

Technische Universität München

Fakultät für Informatik

Understanding Conflicts in Product-Service System
Development

Mohammadreza Basirati, Master of Science

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans-Joachim Bungartz

Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar

 2. Prof. Dr. Manuel Wimmer

Die Dissertation wurde am 16.12.2020 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 13.09.2021 angenommen.

 2

Preface

I am greatly thankful to my advisor Prof. Helmut Krcmar for the opportunities, which he
provided and his guidance and support during my time at the chair. Furthermore, I would like
to thank my research group leader, Dr. Markus Böhm, who kindly helped me through the
challenges of my research and completing this dissertation.

I would also like to thank my colleagues at the chair, who were great companions along the
way, especially, Jörg and Martin. Besides, I greatly benefited from professors and colleagues
in research project SFB 768. Particularly, I would like to thank Prof. Vogel-Heuser and her
chair, especially, Minjie Zou, who collaborated with me in the project, doing research, and
writing papers.

During my Ph.D., I had the chance to supervise many students for their theses. This was a great
experience. I became familiar with many interesting young minds and learned from the process
of supervising them. Without them, this dissertation would have been very different.

Finally, I am deeply grateful to my family. First, to my love and my best friend, Morvarid,
without whom I would have not been able to complete my journey in Ph.D. To my parents, who
supported me and empowered me to begin such a journey. To my sister, Bita, and my brother,
Ali, who were the first teachers I ever had.

Munich, December 2020 Mohammad R. Basirati

 3

Abstract

Problem Statement: Globalized competitiveness on one side and growing environmental
concerns on the other side have shifted more share of value towards services. Accordingly, the
concept of product-service system (PSS) as an integrated bundle of products and services has
emerged. At the same time, the fast advancements in software and digital technologies such as
internet-of-things (IoT) accelerated such a shift. The software-side of any system has grown
significantly providing new opportunities for service design and delivery. However, the
software also increased the connectedness of a system’s components, which are designed and
developed by different teams from different domains. The resulting heterogeneity of
components and individuals leads to prevalent conflict in PSS development. Nonetheless, PSS
studies almost provide no insight into conflicting situations in PSS development. Besides, the
studies on conflict management overlook the role of new technologies and the inter-
connectedness of non-human elements.

Research Design: To fill this gap, we follow mixed-method research with the focus of
providing practical knowledge and solutions. First, we conduct a structured literature review
and qualitative expert interviews to analyze the circumstances in which IoT-integrated PSS is
developed. Second, we conduct a survey and analyze it quantitatively using structural equation
modeling. The survey investigates the relationship between different conflict types and project
success. Moreover, we dive deeper into the reasons behind our findings from the survey through
qualitative expert interviews. Finally, we follow a design science approach to develop methods
and tools that facilitate conflict/inconsistency identification in PSS development.

Results: First, we provide a framework of IoT-PSS business model and a framework of IoT-
PSS lifecycle management, which enlighten different aspects of PSS development at the time
of advanced digital technologies such as IoT. Second, we analyze several hypotheses regarding
different types of conflict’s impact on project success. The findings confirm the negative
correlation of conflicts with project success. Nevertheless, the impact of non-human-rooted
conflicts (NHRC) is moderated by organization size and team size. NHRC is found to be
negative for project success in large organizations and, interestingly, in small teams. The expert
interviews revealed how dynamics of different settings (e.g. dependence on non-human
elements) determine the impact of NHRC. In contrast to NHRC, the detrimental effects of
human-rooted conflicts (HRC) remains almost unchanged in different sizes of organizations
and teams. Third, we provide a holistic approach for systematic identification of
conflicts/inconsistencies in PSS development, a tool that can assist such identification, and an
ontology-based approach to encapsulate knowledge from various domains in PSS development
to identify or avoid conflicts.

Contribution: The PSS-related findings and methods mainly contribute to PSS literature. They
establish the foundations for more advanced conflict management in PSS development.
Moreover, the proposed methods can be further applied, with or without alternation, to
inconsistency identification in any system engineering field. Furthermore, the findings on
conflict contribute significantly to the conflict literature. We contribute by introducing a new
conflict classification (HRC vs. NHRC), providing empirical insight into the relationship

 4

between conflict and project success, and showing the directions for future research. Both the
PSS-related and conflict-related contributions are of high importance for practice. The proposed
methods can be customized and realized in practice for better identification of conflicts in PSS
development. Furthermore, the conflict-related findings have significant managerial
implications. Practitioners can exploit such knowledge to better manage and resolve conflicting
situations according to the settings (e.g. size of team or organization) and types of conflict (HRC
vs. NHRC).

Limitations: The findings of interview studies highly rely on limited experiences and opinions
of the subjects. We strived to overcome this weakness, first by using a structured literature
review, and second, by a quantitative survey study. However, we do not claim that we were
completely successful, particularly, as the other methods are limited in other ways. The
conducted survey had a relatively low number of participants, which lowers the generalizability
of its findings. Finally, the design science approach never results in the perfect solution, but
iteratively searches for one. Hence, there is room for improvement in solutions proposed by this
dissertation.

Future Research: This dissertation provides the foundations for an effective conflict
management in PSS development. Our results can be further used and extended in several ways.
First, future research can investigate the role of different conflict resolution strategies on project
success and PSS development. The effectiveness of resolution strategies can be also analyzed
with regard to the NHRC and HRC conflict types. Accordingly, future research should develop
new methods and tools that support resolution of conflicts in PSS development. Furthermore,
although we emphasized on importance of NHRC in PSS development, we have no empirical
findings on how often different types of conflicts occur in practice and what are the most
frequent causes of conflicts in PSS development. Such findings can support advancing the
conflict identification methods of this dissertation.

 5

Table of Contents

Abstract .. 3

Part A .. 10

1. Introduction .. 11

Motivation .. 11

Research Questions .. 14

Structure ... 14

2. Conceptual Background ... 19

Product-Service System ... 19

Conflict ... 22

Conflicting Elements .. 24

3. Research Approach .. 30

Overview of Research Methods ... 31

Literature Review ... 32

Expert Interview ... 33

Survey ... 34

Structural Equation Modeling .. 35

Design Science ... 36

Part B1 (Main Publications) ... 38

P3: Understanding the Relationship of Conflict and Success in Software Development
Projects ... 39

P4: Towards Systematic Inconsistency Identification for Product-Service Systems 41

Part B2 (Other Publications – Not Included in Review and Evaluation) 42

P1: IoT as PSS Enabler: Exploring Opportunities for Conceptualization and Implementation
 .. 43

P2: Exploring Opportunities of IoT for Product-Service System Conceptualization and
Implementation ... 44

P5: Introducing TRAILS: A Tool Supporting Traceability, Integration and Visualisation of
Engineering Knowledge for Product-Service Systems Development 45

P6: Facilitating Consistency of Business Model and Technical Models in Product-Service
Systems Development: An Ontology Approach .. 46

PART C .. 47

4. Discussion .. 48

PSS Development with IoT Integration ... 48

 6

The relationship of Conflict Types (HRC and NHRC) and Project Success 50

Mechanisms to Identify NHRC in PSS Development ... 52

5. Implications .. 54

Implications for Theory .. 54

Implications for Practice .. 55

6. Limitations ... 57

7. Future Research .. 58

8. Conclusion .. 59

References .. 61

Appendix: Publications in Original Format ... 68

 7

List of Figures

Figure 1 -Detailed structure of the dissertation .. 15

Figure 2 - Cyclic nature of conflict adapted from Wall Jr and Callister (1995) 23

Figure 3 - Taxonomy of conflicting elements .. 25

Figure 4 - Types of interview questions adapted from Gläser and Laudel (2009) 33

Figure 5 - Elements of qualitative expert interview according to Myers and Newman (2007) 34

Figure 6 - Major steps for survey research according to Recker (2012) 35

Figure 7 - Design science framework according to Hevner (2004) ... 36

Figure 8 - Design science process according to Peffers et al. (2007) 37

 8

List of Tables

Table 1 - List of embedded publications .. 17

Table 2 - Additional publications related to third research question 18

Table 3 - Definitions of PSS adapted from Annarelli et al. (2016) .. 19

Table 4 - Different types of PSS according to Tukker (2004) and Reim et al. (2015) 21

Table 5 - Definitions of conflict and inconsistency ... 22

Table 6 - Relation between existing conflict types and HRC and NHRC 24

Table 7 - Concrete examples of HRC and NHRC ... 29

Table 8 - List of research methods used in the publications .. 31

Table 9 - Summary of results for research question 1 (P1, P2) ... 48

Table 10 – Summary of results for research question 2 (P3) ... 50

Table 11 - Summary of results for research question 3 (P4-P6) .. 52

 9

List of Abbreviations

PSS Product-Service Systems

IoT Internet-of-Things

CPS Cyber-physical System

HRC Human-rooted Conflict

NHRC Non-human-rooted Conflict

NLP Natural Language Processing

 10

Part A

 11

1. Introduction
Products and services are becoming more and more integrated into bundles called product-
service systems (PSS). With the increase in the number and variety of elements in PSS, the
complexity of offerings and productions rises significantly. Heterogeneity among artifacts,
individuals, tools, and processes makes conflict unavoidable and prevalent in PSS development.
This dissertation investigates conflict in the context of PSS and provides methods and
mechanisms to manage conflict in PSS development.

Motivation
Servitization has become an inseparable part of the business. Nowadays, most developed
countries rely more on the share of the value created by services than physical products (Meier
et al. 2010). Even manufacturing firms are evolving by integrating service provision into their
core value drivers. More than 50% of manufacturers in the US and UK provide at least one type
of service to the customers (Mastrogiacomo et al. 2019). The shift is very vivid for China with
an increase from 1% servitized manufacturing firms in 2007 to 19% in 2011 and 38% in 2019
(Mastrogiacomo et al. 2019; Raja and Frandsen 2017).

Various factors contribute to the shift towards servitization such as increasing competitiveness
of the global economy (Baines et al. 2007; Goedkoop et al. 1999; Meier et al. 2010; Peruzzini
and Wiesner 2019; Vasantha et al. 2012), rising ecological restrictions (Komoto and Tomiyama
2009; Maussang et al. 2009; Meier et al. 2010), and higher demand for sustainable customer
relationship (Meier et al. 2010; Vasantha et al. 2012). In this regard, the concept of product-
service system (PSS) has emerged, which focuses on the intertwined development of products
and services. A PSS aims at increasing profit by exploiting the synergy between product-side
and service-side. The PSS concept is not necessarily equivalent to servitization (Meier et al.
2010; Mont 2002). Since the PSS perspective includes a service provider evolution by offering
physical products besides service, while servitization merely focuses on enhancing physical
products with service. Xerox provision of pay-per-print services instead of selling only print
machines, BMW and Daimler joint car-sharing system called ShareNow, and Rolls-Royce
“power by the hour” maintenance and support system for aero engines are distinct examples of
PSS. Moreover, software and service companies such as Google and Facebook, now provide a
variety of hardware parts. Google has become a successful smartphone manufacturer and
Facebook produces smart video calling cameras.

Furthermore, significant progress in digital technologies and the emergence of new paradigms
such as the internet of things (IoT) and cyber-physical system (CPS) have boosted the
realization of PSS (Alexopoulos et al. 2018; Bressanelli et al. 2018; Seregni et al. 2016).
Digitalization and ubiquitous software systems facilitate the connection between physical
products and services (Bressanelli et al. 2018). The advancements of processors, sensors, and
actuators speed up the service innovation and add more complexity to PSS. The integration of
such advancements into products for providing services can be seen whether in simple products
such as smart light bulbs or in complex products such as cars.

Thus, firms are experiencing a fast shift from traditional mere physical or mere service business
models to intertwined offerings of a PSS at the same time of growth in the ubiquity of software.

 12

The number and complexity of PSSs are increasing. Nowadays, a PSS consists of a higher
number of elements than traditional physical products. To develop a PSS, a wide range of fields
and expertise are required, which are more diverse than the past and at the same time, they need
to collaborate frequently (Vasantha et al. 2012). Digital technologies have exacerbated such
conditions by adding more volatility due to their requirements and their fast advancements
(Pernstål et al. 2015; Song 2017; Wiesner et al. 2017).

In such circumstances, conflict emerges as a prevalent unavoidable phenomenon. Because the
diversity of expertise within and between teams increases the number of misunderstandings and
disagreements (Berkovich et al. 2011; Song and Sakao 2016; Wiesner et al. 2017). Every
domain expert possesses a particular mindset and uses specific terminology, which may differ
significantly from those of other domains’ experts. Heterogeneity of functions among the team
members is an acknowledged source of conflict, particularly in decision-making processes
(Daspit et al. 2013; Levina 2005; Lovelace et al. 2001; Tsai and Hsu 2014).

Such heterogeneity is also reflected in non-human factors such as tools and methodologies.
While a software development team is practicing the agile methodology, the physical product
development teams may be using the traditional waterfall approach. Moreover, the components
of products and services commonly are defined separately, while the components’ requirements
are highly interdependent. This characteristic of PSS development not only intensifies the
misunderstandings but also increases the chance of inconsistency among the system’s
requirements (Song 2017). Even merely a higher heterogeneity in a system’s requirements has
been found directly associated with higher interpersonal conflicts (Liu et al. 2011).

Used interchangeably with notions such as disagreement, contradiction, or inconsistency,
conflict is a broad and hard-to-define concept (Easterbrook et al. 1993). The Oxford English
Dictionary defines conflict in such terms as “serious disagreement”, “opposing feelings or
needs”, ”serious incompatibility”, and “being incompatible or at variance”. Conflict is defined
by Easterbrook et al. (1993) as the interaction of interdependent parties whose goals oppose
and interfere with each other. They emphasize interaction, interdependence, and incompatibility
to capture the meaning of conflict. Wall Jr and Callister (1995) define conflict as “a process in
which one party perceives that its interests are being opposed or negatively affected by another
party.”

This dissertation introduces a new definition of conflict, which does not refute existing
definitions, but rather allows more comprehensiveness. Because the existing definitions mostly
point out to human nature of conflict and overlook the conflicting situations due to non-human
elements. However, the incompatibility of tools, processes, and methodologies is very common
in the development of PSS. This makes the existing definitions and studies of conflict
incomplete.

According to the existing definitions, three major principles exist in any conflict. First, in a
conflict, two or more elements are involved. Second, a relationship holds between the involved
elements of a conflict. Third, the state of the elements and their relationships are different from
the defined or expected objectives. Based on these principles, we define conflict as an
“undesired variance between two or more related elements”. Such a definition enables us to

 13

analyze the incompatibility and inconsistencies among non-human elements from a conflict
lens.

Following the definition of this dissertation, conflict can be an indicator of project complexity,
because the number of conflicts not only shows higher variance in the project, but also a higher
number of elements and relationships. The extent of variance, the number of project elements
and their relationships are considered as major indicators of project complexity (Geraldi et al.
2011). Furthermore, based on the new definition, a conflict may exist in both human and non-
human aspects such as technical and organizational. Consequently, investigating conflicts can
reflect the social and organizational complexity of a project as well as its technical complexity
as the two main aspects of project complexity (Baccarini 1996).

Conflict is mostly recognized as a negative matter that impairs collaborations, behaviors, and
structures (Wall Jr and Callister 1995). In cross-functional collaborations, such as PSS
development, conflict can thwart innovation (Levina 2005; Tsai and Hsu 2014). Conflict often
reduces the satisfaction of individuals (Jehn 1995; Jehn 1997) and the success of the groups
(Guang-dong 2013; Jehn and Mannix 2001; Liang et al. 2010), particularly when the conflict
tends to be more personal. Nonetheless, process conflict, the conflict between elements such as
schedules and logistics, has been found also as a negative factor for team performance and
project success (Greer and Jehn 2007; Guang-dong 2013; Jehn and Mannix 2001). In general,
there is a strong relationship between project success and the work processes and methodologies
(Joslin and Müller 2016; Khan et al. 2012). On a lower level, conflicts among requirements
specifications are considered as one of the major reasons for the failure of software projects
(Aldekhail et al. 2016). Moreover, several studies show the volatility and even variability of
requirements artifacts are associated with reduced team performance (Shameem et al. 2018;
Yang et al. 2015).

In summary, there is a huge growth in the intertwined development of products and services in
frameworks such as PSS, which is facilitated by fast advancements in technology paradigms
such as IoT. Such simultaneous and interconnected development of products and services has
intensified the collaboration of experts from various domains, teams, and departments.
Moreover, PSS is developed by various tools, methods, processes, and artifacts that are
heterogeneous and commonly incompatible. Thus, such diversity in individuals and settings
leads to a growth in number and variety of conflicts. Conflicts have a huge impact on how teams
perform and projects evolve. Consequently, it is necessary to come to a better understanding of
the conflict phenomenon that suits the new development settings of PSS. Accordingly, this
dissertation focuses on reaching a deeper knowledge, methods, and mechanisms to deal with
conflicts in PSS development.

A better understanding of conflict phenomenon points out circumstances, in which conflicts
emerge during PSS development, the types of conflicts, and how the conflicts can influence
PSS development. Consequently, practitioners can employ such knowledge to avoid or better
manage conflicts. This directly improves team performance and decreases development time
and cost. Furthermore, new conflict identification methods, which suit PSS development, can
significantly assist practitioners in the efficient management of conflicts and moderating their
negative impacts.

 14

Research Questions
We aim to improve the understanding of conflict in PSS development and ways to identify
conflicts in PSS. Particularly, we investigate the role of IoT and software as the main drivers of
PSS. To this end, this dissertation follows three research questions (RQ):

RQ1: What are the situations, from which conflicts in PSS development arise?

This research question is the first step towards increasing our knowledge about conflicts in PSS
development. Within this research question, we investigate how a PSS is conceptualized and
realized, particularly using new technologies such as IoT. To this end, we conduct literature
reviews and expert interviews. The results provide an overview of various types of PSS, how
complex technologies enable the integration of products and services, and real PSS cases for
more clarification. Hence, this research question provides the foundation for deeper analysis in
the next research questions.

RQ2: How do different types of conflicts affect project success?

This research question analyzes different types of conflict and their impact on project success.
Using survey, we investigate any correlation between presence of different types of conflict and
the extent of project success. The results dive deeper into finding causes and mechanisms for
such correlations using expert interviews. This research question increases our understanding
of conflicts’ influences on the project success.

RQ3: How can conflicts be identified systematically in PSS development?

The last research question strives to find solutions for the efficient identification of conflicts in
PSS development. The results consist of tools, methods, and frameworks which facilitate
different aspects of conflict identification and management. This research question completes
our path for understanding conflicts in PSS development, starting from the context of conflict,
to impacts of conflicts, and finally identifying and managing conflicts.

The first and second research questions generally increase our understanding of conflicts in PSS
development. The answers to these two questions tell us about various types of conflicts,
situations from which they arise, and how they influence the project success. The third research
question mostly focuses on how to identify or manage the conflicts in PSS. Thus, the research
questions cover various aspects and complete our view on conflict in PSS development.

Structure
This dissertation consists of three parts. Part A starts with the problem definition and research
questions. Afterward, we address the conceptual background of this dissertation, that is the
PSS-related concepts such as PSS types and PSS development processes, and conflict-related
concepts. Besides, we provide a preliminary case study, which indicates various conflicting
elements of conflict in PSS development. As the next step, we describe the research approach
of this dissertation. The first and second research questions are mostly based on expert
interviews and surveys for understanding the conflict and the third research question is mostly
based on the design science approach. Part B1 consists of two peer-reviewed publications which
are the main publications of this dissertation. Part B2 provides extra four related publications,

 15

not included for evaluation of the dissertation. The first and second publications address PSS
conceptualization and realization through IoT. The third publication empirically investigates
the impact of conflict on the project success. The rest of the papers provide either a framework,
method, or tool for the identification and management of conflicts in PSS development. Finally,
in Part C, we provide a summary of the results presented in Part B1 and B2 (main papers and
other related papers), a discussion of the results, their implications, a`nd open issues for future
research. The summarized structure of this dissertation is presented in Figure 1.

Part A Introduction, Conceptual Background, Sources of Conflicts, Research Approach

Part B1 Main Publications (For Evaluation)

RQ2 Understanding Relationship of Conflict and Success in Information System
Development
Method: Mixed-method of Quantitative Survey and Qualitative Expert Interviews

RQ3 Towards Systematic Inconsistency Identification for Product-Service Systems
Method: Design Science

Part B2 Other Papers (Not Included for Evaluation)

RQ1 IoT as PSS Enabler: Exploring Opportunities for Conceptualization and
Implementation
Method: Literature Review and Expert Interviews

RQ1 Exploring Opportunities of IoT for Product-Service System
Conceptualization and Implementation
Method: Literature Review, Expert Interviews, and Case Survey

RQ3
Introducing TRAILS: A tool supporting traceability, integration and
visualisation of engineering knowledge for product service systems
development
Method: Design Science

RQ3 Facilitating Consistency of Business Model and Technical Models in Product-
Service Systems Development: An Ontology Approach
Method: Design Science

Part C Summary of Results, Discussion (Implications and Limitations), Future Research

 Figure 1 -Detailed structure of the dissertation

P3

P4

P5

P6

P1

P2

 16

Part B1 presents main embedded publications of this dissertation which should be reviewed
and evaluated. We provide short descriptions of P3 and P4 as the main papers (ordering is
based on the research questions) in the following.

P3: Understanding the Relationship of Conflict and Success in Software Development
Projects (Basirati et al. 2020) – This paper empirically investigates whether conflict influences
the success of a software-intensive project and if yes, how and through which dynamics. Types
of conflict introduced in the Conceptual Background of this dissertation are used for the analysis
of this paper. To this end, we used a mixed-method research approach. First, we conducted a
survey and quantitatively analyzed it using structural equation modeling (SEM). Second, we
conducted multiple expert interviews to further understand how the identified relationships
between conflict and project success work.

P4: Towards Systematic Inconsistency Identification for Product-Service Systems
(Basirati et al. 2018) – Inconsistencies among tools, processes, and artifacts are prevalent in
PSS development. This paper, first, clarifies various types of logical inconsistencies that can
emerge in PSS development. Second, it provides a framework and guidelines through which
inconsistency identification can be practiced. Third, the paper elaborates on the approach in a
PSS scenario. The results of this paper can be adapted and implemented in industrial PSS use
cases.

Part B2 presents other papers published and related to this dissertation (they are not part of any
evaluation for this dissertation). In the following, we present short descriptions of these papers.

P1: IoT as PSS Enabler: Exploring Opportunities for Conceptualization and Implementation
(Basirati et al. 2019a) – This paper investigates the combination of IoT and PSS from two
aspects: business development and system development. It sheds light on the current practices
and situations, in which PSS is developed. Hence, it clarifies in which circumstances conflicts
arise in PSS development. To this end, we employed a systematic literature review and
multiple expert interviews. The results have two folds. First, a framework of PSS-IoT
business models. Second, a framework of IoT for PSS lifecycle management.

P2: Exploring Opportunities of IoT for Product-Service System Conceptualization and
Implementation (Basirati et al. 2019b) - This paper is a continuation of the first paper. Hence,
it tackles exactly the same research gap, which is how a PSS is defined and developed through
IoT. This paper completes P1 by providing real industrial cases for each described situation in
the paper. Using the real cases, the paper clarifies various aspects of PSS development in the
presence of complex technologies such as IoT.

P5: Introducing TRAILS: A Tool Supporting Traceability, Integration and Visualisation of
Engineering Knowledge for Product-Service Systems Development (Wolfenstetter et al. 2018)
– This paper presents a tool that enables the integration and visualization of various models
during PSS development. It assists practitioners by clarifying the links among the
heterogeneous models in PSS development.

P6: Facilitating Consistency of Business Model and Technical Models in Product-Service
Systems Development: An Ontology Approach (Zou et al. 2019) – One of the major challenges
in PSS design is to align the design of the services initiated by the business model with the

 17

development of physical products. Particularly, it is challenging to trace the dependencies
between the services and product parts. This paper tackles this challenge by providing an
ontology approach that integrates parameters from both the business and service side and the
physical side. Through this approach, practitioners can map how a change in the business model
can affect the design of coupled services and products.

Table 1 - List of embedded publications according to RQ order

No. Authors Title Outlet Type

P1
Basirati, Weking,
Hermes, Böhm,
Krcmar

IoT as PSS Enabler: Exploring
Opportunities for Conceptualization and
Implementation

PACIS 2019 Conf.

P2

Basirati, Weking,
Hermes, Böhm,
Krcmar

Exploring Opportunities of IoT for
Product-Service System
Conceptualization and Implementation

Asia Pacific
Journal of

Information
Systems

Journal

P3*
Basirati, Otasevic,
Rajavi, Böhm, Krcmar

Understanding the Relationship of
Conflict and Success in Software
Development Projects

Information
and Software
Technology

Journal

P4*

Basirati, Zou, Bauer,
Kattner, Reinhart,
Lindemann, Böhm,
Krcmar, Vogel-Heuser

Towards Systematic Inconsistency
Identification for Product-Service Systems

International
Design

Conference
2018

Conf.

P5

Wolfenstetter, Basirati,
Böhm, Krcmar

Introducing TRAILS: A Tool Supporting
Traceability, Integration and Visualisation
of Engineering Knowledge for Product-
Service Systems Development

Journal of
Systems and

Software
Journal

P6

Zou, Basirati, Bauer,
Kattner, Reinhart,
Lindemann, Böhm,
Krcmar, Vogel-Heuser

Facilitating Consistency of Business
Model and Technical Models in Product-
Service Systems Development: An
Ontology Approach

9th IFAC
Conference

2019
Conf.

* P3 and P4 are the main two publications of the dissertation for evaluation, other papers are
complementary for covering the concepts and are not part of any evaluation or review for the
dissertation.

In addition to these publications, we conducted and were involved in several additional studies,
which are related to the third research question. The list of additional papers (AP) is presented
in Table 2. AP1 presents a tool that automatically identifies interdependencies among
requirements specifications of a system, which are written in natural language. The study
follows a design science approach. The tool uses machine learning and natural language

 18

processing (NLP) techniques to build a model that classifies pairs of requirements as
interdependent or non-interdependent. The knowledge of interdependencies among
requirements assist practitioners, particularly product owners and managers, to prioritize
requirements more efficiently and avoid conflicts among requirements and the teams. Because
conflicts occur where there is an interdependency. Besides, interdependency between the two
requirements reflects interdependency between the individuals and teams who are assigned to
implement those requirements. Such knowledge is of high importance in PSS development
since the relationship between teams, products and services, and different components of the
system is not clear. Therefore, the tool of AP1 supports the identification and management of
conflicts among requirements as well as the individuals and teams. AP2 introduces a new
method for alignment between documents of requirements and engineering models. Hence, it
facilitates keeping consistency among information stored in different artifacts. Consequently,
the new method reduces the probability of conflict. AP3 develops a new inconsistency
management approach based on the defined framework of P4. Moreover, it presents a simple
implementation of the approach. The paper focuses mostly on conflicts among models and
potential escalation of such conflicts among teams and departments.

Table 2 - Additional publications related to third research question

ID Authors Title Outlet Type

AP1
Basirati, Böhm,
Krcmar

REINALYZE: A Machine-Learning
Tool for Identifying Requirements
Interdependencies (Submitted)

Requirements
Engineering

Journal
Journal

AP2

Koltun, Basirati,
Hammeed, Böhm,
Krcmar, Vogel-
Heuser

Reverse Engineering on changed
Functional Specification Documents
for Model-Based Requirements
Engineering (Published)

2019
International

Conference on
Industrial CPS

Conf.

AP3

Kattner, Bauer,
Basirati, Zou,
Reinhart, Lindemann,
Böhm, Krcmar,
Vogel-Heuser

Inconsistency Management in
Heterogeneous Models - An
Approach for the Identification of
Model Dependencies and Potential
Inconsistencies (Published)

International
Conference on
Engineering
Design 2019

Conf.

 19

2. Conceptual Background
In this section, we explain the fundamental concepts of the dissertation. First, we discuss
various aspects of the PSS concept. Subsequently, we explain the concept of conflict and its
types. Finally, we dive deep into constituting elements of conflicts from a socio-technical
system (STS) theory lens. Accordingly, we introduce human-rooted conflict (HRC) and non-
human-rooted conflict (NHRC) as two new types of conflict.

Product-Service System
Since the first introduction to product-service systems (PSS) in 1999 by Goedkoop, Van Halen,
Te Riele, and Rommens many new definitions have been proposed in the literature. Table 3
presents various definitions of PSS chronologically. All the definitions share in common that a
PSS aims to increase effectiveness. Most of the definitions mention that such an increase is
achieved by improving the relationship with the customer through providing services.
Decreasing dependence on the environment and raw material is another major motive for a PSS.
The latest definition by Meier et al. (2010) highlights the software-intensive and knowledge-
intensive nature of PSS.

PSS is considered as a powerful source of competitive advantage and sustainability (Ardolino
et al. 2016). PSS can increase the profit margins, provide new growth opportunities in saturated
markets, and build long-term customer relationships. Overall, PSS benefits the PSS provider,
customers and consumers, the environment, and the society (Beuren et al. 2013).

Table 3 - Definitions of PSS adapted from Annarelli et al. (2016)

Definition Reference

“A product–service system is a marketable set of products and services
capable of jointly fulfilling a user’s need. A product is a tangible
commodity, manufactured to be sold. A service is an activity (work),
often done on a commercial basis and for others, with an economic
value. A system is a combination of elements including their relations.”

(Goedkoop et al.
1999)

“A business innovation strategy offering a marketable mix of products
and services jointly capable of fulfilling clients' needs and/or wants -
with higher added value and a smaller environmental impact as
compared to an existing system or product.”

(Manzini et al.
2001)

“A system of products, services, supporting networks and infrastructure
that is designed to be: competitive, satisfy customer needs and have a
lower environmental impact than traditional business models.”

(Mont 2002)

“A system consisting of tangible products and intangible services
designed and combined so that they jointly are capable of fulfilling
specific customer needs.”

(Tukker 2004)

 20

“Products and services which can simultaneously fulfil people's needs
and considerably reduce the use of materials and energy.”

(Halme et al.
2006)

“A social construction, based on “attraction forces” (such as goals,
expected results and problem-solving criteria) which catalyse the
participation of several partners. A PSS is a result of a value co-
production process within such a partnership. Its effectiveness is based
on a shared vision of possible and desirable scenarios.”

(Morelli 2006)

“A market proposition that extends the traditional functionality of a
product by incorporating additional services.”

(Baines et al.
2007)

“An attempt to use existing industrial and commercial structures to
create radically environmentally improved products by treating them as
services.”

(Evans et al.
2007)

“Industrial PSS can be defined as a systematic package in which
intangible services are attached to tangible products to finish various
industrial activities in the whole product life-cycle.”

(Jiang and Fu
2009)

“An Industrial Product-Service System is characterized by the integrated
and mutually determined planning, development, provision and use of
product and service shares including its immanent software components
in Business-to-Business applications and represents a knowledge-
intensive sociotechnical system”

(Meier et al. 2010)

Three types of PSS have been introduced and accepted as the main PSS types in the research:
product-oriented, use-oriented, and result-oriented PSS (Baines et al. 2007; Tukker 2004; Yang
et al. 2009). Table 4 describes the three types of PSS in terms of their underlying business-
model elements (Reim et al. 2015).

Another way of looking at the three types of PSS is to consider what point they have reached
on the innovation scale; result-oriented PSS is the most innovative, and product-oriented PSS
is the least innovative. For a PSS to evolve from product-oriented to result-oriented, it may take
incremental steps and/or a radical path. Incremental innovation, in this context, means that
product-oriented PSS evolves slowly to use-oriented and then further to result-oriented. This
happens through a slow and steady continuous-improvement process. Radical innovation, on
the other hand, means that product-oriented PSS transforms directly into result-oriented PSS,
skipping the use-oriented stage. This often involves a radical shift in technology and leads to a
total reconfiguration of the PSS.

The Xerox case, mentioned in the previous section, is a typical product-oriented PSS example.
All manufacturers that provide maintenance and recycling services besides their products can
be considered examples of the product-oriented PSS type.

 21

Car-sharing and bike-sharing cases belong to use-oriented PSS type. In such cases, the price is
calculated based on the units of usage. For example, BMW car-sharing service DriveNow and
Daimler car-sharing service car2go (joint together under ShareNow) charge the users based on
a per-minute basis. The users can take any available car in the city and park it for free anywhere
in the city. The cars (physical products) are typical car models manufactured by BMW and
Daimler. However, these car manufacturers do not sell their cars in the PSS, but they use their
physical products as a means to deliver mobility services to the users.

Result-oriented PSS has the highest level of servitization, in which the service-side creates more
share of value than the product side (Yang et al. 2010). If a washing machine manufacturer
provides its machines for free and charges the users on a pay-per-use basis, this would be a use-
oriented PSS. It is possible to incorporate more servitization in such a PSS by delivering
laundered clothes, i.e. the result, instead of the machines (Baines et al. 2007). Such a system
would be a result-oriented PSS. A real-case advanced example of result-oriented PSS is
Lufthansa’s AVIATAR digital power platform, which provides various apps and services for
airlines and their suppliers and partners. For instance, the airlines can create networks with each
other and share their airplanes’ spare parts with the purpose of increasing the availability.

Table 4 - Different types of PSS according to Tukker (2004) and Reim et al. (2015)

 Product-oriented Use-oriented Result-oriented

Value
creation

The main responsibility
of provider is service
delivery.

The main responsibility
of

provider is the usability
of the product or service.

Results are the main
responsibility of
provider.

Value
delivery

Provider delivers extra
services in addition to
sold products (e.g.,
maintenance or
recycling).

Provider focuses on
service usability along
with product usability.

The results are counted as
the main deliverables
instead of products or
services.

Value
capturing

Customer pays for the
product and extra
delivered services.

The payment is
performed over usage
phase continuously (e.g.,
leasing).

Customer pays based on
outcome units instead of
pay-per-use or pay-per-
product.

 22

Conflict
Conflict term covers various situations and aspects that are also reflected by other notions such
as disagreement or inconsistency. For example, requirements engineering literature analyzes
conflict and inconsistency in requirements without differentiating them substantially, either in
written specifications (Gervasi and Zowghi 2005; Liu 2016) or generally between stakeholders’
perspectives (Sommerville and Sawyer 1997). Nonetheless, there are more references to
conflict, when there is a discourse about disagreement among individuals. Different
perspectives and understandings of conflict led to various definitions of it. Table 5 lists the
definitions of conflict and inconsistency.

Table 5 - Definitions of conflict and inconsistency

Terminology Definition Source

Inconsistency
“any situation in which two parts of a specification do not
obey some relationship that should hold between them”.

(Easterbrook
and Nuseibeh

1996)

Inconsistency

“a state in which, two or more overlapping elements of
different software models make assertions about the
aspects of the system they describe which are not jointly
satisfiable”

(Spanoudakis
and Zisman

2001)

Conflict

"the interaction of interdependent people who perceive
opposition of goals, aims, and values, and who see the
other party as potentially interfering with the realization
of these goals

(Putnam and
Poole 1987) and
(Easterbrook et

al. 1993)

Conflict
“a process in which one party perceives that its interests
are being opposed or negatively affected by another
party.”

(Wall Jr and
Callister 1995)

Conflict

1) “A serious disagreement or argument, typically a
protracted one.

a. a prolonged armed struggle
b. a state of mind in which a person experiences a clash

of opposing feelings or needs.
c. a serious incompatibility between two or more

opinions, principles, or interests.”

Oxford
Dictionary

Conflict “Undesired variance between two or more related
elements”

(Basirati et al.
2020)

 23

The conflict emerges and acts as in three high-level parts: causes of conflict, core conflicting
situation, and effects of conflict. The effects of conflict can in a cyclic manner become causes
of conflict. This is depicted in Figure 2. In Section 0 of the introduction, we elaborate on the
first part, which is the causes of conflict. The first research question of the dissertation addresses
partly the core conflict situation. The second research question investigates the third part that
is the effects of conflict, particularly regarding the project success. Finally, the third research
question goes one step further than the level of conflict nature and analyzes methods and tools
for the identification of conflict.

Conflict may emerge in different levels. For example, a conflict may occur even within an
individual, when one’s role or duty is in contrast to the person’s values or skills. Similarly, a
conflict may emerge between two persons (interpersonal conflict), two teams (inter-team
conflict), and two departments (interdepartmental conflict). We also emphasize the non-human
aspect of conflict by considering elements such as structure, process, and artifacts as another
level of conflict.

To study conflict, the literature has introduced various types. Because conflict is inherently a
multidimensional concept that can be studied and classified from various aspects. We can
distinguish among conflicts by their causes (e.g. disagreement, competition, lack of trust, etc.),
the constituting elements of conflict (e.g. conflict of interests, conflict of role and skill, etc.),
the types of individuals, among whom conflicts emerge (e.g. superior vs. subordinate, minority
vs. majority, etc.), the level and granularity level of conflict (e.g. interpersonal conflict,
interdepartmental conflict, etc.), and in general, all the factors that can be associated with the
three parts depicted in Figure 2.

Relationship conflict, task conflict, process conflict, and role conflict are relevant types of
conflict that can be associated with this dissertation. Relationship conflict is concerned with
incompatibility in attitude and style of individuals that usually leads to tension and animosity
(Jehn and Mannix 2001; Simons and Peterson 2000). For example, the differences in political
preferences, values, and personal characteristics are relationship conflicts (De Dreu and
Weingart 2003). Task conflict is about disagreements and differences in viewpoints regarding
the tasks of a group (Jehn and Mannix 2001; Simons and Peterson 2000). For instance,
disagreement about goal definitions of a task is task conflict (Greer et al. 2008). Process conflict

Figure 2 - Cyclic nature of conflict adapted from Wall Jr and Callister (1995)

Causes of Conflict
Core Conflict

Situation Effects of Conflict

Conflict
Identification

Conflict Resolution

 24

deals with incompatibilities about task accomplishment aspects such as resource allocation
(Jehn and Mannix 2001). Tensions in scheduling, logistics, and coordination of individuals are
examples of process conflict (Behfar et al. 2011). Role conflict emerges from the inconsistent
demands of a single or multiple job role(s) (Ghorpade et al. 2011). For example, a role might
be incompatible with an individual’s capabilities, values, resources, or even other roles (Rizzo
et al. 1970).

 The above-mentioned four types of conflict are amongst the most studied types of conflict in
the literature. Such types of conflict hardly cover the influence of non-human elements in
conflicts. Only process conflict partly incorporates the incompatibilities between two non-
human element such as schedules. However, the importance of non-human elements such as
technological innovations (e.g. in PSS) is increasing and we are more dependent on technology
than the past.

To tackle this issue, we take a socio-technical system (STS) theory lens in this dissertation.
Next section discusses a preliminary study that identifies the conflicting elements, which
constitutes conflicts and classifying conflicts into two high-level types of human-rooted and
non-human-rooted conflicts (HRC and NHRC). Table 6 shows the relation between HRC and
NHRC, and above-discussed types of conflict.

Table 6 - Relation between existing conflict types and HRC and NHRC

 HRC NHRC
Relationship Conflict
Task Conflict
Process Conflict
Role Conflict

Conflicting Elements
In this section we present the results of a preliminary study that is conducted as part of this
dissertation. The study employs expert interviews, literature review, and rather a small case
study to construct a taxonomy of conflicting elements (see Figure 3). The taxonomy clarifies
what elements constitutes a conflict from a socio-technical system (STS) theory. According to
STS, a work system consists of two jointly independent, but correlatively interacting systems
of social and technical. Based on STS theory, both the social and the technical systems create
the output jointly (Bostrom and Heinen 1977). Thus, STS enables us to reach a comprehensive
view on PSS development, which is affected highly by human, i.e. social system, and non-
human factors, i.e. technical system. The resulting taxonomy of this section acknowledges the
distinction between conflicts caused by human factors and non-human factors. Such a
distinction clarifies the role of non-human factors in creating conflicts.

Every element in the taxonomy may be part of a conflict (depicted in Figure 3). The elements
are grouped into five dimensions: interest, background, activity, work setting and artifact.
Interest, background and activity dimensions constitute human-rooted elements. Work-setting
dimensions are non-human-rooted elements, in addition to the artifact dimension, which

 25

presents the facts, logics, technologies and standards that exist in PSS development. We define
every element briefly and present a summary of the findings from the interviews and the
literature review.

H
um

an
-r

oo
te

d

Interest Goal Priority

Background Domain
Knowledge Skill Personality Org.

Culture
Regional
Culture

Natural
Language Terminology

Activity Role Task

N
on

-h
um

an
-

ro
ot

ed

Work
Settings

Tool Approach Org.
Structure

Spatial Monetary Temporal

Artifact Content Format

Figure 3 - Taxonomy of conflicting elements (conflict sources)

Interest: Design and management of a systems’ requirements inherently incorporates diverse
stakeholders, and it is certainly true that each stakeholder aims for a particular goal. In addition,
the importance and urgency of the objectives are different from stakeholder to stakeholder. We
reflect these two aspects in goals and priorities. According to the interviews, requirements
evolve due to implementation considerations expressed by designers and developers. For
instance, such evolution based on the priorities of the developers was partly in conflict with the
goals and priorities of the customers, which had been expressed in the first place. In another
case, business-side stakeholders added requirements, regarding which they had no idea how
they could affect system performance. Since the architect was aware of those affects, he had
different priorities, which seemed absurd. Furthermore, an interviewee observed that during the
maintenance phase, there was great turnover in stakeholders, and new people came along with
new ideas, goals and preferences, which were in conflict with the old ones. Another situation
experienced was when collaborators were presenting the other parties and the information was
transformed with some modifications. Consequently, the communicated goals and priorities
were in conflict with the actual ones. Likewise, one study states that a representative group of
a whole might not be able to reflect the views of all related employees in every organization,
which causes conflicting biased and incomplete perspectives (Bhat et al. 2006). A special
example of this challenge is in large IS projects, which involve several departments from each
organization, although only a few departments represent the whole (Holmström and Sawyer
2011).

Background: An influencing aspect in any system development is the background of each
stakeholder. Background elements can uncover hidden agendas and help to understand and
anticipate others’ behaviors and habits. Organizational Culture stands for behavioral norms and
habits that every working unit creates, whether it is a team, a department, or an organization. A
reported experience is that a person from another organization confirmed accomplishment of a
project milestone, when in fact it had not occurred. Based on the interviewee’s arguments, the

 26

conflict arose because of how differently two organizations treat schedules and agree on what
is done. In literature, several studies emphasized on this conflicting element and argued that
conflicting organizational cultures have an even more significant influence in comparison to
natural cultures (Berenbach 2006; Chakraborty et al. 2015). Domain Knowledge stands for the
particular deep knowledge that a collaborator has regarding a specific topic. Several experts
have stated that it is challenging to avoid misunderstandings when people from different
domains are involved, simply because much deep knowledge and many details are missing from
each other’s perspective. One situation experienced was for every collaborator to add new
details to the problem definition without considering the other domains’ constraints, which
leads to conflicts. The literature shows a trend towards more cross-functional collaboration, as
the systems are becoming more complex. Many studies discussed the conflicts emerging from
collaboration of people with different backgrounds, which mostly leads to misunderstandings
(Bjarnason and Sharp 2015; Damian and Zowghi 2003). For example, Damian and Zowghi
(2003) observed that people from different domains deal with different conflicting abstraction
levels. It is also noteworthy to mention that one study argues that conflicts among people with
dissimilar backgrounds can be leveraged to support the learning process (Coughlan and
Macredie 2002), which is in conformance with general studies on interpersonal conflicts (Wall
Jr and Callister 1995). The Skill element reflects the collaborator’s broad knowledge and
abilities aside from the domain knowledge, such as expertise in a specific framework (e.g.
Scrum) or tool (e.g. Jira). For example, introducing “agile” in traditional industries led to
problematic situations. Personality stands for characteristics of an individual, his/her general
style, preferences and social behaviors. It has been observed frequently by the experts that
people simply do not communicate with each other because they do not like each other’s
personalities. However, two experts argued that a team needs to include people with different
personalities that support and complement each other in order to be successful. Personalities
can even alter our behavior in using a tool. A study showed that conflict between a personality
and a tool can decrease performance and satisfaction (Aranda et al. 2010). Regional Culture
determines specific norms, habits and characteristics that a collaborator holds, which has its
roots in the culture he or she is from. As the interviewees were working on many international
projects, they noticed numerous differences between their own culture (mostly European) and
the cultures of other regions (mostly Asian and South American). In conformance with the
expert interviews, several studies also show that the people from different countries have
conflicting cultures with regard to how to deal with organizational hierarchies (Bhat et al. 2006;
Hanisch and Corbitt 2007). Natural Language presents how differences in the various
collaborators’ level of expertise in the language that they are using can lead to conflict. Several
experts experienced misunderstandings and barriers to communication due to natural language
differences. Several interviewees mentioned this type of conflict as an important barrier. In the
literature, development and evolution of requirements is even considered as a language
development process, which the quality of the language highly influence on the quality and
success of the project (Rosenkranz et al. 2013). Terminology stands for specific terms and
expressions that are used and have a meaning in a particular context and work environment.
Based on the interviews, conflicts caused by terminology differences were experienced in
collaborations involving diverse domains or work environments, particularly whilst
collaborating with an offshore organization. It is also reported frequently in literature that

 27

different departments develop different terminologies, which can be conflicting with each other
(Azadegan et al. 2013; Bjarnason and Sharp 2015; Daneva et al. 2014).

Activity: PSS development incorporates individuals who are active in a wide range of roles
such as business analyst, product manager, developer, technician, tester, and so on. For every
role, a set of tasks is defined. A common experience is that the number of roles and the
separation of duties led to conflicts, because introducing a high number of roles adds new role
requests, and results in a higher probability of their collision. Moreover, a separation of roles
causes a separation of knowledge, which leads to the need for more communication, and
consequently to more delays. Another situation observed by an expert was that a role did not fit
to the methodology (agile) of the project. Furthermore, in one case, an expert reported an
experience in which a role’s tasks were in conflict with those defined at the outset, and which
were expected. One interviewee found that it is very common that people violate the defined
scope of their role responsibilities, by performing out-of-scope tasks. Hence, they do tasks
which conflict not only with their defined roles, but also with the others’ tasks.

Work Settings: PSS development activities take place in particular environments and settings.
While interests, background and activity present human-rooted elements of a conflict, work
settings address most of the non-human-rooted elements of a conflict. Work Settings elements
reflect how a collaboration is carried out, in what organizational structure, and with how much
time and money. Tool demonstrates the aspects related to using tools during an RDC, whether
they be collaboration-related tools (e.g. Skype or Wikis) or general tools. Many interviewees
experienced conflicts between non-similar tools, which disrupted the development. In
particular, if the collaborators are working remotely, we saw more complaints about how
dissimilar tools blocked the communication. As reported by experts and literature, conflicting
tools decrease communication significantly. This leads to information loss and more new
conflicting situations. Approach stands for the methods, processes and methodologies that an
individual or organizational unit employs in order to develop and accomplish the goals of the
project. One expert argued that it is vital to know the process, otherwise the best tools would
be useless if they cannot match to the process. Another expert experienced that in a project,
new employees had no idea about the existing processes. Consequently, each person started to
have his/her own interpretation and made a new change to the process, which led to many
conflicts. Similar situations were reported in literature, particularly when a physical product
manufacturer and a new software department collaborate, which is common in PSS
development: the latter use agile methodology in contrast with the traditional waterfall model
of the manufacturer (Pernstål et al. 2015). Organizational Structure demonstrates the structural
and hierarchical characteristics of teams, departments and organizations. One expert argued that
people exploit organizational structures in order to avoid their tasks. Another expert observed
that people from a higher level of the hierarchy had no knowledge about the details of what was
going on, leading to some conflicts. The same finding has also been reported in a study
(Bjarnason and Sharp 2015). Some structures have been found conflicting with the processes
and methodologies, for example, decision-making loop structures that in a case study led to
incomplete deliverables (Bhat et al. 2006). Some of the main reported structural conflicts are
power differences among collaborators, which highly influence their interactions (Bjarnason
and Sharp 2015; Macaulay 1999). Spatial stands for spatial characteristics of work settings,

 28

such as whether it is spatially distributed or collocated or whether a collaboration is taking place
in a single large hall or in a small room. Moreover, spatial differences such as working from
two different sites can be counted as a conflict if it is undesired and worsens the collaboration.

As many experts experienced, distributed settings can intensify most of existing challenges and
lead to a higher number of conflicts. Such experiences include conflicts in culture, language,
tools and so on, which are similar to reports from the relevant literature (Damian and Zowghi
2003). Temporal represents time-related aspects of a collaboration, such as schedule, duration
and time pressure. Many experts working in global projects experienced a time zone conflict.
Such a conflict is not only between two time zones, but also – as one expert said – it conflicts
with how you work particularly if you work using an agile methodology. Based on the literature,
the emergent nature of requirements and their high volatility has led to significant number of
emergent collaborations (Inayat and Salim 2015; Marczak and Damian 2011), which provides
more conflicts of schedules and plans. Two studies reported conflicting schedules as a barrier
as well as a consequence of frequent collaboration (Bjarnason and Sharp 2015; Pernstål et al.
2015). Monetary represents budget-related aspects of a collaboration, in particular how budget
policies and budget limits restrict or enable certain actions in the development. One expert
observed that in an inter-organizational collaboration, differences in budgeting by the
organizations led to conflict. Moreover, an observed situation is that the budgeting policies of
an organization were based on fixed contracts and completely defined requirements, which was
in conflict with their approach, i.e., agile.

Artifact: The other non-human-rooted elements that can lead to conflicts are artifacts and the
information that they hold. During PSS development, a high number of artifacts are developed,
and may also be received as inputs. These artifacts hold a significant amount of knowledge and
logic of the final system. Consequently, the content of these artifacts may be inconsistent, such
as inconsistent requirement statements in documents (Gervasi and Zowghi 2005). Furthermore,
the format of these artifacts can be conflicting, as can the standards and guidelines which form
the basis for the development of the artifacts. Several experts mentioned that artifacts were built
in an overly domain-specific manner that is hard to understand for other teams. In one case, an
expert experienced that conflict between two parties’ ways of structuring the documents wasted
a considerable amount of time. Moreover, artifacts and information can be formulated in
different data types and technologies, or can be conformed to different standards; cross-
disciplinary collaborations in particular lead to such conflicts (Pernstål et al. 2015).

According to the introduced taxonomy, we define human-rooted conflict (HRC) and non-
human-rooted conflict (NHRC). HRC consists of conflicting elements that are categorized
under human-rooted elements. In contrast, NHRC consists of non-human-rooted elements of
the taxonomy. We formally define HRC as a conflict that is rooted essentially in human factors,
which are related to the general interests or background of a person such as personality or
culture. In contrast, NHRC is a conflict that is exclusively rooted in non-human factors such as
tools, processes or artifacts (Basirati et al. 2020). Table 7 provides several concrete examples
of HRC and NHRC.

 29

Table 7 - Concrete examples of HRC and NHRC

HRC NHRC
A conflict between stakeholders’ priorities A conflict between DevOps’ tools and the

real needs of the DevOps process
A conflict between two teams from different
organizations (e.g. in an outsourcing
scenario) caused by different organizational
cultures

A conflict between tools used by different
teams from different organizations or
departments

A conflict between two teams from different
departments caused by a difference in
terminologies

A conflict between methodologies of two
teams such as agile and waterfall

A conflict caused by challenging or
incompatible personalities

A conflict between two work processes e.g.
by blocking each other

A conflict between individuals due to
different level of expertise

Inconsistencies between legacy code and the
new code libraries

 30

3. Research Approach
This dissertation follows a pragmatic approach, which does not limit the research by
emphasizing on the problem to be researched and its implications (Tashakkori et al. 1998;
Yvonne Feilzer 2010). Within this approach, the research iteratively moves back and forth
between induction and deduction (Morgan 2007). Moreover, a pragmatic approach transfers
knowledge between different types of research methods to clarify best the answers to the
research question and their implications (Morgan 2007).

Through the pragmatism paradigm, we follow mixed-methods research, which employs various
qualitative and quantitative research methods to find the best answer for the research question.
Teddlie and Tashakkori (2010) discuss several characteristics for mixed-methods research,
which we explain some of them. In mixed-methods research, the researcher selects and
synergistically integrates the most suitable qualitative and quantitative methods to thoroughly
analyze a phenomenon of interest. More importantly, mixed-methods research advocates
diversity at all levels of the research. Such diversity is not reflected only in the research
methods, but also in types of research questions (e.g. confirmatory and exploratory), data
sources, conclusions, and argumentations. In other words, in mixed-methods research, the
researcher uses triangulation on many levels to reach the best possible solutions and results.
However, in contrast to classic triangulation that strives to converge the results, divergent
results are also accepted in mixed-methods research. Another aspect of mixed-methods research
is its iterative, cyclic approach, which rotates around the observations, theories, inferences, and
hypotheses. Finally, the emphasis in mixed-methods research is highly on the research problem
that allows employing the best suited set of research methods.

Ability of mixed-methods research to address both confirmatory and exploratory research
questions is of great value. For example, in the second research question of this dissertation
(see Section 1.3, Figure 1), we first investigate whether there is any correlation between
different types of conflict and project success using quantitative analysis. Subsequently, we
explore the reasons for such correlation using expert interviews. Furthermore, the integrating
interferences from various research methods can offset the limitations of a single method
without weakening their strengths. In addition, different methods may lead to divergent
(contradictory) findings that complete our perspective and understanding on the phenomenon
of the interest. Such abilities of high value as they better clarify different aspects of the research
problem and the mechanism through which we made the conclusions.

This dissertation follows mixed-methods research to understand the phenomenon of conflict in
PSS development and to provide solutions for the identification of conflict. The main purpose
of employing this approach is to reach a complete overview of the conflict in PSS development,
whether in which circumstances conflicts emerge and how they affect or how conflicts can be
identified. The qualitative side of this dissertation is mainly based on expert interviews.
Moreover, we use survey and structural equation modeling (SEM) to quantitatively analyze
conflicts. Finally, following a design science approach, we apply the knowledge collected from
different sources to design and develop new methods and tools for the identification of conflicts.

 31

Overview of Research Methods
In this section, we present the research methods used in the dissertation and the publications of
it (see Table 8). The first research question (P1 and P2) was answered mostly by structured
literature review and expert interview. We also did a survey of industrial cases in first research
question (exactly in P2), however as it was not conducted systematically, we did not include it
in Table 8. To answer the second research question (P3), we performed a survey, a structural
equation modeling (SEM), and expert interviews. Finally, we followed a design science
approach to answer the third research question (P4 - P7).

Table 8 - List of research methods used in the publications

ID Publication Lit.
Review

Expert
Interview Survey SEM Design

Science

P1
IoT as PSS Enabler: Exploring

Opportunities for Conceptualization
and Implementation

X X

P2

Exploring Opportunities of IoT for
Product-Service System
Conceptualization and

Implementation

X X

P3
Understanding the Relationship of
Conflict and Success in Software

Development Projects
 X X X

P4
Towards Systematic Inconsistency
Identification for Product-Service

Systems
 X

P5

Introducing TRAILS: A Tool
Supporting Traceability, Integration

and Visualisation of Engineering
Knowledge for Product-Service

Systems Development

 X

P6

Facilitating Consistency of Business
Model and Technical Models in

Product-Service Systems
Development: An Ontology

Approach

 X

P7

Inconsistency Management in
Heterogeneous Models - An

Approach for the Identification of
Model Dependencies and Potential

Inconsistencies

 X

 32

Literature Review
Literature review plays a critical role in conducting any research, since they establish the
foundations for acquiring and cumulating, and advancing knowledge (Brocke et al. 2009;
Webster and Watson 2002). Rowe (2014) defines literature review as a research method that
“synthesizes past knowledge on a topic or domain of interest, identifies important biases and
knowledge gaps in the literature, and proposes corresponding future research directions.”
Literature reviews on a mature topic can deliver us with a conceptual model and a thorough
understanding of the topic. Regarding emerging topics, a literature review is able to expose the
theoretical foundation that suits the topic (Webster and Watson 2002).

