotes the corresponding
standard deviation of the prediction.

U (x) is closely linked to the concept of probability of misclassification P,,(x). For a Monte
Carlo sample x’, misclassification happens when the true function output at x’ is negative
whereas the corresponding GP prediction is positive, or vice versa. For the first situation, the
probability of misclassification can be written as:

Ppu(x) = @ [——” S (4.24)
o(x)
and for the second situation:
(x)
Pp(x)=0|——]|. (4.25)
o(x)
Combining Eq. (4.24)-(4.29), the probability of misclassification can be derived as:
| (x)]
Pp(x)=® |- | =®[-U ). (4.26)
o(x)

At each learning iteration, the candidate sample with the minimum U value is selected to enrich
the current training dataset, as a smaller U(x) value indicates a higher probability of misclas-
sification according to Eq. (4.26)). In addition, as can be seen in Eq. (4.23)), samples that are
either close to the stability margin or with large prediction uncertainties tend to be selected by
the employed learning scheme. Therefore, Eq. also balances between local exploitation
and global exploration, as demonstrated by the EPE criterion in Eq. (4.21). A visual illustration
of the U-learning scheme is demonstrated in Fig. 4.6
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Figure 4.6: Workflow of employing the U-learning scheme to sequentially train a GP model.

Paper-ASME?20 employs the U-learning scheme to train GP models to approximate an acoustic
network model and a 3D Helmholtz solver, respectively. For the network model case, 6 input
variables are considered and a total of 193 samples are used to reach the target prediction accu-
racy. For the Helmholtz solver case, 3 input variables are considered and a total of 53 samples
are used to reach the target prediction accuracy. The capability of the U-learning scheme is fur-
ther compared with the naive space-filling scheme in the network model case study. There, two
GP models are trained respectively via those two learning schemes, and subsequently employed
to derive the PDF of the P¢ of the cavity mode. Exact same number of training samples (193)
are used by both learning schemes. The predicted PDFs are compared in Fig. It can be
seen that the U-learning scheme is able to make better use of the computational resources and
significantly improves the accuracy and robustness of the P¢ calculation, with prediction mean
much closer to the reference risk value and prediction variance much smaller than the naive
space-filling training scheme.
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Figure 4.7: Given the same number of training samples, the U-learning scheme produces a more
accurate and less uncertain Py calculation.
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As higher fidelity of thermoacoustic instability analysis is actively pursued in the community,
more sophisticated and realistic flame response models are being employed, featuring a high
number of model parameters. Performing uncertainty management for those flame models is
challenging since the usual surrogate modeling techniques cannot be directly adopted without
modification: due to the curse of dimensionality [87]], the computational cost would be pro-
hibitive to directly construct a surrogate model to map from the flame model parameters to the
output of interests (e.g, modal frequency and growth rate). Under this circumstance, it is neces-
sary to employ dimensionality reduction techniques beforehand to extract the essentials of the
investigated input-output relationship, reduce the problem dimensionality, and pave the way for
subsequent surrogate-based UQ analysis.

In the current thesis, three different strategies have been developed to deliver efficient high-
dimensional UQ analysis for thermoacoustic instability analysis. This chapter is organized as
follows. Section 5.1 overviews the Active Subspace approach employed in paper-ASME1S, Sec-
tion 5.2 introduces an analytical dimensionality reduction strategy developed in paper-ISCI8.
The connections between the Active Subspace approach and the current analytical approach are
highlighted. Finally, Section 5.3 discusses a surrogate-based iterative scheme, which handles
high-dimensional thermoacoustic UQ problems in a novel way. The first two sections focus on
propagating uncertainties from the flame impulse response (FIR) model to the modal growth
rate predictions, while the final one considers high-dimensional flame models in general. For
all sections, theory is presented first, followed by illustrating the results obtained via case stud-
ies. Table provides an overview of the dimensionality reduction techniques adopted in the
current thesis.

Table 5.1: Summary of the employed dimensionality reduction techniques.

— Dimensionality reduction Flame Input Sample Reference
Publication . . .
technique model dimension number solver
ASMEI18 Active Subspace FIR 16 400 Network model
ISC18 Analytical FIR 16 6 Network model
FIR 68
ISC20 Surrogate-based FDF 573 150  Helmholtz solver
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5.1 Active Subspace

5.1.1 Theory

In general, dimensionality reduction approaches can be subset-based or subspace-based [202].
Subset-based approaches seek and preserve an important subset of the input parameters based
on sensitivity analysis. In contrast, subspace-based approaches seek a low dimensional space,
which captures the essence of the input-output relations. By projecting the full dimension sys-
tem into the low dimensional space, dimensionality reduction is achieved while all the original
input parameters are preserved. The Active Subspace approach belongs to this category [64] and
has been successfully applied in various engineering problems [203-206]].

In theory, the Active Subspace approach identifies directions in the high-dimensional input pa-
rameter space, such that the output of interest varies the most along these directions. In practice,
those directions can be detected by evaluating the gradients of the function at a set of input sam-
ples. To exploit those identified directions, firstly, the inputs are projected onto these directions
to obtain the so-called “active variables”, which constitute a low-dimensional portray of the
original high-dimensional system. Subsequently, surrogate models can be directly built upon
those active variables to approximate the system under investigation. More details on its math-
ematical derivations can be found in Constantine et al. [207].

Figure [5.1] provides an example of how Active Subspace approach is used to identify a low-
dimensional structure of the target function y = e®!*1702%2_In this example, the investigated
function has two input parameters, therefore the input dimensionality is two. By inspecting

the contour of the function, it can be observed that along direction [ the output varies the

—

most, while in the orthogonal direction of [ the output stays fixed. Active Subspace approach
identifies this direction [ in the input parameter space, and uses this direction to construct an
active variable AV, which appears as a linear combination of the inputs. This active variable
AV captures the essences of the investigated input-output relation, since when the value of the

—

active variable is fixed, meaning that x; and x, can only vary in the orthogonal direction of [/,
output y will also stay the same. Subsequently, one can train a surrogate model only based on
the identified active variable. Therefore, in this case, the problem dimensionality shrinks from
2to 1.

In the following, details on practical implementation of the Active Subspace approach are given.
Here, g = f(x) denotes the investigated input-output relation, where g € R represents the scalar
quantity of interest, and x € R” represents a m—dimensional input vector.

Step 1: Normalize the input parameters to be centered at zero with equal ranges.
Step 2: Draw M samples of x according to the distribution of x.

Step 3: For each sample x?,i = 1,2,..., M, compute the gradient v f(x?). For a simulation
code equipped with an adjoint solver, computing gradients is straight-forward. When an adjoint
solver is not available, approximated gradients can be obtained via local linear regression.

Step 4: Compute the covariance matrix of the gradient vector and perform eigenvalue decom-
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y = (0.12140.222)
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Figure 5.1: Active Subspace approach is employed to identify a low-dimensional representation
of the investigated toy function. Contour of the function is shown on the left.

position:

M .
C= 1\_14 S vFa?) v T ) = waw?, (5.1)
i=1

where W is the matrix of eigenvector and A = diag(A4,...,A;;) is the diagonal matrix of eigen-
values ordered in decreasing order.

Step 5: Plot eigenvalues Ai,...,1,, and look for “gaps”. A prominent gap in the eigenvalues
indicates a separation between active and inactive subspaces. The dimension n of the active
subspaces is chosen, which equals the number of eigenvalues before the most prominent gap
happens.

Step 6: A corresponding partition of the eigenvector matrix can be made W = [W;, W,], where
W; only contains n eigenvectors corresponding to the first n eigenvalues. The active variables
can then be defined as H=W;x.

Step 7: Subsequently, a surrogate model can be built § ~ f(H), which takes in active variable
H and approximates f:R™ — R.

Step 8: To quickly evaluate the response g* of any given x*, firstly, its corresponding active
variable values are calculated H* = Wx*. Subsequently, the trained surrogate model is em-

N

ployed calculate the approximated response §* = f(H").

5.1.2 Case study

In paper-ASMEIS, the Active Subspace approach is adopted to discover the low-dimensional
representation of the relationship between FIR model coefficients and modal growth rate values.
The network model and the FIR model introduced in Chapter 2 are considered in the current case
study. Here, the focus is on quantifying the variation of the growth rate value of the combustor
quarter wave mode induced by the uncertain FIR model. Under the nominal values of the FIR
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Figure 5.2: Application of the Active Subspace approach to derive the growth rate uncertainty
induced by the uncertain FIR model. In the figure, AS denotes the number of training samples
required by the Active Subspace approach, MC denotes the number of Monte Carlo samples,
GR is short for growth rate.

model coefficients, this mode has a frequency of 434.2 Hz and a growth rate value of -4 rad/s.
Since this mode is only marginally stable, it may become unstable when taking into account the
FIR model uncertainty.

This FIR model has 16 coefficients, making it eligible to be considered as a high-dimensional
UQ problem. Directly building a surrogate model to link those FIR model coefficients to the
modal growth rate value would induce prohibitive computational cost. Therefore, it is beneficial
to perform dimensionality reduction beforehand to alleviate the difficulty encountered by the
surrogate model training process. Towards that end, Active Subspace approach is employed to
find linear combinations of FIR model coefficients, such that along those linear combinations
the growth rate values vary the most.

Paper-ASMES8 has adopted the procedures outlined in the previous section to perform Active
Subspace identification. Since direct calculations of the gradient of the growth rate value against
the FIR model coefficients is unavailable at the time, local linear regressions are used instead to
approximate the required gradients. An visual illustration of the overall workflow of the Active-
subspace-based Monte Carlo is demonstrated in Fig.[5.2]

Figure displays the calculated eigenvalues in descending order. It is clear to see that there
exist a prominent gap between the first and second largest eigenvalues. This result suggests that
only the first eigenvector (shown in Fig. [5.3b) needs to be retained to construct a single active
variable. As a result, significant dimensionality reduction is achieved which shrinks the current
UQ problem from 16-dimensional to just one-dimensional.

To visualize the relation between the growth rate value and the corresponding active variable
value for each sample, sufficient summary plot is depicted in Fig. [5.4] It can be seen clearly
that a strong univariate relationship is presented, which further confirms that the identified
one-dimensional approximation is sufficiently accurate to represent the original input-output

mapping.
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Figure 5.3: (a) The calculated eigenvalues in descending order. A prominent gap exists between
the first and second eigenvalues, which signals a one-dimensional active subspace exist. (b) The
components of the first eigenvector, which will serve as the linear combination coefficients to
form a single active variable.

w
o

N
o

)

o°

Growth Rate (rad/s)
S o

N}

(=]

(5]
(o]

&
, ©
EN
]
N
ot
N
N

Active Variable

Figure 5.4: Sufficient summary plot to show the relationship between the modal growth rate
value and active variable value for each sample.
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Figure 5.5: Comparison of the calculated probability density function of the modal growth rate
values. ASA and DMC stand for Active Subspace approach and direct Monte Carlo, respec-
tively.

Subsequently, surrogate models can be built to fit the trend depicted in Fig. 5.4} Since there
exist only one active variable and the correlation between the active variable and the modal
growth rate value is very strong, many surrogate modeling techniques are applicable to yield
sufficiently accurate results. In paper-ASMEIS, a simple quadratic regression model is fitted to
describe the trend shown in the Fig.[5.4]

Once the surrogate model is trained, the following Monte Carlo procedure can be directly ap-
plied to the constructed surrogate model to achieve accelerated UQ analysis. The probability
density of the modal growth rate value predicted by the surrogate model matches perfectly with
the results obtained via applying Monte Carlo directly to the network model (as shown in Fig.
5.3), thus indicating the accuracy of the Active Subspace approach. In terms of the compu-
tational cost, Active Subspace approach consumes a total of 400 samples (i.e., 400 times of
network model calculations) to uncover the one-dimensional structure. Subsequent uncertainty
propagation involves no extra cost. On the other hand, direct Monte Carlo approach based on
network model takes 20000 network model calculations to obtain fully converged statistical
indices. Therefore, a 50-fold increase in computational efficiency is achieved by the Active
Subspace approach in the present case.

5.2 Analytical approach

The Active Subspace strategy developed in the previous section has two major limitations that
are undesirable in practical applications. First of all, the identified active variable (Fig. [5.3b)
may only be valid for the specific FIR model under investigation. As a consequence, each time
when a new uncertain FIR model enters into analysis, another ~ 400 of thermoacoustic solver
calculations would be required to re-identify the associated active variable(s). Secondly, when
the FIR model under investigation has a larger number of coefficients, the computational cost
required by Active Subspace to identify the low-dimensional structure would also increase sig-
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Figure 5.6: The sketch of (a) a two-coefficient FIR model and (b) its corresponding phasor plot
of FRF.

nificantly. Nevertheless, the observation that a one-dimensional subspace exists that can com-
pactly summarize the relationship between the high-dimensional FIR model coefficients and the
modal growth rate is very encouraging and may serve as the inspiration for developing an ana-
lytical dimensionality reduction UQ strategy. Under this background, paper-ISC18 approaches
the problem from an analytical point of view and aims to uncover the physical interpretation of
the active variable. The goal of the current work is to derive an analytical dimensionality reduc-
tion scheme to realize accelerated uncertainty propagation from the FIR model coefficients to
the modal growth rate predictions.

5.2.1 Theory

The foundation of the current analytical strategy lies on the phasor plot of the flame frequency
response function (FRF). An illustration of how to translate a simple two-coefficient FIR model
into the corresponding phasor plot of FRF is given in Fig. Here, F(w°) is written as follows:

F(a)o) _ hle—iAtwO n hge_i(ZAt)“’o, (5.2)

where w° is the nominal modal frequency calculated by feeding the nominal h; and h, values
into the acoustic solver.

When the FIR model coefficients are uncertain, any variations in the coefficient will change the
length of the respective phasor, which subsequently will change the length and the direction of
the F(w®) phasor (as shown in Fig. . For samples of FIR model coefficients that produce
the same growth rate values, the head locations of their corresponding F(w°) phasor forms the
iso-growth lines in the phasor plot of FRF.

To derive the distribution pattern of the iso-growth lines in the phasor plot of FRF, paper-1SC18
starts from the characteristic equation of the thermoacoustic feedback loop (illustrated in Fig.
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Figure 5.7: The thermoacoustic closed-loop network.

Fo+jw)=HO+jw) w0,0eR, (5.3)

where H denotes the acoustic transfer function and % denotes the flame transfer function, which
is represented by a FIR model with arbitrary number of coefficients.

By performing a Taylor expansion analysis on Eq. (5.3), it can be proven that to first order,
the iso-growth lines in the phasor plot of FRF are parallel straight lines, with the line direction
1= (GY,GY) given as:

L-1

GY=0H,/0w|’+ Y hf(k+ DAtsin[(k+1)Arw°] (5.4)
k=0
L-1

G) =0H;/10w|° + Y h}(k+1)Atcos[(k+ 1A, (5.5)
k=0

where H, and H; denote the real and imaginary part of the acoustic transfer function, respec-
tively, and L denotes the number of FIR model coefficients. Here, it can be seen that the com-
ponents of this direction are determined by (1) the employed FIR model (hz), (2) combustor
geometry or boundary conditions (H, and H;), as well as (3) the specific thermoacoustic mode
under investigation (w?).

The derived distribution pattern of the iso-growth lines in the phasor plot of FRF is the key to
accelerate the targeted UQ analysis. As illustrated in Fig. [5.9] the variation of each coefficient
can modify the modal growth rate value individually. However, what ultimately governs the
modal growth rate change is the sum of the projection of the phasor (/2 — hg)e_i(’”l)m‘“0 on the
normal direction of the iso-growth lines. This projection sum, denoted as Y in Fig.[5.9] can be
formally written as:

=l h hO i(k+1D)Atw® n 5.6
Y = - - -—, .
koo nl >0

where n = (G?,—G(r)) represents the normal direction of the iso-growth lines. Later on, it is
possible to construct a surrogate model to map from this single variable Y to the corresponding
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Figure 5.9: Visual demonstration of the causal relationship between the variations of FIR model
coefficients and the variations of modal growth rate.

modal growth rate value, and subsequent Monte Carlo procedures can be directly applied to
this univariate surrogate model to significantly improve the efficiency of the UQ analysis. A
step-by-step illustration of the workflow of the proposed analytical UQ approach is given in

Fig.[5.8]

The proposed analytical approach is essentially a dimensionality reduction UQ strategy: Y ap-
pears as a linear combination of FIR coefficients hyj, thus encapsulating compactly the causal
relationship between the variation of hj’s and the variation of the modal growth rate value. As
a result, the surrogate model can be built upon a single variable Y, instead of L FIR model
coefficients. Therefore, the dimensionality of the current UQ problem shrinks from L to just
one.
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Figure 5.10: Iso-growth lines in the phasor plot of FRF. Black lines are the iso-growth lines
calculated by the proposed analytical approach. The colored contours of the growth rate value
are predicted by the network calculations. The black arrow line indicates the F(w®) phasor
evaluated by using the nominal values of hj’s.

In addition, the derived analytical scheme has opened the “black-box” and shed lights on under-
standing the dimensionality reduction results yielded by Active Subspace approach. As a matter
of fact, one-to-one correspondences can be established between the results obtained by Active
Subspace approach and the current analytical strategy: (1) the previously identified active di-
rection can now be conveniently visualized in the phasor plot of FRF and corresponds to the
normal direction of the iso-growth lines n = (G?, —G(r’); (2) the previously identified active vari-
able corresponds to Y in Eq. (5.6)); (3) the linear combination coefficients that constitutes the
active variable correspond to the projections of the phasor (i — h%)e‘i('”lm“"0 on the normal
direction of the iso-growth lines. Since all the essential elements produced by the Active Sub-
space approach can now be retrieved analytically, the overhead cost of using samples to identify
the new active variable for a new FIR model can be avoided, thus significantly expanding the
applicability of the current dimensionality reduction UQ scheme.

5.2.2 Case study

The case study investigated in Section 5.1.2 is revisited here. The same acoustic network model
and flame impulse response model are employed. Instead of using the Active Subspace ap-
proach, the newly derived analytical scheme is employed to reduce the problem dimensionality
and accelerate the targeted UQ analysis.

As a first step, the distribution pattern of the iso-growth lines in the phasor plot of FRF is as-
sessed. In Fig. [5.10]iso-growth lines predicted by the acoustic network model and the developed
analytical scheme are compared. It can be seen that the parallel straight lines indicated by the
analytical results are indeed good approximations to the distribution pattern of the iso-growth
lines in the phasor plot of FRF.

The proposed analytical approach is employed to quantify the variations of the modal growth
rate prediction induced by the uncertain FIR model coefficients. Figure [5.11] displays the com-
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Figure 5.11: PDF of the growth rate predicted by the proposed analytical scheme (red curves)
and the reference Monte Carlo simulation (bars).

parison of the PDF of the modal growth rate yielded by the proposed analytical scheme and the
reference Monte Carlo simulation, which is based on acoustic network evaluations, where ex-
cellent match between those two approaches is achieved. In terms of the computational cost, the
proposed analytical strategy requires only 5 times of acoustic network calculations to establish
a surrogate model to map from Y to the modal growth rate value, therefore yielding another
80-fold increase in uncertainty propagation speed compared to the Active Subspace approach.

5.3 Surrogate-based approach

The strategies presented in the previous two sections are only targeted at propagating uncer-
tainties from FIR model to the eigenmode predictions. In practical thermoacoustic instability
analysis, high-dimensional flame models other than FIR models are also widely used to de-
scribe the flame dynamic characteristics. As a result, a more general dimensionality reduction
scheme needs to be developed to meet the analysis requirements in realistic settings. In this
section, a novel surrogate-based dimensionality reduction scheme developed in paper-ISC20 is
introduced. This scheme leverages on the physical intuition of the coupling mechanism between
the flame model and the acoustic solver in thermoacoustic instability predictions, therefore pos-
sessing the capability of handling general frequency-dependent flame models.

5.3.1 Theory

To predict thermoacoustic instability numerically, a popular approach is to combine a flame
model with acoustic solvers and solving the resulting eigenvalue problems in the frequency
domain. Under this framework, the flame model serves as the transfer function that takes in the
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Figure 5.12: (a) In thermoacoustic instability prediction, the flame model takes in the modal
eigenvalue and outputs the flame gain and phase, while acoustic solver takes in the flame gain
and phase and outputs the modal eigenvalue, thus closing the loop. (b) A surrogate model can
be trained to replace the role of the acoustic solver, thus significantly improving the efficiency
in calculating the thermoacoustic modes.

eigenvalue s = 0 + jw (o denotes the modal growth rate and w denotes the modal frequency)
and outputs the flame gain G = |F(s)| and the flame phase ¢ = ZF(s). Meanwhile, the acoustic
solver serves as the inverse transfer function that takes in the flame gain G and phase ¢, as
well as other acoustic parameters H, and outputs the eigenvalue (w and o) of the mode under
investigation. By coupling those two transfer functions (as shown in Fig.[5.124), the eigenvalue
of the investigated thermoacoustic mode can be found via iterative numerical schemes.

Since Monte-Carlo-based uncertainty propagation analysis involves repetitively solving the
thermoacoustic governing equations with different realizations of uncertain flame and acoustic
parameters, the key to accelerate this uncertainty propagation process is to shorten the runtime
for each Monte Carlo loop. Naive surrogate modeling approach would achieve this goal by di-
rectly building surrogate models to map from flame model parameters F and acoustic system
parameters H to the modal frequency and growth rate, thus replacing the expensive thermoa-
coustic equation-solving with an evaluation of the cheap surrogate models. However, as F is a
high-dimensional vector, the “curse of dimensionality”” would render this naive surrogate mod-
eling strategy infeasible in practice.

Another way to accelerate the calculation of thermoacoustic eigenmodes lays in the coupling
mechanism between the flame model and the acoustic solver. In the coupling loop illustrated in
Fig. the path associated with the acoustic solver constitutes the most computation inten-
sive part, since acoustic solvers may involve implementations of expensive numerical schemes
(e.g., finite volume method, finite element method, etc.) to calculate the thermoacoustic eigen-
modes of 2D/3D complicated geometries [208]. As a result, if two cheap-to-run surrogate mod-
els f “ and f 9 can be trained to replace the role of the acoustic solver (as shown in Fig. ,
then the efficiency of evaluating w = (G, ¢; H) and 0 = f 9(G, ¢; H) can be greatly improved,
thus leading to accelerated calculations of the thermoacoustic mode and offering opportunities
to achieve affordable UQ analysis.
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Formally, this surrogate-based governing equations can be cast as follows:

YNF(o+iw)|,LF (0 +iw);H -w=0

{ (5.7
fPUF(o+iw)|,LF (0 +iw); H) -0 =0,

where the usual iterative numerical schemes can be used to find w and o. Eq. is defined as
the surrogate equations. Since now only two flame parameters G and ¢ enter into the surrogate
model instead of the primal high-dimensional flame parameters F, a dimensionality reduction is
achieved by the currently developed scheme. In addition, the current scheme has the benefit that
the employed surrogate models only need to be trained once and can be subsequently applied
to a wide range of flame models, provided that the considered G — ¢ values are within the G — ¢
ranges that the surrogate models are built upon. This is desired in realistic applications since
it (1) allows using flame models with gradually increased complexity as the analysis process
evolves, and (2) offers opportunities to address both the linear and nonlinear thermoacoustic
UQ problems under one framework.

5.3.2 Case study

In paper-1SC20, the developed surrogate-based UQ strategy is adopted to address a linear case
study with uncertain FIR model and acoustic system parameters, as well as a nonlinear case
study with uncertain flame describing function (FDF) dataset and acoustic system parameters.
Gaussian Process is employed as the surrogate model. An active learning scheme introduced in
Section 4.2.2 is used to improve the training efficiency and accuracy. For both case studies, an
in-house Helmholtz solver is adopted as the acoustic solver to model an EM2C laboratory-scale
test rig (configuration C11, see Section 2.1).

For the linear case study, the goal is to propagate uncertainties from a 65-coefficient FIR model,
as well as the magnitude of reflection coefficients |R;,| (combustor inlet), |Ry,;| (combustor
outlet), and the damping coefficient a, to the modal frequency and growth rate predictions. In
total, this is a 68-dimensional UQ problem.

PDF of the modal frequency and growth rate values are shown in Fig. [5.13] where excellent
matches can be observed between the results yielded by the surrogate-based UQ scheme and
naive Monte Carlo procedure. In terms of the computational speed, an approximately 20-fold
increase is achieved for this case study. In addition, it is worth emphasizing that a more sig-
nificant acceleration of the UQ analysis may be realized when a more complex configuration
is considered, as in this case the runtime of a single call of Helmholtz solver would be signifi-
cantly longer, while the runtime for each calculation of the surrogate equation (Eq. (5.7))) would
basically stay the same.

For the nonlinear case study, the goal is to propagate uncertainties from a FDF dataset with
520 uncertain data points, as well as the magnitude of reflection coefficients |R;,| (combustor
inlet), |R,y:| (combustor outlet), and the damping coefficient a, to the limit cycle frequency and
amplitude. In total, this is a 523-dimensional UQ problem.

PDF of the limit cycle frequency and amplitude are shown in Fig.[5.14] where excellent matches
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Figure 5.13: PDF comparison between the surrogate-based UQ scheme (black curves) and
Monte Carlo applied directly to the Helmholtz solver (bars).
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Figure 5.14: PDF comparison between the GP-based UQ scheme (black curves) and Monte
Carlo applied directly to Helmholtz solver (bars). Three types of growth rate trajectory are
observed among 20000 samples (Type 1: linearly unstable; Type 2a: linearly stable, nonlinearly
unstable; Type 2b: linearly stable, nonlinearly stable). Although only samples with a Type 1 or
2a trajectory are shown in the histogram, the histogram is normalized with respect to all 20000
samples. The current setup exhibits a probability of 11.6% of being unstable and 88.4% of being
stable. Experimental results are shown as the diamond in the figure. Red dashed lines represent
the minimum amplitude level of (|#|/iip) ,» = 0.07 in the FDF dataset.

can be observed between the results yielded by the surrogate-based UQ scheme and naive Monte
Carlo procedure. In terms of the computational speed, an approximately 15-fold increase is
achieved for the current case study. Both case studies demonstrate the accuracy and efficiency
of the proposed surrogate-based UQ strategy.
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This thesis aims at developing an uncertainty management framework for thermoacoustic insta-
bility risk analysis, where the thermoacoustic eigenmodes are calculated via coupling acoustic
solvers with a flame response model. Quantification and mitigation are the two consecutive
management tasks with different management objectives: Quantification focuses on quantify-
ing the modal instability risk induced by uncertain acoustic system parameters and flame model
parameters, while mitigation focuses on mitigating the instability risk by implementing the prin-
ciples of robust design, given the uncertain parameters. Successfully mitigating the instability
risk relies on accurately quantifying the risk in the first place. Therefore, quantification and mit-
igation steps together constitute a coherent uncertainty management framework. This chapter
intends to highlight the logical connections between the major publications discussed in the
current thesis and illustrates how each individual publication fits into the overall uncertainty
management framework.

6.1 Quantification

Flame model uncertainty usually plays a major role in generating the thermoacoustic modal
instability risk. Although uncertainty propagation from simple 7 — 7 models to eigenmode cal-
culations have been well studied, for more sophisticated and realistic flame impulse response
(FIR) model, efficient uncertainty propagation scheme is still lacking due to the large number
of uncertain FIR model coefficients. Paper-ASMEIS for the first time assessed the impact of
uncertainties in FIR model on the modal instability risk via a novel dimensionality reduction
approach called Active Subspace. An one-dimensional active direction was discovered inside
of the high dimensional input space. Along this direction the modal growth rate values vary
the most. By projecting FIR coefficient vectors onto this active direction, the so-called active
variable was obtained. Subsequently, a surrogate model to map the active variable to the modal
growth rate value was built, which facilitated 50 times faster Monte Carlo simulations observed
in the case studies. As a side outcome of Paper-ASME1S, an online monitoring pipeline based
on Active Subspace approach was built, which allows practitioners to effectively determine the
adequate CFD simulation time to reach a satisfactory confidence of the FIR model identifica-
tion.

An especially interesting observation from Paper-ASMEIS is that a one-dimensional manifold
encapsulates the relationship between the variation of modal growth rate values and the variation
of FIR coefficients. However, due to the black-box nature of the Active Subspace approach,
obtaining a physical interpretation is a non-trivial task. In this context, Paper-ISCI18 is initiated
to further investigate the physical insights conveyed by that active direction. Towards that end,
linearization analysis was performed on the thermoacoustic governing equation and the phasor
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plot of flame frequency response (FFR) was proposed to visualize the results. One of the main
contributions of Paper-ISC18 is that it proves that to first-order, the growth rate contours are
parallel straight lines in the phasor plot of FFR. As a result, the active direction is in fact the
orthogonal direction of the growth rate contours, and active variable can be perceived as the
sum of the projection of individual FIR coefficient vectors onto the active direction. Later on, the
same uncertainty propagation procedure developed in Paper-ASME18 was followed to calculate
the modal instability risk. The essential difference between Paper-ASME1S8 and Paper-1SC18 is
that the active variable was identified via Active Subspace approach in Paper-ASMEI8, while
in Paper-ISCI18 the active variable can be directly derived by using analytical formulas. As a
result, dramatic efficiency improvement was further obtained without involving any complex
mathematical treatments.

