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Abstract 

In condition monitoring of cutting inserts for machine tools, vision-based solutions enable detailed wear pattern analysis. Besides the main failure 
modes of flank wear and tool breakage, other defects, such as chipping, grooves, and build-up-edges, can be detected and quantified. However, 
manual analysis of the images is time consuming and traditional machine vision systems have limited capabilities adapting to changing situations, 
such as different insert types. As a result, robust machine learning techniques are researched to support the process of classifying images and 
detecting defects through image segmentation. For the latter, a variety of highly optimized networks exists. Still, these networks require tuning 
by machine learning experts. In contrast, automated machine learning is a recent trend that greatly reduces these efforts through automated 
network selection and hyperparameter optimization. In this study, automated machine learning is compared with manually trained segmentation 
networks on the example of tool condition monitoring. To achieve this, a heterogeneous dataset of over 200 industrial cutting tool images is 
recorded and evaluated. Comparing the manually trained segmentation networks to the automated machine learning framework, it is determined 
that the automated machine learning solution is easier to handle, faster to train and achieves better accuracies than other approaches.  
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1. Introduction 

In industrial manufacturing, optimizing machining 
processes is important to reduce manufacturing costs and 
increase workpiece quality. One of the main cost drivers in 
subtractive manufacturing is the cutting tool as it gets worn out 
during machining and needs to be replaced and reworked 
frequently. Thus, for cost efficient machining, it is essential to 
use cutting tools as long as possible but exchange them before 
the product quality drops. For that reason, tool condition 
monitoring (TCM) systems are used to monitor the cutting tool 
condition during operation and prevent the machine from 
damage in case of a broken tool. [1, 2]  

For signal processing in TCM, machine learning (ML) has 
become a popular method. ML provides the advantage of 
deducing knowledge from data instead of manually modeling 
the relations between cause and effect. Typical use cases 
include recommendations on e-commerce websites, real-time 
object detection for autonomous driving [3], process 
monitoring, and optimization in production [4].  

Existing applications can be grouped in three categories. 
The first of these categories includes classification tasks where 
the goal is to determine one of many classes an image 
represents. Such an example can be found in [5] where Liu et 
al. use Convolutional Neural Networks (CNNs) to assign a 
class to a given image indicating the level of wear. The goal of 
the second category, regressions, is to determine one or 
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1. Introduction 

In industrial manufacturing, optimizing machining 
processes is important to reduce manufacturing costs and 
increase workpiece quality. One of the main cost drivers in 
subtractive manufacturing is the cutting tool as it gets worn out 
during machining and needs to be replaced and reworked 
frequently. Thus, for cost efficient machining, it is essential to 
use cutting tools as long as possible but exchange them before 
the product quality drops. For that reason, tool condition 
monitoring (TCM) systems are used to monitor the cutting tool 
condition during operation and prevent the machine from 
damage in case of a broken tool. [1, 2]  

For signal processing in TCM, machine learning (ML) has 
become a popular method. ML provides the advantage of 
deducing knowledge from data instead of manually modeling 
the relations between cause and effect. Typical use cases 
include recommendations on e-commerce websites, real-time 
object detection for autonomous driving [3], process 
monitoring, and optimization in production [4].  

Existing applications can be grouped in three categories. 
The first of these categories includes classification tasks where 
the goal is to determine one of many classes an image 
represents. Such an example can be found in [5] where Liu et 
al. use Convolutional Neural Networks (CNNs) to assign a 
class to a given image indicating the level of wear. The goal of 
the second category, regressions, is to determine one or 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.10.031&domain=pdf


216	 B. Lutz  et al. / Procedia Manufacturing 51 (2020) 215–221
2 B. Lutz et al. / Procedia Manufacturing 00 (2019) 000–000 

multiple continuous variables from the provided data, such as 
the exact flank wear width. As an example, [6] implements a 
regression model to predict surface roughness and tool wear 
condition. Thirdly, image segmentation approaches are 
investigated. These contain the most information as the 
algorithm’s primary goal is to determine the meaning, i.e. the 
respective class, of each pixel in the image, thus detecting 
different regions of interest. This information can then 
consecutively be further processed to compute a variety of 
metrics. In [7], a window-based approach is proposed showing 
that image segmentation using CNNs is capable of detecting 
and differentiating between different type of wear defects. 