Nonetheless, a literature review may have various purposes such as summarizing, integrating,
or criticizing prior results, theories, research methods, and applications of theories (Brocke et
al. 2009). From a slightly different perspective, Kitchenham et al. (2009) name three major
reasons for conducting a systematic literature review, which are summarizing the existing
findings, identifying research gaps, and to create a research framework. Paré et al. (2015)
classify literature reviews into more detail types that consist of narrative reviews, descriptive
reviews, scoping/mapping reviews, meta-analyses, qualitative systematic reviews, umbrella
reviews, theoretical reviews, realist reviews, and critical reviews.

Webster and Watson (2002) consider the literature review as a concept-centric method.
According to such a perspective, the concepts are units of analysis and may belong to different
levels of abstraction or dimensions. For example, conflict causes and conflict consequences
build one level of abstraction, and concepts of organizational conflict versus individual conflict
belong to another level of abstraction. This concept-centric consideration is opposed to an
author-centric literature review that merely presents a summary of the publications from a set
of authors.

Brocke et al. (2009) introduce a circular framework for conducting literature reviews that
consists of five major phases: definition of review scope, the conceptualization of topic,
literature search, literature analysis and synthesis, and research agenda. Kitchenham et al.
(2009) provide thorough guidelines on how to perform a literature review systematically. The
guidelines consist of three major phases: planning the review, conducting the review, and
reporting the review. Each phase has several steps. Planning the review starts with the
identification of the need for a review, specifying the research questions, and establishing a
review protocol. The conducting phase includes the identification of research and search
queries, quality assessment, data extraction, and data synthesis.

According to Kitchenham et al. (2009) and Brocke et al. (2009), a literature review is as follows.
It starts with a research question. Accordingly, we identify relevant research streams, relevant
journals, outlets, and research databases. As the next step, we formulate the search query. To
this end, iteratively we test various keywords and their combinations to find the search query
with the most relevant and most comprehensive results. Subsequently, we collect and select
studies that are commonly performed in several rounds. It starts by reading the title and abstract
of the papers and further going deeper into the complete text of the papers to investigate whether
a paper is relevant or not. Moreover, backward and forward searches can help us to reach a
more complete set of relevant studies. The next step is to assess the quality of the studies. This

 33

can be done based on different inclusion and exclusion criteria that are dependent on the field
of the research. Finally, the most important step is to collect data from the selected studies and
synthesize new findings. To this end, the concept-centric approach of Webster and Watson
(2002) is of high importance.

Expert Interview
Expert interview is a valuable and common tool to collect data about a phenomenon. Interview
is a distinct method as it directly engages experienced subjects to provide deep contextual
information from their observations, experiences, and interpretations (Schultze and Avital
2011). Interviewees can express their perspective from a world that is usually not observable
and accessible by other individuals (Schultze and Avital 2011).

According to Myers and Newman (2007) there are several major types of expert interviews:
structured, unstructured, semi-structured, and group interview. A structured interview has a
complete script of what actions should be done and what questions should be answered. Hence,
there is no room for improvisation in structured interviews. In semi-structured and unstructured
interviews, some questions or topics are prepared to be addressed, however, the discussion
might expose new particular questions. In a group interview, which can be structured or
unstructured, the researcher perform interview with more than one interviewee at the same time.

The script of an expert interview must at least include the following sections. First, an opening
section, in which the interviewer introduces him/herself. Second, an introduction section that
familiarizes the interviewee with the purpose of the interview and the research. The key
questions are the main section of any interview. According to Gläser and Laudel (2009) there
are different types of interview question that are depicted in Figure 4. Finally, a closing section
which wraps up the interview and ask for further recommendations and so on (Myers and
Newman 2007).

Interview
Question

Types

Reality-
oriented

Hypothetical-
oriented

Content-wise

Question Subject-
matter

Opinion
s

Facts

Experience

Background

Knowledge

Function-wise

Response-
oriented

Conversation
-oriented

Detailed

Narrativ

Filtering
Questions

Main
Questions

Introductory
and Transitional

Questions

Figure 4 - Types of interview questions adapted from Gläser and Laudel (2009)

 34

Nonetheless, in semi-structured interviews, the script must not be over-prepared and leave room
for flexibility and openness (Myers and Newman 2007). Moreover, we do not ask questions
necessarily in the same order as they are planned, since the development of the interview highly
depends on the interviewee and the provided inputs (Runeson and Höst 2009).

We also record an interview, based on the existing and technologies, if permitted by the
interviewee. This is in addition to the notes that can be taken at the time of the interview. If it
is recorded, the next step is to completely transcribe the conversation into the text that allows
better and deeper analysis. The involved elements in an interview and major influential factors
are illustrated in Figure 5.

Survey

Survey is a research method that uses standardized questionnaires to collect data. Surveys are
able to expose unobservable data such as preferences, beliefs, and behaviors (Bhattacherjee
2012). Moreover, a survey can be conducted remotely that allows for a large target population
to be studied. Small effects of variable can be better be identified in surveys with large sample
set (Bhattacherjee 2012). In this dissertation, we perform an explanatory survey (Recker 2012)
that aims to test hypotheses and relationship between variables (e.g. conflict and project
success).

In a questionnaire survey, which is the case of this dissertation, a set of questions (items) are
used to capture responses of subjects standardized and systematically (Bhattacherjee 2012).
The questionnaire can be distributed in many ways such as mail, email, telephone, social media,
etc. There are several common types of questions based on their responses (Bhattacherjee
2012). For example, a question may have a dichotomous response (e.g. yes or no), nominal
response (i.e. selecting from an unordered list), ordinal response (i.e. selecting from an ordered
list), interval-level response (e.g. Likert scales), and continuous response (e.g. asking for age
of the participant).

Situating the
Researcher

• Minimizing Social Dissonance
• Use Mirroring in Q&A

• Flexibility

Technology

Various
Voices

Confidentiality

Interpreting

Context
(Physical,

Social,
Cultural)

Interviewer Interviewee

Figure 5 - Elements of qualitative expert interview according to Myers and Newman (2007)

 35

Conducting a survey follows a several major steps that are depicted in Figure 6. We start by
developing the model of the research based on prior theories and findings. Next, we develop a
measurement for every construct. A construct is used to measure a notion that cannot be
measured directly through observations (e.g. a particular type of conflict) and the more abstract
the notion, the more challenging it is to measure it (Hinkin 1998). Subsequently, we build the
complete instrument (e.g. questionnaire) including all measurements and other questions. In
design of a survey various aspects must be considered such as wording of the questions, order
of the questions, response time of the survey, and so on (Bhattacherjee 2012). To tackle such
aspects and increase the validity of the survey, we need to perform a pre-test and/or a pilot test
(Recker 2012). As the next step, we distribute the survey among the respondents and collect the
data. Finally, we perform a proper analysis method on the collected data.

Nevertheless, several biases can harm the validity of a survey such as sampling bias, social
desirability bias, and recall bias (Bhattacherjee 2012). Moreover, a survey is not able to achieve
rich explanations and descriptions of a situation (Recker 2012). To cover such limitations, this
dissertation conducts also in-depth expert interviews.

Structural Equation Modeling
Structural equation modelling (SEM) is a set of statistical procedures to test hypotheses through
path analysis with latent variables (Bagozzi and Yi 2012; McDonald and Ho 2002). After
receiving some hypotheses, models, and the collected data, SEM is able to provide three major
outputs: numeric estimates about the models, logical implications about the models, and the
degree to which data supports the implications (Kline 2015). SEM is considered as the state-of-
the-art for high quality statistical survey analysis (Recker 2012).

In SEM, we distinguish between an observable variable and a latent variable (i.e. construct as
mentioned in the survey design). An observed variable is collected directly from the subjects
and is presented in the data. In contrast, a latent variable cannot be observed and measured
directly. In case of this dissertation, different types of conflict and project success are latent
variables, since we cannot directly measure to what extent a situation is conflicting or a project
is successful, instead we search for presence or absence of some indicators (i.e. observed
variables) such as meeting deadlines for the project success.

1. Model and
Constructs

Development

2.
Measurement
Development

4. Instrument
Testing

3. Instrument
Development

5. Survey
Administration

6. Data
Analysis

Figure 6 - Major steps for survey research according to Recker
(2012)

 36

Several analyses are needed to make sure that the latent variables have been measured correctly.
First, we analyze whether the indicators that were supposed to measure different latent variables
are actually are corresponding to different latent variables. To this end, we perform principle
factor analysis (Bryant and Yarnold 1995) through techniques such as investigating
Eigenvalues and performing a Scree Test. Next, we analyze whether the used indicators are
exactly measuring the latent variable that they were supposed to measure. For instance, in this
dissertation, we analyzed whether the questions for measuring HRC are actually measuring
HRC and not NHRC instead. Finally, after analyzing the model measurement, we can perform
hypothesis assessment through various methods such as Root Mean Square Error of
Approximation, Comparative Fit Index, and Tucker- Lewis Index.

Design Science
The design science approach has its roots in engineering and seeks for solving a problem
through development of artifacts such as models, methods, and instantiations (i.e. prototypes)
(Hevner et al. 2004).

Hevner et al. (2004) introduce the framework for design science (presented in Figure 7) and
identify its main components. Accordingly, design science research finds the problem and needs
from the environment. Similarly, development of a new artifact is based on prior knowledge
such as theories, frameworks, and methodologies that are encapsulated in the knowledge base
component. The environment defines the problem space (e.g. business needs) and creates the
relevance cycle through which we receive the valuable problems and provide valuable
solutions. Furthermore, the rigor cycle provides applicable knowledge for development of an
artifact and receives new findings, methods, or even theories as additional knowledge to the
knowledge base.

Environment

• People

• Organizations

• Technology

Knowledge Base

• Foundations

(Theories,

Frameworks, etc.)

• Methodologies (Data

Analysis, Formalisms,

etc.)

Develop/Build

Justify/Evaluate

Assess Refine

Relevance Rigor

Figure 7 - Design science framework according to Hevner (2004)

 37

The design science approach follows multiple iterations. In every iteration, the design of the
artifact progress, some knowledge is created, communicated and some new knowledge whether
from the relevance cycle or rigor cycle is transferred into the artifact design. The process of
design science is presented in Figure 8.

According to Peffers et al. (2007), the process of design science starts with the identification of
the problem, which comes from the environment component. The particular settings for the
development of PSS, which is highly prone to conflicts, is the main motivation for the artifacts
developed in this dissertation. By incorporating knowledge from both environment and
knowledge base, we define the objectives of the solution. Subsequently, we design and develop
the artifact. Next, we demonstrate, evaluate, and communicate it. During the evaluation and
communication steps, we assess the artifact and its design. The feedback from these steps can
be used iteratively to complete and refine the artifact.

The evaluation in the design science approach can be performed using various methods such as
observational, analytical, experimental, test, and descriptive (Hevner et al. 2004). Venable
(2006) distinguishes between artificial and naturalistic evaluations. The artificial evaluation
describes a (nonrealistic) contrived situation, in which the solution of the design science should
be applied. For instance, an exemplary case study is used to show how the solution can be
applied in a particular situation. In contrast, a naturalistic evaluation investigates the extent, to
which the solution can be effective in a real environment, e.g. through an experiment or case
study. The studies of this dissertation mostly followed an artificial evaluation.

Inference Theory
How to

Knowledge

Metrics,
Analysis

Knowledge
Disciplinary
Knowledge

Identify
Problem and

Motivate

Define
Objectives

of a Solution

Design and
Development Demonstration Evaluation Communication

Process Iteration

Figure 8 - Design science process according to Peffers et al. (2007)

 38

Part B1 (Main Publications)

 39

P3: Understanding the Relationship of Conflict and Success in Software
Development Projects

Title Understanding the Relationship of Conflict and Success in Software Development
Projects

Authors Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Otasevic, Marko* (marko.otasevic@tum.de)

Rajavi, Koushyar** (koushyar.rajavi@scheller.gatech.edu)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

** Scheller College of Business - Georgia Institute of Technology, Georgia

Publication Journal of Information and Software Technology (2020)

Status Published

Contribution of the
author

Problem definition, research design, survey design, design and conducting
interviews, data analysis, reporting

Abstract –

Context: Software development incorporates numerous people with diverse expertise and
expectations. This makes conflict a common phenomenon in software development. Besides
human causes, many conflicts in soft- ware development root in the tools and processes.
Moreover, the growing role of software in any type of system is increasing the heterogeneity in
software projects. The number and variety of tools and processes are increasing. Nevertheless,
the relationship between conflicts, particularly rooted in non-human elements, and software
project success is still unclear.

Objective: We aim to understand the impact of conflict on the success of software development
projects for different types of conflict and different environments. Particularly, we distinguish
between human-rooted conflict (HRC) and non-human-rooted conflict (NHRC). Moreover, we
investigate whether organization size and team size moderate the impact of conflict on software
project success.

Methods: First, we conduct a survey and analyze it using structural equation modeling (SEM)
to investigate any correlation between conflict and software project success. Second, we explore
the reasons behind the relationship between conflict and software project success by conducting
13 semi-structured expert interviews.

 40

Results: HRC is always a threat to software project success for any organization or team size.
Based on the interviews, resolving an HRC is regularly problematic. On the other hand, NHRC
is negatively correlated with software project success only in corporate organizations and small
teams. High coordination overhead and dependency on tools and processes make NHRC more
influential in corporate organizations. In contrast, overlooking non-human elements and lack of
experienced individuals in smaller teams make them more vulnerable to NHRC.

Conclusion: While the detrimental impact of HRC is constant for software project success,
NHRC can be controlled efficiently. Corporate organizations need to frequently improve the
non-human elements in the development. Smaller teams should expect tools and processes to
be significantly influential in their success.

Keywords: Conflict, Software project success, Software development, Non-human-rooted
conflict, Organization size, Team size

 41

P4: Towards Systematic Inconsistency Identification for Product-Service
Systems

Title Towards Systematic Inconsistency Identification for Product-Service Systems

Authors Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Zou, Minjie* (minjie.zou@tum.de)

Bauer, Harald* (harald.bauer@scheller.gatech.edu)

Kattner, Nikolas* (nikolas.kattner@tum.de)

Reinhart, Gunther* (reinhart@tum.de)

Lindemann, Udo* (udo.lindemann@tum.de)

Vogel-Heuser, Birgit* (vogel-heuser@tum.de)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

Publication International Design Conference (2018)

Status Published

Contribution of the
author

Problem definition, research design, solution definition, reporting

Abstract - Value shift towards services led to emergence of product-service systems (PSS) as
intertwined products and services. PSS development requires collaborating teams with higher
domain diversity to tackle service side as well as product side. Since every domain employs a
particular set of tools and models, it is challenging to manage consistency among them.
However, the PSS literature lacks approaches for managing inconsistency among various type
of models. This study proposes a framework that supports establishing a systematic solution for
inconsistency identification during PSS development.

Keywords: product-service systems (PSS), model-based engineering, modeling, systematic
approach

 42

Part B2 (Other Publications – Not
Included in Review and Evaluation)

 43

P1: IoT as PSS Enabler: Exploring Opportunities for Conceptualization and
Implementation

Title IoT as PSS Enabler: Exploring Opportunities for Conceptualization and
Implementation

Authors Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Weking, Jörg* (andreas.hein@tum.de)

Hermes, Sebastian* (markus.boehm@tum.de)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

Publication Pacific Asia Conference of Information Systems (2019)

Status Published

Contribution of the
author

Problem definition, research design, interview design, data analysis, reporting

Abstract - Nowadays, product-service systems (PSS) as an integrated system of physical
products and services play a crucial role in sustainable economies. In addition to high
competitive global economy, emergence of new digital paradigms is supporting the shift
towards servitization. Although the great potential of such paradigms are recognized by both
practice and research, their implications for PSS is not clear yet. Particularly, features of
Internet-of-Things (IoT) such as total connectedness and ubiquity of smart sensors and actuators
provide various new opportunities for PSS. This study explores such opportunities by
conducting structured literature review and 13 interviews. We formulate the findings into two
folds. First, we introduce four degrees of IoT involvement in PSS business models and we
elaborate the opportunities that they create for different types of PSS. Second, we present the
key technologies and approaches, which IoT provides with regard to PSS lifecycle
management.

Keywords: Product-Service System, Internet-of-Things, IoT Integration, Review

 44

P2: Exploring Opportunities of IoT for Product-Service System
Conceptualization and Implementation

Title Exploring Opportunities of IoT for Product-Service System Conceptualization and
Implementation

Authors Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Weking, Jörg* (andreas.hein@tum.de)

Hermes, Sebastian* (markus.boehm@tum.de)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

Publication Asia Pacific Journal of Information Systems (2019)

Status Published

Contribution of the
author

Problem definition, research design, interview design, data analysis, reporting

Abstract - Product–service systems (PSS), integrating physical products and services, currently
play a crucial role in sustainable economies. In addition to the highly competitive global
economy, the emergence of new digital paradigms is supporting the shift toward servitization.
Although the great potential of such paradigms is recognized by both practice and research,
their implications for PSS are not yet clear. In particular, features of Internet of Things (IoT),
such as total connectedness and ubiquity of smart sensors and actuators, provide various new
opportunities for PSS. This study explores such opportunities by conducting structured
literature review and 13 interviews. We organize the findings in two folds: First, we introduce
four degrees of IoT involvement in PSS business models and elaborate the opportunities that
they create for different types of PSS. Second, we present the key technologies and approaches
that IoT provides concerning PSS lifecycle management.

Keywords: Keywords: Product–Service System, Internet of Things, IoT Integration, Review,
Expert Interview

 45

P5: Introducing TRAILS: A Tool Supporting Traceability, Integration and
Visualisation of Engineering Knowledge for Product-Service Systems
Development

Title Introducing TRAILS: A Tool Supporting Traceability, Integration and
Visualisation of Engineering Knowledge for Product-Service Systems
Development

Authors Wolfenstetter, Thomas* (thomas.wolfenstetter@tum.de)

Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

Publication Journal of Systems and Software (2018)

Status Published

Contribution of the
author

Development of artifact, reporting

Abstract - Developing state of the art product service systems (PSS) requires the intense
collaboration of different engineering domains, such as mechanical, software and service
engineering. This can be a challenging task, since each engineering domain uses their own
specification artefacts, software tools and data formats. However, to be able to seamlessly
integrate the various components that constitute a PSS and also being able to provide
comprehensive traceability throughout the entire solution life cycle it is essential to have a
common representation of engineering data. To address this issue, we present TRAILS, a novel
software tool that joins the heterogeneous artefacts, such as process models, requirements
specifications or diagrams of the systems structure. For this purpose, our tool uses a semantic
model integration ontology onto which various source formats can be mapped. Overall, our tool
provides a wide range of features that supports engineers in ensuring traceability, avoiding
system inconsistencies and putting collaborative engineering into practice. Subsequently, we
show the practical implementation of our approach using the case study of a bike sharing system
and discuss limitations as well as possibilities for future enhancement of TRAILS.

Keywords: Model-based systems engineering, Traceability, Product service systems, Model
integration

 46

P6: Facilitating Consistency of Business Model and Technical Models in
Product-Service Systems Development: An Ontology Approach

Title Facilitating Consistency of Business Model and Technical Models in Product-
Service Systems Development: An Ontology Approach

Authors Zou, Minjie* (minjie.zou@tum.de)

Basirati, Mohammad R.* (mohammadreza.basirati@tum.de)

Bauer, Harald* (harald.bauer@scheller.gatech.edu)

Kattner, Nikolas* (nikolas.kattner@tum.de)

Reinhart, Gunther* (reinhart@tum.de)

Lindemann, Udo* (udo.lindemann@tum.de)

Böhm, Markus* (markus.boehm@tum.de)

Krcmar, Helmut* (krcmar@in.tum.de)

Vogel-Heuser, Birgit* (vogel-heuser@tum.de)

* Technische Universität München, Chair for Information Systems,
Boltzmannstraße 3, 85748 Garching, Germany

Publication 9th IFAC Conference (2019)

Status Published

Contribution of the
author

Problem definition, research design, solution definition, reporting

Abstract - Due to the fast growing and ever-changing innovation cycles, industries are
changing their strategies from a product-centric to service-centric approach, leading to the
emergence of product-service systems (PSS) which integrate services into physical technical
systems. In the model-based development of PSS, various models are employed by different
stakeholders to represent their views on the system. However, there is a high diversity of these
models in both forms and contents. Among others, business models and technical models come
in different levels of abstraction, and thus, are hard to align with each other. In this study, we
propose an approach to support PSS development by relating business models to technical
models using ontology. Web ontology language (OWL) is employed to describe PSS
knowledge, the Query Language SPARQL and Semantic Web Rule Language (SWRL) are used
for consistency checking and reasoning potential inconsistencies.

Keywords: Product-service systems (PSS), model-based engineering, ontology, aligning
business and technical models, model consistency.

 47

PART C

 48

4. Discussion
In this section, we discuss the findings of this dissertation concerning the related body of
knowledge. We formulate the discussion according to the three research questions. First, we
provide a summary of findings in a table for every research question. Subsequently, we explain
how the findings of this dissertation extend the prior research.

PSS Development with IoT Integration

The following table presents knowledge nuggets of the first research question published in P1
and P2.

Table 9 - Summary of results for research question 1 (P1, P2)

Knowledge Nugget Description

Framework of IoT-PSS business model A holistic overview on possibilities of IoT
integration into PSS business models based on
three types of PSS (product-oriented, service-
oriented, result oriented) and four levels of IoT
integration (tracking, interacting, optimizing,
transforming)

Framework of IoT-PSS lifecycle
management

A holistic overview on core impacts of IoT on
PSS development through notions such as closed-
loop lifecycle management, collaboration,
autonomy, digital twin, smart logistics, predictive
maintenance, and remanufacturing

Concrete industrial cases for different
IoT-PSS integrations

Briefly introducing twelve real-world industrial
cases that have implemented different levels of
IoT integration for PSS development

Challenges in IoT-PSS integration The main challenges regarding to IoT-PSS
integration such as collaboration of heterogenous
knowledge experts, complex inter-organizational
partnerships due to complexity of IoT
implementation, alignment between simultaneous
development of hardware and software

The significance of digital technologies is still rising, since they playing more roles in enabling
service design, development, and delivery. The software has become ubiquitous and inseparable
part of any system. This is highly reflected in IoT, as an interconnected sensing, data analysis,
and actuating framework (Gubbi et al. 2013). IoT adds extra potential as well as challenges for
PSS. Particularly, IoT enhances products and services with the connectivity of various
heterogeneous components of a system such as PSS. Thus, as the first step towards
understanding the conflicts in PSS development, we increase our knowledge of the environment

 49

from which conflicts emerge. The environment of PSS development is highly affected by
software-intensive technologies, mainly, IoT.

IoT is mostly applied and integrated into existing systems. Moreover, PSS has to integrate IoT
to leverage its benefits. Despite these facts, the IoT-PSS relationship is vague, particularly how
IoT is integrated into PSS and influences PSS conceptualization and implementation. The
related existing studies highly diverge in terms of concepts, terminology, and knowledge. Each
study partly tackles a specific aspect of the PSS-IoT relationship. The connections between the
findings of different studies are missing. The most related studies of IoT-PSS relationships,
such as Seregni et al. (2016), Shih et al. (2016), and Zancul et al. (2016), are limited to low
number of case analysis and hardly can be generalized. This dissertation fills this research gap
by clarifying the integration of IoT in PSS with regard to PSS business models and PSS lifecycle
management.

Particularly, such a contribution is of high importance for today, since we are just witnessing
the starting phase of IoT applications; evolution and reaching to full potential of IoT is expected
in the next upcoming years (Ardolino et al. 2016). Therefore, the related knowledge nuggets of
this dissertation (presented in Table 9) pave the way for studying future challenges of IoT-PSS
integration. Moreover, the practice still faces barriers to assess the benefits of IoT integration
and compare them to the costs and challenges that IoT impose such as conflict. With this regard,
we partly clarify the circumstances of integrating software-intensive technologies such as IoT.
This supports a cost-benefit estimation that is more accurate and effective. In addition, the
introduced frameworks of this section, enable PSS provides to better position themselves
regarding IoT integration. They would be able to analyze the IoT potentials that they have not
exploited and the implementation challenges that they will face.

Furthermore, we identified the implications of IoT for PSS lifecycle management. We provided
a comprehensive overview of a wide range of related concepts and technologies. The proposed
overview maps how every concept is related to other concepts and at which stage of the
development. Most importantly, as the foundations for the next research question of this
dissertation, we identified difficulties in IoT integration for PSS. The expert interviews
confirmed that IoT adds extra complexity to any collaboration in PSS development. It
challenges the existing methodologies as hardware and software components should be
developed in intense coordination and harmony. Moreover, the vast amount of captured,
generated, and collected data in IoT-driven PSS is highly challenging to be managed.
Interoperability and compatibility among tools, artifacts, and data sources is a difficult goal to
achieve.

Combining the first research question’s knowledge nuggets (presented in Table 9) enlighten
an overall situation, in which PSS is developed in the IoT era, particularly, how IoT can be
exploited for PSS development and what new challenges it brings. If the IoT-PSS integration
is realized correctly, it increases the reliability and smartness of PSS. Moreover, IoT can benefit
PSS providers by shortening the development cycles and costs for example by utilizing IoT for
a more effective maintenance.

 50

The relationship of Conflict Types (HRC and NHRC) and Project Success
The following table summarizes the knowledge nuggets of the second research question, which
are published in P3.

Table 10 – Summary of results for research question 2 (P3)

Knowledge Nugget Description

New classification of human-rooted
conflict (HRC) and non-human-rooted
conflict (NHRC)

Distinguishing between conflicts rooted in human
factors and conflicts rooted in non-human factors
by highlighting the importance of non-human
elements in software-intensive PSS development

Negative correlation of HRC and
project success

HRC is detrimental for the project success,
whether the organization is large or small, or the
team is small or large.

Negative correlation of NHRC and
project success with moderating effect
of organization and team size

NHRC has negative impacts on the success of
software projects, when the team is small or when
the organization is large.

The reasons and mechanisms through
which the conflict may influence
project success negatively

Many reasons exposed by the interviews, the two
most important ones are as following. First,
coordination in large organizations significantly
depends on non-human elements such as tools,
processes, and structures. This leads to
detrimental effects of NHRC in large
organizations. Second, smaller software
development teams suffer from the lack of
experienced individuals and neglecting the
importance of non-human factors. This causes
NHRC to become highly problematic in smaller
teams.

Conflict is a multidimensional concept. Consequently, the perspective from which we study
conflict and how we classify conflict is of high significance. Every conflict classification allows
us to analyze a particular set of factors, while we exclude other related dimensions. For instance,
the distinction between relationship conflict and task conflict focuses on the nature of decisions,
in which conflicts emerge.

In this dissertation, we acknowledge the rising importance of non-human elements, particularly
for conflicts. Moreover, the prior classifications of conflict overlooked the role of non-human
elements. While our findings from a prior study, presented in Section Conflicting Elements0,
showed the elements constituting conflicts may be of human and non-human nature. Thus, we
introduced a new classification of conflicts that distinguishes between HRC and NHRC. Such

 51

an emphasized distinction provides a new perspective that highlights the equivalent role of
human and non-human elements in causing conflicts. Consequently, the new classification has
direct implications for many aspects of conflict management that we discuss in the following.
The new classification and its implications are briefly presented in Table 10.

On one hand, human-rooted elements are commonly challenging to change and improve. For
instance, background, culture, language, and personality of individuals cannot be altered.
Individuals are mostly reluctant or in some cases, intolerant about changing their opinions and
beliefs. On the other hand, non-human elements inherently can be changed in a way easier. For
example, tools can be exchanged, processes and methodologies can be adjusted, and the formats
of documents can be redefined. Thus, we should take different strategies for the resolution of
HRC and NHRC. For example, we might prefer to avoid HRC, while we tolerate some degree
of NHRC. Moreover, in a situation of limited resources (e.g. lack of budget or time), we can
better decide how to allocate resources to a conflicting situation. Besides, recognizing HRC and
NHRC prevent us to mistakenly waste solutions that do not fit the type of conflict. For example,
we can avoid getting into a fight with an individual or a team because of non-aligned tools.
Similarly, we might not mistakenly reshape teams or change processes simply because two
individuals’ personalities and beliefs do not allow them to collaborate.

Furthermore, we investigated whether HRC and NHRC affect project success differently. Our
analysis confirmed such a difference. While we found HRC always negatively correlated with
project success, organization size and team size could moderate the detrimental effects of
NHRC. Further in-depth expert interviews also revealed how HRC and NHRC affect a project
differently. We could identify two major reasons. First, as explained above, since human
elements are fixed and hard-to-adjust, other factors (e.g. team and organizational) cannot easily
change them to mitigate their negative effects. In contrast, non-human elements change
according to other factors such as the team or organization. Second, while any project, team, or
organization is always dependent on its contributing individuals, the dependence on non-human
elements can vary hugely in different projects or teams. For example, we found in large
organizations the information flow is highly dependent on tools and formal processes.
Consequently, NHRC is negatively correlated with project success in such settings.
Acknowledging the difference implications of HRC and NHRC can support us to make the
most effective decisions in times of a conflicting situation. We would be able to better analyze
the situation based on the type of conflict, organization, and team.

We also found that NHRC is only influencing project success negatively in small teams (less
than ten people). This was a surprise for our interview subjects as they did expect the opposite
results similar to the effect of organization size. This shows that there are still many unknowns
about the dynamics of conflicts, how they emerged and get resolved.

Such implications of HRC and NHRC distinction can hugely improve and facilitate PSS
development. Because PSS development is mostly practiced through cross-functional teams
spread over different departments and organizations. In such complex settings, conflicts are
also complex and prevalent. A correct understanding of different conflict types’ nature enables
us to manage the complexity of conflicts, shorten the development time, and increase the quality
of the work and the final system.

 52

Mechanisms to Identify NHRC in PSS Development
The following table summarizes the results of research question three, which are published in
P4, P5, and P6.

Table 11 - Summary of results for research question 3 (P4-P6)

Knowledge Nugget Description

Technical conflict/inconsistency types A detailed classification of low-level
inconsistencies in PSS development based on the
relation type of two information source (e.g.
refinement or satisfaction) and abstraction level
of inconsistency (e.g. conventional, project-
specific, or domain-specific)

Framework of inconsistency
identification in PSS development

A thorough process of inconsistency
identification in PSS development depicted on
three meta-model, model, and reality abstraction
levels

Influencing parameters of
inconsistency identification in PSS
development

Two group of parameters: problem-side
parameters such as type of inconsistency and
solution-side parameters such as degree of
automation for inconsistency identification

A tool for model-based traceability and
integration of engineering knowledge
in PSS

A tool that can assist integration of various
engineering knowledge to trace them and identify
the inconsistencies among them

An approach for alignment between
business and service-side with
technical and product-side

An ontology approach based on SPARQL and
semantic web technologies to develop an
ontology, which can be used to infer about the
relation between service-side and product-side of
a PSS that enables identification of conflicts

After increasing our knowledge about the circumstances in PSS development, different types
of conflicts, and impacts of different conflict types, we focus on identifying conflicts,
particularly low-level NHRC, i.e. technical inconsistencies, in PSS development. To this end,
we developed a framework, a tool, and an approach (presented in Table 11).

PSS development highly depends on the type of products and services, which it integrates. For
instance, a car-sharing PSS follows a very different process than a pay-per-usage printing
system. Most importantly, the number and type of involved elements vary. In a car-sharing PSS,
a significant number of different elements from various organizations and departments are

 53

interconnected. While, a printing PSS provider has a much lower number of elements, teams,
and departments involved. Moreover, the design of products or software parts highly differ. A
use-oriented PSS may allocate its main resources to software and service development, while a
product-oriented PSS mostly focuses on its products enhanced with some software and service.
Thus, we cannot provide a general solution for conflict identification in PSS. Instead, we
provide a holistic framework that constitutes the general process, which any PSS needs to
follow to identify inconsistencies. Moreover, we strived to design a systematic approach for
inconsistency identification, since the industrial settings of PSS, as explored in the first research
question, consists of numerous interconnected elements. Without a systematic approach
consisting of formal processes and parameters, it is impossible to identify inconsistencies with
high recall. In addition to defining a general process for systematic identification of
inconsistencies in PSS, we also shed light on different types of inconsistencies and influential
parameters in realizing a customized conflict identification for every PSS.

 54

5. Implications
We discuss the high-level implications of this dissertation in two folds. First, we explain the
implications for theory. Second, we elaborate on how this dissertation contributes to the
practice. As we used a mixed-method approach, we achieved results of various forms from
exploratory to confirmatory with the focus of finding the best possible solutions. Thus, we
believe this dissertation provides rich and influential implications for both theory and practice.

Implications for Theory
The results of this dissertation contribute mainly to two major research streams: PSS literature
and the conflict literature. In various ways, we contribute to the PSS literature such as providing
new insights based on empirical studies and proposing new conflict identification mechanisms.
We also contribute significantly to the studies on conflict management by introducing a new
classification and analyzing the impacts of the new conflict types on project success. In the
following, we dive deeper into every contribution and explain them in detail.

First, the PSS literature lacks empirical studies (Annarelli et al. 2016). This dissertation tackles
this gap by conducting in-depth qualitative expert interviews that provide new information on
how PSS can be conceptualized and developed with advanced digital technologies such as IoT.
Moreover, the existing empirical studies in PSS literature are mostly single case studies (Shih
et al. 2016; Zancul et al. 2016). Therefore, we also contribute to research by providing
experiences of experts from a wide range of PSS cases.

Second, we contribute to the emerging stream of IoT-PSS integration/alignment studies. The
studies in this new stream of research are highly diverse and there is no consensus among the
studies concerning the big picture, related concepts and dimensions, and terminology. This
dissertation covers this gap by proposing two holistic frameworks that extend and consolidate
the existing knowledge on the relationship between PSS and IoT. Consequently, the
frameworks establish the foundation for further research.

Third, we contribute to the PSS literature by proposing new mechanisms for identification of
inconsistency in PSS development. The existing related studies have only addressed the limited
scope of conflicts. Shimomura and Hara (2010) mostly focused on identifying differences in
names and conventions in PSS development. The study of Feldmann et al. (2015) is merely
about manufacturing products and overlook the service and business side of PSS. In contrast,
Song and Sakao (2016) only concentrate on the service side of PSS with a limited scope. The
combination of the proposed mechanisms of this dissertation makes an almost complete picture
of how inconsistencies in PSS should be identified. The mechanisms consist of a systematic
approach formulated in formal holistic processes and parameters (p4) that can be customized
and implemented for any PSS. The inconsistencies among technical artifacts can be identified
using the proposed tool (P5) and the alignment between the technical product-side and service-
side can be tackled using the proposed ontology-based approach (P6). Close alignment between
different PSS components is necessary for effective and optimized design and development of
PSS (Zacharewicz et al. 2017).

 55

Fourth, we contribute to the conflict literature by extending the classifications of conflict. The
prior research on conflict hardly distinguished between conflicts rooted in human causes and
non-human causes. Nevertheless, such distinction is highly relevant for PSS development as
the number of connected elements, whether human or non-human, increases significantly. The
digital technologies used and developed in PSS impose close collaboration of various domains
and teams through heterogeneous processes, tools, and artifacts (Song 2017; Vasantha et al.
2012; Wiesner et al. 2017). Consequently, the role of non-human elements in PSS development
becomes substantial. We tackle this gap by introducing HRC and NHRC types. Acknowledging
the distinction between HRC and NHRC and their dissimilar natures helps us to better
understand the dynamic of conflicts.

Fifth, as another contribution to the studies on conflict, we provide new empirical evidence on
the negative effects of HRC. Our findings confirm previous studies regarding the detrimental
effects of HRC (Guang-dong 2013; He 2007), which showed organization and team size do not
moderate negative HRC. However, our results question the positive effects of conflicts such as
better ideation and learning (Chen et al. 2004; Liang et al. 2009). Because we found both HRC
and NHRC as negatively correlated with project success. According to the in-depth interviews,
we found that probably, the negative effects reported in the survey are short term, while in the
long term, conflicts can be leveraged to highlight weaknesses and lessons-learned.

Sixth, conflict studies have mostly focused on group-level implications of conflict such as team
performance. In this dissertation, we shift to another dimension with a higher granularity, which
is the project success. Therefore, our findings of the relationship between HRC and NHRC and
project success contributes to not only the conflict studies but also the research on project
success factors.

Seventh, we deepen our knowledge about different aspects of conflict by exposing the
moderating effects of two contextual factors on conflicts’ impact, namely, team size and
organization size. We contribute to the conflict literature by providing new empirical evidence
on how conflict’s consequences may change with regard to team size and organization size.

In summary, the results of this dissertation have several implications for the PSS research as
well as the conflict research. We extend the PSS studies by not only providing new empirical
insights but also proposing a set of mechanisms to identify inconsistencies in PSS development.
We also introduce new types of conflicts and provide a deep analysis of how they influence
project success.

Implications for Practice

This dissertation put a high emphasis on practical contribution. This is reflected in the research
methodology and the results. The mixed-method approach allowed us to pay more attention to
problem-solving than merely providing rigorous research findings that may not be relevant to
practice. Moreover, we strived to tackle different aspects of conflict in PSS development and
the results vary from empirical findings to, frameworks, methods, and tools. In the following,
we present the implications of this dissertation for the practice.

 56

Based on our findings, the practice has not fully exploited the capabilities of IoT for
advancements in PSS design and development. For practitioners, it is still unclear how to
position and integrate IoT into PSS. The proposed IoT-PSS frameworks of this dissertation can
support managers in assessing the potentials of IoT for advancing their business models as well
as enhancing their developments. For instance, a PSS provider can evaluate to what extent IoT
can create value for the PSS and what technologies and practices are needed for development
of such PSS.

Furthermore, as a major contribution, the practice can employ the set of mechanisms provided
by this dissertation for inconsistency identification in PSS development. The introduced
systematic approach for inconsistency identification can be fully customized to any PSS
development. We introduced different types of conflicts and inconsistencies that should be
tackled and how an identification process can be adjusted to identify them according to several
main influential parameters. As the PSS development is highly complex, such a systematic
approach is of high importance and if implemented correctly, it can save considerable amount
of cost and time for PSS providers. Particularly, inconsistencies if cannot be detected early,
they can lead to great failures (Gervasi and Zowghi 2005).

Our findings about the HRC, NHRC, and their correlation with project success implicate several
managerial concerns. First, practitioners need to recognize the importance of conflicts caused
by human factors. Since, the presence of HRC has negative consequences in any situation and
almost no benefits. Thus, managers must strive for a constructive environment to mitigate the
negative effects of HRC. We found that organizational culture plays a big role in how conflict
resolution. Second, managers in corporate organizations need to recognize the critical role of
non-human factors such as tools and processes. They should expect more frequent NHRC.
Hence, they need to be prepared by aligning the tools, processes, and planning solutions for
emergent conflicts. To this end, they can use the mechanisms introduced in this dissertation
such as the ontology-based solution, the model-integration tool, and the systematic
inconsistency identification approach. Besides, for corporates, we recommend continuous
improvement of non-human elements such as processes, tools and mechanisms for increasing
awareness among employees. On the other hand, smaller organizations such as start-ups and
medium-sized companies do not need to spend extensive amount of time and money for
defining workflow processes and advanced tools. However, the practitioners in small teams
should not underestimate the extent to which, non-human elements can create difficulties and
harm their success. Since, our findings showed that NHRC in small teams are negatively
correlated with project success.

To summarize, this dissertation provides a variety of findings that have significant managerial
implications. The created knowledge is formulated into frameworks, classification, and
methods. Managers can exploit the created knowledge and apply the frameworks and methods
to improve PSS development in a way that the development is more efficient, in terms of time
and budget. Moreover, more effective conflict management, enabled by findings of this
dissertation, can benefit individuals and the overall organization atmosphere, since conflicts
can directly harm the individuals’ feelings and disturb the work environment. Furthermore, we
directly contribute to practice by introducing a set of practical mechanisms for inconsistency
identification, which can be easily customized and implemented for every PSS development.

 57

6. Limitations
No research is complete without determining its limitations. The results of this dissertation are
subject to several limitations. The limitations emerge from the general research approach of this
dissertation, the employed research methods, data sources, and how we interpreted them. In the
following, we explain several limitations of this study in detail.

First, findings of a structured literature review are subject to three main limitations: the search
process, the subjective mind of the researcher, who selects the relevancy of the paper and extract
the findings, and the publication bias. The reason that we performed a structured literature
review was to mitigate such limitations through a systematic process (Kitchenham et al. 2009).
Moreover, the applied literature review conducted in P1 is performed by two researchers to
enhance the validity of the data analysis.

Second, we conducted a high number of qualitative expert interviews. The data collected
through interviews is biased through the limited experiences of the interviewees and their
beliefs. Therefore, they lack generalizability to other individuals and settings (Johnson and
Onwuegbuzie 2004). To mitigate this issue, we strived to perform the interview with a wide
range of unrelated individuals to collect multiple (contradicting) perspectives (Schultze and
Avital 2011). Moreover, an interview may be affected by various factors such as lack of trust,
lack of time, the ambiguity of language, and so on (Myers and Newman 2007). In addition to
validity threats during data collection, interviews are also subject to the general limitations of
qualitative data analysis such as coding bias.

Third, this dissertation employed a survey study analyzed through SEM techniques. A survey
is highly influenced by its questionnaire and survey participants. Although we quantitatively
evaluated the way we measured our constructs, we cannot in any way confirm or prove that we
actually measured what we aimed for. Moreover, the wording and sequencing of the questions
might have had impacts on how the participants perceived the questions, which may have
influenced their responses. More importantly, our survey had a relatively low number of
participants (about 110), which limits the generalizability of its results. As a minor issue, the
way we distributed the survey might have also affected the population under investigation.
Since we only distributed the survey through the internet, it could exclude the experienced but
old-fashioned experts who are not active on social media websites. Nevertheless, we strived to
overcome these shortcomings through a new round of qualitative in-depth expert interviews.
The combined results are presented in P3.

To develop new methods and tools we employed a design science approach. In design science,
we need a trade-off between the rigor and relevance of the research and in many cases,
depending on the goal of the research we lean more in one direction (Hevner et al. 2004). In
this dissertation, we focused more on the relevancy of the results for the practice. Hence, to
some extent, we are subject to limitations from the rigor side. As the main limitation, we
evaluated our methods artificially (Venable 2006), i.e. we did not have the chance to empirically
assess the effectiveness of the proposed methods and tools in real-world case studies. This
harms the generalizability of our methods. Nonetheless, the iterative nature of design science

 58

appreciates any advancements in the design and development of the artifacts. There is no perfect
design and developed artifact in design science as we are always improving our results
iteratively according to new settings and contexts.

Overall, this dissertation is limited to its definitions of the main concepts. The results highly
depend on how we defined the concept of conflict and the conflict types of NHRC and HRC.
The focus of this dissertation was to achieve high relevance for practice. For instance, the
classification of conflicts into NHRC and HRC can be comprehended and employed by
practitioners much easier than the complicated types of task and relationship conflict.
Nevertheless, our definitions of conflict and its types determine the scope of our results and
their generalizability. Particularly, as the phenomenon of conflict is multidimensional, any
definition or classification tackles several dimensions and overlooks some other aspects.
Therefore, we do no claim that this dissertation could address all aspects of conflict and is
limited to its scope determined by its definitions.

7. Future Research

Our findings increased our understanding of conflict, particularly in PSS development.
However, the created knowledge triggered new open questions that future research needs to
answer.

Regarding the implications of new digital technologies for PSS, there is still huge room for
advancements. We lack mechanisms to analyze and estimate IoT adoption in terms of
quantitative monetary parameters. Based on our findings, the practitioners cannot evaluate the
benefits and costs of IoT in a realistic way. Thus, future research can develop innovative
mechanisms for more precise assessment of IoT’s implications for PSS.

As conflict is a multidimensional phenomenon that affects and is affected by various elements,
many questions are still open. First, future research should answer the following question: what
main factors determine the impact of conflicts? This dissertation only investigated the
moderating effect of organization size and team size, which both are static variables, i.e. we
cannot change them. Having more knowledge on the factors, which can mitigate or control the
negative effects of conflict helps significantly to improve the work situation, remove the
development barriers, and save time and money.

Furthermore, resolution strategies have a big influence on the consequences of a conflict.
Nevertheless, in this dissertation, we only focused on identification phase of conflict
management and resolution aspects are out of scope of this work. Therefore, we encourage
future studies to investigate the extent, to which various mechanisms and strategies resolve both
HRC and NHRC.

Similarly, future research can dive deep into conflict resolution in PSS development.
Particularly, after the identification of conflicts, what are the proper mechanisms to resolve
conflicts between the technical-side and service-side. Moreover, we need to what actions and
considerations are necessary to keep the PSS development in the state of consistency. To answer
this question, we also need to know to what extent, consistency is desirable and necessary for
PSS development. Finally, although we emphasized on importance of NHRC in PSS

 59

development, we lack empirical findings on how often different types of conflict occur in
practice. Future research can search for frequent conflicting situations in PSS development.
This is of high importance for further development of tools and mechanisms for conflict
resolution.

8. Conclusion

The growing globalized competitiveness as well as ecological considerations led to the
emergence of product-service systems (PSS) as an integrated bundle of products and services.
The growth of PSS is accelerated with advancements in complex digital technologies such as
IoT. Software-intensive systems allowed the integration of various components from service-
side and product-side enhanced by IoT elements. Nevertheless, such integration increased the
heterogeneity and complexity of PSS enormously. This led to frequent emergence of conflicts
in PSS development, not only among individuals from different domains and teams, but also
between any two elements such as tools, artifacts, or even processes.

This dissertation aimed to tackle this problem by increasing our knowledge about conflicts in
PSS development. To this end, we employed a mixed-method approach. We used structured
literature review, expert interviews, survey study (analyzed using SEM), and design science
approach. Reflected on three conducting research questions, we provided insight on how IoT
affects PSS development as circumstances, in which conflicts emerge, the relationship between
different types of conflicts and project success, and a set of mechanisms to identify conflicts in
PSS development systematically. Moreover, we introduced a new classification of conflicts into
human-rooted conflict (HRC) and non-human-rooted conflict (NHRC). Using such a
classification, we emphasized the importance of non-human elements in PSS development such
as tools, documents, models, processes, and so on. The findings also showed that NHRC,
similar to HRC, is negatively correlated with project success. However, in contrast to HRC, its
negative effects can be moderated in different settings.

We contributed to theory by providing new empirical insights on PSS development, conflict
types, the relation between conflict and project success, and the dynamics of conflicts and how
they influence the project. More importantly, we introduced a new classification of conflicts
that can be further be used to analyze the complex nature of conflicts. Our developed
mechanisms for conflict identification in PSS also provide the foundations for more advanced
conflict management tools and methods. Furthermore, we have significant implications for
practice, particularly, as we followed a pragmatism strategy to increase the relevancy of our
results for the practice. The new conflict classification and insights on the conflict have huge
managerial implications, as managers can employ such knowledge to improve conflict
management and reduce wasted time and money. Moreover, the proposed set of mechanisms
for systematic identification of conflicts in PSS development can be directly be realized and
customized for PSS providers. More effective identification of conflicts in PSS development
can considerably avoid extra costs and delays and in some cases prevent large failures.

Future research can dive deeper into various aspects of conflict, partially addressed in this
dissertation. Particularly, how different factors can mitigate or control the impact of conflicts,

 60

the effectiveness of different conflict resolution strategies in PSS development, and
mechanisms for conflict resolution for PSS.

 61

References
Aldekhail, M., Chikh, A., and Ziani, D. 2016. "Software Requirements Conflict Identification:

Review and Recommendations," INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS (7:10), pp. 326-335.

Alexopoulos, K., Koukas, S., Boli, N., and Mourtzis, D. 2018. "Architecture and Development
of an Industrial Internet of Things Framework for Realizing Services in Industrial
Product Service Systems," Procedia CIRP (72), pp. 880-885.

Annarelli, A., Battistella, C., and Nonino, F. 2016. "Product Service System: A Conceptual
Framework from a Systematic Review," Journal of Cleaner Production (139), pp. 1011-
1032.

Aranda, G. N., Vizcaíno, A., and Piattini, M. 2010. "A Framework to Improve Communication
During the Requirements Elicitation Process in Gsd Projects," Requirements
Engineering (15:4), pp. 397-417.

Ardolino, M., Saccani, N., Gaiardelli, P., and Rapaccini, M. 2016. "Exploring the Key Enabling
Role of Digital Technologies for Pss Offerings," 8th CIRP IPSS CONFERENCE-
Product-Service Systems across Life Cycle, 2016: Elsevier, pp. 561-566.

Azadegan, A., Papamichail, K. N., and Sampaio, P. 2013. "Applying Collaborative Process
Design to User Requirements Elicitation: A Case Study," Computers in Industry (64:7),
pp. 798-812.

Baccarini, D. 1996. "The Concept of Project Complexity—a Review," International journal of
project management (14:4), pp. 201-204.

Bagozzi, R. P., and Yi, Y. 2012. "Specification, Evaluation, and Interpretation of Structural
Equation Models," Journal of the academy of marketing science (40:1), pp. 8-34.

Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A., Greenough, R., Peppard, J., Roy, R.,
Shehab, E., Braganza, A., and Tiwari, A. 2007. "State-of-the-Art in Product-Service
Systems," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture (221:10), pp. 1543-1552.

Basirati, M. R., Hermes, S., Weking, J., Böhm, M., and Krcmar, H. 2019a. Iot as Pss Enabler:
Exploring Opportunities for Conceptualization and Implementation.

Basirati, M. R., Otasevic, M., Rajavi, K., Böhm, M., and Krcmar, H. 2020. "Understanding the
Relationship of Conflict and Success in Software Development Projects," Information
and Software Technology (126), p. 106331.

Basirati, M. R., Weking, J., Hermes, S., Böhm, M., and Krcmar, H. 2019b. "Exploring
Opportunities of Iot for Product–Service System Conceptualization and
Implementation," Asia Pacific Journal of Information Systems (29), pp. 524-546.

Basirati, M. R., Zou, M., Bauer, H., Kattner, N., Reinhart, G., Lindemann, U., Böhm, M.,
Krcmar, H., and Vogel-Heuser, B. 2018. Towards Systematic Inconsistency
Identification for Product Service Systems.

Behfar, K. J., Mannix, E. A., Peterson, R. S., and Trochim, W. M. 2011. "Conflict in Small
Groups: The Meaning and Consequences of Process Conflict," Small Group Research
(42:2), pp. 127-176.

Berenbach, B. 2006. "Impact of Organizational Structure on Distributed Requirements
Engineering Processes: Lessons Learned," in: Proceedings of the 2006 international
workshop on Global software development for the practitioner. Shanghai, China: ACM,
pp. 15-19.

Berkovich, M., Leimeister, J. M., and Krcmar, H. 2011. "Requirements Engineering for Product
Service Systems," Business & Information Systems Engineering (3:6), pp. 369-380.

Beuren, F. H., Ferreira, M. G. G., and Miguel, P. A. C. 2013. "Product-Service Systems: A
Literature Review on Integrated Products and Services," Journal of cleaner production
(47), pp. 222-231.

 62

Bhat, J. M., Gupta, M., and Murthy, S. N. 2006. "Overcoming Requirements Engineering
Challenges: Lessons from Offshore Outsourcing," IEEE Software (23:5), pp. 38-44.

Bhattacherjee, A. 2012. "Social Science Research: Principles, Methods, and Practices,").
Bjarnason, E., and Sharp, H. 2015. "The Role of Distances in Requirements Communication:

A Case Study," Requirements Engineering), pp. 1-26.
Bostrom, R. P., and Heinen, J. S. 1977. "Mis Problems and Failures: A Socio-Technical

Perspective, Part Ii: The Application of Socio-Technical Theory," MIS Quarterly (1:4),
pp. 11-28.

Bressanelli, G., Adrodegari, F., Perona, M., and Saccani, N. 2018. "The Role of Digital
Technologies to Overcome Circular Economy Challenges in Pss Business Models: An
Exploratory Case Study," Procedia CIRP (73:2018), pp. 216-221.

Brocke, J. v., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., and Cleven, A.
2009. "Reconstructing the Giant: On the Importance of Rigour in Documenting the
Literature Search Process,").

Bryant, F. B., and Yarnold, P. R. 1995. "Principal-Components Analysis and Exploratory and
Confirmatory Factor Analysis,").

Chakraborty, S., Rosenkranz, C., and Dehlinger, J. 2015. "Getting to the Shalls: Facilitating
Sensemaking in Requirements Engineering," ACM Trans. Manage. Inf. Syst. (5:3), pp.
1-30.

Chen, H.-G., Jiang, J. J., Chen, J.-C., and Shim, J. 2004. "The Impacts of Conflicts on
Requirements Uncertainty and Project Performance," Journal of International
Technology and Information Management (13:3), p. 2.

Coughlan, J., and Macredie, D. R. 2002. "Effective Communication in Requirements
Elicitation: A Comparison of Methodologies," Requirements Engineering (7:2), pp. 47-
60.

Damian, D., and Zowghi, D. 2003. "Re Challenges in Multi-Site Software Development
Organisations," Requirements Engineering (8:3), pp. 149-160.

Daneva, M., Marczak, S., and Herrmann, A. 2014. "Engineering of Quality Requirements as
Perceived by near-Shore Development Centers' Architects in Eastern Europe: The Hole
in the Whole," in: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. Torino, Italy: ACM, pp. 1-10.

Daspit, J., Justice Tillman, C., Boyd, N. G., and Mckee, V. 2013. "Cross-Functional Team
Effectiveness: An Examination of Internal Team Environment, Shared Leadership, and
Cohesion Influences," Team Performance Management: An International Journal
(19:1/2), pp. 34-56.

De Dreu, C. K., and Weingart, L. R. 2003. "Task Versus Relationship Conflict, Team
Performance, and Team Member Satisfaction: A Meta-Analysis," Journal of applied
Psychology (88:4), p. 741.

Easterbrook, S., and Nuseibeh, B. 1996. "Using Viewpoints for Inconsistency Management,"
Software Engineering Journal (11:1), pp. 31-43.

Easterbrook, S. M., Beck, E. E., Goodlet, J. S., Plowman, L., Sharples, M., and Wood, C. C.
1993. "A Survey of Empirical Studies of Conflict," in Cscw: Cooperation or Conflict?
Springer, pp. 1-68.

Evans, S., Partidário, P. J., and Lambert, J. 2007. "Industrialization as a Key Element of
Sustainable Product-Service Solutions," International Journal of Production Research
(45:18-19), pp. 4225-4246.

Feldmann, S., Herzig, S. J., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A.,
Lindemann, U., Krcmar, H., Paredis, C. J., and Vogel-Heuser, B. 2015. "Towards
Effective Management of Inconsistencies in Model-Based Engineering of Automated
Production Systems," IFAC-PapersOnLine (48:3), pp. 916-923.

 63

Geraldi, J., Maylor, H., and Williams, T. 2011. "Now, Let's Make It Really Complex
(Complicated) a Systematic Review of the Complexities of Projects," International
Journal of Operations & Production Management (31:9), pp. 966-990.

Gervasi, V., and Zowghi, D. 2005. "Reasoning About Inconsistencies in Natural Language
Requirements," ACM Transactions on Software Engineering and Methodology
(TOSEM) (14:3), pp. 277-330.

Ghorpade, J., Lackritz, J., and Singh, G. 2011. "Personality as a Moderator of the Relationship
between Role Conflict, Role Ambiguity, and Burnout," Journal of Applied Social
Psychology (41:6), pp. 1275-1298.

Gläser, J., and Laudel, G. 2009. Experteninterviews Und Qualitative Inhaltsanalyse: Als
Instrumente Rekonstruierender Untersuchungen. Springer-Verlag.

Goedkoop, M. J., Van Halen, C. J., Te Riele, H. R., and Rommens, P. J. 1999. "Product Service
Systems, Ecological and Economic Basics," Report for Dutch Ministries of environment
(VROM) and economic affairs (EZ) (36:1), pp. 1-122.

Greer, L. L., and Jehn, K. A. 2007. "Chapter 2 the Pivotal Role of Negative Affect in
Understanding the Effects of Process Conflict on Group Performance," in Affect and
Groups. Emerald Group Publishing Limited, pp. 21-43.

Greer, L. L., Jehn, K. A., and Mannix, E. A. 2008. "Conflict Transformation: A Longitudinal
Investigation of the Relationships between Different Types of Intragroup Conflict and
the Moderating Role of Conflict Resolution," Small group research (39:3), pp. 278-302.

