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ABSTRACT/ZUSAMMENFASSUNG 

 

Developmental stage-dependent role of the COP9 signalosome in the brain 

The COP9 signalosome (CSN) is a multifunctional protein complex that regulates 

protein degradation through removal of the ubiquitin-like modifier Nedd8 from cullin-

based E3 ubiquitin ligases. E3 ubiquitin ligases conjugate ubiquitin to target proteins, 

which labels them for degradation by the proteasome. By controlling protein turnover, 

E3 ubiquitin ligases are involved in numerous cellular processes such as cell-cycle 

progression, signal transduction, transcriptional regulation, receptor down-regulation, 

and endocytosis. In neuronal biology the ubiquitin-proteasome system was found 

critically involved in axon and dendrite growth, synaptogenesis, presynaptic function, 

postsynaptic plasticity and postsynaptic receptor trafficking. Several studies have 

established that CSN is a regulator of cell cycle progression in proliferating cells. 

Although the significance of the ubiquitin-proteasome system as a key regulator of 

neuronal biology is well known, the role of CSN in neurons, i.e. postmitotic cells, has 

remained unexplored. In this study, we comprehensively analyzed the impact of CSN 

loss of function in vitro and in vivo in different periods of neuronal development by 

conditionally knocking down its catalytic subunit CSN5 which harbours the de-

neddylase activity, via the Cre-loxP system. The Cre-loxP system is a genetic tool 

that enables the disruption of a target gene in a spatially and temporally restricted 

manner. Briefly, loxP sites are inserted into the gene of interest via homology-based 

gene targeting. The Cre recombinase then recognizes and efficiently catalyzes the 

recombination between two pairs of loxP sites leading to excision of the DNA 

fragment. By driving Cre expression through specific promoters it is possible to 

induce gene inactivation in a particular tissue or subpopulation of cells and/or a 

specific developmental stage. Important in the context of this work, it was previously 

shown that the constitutive knockdown of CSN5 is early embryonic lethal. We 

therefore induced Cre expression in a tissue and developmental stage-dependent 

manner by placing it under control of neuron-specific promoters. We found that early  
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embryonic knockdown of CSN5 restricted to proliferating neuroblasts by Nestin-Cre 

is early embryonic lethal. Interestingly, knockdown in early postmitotic neurons 

induced by Nex-Cre proved to be lethal at postnatal day 1 (P1). Extending the 

capabilities of the Cre-loxP system, additional temporal control over gene inactivation 

can be obtained by employing a tamoxifen-inducible CreERT2 recombinase that is 

fused to the ligand-binding domain of the estrogen receptor. For a timed knockdown 

in mature neurons we used the tamoxifen-inducible CaMKIICreERT2 which, under 

control of Ca2+/calmodulin-dependent kinase type II promoter, mediates loss of 

CSN5 in principal neurons of the forebrain. In neurological disease, both dendrites 

and dendritic spines, small protrusions from the dendritic tree forming synapses, are 

often found compromised. Consequently we analyzed these structures in vivo. Adult 

CaMKIICreERT2 mice featured minor but significant reduction of dendritic length 

and arborization, whereas spine density on apical dendrites remained unaffected. In 

an additional behavioral screening including locomotor activity, hippocampus-

dependent spatial learning, fear conditioning and stress-coping behavior the 

knockout had only minor or no effect. No conspicuous alterations of lifespan or brain 

anatomy were observed. To further determine the relevance of CSN for neuronal 

development during the embryonic stage, we induced knockdown of CSN5 in primary 

neurons of the developing cortex in utero, via the in utero electroporation technique. 

This method introduces the Cre recombinase into a subset of developing neuronal 

precursors and therefore overcomes the limitations of constitutive Cre expression in 

the very early stages of embryonic brain development. Our experiment revealed 

altered neuronal migratory behavior during cortex formation and stronger reduction of 

dendritic length and arborization compared to the previously observed effects in the 

adult stage. The viability of these neurons, however, was not affected. Taken 

together, our findings suggest that cullin-based and thus CSN-reliant regulatory 

mechanisms may exhibit developmental stage-dependent activity patterns in the 

brain.  
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Entwicklungsstadium-abhängige Rolle des COP9 Signalosoms im Gehirn 

Das COP9 Signalosom (CSN) ist ein multifunktionaler Proteinkomplex, der den 

Proteinabbau mittels Entfernung des Ubiquitin-ähnlichen Proteins Nedd8 von 

Ubiquitin-E3 Ligasen reguliert. Ubiquitin-E3 Ligasen konjugieren Ubiquitin mit  

Zielproteinen, wodurch diese für den Abbau durch das Proteasom markiert werden. 

Weil Ubiquitin-E3 Ligasen den Proteinabbau kontrollieren sind sie an vielfältigen 

intrazellulären Prozessen beteiligt, wie der Zellzyklus-Progression, der 

Signaltransduktion, der Regulierung von Transkriptionsfaktoren und Rezeptoren und 

der Endozytose. Im Bereich der Neurobiologie hat das Ubiquitin-Proteasom System 

besondere Bedeutung für das Wachstum von Axonen und Dendriten, die Ausbildung 

von Synapsen, für die Funktion der Präsynapse und die postsynaptische Plastizität, 

sowie für die postsynaptische Verarbeitung von Rezeptoren.           

Mehrere Arbeiten haben gezeigt, dass CSN ein wichtiger Regulator des Zellzyklus in 

proliferierenden Zellen ist. Obwohl die Bedeutung des Ubiquitin-Proteasom Systems 

als Schlüsselregulator in der Neurobiologie bekannt ist, blieb die Rolle von CSN in 

Nerven-, und damit postmitotischen Zellen noch immer unerschlossen. In dieser 

Arbeit haben wir ausführlich in vitro und in vivo die Auswirkungen des 

Funktionsverlustes von CSN in verschiedenen Phasen der neuronalen Entwicklung 

untersucht, indem wir seine katalytische Untereinheit CSN5 mit Hilfe des Cre-loxP 

Systems ausgeschaltet haben. Das Cre-loxP System ist ein genetisches Werkzeug, 

mit dem man ein bestimmtes Gen in einer räumlich und zeitlich festgelegten Weise 

ausschalten kann. Kurz zusammengefasst: Es werden loxP-Sequenzen in ein 

bestimmtes Zielgen durch homologe Rekombination eingebracht. Daraufhin erkennt 

eine Cre Rekombinase diese Sequenzen und katalysiert deren Rekombination, was 

zur Entfernung des DNA Fragments führt. Indem man die Expression der Cre durch 

einen gewebespezifischen Promotor steuert, kann man Gene sowohl innerhalb eines 

spezifischen Gewebes als auch eines bestimmten Entwicklungsstadiums 

ausschalten. Bedeutsam im Kontext dieser Arbeit wurde im Vorfeld gezeigt, dass 

sich der konstitutive Knockout von CSN5 im Embryonalstadium frühzeitig letal 

auswirkt. Aus diesem Grund haben wir die die Expression der Cre in einer 

Gewebetyp- und Entwicklungsstadium-abhängigen Weise herbeigeführt und unter 

die Kontrolle von Neuron-spezifischen Promotern gesetzt. Hierbei zeigte sich der  
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embryonale Knockout von CSN5 in proliferierenden Neuroblasten, induziert durch 

NestinCre, als frühzeitig embryonal letal. Der Knockout in frühen postmitotischen 

Neuronen, welcher durch NexCre vermittelt wurde, zeigte sich interessanterweise 

letal am ersten Tag post partum (P1). Man kann die Möglichkeiten des Cre-LoxP 

Systems dahingehend erweitern, indem man eine durch Tamoxifen induzierbare 

CreERT2 verwendet, die mit dem Liganden-bindenden Bereich des 

Östrogenrezeptors verbunden ist, was eine zeitlich genau steuerbare  

Genausschaltung ermöglicht. In dieser Arbeit nutzten wir die Tamoxifen-induzierbare 

CaMKIICreERT2, welche unter der Kontrolle des Ca2+/Calmodulin-abhängige 

Proteinkinase II Promotors steht, so dass der Verlust von CSN5 in adulten 

Projektionsneuronen des Vorderhirn resultiert. Bei neurologischen Erkrankungen 

zeigen sich sowohl Dendriten als auch dendritische Dornen häufig beeinträchtigt. 

Aus diesem Grund wurden jene Merkmale in vivo untersucht. Erwachsene 

CaMKIICreERT2 Mäuse zeigten eine geringe aber signifikante Verminderung der 

Dendritenlänge und Verzweigung bei unveränderter Zahl der Dornen an apikalen 

Dendriten. Verhaltenstests zur Prüfung von Bewegungsaktivität, Hippocampus-

abhängigem räumlichen Lernen, Angstkonditionierung und Stressbewältigung 

ergaben geringe oder keine Unterschiede. Die Mäuse zeigten darüber hinaus keine 

augenfälligen Veränderungen der Lebensspanne oder Neuroanatomie. Um die 

Bedeutung von CSN für neuronale Komplexität in früheren Entwicklungsphasen zu 

untersuchen, induzierten wir den Verlust in neuronalen Vorläuferzellen in utero 

mittels in-utero-Elektroporation. Bei dieser Methode wird die Cre in eine 

Subpopulation neuronaler Vorläuferzellen eingebracht, wodurch man die 

Negativeffekte einer globalen Expression der Cre in den sehr frühen 

Embryonalstadien der Hirnentwicklung umgeht. In diesem Experiment beobachteten 

wir ein verändertes neuronales Migrationsverhalten während der Cortexentwicklung 

und eine stärker ausgeprägte Reduktion der Dendritenlänge und Verzweigung als im 

Erwachsenenstadium. Das Überleben der Zellen war indes nicht beeinträchtigt. 

Zusammenfassend legen unsere Ergebnisse nahe, dass Cullin-basierte und somit 

vom CSN abhängige Regelmechanismen im Gehirn Aktivitätsmuster aufweisen, die 

vom jeweils entsprechenden Entwicklungsstadium abhängig sind. 
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1. INTRODUCTION 

 

 

1.1 Neuronal morphology is changed in neurological and  

psychiatric disease 

 

The ability of neurons to form distinct processing pathways provides the fundament 

of the brain`s integrative function.  The finding that neurons pass on information 

through unidirectional flow of electrical activity upon establishment of specific 

connections among each other has shaped our concept of neuronal circuits. Axons 

and dendrites, elaborate multiform processes arising from the cell body, constitute 

the structural links in these circuits. Accordingly, damage or misformation of these 

structures may impair the functioning of the brain as a whole. Both dendrites and 

dendritic spines, small protrusions from the dendritic tree forming synapses, have 

been found compromised in disorders associated with intellectual disability 

(Kaufmann and Moser 2000; Fiala, Spacek, and Harris 2002; Penzes et al. 2011; 

Emoto 2011). Dendritic alterations and spine loss occur early in Alzheimer´s disease, 

were found to correlate with symptoms and were reproducible in animal models 

(Knobloch and Mansuy 2008; Scheff et al. 2006; Spires et al. 2005; Tsai et al. 2004; 

Luebke et al. 2010; Duyckaerts, Potier, and Delatour 2008). Similar findings were 

made in Parkinson disease (Day et al. 2006). In Huntington´s disease and its animal 

models, both dendritic and spine morphology was found to be altered (Ferrante, 

Kowall, Richardson, 1991; Spires et al., 2004). Typical findings include altered 

dendritic branching patterns, reduced dendritic diameters, decreased dendritic length 

and immature, stubby spines (Sorra and Harris 2000; Swann et al. 2000; Martone, 

Hu, and Ellisman 2000; Nimchinsky, Oberlander, and Svoboda 2001). These 

observations, among others, have established the analysis of dendritic and spine 

morphology as an important method to determine the contribution of genetic defects 

to altered neuronal circuitry found in disease or injury.  
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1.2 Development of dissociated neurons in culture 

 

Modelling neuronal development in vitro has become an essential and widely used 

approach. Artificially induced changes in the environment in which neurons are left to 

grow (Oorschot 1989; Shen and Schwartzkroin 1988; Fields, Yu, and Nelson 1991; 

Yair, Weichsel Jr., and de Vellis 1986; Fallon 1985) and manipulations performed on 

the cell directly (Goslin and Banker 1989; Carlos G. Dotti and Banker 1987) give 

insights into the adaptability of neurons. Genetic manipulations on cells such as 

transfection experiments or virus-mediated gene transfer reveal a lot about gene 

expression (Zeitelhofer et al. 2007; Anliker et al. 2010; Ailles and Naldini 2002; Yuzhi 

Zhang et al. 2006; Jiang and Chen 2006), whereas patch clamp techniques and 

electrophysiological recordings allow for study of their electrophysiological properties 

(Segal 1983; van Pelt et al. 2004; Maeda et al. 1998; Segev et al. 2002; Gross and 

Kowalski 1999; Jimbo, Tateno, and Robinson 1999; Beggs and Plenz 2003). 

Approaches to modelling neuronal development in vitro include the preparation of 

brain slices (Schwartzkroin 1975; Schwartzkroin 1977; Caeser, Bonhoeffer, and Bolz 

1989; Wenzel et al. 1994; Dailey and Smith 1996) and the establishment of cell 

cultures (Banker and Cowan 1977; Banker and Cowan 1979; Huettner and 

Baughman 1986; Peacock, Rush, Daphne, and Mathers 1979; Kaech and Banker 

2006). In the brain slice which is between 70 and 400 µm thick and usually obtained 

from an adult brain some of the intrinsic circuitry of the brain is preserved, thus a 

more realistic model of the brain is represented. However, the complete visualization 

of an individual cell can be difficult and remains a challenge. Cell cultures, on the 

other hand, allow for convenient visualization of individual cells up to the subcellular 

localization of their cell organelles and proteins. The method of growing dissociated 

hippocampal neurons in a primary neuronal cell culture established by Banker & 

Cowan (1977) proved especially useful for modelling neuronal development in vitro 

and now serves as a blueprint for generation of most primary neuronal cell cultures. 

Primary neuronal cell cultures are based on post-mitotic, developing neurons that 

were previously extracted from the mouse or rat embryonic brain. The most common 

extraction site is the hippocampus or the cortex because of its rather uniform cellular  



1. INTRODUCTION 
__________________________________________________________ 

16 

 

 

composition, consisting primarily of glutamatergic pyramidal neurons (~90%). 