Image segmentation is used in various areas, such as 
autonomous driving [8], medical imaging [9, 10], augmented 
reality [11], and satellite observation [12]. However, adapting 
existing solutions to a new problem or designing a completely 
new network requires high expertise. This is a major challenge 
for implementing such solutions. 

Alternatively, automated machine learning (AutoML) is a 
recent trend in ML with the goal of focusing on the application 
rather than the model. Using AutoML, it is only necessary to 
provide the data and formulate the broad learning task, while 
the model selection and optimization is carried out by the 
respective framework. [13] investigates different AutoML 
tools and concludes that these tools are useful, but human input 
cannot be replaced. 

As shown in [7], semantic image segmentation can be 
applied for tool condition monitoring of cutting tool inserts. 
However, the proposed approach requires expertise for set-up 
and is computational expensive due to the high amount of 
predictions that must be carried out. Thus, in this paper, both 
one-pass semantic segmentation networks and the sliding-
window semantic segmentation algorithm merged with 
AutoML are investigated. All approaches are benchmarked on 
several quantitative and qualitative criteria.   

First, different one-pass image segmentation networks are 
reviewed and the concept of using AutoML for the semantic 
segmentation task is explained in Section 2. In Section 3, the 
experimental settings and the training procedure for both one-
pass networks and the AutoML integrated sliding window 
approach is detailed. Section 4 is dedicated to the comparison 
and evaluation of the experiment results of one-pass image 
segmentation networks and AutoML semantic segmentation. 
Section 5 concludes the paper and outlines future research 
activities. 

2. Methods 

 ML has become a new trend for data analysis in industrial 
applications, learning relationships from data rather than labor-
intense manual modeling. Deep learning, as a subset of ML, 
has been studied and used for various vision tasks in recent 
years thanks to a higher amount of data available and 
progresses in the development of graphics processing unit 
(GPU) technologies. These improvements make it possible to 
train complex artificial neural networks (ANNs) in a faster 
way.  

Especially CNNs, a type of ANN, are a promising 
alternative in many vision applications [14]. These networks 

consist of two main parts. In the first convolutional part, 
convolutional layers detect two-dimensional features through 
multiple filters being applied to the input image. Detected 
features are aggregated through consecutive convolutional 
layers, with deeper convolution layers detecting more detailed 
and precise features. Furthermore, the filters are translation 
invariant, which allows for the detection of the same feature at 
different parts of the image. In each convolutional layer, the 
input image is downsampled, decreasing the image resolution. 
The second fully connected part consists of fully connected 
layers, whose last layer outputs the class probabilities. The 
class of the image is determined as the class with the highest 
probability at the output layer. [14] 

2.1. Segmentation networks 

Unlike image classification networks, image segmentation 
networks assign a class to every pixel in the input image. Thus, 
image segmentation networks are designed as encoder-decoder 
networks, where the encoder part is a convolutional network 
like in classification networks. Instead of aggregating the 
detected features after the convolutional part to a single class 
by a fully connected network, the decoder part is a reversed 
convolutional neural network increasing the image size with 
every layer until the original dimensions are met. Typically, the 
final output layer of such a network has the same width and 
shape as the input image, with the third dimension showing the 
class of each pixel. [15] 

The size of the receptive field is the implication of how 
much contextual information is used during the segmentation 
task. Multi-scale semantic segmentation networks have filters 
with different receptive fields in convolutional layers, which 
allows the network to take advantage of global information 
during segmentation [16, 17]. 

In recent years, much research has been carried out to find 
and optimize architectures for image segmentation algorithms 
using deep learning. These have been used in various fields as 
mentioned in Section 1. It is assumed that an architecture 
designed for one application can also be applied to a different 
application. Thus, several state-of-the-art networks, FCN [18], 
U-Net [9], SegNet [19], LinkNet [20], and PSPNet [16], are 
compared for one-pass semantic segmentation in cutting tool 
images. The characteristics of each network are introduced 
briefly. More details about each architecture can be found in 
the respective original articles. FCN, U-Net, SegNet, and 
LinkNet are encoder-decoder networks, while PSPNet is a 
multi-scale network.  

