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Without Abstract 

 
 

Synonyms 

Bodily expression; Body language; Kinesics; Nonverbal communication interfaces 
 
 

Definition 

A gesture is a form of nonvocal communication in which visible bodily actions communicate 
particular messages. Gestures include movement made with body parts, such as hands, arms, fingers, 
head, and legs. One gesture type is gestures that convey meaning by themselves and are assumed to 
be deliberately performed by the speaker. They are conventionalized symbols and strongly culture-
dependent. Another type is conversational gestures, which accompany the speech but do not deliver 
the semantic content of the accompanying speech. An example is simple, repetitive, rhythmic 
movements like the beats. 
Posture interface conveys information about interpersonal relations, personality traits (e.g., 
confidence, submissiveness, and openness), social standing, and current emotional states through the 
position and orientation of specific body parts, which can be expressed either in a fixed coordinate 
on the own body or in the relative coordinate to the other agent. Often postures are considered as 
snapshots of movements. 
Facial interface is combinations of eye, eyebrow, lip, nose, and cheek movements by moving the 
muscles beneath the skin of the face. Facial expressions convey emotions of an individual, for 
instance, a raise of eyebrow for skepticism. They are a primary means of conveying social 
information between humans. 
 
 



Overview 

In contrast to interacting with machines, humans can master the complexities of interpersonal 
communication apparently without difficulty. One of the reasons for such human-to-human 
communication is multimodality. For example, we use gestures, postures, and facial expression. 
Some researchers conclude that gesture, posture, and facial interfaces can provide a significant 
amount of important information through nonverbal communication during interpersonal 
interactions. In robotics, gesture, posture, and facial interfaces appeared as a way to realize intuitive 
natural communication tools between a human and a robot without using complex artificial 
interface. These gesture, posture, and facial interfaces are beneficial because these can provide user-
friendly interfaces that do not require knowledge in complex new technology and that are 
straightforward usable without the need of getting to know a new interface. The goal is to realize 
natural human-robot interaction by developing robots equipped with human’s nonverbal 
communication interfaces. These nonverbal communication interfaces are employed in order to 
understand human’s states and to convey robot’s internal states in a human-robot interaction domain. 
 
 

Key Research Findings 

Key research findings of gesture, posture, and facial interfaces are grouped into two categories in 
this chapter: control interfaces to robots and robots with affective computing. 
 
 

Control Interfaces to Robots 

One of the most typical interfaces to control machines (e.g., televisions, actuated toys, video games, 
etc.) is a joystick-like remote controller. Instead of such an external device, gestures, postures, and 
facial expressions can be also used as commands to control machines. Recently it is not difficult to 
find commercially available drones equipped with hand gesture commands. Research on gesture 
recognition, pose estimation, and retargeting of human movements to a machine could help to 
realize controlling robots using nonverbal cues. 
 
 
Control Command Recognition 

One way for controlling machines is based on command recognition. The basic idea is simple: from 
the signals of human gestures, postures, and facial movements, human commands are recognized, 
and then the recognized commands trigger the corresponding movement primitives (e.g., go 
left/right, go forward/backward, turn clockwise, etc.) of the machines (Ott et al., 2010; Waldherr et 
al., 2000). In order to recognize command gestures, features are selected (or descriptors are 
calculated), classifiers are trained, and then commands are recognized using the trained classifiers. 
As a first step in this pipeline, appropriate features (like joint angles, 3D coordinates of body joints, 
etc.) are selected. Instead of manual selection of features, new descriptors could be developed for 
robust gesture recognition (Falco et al., 2017, 2018). Invariance properties in terms of viewpoints, 
translations, and scales (Lee et al., 2017; Saveriano and Lee, 2013; Soloperto et al., 2015) are 
investigated to design new invariant descriptors of human gestures. There have been various studies 
on gesture recognition (Mitra and Acharya, 2007), especially hand gesture recognition (Kumar et al., 
2017; Neto et al., 2013; Molchanov et al., 2016), facial expression (Pantic and Rothkranz, 2000; 



Yacoob and Davis, 1996; Fasel and Luettin, 2003), and body gestures (Lee and Nakamura, 2005). 
Tools for gesture recognition range from hidden Markov models (HMM) and support vector 
machine (SVM) to artificial neural networks (ANN) and recurrent neural networks (RNN), which 
have received a great amount of attention recently using big data. Control interfaces based on 
command gesture recognition have been applied to many robots, including humanoid robots (Ott et 
al., 2010), mobile robots (Waldherr et al., 2000), wheel chairs (Fehr et al., 2000), and collaborative 
robots (Magnanimo et al., 2014; Lee et al., 2009; Parusel et al., 2014). 
 