Interneurons account only for a minority (~10%) and glial cells appear in very low 

numbers (Bayer 1980a; Bayer 1980b; Soriano et al. 1994). In situ pyramidal neurons 

are characterized by an elaborate dendritic tree which features a robust apical-basal 

polarity, high spine density and distinct domains for synaptic input (Spruston 2008). 

Pyramidal neurons of the cortex and hippocampus, once cultivated in vitro, develop a 

characteristic polarized morphology with wide dendritic networks following similar 

developmental steps as their counterparts in vivo, which makes them of great appeal 

for studies of neuronal development (Yavin and Yavin 1977; Huettner and Baughman 

1986; Ogura et al. 1987; Carlos G. Dotti, Sullivan, and Banker 1988; Ichikawa et al. 

1993; Dailey and Smith 1996). Primary neuronal cell cultures have been in use for 

over 20 years and thus constitute reliable, extensively studied systems for modelling 

neuronal development in vitro. Dotti et al. (1988) identified five developmental stages 

in which an undifferentiated, post-mitotic pyramidal neuron, grown in culture, 

polarizes and develops a distinct somatodendritic and axonal domain (Figure 1).  
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Stage 1 is characterized by lamellipodia which are short and dynamic protrusions 

from the soma that form around the cell´s periphery. During stage 2, some of the 

lamellipodia transform into distinct minor processes, extending to a length of  

10 – 15 µm and remain stable once they have attained this size. Stage 3 marks the 

onset of neuronal polarity as one minor process begins to grow at much higher speed 

(5 – 10 times) than the other processes of the cell. That process becomes the future 

axon whereas the remaining stationary processes will become dendrites. The 

beginning of dendritic outgrowth characterizes stage 4 and occurs 2-3 days after 

axonal outgrowth. Stage 5 represents the maturation of the neuron characterized by 

increased branching of the axon and dendrites and by the establishment of dendritic 

spines and functional synapses.  

 

Dendritic growth is different from axonal growth. First, dendrites elongate much 

slower, at rates of 12 µm per day whereas axons grow up to 60 µm per day. Second, 

dendritic growth is continuous, while but axons grow at varying speed. Also, axons 

are stationary for a more considerable amount of time than they are actively growing 

(Carlos G. Dotti, Sullivan, and Banker 1988).  

Dendritic and axonal branching patterns, too, differ in several respects. Dendrites 

emerge from rather broad bases, branch in small, Y-shaped angles and continuously 

taper towards their endings, with every daughter branch being significantly smaller in 

diameter than its parent. Axons on the other side usually emerge from thin bases, 

branch in right angle collaterals and show little decrease in diameter towards their 

tips. Their length often reaches multiples of an individual dendrite (Bartlett and 

Banker 1984). 

 

Both dendrites and axons feature prominent and highly motile growth cones at their 

tips. These bulbous structures contain sensor proteins that translate extracellular 

guidance cues into intracellular messaging pathways, thus steering the extension of 

the neurites (Dent, Gupton, and Gertler 2011; Landis 1983; O’Donnell, Chance, and 

Bashaw 2009; Polleux and Snider 2010; Gordon-Weeks 2003; Gallo and Letourneau 

2004; Smalheiser 1990; Goodman 1996). 
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These observations have proven that the establishment of neuronal polarity, i.e. the 

asymmetric organisation of structural components and functional properties within 

the cell, takes place early in cellular development. Neuronal polarity provides the 

fundament of the unidirectional flow of information within neurons and determines  

cellular features as diverse as cell organelles (Horton & Ehlers 2003; Ye et al. 2007;  

Horton et al. 2005), cytoskeletal proteins (Craig and Banker 1994; Lewis, Courchet, 

and Polleux 2013; Baas, Black, and Banker 1989) and signalling cascades (Barnes 

and Polleux 2009; Polleux and Snider 2010). By using antibodies and taking 

advantage of the characteristic distribution of the respective components it has 

become possible to identify and characterize different cellular compartments (C. G. 

Dotti, Banker, and Binder 1987). Furthermore, it has become possible to visualize the 

complete morphology of specific neuronal subtypes and glial cells in situ by 

employing genetic constructs containing endogenously expressed fluorescent 

proteins (Zhuo et al. 1997; G. Feng et al. 2000; Nolte et al. 2001; Suzuki et al. 2003).  

 

Dendrites constitute the recipients in neuronal signalling. Their morphology proves 

crucial for proper integration of the axonal input they receive (London and Häusser 

2005). Dendritic geometry acts in concert with voltage-gated ion channel density and 

kinetics for action potential propagation (Vetter, Roth, and Häusser 2001). Similarly, 

dendritic morphology exerts significant influence on firing modes of pyramidal cells 

(van Elburg and van Ooyen 2010). The ramified dendritic trees are established and 

maintained through a complex regulation by transcription factors and intrinsic and 

extrinsic cues (Parrish et al. 2007).  
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1.3 Dendritic spines 

 

Spines are bulbous structures that appear along dendrites during neuronal 

development in vivo and in vitro (Figure 2). They function as recipients for the input 

from axonal terminals when neurons establish contact among each other via the 

formation of excitatory synapses. Inhibitory synapses do not exhibit spine formation, 

although sometimes both inhibitory and excitatory connections are made onto the 

same spine. Dendritic spines protrude from the post-synaptic membrane of the 

receiving dendrite. They typically comprise a bulbous spine head which contains the 

post-synaptic density (PSD), an electron-dense region accumulating many 

neurotransmitter receptors, scaffold and signalling proteins (Kennedy 1998; 

Walikonis et al. 2000; Racca et al. 2000; Ziff 1999; Jee Hae Kim and Huganir 1999). 

Their head is separated from the dendrite by a thin spine neck. Nevertheless, shapes 

often vary including thin, stubby, mushroom-like spines as well as filopodia (Parnass, 

Tashiro, and Yuste 2000; Harris and Stevens 1989; Harris, Jensen, and Tsao 1992). 

There have been promoted three models of spine formation along dendritic shafts 

(Yuste and Bonhoeffer 2004). In the Sotelo model, spines emerge independently of 

the axonal terminal from the dendritic shaft. In the Miller/Peters Model the axonal 

terminal actively induces the formation of the spine whereas in the filopodium model, 

dendritic filopodia capture an axonal terminal and, once the contact is maintained, 

mature into spines (Fiala et al. 1998; Ziv and Smith 1996; Petrak, Harris, and Kirov 

2005). In fact, it was shown that dendritic spines are highly motile and dynamic 

structures that can rapidly change their shape and number during lifetime (Harris 

1999; Sala, Cambianica, and Rossi 2008; W. Zhang and Benson 2000; Smart and 

Halpain 2000). Although not present in all neuronal subtypes they proved 

characteristic for pyramidal neurons of the cortex and hippocampus and are thought 

to be the morphological basis for synaptic plasticity associated with learning and 

memory formation (Segal 2005; Yuste and Bonhoeffer 2001). 
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1.4   Organisation of the neocortex 

 

The mammalian neocortex constitutes the most peripheral region of the brain and 

covers the two cerebral hemispheres. In rodents such as mice, the neocortex is 

smooth, whereas in primates it is folded into a gyrencephalic configuration, which 

increases its surface area (Hofman M A, 1985). Exclusively found in mammals, it is 

after archicortex and paleocortex the evolutionary most recently acquired brain 

structure (Medina & Abellán, 2009). 

The neocortex receives inputs from the thalamus, the contralateral hemisphere and 

other structures. Its outputs target the neocortex, basal ganglia, thalamus, pontine 

nuclei, and the spinal cord. The cellular composition and organization of the 

neocortex differs significantly from subcortical regions: neurons make up the majority 

of the cells in the neocortex, with glial cells accounting only for a minority (Bayer 

1980a; Bayer 1980b; Soriano et al. 1994). Based on morphology only, i.e. the 

distribution of their dendrites and axons, over 40 different neuronal cell types have 

been identified (Lorente de Nó R, 1949). Broadly classified, they comprise two 

groups: principal (projection) neurons or local interneurons (Nieuwenhuys 1994). 

Projection neurons make up roughly 80% of all cortical neurons and typically have 

pyramid-shaped cell bodies. They carry many spines along their dendrites and use 

glutamate as their primary transmitter. Outside the cortex they appear in the 

hippocampus and the amygdala. Interneurons constitute approximately 20% of the 

cortical neurons and have axons that remain close to their cell body. They employ  
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the inhibitory neurotransmitter -aminobutyric acid (GABA), feature a diverse 

morphology but do not carry spines on their dendrites.  

 

As opposed to subcortical regions that have a nuclear organization, the neocortex is 

organised in layers (Figure 3). This laminar organisation efficiently structures the 

complex input-output relationships as each layer receives inputs from and sends 

outputs to specific cortical and subcortical regions. Based on the thickness of 

individual layers, their cell size and packing characteristics the neocortex can be 

subdivided into over 50 areas (Brodmann K, 1909).  
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In addition to its laminar organisation, the neocortex features columns that are 

approximately 300 – 600 µm thick, transverse cortical layers and reach far into the 

white matter, constituting a local processing network (Mountcastle 1997; E. G. Jones 

2000; Oberlaender et al. 2012; Helmstaedter, Sakmann, and Feldmeyer 2009). 

 

 

1.5   Embryonic development of the neocortex 

 

The embryonic development of the neocortex is driven by the proliferation of neural 

stem and progenitor cells and their subsequent differentiation into neurons and glial 

cells  (Borrell & Reillo, 2012; Götz & Huttner, 2005; Hansen, Lui, Parker, & 

Kriegstein, 2010; Kriegstein & Alvarez-Buylla, 2009; Lui, Hansen, & Kriegstein, 2011; 

Martínez-Cerdeño, Noctor, & Kriegstein, 2006; Noctor, Martínez-Cerdeño, & 

Kriegstein, 2008; Noctor, Martínez-Cerdeño, Ivic, & Kriegstein, 2004; Taverna, Götz, 

& Huttner, 2014) (Figure 4).  
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In the early stages of embryonic development, the thickness of the neuroepithelium 

increases through symmetric division of neuroepithelial cells which are of ectodermal 

origin. Once a critical thickness is reached, some of these cells elongate and convert 

into radial glial cells (RGCs). RGCs function as neural progenitor or neural stem cells 

(NSCs) and, by asymmetric division, generate both neuronal and glial cells in the 

ventricular (VZ) and subventricular zone (SVZ), the cell-dense germinal center of the 

developing cortex. They feature an apical – basal polarity, making contact with the 

ventricle (apical) and the meninges, basal lamina and blood vessels (basal). During 

most of the time their cell bodies remain close to the ventricles in the ventricular 

zone. During proliferation they undergo interkinetic nuclear migration, a manoeuvre 

likely involved in regulating neurogenesis by modulating the exposure of RGC nuclei 

to neurogenic or proliferative signals. To maintain ventricular zone integrity they 

establish adherent junctions, a feature which also carries importance for RGC 

behaviour.  

RGCs feature two modes of cell division: (a) symmetric, which increases the cellular 

density of the ventricular zone by generation of two daughter cells that share the 

same identity with one another and (b) asymmetric, which generates two cells of 

different identities. If one daughter cell shares the same identity with its mother cell, 

the division is called self-renewing. In consumptive divisions the daughter cells 

acquire identities different from their mother cell (Figure 5). 
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These modes of division play an important role in increasing the size and thickness 

of the cortical plate and in increasing the variety of cell types such as intermediate 

progenitor cells (IPCs) which further on transform into neurons and glial cells.  

After their generation from RGCs, neurons start migrating along RGC processes to 

reach their final position in the cortex. Upon reception of a signal from Cajal–Retzius  

cells they stop migration, distribute horizontally in the cortical plate and begin their 

differentiation into mature neurons. The arrangement of neurons in cortical layers 

occurs in an inside-out fashion, which means neurons reach and build up the lower 

layers first and the upper layers last (Figure 6). The correct execution of these steps 

critically relies on a genetic programme (Gupta, Tsai, and Wynshaw-Boris 2002). 

One of the best characterized genes in this process encodes the extracellular protein 

reelin, which is secreted from Cajal-Retzius cells. Its absence is associated with a 

characteristic and reproducible cortical malformation,  an outside to inside gradient of 

the cortical layers (Lakomá, Garcia-Alonso, and Luque 2011; Lambert de Rouvroit 

and Goffinet 2001; Bar and Goffinet 1999; Tissir and Goffinet 2003; Hartfuss et al. 

2003).  

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 
__________________________________________________________ 

25 

 

 

 

 

 

 

Principal neurons and interneurons, although resting in close proximity with one 

another in the adult cortex, originate in different locations: the dorsal forebrain and 

the medial (MGE) and lateral (LGE) ganglionic eminence of the ventral 

telencephalon, respectively. Their modes of migration, however, were shown to vary 

greatly (Figure 7). Principal neurons migrate radially whereas interneurons migrate  

tangentially into the cortex (Tan et al. 1998; Marín and Rubenstein 2003; 

Hippenmeyer 2014). 
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The embryonic development of the cerebral cortex is a complex process and tightly 

regulated by a series of gene expression cascades (Guillemot et al. 2006). After 

migration is completed a complex series of apoptotic and synaptogenic events finely 

regulates the number of mature neurons and their connections, which ultimately 

shapes neuronal circuitry. 

 

1.5.1 Disruption of cortex formation causes neurological disease 

Mutations in key genes controlling neuronal proliferation, migration and 

postmigrational development have been linked to a number of neurological diseases 

(Barkovich, Guerrini, Kuzniecky, Jackson, & Dobyns, 2012; Bozzi, Casarosa, & 

Caleo, 2012; Morris, Efimov, & Xiang, 1998; Valiente & Marín, 2010). 

For instance, it has been shown that mutations in lissencephaly 1 (LIS1), double 

cortin (DCX) and tubulin α 1A (TUBA1A) cause lissencephaly, a congenital 

malformation of the cortex characterized by a smooth or misfolded brain surface and 

a loosely arranged four-layer cortex (Kerjan & Gleeson 2007; Pilz, Matsumoto, et al. 

1998; Keays et al. 2007; Des Portes et al. 1998; Reiner et al. 1993; Pilz, Macha, et 

al. 1998; Dobyns et al. 1996; Dobyns & Truwit 1995).  
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Furthermore, it was found in some cases of idiopathic epilepsy that congenital 

migration defects lead to the development of cortical heterotopias which constitute 

locations of origin for seizures (Bozzi et al. 2012). These findings underline the 

importance of sound cortical development for the functioning of the brain as a whole. 