FCN is an end-to-end encoder-decoder image segmentation 
network. The decoder module upsamples the output image 
coming from the encoder module with a skip architecture, 
which combines semantic information from shallow layers in 
the encoder module with deep layers in the decoder module. 
Thereby, finer segmentation outputs can be obtained. [18] 

U-Net was proposed for biomedical image datasets with a 
small amount of training data. For effective network training, 
U-Net applies strong data augmentation. The decoder module 
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has a skip architecture where entire feature maps in the encoder 
module are concatenated with upsampled outputs in the 
decoder module. [9] 

SegNet is developed as a time and memory efficient 
encoder-decoder network. To achieve this, SegNet stores the 
maximum indices obtained during maximum pooling in the 
encoder module to be used for upsampling in the decoder 
module. Afterwards, the upsampled maps are inserted into the 
convolutional layers with trainable filters to obtain dense 
results in the decoder module. [19] 

LinkNet aims to construct a real-time image segmentation 
network. For this reason, the encoder network is an image 
classification network [21] with a small number of parameters 
compared to other image segmentation networks. [20] 

PSPNet is able to learn from different sizes of receptive 
fields. In this network, feature maps of different sizes are 
obtained parallelly with differently sized filters. All feature 
maps are upsampled to the same resolution and concatenated. 
Thus, the final feature map leverages from information 
obtained from different scales. [16] 

2.2. Sliding window and AutoML  

Besides analyzing an entire image at once, the image can be 
analyzed pixel by pixel using a sliding window approach for 
generating a feature map (Figure 1). A window with a certain 
width and height slides through the image treating each 
window as an input feature map. At the borders of the image, 
padding is applied for sliding feature map generation. These 
feature maps are evaluated by a classification model predicting 
the class of the central pixel. Once this process is carried out 
for every pixel, the predictions are recombined, resulting in a 
fully segmented image. Thus, the segmentation task can be 
reduced to a multitude of simpler classification tasks. Instead 
of handcrafting a classification model, AutoML is investigated 
for the classification task. As a framework, Google Cloud 
AutoML Vision is used in this study [22]. 

For implementation, all windows are created first. 
Consecutively, they are separated into training, validation, and 
test sets. All data is fed to the AutoML training pipeline. The 
classification task is carried out by the AutoML framework in 
a black box process without the need to select a model or adjust 
any hyperparameters. However, some limitations, such as the 
maximum computation time, can be set. After training, the 
AutoML framework returns the trained model and performance 
metrics from the test set. 

2.3. Benchmark criteria 

To compare the one-pass neural networks and the window-
based algorithms for semantic segmentation, different 
quantitative and qualitative metrics are used.  

The most common metrics for semantic segmentation are 
pixel-wise accuracy, intersection over union (IoU), and mean 
intersection over union (mIoU). Pixel-wise accuracy is 
calculated by dividing the number of correctly predicted pixels 
by the total number of pixels. IoU is defined as the ratio of the 
number of correctly predicted pixels to the total number of 
pixels in the union area of predicted segmentation and ground 

truth segmentation. mIoU is calculated by averaging IoU over 
different classes. [23] 

Let 𝑐𝑐!"  be the number of pixels whose true class is i and 
predicted as j. The total number of classes is defined as n. 
𝑔𝑔!=∑ 𝑐𝑐!"#

"  is defined as the number of pixels belonging to class 
i. 𝑝𝑝"=∑ 𝑐𝑐!"#

!  is the number of pixels predicted as class j. Based 
on these definitions, pixel-wise accuracy (1), IoU (2) and mIoU 
(3) can be computed. 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

∑ 𝑐𝑐!!#
!
∑ 𝑔𝑔!#
!

 
 

 
(1) 

 
𝐼𝐼𝐼𝐼𝐼𝐼! =

𝑐𝑐!!
𝑔𝑔! + 𝑝𝑝! − 𝑐𝑐!!

 
 

 
(2) 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = $

#
∑ %!!

&!'(!)%!!
#
!   

 

 
(3) 

For imbalanced datasets, pixel-wise accuracy might provide 
misleading results, as the metric might become biased towards 
the majority class. Since the segmentation task includes several 
classes, the state-of-art one-pass semantic segmentation 
networks are compared based on the mIoU score. 

Besides the performance of the model, other factors might 
influence the decision of which model to implement. 
Therefore, the performance of the approaches in terms of 
needed ML expertise, flexibility of input image size, 
explainability of the model, and the time required for set-up and 
testing is investigated further. 