Guang-dong, W. 2013. "The Relationship between Project Team Dynamic Feature, Conflict
Dimension and Project Success--an Empirical Research from Shanghai, China,"
Pakistan Journal of Statistics (29:6).

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. 2013. "Internet of Things (Iot): A
Vision, Architectural Elements, and Future Directions," Future generation computer
systems (29:7), pp. 1645-1660.

Halme, M., Anttonen, M., Hrauda, G., and Kortman, J. 2006. "Sustainability Evaluation of
European Household Services," Journal of Cleaner Production (14:17), pp. 1529-1540.

Hanisch, J., and Corbitt, B. 2007. "Impediments to Requirements Engineering During Global
Software Development," European Journal of Information Systems (16:6), pp. 793-805.

He, J. 2007. "The Moderating Effect of Cognitive Capability on Task Conflict: A Longitudinal
Study of Task Conflict and Team Performance in Student Software Development
Teams," AMCIS 2007 Proceedings), p. 23.

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. "Design Science in Information
Systems Research," MIS quarterly), pp. 75-105.

Hinkin, T. R. 1998. "A Brief Tutorial on the Development of Measures for Use in Survey
Questionnaires," Organizational research methods (1:1), pp. 104-121.

Holmström, J., and Sawyer, S. 2011. "Requirements Engineering Blinders: Exploring
Information Systems Developers’ Black-Boxing of the Emergent Character of
Requirements," European Journal of Information Systems (20:1), pp. 34-47.

Inayat, I., and Salim, S. S. 2015. "A Framework to Study Requirements-Driven Collaboration
among Agile Teams: Findings from Two Case Studies," Computers in Human Behavior
(51, Part B), pp. 1367-1379.

Jehn, K. A. 1995. "A Multimethod Examination of the Benefits and Detriments of Intragroup
Conflict," Administrative science quarterly), pp. 256-282.

Jehn, K. A. 1997. "A Qualitative Analysis of Conflict Types and Dimensions in Organizational
Groups," Administrative Science Quarterly (42:3), pp. 530-557.

Jehn, K. A., and Mannix, E. A. 2001. "The Dynamic Nature of Conflict: A Longitudinal Study
of Intragroup Conflict and Group Performance," Academy of management journal
(44:2), pp. 238-251.

 64

Jiang, P., and Fu, Y. 2009. "A New Conceptual Architecture to Enable Ipss as a Key for Service-
Oriented Manufacturing Executive Systems," International Journal of Internet
Manufacturing and Services (2:1), pp. 30-42.

Johnson, R. B., and Onwuegbuzie, A. J. 2004. "Mixed Methods Research: A Research
Paradigm Whose Time Has Come," Educational researcher (33:7), pp. 14-26.

Joslin, R., and Müller, R. 2016. "The Impact of Project Methodologies on Project Success in
Different Project Environments," International Journal of Managing Projects in
Business (9:2), pp. 364-388.

Khan, S. U., Niazi, M., and Ahmad, R. 2012. "Empirical Investigation of Success Factors for
Offshore Software Development Outsourcing Vendors," IET Software (6:1), pp. 1-15.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. 2009.
"Systematic Literature Reviews in Software Engineering–a Systematic Literature
Review," Information and software technology (51:1), pp. 7-15.

Kline, R. B. 2015. Principles and Practice of Structural Equation Modeling. Guilford
publications.

Komoto, H., and Tomiyama, T. 2009. "Design of Competitive Maintenance Service for Durable
and Capital Goods Using Life Cycle Simulation," International Journal of Automation
Technology (3:1), pp. 63-70.

Levina, N. 2005. "Collaborating on Multiparty Information Systems Development Projects: A
Collective Reflection-in-Action View," Information Systems Research (16:2), pp. 109-
130.

Liang, T.-P., Jiang, J., Klein, G. S., and Liu, J. Y.-C. 2009. "Software Quality as Influenced by
Informational Diversity, Task Conflict, and Learning in Project Teams," IEEE
Transactions on Engineering Management (57:3), pp. 477-487.

Liang, T.-P., Jiang, J., Klein, G. S., and Liu, J. Y.-C. 2010. "Software Quality as Influenced by
Informational Diversity, Task Conflict, and Learning in Project Teams," IEEE
Transactions on engineering management (57:3), pp. 477-487.

Liu, C.-L. 2016. "Cdnfre: Conflict Detector in Non-Functional Requirement Evolution Based
on Ontologies," Computer Standards & Interfaces (47), pp. 62-76.

Liu, J. Y.-C., Chen, H.-G., Chen, C. C., and Sheu, T. S. 2011. "Relationships among
Interpersonal Conflict, Requirements Uncertainty, and Software Project Performance,"
International Journal of Project Management (29:5), pp. 547-556.

Lovelace, K., Shapiro, D. L., and Weingart, L. R. 2001. "Maximizing Cross-Functional New
Product Teams' Innovativeness and Constraint Adherence: A Conflict Communications
Perspective," Academy of management journal (44:4), pp. 779-793.

Macaulay, A. L. 1999. "Seven-Layer Model of the Role of the Facilitator in Requirements
Engineering," Requirements Engineering (4:1), pp. 38-59.

Manzini, E., Vezzoli, C., and Clark, G. 2001. "Product-Service Systems: Using an Existing
Concept as a New Approach to Sustainability," Journal of Design Research (1:2), pp.
27-40.

Marczak, S., and Damian, D. 2011. "How Interaction between Roles Shapes the
Communication Structure in Requirements-Driven Collaboration," Requirements
Engineering Conference (RE), 2011 19th IEEE International: IEEE, pp. 47-56.

Mastrogiacomo, L., Barravecchia, F., and Franceschini, F. 2019. "A Worldwide Survey on
Manufacturing Servitization," The International Journal of Advanced Manufacturing
Technology (103:9), pp. 3927-3942.

Maussang, N., Zwolinski, P., and Brissaud, D. 2009. "Product-Service System Design
Methodology: From the Pss Architecture Design to the Products Specifications,"
Journal of Engineering design (20:4), pp. 349-366.

McDonald, R. P., and Ho, M.-H. R. 2002. "Principles and Practice in Reporting Structural
Equation Analyses," Psychological methods (7:1), p. 64.

 65

Meier, H., Roy, R., and Seliger, G. 2010. "Industrial Product-Service Systems—Ips2," CIRP
Annals-Manufacturing Technology (59:2), pp. 607-627.

Mont, O. K. 2002. "Clarifying the Concept of Product–Service System," Journal of cleaner
production (10:3), pp. 237-245.

Morelli, N. 2006. "Developing New Product Service Systems (Pss): Methodologies and
Operational Tools," Journal of Cleaner Production (14:17), pp. 1495-1501.

Morgan, D. L. 2007. "Paradigms Lost and Pragmatism Regained: Methodological Implications
of Combining Qualitative and Quantitative Methods," Journal of mixed methods
research (1:1), pp. 48-76.

Myers, M. D., and Newman, M. 2007. "The Qualitative Interview in Is Research: Examining
the Craft," Information and organization (17:1), pp. 2-26.

Paré, G., Trudel, M.-C., Jaana, M., and Kitsiou, S. 2015. "Synthesizing Information Systems
Knowledge: A Typology of Literature Reviews," Information & Management (52:2),
pp. 183-199.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. "A Design Science
Research Methodology for Information Systems Research," Journal of management
information systems (24:3), pp. 45-77.

Pernstål, J., Gorschek, T., Feldt, R., and Florén, D. 2015. "Requirements Communication and
Balancing in Large-Scale Software-Intensive Product Development," Information and
Software Technology (67), pp. 44-64.

Peruzzini, M., and Wiesner, S. 2019. "Emergence of Product-Service Systems," in Systems
Engineering in Research and Industrial Practice: Foundations, Developments and
Challenges, J. Stjepandić, N. Wognum and W. J. C. Verhagen (eds.). Cham: Springer
International Publishing, pp. 209-232.

Putnam, L. L., and Poole, M. S. 1987. "Conflict and Negotiation,").
Raja, J. Z., and Frandsen, T. 2017. "Exploring Servitization in China," International Journal of

Operations & Production Management).
Recker, J. 2012. Scientific Research in Information Systems: A Beginner's Guide. Springer

Science & Business Media.
Reim, W., Parida, V., and Örtqvist, D. 2015. "Product–Service Systems (Pss) Business Models

and Tactics – a Systematic Literature Review," Journal of Cleaner Production (97), pp.
61-75.

Rizzo, J. R., House, R. J., and Lirtzman, S. I. 1970. "Role Conflict and Ambiguity in Complex
Organizations," Administrative science quarterly), pp. 150-163.

Rosenkranz, C., Charaf, C. M., and Holten, R. 2013. "Language Quality in Requirements
Development: Tracing Communication in the Process of Information Systems
Development," Journal of Information Technology (28:3), pp. 198-223.

Rowe, F. 2014. "What Literature Review Is Not: Diversity, Boundaries and
Recommendations." Taylor & Francis.

Runeson, P., and Höst, M. 2009. "Guidelines for Conducting and Reporting Case Study
Research in Software Engineering," Empirical software engineering (14:2), p. 131.

Schultze, U., and Avital, M. 2011. "Designing Interviews to Generate Rich Data for Information
Systems Research," Information and organization (21:1), pp. 1-16.

Seregni, M., Sassanelli, C., Cerri, D., Zanetti, C., and Terzi, S. 2016. "The Impact of Iot
Technologies on Product-Oriented Pss: The “Home Delivery” Service Case," Research
and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), 2016
IEEE 2nd International Forum on: IEEE, pp. 1-5.

Shameem, M., Chandra, B., Kumar, C., and Khan, A. A. 2018. "Understanding the
Relationships between Requirements Uncertainty and Nature of Conflicts: A Study of
Software Development Team Effectiveness," Arabian Journal for Science and
Engineering (43:12), pp. 8223-8238.

 66

Shih, L.-H., Lee, Y.-T., and Huarng, F. 2016. "Creating Customer Value for Product Service
Systems by Incorporating Internet of Things Technology," Sustainability (8:12), p.
1217.

Shimomura, Y., and Hara, T. 2010. "Method for Supporting Conflict Resolution for Efficient
Pss Development," CIRP annals (59:1), pp. 191-194.

Simons, T. L., and Peterson, R. S. 2000. "Task Conflict and Relationship Conflict in Top
Management Teams: The Pivotal Role of Intragroup Trust," Journal of applied
psychology (85:1), p. 102.

Sommerville, I., and Sawyer, P. 1997. "Viewpoints: Principles, Problems and a Practical
Approach to Requirements Engineering," Annals of software engineering (3:1), pp. 101-
130.

Song, W. 2017. "Requirement Management for Product-Service Systems: Status Review and
Future Trends," Computers in Industry (85), pp. 11-22.

Song, W., and Sakao, T. 2016. "Service Conflict Identification and Resolution for Design of
Product–Service Offerings," Computers & Industrial Engineering (98), pp. 91-101.

Spanoudakis, G., and Zisman, A. 2001. "Inconsistency Management in Software Engineering:
Survey and Open Research Issues," in Handbook of Software Engineering and
Knowledge Engineering: Volume I: Fundamentals. World Scientific, pp. 329-380.

Tashakkori, A., Teddlie, C., and Teddlie, C. B. 1998. Mixed Methodology: Combining
Qualitative and Quantitative Approaches. Sage.

Teddlie, C., and Tashakkori, A. 2010. "Overview of Contemporary Issues in Mixed Methods
Research," Handbook of mixed methods in social and behavioral research (2), pp. 1-
41.

Tsai, K.-H., and Hsu, T. T. 2014. "Cross-Functional Collaboration, Competitive Intensity,
Knowledge Integration Mechanisms, and New Product Performance: A Mediated
Moderation Model," Industrial Marketing Management (43:2), pp. 293-303.

Tukker, A. 2004. "Eight Types of Product–Service System: Eight Ways to Sustainability?
Experiences from Suspronet," Business strategy and the environment (13:4), pp. 246-
260.

Vasantha, G. V. A., Roy, R., Lelah, A., and Brissaud, D. 2012. "A Review of Product–Service
Systems Design Methodologies," Journal of Engineering Design (23:9), pp. 635-659.

Venable, J. 2006. "A Framework for Design Science Research Activities," Emerging Trends
and Challenges in Information Technology Management: Proceedings of the 2006
Information Resource Management Association Conference: Idea Group Publishing,
pp. 184-187.

Wall Jr, J. A., and Callister, R. R. 1995. "Conflict and Its Management," Journal of management
(21:3), pp. 515-558.

Webster, J., and Watson, R. T. 2002. "Analyzing the Past to Prepare for the Future: Writing a
Literature Review," MIS quarterly), pp. xiii-xxiii.

Wiesner, S., Marilungo, E., and Thoben, K.-D. 2017. "Cyber-Physical Product-Service
Systems: Challenges for Requirements Engineering (Mini Special Issue on Smart
Manufacturing)," International journal of automation technology (11:1), pp. 17-28.

Wolfenstetter, T., Basirati, M. R., Böhm, M., and Krcmar, H. 2018. "Introducing Trails: A Tool
Supporting Traceability, Integration and Visualisation of Engineering Knowledge for
Product Service Systems Development," Journal of Systems and Software (144).

Yang, L.-R., Chen, J.-H., and Wang, X.-L. 2015. "Assessing the Effect of Requirement
Definition and Management on Performance Outcomes: Role of Interpersonal Conflict,
Product Advantage and Project Type," International Journal of Project Management
(33:1), pp. 67-80.

 67

Yang, L., Xing, K., and Lee, S. 2010. "A New Conceptual Life Cycle Model for Result-Oriented
Product-Service System Development," Proceedings of 2010 IEEE International
Conference on Service Operations and Logistics, and Informatics, pp. 23-28.

Yang, X., Moore, P., Pu, J.-S., and Wong, C.-B. 2009. "A Practical Methodology for Realizing
Product Service Systems for Consumer Products," Computers & Industrial Engineering
(56:1), pp. 224-235.

Yvonne Feilzer, M. 2010. "Doing Mixed Methods Research Pragmatically: Implications for the
Rediscovery of Pragmatism as a Research Paradigm," Journal of mixed methods
research (4:1), pp. 6-16.

Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H., Wang,
Z., and Doumeingts, G. 2017. "Model-Based Approaches for Interoperability of Next
Generation Enterprise Information Systems: State of the Art and Future Challenges,"
Information Systems and e-Business Management (15:2), pp. 229-256.

Zancul, E. d. S., Takey, S. M., Barquet, A. P. B., Kuwabara, L. H., Cauchick Miguel, P. A., and
Rozenfeld, H. 2016. "Business Process Support for Iot Based Product-Service Systems
(Pss)," Business Process Management Journal (22:2), pp. 305-323.

Zou, M., Basirati, M. R., Bauer, H., Kattner, N., Reinhart, G., Lindemann, U., Böhm, M.,
Krcmar, H., and Vogel-Heuser, B. 2019. "Facilitating Consistency of Business Model
and Technical Models in Product-Service-Systems Development: An Ontology
Approach," IFAC-PapersOnLine (52), pp. 1229-1235.

 68

Appendix: Publications in Original Format

The papers will be presented with the following order.

• Main Publication: P3
• Main Publication: P4
• Not Included in Review and Evaluation: P1
• Not Included in Review and Evaluation: P2
• Not Included in Review and Evaluation: P5
• Not Included in Review and Evaluation: P6

Main Publication: P3

Information and Software Technology 126 (2020) 106331
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

Understanding the relationship of conflict and success in software
development projects
Mohammad R. Basirati a , ∗ , Marko Otasevic a , Koushyar Rajavi b , Markus Böhm a , Helmut Krcmar a
a Technical University of Munich, Germany
b Scheller College of Business - Georgia Institute of Technology, Georgia
a r t i c l e i n f o
Keywords:
Conflict
Software project success
Software development
Non-human-rooted conflict
Organization size
Team size

a b s t r a c t
Context: Software development incorporates numerous people with diverse expertise and expectations. This
makes conflict a common phenomenon in software development. Besides human causes, many conflicts in soft-
ware development root in the tools and processes. Moreover, the growing role of software in any type of system
is increasing the heterogeneity in software projects. The number and variety of tools and processes are increas-
ing. Nevertheless, the relationship between conflicts, particularly rooted in non-human elements, and software
project success is still unclear.
Objective: We aim to understand the impact of conflict on the success of software development projects for
different types of conflict and different environments. Particularly, we distinguish between human-rooted conflict
(HRC) and non-human-rooted conflict (NHRC). Moreover, we investigate whether organization size and team size
moderate the impact of conflict on software project success.
Methods: First, we conduct a survey and analyze it using structural equation modeling (SEM) to investigate any
correlation between conflict and software project success. Second, we explore the reasons behind the relationship
between conflict and software project success by conducting 13 semi-structured expert interviews.
Results: HRC is always a threat to software project success for any organization or team size. Based on the inter-
views, resolving an HRC is regularly problematic. On the other hand, NHRC is negatively correlated with software
project success only in corporate organizations and small teams. High coordination overhead and dependency on
tools and processes make NHRC more influential in corporate organizations. In contrast, overlooking non-human
elements and lack of experienced individuals in smaller teams make them more vulnerable to NHRC.
Conclusion: While the detrimental impact of HRC is constant for software project success, NHRC can be controlled
efficiently. Corporate organizations need to frequently improve the non-human elements in the development.
Smaller teams should expect tools and processes to be significantly influential in their success.

1. Introduction
Although software development already comprises numerous cross-

domain collaborations [16] , recent paradigms such as product-software
systems (PSS), cyber-physical systems (CPS) and internet-of-things (IoT)
further increase the number as well as complexity of software projects.
Because when developing these kinds of systems, higher number of
teams and departments from heterogeneous domains are involved,
which need to work jointly on interdependent requirements of the sys-
tem [51,67] , teams face higher number of differences between stake-
holders’ perspectives, domain knowledge and processes. Working in
such cross-domain settings leads to growth in both the number and va-
riety of conflicts, with which we have to deal [14,39,43,49,64] . Func-
tional diversity among the team members is acknowledged as a source

∗ Corresponding author.

of conflict, since it influences the team’s cognitive diversity and con-
sequently, the level of conflicts during decision making [46,50] . There
is evidence that merely a higher diversity in a system’s requirements is
directly associated with higher interpersonal conflicts [42] .

Conflicts are mostly perceived as a negative matter that changes
communications, behaviors and structures [66] . Particularly in cross-
domain collaborations, conflict impedes realizing innovative solutions
[39,64] . An empirical study shows that interpersonal conflicts, such as
disagreement, interference and negative emotions, always have negative
influence on software development, regardless of how they are managed
[8] . Liang et al. [41] found that while task conflict could increase the
team performance in a software project, value conflict decreased the
performance. [59] analyzed the impact of task and relationship conflict

https://doi.org/10.1016/j.infsof.2020.106331
Received 29 November 2019; Received in revised form 21 April 2020; Accepted 27 April 2020
Available online 21 May 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
in software projects and the findings show that relationship conflict has
significantly a higher negative influence in comparison to task conflict.

Thus, the literature confirms that different types of conflicts have dis-
similar influence on project performance. Nevertheless, existing studies
primarily investigated conflicts rooted in human factors such as value,
relationship or people’s roles and responsibilities. Based on a McKin-
sey consulting company [53] report, in actual practice, more than 70%
of general negotiations conflicts fail due to non-content factors, which,
in addition to people-related issues, consist of processes (e.g., agenda,
schedule, location, etc.). Such importance of non-human factors is also
reflected in other aspects of software development. For example, an em-
pirical study by Seth et al. [58] shows that in addition to human fac-
tors, non-human factors such as tools, methods, and infrastructure dis-
tinctively play a vital role in the construction of quality into software.
Furthermore, the growth of distributed software development intensi-
fies the importance of non-human factors as tools and methods play a
bigger role in facilitating the remote collaborations [54] . The distinc-
tion between human and non-human factors is also acknowledged by
the studies in the field of organization research [63] . Because the way
that human and non-human factors influence on the project may differ
substantially. Moreover, it is expected that dissimilar solutions are em-
ployed to tackle the negative consequences of human and non-human
factors such as the case of conflict resolution [63] . For example, the way
we manage an error-prone tool is usually very different from dealing
with a problematic employee. As in the former, we may easily change
the tool, while replacing an employee is not a straightforward process.

The role of human factors in conflict management has been studied
extensively in the literature. However, despite the importance of non-
human related factors, past research has not systematically investigated
their effect on software project success and as such, our knowledge re-
garding the relative importance of human vs. non-human conflicts is lim-
ited. Recognizing the different impacts of human-rooted conflict (HRC)
and non-human-rooted conflict (NHRC) on software projects help us to
assess the situations of a software project more precisely. We would be
able to make better decisions in case of a conflict and plan for future
improvements effectively.

For further clarification, we distinguish between conflicts rooted in
human-factors and conflicts rooted in non-human factors. However, any
conflict may be reflected in human behaviors and associated with hu-
man factors. In this study, we focus only on the root cause of conflict as
a major determinant of a conflict’s nature and impact. To increase our
knowledge regarding the influence of both HRC and NHRC, we follow a
mixed-method research approach (Venkatesh et al. [65]). First, we per-
form a quantitative analysis by conducting a survey study. The first part
of our research shows whether there is a correlation between presence
of conflict and lower or higher project success measures. We next aim to
explore the reasons and ways in which HRC and NHRC affect software
project success. To this end, we conduct expert interviews. The expert
interviews also provide interpretations of findings from the survey. Our
research aims to answer the following conducting research question:

“How do HRC and NHRC influence success of software projects? ”
The survey is conducted using an online questionnaire distributed

among active professionals in software development projects. We use
structural equation modeling techniques (SEM) [6,37] to analyze the
survey. To gain more insights into how conflicts affect software project
success, we conducted 13 semi-structured expert interviews [20] .

The results of this study assert that there is a negative correlation
between both HRC and NHRC, and the success of software projects.
Nevertheless, the size of an organization, i.e., corporate versus small
and medium-sized enterprises (SME), determines the extent to which
NHRC is influential. While in corporate organizations, NHRC is signifi-
cantly correlated with lack of success, we do not find statistically signif-
icant effect of NHRC on software project success in SMEs. Furthermore,
team size also moderates the effect of NHRC on software project success.
Surprisingly, we found that smaller teams (consisting of fewer than 10

members) suffer more from NHRC, whereas in large teams (consisting
of more than 10 members), there is no correlation between NHRC and
software project success. Regarding HRC, we found it negative for soft-
ware project success in all investigated situations. However, HRCs are
less influential on software project success in small teams.

The findings of this study increase insights of managers into soft-
ware projects regarding the importance of non-human elements, which
can impede the success of the project. In addition, we show in which set-
tings (based on team size and organization size), non-human elements
gain more importance. Particularly, we exposed that in contrast to regu-
lar expectations, smaller teams neglect importance of non-human factors
and suffer more from NHRC. Furthermore, we contribute to the litera-
ture by confirming that HRC is negatively correlated with the project
success independently from the size of the organization or team.
2. Theoretical background and hypotheses

In this section, we clarify the concept of conflict and elaborate rel-
evant classifications of conflict types. We introduce the definition of
conflict for this study and outline what we mean by HRC and NHRC.
Moreover, this section reviews the existing software project success fac-
tors, from which we have designed the survey. Finally, based on the
findings from prior research, we build four hypotheses for this study.
2.1. Conflict

Conflict is a broad concept and in many cases is used interchangeably
with other notions such as dispute, disagreement or inconsistency based
on context and situation. While it is easy to recognize a conflict situa-
tion, it is hard to define conflict as a concept [15] . The Oxford English
Dictionary describes conflict in such terms as “serious disagreement, ”
“opposing feelings or needs, ” “serious incompatibility ” and “being in-
compatible ” or “at variance. ” Easterbrook et al. [15] define conflict as
the interaction of interdependent parties whose goals oppose and in-
terfere with each other, emphasizing interaction, interdependence and
incompatible goals. Conflict is defined by Wall and Callister [66] as “a
process in which one party perceives that its interests are being opposed
or negatively affected by another party. ”

For the purpose of this study and sake of consistency throughout the
paper, we introduce a new definition of conflict, which does not refute
existing definitions, but rather is more comprehensive. Based on existing
definitions, we extracted three principles that exist for every conflict or
inconsistency. First, two or more elements are involved. Second, there
is a relationship between the involved elements. Third, the state of ele-
ments and their relationships are different to defined objectives of the
involved elements. Therefore, based on these three principles, in this
study, we define a conflict as an undesired variance between two or more
related elements . We believe that this definition is more inclusive while
complying with previous definitions.

Moreover, the literature highlights the multidimensional nature of
conflict and accordingly introduces different types of conflicts. Rela-
tionship conflict type represents for the interpersonal conflicts, which
are mostly due to the differences in personalities or negative emo-
tions among people. Task conflict reflects disagreements on which tasks
should be implemented and the why those tasks should be accomplished.
Task conflict can be caused by many different sources such as contra-
dicting requirements, lack of resources and so on. Process conflicts show
disagreements about the overall process during implementation of a
task, in which responsibilities and resources are assigned [29] . While
task conflict is more about the content of the tasks, process conflict re-
flects the conflicts in logistics, scheduling and so on [21] . Role conflict
addresses incompatibility in requirements of a role, in which a conflict
emerges between people and their roles. For example, a role might be in-
compatible with a person’s capabilities, values, resources or even other
roles [55] . There is almost an overlap between role ambiguity and role
conflict [57] .

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
Existing studies mostly address conflicts from a merely human and

social perspective, while tools and methods play an increasingly sig-
nificant role in software development. For example, DevOps’ processes
and tasks heavily depend on the involved tools with a growing num-
ber [35,38] . Moreover, the smooth progress of a software development
project relies on knowledge sharing tools such as wikis and communi-
cation tools, particularly in the case of distributed development settings
[69] . In general, with increase in cross-domain and cross-site develop-
ment, we face higher number of conflicts that arise from technical and
non-human factors. This is because work settings contain heterogeneous
elements that are originally suited to a domain or development site.
For example, the number and variety of tools for development is ris-
ing. Incompatible and inappropriate tools lead to loss of information,
which consequently may create a conflicting situation. Similarly, work
processes and methodologies have a huge impact on the success of a
software project [2] . Work processes or methodologies used by differ-
ent teams may be conflicting with each other. For instance, a team that
uses the waterfall approach has to collaborate with a team that is flexible
in their approach. The way these two teams communicate and under-
stand each other is heavily influenced by the differences between their
overall work processes. Therefore, such a difference can easily trigger
a new conflicting situation. Furthermore, a considerable amount of de-
velopment knowledge such as business needs, system requirements and
progress reports are communicated via documents that are not up-to-
date or contain inconsistent information. Conflicting contents and in-
formation can be easily escalated among people.

To address this issue, we employ a socio-technical system (STS) the-
ory lens. According to STS, two jointly independent, but correlative in-
teracting systems form a work system composed of the social and the
technical aspects. The technical system reflects the processes and tech-
nologies and the social system reflects individual’s attributes and their
relationship with the other individuals. Based on STS theory, both the
social and the technical systems jointly create the output for a work sys-
tem [10] . Thus, based on STS theory, software development is affected
by both human factors, i.e., the social system, and non-human factors,
i.e., the technical system. Accordingly, we introduce this distinction be-
tween the conflicts caused by human factors and the conflicts caused
by non-human factors. Such a distinction acknowledges the importance
of non-human factors and clarifies their role in conflicts and their im-
pact on software project success. Furthermore, it enables us to choose
effective strategies that prevent more conflicts or resolve existing ones.
Therefore, we propose human-rooted conflict (HRC) and non-human-
rooted conflict (NHRC) as two new types of conflict, which we analyze
in this study. We formally define HRC as a conflict that is rooted essentially
in human factors, which are related to the general interests or background
of a person such as personality or culture. In contrast, NHRC is a conflict
that is exclusively rooted in non-human factors such as tools, processes or
artifacts. Table 1 provides several concrete examples of HRC and NHRC.

To clarify more, the classification of conflicts to HRC and NHRC fo-
cuses only on the roots of conflicts, excluding any other aspect of con-
flicts. Any conflict, whether, HRC or NHRC, could be reflected in human
behaviors and be escalated to high-level social interactions. Therefore,
what distinguishes an NHRC from HRC, is not whether people are in-
volved in the conflict or not, but whether the root cause of conflict is a
human factor or a non-human factor.

Such a new classification enables us to investigate precisely the im-
pact of growing conflicts due to non-human factors on software project
success. For example, we distinguish between a conflict caused by con-
tradictory interests or personalities and a conflict caused by different
tools, work processes and methodologies. Inconsistencies in artifacts
such as requirements documents or legacy codes are another example
of NHRC. Not only such inconsistencies can be considered as a con-
flict based on the conflict definition of this study, but also, they can be
cause for more conflicts in higher levels. An inconsistency in defined
software requirements can lead to incorrect implementation, delayed
deliveries and consequently more conflicts [70] . Therefore, this study

Table 1
Examples of HRC and NHRC.
HRC NHRC
A conflict between
stakeholders’ priorities A conflict between DevOps’

tools and the real needs of the
DevOps process

A conflict between two teams
from different organizations
(e.g. in an outsourcing scenario)
caused by different
organizational cultures

A conflict between tools used
by different teams from
different organizations or
departments

A conflict between two teams
from different departments
caused by a difference in
terminologies

A conflict between
methodologies of two teams
such as agile and waterfall

A conflict caused by challenging
or incompatible personalities A conflict between two work

processes e.g. by blocking each
other

A conflict between individuals
due to different level of
expertise

Inconsistencies between legacy
code and the new code libraries

Table 2
Existing Conflict Types and HRC/NHRC – Full Circle presents
full coverage; half-full circle presents half-coverage; empty circle
presents no coverage.

investigates existence of inconsistencies and errors in artifacts as an in-
dicator for NHRC. Nonetheless, previous differentiations between con-
flict types could not cover NHRC sufficiently. As shown in Table 2 , the
common analyzed conflict types in the literature mostly address HRC.
2.2. Software project success factors

Software projects succeed or fail in many different ways and it is
oversimplifying to determine the success of a software project with few
factors [44] . Most of the time, success is a vague concept and it is not
clear what success is and when a project is successful [1,9,33] . More-
over, different stakeholders may have different opinions regarding the
success of a project and we can only measure perceived success [27] .
Hence, similar to measuring concepts such as trust, success should be
measured indirectly using a construct [44] .

Nevertheless, research strived for identifying factors that can indi-
cate the success of a project. The classical measurement is “iron trian-
gle ” that consists of time, cost and quality. Many scholars have criticized
the limited capability of the triangle factors particularly with regard
to ambiguity of quality dimension [27] . Researchers added factors that
are more specific to the main indicators of success, among which re-
alization of organizational objectives and stakeholders’ satisfaction are
stated more frequently [5,7,27,31] . However, time and particularly cost
factors are repeated in most of later studies and confirmed by empirical
studies such as [36] . Furthermore, some studies only focused on success
of a particular type of IS and presented success factors that cannot neces-
sarily be generalized on any software project. For instance, accessibility
and extensibility are counted as success criteria for software systems
that support senior executives [52] .

Considering multidimensionality and ambiguity of success and the
limited capability of existing general success criteria, we use time, cost
and stakeholder satisfaction as the most commonly used and approved

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
criteria in the literature. Although these indicators cannot elaborate all
relevant dimensions of the project success, the literature assert that, they
are mostly valid for any type of software project. Hence, we employ
these factors to examine an overall software project success construct.
Moreover, to further clarify, it is worth mentioning that we aim to mea-
sure success of a software project and not success of a software. The
extent to which a software project is successful does not necessarily re-
flect the success of resulting software system during its use [44] .
2.3. Relationship between conflict and success

Findings of a series of studies on the relationship between conflict
types and team performance showed that regardless of different situa-
tions, any conflict decreases the individuals’ satisfaction [28,29] . An-
other study by Giebels and Janssen [19] investigated the relation be-
tween conflict and well-being of employees based on factors such as
stress and exhaustion. The study showed that conflict, whether a task
conflict or relationship conflict, is associated with reduced well-being;
however, the conflict resolution style can moderate the effect of conflict.

In particular, relationship conflict is found to have negative conse-
quences regardless of situations. Jehn and Mannix [30] found in a lon-
gitudinal analysis that successful groups had low levels of relationship
conflict. Liang et al. [40] showed that in software development teams,
relationship conflict generally has negative influences. This is confirmed
by study of [22] , which showed significant negative correlation between
the relationship conflict and the success of a project. Not only do all the
relevant studies show that relationship conflict has negative effects on
team or project attributes, but [60] also pointed out that relationship
conflict can exacerbate the negative effects of other types of conflict,
such as task conflict. Furthermore, constructive conflict resolution and
trust have been found positively correlated with high-level performance
[7] .

Similarly, role conflict is also found to be negative in most cases.
Based on a comprehensive literature review of role conflict studies, it is
found that role conflict is significantly related to depression among em-
ployees [57] . Another study confirmed that the higher the role conflict,
the lower the level of job performance [17] . Mohr and Puck [45] found
that managers in joint ventures who experienced high level of role con-
flict had a lower level of job satisfaction and a higher stress level. A more
recent study showed that role conflict has a direct negative impact on
employee performance. However, it could inspire employees’ ideas for
improvement [56] .

Fewer studies investigated process conflict. Nevertheless, most of
the findings showed that process conflict has negative effects on perfor-
mance [21] . Jehn and Mannix [30] also observed that successful teams
had low level of process conflict. Guang-dong [22] found that there is a
significant negative correlation between process conflict and the success
of project.

Nevertheless, the findings regarding task conflict are not as clear as
relationship conflict and role conflict. It was found that team perfor-
mance can be associated both positively and negatively with task con-
flict, depending on the group structure and type of the task [28,29] . For
example, task conflict could improve the performance of non-routine
tasks [28] . Also, the longitudinal analysis of [30] showed that moderate
levels of task conflict exist in successful teams. Liang et al. [40] found
that in software development teams, task conflict could lead to learn-
ing among team members. Their investigation into the relationship be-
tween task conflict and software quality showed no significant correla-
tion. Moreover, Guang-dong [22] found significant positive correlation
between task conflict and project success because it was able to increase
the communication and trust among the team members. In contrast, He
[24] found that in software development teams, task conflict is nega-
tively associated with team performance and it worsens over time, al-
though a team’s cognitive capability could moderate the severity of such
an impact. Hjerto and Kuvaas [25] differentiated between cognitive task
conflict and emotional task conflict. They found that cognitive task con-

flict is negatively related to team performance, while emotional task
conflict is positively related to task conflict.

Most of the conflict-related studies have focused on the relationship
between conflict and group/team performance or efficiency and the in-
fluence on the project success is slightly covered. Nevertheless, there is
greater supporting evidence of negative impact of HRC on the project
attributes than any positive impact. Therefore, we frame our hypothesis
regarding HRC as shown below:

H1: HRC is negatively correlated with software project success
Relatively speaking, there are many fewer studies with respect to

NHRC. The overall findings, explained above, show that the more con-
flicts are related to human aspects (relationship conflict and role con-
flict), the more they negatively influence the team and project perfor-
mance. Although process conflict is partly related to non-human factors,
in most cases, it has been found to be negatively correlated with team
and project performance. In contrast, task conflict as another conflict
type partially related to NHRC has been found to have both negative
and positive impacts on team and project success.

Furthermore, conflicts among requirements artefacts as a particular
example of NHRC are recognized by researchers as one of the main fail-
ure reasons in software projects [3] . Nuseibeh et al. [48] argued that
despite severe negative consequences of conflicts in requirements arte-
facts, we should have some degree of tolerance for such conflicts in
order to increase the performance of software development in terms
of speed and goal accomplishment. Hadar and Zamansky [23] showed
that people tend to not take responsibility for emerging conflicts in re-
quirements artefacts because there is always a negative attitude towards
them. Hence, such conflicts may escalate to interpersonal conflicts. In an
empirical investigation, Yang et al. [68] revealed that there is a relation-
ship between work processes and stability of requirements and project
performance. Shameem et al. [59] found that in software projects, there
is a relationship between variability of requirements artefacts and rela-
tionship conflict, which is strongly associated with reduced team effec-
tiveness.

With regard to other elements such as methodologies and work pro-
cesses, existing evidence shows a strong relationship between elements
of a project methodology and the project success [32,36] also found that
infrastructural elements have an important role in success of outsourc-
ing projects.

To summarize, there is greater evidence for negative consequences
of NHRC than potential positive ones. Thus, we define our hypothesis
regarding NHRC as shown below:

H2: NHRC is negatively correlated with software project success
In addition, most of the existing conflict studies —including the re-

viewed studies in this section —show that settings in which conflict
emerge is a decisive factor for consequences of a conflict. Therefore,
to dive deeper into the situations in which negative effects of NHRC can
be worse, moderated or even become positive, we also outline two more
hypotheses about moderating effects of team size and organization size
on NHR conflicts.

Team size is a significant factor that can affect a team’s outcome [62] .
For example, larger teams usually experience a higher number of task
conflicts [4] , however, they benefit from the more formal defined struc-
tures [18] . Moreover, larger teams typically have more social factions
and less cohesion, which may intensify tensions [46] . Various studies
have shown the moderating effect of team size in conflict analysis. For
example, the study of [25] shows that the level of task conflict is less
influential in large teams, whereas it is more influential in small teams.
George et al. [18] also found that team size moderates the relationship
between task conflict and process conflict. We also suggest that team
size moderates the relationship of NHRC and software project success.
In particular, as teams grow, more processes, tools and documentations
are employed. In contrast, smaller teams tend to manage issues in per-
son and non-human factors are less involved. Consequently, the way

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331

Fig. 1. Research model.
NHRC influences software project success in large teams is expected to
be different in small teams.

In addition to team size, we also suggest that the size of an organiza-
tion moderates the relationship between NHRC and software project suc-
cess. As organizations grow, they develop structures, processes and cul-
ture. Such characteristics of an organization are influential on decision-
making processes and how conflicts are experienced [46] . Particularly
with regard to software projects, the effects of organizational factors on
the outcome of a software project vary largely, depending on the size
of the organization [34] . Furthermore, analyzing the effect of an or-
ganizational contextual factor —e.g., organization size —in addition to
team size provides a deeper view into contextual factors that determine
the relationship between conflict and software project success, espe-
cially since the dependent variable of this study —software project suc-
cess —stands more on an organizational level than group level. Thus, we
frame the fourth hypothesis regarding moderating effect of organization
size on the correlation between NHRC and software project success.

H3: The size of an organization moderates the relationship between
NHRC and software project Success

H4: Team size moderates the relationship between NHRC and soft-
ware project Success

3. Research design
We conducted mixed-method research to answer the research ques-

tion of this study and gain more insights regarding the research model
(see Fig. 1). The mixed-method approach allows us to develop a deeper
understanding of the phenomenon of interest [65] . We first explore the
conflict problem using the survey study. We will then aim to find expla-
nations of what we observed by conducting expert interviews. Hence,
the purpose of our mixed-method research is “expansion, ” based on
which we expand and explain the findings of the former study by the
later study [65] . In the following section, we will first describe data col-
lection and design of measurements for the survey. We will then elabo-
rate on the interview process.
3.1. Survey: data collection

We collected the data using an online questionnaire. The target
group of the survey was professionals who work in software develop-
ment projects, whether in managerial roles or technical development
roles. No probabilistic method was used, since we did not focus on any
particular type of respondent. Distributing the questionnaire started on
30 January 2019 and ended 1 April 2019.

We distributed the questionnaire among existing contacts, industrial
partners in research projects and via LinkedIn. The industry contacts
were also asked to distribute the survey among their relevant internal
teams. Regarding LinkedIn, we contacted people in two ways. First, we
identified people who were eligible for filling out the questionnaire.
Then through personal messages, we asked them to fill out the ques-
tionnaire. We also posted the questionnaire to LinkedIn groups, in which

software development professionals communicate on a particular soft-
ware development topic. To avoid any misunderstanding, we explicitly
emphasized in every message or LinkedIn post that only active persons
in software projects are eligible to fill out the questionnaire. We also
emphasized this requirement one more time at the beginning of the sur-
vey.
3.2. Survey: questionnaire and measurements

To design the questions, we used card sorting following the proce-
dure of [47] in a group of two researchers and a professional who is a
product owner in a software project at a corporate software development
company. The procedure followed several rounds in which we identified
the questions and the scale in which questions could be answered and
clarification of stated concepts in the questions. In these iterations, we
evaluated response options, relevancy and comprehensiveness of both
questions and responses similarly to a pretesting with three people.

The final questionnaire consists of two sections and three subsec-
tions. The respondents were not necessarily able to recognize the sub-
sections, but the sections were explicitly specified. We explicitly asked
the respondents to fill out the questionnaire based on their experiences
in only one project, one in which they were or are active. The first sec-
tion was dedicated to general information about the respondent. General
information contained a question regarding the size of organization in
which the respondent was active. The choices offered were corporate or
SME. In addition, we asked about respondent’s position in the company
and the years of experience. For both questions, we provided five prede-
fined answers. Answers to the position question could vary from entry
level to senior executive and executive manager. For each answer, we
provided several examples as well to clarified them. Years of experience
were broken down into classifications ranging from less than two years
to more than twenty years. In the general information section, we also
asked about the size of team in which the respondents were working.
The respondents could select answers ranging from fewer than five, ten,
twenty and more than twenty team members. Finally, we inquired about
their country of residence.

The second section contained subsections involving their perceived
success, the perceived presence/absence of HRC and the perceived pres-
ence/absence of NHRC (all based on the last project in which the respon-
dent was active). The questions of the second section are presented in
Table 3 . To collect more responses, we aimed for a questionnaire that
takes a few minutes and it is very easy to understand. Therefore, we used
the minimum number of items for measuring each construct. Moreover,
we designed the questions enough comprehensive in order to cover most
aspects of the measured variable.

Five questions measured success (Q1 to Q5). We focused on the per-
ceived success of the project based on the existing aspects discussed in
the section of 2.2 Software Project Success Factors. The five questions
addressed the speed at which changes were applied, meeting deadlines,
meeting budget limits, meeting project goals and stakeholder satisfac-
tion. There was one question regarding each aspect and the respondents
could answer it based on a five-degree Likert scale.

Four questions addressed HRC (Q6 to Q9) and three questions ad-
dressed NHRC (Q10 to Q12). Regarding HRC, we mixed direct and indi-
rect questions that could reveal the presence of conflict during a project.
For example, Q8 indicates whether people had trouble due to variance
in domain knowledge among the involved persons. In contrast, Q9 asked
whether the respondent had experienced any conflict with other team
members. We identified NHRC based on three aspects (discussed in
Section 2.1). First, we examined those conflicts due to differences in
work processes and methodologies. Second, we asked about appropri-
ateness of the tools. Finally, we questioned presence of mistakes and
inconsistencies in development artefacts such as documents. It is impor-
tant to note that based on the formal definition of HRC and NHRC in
Section 2.1 , we distinguish between an instance of conflict and its root.
While an instance of conflict is concrete and very specific, the root of a

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
Table 3
Second section of questionnaire.

Software Project Success
Q1 How quickly does your team adjust to changing priorities?
Q2 How often does your team meet its deadlines?
Q3 How often do your projects go over their allocated budget/headcount?
Q4 How much of the projects’ goals does your team meet?
Q5 How often are stakeholders (users, customers, management board, etc.) satisfied with the projects’ results?

Human-rooted Conflict
Q6 Members of this team admit mistakes, apologize, and share learnings with one another.
Q7 There are often tensions and conflicts in the room that do NOT get surfaced or resolved.
Q8 How often do you experience conflicting situations due to people from different domains and functions in the projects?
Q9 How often do your general interests and priorities conflict with the others during projects?

Non-human-rooted Conflict
Q10 How efficiently do the methodologies (agile, waterfall, etc.) and processes (general workflow process) match with goals or people skills?
Q11 How appropriate do you find the tools (e.g. domain-specific tools, communication tools, etc.) that you and your team are using in workflow processes?
Q12 Are the major documents and product parts generally well-constructed, up-to-date and free of inconsistencies?
Table 4
Details of expert interviews.
ID Organization Size Position Experience (Years)
I1 Corporate Developer 3
I2 Corporate Tester 1
I3 Corporate Product Owner 4
I4 SME Executive Manager 7
I5 Corporate Middle Manager 6
I6 Corporate Middle Manager 7
I7 SME Developer 3
I8 Corporate Developer 2
I9 Corporate Scrum Master 4
I10 Corporate Tester 2
I11 SME Developer 6
I12 SME Developer 3
I13 SME Program Manager 4

conflict can be a very generic issue such as inappropriateness of tools or
processes. Hence, the items rather aim to tackle the roots of conflicts,
not specific instances.
3.3. Expert interview

The purpose of the expert interviews was to find explanations for
the observations based on the survey study. Survey respondents who
were interested in the study could provide their contact for further
steps. We received 13 contacts who collaborated with us in conducting
an interview. We performed semi-structured, in-depth expert interviews
[20] . The interview guidelines consist of 5 primary leading questions,
which were followed by 11 sub-questions. The first leading question
addressed the general overview of the interviewee on conflict, such as
personal definition, expected consequences and so on. The second and
third leading questions focused on the relationship between conflict and
software project success factors. The fourth and fifth leading questions
investigated the effect of team size and the organization size on im-
pact of conflict. The interviews took from 30 min to 1 h The interviews
were transcribed and coded using an open-coding style. We searched
for explanations and reasons that could be used to interpret the find-
ings of the survey study. The details of the interviews are presented
in Table 4 .
4. Results

This section gives an overview of respondents’ demographic profile,
evaluation of the model and the results of hypotheses assessment and
the interviews.

Table 5
Demographic Profile of Respondents.
Variable Category N % of Respondents
Organization Type Corporate 58 54.3

SME 49 45.7
Position Executive Manager 7 6.5

Senior Manager 6 5.6
Middle Manager 25 23.4
Experienced 43 40.2
Entry Level 26 24.3

Years of Experience 20 + 12 11.2
10 – 20 9 8.4
5 – 10 22 20.6
2 - 5 43 40.2
0 – 2 21 19.6

Team Size 20 + 19 17.8
10 – 20 27 25.2
5 – 10 38 35.5
1 – 5 23 21.5

Region West Europe 59 55.1
East Europe 13 12.1
Asia 6 5.7
North America 27 25.2
Rest of World 2 1.9

4.1. Demographic profile of respondents
We summarized the demographic profile of the respondents in

Table 5 . We received a total number of 107 responses. The number of
responses from corporate firms are almost the same as the number of
responses from SMEs. Regarding the position of the respondents in the
organization, we have more responses from employees in the lower lev-
els of organization. This is as we expected, since it was challenging to
reach executive and senior managers to fill out the questionnaire. About
60% of the respondents have up to five years of experience and about
20% of the respondents have more than 10 years of experience. Hence,
we expect the results to be representative of less experienced persons.
The number of responses from different sizes of the teams are evenly
divided and almost no group has a significantly higher number of re-
sponses. Based on the contacts that we had, most of the responses are
from Europe and the second are a group from North America.
4.2. Measurement model assessment

Before studying the relationships between HRC, NHRC and software
project success, several empirical issues must be examined. First, we
must analyze whether the items that we have used to measure HRC and
NHRC are in fact measuring two different constructs (rather than a single
conflict construct). We use principal factor analysis [11] to determine

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331

Fig. 2. Scree plot.
the optimal number of underlying factors that have been measured using
the seven items that we used for measuring HRC and NHRC. To this end,
we employ two established methods. First, we investigate Eigenvalues
above 1 and second, we perform a Scree Test.

The method based on Eigenvalues retains any factor that has Eigen-
value of at least with the rationale being that any additional factor with
a less than one Eigenvalue would be unstable. In our analysis, only two
factors had Eigenvalues above 1 (2.89 and 1.33 respectively; a potential
third factor had Eigenvalue of 0.76). Scree test was introduced by Cat-
tell [12] . In this approach, the number of factors is determined based
on the last Scree (sudden drop) in the plot Eigenvalues. Accordingly,
as shown in Fig. 2 , the last big drop occurs between second and third
factors, therefore we retain the second factor but not the third one.

Next, we must examine whether the items used to measure the two
constructs load strongly on their respective factors, without loading
strongly on the other factor. In other words, we analyze whether the
questions designed for measuring HRC are actually measuring HRC and
not NHRC instead. We used the Varimax rotation to examine the pat-
tern of loadings. The results (presented in Table 6) show that the items
used to measure HRC load strongly on factor 1 (loadings are between
0.61 and 0.88) and that they do not load strongly on the second factor
(loading are between 0.09 and 0.24). Similarly, items used to measure
NHRC load strongly on factor 2 (loading are between 0.75 and 0.76)
and they do not load strongly on the first factor (loadings are between
− 0.08 and 0.28). These results confirm that the items used to measure
HRC and NHRC are appropriately measuring separate constructs.

As such, both methods point to a two-factor solution which is con-
sistent with our theory that HRC and NHRC are two different types of
conflicts. The two factors explain more than 60 percent of the variation
that the seven items contain. Once we retain two factors, we do a Vari-
max rotation after the factor analysis to see the relationship between
each survey questionnaire and each of the two factors. We report these
factor loadings in Table 6 . The factor loadings allow us to assess the em-
pirical relationship between questionnaire items with those expected by
the researcher at the time of item creation and data collection. Ideally,

Table 6
Conflict measurement questions and confir-
matory factor analysis.
Items Factor 1 (HRC) Factor 2 (NHRC)
Q6 .72 .16
Q7 .88 .10
Q8 .78 .09
Q9 .61 .24
Q10 .28 .76
Q11 .21 .75
Q12 − 0.08 .76

Fig. 3. Relation between HRC and NHRC, and Software Project Success (H1,
H2).
one would want to see 1) related items to load strongly on the same
factor (magnitude of loadings above 0.6) while loading only weakly on
the other factor (magnitude of loadings below 0.4), and 2) related items
load on the same factor in a similar direction (i.e., similar sign).

In our case, we expected Q6, Q7, Q8, and Q9 to strongly load on one
factor (magnitudes of loadings above 0.6) while not strongly loading
on the other factor (magnitude of loadings on factor 2 are all smaller
than 0.3). The same thing can be said about the three other questions.
Q10, Q11, and Q12 load strongly on the second factor (magnitude of
loadings above 0.7) while loading weakly on the first factor (magnitude
of loadings below 0.3). These loadings give us confidence that 1) Q6,
Q7, Q8, and Q9 are measuring a similar concept, 2) Q10, Q11, and Q12
are measuring a similar concept, and 3) the concept that Q6, Q7, Q8,
Q9 and the concept that Q10, Q11, Q12 are measuring are meaningfully
distinct from each other – otherwise, the questionnaire items would have
loaded strongly on both factors rather than only on one factor.

Finally, we examine Cronbach’s reliability coefficient for each con-
struct. Cronbach’s reliability coefficient is 0.77 for the HRC suggesting
a very good reliability. The reliability coefficient is 0.66 for NHRC sug-
gesting an acceptable reliability. The reliability coefficient for the five
items used to measure software project success is 0.69. Overall, the
above tests provide empirical evidence for validity of the items used
to measure HRC conflict, NHRC and software project success.
4.3. Hypothesis assessment

First, we present the results of SEM analysis 1 regarding first and sec-
ond hypotheses (see Fig. 3). We examine the relationships between HRC,
NHRC and software project success. The results suggest that HRC is neg-
atively correlated with software project success (− 0.50, p < .01), thereby
confirming H1. In addition, we find that NHRC is negatively associated
with software project success (− 0.43, p < .01), thereby confirming H2.

We also evaluate the fitness of the model based on the existing ap-
proaches in SEM. The first approach is Root Mean Square Error of Ap-
proximation (RMSEA) that ranges from 0 to 1 with smaller values in-
dicating less error (less discrepancy between data and hypothesized
model). A value of 0.06 or less is an acceptable amount of RMSEA
[26] . In our analysis, RMSEA is 0.04, which shows an acceptable fit
for our model. Moreover, we calculated the Comparative Fit Index (CFI)
that ranges from 0 to 1 with larger values indicating better fit between
data and hypothesized model. The literature suggests that values above
0.95 indicate a decent fit [26] . The CFI for our study is 0.97 that again
approves the fitness of our model. Finally, we calculated the Tucker-
Lewis Index (TLI) that captures the difference between the chi-squared
of the hypothesized model and the chi-squared of the null model. For
TLI which also ranges between 0 and 1, higher values indicate better fit
and values above 0.95 are desirable. In our analysis, the TLI is 0.96 that
shows the proper fitness of our model.

In order to examine the hypothesis about organizational size (H3),
we ran two separate SEM analyses; one for corporate organizations and
one for SME organizations. We identified the size of an organization by
asking the respondents directly. The results (see Figs. 4 and 5) suggest
1 n = 107; ∗∗∗ p < .01; ∗∗ p < .05; ∗ p < .10

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331

Fig. 4. HRC and NHRC, and Software Project Success Relation in Corporate
Organizations (N = 58).

Fig. 5. HRC and NHRC, and Software Project Success Relation in SME Organi-
zations (N = 49).

Fig. 6. HRC and NHRC, and Software Project Success Relationship in Large
Teams (Team Size > 10, N = 46).

Fig. 7. HRC and NHRC, and Software Project Success Relation in Small Teams
(Team Size < = 10, N = 61).
that NHRC and software project success are only significantly related in
corporate organizations (− 0.60, p < .01). We do not find a significant as-
sociation between NHRC and software project success in SMEs (− 0.29,
p > .10). This confirms our third hypothesis (H3). Furthermore, we also
analyzed the same moderating effect for HRC. The results show that
there is a significant negative correlation between HRC and software
project success in SMEs. Although such a correlation exists also in cor-
porate organizations, it is less significant in terms of statistics and mag-
nitude (− 0.35, p < .10).

In order to examine the moderating role of team size (H4) we run
two separate SEM analyses, one for small teams and one for large teams.
We divide the responses into small and large teams based on the answer
to the team size question. We chose 10 as the number of team members,
based on which we classify the teams into small and large. Hence, small
teams consist of 10 persons or fewer and large teams have more than 10
team members.

The results (see Figs. 6 and 7) suggest that NHRC and software
project success are only significantly related in small groups (− 0.44,
p < .05). We do not find a significant association between NHRC and
software project success in large groups (− 0.25, p > .10). This confirms
our third hypothesis (H4), that team size moderates the effect of NHRC
on software project success. Moreover, we also examined moderating
effect of team size on HRC and software project success. We find a
strong relationship between HRC and software project success in large

groups (− 0.73, p < .01) whereas the relationship between HRC and soft-
ware project success is relatively smaller in magnitude in smaller groups
(− 0.34, p < .10).

In addition, to make sure that the group size and organization size
variables are reasonably distinct, we assessed the correlation between
these two variables. Correlation of − 0.18 ensures that the two variables
are empirically unrelated.
4.4. Interviewee explanations

In general, the perspective of interviewees on conflict is very diverse,
with attitudes ranging from assuring that conflict is mostly a negative
phenomenon (I1, I4, I7, I8) to the arguments that conflicts should be
celebrated (I5) and treated positively (I2, I3, I10, I12). Also, one inter-
viewee argued that as long as differences and confrontations lead to a
solution and do not block the progress, that they prefer not to call it a
conflict (I11). Nevertheless, all interviewees reported that they experi-
ence conflict frequently in their everyday work.

Whether conflicts affect the project in the short or long term was
mentioned by several interviewees. Three interviewees argued that in
short term, all conflicts may have negative impact on the project be-
cause at a minimum, they hold up the project (I3, I12, I13). However,
in the long run, people and organizations can learn from conflicts and if
the impact is analyzed over the long term, it might be even positive. Par-
ticularly for NHRC, conflicts can show the deficiencies of the processes
and tools, which are much easier to be adjusted and resolved (I12). In
contrast, an interviewee reported that while the consequences of a con-
flict were obscure in short term, over the long term, several individuals
changed their position in the company (I6). Furthermore, two intervie-
wees discussed that the level, in which you work determine which types
of conflict you experience more: for a low-level developer, it is mostly
HRC, because non-human factors are already decided for them by man-
agers (I11, I12).