Despite the success of performing UQ analysis on the FIR model in Paper-ASME8 and Paper-
ISC18, realistic thermoacoustic UQ analysis may involve uncertainties from both acoustic sys-
tem parameters and other high-dimensional flame models (e.g., flame describing function em-
ployed in nonlinear thermoacoustic instability analysis) in addition to FIR model, thus calling
for a more general and powerful UQ framework than the one developed in Paper-ASME18 and
Paper-1SC18. To pursue this goal, Paper-ISC20 spearheaded a general Gaussian-Process (GP)
based surrogate strategy for high-dimensional UQ analysis in thermoacoustic instability predic-
tion. The novelty of this strategy lies in the fact that the Gaussian Process models were built
directly upon flame gain and phase, as well as other uncertain acoustic parameters. As a result,
surrogate equations could be constructed by lining up the GP models and the high-dimensional
flame models, which can be efficiently solved via simple iterative schemes to obtain the modal
eigenvalues. In addition, the developed strategy possesses a highly desirable feature, i.e., it
can quantify uncertainties in modal frequency and linear growth rate for linear thermoacoustic
analysis, or quantify uncertainties in limit cycle frequency and amplitude for nonlinear ther-
moacoustic analysis, all under one surrogate modeling framework. Exceptional performances
were observed for a 68-dimensional linear case study and a 523-dimensional nonlinear case
study, thus demonstrating the capability of the proposed strategy in addressing thermoacoustic
UQ problems in general settings.

6.2 Mitigation

After having developed competences in quantifying the modal instability risk, the next step
would be to mitigate the risk given the input uncertainties. Paper-ASME19 took an approach of
implementing the principles of robust design to ensure that the thermoacoustic design is free of
instability risk. More specifically, various tasks of robust design were systematically explored,
where each task was formulated as an optimization problem and a GP-based UQ procedure
was embedded into the optimization routine to efficiently quantify the modal instability risk
at each design iteration. Finally, to reveal the interconnection between different robust design
scenarios, the concept of a “risk diagram” was proposed that allows a convenient visualization
of the distribution of the modal instability risk over the entire parameter space.

In practice, achieving robust thermoacoustic design relies heavily on the accuracy of the risk cal-
culation at each optimization iteration. Paper-ASME19 assumed that the employed GP models
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were accurate with negligible model uncertainty. However, that assumption is not always valid
in reality: limited computational resources means only a certain number of training samples can
be afforded for GP model training. As a consequence, this “imperfect” training process may in-
troduce epistemic uncertainty to the trained GP model, which subsequently induce the variation
of modal risk calculation. Paper-ASME20 dropped that assumption made in Paper-ASME19
and specifically investigate strategies to propagate the GP model uncertainty to the instability
risk calculation, as well as to reduce the GP model uncertainty given a limited training sample
budget. Those strategies can be seamlessly integrated into the robust design workflow proposed
in Paper-ASME19, thus contributing to mitigating modal instability risk in a reliable manner.

The main outcome of the thesis work was published in 5 papers. In the following, main findings
of each paper as well as their contributions to the overall thesis are summarized. The contribu-
tion of the present author to each paper is explicitly described. The respective publications are
fully reproduced in the appendix.
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S. Guo, C. F. Silva, A. Ghani, W. Polifke. Quantification and propagation of uncer-
tainties in identification of flame impulse response for thermoacoustic stability analysis.
ASME Journal of Engineering for Gas Turbines and Power, 141(2): 021032, 2019. doi:
10.1115/1.4041652. (Peer-reviewed)

Label: Paper-ASMEIS8

Outcome:

* A dimensionality reduction approach called Active Subspace is employed, which iden-
tifies an one-dimensional subspace that can accurately describe the relationship between
the variation of high dimensional flame impulse response (FIR) model coefficients and
the variation of modal growth rate values.

* Efficient uncertainty propagation scheme is proposed by exploiting the identified one-
dimensional subspace.

* For the first time, the impact of uncertain FIR model on thermoacoustic stability predic-
tion is assessed.

* An online monitoring procedure based on Active Subspace approach is proposed to assess
the uncertainty of the resulting modal growth rate calculation, as longer CFD time series
become available for FIR model identification. This tool is beneficial for practitioners to
determine the required time series length to reach a satisfactory FIR model identification.

Relevance for the thesis:

This work marks the first step towards developing competence in propagating uncertainties from
high-dimensional realistic flame models to the thermoacoustic eigenmodes calculation. There-
fore, this work contributes to the quantification branch of the overall uncertainty management
framework investigated in the current thesis. Flame impulse response model is investigated
specifically, since its sophistication and strong representative ability have gained its popularity
in thermoacoustic community, while its uncertainty induced by system identification process
has been largely ignored.

Contribution: The research objective was formulated by W. Polifke. The idea of using Active
Subspace approach to achieve the objective was a result of a discussion between W. Polifke, C.
F. Silva and M. Bauerheim in 2014 Center for Turbulence Research Summer Program (Stanford
University). The present author carries out the study, namely, implemented the Active Subspace
approach to design the uncertainty propagation scheme. In addition, the present author pro-
posed an online indicator to ensure satisfactory FIR model identification. The present author
performed data post-processing and analyzing, composed and wrote the manuscript, took care
of the rebuttal and implemented the changes requested by the reviewers. C. F. Silva, A. Ghani,
and W. Polifke provided significant suggestions for study improvements and manuscript revi-
sion.

Reference: GuoSilval8b

Comment: A first version of this publication was published in the proceedings of the ASME
Turbo Expo 2018: Turbomachinery Technical Confernce & Exposition.
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S. Guo, C. F. Silva, M. Bauerheim, A. Ghani, W. Polifke. Evaluating the impact of uncer-
tainty in flame impulse response model on thermoacoustic instability prediction: A dimen-
sionality reduction approach. Proceedings of the Combustion Institute, 37(4): 5299-5306,
2019. doi: 10.1016/j.proci.2018.07.020. (Peer-reviewed)

Label: Paper-ISC18

Outcome:

* It can be proved that to first-order, the growth rate contours are parallel straight lines on
the phasor plot of flame frequency response.

* An analytical scheme is developed accordingly to compactly describe the relationship
how the variations of FIR model coefficients would lead to the variations of modal growth
rate, thus effectively shrinking the problem dimensionality.

* The developed analytical scheme is further integrated into a UQ framework, which targets
at propagating uncertainties from the flame impulse response model to the modal growth
rate calculation. The accuracy of the above UQ framework is benchmarked in a case study,
where a 5000-fold increase in computational efficiency compared to reference Monte
Carlo simulation is observed.

* The developed analytical scheme directly offers sensitivity measurement for each FIR
model coefficient. This information is beneficial in terms of obtaining more physical in-
tuitions regarding the key mechanisms that controls the thermoacoustic instability.

Relevance for the thesis: This work is a natural extension of the study conducted in paper-
ASME1S8. The physical intuition of the active direction and active variable identified by Active
Subspace approach is uncovered in the current work, which leads to an analytical UQ scheme
that is much more efficient than the one based on Active Subspace proposed in paper-ASMEIS.
Same as paper-ASMEIS, this work also contributes to the quantification branch of the overall
uncertainty management framework. Both paper-ASME 18 and the current study have generated
extensive knowledge on the topic of quantifying modal instability risk induced by the uncertain
FIR model.

Contribution: The research objective and scope was inspired by discussions between W. Po-
lifke and M. Bauerheim. Numerous discussions between the present author, C. F. Silva, and A.
Ghani generated the idea of using the phasor plot of flame frequency response (FFR) to visu-
alize the results. The present author proved the key observation that to first-order the growth
rate contours are parallel straight lines on the FFR phasor plot. In addition, the present author
also formulated the relevant UQ strategy, as well as benchmarked on the case study. C. F. Silva
and A. Ghani assisted in the interpretation of the results. Finally, the present author wrote the
manuscript, took care of the rebuttal and implemented the changes requested by the reviewers.
W. Polifke and M. Bauerheim contributed critical revisions to both results interpretation and
manuscript preparation.

Reference: GuoSilval8a
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S. Guo, C. F. Silva, W. Polifke. A Gaussian-Process-based framework for high-dimensional
uncertainty quantification analysis in thermoacoustic instability prediction. Proceedings
of the Combustion Institute, 2020, doi: 10.1016/j.proci.2020.06.229. (Peer-reviewed)

Label: Paper-1SC20

Outcome:

A Gaussian-Process-based framework is developed to tackle UQ analyses in thermoa-
coustic instability prediction in practical settings. This includes using advanced acoustic
solver (Helmholtz solver), considering uncertainties from both high-dimensional flame
models and acoustic system parameters, as well as handling uncertain parameters with
flexible statistical descriptions and large variational ranges.

* An active learning scheme is presented and deployed to accelerate Gaussian Process
model training.

* The developed framework is capable of addressing UQ problems accurately and effi-
ciently for both linear and nonlinear thermoacoustic instability predictions.

* The conducted nonlinear case study indicates that the previously observed mismatch be-
tween a numerical prediction of the limit cycle and the corresponding experimental re-
sults may be attributed to the uncertainties existed in flame describing function data and
acoustic system properties, in the light of the UQ analysis delivered by the developed
framework.

Relevance for the thesis: This work constitutes the final piece of contribution to the quantifica-
tion branch of the overall uncertainty management framework investigated in the current thesis.
The UQ methodology developed in the current work is much more comprehensive than the pre-
vious strategies investigated in paper-ASME1S8 and paper-ISC18. Its capability meets the need
for solving a wide range of thermoacoustic UQ problems in general settings, thus serving as a
strong finish along the line of work in quantifying the thermoacoustic modal instability risk.

Contribution: The present author determined the research objective and the scope, as well as
developing the UQ methodology and conducted case studies to benchmark the methodology. C.
F. Silva provided valuable suggestions regarding selecting the case studies and formulating the
overall storyline of the paper. W. Polifke contributed critical revisions and significant sugges-
tions for polishing the study. The present author wrote the manuscript, handled the rebuttal and
implemented the changes requested by the reviewers.

Reference: GuoSilva20b
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S. Guo, C. F. Silva, W. Polifke. Efficient Robust Design for Thermoacoustic Instability
Analysis: A Gaussian Process Approach. ASME Journal of Engineering for Gas Turbines
and Power, 142(3): 031026, 2020. doi: 10.1115/1.4044197. (Peer-reviewed)

Label: Paper-ASMEI9

Outcome:

* Various robust design scenarios in thermoacoustic analysis are explored and summarized,
with detailed mathematical formulations and efficient solution strategies proposed. These
scenarios include fundamental risk analysis, ideal/realistic control designs and inverse
tolerance design.

* A novel concept called “risk diagram” is proposed, which allows practitioners to con-
veniently visualize the modal risk distribution over the entire parameter space, locate
associated feasible parameter regions of the robust design tasks, and gain intuitions of the
interconnections between different goals of robust design tasks.

* Demonstrate that Gaussian process surrogate modeling approach is capable of handling
a high number of uncertain parameters with large variational ranges and mixed distribu-
tion types, thus delivering highly efficient risk calculation required by each of the robust
design task.

Relevance for the thesis: This work is geared towards the mitigation branch of the overall un-
certainty management framework investigated in the current thesis. As a first step, it is crucial
to firstly identify the scenarios where risk mitigation is desired, secondly develop the associated
mathematical formulations, and finally propose corresponding solution strategies. This current
work has accomplished all three points and laid solid foundation for achieving robust thermoa-
coustic designs.

Contribution: The research idea was conceived in 2018 ASME Turbo Expo conference, when
the present author had a fruitful discussion with other colleagues from gas turbine sections.
Later on, the present author refined the research objective and scope, conducted detailed re-
search, and wrote the manuscript. C. F. Silva and W. Polifke provided valuable suggestions
on literature review and polishing the manuscript. The present author wrote the rebuttal and
implemented the changes suggested by the reviewers.

Reference: GuoSilva20

Comment: A first version of this publication was published in the proceedings of the ASME
Turbo Expo 2019: Turbomachinery Technical Confernce & Exposition.
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S. Guo, C. F. Silva, W. Polifke. Reliable calculation of thermoacoustic instability risk using
an imperfect surrogate model. ASME Journal of Engineering for Gas Turbines and Power,
2020. doi: 10.1115/1.4049314 (Peer-reviewed)

Label: Paper-ASME20

Outcome:

* The compound impact of aleatory parameter uncertainties and epistemic surrogate model
uncertainty on the modal instability risk calculation is investigated.

* Efficient strategy is developed to quantify the variation of modal instability risk induced
by the uncertain surrogate model.

* An active learning scheme is proposed to intelligently allocate training samples to the
vicinity of stability margin, thus significantly reduce the surrogate model uncertainty in
calculation the modal instability risk.

Relevance for the thesis: This work makes further contribution to the mitigation perspective of
the uncertainty management framework investigated in the current thesis, i.e., it provides means
to obtain reliable risk calculations without assuming the employed surrogate model is “perfect”.
This assumption is widely adopted in the community, which is unfortunately not always valid
in realistic settings. The methodology to quantify and reduce surrogate model uncertainties
can be seamlessly integrated into the robust design workflow investigated in paper-ASME19.
The combined contribution from paper-ASME19 and the current study offers a comprehensive
framework to perform robust thermoacoustic design.

Contribution: The present author defined the research objective, conducted research to de-
velop schemes for quantifying and reducing the surrogate model uncertainty. C. F. Silva and W.
Polifke reviewed the manuscript written by the present author, and provided valuable insights
which helped improve the quality of the paper. The present author later handled the rebuttal and
implemented the changes suggested by the reviewers.

Reference: GuoSilva20a

Comment: A first version of this publication was published in the proceedings of the ASME
Turbo Expo 2020: Turbomachinery Technical Confernce & Exposition.

80



7 Conclusion and Outlook

7.1 Conclusions

The research objective of the present thesis is to develop a comprehensive uncertainty manage-
ment framework to quantify and subsequently mitigate thermoacoustic modal instability risk.
A network model and a Helmholtz solver were coupled with flame response models to cal-
culate thermoacoustic eigenmodes. Flame model parameters and acoustic system parameters
were considered to be uncertain. Those uncertain parameters would propagate downstream via
acoustic solvers, thus leading to generate modal instability risk.

Regarding the quantification aspect of the investigated uncertainty management framework, UQ
strategies were firstly developed to quantify the modal instability risk induced by an uncertain
flame impulse response (FIR) model. These strategies relies on identifying and exploiting a low-
dimensional manifold that exists inside of the original high-dimensional FIR coefficient space.
Both data-driven approach (i.e., Active Subspace) and analytical approach (i.e., linearizing ther-
moacoustic governing equations) were pursued to identify this low-dimensional manifold.

Later on, more comprehensive UQ schemes were developed to address linear/nonlinear ther-
moacoustic UQ problems in realistic settings, featuring large variational ranges of the uncertain
parameters, uncertain parameters from both system acoustic and high-dimensional flame mod-
els, as well as advanced acoustic solvers (e.g., Helmholtz solver).

Regarding the mitigation aspect of the investigated uncertainty management framework, the
current thesis focused on implementing the principles of robust design in a reliable way. To
start with, various scenarios of instability risk mitigation were categorized and corresponding
solution strategies were proposed and benchmarked. The concept of a “risk diagram” was pro-
posed to visualize risk distribution over the entire parameter space and identify feasible solution
region for each robust design task. Subsequently, issues of calculating modal instability risk
using imperfect surrogate model were addressed in detail. More specifically, methods were de-
veloped to firstly quantify the variation of risk calculation by exploiting estimates of prediction
uncertainty offered by the Gaussian Process model, and secondly, to improve the robustness of
risk calculation by taking advantage of an active learning scheme for efficient Gaussian Process
model training.

In summary, the present thesis constituted a solid step towards efficiently managing uncertain-
ties in thermoacoustic instability analysis. Competences were developed for uncertainty quan-
tification and instability risk mitigation in realistic settings. Moreover, technical details of the
advanced dimensionality reduction techniques and surrogate modeling techniques were thor-
oughly discussed and their applications in realistic case studies were demonstrated. This should
be beneficial for practitioners to employ those methods to address other UQ related problems,
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e.g., sensitivity analysis, inverse uncertainty propagations, etc.

7.2 Outlook

Despite the achievements made in the current thesis in terms of managing uncertainties associ-
ated with thermoacoustic instability analysis, there are several other issues that deserve further
investigations.

7.2.1 Impact of uncertain operating conditions on the FIR identification

It is well-known that flame dynamics are highly sensitive to the variations in combustor oper-
ating conditions. As a result, uncertainties in operating conditions will alter the flame impulse
response (FIR) model, which further induces variations and compromises robustness in modal
instability risk predictions. In practice, propagate uncertainties from operating conditions to
eigenmode predictions via FIR constitutes a challenging task: First of all, identifying FIR under
different combustor operating conditions requires high-fidelity Large Eddy simulations (LES).
The associated high computational cost prohibits a direct application of Monte Carlo simula-
tion; Secondly, the FIR identification procedure itself introduces epistemic uncertainties due
to the limited time series, combustion noise, etc. A careful treatment of the mixed uncertainty
types, i.e., aleatory uncertainty in operating conditions and epistemic uncertainty in FIR identifi-
cations, is necessary to develop the full pipeline of uncertainty propagation from operating con-
ditions to thermoacoustic eigenmode predictions. This proposed work is ongoing at the time of
writing this thesis and the preliminary results have been submitted to ASME Turbo Expo 2021.
It is expected that the techniques developed here can be transferred to tackle other combustion
systems (e.g., spray combustion) and handle more uncertain operating condition parameters.

7.2.2 Accurate, robust and efficient identification of flame frequency re-
sponse

Our experience shows that flame model usually constitutes a major source of uncertainty in
the framework of combining flame models and acoustic solvers to calculate thermoacoustic
eigenmodes. As a result, efforts spent on reducing the uncertainty associated with identifying
flame models from LES will pay off in terms of achieving more accurate and robust eigenmode
calculation. Two state-of-the-art flame frequency response (FFR) identification techniques, i.e.,
harmonic excitation method and broadband excitation method, are either accurate, but compu-
tationally expensive, or efficient, but with considerable uncertainty if signal noise is significant.
As a result, it is natural to formulate the following research question, namely, could we obtain
a better FFR identification by combining the strengths while avoid the weaknesses of those
two methods? Multi-fidelity modeling framework may shed lights on this issue. More specif-
ically, a short-time broadband analysis results can be regarded as low-fidelity, which offers a
qualitatively correct trend of the FFR; Meanwhile, harmonic analysis results obtained on sev-
eral carefully selected frequencies can be regarded as high-fidelity, which offers quantitatively
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accurate point-estimations of the FFR. By aggregating those two sources of information, it is
possible to obtain a globally more accurate, robust and efficient FFR identification. Preliminary
results of the proposed work have been submitted to Journal of Sound and Vibration and the
paper is under review at the time of writing this thesis.

7.2.3 Reliable calculation of thermoacoustic system instability risk using
imperfect surrogate models

In paper-ASME20, we have demonstrated how to quantify the variation of instability risk in-
duced by the epistemic surrogate model uncertainty, as well as how to reduce this undesirable
variation by using an active learning scheme. A major limitation of the developed methodology
is that it only considers one single thermoacoustic mode, which hinders its practical deployment
when multiple potentially unstable modes exist. Further more, in terms of surrogate model train-
ing, as adjoint method becomes popular in the community, we now can easily obtain informa-
tion regarding the sensitivity of eigenmode with respect to the input parameters. This sensitivity
information should be leveraged to improve the accuracy and efficiency of constructing the sur-
rogate model. Therefore, the current methodology in paper-ASME20 needs to be extended so
that we can assimilate gradient information in surrogate model building and robustly calculate
thermoacoustic system instability risk by taking into account the uncertainties of the employed
surrogate model.

7.2.4 Efficient dimensionality reduction scheme for thermoacoustic un-
certainty quantification analysis for annular combustor

In paper-1SC20, we have demonstrated that by building surrogate models on flame gain G and
phase ¢, we are able to effectively break the “curse of dimensionality” and accurately deliver
uncertainty quantification results for high-dimensional flame models. Although this idea was
only benchmarked on a longitudinal burner, it has the potential to be employed in annular com-
bustor settings. Achieving efficient surrogate modeling is especially important in annular com-
bustor settings as they are inherently high-dimensional (due to the large number of burners) and
generating a high number of training samples is not practical (acoustic solvers generally take
more time to evaluate an annular configuration than a longitudinal configuration). When apply-
ing our novel surrogate modeling scheme to annular combustors, the surrogate models could
still be built based on a single burner. However, the challenge has shifted to effectively model
the acoustic interactions between individual burners. If those interactions could be conveniently
captured, we are then able to configure a system of surrogate equations, which would allow
us to efficiently compute the interested eigenmode of the annular combustor, given arbitrary
flame models for individual burners. This could pave the way for further research in uncertainty
quantification and risk mitigation for annular combustors.
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Quantification and Propagation
of Uncertainties in Identification
of Flame Impulse Response for
Thermoacoustic Stability
Analysis

The thermoacoustic behavior of a combustion system can be determined numerically via
acoustic tools such as Helmholtz solvers or network models coupled with a model for the
flame dynamic response. Within such a framework, the flame response to flow perturbations
can be described by a finite impulse response (FIR) model, which can be derived from large
eddy simulation (LES) time series via system identification. However, the estimated FIR
model will inevitably contain uncertainties due to, e.g., the statistical nature of the identifi-
cation process, low signal-to-noise ratio, or finite length of time series. Thus, a necessary
step toward reliable thermoacoustic stability analysis is to quantify the impact of uncertain-
ties in FIR model on the growth rate of thermoacoustic modes. There are two practical con-
siderations involved in this topic. First, how to efficiently propagate uncertainties from the
FIR model to the modal growth rate of the system, considering it is a high dimensional
uncertainty quantification (UQ) problem? Second, since longer computational fluid dynam-
ics (CFD) simulation time generally leads to less uncertain FIR model identification, how
to determine the length of the CFD simulation required to obtain satisfactory confidence?
To address the two issues, a dimensional reduction UQ methodology called “Active sub-
space approach (ASA)” is employed in the present study. For the first question, ASA is
applied to exploit a low-dimensional approximation of the original system, which allows
accelerated UQ analysis. Good agreement with Monte Carlo analysis demonstrates the
accuracy of the method. For the second question, a procedure based on ASA is proposed,
which can serve as an indicator for terminating CFD simulation. The effectiveness of the

procedure is verified in the paper. [DOI: 10.1115/1.4041652]

1 Introduction

Predicting thermoacoustic instability remains a major concern
for industry to design more reliable and efficient combustion sys-
tems. Common practices to achieve this goal include using acous-
tic tools such as Helmholtz solvers [1] or network models [2] to
numerically solve an eigenvalue problem from which both growth
rates and frequencies of the thermoacoustic modes of interest can
be obtained. However, due to the nonlinear nature of the eigen-
value equation, the predicted thermoacoustic behaviors can be
highly sensitive to variations [3] in geometry, boundary condi-
tions, operating conditions, model parameters (calibrated from
noisy experimental or computational data), etc. In some occasions
[4], a system estimated as stable using nominal input parameters
may become unstable when inputs deviate slightly from their
nominal value. Consequently, uncertainty quantification (UQ)
analysis, which focuses on quantifying uncertainties on output
given uncertain inputs, is essential to fully account for the impact
of the variable inputs from a statistical point of view and consti-
tutes a critical step toward a more reliable thermoacoustic stability
prediction.

In the process of thermoacoustic instability estimation, one of
the main uncertainty sources lies in the flame model [4] which
correlates the unsteady heat release rate of the flame to upstream
velocity perturbations and is employed as a source term in acous-
tic solvers to close the thermoacoustic system [5]. Ndiaye et al.
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[4], Bauerheim et al. [6], Magri et al. [7], and Silva et al. [8] indi-
vidually investigated the impact of flame model uncertainties on
the growth rate of thermoacoustic modes of various combustors.
The n—t flame model was employed, and gain n and time delay t
were considered as uncertain input parameters in these studies.
The results highlight the importance of considering flame model
uncertainties in order to obtain reliable predictions of combustion
instabilities.

Compared with the n—t model used in the previous UQ studies,
the finite impulse response (FIR) model represents a more sophis-
ticated and realistic flame model. It describes flame dynamics in
the time domain, facilitates direct physical interpretation of the
relevant flow-flame interaction mechanisms [9], and through z-
transform [10], the flame transfer function can be easily obtained
and readily integrated into acoustic tools to determine thermoa-
coustic behaviors of the combustion system. In addition, an effi-
cient identification procedure for impulse response models has
already been established [10] which combines computational fluid
dynamics (CFD) simulation and advanced system identification,
and further paves the way for its convenient implementation.

However, due to the influence of the statistical nature of the
system identification process, large eddy simulation (LES), low
signal-to-noise ratios, finite length of CFD time series [11], etc.,
the estimated coefficients of the FIR model will inevitably contain
uncertainties, which may be characterized by the confidence inter-
val of each coefficient [11]. Those coefficient uncertainties will
“propagate” through the thermoacoustic model and affect the out-
put, e.g., the growth rate of the thermoacoustic modes. This aspect
of the problem has not yet received enough attention, even though
the FIR model has already been employed on several occasions.

FEBRUARY 2019, Vol. 141 / 021032-1

~d16/295581.9/2£0120/2/1 71 4pd-loiHE/1MOdSBUIGINISEB/BI0"BUISE UON08]|00[NBIpaWSE//:dNY WOl PapEojuMoq

20 Lpb

020z Jequieidag £z U J8sn usyousny JoBNSIBAIUN dYasIiuyds ] Aq 4pd-ze0L20

Copyright © 2019 by ASME

S. Guo, C. F. Silva, A. Ghani, and W. Polifke. Quantification and Propagation of Uncertainties in Identification of Flame Impulse
Response for Thermoacoustic Stability Analysis. In Journal of Engineering for Gas Turbines and Power, 2018. Reprinted with
permission from ASME.

113



Reproduction of Papers

To do a UQ analysis with respect to this problem, two practical
aspects should be addressed: first, since FIR model usually con-
tains 15-30 coefficients, making it eligible to be classified as a
high-dimensional UQ problem, a natural question is the following:
is it possible to avoid high computational cost methods like Monte
Carlo simulation [12], but still efficiently propagate input uncer-
tainties to the output? Second, since generally longer simulation
time yields less uncertain identification of the FIR coefficients, is
it possible to have a guideline regarding how long CFD simula-
tions should be conducted in order to achieve target confidence?

Active subspace approach (ASA) [13], an innovative approach
for large-scale UQ analysis, may be able to provide solutions to
the abovementioned problems. This approach identifies directions
in input parameter space that give strongest variabilities of the
output and compactly summarizes them as active variables, which
form a low-dimensional representation of the original high dimen-
sional system. Subsequently, a surrogate model (SM) can be con-
structed by only exploiting these active variables, allowing a
much faster UQ analysis compared with direct Monte Carlo
(DMC) simulations. ASA has solid mathematical foundations [14]
and its capability has already been demonstrated in different
research problems [15-17].

The ASA has been introduced in the field of thermoacoustic
instability by Bauerheim et al. [6], who quantified uncertainties of
growth rate in an annular combustor, where 38 uncertain parame-
ters in n—7 flame model (gain » and time delay t for each flame
were considered as uncertain parameters) were reduced to only
three active variables. Subsequently, low-order models were built
upon these three active variables and the predicted probability of
an acoustic mode to be unstable (risk factor) agreed well with the
reference Monte Carlo results. Magri et al. [7] extended the work
[6] by combining the ASA with an adjoint method to efficiently
calculate output gradients. Different surrogate models based on
active variables were compared and their respective accuracy was
discussed.

In the present work, the uncertainty of modal growth rate calcu-
lation given uncertainties in the flame impulse response model is
quantified. The objectives are to provide answers for the above-
mentioned questions, i.e., (1) How to efficiently propagate uncer-
tainties in FIR model to determine the variation of thermoacoustic
modal growth rate? (2) How to determine the length of CFD simu-
lations required to achieve less uncertain identification of the
flame impulse response model? For the first question, ASA is
applied to exploit low-dimensional approximation of the original
system and a 50 times faster highly accurate UQ analysis is
achieved compared with the reference Monte Carlo method. For
the second question, a procedure based on ASA is proposed,
which can be used as an indicator for determining adequate CFD
simulation time.

The novelties of the current paper are the following: (1) to our
best knowledge, this is the first time that the impact of uncertain-
ties in FIR model on thermoacoustic stability prediction is
assessed; (2) we not only demonstrate the efficiency of ASA for
solving the current UQ problem, we also construct an ASA-based-
procedure for CFD time series length determination, which should
be highly relevant for practitioners due to the high computational
cost of the CFD simulation; and (3) the presented nonintrusive
ASA methodology can also be applied to more complex acoustic
models (thus handling more complex combustors), where classic
UQ methods would be prohibitively expensive.

The paper is organized as follows. Section 2 gives an overview
of the impulse response identification procedure and quantifies
input uncertainties in terms of confidence intervals. Section 3
describes the investigated combustor and corresponding acoustic
network model. Section 4 presents the technical details of imple-
menting ASA. Section 5 demonstrates the effectiveness of active
subspace method by comparing the results with Monte Carlo sim-
ulations. Section 6 proposes and validates the procedure used for
estimating the optimal CFD simulation time. The paper closes
with the main conclusions.

021032-2 / Vol. 141, FEBRUARY 2019

S. Guo, C. F. Silva, A. Ghani, and W. Polifke. Quantification and Propagation of Uncertainties in Identification of Flame Impulse
Response for Thermoacoustic Stability Analysis. In Journal of Engineering for Gas Turbines and Power, 2018. Reprinted with

permission from ASME.

114

2 Impulse Response Model Identification

This section starts with an overview of the flame model identifi-
cation procedure, followed by applying the procedure to actual
LES time series data to derive the impulse response model as well
as its uncertainties, the consequences of which will be investigated
in the subsequent section. More comprehensive treatments of sys-
tem identification as well as its uncertainties with applications in
aero/thermoacoustic are given in Refs. [10], [11], and [18].