3. Experimental procedure 

3.1. Dataset 

For training, 207 cutting tool images from two different 
cutting tool inserts are available. The images are taken with an 
optical microscope, showing the flank of each cutting tool 
insert. All images contain the regions background and 
undamaged tool body by default. Depending on the tool’s 
condition, regions depicting different tool wear defects are 
present and visible as well. In general, the defects visible on the 
flank of the cutting tool can be grouped into flank wear, chip 
notch, peening wear, build-up-edge (BUE), and groove [24]. In 
the present dataset, 206 out of the 207 images show flank wear, 
40 images depict grooves, and 123 images contain BUE. Other 
defects are not visible. 

All images are labeled manually by process experts. The 
final dataset consists of raw images showing the data acquired 
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has a skip architecture where entire feature maps in the encoder 
module are concatenated with upsampled outputs in the 
decoder module. [9] 

SegNet is developed as a time and memory efficient 
encoder-decoder network. To achieve this, SegNet stores the 
maximum indices obtained during maximum pooling in the 
encoder module to be used for upsampling in the decoder 
module. Afterwards, the upsampled maps are inserted into the 
convolutional layers with trainable filters to obtain dense 
results in the decoder module. [19] 

LinkNet aims to construct a real-time image segmentation 
network. For this reason, the encoder network is an image 
classification network [21] with a small number of parameters 
compared to other image segmentation networks. [20] 

PSPNet is able to learn from different sizes of receptive 
fields. In this network, feature maps of different sizes are 
obtained parallelly with differently sized filters. All feature 
maps are upsampled to the same resolution and concatenated. 
Thus, the final feature map leverages from information 
obtained from different scales. [16] 

2.2. Sliding window and AutoML  

Besides analyzing an entire image at once, the image can be 
analyzed pixel by pixel using a sliding window approach for 
generating a feature map (Figure 1). A window with a certain 
width and height slides through the image treating each 
window as an input feature map. At the borders of the image, 
padding is applied for sliding feature map generation. These 
feature maps are evaluated by a classification model predicting 
the class of the central pixel. Once this process is carried out 
for every pixel, the predictions are recombined, resulting in a 
fully segmented image. Thus, the segmentation task can be 
reduced to a multitude of simpler classification tasks. Instead 
of handcrafting a classification model, AutoML is investigated 
for the classification task. As a framework, Google Cloud 
AutoML Vision is used in this study [22]. 

For implementation, all windows are created first. 
Consecutively, they are separated into training, validation, and 
test sets. All data is fed to the AutoML training pipeline. The 
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Besides the performance of the model, other factors might 
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Therefore, the performance of the approaches in terms of 
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explainability of the model, and the time required for set-up and 
testing is investigated further. 

3. Experimental procedure 
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For training, 207 cutting tool images from two different 
cutting tool inserts are available. The images are taken with an 
optical microscope, showing the flank of each cutting tool 
insert. All images contain the regions background and 
undamaged tool body by default. Depending on the tool’s 
condition, regions depicting different tool wear defects are 
present and visible as well. In general, the defects visible on the 
flank of the cutting tool can be grouped into flank wear, chip 
notch, peening wear, build-up-edge (BUE), and groove [24]. In 
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40 images depict grooves, and 123 images contain BUE. Other 
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by the microscope (Figure 2, a & c) and the respective image 
masks showing the class of each pixel (Figure 2, b & d).  

3.2. Training procedure 

To avoid overfitting, the dataset is split into a training set, 
validation set, and test set, with a ratio of approximately 8:1:1. 
As a result, there are 167, 20, 20 images for training, validation, 
and testing, respectively. For balanced learning, the splitting is 
carried out based on the flank wear width such that all datasets 
have a similar distribution of tool conditions. The training 
dataset is used to train and optimize each model. During 
parameter optimization, the validation set is used to monitor the 
training progress and rate different alternatives. The final 
metrics are computed on the test set, which is not used for 
training nor for parameter optimization. 

The most present classes in each image are background and 
undamaged insert body. Thus, to focus on the classes showing 
wear defects, the images are cropped to the region of interest 
starting at the upper edge of the insert. As a result, the image 
size is decreased from 1280x1024 pixels to 1024x256 pixels. 

Each network is trained for 50 epochs with a batch size of 8. 
Optimizers and parameters are set as described in the papers [9, 
16, 18–20] (Table 1). Most networks are optimized with 
stochastic gradient descent (SGD) while LinkNet is optimized 
using the root mean square prop (RMSProp) optimizer.  