 

 

1.6   The hippocampus: a brain structure well suited for studies of   

        morphology and behavior 

 

The hippocampus is a brain structure that features a highly ordered cytoarchitecture 

composed of well-confined cell types: spine-rich pyramidal neurons in CA1 and CA3 

regions, granule neurons in the dentate gyrus and few interneurons (Bayer 1980a; 

Bayer 1980b; Benson et al. 1994; Soriano et al. 1994). By employing fluorescent 

dyes and high resolution microscopy it allows for studying neuronal morphology in 

vivo. Its well characterized tri-synaptic circuit (Figure 8) constitutes a local processing 

network (Amaral and Witter 1989) and is involved in memory storage and spatial 

navigation (Reed and Squire 1997; Rempel-Clower et al. 1996; Milani et al. 1998; 

Neves et al. 2012). These cognitive functions can be evaluated through specific 

behavioral tests, as done in this work. 
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An intact hippocampus was shown to be a crucial requirement for spatial flexibility in 

mice. Spatial navigation is essential for rodents to locate food, social partners, and 

shelter. It results from two very different strategies: (1) place learning which enables 

for flexible navigation using environmental information and (2) response learning that 

employs a more rigid “route following” (Kleinknecht et al. 2012).  

Place learning is a hippocampus-dependent navigation strategy, characterized by the 

incorporation of environmental cues into a cognitive map to locate a target (Morris et 

al. 1982; O´Keefe et al. 1975; Dupret et al. 2010; Gutiérrez-Guzmán et al. 2011). In 

an experimental setup, it is independent of the starting position of the subject and is 

thus considered flexible. Response learning, in contrast, is based on stimulus- 

response guided navigation, depends on the starting position (therefore considered 

less flexible) and requires intact basal ganglia (Mcdonald and White 1994; Packard 

and McGaugh 1996; Brioni, Nagahara, and McGaugh 1989; Jacobson, Gruenbaum, 

and Markus 2012; Tzavos, Jih, and Ragozzino 2004). 
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1.7      The ubiquitin proteasome system 

 

Cellular protein turnover and function is controlled in a pathway known as 

ubiquitylation. Ubiquitin is a small, 76-amino-acid peptide named for its universal 

biological presence. It is attached to target proteins as a post-translational protein 

modification in an evolutionary conserved and tightly regulated enzymatic cascade 

and thereby either changing the target´s function or causing its proteasome-mediated 

degradation (reviewed in Hershko & Ciechanover 1998).  

Interest in its role in the brain was originally sparked by the discovery of ubiquitin in 

proteinaceous deposits in neurodegenerative disorders (Kuzuhara et al. 1988; 

DiFiglia et al. 1997; Ross and Poirier 2004; Ross and Pickart 2004; Q. Ding, 

Cecarini, and Keller 2006). Neurofibrillary tangles of Alzheimer´s disease, Lewy 

bodies of Parkinson´s disease, and Pick bodies of Pick´s disease all proved to be 

immunopositive for ubiquitin (Lennox et al. 1988; Lowe et al. 1988; H. Mori, Kondo, 

and Ihara 1987). Since that time the ubiquitin-proteasome system (UPS) has been 

found altered in numerous diseases of the central nervous system (Ciechanover and 

Brundin 2003; Tai and Schuman 2008; M. Ding and Shen 2008; Schwartz and 

Ciechanover 2009; Zheng et al. 2016).  The UPS was shown to critically control 

neuronal development, axon and dendrite growth, synaptogenesis, presynaptic 

function, postsynaptic plasticity and postsynaptic receptor trafficking (reviewed in Yi 

& Ehlers 2005; Kawabe & Brose 2011; Yi & Ehlers 2007; Segref & Hoppe 2009). 

Neurons in particular, given their highly polarized cellular organization, rely on the 

UPS for creating, maintaining and dismantling their cellular protein subdomains.  

 

1.7.1 Components of the ubiquitin proteasome system 

Ubiquitin is synthesized as an inactive precursor, processed and then transferred to 

its substrates in a pathway involving three classes of enzymes (called E1, E2 and 

E3) (Figure 9). The procession of the ubiquitin precursor involves specific proteases 

called deubiquitinating enzymes (DUBs) that expose the glycine carboxylate which is 

the site of substrate conjugation at its carboxyl terminus (Jung Hwa Kim et al. 2003;  
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Amerik and Hochstrasser 2004). Subsequently, a specific activating enzyme (E1) 

uses ATP to adenylate ubiquitin at its carboxyl terminus. The resulting high-energy  

mixed anhydride bond attracts the sulfhydryl group of the E1 active-site cysteine, 

forming a high-energy thioester bond between the E1 and ubiquitin, expelling AMP. 

Ubiquitin is then passed to the active-site cysteine of an ubiquitin conjugating 

enzyme (E2), likewise forming a thioester bond. It is then conjugated to its substrate 

with help of an E3 ubiquitin ligase, resulting in the covalent isopeptide bond of the 

ubiquitin carboxyl terminus to the ε-amino group of a lysine in the substrate. The 

target specificity of ubiquitylation is warranted by large number  E3 ligases (e.g. more 

than 600 in humans), most of which belong to two major families, distinguished by 

homologous to E6-AP carboxyl terminus (HECT) or really interesting new gene 

(RING) domains (Deshaies and Joazeiro 2009; Petroski and Deshaies 2005; Rotin 

and Kumar 2009; Glickman and Ciechanover 2002). If the E3 enzyme belongs to the 

RING finger family of ligases, ubiquitin is transferred directly from the E2 enzyme to 

the target substrate. In the case of a HECT domain-containing ligase, the activated 

ubiquitin moiety is transferred first to the E3, to generate yet another high-energy 

thiol ester intermediate, before it is transferred to the E3-bound target substrate. 
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The functional consequences of ubiquitylation depend on the number of ubiquitin 

molecules that are attached to the substrate and the conjugation variety. Attachment 

of a single ubiquitin molecule (known as monoubiquitination) induces changes of the 

substrate´s function, for example cell surface expression of membrane proteins, 

endocytosis or protein interaction (Hicke 2001). The same applies when a substrate 

carries several ubiquitin residues on different sites (multimonoubiquitylation). The 

attachment of ubiquitin chains (referred to as polyubiquitylation) in which the C-

terminus of each ubiquitin unit is linked to a specific lysine residue (most frequently 

Lys48 and probably also Lys11) of the previous ubiquitin results in proteasome-

mediated degradation of the respective target. In contrast, ubiquitin chains that are 

Lys63-linked regulate protein function and interactions (Thrower et al. 2000; Chau et 

al. 1989; Glickman and Ciechanover 2002). In addition to substrate linked ubiquitin, it 

was shown that unanchored free ubiquitin chains, too, constitute physiologically 

relevant signalling components (Zeng et al. 2010). Ubiquitylation can be reversed by 

deubiquitinating enzymes (DUBs) which remove a single ubiquitin from its substrate 

or remodel polyubiquitin chains on target proteins. These ubiquitin molecules may be 

recycled and replenish the cellular ubiquitin pool (Hershko and Ciechanover 1998). 

Nearly 100 DUBs are known in the human genome and comprise 5 families: the 

ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific proteases (USPs), 

Machado-Josephin domain-containing ubiquitin peptidases, ovarian tumor 

superfamily of ubiquitin isopeptidases (OTUs) and the JAMM (JAB1/MPN/Mov34 

metalloenzyme) family of proteases. The first four families are cysteine proteases, 

while the JAMM family constitutes zinc metalloproteases (D'Andrea and 

Pellman,1998; Reyes-Turcu et al., 2009; Kim et al. 2003). 
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1.8 Ubiquitin-like proteins 

 

Ubiquitin-like proteins (UBLs) are small proteins that share many similarities such as 

sequence homology and tertiary structure with ubiquitin and function as post-

translational modifiers. They exist either in free form or attached to substrate 

proteins. Their mode of attachment follows a similar tri-enzymatic pathway like 

ubiquitin and includes an activating E1, a conjugating E2 and a ligating E3 enzyme. 

UBLs are often highly conserved between species. The tertiary structure of UBLs is 

usually very similar to ubiquitin and characterized by a compact globular beta-grasp 

fold, the “ubiquitin fold”, and many UBLs expose a conserved glycine-residue at their 

carboxyl terminus, identical to ubiquitin. However, although most UBLs share all 

these features, their physiological functions can vary greatly (Hochstrasser 2009; 

Herrmann, Lerman, and Lerman 2007). 

 

1.8.1 The Nedd8 pathway and its role in the brain 

Neural precursor cell expressed developmentally downregulated protein 8 (Nedd8) 

was initially discovered in the developing brain and belongs to the family of ubiquitin-

like proteins (UBLs). It features ~60% sequence homology with ubiquitin (Kumar, 

Yoshida, and Makoto 1993; Kumar, Tomooka, and Noda 1992; Kamitani et al. 1997) 

and was found necessary for the viability of most model organisms such as mouse, 

Drosophila, Caenorhabditis elegans and Schizosaccharomyces pombe (Tateishi et 

al. 2001; D. Jones and Candido 2000; Hansen et al. 2010; Ou et al. 2002; Dharmasiri 

et al. 2003; Kurz et al. 2002). Similar to ubiquitin, Nedd8 is synthesized as a 

precursor that must be processed at it carboxyl terminus by deneddylating enzymes 

(such as DEN1/NEDP1) in order to expose a glycine-glycine motif that allows for 

attachment to target substrates (Kamitani et al. 1997).  

In a sequence called neddylation which is very similar to the ubiquitin pathway, 

Nedd8 is activated by an E1 enzyme (NAE (Nedd8 activating enzyme); a 

heterodimer of NAE1 and UBA3 subunits), transferred to an E2 enzyme (Ubc12, also 

known as UBE2M) and then conjugated to target substrates by an E3 enzyme.  
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Nedd8 was found to control ubiquitylation by targeting the cullin family of proteins 

(Rabut & Peter 2008; Petroski & Deshaies 2005; Deshaies & Joazeiro 2009;  

Xirodimas 2008).  Cullin proteins serve as core scaffolds to a subclass of ubiquitin E3 

ligases, the cullin-RING ligases (CRLs) and covalent modification of the cullin protein 

by Nedd8 controls ubiquitin ligase activity. For example, neddylation of cullin 

proteins, by controlling important downstream targets such as nuclear factor 'kappa-

light-chain-enhancer' of activated B-cells (NF-κB), NF-κB inhibitor alpha (IκB), 

p27Kip1 and cyclin E, was shown to regulate important cell cycle progression and 

signaling cascades (Podust et al. 2000; Read et al. 2000; Ou et al. 2002; Amir, Iwai, 

and Ciechanover 2002; Herrmann, Lerman, and Lerman 2007). Apart from the cullin 

family of proteins, ribosomal proteins have been found to be targets of NEDD8 

(Xirodimas et al. 2008) and, more recently, a role in tumorigenesis has been 

established (Lisha Zhou et al. 2018; X. Zhou et al. 2016; Abidi and Xirodimas 2015; 

Yao et al. 2014). Cancers such as glioblastoma, leukemia, lymphoma, melanoma, 

osteosarcoma, cholangiocarcinoma, cervical carcinoma, Kaposi sarcoma, ovarian 

cancer, lung cancer, gastric cancer, liver cancer, breast cancer and prostate cancer 

exhibit altered neddylation patterns (Mansouri and Zadeh 2015; Hua et al. 2015; Han 

et al. 2016; Paiva et al. 2015; Godbersen et al. 2015; Y. Wang et al. 2015; Nawrocki 

et al. 2013; Li et al. 2014; Cheng et al. 2014; Chen et al. 2016; Q. Zhang et al. 2015; 

Yi Zhang et al. 2016; Chen et al. 2015; Gao et al. 2014; Lin et al. 2015; T. Zhu et al. 

2016; X. Wang et al. 2014; Hughes et al. 2015). In many of these studies MLN4924, 

an inhibitor of neddylation, was employed.  MLN4924 disrupts cullin-RING ligase-

mediated protein turnover by selectively inhibiting NAE activity and was shown to 

increase apoptotic tumor cell death in vitro and in vivo (Soucy et al. 2009; Brownell et 

al. 2010). It has recently been tested in multiple phase I clinical trials as an 

anticancer drug (Swords et al. 2010; Bhatia et al. 2016; Nawrocki et al. 2012; Shah et 

al. 2016; Sarantopoulos et al. 2016). Apart from tumorigenesis, Nedd8 was also 

found to play an important role in the immune response by regulating dendritic cell 

function (Mathewson et al. 2013) and promoting stress granule assembly (Jayabalan 

et al. 2016). It was shown to be required for interferon beta production in the context 

of viral infections (X. Zhang et al. 2016; Song et al. 2016). Important in the context of 

this work, the neddylation pathway has been implicated in a number of neurological  
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diseases and Nedd8 has recently been established as a regulator of neuronal 

development. Notably, it was proven that Nedd8 conjugation increases during 

postnatal brain development and that neddylation is essential for the formation of 

spines, the maintenance of synapses and higher cognitive function (Vogl et al. 2015). 

 

1.8.2 Deneddylating enzymes  

Like ubiquitin, Nedd8 can be removed from substrates by deneddylating enzymes. 

Two well-characterized deneddylating enzymes are known: the human deneddylase 

1 (DEN1), also known as Nedd8-specific protease 1 (NEDP1), and the COP9 

signalosome. DEN1 is a member of the SENP family and was initially named SENP8 

(Gan-Erdene et al., 2003; Mendoza et al., 2003).  DEN1, apart from processing the 

Nedd8 precursor (pNedd8), was found in vivo to deneddylate primarily proteins other 

than cullins (Chan et al. 2008; Broemer et al. 2010; Mergner et al. 2015; Rabut and 

Peter 2008; Lihong Zhou and Watts 2005). A function in deneddylating cullins was 

shown in vitro, but requires unphysiologically elevated DEN1 concentrations (K. Wu 

et al. 2003). The COP9 signalosome (constitutive photomorphogenesis mutant 9) is a 

zinc metalloprotease that effectively removes Nedd8 from cullin proteins and thus 

regulates ubiquitin E3 ligase activity. The COP9 signalosome is subject to research 

in this work.  
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1.9 The COP9 signalosome 

 

The COP9 signalosome is an evolutionary conserved protein complex whose 

principal known function is Nedd8 isopeptidase activity (Y. Y. Choo et al. 2011a; 

Cavadini et al. 2016; Cope and Deshaies 2003; Schwechheimer 2004). It targets 

cullin proteins primarily (Lyapina et al. 2001; Cope and Deshaies 2003; Hori et al. 