2.1 Identification Procedure. The dynamic properties of a
linear time invariant single input single output system are com-
pletely characterized by its impulse response [2]. The model struc-
ture takes the following form:

Ikl = G(q)ulk] + el#] o)

where ulk], y[k], and e[k] represent discrete input, output, and
noise term, respectively. G|g] has the form

Gq)y=ho+hg ' +hg >+ -+ /1(L—1)47<L71) @

where the backward-shift operator ¢ "x[k] = x[k — n] is used to
refer to past inputs and outputs; L is the order of the polynomial,
i.e., the “model order”; the coefficients 4, describe the response of
the system submitted to unit impulse excitation, and they are the
target coefficients need to be identified. Here, G(¢) denotes the
FIR model, due to the fact that only a finite number of impulse
response coefficients are considered. In the present study, proce-
dures described in Keesman [19] are employed to identify the
coefficients /. A brief overview is given as follows:

The FIR coefficients of the polynomial hg...h; | can be found
by solving the minimization problem given by

argmin Y (y ~ §(0))° 3)

where y(0) denotes the predicted output from the model and 0 is a
place holder for all coefficients. The minimization can be
achieved using the constrained least-squares approach, which is
also known as a regularization algorithm

0= ("¢p+k1) gy )

where y = [y1,y2,...,y4] is the vector containing the output at
each time-step, ¢ is the regressor matrix which has the form

ulL) ulL—1] ... ull]
¢=| ulL+1] ulL) ul2] (5)
u[n] uln —1] uln — (L —1)]

the term kI represents regularization with & being the regulariza-
tion parameter (set to 1 in the present study) and I being the iden-
tity matrix. Regularization can help to reduce ill-conditioning in
least-squares problems and reduce covariance within estimated
parameters.

Uncertainties of the estimated coefficients, which are the source
of uncertainty in the focus of the present study, are represented by
the covariance matrix, with its diagonal terms being the coeffi-
cient variances and its off-diagonal terms being the covariance
among pairs of parameters. An estimate for the covariance matrix
can be found by multiplying the Gramian matrix of ¢ with the
noise variance

cov(0) = (¢7+ k1) ' 2 ©)

In practice, the noise variance is estimated from the residuals ¢ =
y — ¢0 as

Transactions of the ASME

~d16/295581.9/2£0120/2/1 71 4pd-loiHE/1MOdSBUIGINISEB/BI0"BUISE UON08]|00[NBIpaWSE//:dNY WOl PapEojuMoq

20 Lpb

020z Jequieidag £z U J8sn usyousny JoBNSIBAIUN dYasIiuyds ] Aq 4pd-ze0L20



A.1 Paper-ASME18, J. Eng. Gas Turbines Power

(N

It is worth mentioning that the UQ analysis presented in this paper
is independent of the specific identification procedure. As long as
proper nominal values and covariance matrix of the FIR model
parameters are provided, the UQ workflow proposed in the paper
should work just fine. Details will be demonstrated in Sec. 5.

2.2 Identification Results. For the identification procedure,
CFD time series of velocity perturbations ' (recorded at the
burner mouth) were consideredlas input, i.e., u =/, and global
heat {9lease rate fluctuations Q were considered as output, i.e.,
y = Q. The data were obtained through LES by Tay-Wo-Chong
et al. [20] and are presented in Fig. 1.

Figure 2 displays the impulse response coefficients /;’s identi-
fied by applying the procedure introduced in Sec. 2.1. L =16 coef-
ficients (i.e., impulse response coefficients /,’s) are chosen for the
current model. A good practice of how to properly choose the
number of coefficients L (or model order) is given in Ref. [11].
Both the nominal value and the 95% confidence interval are
shown for each coefficient.

To summarize, through the identification process, nominal val-
ues as well as the covariance matrix of the FIR model coefficients
are obtained. In the framework of UQ, FIR model coefficients will
be treated as random variables following multivariate normal
distribution.

3 Thermoacoustic Framework

In this section, details of the combustor configuration are pre-
sented first, followed by outlining the corresponding acoustic net-
work model representation. The FIR model derived from Sec. 2.2
will be plugged into the acoustic network model to calculate the
growth rate of thermoacoustic modes.

3.1 Combustor Configuration. The BRS combustor configu-
ration investigated in the present study represents a turbulent pre-
mixed swirl burner test rig, which was experimentally
investigated by Komarek and Polifke [21] and numerically inves-
tigated by Tay-Wo-Chong et al. [20]. The configuration consists
of a plenum, a duct with an axial swirl generator, and a combus-
tion chamber. It operates with an equivalence ratio of 0.77 of per-
fectly premixed methane-air mixture and a thermal power of
30kW.

32
order

Thermoacoustic Modeling. In the present study, a low
acoustic network model is employed to predict

0.4

r 02

0.05 0.1 0.15 0.2 0.25 0.3

) 005 041

015 02
Time/s

0.25 0.3 0.35

Fig. 1 Normalized velocity and global heat release rate fluctua-
tions, the total length of the data is 350 ms
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thermoacoustic modes of the combustion system. The analysis is
carried out in frequency domain by the assumption of linear and
time-harmonic acoustics. Figure 3 displays the network model
representing the burner test rig. The rig is discretized into inter-
connected acoustic elements, where each element is characterized
by its acoustic transfer matrix, which relates the characteristic
wave amplitude f and g [22], between the upstream and down-
stream ports of the elements. Mathematical formulations for dif-
ferent types of element used in this study, e.g., boundary
conditions, duct, area jump, and flame, are given in Silva et al.
[2].

The assembly of the individual transfer matrices yields a homo-
geneous system of equations for the unknown characteristic wave
amplitudes. The corresponding characteristic equation is obtained
by letting the determinant of the system matrix be equal to zero,
and its solutions give the frequencies and the growth rates of the
thermoacoustic modes.

In the present analysis, losses are not considered in modeling
the area change, and zero Mach number is assumed for simplicity.
The axial swirler is assumed to be acoustically transparent. The
transfer matrix for the flame element is derived from linearized
Rankine-Hugoniot relations. The FIR model is introduced to
relate velocity fluctuations ' at the burner mouth to global heat
release fluctuations Q of the flame, thus closing the acoustic net-
work model. Table 1 summaries geometrical and thermodynamic
parameters used in the acoustic network model. Two pairs of com-
bustion chamber length values and reflection coefficient values for
the combustor exit are selected (marked as A and B in subscript),
which are considered as two different cases to be submitted to
subsequent UQ analysis.

4 Active Subspace Approach

This section describes the implementation of the active sub-
space approach in the framework of the current study. More
details on its mathematical foundation as well as its implementa-
tions in other research fields are given by Constantine [14].
Figure 4 summarizes the workflow. Details in each step are given
in the following:

4.1 Preparation: Inputs Transformation. The original cor-
related uncertain coefficients (represented in vector form, same
applies after) h = (hy,...,h;—) of the FIR model need to be
transformed before being submitted to active subspace approach.
Orthogonal transformation [23] and normalization are adopted
sequentially to transform % to k. The latter follows independent,
standard, multivariate normal distribution. The inverse of the
above process can convert k back to h, which constitutes natural
inputs for the acoustic network model.

750
600 f
450 t bl
o) ,l /' 5 \‘
S 300( iy %
é / /! “\ ‘\
g0 I I
L LN R
o= ) IH“ L
150 -
-300 : Bk
0 0.005 0.01 0.015
Time (s)
Fig. 2 Impulse response. Each discrete stem represents one

coefficient hy, upper and lower dot lines constitute the 95% con-
fidence interval.
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Combustion chamber

Closed end Area jump 1
Plenum Swirler tube

o e

Areajump 2 Flame Open end

Fig. 3 Sketch of acoustic network model, flow from left to right

Table 1 Parameters of each acoustic element in the acoustic
network model (Fig. 3)

Acoustic element Parameters

Closed end Reflection coefficient = 1
Plenum Length=0.17 m

Sound speed =343 m/s
Area jump 1 Area ratio =29.76

Swirler tube Length=0.18 m

Sound speed =343 m/s

Area ratio=0.13

Relative temperature jump = 5.59
Ratio of specific impedances = 2.57
FIR Impulse response model
Combustion chamber Length, =0.51 m; Lengthg =0.6 m
Sound speed = 880 m/s

Reflection coefficient, = —0.9883
Reflection coefficientg = —0.6351

Area jump 2
Flame

Combustor exit

4.2 Data Bank Generation. We use Latin hypercube sam-

pling to draw N samples A, i = 1,2, ...,N, from an independent,
standard, L-dimensional normal distribution. For each sample, we
perform the inverse transformation to recover the natural inputs of
the acoustic network model, then compute the corresponding
growth rate. The purpose of this step is to generate a data bank for
the subsequent gradient calculation.

4.3 Active Subspace Identification

(1) We use Latin hypercube sampling to draw M samples
(hi)’,i =1,2,...,M, from independent, standard L-
dimensional normal distribution. The guidance for deter-
mining a proper M value can be found in Ref. [14].

(2) For each sample i =1...M, we retrieve the P nearest sam-
ples (according to Euclidean norm) and their corresponding

@ Data Bank Generation !

1
| 0. Sampling » 0. Growth Rate |,
1 (N Samples) Evaluation |

‘ Calculation ‘
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Fig.4 Workflow of UQ based on active subspace approach
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growth rates in the data bank, and we build a local linear
regression model

L1
Growthrate ~ ¢ + Z bjh; 8)
=0

where coefficients b; = (by, ...,b,—1),T are taken as the gradients
of growth rate against each of L coefficients at sample point i.
This algorithm of calculating gradients is Algorithm 1.2 in
Ref. [14].

(3) We construct the covariance matrix of the gradient vector
and perform eigenvalue decomposition. Here, we use the
superscript “ASA” to emphasize that the eigenvalues are
obtained during the implementation of ASA, thus distin-
guishing them from the similar concepts of eigenvalues and
eigenvectors involved in acoustic network calculation

M
= MZbibiT = WAASAWT
9
AASA _ dlag(ilASAw.’iLASA)
JyASA S g, ASA
(4) We plot the eigenvalues 41,...4; on a log scale and look for

“gaps.” Here, gap refers to an order of magnitude decrease
among adjacent eigenvalues. A prominent gap (as indicated
in Fig. 8) in the eigenvalues indicates a separation between
active and inactive subspaces, and we choose the dimension
n of the active subspace to be the number of eigenvalues
before the most prominent gap happens. Thus, we can
make a corresponding partition of the eigenvector matrix,
where W, only contains n eigenvectors corresponding to
the first n eigenvalues

W=[W, W, (10)
The active variable vector y is defined as
y=w"h (1)

Successively, entries in y represent the first active variable, the
second active variable and so on. A total number of » active varia-
bles are obtained. Each active variable is expressed as a linear
combination of the normalized input parameters, with the corre-
sponding eigenvector (column vector of W) being the linear com-
bination coefficients. Statistically, each active variable follows
independent standard normal distribution. When » is smaller than
the number of input parameters, a model dimensionality reduction
is achieved in the sense that subsequent surrogate model building
will only need to be based upon these n active variables.

4.4 Surrogate Model Building. For each sample i=1...M in
the data bank, there is a corresponding modal growth rate ; and a
corresponding active variable vector y'. We select K representa-
tive samples from the data bank to pair the dataset
(', @1)...(yK, k), and we fit a regression model to express the
growth rate  as a function of y.
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4.5 Uncertainty Quantification. We perform standard
Monte Carlo simulation on surrogate model to achieve accelerated

UQ analysis. We generate S samples h;;’}i =12,...,8, from
independent, standard, L-dimensional normal distribution. For

each sample, hyck among hyc!...hycS calculates corresponding
k
Imc as

yuc* = WiThuct (12)
then the corresponding growth rate wyc* can be directly com-
puted through the surrogate regression model. Based on the
obtained growth rate dataset wyc'...omc’, a probability density
function (PDF) regarding the growth rate can be constructed and
relevant statistical indices can be extracted.

Figure 5 compares the ASA against DMC. To summarize, first,
ASA invokes only a small number of acoustic solver calculations
to identify a low-order structure within the original thermoacous-
tic system. Second, it replaces this expensive thermoacoustic sys-
tem with a cheap algebraic surrogate model. Third, standard
Monte Carlo simulations are applied only on the surrogate model
with negligible cost through which a much faster UQ analysis is
achieved. The most computational intensive step of ASA lays in
Sec. 4.2, which requires a number of full-accuracy acoustic net-
work calculations. For the terminology, even though Monte Carlo
method is also adopted in the framework of ASA, we refer to the
whole chain of analysis as ASA, while referring to the benchmark
method as DMC.

5 Uncertainty Quantification Analysis

This section aims to answer the first question proposed in the
introduction, i.e., to demonstrate that the ASA can indeed effec-
tively achieve reduction of parameter dimensionality and signifi-
cantly reduce the computational cost of UQ analysis, while
maintaining high accuracy. Two cases with different values of
combustion chamber length and reflection coefficient at combus-
tor exit (cases A and B, as indicated in Table 1) are considered.

5.1 Thermoacoustic Mode Specification. Figure 6 shows
the thermoacoustic modes up to 500 Hz for both cases, when the
nominal coefficient values of the FIR model are used for acoustic
network calculation. This analysis is a deterministic analysis,
meaning no uncertainties are considered in the input parameters.
Highly damped modes are also ignored. According to the

Solver

| Acoustic

(o,
o
o

o]
Case A

8] B
o o
o o

Frequency (Hz)
N
o
o

100 Case,B

0 . . .
-15 0 15 30

Growth Rate (rad/s)

Fig. 6 Eigenmodes from deterministic analysis. For case A,
the dominant mode is quarter wave mode [22], with a frequency
of 434.2 Hz and a growth rate of —4rad/s. For case B, the domi-
nant mode is intrinsic mode [22], with a frequency of 97.5Hz
and a growth rate of —4rad/s.

convention adopted in the current investigation, modes with
growth rates larger than zero are considered unstable.

For both cases, the dominant modes are relatively close to the
stability limit and may be calculated as unstable when uncertain-
ties in FIR model coefficients are taken into account. Therefore,
subsequent UQ analysis will only focus on these modes.

5.2 Direct Monte Carlo Results. Monte Carlo simulation is
the classic method to propagate uncertainties from inputs to out-
puts. To implement the method in the present study, samples of
FIR coefficients are drawn from the joint probability distribution
characterized by the expectation value and the covariance matrix,
which are obtained from the system identification. Each of these
samples, seen as a FIR model perturbed around the model with
nominal coefficient values, is subsequently fed into the acoustic
network, and the corresponding perturbed modal growth rate is
recorded. Based on the results of 20,000 times of acoustic network
calculations, various statistical indices of the modal growth rate
can be extracted.

Results of DMC are presented in Fig. 7 where contours of the
joint probability density function of the modal frequency and
growth rate are shown, which are constructed by 20,000 times of
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acoustic solver calculations. First, uncertainties in FIR model
coefficients have significant impact on the predicted thermoacous-
tic stability in both cases, leading to 95% confidence intervals of
(—4.03£11.03) rad/s for case A and (—4.04*7.15) rad/s for case
B, respectively, in terms of the marginal distribution of the modal
growth rate. Second, eigenmodes have a higher possibility to
appear close to the nominal value, while lower probability is
observed as eigenmodes move away from the center. Third, even
though in both cases the modes have a growth rate of —4rad/s
according to the deterministic analysis, their standard deviations
are different (5.63 rad/s for case A and 3.65rad/s for case B) for
the given amount of uncertainty. Those facts highlight the insuffi-
ciency of deterministic analysis.

5.3 Active Subspace Results. To accelerate the above UQ
analysis, ASA is implemented for both cases with N =400,
M =110, P=50, K=5, and S =20,000, which, according to the
convergence study, are considered to be sufficient.

Following the procedure outlined in Sec. 4, for each case, the
covariance matrix of the gradient vector is constructed and eigen-
value decomposition is performed. Figure 8 shows the obtained
eigenvalues in descending order. For both cases, since there exists
a prominent gap between the first and the second eigenvalue, it is
suggested that only the first eigenvector (corresponding to the
largest eigenvalue in Figs. 8(a) and 8(b)), shown in Fig. 9, needs
to be retained to form a single active variable, individually. There-
fore, the dimensionality of the UQ problem shrinks from 16 (16
FIR model coefficients) to 1 (one active variable).

Two remarks worth mentioning here: (1) It is not a coincidence
that both cases admit a one-dimensional structure. Our ongoing
research has already mathematically proved that to first-order
approximation the causal relationship between variations of FIR
model coefficients and variations of model growth rate should col-
lapse on a 1D subspace (i.e., a single active variable). This argu-
ment does not rely on the ASA implementation that the present
manuscript relies on and is valid under the condition that the
uncertainty level of the FIR model coefficients (represented as the
ranges of coefficient confidence interval) is moderate. This condi-
tion is certainly fulfilled in the present case; for the FIR model
investigated in our current paper, its uncertainty level can already
be considered large (the maximum ratio of coefficient standard
deviation to coefficient mean can be as large as 130%). These
results of the physical interpretation of the active variable as well
as the pertinent analytical derivations can be found in Ref. [12].
(2) The components of the first eigenvector in case B (Fig. 9(b))
are different from the counterparts in case A (Fig. 9(a)). This is
expected for the following reason: according to Constantine [17],
components of the eigenvector, which are also the coefficients of
the linear combination that forms the active variable, reflect the
sensitivity of the output (mode growth rate) against each input
(individual FIR model coefficient ;). Since two cases deal with

Frequency (Hz)
g

30 20 -10 0 10 20 30 80 20 -10 0 10 20 30
Growth Rate (rad/s) Growth Rate (rad/s)
(a

Fig. 7 Contour plot of the joint PDF of the modal growth rate
and frequency. The contours (from outside to inside) corre-
spond to 10%, 30%, 50%, 70%, and 90% of the maximum proba-
bility. The triangle is the deterministic solution (same as Fig. 6).
Statistics regarding the marginal distribution of the modal
growth rate are presented in Table 2: (a) case A and (b) case B.
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Eigenvalue
Eigenvalue

Fig. 8 Eigenvalues in PSR in descending order. The prominent
gap between the first and second eigenvalues indicates that a
one-dimensional subspace exists: (a) case A and (b) case B.
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Fig. 9 Components of the first eigenvector in W, which will
be used as the linear combination coefficients to form the sin-
gle active variable: (a) case A and (b) case B

two different combustor boundary conditions and thermoacoustic
modes, the sensitivity of the modal growth rate against FIR model
coefficients should be different, which explains the difference
between Figs. 9(a) and 9(b).

For each sample generated in Sec. 4.2, on the one hand, we
have already calculated its corresponding modal growth rate
value; on the other hand, through Eq. (11), we can calculate its
corresponding active variable value. By checking the relation
between these two values for each sample, which is plotted in
Fig. 10, it is possible to verify if a one-dimensional approximation
exists. It can be seen clearly from Fig. 10 that a strong univariate
trend is present and it confirms that ASA method does recover an
accurate one-dimension approximation of the original system. In
the present study, we construct a quadratic regression model to
map from the active variable value to the modal growth rate value
for each case and later large-scale Monte Carlo simulations are
performed on these regression models.

30 ; :

CaseA O —

N
o

CaseB D —

-
o

Growth Rate (rad/s)
(=

-30 ‘ : :
-4 2 0 2 4

Active Variable

Fig. 10 Sufficient summary plot of the modal growth rate
against active variable for each sample. We fit a quadratic func-
tion to link active variable and modal growth rate for each case.
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Figure 11 compares the results between ASA and DMC. The
PDF generated by the regression model matches well with the dis-
tribution given by the DMC, demonstrating again that one-
dimensional structure identified by ASA can mimic the behaviors
of the original high dimensional system with high accuracy.

5.4 Approach Assessment. In terms of computational cost,
DMC requires 20,000 acoustic solver calculations for each case to
obtain fully converged statistical indices. This relatively high
computational cost is caused by the slow convergence of random
sampling adopted in DMC. In contrast, the ASA replaces the orig-
inal high dimensional system (16 parameters) with an algebraic
one-dimensional model (one active variable), where subsequently
UQ analysis will be applied on with negligible computational
cost. As a result, only a total number of N =400 acoustic solver
calculations (for data bank generation) are needed for a converged
and accurate UQ analysis, which significantly accelerates the
analysis process.

Finally, statistical indices of modal growth rate distributions
predicted by ASA are compared with DMC in Table 2. Here, RF
stands for risk factor, which is defined as the probability that a
mode is unstable [4] and its expression is shown in Eq. (13). To
summarize, it can be concluded that ASA can indeed significantly
reduce the computational cost of UQ analysis while maintaining
high accuracy, which confirms the results of Bauerheim et al. [6]

RE(%) = 100 rc PDF(w)dw (13)
Jo

It is worth mentioning that a rather simple yet practical acoustic
network model is adopted in the current study, where DMC is
entirely feasible to obtain the PDF of the modal growth rate. For
more computational intensive acoustic models, like the ones char-
acterized by the Helmholtz equation or the Linearized
Navier—Stokes equation, DMC would no longer be an option, then
ASA really pays off.

6 Optimum Computational Fluid Dynamics Time
Length Estimation

This section aims to answer the second question proposed in
the introduction, i.e., to find a practical procedure to estimate the
length of CFD time series required for FIR model identification,
so that final uncertainties in modal growth rate are within a
desired range. In this section, first, motivation for seeking this pro-
cedure and feasible solutions are discussed; second, a case study
is presented to demonstrate the argument; and finally, steps for
implementing the procedure are summarized.

6.1 Motivation and Solutions. Generally speaking, identifi-
cation of FIR model from longer CFD time series yields smaller
variance of model coefficients, thus leading to a less uncertain
estimation of the modal growth rate. From Sec. 5, we can see that
the FIR model identified from 350 ms’s LES time series contains

0.08 - T 0.12 T
——ASA 1 ——ASA 1
I omc i 0.1| (EEDOMC 1
006 H
0.08 1
uw "
e 0.04 E 0.06
0.04
0.02
0.02
0 0
-30 -20 -10 0 10 20 -30 -20 -10 0 10
Growth Rate (rad/s) Growth Rate (rad/s)
(a)
Fig. 11 Probability density function of thermoacoustic growth

rate of dominant mode produced by ASA and DMC: (a) case A
and (b) case B
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Table 2 Statistical indices comparison: mean, standard devia-
tion, and RF

Case A Case B
DMC ASA DMC ASA
Mean —4.03 —4.04 —4.04 —4.03
StDev 5.63 5.78 3.65 3.69
RF 24.1% 25.1% 13.3% 13.7%

relatively large uncertainty, leading to a 24% of risk factor of the
modal growth rate for case A. Therefore, to obtain a more robust
estimation of the modal growth rate, longer LES time series may
be necessary. Then, exactly how much longer time series data are
required so that a satisfactory reduction of the uncertainty of the
modal growth rate estimation can be achieved? Is it possible to
propose a procedure to estimate this time length?

A feasible procedure to achieve this is illustrated in Fig. 12: for
an ongoing unsteady CFD run, whenever the simulation has pro-
gressed a fixed period of time, estimate FIR model coefficients as
well as their uncertainties, employ ASA to evaluate uncertainty in
the modal growth rate, terminate this process when the uncertainty
fulfills accuracy requirement.

Compared with performing DMC every time, obviously the
abovementioned procedure can significantly reduce the computa-
tional cost. However, the identification of low-dimensional struc-
ture and construct surrogate model from time to time still persist
as tedious work. Then, is it possible to further improve the proce-
dure to make it more efficient?

As a matter of fact, we argue that as long as the number of FIR
model coefficients is kept constant, it is reasonable to assume that
the surrogate model, which is obtained by applying ASA on the
FIR model identified from 7, length of time series (as indicated in
Fig. 12), can be used without modification for subsequent UQ cal-
culations when longer CFD time series are available. Therefore,
only once ASA implementation is needed for the whole process.
The rationality of this assumption lays in the fact that this surro-
gate model quantitatively describes the physical relations between
the FIR model coefficients (varied within the individual confi-
dence interval) and the modal growth rate. As longer time series
(o + iterations Ar) is put into use, the newly obtained confidence

CFD Advancing in Time
t

|

CFD Data Collection
Upto &g

System
l Identification

to = to + At

l UQ (Active Subspace)

[
o
VAN

Growth Rate

CFD Advancing | No Accuracy Yes -
PR "=

Fig. 12 A feasible workflow for estimating appropriate CFD
simulation time to achieve predefined confidence requirements
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Fig. 13 Finite impulse response models identified from time
series of different length. Here, confidence intervals (repre-
sented by +3 standard deviations) of FIR model coefficients
become narrower as length of time series increases.

intervals will become narrower and covered by the previous confi-
dence intervals based on 7, length of time series. Automatically,
this same surrogate model remains valid, thus, eliminating the
need for further ASA implementation.

6.2 Case Study. Case A in Sec. 5 is restudied here, but with
three versions of 16-coefficient FIR model identified using differ-
ent lengths of time series data (as shown in Fig. 13). Here, instead
of actual LES data, synthetic time series are employed, which
allows a longer time length for better illustration. To generate the
synthetic time series, the FIR model in Fig. 2 is used as the refer-
ence FIR model, and a broadband velocity signal «’ is applied to
excite the FIR model to obtain the heat release perturbation. A
Gaussian distributed white noise is added afterward to finally gen-
erate the corresponding synthetic heat release signal Q'. A similar
approach to generate synthetic data for system identification is
employed by Jaensch et al. [24].

The workflow for this case study is outlined in Fig. 14, where
ASA will only be implemented once, on the impulse response
model (“FIR-200”) identified from 200ms of synthetic time
series. The goal is to prove that the derived surrogate model can
also be used for UQ evaluation when longer time series are con-
sidered, thus making it possible for performing UQ analysis on
the fly during an on-going CFD run. The obtained two PDFs of

modal growth rate in Fig. 14 will be compared with corresponding
DMC results to assess the accuracy.

The first step is to apply ASA on “FIR-200” model. Here, we
assume that the FIR-200 model coefficients are independent and
only the diagonal terms of the covariance matrix of FIR-200 are
used for generating samples. The rationality of this treatment is
the following: we are aiming to construct a surrogate model,
which, in the end, forms a direct mapping from the values of
h’s in h, to the value of the modal growth rate,
i.e., Growth Rate = surrogate(h) = surrogate(hg, hy, ..., his), and
remains valid in the domain determined by the confidence interval
of each FIR-200 model coefficient. To achieve this goal, we need
to generate samples of k',i = 1, ..., N that can cover this domain,
and the information contained in the diagonal terms of the covari-
ance matrix is enough to guide us in generating representative
samples. The benefit of this treatment is that the mathematical
manipulation can be significantly simplified where no orthogonal
transformation (Sec. 4.1.1) is required.

Figures 15 and 16 demonstrate the corresponding results of
ASA. As expected, a one-dimensional structure is identified and
only the first eigenvector needs to be retained to form a single
active variable. Figure 16 plots the modal growth rate against the
active variable, which further confirms that modal growth rate can
be approximated as a univariate function of the active variable.
We notice that the eigenvector shown in Fig. 15(b) is different
from Fig. 9(a). This is because, in Fig. 15(b), the eigenvector is
with respect to the original /;’s, while in Fig. 9(a) the eigenvector
is with respect to the transformed #;’s.

The second step is to obtain the corresponding surrogate model,

which is expressed as
hyo—h hy — e —h
Y=a1<l 1>+a2<2 2>+ ~~+a15<]6 16>
| ay J16
(14)

Growth rate = i + Y + f,1> (15)

where Y is the active variable and g;’s are the entries in the eigen-
vector (shown in Fig. 15(b)). h;’s represent FIR model coeffi-
cients, and /4;’s and ¢;’s are the nominal values and standard
deviations of FIR-200 model coefficients, resectively. f3;’s denote
the polynomial coefficients of the quadratic regression model we
fit.

The third step is to use the obtained surrogate model to perform
UQ analysis against “FIR-500" model and “FIR-1400" model. For
both models, full covariance matrices are considered. At this
point, it is worth mentioning that since the surrogate model forms

WE
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Fig. 14 200ms, 500 ms, and 1400 ms of synthetic series are used to identify “FIR-200,” “FIR-500,” and “FIR-1400”
model, respectively. Active subspace approach will only be implemented once on “FIR-200” to derive the SM.
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Fig. 16 Sufficient summary plot of the modal growth rate
against active variable. A quadratic regression model is fitted
to describe the relation between active variable and modal
growth rate.

a direct link from & to modal growth rate, this surrogate model
would not concern about how exactly the samples k' are gener-
ated. As long as h with suitable values of /,’s (suitable means val-
ues of A;’s are within the confidence intervals of FIR-200 model
coefficients) is provided, the calculation of modal growth rate is
straightforward. Therefore, in practice, we generate samples using
the full covariance matrices of FIR-500 and FIR-1400 models,
and we fed those samples directly into the obtained surrogate
model (Egs. (14) and (15)) to calculate the corresponding PDF of
modal growth rate. We emphasize that it is not necessary to
implement ASA anymore.

Results comparison are summarized in Fig. 17 and Table 3. It
can be seen that the generalized surrogate model built upon the
uncertainty information of FIR-200 model is also able to achieve
successful UQ analysis when new uncertainty information is pro-
vided, thus confirming our previous arguments.

0
Growth Rate (rads)

(b)

0
Growth Rate (rad/s)

(@

Fig. 177 Comparison of PDF results produced by SM and DME,
considering the uncertainty information of (a) “FIR-500” model
and (b) “FIR-1400” model
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Table 3 Statistical indices comparison: mean, standard devia-
tion, and RF

FIR-500 FIR-1400
DMC SM DMC SM
Mean —1.08 —1.25 —3.23 —3.76
Std 3.57 3.68 2.48 2.45
RF 38.8% 37.3% 9.5% 6.2%

Procedure: Estimating Optimal CFD Time Length for FIR Identification

Unsteady CFD finished to to

Set teurrent = to

Set  Flag equals to 0

While (Flag equals 0)
Data = CFD (0: teyprent)
[FIR.nominal , FlR.uncertaimy] = System Identification ( Data )

# Prepare available CFD time series

if ( toyrrene €QUals o)
# Construct generalized surrogate model, only perform once
Surrogate Model = Active Subspace ( FIR.nominal , FIR.uncertainty )
# Employ generalized surrogate model to perform fast UQ analysis
Growth Rate PDF = Surrogate Model( FIR.nominal , FIR.uncertainty )
else
Growth Rate PDF = Surrogate Model( FIR.nominal | FIR.uncertainty )
end
if (Growth Rate PDF satisfies Pre-defined Goal)
Flag = 1
else
CFD Advancing At
teurrent = Leurrent + AL
end

end

Fig. 18 The proposed procedure for estimating CFD time
length for FIR identification

6.3 Procedure Implementation. Figure 18 provides the
pseudocode for procedure implementation. A good starting point
for ty, which is the minimum CFD time series required before exe-
cuting the procedure, would be at least ten times the length of the
impulse response [25].