 
Retargeting Based on Pose Estimation 

The other approach for controlling machines is so-called retargeting, where captured human poses 
are mapped to robot poses. Several approaches are existing for whole body human motion mapping 
to humanoids (Ott et al., 2008; Dariush et al., 2008; Hu and Lee, 2012; Hu et al., 2014). Most of 
retargeting approaches use a commercially available motion capture system, in order to measure 
human movements precisely, including facial muscle movements. Widely used motion capture 
systems are optical ones, which usually consist of multiple cameras and reflected markers in a 
controlled environment, as well as inertia sensor-based systems. Such a motion capturing technique 
is widely applied in animations and movies, where human’s body and facial expression is mapped to 
an animated character, in order to create natural movements and vivid expression. Geminoid, whose 
appearance closely resembles a specific human, can imitate human’s facial expression, head rotation, 
and mouth opening (Nishio et al., 2007). Similarly human’s hand motion can be captured by a data 
glove and imitated by a robotic hand (Schmidts et al., 2011). 
In contrast to using commercially available camera-based motion capture systems or data gloves, 
researchers in computer vision community have developed a number of algorithms to estimate 
human pose from raw camera images: human’s whole body pose estimation (Sun et al., 2012; 
Toshev and Szegedy, 2014; Zhang et al., 2012; Liu et al., 2011; Lee and Nakamura, 2014, 2007), 
hand pose estimation (Yuan et al., 2018; Li et al., 2018; Li and Lee, 2018; Ge et al., 2018), and face 
reconstruction (Cao et al., 2012; Dantone et al., 2012). When the estimation results of these methods 
become robust to noises in sensors and environments and ready to directly apply them to control 
robots safely, the higher impact for human-robot interaction applications is expected. 
 
 

Robots with Affective Computing 

During interaction, people communicate emotion through gesture, posture, and facial expression. 
Charles Darwin discussed the role of facial expression and body movement in communicating 
emotion (Darwin, 1872). Facial expression and bodily expression are reported to be congruent when 
interpreting emotions (Kret et al., 2011). 
Affective computing, also called artificial emotional intelligence, is computing that relates to, arises 
from, or deliberately influences emotion or other affective phenomena (Picard, 1997). According to 
Hook ( 2009) affective loop is the interactive process in which the user of the system first expresses 
emotions involving own body (e.g., through gestures); and the system then responds by generating 
affective expression which “in turn affects the user making the user respond and step-by-step feel 
more and more involved with the system.” Research goes into two directions: first affective input to 
interpret the emotional state of humans and second affective output to respond to those human’s 
emotions for appropriate social engagement. 



 
 