1999). The cullin family of proteins comprises CUL1, 2, 3, 4A, 4B, 5, and 7, PARC, a 

parkin E3 ubiquitin ligase, and Apc2 (Petroski and Deshaies 2005; Deshaies and 

Joazeiro 2009). Given that CRLs ubiquitinylate a large number of proteins, the COP9 

signalosome is implicated in the control of a considerable portion of the proteome, 

including protooncogenes, tumor-suppressor genes, and other important cellular 

protagonists (Wei, Serino, and Deng 2008). The attachment of Nedd8 induces 

conformational rearrangements of the cullin carboxyl terminus and the RING domain, 

accelerating the formation of the E2-E3 complex, which stimulates protein 

polyubiquitylation (K. Wu, Chen, and Pan 2000; Kawakami et al. 2001). Thus, cullin 

neddylation causes ubiquitylation activity of CRLs to increase and thereby stimulates 

proteasome-mediated degradation of CRLs substrates (Saha and Deshaies 2008; Y. 

Y. Choo et al. 2011b).  

Structurally, the COP9 signalosome is composed of 8 heteromeric subunits 

designated CSN1-8. The presence and proper arrangement of its subunits is critical 

for normal function of the complex as a whole (Wei and Deng 1999; Wei and 

Chamovitz 1994; Yan et al. 2003). The protease function of the complex is harboured 

in its CSN5 subunit, also known as Jab-1 (JUN activation binding protein 1) (Echalier 

et al. 2013; Kotiguda et al. 2012). CSN5 contains an embedded JAMM motif (also 

termed an MPN+ motif) which acts as catalytic center for the CSN (Cope et. al 2002). 

CSN5  is the only subunit that can stably exist outside of the CSN and participate in 

important biological functions, both as part of the CSN holocomplex and 

independently (Wei & Deng 2003; Tomoda et al. 2005; Cope & Deshaies 2006; 

Tanguy et al. 2008; Hallstrom & Nevins 2006). The CSN promotes cullin activity, 

indicating that cycles of neddylation and deneddylation are required for normal cullin 

function in vivo and for the assembly of multisubunit ubiquitin E3s  
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(Mosadeghi et al. 2016; Bosu and Kipreos 2008; Cope and Deshaies 2003; Pintard 

et al. 2003). As CSN inactivation destabilizes many subunits of cullin-based ubiquitin 

ligases it is thought that, at least in some cases, the deneddylating activity of the 

CSN protects components of cullin-based ubiquitin ligases from autocatalytic 

degradation. (Wu et al 2006; Bosu & Kipreos 2008).  

Apart from CSN as a protease, several other functions, such as a transcriptional 

repressor or regulator of DNA repair, have been established (D. A Chamovitz, 2009). 

CSN was found to control cell cycle, DNA stability, and exerts influence during 

tumorigenesis (Cope and Deshaies 2003; Schwechheimer 2004; Wolf, Zhou, and 

Wee 2003; Richardson and Zundel 2005). Recently, it was found that loss of CSN5 

was associated with exacerbated atherosclerotic lesion formation (Asare, Ommer, 

Azombo, Alampour-Rajabi, & Sternkopf, 2017). Most organisms require the CSN for 

viability. For instance, absent of CSN5, mice die early in utero. In their embryoblasts, 

higher levels of p27, p53 and cyclin E are associated with impaired proliferation and 

accelerated apoptosis (Tomoda, Yoneda-Kato, Fukumoto, Yamanaka, & Kato, 2004). 

Similar experiments in Drosophila were associated with defective oogenesis, molting 

defects or death at larval stage (Oren-Giladi, Krieger, Edgar, Chamovitz, & Segal, 

2008; Oron, Mannervik, Rencus, Harari-Steinberg, & Neuman-Silberberg, 2002). The 

plant Arabidopsis thaliana which was the first species in which CSN was knocked 

down features an altered light response, which gave the COP9 signalosome its 

name, and lethal seedling (Wei and Chamovitz 1994; Chamovitz et al. 1996). Simple 

organisms such as fission yeast remain viable despite loss of CSN subunits (Mundt, 

Liu, and Carr 2002). These findings may suggest that the COP9 signalosome has 

gained more important and refined control over essential cellular processes 

throughout evolution. 
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1.9.1 The COP9 signalosome in neurological disease  

Components of the CSN were found to be significant in neurodegenerative and 

psychiatric disorders. CSN5 was suggested to be involved in the onset of 

Parkinson´s and Alzheimer´s disease (Oono et al., 2004) and its overexpression was 

shown to increase amyloid plaque burden and exacerbate learning and memory 

defects (Wang et al. 2015). CSN3 was associated with Smith-Magenis syndrome, a 

congenital intellectual disability syndrome (Potocki et al. 2000; Elsea et al. 1999; 

Potocki, Chen, and Lupski 1999). CSN2 was identified in the neuronal differentiation 

of embryonal carcinoma (Akinama et al., 2003). In addition to the CSN itself, several 

proteins that depend on the CSN have been associated with disease. Nedd8, which 

is cleaved from E3 ubiquitin ligases by the COP9 signalosome, was found 

accumulated in Lewy bodies of Parkinson´s disease and in glial inclusions of 

Machado-Joseph disease (F. Mori et al. 2005; Kuazi et al. 2003; Ferro et al. 2007; Y. 

S. Choo et al. 2012). CUL4B, an ubiquitin E3 ligase scaffold protein, was found 

altered in an X-linked syndrome involving intellectual disability (Zou et al. 2007; 

Tarpey et al. 2007). The role of CSN in dendritic morphogenesis was characterized in 

Drosophila. In its larval peripheral nervous system CSN was shown to act as a 

multilayer regulator of dendritic arborization, both stimulating and repressing dendritic 

branching via control of different cullins (Djagaeva and Doronkin 2009b; Djagaeva 

and Doronkin 2009a). The direct and indirect involvement of the COP9 signalosome 

in various neurological diseases justifies for a more thorough characterization of 

CSN-associated neuropathology as presented with this work.
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2. AIMS OF THE PROJECT 

 

In neuronal biology the ubiquitin-proteasome system (UPS) was found critically 

involved in axon and dendrite growth, synaptogenesis, presynaptic function, 

postsynaptic plasticity and postsynaptic receptor trafficking. The COP9 signalosome, 

by de-neddylating cullin-based E3 ubiquitin ligases, represents an important regulator 

of the UPS but has remained largely unexplored in neurons. The aim of this work is 

to provide a characterization of CSN in the brain through knockdown of its catalytic 

subunit CSN5, via the Cre-loxP system. By driving Cre expression through neuron-

specific promoters we aim to characterize CSN function in a sequence of 

developmental stages. Loss of CSN5 will be induced in proliferating neuroblasts, 

early postmitotic and mature neurons. Consequently, analysis will focus on neuronal 

morphology, embryonic brain development and behavior.   

 

Aim 1: Demonstrating significance of CSN for development of neuronal 

morphology in vitro 

As an initial approach, CSN5 will be knocked down in primary neuronal cell cultures 

to demonstrate significance of CSN for the development of neuronal morphology in 

vitro. Quantitative analysis of the parameters dendritic length and dendritic 

complexity will be performed.  Subsequently in utero electroporation will be used to 

prove requirement of CSN for post-mitotic neurons during development in vitro and in 

vivo. 

 

Aim 2: Proving dependency on CSN for embryonic brain development in vivo 

Knockdown of CSN5 in vivo through neuronal subtype-specific Cre lines will be 

performed to sort out dependency on CSN during embryonic brain development. In 

particular, embryonic lethality of the constitutive knockdown is supposed to be 

overcome by restricting the Cre-mediated loss of CSN5 to proliferating neuroblasts 

and early postmitotic neurons, by placing it under Nestin und Nex promotor control, 

respectively. 
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Aim 3: Characterizing CSN in vivo via establishment of a transgenic mouse line 

employing the inducible Cre/LoxP system 

In order to overcome the limitations of embryonic knockdown, we aim to establish a 

mouse line by which we are able to induce loss of CSN5 in a spatially and temporally 

restricted manner, making use of the Cre/LoxP system, in the adult stage. By 

employing the CaMKIICreERT2 mouse line, knockdown of CSN5 will be restricted 

to glutamatergic neurons of the forebrain. These neurons exhibit a characteristic, 

polarized morphology and are involved in specific cognitive functions. Therefore a 

comprehensive analysis of neuronal morphology including dendritic length and 

complexity, spine density and behavioural experiments will be conducted.  
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3. MATERIALS AND METHODS 

 

 

3.1 Plasmids, antibodies and reagents 

 

Plasmids 

All plasmids used in this thesis are listed in table 1. 

 

Plasmid Purpose Source 

CAG-ERT2-Cre-ERT2 Tamoxifen inducible Cre Matsuda & Cepko 

D151N mutant CSN5 CSN5 mutant form Thilo Hagen 

pcRII-mouse CSN5 In vitro transcription (Sp6, T7 polym.) cloned 

CAG-IRES-GFP Retroviral expression vector GFP cloned 

CAG-IRES-mRFP Retroviral expression vector mRFP cloned 

 
Table 1: Plasmids.  

List of all plasmids used in this work, including their purposes and sources. 

 

 

Primary and secondary antibodies and fluorescence dyes 

All antibodies used in this thesis are listed in table 2 and 3. 

 

Antibody Company, cat. # Species Dilution 

DAPI Sigma Aldrich, #D8417, 20mg/ml - 1:10.000 

α-GFP Abcam, #ab6556 rabbit 1:3000 

α-FLAG M2 Sigma Aldrich, #F3165 mouse 1:2000 

α-MAP2 Abcam, #ab5392 chicken 1:2000 
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α-IkBα Cell Signalling, #9242 rabbit 1:1000 

α-p27 Abcam, #32034 rabbit 1:500 

α-CSN5 Sigma Aldrich, #J3020 rabbit 1:8000 

α-Nedd8 Epitomics, #1571-1 rabbit 1:500 – 1:1000 

α-Cullin1 Invitrogen, #322400 mouse 1:750 

α-α-Tubulin Sigma Aldrich, #T5168 mouse 1:100.000 (WB) 

α-cyclin D3 Abcam, #28283 mouse 1:1000 

α-β-Actin Cell Signaling Technology, #4967 rabbit 1:3000 

 

Table 2: Primary antibodies and fluorescent dyes 

WB, Western Blot 

 

Antibody (Epitope) Company, cat. # Dilution 

Alexa Fluor 488 goat α-chicken IgG Invitrogen, #A11039 1:1000 

Alexa Fluor 488 goat α-mouse IgG Invitrogen, #A11029 1:1000 

Alexa Fluor 488 goat α-rabbit IgG Invitrogen, #A11034 1:1000 

Alexa Fluor 594 goat α-chicken IgG Invitrogen, #A11042 1:1000 

Alexa Fluor 594 goat α-mouse IgG Invitrogen, #A11032 1:1000 

Alexa Fluor 594 goat α-rabbit IgG Invitrogen, #A11037 1:1000 

α-mouse-IgG HRP CST, #7076 1:2000 

α-rabbit-IgG HRP CST, #7074 1:2000 

α-rat-IgG HRP CST, #7077 1:2000 

 

Table 3: Secondary antibodies 
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General Buffers and Solutions 

 

1x PBS      20x SSC 

137mM         NaCl     3 M NaCl 

2.7mM          KCL     0.3 M Sodium Citrate 

20mM           Na2HPO4    Adjust pH 7.4 

2mM             KH2PO4 

Adjust pH 7.4 

 

6x DNA Loading Buffer (Orange)  50x TAE Buffer 

1g                     Orange G    2 M  Tris-Base 

10ml                 2 M Tris/HCL, pH 7.5  1 M Acetic Acid 

150ml               Glycerol    100mM EDTA, pH 8.0 

       Adjust pH 8.1 

 

 

10x SDS-PAGE Running Buffer   1x Transfer Buffer (Western Blot) 

1% (w/v)             SDS    0,025 M Tris 

250mM               Tris    0,192 M Glycine 

1920mM             Glycine    20%  Methanol 

Adjust pH 8.3     Adjust pH 8.3 

 

 

4x Protein Loading Buffer   1x TBS 

50% (v/v)                Glycerol   50mM  Tris 

125mM                   Tris-HCL, pH 6.8  150mM NaCl 

4%                          SDS    Adjust pH 7.6 

0.08% (w/v)            Bromophenol blue 

5%                          β-Mercaptoethanol 
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Reagents 

Tamoxifen was purchased at Sigma Aldrich. For injections experiments in vivo it was 

first dissolved in absolute Ethanol (100mg/ml) and then diluted 1:10 with sunflower 

seed oil (Sigma Aldrich) to reach a final concentration of 10mg/ml. Diluted Tamoxifen 

was stored at 4 °C and used for a maximum of 3 consecutive days. Alternatively, 

Tamoxifen was administered orally via purchased tamoxifen food pellets (see below). 

 

 

3.2 Animal experiments 

 

3.2.1 Animals and housing 

Animal experiments were conducted in accordance with the Guide for the Care and 

Use of Laboratory Animals of the Government of Bavaria, Germany. 

In all experiments mice were housed under standard laboratory conditions (22±1 °C, 

55±5% humidity) on a 12h light-dark cycle with food and water ad libitum. At the age 

of 3 to 4 weeks littermates were separated from parents, numbered by ear-punching, 

and a small tail biopsy was taken for genotyping. Respective the staging of embryos, 

noon on the day of the appearance of a vaginal plug was counted as embryonic day 

0.5 (E0.5), and the day of birth was considered postnatal day 0 (P0).  

If required, a Tamoxifen dosage of 1 mg twice (every 12h) per day for 5 consecutive 

days was administered by intraperitoneal (i.p.) injections of sunflower seed oil 

(10mg/ml). Alternatively, in order to avoid injections in some experiments animals 

were fed with tamoxifen food pellets (LAS CRdiet CreActive TAM400, LASvendi 

GmbH, Soest, Germany) for 7 consecutive days during postnatal weeks 8-10, and 

analyses were performed 1-2 weeks later.  