The clearest impact of any conflict for interviewees was delay, which
is true for almost any conflict (e.g., I1, I3, I5, I6, I13). Conflict, whether
HRC or NHRC, means that things followed a path other than what was
planned. Consequently, the schedule, priorities and objectives are af-
fected and mostly in negative way (I4, I5, I13). In the following, we
report the interviewees’ experiences and opinions in detail on the ways
HRC and NHRC affect project success. Moreover, we provide our find-
ings from the interviews on the moderating role of organizational size
and team size on conflict’s impact on the software project success.
4.4.1. How does HRC affect project success?

The most experienced HRCs exist in working with an external person,
either from another team or department or even from the same team, but
who are in another location (I1, I2, I9, I11). Lack of awareness about the
state of the other party, the motives and rationale behind the decisions
and requests is a major factor in halting progress (I11, I13). External
parties usually have different priorities and one party should wait for
the other one to progress, which adds delay to the project (I1). This de-
lay is in addition to regular delays caused by long rounds of discussions
and meetings for resolving the conflicts. In such situations, conflict may
also directly affect the quality and features of the final product. For in-
stance, a development team may reject developing a feature requested
by marketing team, simply because the motives are unclear, and they
think the requested feature is absurd (I11, I13). Particularly, if the de-
velopment team has already experienced the fact that their effort and
time are dismissed, they then feel that they cannot trust external parties.
Dismissing developers’ opinions and effort demotivates them and low-
ers their performance, which in turn leads to more delays and a lower
quality outcome (I4, I6, I7).

As mentioned by interviewees, company culture is a major decisive
factor for the level of impact that conflicts can exert (I6, I10). Company
culture determines how a conflict should be treated and solved and if
handled incorrectly, the conflict can negatively influence the success of a

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
project. For example, very similar conflicts reported by two interviewees
had very different outcomes (I10, I12). As a common emerging conflict,
urgent change requests from sales or marketing teams are conflicting
with the priorities of the product owner and development team. In one
company this conflict led to tension, frustration and mistrust among the
parties (I12, I13), whereas in another company, it became the basis for
improving the processes and communication with the clients (I10).

Conflict between roles and the importance of roles governing how
a conflict is managed were also reported frequently. One interviewee
urged that there should be a leader in the team who can make final deci-
sions and bring closure to discussions (I7). Several interviewees stressed
that parties in higher positions experience conflicts differently than the
low-level development team (I1, I11, I12, I13). For example, the product
owners see a broader view in comparison to software developers. Con-
sequently, product owners can better handle conflicts and mitigate the
negative impacts more easily (I1). In contrast, developers may not see
the big picture, but since they are the main creators of the final product,
they take pride in its implementation and techniques, which may make
them less tolerant of others’ views (I3). Also, introducing new roles to
a project may create new conflicts (I3). In general, the differences in
priorities for different roles is one of the most frequent causes of con-
flicts, such as those among a management team, the product owners,
the project managers and the developer team (I10, I12, I13). Conflicts
in priorities directly affect quality of the delivery and the delivery time.

The openness of individuals can mitigate conflict, whereas having a
biased attitude usually worsens conflicts and stops the work progress,
which in turn leads to delays and lowered productivity. For example,
one interviewee reported that usually, experienced developers are very
closed to others’ opinions and do not readily accept input from younger
developers, which causes delays and wrong implementations (I1). In
contrast, in a similar situation, with an open and experienced developer,
a young developer could learn principles and some implicit expertise,
and the experienced one could learn new technologies and trends (I9).

It is noteworthy to mention that HRC is more frequent in highly in-
ternational teams where many individuals are from different cultures
and usually speak their second or third language at everyday work. This
leads to unexpressed opinions and motives which harm everyone, re-
duces trust, increases conflicts and impedes resolution (I3, I11).

Interviewees also stated several ways that conflicts can be positive
for a project. The most-often mentioned way was when a conflict sit-
uation became the basis for learning. In that way, differences among
perspectives, mind-sets, skills, etc. become teaching materials for the
involved parties. For example, product design would be more complete
as different mindsets are exposed to various aspects of the product de-
sign. Another discussed learning example was between an experienced
developer and a young developer who were not able to benefit from
their conflicts to learn from each other (I9). Conflicts could be exploited
as a means of exposing members to improvement points, particularly for
workflow procedures and development approaches.

In general, in the worst-case scenario, HRC conflicts can lead to a
blame game among all involved parties, demotivating everyone and
damaging the esprit de corps (I12). The more personal a conflict gets, the
harder it gets for it to be resolved, causing more negative impact on the
project outcome (I3, I9, I13). The negative impact of HRC on a project’s
success were clear to all interviewees. Even those team members who
thought the conflict should be treated positively mostly experienced the
conflict as having a negative impact on the project, although some posi-
tive outcomes were also reported. The interviewees mostly believed that
HRC is harder to resolve and more influential for success of the project
than NHRC (I5, I6, I11, I12).
4.4.2. How does NHRC affect project success?

Interviewees were not familiar with distinguishing between HRC and
NHRC. However, they approved that such a classification is valid. They
mostly used to view conflict as human tension, whether the roots are hu-
man factors or non-human factors. Most interviewees saw non-human

factors as auxiliary and non-essential, and low-level developers in par-
ticular did not pay much attention to NHRC because most non-human
factors such as tools and processes are defined by managers and such
factors are considered constants for the rest of the development team
(I11, I12). Nevertheless, after clearly introducing the concepts of HRC
and NHRC, the interviewees described many NHRCs.

In many conflicting situations, NHRC exists as much HRC. For exam-
ple, in working with external teams, NHRC happens almost as much as
HRC, since external parties may use different processes, tools, standards
and formats (I1, I2).

Some decision-making processes can inherently create more conflict,
such as having many hierarchy levels (I2, I4). The success of a project
can suffer considerably due to conflicts during the decision-making pro-
cesses, since it has direct impact on the progress of work and the final
product (I2). Sometimes team structure must be changed in order to
avoid NHRC (I3). However, change in the team shape may introduce
new conflicts to the team and take some time for adjustment (I8).

One interviewee discussed a process that they follow for assuring
quality of the final product and its direct impact on the success of project
(I6). In such a process, even small inconsistencies in documents can stop
the progress and cause delays (I6). Generally, long processes add delay
to the project (I2), but following no methodology and process also drives
everything to a personal level, which can create more HRC (I7). Another
problematic situation is when individuals are involved in more than one
project at a time. This creates conflicts in priorities between the two
projects. The individual involved in two projects usually experiences
delay in one or both projects, and the quality of her/his outcome is
often poor (I8).

There was a consensus among most of the interviewees that tools
are very important and influential in projects (I1, I2, I3, I4, I6, I8,
I13). This is interesting since they had always asserted the importance
of tools, but they usually did not consider their role in creating con-
flicts. The noted important tools for the interviewees can be divided
into three categories of communication tools (e.g., Slack), issue track-
ing tools (e.g., Jira) and development tools (e.g. Git). Using appropriate
tools increases work efficiency and when there is a conflicting situa-
tion caused by tool-related aspects, work efficiency drops considerably
(I2). For example, the connection of tools with each other can facilitate
the work (I4, I5), particularly build automation tools (I13). In contrast,
legacy systems that must be adjusted introduce delay to the project (I8).
Also, when there is an individual who is not familiar with a tool, or a
new tool is introduced to the project, can significantly slow down the
progress of a project (I10, I12). One interviewee reported that DevOps-
related tools and processes have the most direct impact on the project.
Any conflict in DevOps issues adds considerable delay to the delivery
time (I6).

Nevertheless, several interviewees argued that despite negative im-
pacts of NHRC, it can be resolved much more easily than HRC (I1, I6,
I12).
4.4.3. How does the size of an organization moderate the impact of a
conflict on a project’s outcome?

The survey results showed that there is a significant negative cor-
relation between NHRC and project success in corporate organizations,
whereas such correlation does not exist for SME organizations. Also, we
found that HRC is negatively correlated with project success in both
types of organizations, but it is more statistically significant for SME
organizations. We asked interviewees about their expectations on how
organization size moderates the relationship of conflict and success. In
the following, we provide the interviewees’ answers and their interpre-
tation of the survey’s results.

The interviewees all expected the same results as found in the
survey. They highlighted the importance of coordination in corpora-
tions due to large numbers of divisions, departments and teams. Such
coordination is highly dependent on non-human factors such as tools,
processes and artifacts (I3, I6, I11, I12, I13). For example, as discussed

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
for HRC, transparency of involved parties’ motives hugely affects
how conflicts emerge and influence a project. In larger organizations,
non-human factors such as processes and tools are vital for creating
such transparency, which makes NHRC more influential (I3).

Another aspect of large organizations is that the tools and processes
are mostly defined in a top-to-bottom manner (I6, I11, I12). Top man-
agers determine non-human elements based on the average needs of the
employees. There is always a team, whose needs differ from typical av-
erage needs. Hence, such top-to-bottom decision makings always lead
to NHRC for low-level teams (I11). In contrast, SME organizations can
customize processes and tools to their needs and employees, making
them more efficient and less conflict prone (I6, I11). In addition, if an
NHRC emerges in SME organizations, it is much easier to manage and
resolve it (I6), whereas in large organizations, any small NHRC can have
a domino effect and influence many teams and subprojects (I12).
4.4.5. How does team size moderate a conflict’s impact on project
outcome?

The survey results showed that there is a significant negative corre-
lation between NHRC and project success in small teams, whereas such
correlation does not exist in large teams. Similar to organization size,
in both large and small teams, HRC was found to negatively correlate
with project success. We asked the interviewees about their expectations
on moderation effect of team size and their interpretation the survey’s
results.

In contrast to the survey’s results, the interviewees expected that
NHRC would be more influential in large teams instead of small
teams. Their reasoning here was the same as for the importance of
NHRC in larger organizations. In other words, the interviewees ex-
pected that more coordination in larger teams lead to the same con-
sequences for NHRC impact on project success. Although the survey’s
results were surprising to them at first, they could relate and pro-
vide some hypotheses after the discussion advanced. In the following
section, we provide the interpretation of the survey’s results in two
parts. First, we detail why in small teams NHRC was influential. Sec-
ond, we elaborate the reasons for the neutrality of NHRC for large
teams.

The smaller teams are, the more informal the handling issues and
tasks (I1, I2, I6, I11, I12). In smaller teams, individuals tend to do tasks
and manage issues verbally with more rounds of talks because it is pos-
sible and seems quicker (I4). Consequently, non-human factors such as
processes are overlooked (I12, I13). Thus, in small teams, NHRC is more
frequent and more challenging to resolve, which means it has a greater
impact on a project’s outcome.

Usually, it takes time for a team to grow. Hence, the deficiencies in
a team’s non-human factors team are mostly exposed and tackled as the
team is growing (I13). Therefore, large teams use processes and tools
that are established and their complications have already been resolved
(I6, I13). Furthermore, in contrast to small teams, whose team members
may be all inexperienced, large teams typically consist of experienced
individuals as well as less-experienced developers (I1, I11, I13). There-
fore, in the case of an NHRC, experienced team members manage the
conflict quicker and more efficiently, preventing a major negative im-
pact on project success. As reflected in discussions with an interviewee,
lack of a leader in their small team led to resolution-less conflicts, which
negatively impacted the project outcome (I7). Nevertheless, as can be
seen from the survey results, such interventions from experienced ex-
perts may worsen the influence of HRCs.

Regarding the HRC, many interviewees (e.g., I1, I2, I3, I11) argued
that in small teams, HRCs are resolved very quickly as communication
is easy and team members know and trust each other. In large teams,
there are always individuals who cannot get along with each other and
high communication overhead among them hinders the resolution of
such conflicts (I6, I13). Therefore, HRC would be more influential on
project success in larger teams than in small teams.

5. Discussion
The growth of variety among domains and stakeholders in software

development introduces higher number of conflicts in the projects, since
diversity creates more sources of conflict [50,51] . Such a diversity is re-
flected in not only differences among people, but also in the variety of
tools, methods and development mechanisms. In this study, we investi-
gated how conflicts influence software project success, and whether the
conflict originates from the non-human elements (NHRC) or human-
related elements (HRC).
5.1. Discussing findings

We found that there are statistically significant negative correla-
tions between both HRC and NHRC and software project success (p-
value < 0.01 for both HRC and NHRC). On the one hand, such results
confirm the previously found negative consequences of conflict in the
literature [22,24] . On the other hand, the findings question whether
the positive effects of conflict such as learning and better ideation help
software project success [13,40] . Based on the interviews, a possible ex-
planation could be that conflict decreases software project success in
short term. While in long term, conflict can be leveraged as an expo-
sure to weaknesses and lessens-learned, which may increase the overall
software project success. Several interviewees also argued that conflicts
are not necessarily negative and should be treated as a positive issue
more often. Nevertheless, the positive effects of conflicts may be lim-
ited to a particular scope and on a project level, they are either harmful
or neutral. But we could not find any sign of positive effect of conflict
on software project success in any situation.

One explanation is that conflict is a multidimensional phe-
nomenon —it affects and is affected by various elements. Hence, nar-
rowing down the variables of our research to only two types of conflict,
software project success, team size and organization size, cannot present
complex relation of conflict with other aspects of a software project.
For example, as mentioned in several interviews, the conflict resolution
style and attitude of those involved can determine negativity or posi-
tivity regarding a conflict’s consequences. However, as the number of
stakeholders and their conflicts grows, it becomes more challenging to
deal with every single conflict in a constructive manner. Consequently,
the overall impact of conflicts on software project success would be neg-
ative.

HRC was found to negatively correlate with software project success,
regardless of team size and the size of an organization. In contrast, the
results show that both team size and the size of an organization mod-
erate the effect of NHRC. Corporate organizations have a high number
of stakeholders and hierarchies that change over time. It would be chal-
lenging to update numerous stakeholders on goals and progress. The
information may get lost, be rendered incomplete, and inconsistent in-
formation may lead to errors and delays. Moreover, corporations have
a higher number of remote employees since development sites are scat-
tered around the world. Hence, not only is the communication load in-
herently heavier, but also working in different sites and positions leaves
no room for watercooler conversations. Therefore, people are more de-
pendent on the defined processes, tools and documentations in order to
keep everyone apprised and able to deal with different situations. Conse-
quently, NHRC can significantly influence project outcome. In contrast,
in SMEs, the problematic non-human factors can be managed quickly
through short conversations and meetings. Therefore, findings show that
the impact of NHRC would be dismissed in favor of the success of the
project. Even spending too much effort on tools and processes in SMEs
could impede success of the project.

Findings involving the effect of team size was interestingly unex-
pected. In contrast to the results of organization size moderation, NHRC
is negatively correlated with software project success in small teams
(team size < = 10). We found no significant correlation between NHRC
and software project success in large teams (team size > 10). Many in-

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
terviewees were surprised by our findings. They expected that the same
circumstances, that make NHRC more influential in large organizations
would also make NHRC more influential in large teams. Nevertheless,
we found several explanations in the interviews such as overlooking the
non-human elements in small teams, lack of experienced individuals in
small teams, incremental improvement of non-human elements in larger
teams as they grow in size. Our results are aligned with the findings of
[25] , who found that task conflict is less influential in large teams, and
[18] , who found that large teams benefit from formal processes. Further-
more, we complete the prior research by providing explanations from
the interviews on the ways, which team size moderates conflict’s impact
on software project success.
5.2. Theoretical and practical implications

We contribute to the literature in three ways. First, we extend the ex-
isting types of conflict by introducing HRC and NHRC types. Although
human and non-human elements are intertwined in software develop-
ment, acknowledging the dissimilar nature of these two kinds of ele-
ments help us to better understand the dynamic of conflicts in software
development. This distinction is particularly important for studying soft-
ware projects, which deal with various domains and teams, because it is
common practice that teams from different domains employ dissimilar
sets of tools and processes [61,67] . Furthermore, prior studies mostly fo-
cused on group-level implications of conflict (e.g., team performance).
How conflict’s influences on project outcome, particularly in software
projects, was missing. We examined this kind of impact and found that
conflicts, whether HRC or NHRC, have detrimental effects on the suc-
cess of software development on a project level. Hence, we contribute to
the literature on conflict in software development and the literature on
software project success. Establishing upon the findings of this study,
future research can incorporate conflict as an indicator or influential
factor for software project success. Finally, we deepened our knowledge
of conflicts by analyzing the moderating effect of two contextual factors:
team size and organization size. The findings proved that the moderating
effect of both factors is relevant for NHRC, whereas team size and or-
ganization size cannot change impact of HRC significantly. The findings
involving NHRC in small teams provide new evidence of team complex-
ity. This extends our knowledge about the impacts of organization and
team on the software project success.

The findings implicate several managerial concerns. First, practition-
ers should notice that the presence of HRC is bad for the success of
software projects in any situation. They must strive for a constructive
atmosphere in the project to transform negative effects of conflicts into
positive ones. Based on the interviews, culture of a company has a big
role in the way, the conflicts are resolved. Second, managers in corpo-
rate organizations need to pay more attention to non-human elements.
They should expect and prepare for NHRCs in order to resolve them
properly. We recommend that corporations continuously improve their
non-human elements such as processes, tools and mechanisms for in-
creasing awareness among employees. On the other hand, SMEs should
not waste their time and budget on creating extensive workflow pro-
cesses and providing advanced tools, nor should project managers of
small teams underestimate the impact of non-human factors. Although it
might not be a project manager’s priority to address tools and processes
in small teams, such elements need to be managed and adjusted properly
to achieve a more successful software project. In addition, developers in
small teams should not overlook the importance of non-human elements
and prepare themselves for NHRCs.
5.3. Limitations

The findings of this study are limited to its definitions for HRC and
NHRC. We provide pieces of evidence on how non-human factors can
play a role in the success of software projects from a conflict lens. How-
ever, we cannot generalize the findings to various aspects of non-human

factors in software development and project success. Moreover, any con-
flict perspective is more associated with human aspects than the non-
human factors.

Our study followed a mixed-method approach using survey and semi-
open expert interviews. The survey analysis is based on a reasonable but
limited number of respondents. Besides, more than 75% of the respon-
dents are from west Europe and north America. Hence, we acknowledge
that the findings of the survey might have been biased by the region
and the short number of respondents. Furthermore, the survey reflects
the perception of the respondents based on the questions. In addition,
the questions used for measuring conflict and software project success
may be not precise and completely reflecting what they actually were
measuring. Nevertheless, such limitations exist inherently in any survey
study. We recommend future research to replicate and extend the survey
of this study in order to broaden the knowledge about nature of conflicts
in software development and increase the generalizability of its results.

To cover the limitations of our survey study, we also conducted 13
in-depth semi-structured interviews. We aimed to tackle the weaknesses
of the survey and dive deeper into the rationale behind the findings of
the survey. However, findings from the expert interviews are inherently
limited to personal experiences of the interviewees and we cannot make
firm statements about their generalizability.

We believe by combining both a survey study and an expert inter-
view study, we reasonably tackled the limitations of both research meth-
ods and provide interesting findings for both researchers and practition-
ers, particularly project or product managers.
6. Conclusion and future work

In this study, we introduced a new perspective on conflicts based on
STS theory to incorporate human and non-human factors. Based on this
perspective, we investigated the relationship between HRC and NHRC
and software project success. Our findings showed that both HRC and
NHRC are negatively associated with software project success. More-
over, our investigation into the moderating effect of team size and the
size of an organization led to interesting findings. Regarding team size,
there is no statistically significant correlation between NHRC and soft-
ware project success in large teams, whereas we found NHRC negatively
correlated with software project success in smaller teams. Regarding the
size of an organization, NHRC are negatively correlated with software
project success in corporations, whereas there is no evidence for such
a correlation in SMEs. We also found that HRC is negatively correlated
with software project success, regardless of team size and the size of an
organization. We conclude that even though resolving conflicts properly
can have potential positive effects, presence of conflicts, particularly
HRC, is an indicator for poor progress in software projects.

Future research can dive deeper into other factors that may moderate
the impact of conflicts. research should also incorporate other aspects
into the investigation, such as the relationship between different conflict
resolution methods and the consequences of HRC and NHRC.
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.
CRediT authorship contribution statement

Mohammad R. Basirati: Conceptualization, Methodology, Investi-
gation, Writing - original draft, Writing - review & editing. Marko Ota-
sevic: Investigation, Writing - original draft. Koushyar Rajavi: Method-
ology. Markus Böhm: Methodology, Conceptualization, Supervision,
Project administration. Helmut Krcmar: Methodology, Supervision,
Funding acquisition.

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
Acknowledgement

This work was supported by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) collaborative research center
‘Sonderforschungsbereich SFB 768 “Managing cycles in innovation pro-
cesses – Integrated development of product-service-systems based on
technical products ”.

We also thank Morvarid Khadem and Bijan Eghtesadi for useful dis-
cussions and comments on the manuscript.
References
[1] N. Agarwal , U. Rathod , Defining ‘success’ for software projects: an exploratory rev-

elation, Int. J. Project Manag. 24 (4) (2006) 358–370 .
[2] A. Aldahmash , A.M. Gravell , Y. Howard , A review on the critical success factors of

agile software development, in: Proceedings of the European Conference On Soft-
ware Process Improvement, Springer, 2017, pp. 504–512 .

[3] M. Aldekhail , A. Chikh , D. Ziani , Software requirements conflict identification:
review and recommendations, Int. J. Adv. Comput. Sci. Appl. 7 (10) (2016) 326–335 .

[4] A.C. Amason , H.J. Sapienza , The effects of top management team size and interaction
norms on cognitive and affective conflict, J. Manag. 23 (4) (1997) 495–516 .

[5] R. Atkinson , Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other success criteria, Int. J. Project Manag. 17 (6)
(1999) 337–342 .

[6] R.P. Bagozzi , Y. Yi , Specification, evaluation, and interpretation of structural equa-
tion models, J. Acad. Mark. Sci. 40 (1) (2012) 8–34 .

[7] M. Bano , D. Zowghi , A systematic review on the relationship between user involve-
ment and system success, Inf. Softw. Technol. 58 (2015) 148–169 .

[8] H. Barki , J. Hartwick , Interpersonal conflict and its management in information sys-
tem development, Mis Q. (2001) 195–228 .

[9] W. Belassi , O.I. Tukel , A new framework for determining critical success/failure
factors in projects, Int. J. Project Manag. 14 (3) (1996) 141–151 .

[10] R.P. Bostrom , J.S. Heinen , Mis problems and failures: a socio-technical perspective,
part II: the application of socio-technical theory, MIS Q. 1 (4) (1977) 11–28 .

[11] Bryant, F.B., and Yarnold, P.R. 1995. “Principal-Components Analysis and Ex-
ploratory and Confirmatory Factor Analysis”).

[12] R.B. Cattell , The Scree Test for the Number of Factors, Multivar. Behav. Res. 1 (2)
(1966) 245–276 .

[13] H.-.G. Chen , J.J. Jiang , J.-.C. Chen , J. Shim , The impacts of conflicts on requirements
uncertainty and project performance, J. Int. Technol. Inf. Manag. 13 (3) (2004) 2 .

[14] J. Daspit , C. Justice Tillman , N.G. Boyd , V. Mckee , Cross-functional team effective-
ness: an examination of internal team environment, shared leadership, and cohesion
influences, Team Perform. Manag. Int. J. 19 (1/2) (2013) 34–56 .

[15] S.M. Easterbrook , E.E. Beck , J.S. Goodlet , L. Plowman , M. Sharples , C.C. Wood , A
survey of empirical studies of conflict, in: CSCW: Cooperation or Conflict?, Springer,
1993, pp. 1–68 .

[16] A. Fisk , N. Berente , K. Lyytinen , Boundary spanning competencies and information
system development project success, ICIS (2010) 96 .

[17] Y. Fried , H.A. Ben ‐David , R.B. Tiegs , N. Avital , U. Yeverechyahu , The interactive
effect of role conflict and role ambiguity on job performance, J. Occup. Organ. Psy-
chol. 71 (1) (1998) 19–27 .

[18] B. George , T. Erikson , A. Parhankangas , Preventing dysfunctional conflict: examin-
ing the relationship between different types of managerial conflict in venture capi-
tal-backed firms, Venture Cap. 18 (4) (2016) 279–296 .

[19] E. Giebels , O. Janssen , Conflict stress and reduced well-being at work: the buffering
effect of third-party help, Eur. J. Work Organ. Psychol. 14 (2) (2005) 137–155 .

[20] J. Gläser , G. Laudel , Experteninterviews Und Qualitative Inhaltsanalyse,
Springer-Verlag, 2010 .

[21] L.L. Greer , K.A. Jehn , Chapter 2 the pivotal role of negative affect in understanding
the effects of process conflict on group performance, in: Affect and Groups, Emerald
Group Publishing Limited, 2007, pp. 21–43 .

[22] W. Guang-dong , The relationship between project team dynamic feature, conflict
dimension and project success–an empirical research from Shanghai, China, Pakistan
J. Stat. 29 (6) (2013) .

[23] I. Hadar , A. Zamansky , Cognitive factors in inconsistency management, in: Pro-
ceedings of the IEEE 23rd International Requirements Engineering Conference (RE),
IEEE, 2015, pp. 226–229 .

[24] He, J. 2007. “The Moderating Effect of Cognitive Capability on Task Conflict: A
Longitudinal Study of Task Conflict and Team Performance in Student Software De-
velopment Teams,” Association for Information Systems - 13th Americas Conference on
Information Systems, AMCIS 2007: Reaching New Heights , pp. 2287–2307.

[25] K.B. Hjerto , B. Kuvaas , Burning hearts in conflict: new perspectives on the intragroup
conflict and team effectiveness relationship, Int. J. Confl. Manag. 28 (1) (2017)
50–73 .

[26] L.t. Hu , P.M. Bentler , Cutoff criteria for fit indexes in covariance structure analysis:
conventional criteria versus new alternatives, Struct. Equ.Model. Multidiscip. J. 6
(1) (1999) 1–55 .

[27] L.A. Ika , Project Success as a Topic in Project Management Journals, Project Manag.
J. 40 (4) (2009) 6–19 .

[28] K.A. Jehn , A multimethod examination of the benefits and detriments of intragroup
conflict, Adm. Sci. Q. (1995) 256–282 .

[29] K.A. Jehn , A qualitative analysis of conflict types and dimensions in organizational
groups, Adm. Sci. Q. 42 (3) (1997) 530–557 .

[30] K.A. Jehn , E.A. Mannix , The dynamic nature of conflict: a longitudinal study
of intragroup conflict and group performance, Acad. Manag. J. 44 (2) (2001)
238–251 .

[31] M. Jørgensen , A survey on the characteristics of projects with success in delivering
client benefits, Inf. Softw. Technol. 78 (2016) 83–94 .

[32] R. Joslin , R. Müller , The impact of project methodologies on project success in dif-
ferent project environments, Int. J. Manag. Proj. Bus. 9 (2) (2016) 364–388 .

[33] B. Kaplan , K.D. Harris-Salamone , Health it success and failure: recommendations
from literature and an Amia workshop, J. Am. Med. Inform. Assoc. 16 (3) (2009)
291–299 .

[34] Kawamura, T., and Takano, K. 2014. “Factors affecting the project performance of
information systems development: comparison of organizational cultures,” 2014 21st
Asia-Pacific Software Engineering Conference : IEEE, pp. 327–334.

[35] M. Kersten , A Cambrian explosion of devops tools, IEEE Softw. 35 (2) (2018) 14–17 .
[36] S.U. Khan , M. Niazi , R. Ahmad , Empirical investigation of success factors for offshore

software development outsourcing vendors, IET Softw. 6 (1) (2012) 1–15 .
[37] R.B. Kline , Principles and Practice of Structural Equation Modeling, Guilford publi-

cations, 2015 .
[38] L. Leite , C. Rocha , F. Kon , D. Milojicic , P. Meirelles , A survey of devops concepts

and challenges, ACM Comput. Surv. 52 (6) (2019) Article 127 .
[39] N. Levina , Collaborating on multiparty information systems development projects:

a collective reflection-in-action view, Inf. Syst. Res. 16 (2) (2005) 109–130 .
[40] T.-.P. Liang , J. Jiang , G.S. Klein , J.Y.-C. Liu , Software quality as influenced by in-

formational diversity, task conflict, and learning in project teams, IEEE Trans. Eng.
Manag. 57 (3) (2010) 477–487 .

[41] T.-.P. Liang , C.-.C. Liu , T.-.M. Lin , B. Lin , Effect of team diversity on software project
performance, Ind. Manag. Data Syst. 107 (5) (2007) 636–653 .

[42] J.Y.-C. Liu , H.-.G. Chen , C.C. Chen , T.S. Sheu , Relationships among Interpersonal
Conflict, Requirements Uncertainty, and Software Project Performance, Int. J. Proj.
Manag. 29 (5) (2011) 547–556 .

[43] K. Lovelace , D.L. Shapiro , L.R. Weingart , Maximizing cross-functional new product
teams’ innovativeness and constraint adherence: a conflict communications perspec-
tive, Acad. Manag. J. 44 (4) (2001) 779–793 .

[44] Mäntylä, M.V., Jørgensen, M., Ralph, P., and Erdogmus, H. 2017. “Guest Ed-
itorial for Special Section On Success and Failure in Software Engineering.”
Springer.

[45] A.T. Mohr , J.F. Puck , Role Conflict, General Manager job satisfaction and stress and
the performance of IJVS, Eur. Manag. J. 25 (1) (2007) 25–35 .

[46] A.C. Mooney , P.J. Holahan , A.C. Amason , Don’t take it personally: exploring cog-
nitive conflict as a mediator of affective conflict, J. Manag. Stud. 44 (5) (2007)
733–758 .

[47] G.C. Moore , I. Benbasat , Development of an instrument to measure the perceptions of
adopting an information technology innovation, Inf. Syst. Res. 2 (3) (1991) 192–222 .

[48] B. Nuseibeh , S. Easterbrook , A. Russo , Leveraging inconsistency in software devel-
opment, Computer 33 (4) (2000) 24–29 .

[49] N. Parolia , J.V. Chen , J.J. Jiang , G. Klein , Conflict resolution effectiveness on the
implementation efficiency and achievement of business objectives in it programs: a
study of it vendors, Inf. Softw. Technol. 66 (2015) 30–39 .

[50] L.H. Pelled , K.M. Eisenhardt , K.R. Xin , Exploring the black box: an analysis of work
group diversity, conflict and performance, Adm. Sci. Q. 44 (1) (1999) 1–28 .

[51] J. Pernstål , T. Gorschek , R. Feldt , D. Florén , Requirements communication and bal-
ancing in large-scale software-intensive product development, Inf. Softw. Technol.
67 (2015) 44–64 .

[52] P. Poon , C. Wagner , Critical success factors revisited: success and failure cases of in-
formation systems for senior executives, Decis. Support Syst. 30 (4) (2001) 393–418 .

[53] M. Prilepok , Managing Conflict Effectively in Negotiations, Operations Extranet,
2018 .

[54] D. Ribes , S. Jackson , S. Geiger , M. Burton , T. Finholt , Artifacts that organize: dele-
gation in the distributed organization, Inf. Organ. 23 (1) (2013) 1–14 .

[55] Rizzo, J.R., House, R.J., and Lirtzman, S.I. 1970. “Role Conflict and Ambiguity in
Complex Organizations,” Administrative science quarterly), pp. 150–163.

[56] J.J.L. Schepers , E.J. Nijssen , G.A.H. van der Heijden , Innovation in the frontline: ex-
ploring the relationship between role conflict, ideas for improvement, and employee
service performance, Int. J. Res. Mark. 33 (4) (2016) 797–817 .

[57] S. Schmidt , U. Roesler , T. Kusserow , R. Rau , Uncertainty in the workplace: examining
role ambiguity and role conflict, and their link to depression —a meta-analysis, Eur.
J. Work Organ. Psychol. 23 (1) (2014) 91–106 .

[58] F.P. Seth , E. Mustonen-Ollila , O. Taipale , K. Smolander , Software quality construc-
tion in 11 companies: an empirical study using the grounded theory, Softw. Qual. J.
23 (4) (2015) 627–660 .

[59] M. Shameem , B. Chandra , C. Kumar , A.A. Khan , Understanding the relation-
ships between requirements uncertainty and nature of conflicts: a study of
software development team effectiveness, Arab. J. Sci. Eng. 43 (12) (2018)
8223–8238 .

[60] J.D. Shaw , J. Zhu , M.K. Duffy , K.L. Scott , H.-.A. Shih , E. Susanto , A Contingency
model of conflict and team effectiveness, J. Appl. Psychol. 96 (2) (2011) 391 .

[61] W. Song , Requirement management for product-service systems: status review and
future trends, Comput. Ind. 85 (2017) 11–22 .

[62] G.L. Stewart , A meta-analytic review of relationships between team design features
and team performance, J. Manag. 32 (1) (2006) 29–55 .

[63] B.N. Sullivan , Competition and beyond: problems and attention allocation in the
organizational rulemaking process, Organ. Sci. 21 (2) (2010) 432–450 .

M.R. Basirati, M. Otasevic and K. Rajavi et al. Information and Software Technology 126 (2020) 106331
[64] K.-.H. Tsai , T.T. Hsu , Cross-functional collaboration, competitive intensity, knowl-

edge integration mechanisms, and new product performance: a mediated modera-
tion model, Ind. Mark. Manag. 43 (2) (2014) 293–303 .

[65] V. Venkatesh , S.A. Brown , H. Bala , Bridging the qualitative-quantitative divide:
guidelines for conducting mixed methods research in information systems, MIS Q.
(2013) 21–54 .

[66] J.A. Wall Jr , R.R. Callister , Conflict and its management, J. Manag. 21 (3) (1995)
515–558 .

[67] S. Wiesner , E. Marilungo , K.-.D. Thoben , Cyber-physical product-service systems:
challenges for requirements engineering (mini special issue on smart manufactur-
ing), Int. J. Autom. Technol. 11 (1) (2017) 17–28 .

[68] L.-.R. Yang , J.-.H. Chen , X.-.L. Wang , Assessing the effect of requirement definition
and management on performance outcomes: role of interpersonal conflict, product
advantage and project type, Int. J. Proj. Manag. 33 (1) (2015) 67–80 .

[69] M. Zahedi , M. Shahin , M. Ali Babar , A systematic review of knowledge sharing chal-
lenges and practices in global software development, Int. J. Inf. Manage. 36 (6, Part
A) (2016) 995–1019 .

[70] D. Zowghi , V. Gervasi , Erratum to “on the interplay between consistency, complete-
ness, and correctness in requirements evolution ”, Inf. Softw. Technol. 46 (11) (2004)
763–779 .

Main Publication: P4

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2018
https://doi.org/10.21278/idc.2018.0287

TOWARDS SYSTEMATIC INCONSISTENCY
IDENTIFICATION FOR PRODUCT SERVICE
SYSTEMS

M. R. Basirati, M. Zou, H. Bauer, N. Kattner, G. Reinhart, U. Lindemann, M. Böhm, H.
Krcmar and B. Vogel-Heuser

Abstract
Value shift towards services led to emergence of product-service systems (PSS) as intertwined products
and services. PSS development requires collaborating teams with higher domain diversity to tackle
service side as well as product side. Since every domain employs a particular set of tools and models, it
is challenging to manage consistency among them. However, the PSS literature lacks approaches for
managing inconsistency among various type of models. This study proposes a framework that supports
establishing a systematic solution for inconsistency identification during PSS development.

Keywords: product-service systems (PSS), model based engineering, modelling, systematic
approach

1. Introduction
Competitive global economy necessitates manufacturers to increase sustainability and having a longer
relationship with customers by providing new services in addition to the conventional products (Tukker,
2004). Besides, environmental considerations are putting restrictions on the products and the way they
are developed leading manufacturers to rely more on value share of services (Mont, 2002; Meier et al.,
2010). This shift towards services introduced concept of product-service-system (PSS) as a system
consists of combined product(s) and service(s) (Baines et al., 2007).
To develop a PSS, diverse teams from managerial to technical level need to continually collaborate in
order to address high level vision of the system as well as detailed functionalities and interactions
between services and physical elements (Vasantha et al., 2012). Thus, not only the number of
stakeholders raises in PSS development, but also the stakeholders are more likely to be heterogeneous
from dissimilar domains. Accordingly, PSS development deals with multidisciplinary approaches,
artefacts and models expanded over different levels of organization (Vasantha et al., 2012).
Thus, it is vital to manage consistency among the models from heterogeneous domains during a PSS
development. While numerous studies addressed PSS modelling and proposed various modelling
techniques such as Data Flow Diagrams (Durugbo et al., 2011) and Systems Modelling Language
(Balmelli, 2007), there is lack of research on how to keep the complex network of models during PSS
development consistent. Nevertheless, a consistent design process is crucial in both ensuring the system
functionality and increasing interdisciplinary co-design. For example, in a digitalized machinery
company, offered data services should meet requirements, allowed by the adopted sensor types and not
violate country-specific privacy laws. Though various methods have been proposed to partially
automate the inconsistency identification processes, a general and systematic underlying framework is
missing (Zou and Vogel-Heuser, 2017).

SYSTEMS ENGINEERING AND DESIGN 2811

Therefore, in this study, we investigate on inconsistencies in PSS development and develop a
framework, which can be applied to identify the inconsistencies systematically. The reminder of this
paper is structured as follows: Section 2 provides related work on inconsistency management as well as
PSS modelling literature. Afterwards, we introduce different types of inconsistencies in Section 3.
Subsequently the developed framework to identify inconsistencies is presented in Section 4. The
framework is applied and evaluated on a case of e-bike-sharing system, presented in Section 5. We
discuss the framework applicability and its limits in Section 6. Finally, Section 7 summarize the study
and shed light on future works regarding managing inconsistencies during PSS development.

2. Related work
Inconsistency Management by definition is the process of handling dependencies in a way that the goals
of stakeholders are concerned (Spanoudakis and Zisman, 2001). We reviewed the literature on
inconsistency management from software engineering domain as well as mechanical engineering
studies. Besides, we present few number of studies, which addressed inconsistency-related topics in PSS
development.
Nuseibeh et al. (2000) and Finkelstein et al. (1996) have developed processes for the management of
inconsistencies in the domain of software engineering. Both approaches share the common feature that
inconsistencies must be determined with respect to defined consistency rules. The consistency rules,
which are defined by experts, specify two essential necessities. First, they check whether a model is
applicable as a valid model of a particular modelling language or not. In another words, this step analyses
correctness of the models from syntactical point of view. Second, they ensure that the software models
in a development process comply with valid standards of the software development project. In addition,
both approaches involve activities to detect, diagnose and manage inconsistencies. There are other
supporting activities, such as the specification and application of an inconsistency policy. These
additional activities are not included in both approaches, which makes them different from each other.
Besides, Finkelstein focuses on the term "inference", expressed as conflicts of interdependencies.
Spanoudakis and Zisman (2001) combine the both aforementioned approaches (Finkelstein et al., 1996;
Nuseibeh et al., 2000) to create a process concentrated on special methods and techniques for
inconsistency management. The approach is represented in six steps, which starts with the detection of
overlaps, followed by the detection and the diagnosis of inconsistencies, handling of inconsistencies and
finally, the specification and application of an inconsistency management policy.
Gausemeier et al. (2009) employ triple graph grammars and introduce a rule-based approach aimed at
preserving consistency between domain-spanning and domain-specific models in the development of
complex mechatronic systems. For this purpose, they developed an approach based on triple graph
grammars to capture correspondences between models. However, this approach is limited to a special
technique and its applicability on cross-domain models is weak.
Hehenberger et al. (2010) define consistency rules and propose a conceptual approach based on the
automatic checking of the consistency rules. First, they use domain-spanning ontologies for identifying
overlaps. Subsequently, they apply the consistency rules, which are simple conditions of a model that
are either true or false, depending on whether the model satisfies them or not.
Qamar et al. (2012) address dependency modelling and present an approach to avoid inconsistencies in
models, based on the explicit modelling of dependencies. They argue that impact of changing a model
on the other models can be predicted by modelling dependencies, which enables easier inconsistency
management.
Herzig and Paredis (2014) apply pattern matching, which is based on the transformation of models into
graphs and a subsequent pattern-based identification of inconsistencies.
Feldmann et al. (2015) apply semantic web technology and present an approach where properties of
semantic webs, which enable processing not only the linking of data but also their meaning, can be used
to identify inconsistencies in models. A knowledge-base approach represents all Models in a Resource
Description Framework (RDF) and reveals inconsistencies with SPARQL inconsistency query.
Dávid et al. (2016) introduce the inconsistency tolerance. In the context of this approach, semantic
inconsistencies are quantified. Afterwards, it is decided how far they can be tolerated.

2812 SYSTEMS ENGINEERING AND DESIGN

In PSS field, Shimomura and Hara (2010) introduce a conflict resolution method for PSS development.
The method consists of two major strategies. First, an inconsistency is detected by lexical analysis of
names and descriptions of functions and variables. If two objects' names include related words, the
method investigates if there is an inconsistency or not. The second strategy applies a set-based approach
to detect value overlaps that lead to inconsistencies. To this end, the related objects are identified
manually. Nevertheless, the study does not address how heterogeneity of PSS models are handled.
Song and Sakao (2016) investigate on conflicts among services in product-service offerings, which also
employs a linguistic techniques. However, the study does not cover the cross-models inconsistency
problem.

3. Inconsistency types
In this study, we define inconsistency as any logical contradiction between two facts or two
presentations of facts expressed in formal models as well as in informal artefacts such as requirements
written in natural language. This definition excludes any high level conflict between goals, priorities
and plans of people or organizational units. Therefore, we focus specifically on how heterogeneous
models and artefacts can lead to inconsistencies during PSS development.
To this end, we developed a classification of inconsistencies that specifies what types of inconsistencies
exist between models by extending the work of Feldman et al. (2015). The inconsistencies are classified
based on two high level dimensions. First dimension determines how the two inconsistent elements are
related to each other. We defined four high level relationship types, namely existence, equivalency,
refinement and satisfaction. Furthermore, we determine if an inconsistency is occurred on syntactical
level or semantical level. The syntactical level consists of notational and conventional types. The
semantical level is divided to system/project specific as well as domain-specific types. The
inconsistency types and examples are presented in Table 1. Besides, concrete examples of inconsistency
types are demonstrated based on a case in the discussion, Section 6.

Table 1. Inconsistency types
 Existence Equivalence Refinement Satisfaction

Notational Missing Name;
Typo

Different Names for
Same Element

- -

Conventional Missing a Standard's
Element

Incompliancy with a
Standard's Element

- -

System/Project-
specific

Missing Element in
a Model based on
System's Logic

Different Value for
Same Element in
Different Models

Different Refined
Value for an

Element

Unsatisfied Logics
of System

Domain-
specific

Missing Element in
a Model based on
General Domain

Rules

Different Value for
an Element based on

Domain Rules

Wrong Refinement
based on Domain

Rules

Unsatisfied Domain
Rules

If an element is missing, which is supposed to exist in the model, it is considered as an existence
inconsistency. For example, missing a name, a structural section in document or un-modelled part of a
system can be assigned to this group. Similarly, if two elements are supposed to be equal, but they are
not, there is an equivalence inconsistency. However, more complicated types of inconsistencies can be
identified. If an element is refined version of another, but the refinement is done incorrectly, it can be
recognized as a refinement inconsistency. For example, a Simulink model can be refined version of
MATLAB codes. Finally, an inconsistency can arise, when an element is supposed to satisfy another
element's conditions, domain-specific rules or project-specific rules.
Based on the other dimension, inconsistency can violate syntactical or semantical rationale. Notational
instances are a typo or inconsistent use of terms for a same element. Besides, there might exist a set of
conventional rules regarding the syntactic of a model or artefact. Various conventional rules can be set
up including standards, guidelines, and quality attributes of specifications and so on. Accordingly,
inconsistencies can violate conventional rules such as syntax of a modelling language or incompliancy

SYSTEMS ENGINEERING AND DESIGN 2813

with a standard. System/project-specific inconsistencies are the ones that contradict logic and function
of the system or project, which are under development. For example the relationship between
components in the system, the specific defined values and so on. On the other hand, domain-specific
inconsistencies are discipline-specific and root in general knowledge related to a domain, an example
can be violating a physical law.

4. Framework for inconsistency identification in PSS
In this section, we describe a holistic framework that tackles the overall procedure for inconsistency
identification in PSS development. Besides, there are many parameters that determines how an
inconsistency identification procedure will be realised. For example it should be determined to what
extent the process is performed automatically. Therefore, the framework includes such parameters and
we explain them subsequently in the following.

4.1. Process of inconsistency identification in PSS development
To identify inconsistencies during PSS development, the framework considers five high level phases
that need to be carried out. Since many departments and teams are involved in PSS development, it is
necessary to first trace the information flow among them. Based on the information flow, we would be
able to identify related models and artefacts as well as how they are related to each other. Subsequently,
the dependencies among related models are detected in the next phase. At this stage, we have the related
models and the dependencies among them. However, as the models are from heterogeneous domains
and teams, there are expressed in different languages and forms. Therefore, a mutual form is needed to
consolidate the information and enable comparing values. This is done in the fourth phase and finally,
in the last phase, dependent information in the same form can be analysed with regard to some rationale
and the inconsistencies will be exposed.

Figure 1. Inconsistency identification process

The described major phases for PSS inconsistency identification can be implemented by various
methods and tools. For example, in the first and second phase, communication data of stakeholders can
be investigated using information retrieval techniques or manually organizational structure of the project
can be analysed. Reviewing such methods and tools for every phase is out of scope of this study and we
address it in future work. However, the procedure for identifying inconsistencies among related models
(phases 3 to 5) can be detailed more without lacking its general applicability.
To this end, we describe what steps are needed to be taken in every phase. These steps are elaborated
based on three abstraction levels, namely meta-model, model and reality. As depicted in Figure 2, after
identifying a dependency on model level, the exact elements which create the dependency have to be
specified on model level. Afterwards, in order to systematically transform information from dissimilar
models into a mutual form, it is required to trace dependency on the meta-model level. Specifying details
on a meta-model level enables practitioners to generalize dependencies as well as inconsistencies and
repeat the process systematically. In particular, such abstraction levels are essential for automating the
procedure using defined algorithms for machine. After the relationship between two elements are
identified on the meta-model level, the dependent meta-model level elements should be mapped to a
corresponding element on the meta-model level of a mutual form. Consequently, we would be able to

2814 SYSTEMS ENGINEERING AND DESIGN

capture the information in the same format. In the final phase, we need to reason inconsistencies based
on some rationale. However, logics are expressed in a general manner such as domain-specific laws or
system logics. Therefore, the rationale can be formulated on the meta-model level and ground the final
identification as the final step.

Figure 2. Inconsistency identification through abstraction levels

4.2. Parameters of inconsistency identification in PSS development
In addition to the process itself, there are parameters that determine how the process is realised. These
parameters are related to the model and targeted inconsistency as well as the details of identification
method. We distinguish between problem-side and solution-side parameters and explain them in detail.
The problems-side parameters characterize the inconsistency and the situation, in which the consistency
may emerge, while the solution-side parameters represent the techniques and technologies that are used
to identify the inconsistency.
The framework addresses degree of formality, degree of criticalness and inconsistency type as problem-
side parameters. Degree of formality determines to what extent the involved models in an inconsistency
are formal. For example, mathematical equations have high formality, while artefacts written in natural
language, such as user requirements can be considered as the most informal models. The degree of
formality influences on how dependent elements can be identified and transformed into a mutual form.
For example, graph-based formal models such as UML are easier to be mapped into a meta-model and
accordingly transformed into a mutual form. However, informal models require different mechanisms.
In particular, automation of the process in case of formal models is more straightforward than informal
ones. Degree of Criticalness determines to what extent the targeted inconsistency is hazardous to the
system and the project. A high critical inconsistency should not be missed by the implemented
identification methods. Therefore, proper approaches and tools need to be employed in order to reach
high recall for such inconsistences. Furthermore, dissimilar approaches can be employed based on the
inconsistency type as it specifies the relationship between two elements and the rationale behind an
inconsistency.
Similarly, there are three solution-side parameters that address general features of a solution for
inconsistency identification in PSS development. First, considering the parameters of problem-side,
degree of automation, based on which identification process is developed should be decided. How much
automation is required directly impacts on the technologies and tools that are applied. In addition, there
are in general two types of automatically re-employing acquired knowledge, formulating the knowledge
into a set of rules or applying machine learning algorithms to seizure knowledge into a re-applicable
model. These two types of automatic solutions necessitate different mechanisms and infrastructures.
Thus, applicability of both methods should be analysed based on the PSS development settings and
requirements. Finally, appropriateness of different technologies for the mutual form, to which the
information from heterogeneous models are transformed, should be evaluated. Although this parameter
determines how the overall process is realised, the other parameters such as degree of formality and

SYSTEMS ENGINEERING AND DESIGN 2815

degree of automation influence on deciding it. For example, the technology of mutual form needs to be
suited to the involved models as well as the tools and technologies used in automatizing the process.

Table 2. Influencing parameters for inconsistency identification
Problem-side Solution-side

Degree of Formality Degree of Automation
Degree of Criticalness Rule-based vs. Machine Learning
Type of Inconsistency Mutual Form Technology

5. Application: An inconsistency case
We describe application of the framework based on an e-bike-sharing system as an example of PSS.
The e-bike-sharing system, called PSSycle, is developed by a group of students in context of an
interdisciplinary research project that addresses cyclic innovation in PSS development. The large
structure of the research project allows us to apply entire process of the framework and consider the
complete relevant aspects. In the following, we describe the case and an instance of inconsistency,
afterwards we apply the framework on identifying such an inconsistency.

5.1. PSSycle: An E-Bike-Sharing PSS
The research project consists of 7 research departments including Information Systems, Product
Development, Mechatronic Design, Manufacturing Planning, Organizational Psychology, Automatic
Control and Technology in Society. PSSycle development included all departments except Organizational
Psychology, as they were focused on unrelated issues to this case. We briefly introduce the responsibility
of every department in the development process. Department for Technology in Society investigates the
needs for a PSS in society. Information System department tackled software parts of PSSycle as an e-bike-
sharing system, including board computer and mobile app. Departments for Mechatronic Design and
Product Development designed and developed the frame, the lock and the final assembly. The department
for Manufacturing Planning modelled how the PSSycle will be manufactured in a real industrial settings.
Besides, Automatic Control department was responsible for simulation of PSSylce.

Figure 3. Information flow for PSSycle development

In an exemplary scenario, Technology in Society department finds out that there are two types of
PSSycle users. A group of users ride e-bikes for very short trips, while another group, ride e-bikes for
longer trips. However, the current e-bikes cannot ride such long trips completely, supported by the
battery power. Therefore, from a business perspective it is decided that PSSycle should establish new
services for customizing e-bikes for different purposes. As the first step, two types of e-bikes are offered
based on their range: short-range (regular ones) and long-range. To this end, Departments for
Mechatronics Design and Product Development decide to add a new e-bike with the same specifications
as regular ones, but with a higher capacity battery, which has a bigger size than the previously used
battery type for short-range e-bikes. For manufacturing such an e-bike, the gripper used in
manufacturing line must support the size of the batteries. We apply the framework on the described
situation and elaborate how an inconsistency can be identified.
As first step of the framework, we identify the information flow among the teams and departments in
case of the described situation. Depicted in Figure 3, user requirements are formulated by Technology

2816 SYSTEMS ENGINEERING AND DESIGN

in Society department. Afterwards, the user requirements are analysed, designed and translated into
specifications. The e-bike specifications are detailed by departments for Mechatronics Design and
Product Development. Besides, department for Information Systems delivers software specifications.
Subsequently, department for Manufacturing Planning models how the e-bikes should be manufactured
in an industrial settings.

Figure 4. Example of model dependency for PSSycle

Based on the second step of the framework, we identify every department's models related to the battery
manufacturing (we present several models as examples, however a complete model set is out of scope
of this study). User requirements expressed in natural language can be considered as a model developed
by Technology in Society department. UML models are from Information Systems Department.
SysML4Mechatronics (Kernschmidt and Vogel-Heuser, 2013) and CAD models are respectively from
departments for Mechatronics Design and Product Development. Finally, digital factory models are
developed by department for Manufacturing Planning.
In the next step, dependencies among the models need to be identified. Based on the aforementioned
scenario, we demonstrate a dependency between SysML4Mechatronics model of the e-bike battery and
the gripper's model (depicted in Figure 4). Dependent elements are the gripper's supporting width and
the battery's width and length, which it is planned to move.

Figure 5. Meta-model level dependency

After identifying dependencies, the dependent elements should be transformed into a mutual form. This
is an essential step for an automated approach. However, in a manual inspection approach, it depends
on complexity of the dependent models to include or skip the phase because of high simplicity. In case
of PSSycle, dimensions of the e-bike are specified in mechanicalblock of the SysML4Mechatronics
model and the gripper's width is expressed in tool component of a digital factory model. Therefore,
mechanicalblock and tool component are the dependent meta-model elements. We selected RDF for

SYSTEMS ENGINEERING AND DESIGN 2817

mutual form that dependent elements are transformed to. In the following, we show how models are
formulated in RDF.

Figure 6. Transformed models into a mutual form (RDF)

In the final phase, consistency of dependent elements' values are investigated. To this end, we need to
identify rationale that define whether a situation is in the state of consistency or inconsistency. The
rationale capture general laws, logics and considerations, consequently, they can be assigned to meta-
model level. In case of our example, the gripper must be able to pick up and move the battery from its
either length or width dimension. Therefore, width of the gripper have to be equal or greater than the
battery's length and width. This can be expressed on the meta-model level more formally as:

(mechanicalblock:width≤digitalfactorytool:width)AND(mechanicalblock:length≤digitalfactorytool:width)

Based on such a rule on the meta-model level, an inconsistency can be identified between length of the
battery and the gripper's width. The inconsistency on the model level is demonstrated in Figure 7.

Figure 7. PSSycle inconsistency example on model level

6. Discussion
In the previous section, we projected how overall process of the framework can support practitioners to
systematically identify inconsistencies between heterogeneous models of PSS. Besides, we briefly
showed an RDF example of transforming dissimilar models into a mutual form. In this section, based
on the PSSycle case, we explain introduced parameters of the framework. Moreover, we discuss the
limitations of the framework.
The battery was modelled in SysML4Mechatronics, which offers a high degree of formality. Hence, it
allows us to adopt higher degree of automation. The inconsistency between the battery size and the
gripper belongs to satisfaction and system/project-specific types (described in Section 3). In another
words, the exposed inconsistency violated a satisfaction relation defined by the system development's
logics. Regarding degree of criticalness, an inconsistency's criticalness depends on real settings of a
project and the related practitioner's view. Therefore, it cannot be assessed objectively. However, future
work can investigate on the factors that increase criticality of an inconsistency as well as measuring the
criticality based on such factors.
The solution described in the exemplary case can be implemented highly automated. Because the models
are mostly formal and it is elaborated in the previous section that how the dependent elements are related
in the model as well as the meta-model level. Therefore, we consider high degree of automation for the
presented example. Besides, we applied a rule-based method by defining a rule that determines whether
the gripper is compatible with the battery size or not. Finally, as the mutual form technology we used
RDF.
Nevertheless, in the PSSycle case scenario many other types of inconsistency could emerge. For
instance, a conventional inconsistency could arise if width of the gripper was expressed in inches instead
of centimetres. An example of refinement inconsistencies can emerge between RDF presentation of the
battery and its SysML4Mechatronics model, as the RDF is refined version of the SysML4Methcatronics

2818 SYSTEMS ENGINEERING AND DESIGN

model. Therefore, if the battery's width in RDF presentation is different to its value in
SysML4Mechatronics, there is a system/project-specific refinement inconsistency. Besides, more
complicated inconsistencies can happen between requirements collected from users and system
specifications and functionalities. For example, if the battery's discharge rate is faster than the
expectations of the users, this can be considered as an inconsistency.
Although, the inconsistency example of this study is rather simple, however in industrial settings with
high number of interconnected elements, the need for a systematic approach to identify even trivial
inconsistencies is crucial. This study establishes the fundamentals of such an approach that can be
customised based on the needs and situations. For example, to increase dependability, formal methods
can be employed to identify inconsistencies based on the framework. Hence, more in detail methods
and analysis are required to address the introduced phases and parameters of inconsistency identification
for PSS.
Furthermore, we cannot claim that the proposed framework includes all related aspects and parameters,
however the high influential concepts, which are covered by the framework can be extended by future
research through adding new parameters or customising the framework for a particular inconsistency
problem. Moreover, the framework is developed from a PSS development perspective, nevertheless,
future research can investigate and extend its applicability for general inconsistency identification
purposes. Besides, the proposed framework only concentrates on the identification process and how the
exposed inconsistencies should be handled is not tackled, which should be investigated in future
research.