Since the amount of training data is small and increasing the 
dataset through additional experiments is resource-intense, data 
augmentation is applied to increase the variety within the 
existing data. Most of the existing variety in the data is caused 
by differences in brightness, blur, and contrast. Thus, 
augmentation is carried out by means of random brightness, 
clahe, random gamma, blur, motion blur, random contrast, and 
hue-saturation-val. The probability for each augmentation to be 
applied, as well as the chosen settings, are shown in Table 2. 

For implementation, the Albumentations library [25] is used. 
Examples of the resulting images with applied data 
augmentation can be seen in Figure 3. 

4. Results and discussion 

In this section, the different one-pass image segmentation 
networks explained in Section 2 are compared in terms of their 
mIoU score. Moreover, the sliding-window image 
segmentation approach, proposed in [7], is benchmarked with 
the AutoML classification based on pixel-wise accuracy. 
Finally, the best results of one-pass image segmentation 
networks and the sliding window approaches are investigated 
thoroughly. 

4.1. Comparison of different segmentation networks 

In the first experiment, the optimizers and parameters of 
every network are set according to the original papers as 
mentioned in Section 3. The scores are computed with and 
without data augmentation and can be seen in Table 3. U-Net, 
PSPNet, and LinkNet achieve similar high scores of 0.69, 0.68, 

Table 1: Optimizer, learning rate, momentum and weight decay values for 
each network 

 Optimizer Learning rate Momentum Weight Decay 

FCN SGD 10e-5 0.9 5e-4 
U-Net SGD 10e-5 0.99 - 
SegNet SGD 10e-2 0.9 - 
LinkNet RMSProp 5e-4 - - 
PSPNet SGD 10e-3 0.9 10e-5 

  

Table 2: Overview of the applied augmentation types and their 
parameters 

Augmentation Type Parameters Probability 

Clahe clip_limit: 4 0.30 
RandomBrightness limit: (-0.2, 0.6) 0.30 
RandomGamma gamma_limit: (100, 

200) 
0.30 

Blur blur_limit: (3, 7) 0.45 
MotionBlur blur limit: (3, 12) 0.45 
RandomContrast limit: 0.9 0.45 
HueSaturationValue hue shift limit: 20; 

saturation shift limit: 
30; value shift limit: 
50 

0.45 

  

 

Fig. 3. Original image (a) and the resulting augmented images with the different augmentation strategies applied (b-h) 

a) Original b) Clahe c) Random brightness c) Random gamma

e) Blur f) Motion blur g) Contrast h) Hue-Sat-Val

 

Fig. 2. Raw image of cutting tool type one (a) with its respective mask (b) and 
raw image of cutting tool type two (c) with respective mask (d) 
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and 0.67 mIoU, respectively, for training without data 
augmentation. These findings support the claim of U-Nets 
suitability for small datasets, as mentioned in Section 2.1.  

Using data augmentation, some networks show an improved 
learning behavior, whereas others do not benefit from the 
artificially created data. The biggest increase of 0.13 is 
observed for LinkNet. FCN and PSPNet also show slight 
increases, while U-Net and SegNet show reduced scores with 
augmentation. Overall, the highest score of 0.80 with the 
original configurations is achieved by using LinkNet and data 
augmentation. Besides, LinkNet does not only provide a high 
mIoU score, but also offers real time inference due to an 
efficient network architecture, making it a promising candidate 
for industrial applications.  

Furthermore, the individual IoU scores of each class are a 
direct indicator of the network’s performance in detecting 
specific segmentation classes (Table 3). All networks achieve 
the highest IoU scores for the classes background and 
undamaged tool body. This result indicates that the majority 
classes of the images are the easiest to detect for one-pass 
networks. As flank wear is the most important defect, it is 
necessary to segment flank wear as accurately as possible. 
LinkNet achieves the highest score of 0.55 for flank wear 
segmentation in addition to the highest mIoU score. For the 
class groove, U-Net and PSPNet reach the highest score of 
0.80, whereas for the class BUE, LinkNet returns the best IoU 
score of 0.79. The FCN and SegNet networks are not able to 
detect the classes flank wear, groove, and BUE in the present 
configuration, limiting their prediction capabilities for the 
given situation. 