 

3.2.2 Transgenic mouse lines used or generated for this thesis 

- CSN5lox/lox mice were obtained from Ruggero Pardi (Panattoni et al. 2008) 

- CSN5CamKII CreERT2 mouse line 

- CSN5NestinCre mouse line 

- CSN5NexCre mouse line 

- Thy1eGFP- CSN5CamKII CreERT2 mouse line 
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3.3 Genotyping 

 

For genotyping, mouse tail biopsies were taken at the age of 3 to 4 weeks and, by 

alkaline lysis of the tissue, genomic DNA was prepared. 100μl of 50mM NaOH was 

added to a mouse tail of approximately 1-2 mm length and heated to 95 °C for 30 min 

in order to lyse the tissue. After lysis, samples were cooled to 4°C and neutralized by 

addition of 30μl 1 M Tris-HCl (pH 7.5, containing 4mM EDTA), vortexed at slow 

intensity and centrifuged at 4°C with maximum speed in a table top centrifuge for 1 

min. These samples were used as PCR templates and stored at 4°C. For genotyping, 

1μl of the sample of genomic DNA was used in a 25μl-PCR reaction, containing 2.5μl 

10x PCR buffer (Abgene), 1.5μl 25mM MgCl2, 0.5μl dNTPs (10mM each, Roche), 

0.5μl of each primer (1, 2 and 3) and 0.5μl Taq DNA polymerase (5 units (U)/μl, 

Abgene).  

Routinely a standard PCR program, 95 ºC for 5 min, 35 cycles of 98 ºC for 45 sec, 

58-60 ºC for 30 sec, 72 ºC for 20 sec to 1 min, followed by 72 ºC for 10 min, then 

holding at 8 ºC, was carried out. If required, the annealing temperature and extension 

time of a PCR program were adjusted to amplify a specific genomic DNA sequence. 

For readout, small aliquots of the PCR samples (1-5µl) were mixed with 6x Orange 

loading buffer and PCR products were analyzed by gel electrophoresis in a 1-2% 

(w/v) agarose (Invitrogen) gel (1x TAE), containing ethidium bromide for visualization 

of DNA. After electrophoresis, gels were analyzed using a UV transilluminator and a 

BioDoc II gel documentation system from Biometra. 
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3.4 Radioactive in situ hybridization (ISH) 

 

Single in situ hybridization (ISH) procedures were performed as previously described 

(Lu et al. 2008). Adult mice were sacrificed by an overdose of isoflurane (Forene®, 

Abbott), brains were carefully dissected out and immediately shock-frozen on dry ice. 

Frozen brains were cut on a cryostat into 20μm thick sections and mounted on 

SuperFrost Plus slides (Menzel GmbH). Slides were stored at -20°C until further 

processing. The riboprobes for CSN5 used in this project were amplified from a 

plasmid containing the following sequence: 

5’-

tcaccactactttaaatactgcaaaatctcagcattggctctactgaaaatggtgatgcatgccaggtcaggaggcaac

ttggaagtgatgggtttgatgctcgggaaagtcgacggcgagaccatgatcatcatggacagtttcgctttgcctgtaga

gggcacagaaactcgagtaaatgctcaagctgctgcgtatgagtatatggctgcatacatagaaaatgccaaacag

3’ 

Specific riboprobes were generated by PCR applying T7 and T3 or SP6 primers 

using plasmids containing the above-mentioned cDNA fragments as templates. 

Radiolabeled sense and antisense cRNA probes were generated from the respective 

PCR products by in vitro transcription with 35S-UTP (Perkin Elmer) using T7 and T3 

or SP6 RNA polymerases (Roche). 

Hybridization was performed overnight (o.n.) with a probe concentration of 7 x 106 

counts per minute (c.p.m.) ml-1 at 57 °C and slides were washed at 64 °C in 0.1 X 

saline sodium citrate (SSC) and 0.1 M dithiothreitol. Hybridized slides were dipped in 

autoradiographic emulsion (type NTB2, Eastman Kodak), developed after 2-6 weeks 

and counterstained with cresyl violet. Dark-field photomicrographs were taken with 

Zeiss AxioCam MRm and AxioCam MRc5 digital cameras adapted to a Zeiss 

Axioplan 2 imaging microscope and a stereomicroscope (Leica). Image digitalization 

was performed with AxioVision 4.5, and afterwards photomicrographs were 

integrated into plates using Adobe Photoshop CS2 9.0.2 and Adobe Illustrator CS2 

12.0.1 image-editing software. Only sharpness, brightness and contrast were 

adjusted. For an adequate comparative analysis in corresponding mutant and wild- 
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type sections the same adjustments were undertaken. Brain slices were digitally cut 

out and set onto an artificial black background. 

 

 

3.5 Primary neuronal cell cultures and transfection of neurons 

 

All cell culture reagents were purchased from Invitrogen and all cell culture dishes 

were purchased from Nunc unless stated otherwise. 

Primary hippocampal and cortical neurons were prepared from mouse embryos as 

described (Carlos G. Dotti, Sullivan, and Banker 1988; Goslin and Banker 1989; 

Kaech and Banker 2006). In vitro plated neurons were transfected via a modified 

calcium phosphate protocol (Jiang and Chen 2006). 

 

3.5.1 Preparation of hippocampal and cortical neuronal cell cultures 

Hippocampi and cerebral cortices from embryonic day (E) 17.5 mice were separated 

from diencephalic structures and digested with 0.25% trypsin containing 1 mM EDTA 

for 20 min at 37 ºC with gentle shaking. Tissue pieces were then washed three times 

with DMEM supplemented with 10% FCS and afterwards triturated with a fire-

polished Pasteur-pipette in order to obtain dissociated cells. Cells were centrifuged at 

90x G for 5 min, cell pellet was carefully resuspended in Neurobasal-A medium 

supplemented with B27, and cell number and viability was assessed by counting the 

number of living cells in a Trypan Blue stained cell dilution. Cells were plated at the 

desired density (5-7x104 cells/well in a 24-well plate, 105 cells/well in a 12-well plate, 

3x105 cells/35 mm glass dish (MatTEK Corporation), 4x105 cells/24 mm Transwell® 

with 3μm pore polyester membrane insert (Corning), 5x105 cells/well in a 6-well plate, 

5-10x106 cells/10 cm plate), on Poly-D-Lysine- (0.05mg/ml, 30.000-70.000 MW, 

Sigma Aldrich) and Laminin- (1 μg/ml, Invitrogen) coated cell culture plates or on 12 

mm glass coverslips (ThermoFisher Scientific) and maintained in Neurobasal-A 

medium supplemented with 2% B27-supplement and 0.5mM GlutaMAXI at 37 ºC and 

5% CO2. 
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3.5.2 Transfection of primary neurons 

Transfection of plated cells in vitro was performed with expression plasmids at the 

desired day in vitro (DIV) by using a modified calcium phosphate protocol (Jiang and 

Chen, 2006). 1ml transfection mixtures (5-8μg plasmid DNA, adjusted with Ampuwa 

H2O to 50μl, 12.5μl 1 M CaCl2, 50μl 2x BBS (50mM BES, 280mM NaCl, 1.5 mM  

Na2HPO4, pH 7.26) and 900μl Neurobasal-A medium supplemented with 2% B27-

supplement and 0.5 mM GlutaMAXI) were prepared in sterile 1.5ml eppendorf tubes. 

Ampuwa water was mixed with CaCl2 by vortexing at full speed, then plasmid DNA, 

isolated with MAXI-Preps (Qiagen) and dissolved in Ampuwa water at a minimal 

concentration of ≥ 0.5 μg/μl, was added and mixed by pipetting up and down for 10 

times. 2x BBS buffer was added drop-wise into the H2O-CaCl2-DNA mixture during 

slow vortexing. Neurobasal-A medium, preincubated in the cell culture incubator, was 

added and the complete transfection mix was vortexed at full speed for 10 seconds 

and incubated 15 min at room temperature (RT). The conditioned medium from the 

neurons was collected and the transfection mix was applied to the neurons for 2 to 4 

h depending on the age and density of the neuronal culture and based on the size 

and appearance of the precipitate formed by the transfection. Neurons were then 

washed 8 to 12 times with warm HBSS buffer containing 0.01 M HEPES, and the 

conditioned medium, filled up with new Neurobasal-A medium, was pipetted back 

onto the neurons. The time outside of the incubator was minimized during and after 

transfection in order to avoid damage to the neurons. Expression efficiency, usually 

between 0.5 and 1% of total neurons, was verified 24 h after transfection and was 

evaluated by expression of fluorescent proteins. 
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3.6 Immunocytochemistry 

 

After transfection and/or treatment, neurons on glass coverslips were fixed in 4% 

(v/v) paraformaldehyde containing 5% (w/v) saccharose for 20 min at RT, washed 3 

times with PBS and permeabilized with PBS-TritonX-100 0.1% 3x 5 min.  

After blocking in 5% BSA (w/v) in PBS-TritonX-100 0.1% for 1 h at RT, neurons were 

incubated with primary antibodies diluted at an appropriate concentration in 5% BSA 

(w/v) in PBS-TritonX-100 0.01% at 4 ºC overnight. After washing 3x 10 min with PBS-

TritonX-100 0.01% neurons were incubated with secondary antibodies, Alexa dye-

conjugated antibodies (Invitrogen) diluted 1:1000 in PBS-TritonX-100 0.01%, at RT 

for 2h. Coverslips were then washed 3x 10 min with PBS-TritonX-100 0.01% and 

mounted with anti-fading VectaShield medium (Vector) (if desired, containing DAPI to 

stain the nucleus). 

 

 

3.7 Image acquisition and analysis of neuronal morphology 

 

For analysis of neuronal morphology in culture and brain slices, images of individual 

neurons were captured randomly in a blind manner using an Olympus IX81 inverted 

laser scanning confocal microscope and Fluoview 1000 software. Pictures were 

taken with a 10x UPlanSApo, 0.40 numerical aperture (NA), 20x UPlanSApo, 0.75 

NA, 40x PlanApo, 0.9 NA WLSM or 60x UPlanSApo, 1.2 NA WLSM Olympus 

objective. Labeled neurons were excited at 405nm (DAPI, Alexa-405), 488nm (GFP, 

Venus, Alexa-488), 559nm (RFP, dsRed, cherry, Alexa-594) and 635nm (Alexa-647), 

and emission was collected at 425-475nm, 500-545nm, 575-675nm and 680-750nm, 

respectively. Usually a Z-stack of pictures was collected with 0.4-1.2μm step size and 

800x800 to 1024x1024 pixel picture size, depending on the specimen. Confocal 

pictures were exported to and processed for analysis with open access ImageJ 

(http://rsbweb.nih.gov/ij/) software and pictures were compiled and  
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composed using Adobe Photoshop CS2. The morphology of primary neurons was 

analyzed via manual tracing of neurons followed by length measurements of tracings  

using the NeuronJ plugin (http://www.imagescience.org/meijering/software/neuronj/) 

in ImageJ, and the Sholl analysis plugin  

(http://www.biology.ucsd.edu/labs/ghosh/software/) to measure dendritic arborization. 

Axons and dendrites of neurons were identified based on morphology. Total dendrite 

length was determined by summing the lengths of all dendrite processes measured 

from a single neuron (Meijering et al. 2004). Complexity of dendritic arborization was 

assessed by Sholl analysis, counting the number of dendrite intersections with 

concentric circles around the center of the soma of the neuron with increasing radius 

(10μm step size) (Sholl 1953). For spine analysis dendritic protrusions were counted 

per 10μm segments on secondary apical dendrites of cortical layer V and 

hippocampal CA1 pyramidal excitatory neurons. Mean signal intensities were 

measured with ImageJ in 8-bit gray pictures of single slices of the Z-stacks, in which 

puncta appeared brightest, substracting background intensity values. For dendrite 

analysis (total dendrite length and Sholl analysis) on Golgi-stained brain sections, 

neurons were directly traced on a Zeiss Axioplan microscope equipped with a Zeiss 

AxioCam camera and analyzed with Neurolucida software (mbf Bioscience). 
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3.8 In vivo experiments 

 

3.8.1 In utero intraventricular injection and electroporation of plasmid  

         constructs 

Timed to E13.5 pregnant female CD1 mice carrying the floxed CSN5 allele 

(CSN5lox/lox, as determined by genotyping) were anesthetized via intraperitoneal (i.p.) 

injection with a mixture of ketamine (100 mg/kg body weight) and xylazine (10 mg/kg 

body weight). Eyes were protected from drying during the surgery by a drop of eye 

cream (Bepanthen eye and nose cream). The abdomen was shaved, cleaned with 

70% ethanol and a 3-cm long midline laparotomy was performed. The uterine horns 

were carefully exposed, placed on sterile gauze and hydrated with saline (0.9% NaCl 

solution), prewarmed to 37 ºC. 1-2μl of high concentrated expression plasmids (2-4 

μg/μl), mixed with fast green dye (for visualization of the injection), were 

microinjected into the lateral ventricle of mouse embryos using a glass micropipet 

and plunger (Drummond PCR micropipets, 1-10μl). After DNA injection, 

electroporations were performed using an Electro Square Porator ECM830 and 

tweezertrodes (BTX Genetronics). The developing cortex was targeted with 7-mm 

diameter tweezertrodes (BTX Genetronics) as described in (Nakahira and Yuasa 

2005) and five pulses with 40V, 50ms duration and with 950ms intervals were  

delivered to each embryo. After the embryos were injected and electroporated, the 

uterine horns were placed back in the abdominal cavity and antibiotic/antimitotic 

solution (100x stock solution, Invitrogen), diluted 1:100 in saline, was administered to 

reduce the risk of infection. Surgical sutures (Johnson & Johnson) were used to close 

the abdominal wall and skin and 7.5% povidone-iodine solution (Braunol) was 

applied to the abdominal skin around the sutures. For pain management, Metacam (1 

mg/kg body weight), diluted in saline, was injected subcutaneously in the neck after 

surgery and again 18 to 24 h later. The pregnant mouse was allowed to recover from 

the anesthesia on a heating plate at 30 ºC before it was placed back into a new clean 

cage (Saito and Nakatsuji 2001; Saito 2010; Saito 2006; Tabata and Nakajima 2001). 
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3.8.2 Generation of transgenic mice 

In this work we induced gene inactivation in vivo in a spatially and temporally 

restricted manner by making use of the Cre/loxP system (Hoess et al. 1982; Branda 

et al. 2004, Nagy 2000). Briefly, loxP (locus of crossover [x] of P1) sites are inserted 

into the gene of interest via homology-based gene targeting. The Cre (cyclization 

recombination, derived from bacteriophage P1) DNA recombinase recognizes and 

efficiently catalyzes the recombination between two pairs of loxP sites (the “floxed” 

fragments) (Argos et al. 1986) leading to excision of the DNA fragment. By driving 

Cre expression through a tissue-specific promoter it is possible to induce gene 

inactivation in a specific tissue or subpopulation of cells and/or a specific 

developmental stage (Gaveriaux-Ruff and Kieffer, 2007; Deussing, 2013). Additional 

temporal control over gene inactivation is obtained upon combination  of  a  floxed 

gene of interest  with  a  Cre  recombinase  that is fused  to  the  ligand-binding  

domain  of  the  estrogen  receptor  (CreERT2). This CreERT2 is restricted to the 

cytoplasm by the heat shock protein 90 (HSP90). Only in presence of 4-hydroxy 

tamoxifen (4-OH-TAM) it is able to translocate into the nucleus and disrupt the gene 

of interest (Feil et al. 1996). The advantage of this tamoxifen-inducible Cre is that it 

enables targeting of genes in the adult stage whose disruption during earlier 

developmental stages would be lethal.  