7. Conclusion
PSS development requires collaboration of diverse teams employing varied models and artefacts. Thus,
there is a higher chance for occurrence of inconsistency among the models. Consequently, a systematic
approach is required to support practitioners in order to identify the heterogeneous models'
inconsistences during PSS development. To this end, first we introduced a classification of
inconsistency types, based on which different methods and policies can be employed. Subsequently, we
developed a holistic framework including the general procedure and influencing parameters of
inconsistency identification. The framework can be customised based on different settings and needs.
Based on an e-bike sharing system case, we applied the framework to identify an exemplary
inconsistency. The case demonstrated a concrete problem of the profile fitness among different models,
which is easy if it is designed by the same models and tools. However, it is complicated in the design
phase of PSS, where diverse stakeholders work in parallel and distributed.
The proposed framework of this study addresses the basics of inconsistency identification. Thus, more
studies required to investigate on every introduced aspect of inconsistency identification for PSS. To
this end, we will apply the framework on a more complex PSS scenario to expose applicability of the
framework more in detail. A future work can study what policies are more suited for different types of
inconsistencies. Besides, most of the previous studies applied rule-based methods in order to detect
inconsistencies among models, however, with extensive availability of data, the applicability of
machine-learning techniques on models' inconsistency identification problem should be investigated.
Hence, in future work, we plan to implement such a solution on higher number of models.

Acknowledgement
This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
collaborative research centre ‘Sonderforschungsbereich SFB 768 “Managing cycles in innovation processes –
Integrated development of product-service-systems based on technical products”.

References
Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., Greenough, R. et al. (2007), “State-of-the-art in product-

service systems.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, Vol. 221 No. 10, pp. 1543-1552. https://doi.org/10.1243/09544054JEM858

Balmelli, L. (2007), “An overview of the systems modeling language for products and systems development”,
Journal of Object Technology, Vol. 6 No. 6, pp. 149-177. https://doi.org/10.5381/jot.2007.6.6.a5

SYSTEMS ENGINEERING AND DESIGN 2819

Dávid, I., Syriani, E., Verbrugge, C., Buchs, D., Blouin, D. et al. (2016), “Towards inconsistency tolerance by
quantification of semantic inconsistencies”, First International Workshop on Collaborative Modelling in MDE
COMMitMDE 2016, Saint Malo, France, 2016, CEUR-WS, pp. 35-44.

Durugbo, C., Tiwari, A. and Alcock, J.R. (2011), “A review of information flow diagrammatic models for product–
service systems”, The International Journal of Advanced Manufacturing Technology, Vol. 52 No. 9, pp. 1193-
1208. https://doi.org/10.1007/s00170-010-2765-5

Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D. et al. (2015), “Towards effective
management of inconsistencies in model-based engineering of automated production systems”, IFAC-
PapersOnLine, Vol. 48 No. 3, pp. 916-923. https://doi.org/10.1016/j.ifacol.2015.06.200

Finkelstein, A., Spanoudakis, G. and Till, D. (1996), “Managing interference”, Joint proceedings of the second
international software architecture workshop (ISAW-2) and international workshop on multiple perspectives
in software development (Viewpoints '96) on SIGSOFT '96 workshops, San Francisco, California, United
States, ACM, New York, NY, pp. 172-174. https://doi.org/10.1145/243327.243646

Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S. and Rieke, J. (2009), “Management of cross-domain
model consistency during the development of advanced mechatronic systems”, Proceedings of the 17th
International Conference on Engineering Design (ICED 09), The Design Society, Glasgow.

Hehenberger, P., Egyed, A. and Zeman, K. (2010), “Consistency Checking of Mechatronic Design Models”,
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference - 2010, Montreal, Quebec, Canada, August 15-18, 2010, ASME, New
York, NY, pp. 1141-1148. https://doi.org/10.1115/DETC2010-28615

Herzig, S.J.I. and Paredis, C.J.J. (2014), “A Conceptual Basis for Inconsistency Management in Model-based
Systems Engineering”, Procedia CIRP, Vol. 21, pp. 52-57. https://doi.org/10.1016/j.procir.2014.03.192

Kernschmidt, K. and Vogel-Heuser B. (2013), “An interdisciplinary SysML based modeling approach for
analyzing change influences in production plants to support the engineering”, 2013 IEEE International
Conference on Automation Science and Engineering (CASE), IEEE, pp. 1113-1118.
https://doi.org/10.1109/CoASE.2013.6654030

Meier, H., Roy, R. and Seliger, G. (2010), “Industrial product-service systems—IPS 2.” CIRP Annals-
Manufacturing Technology, Vol. 59 No. 2, pp. 607-627. https://doi.org/10.1016/j.cirp.2010.05.004

Mont, O.K. (2002). “Clarifying the concept of product–service system.” Journal of Cleaner Production, Vol. 10
No. 3, pp. 237-245. https://doi.org/10.1016/S0959-6526(01)00039-7

Nuseibeh, B., Easterbrook, S. and Russo, A. (2000), “Leveraging inconsistency in software development”,
Computer, Vol. 33 No. 4, pp. 24-29. https://doi.org/10.1109/2.839317

Qamar, A., Paredis, C.J.J., Wikander, J. and During, C. (2012), “Dependency Modeling and Model Management
in Mechatronic Design”, Journal of Computing and Information Science in Engineering, Vol. 12 No. 4, pp.
41009. https://doi.org/10.1115/1.4007986

Shimomura, Y. and Hara, T. (2010). “Method for supporting conflict resolution for efficient PSS development”,
CIRP Annals-Manufacturing Technology, Vol. 59 No. 1, pp. 191-194.
https://doi.org/10.1016/j.cirp.2010.03.122

Song, W. and T. Sakao (2016), “Service conflict identification and resolution for design of product–service
offerings”, Computers & Industrial Engineering, Vol. 98, pp. 91-101.
https://doi.org/10.1016/j.cie.2016.05.019

Spanoudakis, G. and Zisman, A. (2001), “Inconsistency management in software engineering: Survey and open
research issues”, In: Chang S.K. (Ed.), Handbook of software engineering and knowledge engineering, Vol. 1:
Fundamentals, pp. 329-380. https://doi.org/10.1142/9789812389718_0015

Tukker, A. (2004), “Eight types of product–service system: eight ways to sustainability? Experiences from
SusProNet”, Business Strategy and the Environment, Vol. 13 No. 4, pp. 246-260.
https://doi.org/10.1002/bse.414

Vasantha, G.V.A., Roy, R., Lelah, A. and Brissaud, D. (2012), “A review of product–service systems design
methodologies”, Journal of Engineering Design, Vol. 23 No. 9, pp. 635-659.
https://doi.org/10.1080/09544828.2011.639712

Zou, M. and Vogel-Heuser, B. (2017), “Feature-based Systematic Approach Development for Inconsistency
Resolution in Automated Production System Design”, 13th Conference on Automation Science and
Engineering (CASE), Xi'an, 2017, pp. 687-694. https://doi.org/10.1109/COASE.2017.8256183

Mohammadreza Basirati, Msc.
Technical University of Munich, Information Systems
Boltzmannstraße 3, 85748 Garching, Germany
Email: basirati@in.tum.de

2820 SYSTEMS ENGINEERING AND DESIGN

Not Included in
Review and

Evaluation: P1

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

IoT as PSS Enabler: Exploring Opportunities for
Conceptualization and Implementation

Completed Research Paper

Mohammad R. Basirati
Technical University of Munich

Boltzmannstraße 3, 85748 Garching
basirati@in.tum.de

Sebastian Hermes

Technical University of Munich
Boltzmannstraße 3, 85748 Garching

sebastian.hermes@in.tum.de

Jörg Weking
Technical University of Munich

Boltzmannstraße 3, 85748 Garching
joerg.weking@in.tum.de

Markus Böhm

Technical University of Munich
Boltzmannstraße 3, 85748 Garching

markus.boehm@in.tum.de

Helmut Krcmar
Technical University of Munich

Boltzmannstraße 3, 85748 Garching
krcmar@in.tum.de

Abstract

Nowadays, product-service systems (PSS) as an integrated system of physical
products and services play a crucial role in sustainable economies. In addition to
high competitive global economy, emergence of new digital paradigms is supporting
the shift towards servitization. Although the great potential of such paradigms are
recognized by both practice and research, their implications for PSS is not clear yet.
Particularly, features of Internet-of-Things (IoT) such as total connectedness and
ubiquity of smart sensors and actuators provide various new opportunities for PSS.
This study explores such opportunities by conducting structured literature review and
13 interviews. We formulate the findings into two folds. First, we introduce four
degrees of IoT involvement in PSS business models and we elaborate the
opportunities that they create for different types of PSS. Second, we present the key
technologies and approaches, which IoT provides with regard to PSS lifecycle
management.

Keywords: Product-Service System, Internet-of-Things, IoT Integration, Review

Introduction

Firms have to increase their share of service offerings in order to survive in the global competitive
economy (Mont 2002). Products are no more the main contributors to value creation, as the value is
shifting towards services. We can see this shift in gross domestic product (GDP) of most developed
countries, which are more dependent on services than physical products (Meier et al. 2010).
Consequently, more service-oriented business models have emerged such as product-service systems
(PSS). Most definitions of PSS describe it as a system that integrates products and services in order to
create a competitive solution (Beuren et al. 2013). Furthermore, some definitions also emphasize on
the role of PSS for reaching sustainability with regard to environmental and social considerations
(Baines et al. 2007; Maxwell et al. 2006).

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

Emergence of advanced digital paradigms such as Internet of Things (IoT) is providing even more
opportunities for innovative service offerings and PSS design (Kowalkowski et al. 2015; Lightfoot et
al. 2013; Ulaga and Reinartz 2011). IoT is a concept for network of objects, which can sense,
communicate, store data and interact with the environment (Patel and Patel 2016). IoT allows not only
monitoring state of the physical objects, but it establishes the ground for progressive services such as
optimization and atomization of product operations and services (Adrodegari and Saccani 2017;
Porter and Heppelmann 2014).

There is a consensus among previous studies on the relevance of digital technologies such as IoT on
servitization, and particularly PSS (Exner et al. 2017; Marilungo et al. 2017; Shih et al. 2016). In
practice, however, adoption of IoT is a challenging issue as it requires an intensive reconfiguration of
existing settings (Marilungo et al. 2017). Research, on the other hand, does not provide clear guidance
on how we can exploit IoT to successfully design and develop PSS despite the need (Kiel et al. 2017).
Hence, this study addresses the following research question:

Research question: What opportunities does IoT provide for PSS design and development?

We focus on two important aspects of PSS development: (1) Integrating IoT in PSS business models
(2) Integrating IoT in PSS lifecycle. To get a wide-ranging understanding of IoT and PSS in research
and practice, we use a structured literature review (Webster and Watson 2002a) and expert interviews
(Gläser and Laudel 2010). The results provide a comprehensive overview on ideas and practices that
IoT delivers for innovative PSS design and development. With regard to business development aspect,
a framework elaborates the implications of different degrees of IoT involvement for different types of
PSS. Furthermore, we present the core concepts and technologies, which IoT enables and can be
employed to facilitate PSS lifecycle management.

Theoretical Background

PSS

PSS refers to a strategic business model design intended to integrate and combine products, services
and communication based on changing costumer and stakeholder demands (Beuren et al. 2013). The
concept was introduced in 1999 as a promising business model for “sustainable economic growth”
(Baines et al. 2007; Maleki et al. 2017). Most articles investigating PSS rely on the definition of
Goedkoop et al. (1999), who stress:“A Product-Service System is a marketable set of products and
services capable of jointly fulfilling a user’s need. A Product is a tangible commodity, manufactured
to be sold. A Service is an activity (work), often done on a commercial basis and for others with an
economic value. A System is a combination of elements including their relations.”

Table 1 . PSS Types According to Reim et al. (2015)

 Product-oriented Use-oriented Result-oriented
Value
Creation

Provider takes responsibility
for the contracted services.

Provider is responsible for
the usability of the product
or service.

Provider is responsible
for delivering results.

Value
Delivery

Provider sells and services the
product sale and service (e.g.,
maintenance or recycling).

Provider assures the
usability of the physical
product along with service.

Provider actually
delivers result.

Value
Capturing

Customer pays for physical
product and for the performed
services.

Customer can make
continuous payments over
time (e.g., leasing).

Customer payments are
based on outcome units;
that is, they pay for the
result.

 The PSS literature has recognized the importance of implementing integrated product-service
offerings, considering them as a powerful source of competitive advantage and sustainability
(Ardolino et al. 2016; Schuh et al. 2016). PSS has proven to provide advantages such as higher profit

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

margins, new growth opportunities in saturated markets and long-term customer relationships.
Besides advantages for PSS providers, PSS also benefits consumers, the environment and the society
(Beuren et al. 2013). Nonetheless, PSS implementation can be challenging and lead to inconsistencies
among heterogeneous teams and developing artefact (Basirati et al. 2018). Moreover, PSS adoption
into existing business models is not a straightforward procedure and requires applying proper
strategies (Weking et al. 2018).

Within the PSS research stream, three types of PSS have emerged. Namely, product-oriented, use
oriented and result-oriented PSSs (Baines et al. 2007; Tukker 2004; Yang et al. 2009). This
classification is widely accepted in the literature. Table 1 describes the three different categories of
PSS with regard to their underlying business model elements (Reim et al. 2015).

Another way of looking at the three types of PSS is how far they are on the innovation scale: result-
oriented PSS is the most innovative and product-oriented PSS is the least innovative. To evolve from
product-oriented to result-oriented PSS, there are incremental paths and radical paths. Incremental
innovation in this context means that product-oriented PSS evolves slowly to use-oriented and then
further to result-oriented. This happens through a slow and steady continuous improvement process.
Radical innovation, on the other hand, means that product-oriented PSS transforms directly into
result-oriented PSS, skipping the use-oriented stage. This often involves a radical shift in technology
and leads to a total reconfiguration of the PSS (Jing, 2012, p. 791).

IoT

The term “Internet of Things” was introduced by Kevin Ashton in a presentation in 1998 (Perera,
Zaslavsky, Christen, & Georgakopoulos, 2014) and is now a technological concept with wide areas of
application (Tao et al. 2014). However, there is yet no standard definition for IoT due to the fact that
research about IoT is still in its infancy. Building of the seminal work of Gubbi et al. (2013), we
define IoT as: “Interconnection of sensing and actuating devices providing the ability to share
information across platforms through a unified framework, developing a common operating picture
for enabling innovative applications. This is achieved by seamless large scale sensing, data analytics
and information representation using cutting edge ubiquitous sensing and cloud computing.” (Gubbi
et al. 2013).

The concept of Internet of things (IoT) includes both technology and services that are based on
connected objects and the use of the collected data (Čolaković and Hadžialić 2018). Everyday objects
can be equipped with sensors and actuators to communicate, generate and process data (Whitmore et
al. 2015). Usually an object, also called a thing, communicates over network protocols with a service
in the cloud (Guth et al. 2018).

We elaborate the essential components of IoT comprised within a four-layered technology stack,
which comprises the insights of Bandyopadhyay and Sen (2011), Porter and Heppelmann (2014;
Vuppala and Kumar (2014), Lee et al. (2013), Georgakopoulos and Jayaraman (2016), Mazhelis et al.
(2012) and Wortmann and Flüchter (2015). Table 2 illustrates the multiple technology layers. The
layers are independent, which means that all components can be developed independently. The
communication between the components ideally proceeds through well-defined interfaces and a
shared cloud-based platform. In general, the two lower layers are responsible for data capturing,
where the data is generated and collected by the low-end sensor nodes. The two upper layers are
contributing to data processing and data utilization in applications.

Table 2 – Four Layers of IoT Components

Application Services Services Analyze and Learn Respond
Cloud Computing Store Process Share
Sensor Network - Capture Transmit
Physical Layer - Hardware Software

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

IoT for PSS

There are few studies, which addressed the relationship between IoT and PSS. Predominantly, the
studies investigated application of IoT for PSS development in case studies. For example, Seregni et
al. (2016) analyzed three commercial PSS cases, which incorporated IoT technologies into their
systems. Based on available public information about the cases, they compared which new services
IoT enabled for the PSS cases. They analyzed the cases with regard to four categories, namely,
identity-related services, information aggregation services, collaborative-aware services and ubiquity
services. Moreover, they investigated whether IoT supported delivery or order phase of the PSS and
whether the customer side or the PSS provider side. Nevertheless, the study does not dive deep into
the subject and only presents a preliminary analysis.

Another cases study is conducted by Elia et al. (2016) on integrating IoT in a PSS solution for waste
collection. The main contribution is the performance evaluation of such a solution and comparing it to
traditional non-PSS solutions. The study shows that IoT-enabled PSS is significantly better than
traditional methods for waste collection; however, the study rarely focuses on IoT aspects and does
not expose any IoT integration insights.

Zancul et al. (2016) propose a method for adopting IoT-enabled PSS regarding its business model.
Their method consists of two parts. First, they follow the failure mode and effect analysis (FMEA)
approach in order to analyze which features of IoT should be integrated with the product. Second,
they use a PSS business strategy configurator that assists PSS providers to positions themselves
during the innovation planning. They merge the results of configurator with FMEA approach and
determine what product features and PSS processes must be implemented with the help of IoT. They
apply and evaluate their method in a case study.

Similarly, Shih et al. (2016) propose a PSS design method that extends visual mapping methods for
service creation such as (Matzen and McAloone 2009) and (Moritz 2009) with the aim of
incorporating IoT technologies. They introduce a new concept called “pseudo-actor”, which stands for
an IoT-enabled object with sensors and actuators. Their method tackles selecting IoT technology
alternatives for customer value creation. The method mostly focuses on design of PSS for engineers
and the study does not cover general IoT potentials for PSS.

In summary, the existing studies on the integration of IoT in PSS are mostly application-oriented and
partially cover the ways, in which IoT support PSS. Particularly, there is lack of knowledge on what
general opportunities IoT can provide for PSS in general. Hence, in this study, we build a first
theoretical framework to integrate different views on the opportunities of IoT for PSS.

Study Design

To gain a deeper understanding of opportunities of IoT for PSS from a theoretical and a practical
perspective, we conducted a structured literature review based on Vom Brocke et al. (2009) and
Webster and Watson (2002b) and expert interviews based on Gläser and Laudel (2010), Mayring
(2010) and Miles and Huberman (1994). We employed such a mixed-method approach with the
purpose of ‘completeness’ (Venkatesh et al. 2013). We aimed to reach a complete picture of the
phenomenon of interest by mixing evidences from the literature and practice.

Systematic Literature Review

To analyze opportunities of IoT for PSS from literature, we applied the approach and instructions
based on Vom Brocke et al. (2009) and Webster and Watson (2002b). Table 3 gives an overview of
this process and resulting numbers of analyzed publications. We used the databases IEEE,
SpringerLink, ScienceDirect and Scopus. We applied the following research string: (Lifecycle OR
Life-cycle OR “Life cycle”) AND (Development OR Manufacturing OR Production OR Deployment)
AND (Interdisciplinary OR Multidisciplinary OR “Product Service System” OR “Cyber Physical
System”) OR IoT OR “Internet of Things” OR Servitization OR Digitalization. We included all types
of scientific literature and did not confine to a specific publication year range or ranking.

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

 For the analysis, we first analyzed title and abstracts and removed duplicates. We selected only
relevant publications based on sets of inclusion and exclusion criteria. The exclusion criteria consists
of papers with main focus on IoT implementation or tools. The inclusion criteria are papers, which
addressed lifecycle management in the context of IoT and PSS, and IoT integration in business. This
selection reduced the number of possible relevant publications to 160. In the second screening, we
studied the full text of the papers and evaluated their relevance to our research question. We ended up
with 72 relevant papers.

Table 3. Outcome of Database Search

Database Initial search Title and abstract screening Full text screening
IEEE 124 25 17
SpringerLink 1127 72 20
ScienceDirect 53 21 16
Scopus 683 42 19
Total 1987 160 72

 Expert Interviews

As the literature review reveals some gaps, we enriched our data with expert interviews based on
Gläser and Laudel (2010), Mayring (2010). For the sampling of interviews, we looked for enterprises
and start-ups across different application fields of IoT. We chose business managers that consider or
involve IoT in their processes, consultants that offer IoT solutions, and start-ups working in the field
of IoT. We conducted 13 semi-structured interviews, which their details are presented in Table 4.

Table 4. Interview Details

Interview ID Job Description Industry Employees Duration
(Minutes)

Participant 01 Business development
manager

Global e-commerce &
cloud computing

~566 000 ~35

Participant 02 IoT evangelist & business
development manager

Global e-commerce &
cloud computing

~566 000 ~15

Participant 03 Machine Learning Expert Research institute ~200 ~40
Participant 04 Data scientist for rail

transportation
Industrial manufacturing ~372 000 ~10

Participant 05 Hardware product
developer

Start-up in the field of
automatization solutions

~12 ~20

Participant 06 Innovation manager Manufacturer of braking
systems for rail and
commercial vehicles

~25 000 ~35

Participant 07 Chief Technology Officer Start-up in the field of
digital gastronomy

~12 ~45

Participant 08 Consultant for innovation
& product lifecycle
management

Global IT consultancy ~120 000 ~50

Participant 09 Product manager for
digital lab and smart
home

Global automotive
manufacturer

~125 000 ~25

Participant 10 Digital E-Care Global
telecommunication
company

~ 1800 ~70

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

Participant 11 IoT consultant and app
developer

IoT consultancy and
software house

~ 124 000 ~35

Participant 12 Product manager for
industrial communication

Industrial manufacturing
company

~372 000 ~20

Participant 13 Consultant and developer IoT consultancy ~10 000 ~50

The interviews were based on a semi-structured interview guideline with open questions (Gläser and
Laudel 2010) to ensure some common topics and leave room for specific aspects of every expert.
Every expert was asked about general opportunities of IoT and realized applications of IoT (I),
opportunities and realized applications resulting from new data (II), and opportunities and realized
applications for their specific processes, products or product service systems (III). For data analysis,
all interviews were transcribed and openly coded according to Corbin et al. (2014). Our coding is
shaped around two core concepts, IoT enablement for PSS business model and IoT enablement for
PSS implementation.

IoT as PSS Business Model Enabler

Table 5. Framework of IoT-PSS Business Model Opportunities

 Product-oriented
PSS Use-oriented PSS Result-oriented PSS

IoT-D
riven PSS

Transforming Autonomous Product
and Manufacturing

Continuously Improving
Advanced Services Proactive Smart Results

Optimizing Efficient Product
and Manufacturing Personalized Services Smart Results

IoT-Supported
PSS

Interacting Smart Product Engaging Services Engaging Results

Tracking
High Product

Quality; Advanced
Sales

High Service Quality;
Lower Maintenance

Cost;
Customized results

 As the first part of the results, we present the framework of IoT-PSS business model opportunities
(depicted in Table 5). The horizontal axis of the framework stands for three general types of PSS
introduced by Tukker (2004). The vertical axis presents the levels of IoT involvement in PSS concept.
The four levels are inspired by capability levels of smart products introduced by Porter and
Heppelmann (2014) and cover a wide range of IoT implications from simple sensor-enabled products
to complex product and service connectivity with autonomous behaviors. The first two levels, namely
tracking and interacting, enable IoT-supported PSS. The other levels, namely, optimizing and
transforming, enable IoT-driven PSS. While an IoT-supported PSS is a PSS enhanced with IoT
technologies, IoT fundamentally affect PSS design and implementation in an IoT-driven PSS. In other
words, IoT is the main value creator in an IoT-driven PSS. The inner text of every cell in the
framework encapsulates the potential added-value by IoT for each PSS type. However, the value can
be derived from many aspects, which we will discuss in this section.

Tracking

Tracking is the lowest level of IoT integration in PSS business models. It enables tracking primary
product, service, user and their attributes such as quality and performance metrics. The tracking
capability increases awareness of not only the system, but also the environment, in which the PSS is
functioning (Lee et al. 2013). For instance, we can even track complex parameters such as frost risk
and humidity using smart water sensors (Participant 13). Therefore, the provider would be able to add
extra value by improving the quality in use for the users and decrease the maintenance costs (Beuren
et al. 2016; Zancul et al. 2016). An important implication of tracking is reflected in product delivery

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

phase and logistics (Barbosa et al. 2016; Papakostas et al. 2016; Porter and Heppelmann 2014). An
example of result-oriented PSS enabled by IoT is a wireless connected single-function button that
allows customers to order products or services (Participant 02; Participant 01). Tracking and storing
processes into these buttons enable us to ask for the result instantly by a click of the button. Another
example would be location-based services to users, which is enabled by tracking capabilities of IoT.
Therefore, we would be able to improve the customer experience and increase the usage or purchase
rate (Participant 07).

Interacting

As the next level, IoT enables a PSS to not only track and report PSS-related data, but also have some
degree of action. This can be realized using an event-based scheme or direct interaction with the user.
For example, in case of a smart home PSS – in which the home devices and appliances are owned by
the PSS provider and the usage is sold to the customer - the lights of a smart home can be turned on or
off automatically due to the outside light or the user can directly control them remotely. Similarly, the
product would be able to react proactively to a particular condition. The idea is that the product has
some degree of self-diagnosis and is able to interact with the user or provider. For example, the user
will be informed to replace a part in case of an error. Such an ability increases the customer
engagement with the PSS (Participant 13). In general, according to the interviews, interacting
capabilities of IoT allows PSS providers to introduce new field services (Participant 04; Participant
06; Participant 07). Connected devices, simple interaction abilities with the environment and
conditional clauses – provided by IoT – realize new advanced services for a PSS (Participant 10;
Participant 03; Participant 04).

Optimizing

The interviewees argue, although tracking and interacting capabilities added by IoT support creating
new business models, they are not sufficient (Participant 03; Participant 13). Thus, we need to involve
IoT more into the development of PSS business models and the next step is optimizing capability,
which is built upon the preceding capabilities. The collected and processed data during tracking and
interacting allows advanced analysis of products and services, particularly in the usage phase. This
empowers PSS providers in order to increase the performance of products and services, decrease their
costs and identify new opportunities for extending their business models (Vuppala and Kumar 2014).
Optimizing capability allows the smartness of a PSS to be dynamic and to evolve through the
lifecycle (Barbosa et al. 2016). For instance, sales services become much more intelligent by
analyzing the usage data in an IoT-supported PSS (Herterich et al. 2015; Zancul et al. 2016). In
addition, pricing can be continuously be calculated in a real-time manner (Zancul et al. 2016).
Interviewees perceived great opportunities based on machine learning algorithms, which are able to
improve the system functions continuously (Participant 01; Participant 03; Participant 12). They
believed such machine learning techniques combined with connectedness of products and services
over a PSS enabled by IoT provides opportunities to automate processes and create advanced
solutions (Participant 07). Many interviewees emphasized the importance of optimizing with regard to
control of PSS failure behavior (Participant 04; Participant 03).

Transforming

Built on the entire IoT technology stack, transforming capability of IoT for PSS is realized by high
level of autonomous operations and seamless communication with other networks (Gigli and Koo
2011; Porter and Heppelmann 2014). Transformation for the smart home example means that the
home appliances track their usage, perform analysis and accordingly change their behavior, interact
with the user as well as other devices and the PSS provider. Therefore, there is a total connectedness
and interaction among the people and machines with the aim of maximizing the products performance
and quality of services (Participant 09). The products and service provision as well as the customer’s
experience can significantly be reshaped by total IoT integration (Participant 01). With regard to the
autonomy aspect, edge processing - processing power at the edge of the network – is a key ability. It
allows local decision makings for every object in the system by collecting raw sensor data, filtering

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

the data and processing the data at its source by intelligent devices (Barbosa et al. 2016; Haller et al.
2008). During the maintenance phase, the system would be able not only to warn the provider or the
user, but also to enable the provider to employ a predictive maintenance scheme as well as a real-time
autonomous decision making (Zancul et al. 2016). To create more value, it is necessary to establish a
combination of machine-learning methods with real-time and cloud-based infrastructure as well as
communication across the system’s network (Participant 10; Participant 03).

IoT as PSS Lifecycle Management Enabler

Based on the literature and the interviews, we identified the related core potential concepts, which are
presented in Figure 1. IoT involvement leads to an increasing amount of data of the PSS and PSS
development. The data can be exploited continuously for production improvement and closed-loop
lifecycle management reflects this capability. The second aspect tackles collaboration issues in PSS
development, which is inherently challenging because of variety of involved disciplines. IoT supports
collaboration by enabling communication among machines and humans. Another implication of IoT
for the PSS development is the higher degree of autonomy for the PSS development. In addition to the
overall concepts, IoT enables specific technologies and paradigms regarding every phase of PSS
development. Regarding the PSS development phases of PSS, we follow general accepted
differentiation between beginning of life (BOL), middle of life (MOL) and end of life (EOL) phases.
These phases present respectively the design, manufacturing, logistics, use, maintenance, reuse and
recycling (Beuren et al. 2016; Terzi et al. 2010). Along these phases, we identified four underlying
opportunities, namely, digital twin, smart logistics, predictive maintenance and remanufacturing.

Closed-loop Lifecycle Management (CLLM) stands for ubiquity of product-relevant information at
any point in the lifecycle (Wiesner et al. 2015; Wuest et al. 2014). Such omnipresence enables
stakeholders to track and manage the data even during the use (Kiritsis 2011). In traditional lifecycle
management, considerable amount of relevant data is either lost or acquired with high cost.
Consequently, there is a limited visibility of products and services for the PSS provider (Basselot et
al. 2017; Igba et al. 2015). IoT tracking capabilities overcome such a challenge by low-cost collecting
of relevant data among lifecycles of PSS product parts and PSS services (Basselot et al. 2017).
Moreover, incorporating IoT into the PSS development would solve challenge of low interoperability
among heterogeneous working units that prevents CLLM realization (Basselot et al. 2017; Igba et al.
2015). The interviews reflected the same argument that with the help of IoT, we would collect and
manage PSS-related data necessary for CLLM (Participant 01; Participant 06). PSS providers would
be able to increase the quality of their product and services continuously. In addition to tracking status
of a product, i.e. product-focused data, Matsas et al. (2017) introduce user-focused data, which reflect
only usage information and attributes perceived by the user. Utilizing these two types of data can

Closed-loop Lifecycle Management

 Machine-to-Machine, Machine-to-Human, Human-to-Human Collaboration

 Autonomy

 BOL MOL EOL

Digital Twin Smart Logistics Predictive
Maintenance Remanufacturing

Figure 1 – Opportunities of IoT for PSS Lifecycle Management

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

significantly support requirements elicitation and management for PSS’ products and services and
even introducing new ones (Gudergan et al. 2017; Wuest and Wellsandt 2016; Yang et al. 2009).

Collaboration-related aspects are challenging for PSS development as PSS development involves
high number of teams and disciplines, whose tools and methods differ (Gopsill et al. 2011). IoT
capabilities mitigate the severity of such a challenge in collaborations among humans and machines.
First, IoT-enhanced machines would be able to transfer their information and adjust their conditions to
be aligned with each other. Hence, Machine-to-Machine (M2M) collaboration would take place
without the human intervention (Lee et al. 2013). With regard to Human-to-Human (H2H)
collaboration, interviewees from a global e-commerce enterprise highlighted that employing IoT
makes the relationship among manufacturers deeper as it increases the interoperability and the supply
chain performance can be monitored nearly real-time (Participant 01; Participant 02). Interviewees
also agreed that unleashing the potential of a complete IoT solution lead to engagement with new
partners, vendors and platforms (Participant 11; Participant 03; Participant 01). Particularly, tools and
development platforms in the context of IoT allow a wider range of developers to access the
innovative capabilities and build up their knowledge collaboratively (Participant 03). Consequently,
companies can focus on their core competence and core business activities (Participant 07).

M2M collaborations enabled by IoT establish new opportunities for process and factory automation
by minimizing the human intervention (Ardolino et al. 2016; Gerpott and May 2016; Lee et al. 2013).
Interviews showed cases in which IoT could automate the complete supply chain processes from an
order on the website to final delivery. This led to cost reduction and improved customer experience
(Participant 01; Participant 02). Moreover, incorporating advanced machine learning techniques based
on data collected and filtered by IoT empowers autonomous decision-makings, self-coordination and
self-diagnosis abilities (Porter and Heppelmann 2014), which is confirmed by the interviews
(Participant 11; Participant 03). However, the interviewees argued that there are several challenges
that impede realizing high autonomy. For example, yet there are no advances in automated self-
criticism, in which the system recognizes its mistakes (Participant 03). In addition, there is still lack of
trust in automation operations, which does not allow its full integration into the lifecycle management
(Participant 03).

Digital twin or product avatar refers to digital equivalent of a physical product. Integrating actual
physical data with the virtual replication of a product enables a better design, validation and
verification of engineering artefacts (Goto et al. 2016). In general, there is a trend towards use of
digital twin enabled by IoT capabilities (Participant 08). Digital twin can be engaged for predicting,
optimizing and verifying the products along the lifecycle. However, it plays a significant role in BOL
phase by incorporating feedbacks from MOL and EOL phases into improving the design and
simulating different options (Participant 01; Participant 02). For instance, a digital presentation of a
product supports evaluating performance of the product in diverse environments. Moreover, applying
a change in PSS can be first reflected in the virtual setting and the results can be used to realize PSS
more efficiently (Participant 02; Participant 08). Another important ability of digital twin is that we
can present the system thoroughly and more easily to different stakeholders along the entire lifecycle
(Participant 02; Participant 08). Use of digital twin reduces the delays, increases the overall
development efficiency and transparency of customers’ processes (Meneghetti et al. 2016).

Smart logistics is enabled by tracking and optimizing abilities of IoT. IoT establishes an overall
connectivity of all devices and product parts, which empowers efficient delivery of products and
integrated services (Vuppala and Kumar 2014). For instance, IoT supports activities such as resource
allocation (Barbosa et al. 2016) and inventory management (Papakostas et al. 2016). Moreover, with
the help of IoT, autonomous vehicles would be able to optimize transportations during the
manufacturing and facilitate distributed orders (Mueller et al. 2017). Based on the interviews, such
capabilities of IoT are currently in use in several manufacturing leaders (Participant 01).

Predictive maintenance is regular monitoring and analyzing of the system conditions in order to
minimize the number of failures and repairs (Mobley 2002). Since IoT provides valuable insight with
regard to the PSS and its usage, it can minimize the time for error diagnosis (Lerch and Gotsch 2015).
For example, with the help of IoT sensors and analysis of the collected usage data, we would be able

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

to elicit spare part requirements (Herterich et al. 2015; Zancul et al. 2016) Several interviewees
reported that they have experienced considerable savings by incorporating IoT capabilities into the
maintenance activities (Participant 01; Participant 08; Participant 05). Moreover, they stated that
increased availability resulted from a more efficient maintenance led to higher customer satisfaction.

Remanufacturing stands for the industrial process, in which we restore and recover used products
into a good condition (Lindkvist and Sundin 2016). Hence, experiences of later stages of lifecycle
would be employed in the earlier stages (Igba et al. 2015). Realizing remanufacturing necessitates
tracking, controlling and analyzing the product, the condition of the product and the usage of product,
which can be enabled by means of IoT (Chierici and Copani 2016). Ideally, there is a feedback loop
between each lifecycle phases.

Discussion

IoT paradigm can transform the industry and be as influential as the Internet was in the 1990s. Our
findings showed that practitioners assert high potential of IoT for facilitating new business models,
designing new products and providing advanced services. In conformance with this fact, the prior
research emphasized on transforming abilities of IoT and the big impact that IoT can have on
businesses (Čolaković and Hadžialić 2018; Gubbi et al. 2013; Porter and Heppelmann 2014).
Particularly, IoT can play a crucial role for PSS (Seregni et al. 2016; Shih et al. 2016; Zancul et al.
2016). Due to challenging nature of PSS, which transforms merely product or service businesses into
an integrated enterprise of product and service provision, more connectedness and communication
among heterogeneous elements is necessary (Vasantha et al. 2012; Wiesner et al. 2015). Strengths of
IoT matches to the difficulties that PSS design and development confront.

The existing studies on IoT and PSS relationship limit to single case applications of a particular
method for adopting IoT in PSS development (Shih et al. 2016; Zancul et al. 2016). We extend the
current literature by establishing a comprehensive view on the opportunities that IoT can provide for
PSS. We presented the framework of IoT-PSS business model opportunities that introduces four
levels of IoT involvement in PSS. Based on the framework, there is a wide range of IoT integration
into PSS. It starts from basic IoT-supported tracking abilities in PSS to transformed IoT-driven PSS
with IoT as its core value creator. The framework assists PSS providers in positioning themselves,
identifying the extent, to which they have already benefited from IoT and the possibilities, which they
have not realized yet. Furthermore, we identified and highlighted the core IoT-enabled opportunities,
which facilitate PSS lifecycle management. Although the concepts vary largely from M2M
collaboration to digital twin and remanufacturing, they are mutual in terms of being enabled by IoT
and advancing PSS lifecycle management. Nevertheless, diving deep into the details of implementing
such technologies in the domain of PSS was out of scope of this study and can be investigated in
future research. We argue that our study provides the fundamentals for advancing PSS and IoT
integration research. Future studies can build new concepts, methods and tools upon the established
frameworks of this study.

Combining the two folds of this study’s contribution enlighten the overall IoT exploitation for PSS
design and development. Insightful alignment of IoT and PSS allows various added-values for both
businesses and the customers. Regarding the customer values, PSS providers would be able to
establish a reliable connection with the customer, partners and suppliers by a right IoT integration.
Customers can expect a continuous improving product and service, which are also more customized to
their usage. In addition, customers would benefit from a higher availability of product and services. In
context of the business values, IoT integration shortens the development cycles and reduces costs of
development. PSS providers will have a shorter time-to-market, which is a decisive aspect in a
competitive environment. Moreover, utilizing IoT decreases costs of maintenance and
remanufacturing significantly. For example, there would be no need for on-site monitoring of product
conditions as the sensors are continuously tracking the relevant information. At its extreme
realization, PSS providers will gain autonomy and transparency during all phases of PSS lifecycle.
Even though a limited integration of IoT in PSS enables PSS providers to introduce smart products
and advanced services, which can lead to a higher revenue.

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

According to our findings from the interviews, IoT technologies have been integrated mostly on the
end-customers side, despite the fact that B2B applications of IoT can have greater economic
outcomes. Moreover, we observed a slow progress regarding the shift from IoT-supported PSS to IoT-
driven PSS. Although, lack of infrastructural capabilities can be considered as an important factor that
stops IoT integration, complicated barriers exist, which future studies need to investigate them in
detail. For example, there is still uncertainty about costs and profits of IoT adoption, particularly at its
highest extent. Mechanisms to analyze and estimate IoT adoption in terms of monetary parameters
would significantly support the realization of IoT opportunities. Furthermore, IoT integration is
fostering a collaborative ecosystem, in which many start-ups have emerged as IoT technology
providers. Future studies can look more into how we can ease the integration of such start-ups’
contributions into existing infrastructures. With this regard, the research should study the role of
emerging IoT platforms, which will facilitate use of IoT for variety of applications.

Conclusion

In addition to empowering the existing solutions, IoT enables us to realize new ideas. Particularly, we
can use the power of IoT to facilitate complexity of PSS design and development. In this study, we
investigated opportunities that IoT can provide for PSS business models and lifecycle management.
We provided examples for each relevant hotspot to assist PSS providers in positioning and deciding a
right business model when integrating IoT in their portfolio. First, we introduced framework of IoT
opportunities for PSS business models that entails two dimensions of IoT involvement level and PSS
types. It evaluates which type of services IoT technologies foster for the provision of PSS.
Furthermore, we analyzed IoT as a key facilitator of the lifecycle management by enabling new
technologies and capabilities such as autonomy, closed-lifecycle management, digital twin, predictive
maintenance and remanufacturing.

The findings of this study provide new insights for PSS providers. Moreover, this study establishes a
comprehensive view on opportunistic implications of IoT for PSS, which paves the path for future
studies to advance this topic. The research can complete this work by addressing on one hand, the
barriers for integrating IoT into PSS and on the other hand, the challenges caused by IoT integration
into PSS. Accordingly, the studies can propose solutions to overcome such challenges.

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) collaborative research centre ‘Sonderforschungsbereich SFB 768 “Managing cycles in
innovation processes – Integrated development of product-service-systems based on technical
products”.

References

Adrodegari, F., and Saccani, N. 2017. "Business Models for the Service Transformation of Industrial
Firms," The Service Industries Journal (37:1), pp. 57-83.

Ardolino, M., Saccani, N., Gaiardelli, P., and Rapaccini, M. 2016. "Exploring the Key Enabling Role
of Digital Technologies for Pss Offerings," Procedia CIRP (47), pp. 561-566.

Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A., Greenough, R., Peppard, J., Roy, R., Shehab, E.,
Braganza, A., and Tiwari, A. 2007. "State-of-the-Art in Product-Service Systems," Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (221:10), pp.
1543-1552.

Bandyopadhyay, D., and Sen, J. 2011. "Internet of Things: Applications and Challenges in
Technology and Standardization," Wireless Personal Communications (58:1), pp. 49-69.

Barbosa, J., Leitão, P., Trentesaux, D., Colombo, A. W., and Karnouskos, S. 2016. "Cross Benefits
from Cyber-Physical Systems and Intelligent Products for Future Smart Industries," Industrial
Informatics (INDIN), 2016 IEEE 14th International Conference on: IEEE, pp. 504-509.

Basirati, M. R., Zou, M., Bauer, H., Kattner, N., Reinhart, G., Lindemann, U., Böhm, M., Krcmar, H.,
and Vogel-Heuser, B. 2018. "Towards Systematic Inconsistency Identification for Product

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

Service Systems," DS92: Proceedings of the DESIGN 2018 15th International Design
Conference, pp. 2811-2820.

Basselot, V., Berger, T., and Sallez, Y. 2017. "Active Monitoring of a Product: A Way to Solve the
“Lack of Information” Issue in the Use Phase," in Service Orientation in Holonic and Multi-Agent
Manufacturing. Springer, pp. 337-346.

Beuren, F. H., Ferreira, M. G. G., and Miguel, P. A. C. 2013. "Product-Service Systems: A Literature
Review on Integrated Products and Services," Journal of cleaner production (47), pp. 222-231.

Beuren, F. H., Pereira, D., and Fagundes, A. B. 2016. "Product-Service Systems Characterization
Based on Life Cycle: Application in a Real Situation," Procedia CIRP (47), pp. 418-423.

Chierici, E., and Copani, G. 2016. "Remanufacturing with Upgrade Pss for New Sustainable Business
Models," Procedia CIRP (47), pp. 531-536.

Čolaković, A., and Hadžialić, M. 2018. "Internet of Things (Iot): A Review of Enabling
Technologies, Challenges, and Open Research Issues," Computer Networks).

Corbin, J., Strauss, A., and Strauss, A. L. 2014. Basics of Qualitative Research. sage.
Elia, V., Gnoni, M. G., and Tornese, F. 2016. "Assessing the Efficiency of a Pss Solution for Waste

Collection: A Simulation Based Approach," Procedia CIRP (47), pp. 252-257.
Exner, K., Zimpfer, R., and Stark, R. 2017. "Maturity Model and Action Recommendation: A Pss

Capability Self-Assessment Tool for Companies," Procedia CIRP (64), pp. 175-180.
Georgakopoulos, D., and Jayaraman, P. P. 2016. "Internet of Things: From Internet Scale Sensing to

Smart Services," Computing (98:10), pp. 1041-1058.
Gerpott, T. J., and May, S. 2016. "Integration of Internet of Things Components into a Firm’s

Offering Portfolio–a Business Development Framework," info (18:2), pp. 53-63.
Gigli, M., and Koo, S. G. 2011. "Internet of Things: Services and Applications Categorization," Adv.

Internet of Things (1:2), pp. 27-31.
Gläser, J., and Laudel, G. 2010. Experteninterviews Und Qualitative Inhaltsanalyse. Springer-Verlag.
Goedkoop, M. J., Van Halen, C. J., Te Riele, H. R., and Rommens, P. J. 1999. "Product Service

Systems, Ecological and Economic Basics," Report for Dutch Ministries of environment (VROM)
and economic affairs (EZ) (36:1), pp. 1-122.

Gopsill, J. A., McAlpine, H. C., and Hicks, B. J. 2011. "Learning from the Lifecycle: The Capabilities
and Limitations of Current Product Lifecycle Practice and Systems," DS 68-6: Proceedings of the
18th International Conference on Engineering Design (ICED 11), Impacting Society through
Engineering Design, Vol. 6: Design Information and Knowledge, Lyngby/Copenhagen, Denmark,
15.-19.08. 2011.

Goto, S., Yoshie, O., and Fujimura, S. 2016. "Internet of Things Value for Mechanical Engineers and
Evolving Commercial Product Lifecycle Management System," Industrial Engineering and
Engineering Management (IEEM), 2016 IEEE International Conference on: IEEE, pp. 1021-1024.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. 2013. "Internet of Things (Iot): A Vision,
Architectural Elements, and Future Directions," Future generation computer systems (29:7), pp.
1645-1660.

Gudergan, G., Buschmeyer, A., Feige, B. A., Krechting, D., Bradenbrink, S., and Mutschler, R. 2017.
"Value of Lifecycle Information to Transform the Manufacturing Industry," in Shaping the Digital
Enterprise. Springer, pp. 173-194.

Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F., and Reinfurt, L.
2018. "A Detailed Analysis of Iot Platform Architectures: Concepts, Similarities, and
Differences," in Internet of Everything. Springer, pp. 81-101.

Haller, S., Karnouskos, S., and Schroth, C. 2008. "The Internet of Things in an Enterprise Context,"
Future Internet Symposium: Springer, pp. 14-28.

Herterich, M. M., Uebernickel, F., and Brenner, W. 2015. "The Impact of Cyber-Physical Systems on
Industrial Services in Manufacturing," Procedia CIRP (30), pp. 323-328.

Igba, J., Alemzadeh, K., Gibbons, P. M., and Henningsen, K. 2015. "A Framework for Optimising
Product Performance through Feedback and Reuse of in-Service Experience," Robotics and
Computer-Integrated Manufacturing (36), pp. 2-12.

Kiel, D., Arnold, C., and Voigt, K.-I. 2017. "The Influence of the Industrial Internet of Things on
Business Models of Established Manufacturing Companies–a Business Level Perspective,"
Technovation (68), pp. 4-19.

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

Kiritsis, D. 2011. "Closed-Loop Plm for Intelligent Products in the Era of the Internet of Things,"
Computer-Aided Design (43:5), pp. 479-501.

Kowalkowski, C., Windahl, C., Kindström, D., and Gebauer, H. 2015. "What Service Transition?
Rethinking Established Assumptions About Manufacturers' Service-Led Growth Strategies,"
Industrial Marketing Management (45), pp. 59-69.

Lee, G. M., Crespi, N., Choi, J. K., and Boussard, M. 2013. "Internet of Things," in Evolution of
Telecommunication Services. Springer, pp. 257-282.

Lerch, C., and Gotsch, M. 2015. "Digitalized Product-Service Systems in Manufacturing Firms: A
Case Study Analysis," Research-Technology Management (58:5), pp. 45-52.

Lightfoot, H., Baines, T., and Smart, P. 2013. "The Servitization of Manufacturing: A Systematic
Literature Review of Interdependent Trends," International Journal of Operations & Production
Management (33:11/12), pp. 1408-1434.

Lindkvist, L., and Sundin, E. 2016. "The Role of Product-Service Systems Regarding Information
Feedback Transfer in the Product Life-Cycle Including Remanufacturing," Procedia Cirp (47), pp.
311-316.

Maleki, E., Belkadi, F., Zhang, Y., and Bernard, A. 2017. "Towards a New Collaborative Framework
Supporting the Design Process of Industrial Product Service Systems," in Advances on
Mechanics, Design Engineering and Manufacturing. Springer, pp. 139-146.

Marilungo, E., Papetti, A., Germani, M., and Peruzzini, M. 2017. "From Pss to Cps Design: A Real
Industrial Use Case toward Industry 4.0," Procedia CIRP (64), pp. 357-362.

Matsas, M., Pintzos, G., Kapnia, A., and Mourtzis, D. 2017. "An Integrated Collaborative Platform
for Managing Product-Service across Their Life Cycle," Procedia CIRP (59), pp. 220-226.

Matzen, D., and McAloone, T. C. 2009. A Systematic Apporach to Service Oriented Product
Development. DTU Management.

Maxwell, D., Sheate, W., and Van Der Vorst, R. 2006. "Functional and Systems Aspects of the
Sustainable Product and Service Development Approach for Industry," Journal of cleaner
production (14:17), pp. 1466-1479.

Mayring, P. 2010. "Qualitative Inhaltsanalyse," in Handbuch Qualitative Forschung in Der
Psychologie. Springer, pp. 601-613.

Mazhelis, O., Luoma, E., and Warma, H. 2012. "Defining an Internet-of-Things Ecosystem," in
Internet of Things, Smart Spaces, and Next Generation Networking. Springer, pp. 1-14.

Meier, H., Roy, R., and Seliger, G. 2010. "Industrial Product-Service Systems—Ips2," CIRP Annals-
Manufacturing Technology (59:2), pp. 607-627.

Meneghetti, A., Moro, S., and Helo, P. 2016. "Intermixed Product and Service Boundaries: Exploring
Servitization in Sheet Metal Industry," Procedia CIRP (47), pp. 258-263.

Miles, M. B., and Huberman, A. M. 1994. Qualitative Data Analysis: An Expanded Sourcebook. sage.
Mobley, R. K. 2002. An Introduction to Predictive Maintenance. Elsevier.
Mont, O. K. 2002. "Clarifying the Concept of Product–Service System," Journal of cleaner production

(10:3), pp. 237-245.
Moritz, S. 2009. Service Design: Practical Access to an Evolving Field. Lulu. com.
Mueller, E., Chen, X.-L., and Riedel, R. 2017. "Challenges and Requirements for the Application of

Industry 4.0: A Special Insight with the Usage of Cyber-Physical System," Chinese Journal of
Mechanical Engineering (30:5), pp. 1050-1057.

Papakostas, N., O'Connor, J., and Byrne, G. 2016. "Internet of Things Technologies in
Manufacturing: Application Areas, Challenges and Outlook," Information Society (i-Society),
2016 International Conference on: IEEE, pp. 126-131.

Patel, K. K., and Patel, S. M. 2016. "Internet of Things-Iot: Definition, Characteristics, Architecture,
Enabling Technologies, Application & Future Challenges," International journal of engineering
science and computing (6:5).

Porter, M. E., and Heppelmann, J. E. 2014. "How Smart, Connected Products Are Transforming
Competition," Harvard business review (92:11), pp. 64-88.

Reim, W., Parida, V., and Örtqvist, D. 2015. "Product–Service Systems (Pss) Business Models and
Tactics – a Systematic Literature Review," Journal of Cleaner Production (97), pp. 61-75.

Schuh, G., Salmen, M., Kuhlmann, T., and Wiese, J. 2016. "Life-Cycle-Oriented Product-Service-
Systems in the Tool and Die Making Industry," Procedia CIRP (47), pp. 555-560.

IoT as PSS Enabler

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019

Seregni, M., Sassanelli, C., Cerri, D., Zanetti, C., and Terzi, S. 2016. "The Impact of Iot Technologies
on Product-Oriented Pss: The “Home Delivery” Service Case," Research and Technologies for
Society and Industry Leveraging a better tomorrow (RTSI), 2016 IEEE 2nd International Forum
on: IEEE, pp. 1-5.

Shih, L.-H., Lee, Y.-T., and Huarng, F. 2016. "Creating Customer Value for Product Service Systems
by Incorporating Internet of Things Technology," Sustainability (8:12), p. 1217.

Tao, F., Zuo, Y., Da Xu, L., and Zhang, L. 2014. "Iot-Based Intelligent Perception and Access of
Manufacturing Resource toward Cloud Manufacturing," IEEE Transactions on Industrial
Informatics (10:2), pp. 1547-1557.

Terzi, S., Bouras, A., Dutta, D., Garetti, M., and Kiritsis, D. 2010. "Product Lifecycle Management-
from Its History to Its New Role," International Journal of Product Lifecycle Management (4:4),
pp. 360-389.

Tukker, A. 2004. "Eight Types of Product–Service System: Eight Ways to Sustainability?
Experiences from Suspronet," Business strategy and the environment (13:4), pp. 246-260.

Ulaga, W., and Reinartz, W. J. 2011. "Hybrid Offerings: How Manufacturing Firms Combine Goods
and Services Successfully," Journal of marketing (75:6), pp. 5-23.

Vasantha, G. V. A., Roy, R., Lelah, A., and Brissaud, D. 2012. "A Review of Product–Service
Systems Design Methodologies," Journal of Engineering Design (23:9), pp. 635-659.

Venkatesh, V., Brown, S. A., and Bala, H. 2013. "Bridging the Qualitative-Quantitative Divide:
Guidelines for Conducting Mixed Methods Research in Information Systems," MIS quarterly),
pp. 21-54.

Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., and Cleven, A. 2009.
"Reconstructing the Giant: On the Importance of Rigour in Documenting the Literature Search
Process," ECIS, pp. 2206-2217.

Vuppala, S. K., and Kumar, H. K. 2014. "Service Applications-Exploiting the Internet of Things,"
Global Conference (SRII), 2014 Annual SRII: IEEE, pp. 195-202.

Webster, J., and Watson, R. T. 2002a. "Analyzing the Past to Prepare for the Future: Writing a
Literature Review," MIS Quarterly (26:2), pp. xiii-xxiii.

Webster, J., and Watson, R. T. 2002b. "Analyzing the Past to Prepare for the Future: Writing a
Literature Review," MIS quarterly), pp. xiii-xxiii.

Weking, J., Brosig, C., Böhm, M., Hein, A., and Krcmar, H. 2018. "Business Model Innovation
Strategies for Product Service Systems–an Explorative Study in the Manufacturing Industry,"
Twenty-Sixth European Conference on Information Systems (ECIS 2018).

Whitmore, A., Agarwal, A., and Da Xu, L. 2015. "The Internet of Things—a Survey of Topics and
Trends," Information Systems Frontiers (17:2), pp. 261-274.

Wiesner, S., Freitag, M., Westphal, I., and Thoben, K.-D. 2015. "Interactions between Service and
Product Lifecycle Management," Procedia CIRP (30), pp. 36-41.

Wortmann, F., and Flüchter, K. 2015. "Internet of Things," Business & Information Systems
Engineering (57:3), pp. 221-224.

Wuest, T., Hribernik, K., and Thoben, K.-D. 2014. "Capturing, Managing and Sharing Product
Information Along the Lifecycle for Design Improvement," Proceedings of the 10th International
Workshop on Integrated Design Engineering.

Wuest, T., and Wellsandt, S. 2016. "Design and Development of Product Service Systems (Pss)-
Impact on Product Lifecycle Perspective," Procedia Technology (26), pp. 152-161.

Yang, X., Moore, P., Pu, J.-S., and Wong, C.-B. 2009. "A Practical Methodology for Realizing
Product Service Systems for Consumer Products," Computers & Industrial Engineering (56:1),
pp. 224-235.

Zancul, E. d. S., Takey, S. M., Barquet, A. P. B., Kuwabara, L. H., Cauchick Miguel, P. A., and
Rozenfeld, H. 2016. "Business Process Support for Iot Based Product-Service Systems (Pss),"
Business Process Management Journal (22:2), pp. 305-323.