7 Conclusions

Based on active subspace approach, UQ analyses regarding the
impact of FIR model uncertainties on thermoacoustic instabilities
are performed in the present paper. Answers for two practical
questions are provided: First, “How to efficiently propagate uncer-
tainties from a FIR model for the flame dynamics to the modal
growth rate of the system?,” the current research indicates that
active subspace approach can achieve highly efficient and accu-
rate UQ analysis by constructing and exploiting a one-
dimensional surrogate model. Compared with direct Monte Carlo,
50 times faster UQ analysis was recorded with the cases consid-
ered in the paper. For the second question, i.e., “Which length of
CFD time series is required for a desired confidence of system
identification?,” the current research further explored the potential
of active subspace approach and proposed a ready-to-implement
procedure in pseudocode form. A case study was performed which
confirmed the effectiveness of the procedure. It can also be seen
as a demonstration of the procedure workflow.

Compared with the previous achievements in the field of UQ
analysis of thermoacoustic instabilities, the novelties of the cur-
rent work reflect in: (1) to our best knowledge, this is the first time
that the impact of uncertainties in flame FIR model, which
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represents a sophisticated and realistic time-domain model of
flame dynamics, on thermoacoustic stability prediction has been
assessed; (2) we have gone one step further by proposing an ASA-
based procedure to effectively determine the length of CFD simu-
lation that is required to achieve FIR model identification with a
desired level of uncertainty. This should be highly relevant for
practitioners due to the high computational cost of the CFD simu-
lation; (3) the presented nonintrusive ASA methodology can also
be applied to more complex acoustic models (thus handling more
complex combustors), where classic UQ methods would be pro-
hibitively expensive.

Further study will include more sources of uncertainty, e.g.,
boundary conditions and model parameters, and investigate their
combined effects in thermoacoustic instability prediction [26].

Acknowledgment

S. Guo is grateful for the financial support from doctoral schol-
arship of Chinese Scholarship Council. W. Polifke and C. Silva
are grateful to the 2014 Center for Turbulence Research Summer
Program (Stanford University), where discussions with Michael
Bauerheim and Franck Nicoud instigated the ideas developed in
this study.

Funding Data

e China Scholarship Council (No. 201606830045).

Nomenclature

ASA = active subspace approach
DMC = direct Monte Carlo
FIR = finite impulse response
h = FIR model coefficients in vector form
h = transformed FIR model coefficients in vector form
h; = FIR model coefficient
K = number of samples in ASA for surrogate model building
L = FIR model order
M = number of samples in ASA for active subspace
identification
N = number of samples in ASA for data bank generation
P = number of samples in ASA for gradient calculation
PDF = probability density function
O = heat release rate fluctuation
RF = risk factor
= number of samples in ASA for Monte Carlo simulation
u = input for system identification
UQ = uncertainty quantification
u' = velocity fluctuation
W, = matrix with column vectors being the eigenvectors that
form the active variables
y = output for system identification
y = active variable vector
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Abstract

The flame response to upstream velocity perturbations is properly described by a Finite Impulse Response
(FIR) model. When combining an FIR model with acoustic tools to predict thermoacoustic modal growth
rates, uncertainties contained in the FIR model coefficients would propagate through the acoustic model,
inducing deviations of the modal growth rate from its nominal value. Therefore, an associated uncertainty
quantification (UQ) analysis, which focuses on quantifying the impact of FIR model uncertainties on the
modal growth rate prediction, is a necessity to obtain a more reliable thermoacoustic instability prediction.
To address this UQ problem, our present work proposes an analytical strategy featuring (1) compactly sum-
marizing the causal relationship between variations of FIR model coefficients and variations of modal growth
rates; (2) Effectively shrinking the dimension of the UQ problem; (3) Requiring only negligible computational
cost; (4) Involving no complex mathematical treatments. Our case studies yielded 5000 times faster yet highly
accurate UQ analyses compared with reference Monte Carlo simulations, even though a significant level of
FIR model uncertainty is present. The analytical approach brings additional benefits including (1) visual-
ization of the process from the variations of FIR model coefficients to the variations of modal growth rate;
(2) Easily-obtainable sensitivity measurement for each FIR model coefficient, which can help identify key
mechanisms controlling the thermoacoustic instability; (3) New possibility for robust combustor design, i.e.,
to minimize the impact of FIR model uncertainty on the thermoacoustic instability prediction.
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Uncertainty quantification; Flame impulse response model; Thermoacoustic instability; Dimensionality
reduction

1. Introduction

Combining acoustic tools (e.g., Helmholtz
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OTESpORAINE autior solvers [1] or network models [2]) with a flame
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response model is a popular approach to predict
thermoacoustic instability. In this framework, the
flame response model, which may be derived from
experiment or numerical simulation, constitutes a
source of uncertainty, which may have significant
impact on the reliability of modal growth rate cal-
culation, as is evidenced by the work of Nair et al.
[3], Ndiaye et al. [4], Bauerheim et al. [5], Magri
et al. [6] as well as Silva et al. [7]. In these studies, 2-
coefficient n — 7 models [8] were investigated, and
the gain n and the time delay 7 of the flame re-
sponse were considered as uncertain input param-
eters.

Compared with a frequency-independentn — ¢
model, the finite impulse response (FIR) model
represents a more sophisticated and realistic flame
model, which describes flame dynamics in the
time domain and facilitates direct physical inter-
pretation of flow-flame interaction mechanisms
[9]. In fact, the n — v model can be viewed as
a special case of an FIR model with only one
non-zero coefficient. FIR models can be deduced
from experimentally measured flame frequency re-
sponse data [10] or determined through a combined
CFD/System Identification procedure [11]. To fur-
ther pave the way for using this advanced flame re-
sponse model, it is essential to quantify the impact
of uncertainties in the FIR model and obtain the
associated error in predicting thermoacoustic in-
stability. Uncertainty quantification (UQ) analysis,
which focuses on propagating uncertainties from
inputs to outputs, is required for that purpose.

Monte Carlo simulation [12] is a classic method
for conducting UQ analysis. However, due to its
slow convergence, a large number of samples (gen-
erally in the order of thousands) have to be drawn
from the distribution of inputs and an equally
large number of model evaluations are required
to construct a converged probability density func-
tion (PDF) of the output. Therefore, previous stud-
ies investigating the impact of uncertain flame
model have employed various sophisticated surro-
gate techniques [4-7,12], so that a smaller number
of input samples and corresponding model evalua-
tions is sufficient for UQ analysis.

In this work we propose a dimensionality reduc-
tion strategy based on analytical analysis to address
our current UQ problem, i.e., evaluate the impact
of FIR model uncertainties on the thermoacous-
tic modal growth rate calculation, so that we can
(1) perform UQ analysis analytically to improve
the efficiency, while avoiding sophisticated math-
ematical treatments as much as possible; (2) ob-
tain further physical insights regarding the causal
relationship between FIR model coefficient varia-
tions and modal growth rate variations. This paper
starts with a statement of our current UQ prob-
lem, followed by introducing the way we visual-
ize the results. Then we derive the dimensionality
reduction strategy and demonstrate its effective-
ness through case studies. We close the paper by

pointing out further applications of the proposed
UQ strategy.

2. UQ problem setting

In the present study, we investigate the uncer-
tainty regarding the growth rate of a marginally
stable thermoacoustic mode in a combustor com-
puted with an acoustic network solver. An FIR
model is introduced to describe the flame response,
which links velocity fluctuations u;, upstream of the
flame to the global heat release rate fluctuations ¢’
in the following manner:

" =
&L, (1)
0 M 3o

where /s are the FIR model coefficients, which
are considered uncertain. L is the model order (i.e.
number of coefficients) and # is the time step. The
overbar and the prime indicate average and fluctu-
ating values, respectively.

The uncertainty of the FIR model coefficients
stems from their estimation process, either through
experimental measurements, which inevitably con-
tains noise, or through a combined approach of
CFD/System-identification [11], where (1) CFD
simulation can be uncertain, e.g., boundary condi-
tions, combustion model parameters, etc. and (2)
identification process will be uncertain, e.g., due to
its stochastic nature, low signal-to-noise ratio, finite
length of CFD time series [13], etc. As a result, the
estimation results for /;’s containing not only nom-
inal values, but also an associated covariance ma-
trix which describes the uncertainty information of
hi’s. In the present work, we assume that the FIR
model uncertainty is known.

Conventional thermoacoustic instability predic-
tion only employs the nominal values hg’s (nom-
inal quantities are denoted by superscript “07,
the same hereinafter) and calculates the corre-
sponding eigenvalues of the thermoacoustic sys-
tem (iw’ + o) € C, ie, modal frequency o’ € R
and growth rate 0% € R. This analysis is also re-
ferred to as deterministic analysis. However, con-
ducting only deterministic analysis can be danger-
ous for marginally stable thermoacoustic modes
[4-7], since they can become unstable when /;’s de-
viate from their nominal values.

In contrast to the deterministic analysis, UQ
analysis takes into account variations of FIR
model coefficients and propagates their uncertain-
ties to the output, in particular, the modal growth
rate o. Therefore, the output is not just a single
value o, but a PDF, which describes the output in
a statistical manner.

By means of the Monte Carlo method, a large
number of samples of FIR model coefficients have
to be drawn from the distribution of coefficients,
and for each sample the corresponding modal

With permission from S. Guo, C. F. Silva, M. Bauerheim, A. Ghani and W. Polifke. Evaluating the impact of uncertainty in
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Fig. 1. The sketch of (a) a simplified FIR model and (b)
the phasor plot of FRF.

growth rate has to be calculated. Clearly, direct
Monte Carlo requires a large number of model
evaluations, thus making it a possibly very expen-
sive method.

3. Results visualization - phasor plot of FRF

Before addressing our current UQ problem,
firstly, we need to introduce the phasor plot of the
flame frequency response function (FRF), which
lays the foundation for illustrating the results in the
reminder of this paper.

The FRF describes the flame dynamics in fre-
quency domain and is obtained from the gen-
eral flame transfer function (FTF) in complex do-
main by setting the growth rate o in FTF to zero.
FRF can be obtained from the FIR model as in
Eq. (2) [11], where the A;’s are the correspond-
ing FIR model coefficients, w € R denotes the fre-
quency and At represents the sampling interval be-
tween successive FIR model coefficients.

-1
F(w) = the_"(kﬁ)m‘”, weR )
k=0

For illustration, we consider a simplified FIR
model in Fig. 1a, with only two coefficients (/1 and
hy) as well as their uncertainty bounds. In this case,
when F is evaluated at a fixed nominal frequency
°, Eq. (2) is written as:

F(wO) — //l()e_iA“uo 4 hle—i(2At)w0 (3)

Therefore we can draw F(o) in Eq. (3) in
Fig. 1b, which we refer to as the phasor plot of
FRF. Since the values of /;’s are uncertain, any
variations of the coefficient /; will cause change
of length of the respective phasor. Consequently,
the length and direction of the F(«”) phasor will
change too.

We use the term sample to refer to one
particular combination of /;’s, i.e., sample h =
{ho, hy, ..., hy_1}. We are particularly interested in
(1) sets of samples, that produce the same modal
growth rate, and (2) the head locations of their cor-
responding F phasor evaluated at the fixed nominal
frequency °. In other words, we focus on the distri-
bution pattern of the iso-growth lines in the phasor
plot of FRF.

Fig. 2. The thermoacoustic closed-loop network.

4. Analytical UQ procedure derivation

In this section, we demonstrate the analytical
derivation and prove that to first-order, the isolines
of growth rate of thermoacoustic instability are
parallel straight lines in the phasor plot of FRF.
Then, we discuss why this finding is crucial for ad-
dressing the current UQ problem setting in an an-
alytical way. Finally, we summarize the analytical
procedure.

4.1. Iso-growthlines in the phasor plot of FRF

The thermoacoustic system is a closed-loop net-
work. As shown in Fig. 2, we choose the velocity at
a reference location just upstream of the flame as
the input and global heat release fluctuation as the
output. The block FTF describes the link between
velocity fluctuation and global heat release fluctu-
ation, while the block —1/H describes the acoustic
response of the combustor to the global heat re-
lease fluctuation. Consequently, we can derive the
characteristic equation of the system [14]:

FTF(w—ioc)=H(w—ioc) w,0 R 4)

Since we are using an FIR model, Eq. (4) can be
written as:

L-1
Z hpe irbano=io) — [y — jo) ®)
k=0

We argue that terms e~*+D2% f— 0. (L —1)
can be approximated as 1 since: (1) LA¢, the flame
response time to the velocity perturbation, is nor-
mally at the order of milliseconds; (2) we consider
marginally stable thermoacoustic modes, which
means the growth rates o is close to zero. Therefore
Eq. (5) may be approximated as:

L-1
Z hkefi(k+1)Atw = H(w — io) (6)

k=0

For any perturbed sample h* = h® + Ah, we
have the corresponding modal frequency w* =
o’ 4+ Aw and growth rate o* = 0% + Ac. We sub-
stitute &*, »* and o* into Eq. (6), perform first-
order Taylor expansion around the nominal on
both sides of the equation, and then combine like
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k=0
o —isolines —~4 //
G’ =G +iG? ~ -  //
_ > sFRF
oH|° Lol ; 0 o SFRF;
o _ —i(k+1)Ato Normal Direction |
+o | Ao = AX_O: Ahge (7) b )

where “|°” indicates evaluation using correspond-
ing nominal values.

Now we consider two specific perturbed samples
I and &, with their modal frequencies and growth
rates being (', ¢’) and (0", o”"). We want to de-
termine under which condition the modal growth
rate of these two samples are the same. To achieve
that, we expand their characteristic equations as in
Eq. (7) and subtract the two expanded characteris-
tic equations from each other:

0 L-1

— Z 8hk€7i(k+1)Alw0 (8)

oH
8wG® + S0 —
do
k=0

where 8l = hj. — hj, bw = o' — 0" and 0 = o’ —
o”. The r.h.s term in Eq. (8) can be written as:

L-1 ,

Zshkefi(ki»l)Atw — SE + i6E (9)
k=0

where §F, and 8 F; represent the F(w") phasor dis-
placement along the real and imaginary axes of the
phasor plot of the FRF, when the coefficients of
FIR change from &' to I”. Also, H(w —io) can
be explicitly written as H(w —io) = H,(w,0) +
iH;(w, o). Therefore, we can re-express Eq. (8) in
its real part and imaginary part as a system of lin-
ear equations, with §w and §o being the unknowns:

Gl EE\ (s0) _ (SE 0
a0 o )\s0 ) = (6F; (10)

do

where:
)2 A
G = P Sl Bk + DAtsin[(k + 1) At
w
k=0
1
0H;[©
G = 5 ’ +Zh2(k+1)Azcos[(k+1)mw°]
w

k=0
(12)
To obtain the iso-growth lines, the solution for
8o in Eq. (10) should be zero, which requires:
G'SE — G'SF =0 (13)

Eq. (13) represents a line equation in the phasor
plot of FRF for given G? and G?, with the line di-
rection / = (G, G?) and corresponding normal di-
rection n = (G°, —G), as sketched in Fig. 3. For

' Isoline Direction
1= (6%69

Fig. 3. Two pairs (blue and green) of perturbed samples
are plotted in the phasor plot of FRF. Within each pair,
two samples yield same modal growth rate and the head
locations of their corresponding F phasors are along a
straight line; Across pairs, these straight lines are in par-
allel. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of
this article.)

any two perturbed samples of A, as long as they ful-
fill Eq. (13), they will yield to first order the same
modal growth rate. Therefore, we can conclude that
the iso-growth lines in the phasor plot of FRF are
approximately a set of parallel straight lines ap-
proximately. Here we emphasis that (1) G° and G°
are determined by the FIR model, plus the trans-
fer function of the acoustic model (H) of the ther-
moacoustic system, as well as the specific thermoa-
coustic mode (»° and o). Therefore, when (a) dif-
ferent FIR model is employed or (b) geometry or
boundary conditions of the combustor are altered
or (c) different thermoacoustic modes are investi-
gated, these directions are expected to be different;
(2) it can be shown that the mathematical deriva-
tion above is also valid when a simple n — t flame
model is adopted, where both n and 7 exhibit uncer-
tainties. The same conclusion is reached eventually,
i.e., iso-growth lines in the phasor plot of the FRF
are to first order a set of parallel straight lines to
first order.

4.2. Analytical results discussion

Now we are ready to exploit the analytical re-
sults for conducting UQ analysis. As shown in
Fig. 4 (same simplified FIR model as in Fig. 1):
(1) When perturbing individual FIR model coef-
ficient (Ahy and Ahy), the head location of the
F(°) phasor in general moves to a different level
of modal growth rate. This helps to visualize
the causal relationship between the FIR model
coefficient variations and the modal growth rate
variation; (2) Each coefficient’s variation can mod-
ify the modal growth rate individually. Neverthe-
less, what ultimately determines the modal growth
rate change is the sum of the projection of each
phasor (h; — hg)e"'(’“”m‘”0 on the normal direc-
tion of the contours of modal growth rate. We use

With permission from S. Guo, C. F. Silva, M. Bauerheim, A. Ghani and W. Polifke. Evaluating the impact of uncertainty in
flame impulse response model on thermoacoustic instability prediction: A dimensionality reduction approach. Proceedings of
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Fig. 4. Visual demonstration of the causal relationship
between the variations of FIR model coefficients and the
variations of modal growth rate.

Y to denote this projection sum, which can formally
be written in Eq. (14). Here n is the normal direc-
tion of the iso-growth lines (as indicated in Fig. 3).

L-1
n

Y = I — h° —i(k+Date® | T 14
gw Ve " (14)

Therefore, we can relate the FIR model coeffi-
cient variations to the modal growth rate variation
in the following manner:

o=/f(Y) ()
where the surrogate function f{) represents a one-
to-one mapping from a specific value of Y, which
is the distance (can be negative) along the normal
direction of the iso-growth lines starting from the
head location of the nominal F phasor evaluated
at nominal frequency «°, to a specific value of the
modal growth rate variation.

At this point we can see that the modal growth
rate o of any sample £ is expressed as an univariate
function of Y, which depends on nominal coeffi-
cients &’ and the nominal eigen-frequency ’, but
is essentially a linear combination of /;’s (Eq. (14)).
For the current UQ problem, the L input variables
(the number of /;’s is L) can be condensed into a
single variable Y, thus, a potentially very significant
dimensionality reduction is achieved. Interestingly,
a one-dimensional structure similar to Y was also
identified through Active Subspace approach [12],
which is a mathematically much more demanding
method.

4.3. An analytical UQ strategy

Here we outline the steps for the analytical UQ
strategy, assuming that the nominal values and dis-
tributions for FIR model coefficients are known,
and acoustic network model has already been set
up.
Step 1: Perform deterministic thermoacoustic
stability analysis to obtain the nominal frequency

" and modal growth rate o° of the interested ther-
moacoustic mode.

Step 2: Calculate the normal direction of the
iso-growth lines n.

Step 3: Construct function f() in Eq. (15) in the
following manner:

Step 3.1: Draw several samples (5-10) of FIR
model coefficients from their distribution, obtain
their Y values. Here we suggest the following way
to determine those FIR coefficient samples: (a)
draw a large number of FIR coefficient samples
(e.g., 10* samples, store as the data bank), calculate
their corresponding Y values; (b) Estimate Y’s cu-
mulative distribution function, employ space-filling
sampling method (e.g., Latin Hypercube, Halton
or Sobol sequences) to draw several (5-10) “ideal”
samples for Y which satisfy the experimental de-
sign criteria; (¢) Find those FIR coefficient samples
in the data bank whose Y values are closest to the
“ideal” Y sample;

Step 3.2: Calculate the modal growth rate of
each sample (in Step 3.1) using thermoacoustic sys-
tem model;

Step 3.3: Plot the modal growth rate values
against corresponding Y values and fit a function
f (i.e., polynomial, Kriging, Radial basis function,
etc.);

Step 4: Perform standard Monte Carlo simula-
tion, i.e., draw a large amount of samples of FIR
model coefficients, for each sample, first calculate
its Y value through Eq. (14), then calculate the cor-
responding modal growth rate through Eq. (15).
Based on the obtained data bank of the modal
growth rate values, a PDF can be constructed and
relevant statistical indices can be extracted.

To summarize, the analytical approach manages
to uncover a one-dimensional approximation (sum-
marized as Y) of the original system, and take very
few potentially expensive thermoacoustic system
calculations (1 in Step I and 5-10 in Step 3.2) to
build a surrogate model only upon Y. Subsequent
Monte Carlo simulations can be applied directly on
this one-dimensional surrogate model, thus, achiev-
ing a significantly accelerated UQ analysis.

5. Application of analytical UQ strategy to
combustion test rig

This section aims to demonstrate the accuracy
and effectiveness of the UQ strategy proposed in
Section 4.3. We investigate the uncertainty regard-
ing the modal growth rate of the BRS burner
[15] using an acoustic network solver combined
with a 16-coefficient FIR model, assuming that the
FIR model coefficients are the only source of un-
certainty. The only reason for adopting a simple yet
practical acoustic network model here is that bru-
tal force Monte Carlo is entirely feasible so that we
can verify our approach.

With permission from S. Guo, C. F. Silva, M. Bauerheim, A. Ghani and W. Polifke. Evaluating the impact of uncertainty in
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Fig. 5. Finite impulse response model. Each discrete stem
represents one coefficient /., upper and lower red dot line
constitute the 95% confidence interval. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Sketch of the acoustic network model. Flow from
left to right.

5.1. Thermoacoustic model

Figure 5 displays the 16-coefficient FIR model
adopted in the current study, which includes both
the nominal value and 95% confidence interval for
each coefficient. The FIR model is identified using
the procedure described in Keesman [16], based on
the LES data of [17], where velocity perturbations
at the burner mouth #’ and global heat release rate
fluctuations (' are recorded and considered as in-
put and output, for the identification procedure, re-
spectively. In the current UQ analysis, each FIR
model coefficients are treated as a random variable,
and they follow multivariate normal distribution.
The covariance matrix of the FIR model coeffi-
cients is also obtained from the identification pro-
cess.

The acoustic network model of the BRS burner
is sketched in Fig. 6. The geometrical and ther-
modynamic parameters are given in [12]: two pairs
of chamber length values (I, = 0.51 m and Iz =
0.6 m) and reflection coefficient values for the com-
bustor exit (Ry = —0.98 and Rz = —0.63) are se-
lected and marked as case A and case B, respec-
tively. The transfer matrix for each acoustic element
and their assembly are given in [2].

Here we focus on evaluating the impact of un-
certain FIR model on the dominant mode (with
largest modal growth rate) of each case, which are
shown in Fig. 7. These modes are calculated with
standard deterministic analysis. When FIR model
uncertainty is considered, these dominant modes
may become unstable, since they are relatively close

Growth Rate (rad/s)

Fig. 7. Thermoacoustic modes calculated by determinis-
tic analysis. For case A, the nominal modal frequency is
434.2 Hz and growth rate is —4 rad/s. For case B, the cor-
responding values are 97.5 Hz and —4 rad/s.

10—

Growth Rate (rad/s)
Growth Rate (rad/s)

0. 18
06-04-02 0 02 0.4 06 15 1 05 0
Real Real
(a) Case A (b) Case B

Fig. 8. Modal growth rate contours in generalized phasor
plot of FRF. Black lines are the contour levels predicted
by the analytical approach. For each case, Line with black
arrow is the F(w?) phasor evaluated by using nominal val-
ues of /s, which corresponds to a growth rate value of
—4 rad/s.

to the stability limit, thus highlighting the necessity
of UQ analysis.

5.2. UQ analysis

First we assess if the parallel straight lines (Eq.
(13)) are good approximations of the iso-growth
lines in the phasor plot of FRF. Here we treat
the acoustic network calculation as the full accu-
racy/reference solution, and its prediction of the
iso-growth lines for both cases are plotted in Fig. 8.
We drew 5000 samples of h for each case and
for each sample we calculated the corresponding
modal growth rate by acoustic network model as
well as the coordinates of F(°) in the phasor plot,
based on which we can construct the iso-growth
lines. We emphasize that such large number of sam-
ples is only necessary for this verification study,
but not for the application of our proposed UQ
approach. We can see from Fig. 8 that parallel
straight lines, as indicated by analytical results, in-
deed capture the essence of the distribution of the
iso-growth lines.

Following Section 4.3, we employ the analytical
strategy to conduct UQ analysis. One critical step
is Step 3, i.e., constructing a surrogate function f()
to map Y value to modal growth rate value. For
that purpose, we fit a quadratic function based on
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Fig. 9. For each case, a quadratic function is fitted to link
Y to modal growth rate.
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Fig. 10. PDF comparison between analytical results (red
curves) and benchmark Monte Carlo results (bars). (For
interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this arti-
cle.)

5 samples of FIR model coefficients for each case,
which is shown in Fig. 9.

Figure 10 compares the PDF of the modal
growth rate predicted by the analytical approach
and benchmark Monte Carlo, which is based on
30,000 full-accuracy acoustic network evaluations.
Corresponding cycle increments [18] of the ther-
moacoustic modes are also given to show the rel-
ative amplitude change per cycle.

Here it can be seen that our proposed analyti-
cal UQ strategy, though it is based on a first-order
approximation, is very efficient and robust since: (1)
our approach requires very few expensive thermoa-
coustic system evaluations; (2) in the cases studies,
the uncertainty level of the adopted FIR model can
already be considered as large (the maximum ra-
tio of coefficient standard deviation to coefficient
mean can be as large as 130%), yet our approach
still managed to reproduce the benchmark Monte
Carlo results; (3) for practical usage, the uncer-
tainty level of the FIR model should not be larger
than what we presented here, thus posing less chal-
lenge for the proposed UQ approach.

6. Conclusion

In the framework of evaluating the impact of
FIR model uncertainties on the thermoacoustic in-
stability prediction, our current work managed to
uncover a one-dimensional approximation of the
original thermoacoustic system, which compactly

1 1
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Fig. 11. Sensitivity measurements for each FIR model co-
efficients.

summarized the causal relationship between the
variations of FIR model coefficients and the vari-
ations of thermoacoustic modal growth rate, and
proposed a dimensionality strategy to address this
UQ problem analytically. Only a handful of ther-
moacoustic system evaluations are required to ac-
curately build a PDF of the growth rate of the
investigated thermoacoustic mode, thus achieving
dramatic efficiency improvement, while avoiding
any complex mathematical treatments normally
employed in other sophisticated surrogate mod-
elling techniques. It should be noted that the conve-
nience of the analytical procedure exposed in this
work for affordable UQ studies becomes evident
when considering more complex acoustic models,
like the ones characterized by the Helmholtz Equa-
tion or the Linearized Navier-Stokes Equation,
where a single computation is considerably more
expensive than the one of a simple acoustic net-
work model. In such models, the acoustic transfer
function H(w — io’) (see Fig. 2) is directly linked to
local values of the system matrix (the acoustic op-
erator) and, therefore, readily obtainable. In addi-
tion, the analytical results can be further exploited
in the following two areas:

* Sensitivity analysis: The analytical approach
provides the sensitivity measurement of
modal growth rate against each FIR model
coefficient Sy, which can be seen as the abil-
ity of each FIR model coefficient to modify
the modal growth rate, and can be formally
written as:

S = e’j("'+”A"‘)o%, k=0,.L—1 (16)
n
For the purpose of illustration, the sensitiv-
ity measurement of each FIR model coeffi-
cient for both cases (case A and case B in
Section 5.1) are plotted in Fig. 11. As de-
scribed in [9], FIR model coefficients contain
insightful information regarding the flow-
flame interaction. Now equipped with easily-
obtainable sensitivity measurements, it may
help to identify the key mechanisms control-
ling the modal growth rate and enhance our
understanding of the relevant physical phe-

nomenon. )
Robust design: In some occasions, we

are interested in optimizing combustor
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geometries and boundary conditions to min-
imize the impact of uncertain FIR model
on the modal growth rate prediction. The
underlying difficulty is the determination of
the modal growth rate variation. Now with
the capability of performing UQ analysis
analytically, this index can be easily obtained
with only a few thermoacoustic system calcu-
lations within each optimization algorithm
loop, which could lead to a significantly
accelerated optimization process.
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Efficient Robust Design

for Thermoacoustic Instability
Analysis: A Gaussian

Process Approach

In the preliminary phase of analyzing the thermoacoustic characteristics of a gas turbine
combustor, implementing robust design principles is essential to minimize detrimental
variations of its thermoacoustic performance under various sources of uncertainties. In
this study, we systematically explore different aspects of robust design in thermoacoustic
instability analysis, including risk analysis, control design, and inverse tolerance design.
We simultaneously take into account multiple thermoacoustic modes and uncertainty
sources from both the flame and acoustic boundary parameters. In addition, we introduce
the concept of a “risk diagram” based on specific statistical descriptions of the underly-
ing uncertain parameters, which allows practitioners to conveniently visualize the distri-
bution of the modal instability risk over the entire parameter space. Throughout this
study, a machine learning method called “Gaussian process” (GP) modeling approach is
employed to efficiently tackle the challenge posed by the large parameter variational
ranges, various statistical descriptions of the parameters, as well as the multifaceted
nature of robust design analysis. For each of the investigated robust design tasks, we pro-
pose an efficient solution strategy and benchmark the accuracy of the results delivered by
GP models. We demonstrate that GP models can be flexibly adjusted to various tasks
while only requiring one-time training. Their adaptability and efficiency make this model-

ing approach very appealing for industrial practices. [DOI: 10.1115/1.4044197]

1 Introduction

The occurrence of thermoacoustic instability [1] during the
operation of a gas turbine combustor constitutes one of the major
concerns for aircraft engine manufacturers due to its catastrophic
effect on the structural integrity of the combustor system as well
as the life-span of the gas turbine. In practice, there are two facts
that must be taken into account when designing the thermoacous-
tic characteristics of the combustor: First of all, the thermoacous-
tic behavior of the combustor is highly sensitive to small
parameter variations in operating conditions as well as acoustic
boundary conditions [2]; Second, uncertainties in those parame-
ters are always present during actual combustor operation, i.e.,
those parameters will display stochastic features instead of staying
at some fixed and predetermined nominal values. In consequence,
the performance of the combustor may deteriorate once the key
parameters controlling the thermoacoustic interaction of the sys-
tem deviate from their respective nominal conditions, and in
extreme cases, a combustor that is stable at nominal operational
condition may become unstable under the influence of the stochas-
tic parameter fluctuations. Therefore, implementing the frame-
work of probabilistic system modeling and the principle of robust
design are essential to minimize the impact of operational uncer-
tainties on the thermoacoustic performance of the combustor, thus
eliminating the costly design iterations, mitigating the operational
risk, and promoting an overall more reliable and competitive gas
turbine product.