In this work, CSN5-floxed (CSN5lox/lox) mice were obtained from the research group 

led by Ruggero Pardi (Panattoni et al. 2008) and bred to the respective Cre-driver 

mouse lines which were available in our animal facility. For selective disruption of 

CSN5 in forebrain glutamatergic developing neurons, CSN5lox/lox mice were bred to 

NestinCre (Tronche et. al., 1999) and NexCre (Goebbels et al., 2006) mouse lines. 

For tamoxifen-inducible selective disruption in forebrain glutamatergic adult neurons, 

CSN5lox/lox mice were bred to the CaMKIIα-CreERT2 mouse line (Erdmann, Schütz, 

and Berger 2007). For morphological analysis of dendritic spines, CSN5CaMKIIα-CreERT2 

mice were bred to Thy1-eGFP mice that express GFP in a subset of neurons, 

including CA1 pyramidal neurons in the hippocampus and pyramidal neurons in the 

cortex (G. Feng et al. 2000). All mouse lines were maintained in a C57BL/6N genetic 

background. 
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Genotyping of Cre/iCre transgenic mice 

All animals used in this work were genotyped by PCR using the following primers: 

iCre-for1: 5’-GGT TCT CCG TTT GCA CTC AGG A-3’ 

iCre-rev1: 5’-CTG CAT GCA CGG GAC AGC TCT-3’ 

iCre-rev2: 5’-GCT TGC AGG TAC AGG AGG TAG T-3’ 

Cre-for: 5’-GAT CGC TGC CAG GAT ATA CG-3’ 

Cre-rev: 5’-AT CGC CAT CTT CCA GCA G-3’ 

CSN5-for: 5’-GGT CAG AAA GCT AGG CCT AAG AAG G-3’ 

CSN5-rev: 5’-GGC ATG CAT CAC TTT CAG TAG-3’ 

Thy1-for: 5’-TCT GAG TGG CAA AGG ACC TTA GG-3’ 

Thy1-rev: 5’-CCA CTG GTG AGG TTG AGG-3’ 

eGFP: 5’-GTC CTC CTT GAA GTC GAT GC-3’ 

Standard PCR conditions with primers CSN5-for and CSN5-rev resulted in a 397-bp 

wildtype and a 484-bp floxed CSN5 PCR product. In Cre-positive mice genotyping 

with primers Cre-for and Cre-rev resulted in a 574-bp Cre product. In the case of the 

tamoxifen-inducible CSN5CamKIIα-CreERT2 mouse line genotyping with iCre primers 

resulted in a 290-bp wild-type and a 375-bp Cre product. Genotyping of Thy1eGFP 

expressing mice resulted in a 593-bp eGFP and a 372-bp wild-type PCR product.  

 

3.8.3 Preparation of brain slices 

Electroporated and stereotactically injected animals were anesthetized with 

isoflurane (Forene®, Abbott) and transcardially perfused with a peristaltic pump for 1 

min with PBS, 5 min with 4% PFA (w/v) in PBS, pH 7.4, and 1 min with PBS at a flow 

of 10 ml/min. Brains were removed, post-fixed for 1h in 4% PFA at 4ºC and 

cryoprotected in 15% (w/v) saccharose in PBS, pH 7.6 overnight (o.n.) at 4 ºC. Brains 

were washed with PBS and schockfrozen on dry-ice for cryo-sections (MICROM HM 

560, ThermoScientific) or embedded in warm 4% (w/v) agarose (Invitrogen) in PBS 

for vibratome-sections (MICROM HM 650V, ThermoScientific). 20μm thick cryo-

sections and 50μm thick vibratome-sections were stored at -20 ºC in 

cryopreservation solution (25% (v/v) glycerol, 25% (v/v) Ethylenglycol, 50% (v/v) 

PBS, pH 7.4) until immunohistochemistry, DAPI staining and mounting. 
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3.8.4 Immunofluorescence stainings on brain sections 

Brain sections were washed 3x with PBS and permeabilized with PBS-TritonX-100 

0.1% 3x 5 min. After blocking in 5% BSA (w/v) in PBS-TritonX-100 0.1% for 1 h at 

room temperature, sections were incubated with primary antibodies diluted at an 

appropriate concentration in 5% BSA (w/v) in PBS-TritonX-100 0.01% o.n. at 4 ºC. 

After washing 3x 10min with PBS-TritonX-100 0.01%, sections were incubated with 

secondary antibodies, Alexa dye-conjugated antibodies (Invitrogen), diluted 1:1000 in 

5% BSA (w/v) in PBS-TritonX- 100 0.01% for 2h at RT. After that, brain sections 

were washed 3x 10 min with PBS-TritonX- 100 0.01%, stained with DAPI and 

mounted with anti-fading fluorescence VectaShield medium (Vector). 

 

3.8.5 Golgi staining on brain sections 

Golgi staining was performed using the FD Rapid GolgiStain Kit (FD 

NeuroTechnologies, Inc.). Animals were deeply anaesthetized using isoflurane 

(Forene®, Abbott) and subsequently transcardially perfused with a peristaltic pump 

for 10 min with 0.9% NaCl.  Then brains were dissected out, treated and prepared 

according to the manufacturer’s protocol. After Golgi treatment was completed, for 

the preparation of slices, brains were rinsed 3 times with PBS, embedded in warm 

4% (w/v) agarose (Invitrogen) in PBS and cut using a vibratome obtaining 200µm 

thick slices. The slices were mounted on pre-prepared 2 % gelatine glass slides and 

dehydrated by employing increasing alcohol concentrations according to the protocol 

issued by the manufacturer. After dehydration, slides were covered with Eukitt and 

coverslips and left to dry for 2 weeks in a dark and ventilated area.  
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3.9 Immunoblotting 

 

Cells and tissue was lysed in RIPA buffer (50mM Tris, pH 8.0, 150mM NaCl, 0,1% 

SDS, 1.0% NP-40 or Triton X-100 and 0.5% sodium deoxycholate) containing 

protease inhibitors (complete protease inhibitor tablets, Roche). Protein 

concentrations were measured using Bradford assay. For immunoblotting, protein 

samples were separated by 8-14% SDS-PAGE (Laemmli 1970) and transferred to 

0.45μm PVDF membranes (Millipore). Membranes were blocked in 5% nonfat milk 

(Roth) in TBS-Tween 20 0.01% (Sigma Aldrich) for 1 h at RT, followed by incubation 

with primary antibodies o.n. at 4ºC. Membranes were washed 3x 10 min with TBS-T 

0.01% and then incubated with the appropriate secondary horseradish peroxidase-

IgG-conjugated antibody for 2 h at RT. After 3x 10 min washing of membranes, 

signals were revealed by enhanced chemoluminescence (Millipore) and signal was 

acquired by ChemiDoc XRS+ (Bio-Rad Laboratories, Inc.). The obtained images 

were analyzed using Image Lab 6.0.1 software, measuring integrated intensities of 

gray values. All signals were normalized to their respective house-keeping protein 

control bands. 
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3.10 Behavioral experiments 

 

All experiments were performed with male CSN5CaMKIIαCreERT2
 mice that were equally 

old (eight weeks) and were habituated to single housing and test room conditions two 

weeks before testing. For induction of Cre activity, animals were fed with tamoxifen 

food pellets for one week, and behavioral testing was started after a one-week 

washout interval. Behavioral testing took place in the first half of the animals' dark 

period. Urine and feces were removed from the experimental setting after every 

individual animal to eliminate distraction of and possible cues for the following 

animal. 

 

Water - cross maze 

 
Figure 10: Photograph and schematic representation of the water – cross maze used for 

experiments (obtained from Kleinknecht et al. 2012)  

 

Assessing hippocampus-dependent spatial learning was performed as previously 

described (Kleinknecht et al. 2012). We used the water-cross maze (WCM, custom 

made, Max-Planck-Institute of Psychiatry) which is made from 5 mm thick clear 

acrylic glass and consists of four arms forming a cross (Figure 10). Each arm is 50 

cm long, 10 cm wide and 30 cm high. The arms are labelled North, South, East and 

West. The acrylic glass enables the mouse to visually orientate itself via distal extra-

maze cues in the experimental room, such as a sink, a small gray cabinet or tubes at  
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the ceiling and on the walls. On every test day the maze was filled with fresh tap 

water (23°C) up to a height of 11 cm. A platform made from the same acrylic glass 

was submerged at the end of an arm either left or right to the start arm, 1 cm below 

the water surface and thus invisible to the mouse. The arm opposite to the start arm 

was closed with a transparent plastic sheet. The testing room was dimly lit by four 

lights in every corner of the room emitting indirect regular spectrum light (14 lux at 

the level of the mouse). Before every trial, each mouse was brought from the 

adjacent holding room into the testing room, carefully taken out of its cage and 

placed into the start arm of the maze. Similarly to the classic Morris water maze, the 

WCM makes use of water-based motivation, but additionally allows for simple 

assessment of learning strategies. In order to locate the platform, the animal was left 

to explore the maze. The experimenter remained motionless behind the start arm in 

order to avoid distraction and cues to the platform´s position.  

The task for the mouse was to locate the platform correctly. Each animal performed 6 

trials per day, for 5 consecutive days. During this period, the animal was supposed to 

learn the position of the platform in the maze using external cues, thus decreasing 

the time spent in the maze and increasing its accuracy for primarily entering into the 

correct arm. The platform was always located in the same arm, however the starting 

position of the mouse was changed in a pseudorandom manner, ensuring that it 

would rely solely on external cues for locating the platform (i.e. place learning) and 

not on route following based on body turns (i.e. response learning). The water in the 

maze was renewed every day and cleaned from mouse feces after every individual 

trial. A trial was considered accurate (i.e., value 1), if the animal directly entered the 

arm containing the platform and climbed onto it. Other behavior was considered as 

non-accurate (i.e., value 0). Thus, accuracy reflects the percentage of accurate trials 

on each day per animal. 

Upon finishing the 5 day long learning protocol, mice were allowed 2 days rest and 

then subjected to a re-learning paradigm for 3 consecutive days, for which the 

position of the platform was changed.  
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Radial arm maze 

The radial arm maze is an experimental setup for assessment of working memory 

and was employed as previously described (Kiyota, Miyamoto, and Nagaoka 1991; 

Davis et al. 1986; Volpe et al. 1984). It consists of a round center with eight arms 

made from clear plexiglas all equally grouped around it. In our setup the maze itself 

did not contain any clues, the only clues were the ones in the room (e.g. a sink, a 

door, light tubes on the ceiling, etc.), easily recognizable through the transparent 

walls. Each mouse was placed in the center of the maze and then subsequently 

started exploring the arms around it. Every visit to every arm was noted, and as soon 

as all arms had been visited, the mouse was taken out of the maze. Ideally, a mouse 

would visit all arms without entering one that it already had entered before. Thus, the 

number of visits to arms it had already entered before were counted as mistakes and 

thus served to quantify working memory performance. Each animal was tested once 

a day for 6 consecutive days. In order to have a starting value, the average value 

from the first 3 days was calculated and plotted accordingly.  

 

Open field (OF) test 

The open field (OF) test was used to assess explorative behavior and general 

locomotor activity in a novel environment. Open field boxes (50 x 50 x 60 cm) were 

made up of grey polyvinyl chloride (PVC) and evenly illuminated (<15 Lux in order to 

minimize anxiety effects on locomotion). The test duration was 30 minutes. The 

parameters assessed were total distance travelled and immobility time using the 

ANY-maze software. 

 

Auditory and contextual fear conditioning 

Contextual  and  auditory  fear  memory  was  assessed  in  conditioning  chambers  

(ENV-307A, MED Associates) as previously described (Kamprath and Wotjak 2004; 

Refojo et al. 2011). Context-dependent fear memory was assessed in a cubic-

shaped conditioning chamber with metal grid floors that had been thoroughly cleaned 

and sprayed with 70% ethanol before each animal was introduced. Auditory (tone-

dependent) fear memory was assessed in a neutral context that was made up of a 

round plexiglas cylinder filled with bedding (sawdust, same as in home cage) and 

had been cleaned and sprayed with 1% acetic acid. For foot shock application (on  
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day 0) mice were placed into the conditioning chamber for 3 min. After a habituation 

phase of 180 sec, a flashing light and a sine wave tone (80 dB, 9 kHz) was  

presented for 20 sec (conditioned stimulus), which co-terminated with a 2 sec 

scrambled electric foot shock (unconditioned stimulus) of 0.7mA. The mice remained 

in the conditioning chamber for another 60 sec before they were returned to their 

home cages. In order to measure freezing responses to the conditioned stimulus, 

mice were placed into the neutral environment (plexiglas cylinder) on the following 

day (day 1). Three minutes later, a 3-min tone (80 dB, 9 kHz) was presented. The 

animals were returned to their home cages 60 sec after the end of tone presentation.  