Not Included in
Review and

Evaluation: P2

. Introduction

Firms have to increase their share of service offer-
ings in order to survive in today’s competitive global
economy (Mont, 2002). Products are no longer the
main contributors to value creation, as the value
is shifting toward services. We can see this shift in

the gross domestic product of most developed coun-
tries, which are more dependent on services than
physical products (Meier et al., 2010). Consequently,
more service-oriented business models, such as prod-
uct service systems (PSS), have emerged. Most defi-
nitions of PSS describe it as a system that integrates
products and services in order to create a competitive

Asia Pacific Journal of Information Systems
Vol. 29 No. 3 (September 2019), 524-546

ISSN 2288-5404 (Print) / ISSN 2288-6818 (Online)
https://doi.org/10.14329/apjis.2019.29.3.524

Special Issue on Smart Services and Internet of Things

Exploring Opportunities of IoT for Product!Service

System Conceptualization and Implementation

Mohammad R. Basiratia,*, Jörg Wekingb, Sebastian Hermesc, Markus Böhmd, Helmut Krcmare

a Research associate and Ph.D. student, Chair for Information Systems, Technical University of Munich (TUM), Germany
b Research associate and Ph.D. student, Chair for Information Systems, Technical University of Munich (TUM), Germany
c Research associate and Ph.D. student, Chair for Information Systems, Technical University of Munich (TUM), Germany
d Research Group Leader, Chair for Information Systems, Technical University of Munich (TUM), Germany
e Chair Professor, Information Systems, Technical University of Munich (TUM), Germany

A B S T R A C T

Product!service systems (PSS), integrating physical products and services, currently play a crucial role in sustain-
able economies. In addition to the highly competitive global economy, the emergence of new digital paradigms
is supporting the shift toward servitization. Although the great potential of such paradigms is recognized by
both practice and research, their implications for PSS are not yet clear. In particular, features of Internet of
Things (IoT), such as total connectedness and ubiquity of smart sensors and actuators, provide various new
opportunities for PSS. This study explores such opportunities by conducting structured literature review and
13 interviews. We organize the findings in two folds: First, we introduce four degrees of IoT involvement in
PSS business models and elaborate the opportunities that they create for different types of PSS. Second, we
present the key technologies and approaches that IoT provides concerning PSS lifecycle management.

Keywords: Product!Service System, Internet of Things, IoT Integration, Review, Expert Interview

*Corresponding Author. E-mail: mohammadreza.basirati@tum.de Tel: 498928919598

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 525

solution (Beuren et al., 2013), while some definitions
also emphasize its role in reaching sustainability with
regard to environmental and social considerations
(Baines et al., 2007; Maxwell et al., 2006).

A frequently cited example of a PSS is that of
the Xerox company (Baines et al., 2007). Traditionally
manufacturing print and copy machines, now Xerox
provides print and copy solutions that comprise more
service-side than product-side elements. A starting
point for such a change was developing a
pay-per-copy system, in which the machines were
sold at a low price and copy function was seen as
a service provided by Xerox. More recent and wide-
spread examples of PSS are car-, bike-, and e-scoot-
er-sharing systems. In such a PSS, the value is created
by providing mobility as a service to the customer
instead of selling a physical product such as a car.

At the same time, the emergence of advanced digi-
tal paradigms such as the Internet of Things (IoT)
is providing even more opportunities for innovative
service offerings and PSS design (Kowalkowski et
al., 2015; Lightfoot et al., 2013; Ulaga and Reinartz,
2011). IoT is a concept describing the networking
of objects, which can sense, communicate, store data,
and interact with the environment (Patel and Patel,
2016). IoT allows not only monitoring the status
of physical objects but also establishes the basis for
progressive services such as optimization and autom-
ization of product operations and services (Adrodegari
and Saccani, 2017; Porter and Heppelmann, 2014).

There is a consensus among previous studies on
the relevance of digital technologies such as IoT to
servitization, particularly PSS (Exner et al., 2017;
Marilungo et al., 2017; Shih et al., 2016). In practice,
however, the adoption of IoT is a challenging issue,
as it requires an intensive reconfiguration of existing
settings (Marilungo et al., 2017). However, past re-
search has not provided clear guidance on how we

can exploit IoT to successfully design and develop
PSS despite the need (Kiel et al., 2017). Hence, this
study addresses the following research question:

What opportunities does IoT provide for PSS design
and development?

We focus on two important aspects of PSS develop-
ment: (1) integrating IoT into PSS business models,
and (2) integrating IoT in the PSS lifecycle. To get
a wide-ranging understanding of IoT and PSS in
research and practice, we use a structured literature
review (Webster and Watson, 2002) and interview
experts (Gläser and Laudel, 2010; Miles and Huberman,
1994). The results provide a comprehensive overview
of ideas and practices that IoT delivers for innovative
PSS design and development. With regard to the
business-development aspect, a framework elaborates
the implications of different degrees of IoT involve-
ment for different types of PSS. We also present
the core concepts of IoT and the technologies it
enables, which can be employed to facilitate PSS
lifecycle management. We extend a previously pub-
lished study (Basirati et al., 2019) in two steps: First,
we cover related prior research more compre-
hensively, and second, we provide real-world PSS
cases for every aspect of IoT opportunity for PSS
business models.

. Conceptual Background

2.1. Product Service Systems

PSS refers to a strategic business-model design
intended to integrate and combine products, services,
and communication based on changing customer
and stakeholder demands (Beuren et al., 2013). The

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

526 Asia Pacific Journal of Information Systems Vol. 29 No. 3

concept was introduced in 1999 as a promising busi-
ness model for “sustainable economic growth”
(Baines et al., 2007; Maleki et al., 2017). Most articles
investigating PSS rely on definitions by Goedkoop
et al. (1999):

“A product service system is a marketable set of
products and services capable of jointly fulfilling a
user’s need. A product is a tangible commodity, manu-
factured to be sold. A service is an activity (work),
often done on a commercial basis and for others,
with an economic value. A system is a combination
of elements including their relations.”

Recognizing the importance of implementing in-
tegrated product service offerings, PSS literature
has considered them a powerful source of competitive
advantage and sustainability (Ardolino et al., 2016;
Schuh et al., 2016). PSS has proven to provide advan-
tages such as higher profit margins, new growth op-
portunities in saturated markets, and long-term cus-
tomer relationships. Besides the advantages for PSS
providers, PSS also benefits consumers, the environ-
ment, and society (Beuren et al., 2013). Nonetheless,
PSS implementation can be challenging and lead to
inconsistencies among heterogeneous teams and de-
veloping artifact (Basirati et al., 2018). Moreover,
PSS adoption into existing business models is not

a straightforward procedure and requires applying
proper strategies (Weking et al., 2018).

Within the PSS research stream, three types of
PSS have emerged: product-oriented, use-oriented,
and result-oriented PSS (Baines et al., 2007; Tukker,
2004; Yang et al., 2009). This classification is widely
accepted in the literature. <Table 1> describes the
three different categories of PSS in terms of their
underlying business-model elements (Reim et al.,
2015).

Another way of looking at the three types of PSS
is to consider what point they have reached on the
innovation scale; result-oriented PSS is the most in-
novative, and product-oriented PSS is the least
innovative. For a PSS to evolve from product-oriented
to result-oriented, it may take incremental steps
and/or a radical path. Incremental innovation, in
this context, means that product-oriented PSS evolves
slowly to use-oriented and then further to re-
sult-oriented. This happens through a slow and
steady continuous-improvement process. Radical in-
novation, on the other hand, means that product-ori-
ented PSS transforms directly into result-oriented
PSS, skipping the use-oriented stage. This often in-
volves a radical shift in technology and leads to a
total reconfiguration of the PSS.

The Xerox case, introduced in the previous section,
is a typical product-oriented PSS example. All manu-

<Table 1> PSS Types According to Reim et al. (2015)

Product-oriented Use-oriented Result-oriented
Value

creation
The main responsibility of provider is
service delivery.

The main responsibility of provider is
the usability of the product or service.

Results are the main responsibility of
provider.

Value
delivery

Provider delivers extra services in
addition to sold products (e.g.,
maintenance or recycling).

Provider focuses on service usability
along with product usability.

The results are counted as the main
deliverables instead of products or
services.

Value
capturing

Customer pays for the product and
extra delivered services.

The payment is performed over usage
phase continuously (e.g., leasing).

Customer pays based on outcome units
instead of pay-per-use or
pay-per-product.

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 527

facturers that provide maintenance and recycling
services besides their products can be considered
examples of the product-oriented PSS type.

Car-sharing and bike-sharing cases belong to
use-oriented PSS type. In such cases, the price is
calculated based on the units of usage. For example,
BMW car-sharing service DriveNow1) and Daimler
car-sharing service car2go2) charge the users based
on a per-minute basis. The users can take any available
car in the city and park it for free anywhere in the
city. The cars (physical products) are typical car mod-
els manufactured by BMW and Daimler. However,
these car manufacturers do not sell their cars in
the PSS, but they use their physical products as a
means to deliver mobility services to the users.

Result-oriented PSS has the highest level of serviti-
zation, in which the service-side creates more share
of value than the product side (Yang et al., 2010).
If a washing machine manufacturer provides its ma-
chines for free and charges the users on a pay-per-use
basis, this would be a use-oriented PSS. It is possible
to incorporate more servitization in such a PSS by
delivering laundered clothes, i.e. the result, instead
of the machines (Baines et al., 2007). Such a system
would be a result-oriented PSS. A real-case advanced
example of result-oriented PSS is Lufthansa’s
AVIATAR digital power platform3), which provides
various apps and services for airlines and their suppli-
ers and partners. For instance, the airlines can create
networks with each other and share their airplanes’
spare parts with the purpose of increasing the
availability.

1) https://www.drive-now.com
2) https://www.car2go.com
3) https://www.lufthansa-technik.com/aviatar

2.2. Internet of Things

The term “Internet of Things” was introduced
by Kevin Ashton in a presentation in 1998 (Perera
et al., 2014) and is now a technological concept with
widespread applications (Tao et al., 2014). However,
there is as yet no standard definition for IoT, as
research about IoT is still in its infancy. Building
on the seminal work of Gubbi et al. (2013), we define
IoT as follows:

“Interconnection of sensing and actuating devices
providing the ability to share information across plat-
forms through a unified framework, developing a com-
mon operating picture for enabling innovative
applications. This is achieved by seamless large-scale
sensing, data analytics, and information representa-
tion using cutting-edge ubiquitous sensing and cloud
computing.”

The IoT concept includes both technology and
services that are based on connected objects and
the use of the collected data (Čolaković and Hadžialić,
2018). Everyday objects can be equipped with sensors
and actuators to communicate, generate, and process
data (Whitmore et al., 2015). Usually, an object, also
called a thing, communicates over network protocols
with a service in the cloud (Guth et al., 2018).

We elaborate the essential components of IoT
within a four-layered technology stack (<Table 2>),
which we based on the insights of several others
earlier in this decade (Bandyopadhyay and Sen, 2011;
Georgakopoulos and Jayaraman, 2016; Lee et al., 2013;
Mazhelis et al., 2012; Porter and Heppelmann, 2014;
Vuppala and Kumar, 2014; Wortmann and Flüchter,
2015). <Table 2> illustrates the multiple technology
layers, including the physical, sensor network, cloud
computing services and application services layer.

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

528 Asia Pacific Journal of Information Systems Vol. 29 No. 3

The four layers are independent, which means that
all components can be developed independently.
Communication between the components ideally
takes place through well-defined interfaces and a
cloud-based shared platform. In general, the two low-
er layers are responsible for data capturing (data
generation and collection) by low-end sensor nodes,
while the two upper layers contribute to data process-
ing and utilization in applications.

Each of the four layers (<Table 2>) has distinct
capabilities, operations, and costs. The physical layer
provides the infrastructural hardware components,
such as embedded sensors, processors, and data
storage. Connectivity among these components is
reflected in the sensor-network layer, in which the
data are transmitted by various technologies, such
as Bluetooth, Ethernet, or RFID. To store and process
the huge amounts of data captured in the physical
layer and transmitted in the sensor-network layer,
the cloud-computing layer provides mechanisms to
aggregate and normalize the data. This layer also
makes available the main attributes of the data for
detailed analysis and may connect external sources
of data (e.g., traffic and weather data). This layer
can be considered as a platform that supports hetero-
genous devices, data privacy and security, and total
integration within a bigger ecosystem (Marques et
al., 2017). In the highest layer in the IoT technology
stack, the application-services layer, the unit of analy-
sis and operations is large in scale compared to the
cloud-computing layer. On the basis of the other

three layers, this layer provides a deep analysis of
data and appropriate services.

On the basis of the extent to which each layer
is configured and implemented, IoT can provide dif-
ferent PSS opportunities. Although the physical and
sensor-network layers exist in every IoT system re-
gardless of configuration, the cloud-computing and
service-application layers may be absent. Therefore,
the level of realization of each discussed layer can
reflect the extent to which IoT can affect PSS design
and development.

2.3. Internet of Things for Product Service
Systems

Few studies have addressed the relationship be-
tween IoT and PSS. Most are very recent and mainly
use case studies to investigate the application of
IoT-for-PSS development. For example, Seregni et
al. (2016) analyzed three commercial PSS cases that
incorporated IoT technology into their systems.
Available information about the cases indicates that
they compared which new services IoT-enabled for
the PSS cases. They analyzed the cases with regard
to four categories identity-related, information-
aggregation, collaborative-awareness, and ubiquity
services. They also investigated whether IoT-sup-
ported the delivery or order phase of the PSS and
whether on the customer side or the PSS provider
side. Nevertheless, the study does not go into the
subject at depth, instead presenting only a preliminary

<Table 2> Four Layers of IoT Components

Application services Analyzing data, learning and responding
Cloud computing Storing, processing and sharing data
Sensor network Transmitting data
Physical layer Providing hardware infrastructure

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 529

analysis. Another case study, conducted by Elia et
al. (2016) looked at integrating IoT in a PSS solution
for waste collection; its main contributions are an
evaluation of the performance of such a solution
and its comparison to traditional non-PSS solutions.
The study shows that IoT-enabled PSS is significantly
better than traditional methods for waste collection;
however, the study rarely focuses on the IoT aspects
and does not mention any IoT-integration insights.
Bressanelli et al. (2018) conducted an explorative
case study to understand how IoT can ease the chal-
lenges of PSS development. The case is a house-
hold-appliance retailer that provides a use-oriented
PSS. The customers use the appliances by a sub-
scription-based mechanism without buying them.
The PSS is realized by using IoT components, but
the study provides only limited information about
out how IoT can facilitate the usage phase and PSS
maintenance.

Another group of studies has shown ways to use
IoT in PSS business-model development. Zancul et
al. (2016) propose a method for using IoT-enabled
PSS in its two-part business model: First, they apply
failure mode and effects analysis (FMEA) to decide
which features of IoT should be integrated with the
product. Second, they use a PSS business-strategy
configurator that assists PSS providers with position-
ing themselves during innovation planning. They
merge the results of the configurator with the FMEA
approach to determine what product features and
PSS processes must be implemented with the help
of IoT. They apply and evaluate their method in
a case study. Similarly, Shih et al. (2016) propose
a PSS design method that extends visual-mapping
methods for service creation incorporating IoT tech-
nology (e.g., Matzen and McAloone, 2009; Moritz,
2009). Shih et al. (2016) introduce a new concept
called “pseudo-actor,” which stands for an IoT-en-

abled object with sensors and actuators. Their method
follows a six-step procedure and tackles selecting
IoT technology alternatives for customer value
creation. The method mostly focuses on PSS design
for engineers and the study does not cover general
IoT potential for PSS.

Several studies have addressed the use of
IoT-for-PSS implementation. For instance, a frame-
work for implementing industrial IoT-enabled PSS
is presented by Alexopoulos et al. (2018) in support
of PSS development with regard to lifecycle manage-
ment and service implementation using IoT. The
framework consists of various IoT-related elements
selected to facilitate the service-side implementation
of PSS. In a pilot case study, the framework is mapped
into a real case and implementation of the IoT frame-
work is presented. Because the focus of the framework
is on IoT implementation for PSS, they do not provide
an analysis of the overall capabilities of IoT-for-PSS.
Similarly, Espíndola et al. (2012) address the con-
vergence of IoT and PSS implementation by provid-
ing a conceptual design that comprises both IoT
and PSS elements. In addition, they propose a middle-
ware architecture that can realize IoT implementation
with the purpose of PSS enablement. In general, the
study tackles implementation details for incorporat-
ing IoT in PSS. Although this group of studies
does not address overall opportunities of using
IoT-for-PSS, they complement our work as they detail
the implementation.

<Table 3> summarizes prior work on the relation
between IoT and PSS. Existing case studies on the
integration of IoT in PSS are mostly application-ori-
ented and only partially cover the ways in which
IoT supports PSS. The studies of IoT-for-PSS busi-
ness-model development propose processes and
methods but do not comprehensively cover all the
implications of IoT-for-PSS. We found that prior

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

530 Asia Pacific Journal of Information Systems Vol. 29 No. 3

studies of IoT-for-PSS implementation do not consid-
er the big picture and the use of IoT to enable PSS
business models. In general, there is a lack of knowl-
edge of what opportunities IoT can provide for PSS
in general. Hence, in this study, we first build a
theoretical framework that integrates different views
of the opportunities for use of IoT in PSS.

. Study Design

To gain a deeper understanding of opportunities
for use of IoT in PSS from a theoretical and a practical
perspective, we conducted a structured literature re-
view based on Vom Brocke et al. (2009) and Webster
and Watson (2002) as well as expert interviews based
on Gläser and Laudel (2010), Mayring (2010), and
Miles and Huberman (1994). We used this mixed-
method approach for completeness (Venkatesh et
al., 2013), aiming to provide a comprehensive picture
of the subject of interest by mixing evidence from
the literature and from practice.

3.1. Systematic Literature Review

To analyze IoT opportunities for PSS from the

literature, we applied the approach and instructions
based on Vom Brocke et al. (2009) and Webster
and Watson (2002). In this process, we used the
IEEE, SpringerLink, ScienceDirect, and Scopus data-
bases (<Table 4>). We applied the following research
string: (Lifecycle OR Life-cycle OR “Life cycle”) AND
(Development OR Manufacturing OR Production
OR Deployment) AND (Interdisciplinary OR
Multidisciplinary OR “Product Service System” OR
“Cyber Physical System”) OR IoT OR “Internet of
Things” OR Servitization OR Digitalization. We in-
cluded all types of scientific literature without confin-
ing ourselves to a specific publication year range
or ranking.

For the analysis, we first analyzed the title and
abstracts and removed duplicates. We selected only
relevant publications based on sets of inclusion and
exclusion criteria. The exclusion criteria consisted
of papers with their main focus on IoT im-
plementation or tools. The inclusion criteria were
papers addressing lifecycle management in the con-
text of IoT and PSS and of IoT integration in business.
This selection reduced the number of possibly rele-
vant publications to 160. In the second screening,
we studied the full text of the papers and evaluated
their relevance to our research question. We ended

<Table 3> Summary of IoT PSS Studies

Study Type Study Main Contribution

General Case Studies
Seregni et al. (2016) Identifying IoT-enabled Services of PSS
Elia et al. (2016) Performance Evaluation of IoT-enabled PSS
Bressanelli et al. (2018) Identifying PSS challenges that IoT could overcome

IoT for PSS Business
Model

Zancul et al. (2016) A method for adopting IoT in PSS business model based on FMEA and
PSS business strategy configurator

Shih et al. (2016) PSS design method that extends visual mapping methods for service creation
by incorporating IoT

IoT for PSS
Implementation

Alexopoulos et al. (2018) IoT Framework for PSS service implementation

Espíndola et al. (2012) A conceptual design and a middleware architecture for incorporating IoT
in PSS implementation

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 531

up with 72 relevant papers. As a first result, we saw
that only a few papers combine IoT with PSS or
servitization. To cope with this issue, we interviewed
experts.

3.2. Expert Interviews

As the literature review revealed some gaps, we
enriched our data with expert interviews based on

Gläser and Laudel (2010), Mayring (2010), and Miles
and Huberman (1994). For interview sampling, we
looked for leading enterprises and startups across
different IoT-application fields. We chose business
managers who consider or involve IoT in their proc-
esses, consultants who offer IoT solutions, and start-
ups working in the IoT field. We conducted 13
semi-structured interviews (<Table 5>).

The interviews were based on a semi-structured

<Table 4> The Outcome of Database Search

Database Initial search Title and abstract screening Full-text screening
IEEE 124 25 17

SpringerLink 1127 72 20
ScienceDirect 53 21 16

Scopus 683 42 19
Total 1987 160 72

<Table 5> Interview Details

Interview ID Job description Industry Employees Duration (min)

Participant 01 Business development manager Global e-commerce & cloud
computing ~566000 ~35

Participant 02 IoT evangelist & business
development manager

Global e-commerce & cloud
computing ~566000 ~15

Participant 03 Machine Learning Expert Research institute ~200 ~40
Participant 04 Data scientist for rail transportation Industrial manufacturing ~372000 ~10

Participant 05 Hardware product developer Start-up in the field of
automatization solutions ~12 ~20

Participant 06 Innovation manager Manufacturer of braking systems for
rail and commercial vehicles ~25000 ~35

Participant 07 Chief Technology Officer Start-up in the field of digital
gastronomy ~12 ~45

Participant 08 Consultant for innovation & product
lifecycle management Global IT consultancy ~120000 ~50

Participant 09 Product manager for digital lab and
smart home Global automotive manufacturer ~125000 ~25

Participant 10 Digital E-Care Global telecommunication company ~1800 ~70
Participant 11 IoT consultant and app developer IoT consultancy and software house ~124000 ~35

Participant 12 Product manager for industrial
communication Industrial manufacturing company ~372000 ~20

Participant 13 Consultant and developer IoT consultancy ~10000 ~50

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

532 Asia Pacific Journal of Information Systems Vol. 29 No. 3

interview guideline with open questions (Gläser and
Laudel, 2010), to ensure some common topics and
leave room for the specific aspects of every expert.
Every expert was asked about general opportunities
of IoT and applications in which IoT has been realized
(I), opportunities and realized applications resulting
from new data (II), and opportunities and realized
applications for their specific processes, products or
product-service systems (III). For data analysis, all
interviews were transcribed and openly coded. For
data analysis, all interviews were transcribed and
openly coded according to Corbin et al. (2015). Our
coding is shaped around two core concepts, IoT op-
portunities for PSS business model and IoT oppor-
tunities for PSS implementation.

The semi-structured interviews were based on
guidelines (Gläser and Laudel, 2010), that both en-
sured some common topics and allowed for open
questions, leaving room for specific aspects pertaining
to each expert. Every expert was asked about general
IoT opportunities and applications in which IoT has
been realized, about opportunities and realized appli-
cations resulting from new data and/or pursued for
their specific processes, and about products or PSS.
For data analysis, all interviews were transcribed and
openly coded according to Corbin et al. (2015). Our

coding is focused on the two core concepts of IoT
opportunities for PSS business models and for PSS
implementation.

. Internet of Things as Product
Service System Business-Model

Enabler

For the first part of the results, we present the
framework of the IoT PSS business-model oppor-
tunities (<Table 6>), which entails two dimensions:
the horizontal axis stands for three general types
of PSS introduced by Tukker (2004). The vertical
axis presents the levels of IoT involvement in the
PSS concept. The four levels are inspired by capability
levels of smart products introduced by Porter and
Heppelmann (2014) and cover a wide range of IoT
implications from simple sensor-enabled products
to complex product and service connectivity with
autonomous behaviors. The transforming and opti-
mizing levels enable IoT-driven PSS, while the inter-
acting and tracking levels enable IoT-supported PSS.
While an IoT-supported PSS is a PSS enhanced with
IoT technologies, IoT fundamentally affects PSS de-
sign and implementation in an IoT-driven PSS. In

<Table 6> The Framework of IoT-PSS Business Model Opportunities

Product-oriented PSS Use-oriented PSS Result-oriented PSS

IoT-Driven PSS

Transforming Autonomous Product and
Manufacturing

Continuously Improving
Advanced Services Proactive Smart Results

Optimizing Efficient Product and
Manufacturing Personalized Services Smart Results

IoT-Supported PSS

Interacting Smart Product Engaging Services Engaging Results

Tracking High Product Quality; Advanced
Sales

High Service Quality; Lower
Maintenance Cost Customized results

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 533

other words, IoT is the main value creator in an
IoT-driven PSS. The inner text of every cell in the
framework encapsulates the potential values added
by IoT for each PSS type. These values can be variously
derived, as will be discussed in this section below.
Also, for every concept of the framework, we provide
PSS real cases.

4.1. Tracking

Tracking is the lowest level of IoT integration
in PSS business models. It enables tracking of primary
product, service, user and their attributes such as
quality and performance metrics. The tracking capa-
bility increases awareness of not only the system
but also the environment, in which the PSS is func-
tioning (Lee et al., 2013). For instance, we can even
track complex parameters such as frost risk and hu-
midity using smart water sensors (Participant 13).
Therefore, the provider would be able to add extra
value by improving the quality in use for the users
and decreasing the maintenance costs (Beuren et
al., 2016; Zancul et al., 2016). An important im-
plication of the tracking is reflected in product deliv-
ery phase and logistics (Barbosa et al., 2016;
Papakostas et al., 2016; Porter and Heppelmann,
2014). An example of result-oriented PSS enabled
by IoT is a wirelessly connected single-function but-
ton that allows customers to order products or serv-
ices (Participant 02; Participant 01). Tracking and
storing processes in these buttons enables us to re-
quest for the result instantly with a click of the button.
Another example would be location-based services
to users, which are enabled by the tracking capabilities
of IoT. Th, we would be able to improve the customer
experience and increase the usage or purchase rate
(Participant 07).

There are plenty of PSS cases that have already

realized the tracking abilities of IoT into PSS. For
instance, many transportation companies that pro-
vide fleet management services have integrated IoT
into their system for real-time monitoring of the
vehicles and their status. These fleet management
cases can be of all three types of PSS depending
on their grounding business model. <Table 7> pres-
ents a real PSS case for every type of PSS. These
PSS cases are built upon tracking abilities of IoT.
HP Instant Ink is a result-oriented PSS that focuses
on delivering the right amount of ink for HP printers.
This PSS charges customers based on the number
of successful prints, i.e. the desired result, instead
of ink usage.

4.2. Interacting

As the next level, IoT enables a PSS to not only
track and report PSS-related data, but also have some
degree of action. This can be realized using an
event-based scheme or direct interaction with the
user. For example, in the case of a smart home PSS

in which the home devices and appliances are
owned by the PSS provider and the usage is sold
to the customer - the lights of a smart home can
be turned on or off automatically from the outside
light or the user can directly control them remotely.
Similarly, the product would be able to react proac-
tively to a particular condition. The idea is that the
product has some degree of self-diagnosis and is
able to interact with the user or provider. For example,
the user will be instructed to replace a part in the
event of an error. Such an ability increases customer
engagement with the PSS (Participant 13). In general,

4) https://www.proglove.com/
5) https://www.samsara.com/uk/customers/empyre-builders
6) https://instantink.hpconnected.com
7) https://www.olimpiasplendid.com/home-automation/aquad

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

534 Asia Pacific Journal of Information Systems Vol. 29 No. 3

according to the interviews, the interacting capa-
bilities of IoT allows PSS providers to introduce new
field services (Participant 04; Participant 06; Participant
07). Connected devices, simple interaction abilities
with the environment and conditional clauses
provided by IoT realize new advanced services for
a PSS (Participant 10; Participant 03; Participant 04).

<Table 8> provides examples of IoT-supported
PSS cases realized by interacting capabilities. As dis-
cussed, smart home solutions are common examples
of this level of IoT integration that automatically
react and control the situations of a house.
Nevertheless, PSS providers that have incorporated
interacting abilities of IoT, often do not stop at this
level and utilize higher levels of IoT integration.

4.3. Optimizing

The interviewees argue that, although the tracking

ue-control
8) https://www.qivicon.com/
9) https://www.innovationservices.philips.com/news/philips-tr

ansition-linear-circular-economy/

and interacting capabilities added by IoT support
the creation of new business models, they are not
sufficient (Participant 03; Participant 13). Thus, we
need to involve IoT more into the development of
PSS business models and the next step is optimizing
capability, which is built upon the preceding
capabilities. The data collected and processed during
tracking and interacting allows an advanced analysis
of products and services, particularly in the usage
phase. This empowers PSS providers to increase the
performance of products and services, decrease their
costs and identify new opportunities for extending
their business models (Vuppala and Kumar, 2014).
Optimizing capability allows the smartness of a PSS
to be dynamic and to evolve through the lifecycle
(Barbosa et al., 2016). For instance, sales services
become much more intelligent by analyzing the usage
data in an IoT-supported PSS (Herterich et al., 2015;
Zancul et al., 2016). In addition, pricing can be con-
tinuously be calculated in real-time (Zancul et al.,
2016). Interviewees perceived great opportunities
based on machine learning algorithms, which can
improve the system functions continuously (Participant

<Table 7> IoT Tracking-supported PSS Examples

Product-oriented PSS Use-oriented PSS Result-oriented PSS
PSS Case Description PSS Case Description PSS Case Description

ProGlove4) Enhancing regular gloves with
barcode scanners to track

information faster

Empyre
Builders5)

Using IoT-tracking to monitor
construction vehicles and their

movements

HP Instant
Ink6)

A system of delivering the right
amount of ink whenever is

needed

<Table 8> IoT Interacting-supported PSS Examples

Product-oriented PSS Use-oriented PSS Result-oriented PSS
PSS Case Description PSS Case Description PSS Case Description

AQUADUE
® control7)

System of the
air-conditioning//heating

installation that works smartly
using IoT sensors and actuators

QIVICON8) Providing an IoT platform that
connects various smart home
devices with the monitoring

and interaction features

Phillips
‘Pay-per_Lu

x’9)

Providing the adjusted correct
amount of light (light as the
result instead of selling the

light bulbs)

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 535

01; Participant 03; Participant 12). They believed such
machine learning techniques combined with the con-
nectedness of products and services over a PSS en-
abled by IoT provides opportunities to automate
processes and create advanced solutions (Participant
07). Many interviewees emphasized the importance
of optimizing with regard to control of PSS failure
behavior (Participant 04; Participant 03).

Most of real PSS cases, which have integrated IoT,
are more concerned about optimizing capabilities,
particularly, predictive maintenance and optimized
service provision. Regarding product-oriented PSS
cases, availability of PSS and its maintenance services
are improved significantly using analytics enabled
by IoT. Moreover, result-oriented can benefit the
most by optimizing the result-oriented services that
they provide.

4.4. Transforming

Built on the entire IoT technology stack, the trans-
forming capability of IoT for PSS is realized by a
high level of autonomous operations and seamless
communication with other networks (Gigli and Koo,
2011; Porter and Heppelmann, 2014). Transformation
for the smart home example means that home appli-

10) https://www.glassbeam.com/resources#casestudies
11) https://www.rolls-royce.com/media/press-releases-archive/

yr-2012/121030-the-hour.aspx
12) https://www.wemanagepower.com/

ances track their usage, perform analysis and accord-
ingly change their behavior, interact with the user
as well as other devices and the PSS provider.
Therefore, there is a total connectedness and inter-
action among people and machines with the aim
of maximizing the products performance and quality
of services (Participant 09). Total IoT integration
significantly reshapes the products and service provi-
sion as well as the customer’s experience (Participant
01). With regard to the autonomy aspect, edge proc-
essing - processing power at the edge of the network

is a key ability. It allows local decision making
for every object in the system by the collection of
raw sensor data, data filtering and data processing
at its source by intelligent devices (Barbosa et al.,
2016; Haller et al., 2008). During the maintenance
phase, the system would be able not only to warn
the provider or the user but also to enable the provider
to employ a predictive maintenance scheme as well
as a real-time autonomous decision making (Zancul
et al., 2016). To create more value, it is necessary
to establish a combination of machine-learning meth-
ods with real-time and cloud-based infrastructure
as well as communication across the system’s network
(Participant 10; Participant 03).

Complete integration of IoT into PSS allows partic-
ular intelligence for every PSS according to its history
and capabilities. Such intelligence would adopt a PSS
to its environmental factors, process information and
usage data (Kiritsis, 2011; Porter and Heppelmann,

<Table 9> IoT Optimizing-driven PSS Examples

Product-oriented PSS Use-oriented PSS Result-oriented PSS
PSS Case Description PSS Case Description PSS Case Description

glassbeam’s
Medical Device

Serviceability
with IoT

Analytics10)

Remote visibility and
analytics leading to higher
efficiency for a medical

equipment provider

Rolls-Royce
‘Power-by-the-H

our’11)

Engine maintenance
system that uses IoT to
track and analyze engines
for better maintenance

ABT Power
Management12)

Adjusting and optimizing
the precise amount of
power provision (right

amount of power is the
desired result)

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

536 Asia Pacific Journal of Information Systems Vol. 29 No. 3

2014) Hence, PSS providers could benefit extra value
as the system autonomy and intelligence assess func-
tionalities of the system and its components as it
is running and evolving in its environment.

Few successful PSS cases could utilize the trans-
formation ability of IoT for PSS. Many companies
have envisioned such a transformation, yet it is not
realized. For example, the automotive industry is
working intensely on autonomous driving. The
long-term vision would be the total connectedness
among vehicles that smartly provide mobility services
in smart cities. Although such vision has not fulfilled
completely, we could not find any other real-case
example for product-oriented PSS transformed by
IoT. <Table 10> presents the real-case PSS cases that
are driven by the transforming abilities of IoT.

. IoT as PSS Lifecycle Management
Enabler

In this section, we address how IoT can facilitate
PSS lifecycle management and implementation.
Based on the literature and the interviews, we identi-
fied the related core potential concepts, which are
presented in <Figure 1>. With regard to the overall
lifecycle management, IoT provides three main

13) https://www.tesla.com/
14) https://keaz.co/
15) https://www.ween.ai/

capabilities. First, IoT involvement leads to an in-
creasing amount of data belonging to the PSS and
PSS development. The data can be exploited con-
tinuously for production improvement and closed-
loop lifecycle management reflects this capability.
The second aspect tackles collaboration issues in PSS
development, which is inherently challenging due
to the variety of the disciplines involved. IoT supports
collaboration by enabling communication among
machines and humans. Another implication of IoT
for PSS development is the higher degree of autonomy
for the PSS development. In addition to the overall
concepts, IoT enables specific technologies and para-
digms for every phase of PSS development. Regarding
the PSS development phases of PSS, we follow the
generally accepted distinctions between the begin-
ning of life (BOL), middle of life (MOL) and end
of life (EOL) phases. These phases represent design,
manufacturing, logistics, use, maintenance, reuse and
recycling, respectively (Beuren et al., 2016; Terzi et
al., 2010). Throughout these phases, we identified
four underlying opportunities, namely, digital twin,
Closed-loop Lifecycle Management (CLLM) stands
for the ubiquity of product-relevant information at
any point in the lifecycle (Wiesner et al., 2015; Wuest
et al., 2014). Such omnipresence enables stakeholders
to track and manage the data even during the use
(Kiritsis, 2011). In traditional lifecycle management,
a considerable amount of relevant data is either lost
or acquired at a high cost. Consequently, there is

<Table 10> IoT Transform-driven PSS

Product-oriented PSS Use-oriented PSS Result-oriented PSS
PSS Case Description PSS Case Description PSS Case Description
Tesla13) Full autonomous driving based

on connected vehicles (This is
a vision and is not realized yet)

KEAZ14) Using IoT to provide smart
mobility and connectivity

solutions

ween.ai15) Providing total connectedness,
autonomy, real-time predictions
upon IoT devices for various
solutions such as smart home or

mobility services

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 537

limited visibility of products and services for the
PSS provider (Basselot et al., 2017; Igba et al., 2015).
IoT tracking capabilities overcome such a challenge
by low-cost collecting of relevant data among life-
cycles of PSS product parts and PSS services (Basselot
et al., 2017). Moreover, incorporating IoT into the
PSS development would solve the challenge of low
interoperability among heterogeneous working units
that prevents CLLM realization (Basselot et al., 2017;
Igba et al., 2015). The interviews reflected the same
argument that with the help of IoT, we would collect
and manage PSS-related data necessary for CLLM
(Participant 01; Participant 06). PSS providers would
be able to increase the quality of their product and
services continuously. In addition to tracking status
of a product, i.e. product-focused data, Matsas et
al. (2017) introduce user-focused data, which reflect
only usage-related information and attributes per-
ceived by the user. Utilizing these two types of data
can significantly support requirements elicitation and
management for PSS’ products and services and even
introducing new ones (Gudergan et al., 2017; Wuest
et al., 2016; Yang et al., 2009).

Collaboration-related aspects are challenging for
PSS development as PSS development involves a high
number of teams and disciplines, whose tools and
methods (Gopsill et al., 2011). IoT capabilities miti-

gate the severity of such a challenge in collaborations
among humans and machines. First, IoT-enhanced
machines would be able to transfer their information
and adjust their conditions to be aligned with each
other. Hence, Machine-to-Machine (M2M) collabo-
ration would take place without human intervention

(Lee et al., 2013). With regard to Human-to-Human
(H2H) collaboration, interviewees from a global
e-commerce enterprise highlighted that employing
IoT makes the relationship among manufacturers
deeper as it increases the interoperability and the
supply chain performance can be monitored almost
in real-time (Participant 01; Participant 02).
Interviewees also agreed that unleashing the potential
of a complete IoT solution lead to engagement with
new partners, vendors and platforms (Participant 11;
Participant 03; Participant 01). In particular, tools
and development platforms in the context of IoT
allow a wider range of developers to access its in-
novative capabilities and build up their knowledge
collaboratively (Participant 03). Consequently, com-
panies can focus on their core competence and core
business activities (Participant 07).

M2M collaborations enabled by IoT establish new
opportunities for process and factory automation by
minimizing human intervention (Ardolino et al.,
2016; Gerpott and May, 2016; Lee et al., 2013).

Closed-loop Lifecycle Management! ! ! ! ! ! !! Machine-to-Machine, Machine-to-Human, Human-to-Human Collaboration ! !! ! ! ! ! ! !! ! Autonomy ! ! !! ! ! ! ! ! !! ! ! BOL MOL EOL ! ! !! ! !
Digital Twin Smart Logistics Predictive Maintenance Remanufacturing

! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !! ! ! ! ! ! !
<Figure 1> Opportunities of IoT for PSS Lifecycle Management

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

538 Asia Pacific Journal of Information Systems Vol. 29 No. 3

Interviews showed cases in which IoT could automate
the complete supply chain processes from an order
on the website to final delivery. This led to cost
reduction and improved customer experience
(Participant 01; Participant 02). Moreover, in-
corporating advanced machine learning techniques
based on data collected and filtered by IoT empowers
autonomous decision-makings, self-coordination
and self-diagnosis abilities (Porter and Heppelmann,
2014), which is confirmed by the interviews
(Participant 11; Participant 03). However, the inter-
viewees argued that several challenges still impede
the realization of high autonomy. For example, there
are as yet no advances in automated self-criticism,
in which the system recognizes its mistakes
(Participant 03). In addition, there is still a lack of
trust in automation operations, which prevent them
from becoming fully integrated into lifecycle manage-
ment (Participant 03).

Digital twin or product avatar refers to a digital
equivalent of a physical product. Integrating actual
physical data with the virtual replication of a product
enables better design, validation and verification of
engineering artifacts (Goto et al., 2016). In general,
a trend can be seen toward the use of digital twin
enabled with IoT capabilities (Participant 08). Digital
twin can be engaged for predicting, optimizing and
verifying the products along the lifecycle. However,
it plays a significant role in the BOL phase by in-
corporating feedback from the MOL and EOL phases
into improving the design and simulating different
options (Participant 01; Participant 02). For instance,
a digital presentation of a product supports the evalua-
tion of product performance in diverse environments.
Moreover, applying a change in PSS can first be
reflected in the virtual setting and the results can
be used to realize PSS more efficiently (Participant
02; Participant 08). Another important ability of digi-

tal twin is that we can present the system thoroughly
and more easily to different stakeholders along the
entire lifecycle (Participant 02; Participant 08). Use
of digital twin reduces delays and increases both
the overall development efficiency and transparency
of customers’ processes (Meneghetti et al., 2016).

Smart logistics is enabled by tracking and the opti-
mizing abilities of IoT. IoT establishes an overall
connectivity of all devices and product parts, which
empowers the efficient delivery of products and in-
tegrated services (Vuppala and Kumar, 2014). For
instance, IoT supports activities such as resource
allocation (Barbosa et al., 2016) and inventory man-
agement (Papakostas et al., 2016). Moreover, with
the help of IoT, autonomous vehicles would be able
to optimize transportations during manufacturing
and facilitate distributed orders (Mueller et al., 2017).
Based on the interviews, such capabilities of IoT
are currently in use in several manufacturing leaders
(Participant 01).

Predictive maintenance is regular monitoring and
analyzing of the system conditions in order to mini-
mize the number of failures and repairs (Mobley,
2002). Since IoT provides valuable insight with regard
to the PSS and its usage, it can minimize the time
for error diagnosis (Lerch and Gotsch, 2015). For
example, with the help of IoT sensors and analysis
of the collected usage data, we would be able to
elicit spare part requirements (Herterich et al., 2015;
Zancul et al., 2016) Several interviewees reported
that they have experienced considerable savings by
incorporating IoT capabilities in their maintenance
activities (Participant 01; Participant 08; Participant
05). Moreover, they stated that increased availability
resulting from more efficient maintenance led to
higher customer satisfaction.

Remanufacturing stands for the industrial process,
in which we restore and recover used products into

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 539

a good condition (Lindkvist and Sundin, 2016). With
this, the experiences from the later stages of a lifecycle
would be employed in the earlier stages (Igba et
al., 2015). Realizing remanufacturing necessitates
tracking, controlling and analysis of the product, its
condition and its usage, which can be enabled by
means of IoT (Chierici and Copani, 2016). Ideally,
a feedback loop would be in place between each
lifecycle phases.

. Discussion

The IoT paradigm has the potential to transform
the industry and be as influential as the Internet
was in the 1990s. Our findings showed that practi-
tioners assert the high potential of IoT for facilitating
new business models, designing new products and
providing advanced services. In conformance with
this fact, the prior research emphasized on trans-
forming abilities of IoT and the big impact that it
can have on businesses (Čolaković and Hadžialić,
2018; Gubbi et al., 2013; Porter and Heppelmann,
2014). In particular, IoT can play a crucial role in
PSS development (Seregni et al., 2016; Shih et al.,
2016; Zancul et al., 2016). Due to challenging nature
of PSS, which transforms merely product or service
businesses into an integrated enterprise of product
and service provision, more connectedness and com-
munication among heterogeneous elements is neces-
sary (Vasantha et al., 2012; Wiesner et al., 2015).
The strengths of IoT match the difficulties that PSS
design and development confront.

The existing studies of the IoT and PSS relationship
have been limited to single case applications of a
particular method for adopting IoT in PSS develop-
ment (Shih et al., 2016; Zancul et al., 2016). We
extend the current literature by establishing a com-

prehensive view of the opportunities that IoT can
provide for PSS. We have presented the framework
of IoT-PSS business model opportunities that in-
troduces four levels of IoT involvement in PSS. Based
on the framework, there is a wide range of IoT in-
tegration into PSS. It starts from basic IoT-supported
tracking abilities in PSS and proceeds to the
most-complex abilities, the transformed IoT-driven
PSS with IoT as its core value creator. The framework
assists PSS providers in positioning themselves, iden-
tifying the extent, to which they have already bene-
fited from IoT and the possibilities that they have
not yet realized. Furthermore, we identified and high-
lighted the core IoT-enabled opportunities, which
facilitate PSS lifecycle management. Although the
concepts vary largely from M2M collaboration to
digital twin and remanufacturing, they are mutual
in terms of being enabled by IoT and advancing
PSS lifecycle management. Nevertheless, diving deep
into the details of implementing such technologies
in the domain of PSS was beyond the scope of this
study but can be investigated in future research. We
argue that our study provides the fundamentals for
advancing PSS and IoT integration research. Future
studies can build new concepts, methods, and tools
upon the frameworks established in this study.

Combining the two folds of this study’s con-
tribution enlighten the overall IoT exploitation for
PSS design and development. The insightful align-
ment of IoT and PSS brings various added-values
for both businesses and customers. Regarding the
customer values, PSS providers would be able to
establish a reliable connection with the customer,
partners and suppliers by a right IoT integration.
Customers can expect continually improving prod-
ucts and services, which are also more customized
to their usage. In addition, customers would benefit
from higher availability of product and services. In

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

540 Asia Pacific Journal of Information Systems Vol. 29 No. 3

the context of the business values, IoT integration
shortens the development cycles and reduces costs
of development. PSS providers will have a shorter
time-to-market, which is a decisive aspect in a com-
petitive environment. Moreover, utilizing IoT de-
creases the costs of maintenance and remanufactur-
ing significantly. For example, there would be no
need for on-site monitoring of product conditions
as the sensors are continuously tracking the relevant
information. At its extreme realization, PSS providers
will gain autonomy and transparency during all phas-
es of PSS lifecycle. Even though a limited integration
of IoT in PSS enables PSS providers to introduce
smart products and advanced services, allowing them
to increase revenue.

Furthermore, we could identify major challenges
in the use of IoT for PSS that future studies should
tackle them. First, although IoT can facilitate collabo-
ration among humans and machines, it may also
add extra complexity to PSS development as IoT
implementation necessitates integration and collabo-
ration of various knowledge experts (Participant 12;
Participant 04). Moreover, IoT implementation may
shape new partnerships due to its technical
complexity. This brings new inter-organization col-
laborations for PSS providers. Another challenge is
finding the right methodology to develop IoT-sup-
ported and IoT-driven PSS. For example, alignment
between the simultaneous development of software
and hardware have difficulties for enterprises
(Participant 02; Participant 09). Hence, future re-
search should establish new methods that can tackle
such challenges. Finally, huge captured, generated
and collected data in IoT-driven PSS have to be man-
aged consistently. Establishing interoperability
among various tools, artifacts and data sources is
a difficult goal to achieve. Therefore, future research
needs to investigate interoperability in IoT-driven

PSS and mechanisms to achieve it.
According to our findings from the interviews,

IoT technologies have been integrated mostly on the
end-customers side, even though B2B applications
of IoT can have greater economic outcomes.
Moreover, we observed slow progress regarding the
shift from IoT-supported PSS to IoT-driven PSS.
The lack of infrastructural capabilities can be consid-
ered an important factor hindering IoT integration,
but the future studies should investigate in detail
the existing complicated barriers exist. For example,
there is still uncertainty about costs and profits asso-
ciated with IoT adoption, particularly at its highest
extent. Mechanisms to analyze and estimate IoT
adoption in terms of monetary parameters would
significantly support the realization of IoT
opportunities. Furthermore, IoT integration is foster-
ing a collaborative ecosystem, in which many
start-ups have emerged as IoT technology providers.
Future studies can look more into how we can ease
the integration of such start-ups’ contributions into
existing infrastructures. With this regard, the research
should study the role of emerging IoT platforms,
which will facilitate the use of IoT for a variety of
applications.

A limitation of our work was using interview and
literature review in a mixed-method approach, while
a mixed-method approach is most fruitful when qual-
itative and quantitative methods are combined.
Therefore, we suggest future empirical studies to em-
ploy quantitative and qualitative methods for address-
ing IoT for PSS topic. To this end, researchers can
conduct a quantitative analysis of successful cases
of IoT and PSS integration which would be com-
plemented by further in-detail case studies.

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 541

. Conclusion

IoT technologies are changing products, services
and the way we develop them. In addition to empow-
ering the existing solutions, IoT enables us to realize
new ideas. Particularly, we can use the power of
IoT to facilitate complexity of PSS design and
development. In this study, we investigated oppor-
tunities that IoT can provide for PSS business models
and lifecycle management. We provided examples
of each relevant hotspot to assist PSS providers in
positioning and deciding the right business model
when integrating IoT in their portfolio. First, we
introduced the framework of IoT opportunities for
PSS business models that entails two dimensions of
IoT involvement level and PSS types. It evaluates
which type of services IoT technologies foster for
the provision of PSS. Furthermore, we analyzed IoT
as a key facilitator of the lifecycle management by
enabling new technologies and capabilities such as
autonomy, closed-lifecycle management, digital twin,
predictive maintenance and remanufacturing.

The findings of this study provide new insights
for PSS providers. The study increases their awareness
regarding the potentials of IoT for PSS and their
current progress of IoT realization. Moreover, this
study establishes a comprehensive view on opportun-
istic implications of IoT for PSS, which paves the
way for future studies to advance this topic. The
research can complete this work by addressing, on
one hand, the barriers for integrating IoT into PSS
and on the other hand, the challenges caused by
IoT integration into PSS. Accordingly, the studies
can propose solutions to overcome such challenges.

Acknowledgement

This work was supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG)
collaborative research centre ‘Sonderforschungsbereich
SFB 768 “Managing cycles in innovation processes
- Integrated development of product-service-systems
based on technical products”.

<References>
[1] Adrodegari, F., and Saccani, N. (2017). Business

models for the service transformation of industrial
firms. The Service Industries Journal, 37(1), 57-83.

[2] Alexopoulos, K., Koukas, S., Boli, N., and Mourtzis,
D. (2018). Architecture and development of an
Industrial Internet of Things framework for realizing
services in Industrial Product Service Systems.
Procedia CIRP, 72, 880-885. doi:https://doi.org/10.1016/
j.procir.2018.03.152

[3] Ardolino, M., Saccani, N., Gaiardelli, P., and
Rapaccini, M. (2016). Exploring the key enabling
role of digital technologies for PSS offerings. Procedia
CIRP, 47, 561-566.

[4] Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A.,

Greenough, R., Peppard, J., ... Tiwari, A. (2007).
State-of-the-art in product-service systems. Proceedings
of the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture, 221(10), 1543-
1552.

[5] Bandyopadhyay, D., and Sen, J. (2011). Internet of
things: Applications and challenges in technology
and standardization. Wireless Personal Communications,
58(1), 49-69.

[6] Barbosa, J., Leitão, P., Trentesaux, D., Colombo, A.
W., and Karnouskos, S. (2016). Cross benefits from
cyber-physical systems and intelligent products for
future smart industries. Paper presented at the
Industrial Informatics (INDIN), 2016 IEEE 14th

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

542 Asia Pacific Journal of Information Systems Vol. 29 No. 3

International Conference on.
[7] Basirati, M. R., Weking, J., Hermes, S., Böhm, M.,

and Krcmar, H. (2019). IoT as PSS Enabler: Exploring
Opportunities for Conceptualization and Implementation.
Paper presented at the PACIS, Xi'an, China.

[8] Basirati, M. R., Zou, M., Bauer, H., Kattner, N.,
Reinhart, G., Lindemann, U., ... Vogel-Heuser, B.
(2018). Towards systematic inconsistency identification
for product service systems. Paper presented at the
Proceedings of the DESIGN 2018 15th International
Design Conference.

[9] Basselot, V., Berger, T., and Sallez, Y. (2017). Active
Monitoring of a Product: A Way to Solve the “Lack
of Information” Issue in the Use Phase. In Service
Orientation in Holonic and Multi-Agent Manufacturing
(pp. 337-346), Springer.

[10] Beuren, F. H., Ferreira, M. G. G., and Miguel, P.
A. C. (2013). Product-service systems: a literature
review on integrated products and services. Journal
of Cleaner Production, 47, 222-231.

[11] Beuren, F. H., Pereira, D., and Fagundes, A. B.
(2016). Product-service systems characterization
based on life cycle: application in a real situation.
Procedia CIRP, 47, 418-423.

[12] Bressanelli, G., Adrodegari, F., Perona, M., and
Saccani, N. (2018). The role of digital technologies
to overcome Circular Economy challenges in PSS
Business Models: an exploratory case study. Procedia
CIRP, 73, 216-221. doi:https://doi.org/10.1016/j.pro
cir.2018.03.322

[13] Chierici, E., and Copani, G. (2016). Remanufacturing
with Upgrade PSS for New Sustainable Business
Models. Procedia CIRP, 47, 531-536.

[14] Čolaković, A., and Hadžialić, M. (2018). Internet
of Things (IoT): A review of enabling technologies,
challenges, and open research issues. Computer
Networks.

[15] Corbin, J., Strauss, A., and Strauss, A. L. (2015).
Basics of qualitative research. sage.

[16] Elia, V., Gnoni, M. G., and Tornese, F. (2016).
Assessing the efficiency of a PSS solution for waste
collection: a simulation based approach. Procedia

CIRP, 47, 252-257.
[17] Espíndola, D., Duarte, N., Botelho, S., Carvallho,

J., and Pereira, C. (2012). Internet of things to provide
scalability in product-service systems. Paper presented
at the Proceedings of UBICOMM 2012: The Sixth
International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies.

[18] Exner, K., Zimpfer, R., and Stark, R. (2017). Maturity
model and action recommendation: a PSS capability
self-assessment tool for companies. Procedia CIRP,
64, 175-180.

[19] Georgakopoulos, D., and Jayaraman, P. P. (2016).
Internet of things: from internet scale sensing to
smart services. Computing, 98(10), 1041-1058.

[20] Gerpott, T. J., and May, S. (2016). Integration of
Internet of Things components into a firm’s offering
portfolio a business development framework. Info,
18(2), 53-63.

[21] Gigli, M., and Koo, S. G. (2011). Internet of Things:
Services and Applications Categorization. Adv.
Internet of Things, 1(2), 27-31.

[22] Gläser, J., and Laudel, G. (2010). Experteninterviews
und qualitative Inhaltsanalyse. Springer-Verlag.

[23] Goedkoop, M. J., Van Halen, C. J., Te Riele, H.
R., and Rommens, P. J. (1999). Product service
systems, ecological and economic basics. Report for
Dutch Ministries of environment (VROM) and
economic affairs (EZ), 36(1), 1-122.

[24] Gopsill, J. A., McAlpine, H. C., and Hicks, B. J.
(2011). Learning from the lifecycle: The capabilities
and limitations of current product lifecycle practice
and systems. Paper presented at the DS 68-6:
Proceedings of the 18th International Conference on
Engineering Design (ICED 11), Impacting Society
through Engineering Design, Vol. 6: Design Information
and Knowledge, Lyngby/Copenhagen, Denmark.

[25] Goto, S., Yoshie, O., and Fujimura, S. (2016). Internet
of Things value for mechanical engineers and
evolving commercial product lifecycle management
system. Paper presented at the Industrial Engineering
and Engineering Management (IEEM), 2016 IEEE
International Conference on.

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 543

[26] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami,
M. (2013). Internet of Things (IoT): A vision,
architectural elements, and future directions. Future
Generation Computer Systems, 29(7), 1645-1660.

[27] Gudergan, G., Buschmeyer, A., Feige, B. A.,
Krechting, D., Bradenbrink, S., and Mutschler, R.
(2017). Value of Lifecycle Information to Transform
the Manufacturing Industry. In Shaping the Digital
Enterprise (pp. 173-194), Springer.

[28] Guth, J., Breitenbücher, U., Falkenthal, M.,
Fremantle, P., Kopp, O., Leymann, F., and Reinfurt,
L. (2018). A detailed analysis of IoT platform
architectures: concepts, similarities, and differences.
In Internet of Everything (pp. 81-101), Springer.

[29] Haller, S., Karnouskos, S., and Schroth, C. (2008).
The internet of things in an enterprise context.
Paper presented at the Future Internet Symposium.

[30] Herterich, M. M., Uebernickel, F., and Brenner,
W. (2015). The impact of cyber-physical systems
on industrial services in manufacturing. Procedia
CIRP, 30, 323-328.

[31] Igba, J., Alemzadeh, K., Gibbons, P. M., and
Henningsen, K. (2015). A framework for optimising
product performance through feedback and reuse
of in-service experience. Robotics and Computer-
Integrated Manufacturing, 36, 2-12.

[32] Kiel, D., Arnold, C., and Voigt, K.-I. (2017). The
influence of the Industrial Internet of Things on
business models of established manufacturing
companies A business level perspective. Technovation,
68, 4-19.

[33] Kiritsis, D. (2011). Closed-loop PLM for intelligent
products in the era of the Internet of things.
Computer-Aided Design, 43(5), 479-501.

[34] Kowalkowski, C., Windahl, C., Kindström, D., and
Gebauer, H. (2015). What service transition?
Rethinking established assumptions about
manufacturers’ service-led growth strategies.
Industrial Marketing Management, 45, 59-69.

[35] Lee, G. M., Crespi, N., Choi, J. K., and Boussard,
M. (2013). Internet of things. In Evolution of
Telecommunication Services (pp. 257-282), Springer.