4.2. Evaluation of AutoML approach 

In the second experiment, the sliding window segmentation 
approach using AutoML for classification is investigated. First, 
windows with sizes of 48x48 pixels are created from the input 
images. Out of all windows created, 4000 windows are 
randomly selected for the training dataset and 500 each for the 
test and validation datasets, with an even distribution among all 
classes in every set. The AutoML classification pipeline is fed 
with the corresponding data to train a model to predict the class 
of the center pixel of the input window.  

According to the confusion matrix (Table 4), background 
and groove are the classes predicted the best. 97% of true 
background and groove windows are predicted correctly. Since 
background pixels are darker compared to the other pixels, the 
easy distinction among those seems reasonable. As the second 
highest percentage, 94% of BUE windows are predicted 

correctly. BUE pixels are very bright compared to the other 
classes and accumulate at the top of the tool. Thus, the BUE 
windows lie on the border of background and undamaged tool 
body. Thereby, they are providing characteristic data, which 
can be seen in the high true classification rate. The lowest 
percentage of correctly predicted pixels belongs to the classes 
undamaged tool body and flank wear. Flank wear is located at 
the upper part of the tool and is not very bright. The windows 
of the classes flank wear and undamaged tool body are rather 
similar with only small visual differences. Thus, the model is 
not able to predict undamaged tool body and flank wear 
windows as precisely as the other classes. 

Comparing the AutoML solution to the manual 
segmentation approach based on deep learning described in [7], 
a slightly higher accuracy can be observed. This can be 
assumed to be due to the higher amount of data available or 
better models being used by the AutoML framework.  

4.3. Comparison of one-pass segmentation with the sliding 
window approach 

In this part, LinkNet, as the best one-pass network, and the 
sliding window approach merged with AutoML are compared. 
Based on the mIoU score, the AutoML approach achieves 0.86, 
outperforming LinkNet with a 0.80 score under similar 
conditions. In addition, the individual IoU scores for each class 
are investigated (Table 5). While LinkNet shows higher 
numbers than AutoML for the classes background (0.99 
compared to 0.94) and undamaged tool body (0.96 compared 
to 0.85), AutoML shows higher number for the three defect 
classes flank wear (0.76 compared to 0.55), groove (0.94 
compared to 0.70), and BUE (0.84 compared to 0.79). As it is 
more important to identify the defect classes correctly, 
AutoML performs better than LinkNet on a class level as well. 

Besides comparing the prediction accuracies, other factors 
such as the model complexity and the effort needed for getting 
started are important factors influencing the decision of which 
approach to choose. Thus, the one-pass segmentation network, 
the sliding window approach with a manually constructed 
network and the sliding window approach using the model 
generated by AutoML are compared based on the complexity 

Table 3: The mIoU and IoU scores show the effect of data augmentation and 
performance for the individual classes of each network with background 
as Bg. and undamaged tool body as tool  

 Aug. (mIoU)  Individual class scores (IoU) 

 without with  Bg. Tool Wear Groove BUE 

FCN 0.32 0.36  0.94 0.87 ~0 ~0 ~0 
U-Net 0.69 0.63  0.95 0.85 0.07 0.80 0.50 
SegNet 0.47 0.31  0.78 0.76 ~0 ~0 ~0 
LinkNet 0.67 0.80  0.99 0.96 0.55 0.70 0.79 
PSPNet 0.68 0.73  0.97 0.93 0.41 0.80 0.54 

 

Table 5: The IoU scores for each class show the good defect detection 
capabilities of the AutoML model 

IoU Background  Tool Flank wear  Groove  BUE  

LinkNet 0.99 0.96 0.55 0.70 0.79 
AutoML 0.94 0.85 0.76 0.94 0.84 

 

Table 4: Confusion matrix of image segmentation with AutoML 

Ground  
truth 

Prediction 

Background Tool Flank Wear Groove BUE 

Background 97% 1% 0% 1% 1% 

Tool 2% 88% 9% 1% 0% 
Flank Wear 1% 1% 87% 1% 10% 

Groove 0% 2% 0% 97% 1% 
BUE 0% 0% 6% 0% 94% 
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and 0.67 mIoU, respectively, for training without data 
augmentation. These findings support the claim of U-Nets 
suitability for small datasets, as mentioned in Section 2.1.  