Contextual (associative) fear was tested on day 2 by re-exposing the animals to the 

conditioning grid chamber for 3 min. All behavior during the conditioning and testing 

sessions was recorded on DVD for further off-line analysis. As a measure  of  fear, 

we assessed freezing behavior in both setups defined  as  the  absence  of  all 

movements except for respiration  and  the animal’s  head  remaining  in  a  

horizontal  position. Freezing was scored by a trained observer unaware of the 

experimental group by means of customized freeware software EVENTLOG.  

 

Tail suspension test (TST) 

Mice that are subjected to short term inescapable stress will become immobile. The 

tail suspension test (TST) was used to measure stress-coping behavior and was 

performed as previously described (Can et al. 2012; Steru et al. 1985). Each animal 

was attached to an aluminum rack by its tail with adhesive tape and left for six 

minutes hanging upside down approximately 10 cm above the ground. During this 

time the animal struggled, tried to escape and reach for the ground. Each animal was 

tested individually, only once and out of view from the other animals. Every animal 

was recorded using a camcorder und later the time struggling as a percentage of the 

total amount of time was measured. A previously described problem that occurred 

during this test is tail climbing, especially among C57BL/6 mice (Mayorga and Lucki 

2001). In our set of experiments this behavior occurred in 2 out of 24 animals. The 

recorded data from these animals was excluded from statistical analysis for this test. 
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3.11 Statistics 

 

Each set of numerical data shown was obtained in two to five independent 

experiments. Statistical analysis was carried out using GraphPad Prism 7 software. 

All values are given as mean ± SEM. Statistical significance was assessed using 

Student’s t test when appropriate. Comparisons between two variables, e.g. 

treatment and time were evaluated using two-way analysis of variance (ANOVA) 

followed by Bonferroni post-hoc test. When required, repeated measures (RM) 

ANOVA was applied. Differences were considered statistically significant at *p<0.05, 

**p<0.01, ***p<0.001 
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4. RESULTS 

 

 

4.1 CSN5 controls dendrite development in vitro 

 

It was previously shown that neddylation controls spine development during neuronal 

maturation and spine stability in mature neurons, and that inhibition of neddylation 

results in synaptic loss, impaired neurotransmission and severe cognitive deficits 

(Vogl et al. 2015).  A key regulator of neddylation, the COP9 signalosome (CSN), 

was shown to have multiple regulatory functions in a number of different tissues and 

diseases (Chamovitz 2009; Cope and Deshaies 2003; Schwechheimer 2004; 

Richardson and Zundel 2005). However, in the brain, the function of the CSN as a 

key regulator of neddylation, is still poorly understood. In the Drosophila larval 

peripheral nervous system (PNS) CSN was demonstrated to act as a multilayer 

regulator of dendritic arborization, both stimulating and repressing dendritic 

branching via control of different cullins (Djagaeva and Doronkin 2009b; Djagaeva 

and Doronkin 2009a). Beyond these findings there is no study that characterizes 

CSN in neuronal development of the rodent brain.  

As an initial approach to studying the role of CSN in neuronal development we 

knocked down its catalytic subunit CSN5 which harbors the deneddylase activity, in 

vitro. Primary neuronal cell cultures from the cortex and hippocampus of CSN5lox/lox 

mice were prepared and transfected with a Cre containing plasmid at DIV 7 in order 

to induce loss of CSN5 in these neurons. One week later (at DIV 14) the neurons 

were fixed and subjected to morphological analysis measuring both total dendritic 

length and complexity of the dendritic network, as quantified by Sholl analysis.  

Total dendritic length of hippocampal neurons and dendritic arborization of both 

hippocampal and cortical neurons as measured by Sholl analysis was found reduced 

whereas total dendritic length of cortical neurons remained unchanged (Figure 11). 
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The COP9 signalosome was shown to carry a variety of functions besides acting as a 

deneddylase on cullin proteins (Chamovitz 2009). We consequently wondered if the 

effects we saw in our first experiment were mediated by the loss of deneddylating 

activity of CSN5 or by loss of its other referred functions. In order to answer this 

question we established an experimental setup in which we would deplete cells of 

CSN5 in vitro and simultaneously transfect either CSN5wt or CSN5D151N, a mutated 

form that lacks the deneddylase activity but retains all the other functions of the CSN 

(Ambroggio, Rees, and Deshaies 2004; Peth et al. 2007; Y. Y. Choo et al. 2011b). 

Consequently, primary neurons from CSN5lox/lox mice were transfected at DIV 4 with 

Cre and either CSN5wt or CSN5D151N. At DIV10, dendritic morphology was analyzed  

as before. We observed that rescue of CSN5 function with CSN5wt restored total 

dendritic length, however results were not significant. No significant difference in total  
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dendritic length or dendritic complexity was observed between CSN5+/+ and CSN5-/- 

+ CSN5D151N neurons (Figure 12). 
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4.2 CSN5 controls neuronal migration as demonstrated by in utero  

      electroporation 

 

The in utero electroporation technique allows for manipulating neuronal precursors in 

vivo without disturbing the physiological environment of the developing cortex (Saito 

and Nakatsuji 2001; Tabata and Nakajima 2001). In order to investigate CSN5 

function during cortex formation we performed in utero electroporation on CSN5lox/lox 

mice at E13.5, i.e. injected and electroporated constructs with a Cre containing 

plasmid or empty vector as control, a GFP reporter for Cre activity and RFP for 

visualization. At postnatal day 2 (P2) brains were dissected out and fixed (Figure 13). 

As apparent from cortical cross-sections, loss of CSN5 leads to a defect in radial 

migration of pyramidal neurons, evident in an overmigration phenotype. Control 

neurons migrated to the upper cortical layers and were distributed throughout layer II 

and III of the cortex, whereas neurons expressing GFP as a reporter of Cre activity 

migrated too far and were lined up at the apical border of layer II, directly adjacent to 

layer I (the former marginal zone). 
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4.3 Loss of CSN5 in vitro has more pronounced effects on neuronal  

      morphology if induced early  

 

In the previous experiments, loss of CSN5 in vitro was induced at E17.5 +DIV4 or 

+DIV7, respectively, and resulted in minor or no reduction of total dendritic length and 

neuronal complexity. Knockdown of CSN5 by in utero electroporation was performed 

at E13.5 and resulted in an apparent overmigration phenotype. This observation 

raises the question if knockdown of CSN5 earlier in embryonic development affects 

only neuronal migration or changes neuronal morphology, too, if these cells were left 

to develop in vitro. To answer this question we carried out in utero electroporation at 

E13.5 as before but harvested the electroporated cells four days later, at E17.5, from 

the embryonic brain and left them to develop in vitro. At DIV 14 morphological 

analysis revealed a more pronounced reduction of both total dendritic length and 

dendritic arborization in the Cre - transfected neurons (Figure 14). 
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4.4 Studying COP9 function in vivo employing the Cre/LoxP System 

 

Conditional CSN5CaMKIICreERT2 KO mouse 

The effects we observed in vitro raise the question whether loss of CSN5 would lead 

to similar results in vivo.  

As previously described, constitutive knockout of CSN5 is embryonic lethal (Tomoda 

et al. 2004). To overcome this limitation we made use of the Cre-LoxP system. 

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) belongs to the 

serine/threonine protein kinases family (Wayman et al. 2008), is crucial for calcium 

signaling and involved in several aspects of plasticity at glutamatergic synapses such 

as hippocampal long-term potentiation (LTP) and spatial learning (Lamsa et al. 

2007). By breeding CSN5lox/lox animals to a CaMKIIα-CreERT2 mouse strain we 

established a tamoxifen-inducible knockdown of CSN5 confined to glutamatergic 

neurons of the forebrain, i.e. particularly the cortex and hippocampus.  

At the age of eight weeks, after transitioning normally through embryonic and 

postnatal stage, animals were injected with 1mg tamoxifen twice per day for 5 

consecutive days in order to induce Cre activity and subsequent loss of CSN5 in the 

forebrain. As control littermates we used CSN5lox/lox mice that were equally 

administered tamoxifen but lacked the inducible CreERT2 recombinase as confirmed 

by genotyping.  After a washout of 1-2 weeks, effectiveness of the knockout was 

proven by immohistochemistry, in situ hybridization and immunoblotting (Figure 15).  

In CSN5CaMKIICreERT2 mice, CSN5 as detected by immunofluorescence was reduced 

in the cortex and, more pronounced due to a higher density of neurons and less glial 

cells, in the CA1 region and the dentate gyrus of the hippocampus (Figure 15.A). 

Similar results were obtained on the mRNA level, as shown by in situ hybridization 

(Figure 15.B). As an additional readout, western blot on protein extracts from cortex 

and hippocampus showed a strong reduction of CSN5, an increase of neddylation of 

cullin 1 and accumulation of NEDD8 in the KO (Figure 15.C). Downstream targets of 

NEDD8 (p27, IkB and cyclin D3) are enriched in the KO to a varying extent (Figure 

15.D). 
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4.5 CSN5 controls dendrite development in vivo 

 

Golgi stain is a reliable method to visualize neuronal morphology in situ and has 

previously been used in knockout studies of genes controlling dendritic development 

(Cubelos et al. 2010). In order analyze dendritic morphology in situ we performed 

Golgi stain on whole brain sections obtained from our CSN5CaMKIICreERT2 mice (Figure 

16). In situ tracings reveal that total dendritic length in both cortical and hippocampal 

neurons and dendritic complexity in cortical neurons is significantly reduced in 

CSN5CaMKIICreERT2 mice versus CSN5Control. 
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4.6 Spine density is not affected by loss of CSN5 in vivo 

 

It was shown previously that inhibition of neddylation affects spine development (Vogl 

et al. 2015). Conversely, consequences of inhibition of CSN5 for spine maintenance 

in vivo have been untested. By breeding CSN5CaMKIICreERT2 animals to a Thy1-eGFP 

mouse strain (G. Feng et al. 2000) we obtained mice that  express GFP in the same 

subset of neurons that lack CSN5, including CA1 pyramidal neurons in the 

hippocampus and pyramidal neurons in the cortex. This allowed for accurate analysis 

of dendritic spines using confocal microscopy. Spine number on secondary apical 

dendrites of both cortical and hippocampal pyramidal neurons was analyzed and 

found unchanged between KO and control (Figure 17).  
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4.7 Behavioral assessment of CSN5CaMKIICreERT2
 mice 

 

As changes of dendritic morphology were shown to be associated with cognitive 

deterioration (Kaufmann and Moser 2000) we subjected CSN5Control and 

CSN5CaMKIICreERT2 mice to a comprehensive battery of behavioral tests. 

In the open field test (Figure 18.A), CSN5CaMKIICreERT2 mice exhibited increased 

immobility time (CSN5Control = 723 ± 20.65s vs CSN5CaMKIICreERT2 = 850.7 ± 46.92s; t 

= 2.316, p = 0.0302, mean ± SEM, two-tailed unpaired Student´s t test), reduced 

distance travelled (CSN5Control = 6598 ± 209.9cm vs CSN5CaMKIICreERT2 = 5456 ± 

416.1cm; t = 2.431, p = 0.0237, mean ± SEM, two-tailed unpaired Student´s t test) 

and hypolocomotion throughout the entire 30 min test duration (two-way RM-ANOVA, 

genotype x time interaction F(5, 110) = 0.822, p = 0.5366, genotype F(1,22) = 5.91, p 

= 0.0237, time F(5, 110) = 15.64, p < 0.0001; Bonferroni post hoc test: 1-5 min p = 

0.6842, 6-10 min p = 0.1636, 11-15 min p = 0.2126, 16-20 min p = 0.8688, 21-25 min 

p = 0.2244, 26-30 min p = 0.0247).  

Spatial, hippocampus-dependent memory performance was assessed with the water 

cross maze (WCM) and did not differ between the two groups (two-way RM-ANOVA, 

accuracy: time × genotype interaction, p = 0.2995, F (4, 72) = 1.245; genotype, p = 

0.9483, F (1, 18) = 0.004317; time, p < 0.0001, F (4, 72) = 18.57; Bonferroni post hoc 

test, accuracy: day 1, p = 0.8303; day 2-5, p > 0.9999). No difference was observed 

during the re-learning paradigm (two-way RM-ANOVA, accuracy: time × genotype 

interaction, p = 0.9195, F (2, 36) = 0.08411; genotype, p = 0.3501, F (1, 18) = 

0.9201; time, p < 0.0001, F (2, 36) = 82.01; Bonferroni post hoc test, accuracy: day 

1-3, p > 0.9999) (Figure 18.B).  

Short term memory performance was tested with the radial arm maze and not found 

compromised (two-way RM-ANOVA, accuracy: time × genotype interaction, p = 

0.7970, F (3, 42) = 0.3393; genotype, p = 0.5040, F (1, 14) = 0.4704; time, p = 

0.6321, F (3, 42) = 0.5789; Bonferroni post hoc test, accuracy: avg day 1-3 and day 

4-6, p > 0.9999) (Figure 18.C).  
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The fear conditioning experiment in which animals were re-exposed to the tone 24 h 

after conditioning and to the context 48h after conditioning revealed no deficits in 

both cue- and context-dependent fear memories, as expressed by the percentage of 

time that was spent freezing (contextual fear memory: CSN5Control = 19.33 ± 3.932% 

vs CSN5CaMKIICreERT2 = 30.4 ± 5.603%; t = 1.617, p = 0.1282; auditory fear memory: 

CSN5Control = 25.96 ± 2.647% vs CSN5CaMKIICreERT2 = 32.7 ± 4.369%; t = 1.359, p = 

0.1974; mean ± SEM, two-tailed unpaired Student´s t test) (Figure 18.D). Stress 

coping behavior was evaluated in the tail suspension test and found equal between 

the two groups, as expressed by the percentage of time that the animals spent 

struggling (CSN5Control = 32.33 ± 1.504% vs CSN5CaMKIICreERT2 = 32.04 ± 1.173%; t = 

0.1537, p = 0.8794; mean ± SEM, two-tailed unpaired Student´s t test) (Figure 18.E).  