[36] Lerch, C., and Gotsch, M. (2015). Digitalized
product-service systems in manufacturing firms:
A case study analysis. Research-Technology
Management, 58(5), 45-52.

[37] Lightfoot, H., Baines, T., and Smart, P. (2013). The
servitization of manufacturing: A systematic
literature review of interdependent trends.
International Journal of Operations & Production
Management, 33(11/12), 1408-1434.

[38] Lindkvist, L., and Sundin, E. (2016). The role of
Product-Service Systems regarding information
feedback transfer in the product life-cycle including
remanufacturing. Procedia CIRP, 47, 311-316.

[39] Maleki, E., Belkadi, F., Zhang, Y., and Bernard,
A. (2017). Towards a new collaborative framework
supporting the design process of industrial Product
Service Systems. In Advances on Mechanics, Design
Engineering and Manufacturing (pp. 139-146), Springer.

[40] Marilungo, E., Papetti, A., Germani, M., and
Peruzzini, M. (2017). From PSS to CPS design:
a real industrial use case toward industry 4.0.
Procedia CIRP, 64, 357-362.

[41] Marques, G., Garcia, N., and Pombo, N. (2017).
A survey on IoT: architectures, elements,
applications, QoS, platforms and security concepts.
In Advances in Mobile Cloud Computing and Big
Data in the 5G Era (pp. 115-130), Springer.

[42] Matsas, M., Pintzos, G., Kapnia, A., and Mourtzis,
D. (2017). An integrated collaborative platform for
managing product-service across their life cycle.
Procedia CIRP, 59, 220-226.

[43] Matzen, D., and McAloone, T. C. (2009). A systematic
apporach to service oriented product development.
DTU Management.

[44] Maxwell, D., Sheate, W., and Van Der Vorst, R.
(2006). Functional and systems aspects of the
sustainable product and service development
approach for industry. Journal of Cleaner Production,
14(17), 1466-1479.

[45] Mayring, P. (2010). Qualitative inhaltsanalyse. In
Handbuch qualitative Forschung in der Psychologie
(pp. 601-613), Springer.

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

544 Asia Pacific Journal of Information Systems Vol. 29 No. 3

[46] Mazhelis, O., Luoma, E., and Warma, H. (2012).
Defining an internet-of-things ecosystem. In
Internet of Things, Smart Spaces, and Next Generation
Networking (pp. 1-14), Springer.

[47] Meier, H., Roy, R., and Seliger, G. (2010). Industrial
product-service systems IPS2. CIRP Annals-
Manufacturing Technology, 59(2), 607-627.

[48] Meneghetti, A., Moro, S., and Helo, P. (2016).
Intermixed product and service boundaries:
exploring servitization in sheet metal industry.
Procedia CIRP, 47, 258-263.

[49] Miles, M. B., and Huberman, A. M. (1994).
Qualitative data analysis: An expanded sourcebook.
sage.

[50] Mobley, R. K. (2002). An introduction to predictive
maintenance. Elsevier.

[51] Mont, O. K. (2002). Clarifying the concept of product
service system. Journal of Cleaner Production,

10(3), 237-245.
[52] Moritz, S. (2009). Service design: Practical access to

an evolving field. Lulu.com.
[53] Mueller, E., Chen, X.-L., and Riedel, R. (2017).

Challenges and Requirements for the Application
of Industry 4.0: A Special Insight with the Usage
of Cyber-Physical System. Chinese Journal of
Mechanical Engineering, 30(5), 1050-1057.

[54] Papakostas, N., O'Connor, J., and Byrne, G. (2016).
Internet of things technologies in manufacturing:
Application areas, challenges and outlook. Paper
presented at the Information Society (i-Society), 2016
International Conference on.

[55] Patel, K. K., and Patel, S. M. (2016). Internet of
things-IOT: definition, characteristics, architecture,
enabling technologies, application & future
challenges. International Journal of Engineering
Science and Computing, 6(5).

[56] Porter, M. E., and Heppelmann, J. E. (2014). How
smart, connected products are transforming
competition. Harvard Business Review, 92(11), 64-88.

[57] Reim, W., Parida, V., and Örtqvist, D. (2015).
Product -Service Systems (PSS) business models
and tactics - A systematic literature review. Journal

of Cleaner Production, 97, 61-75. doi:10.1016/j.jc
lepro.2014.07.003

[58] Schuh, G., Salmen, M., Kuhlmann, T., and Wiese,
J. (2016). Life-Cycle-Oriented Product-Service-
Systems in the Tool and Die Making Industry.
Procedia CIRP, 47, 555-560.

[59] Seregni, M., Sassanelli, C., Cerri, D., Zanetti, C.,
and Terzi, S. (2016). The impact of IoT technologies
on product-oriented PSS: The “home delivery”
service case. Paper presented at the Research and
Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), 2016 IEEE 2nd International
Forum on.

[60] Shih, L.-H., Lee, Y.-T., and Huarng, F. (2016).
Creating customer value for product service systems
by incorporating internet of things technology.
Sustainability, 8(12), 1217.

[61] Tao, F., Zuo, Y., Da Xu, L., and Zhang, L. (2014).
IoT-based intelligent perception and access of
manufacturing resource toward cloud manufacturing.
IEEE Transactions on Industrial Informatics, 10(2),
1547-1557.

[62] Terzi, S., Bouras, A., Dutta, D., Garetti, M., and
Kiritsis, D. (2010). Product lifecycle management-
from its history to its new role. International Journal
of Product Lifecycle Management, 4(4), 360-389.

[63] Tukker, A. (2004). Eight types of product-service
system: Eight ways to sustainability? Experiences
from SusProNet. Business Strategy and the Environment,
13(4), 246-260.

[64] Ulaga, W., and Reinartz, W. J. (2011). Hybrid
offerings: how manufacturing firms combine goods
and services successfully. Journal of Marketing, 75(6),
5-23.

[65] Vasantha, G. V. A., Roy, R., Lelah, A., and Brissaud,
D. (2012). A review of product-service systems
design methodologies. Journal of Engineering Design,
23(9), 635-659.

[66] Venkatesh, V., Brown, S. A., and Bala, H. (2013).
Bridging the qualitative-quantitative divide: Guidelines
for conducting mixed methods research in
information systems. MIS Quarterly, 21-54.

Mohammad R. Basirati, Jörg Weking, Sebastian Hermes, Markus Böhm, Helmut Krcmar

Vol. 29 No. 3 Asia Pacific Journal of Information Systems 545

[67] Vom Brocke, J., Simons, A., Niehaves, B., Riemer,
K., Plattfaut, R., and Cleven, A. (2009).
Reconstructing the giant: On the importance of
rigour in documenting the literature search process.
Paper presented at the ECIS.

[68] Vuppala, S. K., and Kumar, H. K. (2014). Service
Applications-Exploiting the Internet of Things.
Paper presented at the Global Conference (SRII), 2014
Annual SRII.

[69] Webster, J., and Watson, R. T. (2002). Analyzing
the past to prepare for the future: Writing a literature
review. MIS quarterly, xiii-xxiii.

[70] Weking, J., Brosig, C., Böhm, M., Hein, A., and
Krcmar, H. (2018). Business Model Innovation
Strategies for Product Service Systems An
Explorative Study in the Manufacturing Industry.
Paper presented at the Twenty-Sixth European
Conference on Information Systems (ECIS 2018).

[71] Whitmore, A., Agarwal, A., and Da Xu, L. (2015).
The Internet of Things A survey of topics and
trends. Information Systems Frontiers, 17(2), 261-274.

[72] Wiesner, S., Freitag, M., Westphal, I., and Thoben,
K.-D. (2015). Interactions between service and
product lifecycle management. Procedia CIRP, 30,
36-41.

[73] Wortmann, F., and Flüchter, K. (2015). Internet
of things. Business & Information Systems Engineering,
57(3), 221-224.

[74] Wuest, T., and Wellsandt, S. (2016). Design and
Development of Product Service Systems (PSS)-
Impact on Product Lifecycle Perspective. Procedia
Technology, 26, 152-161.

[75] Wuest, T., Hribernik, K., and Thoben, K.-D. (2014).
Capturing, managing and sharing product information
along the lifecycle for design improvement. Paper
presented at the Proceedings of the 10th International
Workshop on Integrated Design Engineering.

[76] Yang, L., Xing, K., and Lee, S. (2010, 15-17 July
2010). A new conceptual life cycle model for
Result-Oriented Product-Service System development.
Paper presented at the Proceedings of 2010 IEEE
International Conference on Service Operations and

Logistics, and Informatics.
[77] Yang, X., Moore, P., Pu, J.-S., and Wong, C.-B.

(2009). A practical methodology for realizing
product service systems for consumer products.
Computers & Industrial Engineering, 56(1), 224-235.

[78] Zancul, E. d. S., Takey, S. M., Barquet, A. P. B.,
Kuwabara, L. H., Cauchick Miguel, P. A., and
Rozenfeld, H. (2016). Business process support for
IoT based product-service systems (PSS). Business
Process Management Journal, 22(2), 305-323.

Exploring Opportunities of IoT for Product Service System Conceptualization and Implementation

546 Asia Pacific Journal of Information Systems Vol. 29 No. 3

About the Authors

Mohammad R. Basirati

Mohammad R. Basirati (mohammadreza.basirati@tum.de) is a research associate and Ph.D. student

at the chair for information systems at the Technical University of Munich (TUM). He holds

a master’s degree from TUM in informatics and a bachelor’s degree from University of Tehran

in computer engineering. His research focus is on system engineering, in particular requirements

management with emphasis on collaboration aspects among stakeholders and resolution of emergent

inconsistencies.

Jörg Weking

Jörg Weking (joerg.weking@tum.de) is a research associate and Ph.D. student at the Chair for

Information Systems, Technical University of Munich (TUM), Germany. He studied Information

Systems at the University of Münster, Germany, at the Turku School of Economics, Turku,

Finland (TSE) and the Queensland University of Technology, Brisbane, Australia (QUT). His

research focuses on business model patterns, business model innovation, value co-creation and

product service systems. His work has been published in Electronic Markets, Communications

of the AIS and in refereed conference proceedings such as the European Conference on Information

Systems and the Americas Conference on Information Systems.

Sebastian Hermes

Sebastian Hermes (sebastian.hermes@tum.de) is a research associate and Ph.D. student at the

Chair for Information Systems, Technische Universität München (TUM), Munich, Germany. He

holds a Master’s degree in Entrepreneurship from the University of Liechtenstein and a Bachelor’s

degree from the Baden-Wuerttemberg Cooperative State University. Sebastian has worked five

years at Roche and co-founded Thinkfield. His work has appeared in conference proceedings

such as Hawaii International Conference on System Sciences.

Markus Böhm

Markus Böhm (markus.boehm@tum.de) is research group leader at the Chair for Information

Systems at Technical University of Munich (TUM), Germany. He graduated in Business &

Information Systems Engineering from Friedrich-Alexander University Erlangen-Nürnberg (FAU),

and holds a doctoral degree in Information Systems from TUM. His research focus is on mergers

& acquisitions, business model innovation and digital transformation. His work has appeared

in Management Information Systems Quarterly Executive, Electronic Markets, Communications

of the AIS and several refereed conference proceedings, including ECIS and ICIS.

Helmut Krcmar

Helmut Krcmar (helmut. krcmar@tum.de) is a Chair Professor of Information Systems at Technical

University of Munich (TUM), Germany. Before 2002, he was Chair for Information Systems,

University of Hohenheim, Stuttgart. Helmut is an AIS Fellow and has served the IS community

in many roles, including as President of the Association for Information Systems. His research

interests include information and knowledge management, service management, business process

management, and business information systems. His work has appeared in Management Information

Systems Quarterly, Journal of Management Information Systems, Journal of Strategic Information

Systems, Journal of Management Accounting Research, Journal of Information Technology,

Information Systems Journal, and Business & Information Systems Engineering.

Submitted: March 19, 2019; 1st Revision: July 28, 2019; 2st Revision: August 26, 2019; Accepted: August 29, 2019

Not Included in
Review and

Evaluation: P5

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Introducing TRAILS: A tool supporting traceability, integration and
visualisation of engineering knowledge for product service systems
development

Thomas Wolfenstetter⁎, Mohammad R. Basirati, Markus Böhm, Helmut Krcmar
Chair for Information Systems, Technische Universität München, Germany

A R T I C L E I N F O

Keywords:
Model-based systems engineering
Traceability
Product service systems
Model integration

A B S T R A C T

Developing state of the art product service systems (PSS) requires the intense collaboration of different en-
gineering domains, such as mechanical, software and service engineering. This can be a challenging task, since
each engineering domain uses their own specification artefacts, software tools and data formats. However, to be
able to seamlessly integrate the various components that constitute a PSS and also being able to provide com-
prehensive traceability throughout the entire solution life cycle it is essential to have a common representation
of engineering data.

To address this issue, we present TRAILS, a novel software tool that joins the heterogeneous artefacts, such as
process models, requirements specifications or diagrams of the systems structure. For this purpose, our tool uses
a semantic model integration ontology onto which various source formats can be mapped. Overall, our tool
provides a wide range of features that supports engineers in ensuring traceability, avoiding system incon-
sistencies and putting collaborative engineering into practice. Subsequently, we show the practical im-
plementation of our approach using the case study of a bike sharing system and discuss limitations as well as
possibilities for future enhancement of TRAILS.

1. Introduction

1.1. Motivation

In an increasingly digitised economy more and more companies
realize that products themselves are no more the main contributors to
value creation in their business. Instead, value for the customer is being
created in service-oriented business models. Already today, most de-
veloped economies owe a far greater share of their national income to
services than to manufacturing of physical products (Meier et al.,
2010). Even in traditional manufacturing industries, global competition
forces companies to focus on building long-term relationships with their
customers by providing product-supporting services, such as main-
tenance, or offering the product itself as a service (Marques et al.,
2013). Furthermore, environmental considerations cause enterprises to
move from a product-based economy to a service-based economy which
limits their susceptibility to environment issues (Maussang et al., 2009).
As a consequence, the concept of product service systems (PSS), i.e.
integrated systems that combine product and service components, is
gaining popularity as a strategic measure to deal with these issues.

PSS development thus involves various stakeholders from different
engineering domains who need to develop hardware, software and
service components based on descriptions of the customers’ needs and
seamlessly integrate them into a comprehensive solution while at the
same time reacting flexibly to changing requirements and a dynamic
system environment. For example, changing legislation regarding
privacy protection might impact the way customer related data is
handled by the PSS provider in order to ensure compliance. This not
only impacts the service processes in which this data is being collected,
but also software systems that store and process the data and even
might force the PSS provider to change hardware components that rely
on customer data in order to provide their functions. In this example a
simple requirements change entails an adaptation or possibly re-
development of various components of the PSS, requiring engineers
from different disciplines to communicate with each other, coordinate
the changes made to the system as a whole and anticipate how chan-
ging one component influences other parts of the PSS. As a result, not
only the degree of involvement of stakeholders from different domains
increases. There is also need for tight collaboration and communication
among all stakeholders involved. Therefore, a major challenge for PSS

https://doi.org/10.1016/j.jss.2018.06.079
Received 1 June 2017; Received in revised form 28 April 2018; Accepted 30 June 2018

⁎ Corresponding author.
E-mail address: twolfenstetter@gmail.com (T. Wolfenstetter).

7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

$YDLODEOH�RQOLQH����-XO\�����
������������������(OVHYLHU�,QF��$OO�ULJKWV�UHVHUYHG�

7

engineering is to provide integrated conceptual models and compre-
hensive representation techniques to support cross-domain
collaboration (Vasantha et al., 2012).

Moreover, the cross-domain engineering process is not the only
aspect that differentiates the development of PSS from traditional
product development. By its very idea the concept of PSS entails the
integration of business models, products and services along the entire
life cycle to create additional value for the customer (Vasantha et al.,
2012). Like in every long-term relationship, expectations and cap-
abilities, both on the provider and on the customer side evolve over
time. Consequentially, PSS providers need to deal with changing re-
quirements to be satisfied. Therefore, they need to monitor the trace-
ability relationships between requirements and affected parts of the PSS
solution including both, tangible product components as well as in-
tangible services (Maussang et al., 2009).

The complexity of PSS engineering also manifests itself in the het-
erogeneity of artefacts, which are created and used along the PSS life
cycle. For instance, in the process of developing a PSS every en-
gineering domain involved follows their own domain-specific ap-
proaches when creating the various types of development artefacts that
are required along the process, such as process models, requirements
specifications, design structure matrices, use case diagrams or compo-
nent diagrams. As artefact we hereby understand every tangible in-
formation object that is created along the life cycle of a system to de-
scribe its e.g. design, architecture, functions as well as the processes and
the organisation associated with it. All of these artefacts are highly
interdependent as they ultimately specify components of the PSS, which
finally need to function together reliably.

Managing the relationships between PSS engineering artefacts is
necessary for developers to anticipate the change impact of an artefact
on others and to prevent inconsistencies as well as to trace the evolution
of the individual artefacts and the PSS as a whole. For this purpose, the
structural architecture of a PSS together with the dynamics of the ser-
vice processes and the evolution of requirements that are linked to them
needs to be captured. Moreover, all of this engineering knowledge
needs to be presented in a way that allows engineers to get a compre-
hensive overview of the problem as well as the solution
domain (Meier et al., 2010). By doing so, it is possible to dynamically
adapt the solution to changing customers’ needs and the evolving en-
vironment in which the PSS competes.

However, current industry practice shows that PSS engineering re-
lies on a multitude of different modelling languages and tools that are
largely incompatible with each other. Thus, today the analysis of de-
pendencies within a PSS requires tremendous manual efforts and the
integrability of components and their mutual impact can only be
checked late in the development process.

In a nutshell, PSS development is a complex process with high
number of dependencies between heterogeneous artefacts. In practice,
traditional engineering methods often struggle when coping with the
challenges of PSS development, thus producing callow solution designs
that cannot live up to their full potential. Although there exists a wide
range of approaches for modelling the different components of a PSS
(Vasantha et al., 2012; Meier et al., 2010), the design of integrated
products and services along with the issue of traceability has not been
supported sufficiently by software tools (Baines et al., 2007; Cavalieri
and Pezzotta, 2012; Meier et al., 2010). Also, tools and modelling
languages which are used in PSS engineering do not support integrated
analysis of PSS artefacts and their relationships which can lead to in-
consistencies or unanticipated changes even in late phases of develop-
ment. Thus we conclude that there is a lack of tool support regarding
modelling and analysing PSS artefacts and their relationships from a
holistic viewpoint.

1.2. Approach

We tackle this issue by proposing a tool that supports PSS

development by providing means to integrate the various domain-spe-
cific artefacts into a comprehensive ”semantic engineering” graph. This
graph represents the various PSS artefacts, such as requirements,
components, processes, activities, stakeholders or tests as nodes and the
relationships and flows between those artefacts as edges. The tool fa-
cilitates capturing the relations between different artefacts along the
entire PSS life cycle. It further visualises the semantic engineering
graph or particular views (subset of nodes or edges) to the user and
provides features to analyse and edit the graph.

To achieve the aforementioned goal, our research intends to es-
tablish a theoretical foundation and then presents the corresponding
software tool that enables cross-domain traceability and model in-
tegration among PSS elements. Based on this agenda, we name our
software tool TRAILS, Traceability, model Integration and Life-cycle
management Support.

Our proposed approach is not focused on capturing and describing
every little detail of the system components that can be modelled in the
respective domain-specific modelling languages (e.g. single function
calls in software code, detailed geometry of hardware parts or activities
of a service process that are modelled exact to the second), but it is
more concentrated on a project management level, allowing require-
ments engineers or project managers to analyse the overall relation-
ships between system components, requirements, stakeholders or other
artefacts that are relevant in the development process. At this point, we
also want to emphasize, that our approach and tool are primarily de-
signed to support the model-based engineering (MBE) of PSS but not
model-driven engineering (MDE), i.e. automatic generation of software
code or service guidelines from models. In case of PSS we think that at
the moment MBE is more feasible then MDE since PSS are complex
socio-technical systems. Therefore models can play an important but
not a dominant role in the design and development of PSS. Since PSS
development requires an integrated view on the system under devel-
opment, the tool features multiple integration approaches demon-
strating the result as a semantic engineering graph (network). This
approach is enhanced with allowing multiple views on the resulted
graph for each specific purpose.

To this end, first, we define a reference ontology that specifies the
conceptual entities that are used in the multiple engineering domains
involved in PSS engineering. The development of this integration on-
tology, is based on literature reviews within the engineering domains
involved as well as expert interviews, PSS case studies and modelling
workshops. In TRAILS, this integration ontology is used as a framework
that defines element types and their associations that are used during
PSS engineering. In TRAILS, model integration is performed by trans-
forming each instances of models whose type is supported by TRAILS
into the format defined by the integration ontology and then linking
similar or related artefacts.

1.3. Structure of article

The structure of this paper is as follows. In Section 2, first we give an
overview of available modelling methods used in PSS engineering, then
existing software tools for PSS are analysed. Afterwards, in Section 3,
the model transformation methods are discussed and we explain the
model transformation process used in TRAILS. Following, in Section 4,
the basic concepts of TRAILS are introduced which is followed by de-
scribing available features of our tool in Section 5. In Section 6, a case
study demonstrates the use of TRAILS’ different features. In Section 7
we discuss limitations and possible future improvements of our ap-
proach. Finally, Section 8 gives a summary of the research presented in
this paper.

2. Related work

Analysing the literature related to PSS design and development we
find that research is more focused on methodologies and modelling

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

techniques rather than providing tools to support the presented
methods. Except two works on computer aided design tools targeted at
PSS development as well as one publication introducing a knowledge
management tool for PSS engineering, we did not find any additional
tools that are explicitly designed to support the development of PSS. In
this section we first summarise proposed PSS modelling methods in
literature and then briefly explain the tools we found.

2.1. PSS modelling methods

A considerable number of modelling methods for PSS development
have been proposed in literature, most of which aim at systematising
the functions or value proposition of a PSS from the customer’s per-
spective and focusing on the service aspect of the PSS (Qu et al., 2016).
Here, one group of methods focuses particularly on the hierarchical
configuration of a PSS from services or other components (Klingner and
Becker, 2015). In contrast, some works aimed at covering PSS in-
novation phases comprehensively, therefore they offered several mod-
elling techniques, each focusing at a particular situation in a PSS de-
velopment.

Most of the approaches for modelling a PSS presented in
literature are based on service blueprinting proposed by
Shostack (Lynn Shostack, 1982) more than 30 years ago. Geum and
Park (Geum and Park, 2011) for example extend the service blueprint
with new notations to capture the flow of product usage and service
usage from the provider to the customer and the relationship between
products and services. Lee and Kim (2010) focus on functional model-
ling of a PSS. They modify the service blueprint by adding a function
layer to show interactions between service provider and service con-
sumer more explicitly. Geng and Chu (2011) use a conceptual service
blueprint adding a user task model (to improve process-oriented design
of a PSS with requirement analysis from user perspective) and a func-
tion model (to show the relation between requirements and PSS con-
cepts). Service blueprinting and its extensions are mainly focused on
visualisation of service processes in the context of a PSS. This technique
elaborates the provided service activities at every stage of the PSS life
cycle and specifies the level of customer involvement or visibility of
certain activities to the customer. Although adopting service blueprint
gives a thorough overview of the service activities they contain, it lacks
the details for designing a PSS specially the relations between needs,
services and (physical) PSS components.

Lim et al. (2012) analyse the modelling techniques used for visua-
lisation of PSS. They divide methods based on the aspect of PSS which is
modelled. According to their study, most research focuses on the service
processes of a PSS which among them, service blueprint got more at-
tention for visualisation. Another studies aim at modelling the stake-
holders of a PSS focusing on the relations between them, proposing
alternative presentations of the service processes using a matrix called
PSS board which shows how the PSS provider and the partners works to
fulfil the customers’ need in different stages of the service process.
Maussang et al. (2009) argue that there is a gap between product de-
velopment and the need for technical specifications of physical objects
and the system approach. In order to close this gap, they suggest to use
the graph of inter-actors and functional block diagrams for designing a
PSS. They argue that functional block diagram is a useful tool for PSS
modelling and analysis as functional representation of a PSS during its
conceptual design phase is necessary.

According to Van Halen et al. (2005), appropriate tools are required
to deal with high complexity of a typical PSS. They propose a metho-
dology that offers a wide range of modelling methods for strategic
analysis in different phases of PSS development. With several papers
published in this area, we find that model integration is a common
concept in the systems engineering process. However, most work in this
area is on a rather high level, analysing the suitability of certain in-
tegration strategies, i.e. vertical vs. horizontal (Frank et al., 2014).
Although there are approaches that utilize ontologies for modelling

the dependencies between the various components of a
PSS (Hajimohammadi et al., 2017), they remain at a high level of ab-
straction, thus suggesting that existing products and services are bun-
dled together in order to form a PSS. In contrast to this, our approach is
able to capture PSS where product and service components are en-
gineered from scratch or at least modified in order to be integrated
seamlessly.

2.2. PSS computer aided modelling tools

Several studies which reviewed the state of art of PSS engineering,
discuss that there is need for software tools to support the modelling of
PSS (Baines et al., 2007; Meier et al., 2010). Beuren et al. (2013) em-
phasize the need for tools that provide visualisation and modelling of
different components of PSS including tangible and intangible elements
to improve the understanding of a PSS engineering project.
Morelli (2006) highlights the importance of a graphic representation
technique for modelling PSS requirements. He also claims that while
there are plenty of graphical notations in information sciences, they
cannot be used for representing all elements involved in a PSS, like
space, time and physical outlines.

Following this view, Sakao et al. (2009), discuss that a variety of the
tools available for product development concentrate on physical and
domain-specific details, but there is no particular tool that aims at de-
signing integrated systems of services and products simultaneously. In
order to close this gap, they propose a tool, called Service Explorer,
which supports designing services according to value created by pro-
ducts’ functions and user requirements. Service Explorer provides sev-
eral modelling techniques, a database for managing services and some
reasoning engines to help developers.

Komoto and Tomiyama (2008) argue that Service
Explorer (Sakao et al., 2009) cannot explicitly elaborate the relations
between services and products which is required for designing a PSS.
They present a tool which combines service modelling with a life cycle
simulator. The tool allows to analyse alternative PSS designs by quan-
titatively calculating economic and environmental performances from a
holistic viewpoint. A relatively similar approach has been presented by
Nemoto et al. (2015). They present a framework and software tool that
allows to formalize design knowledge from previous engineering pro-
jects and existing PSS and use those insights for configuring a new PSS
offering, but on a rather high level of abstraction.

2.3. Implications for comprehensive PSS engineering tool support

The works we discussed are mostly from the service design view and
lack consideration of physical elements in modelling. However, we
argue that there is no single modelling technique for development of a
PSS that tackles the issues sufficiently. Since PSS are rather complex
socio-technical systems, many different perspectives are required to be
investigated for a comprehensive design.

The need for a tool that supports engineers in analysing the de-
pendencies among artefacts has been recognized for a plethora of dif-
ferent use cases, e.g. for building the links between requirements en-
gineering and safety analysis (Vilela et al., 2017) or integrating product
life cycle management with service life cycle management of a PSS
offering (Wiesner et al., 2015). Also Tang et al. (2007) argue that for
complex software systems there needs to be traceability from rationale
to design. The same is even more important for PSS were an even bigger
picture needs to be taken into account. It is however surprising that the
need for an automated traceability tool has been recognized more than
3 decades ago (Dorfman, 1984) and that still today satisfying solutions
to this problem are scarce. In fact, a recent literature review on re-
quirements engineering for PSS listed conflict detection and resolution
among requirements, dynamic requirement change forecasting smart
requirement management and proactive response as the main chal-
lenges to be tackled in the future (Song, 2017). Therefore, we aim at

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

enabling an inclusive view by supporting visualisation of traceability
links between different components of a PSS in a model integration
ontology.

3. Model integration

As discussed in Section 1.1, PSS development involves various sta-
keholders which rely on their domain-specific models, diagrams or
other development artefacts. Therefore, every artefact is created using
specialised software tools, is specified in a domain-specific modelling
language (DSML) and is serialised as one of many different persistent
data formats. Besides, domain-specific models represent knowledge
only from a particular perspective and just a fraction of the system is
captured. Consequently, a thorough understanding of the comprehen-
sive system design and the cross-domain dependencies is missing.

One way to address this problem is to use a single modelling lan-
guage across all engineering domains involved. However, this approach
comes with a huge disadvantage. The more concepts and logic a mod-
elling language is capable of expressing, the more complex and com-
plicated to comprehend it gets. Thus, establishing a single compre-
hensive modelling method covering all different aspects of a PSS leads
to a complex and confusing representation (Eisenbart et al., 2012).

On the other hand, analysis of a PSS using models from different
perspectives lacks consideration of relations between these
models since many elements are interdependent. According to
Chen et al. (2008), the lack of interoperability across the different de-
partments of an enterprise is caused by interoperability barriers on four
different levels (data, service, process and business). In our approach
we focus on overcoming the issue of interoperability of data, since this
is the fundamental layer for the integration of PSS components across
conceptual, technological and organisational barriers. However, we
encourage others the advance our work in order to support interoper-
ability on a higher level.

We address the interoperability issue on the data level by proposing
an integration ontology which specifies the generic artefact types (en-
tities) that are used by the various DSML as well as the types of se-
mantic relationships that can exist between those artefacts. This fra-
mework enables stakeholders with separate perspectives to analyse the
relationships between their models and the others’.

To integrate models in one cross-domain representation, transfor-
mations from different domain-specific models are required. Thus, first
we discuss briefly what types of model transformations exist; later the
approach of this work for integration of different models is presented.

3.1. Model transformation

Since in practice, most of the models are graph-based or can be
transformed into a graph (also natural language expressions can be
viewed as a graph), we analyse mainly the graph-based transforma-
tions. In general, several types of graph-based model-to-model trans-
formation methods exist. We categorise these methods based on two
general criteria and explain each category separately.

Graph-based transformation methods can be direct or indirect based
on whether models are transformed directly to each other or an inter-
mediate model is applied. If the transformation mechanism requires
both source and target models to be in the same technical space, we call
it syntax-dependent transformation. On the other side, syntax-in-
dependent transformations are not based on a particular language. With
regards to the introduced criteria, we classify all graph-based trans-
formations into four categories: (Table 1).

Direct transformation methods define a set of rules which transfer
source model to target model without use of an intermediate model.
Direct syntax-dependent transformations requires both source and
target models to use the same technical space (e.g. XML). In contrast,

direct syntax-independent methods are not coupled to a particular
technical space. This type of transformations first parses the source
model into the syntax of target model’s technical space, then map the
parsed model to the structure conforming to the target model’s meta-
model (Mens and Van Gorp, 2006). While direct syntax-dependent
methods can enclose the maximal possible transmittable detail from the
source model to the target model (Varró and Pataricza, 2004), such
methods are very limited regarding the languages which can be sup-
ported due to their binding to a concrete syntax. Syntax-independent
direct transformations resolve this issue by decoupling the transfor-
mation rules from the technical space of the involved languages. For
every pair of source and target models, direct transformations requires
an explicit implementation. For example, Medvidovic et al. (2003)
present a model integration approach that uses direct mappings from
one DSML to another. However, this approach is primarily focused on
syntactical issues than on semantics (meaning) of the relationships
between artefact and it requires individual mappers for each pair of
modelling languages that is to be covered. This problem has been ad-
dressed by indirect transformations.

Indirect transformations rely on a well defined intermediate lan-
guage and each transformation process involves transforming from the
source model to the intermediate language and afterwards, trans-
forming from intermediate language to the target model (Czarnecki and
Helsen, 2006). We refer to a syntax-dependent indirect transformation
as fixed intermediate language transformation and similarly syntax-
independent indirect transformation as flexible intermediate language
transformation. The intermediate language of a fixed method is defined
in the same technical space of the source and the target models. Flexible
indirect methods are not bound to the underlying syntax of a technical
space, but rather the intermediate language is only expressed in its
concepts. Thus, with higher level of abstraction, the intermediate lan-
guage can support more models and it is more flexible regarding future
adaptations (Bézivin et al., 2006). Here, The great advantage is that one
does not require a separate set of transformation rules between every
two DSML but only between each DSML and the intermediate language.

4. TRAILS integration method

In its core, TRAILS is founded on two basic concepts, model in-
tegration and model transformation with the latter being a prerequisite
for the first. In a nutshell, the basic ideas behind TRAILS is to interrelate
all available engineering information within a semantic graph by
transforming various kinds of domain-specific models and other en-
gineering artefacts into a format that conforms to a cross-domain model
integration ontology. We explain these basic concepts in the following
in order to lay a solid ground for further explaining the core features of
TRAILS.

4.1. Model integration ontology

As presented in detail in some of our earlier publications
(Kernschmidt et al., 2013; Wolfenstetter et al., 2014; 2015), we de-
veloped an ontology of PSS engineering artefacts whose evolution needs
to be captured in order to ensure traceability. However, this ontology is
not solely focused on ensuring traceability but also on the more generic

Table 1
General types of model transformations.

Direct Direct
Syntax-dependent Syntax-independent

Fixed Flexible
Intermediate language Intermediate language

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

issue of integrating engineering information which is an essential pre-
requisite for ensuring traceability. In this sense, it defines the funda-
mental ontological concepts in the context of PSS development and
during service provision, such as requirements, actors, business pro-
cesses or decisions made in the engineering process. Additionally it
specifies which types of semantic relationships can exist between those
ontological concepts. For example, a solution component satisfies a re-
quirement or an actor performs an activity. For the purpose of merging
the engineering knowledge distributed over several domain-specific
models, every artefact that is imported into TRAILS is translated to
comply with this model integration ontology. This means that the do-
main-specific ontologies that are defined by the meta-models of the
DSML are mapped onto a common language using the proposed on-
tology as a meta-model. In the following we explain the structure of the
model integration ontology in detail.

The model integration ontology uses on the most abstract level three
basic Elements to describe the artefacts of PSS engineering and their
dependencies. These Elements are Nodes, Edges and Attributes with each
of them being hierarchically further decomposed into more concrete
types of ontological concepts.

The general purpose of Attributes is to capture descriptive informa-
tion such as duration, weight, price or colour of ontological entities as
well as meta-information (e.g. name, id, date of creation etc.); basically
everything that cannot be considered as an entity itself. Naturally, at-
tributes can have attributes themselves, for example names or units.
Furthermore, it is possible to define Relationships between Attributes to
e.g. define the mechanics of unit conversions.

Regarding Edges the TRAILS model integration ontology differ-
entiates between Flows and Relationships. On the one hand, Flows
characterise the transferral or transmission of value, material, energy or
information between two entities or describe the order of activities in a
process, i.e. Control Flow. On the other hand, there is the concept of
Relationships which are universally valid while Flows have a cause and
are bound to a defined period of time in which they occur. In this
context, the TRAILS integration ontology distinguishes Causal
Relationships (e.g. create), Chronologic Relationships (e.g. evolves to),
Referential Relationships (e.g. refers to), Inclusion Relationships (e.g. part
of) and Inheritance Relationships.

As with Nodes, we further differentiate between two generic types
(Fig. 2). Solution Artefacts represent the solution to the original cus-
tomer problem, i.e. the features, behaviour and (component) structure
of the PSS itself. Development Artefacts specify the problem domain and
the process of working on a solution to these problems, i.e. the devel-
opment process. Additionally, since PSS are socio-technical systems,
humans that interact with the PSS or are by other means related to the
development of the PSS or to service provision are summarised as sta-
keholders and on more concrete levels of the ontology decomposed into
the various sub-types.

As discussed, Development Artefacts are supposed to contain in-
formation related to the development and they are not part of the re-
sulting PSS. On a more detailed level, we distinguish between five
different sub-types of Development Artefacts in PSS engineering. First,
Requirement Artefacts are used to structure and define the problem for
which the final PSS represents a solution.

In the context of PSS engineering, requirements can be broken down
into four levels of abstraction. On the highest level, business goals of the
PSS are being defined. Based on these business goals, system level re-
quirements are derived which represent for example the needs of sta-
keholders, environmental considerations and business process de-
mands. In the next step, design level requirements are elicited to
address the details of system level requirements. Again, at the most
detailed abstraction level the design level requirements are translated
into domain-specific requirements which all different involved domains
(e.g. software engineering, mechanical engineering or service en-
gineering) can work with.

Specification Artefacts are means to describe requirements or system
designs by using different techniques. Specification Artefacts can take
various forms. Most commonly they appear as natural language texts,
graph-based models or other sorts of diagrams. However, also sketch
drawings, other kinds of illustrations and even videos could serve as
Specification Artefacts.

Test Artefacts are any kind of artefact that serve in the process of
checking whether the solution satisfies the requirements. Hence, the
variety of potential Test Artefacts ranges from mathematical or logical
proofs to computational simulations, experiments to informal methods,
such as stakeholders’ feedbacks.

Production Artefacts capture and represent knowledge that is re-
levant for the manufacturing process of hardware components of the
PSS. This includes for example, the machinery within the assembly line,
equipment used during the process or the specification of the manu-
facturing process itself. This way it is possible to link physical PSS
components to the manufacturing process and trace whether changes to
the design of hardware components impact the set-up for component
manufacturing.

Fig. 1. TRAILS Model Integration Ontology: Edge Types.

Fig. 2. TRAILS Model Integration Ontology: Node Types.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

Management Artefacts keep track of issues initiated in the develop-
ment of a PSS. For example a change request or a decision information
are considered as Management Artefacts. They are predominantly of use
when tracing the evolution of other types of Development Artefacts over
time.

Stakeholders represent different types of roles who are involved in
the PSS life cycle. Handling complex network of stakeholders in a
PSS is challenging due to several reasons. Since a PSS requires a
new business model, the entire organization of PSS provider is af-
fected and consequently new requirements for each department
should be addressed. Besides, by adding services to a core product,
new range of stakeholders will be included in development of a PSS.
In the ontology we distinguish between two general types of stake-
holders: Internal Stakeholders and External Stakeholders. Internal sta-
keholders refer to all units and collaborators to providing the PSS. In
contrast, external stakeholders are not part of the PSS providing or-
ganization.

Solution Artefacts refer to components which construct the PSS in-
cluding products and services. In the meta-model we classified Solution
Artefacts into Function Elements, Behaviour Elements and Structure
Elements. Solution Artefacts satisfy Requirement Artefacts and they are
verified by Test Artefacts.

Structure Elements are fundamental resources constituting a PSS
which are categorized to Product Elements and Service Elements. Both
tangible resources, like material, and intangible resources, like in-
formation, contribute to structure elements. The system performs some
workflows and processes in order to accomplish a target function. These
are presented in the Behaviour Element and the functions of the system
are presented in Function Element.

4.2. Model transformation process

To consolidate the engineering information that is contained in the
various domain-specific models, TRAILS transforms these models into
a semantic graph that conforms to the model integration ontology
presented in the preceding section. In order to support model trans-
formations between different technical spaces and serialization for-
mats, the model transformation process itself is divided into two in-
dependent steps. First, so-called I/O mappers are used to de-serialize
various data formats, such as ReqIF, XMI or even CSV, and re-
presenting them as a generic graph structure. In this context, generic
graph representation means that the resulting data structure consists
of only untyped nodes, edges and attributes. At this point, the concrete
syntax that is used by domain-specific modelling and engineering tools
has been transformed into an abstract syntax that still conforms to the
meta-model of the source DSML. As a second step, model mappers
transform the generic graph into a semantic graph that conforms to
the specifications defined by the model integration ontology. To en-
sure a high level of transformation accuracy, TRAILS uses customized
model mappers for each domain-specific modelling language.
However the general mode of operation is similar for each model
mapper.

Each model mapper contains a set of rules that specify an
equivalent for every node, edge or attribute of the respective meta-
model within the model integration ontology. In the most simple
case, each element can be mapped on one equivalent element of the
same type (e.g. a node type being mapped to another node type).
However, in other cases mapping patterns are more complex. For
instance, a set consisting of two nodes that are linked by a certain
type of edge could be mapped to one single node with a certain at-
tribute. Overall, each model mapper uses a sequence of atomic
transformation operators illustrated in Fig. 3 to perform the trans-
formation process.

Probably the most intuitive transformation operator is to map one
type of element from the source model to an analogical element of the
target model, i.e. edge to edge, node to node and attribute to attribute.
In this case, the mapping operator works bi-directionally and each
element can be considered as the equivalent of the other. Simply
speaking, this operation does merely just change the name of corre-
sponding type to the one defined in the target model. Of course, per-
formed on nodes and edges, this operation entails analogous operations
on their attributes as well.

The insert transformation operator is mainly performed on two
nodes that are connected by an edge. For a certain pattern (node A
connected by edge 1 to node B) this operator splits the edge into two
and inserts a predefined node X at the junction. Amongst others, this
operator is used for in cases were the meta-model of a DSML would not
allow a direct edge between two nodes. For example, the Event-driven
Process Chain (EPC) meta-model does not allow a control flow from one
activity to another, but only between activities and event. So when
transforming a UML activity diagram via the model integration on-
tology to an EPC model, additional event nodes need to be inserted. As
depicted in Fig. 3, there is also an analogous skip operator that performs
the inverse of the insert operator. This means, when detecting a node X
that is connected to A and B via an edge of type 1 it removes X and links
A and B directly.

When transforming models, it is often the case that for certain ele-
ments in the source model their equivalent in the target model misses
important attributes. In this context, it is often necessary to create an
additional node to capture the information that would otherwise get
lost. Also, some modelling languages allot that certain nodes only ap-
pear in connection with other nodes. For example, in UML use case
diagrams, use case always need to be directly or indirectly linked to
actors. Vice versa, the hide operator ignores for example nodes in the
source model that are not intended in the target model. Wherever
possible, it preserves the information contained in the discarded node
by adding it to the one that is maintained.

Another inverse pair of atomic transformation operators are used to
split or merge nodes. When specified for a certain type of node within the
source model the split operator creates two separate nodes of another
type than the original node connected by a pre-defined edge. This kind
of operator is required usually if an element in the source model has no
direct equivalent in the target model. In this case, after the transfor-
mation the information that was before carried by one node is split onto
two separate nodes. An example for this approach can be found when
transforming a BPMN diagram into a format compliant to the model
integration ontology. While gateways in BPMN contain the decision
that is being made as well as the logical consequence (i.e. which control

Fig. 3. Generic Transformation Operators.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

flow is being followed after the decision) the concept specified differ-
ently in the integration ontology. Here, the activity and the logical
conjunction (AND, OR, XOR) are treated as two separate nodes.
Therefore, when importing a BPMN diagram TRAILS will apply the split
operator and vice versa, the merge operator when exporting to BPMN.

By separating the model transformation process into I/O mapping
and model mapping each I/O mapper can be used for transforming
various modelling languages or meta-models respectively.
Correspondingly, each model mapper is able to transform a specific
type of meta-model into a graph representation that conforms to the
model integration ontology for PSS that is used in TRAILS. Apart from
importing various domain-specific models, TRAILS is also capable of
exporting the integrated PSS engineering information into DSML and
data formats. For this purpose, the model transformation process, as
described before is reversed.

5. TRAILS Features

TRAILS pivotal mission is to support various stakeholders along the
PSS life cycle in integrating, analysing and enhancing the knowledge
that is often spread across and hidden in the multiple different en-
gineering artefacts. The tool therefore provides a number of features
related to import, merging, editing and analysing graph-based models
from various engineering domains.

5.1. Importing models

The core ability of TRAILS is that different types of model specifi-
cation formats can be imported and transformed into the cross-dis-
ciplinary representation defined by the TRAILS Model Integration
Ontology. Furthermore, the entire semantic graph that results from
integrating the various types of PSS engineering artefacts can later be
entirely or in parts transformed into other formats supported by the
tool.

One type of specification formats supported by TRAILS is for ex-
ample the rather text-oriented Requirements Interchange Format(ReqIF).
ReqIF is a format based on XML which enables stakeholders with dif-
ferent modelling and requirement authoring tools to collaborate by
exchanging their requirements’ information.

Since PSS intend to be solutions to specific needs it is crucial for the
PSS provider to fulfil the customer’s requirements as complete as pos-
sible. Requirements engineering is thus one of the most important ac-
tivities both during PSS development as well as service provision. Due
to the dynamic business environment in which PSS compete require-
ments eventually change over time and the PSS needs to be adapted
accordingly. By linking the information that is contained in require-
ments documents to system design models of the product components
or process models related to service delivery it is possible to anticipate
the impact of changing requirements on the PSS design more accurately
and anticipate the consequences. The information that is needed in this
context can be imported from distinct requirements engineering tools
using the ReqIF format.

Two other important modelling languages that are relevant in PSS
engineering are the Unified Modelling Language (UML) and its almost
twin brother, the Systems Modelling Language (SysML). UML, the older of
both brothers, originated from software engineering and was developed
to provide a common platform for system architects and software de-
velopers to communicate over system analysis and implementation.

When recognizing the advantages of a notation that allows to logi-
cally decompose complex systems, UML subsequently entered the me-
chanical engineering domain and was adapted to fit its characteristics.
The resulting modelling language SysML extends a subset of the basic
UML diagram types but also introduces new concepts, such as ports. So,
while UML is a more software-oriented modelling language, SysML
aims at modelling and designing complex systems that rather stem from
the mechanical engineering domain. However, both of them offer

various diagrams for specifying a systems structure as well as its dy-
namics.

While UML and SysML can be used to specify the rather technical
aspects of a PSS, namely the hardware and software components, the
service engineering domain mostly relies on notations to specify busi-
ness processes. Widely used modelling techniques for business pro-
cesses are the Business Process Modelling Notation (BPMN) as well as
Event-driven Process Chains (EPC). An EPC, for example, is an ordered
graph of events and functions that enables describing alternative and
parallel execution of processes and it is enhanced with logical operators
like AND, OR, etc. The structure and notation of both, BPMN and EPCs,
is very similar and they are often supported by the same software tools,
e.g. MS Visio. We thus chose this software tool as an example to show
the import of such process models.

Although they are not commonly referred to as modelling lan-
guages, TRAILS supports the import of (and export to) other important
formats. For example, the Resource Description Framework (RDF) is a
general technique for conceptual description of resources. It is widely
used in the context of semantic web applications for specifying entities
and their semantic relationships to each other forming an ontological
graph that explains real world concepts. TRAILS uses the RDF format to
define the structure of the model integration ontology it uses internally
as a model representation format. Furthermore, it is used to define the
model mapping rules that are applied when importing and exporting
models in another language. RDF models can be serialized in various
formats, the most important being probably the RDF-XML format and
the Terse RDF Triple Language (TTL) which is a serialization format that
is easier for humans to read than the widely used RDF-XML format.
Since RDF is a technology that is used across various domains in order
to structure and represent knowledge in a graph-based form, we chose
to support both formats in TRAILS.

5.2. Merging models

Since PSS aim to be customer-centric solutions in which the in-
dividual components need to be integrated seamlessly to provide the
desired service and guarantee a enhanced customer experience, devel-
opers need to be able to evaluate how the design and the behaviour of
the individual components impacts each other. In order to do so, it is
helpful to identify and explicitly model the dependencies and overlaps
among the various domain specific development artefacts involved in
the PSS development.

For this purpose, TRAILS allows to merge the various models of a
PSS, each describing a specific viewpoint on the system as a whole, by
identifying common concepts or entities in the different models. After
importing the different domain-specific models into TRAILS they are
merged into a semantic graph with the nodes of this graph representing
entities or real world concepts, respectively.

Each time a new model is imported, TRAILS can perform model
merging to determine the overlaps of the newly imported domain-
specific model with the integrated model in the database. In order to
identify model overlaps, i.e. similar nodes or sub graphs, TRAILS uses
three types of similarity calculation methods, each consisting of mul-
tiple approaches. First, model overlaps can be determined by calcu-
lating the similarity of the descriptions or captions of model elements.
Examples of such approaches are String Edit Distance or Levenshtein
Distance that reflect how similar the captions of two model elements
are. Second, TRAILS is able to determine the similarity of model ele-
ments by evaluating their attributes. In general, model elements that
have some identical attributes tend to be similar or at least closely re-
lated. And third, TRAILS uses a method we call context similarity
evaluation. This methods determines the similarity of two nodes based
on the similarity of their neighbours. According to this method, two
nodes have a high similarity if their adjacent nodes in the graph appear
to have the same type, name or other attributes. In model-based en-
gineering it is reasonable to expect that model elements with similar

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

adjacencies are closely related or identical.
The different model similarity indicators can be combined flexibly

to allow for optimal merging results. TRAILS then presents the results of
the similarity calculation to the user ordered by a combined similarity
measure. For each pair of likely similar elements the user can the select
to merge two nodes into one, link the nodes using an edge that de-
scribes their relationship (e.g. new version of) or ignore the similarity.
By offering comparison algorithms that can be combined flexibly,
TRAILS provides the means to implement automated procedures for
traceability maintenance as proposed by Mäder and Orlena (2011)
when it comes to changes along the engineering life cycle.

5.3. Adaptable cross-domain model integration ontology

As stated before, when importing models from external software
tools that are described in a certain DSML or format, TRAILS maps
those imported models onto a cross-domain ontology (cf. Section 4.1)
that has the expressive power to integrate the viewpoints of multiple
engineering domains.

Although the TRAILS model integration ontology incorporates
concepts from various DSML, it is not feasible to consider every mod-
elling language or format ever invented. In fact, more or less every
company uses some self-developed legacy software tools or data for-
mats that they customized to their needs. They vary from customized
and extended off-the-shelf engineering tools to simple spreadsheets
enhanced by using macros.

In order to deal with the issue of having to interoperate with non-
standard software tools and data formats, the TRAILS integration on-
tology can be modified and extended by the user according to in-
dividual, context-dependent needs. This feature allows the ontology to
be adapted to specific needs of the application environment, such as
specific industry or project characteristics. This way, it is also possible
define additional ontological concepts that are needed in order to im-
port artefacts which are specified in further modelling languages or
data formats that are not part of TRAILS standard implementation.
However, if the integration ontology is altered, in some cases rules for
model mapping have to be adapted as well. In TRAILS, the integration
ontology as well as mapping rules can be accessed, managed and
modified directly within the graphical user interface. Furthermore, the
files containing this information can be exchanged with other users.

5.4. Editing models

Although TRAILS supports the user in producing an integrated
model of the PSS from a number of different sources by offering smart
merging algorithms, in some cases there is need for manual editing.
This way, the user is able to add missing links or clean up duplicate
information, both of which are very likely to cause inconsistencies
within the product design and specification. Again, in some cases such
inconsistencies ultimately lead to product failures and costly callback if
they remain undetected.

Furthermore, it is possible to create new nodes, add them to the
integrated PSS model and complement or adjust attributes. Hence, the
user can add details to the system specification that could not have been
expressed in the source modelling tools. By doing so, the user is able to
enrich the system model by adding additional information that is re-
quired for e.g. change management or requirements tracing. Thus, in-
stead of limiting itself to just importing, processing and interpreting
data that has been created using other software tools TRAILS allows the
user to edit or delete the nodes and edges that the imported models
consist of.

5.5. Customisable appearance and standard graph layouts

The fundamental idea of TRAILS is to structure and illustrate the
entire knowledge about the product or solution being developed and

the development process itself as a semantic graph. This graph consists
of nodes which represent any kind of artefact created in the engineering
process as well as edges which represent different types of relationships
among these artefacts.

As a consequence, the visual appearance of this graph determines
the comprehensibility of the model and consequentially the usability of
the TRAILS software tool. PSS engineers not only need to understand
the increasingly complex technical products that are part of the PSS
solution but also the dynamics of the business processes in which the
service is provided to the customer. Therefore, intuitive presentation of
engineering information and the possibility to interact with the se-
mantic graph are crucial features. This way, TRAILS supports the user
in revealing hidden information through rearranging the graph or
highlighting certain nodes or edges.

Specifically, TRAILS allows to automatically arrange the displayed
graph in one of several pre-defined standard graph drawing strategies,
such as circular or force-based layouts. Furthermore, the user can re-
arrange nodes manually and expand or compress nodes that contain
sub-graphs.

In addition to that, the tool offers the possibility to customize the
appearance of nodes and edges. The user can select the standard colours
for each type of node and edge in order to facilitate visual differ-
entiation. Moreover, it is possible to chose between multiple node
shapes or embed individual icons or images for each type of node.

5.6. Customised filtering and viewpoint creation

The analysis of integrated engineering information as it can be
performed using TRAILS is in some ways a double-edged sword. On the
one hand it is desirable to collect and integrate as much information as
possible from various domain-specific models, documents and other
sources. On the other hand, one quickly obtains a tremendously com-
plex network of interrelated artefacts that in all its details is hardly
comprehensible for the human analyst at first sight.

However, most analysis tasks only concern a minor fraction of the
nodes and edges that form the integrated PSS model. In addition to
various graph layout options, TRAILS provides a customized filtering
feature. This feature allows the user to filter the graph according to
node types, edge types and even attribute values in order to decrease
the amount of information visualised to what is actually needed for
performing the analysis. With the possibility to only display a certain
fraction of the nodes and edges that form the graph the user is better
able to e.g. follow the evolution of a particular requirement over time
or oversee just the information flows within the PSS.

In TRAILS these customized filters are referred to as viewpoints on
the semantic graph. These viewpoints can be defined manually by the
user or loaded from pre-defined templates that serve specific purposes
or reflect a certain role in the engineering process, e.g. the requirements
analyst. Once defined, a viewpoint can be saved to the viewpoint se-
lection for future use. In addition to simplifying the visual appearance
of the integrated PSS model, viewpoints allow to restrict access for
certain roles, e.g. when engineering information needs to be shared
with external stakeholders.

5.7. Matrix view and spreadsheet integration

In some engineering disciplines like mechanical or industrial en-
gineering matrix-based engineering tools such as design structure ma-
trices (DSM) or domain mapping matrices (DMM) are continuously
popular. Although these tools are often naturally grown legacy systems,
they are widely used across various industries and most companies use
at least one tool of this kind in their engineering process.

For some use cases, like generating supplementary nodes or cap-
turing a larger number of traceability relationships, matrices constitute
a more convenient form of visualisation. Using matrices a larger
number of nodes can be arranged in a space-saving manner allowing for

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

a more compact overview of the overall system structure. Hence, be-
sides the default graph view, TRAILS also provides the possibility to
visualize the semantic traceability graph as a matrix. Similar to the
graph view, TRAILS allows customised filtering and viewpoints in the
matrix view as well. Moreover, all graph editing operation can be
performed the same way using the matrix view. This way, the user is
able to switch between both forms of visualisation flexibly using the
perspective the fits best for the respective task (Tilstra et al., 2010).

Another reason why many companies still use such matrix-based
engineering tools is that they can be implemented using standard office
software for spreadsheet calculation. This way, matrix-based en-
gineering tools can be flexibly used and easily adapted. In order to ease
integration with such tools, TRAILS allows to export the semantic tra-
ceability graph or parts thereof to common spreadsheet formats so that
the data can be analysed using existing matrix-based analysis tools.

5.8. Multi-user capabilities and database server

As technical products become more and more complex, so have the
processes of their development. Today, the development of technical
products usually involves a team of specialists from multiple en-
gineering domains to design and integrate the various components, i.e.
hardware, software and in many cases services. Hence, the typical en-
gineering process and with it engineering software tools are increas-
ingly shaped by the need for collaborative and concurrent team activ-
ities.

The need for supporting collaborative engineering through ade-
quate tools is even more prominent when multiple companies are in-
volved in solution design and service delivery. The various stakeholders
from different companies sometimes distributed globally need to be
able to work concurrently on a central instance that serves as a single
point of truth for the integrated PSS model.

For this purpose, TRAILS provides the possibility to store all en-
gineering data on a central graph database server. In our current im-
plementation we use the open-source framework Apache Jena as da-
tabase to store RDF data together with Fuseki Server for serving RDF
data over standard internet protocols, such as HTTP. This way, multiple
installations of TRAILS can be used concurrently and synchronise up-
dates with the central database.