Using data augmentation, some networks show an improved 
learning behavior, whereas others do not benefit from the 
artificially created data. The biggest increase of 0.13 is 
observed for LinkNet. FCN and PSPNet also show slight 
increases, while U-Net and SegNet show reduced scores with 
augmentation. Overall, the highest score of 0.80 with the 
original configurations is achieved by using LinkNet and data 
augmentation. Besides, LinkNet does not only provide a high 
mIoU score, but also offers real time inference due to an 
efficient network architecture, making it a promising candidate 
for industrial applications.  

Furthermore, the individual IoU scores of each class are a 
direct indicator of the network’s performance in detecting 
specific segmentation classes (Table 3). All networks achieve 
the highest IoU scores for the classes background and 
undamaged tool body. This result indicates that the majority 
classes of the images are the easiest to detect for one-pass 
networks. As flank wear is the most important defect, it is 
necessary to segment flank wear as accurately as possible. 
LinkNet achieves the highest score of 0.55 for flank wear 
segmentation in addition to the highest mIoU score. For the 
class groove, U-Net and PSPNet reach the highest score of 
0.80, whereas for the class BUE, LinkNet returns the best IoU 
score of 0.79. The FCN and SegNet networks are not able to 
detect the classes flank wear, groove, and BUE in the present 
configuration, limiting their prediction capabilities for the 
given situation. 

4.2. Evaluation of AutoML approach 

In the second experiment, the sliding window segmentation 
approach using AutoML for classification is investigated. First, 
windows with sizes of 48x48 pixels are created from the input 
images. Out of all windows created, 4000 windows are 
randomly selected for the training dataset and 500 each for the 
test and validation datasets, with an even distribution among all 
classes in every set. The AutoML classification pipeline is fed 
with the corresponding data to train a model to predict the class 
of the center pixel of the input window.  

According to the confusion matrix (Table 4), background 
and groove are the classes predicted the best. 97% of true 
background and groove windows are predicted correctly. Since 
background pixels are darker compared to the other pixels, the 
easy distinction among those seems reasonable. As the second 
highest percentage, 94% of BUE windows are predicted 

correctly. BUE pixels are very bright compared to the other 
classes and accumulate at the top of the tool. Thus, the BUE 
windows lie on the border of background and undamaged tool 
body. Thereby, they are providing characteristic data, which 
can be seen in the high true classification rate. The lowest 
percentage of correctly predicted pixels belongs to the classes 
undamaged tool body and flank wear. Flank wear is located at 
the upper part of the tool and is not very bright. The windows 
of the classes flank wear and undamaged tool body are rather 
similar with only small visual differences. Thus, the model is 
not able to predict undamaged tool body and flank wear 
windows as precisely as the other classes. 

Comparing the AutoML solution to the manual 
segmentation approach based on deep learning described in [7], 
a slightly higher accuracy can be observed. This can be 
assumed to be due to the higher amount of data available or 
better models being used by the AutoML framework.  

4.3. Comparison of one-pass segmentation with the sliding 
window approach 

In this part, LinkNet, as the best one-pass network, and the 
sliding window approach merged with AutoML are compared. 
Based on the mIoU score, the AutoML approach achieves 0.86, 
outperforming LinkNet with a 0.80 score under similar 
conditions. In addition, the individual IoU scores for each class 
are investigated (Table 5). While LinkNet shows higher 
numbers than AutoML for the classes background (0.99 
compared to 0.94) and undamaged tool body (0.96 compared 
to 0.85), AutoML shows higher number for the three defect 
classes flank wear (0.76 compared to 0.55), groove (0.94 
compared to 0.70), and BUE (0.84 compared to 0.79). As it is 
more important to identify the defect classes correctly, 
AutoML performs better than LinkNet on a class level as well. 

Besides comparing the prediction accuracies, other factors 
such as the model complexity and the effort needed for getting 
started are important factors influencing the decision of which 
approach to choose. Thus, the one-pass segmentation network, 
the sliding window approach with a manually constructed 
network and the sliding window approach using the model 
generated by AutoML are compared based on the complexity 

Table 3: The mIoU and IoU scores show the effect of data augmentation and 
performance for the individual classes of each network with background 
as Bg. and undamaged tool body as tool  

 Aug. (mIoU)  Individual class scores (IoU) 

 without with  Bg. Tool Wear Groove BUE 

FCN 0.32 0.36  0.94 0.87 ~0 ~0 ~0 
U-Net 0.69 0.63  0.95 0.85 0.07 0.80 0.50 
SegNet 0.47 0.31  0.78 0.76 ~0 ~0 ~0 
LinkNet 0.67 0.80  0.99 0.96 0.55 0.70 0.79 
PSPNet 0.68 0.73  0.97 0.93 0.41 0.80 0.54 