Body weight of CSN5CaMKIICreERT2 animals was found increased compared to 

CSN5Control before, during and after the behavioral testing (two-way RM-ANOVA, 

accuracy: time × genotype interaction, p = 0.0017, F (2, 28) = 8.076; genotype, p = 

0.0010, F (1, 14) = 17.02; time, p < 0.0001, F (2, 28) = 17.16; Bonferroni post hoc 

test, accuracy: day 1, p = 0.0281; day 6, p = 0.0241, day 28, p < 0.0001) (Figure 

18.F). 
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4.8 Embryonic knockdown of CSN5 confined to the central nervous  

      system in vivo is associated with embryonic lethality 

 

Based on the observations from our in utero electroporation experiments performed 

at E13.5 we aimed for knockdown of CSN5 in vivo in the early embryonic stages of 

brain development. In order to do so we bred CSN5lox/lox animals to a NestinCre and 

NexCre mouse line, respectively. The Nestin promoter and neural enhancer drives 

Cre expression in neuronal and glial precursors, i.e. proliferating cells, as early as 

embryonic day 10.5 (Tronche et al., 1999; Dubois et al., 2006). The helix-loop-helix 

transcription factor Nex (also known as NeuroD6/Math2) is a marker of embryonic 

cortical neuronal precursors and is expressed starting at E11.5 (Wu et al., 2005). In 

the adult brain Nex is expressed in mature glutamatergic cortical neurons. 

Accordingly, NexCre-mediated recombination is essentially restricted to postmitotic 

glutamatergic neurons of the telencephalon: the olfactory bulb, projection neurons of 

the cortex, pyramidal neurons of the CA1 and CA3 regions of the cornus ammoni, 

granule cells of dentate gyrus, glutamatergic mossy cells of the hilus of the dentate 

gyrus and the cortical-related amygdaloid nuclei (Goebbels et al., 2006).  

Thus, the observations from this experiment result either from early, i.e. in 

proliferating precursors, or later, i.e. in post-mitotic cells, embryonic knockdown of 

CSN5 in vivo.  

Interestingly, we were not able to obtain CSN5NestinCre –positive animals or embryos 

despite repeated breedings, which leads us to believe that the NestinCre mediated 

loss of CSN5 in these animals is early embryonic lethal.  

In contrast, we were able to obtain CSN5NexCre embryos but not viable newborn 

animals. Analysis of morphology on the embryos showed no alterations in size, 

shape or symmetry (Figure 19). However, we found that some animals from this 

cohort died early at postnatal day 1 (P1), i.e. within hours after birth, without 

significant reason. This leads us to believe that NexCre mediated loss of CSN5 

starting around E11.5 in post-mitotic glutamatergic neurons may cause functional 

alteration of electrophysiological properties or disruption of brain circuitry, which 

ultimately results in late embryonic or early postnatal death. 
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5. DISCUSSION 

 

The purpose of the present work was to characterize the role of the COP9 

signalosome in the mouse brain with focus on neuronal morphology, embryonic brain 

development, cognitive function and stress-coping behavior by disrupting its catalytic 

subunit CSN5. The COP9 signalosome has been studied extensively in various 

tissues and cell lines and was found involved in diverse developmental and 

physiological processes including, but not limited to embryonic development, immune 

responses, cell cycle control, and cardiovascular function (Lykke-Andersen et al. 

2003; Su et al. 2011; Tomoda et al. 2004; Panattoni et al. 2008; Lei et al. 2011). In 

the brain, it has been implicated in a number of neurological diseases (Wang et al. 

2015; Oono et.al. 2004; Akanima et. al. 2003; Potocki et al. 2000; Potocki et al. 1999; 

Elsea et al. 1999). CSN5 was shown to co-localize with Nedd8 during murine 

embryogenesis (Carrabino et. al 2004) and, in the brain, Nedd8 was shown to be 

expressed throughout embryonic development and critically involved in maintenance 

and maturation of spines via the synaptic protein PSD95 (Vogl et al. 2015). Being a 

critical regulator of Nedd8, the role of CSN in the mouse brain for the most part has 

remained unexplored. 

 

 

5.1 Dendritic morphology is controlled by CSN in vitro and in vivo 

 

It was shown previously in Drosophila that the COP9 signalosome regulates dendritic 

development in larval peripheral nervous system (PNS) neurons by either stimulating 

or repressing dendritic branching via control of different cullins (Djagaeva and 

Doronkin 2009b; Djagaeva and Doronkin 2009a). In this work we show that 

knockdown of CSN5, the catalytic center of CSN, is associated with reduced 

dendritic length and complexity in mouse pyramidal neurons in vitro and in vivo. As 

opposed to the observations in Drosophila we did not notice excessive branching.  
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Interestingly, the reduction of dendritic length and dendritic complexity was greater 

when loss of CSN5 was induced in utero. This observation hints at a stronger  

regulatory function during the embryonic phase of brain development than in the 

postnatal state – a conclusion which is supported by studies that found CSN5 

involved in neuronal differentiation. Mechanistically, it was shown recently that CSN5 

interacts with Copine1 (CPNE1), a calcium-dependent phospholipid-binding protein 

that plays a role in calcium-mediated intracellular processes (Yoo et al. 2018). Its 

loss in primary neural stem cells derived from mouse embryonic hippocampus was 

associated with decreased proliferation and multi-lineage differentiation potential, and 

downregulated mTOR signaling (T. H. Kim et al. 2018). In the mouse brain, CPNE1 

was found higher expressed in earlier embryonic stages (i.e. E11 and E15) 

compared to postnatal and adult stages. As we performed in utero electroporation at 

E 13.5 and observed a stronger reduction of dendritic morphology than in later 

transfected primary neurons and the CSN5CamKIICreERT2 mouse line it may be argued 

that CSN5 exerts its regulatory function during embryonic brain development via 

CPNE-1. Complementary to our experiments in which knockdown of CSN5 reduced 

dendritic morphology, overexpression of both CPNE1 and CSN5 in Nestin-positive 

HiB5 cells effectively increases neurite outgrowth, suggesting that CSN5 positively 

regulates the neuronal differentiation ability of CPNE1 (Yoo et al. 2018).  

 

The anaphase-promoting complex (APC) is a large multi-subunit E3 ubiquitin ligase 

that contains the cullin homologue apc2 (Yamano 2019; Z. Zhou et al. 2016; Alfieri, 

Zhang, and Barford 2017). In addition to cullin1 and cullin3, which mediate the effects 

of CSN on dendritic morphogenesis in Drosophila (Djagaeva and Doronkin 2009b; 

Djagaeva and Doronkin 2009a), anaphase promoting complex 2 (apc2) may 

constitute another target of CSN. Although apc2 lacks the carboxyl-terminal Nedd8 

consensus sequence and is therefore functionally distinct from the other cullins 

(Brown and Jackson 2015), it was shown that the COP9 signalosome interacts with 

APC independently of Nedd8 (Kob et al. 2009). In cerebellar granule neurons, 

shRNA mediated knockdown of CDC20-APC decreases total dendrite length in vitro 

and in vivo (A. H. Kim et al. 2009), which is consistent with our results from the 

knockdown of CSN in pyramidal neurons. Further evidence is needed to  
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elucidate the extent of CSN interaction with APC and its implications for the 

development of neuronal morphology.  

  

 

5.2 Assessment of spine density and cognitive performance upon  

      disruption of CSN in glutamatergic pyramidal neurons 

 

It was reported  previously from our laboratory that inhibition of neddylation in the 

adult mouse brain via knockdown of NAE1 by an inducible CaMKIICreERT2 results 

in severe reduction of spine density and size in both cortical and hippocampal 

pyramidal neurons and is associated with specific cognitive deterioration (Vogl et al. 

2015). In the present work we identified that inhibition of deneddylation via 

knockdown of CSN5 by an inducible CaMKIICreERT2 does not affect spine density 

on cortical or hippocampal pyramidal neurons. A comprehensive battery of 

behavioral tests revealed reduced locomotor activity and increased body weight in 

the KO but no further specific cognitive deterioration, especially no compromise of 

spatial or working memory, as would have been expected given the localization of 

these functions in the cortex and hippocampus. This finding hints at a rather marginal 

role of the COP9 signalosome for spine maintenance in the adult brain or, 

alternatively, at the presence of sufficient compensatory mechanisms. Respective the 

moderately increased body weight of our KO group compared to control, it cannot be 

answered if this increase is attributable i) to the expression of the Cre, ii) to the 

deletion of the transgene or iii) to an increase in sedentary behavior as suggested by 

the open field test independent of the expression of the Cre or the deletion of the 

transgene. Various effects on metabolism and physiology induced by the Cre-based 

technology have been reported (Harno, Cottrell, and White 2013). Although reduced 

body weight was found a general feature in the Nestin-Cre mouse line and can be 

attributed to a mild hypopituitarism (Giusti et al. 2014; Galichet, Lovell-Badge, and 

Rizzoti 2010), the finding of increased body weight in CaMKII-CreERT2 mice is new 

and was not described in the initial report by Erdmann et al. (2007).  
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5.3 CSN exhibits a developmental stage dependency 

 

We show that knockdown of CSN5 by in utero electroporation, apart from reducing 

dendritic arborization, disturbs cortical layering, apparent in an overmigration 

phenotype. Perturbations in cortical layering result from defective neuronal migration 

during the formation of the cortical plate. Migration is coordinated through 

rearrangement of the cellular cytoskeleton and the cell membrane proteins (which 

involve cell surface receptors, cell adhesion proteins and intracellular signalling 

cascades) (Hippenmeyer 2014; Walsh and Goffinet 2000; Lui, Hansen, and 

Kriegstein 2011). The extracellular protein reelin which is secreted by Cajal–Retzius 

cells in the marginal zone of the developing cortex is significant for neuronal 

migration during cortical development.  Disruption of reelin function causes 

disintegration of the layered cortical cytoarchitecture (Tissir and Goffinet 2003; 

Förster et al. 2006; Lambert de Rouvroit and Goffinet 2001). Reelin itself was found 

to be controlled through ubiquitin-dependent degradation (Arnaud, Ballif, and Cooper 

2003). Specifically, it was found that cullin 5 which serves as core scaffold for 

ubiquitin ligases (Okumura et al. 2016) and is modified by Nedd8  (Hori et al. 1999) 

regulates neuron positioning via Disabled-1 (Dab1) (L. Feng et al. 2007; Simó, 

Jossin, and Cooper 2010). Cullin-based ubiquitin ligases are regulated by the COP9 

signalosome (Y. Y. Choo et al. 2011b; Merlet et al. 2009; Cavadini et al. 2016; Z. Zhu 

et al. 2019; Lamsoul et al. 2016). Our finding of defective neuronal migration in 

consequence of disruption of the COP9 signalosome lets us hypothesize that 

impaired deneddylation may affect the functioning of cullin-RING ligases and thus 

perturb downstream targets such as Dab1 or brain-specific kinase 2 (BRSK2). 

BRSK2 is a human serine/threonine-proteine kinase, highly expressed in the 

mammalian forebrain and was associated with neurodevelopmental disorders (Hiatt 

et al. 2019). It was shown that CSN5 interacts with BRSK2 and promotes its 

ubiquitin-dependent degradation (J. Zhou et al. 2012). Interestingly, BRSK2 shares 

high sequence homology with two mice SAD (synapses of amphids defective) 

kinases. SAD kinases have emerged as key regulators of neuronal polarization, axon  
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arborization and synapse maturation (Kishi et. al. 2005; Xing et al. 2013; Lilley et al. 

2014; Barnes et al. 2007; Wu et al. 2015). Knockdown of both SAD kinases in mice 

causes defects in neuronal polarity and death within 2 hours after birth (Kishi et. al. 

2005). It was shown that CSN5 co-localizes with BRSK2 in the perinuclear region, 

promotes its ubiquitination and proteasome-dependent degradation. CSN5 also 

promotes also cell cycle progression in a BRSK-dependent manner (J. Zhou et al. 

2012). These findings are well in line with our observation of newborn NexCre 

animals dying at P1 and may suggest impaired circuitry formation as a possible 

cause.  

Brain-1 and -2 (Brn-1/-2) are transcriptions factors that are expressed in the 

developing neocortex (He et. al 1989). Disruption of both Brn-1 and Brn-1 leads to 

hypoplastic neocortex with inversion, and selective knockdown of Brn-1 causes renal 

malformation and is lethal within 3 days after birth (McEvilly et. al. 2002). 

Homozygous deletion of Brn-2 does not impair neuroblast proliferation, generation of 

postmitotic neurons or lateral migration to correct loci but is lethal within 10 days after 

birth due to failure of differentiation of migratory precursor cells into mature 

neurosecretory neurons in the paraventricular nuclei (PVN) and the supraoptic nuclei 

(SO) of the hypothalamus and the posterior pituitary gland. The subsequent death of 

these neurons results from inability to activate genes encoding regulatory 

neuropeptides or to make correct axonal projections (Nakai et al. 1995; Schonemann 

et al. 1995). In fact, Brn-2 protein is found exclusively in postmitotic cells, indicating 

that, in the developing neocortex, Brn-2 may be involved in the maturation process of 

immature neuronal cells (Hagino-Yamagishi et. al. 1997). As CSN5 was shown to 

bind Brn-2  (Huang et al. 2005) it may be argued that the effects we observed after 

knockdown of CSN5 in the embryonic brain in part result from impaired interaction of 

Brn-2 with CSN5. 
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5.4 Need for further investigation beyond deneddylation of cullins 

 

The COP9 signalosome has been described primarily as a deneddylator of cullins, 

whereas DEN1 (NEDP1) is thought of as a deneddylator of non-cullin proteins (Chan 

et al. 2008; Gan-Erdene et al. 2003; Cope and Deshaies 2003; Wolf, Zhou, and Wee 

2003). Apart from cullins, only p53, p73, EGFR, PINK1, parkin and PSD95 were 

verified as substrates of the Nedd8 pathway (Harper 2004; Oberst et. al. 2005; Oved 

et al. 2006; Um et al. 2012; Choo et al. 2012; Vogl et al. 2015). Bearing in mind that 

CSN function is not limited to protease activity (Chamovitz 2009; Wei, Serino, and 

Deng 2008), the mechanisms of regulation of neuronal development by the COP9 

signalosome remain to be elucidated. Mechanistically, it may be that i) executing 

proteins constitute downstream targets of E3 ubiquitin-RING ligases, ii) additional 

proteins (other than cullins) are deneddylated by CSN and/or iii) CSN exerts its 

function in neuronal development as a transcriptional regulator or corepressor.  
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