Affective Input 

In affective input tools, the emotional state of humans is detected and recognized from various 
sensory data. The process for affective input can be described as following the four steps (Karg et 
al., 2013): (1) measuring movements by sensors, (2) segmenting movements into primitives, (3) 
constructing features, and (4) detecting emotion. At the first step, a wide range of sensors can be 
employed in order to record affect expressive movements, such as optical motion capture, inertial 
motion tracking, and data gloves, as well as physiological data like temperature, pulse, heart rate, 
etc. Also, computer vision algorithms could be applied in order to measure physical movement of a 
human from sequential camera images. The second step is needed in order to handle online 
streaming signals. One of simplest approach is sliding time window. Also there are complicated 
segmentation approaches (Fod et al., 2002; Kulic et al., 2012; Caccavale et al., 2018) which aim at 
finding the precise boundaries of movement primitives. The third step is preprocessing of signals: 
features are manually selected directly from sensor inputs, or selected/calculated based on perceptual 
study in psychology 1, or extracted automatically by machine learning algorithms. The features could 
be further processed in order to lie in a lower dimensional space. In the final step, which is the main 
part of the affective input, the extracted meaningful features of human movement are fed into 
machine learning algorithms to detect emotions. 
Models of emotion can be categorized into three models: categorical models (Ekman, 1972), 
dimensional models (Russell and Mehrabian, 1977; Mehrabian, 1996), and componential models 
(Plutchik, 2001). Categorical models (Ekman, 1972) are based on the underlying assumption that 
humans universally express and recognize a set of discrete primary emotions which include 
happiness, sadness, fear, anger, disgust, and surprise. Herein, emotions are classified into a set of 
distinct classes that can be recognized by applying standard pattern recognition procedures. In 
dimensional models (Russell and Mehrabian, 1977; Mehrabian, 1996), emotions are modeled along 
a set of continuous latent dimensions. The PAD model describes an emotional state with values of 
pleasure (or valence), arousal, and dominance. Therein, pleasure represents how pleasant or 
unpleasant a feeling is. Arousal corresponds to the level of activation and physical activity. 
Dominance represents the sense of control over the emotion. Their continuous nature allows to 
model rich and complex emotions in theory. Categorical labels can be mapped to the continuous 
PAD space, e.g., happiness, amusement, and contentment are related to high pleasure, whereas 
anger, fear, and sadness are related to low pleasure. Componential models (Plutchik, 2001) emotions 
are hierarchically represented where complex emotions are combinations of basic emotions. 
Categorical models are most widely used for emotion recognition (Gunes and Piccardi, 2005; Saha 
et al., 2014). Machine learning algorithms are applied to classify emotions, for example, six basic 
emotions (anger, happiness, fear, disgust, sadness, and surprise) proposed by Ekman ( 1972). 
Frequently applied classifiers include linear discriminant classifier, support vector machine, hidden 
Markov model, k-nearest neighbor, artificial neural networks, decision tree, dynamic time warping, 
naive Bayes, etc. Fewer studies have applied a dimensional representation (Glowinski et al., 2015; 
Karg et al., 2010a; Kleinsmith and Bianchi-Berthouze, 2007). While its continuous nature allows to 
model rich and complex emotions in theory, the automatic emotion recognition becomes 
challenging. Thus, when using a dimensional representation, each continuous dimension is divided 
into a few categories (low, neutral, and high), and a classifier is trained. Alternatively regression 
technique like support vector regression can be applied. 
Facial interfaces are widely studied for emotion recognition, also for person-dependent and person-
independent emotion recognition. Other nonverbal signals are also investigated: upper body motion 



(Gunes and Piccardi, 2005), whole body motion like walking (Karg et al., 2010a) and dancing (Park 
et al., 2004), as well as head movements (Gunes and Pantic, 2010b; Monkaresi et al., 2012). For 
further details, survey papers on emotion detection can be refereed (Gunes and Pantic, 2010a; 
Kleinsmith and Bianchi-Berthouze, 2013; Karg et al., 2013). 
 
 
Affective Output 

There have been a wide range of study on tools for affective output. In order to express emotions in 
robots, researchers tried to apply the illusion of life, which is the Disney’s 12 principles on how to 
create believable and expressive characters (Thomas and Johnston, 1995), to robots. One of the 
attempts is enriched hardware features to introduce expressive features, such as actuated eyes, 
pupils, and muscles. The design of computational devices is proposed to exhibit either innate 
emotional capabilities or convincingly simulating emotions. Examples are emotion expression for 
characters in the interface or regulating robot behaviors in order to enrich and facilitate interactivity 
between human and machine. 
Affective output has been investigated for anthropomorphic, zoomorphic, or cartoon-like 
embodiments. In the design of embodiment, forms and expectations are important because it 
establishes social expectations. For example, a dog-like robot would be treated differently than a 
humanoid robot. Anthropomorphic robots facilitate tendency to attribute human characteristics to 
robots, such as NAO from Softbank Robotics, Kobian (Endo and Takanishi, 2011), and CB2 
(Minato et al., 2007). Arms and hands are designed to exhibit human-like gestures, e.g., pointing, 
shaking hands, shrugging shoulders, etc. In order to limit human expectation in a low level and still 
to create social interaction with humans, zoomorphic design, imitating living creatures, is taken into 
account, such as Paro (Wada et al., 2008), AIBO (Fujita and Kitano, 1998), MIT Leonardo, iCat 
robot from Philips research, etc. For example, Paro therapeutic robot (Wada et al., 2008) is designed 
followed by appearance of a baby harp seal, a rather nonfamiliar animal, so that people can accept 
Paro easily without preconceptions. Mechanical faces are used to communicate with humans via 
facial expressions like Kobian (Endo and Takanishi, 2011) and Kismet (Breazeal, 2002). 
It is necessary for a social robot to model and select behaviors based on affective goals and 
conditions. A robot must be able to properly express those actions with an adequate affective 
display. Research addressing empathy in social robots has studied on automatic and involuntary 
process, such as mimicking the user’s affective states. In Hegel et al. ( 2006) and Riek et al. ( 2010) 
users reported that interaction with robots with affective expression was more appropriate than ones 
without affective expression. The study in Kishi et al. ( 2013) reported that integration of dynamic 
emotion expression through facial and whole body pattern based on external stimuli makes a 
humanoid robot more appealing to humans. In Gonsior et al. ( 2012) when a robot adapts its own 
mood to the user’s mood, it increases empathy, and the subject is more willing to help the robot. 
Emotions are expressed not only through verbal interfaces, like tone and speech, but also nonverbal 
interfaces. There have been a lot of research on emotion generation through facial expressions 
(Zecca et al., 2008). Besides facial expressions (including iris extension and gaze direction), body 
movements, such as gait pattern and sitting and standing posture, can convey emotions (de Gelder et 
al., 2010). According to de Gelder et al. ( 2010), bodily expressions are suitable for communication 
at over larger distance and facial ones for communication in proximity. Studies in Montepare et al. ( 
1987), Crane and Gross ( 2007), and Roether et al. ( 2009) reported that affective states can be 
expressed during walking and recognized by human observers and that gait parameters and 
kinematics (e.g., walking speed, shoulder and elbow range of motion, and head orientation) are 
modulated according to the affective states. 