Robust design is generally recognized as the process of care-
fully selecting design parameter values such that the system
behavior is insensitive to various sources of uncertainties [3],
which include operation condition uncertainty, actuator impreci-
sion, modeling error, etc. Within the scope of stochastic optimiza-
tion, uncertain parameters are modeled as random variables with
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Manuscript received July 1, 2019; final manuscript received July 2, 2019;
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predefined joint probability distributions, and the robust design
problem is usually cast as a two-level nested optimization prob-
lem [4]: the outer loop forms a conventional optimization problem
where an optimization algorithm is employed to find the design
parameters that optimize the objective function while subjected to
constraint functions. For each iteration, the inner loop is called
where an uncertainty quantification (UQ) analysis is performed to
calculate the uncertainty measures (e.g., mean, standard deviation,
quantiles, etc.) of the system outputs given various sources of
uncertainty, and those uncertainty measures are fed back to the
outer loop to construct the corresponding objective and constraint
functions. Overall, robust design can be viewed as the integration
of optimization and UQ analysis.

In the context of thermoacoustic instability analysis, pioneer
works were dedicated either to stabilize thermoacoustic modes via
configuration optimization or to assess the variability of modal
growth rate via UQ analysis. Regarding optimization, for exam-
ple, Bade et al. [5] proposed a design for thermo-acoustic stability
procedure, which optimizes geometric design parameters such
that the annular combustor is stable, using network models and
flame dynamic models derived from test rig data [6]. In addition,
the recent work of Aguilar and Juniper [7] has proposed an
adjoint-augmented optimization routine, which is capable of stabi-
lizing all thermoacoustic modes of an annular combustor with
minimum geometric modification. Regarding UQ analysis, differ-
ent techniques have been proposed (i.e., analytical method [8],
regression [9], adjoints [10-12], active subspace [8,13], polyno-
mial chaos expansion [14,15]), to address the impact of various
uncertainty sources (i.e., flame model, acoustic boundary condi-
tion, operation condition) on the variation of modal growth rate.

Despite the remarkable progress made in terms of optimization
strategy as well as accelerating the UQ analysis, an integration of
these two aspects into the robust design framework is, unfortu-
nately, not straightforward and worth further investigation. Gener-
ally, an efficient robust design strategy poses more strict
requirements on the perspective of UQ technique: First of all, the
robust design problem encountered in thermoacoustic analysis
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belongs to the “reliability-based” type [16], i.e., the constraint or
objective is defined on the percentile of the modal growth rate dis-
tribution, rather than simply defined on its mean and standard
deviation. As a consequence, UQ methods, which only provide
mean and variance estimation, are no longer sufficient. Instead, a
full probability density function (PDF) calculation of the modal
growth rate is mandatory within each optimization iteration; sec-
ond, the UQ technique has to be able to accommodate large
parameter variation ranges so that optimization routines can fully
explore different parameter combinations, thus having a better
chance to locate the global optimum. And finally, the UQ tech-
nique has to be flexible enough to handle different types of PDFs
associated with uncertain parameters, due to the fact that our
knowledge regarding the uncertain parameters may be renewed as
the design process evolves. In a word, robust design poses a seri-
ous challenge on the employed UQ strategy. To our best knowl-
edge, no attempt has been made to integrate UQ analysis and
optimization into the framework of robust design in thermoacous-
tic instability analysis.

The main objective of our current work is to explore this
uncharted area via a machine learning method called Gaussian
process (GP) modeling [17], which trains a computationally effi-
cient surrogate model (GP model) to approximate the thermoa-
coustic solver. The novelties of our current work can be
summarized as follows: first, for the first time we systematically
investigate potential scenarios in pursuing the robust combustor
thermoacoustic design. Those aspects of robust thermoacoustic
design possess great significance in mitigating the operational risk
of a gas turbine, yet have not received enough attention in the
thermoacoustic research community; second, we identify different
robust design tasks and properly categorize them as risk analysis,
design control, and inverse tolerance design. In addition, we
introduce the concept of a risk diagram as a high-level summary
for all the investigated robust design tasks, which allows practi-
tioners to conveniently visualize the distribution of the thermoa-
coustic instability risk over the entire parameter space, thus
assisting optimum search performed in various robust design
tasks. Third, for each identified robust design task, we not only
provide rigorous mathematical formulations but also demonstrate
how to exploit Gaussian process models to construct efficient
solution strategy. Finally, we prove the capability of the GP mod-
eling approach in significantly reducing the overall robust analysis
time as well as flexibly coping with the multifaceted nature of the
robust design process, both of which are highly favored by the
industrial practices. We emphasize that, due to its “black-box”
and “surrogate” nature, GP approach can make use of more
sophisticated thermoacoustic and flame models than the ones used
in the present work to investigate more complex combustors.
Additionally, other aspects of robust design problems can be
freely proposed and efficiently answered, all under one modeling
framework, as will be demonstrated in our current paper.

This paper is organized as follows: Sec. 2 outlines the investi-
gated combustor configuration, thermoacoustic modeling strategy,
and the flame model. Section 3 specifies the uncertain parameters,
thermoacoustic modes under consideration, and describes the
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individual task we propose to address. Section 4 briefly overviews
the fundamental theory of GP modeling methodology and presents
detailed GP model training processes. A comparison between GP
approach and other UQ methods is discussed at the end. Section 5
exploits the newly trained GP models in addressing each of the
proposed robust design problem. The paper closes with the main
conclusions.

2 Thermoacoustic Framework

This section starts with an introduction of the investigated test
rig and the employed thermoacoustic modeling approach, fol-
lowed by a description of the adopted flame dynamic response
model, which will be embedded into the thermoacoustic modeling
approach to calculate the eigen-frequencies and growth rates of
the thermoacoustic modes.

2.1 Combustor Configuration. The BRS combustor configu-
ration is investigated in this study, which represents a turbulent
premixed swirl burner test rig [18,19]. The configuration consists
of a plenum, a duct with an axial swirl generator, and a combus-
tion chamber. In this study, an equivalence ratio of 0.77 of per-
fectly premixed methane—air mixture and a thermal power of
30kW are considered as the operation conditions.

2.2 Thermoacoustic Modeling. In this study, a low-order
acoustic network model is employed to calculate the eigen-
frequencies and growth rates of the thermoacoustic modes.
Figure 1 displays the network model representation of the burner
test rig. Geometrical and thermodynamic parameters used in the
acoustic network model are the same as Ref. [8], except the length
of the combustor chamber is 0.75 m, and the reflection coefficient
at the combustor exit is |Rou|¢™ in the current study. Other model-
ing details can be found in Ref. [8] as well. It is worth mentioning
that we adopt a rather simple yet practical acoustic network model
in the current study only for the purpose of facilitating the bench-
mark of the robust design results. However, due to the nonintru-
sive nature of the GP modeling technique, which we discuss in
Sec. 4, our proposed strategy can also be extended to more com-
putational intensive acoustic models, e.g., Helmholtz equation,
Linearized Navier—Stokes equation, etc., where the benefits of the
GP approach could be further amplified, leveraging on the high
accuracy of thermoacoustic modeling offered by the sophisticated
solvers.

2.3 Flame Model. A flame dynamic response model similar
to the distributed time lag model proposed by Komarek and
Polifke [18] and validated by Oberleithner and Paschereit [20] is
adopted in this study. This model determines the coefficients of
the flame impulse response (FIR) by taking into account the flame
response to both swirl number fluctuations and axial velocity
fluctuations.

This model assumes that the shape of the flame impulse
response can be approximated by adding three Gaussian
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Fig. 2 Sketch of the employed FIR model for the flame dynamics. Corresponding frequency

response is shown in Fig. 3(b).

distributions: one positive (+) Gaussian to account for the flame
response to axial velocity fluctuations, and one (+) combined
with another (-) Gaussian to describe the response to swirl num-
ber fluctuations.

An illustration of the flame model is given in Fig. 2, where its
five model parameters, i.e., Ty, 1, T., Ty, Ts2, are also shown. This
parametrization is slightly different from Ref. [18] due to the fol-
lowing reasons: First, we want to explicitly express the time lag
7., which, according to the recent work of Albayrak and Polifke
[21], represents the time needed for an inertial wave to propagate
from the swirler to the flame base. Komarek and Polifke [18] have
shown that the position of swirler can be changed without chang-
ing the mean flame shape and the flame response to axial velocity
(11, 1) or swirl perturbations (ty;, 7y). Therefore, 7. can be per-
ceived as a control parameter to stabilize the combustor; second,
this parametrization allows the introduction of flame parameter
uncertainty while preserving the continuous shape of the flame
impulse response. The remaining parameters are: 7, and o, repre-
sent the mean and standard deviation of the flame heat release
response under an impulse axial velocity perturbation, respectively;
7, and Ty represent the characteristic time lags for the flame
response to the swirl number fluctuations. The standard deviations
of the associated positive and negative Gaussian functions are con-
sidered to be one third of ty; and t,,, respectively. Therefore, we
can express the value of the FIR coefficient /4, as [18]

(kai—r)? (kAi-1)?

n At s At s
, = ———e 1 _ 2
§ o1V2n oV 21
At CY )°
————e 3 kell,2,...N (1)
a3V2n [ ]
where N is the number of FIR coefficients, and
2 =T+ T 3 =T+ Ty
T2 T Ts1 T3 T T2 (2)

0y =10/3 03=10/3
3 Robust Design Tasks

In this section, the investigated parameters as well as their var-
iational ranges are introduced. Subsequently, two thermoacoustic

will focus on. Afterward, detailed descriptions of our proposed
design tasks are provided.

3.1 Uncertain Parameters. Our proposed robust design tasks
involve six parameters, including five flame model parameters 7,
01, Te, Ts1, Ts2, and one acoustic boundary condition, i.e., the mag-
nitude of the reflection coefficient at the combustor outlet |Ry|.
Their nominal values (obtained from “Table 2, 30kW optimal fit”
in Ref. [22]) as well as their investigated variational ranges are
summarized in Table 1. For 7. and |R,y/, relatively large varia-
tional ranges are investigated in order to fully explore the parame-
ter space. In a practical scenario, 7. is determined by the distance
between the swirler and the flame base [22], while the modifica-
tion of |Ry| can represent the installation of acoustic damping
devices or a change of turbine working condition [23].

In our current study, three distribution types for 1y, 0y, 741, Ts,
are considered: independent uniform, independent Gaussian, and
correlated Gaussian. As we stated in Sec. 1, a common situation
in the design process is that our knowledge regarding the uncer-
tain parameters may be renewed as the design process evolves.
Here, independent uniform indicates the least informative knowl-
edge, i.e., uncertain parameters have equal chance to be anywhere
within the variational ranges. This usually happens at the begin-
ning stage when no prior knowledge exists; Independent Gaussian
contains more information since we know uncertain parameters
have a tendency to appear more frequently around their corre-
sponding mean; Correlated Gaussian, on the other hand, gives the
most complete statistical description of the uncertain parameters.
This usually happens at a later design stage when a sufficient

Table 1 Uncertainty information of the investigated
parameters
Parameters Nominal Range
Flame (units: ms) T =285 0.9t — 1170
a ) =0.7 0.94) — 1.169
T, =3 2-4.8
Ty =18 0.97% — 1.1<%
T %, =18 0.97% — 1.17%
Acoustic BC [Row [Rowt|®=0.9 0.6-1

modes are specified, which the following robust design analysis
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Fig.3 Uncertainty reflected in FIR and FTF. The black stems represent the nominal values, while the red dash lines rep-
resent the envelopes recording the extreme values at each (a) coefficient h, (FIR) and (b) frequency (FTF).

amount of experiments and simulations have been conducted so
that the flame dynamics can be properly described. In Sec. 5, we
start by considering 1y, gy, 741, T, following independent uniform
distribution, and then we assess the impact of different distribu-
tion types on the analysis results, all using the same GP models.

The uncertainties embedded in the flame model parameters can
be easily propagated to the uncertainties in FIR coefficient 7;’s
and the corresponding flame transfer function (FTF) by perform-
ing Monte Carlo on Eq. (1) and subsequently on Eq. (3). The
uncertainty propagation results are shown in Fig. 3

N
FTF(w) = Zh;e"m“”, welR
=

3

3.2 Thermoacoustic Modes Specification. Figure 4 shows
the thermoacoustic modes up to 400 Hz, calculated by determinis-
tic analysis, i.e., when the nominal values of the flame model
parameters and |Roy| are used in the acoustic network. Highly
damped modes are ignored; thus they are not shown in the figure.
Two dominant thermoacoustic modes are presented: the higher
frequency mode (w =287.5Hz, «=—27.7rad/s) is identified as
the quarter wave mode of the combustor [19]. We denote this
mode as cavity mode. The other mode (w=139.3Hz,
o= —24.8rad/s) is identified as the intrinsic thermoacoustic mode
(ITA) [24-26]. We denote this mode as ITA mode. Although both
modes are not immediately adjacent to the stability limit, consid-
ering the large variational ranges of the FIR and FTF (displayed
in Fig. 3), there still exists risk for both modes to be unstable.
Also notice that it is not uncommon that in thermoacoustic con-
trol, the effort to stabilize one mode may unexpectedly promote
another mode to become unstable [1]. Therefore, in our current
study, both modes will be taken into account concurrently, and the
goal of robust design analysis is to mitigate the risk of instability
for both modes.

3.3 Design Task Descriptions. To comprehensively investi-
gate the problem of robust thermoacoustic design, we propose the
following scenarios, which we want to address individually:

QI-Risk analysis: what are the risk factors [8] of the thermoa-
coustic modes of the system when uncertainties are presented
in the flame parameter 7y, 6y, 7, and 7,,?

Q2-Ideal control design: using 7. as a control factor, what is the
required minimum modification of 7. to eliminate the risk of
instability of both cavity and ITA mode simultaneously?
Q3-Realistic control design: in reality, we cannot perfectly con-
trol 7.. Meanwhile, |Roy| is also uncertain. How would these
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Fig. 4 Two dominant eigenmodes from deterministic analysis.
In this study, modes with growth rates smaller than zero are
considered stable.

two additional uncertain parameters affect the decision made
from Q2?

Q4-Tolerance design: given certain threshold for risk factor,
what are the maximum allowable variational ranges for 7. and
‘Roull?

Q5-Risk diagram: is it possible to construct a diagram with risk
factors showing at arbitrary combination of 7. and |Roy/, thus
encompassing answers for all the previous questions?
QO6-Sensitivity analysis: if the statistical descriptions of the
uncertain flame parameters are modified, then how would this
affect the risk diagram derived from Q5?

QI sets the stage for robust design analysis. Here, risk factor
P{%) describes the probability that a thermoacoustic mode is
unstable, which can be expressed as the following [8]:

P(%) = 100 r PDF(a)do. “
0

where o stands for the modal growth rate. The risk analysis per-
formed in Q1 serves as the foundation for the subsequent robust
design analysis.

Q2 tries to increase the robustness of the system design by
introducing a control factor: .. In practice, 7. can be tuned by
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modifying the distance between the swirler and the combustor
dump plane [27]. By adjusting the constructive/destructive inter-
ferences between the flame response to axial velocity fluctuations
and the response to swirl number fluctuations, we are aiming at
making the growth rates of both modes vary only in the stable
region, thus mitigating the risk.

Q3 goes one step further toward reality compared to Q2: 7, can
be easily influenced by the perturbations of the convective veloc-
ity in the swirler tube, and the reflection coefficient |Roy|, which
largely depends on the turbine operating conditions, is inherently
uncertain. By additional acknowledgment of the uncertainties in
flame and acoustic boundary parameters, the robustness of the sys-
tem can be further enhanced.

Q4 approaches the robust design via the perspective of an
inverse problem: searching the maximum allowable variational
ranges for the uncertain parameters while still satisfying the con-
straints. This is beneficial toward understanding, e.g., the trade-off
between combustor and turbine operational uncertainties, thus
achieving a better coordination between combustor and turbine
design groups.

Q5 aims higher by proposing the concept of a risk diagram,
which provides the distribution of risk factor over the entire the
parameter space. This task extends Q1 to enable the practitioner
to conveniently locate the desired parameter regions for achieving
efficient optimum search performed in Q2, Q3, and Q4.

Finally, Q6 mimics the situation that our knowledge of the
uncertain parameters, which is reflected in their assigned PDF,
will be updated as the design process evolves. Therefore, it is nec-
essary to reconduct the risk analysis and assess the sensitivity of
results to different distribution types of parameters.

As progressing from Q1 to Q6, the dramatically increased prob-
lem complexity and associated computational cost prohibit a
direct application of acoustic solvers, including the relatively
cheap acoustic network model. However, surrogate modeling
technique turns this around and opens new possibilities for
addressing robust design problems efficiently, which we discuss
in Sec. 4.

4 Gaussian Process Modeling

To efficiently address the robust design tasks outlined in
Sec. 3.3, a machine learning method called GP is employed and
corresponding solution strategies are constructed. In the context
of thermoacoustic analysis, Schneider et al. [28] employed GP to
construct a real-time modeling approach to simulate pressure pul-
sation amplitudes of an annular gas turbine combustor. The accu-
racy of their approach was further verified on the measured data
for a wide range of operating conditions. In a recent work, Chatto-
padhyay et al. [29,30] adopted a GP model to predict combustor
instability at untried operational conditions and successfully
benchmarked the results with the experimental data. In the follow-
ing, we first briefly review the fundamentals of GP modeling.
Afterward, we train a total of four surrogate models for predicting
modal frequencies and growth rates of the ITA and cavity modes,
respectively, which will be repetitively used for addressing differ-
ent robust design tasks in the subsequent sections. We close this
section with a brief comparison of the GP approach with other UQ
methods. The GP model training is performed via UQLab [31].

4.1 Fundamentals Overview. Gaussian process modeling is
a supervised learning technique in machine learning domain [32].
Based on carefully selected training samples and their correspond-
ing responses, GP is capable of training a computationally effi-
cient surrogate model to approximate the original high-fidelity
solver. As a result, the UQ analysis nested in the robust design
procedure can be performed directly on the trained GP model;
thus, repetitive high-fidelity solver calls can be avoided and the
overall efficiency of the robust design analysis can be significantly
improved. In the following, we summarize the key features of GP
modeling. Jones et al. [33] provides a complete derivation of GP
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method and Forrester and Keane [34] review the topic of employ-
ing GP in the context of surrogate modeling. For the application
of GP modeling in robust design in other domains, we refer read-
ers to Refs. [35] and [36].
GP modeling treats the output f(x) of the high fidelity model at
x (a vector with the entries being the individual input parameter)
as the realization of a Gaussian process
f(x) = B+2(x) (©)
where f§ is a constant value and Z(x) corresponds to the departure
from f at x, which is modeled as a Gaussian stochastic function
with zero mean, variance ¢, and covariance defined as
Cov[Z(x',x/)] = a’R(x", x') (6)
where _R(x’,x"_ ) is the correlation function between any two loca-
tions x' and ¥’ in the input parameter space. In this study, a Gaus-
sian correlation function is adopted to describe R(x',x’), which
can be written as

M
R(x.¥) =exp [f S0, - xl)z} ©)
k=1

where M denotes the dimension of the input (i.e., number of input
parameters), subscript k represents the kth component of the input
vector x, and 0 = [0y, ..., O] controls the level of correlation in
the corresponding dimension: a high value of 0; signifies a high
rate of decay of correlation in the ith dimension, and vice versa.

Based on a set of training samples Xp = [x', ..., xV]" and their
corresponding responses Y = [f(x'),....f(x")]", we can train
the GP model by finding values for f, o°, and 0 such that the like-
lihood of achieving the observations (training samples and their
corresponding responses) is maximized. For any given GP model
parameter set (8,7, 0), the likelihood function L can be directly
obtained from the probability density function of a multivariate
normal distribution

1

L(B.d 0|Xp.Yp) = ———>——
(27[0'2)N/2\R|]/2

1
X exp _ﬁ(YD —1B)"R(Yp — 1p)

®
where 1 is a vector of ones of dimension M. In practice, the loga-

rithm of the above likelihood function is being maximized, which
can be written as

In(L(B, 0% 0Xp,Yp)) = 7%/111(2@ - %Vln(GZ) — %ln(|RD\)

s (Vo — 1) R, (¥ — 1)

(C)]

By setting the derivatives of Eq. (9) with respect to § and o” to
zeros, we can obtain their maximum likelihood estimation

B=01"R,' 1) 1R, Y (10)
~ 1 AT P
a2 :N<YD - 1[3) RL;](YD — 1[3) (11)

For estimating @, the following auxiliary optimization problem
has to be solved:

0 = argmax [7%/1n(0?2) 7%ln(|RD\)] (12)

0
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Finally, the GP model prediction f (x) at an arbitrary location x is

F(x) = EIG®)Xp.Yp] = f +r(x)'Rp' (Yp — 1) (13)
which is interpreted as the conditional expectation of the Gaussian
process G(x), conditional on the known responses of the training
samples [37]. r(x) in Eq. (13) is the correlation vector between x
and all the training samples, i.e., r(x) = [R(x,x"), ..., R(x,x")].

At training sample locations x', x%, ..., x", the following condi-
tion is fulfilled:

Fle) =)

indicating that GP surrogate modeling is an interpolation method
that produces the exact responses at corresponding training sam-
ple locations.

(14)

4.2 Gaussian Process Model Training. In this study, we
strive to train four separate, generally applicable GP models for
approximating the frequency and growth rate of ITA and cavity
modes, respectively, covering the whole parameter range specified
in Table 1. The robust design analysis conducted in Sec. 5 will be
configured completely upon the models trained in this section,
i.e., no additional training will be needed.

Figure 5 summarizes the flowchart for training the GP models.
The training (as well as the employment of GP models in Sec. 5)
is performed on an Intel Core i5-6200U CPU 2.30 GHz laptop
PC. Details for each step are given in the following:

Step 1: We start the training process by uniformly drawing 18
samples of (11,071, Tc, Ts1, Ts2, [Row|) from the parameter space
specified in Table 1, via a Halton sequence [38], which is a
low-discrepancy sampling method that possesses an excellent
space-filling property. Loeppky et al. [39] suggested that
approximately a sample size of 10M (M is the number of input
parameters) is required when using GP to approximate the tar-
get response. Therefore, we use a third of 10M (18 in this case)
as our initial sample size. Subsequently, we can construct the
design matrix Xp as Eq. (15), with each row representing one
sample

(m (1)

T oy Te T TS) ‘Rom|(1)
2 2 2 2 2 2
N R R
18 18 18 18 18 18
IR LI AR

Step 2: For each sample, we calculate the corresponding out};ut
quantities via acoustic network: ITA mode frequency '™,
ITA mode growth rate «'™, cavity mode frequency »“*V, and
cavity mode growth rate o“*Y. We store them in the response
matrix Yp = [0'T, a™ oAV a®AV] with each column vector
containing the corresponding response values of all the samples
in XD.

Step 3: We train four separate GP models by using the
following “sample-response” pairs: (Xp, ™), (Xp, ™),
(Xp, oY) and (Xp, a“AY).

Step 4: We perform leave-one-out cross-validation [31] to judge
the prediction accuracy of all four GP models. Leave-one-out
cross-validation estimates the generalization error (GE) of the
GP model in the following manner:

Ge-33(-7")

i=1

16)

where N denotes the total number of training samples, f; corre-

sponds to the known response of the training sample x', and fi(ﬂ)
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represents the prediction at x' using the GP model constructed
upon all training samples except (x',f;).
Step 5: If the prediction accuracy for any GP models is not sat-
isfied, we draw six new samples from the Halton sequence and
expand Xp, run the acoustic network solver to calculate the
responses of these new samples, augment Y by the newly
obtained responses, and start another round of model training
and validating. We choose to update six samples at once to take
advantage of parallel computing, which would be especially
important when expensive solvers are employed.
Step 6: The process continues until the model generalization
errors are saturated.

Figure 6 displays the convergence history of the generalization
errors of all four GP models as training samples are enlarged itera-
tively. It can be seen that after 15 iterations, i.e., a total of 102
(18 + 14 x 6) training samples are employed, the generalization
errors for frequency and growth rate predictions have saturated,
thus implying that all four GP models have converged. The total
training time is 93 s.

To further test the accuracy of the newly trained GP model,
another 50 samples of (71,07, Ty, Ts2, |[Row|) Were randomly
draw, which are not included in the training samples, and compare
the GP-predicted responses with the true responses calculated via
acoustic network at these sample locations. We emphasize that
this is only for the purpose of verification, but not necessary for
the GP model training.

The comparisons shown in Fig. 7 confirm the results given by
the error diagnoses in Fig. 6. Therefore, we can see that with only
a modest number of training samples, the obtained GP models
have already achieved high predicting accuracy and applicable
over a large parameter space.

4.3 Comparisons With Other Uncertainty Quantification
Methods. In the context of accelerating the UQ analysis in ther-
moacoustic instability analysis, various methods have been pro-
posed and validated on their corresponding problem settings: a
polynomial-based regression method [9] and an analytical method
[8], which enjoy simplicity but so far have only dealt with flame
model uncertainties; Adjoint-based methods [10-12], which
enjoy mathematical elegance and are free of the “curse of
dimensionality,” but most effective for small parameter varia-
tional ranges and may miss the global optimum when combined
with a gradient-based optimization routine; polynomial chaos
expansion [14,15,40], which shows computational efficiency for a
small number of uncertain parameters, but relies on the specific
PDFs of the input parameters to determine the expansion and also
works best on a rather small parameter variational ranges; active

Initial Sampling Plan
Xp

}

Calculate Sample Responses
| vp = [WITA, QI TA, (GOAV oAV

1 Model Training

Add New Samples to
Xp

w4 ~ GPW(Xp)
a4 ~ GP®)(Xp)
w4 ~ GPO)(Xp)
a%V ~ GPW(Xp)

Cross-Validation
Satisfied?

Fig.5 Flowchart of GP model training
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Fig. 6 Convergence history of the GP models for approximating (a) ITA and (b) cavity mode. For each GP model, the GE cal-
culated via Eq. (16) is scaled by the variance of the responses of the training sample and shown as the relative error in the fig-
ure. For both modes, frequency converges faster than growth rate. The relative error of the ITA mode is smaller than the cavity

mode.

subspace approach [8,13], which leverages on the low-

dimensional subspace of the original system to accelerate the
analysis, but the existence of this low-dimensional subspace is not
guaranteed for general problems.

Gaussian process approach, on the other hand, fits perfectly in
the context of robust design, with its capability of handling large
parameter variational ranges and various probability distribution
types, provided that the number of the input parameters is moder-

ate (smaller than 20 [41]). We will demonstrate its accuracy and
efficiency in Sec. 5.

5 Robust Design Analysis

In this section, we exploit the GP models trained from the last
section to address the proposed robust design problems outlined in
Sec. 3.3. Each subsection is devoted to one problem, starting with

the problem statement, followed by the solution strategy, results,
demonstration, and validation.

5.1 Risk Analysis

“Ql: what is the risk factor of the system when uncertainties are
presented in the flame parameter t,, 64, T5;, and t?”

Here, we consider 7, and |R,y| to be fixed at their nominal values,
while 1y, 01, T4, T follow independent uniform distributions
with the parameter range indicated in Table 1. When flame param-
eters are uncertain, the growth rate values for both modes will
also exhibit variation, thus having the potential to be unstable.
Therefore, this is a typical forward uncertainty quantification [8]
problem.

To calculate the risk factor, we can approximate Eq. (4) via
Monte Carlo simulation [13] by repeatedly calculating the growth
rates of different samples of (ty, 7y, 7,1, 752) and then compute the
ratio between the number of samples with growth rate larger than
zero and the total number of samples. Instead of calculating the
growth rate with the acoustic solver, which might be computation-
ally very expensive, we perform Monte Carlo directly on the GP
models, thus significantly accelerating the analysis due to its neg-
ligible predicting cost. We randomly draw 20,000 samples of (z,
01, Ts1, Tsp) from their distributions for Monte Carlo simulation,

which are large enough to ensure the statistical convergence of
the obtained PDFs.