6. Case study: Bike sharing system

In this section, we explain a bike sharing system situation as a PSS
example to clarify how TRAILS can support PSS development. The bike
sharing system is not a hypothetical example but was implemented as a
functioning prototype at our university with multiple departments
collaborating extensively. Overall, service processes where designed,
software components (such as central database systems and a mobile
application) where implemented and the necessary modifications to a
bike where engineered and built in order to set up a functional proto-
type of a bike that operates within a free floating bike sharing system.
This way, it was possible to have control and unlimited access to the
whole PSS engineering process which would not have been the case in a
real industry example. Even though TRAILS was evaluated in a much
more detailed case study than can be presented here, we admit that
several industry case studies are desirable in order to evaluate the true
potential of our software tool. Nonetheless, we think that a simplified
version of our case study gives the reader a better idea of what TRAILS
is and how it functions.

In order to understandably present our case we only describe the
high level architecture of the system. In this conjunction, our goal is not
to present every feature of TRAILS in detail, but to give the reader a
general overview of the idea behind our tool using an intuitive appli-
cation scenario. Bike sharing systems are a typical example of a PSS
with the aim of providing mobility as a service to customers. In our case
study the PSS provider offers bikes on an on-demand basis to customers

at multiple sharing stations within the city limits. The bikes can be
rented by registered customers simply by entering their customer ID
and PIN at one of the bike sharing stations and one of the bikes would
be released. The customer can then use it on a pay-per-minute basis and
then return it at the same or any other of the bike sharing stations. After
returning the bike, the amount due is charged to the customers credit
card.

From an architectural perspective, the bike sharing system is com-
posed of stations that feature a keyboard and screen as a user interface.
Besides, stations are equipped with an external power supply and they
communicate with the back-office fleet management system using a
mobile telecommunications module (UMTS module). Bikes can be
locked to the stations via an electric lock. This lock is released when the
customer rents one of the bikes. The back-office fleet management
system, which operates in the background, is further linked to a central
database as well as a payment system (Fig. 4).

As in a PSS we are not only dealing with products, but also services,
to achieve a full understanding of the bike sharing system, it is neces-
sary to consider the dynamic service processes (Fig. 5). When a bike is
needed, the customer walks to the next sharing station and enters his
user ID into the user interface. The sharing then checks the user ID for
validity by communicating with the central database. If the user ID is
valid, the system will change to the next screen, where the customer
can enter his PIN, which again will be checked for validity in the da-
tabase. If this PIN is also correct, the sharing station then releases one of
the bikes by opening its electric lock.

We consider the case that the bike sharing provider re-investigates
market trends as well as technological possibilities in order to improve
its customer service and reach out to new market segments. The bike
sharing provider reaches the conclusion that it should change its busi-
ness model from offering stationary bike sharing to offering a free-
floating system where customers can pick up or leave the bike any-
where in the city area. Fig. 6 depicts a requirements document con-
taining selected requirements for the free-floating system that influence
some of the existing structural components and services processes
which need to be adapted according to the new business model. In
order to satisfy these requirements, architecture of the bike sharing
system needs to be adapted. As the sharing system no longer depends on
fixed stations, there has to be an alternative way for customers to locate
the nearest available bike. In the new system architecture a smartphone

Fig. 4. SysML block diagram of the stationary bike sharing system.

Fig. 5. EPC of the rental process in the stationary bike sharing system.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

application that customers can install on their device will display the
location of bikes on a map. This smartphone application needs to be
able to communicate with the central fleet management system, which
will store and continuously update the position and availability of
nearby bikes. Furthermore, the user interface and electric lock that used
to be part of the fixed sharing stations now need to be integrated into
the bikes themselves. In order to be able to communicate with the back-
office fleet management system for updating the bikes location or
checking the users credentials the bikes need to be equipped with a
UMTS module as well as a GPS receiver. All of the electric equipment
furthermore needs to be powered by a battery attached to the bike.

Apart from the system structure, the service processes need to be
adapted as well. As an example, we again take the rental process
(Fig. 8). This process has been adapted in order to fulfil the require-
ments of the new business model. If a bike is needed the customer first
opens the bike sharing application on his smartphone, which then
checks for nearby bikes and displays them on a map. The customer can
then select one of those bikes and reserve it for the next few minutes,
until he reaches the bike. A reservation request is directly sent to the
fleet management system (FMS), which then updates the bikes status in
the database and forwards the reservation request to the bike. When the
customer then reaches the bike, he can proceed as normal by entering
his user ID and PIN into the user interface attached to the bike. The
credentials are sent to the fleet management system and if correct, fi-
nally the electric lock opens.

In order to record the changes of the system architecture as well as
the rental process in TRAILS we need to capture the changes in all af-
fected development artefacts, i.e. the SysML block diagrams, the EPC
process models and the ReqIF requirements document. As we map the
different versions onto each other and also link the altered require-
ments to the solution artefacts that fulfil those requirements, we can
easily understand which parts of the system need to be adapted and

how. In order to do so, the different versions of the SysML block dia-
gram need to be imported into TRAILS. When merging several source
models into one comprehensive description of the system and its evo-
lution, TRAILS offers several comparison algorithms that support the
user in identifying model overlaps and common elements. Fig. 9 shows
this step in the process of merging the block diagram of the stationary
bike sharing system being merged with the altered requirements
document.

At this stage, the user can select which of the comparison calcula-
tions (as introduced in Section 5.2) should be performed. Here, it is also
possible to select multiple comparison algorithms and calculate a
combined weighted similarity score. TRAILS then evaluates the simi-
larity of elements within the two models that are being merged and
displays them as a sortable list. The user may then decide which of the
pairs of nodes should be linked or merged into one. The result of
comparing the block diagram of the stationary bike sharing system with
the requirements document can be seen in Fig. 10. For this merging
process an equally weighted combination of vector space model com-
parison and string edit distance was chosen in order to identify similarly
named entities. In this example we see that even though the algorithm
has to operate on a very simplified requirements document that con-
tains only captions and not the requirement descriptions themselves, we
can easily identify solution artefacts and requirements that are related.

Fig. 6. Excerpt of requirements document for free floating bike sharing system.

Fig. 7. SysML block diagram of the free floating bike sharing system.

Fig. 8. EPC of the rental process in the free floating bike sharing system.

Fig. 9. Configuration of comparison algorithms for merging models.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

Having merged the specification of the system architecture, TRAILS
provides a visualisation of the combined model. This way, the user can
explore the model visually in order to get a clearer understanding of the
inherent system structure and complement missing links between re-
lated elements of the models. As illustrated in Fig. 11, TRAILS not only
shows which of the requirements impact a certain solution component
but also shows the internal break down structure of the requirements
document. Consequently, the user is able to deduce the dependencies
between individual requirements. In this context the user can further-
more chosen which types of semantic relationships to highlight or
which to fade out, thus increasing clarity of the visualised de-
pendencies.

To trace the changes regarding the system components that result
from evolving the bike sharing business model from stationary to free
float, a next step would be to merge the current system architecture as
depicted in the SysML block diagram with the future architecture that
was specified according to the new requirements. By doing so, en-
gineers can see at first glance which components have been changed.
However, changes not only manifest themselves in the architectural
setup of the system, they also incur in the system behaviour, i.e. the
business processes. Again, changes in the business processes may im-
pact the system architecture. Thus, it is advantageous to visualise which
components are involved in performing certain service processes.
Fig. 12 shows the result of merging the SysML block diagram that re-
flects the structure of the PSS with the EPC diagram illustrating the bike
rental process. Through visualisations like this, engineers can easily
identify which components are likely to be impacted by a change in the

business processes.
Although the models in our case study are only a rudimentary de-

scription of a PSS, they permit some insights into the traceability and
model integration support that is offered by TRAILS. Once imported
and merged into a comprehensive system model, TRAILS stores the
resulting semantic graph in a central database that can be accessed by
multiple clients. Throughout development new versions of the solution
or development artefacts can be continuously merged with the existing
model on the database. TRAILS will then constantly update the evolu-
tion of these artefacts and enable users to query the semantic graph in
order to get new insights.

7. Discussion

As discussed in the first section of this paper, there is no tool that
supports integration and holistic analysis of heterogeneous PSS en-
gineering artefacts along with the dependencies between those. To
address this issue, we developed a tool prototype that enables in-
tegrating models from different domains of PSS engineering, the vi-
sualisation of the relationships among the merged elements and
managing the changes through a version management mechanism. In
this section, we discuss the strengths and weaknesses of this tool pro-
totype including its features and the methods and technologies em-
ployed.

Capturing of PSS artefacts in a semantic engineering graph: As
its main functionality, TRAILS allows capturing the relationships be-
tween all types of artefacts like actors, use cases, decisions, process
activities, product components and so on. The graph-based presentation
enables easy understanding of the dependencies among an within ar-
tefacts. While most modelling tools only allow the user to view the
relationships of element within a specific model and others like docu-
ment management systems focus on the evolution of as well as the
relationships between certain documents, TRAILS is able to do both,
using a graph representation the captures the semantics of engineering
knowledge. However, this advantage can only be realized if TRAILS is
capable of processing various domain-specific meta-models and tool-
specific data formats.

Traceability and change management: TRAILS keeps the history
and evolution of the artefacts by recording the reasons for changes, the
stakeholders involved in realizing a change and all versions of the ar-
tefacts. Furthermore, TRAILS does not only track which models have
changed but also which of the entities within a model have changed.
Therefore, engineers are not only supported in understanding the cur-
rent structure of the PSS but also they are able to follow its evolution.
Consequently, our tool may increase the awareness of stakeholders
during development, which leads to a higher acceptance of the design
decisions and supports making better decisions in further development.

Fig. 10. Merging Results of Requirements with Block Diagram for a Stationary
Bike Sharing System.

Fig. 11. Linking Requirements to Solution Components.

Fig. 12. Linking activities to system components.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

Although its fundamental technical architecture would allow a further
in-depth analysis based on e.g. logical reasoning, TRAILS is however
currently dependent on the user to estimate the further consequences of
changes in requirements or solution artefacts and to document the
reason for a change.

Extendible ontology: Model integration and transformation in
order to identify the semantic relationships between entities of het-
erogeneous models are a central concept of TRAILS. To this end, the
integration ontology (see Section 4.1), forms the backbone of model
integration by playing the role of a middle language. Moreover, the
integration ontology is designed to be adaptable to specific organisa-
tional requirements. Therefore, it essentially defines generic types of
artefacts, which are common in the development of PSS. Along with
this, the ontological entities that these artefacts contain as well as the
types of semantic relationships that can exist between them are defined.
In addition, hierarchical inheritance structures of artefacts within the
ontology ensure the compatibility of TRAILS with many modelling
languages. However, at the current stage there are some limitations. To
this end, undefined semantic relationships in the integration ontology
are resolved through abstraction during the integration process. This
means that if a certain type of node or edge is unknown in the in-
tegration ontology and no transformation rules have been defined for
this situation, the rules for the parent node or edge type are applied. In
this case, TRAILS will still be capable of importing the artefact but some
of the semantic information that is contained in the original model can
be lost, e.g. a very specific type of relationship is replaced with a more
generic type.

Visualisation: Another key idea behind TRAILS is to visualise the
integrated engineering models in a way that the structure and dynamics
of a PSS can be understood intuitively. By presenting the comprehen-
sive engineering knowledge in an appealing and convenient form to the
user, they can perform visual analysis of the models making use of the
fact that humans are capable of visually detecting complex patterns that
machines can’t. Accordingly, the main features actualising this goal are:
graph layouts and customisable element shapes. Besides, TRAILS pro-
vides a matrix presentation, which automatically is derived from the
graph-based presentation. In addition, users can create custom views,
that highlight some elements while hiding others. However in this
context, visual analysis should not been seen as a substitute for rule-
based analysis or reasoning but as a complementing instrument.

Simulation: In many cases, there are various alternative PSS de-
signs combining different features of products and services. As every
design decision leads to a different performance and costs for the final
PSS, it is of high importance to evaluate and prioritise PSS design
alternatives (Alfian et al., 2014). However, service components of a PSS
impose highly stochastic behaviours to the system, which makes eva-
luation of a PSS design challenging (Kimita et al., 2012). PSS literature
widely proposes simulation as the method to assess PSS designs. To this
end, numerous interdependent aspects and measurements need to be
addressed in a PSS simulation, such as product and service usage factors
e.g. usage frequency and duration, life cycle-related factors, e.g. reu-
sability and maintenance, and environmental impacts (Kimura and
Kato, 2002; Garetti et al., 2012). PSS simulation thus needs to consider
various of these factors in order to deliver realistic results.

As argued by Zacharewicz et al. (2017) tight model alignment is an
essential prerequisite to analyse dynamic dependencies through simu-
lation. In its current version, TRAILS aims at enabling a rather loose
coupling between domain-specific modelling avoiding complex and
hard to maintain interfaces (or connectors) between different domain-
specific modelling tools.

As TRAILS enables integrating different models such as life cycle
models as well as structural models, it establishes the basis for such
complex simulations. To this point however, the simulation has not
been the focus of our work as we primarily aimed at supporting the
model-based engineering approach before implementing functions that
support model-driven engineering.

However, we believe that TRAILS is perfectly suited to host a si-
mulation engine (e.g. based on system dynamics) that allows analysing
dynamic dependencies, such as the impact of resource availability on
the result of business processes.

Comparison with other tools: To better clarify TRAILS scope of
abilities, it is necessary to compare it with other types of existing tools.
Therefore, in the following we compare TRAILS with two major similar
types of tools.

There are a plethora of Requirements Engineering Tools available
such as DOORS1, Rational Requisite2, Integrity3, etc. However, TRAILS
does not aim at general management of requirements, but enabling
traceability of requirements through models of development artefacts
and processes. In addition, as TRAILS was designed to support mana-
ging the life cycle of a PSS with a focus on engineering, it provides a
high level understanding of how each requirement is satisfied by the
PSS.

The other category of tools which TRAILS can be compared, is
general Modelling Tools like Visual Paradigm4, Microsoft Visio5, etc.
General modelling tools usually illustrate distinct viewpoints on a
specific real world concept, i.e. the component structure of a hardware
product or the logical order of activities within a business process. If the
intention is to understand a certain part of the PSS from a specific
viewpoint, one should use such modelling tools. However, TRAILS takes
a different approach by integrating multiple models or perspectives on
ths PSS as well as the development process itself. Therefore, TRAILS
enables stakeholders to comprehend the interdependencies within the
PSS components.

In summary, the current version of TRAILS mainly offers the ar-
chitectural foundations to implement advanced engineering in-
telligence features. Today, its core functionality is to import various
models specified in DSML and data formats into a comprehensive PSS
model that comes as a semantic graph. In doing so, TRAILS relies on the
resource description framework as a format for representing the en-
gineering information within a semantic graph. It is therefore of a great
importance to draw the limitations of our approach, not only to better
reflect the scope of this study, but also to expose limitations which we
want to encounter in future work, as we discuss subsequently.

8. Conclusion and future work

PSS are complex socio-technical systems that containing multiple
physical, software and service components that need to be seamlessly
integrated in order to deliver the desired value-in-use to the customer.
Consequentially, the development and life cycle management of PSS
demands stakeholders from various engineering domains to work to-
gether with each of them using special development methods, model-
ling languages and engineering software tools. As repeatedly stated in
literature, visualisation and analysis of relationships between the dif-
ferent engineering artefacts is essential for stakeholders to understand
the interdependencies among components of the system. To close this
gap, we presented the our software tool, TRAILS, which enables in-
tegrating models from different engineering domains, capturing and
visualising the semantic relationships among and within merged en-
gineering artefacts.

To this end, first we focused on developing an integration ontology,
which acts as a meta-model to enable model transformation and in-
tegration. Besides, the proposed ontology can act as a traceability re-
ference model capturing trace links between various engineering arte-
facts. However, in order to make the tool more flexible in terms of

1 http://www-03.ibm.com/software/products/en/ratidoor
2 https://www-01.ibm.com/software/in/awdtools/reqpro/
3 http://www.ptc.com/application-lifecycle-management/integrity
4 https://www.visual-paradigm.com/
5 https://products.office.com/visio/

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

compatibility with third party engineering tools a desirable feature for
the further development of TRAILS is the possibility to specify model
transformation rules through drag and drop combination of atomic
transformation operators. This way, domain experts can add new
DSMLs or data formats to TRAILS without having to touch the software
code by just configuring the transformation process.

In a case study example we presented a comprehensive PSS model
that consists of only five sub-models (two of them being modified
versions of already existing models). However, in a real industrial case,
such a model comprises a much higher number of different sub-models,
each of them featuring a higher level of detail. Thus, in a realistic set-
ting, the semantic graph would accumulate to several thousand nodes.
As a consequence, TRAILS features like role-based and intuitive filtering
need to receive increased efforts. In this context we also see many
promising prospects in further developing TRAILS to realise the po-
tentials of visual analytics. If engineers are capable of intuitively
comprehending the dependencies within a system, they will most likely
be able to provide better solutions.

As next steps, we also will add enhanced team work features to
TRAILS. As development of PSS involves high number of people, fea-
tures to support collaborative work is necessary. Collaborative en-
gineering features are critical for an engineering tool like TRAILS.
Currently, the TRAILS back-end database server has limited support for
several concurrent users and managing different versions of a PSS
structure caused by editing of different users. Regarding better multi-
user support, the TRAILS back-end offers various potentials for en-
hancement including secure user management and data transfer (cur-
rently data is served via HTTP), a revision control system, change
management and update broadcasts in order to better suit the needs of
concurrent engineering.

Since TRAILS uses RDF to represent engineering knowledge within a
semantic graph, there is the possibility to enhance the tool by exploiting
other standard semantic web technologies, such as SPARQL, OWL or
RIF. By doing so, TRAILS can be equipped with advanced semantic
search functions. Besides, an inconsistency management mechanism
can be developed. For example, based on a user-defined set of rules,
inconsistencies among PSS elements, which are imported and merged
from domain-specific models, can be detected. Right now there is no
automatic inconsistency detection and resolution. Hence, manual in-
spections are needed to identify conflicts between different models.
However, manual inspection is often an exhausting and complicated
process suffering from human faults that lead to inaccuracy and in-
completeness.

In future, TRAILS should be able to automatically check or support
the manual inspection in order to identify the semantic traceability
graph inconsistencies. Such inconsistencies could be violation of fun-
damental physical or logical laws (deadlock in a work-flow because of
cyclic control flows; self-containment; negative component weight; di-
mensions of a component are bigger than its containment; incorrect
conversion of measurement units), a mismatch between a requirement
and the solution artefact that is supposed to fulfil this requirement,
contradicting requirements that refer to the same solution artefacts, an
unbound requirement (requirement that is not fulfilled by any solution
artefacts), a solution artefact that does not fulfil any requirement (over
engineering), a mismatch between the attributes of a subsystem and its
components (the aggregate weight of components is higher than the
specified weight of the compound). Also, we will implement function-
ality that aims at using the information captured by TRAILS to simulate
service provision in order to optimize the PSS overall architecture.

To sum up, we argued that complex engineering projects, such as
the development of PSS, that involve a variety of engineering domains
have need for a tool enabling the integration of heterogeneous en-
gineering artefacts into a comprehensive model for purposes like tra-
ceability, change management or various analysis tasks. Having in-
troduced our overall concept to tackle this issue, we introduced our
prototypical tool TRAILS and presented its core features. We then

demonstrated the possible application of TRAILS in an academic PSS
engineering project using the example of a bike sharing system.
Discussing the current development state, the basic concepts and
comparing TRAILS to other types of engineering tools, we concluded
that TRAILS is subject to a number of limitations and showed potentials
for further enhancing the tool. Nevertheless, in summary the holistic
concept of TRAILS, i.e. enabling the integration of various hetero-
geneous engineering artefacts through abstraction and model trans-
formations provides a fundamental value-added for various stake-
holders within the life cycle of a PSS.

Acknowledgements

We thank the German Research Foundation (DFG) for funding this
work as part of the collaborative research centre Sonderforschungsbereich
768 - Managing cycles in innovation processes - Integrated development of
product-service-systems based on technical products’(SFB768).

References

Alfian, G., Rhee, J., Yoon, B., 2014. A simulation tool for prioritizing product-service
system (pss) models in a carsharing service. Comp. Indust. Eng. 70, 59–73.

Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., Greenough, R., Peppard, J., Roy, R.,
Shehab, E., Braganza, A., Tiwari, A., et al., 2007. State-of-the-art in product-service
systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 221 (10), 1543–1552.

Beuren, F.H., Ferreira, M.G.G., Miguel, P.A.C., 2013. Product-service systems: a literature
review on integrated products and services. J. Clean. Prod. 47, 222–231.

Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A., 2006. Model
Transformations? Transformation Models!. Model driven engineering languages and
systems. Springer, pp. 440–453.

Cavalieri, S., Pezzotta, G., 2012. Product–service systems engineering: state of the art and
research challenges. Comput. Ind. 63 (4), 278–288.

Chen, D., Doumeingts, G., Vernadat, F., 2008. Architectures for enterprise integration and
interoperability: past, present and future. Comput. Ind. 59 (7), 647–659.

Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation ap-
proaches. IBM Syst. J. 45 (3), 621–645.

Dorfman, M., 1984. Arts an automated requirements traceability system. Journal of
Systems and Software 4 (1), 63–74.

Eisenbart, B., Blessing, L., Gericke, K., et al., 2012. Functional modelling perspectives
across disciplines: a literature review. Proceedings of 12th international design
conference.

Frank, M., Harel, A., Orion, U., 2014. Choosing the appropriate integration approach in
systems projects. Systems Engineering 17 (2), 213–224.

Garetti, M., Rosa, P., Terzi, S., 2012. Life cycle simulation for the design of product-
service systems. Comput. Ind. 63 (4), 361–369.

Geng, X., Chu, X., 2011. A New Pss Conceptual Design Approach Driven by User Task
Model. Functional Thinking for Value Creation. Springer, pp. 123–128.

Geum, Y., Park, Y., 2011. Designing the sustainable product-service integration: a pro-
duct-service blueprint approach. J. Clean. Prod. 19 (14), 1601–1614.

Hajimohammadi, A., Cavalcante, J., Gzara, L., 2017. Ontology for the pss lifecycle
management. Procedia CIRP 64, 151–156.

Kernschmidt, K., Wolfenstetter, T., Münzberg, C., Kammerl, D., Goswami, S., Lindemann,
U., Krcmar, H., Vogel-Heuser, B., 2013. Concept for an integration-framework to
enable the crossdisciplinary development of product-service systems. IEEE
International Conference on Industrial Engineering and Engineering Management
(IEEM) 2013. IEEE, pp. 340–345.

Kimita, K., Tateyama, T., Shimomura, Y., 2012. Process simulation method for product-
service systems design. Procedia CIRP 3, 489–494.

Kimura, F., Kato, S., 2002. Life cycle management for improving product service quality.
Proceedings of the 9th International Seminar on Life Cycle Engineering, Erlangen
(Germany). pp. 25–31.

Klingner, S., Becker, M., 2015. Formal modelling of components and dependencies for
configuring product-service-systems. Enterprise Modelling and Information Systems
Architectures 7 (1), 44–66.

Komoto, H., Tomiyama, T., 2008. Integration of a service cad and a life cycle simulator.
CIRP Annals-Manufacturing Technology 57 (1), 9–12.

Lee, S., Kim, Y., 2010. A product-service systems design method integrating service
function and service activity and case studies. Proceedings of the 2nd CIRP inter-
national conference on industrial product service systems. pp. 275–282.

Lim, C.-H., Kim, K.-J., Hong, Y.-S., Park, K., 2012. Pss board: a structured tool for pro-
duct–service system process visualization. J. Clean. Prod. 37, 42–53.

Lynn Shostack, G., 1982. How to design a service. Eur. J. Mark. 16 (1), 49–63.
Mäder, P., Orlena, G., 2011. Towards automated traceability maintenance. J. Syst. Softw.

85 (10), 2205–2227.
Marques, P., Cunha, P.F., Valente, F., Leitão, A., 2013. A methodology for product-service

systems development. Procedia CIRP 7, 371–376.
Maussang, N., Zwolinski, P., Brissaud, D., 2009. Product-service system design metho-

dology: from the pss architecture design to the products specifications. J. Eng. Des. 20
(4), 349–366.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

Medvidovic, N., Grünbacher, P., Egyed, A., Boehm, B., 2003. Bridging models across the
software lifecycle. J. Syst. Softw. 68 (3), 199–215.

Meier, H., Roy, R., Seliger, G., 2010. Industrial product-service systems ips 2. CIRP
Annals-Manufacturing Technology 59 (2), 607–627.

Mens, T., Van Gorp, P., 2006. A taxonomy of model transformation. Electron Notes Theor
Comput Sci 152, 125–142.

Morelli, N., 2006. Developing new product service systems (pss): methodologies and
operational tools. J. Clean. Prod. 14 (17), 1495–1501.

Nemoto, Y., Akasaka, F., Shimomura, Y., 2015. A framework for managing and utilizing
product-service system design knowledge. Production Planning & Control 26
(14–15), 1278–1289.

Qu, M., Yu, S., Chen, D., Chu, J., Tian, B., 2016. State-of-the-art of design, evaluation, and
operation methodologies in product service systems. Comput. Ind. 77, 1–14.

Sakao, T., Shimomura, Y., Sundin, E., Comstock, M., 2009. Modeling design objects in cad
system for service/product engineering. Comput.-Aided Des. 41 (3), 197–213.

Song, W., 2017. Requirement management for product-service systems: status review and
future trends. Comput. Ind. 85, 11–22.

Tang, A., Jin, Y., Han, J., 2007. A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80 (6), 918–934.

Tilstra, A., Campbell, M., Wood, K., Seepersad, C., 2010. Comparing matrix-based and
graph-based representations for product design. DSM 2010: Proceedings of the 12th
International DSM Conference. The Design Society, pp. 195–199.

Van Halen, C., Vezzoli, C., Wimmer, R., 2005. Methodology for product service system
innovation: how to develop clean, clever and competitive strategies in companies.
Uitgeverij Van Gorcum.

Varró, D., Pataricza, A., 2004. Generic and Meta-transformations for Model
Transformation Engineering. UML 2004 The Unified Modeling Language. Modeling
Languages and Applications. Springer, pp. 290–304.

Vasantha, G., Roy, R., Lelah, A., Brissaud, D., 2012. A review of product-service systems
design methodologies. J. Eng. Des. 23 (9), 635–659.

Vilela, J., Castro, J., Martins, L.E.G., Gorschek, T., 2017. Integration between require-
ments engineering and safety analysis: a systematic literature review. Journal of
Systems and Software 125, 68–92.

Wiesner, S., Freitag, M., Westphal, I., Thoben, K.-D., 2015. Interactions between service
and product lifecycle management. Procedia CIRP 30, 36–41.

Wolfenstetter, T., Füller, K., Böhm, M., Krcmar, H., Bründl, S., 2015. Towards a re-
quirements traceability reference model for product service systems. International
Conference on Industrial Engineering and Systems Management (IESM) 2015. IEEE,
pp. 1213–1220.

Wolfenstetter, T., Kernschmidt, K., Münzberg, C., Kammerl, D., Goswami, S., Lindemann,
U., Vogel-Heuser, B., Krcmar, H., 2014. Supporting the cross-disciplinary develop-
ment of product-service systems through model transformations. IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM) 2014.

IEEE, pp. 174–178.
Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H.,

Wang, Z., Doumeingts, G., 2017. Model-based approaches for interoperability of next
generation enterprise information systems: state of the art and future challenges.
Information Systems and e-Business Management 15 (2), 229–256.

Thomas Wolfenstetter is a PhD student at the Chair for Information Systems at
Technische Universität München (TUM), Germany. He studied information Systems at
TUM and at the School of Economics and Management at Tongji University, Shanghai, PR
China. During his studies he has been a working student for BMW Group, product data
management strategy department. He is a member of the collaborative research centre
SFB768 Managing Cycles in Innovation Processes where he researches requirements
traceability for product service systems. His research interests lie in the areas of service
engineering, product service systems, requirements engineering and management of in-
novation processes.

Mohammad Basirati is a PhD student and research assistant at the Chair for Information
Systems, Technische Universität München (TUM). He graduated in informatics from TUM
in 2016. His main research interests lie in requirements engineering, product service
systems and model-based systems engineering. Within the collaborative research centre
SFB768 Managing Cycles in Innovation Processes he works on innovative software tools
that are capable of automatically identifying inconsistencies between engineering arte-
facts in the context of in model-based systems engineering.

Markus Böhm is a research group leader at the Chair for Information Systems at
Technische Universität München, Germany. He regularly publishes research in the areas
of corporate transactions, digital business models and innovation potentials of novel
technologies. Among his core areas of research are the role of IT in the context of mergers
& acquisitions, digital business models and the innovation potentials of novel technolo-
gies for the transformation of existing and development of new business models.

Helmut Krcmar is a full professor of Information Systems and holds the Chair for
Information Systems at the Department of Informatics, Technische Universität München,
Germany, since 2002. He worked as a postdoctoral fellow at the IBM Los Angeles
Scientific Centre, as assistant professor of Information Systems at the Leonard Stern
School of Business, New York University, and at Baruch College, City University of New
York. From 1987 to 2002 he was Chair for Information Systems, Hohenheim University,
Stuttgart. His research interests include information and knowledge management, IT-
enabled value webs, service management, information systems in health care and e-
government.

T. Wolfenstetter et al. 7KH�-RXUQDO�RI�6\VWHPV�	�6RIWZDUH���������������²���

���

Not Included in
Review and

Evaluation: P6

Facilitating Consistency of Business Model and Technical Models in Product-Service-

Systems Development: An Ontology Approach
M. Zou*, M. R. Basirati**, H. Bauer***, N. Kattner****, G. Reinhart***, U. Lindemann****, M. Böhm**, H.

Krcmar** and B. Vogel-Heuser*
�

*Institute of Automation and Information Systems, Technical University of Munich, Garching, Germany

(e-mail: minjie.zou@tum.de, vogel-heuser@tum.de)

**Chair for Information Systems, Technical University of Munich, Garching, Germany

(e-mail: mohammadreza.Basirati@in.tum.de, markus.boehm@in.tum.de, krcmar@in.tum.de)

***Institute for Machine Tools and Industrial Management, Technical University of Munich, Garching, Germany

(e-mail: harald.bauer@iwb.mw.tum.de, gunther.reinhart@iwb.mw.tum.de)

****Institute of Product Development, Technical University of Munich, Garching, Germany

(e-mail: niklas.kattner@tum.de, udo.lindemann@tum.de)

Abstract: Due to the fast growing and ever changing innovation cycles, industries are changing their

strategies from a product-centric to service-centric approach, leading to the emergence of product-service

systems (PSS) which integrate services into physical technical systems. In the model-based development

of PSS, various models are employed by different stakeholders to represent their views on the system.

However, there is a high diversity of these models in both forms and contents. Among others, business

models and technical models come in different levels of abstraction, and thus, are hard to align with each

other. In this study, we propose an approach to support PSS development by relating business models to

technical models using ontology. Web ontology language (OWL) is employed to describe PSS

knowledge, the Query Language SPARQL and Semantic Web Rule Language (SWRL) are used for

consistency checking and reasoning potential inconsistencies. © 2019 IFAC

Keywords: product-service systems (PSS), model-based engineering, ontology, aligning business and

technical models, model consistency.

�

1. INTRODUCTION

The competitive global economy has forced industries to shift

from a product-centric approach to a more service-centric

approach (Meier, Roy and Seliger, 2010). With this regard,

product-service system (PSS) as a new type of systems is

introduced. PSS incorporates both physical products and

services into a single working system. Through offering

services, PSS establishes a stronger relationship with end-

users. Moreover, it lowers the dependency of manufacturer

on environmental resources as part of value proposition is

made by services (Baines et al., 2013).

Nevertheless, simultaneous design and development of

services and physical products, which are from different

nature, introduces new challenges. For example, PSS

development requires intense collaboration among business

and technical teams through the whole lifecycle in order to

tackle alignment of services and products (Wolfenstetter et

al., 2018). However, in practice, different components of a

system are mostly developed in separate teams, while every

team uses a different modeling language based on its domain

(Song, 2017).

In a model-based development, developers use various types

of models, from prescriptive and formal models, to

descriptive and informal models. The advantage of model-

based development is that each model can focus on the key

problem from a particular view and restrict the degrees of

freedom. However, different models have varying forms and

languages, resulting in great difficulty in cooperation across

models.

One important aspect of PSS is how business models and

decisions influence technical structures, and vice versa. In the

context of business intelligence, systems usually combine

data gathering, data storage, and knowledge management

with analytical tools to present complex information to

decision makers of the company. Therefore, combining

business and technical concerns from their models is vital in

PSS.

In this study, we mainly focus on correlating business and

technical models in PSS. Two questions will be addressed:

how to integrate the heterogeneous models created during the

PSS innovation process, and how to assist different

stakeholders to identify inconsistencies and make decisions.

This paper addresses the above-mentioned problem by

introducing an ontology-driven approach. To this end, we

establish an ontology, which represents the models, the

�.������ ����������� ���� ���� ������.������ ��.�
� ������ ��

selected models that are relevant for business design, product

design, software design, and manufacturing. Based on such

an ontology, we show how searches and reasoning can be

employed to address connection of the different models.

2. STATE OF THE ART

The goal of this study is to have a method to correlate the

information from business and technical models, and to

ensure decisions in business models will not lead to conflicts

i.e. inconsistencies in technical designs. Correspondingly,

following requirements should be met:

a) A common representation form for abstract business

models and concrete technical models;

b) A common understanding i.e. vocabulary interoperability

between technical and business models;

c) Consistency check between business and technical

development models;

d) Tool assistance for managers and engineers.

Based on these requirements, the state of the art will be

introduced and analyzed.

2.1 Modeling and Analysis Methods for PSS

A comprehensive holistic system model can be adopted to

integrate domain-specific models (Lukei et al., 2016), which

serves as a general description of the system including the

requirements, the structure and the behavior. For example,

Thramboulidis (2013) used the Systems Modeling Language

(SysML), a graphical modeling language to integrate models

in mechatronic systems. But business strategies need to be

modelled separately, e.g. with the Business Process Modeling

Notation (BPMN) or models describing the exchange among

participating actors, such as the e3value model (Gordijn and

Akkermans, 2001).

Similarly, Gausemeier et al. (2009) aimed to synchronize

changes between domain-spanning and domain-specific

models in the development of complex mechatronic systems

in order to keep information consistent. In addition, Kaiser

(2013) made contributions to a holistic and general

interdisciplinary description for systems modeling. However,

their approach is limited to a technique, in which graphical

modeling tools (triple graph) and a model transforming and

updating engine are required.

Broy and Reussner (2010) defined a single underlying model

(SUM) and a single underlying meta-model that captures the

information portrayed in all views on a system. This

approach can ensure information consistency among models

of requirements, architecture, and code (Konersmann et al.,

2013). However, it only addressed models in the software

development.

Maisenbacher et al. (2014) has applied agent-based modeling

to support PSS development, in which a system is modeled as

a collection of autonomous entities (agents). However,

neither a specific technical model nor a business model was

investigated.

Weidmann et at. (2015) employed discrete event simulation

models, i.e. a network of queues and activities, to model

product related services in product oriented PSS. But it

�.������ ����.��� �����������
� concrete technical models.

Furthermore, due to its low formality, consistency check and

tool assistance are not possible.

Ontologies can also be used in the interdisciplinary PSS

development, which is commonly defined as an explicit

formal specification of the terms in the domain and the

relations among them (Gruber, 1993). Common

understanding of terms within the domain could be an

important measure to define formal specification. An

engineering knowledge base (EKB) was proposed on top of a

common data repository to store explicit engineering

knowledge (Biffl et al., 2009; Moser and Biffl, 2012). Malcki

and Belkadi (2018) introduced the PSS ontology to industrial

PSSs, in which domain knowledge regarding the product

component, service, sensor, measurement, and connection

constraints were stored and linked to support collaborative

development. Similarly, Correia and Stokic (2017) developed

a user-centric PSS ontology to describe concepts relevant for

the dynamics of the context, and used it to improve the

communication among various stakeholders. Wang and Ming

(2014) proposed a general modularity method of product-

service to provide a customization-oriented menu based on

the ontology knowledge.

Though ontology-based approaches can provide a common

understanding and data repository among models, the

consistency checking still requires extra techniques.

2.2 Facilitating consistency in PSS

Song and Sakao (2016) investigated conflicts among services

in product-service offerings by employing linguistic

techniques, while Shimomura and Hara (2010) introduced a

conflict resolution method for PSS development. Conflicts

include the inconsistent names, descriptions of functions,

variables and values. Wimmer et al. (2018) proposed to adopt

AutomationML, a standard unifying data exchange format, to

represent and connect the different engineering models. He

also developed a dedicated query language to check

consistency in this aggregated data file. Egyed et al. (2018)

developed an incremental approach to detect inconsistencies

among artifacts in software engineering. Nevertheless, these

studies did not address how heterogeneity of PSS models can

be handled.

Feldmann et al. (2015) and Zou et al. (2018) worked on the

industrial PSS and inconsistencies among interdisciplinary

designs for technical products. Despite a similar motivation

with this study, the�� ������� ������� business strategies in

PSS. Basirati et al. (2018) proposed a method to tackle

inconsistencies in and between the service side and the

product side. But it was limited to data inconsistencies among

technical models.

Overall, despite the multitude of approaches within model-

based development of PSS, our requirements cannot be fully

met by existing work and need more research efforts.

3. CONSTRUCTING A PSS ONTOLOGY UTILIZING

MODEL-BASED DEVELOPMENT

In this section, a set of models from different domains are

introduced, which are frequently used in PSS development.

Fig. 1 shows the overall structure of how the information

from different models is collected, processed and delivered to

the stakeholders. Information is captured and presented in

concrete models (left side of the Fig. 1) and later transformed

to high level managerial roles for decision makings.

Manufacturer Layer

Business Layer

Consumer Layer

Consumer-related attribute

Manufacturer-related attribute

Business

attribute

Manufacture

Model

Ontology Model

Company Manager Product Manufacturer

� Business Intelligence

� Strategy Decision

� Market Analysis

�

� Feasibility Check

� Design Improvement

�

Consumer

Model

Business Model

Maintenance Man

Customer

Engineer

Developer

Fig. 1. Architecture of the PSS ontology representing

interdisciplinary developing models

Business Canvas Model (BCM) is a template that captures

business characteristics into nine different topics such as

customer segments, key partners, value propositions, cost

structure and so on. BCM is the most abstract model, which

is only used by the board management.

Another high level model is Consumer Decision Process

(CDP) model. In a PSS, we have a longer and more intense

relationship with customers, it is of high importance to model

their decision making process in a model. To this end, CDP

describes the decision-making process of a consumer and

contains several stages, such as need recognition, information

research, alternative evaluation, and purchase and after

purchase evaluation. The consumer model can connect the

manufacture side and the business side, since consumers pay

the company for the product made by the manufacturer and it

is regarded as a key model.

SysML4Mechatronics is a technical model based on SysML

that contains most relevant information of a physical part

from the perspective of mechatronics implementation.

An important part of any PSS is software, which connects

services to the products. To design and implement software

many models are used. Nevertheless, one of the most

important and frequently used models is UML sequence

diagram model. This model captures the sequences of

important activities and processes �mostly triggered by the

user - that the software must be able to handle. As in this

paper we only refer to this type of UML model, in the rest of

this paper, whenever we mention UML, we mean UML

sequence diagram model.

Finally, the manufacturing model contains the information of

product design and manufacturing process, including both

physical and software products.

When representing the relations among models in the

ontology, defining all relations simultaneously is often

difficult. Therefore, a classification of these relationships is

helpful. To transform the models into an ontology, in our

approach, we divide the models and their attributes into three

layers, namely, consumer level, business layer and

manufacturing layer (depicted in Figure 1, right side).

This classification is based on the stakeholders in PSS, i.e.

the manager, the manufacturer (including engineers and

service developers) and the consumer. They have different

targets and constraints, while they interact and are

constrained by each other (Fig. 2). The manager aims to

maximize the profit and is constrained by consumer demand.

Target of the consumer is high value of the provided PSS

value, which is limited by the price and their income.

Manufacturers and engineers are responsible to develop a

feasible PSS under limitations of the budget, technologies

etc. Interactions and relations between these roles can be

finance-related (i.e. revenue, price, cost), document-related

(i.e. requirements, demand expression) as well as role-related

(i.e. candidate value supplier).

Based on the roles, defined layers and relationships (depicted

in Figure 2), we establish the ontology. In first step, we

formulate the concepts of each model into the ontology. For

example, for BCM, we have concepts such as customer

segments and key partners or for SysML4Mechatronics we

will have module, software block, mechanical block and so

on. Afterwards, we put each attribute of the model in a

specific layer that it belongs to. Finally, we incorporate the

relationships among the models and their concepts (shown in

Figure 2) into the ontology.

Fig. 2. Interaction between stakeholders

4. CONSISTENCY IN PSS DEVELOPMENT

Maintaining consistency among all different aspects of any

system is challenging. However, even more complex is to

check the dependencies of business and service side of a PSS

with its physical side. At the same time, offering services

upon a physical layer intensifies inter-connection between

business and technical components during PSS development.

We employ the ontology approach of this study to tackle this

problem (Moser and Biffl, 2009).

First, the use cases are classified in which the ontology can

support decision making and maintaining consistency among

different components, during PSS development. Three major

use cases are identified as follows:

1) Service Innovation: The core added-value of a PSS

originates in its ability to offer new services. Hence, the

ability to analyze a new service feature and its impact on

other components, as well as the cost and the revenue, is

significant.

2) Partnership and Market Selection: PSS development

necessitates a high number of partnerships with

suppliers. In most cases, a single firm has limited

capacity to produce all parts and provide all services in-

house. Therefore, a critical issue is how the outcome of a

PSS will be affected if there is a change in the partners.

In addition, PSS increases the relationship between a

firm and the end-users. Therefore, knowing which users

PSS should establish a relationship with or in which

areas the services should be provided, is vital for the

design and development.

3) Error and Inconsistency Detection: PSSs are complex

systems with heterogeneous components and aspects

caused by integrating products and services. Therefore,

tracing a single defect and its impact on the overall

system is challenging. By applying ontologies and

implicit meanings of data, the dependencies become

more explicit and automatic methods can be used to

reason (Apostolski et al., 2010).

Afterwards, several methods are applied for these purposes:

to query information and check consistency using SPARQL

queries (Word Wide Web Consortium, 2013), and to derive

relations and conduct reasoning using SWRL rules (Word

Wide Web Consortium, 2004). Applying SPARQL queries

on the ontology, would enable us to identify the dependencies

among the components. Consequently, we would be able to

incorporate such dependencies and their influences in the

decision makings for the use cases. Moreover, by assigning

quantifiable values to the attributes defined in the ontology

such as cost, price or component-specific properties, we can

calculate a preliminary estimation quickly and easily with

SWRL. In an exemplary case study, we elaborate how the

ontology approach can be applied in PSS development.

Technically, SPARQL is like the well-known structured

Query Language (SQL) supported by most relational

database systems. SPARQL queries consist of two parts: a

clause identifying the type of query (and when retrieving

information, a list of information to be returned), and a

pattern to be matched against the RDF data (Word Wide Web

Consortium, 2013).

By contrast, SWRL is adopted mainly due to its power in

deduction reasoning. Typical examples are mathematical text

problems and syllogistic inferences.

5. CASE STUDY: AN E-BIKE SHARING PSS

In this section, the proposed method and PSS ontology is

applied on an e-bike sharing system as an example of PSS.

The e-bike-sharing system, called PSSycle, is developed by

graduate students in the context of an interdisciplinary

research project. In the following section, the modeling

process and an inconsistency between the business strategy

and the engineering process are first described, and

afterwards, the proposed ontology is applied to detect the

inconsistency.

5.1 Case Description

PSSycle is an e-bike sharing system that offers e-bike rental

and its related services. To borrow a bike, users can search

for nearby e-bikes and book one via the app or directly using

the on-board computer of the e-bikes. Customers can end the

rental either roadside or at charging stations. The battery is

charged at these charging stations. To develop such a PSS, a

wide variety of models are used. For this study, five models

from different domains and levels are analyzed (Fig. 3). Two

models, namely, SysML4Mechatronics and Production

Process, represent the battery specifications and

manufacturing respectively. The overall business model is

captured in BCM. Moreover, CDP model elaborates the user

perspective, while a software development model in form of

the UML Sequence Diagram presents how the app and other

components work together to unlock an e-bike.

The pink line shows how consumers of CDP and BCM as

well as the engineers who developed the UML model, refer to

the same entity and connect these models. The blue line

shows the connection among components that are mentioned

in both the UML and BCM models. The green line displays

how the battery in the UML model and its specification in

SysML4Mechatronic are connected. Finally, the orange line

connects the battery specification and its manufacturing

process. These connections are a few examples among a high

number of potential dependencies among the models.

The information in these models can be represented in a

shared ontology, so that the demand of consumers can be

more efficiently delivered to managers and manufacturers.

Therefore, the company can offer a suitable product for the

market more promptly. We divide all attributes into three

layers: business layer, physical layer and consumer layer. The

business layer contains the attributes related to revenue and

cost, with which the manager can easily understand the

change of the net profit. The physical layer includes all the

technical specifications of the e-bike and its components such

as the battery and motor. Consumer layer includes the

���������������������������.�������������.����������������������

to the decision process model.

Protégé1 is used to create ontologies of the described models

and their relationships. Fig. 4 shows the E-bike sharing

ontology to couple the business and technical models.

1 https://protege.stanford.edu/

Production Process

Mechatronic Specification

(SysML4Mechatronics)

Consumer Decision

Process (CDP)

Business Canvas Model (BCM)

PSSycle System

Software Development (UML)

Fig. 3. Models used in PSSycle as an example of PSS engineering

Fig. 4. PSS ontology for PSSycle

The information in the shared ontology can be further

processed, and the key information will be delivered to

managers and manufacturers in an organized way.

5.2 Reasoning: Selecting Battery Supplier

To select the battery manufacturer partner, we analyze the

impact of the manufacturer on the PSSycle using the

ontology. In the first step, we find all battery related elements

among the models. The battery manufacturer is listed in the

key partners of the business model canvas. The battery,

including its physical specifications is modelled in

SysML4Mechatronics. Afterwards, the battery is mentioned

in the manufacturing process model to present the step for

assembling the battery and the battery box. In the next step,

we evaluate the impact of these elements on the three layers

of business, physical and consumer. On the physical layer,

change of the battery affects the battery box and consequently

the manufacturing machinery, which are used for assembling

a new battery and its box. This indirectly affects the cost on

the business layer. In addition, the battery is connected to the

board-computer and the software part modelled in UML

sequence diagram. On the business layer, in addition to the

potential costs for the manufacturing process, the price of the

battery itself is affected based on which type of battery is

used. On the consumer layer, the decision process is affected

by the battery capacity (what range of riding the battery will

support) and indirectly by the use price in case the battery

price will change it.

To analyze such a scenario, we employ SPARQL to search

the attributes for every layer and find their value. As an

example, the following query can be used to check factors

�		�����
� ����.������ ��������.�� ���
��
� ��� ����� ��� 	���.�s

�		�����
�����.����� purchase decision directly:

SELECT ?n ?m
WHERE { ?n :support Evaluation_Ranking.
 ?m rdf:type :Purchase.
 ?m : affect Business_Layer_Purchase. }

After collecting the values, based on predefined rules,

impacted attributes can be calculated. For every manufacturer

we would be able to calculate the costs, price, and

accordingly its impact on consumer decision process. For

instance, price of the charging station can be calculated by

SWRL as it follows:

Number_of_Charging_Station(?����	P����
 B
���	��P
�	��
� �CP�
���B�C�
�����P
�	�����
 swrlb:multiply(?purchase, ?number, ?price) -��
 Purchase_of_Charging_Station(?purchase)

SWRL can also be used for conditional judgement. For

example, �only when the battery box size is larger than the

battery size, the battery system feasibility is true. Only in this

case, the battery box can contain the battery� can be

formulated as:

�C��	P����S�B
�	����S�����C��	P��B
�	���C��	P������
 swrlb:greaterThan(?box,?battery) -���
 Battery_System_Feasibility(1, ?box, ?battery)

Therefore, establishing the ontology, particularly using the

process described in Section 3, enables us to find concepts,

attributes, values and the relationships among heterogeneous

models used in PSS development. Moreover, we are able to

perform some basic calculations and consistency checks

among the models. Consequently, during design and

development of a PSS, the stakeholders in different levels

and domains would be able to understand the influences of

their relevant models on the PSS as a whole. In the example

of this case study, the managerial board could better evaluate

impact of each battery supplier and their batteries on the

products and service offerings of the PSSycle.

6. CONCLUSION AND FUTURE WORK

In this study, an ontology-based approach is demonstrated to

couple the interdisciplinary models representing views of

different stakeholders in PSS: business strategy makers,

manufacturers, and consumers. The proposed approach

allows a semi-automatic consistency checking between

business and manufacturing models, provides reasoning and

avoiding potential inconsistencies, as well as assists in

selecting partners, markets and technologies. Through the

proposed approach, the manufacturer and manager are

enabled to have quicker reactions to the change of the market,

���� ������� ����� ����.������ ��������� The developed

ontology is applied and evaluated in a demonstrative PSS

(PSSycle), but its applicability still needs further

investigation when the system complexity scales up. In

addition, the models of different abstraction levels may result

in ontology maintenance problems. This is challenging

because changes in business models are usually minor

whereas manufacturing models vary a lot, which are caused

by the minor change.

Nevertheless, there remains room for improvement. For

potential future work, the ontologies can be combined with

simulation methods to check the dynamical interactions

between disciplines. Furthermore, a systematic reasoning

mechanism of the PSS ontology will be developed to realize

more intelligent automatic analysis in PSS.

ACKNOWLEDGMENT

We acknowledge the German Research Foundation (DFG)

for funding this work as part of the research in the

Collaborative Research Centre SFB 768: Managing cycles in

innovation processes � integrated development of product-

service systems based on technical products (SFB 768/3,

Subproject D1) at the Technical University of Munich.

REFERENCES

Apostolski, V., Stojanov, R., Jovanovik, M., and Trajanov,

D. (2010): Use of Semantic Web Technologies in

Knowledge Management, Proceedings of the 7th

Conference On Informatics And Information Technology

(CIIT), pp. 91 - 96.

Baines, T. S., Lightfoot, H.W., Evans, S., Neely, A., and

Greenough, R. (2007): State-of-the-art in product service

systems, Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture,

vol. 221, no. 10, pp. 1543�1552.

Basirati M. R., Zou M., Bauer H., Kattner N., Reinhart G.,

Lindemann U., Böhm M., Krcmar H. and Vogel-Heuser

B., (2018): Towards Systematic Inconsistency

Identification For Product Service Systems, Proceedings

of the DESIGN 2018 15th International Design

Conference.

Biffl S., Schatten A. and Zoitl A., (2009): Integration of

heterogeneous engineering environments for the

automation systems lifecycle, 7th IEEE International

Conference on Industrial Informatics.

Broy M. and Reussner R., (2010): Architectural Concepts in

Programming Languages, Computer, vol. 43, no. 10, pp.

88�91.

Correia A., Stokic D., Siafaka R. and Scholze S., (2017):

Ontology for colaborative development of product

service systems based on basic formal ontology, 2017

International Conference on Engineering, Technology

and Innovation (ICE/ITMC).

Egyed A., Zeman K., Hehenberger P. and Demuth A.,

(2018): Maintaining Consistency across Engineering

Artifacts, Computer, vol. 51, no. 2, pp. 28�35.

Feldmann S., Herzig S. J., Kernschmidt K., Wolfenstetter T.,

Kammerl D., Qamar A., Lindemann U., Krcmar H.,

Paredis C. J. and Vogel-Heuser B., (2015): Towards

Effective Management of Inconsistencies in Model-Based

Engineering of Automated Production Systems, IFAC-

PapersOnLine, vol. 48, no. 3, pp. 916�923.

Gausemeier J., Schäfer W., Greenyer J., Kahl S., Pook S. and

Rieke J., (2009): Management of cross-domain model

consistency during the development of advanced

mechatronic systems, Proceedings of the 17th

International Conference on Engineering Design, vol. 6,

Design Methods and Tools, USA.

Gordijn J. and Akkermans H., (2001): Designing and

evaluating e-business models, IEEE Intelligent Systems,

vol. 16, no. 4, pp. 11�17.

Gruber T. R., (1993): A translation approach to portable

ontology specifications, Knowledge Acquisition, vol. 5,

no. 2, pp. 199�220.

Kaiser L., (2013): Rahnmenwerk zur Modellierung einer

plausiblen Systemstruktur mechatronischer Systeme,

dissertation.

Konersmann M., Durdik Z., Goedicke M., and Reussner R.

H., (2013): Towards architecture-centric evolution of

long-living systems (the ADVERT approach),

Proceedings of the 9th international ACM Sigsoft

conference on Quality of software architectures - QoSA

13.

Lukei, M., Hassan, B., Dumitrescu, R., Sigges, T., and

Derksen, V., (2016): Requirement analysis of inspection

 equipment for integrative mechatronic product and

production system development: Model-based systems

engineering approach, Annual IEEE Systems

Conference (SysCon).

Maisenbacher S., Weidmann D., Kasperek D., and Omer M.,

(2014): Applicability of Agent-based Modeling for

Supporting Product-service System Development,

Procedia CIRP, vol. 16, pp. 356�361.

Maleki E., Belkadi F., Boli N., Zwaag B. J. V. D.,

Alexopoulos K., Koukas S., Marin-Perianu M., Bernard

A. and Mourtzis D., (2018): Ontology-Based Framework

Enabling Smart Product-Service Systems: Application of

Sensing Systems for Machine Health Monitoring, IEEE

Internet of Things Journal, vol. 5, no. 6, pp. 4496�4505.

Meier, H., Roy, R., and Seliger, G., (2010): Industrial

Product-Service Systems�IPS 2, CIRP Annals, vol. 59,

no. 2, pp. 607�627.

Moser T. and Biffl S., (2012): Semantic Integration of

Software and Systems Engineering Environments, IEEE

Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 42, no. 1, pp. 38�50.

Shimomura Y. and Hara T., (2010): Method for supporting

conflict resolution for efficient PSS development, CIRP

Annals, vol. 59, no. 1, pp. 191�194.

Song, W., (2017): Requirement management for product-

service systems: Status review and future trends,

Computers in Industry, vol. 85, pp. 11�22.

Song W. and Sakao T., (2016): Service conflict identification

and resolution for design of product�service offerings,

Computers & Industrial Engineering, vol. 98, pp. 91�

101.

Thramboulidis, K., (2013): Overcoming Mechatronic Design

Challenges: the 3+1 SysML-view Model, Computing

Science and Technology International Journal, vol. 1, no.

1, pp. 6�14.

Wang P., Ming X., Wu Z., Zheng M. and Xu Z., (2014):

Research on industrial product�service configuration

driven by value demands based on ontology modeling,

Computers in Industry, vol. 65, no. 2, pp. 247�257.

Weidmann D., Maisenbacher S., Kasperek D. and Maurer M.,

(2015): Product-Service System development with

Discrete Event Simulation modeling dynamic behavior in

Product-Service Systems, Annual IEEE Systems

Conference (SysCon) Proceedings.

Wimmer M. and Mazak A., (2018): From AutomationML to

AutomationQL: A By-Example Query Language for

CPPS Engineering Models, IEEE 14th International

Conference on Automation Science and Engineering

(CASE).

Wolfenstetter, T., Basirati, M. R., Böhm, M., and Krcmar, H.,

(2018): Introducing TRAILS: A tool supporting

traceability, integration and visualisation of engineering

knowledge for product service systems development,

Journal of Systems and Software, vol. 144, pp. 342�355.

World Wide Web Consortium W3C (2013): SPARQL

Protocol and RDF Query Language 1.1, Same Origin

Policy - Web Security, [Online]

 http://www.w3.org/TR/sparql11-overview/ [04.12.2018].

World Wide Web Consortium W3C (2004): SWRL: A

Semantic Web Rule Language, Same Origin Policy -

Web Security. [Online]

 https://www.w3.org/Submission/SWRL/. [04.12.2018].

Zou M., Lu B. and Vogel-Heuser B., (2018): Resolving

Inconsistencies Optimally in the Model-Based

Development of Production Systems, IEEE 14th

International Conference on Automation Science and

Engineering (CASE).