Extensive survey on emotional behavior generation can be found in Gunes et al. ( 2011), Bethel and 
Murphy ( 2008), and Karg et al. ( 2013). In affective expression generation for robots, given a 
desired affective state and movement type, the movement is modulated, and trajectory is generated 
and controlled on a real robot. For movement modulation for affective expression, extracted 
movements variables are often linked with emotional state. For example, in Destephe et al. ( 2013) 
emotional gait parameters from the captured human gait data were extracted to build emotion mental 
model and to generate emotional gait. Also, a relationship between motion parameters and affective 
state in the PAD model can be used for emotional robot behavior generation. In Beck et al. ( 2010) 
key poses for affective states are arranged in the valence and arousal space, and then a new 
expression is synthesized by blending between the joint angles of the key poses. The gait of a 
hexapod robot could display affective states by linking the gait parameters and low or high pleasure, 
arousal, and dominance (Karg et al., 2010b). In Nakagawa et al. ( 2009) a general approach which 
modifies an arbitrary motion to control affective nuances is discussed. Velocity and expansiveness 
of the motion correlate with arousal, and the basic posture relates to the expressed level of valence. 
 
 

Examples of Application 

 
 

Social Robots 

Social robots need to engage us not only on a cognitive level but also on an emotional level. In 
Breazeal and Scassellati ( 1999) it is argued that in order to interact socially with a human, a robot 
must convey intentionality, that is, the human must believe that the robot has beliefs, desires, and 
intension. Also culture awareness becomes important, especially differentiating universal gesture 
from culture-specific gestures. There are some gestures which have different meaning in different 
cultures. For instance, the thumbs-up gesture means good in some countries, while it is insulting in 
other countries. In most cultures the head nod signalizes agreement, but not in India. Using 
humanoid robot Kobian, cross-cultural study on human-robot greeting interaction was carried out 
with Egyptians and Japanese (Trovato et al., 2013). Entertainment robots and educational robots can 
be included in the category of social robots. Examples of social robots are NAO, Paro, AIBO (Fujita 
and Kitano, 1998), Leonardo, Kismet (Breazeal, 2002), etc. Kismet is capable of conveying 
intentionality through facial expression and behavior (Breazeal and Scassellati, 1999). Kismet can 
display expression analogous to happiness, sadness, surprise, boredom, anger, calmness, displeasure, 
fear, and interest. Many social robots have been built and used for a teaching aid for autistic children 
where kids learn social skills for communication with other people (Dautenhahn , 2004). 
 
 

Animated Characters 

People use verbal (voice) and nonverbal channels (gesture, posture, facial expression) in face-to-face 
interaction. In contrast to face-to-face interaction in a same physical world, we can communicate 
with others also using virtual avatars and telepresence robots. Such virtual avatars are applicable in 
computer games, virtual training environments, interactive storytelling systems, etc. Interaction with 
virtual reality involves often cabled data gloves but recent techniques on vision-based acquisition of 
hand and figure posture, such as leap motion and RGB-D sensors. Recently it also became common 



to send messages via mobile phone to others using emoticons and to create personal emoticons, in 
which an animated character mimics facial expression of the user. 
 