Journal of Engineering for Gas Turbines and Power

Probability density functions of growth rate and frequency of
both ITA mode and cavity mode are shown in Fig. 8. The diagonal
figures display the marginal distributions while the off-diagonal
figure shows their joint distribution. Comparisons against the ref-
erence PDFs, which are obtained via applying the Monte Carlo
directly on the acoustic network solver using the same 20,000
samples, are also made and shown in Fig. 8. R* coefficient
(defined in Appendix C) is employed to quantify the accuracy of
the GP approximation. Excellent matches between GP models and
full thermoacoustic model for both modes are observed, thus dem-
onstrating the high predictive accuracy of the trained GP models.
In terms of computation time, the full Monte Carlo simulation per-
formed via acoustic network solver takes 271 s, while GP models
only require 1.3s. We emphasize that this acceleration of UQ
analysis will be even more significant when GP method is adopted
to approximate other more sophisticated thermoacoustic models,
and when a complete robust design task is required where multi-
ple times of UQ analyses have to be performed.
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Fig. 7 Comparisons between GP model predictions and the
reference values produced by acoustic network solver
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5.2 Ideal Control Design

“Q2: using t. as a control factor, what is the required minimum
modification of t.. to eliminate the risk of instability of both cavity
and ITA mode simultaneously?”

As in Sec. 5.1, we consider independent uniform distributions
with variational ranges specified in Table 1 for 7y, 0y, 741, 75

0.18

and assume that the exit reflection coefficient |Ryy| is fixed at
its nominal value. We try to optimize the time lag 7. of swirl
fluctuations under the constraint that the risk factors of both
modes (Pj(cl) for the ITA mode and Pj((c) for the cavity mode) are
small. This optimization problem is explicitly expressed as
follows:

R2 = 0.9
0.12
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0.06
[P
135 140 145
Frequency (Hz)
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Fig. 8 PDFs of the modal frequency and growth rate given by the GP models
and reference acoustic solver are compared. Diagonal figures are marginal
distributions while off-diagonal figure is the joint distribution. Same Monte
Carlo samples are used for both GP models and acoustic network solver: (a)
ITA mode and (b) cavity mode.
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min f(z;) = (. — 7{)*

subject to: P/(»[)(n.) <0.1%
P (z) <0.1%
0.667:? <t.< 1.6‘[?

an

The first line represents the objective of the optimization, i.e., that
the modification of 7. from its nominal value ¥ is minimum.
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Notice that the %gal of m(ict%gating instability risk is formulated as
constraints on P;* and P, instead of as objectives. The optimal
value of 7. should lie within the range in Table 1. This condition
is also expressed as a constraint. The formulation (17) of the opti-
mization problem Q2 assures its well posedness, since the mini-
mum possible value of P;is zero and there may exist multiple 7.’s
that lead to zero Py. Thus, we seek the minimum modification of .
from r? that satisfies the constraint of zero instability risk, thus
ensuring that only a single optimum exists.
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Fig. 9 PDFs of the modal frequency and growth rate predicted by the GP
models and reference acoustic solver are compared. Indeed, with . = rgp',
the instability risks of both modes are basically eliminated: (a) ITA mode and
(b): cavity mode.
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Fig. 10 PDFs of the modal frequency and growth rate predicted by the GP
models and reference acoustic solver are compared. Here, 1.~
N (6P, (0.0572)%), |Rout| ~ U(0.7,0.9) and 14, 64, ts1, Ts2 follow independent
uniform distribution with variational ranges specified in Table 1: (a) ITA mode

and (b) cavity mode.

Since P}I) and Pf(c) are both nonlinear functions of 7., Eq. (17)
constitutes a single-variable, nonlinear constrained global optimi-
zation problem. Therefore, we employ a pattern search algorithm
[42] to optimize .. For each optimization iteration, P;" and P 2
are computed by the same way as presented in Q1. Since a gloﬁal
optimization search usually involves more than a handful of itera-
tions, using efficient GP models to repeatedly calculate Py within
each iteration could potentially achieve a significant reduction of
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computational cost. It is worth mentioning that other more
advanced global optimization algorithms can also be employed
here. A thorough comparison between different optimization rou-
tines is beyond the scope of this paper.

The global optimum result identified by the pattern search algo-
rithm is %" = 3.52ms. To verify this result, we perform a Monte
Carlo simulation as in Q1 by setting 7. = t°". Twenty thousand
samples of (1, 01, T4, Ts») are employed to ensure statistical
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convergence. PDFs of frequency and growth rate for both modes
are shown in Fig. 9, where the reference PDFs obtained by apply-
ing Monte Carlo directly on acoustic solver are also shown. It can
be seen that, with this value of ., P, for both modes are basically
zero, and the PDFs predicted by GP models match very well with
the reference results.

5.3 Realistic Control Design

“Q3: in reality, we cannot perfectly control t.. Meanwhile, |R | is
also uncertain. Then how would these affect the decision made from

027"

As in Sec. 5.1, we consider 7y, g1, 14, and 7y, to follow independ-
ent uniform distribution with variational ranges specified in
Table 1. Now, we consider |R,y| to be uncertain, following a uni-
form distribution in the range 0.7-0.9. For 7., a Gaussian distribu-
tion is assigned with mean 7, and standard deviation 5% of °.
Here, the standard deviation is used to mimic the situation that ..
cannot be perfectly predicted, and statistically exhibits fluctuation
around its design value 7.. We aim to optimize 7, with the con-
straints being Py of both modes are sufficiently small, and objec-
tive function being the modification of 7, from its nominal value
is minimum. We can explicitly express this optimization problem
as follows:

min f(z.) = (% —0)°
subject to: Pf('l)(fl') <0.1%

. (18)
P (z;) <0.1%

70 ~ N (2, (0.05:%)%)

The global optimum result is T = 4.06 ms, which is obtained
via the same optimization algorithm employed in Sec. 5.2. To ver-
ify this result, we perform a Monte Carlo simulation by setting
7o ~ N3, (0.0519)%), |Row| ~ U(0.7,0.9) and 1y, 0y, T, Te
follow independent uniform distribution with variational ranges
specified in Table 1. Twenty thousand samples of
(T1, 01, Tes Tst s T2, [Row|) are used to ensure statistical conver-
gence. PDFs of both frequency and growth rates of both modes
are shown in Fig. 10, where the reference PDFs given by applying
Monte Carlo directly on acoustic solver are also shown.

It can be seen that the PDFs predicted by GP models match
very well with the reference results. Also, we notice that when
taking into account the uncertainties in |Roy| and imperfect con-
trol of ., the optimum decision made from Q2 is not valid any-
more. Instead, the design value for 7. should increase from %" to
7" to eliminate the instability risk for both modes, as indicated in
Fig. 10. Here, we emphasize that although we take into account
more sources of uncertainties with mixed distribution type com-
pared to Q2, our GP models manage to capture the induced varia-
tions of both eigenmodes, thus showing a high level of both
flexibility and accuracy.

5.4 Tolerance Design

“Q4: given a certain threshold for risk factor, what are the
maximum allowable variational ranges for t. and |R | ?”

Here, we aim to investigate the compromise between the allowable
uncertainty level of 7. and |Roy|, based on the optimum result
obtained from Q3. To be more specific, by considering 7, ~
N (@, (o, %) and |Rou| ~U(R.,0.9), we seck the trade-off
between o, (standard deviation of 7.) and R, (lower bound of
[Rou|), both of which serve as the indications of the corresponding
parameter allowable uncertainty level. For 7, g1, 7, and 7y, we
consider them to follow independent uniform distribution with var-
iational ranges specified in Table 1. We formulate Q4 as a multiob-
jective optimization problem, which can be explicitly expressed as
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Notice that we are dealing with two variables, two objective
functions, and Pf and P, ’ are both nonlinear functions of . and
[Rou|- Therefore, Eq. (19) constitutes a multivariable, multi-
objective, nonlinear constrained global optimization problem. For
multi-objective optimization problems, it is usually the case that
not all the objectives can be optimized simultaneously. Indeed,
there must be a trade-off in some way. Therefore, it would be
more informative to introduce the concept of a noninferior solu-
tion, i.e., a solution where neither objective can be improved with-
out degrading the other objectives. By locating a set of these
noninferior solutions in the objective space, which is also called
Pareto front [43], we can visualize the trade-offs between differ-
ent objectives conveniently.

Toward that end, we employ the multi-objective pattern search
algorithm [44] to locate the Pareto front of the two objectives. Pf
and P, are efficiently calculated via the same way presented in Q1.

The results are shown in Fig. 11, where the optimum result
obtained from Q3 is also displayed. It can be seen that two objec-
tives are competing with each other: toward the right of the Pareto
front, a larger ¢,, would require smaller AR; toward the left of the
Pareto front, a smaller o, would allow larger variational range for
[Rout|. The qualitatively described trade-offs are beneficial to
understand the interaction of the allowable uncertainty level
between 7. and |Roy/-

5.5 Risk Diagram

“05: is it possible to construct a diagram with risk factors shown at
arbitrary combinations of t. and |R .|, thus encompassing answers
for all the previous questions?”

Here, we aim to compute the Py’s for both modes at arbitrary loca-
tion in the parameter space of 7. and |Roy|, and illustrate them in
a single risk diagram. As in Sec. 5.1, we consider 1, 7y, Ty, T tO
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Fig. 12 Risk factor contours for both modes (blue for cavity mode and black for ITA mode).
Zero risk lines (thick lines) divide the whole parameter space into four regions, with region a
(shaded in grey) being the risk-free region. Results for Q1 and Q2 can be directly obtained
from the diagram. For Q3 and Q4, the risk diagram offers a convenient visualization of the
trade-off between /s mean location, z/s uncertainty level and \rom\’s uncertainty level. (For

color figure please refer to online version.)

follow independent uniform distribution with variational ranges
specified in Table 1.

To obtain such a risk diagram, we conduct a full factorial
design [45] with a 30 x 30 uniformly spaced grid spanned over
the parameter space of 7. and |Roy| (ranges indicated in Table 1),
and we calculate the P/’s for both modes at each combination of
(t¢s |[Rout|) using the same method as presented in Q1. The poten-
tial excessive computational cost induced by this repetitive task is
efficiently mitigated with GP models.

The risk diagram is depicted in Fig. 12, where risk factor con-
tours for both ITA mode (black) and cavity mode (blue) are dis-
played. The thick lines mark the zero risk factor contour and they
divide the parameter space of (t, |Roy|) into four regions: region
a is the risk-free region, i.e., when (7., |Roy|) values are within
this region, there is no risk for both modes to be unstable even
though 7y, 7y, 174, T, are uncertain. Region b is dominated by the
ITA mode, i.e., in this parameter region, cavity mode is stable
while ITA mode exhibits instability risk. In region ¢, both modes
have a certain level of risk to be unstable. Finally, region d is
dominated by the cavity mode, i.e., in this parameter region, ITA
mode is stable while cavity mode exhibits instability risk.

For the BRS burner investigated in this current study, ITA
mode and cavity mode response differently to the change of |Roy|,
as observed and thoroughly discussed in Refs. [25] and [46]. This
phenomenon is also reflected in the obtained risk diagram
(Fig. 12): For the cavity mode, above the threshold (zero risk
line), an increase of |Ry| promotes instability risk; contrarily, for
the ITA mode, increasing |Roy| tends to reduce the instability risk.
However, we caution the reader that care must be exercised when
interpreting physics from Fig. 12: risk diagram is not a modal sta-
bility map, and zero risk factor lines presented here are not zero
growth rate lines. Each location in the risk diagram is associated
with a PDF of the modal growth rate, and the risk factor value at
that location is determined by not only the mean but also the
standard deviation as well as the skewness of that PDF.

This risk diagram also indicates all the results obtained from
QI to Q4: For Q1, we can directly read the risk factor values for
both modes based on the (7., [Rou|) location on the diagram; For
Q2, we can conveniently locate the %" to mitigate instability risk
while minimizing the modification of .. For Q3 and Q4, we can-
not directly obtain the answers due to the uncertainties exhibited
in both 7. and |[Roy|. Nevertheless, the risk diagram shows the
trade-off between 7., g, and A|Royl|: larger 7. accommodates
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larger uncertainty of 7, and |Roy|; For fixed 7., larger A|Rqy|
requires smaller ¢, while smaller A|R,y| allows larger o, . Such
information can guide detailed optimization analysis.

5.6 Sensitivity Analysis

“Q6: if the statistical descriptions of the uncertain flame parameters
are modified, how would this affect the risk diagram derived from Q5"

Up till now, we have only considered 1y, 0y, T4, 75 following
independent uniform distribution. In Q6, we relieve this assump-
tion and assess the sensitivity of the zero risk lines against the sta-
tistical descriptions of the uncertain flame parameters 7, oy, 7y,
7,,. Toward this end, we examine two other distributions for 7,
01, Ts1» Tso, 1.€., Uncorrelated and correlated Gaussian. Distribution
parameters for different cases are summarized in Table 2. Here,
we label case A as the uniform distribution case, case B as the
uncorrelated Gaussian case, and case C as the correlated Gaussian
case, where the mean M = (19, 49,7%,1%) and the covariance
matrix C are determined via a bootstrap analysis of surrogate time
series of velocity fluctuations and flame heat release rate fluctua-
tions. Details are given in Appendix A.

Figure 13 demonstrates the zero risk factor lines for cases A, B,
and C. “Star” location is chosen for accuracy benchmark of the
GP models (details in Appendix B). For Gaussian distribution
cases B and C, Py < 0.1% is considered as zero risk since the
probability of instability is statistically sufficiently small that it
basically would never happen in reality. Arrows indicate the evo-
lution of zero risk factor lines from case A to case C. It can be
seen that the distribution type of flame parameters has a signifi-
cant impact on the risk diagram: compare case A with case B,
when distribution type changes from uniform to Gaussian, zero
risk factor lines for both modes move outward, thus expanding the

Table2 Summary of different distributions under investigation

Parameters Case A Case B Case C

7 U(0.979, 1.119) N (29, (0.0319)%)

oy U(0.969,1.169) N (69, (0.0369)%) N(M,C)

To1 U099, 1.1%)) N (72, (0.032%)%)

T U(0.9t%, 1.1<%) N (2%, (0.032%)%)
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Fig. 13 Zerorisk factor lines for cases a, b, and ¢, where blue and
black lines correspond to the cavity mode and ITA mode, respec-
tively. Risk-free zone keeps expanding from “a” (case a, uniform)
to “a+ b” (case b, uncorrelated Gaussian) and “a + b + ¢” (case
c, correlated Gaussian). “star” location is chosen for accuracy
benchmark of the GP models (details in Appendix B).

risk-free region to “a-+b”; compare case B with case C, taking
into account the correlations between the flame parameters results
in further changes for cavity and ITA mode, thus gaining another
risk-free region “c.” This expansion of risk-free zone from case A
to C is due to the fact that a Gaussian distribution requires more
samples to appear near the mean compared to an uniform distribu-
tion, and a correlated Gaussian further constrains the variational
possibility of the parameters compared to an uncorrelated Gaus-
sian. It is also interesting to see that the zero risk line of the ITA
mode is more sensitive to the distribution type of the uncertain
flame parameters, when comparing case B with C. However, this
statement may not be generalized. Risk factor is a joint effect of
the mean, standard deviation, and skewness of the PDF of the
modal growth rate, all of which will be simultaneously influenced
by the uncertainties of the flame parameters.

6 Conclusions

In this study, we systematically explored different scenarios in
thermoacoustic robust design, ranging from basic risk analysis to
control design and inverse tolerance design. In addition, we pro-
vided mathematical formulation and proposed efficient solution
strategy for each of these problems. We introduced the concept of
a risk diagram, which displays the risk factor values of multiple
thermoacoustic modes at different locations in the parameter
space under investigation, and we also assessed its sensitivity to
the statistical descriptions of the underlying uncertain parameters.

Throughout this work, the Gaussian process modeling tech-
nique was employed, which trains a computationally efficient yet
highly accurate surrogate model to approximate the thermoacous-
tic solver, thus efficiently mitigating the high computational cost
induced by the forward uncertainty quantification embedded in the
robust design analysis. The solutions for all the robust design tasks
pursued in this work are based on one-time trained GP models.
Considering the number, large variational ranges and mixed distri-
bution types of the investigated uncertain parameters, GP models
managed to deliver highly accurate results for multifaceted robust
design tasks. We emphasize that the flexibility and efficiency
offered by the GP approach would be more prominent when com-
bined with more sophisticated and more comprehensive thermoa-
coustic solvers (e.g., Helmholtz solver, Linearized Navier—Stokes
solver), leveraging on the better modeling capability they offer.

Future studies will focus on the following three aspects: (1)
since GP modeling is a sampling-based approach, a limited number
of training samples may introduce prediction uncertainties in the GP

Journal of Engineering for Gas Turbines and Power

model. Therefore, it is necessary to treat the parametric uncertainties
and the surrogate modeling uncertainty concurrently in robust ther-
moacoustic design; (2) GP models also yield highly accurate approx-
imations for modal frequency variations, thus opening new
possibilities to include modal frequency as another constraint in
robust thermoacoustic design; (3) we will employ GP method to
approximate other more sophisticated thermoacoustic models, e.g.,
Helmholtz solver or linearized Navier—Stokes solver. Our prelimi-
nary work of extending GP to Helmholtz solver showed promising
results, which will be demonstrated in the forthcoming papers. All
the source code and data to reproduce the results presented in the cur-
rent paper can be found online.”
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Nomenclature

FIR = flame impulse response
FTF = flame transfer function
GP = Gaussian process
h; = FIR model coefficient
ITA = intrinsic thermoacoustic mode
N = number of FIR model coefficients
PDF = probability density function
Py = risk factor (%)
UQ = uncertainty quantification
o = thermoacoustic modal growth rate
o, = standard deviation of the distributed time lags of flame
response for axial velocity perturbation
7. = time lag for swirl fluctuation traveling from swirler to
flame base
7,1 = mean of the distributed time lags of flame response for
swirl fluctuation (+)
75, = mean of the distributed time lags of flame response for
swirl fluctuation (—)
7, = mean of the distributed time lags of flame response for
axial velocity perturbation
o = thermoacoustic modal frequency
|[Row| = magnitude of reflection coefficients at combustor outlet

Appendix A: Determination of Covariance Matrix

We adopt the following procedure to determine the covariance
matrix C for case C in Q6:

(1) Configure the reference FIR model using (¥, %, 7% ,1%, %)
via Eq. (1), use the time series of velocity perturbations
(u},;) from Ref. [8] (Fig. 1) as the reference input signal,
compute the corresponding time series of heat release rate
fluctuations (Q,;) via the following equation:

L
/ _ ’
Qref.n - § hk”n—k
k=1

(2) Bootstrap analysis: Fori=1, 2,..., 1000, perform

(a) Generate a random white noise vector Qi, from
N(0,6%) so that the signal-to-noise ratio is 5 (i.e.,
oy /72 =5

(b) Let Q' =@, + QL. fix 7. = 1Y, optimize (11, 7y, 71,
T5») so that the corresponding FIR model can produce
Qg which minimize ||Qpr — Q'] given uy;. .

(c) Store the optimized results as X (i,:) = (11,01, 7,1, rxz)(’)

(A1)

(3) (Calculate the 4-by-4 covariance matrix C = [Cy] as
1 1000

1000 — 1; A2

Cik (X — X7) (Xie — %)

2https://github.com/ShuaiGuo16/ASME19
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of the modal
predicted by the GP models and the acoustic solver.
We choose (7, |Row|) to be the “star” location marked in

growth

Fig. 13. The results for three different cases are shown in
Figs. 14-16, respectively. For each case, we employ 20,000
samples in Monte Carlo simulation to obtain the converged
results.
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Appendix C: R? Coefficient

We adopt R? coefficient in Figs. 8-10 to quantitatively assess
the accuracy of GP models in approximating eigenmodes (fre-
quency and growth rate). R? coefficient is defined as

N
> X -v)
1
R=1-—" ) (Ch
Yi—Y;)
i=1

where X and Y denote the quantity computed by GP models and
acoustic network solver, respectively. Y; represents the mean
value of the acoustic network solver predictions, and N represents
the total number of Monte Carlo samples.
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ABSTRACT

One of the fundamental tasks in performing robust thermoa-
coustic design of gas turbine combustors is calculating the modal
instability risk, i.e., the probability that a thermoacoustic mode is
unstable, given various sources of uncertainty (e.g., operation or
boundary conditions). To alleviate the high computational cost
associated with conventional Monte Carlo simulation, surrogate
modeling techniques are usually employed. Unfortunately, in
practice it is not uncommon that only a small number of train-
ing samples can be afforded for surrogate model training. As a
result, epistemic uncertainty may be introduced by such an “in-
accurate” model, provoking a variation of modal instability risk
calculation. In the current study, using Gaussian Process (GP)
as the surrogate model, we address the following two questions:
Firstly, how to quantify the variation of modal instability risk in-
duced by the epistemic surrogate model uncertainty? Secondly,
how to reduce the variation of risk calculation given a limited
computational budget for the surrogate model training? For the
first question, we leverage on the Bayesian characteristic of the
GP model and perform correlated sampling of the GP predic-
tions at different inputs to quantify the uncertainty of risk calcu-
lation. We show how this uncertainty shrinks when more training
samples are available. For the second question, we adopt an ac-
tive learning strategy to intelligently allocate training samples,
such that the trained GP model is highly accurate particularly
in the vicinity of the zero growth rate contour. As a result, a
more accurate and robust modal instability risk calculation is
obtained without increasing the computational cost of surrogate
model training.

*Address all correspondence to this author.

NOMENCLATURE

FIR  Flame Impulse Response
UuQ Uncertainty Quantification
GP Gaussian Process

PDF  Probability Density Function

h; FIR model coefficient
N Number of FIR model coefficients
Py Risk factor (%)

o Thermoacoustic modal growth rate

T Mean of the distributed time lags of flame response for
axial velocity perturbation

o] Standard deviation of the distributed time lags of flame
response for axial velocity perturbation

T Time lag for swirl fluctuation traveling from swirler to
flame base

Tl Mean of the distributed time lags of flame response for
swirl fluctuation (+)

T2 Mean of the distributed time lags of flame response for

swirl fluctuation (-)
|Rowr| Magnitude of reflection coefficients at combustor outlet

INTRODUCTION

The thermoacoustic behavior of a gas turbine combustor
usually exhibits a high level of sensitivity to uncertain param-
eters such as operation conditions and acoustic boundary con-
ditions [1]. As a result, conventional thermoacoustic instabil-
ity predictions, which employ only the nominal values of the
system parameters when calculating the modal frequencies and
growth rates, may yield unreliable results, e.g., a combustor that
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is predicted as stable with nominal input parameters may become
unstable when inputs deviate only slightly from their nominal
values. Consequently, uncertainty quantification (UQ) analysis,
which focuses on quantifying uncertainties on outputs given un-
certain inputs, is essential to achieve reliable thermoacoustic in-
stability predictions and constitutes a fundamental step towards
robust thermoacoustic design.

One of the main tasks in thermoacoustic UQ analysis is cal-
culating the modal instability risk (Py), i.e., the probability that
a thermoacoustic mode is unstable, given various uncertain pa-
rameters and their corresponding probability density functions
(PDF). To calculate Py induced by those uncertainties, a straight-
forward method is to perform Monte Carlo simulation: firstly a
large number of samples (at the order of 10%) are drawn accord-
ing to the PDFs of uncertain inputs. Then for each sample, its
corresponding modal growth rate values are calculated via ther-
moacoustic solvers (e.g., acoustic network model [2], Helmholtz
solver [3], etc). Finally Py can be simply estimated as the number
of samples with positive modal growth rate values divided by the
total sample number.

It is obvious that a direct application of Monte Carlo simu-
lation using expensive thermoacoustic solvers would induce pro-
hibitive computational cost, thus rendering it infeasible for realis-
tic UQ analysis. In order to solve the efficiency problem, various
surrogate modeling techniques have been explored in previous
studies. In this framework, firstly a small number of training
samples (around 1% of full Monte Carlo sample size) are care-
fully selected according to the input PDFs. Their correspond-
ing outputs (growth rate values) are calculated via thermoacous-
tic solver. Then machine learning techniques are usually em-
ployed to train a cheap surrogate model, based on the training
samples and their responses, to approximate the thermoacoustic
solver. Subsequently, Monte Carlo simulation can be applied on
the surrogate model to derive Py with negligible cost. Typical
examples of surrogate modeling techniques include polynomial
regression [4], adjoint method [3, 5, 6], polynomial chaos expan-
sion [7-9], as well as Gaussian Process approach [10].

Despite the remarkable progress made in terms of accel-
erating Py calculation, the uncertainty contained in the surro-
gate model itself has been largely ignored in previous studies.
This issue becomes particularly prominent as the parameter vari-
ation ranges become larger and the fidelity of the thermoacoustic
solver improves: a larger number of training samples is then re-
quired to build a surrogate model that is accurate over a larger pa-
rameter space. Meanwhile, every calculation of a training sample
induces significant computational cost. Consequently, in many
practical cases, only a small training sample size can be afforded,
which leads to a potentially “inaccurate” surrogate model. As
a result, epistemic uncertainty, which is defined as uncertainty
induced by lack of knowledge or simplifications and can be re-
duced by collecting more information [11], is introduced by such
a model. In this situation, Py is not a deterministic value any-

more, but rather an uncertain variable itself. To summarize, in the
framework of surrogate model based uncertainty quantification,
Py exists due to the presence of system parameter uncertainty; Py
varies due to the presence of surrogate model uncertainty.

Among various surrogate modeling techniques, the Gaus-
sian Process (GP) approach stands out. This is due to the fact that
GP not only provides predicted values at unsampled inputs, but
also estimates of the prediction variances, thanks to its Bayesian
nature [12]. This unique feature of GP allows us to quantify the
associated epistemic uncertainty when using GP to calculate Py.

Therefore, in the current study, we employ GP as the surro-
gate model. We aim to address the following two questions that
are closely related to a realistic application of GP approach in
thermoacoustic UQ analysis: (Q1) how to quantify the variation
of modal instability risk Py induced by the epistemic GP model
uncertainty? Although surrogate modeling techniques have be-
come popular in the thermoacoustic community to perform risk
analysis, the extra uncertainties induced by imperfectly-trained
surrogate models have been largely ignored until now. To our
best knowledge, our work is the first to quantify such uncertain-
ties as well as the impact of these uncertainties on the variation of
thermoacoustic risk calculation. (Q2) How to reduce the varia-
tion of Py given a limited computational budget for the GP model
training? Q2 directly builds on Q1: after understanding how to
quantify the uncertainty of risk calculation, we now focus on how
to reduce this uncertainty. This point is of particular interest to
industrial applications. For the first question, we leverage on
the prediction variance naturally offered by the GP model and
perform correlated sampling of the GP predictions at different
inputs [13] to quantify the uncertainty of Py calculation. For the
second question, we apply active learning methods [12] from the
machine learning community, where the training samples are se-
quentially allocated, such that the trained GP model is gradually
refined particularly in the vicinity of the zero growth rate contour.
As a result, we are able to obtain a more accurate and robust Py
calculation without increasing the computational cost for surro-
gate model training.

The current work is closely related to our previous work
[10], where our focus was to employ the GP approach to effi-
ciently address various robust thermoacoustic design tasks. In
that work, P calculations were carried out with the assump-
tion that GP models have negligible epistemic uncertainty. In
our current work, we will drop this assumption and investigate
how GP model uncertainty impacts the Py calculation, as well as
how to reduce this impact given a limited training sample bud-
get. It is worth mentioning that the procedure of a reliable cal-
culation of Py established in the current work can be seamlessly
integrated into the robust design analysis investigated in our pre-
vious work [10], without compromising the associated workflow
developed there.

This paper is organized as follows. Section “Thermoacous-
tic Framework” outlines the thermoacoustic problem under in-
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vestigation. Section “Gaussian Process Modeling” presents the
technical details of the employed GP approach and gives the
formula for estimating the prediction variance. Section “Un-
certainty of Py Calculation” focuses on quantifying the Pr cal-
culation uncertainty induced by the epistemic GP model un-
certainty. Procedures are introduced first, followed by a case
study to show how the uncertainty of Py calculation shrinks
when more GP training samples are available. Section “Reli-
able Py Calculation” introduces the active learning scheme for
adaptive GP model training. The case study in the previous
section are revisited and the effectiveness of the adopted active
learning scheme is demonstrated. All the code and data to pro-
duce the results presented in the current paper can be found at
https://github.com/tfd/GuoSilva20a_ASME.

THERMOACOUSTIC FRAMEWORK

The thermoacoustic problem investigated in the current
study is taken from our previous work [10]. Here, we briefly
review the key aspects to ensure the self-containedness of the
present paper.

For the combustor configuration, we investigate a turbulent
premixed swirl combustor test rig [14, 15]. An equivalence ratio
of 0.77 of perfectly premixed methane-air mixture and a thermal
power of 30kW are considered as the operation conditions.

We employ a low-order acoustic network model (shown in
Fig. 1) to calculate the eigenmode of the burner test rig. Geom-
etry, thermodynamic parameters as well as modeling details can
be found in [2, 10]. The reflection coefficient at the combustor
exit is modeled as |Ryy €.