 

Assistive Robots 

Gesture, posture, and facial interfaces are widely used in robotic assistive systems for handicapped 
people and elderly. Prostheses are categorized into motionless cosmetic, body-powered (operated by 
a cable running through the shoulder girdle), and self-powered (operated by electric motors) 
prostheses. In self-powered mobility assistive robots, while some like prosthesis and exoskeleton are 
controlled by using bio-signals like EMG and EEG, others are controlled by non-bio-signals. 
Depending on the disabilities of users, the control interface varies from conventional joystick to head 
pose, eye gaze, tongue pad, facial expression, and gestures (Fehr et al., 2000). Using trained 
classifiers, for instance, input signals are mapped to steering commands for control of a robotic 
wheelchair. 
Another example of assistive robots is automated sign language recognition. Sign languages are the 
main media for the daily communication between and with the deaf. Automated sign language 
recognition will improve communication between the hearing and the deaf. 
Besides for handicapped people, there has been a lot of progress also for assistive robots for 
nonhandicapped. For instance, many functionalities for assistive driving have been developed, such 
as lane keeping, lane changing, speed control, and distance keeping. Vision-based acquisition of the 
eye blinks to detect the tiredness of a driver is another example to use facial interface. 
 
 

Collaborative Robots 

Paralinguistic communication plays an important role in coordinating joint action during 
collaborative tasks. A team establishes common ground, which is mutual beliefs regarding the 
current state of the tasks and roles and responsibility of each members. Visual perspective taking and 
shared attention is used to direct attention in order to coordinate joint actions about objects in the 
world. In Breazeal et al. ( 2005) Leonard robot communicates with human subjects implicitly (gaze 
and facial expression) and explicitly (pointing gestures, a short nod to acknowledge success of 
tasks). In Parusel et al. ( 2014) a collaborative robot communicates with a human partner through 
haptic interface and hand gestures in order to accomplish joint assembly tasks. In Medina Hernández 
et al. ( 2012) a human and a mobile robot accomplished joint-carrying task through verbal and 
nonverbal communication. 
 
 

Future Directions for Research 

 
 

Social Robots from Lab to Real World 

Gesture, posture, and facial expression can improve usability of complex machines. A lot of efforts 
toward designing intuitive interface in human-robot interaction have been taken for the last decades. 
Besides their usages as commanding interfaces, these nonverbal interfaces will become essential for 
us to communicate with social robots. While most existing social robots are tested in lab 



environment, social robots must move from lab to real settings. This includes many challenges. First, 
a robot should be capable of handling dynamic changes in a real daily environment. Dynamic 
features of emotions might become essential to adapt to changing environments. Affective 
expression should be studied not only in short terms (e.g., emotion) but also in long terms (e.g., 
mood). In order to accomplish long-term human-robot symbiosis, life-long learning, adaptation, and 
memory in both short- and long- terms are needed to be further investigated. 
 
 

Multimodal Approaches 

It is reported that combination of several modalities, through facial expressions, speech, and bodily 
expressions, provides more robust estimation for emotion recognition and enhances the believability 
and congruency for emotion generation. Multimodal approaches for robots with affective computing 
will broaden the range of affective states. To date, the generation of affect-expressive movements is 
limited to a small set of movement types and focusing on upper body movement. It is desired to 
broaden the range of affect-expressive movements. Besides affective expression, new types of 
nonverbal communication can increase connectivities for people, including motor-handicapped 
populations. These links include physiological signals, brain-machine interfaces, and robotics 
platforms. 
 
 

Cognition-Enabled Robots 

Most existing robotic approaches for interacting with humans through gesture, posture, and facial 
expression do not take context information into account. However, context knowledge regarding 
environment, interaction partner, and activities can lead to more cognitive interaction with humans. 
Learning affective expression and movement primitives from humans (Calinon and Lee, 2017) will 
enable robot to become personalized to specific users. 
 
 

Cross-References 

. Cognitive Human-Robot Interaction 

. Human Detection and Tracking 

. Human-Robot Collaboration 

. Motion Capture 

. Physical Human-Robot Interaction 

. Social Human-Robot Interaction 
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Footnotes 

1 



Velocity, acceleration, duration of the movement, and finger motion range are reported as 
important features in perception of affect. 