A flame impulse response (FIR) model describing the
swirling flame dynamics is adopted in the current work. This
model was proposed by Komarek et al. [14] and validated by
Oberleithner et al. [16]. This model decomposes the shape of the
flame impulse response into three Gaussian distributions: one
positive (+) Gaussian to account for the flame response to ax-
ial velocity fluctuations, and one (+) combined with another (-)
Gaussian to describe the response to swirl number fluctuations.
The parametrization of the model is shown in Fig. 2. Here, 7.
represents the time needed for an inertial wave to propagate from
the swirler to the flame base [17]. 7; and o) represent the mean
and standard deviation of the flame heat release response under
an impulse axial velocity perturbation, respectively. 7, and 75
represent the characteristic time lags for the flame response to the
swirl number fluctuations. The standard deviations of the associ-
ated positive and negative Gaussian functions are assumed to be
one third of 7, and 7y, respectively. Therefore, we can express
the value of the FIR coefficient iy as [14]:

Closed end Areajump 1 Combustion chamber

L
I\

Plenum Swirler tube

Areajump2  Flame Open end

FIGURE 1: SKETCH OF ACOUSTIC NETWORK MODEL,

FLOW FROM LEFT TO RIGHT.
il velocty
J
A .
l : Swirl number 'THH’M'
ﬂ fluctuations T. —
TV h\.'_ f ﬂ

Timels

Timels

FIGURE 2: SKETCH OF THE EMPLOYED FIR MODEL FOR
THE FLAME DYNAMICS.
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where N is the number of FIR coefficients, and

=T+ T1, T3=7T+T2,
0 ="Tu/3, 03=71p/3,

@)

In the current study, we consider six uncertain parameters:
five flame model parameters 7,01, T, Ts1, Ts2, and one acoustic
boundary condition, i.e., the magnitude of the reflection coeffi-
cient at the combustor outlet |R,,|. Their nominal values and
their respective uncertain ranges are taken from [10] and sum-
marized in Tab. 1. In practice, it is preferable to construct a GP
model that is valid over a large parameter space, so that it can
be reused for different tasks in the analysis process (e.g., various
robust design tasks detailed in [10]). Therefore, we will build
the GP model on the full parameter space as described in Tab. 1.
In section “Uncertainty of Py Calculation”, we will re-investigate
‘Q1: Risk Analysis” in [10] to assess the impact of epistemic sur-
rogate model uncertainty on the calculation of Py. Since only 7,
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TABLE 1: UNCERTAINTY INFORMATION OF THE INVES-
TIGATED PARAMETERS.

Parameters Nominal Range
] =285 097 ~ 117}
ol 0l=07 0.90) ~ 1.16?

Flame
T =3 2~438
(units: ms)

1 =18 0919 ~1.179
To =33 09714 ~ 1174

Acoustic BC  |Ryu|  |[Row|® =0.9 0.6 ~ 1

o1, Ts1 and Ty are considered as the uncertain parameters in that
case study, we can effectively test the flexibility and robustness
of the GP modeling approach.

GAUSSIAN PROCESS MODELING

In this section, we summarize the key features of GP sur-
rogate modeling that are relevant for our current study. For
an comprehensive introduction of GP approach, readers are re-
ferred to [18]. For the application of GP approach in the con-
text of thermoacoustic instability analysis, readers are referred
to [10,19-21].

GP approach models the output f(x) of the high fidelity
model at x as the realization of a Gaussian process:

flx) =B +Z(x), 3)

where 3 is a constant value and Z(x) corresponds to a Gaussian
process with zero mean and covariance defined as:

Cov[Z(x',x/)] = 6°R(x',x/), 4)

where 62 is the process variance and R(x,x/) is the correlation
function between any two locations x' and x/ in the input param-
eter space. In the present study, we adopt a Gaussian correlation
function to describe R(x’,x/):

M .
R(x,x7) = expl— ¥ 0, —x))7], )
k=1

where M denotes the dimension of the input (i.e., number of in-
put parameters), and 6 is a hyper-parameter that controls the
correlation strength between the points within dimension k.

Based on a set of training samples Xp = [x',...,.x"]” and
their corresponding responses ¥ p = [f(x'),..., f(x")]7, we can
estimate B and 62 according to [18]:

B=@1"Ry'1)""1"R,'Y), (6)

~ 1 o 2
6? =5 (¥p—1B)' Ry (Yo~ 1B), @

where 1 is a vector of ones of dimension M. Rp is the N-by-
N correlation matrix between training samples in X p. However,
since Eq. (6) and (7) depends on 6 through correlation matrix
Rp, it is first required to estimate 6; using maximum likelihood
estimation:

a:argmax fdln(az)fllnﬂRDD . (8)
b 2 2

Finally, the GP model predictions Y, at unknown locations
X, = [x!,...,x1]T follow a multivariate normal distribution, with
the mean predictions p(Y ,) and prediction covariance cov(Y p)
given as:

1(Y,)=1B+Rb,R, (Yp—1B), ©)

cov(Y ;) = G*(Rp — RbpRp ' Rep), (10

where Rpp represents the N-by-L correlation matrix between the
prediction inputs X p and the training inputs X p. Rp represents
the L-by-L correlation matrix between the prediction inputs X p.
Specifically, when GP prediction y, at only a single point x
is required, the corresponding prediction mean fi(y,) and vari-
ance 62 (vp) can be directly derived from Eq. (9) and (10) as:

w(yy) =B +rxTRy (Yp—1P), an
0’ (yp) =67 (1—r(x)"Ry'r(x)). (12)
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In section “Uncertainty of Py Calculation”, Eq. (9)-(10) are
used to generate realizations of GP predictions to facilitate the
quantification of P calculation uncertainty. In section “Reliable
Py Calculation”, Eq. (11)-(12) are used to derive the learning
function to facilitate adaptive GP model training.

UNCERTAINTY OF P; CALCULATION

In this section, we investigate the procedure to quantify
the Py calculation uncertainty and demonstrate the procedure
through a case study. We start with the case set-up, followed by
detailing the uncertainty quantification procedure. Finally, we
examine how the Py calculation uncertainty evolves once more
training samples are made available for GP model training.

Case Set-up

In the current work, we focus on one of the eigenmodes
investigated in [10]: the quarter wave mode of the combustor,
which is labeled as a cavity mode [22]. Given nominal values
of the flame model parameters and |R,;|, the nominal values of
the modal frequencies (@) and growth rates (@) of the cavity
mode are calculated via the acoustic network model (Fig. 1), i.e.,
(o =287.5Hz,00 = —27.7rad/s) for cavity mode.

When uncertainties are present in flame model parameters
and |R,|, the cavity mode may exhibit a certain level of risk to
be unstable. Here, we re-investigate the problem outlined in “Q1:
Risk Analysis” in [10]. For that problem, we need to calculate
the Py of cavity mode when 7. and |R,,| are fixed at their nom-
inal values, while the rest of the parameters follow independent
uniform distributions with the parameter range indicated in Tab.
1.

In GP-based Monte Carlo simulation, Py of a thermoacoustic
mode can be calculated as [13]:

Pr=_— Z I(yp(x), yp(x) €Y, (13)

where ;¢ denotes the number of Monte Carlo samples, x' is the
ith Monte Carlo sample, y,(x') represents the GP prediction of
the modal growth rate value given the ith Monte Carlo sample.
I(x) constitutes an indicator function, which equals 1 if x > 0 and
equals O if x < 0. Note that there are other more sophisticated ap-
proaches (e.g. importance sampling [23], subset sampling [24],
etc.) to compute Pr. However, we choose direct Monte Carlo
simulation due to the fact that it is extremely easy to imple-
ment and versatile, therefore making it especially favorable for
industrial applications. In addition, by adopting straight-forward
Monte Carlo method, we can better focus on quantifying the im-
pact of GP model uncertainty on the variation of risk calculation,
which is the main purpose of our current work.

Here, due to the stochastic nature of the GP model, each
Yp (x'),i=1,...,nis a random variable, following a normal distri-
bution with the mean and variance given by Eq. (11)-(12). This
is the marginal distribution of the ensemble of all the y,(x')’s,
which follows a multivariate normal distribution with the mean
and covariance given by Eq. (9)-(10). In our previous work [10],
we assume that the GP model uncertainty is negligible, i.e., we
directly substitute y,(x'),i = 1,...,n with u(y,(x)),i=1,...,nin
Eq. (13), thus leading to a deterministic value of Pr. However,
when cov(Y ) (determined by Eq. (10)) is sufficiently large, the
training sample size is insufficient and GP model predictions ex-
hibit non-negligible uncertainties. In that case, y, (x)’s have to
be treated as a random vector. As a result, Py would not be a
deterministic value, but rather a random variable with an associ-
ated PDF. In the following section, we adopt an efficient proce-
dure proposed by [13] to account for the randomness of y,, (x')’s
and using Monte Carlo technique to derive the PDF of Py for the
cavity mode.

Quantification of GP Model Uncertainty

To determine the uncertainty of Py, we employ a direct
Monte Carlo approach: Firstly, we generate realizations of GP
predictions Y, as Monte Carlo samples. Then, for each sam-
ple of ¥, we calculate its corresponding Py value via Eq. (13).
Finally, based on an ensemble of Py values, we can obtain its
histogram, thus quantifying the uncertainty of Py induced by the
epistemic uncertainty of the GP model.

However, the Monte Carlo sample size nyc in Eq. (13) is
usually very large (at the order of 10%). As a result, the covari-
ance matrix of ¥, would be at the order of 10*-by-10*. Since
drawing samples from a multivariate normal distribution usually
involves performing eigenvalue decomposition on the covariance
matrix [25], the resulting computational cost of drawing samples
of ¥, would be prohibitively expensive.

To resolve this efficiency issue, Nannapaneni et al. [13] pro-
posed a procedure to reduce the problem dimensionality, i.e., the
number of random variables in Y, that has to be taken into ac-
count. The fundamental idea is illustrated in Fig. 3: since the
output of the indicator function I(x) only depends on the sign of
its input, not all the variations of y,(x’) will lead to a change of
Py. Figure 3 illustrates two potential scenarios: For the GP pre-
diction of the first Monte Carlo sample y,(x!), its mean and vari-
ance values can be calculated via Eq. (11)-(12). Since more than
99.7% (three sigma) of the associated PDF lies in the unstable
side, our GP model is extremely confident to classify this sample
to be unstable, i.e., I(y,(x!)) = 1, although its exact growth rate
value may not be estimated precisely. In another word, there is
negligible probability that our GP model makes a mistake in esti-
mating the value of I(y,(x!)). On the other hand, for the GP pre-
diction of the second Monte Carlo sample y,, (x?), our GP model
no longer exhibits a high level of confidence regarding the stabil-
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ity nature of the sample: there are large portions of its PDF that
lie in both the unstable side and stable side, respectively. Con-
sequently, there is a high probability that our GP model makes a
mistake in estimating the value of I(y,(x?)).

Based on the probability that our GP model makes a mistake
in estimating the sign of y,(x'), we can partition the nyc Monte
Carlo samples into two groups: The first group corresponds to
predictions y,(x/), j = 1,...,n1, for which the probability of mak-
ing mistakes in estimating the signs of I(y,(x/)),j = 1,...,n
is sufficiently low (i.e., below 0.3%). For this group, y,(x/)
are not treated as random variables and the mean predictions
U(yp(x/)),j=1,...,n are directly used in Eq. (13). The remain-
ing samples yj,(x/), j = 1,...,n2 (with nj +ny = nyc) belong to
the second group. They are treated as random variables, follow-
ing a multivariate normal distribution, with mean and covariance
determined by Eq. (9) -(10). Therefore, Eq. (13) can be rewritten
as:

n

Pr= (Y 1Oy + Y10, (14)
nmc j= j=1

To achieve the partition, we adopt the following classifica-
tion function proposed by Echard et al. [12]:

as)

Here, U(x') is used to estimate the probability of making a mis-
take in estimating the sign of y,(x) (see Appendix A). The first
group consists of samples with a U-value larger than 3, and the
rest of the samples fall into the second group.

The following procedure summarizes the procedure to de-
rive the uncertainty of Py calculation. We assume the GP model
has already been trained.

(1) Generate ny;c Monte Carlo samples according to the dis-
tributions of uncertain flame and acoustic parameters;

(2) Use GP model to calculate the mean and variance values
of each sample (Eq. (11)-(12));

(3) Calculate U-value for each sample (Eq. (15)). All the
samples with a U-value larger than 3 fall into group 1, the rest of
the samples fall into group 2. Define n; and n; as the total sample
number in two groups, respectively. Re-index the samples in the
first group as g (1),...g1(n1). Re-index the samples in the second
group as g2(1),...g2(n2).

(4) Using Eq. (9)-(10) to calculate the mean and covariance
matrix of the random vector [y, (x$2(1), ..., y, (x%2("2))]. Generate
L realizations of [y,(x$2(1), ..., y, (x%2(2))]. For each realization,

Unstable

Stable

FIGURE 3: AN ILLUSTRATION OF THE FUNDAMENTAL
IDEA TO PARTITION ALL THE MONTE CARLO SAM-
PLES INTO TWO GROUPS. TWO SAMPLES ARE DE-
PICTED HERE, AND THEIR ASSOCIATED GP PREDIC-
TION PDFs ARE ALSO PLOTTED. SAMPLE 1 BELONGS
TO THE FIRST GROUP SINCE ITS PREDICTION VARIA-
TIONS WOULD NOT CHANGE P;. WHILE FOR SAMPLE
2, IT CAN HOP BETWEEN STABLE AND UNSTABLE BY
CHANCE, THUS DIRECTLY AFFECTING Py CALCULA-
TION. THEREFORE, WE ONLY NEED TO CONSIDER SAM-
PLES IN GROUP 2 AS RANDOM VARIABLES, THUS SIG-
NIFICANTLY IMPROVING THE UQ EFFICIENCY.

using Eq. (14) to calculate the corresponding value of P}‘,k =
1,...,L;

(5) Construct the histogram of Py and extract desired statis-
tical indices.

Case study

We train our GP model based on the full parameter space
described in Tab. 1. To generate training samples, we adopt
the Halton sampling technique [26], which is a low-discrepancy
sampling method with excellent space-filling property. In our
current study, we label this sampling method as passive sam-
pling, to indicate that this sampling technique merely tries to dis-
tribute the training samples as evenly as possible in the param-
eter space. This is in direct contrast with the adaptive sampling
technique, which we will discuss in the following section, where
the sampling method exploits the already learned “landscape” of
the underlying function, and adaptively allocate samples to the
region where prediction accuracy is not satisfactory.

In line with the problem setting in “Q1: Risk Analysis”
in [10], we consider four uncertain parameters: 7, 01, Ts; and
Ts2, Which follow independent uniform distribution with the pa-
rameter ranges indicated in Tab. 1. 7, and |R,,| are fixed at
their nominal values. Here we use 102 training samples (same as
in [10]) to train a GP model and follow the procedure outlined in
section “Quantification of GP model Uncertainty” to derive the
PDF of Py. Monte Carlo sample size is 20000 for both ny,c and
L. After partitioning the Monte Carlo samples, only 1630 out

Copyright © 2020 ASME

S. Guo, C. F. Silva, and W. Politke. Reliable Calculation of Thermoacoustic Instability Risk Using An Imperfect Surrogate
Model. In Journal of Engineering for Gas Turbines and Power, 2020. Reprinted with permission from ASME.

152



A.4 Paper-ASME20, J. Eng. Gas Turbines Power

400
Mean Standard deviation
PDF of Py 7.81 0.65
300 f  ==———- Reference Py 8.35

|
i

i

i

i

i

i

i

|

W i
S 200 !
o i
i

i

100 !
i

‘

i

LN

5 6 7 8 9 10 1"
Py(%)

FIGURE 4: THE PDF OF Py IS CALCULATED FOLLOWING
THE PROCEDURE OUTLINED IN SECTION “Quantification
of GP model Uncertainty”. REFERENCE VALUE OF Py IS
CALCULATED BY APPLYING MONTE CARLO DIRECTLY
ON THE ACOUSTIC NETWORK MODEL (Fig. 1). AL-
THOUGH REFERENCE VALUE IS COVERED BY THE PDF,
Py PREDICTION EXHIBITS A CERTAIN LEVEL OF VARIA-
TION, WHICH IS INDUCED BY A LACK OF SAMPLES FOR
GP MODEL TRAINING.

of 20000 samples belong to the second group, resulting in sig-
nificantly lowered computational cost associated with generating
realizations.

The calculated PDF of Py for the cavity mode is shown in
Fig. 4. Also shown in Fig. 4 is the reference value for Py, which
is calculated by the network model (Fig. 1) using the same nyc
Monte Carlo sample. It can be seen that although the reference
value is covered by the PDF, Py prediction exhibits a high level of
variation, ranging from 5.5% to 10%, indicating a non-negligible
epistemic GP model uncertainty induced by a lack of training
samples. No GP model uncertainty was considered in our pre-
vious work [10]. The predicted Py has a deterministic value of
7.6%, which approximately corresponds to the mean of the Py
PDF shown in Fig. 4.

It is worth mentioning that the calculation of the reference
Py value via direct Monte Carlo is entirely feasible with an acous-
tic network model, thus making it possible to benchmark our
current approach to quantify the uncertainty of Py calculation.
For other more computational intensive acoustic models, like the
ones characterized by the Helmholtz equation or the Linearized
Navier-Stokes equation, direct Monte Carlo would no longer be
an option, then a Gaussian Process surrogate model with quanti-
fied uncertainty becomes really valuable for a robust calculation
of Py.

It would also be interesting to see how the PDF of Py varies
when the number of training samples is gradually increased. Fig-
ure 5 demonstrates the PDFs of Py when the number of training
samples are 100, 200 and 400, respectively. It can be seen clearly
that with more training samples, the mean value of Py prediction

Mean Standard deviation
400 100 samples . 788 0.71
200 samples | 7.83 0.33
400 samples | 8.42 0.14
300 |
—————— Reference Pf i 835
w
0 200
o

100

FIGURE 5: MORE TRAINING SAMPLES LEAD TO A MORE
ACCURATE AND ROBUST CALCULATION OF Py.

moves closer to the reference Py value, thus indicating an im-
provement of accuracy in Py calculation; in addition, the PDF
becomes more concentrated, indicating that the epistemic un-
certainty of GP model reduces with more available information
(training samples).

In the next section, we will investigate how to intelligently
train the GP model, so that the improvement of both accuracy
and robustness of Py calculation can be maximized.

RELIABLE P; CALCULATION

In this section, we aim to employ an adaptive sampling
scheme to enrich the training samples Xp sequentially, thus en-
abling us to iteratively increase the accuracy and robustness of
the GP model for Py calculation, while keeping the number of
runs of the acoustic solver as low as possible. We start with the
motivation for adaptive sampling, followed by outlining the de-
tailed procedures. Subsequently, we revisit the case study in-
vestigated in the previous section and demonstrate the superior
performance of the adaptive sampling scheme over the passive
sampling scheme. It is worth mentioning that we have also ap-
plied our proposed workflow to quantify the uncertainty of Py
based on a Helmholtz solver. The results are presented in Ap-
pendix B.

Motivations

We can see that the convergence of the PDF of Py is rather
slow in Fig. 5. This is a direct consequence of the employed
passive sampling strategy, which evenly distributes the training
samples in the parameter space (shown in Fig. 6, left), with the
goal of improving the accuracy and robustness of the GP pre-
dictions throughout the entire domain. This practice may induce
significant wasted expense since as illustrated in Fig. 3, only the
predictions of the Monte Carlo samples close to the zero growth
rate contour are crucial to the accurate calculation of Pr. Those
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Monte Carlo samples are associated with low values of U (x)
(since their prediction means are small), indicating higher prob-
abilities of misclassification and contributing to the variations of
Py calculation. Therefore, instead of making the GP model accu-
rate everywhere in the parameter space, it would be more bene-
ficial to make the GP model particularly accurate in the vicinity
of the stability border. To achieve that, more training samples
should be allocated near the zero growth rate contour, as shown
in Fig. 6.

Adaptive sampling scheme

In practice, we can adopt adaptive sampling strategy to in-
telligently allocate training samples: we start with an initial sam-
pling plan and train an initial GP model. Then, a learning func-
tion is applied to determine the location of the next sample,
which will be added to the current sampling plan. Afterwards,
an updated GP model is trained based on the enriched training
samples. This iteration is terminated when a stopping criterion is
met.

In order to put training samples in the vicinity of the zero
growth rate contour, U (x) in Eq. (15) is employed as the learning
function, as proposed by Echard et al. [12]. Algorithm 1 summa-
rizes the complete procedure for adaptive GP model training. For
the stopping criterion, we require that min(U (x)) > 1.65, which
corresponds to a probability of misclassification of ®(—1.65) =
0.05.

Algorithm 1 GP model training via adaptive sampling [12]

1: Generate L samples Xy as a pool of candidate samples for
sample enrichment, set iteration number g = 0
2: Generate m initial samples Xp = [x!,...,x"]"
: Call network model to evaluate their growth rate responses
YD — [al - am]T
: Construct the initial GP model f + (Xp,Yp)
: Identify x < minycx,, U(x) based on f
: while U(x) < 1.65 do
qg=q+1.
Call network model to calculate the growth rate response
oofx
9: Enrich samples: Xp =XpUx,Yp=YpUo
10: Re-train GP model f <+ (Xp,¥p)
11 Identify x < minycx,, U (x) based on f
12: end while

w

EE -V IS

Case study: A revisit
We employ the Algorithm 1 to retrain the GP model. The
initial sample size m is set to be 60, which is 10 times the number

Stable Margin

L] ‘ °
. . . .
. o .
Y- g
. . // .I/:
P . Unstable i
N S ©
. .
LA /,. .

Passive sampling Adaptive sampling

FIGURE 6: PASSIVE SAMPLING SCHEME DISTRIBUTE
TRAINING SAMPLES EVENLY ACROSS THE PARAME-
TER SPACE, WHILE ADAPTIVE SAMPLING SCHEME AL-
LOCATE SAMPLES IN THE VICINITY OF THE ZERO
GROWTH RATE CONTOUR. IN THIS WAY, THE CALCU-
LATION OF P WOULD BE MORE ACCURATE WITH LESS
UNCERTAINTY.

0.5

0 L L .
60 80 100 120 140 160 180 200

Training sample number

FIGURE 7: THE MINIMUM VALUE OF U IN EACH ITER-
ATION IS RECORDED AND PLOTTED HERE. AFTER 193
TRAINING SAMPLES ARE EMPLOYED, THE MINIMUM U
VALUE REACHES 1.65, INDICATING A CONVERGED GP
TRAINING PROCESS.

of input parameters, as suggested in [27]. The candidate sample
size L = 20000. The Latin-hypercube method is employed to
generate samples.

Figure 7 displays the convergence history of the GP model
training process. Here, the minimum U value among the candi-
date samples in each iteration is recorded and plotted. After al-
locating 193 training samples, i.e., 133 iterations, the minimum
U value reaches 1.65, therefore the training is deemed to be con-
verged.

The case study investigated in the section “3.3 Case study” is
revisited here, using the GP model trained via the adaptive sam-
pling strategy. The calculated PDF of Py for the cavity mode is
demonstrated in Fig. 8. Also shown in the figure is the PDF of Py
calculated by the GP model, which is trained by using the passive
sampling scheme with 193 training samples. We can clearly see
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400 I Mean Standard deviation
|
Adaptive |83 0.13
Passive 1 7.84 0.35
300 Y
—————— Reference Py 835
w
Q 200
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100
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FIGURE 8: GIVEN THE SAME NUMBER OF TRAINING
SAMPLES (i.e., 193), ADAPTIVE SAMPLING SCHEME IS
ABLE TO MAKE BETTER USE OF THE COMPUTATIONAL
RESOURCES, YIELDING A MORE ACCURATE AND RO-
BUST Py CALCULATION. THE RESULTS DELIVERED BY
THE ADAPTIVE SAMPLING SCHEME IS COMPARABLE
TO THE PASSIVE SAMPLING SCHEME WITH DOUBLE
THE COMPUTATIONAL COST.

that the adaptive training strategy significantly improved the ac-
curacy and robustness of the Py calculation, i.e., the PDF centers
closer to the reference value with a smaller level of scattering.
To provide a more convincing visual demonstration of the
effectiveness of the active learning approach, Fig. 9 displays
the evolutions of the Py mean prediction as well as the associ-
ated 95% confidence interval against the number of training sam-
ples. We can observe that the adaptive sampling scheme leads
to a faster convergence of the mean prediction and a more dra-
matic reduction of the prediction uncertainty. As a matter of fact,
the calculation quality of Py at the end of the adaptive sampling
iteration (193 samples employed) is comparable to the results
achieved by the passive sampling scheme with 400 samples. In
addition, we emphasize that the GP model trained via the adap-
tive training scheme is not only limited to the current case study.
Other types of studies illustrated in [10] can also be investigated
with the same GP model without further computational cost.

CONCLUSION

The current work investigates the combined effects of
aleatory parameter uncertainty and epistemic GP model uncer-
tainty on the calculation of thermoacoustic instability risk (Pr).
We addressed two practical questions in the study. For the first
question, i.e., “how to quantify the variation of modal instability
risk induced by the epistemic surrogate model uncertainty?”, the
current study leveraged on the prediction uncertainty naturally
provided by the GP model and performed correlated sampling
of the GP predictions at different inputs to quantify the uncer-

P(%)

6 ] I Active sampling
------ Passive sampling

------ Reference value

0 100 200 300 400
Training sample number

FIGURE 9: THE VARIATIONS OF THE ACCURACY AND
ROBUSTNESS OF Py CALCULATION WITH RESPECT
TO THE NUMBER OF TRAINING SAMPLES. FOR BOTH
METHODS, 95% CONFIDENCE INTERVAL OF THE P, PRE-
DICTION ARE GIVEN, WHICH SERVES AS AN INDICA-
TOR FOR PREDICTION ROBUSTNESS.

tainty of Py calculation. We demonstrated that the Py calculation
uncertainty shrinks as more training samples are available. For
the second question, i.e., “how to reduce the variation of Py cal-
culation given a limited computational budget for the surrogate
model training?”, the current study adopted an adaptive sampling
strategy to allocate training samples in the vicinity of the zero
growth rate contour, due to the fact that the accuracy of GP pre-
dictions in that region plays a major role in achieving a reliable
calculation of py. Our studies showed that the adaptive sampling
strategy can significantly improve the accuracy and robustness
of Py calculation: With half the computational cost, the results
delivered by the adaptive training strategy are comparable to the
passive training strategy.

Note that in our previous work [10], we have extensively in-
vestigated various scenarios of robust design for thermoacoustic
stability. However, the foundation of our strategies in [10], i.e.,
how to reliably calculate Py, especially in face of limited train-
ing samples, is not addressed directly, but simply assumed fea-
sible. Our current work addresses this shortcoming. Therefore,
in combination with our previous work [10], the current study is
not only of academic interest, but also of industrial relevance.

Future studies should focus on the following aspects: (1)
when high-dimensional flame/ acoustic models are employed,
the efficiency of building a GP model may drop significantly
due to the “curse of dimensionality”. Therefore, it is important
to investigate how the proposed workflow can cope with high-
dimensional. (2) When partitioning Monte Carlo samples into
two groups to improve the efficiency of GP sampling, a signif-
icant number of “group 2” samples may still exist when high-
dimensional flame/acoustic models are employed. (3) It is not
uncommon that in thermoacoustic control, the effort to stabilize
one mode may unexpectedly promote another mode to become
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unstable [28]. Therefore, it is necessary that our current adaptive
strategy can be extended such that it can efficiently track multiple
stability margins.
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Appendix A: U(x) and probability of misclassification

Misclassification at a Monte Carlo sample x happens when
its corresponding GP prediction mean pi(y,) > 0, whereas the
true response f(x) < 0, or vice versa. Since the GP prediction y,,
follows a normal distribution with a mean p(y,) (Eq. (11)) and
a variance 6%(y,) (Eq. (12)), we can write out the probability of
misclassification at x as:

Pox) = @ {_#(Yp)}’ (16)

[
»

Iy,

(b)

FIGURE 10: TWO SITUATIONS FOR MISCLASSIFICATION:
(a) REPRESENTS THE SITUATION THAT THE TRUTH IS
NEGATIVE WHILE GP PREDICTS POSITIVE; (b) REPRE-
SENTS THE SITUATION THAT THE TRUTH IS POSITIVE
WHILE GP PREDICTS NEGATIVE.

or

1mw:¢ugﬂ, a7

where P, stands for probability of misclassification, and & repre-
sents the cumulative density function of the normal distribution.
Eq. (16) corresponds to the case when p(y,) > 0 while the true
response f(x) < O (as shown in Fig. 10a); Eq. (17) corresponds
to the case when p(y,) < 0 while the true response f(x) > 0 (as
shown in Fig. 10b).

Combining Eq. (16)-(17), we can derive the probability of
misclassification as:

= ®[-U(x)]. (18)

Therefore, a larger U(x) indicates a smaller probability of mis-
classification.

Appendix B: Case study with Helmholtz solver

To further demonstrate the effectiveness of our proposed
workflow to quantify and control GP model uncertainty, here
we conduct another case study, where a finite-volume-based
Helmbholtz solver [3] is adopted.

The configuration under investigation is the EM2C turbu-
lent swirler combustor [29]. Here we consider configuration
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C4 [30] and the operation condition B of [29]. An in-house
finite-volume-based Helmholtz solver [3] is adopted to calculate
the first longitudinal thermoacoustic mode of the test rig, and its
variation under input uncertainties will be the focus of the current
study. The governing equation is given as:

V(&@Vp) s p+asp=s(y—1)4(x) (19)

where p and g denote the amplitude of pressure and heat release
rate distributions, respectively. ¢ represents the mean value of
the local speed of sound. A damping coefficient & is adopted to
globally model the acoustic energy dissipation effect, which rests
on the assumption that the acoustic system behaves like a second-
order harmonic oscillator [30]. In this study, the damping rate of
the combustor was evaluated to be o = 170s~!. Robin boundary
conditions are employed:

(1-R)
1+R

Vp+Bp=0, where B=s (20)

1
c

—
N4

where R is the reflection coefficient at a given boundary; R;,, =
|Rix| at the combustor inlet and Ry,; = |Roys|€'™ at the combustor
outlet. A n— 7 model is adopted to describe the flame heat release
rate response to velocity perturbation at the reference position,
which can be written as:

= 1l exp (ioT) @1

Q1R

In this case study, we consider the flame gain n, flame time
delay 7 and the magnitude of reflection coefficient at the com-
bustor outlet |R,,| to be uncertain. Their variational ranges are
displayed in table 2. An independent uniform distribution is as-
signed to all three parameters.

TABLE 2: Input uncertain parameters

Parameters Range
n 04~2

T 3.5~ 6.5(ms)
Rou 05~1

We start with 30 training samples (10 times of the number
of uncertain parameters), and employ the active learning scheme

to adaptively train the GP model. Figure 11 displays the con-
vergence history of the GP model training process. Here, the
minimum U value among the candidate samples in each iteration
is recorded and plotted. After allocating 53 samples, the min-
imum U value is above 1.65, indicating the training process is
converged.

15
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30 35 40 45 50 55 60

Training sample number

FIGURE 11: THE MINIMUM VALUE OF U IN EACH ITER-
ATION IS RECORDED AND PLOTTED HERE. AFTER 53
TRAINING SAMPLES ARE EMPLOYED, THE MINIMUM U
VALUE REACHES 1.65, INDICATING A CONVERGED GP
TRAINING PROCESS.

Figure 12 shows the position of the training samples in the
3D parameter space, where blue cubics represent the initial sam-
ples (only 10 of them are shown for clear illustration), and red
circles represent enriched samples. It can be seen that all the en-
riched samples are located in the vicinity of the stability margin,
thus indicating our algorithm is behaving as we expected.

FIGURE 12: THE LOCATION OF TRAINING SAMPLES IN
THE 3D PARAMETER SPACE. THE INITIAL TRAINING
SAMPLES ARE SHOWN IN BLUE CUBIC (ONLY 10 OF
THEM ARE SHOWN FOR CLEAR ILLUSTRATION). THE
ENRICHED SAMPLES ARE SHOWN IN RED CIRCLES.
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Compared with the passive sampling scheme, the active
sampling approach significantly improved the accuracy and ro-
bustness of the Py calculation. This point is illustrated in Fig.
13, where the predicted mean value of Py as well as its uncer-
tainty (95% confidence interval) are plotted against the available
sample numbers. For the active sampling scheme, firstly, the pre-
dicted mean value of Py converges much faster towards the ref-
erence value. Secondly, the prediction uncertainty of Py reduces
monotonically and with a faster speed. Finally, the provided con-
fidence interval always covers the reference Py value. Therefore,
we are able to show that for a more complicated thermoacoustic
model (i.e., Helmholtz-equation-based model), active sampling
scheme remains to be effective and delivers a more accurate and
less uncertain calculation of Py, compared with the passive sam-
pling scheme with the same computational budget.

43
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:;;,_,_,_,;,_,_{, rrrrrrrrrr e L Soaae s e

g n
& I Active sampling

415 ===-=- Passive sampling

------ Reference value
4 . . . . ,
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FIGURE 13: THE VARIATIONS OF THE ACCURACY AND
ROBUSTNESS OF Py CALCULATION WITH RESPECT
TO THE NUMBER OF TRAINING SAMPLES. FOR BOTH
METHODS, 95% CONFIDENCE INTERVAL OF THE Py PRE-
DICTION ARE GIVEN, WHICH SERVES AS AN INDICA-
TOR FOR PREDICTION ROBUSTNESS.
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Abstract

When combining a flame model with acoustic tools to predict thermoacoustic instability, uncertainties em-
bedded in the flame model and acoustic system parameters propagate through the thermoacoustic model,
inducing variations in calculation results. Therefore, uncertainty quantification (UQ) analysis is essential for
delivering a reliable prediction of thermoacoustic instability. The present paper proposes a general, surrogate-
based framework to efficiently perform UQ analysis in thermoacoustic instability predictions that (1) can
handle large variational ranges and flexible statistical descriptions of the uncertain parameters, (2) takes into
account uncertainties from both acoustic system parameters and high-dimensional flame response models
(e.g the finite impulse response model (FIR), the flame describing function (FDF), etc.), (3) quantifies un-
certainties in modal frequency and linear growth rate for linear thermoacoustic analysis, or (4) quantifies
uncertainties in limit cycle frequency and amplitude for nonlinear thermoacoustic analysis. The framework
is built upon Gaussian process (GP) surrogate models. An active learning strategy from the machine learning
community has been adopted to significantly enhance the efficiency of GP model training, thus achieving
a significant reduction in computational cost. The effectiveness of the proposed UQ framework is demon-
strated by two case studies: one linear case with an uncertain FIR model and acoustic system parameters, and
one nonlinear case with an uncertain FDF dataset and acoustic system parameters. Compared with reference
Monte Carlo simulations, the case studies reveal UQ analyses that are, respectively, 20 and 15 times faster,
but nevertheless highly accurate. The proposed GP-based framework also forms an efficient foundation on
which to address other types of studies, in which repetitive thermoacoustic calculations are required, such as
parametric investigations, sensitivity analyses, nonlinear bifurcation studies and robust design.

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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5 acoustic system parameters and flame models may analysis by Schneider et al. [11], Chattopadhyay 66
6 lead to significant variations in the results. Uncer- et al. [12] and Guo et al. [13]. Our current work 67
7 tainty quantification (UQ) analysis is therefore es- extends the GP methodology employed in [12] in 68
8 sential to realize a more reliable prediction of ther- the following ways: firstly, we use GP models to 69
9 moacoustic instability. approximate a 3D Helmholtz solver, as this pos- 70
10 Pioneer work on accurate and affordable meth- sesses better modeling capability than an acous- 71
11 ods of UQ analysis in the context of thermoa- tic network model for addressing real-world com- 72
12 coustic instability focused on the development of bustors with complicated geometries, and secondly, 73
13 various surrogate techniques, in which a cheap sur- we adopt an active learning strategy {rom machine 74
14 rogate model is first of all trained to approximate learning to further enhance the efficiency of GP 75
15 the acoustic solver and Monte Carlo simulations model training. 76
16 are then directly applied to the surrogate model The paper is organized as follows. We start by 77
17 to enable accelerated UQ analysis. These studies proposing a general surrogate-based UQ frame- 78
18 concentrated on UQ analysis in the context of work, followed by a review of the fundamentals 79
19 linear thermoacoustic instability prediction, i.e. of GP modeling and the details of the active 8o
20 modal frequency and growth rate calculations. learning strategy. We then go on to demonstrate 81
21 Some of the studies considered uncertainties from the effectiveness of the proposed GP-based frame- 82
22 both acoustic system parameters and simplistic work through two case studies: one linear case 83
23 n — t models for the flame dynamics [1-4], while with an uncertain FIR model and acoustic sys- 84
24 others solely considered uncertainties in high- tem parameters, and one nonlinear case with 85
25 dimensional flame models, i.e. those featuring with an uncertain FDF dataset and acoustic system 86
26 a large number of uncertain parameters [5-8]. parameters. All the code and data used to produce 87
27 Despite the remarkable progress made by these the results presented in this paper can be found at 88
28 studies, critical limitations still exist that could https://github.com/ShuaiGuo16/ISC20. 89
29 potentially hinder an effective UQ analysis in a
30 real-world setting: (1) A general UQ framework
31 is desirable, which is capable of considering both 2. Surrogate-based UQ strategy 9%
32 uncertain acoustic system parameters as well as
33 a sophisticated flame model with a large number In general, a flame model F inputs a com- 91
34 of uncertain coefficients; (2) the effectiveness of plex frequency s = o + iw (Where o and w are the 92
35 the above approaches is unclear when the UQ modal growth rate and frequency, respectively) and 93
36 analysis is extended to the prediction of nonlinear outputs the flame gain G = |F(s)| and phase ¢ = 9%
37 thermoacoustic instability. where the prediction ZF(s). Suppose it were possible to build two cheap 95
38 of limit cycle frequency and amplitude may be surrogate models f“ and f” to accurately approx- 9
39 influenced by uncertain acoustic damping or an imate the Helmholtz solver, such that we could 97
40 uncertain nonlinear flame response model, as indi- quickly evaluate the corresponding thermoacous- 98
41 cated by the work of Palies et al. [9] and Silva et al tic mode of interest, given a flame gain G, phase ¢ 99
42 [10]; (3) the parameter variation ranges considered and acoustic parameter vector H: 100
43 were generally small (e.g within 10% ~ 20% of the " w ) " 7o )
44 corresponding nominal values). However, larger o~ (G ¢: H). o~ f(G¢:H) )
45 input parameter spaces may be required, so as to It would then be possible to derive the governing 101
46 reflect realistic uncertainty levels. equations with which to calculate the thermoacous- 102
47 The main objective of the current work is to tic mode of interest under any given flame model F 103
48 fill this gap: we propose a general surrogate-based and system acoustic parameters H: 104
49 framework for performing UQ analysis in the pre- . . .
50 diction of thermoacoustic instability, to enable us SUF(o +iw)l, LF(o +iw); H) —w =0
51 to (1) handle large variational ranges and flexi- FO(F(o +iw)|, LF(o +iw); H) — o =0 %)
52 ble statistical descriptions of the uncertain param-
53 eters; (2) take into account uncertainties from both We define the equations in Eq. (2) as the surro- 105
54 acoustic system parameters and high-dimensional gate equations. Since f“ and f° can be evalu- 106
55 flame response models (such as the finite impulse ated quickly, surrogate equations can be efficiently 107
56 response model (FIR), the flame describing func- solved by means of iterative algorithms. Experience 108
57 tion (FDF), etc); (3) quantify uncertainties in shows that the Matlab function fsolve used together 109
58 modal frequency and linear growth rate in linear with the “trust-region” algorithm [14] is suitable for 110
59 thermoacoustic analysis, and also quantify uncer- this purpose. 111
60 tainties in limit cycle frequency and amplitude in The newly proposed surrogate-based iterative 112
61 nonlinear thermoacoustic analysis, with a single scheme provides us with an opportunity to signif- 113
62 UQ framework. icantly speed up the process of UQ analysis: if 114
63 The framework is built upon Gaussian process we wish to perform Monte Carlo simulation with 115
64 (GP) surrogate models, which have previously been 0(10%) realizations of uncertain acoustic parame- 116
65 successfully utilized in thermoacoustic instability ters and flame model parameters, we can directly 117
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adopt surrogate equations to calculate the corre-
sponding modal frequency and growth rate much
more quickly than a Helmholtz solver, thus mak-
ing UQ analysis affordable. In the current study,
and f° are modeled by Gaussian processes.

3. Gaussian process modeling

This section gives a brief overview of the key
features of the GP modeling and presents details of
the active learning strategy. The GP model training
is performed with UQLab [15].

3.1. Fundamentals

GP modeling treats the output f(x) of the high-
fidelity model at x (a vector whose entries are the
individual input parameters) as the realization of a
Gaussian process:

f(x) =B+ Z(x), (3)

where B is a constant value and Z(x) corresponds
to the departure from B at x, which is modeled as a
Gaussian stochastic function with zero mean, vari-
ance o2, and covariance defined as:

Cov[Z(x', x/)] = 02R(x', x7), 4)

where R(x', ¥/) is the correlation function between
any two locations x' and »/ in the input parameter
space. Here we use a Gaussian correlation function
to describe R(x/, x/):

M
R, /) = expl— Y 6u(x, — x1))
k=1

®)

where M denotes the dimension of the input (i.e.
number of input parameters), subscript k repre-
sents the k-th component of the input vector x, and
0 = [0, ..., By] controls the level of correlation in
the corresponding dimension.

Based on a set of training samples Xp =
[x', ..., x"]" and their corresponding responses
Yp=[f(x"), .., f(x™)]", we can train the GP
model by finding values for 8, o2 and 6 such that
the likelihood of achieving the observations (train-
ing samples and their corresponding responses) is
maximized. The maximum likelihood estimations
of B and o2 can be derived analytically:

B=0"R,;'1)""R;'Y) (6)

~ 1 ~ ~
o= y¥o- 18)" R, (Yp — 1B) 0
where R} is the N-by-N correlation matrix between
training samples Xp, and 1 is a vector of ones of
dimension M. For estimating 6, the following aux-
iliary optimization problem has to be solved:

9= argmax [—g In(02) — %ln(lRDI)] ®)

Finally, the GP model prediction kf(x) at an ar-
bitrary location x is:

f(x) =B +r(x) R, (Y —1p), Q)

where r(x) in Eq. (9) is the correlation vector be-
tween x and all the training samples, e, r{x) =
[R(x, x"), ..., R(x, x")]. In addition, the prediction
variance at location x is given as:

var(x) = o2[1 — T (x)R; r(x)], (10)

which indicates the uncertainty of the GP predic-
tion.

3.2. Active learning strategy

To enhance the training efficiency, we adopt an
active learning strategy to sequentially enrich the
training samples. The learning strategy selects po-
tential samples with the maximum expected predic-
tion error (EPE) values, thus maximizing the reduc-
tion of the GP generalization error. The expression
of the EPE value can be written in [16]:

EPE(x) = (f(x) = /()" + var(x)

variance

an
bias?
To calculate the EPE value at an arbitrary lo-
cation x, we need to estimate the bias term in
Eq. (11) because of the unknown true response
f(x). Following the work of Liu et al. [16], we adopt
leave-one-out cross validation to estimate the bias
term. Firstly, we estimate cross-validation errors at
all training sample locations x', i = 1, ..., N:

() = (f(&) — ()P, i=1,2,. N,

(12)

where x' is the i-th training sample and f~' rep-
resents the GP model trained using all the train-
ing samples and their responses except (x/, f(x')).
For an arbitrary location x, we then simply find
the closest (in terms of Euclidean distance) train-
ing sample to location x and assign its associated
cross-validation error to €2, (x):

N
(13)

Finally, we replace the bias term in Eq. (11) with
the cross-validation error:

EPE(x) = €%, (x) + var(x)

€2y (x) = &y (x), miin x—x i=1,2,..

(14)

4. Case studies

In this section, we demonstrate the effectiveness
of the proposed GP-based UQ framework by way
of two case studies. We start with the layout of the
thermoacoustic problem setting, and follow it with
a description of the GP model training process. The

tion Institute, https://doi.org/10.1016/j.proci.2020.06.229
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197 trained GP models will subsequently be employed Table 1
198 in the proposed UQ framework to address both the Input parameters.
199 linear and the nonlinear UQ problems. All calcula- Parameters Training range Uncertainty range
200 tions were performed on a personal computer with Linear case Nonlinear case
201 a 3.20GHz Intel Core 15-6500. G 05~3 FIR FDF
0~
202 4.1. Thermoacoustic problem setting ?{m 0.7 Z 1 0.7~1 09~1
_ o . [Rowl — 0.6~1 0.6~1  0.7~1
203 The combustor in question is a turbulent swirl a 100 ~ 160 100~ 160 110~ 160
204 EM2C laboratory-scale test rig [9]. The chosen
205 configuration was C11 (c.f. Silva et al. [10]), with
206 plenum length /; = 224 mm and combustion cham- the parameters. In Eq. (17)-(19), overbar denotes 240
207 ber length /3 = 200 mm. The operation condition F oY - <
. vne o < the temporal mean quantity. ¢ = Q/Vy, where Q 241
208 conmdere(li is "A”, with total ﬂdn}e power Q= is the global heat release rate and ¥ denotes the 242
209 1.94kW and mean flow velocity i, = 2.67m/s volume of the flame region. We assume that the 243
210 [10]. . flame is acoustically compact. Accordingly, we con- 244
211 An in-house finite-volume-based Helmholtz sider that the gain and phase are uniform within 245
212 solver [1] is adopted to calculate the first longitu- the flame region and zero elsewhere. In accor- 246
213 dinal thermoacoustic mode of the test rig. The cur- dance with the conservation of momentum. we 247
214 rent study will focus on its variation under input have i,.; = —V per/(s5), where § is the mean how 248
.7 . o ) re. e, ,
215 uncertainties. The governing equation is given as: density, thus closing Eq. (15). The nonlinear eigen- 249
V(@Vp) — 2+ asp = sty — 1)j(x) (15) value problem Eq. (15) is solved psing an iterative 250
A : . . scheme based on the secant algorithm. 251
216 where p and ¢ respectively denote the amplitude of
217 pressure and heat release rate distributions. ¢ rep- 4.2. GP model training 252
218 resents the mean local speed of sound. A damping
219 coefficient « is adopted to globally model the ef- In the present study, we strive to train 253
220 fect of acoustic energy dissipation, which 1s based two separate, generally épplicable GP models 254
221 on the assumption that the acoustic system behaves @G, ¢, R, ’R @) and fO(G, ¢, Ruy, Ry, @) 255
222 like a second-order harmonic oscillator [10]. Robin A app;ro;( irrl;la’lte ourr ’e spectively e 7fre’q1;;hc;ma’md -
223 boundary conditions are employgd: growth rate of the first longitudinal thermoa- 257
. . 1(1-R) coustic mode of the investigated rig. The input 258
Vo+pp=0. where o~ e (1+R) (16) ranges considered in the current study are listed 259
. . . . . . in Table 1, which are significantly larger than the 260
224 in which R is the reflection coefficient at a given ranges investigated in the previous studies. 2%1
225 boundary; Ri’{; = |Ry| at the combustor inlet and Our training strategy consists of 4 major steps: 262
226 Rou = |Roul€ a.t the combustor outlet. ) (1) train an initial GP model based on the initial 263
227 GP models are trained on the basis of a simple training dataset; (2) from the pool of candidate 264
228 transfer function definition of the flame response: samples, identify the sample with the largest EPE 265
2 . W value and employ the Helmholtz solver to compute 266
‘f = ”‘_‘_’ Gexp (ip) 17 its correspondipg frequel}cy and growth rate re- 267
q i sponses; (3) enrich the training dataset with the se- 268
: . . lected sample and its corresponding frequency and 269
20 with flame galn_G and phase ¢ as th; 1nput parame- growth rate responses, then re-train the GP model 270
231 ters. To enable linear thermoacoustlc stability anal- with the enriched training dataset; (4) repeat steps 271
232 ysis, an FIR mode'l i W.hICh quels the flame d}./nam- (2)-(3) until the GP model is deemed converged. 272
233 ics by means of d};trlbuted time delays [17], is em- The pseudo-code in Fig. 1 provides further details 273
234 ployed, whereby ¢ is modeled as: of the active learning process when our two GP 274
T models are trained simultaneously. Here, the initial 275
g = Z e kDA w—io) (18) sample size m = 50 and the candidate sample size 276
q u = L = 10,000. The training stops when the maximum 277
. . s . EPE value of both GP models drops below 5% of 278
235 with FIR coefﬁmepts hic’s as the Input parameters. their individual maximum EPE values before sub- 279
236 For (weakly) nonlinear analysis, an FDF model is mitting to active learning 250
237 employed, such that Figure 2 displays the convergence histories for 281
G ey . . . training the GP models. In total, we employed 252
== G(w, [4]) exp (ip(w, |4])) (19) 150 (50 4+ 2 x 50) input samples (i.e. 150 Helmholtz 283
q solver calculations) to reach the target accuracy 284
238 with data of gain G and phase ¢ at various fre- for GP training, which amounts to 90s of com- 285
239 quencies and velocity perturbation amplitudes as putation time. In the next two sections, these two 286

Please cite this article as: S. Guo, C.F. Silva and K.J. Yong et al., A Gaussian-process-based framework for high-
dimensional uncertainty quantification analysis in thermoacoustic instability predictions, Proceedings of the Combus-
tion Institute, https://doi.org/10.1016/j.proci.2020.06.229

With permission from S. Guo, C. F. Silva, K. J. Yong and W. Polifke. A Gaussian-process-based framework for high-
dimensional uncertainty quantification analysis in thermoacoustic instability predictions. Proceedings of the Combustion Insti-
tute, Elsevier, 2020.

164



A.5 Paper-ISC20, PROCI

287
288

289

290
291
292
293
294

296
297
298
299

JID: PROCI [mNS;September 15, 2020;2:8]
S. Guo, C.F. Silva and K.J. Yong et al. | Proceedings of the Combustion Institute xxx (xxxx) xxx 5
Algorithm 1 GP model training via active learning
1: Generate L samples X as a pool of candidate samples for sample enrichment, set
iteration number ¢ = 0
2: Generate m initial samples X p = [z!,...,2™]T
3: Call Helmholtz solver to evaluate their frequency responses y(f)’) = [w!,...,w™" and
growth rate responses yg) =[o%,...,0™T
4: Construct the initial GP models f“) « (Xl),yg)) and f(0) « (Xl),yg))
5 Identify ) « maxgex, EPE(z) based on /), let EPEy = EPE(x“)
6: Identify () « max,ex, EPE(z) based on f(©), let EPE] = EPE(z(?))
7: while EPE“ > 0.05- EPEY and EPE? > 0.05 - EPES do
8: q=q+1.
9: Call Helmholtz solver to calculate the frequency responses ') = [w'“), w(?)] and
growth rate responses of y(?) = [0(“), ¢(?)] of () and «(?), respectively.
10:  Enrich samples: X p = X p Uz Uz(®), y&) = &) U y@), 47 = (0 g
11: Re-train GP models /@) « (X p,y')) and /) « (X ;. 4\7)
12 Identify ) < max,cx, EPE(z) based on f“) let EPE* = EPE(z))
13 Identify z(?) + maxqex,, EPE(x) based on 7, let EPE” = EPE(x(?))
14: end while
Fig. 1. Algorithm for GP model training.
10%¢ 10%¢
10"
w I
o
fm
1000
0 10 20 30 40 50 0 10 20 30 40 50
lterations Iterations

(a) Frequency

(b) Growth Rate

Fig. 2. EPE convergence history: After 50 iterations, maximum EPE values for both GP models drop below 5% of their

initial maximum EPE values.

newly-trained GP models will be employed to ad-
dress two case studies.

4.3. Case study: linear thermoacoustic UQ analysis

The FIR model represents a sophisticated and
realistic flame model, which describes flame dy-
namics in the time domain. In this first case study,
we propagate the uncertainties in the FIR model
parameters and acoustic system parameters to the
modal frequency and growth rate calculations.

Here, we consider a 65-coefficient FIR model,
which is displayed in Fig. 3. The FIR model coef-
ficients h = [hy, Iy, ..., he4] are treated as random
variables, following a multivariate normal distribu-

tion. The FIR model is primarily obtained by un-
steady numerical simulation, and the uncertainties
associated with the FIR coefficients are evaluated
during the system identification process [18], where
low signal-to-noise ratio may be encountered, and
only short CFD time series are available. In this
study, we mimic such a procedure in three steps:
first, we perform an inverse Fourier transformation
on the flame frequency response data given by
‘Fig. 3, Flame A, |i/i,| = 0.07” in [10], to obtain
a reference flame impulse response model; we then
insert this reference FIR model into a time-domain
thermoacoustic network model [19], to obtain the
time series of u),, and ¢’ by forcing the system
with a broadband velocity signal and a colored
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02 Table 2
Comparisons with Active Subspace approach.
0.15 Method GP-based Active
UQ strategy Subspace [7]
01+ Uncertainty Flame & Flame
g sources acoustic
=} Fidelity ~ Helmholtz =~ gcoustic
‘g 0.05¢ solver network
E solver
) 150 solver 400 solver
Cost/Effectiveness evaluations/ evaluations/
68 parameters 16 parameters
0.05 Applicability General flame Only FIR
model model
-0.1 : : :
0 0005 001 0015 002 0025 003
Time (s) Previously we successfully applied an Ac- 353
) o ) tive Subspace approach [7] to address a high- 354
Fig. 3. Finite impulse r'esponscmodeL Each discrete stem dimensional thermoacoustic uncertainty quan- 3ss
represents one coefficient /;; upper and lower bounds tification problem. Table 2 summarizes the two 356
constitute the 95% confidence interval. . ;
strategies. Our newly proposed strategy performs 357
better in terms of applicability, fidelity and cost- 358
effectiveness ratio. Note, however, that [8] indicated 359
315 combustion noise signal [19]. Finally, we employ that the active subspace identified in [7] provides 360
316 system identification [18] on the time series ob- new insights regarding the causal relationship 361
317 tained to reidentify the FIR model (results shown between the variation of FIR coefficients and the 362
318 in Fig. 3). The identification process provides us variation of modal growth rate, which is beyond 363
319 with both the mean and covariance matrix of the the scope of the current study. 364
320 FIR model coefficients.
321 In addition to the FIR coefficient uncertainty,
322 we also consider the reflection coefficients Ry, 4.4. Case A[udy nonlinear thermoacoustic UQ 365
323 Ry, and the damping coefficient  of the acous- analysis 366
324 tic model to be uncertain. They are assumed to ex-
325 hibit independent uniform distributions, with the In this second case Study’ FDF gain and phase 367
326 ranges given in Table 1. This results, in total, in a data at discrete frequency and velocity perturbation 368
327 68-dimensional UQ problem. This dimensionality levels are used as a nonlinear flame model and are 369
328 is significantly higher than in previous studies. considered uncertain. Together with the acoustic 370
329 To perform the uncertainty propagation, we system parameters, we will propagate those uncer- 371
330 perform Monte Carlo simulation by adopting tainties to the predictions of limit cycle frequency 372
331 the proposed GP-based UQ strategy, ie. we and amplitude. 373
332 draw 20,000 samples of [k, Riy, Rou, o]?,i= In practice, FDF model uncertainty is induced 374
333 1, ..., 20, 000. We solve surrogate equations once for by both data quantity (measurements only avail- 375
334 each sample, where H = [R;y, Ry, o] and F(o + able at limited frequencies and amplitude combi- 376
35 jw) =Y ot e irDanio) nations) and data quality (resulting from the fact 377
336 The probability density functions (PDF) of that measurements have errors/uncertainties). To 378
337 growth rate and frequency are shown in Fig. 4. Ex- mimic this situation, we introduce FDF model un- 379
338 cellent matches are achieved between the results certainty in three steps: 380
339 yielded by the GP-based UQ scheme and the refer- Step 1: we use the FDF gain and phase data in 381
340 ence results obtained using direct Helmholtz solver ‘Fig. 3, Flame A’ [10] as our reference FDF model. 382
341 calculations. In terms of computational time, a To mimic uncertainty induced by data quantity, we 383
342 GP-based iterative scheme requires 463s, while di- only use the gain and phase data measured at f,, = 384
343 rect Helmholtz solver calculations cost 9094s, thus [0, 30, 60, 80, 140, 170, 190, 210, 230, 250](H z) 385
344 achieving an approximately 20 times increase in the for all available amplitude levels ((|d|/ip), = 386
345 speed of UQ analysis. It is anticipated that when [0.07,0.15,0.3,0.41,0.51, 0.71]). 387
346 a more complex configuration is considered, the Step 2: To mimic uncertainty induced by data 388
347 computational cost of a single Helmholtz solver quality, we further assume at each measurement 389
348 calculation would be significantly longer, while the location that gain measurement follows a normal 390
349 cost of each iteration in a GP-based UQ scheme distribution, with the mean being the original 391
350 would basically stay the same. In this way, a much experimental value and the standard deviation 392
351 more significant acceleration of the UQ analysis being 10% of the mean; phase measurement also 393
352 may be achieved. follows a normal distribution, with the mean being 394
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Fig. 4. PDF comparison between the GP-based UQ scheme (black curves) and Monte Carlo applied directly to Helmholtz

solver (bars).

the original experimental value and the standard
deviation being 5% of the mean.

Step 3: to facilitate nonlinear thermoacoustic
analysis, we interpolate the uncertain measure-
ments at combinations ( f,,,, (|| /itp),,) to a finer grid
consisting of 26 levels of frequency and 10 levels
of amplitude that are evenly distributed between
0~250Hz and 0.07 ~0.71, respectively. Following
the work of McCartney et al. [20], we use stochas-
tic Gaussian process regression [’1] to interpolate
FDF gain and phase data, individually. As a result,
all 260 data points for gain (and another 260 data
points for phase) become uncertain, which follow
a multivariate normal distribution, with the mean
and covariance determined by the corresponding
stochastic GP model. Hence, we are able to gener-
ate realizations of FDF gain and phase data.

In addition. we also consider R;,, R,, and «
to be uncertain, which follow independent uniform
distributions, with the ranges given in Table 1. In
total, this is a 523-dimensional (260+260+3) UQ
problem.

To perform Monte Carlo simulation, we draw
20,000 samples of the uncertain inputs, where each
sample contains one realization of R;,, R,, and «,
respectively, as well as one realization of a 26-by-
10 gain dataset and one realization of a 26-by-10
phase dataset.

To perform nonlinear thermoacoustic analysis
for each sample, we follow the framework proposed
by Noiray et al. [22] and later successfully applied to
Helmbholtz solver [10]: for each amplitude level, we
obtain the corresponding flame model by using the
Matlab function ‘rationalfit’ to fit a rational func-
tion [23] based on 26 pairs of gain and phase data
at that amplitude level. We then insert this flame
model into surrogate equations to calculate the fre-
quency and growth rate for that amplitude. Based
on the trajectory of the growth rate over the am-

plitude, we can determine the limit cycle frequency
and amplitude when instability occurs.

Aligning with the definitions given in [22], three
types of growth rate trajectory are observed among
20,000 Monte Carlo samples; their decomposi-
tions predicted by the GP-based UQ scheme and
Helmbholtz solver are given in Fig. 5. Note that
while only samples with a Type 1 or 2a trajectory
(where limit cycle oscillation actually occurs) are
shown in the histogram of limit cycle amplitude
and frequency, the histogram is actually normal-
ized with respect to all 20,000 samples. We ob-
serve perfect matches between both methods. In
terms of computational time, the GP-based itera-
tive scheme requires 2800s, while direct Helmholtz
solver calculations costs 42,700s, which shows that
an increase in speed of approximately 15 times ac-
celeration is achieved, thus demonstrating the effec-
tiveness of the newly proposed UQ scheme.

Also shown in Fig. 5 are the experimentally
measured limit cycle amplitude and frequency (red
diamond). A significant mismatch was previously
observed between the numerical prediction and the
experimental results in the configuration C11 [10].
In the light of our current UQ analysis, this mis-
match may be attributed to the uncertainties in
FDF data and acoustic system properties.

Before concluding this section, we would like to
make two remarks. First of all, in the current case
study, we unfortunately do not have any quanti-
tative uncertainty information available regarding
the experimental measurements, which would have
been beneficial for shedding light on the credibility
of the numerical solver (in our case, a Helmholtz
solver) as well as the specification of the flame and
acoustic parametric uncertainty descriptions. Nev-
ertheless, the proposed GP-based UQ framework
can be robustly and conveniently adopted in other
cases where experimental measurement uncertain-
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