 

Table 5: The IoU scores for each class show the good defect detection 
capabilities of the AutoML model 

IoU Background  Tool Flank wear  Groove  BUE  

LinkNet 0.99 0.96 0.55 0.70 0.79 
AutoML 0.94 0.85 0.76 0.94 0.84 

 

Table 4: Confusion matrix of image segmentation with AutoML 

Ground  
truth 

Prediction 

Background Tool Flank Wear Groove BUE 

Background 97% 1% 0% 1% 1% 

Tool 2% 88% 9% 1% 0% 
Flank Wear 1% 1% 87% 1% 10% 

Groove 0% 2% 0% 97% 1% 
BUE 0% 0% 6% 0% 94% 
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of the model, the explainability of the model, the flexibility of 
the model, the time needed for training, and the time needed for 
inference (Table 6).  

Looking at the model complexity, the first two approaches, 
one-pass image segmentation and sliding window with custom 
networks, require manual network creation and, thus, a high 
level of ML expertise. Implementing LinkNet from scratch 
requires not only knowledge about ML, but also of the model’s 
architecture and necessary programming languages and 
libraries. In contrast, for setting up the AutoML approach, only 
a few adjustments must be made by the expert since most of the 
process is handled by the framework. This way, process experts 
can obtain a semantic image segmentation model with little ML 
knowledge. However, some level of expertise is still needed for 
formulating the learning task and setting up the necessary 
AutoML framework. 

Whereas open source solutions for AutoML might return the 
optimized networks, many commercial solutions only provide 
a prediction pipeline. Thus, further investigation and 
understanding of the models found with AutoML approaches 
might be limited. Contrarily, implementing LinkNet from 
scratch allows experts to understand and improve the details 
about the model, increasing its explainability.  

For the flexibility of the model regarding the input image 
size, the one-pass segmentation networks do allow various 
image sizes However, they are scaled or cropped to a 
predefined network-specific size, losing information in the 
process. Both sliding window approaches are more robust 
against different sizes and shapes of the image, if the minimum 
window size is met.  

Regarding the training time, no significant differences were 
observed among the different algorithms. For inference 
however, the one-pass segmentation networks are faster than 
the sliding window approaches, as only one evaluation has to 
be carried out.  

For time critical applications, different strategies might help 
reducing the total inference time. Looking at the hardware used 
for model execution, specialized hardware such as GPUs can 
calculate the prediction results more efficiently. On the 
software side, the prediction process for the sliding window 
approach, consisting of a multitude of prediction tasks, could 
be separated into sub processes that could be distributed to 
multiple machines, thus further reducing inference times. 

In industrial settings, increased variety among cutting tool 

inserts, especially regarding size, shape, and color, is expected. 
Here, the sliding window approaches should be more resistant 
against cutting tools of different sizes and shapes, as only small 
parts of the cutting tool that are independent of the overall 
insert size and shape are analyzed. For the consideration of 
different colors of the cutting tool, data augmentation is 
promising. Thereby, the color of the cutting tools present in the 
dataset can be artificially manipulated to generate data that 
represents cutting tools of different color. Thus, the model is 
trained with data from multiple colors, which improves its 
prediction performance when encountering such tools during 
operation.  

5. Summary and Outlook 

In this paper, different machine learning approaches for tool 
condition monitoring and semantic image segmentation are 
investigated. Analyzing the one-pass networks, FCN, U-Net, 
SegNet, LinkNet, and PSPNet, LinkNet shows the most 
promising results. Using data augmentation, a high mIoU score 
can be achieved, even though the data set is rather small.  

As an alternative to handcrafted networks, automated 
machine learning is presented, which requires less machine 
learning expertise and reduced set-up time, decreasing the 
complexity of the process. It is found that using a sliding 
window approach in combination with the automated machine 
learning for the same learning tasks yields better results 
compared to LinkNet, the best performing one-pass network. 
Only the computational effort for inference is significantly 
higher for the sliding window approach, as many predictions 
have to be carried out. It can be concluded that automated 
machine learning is a promising and adequate choice for image 
segmentation in tool condition monitoring. 

In future work, a more diverse dataset containing multiple 
different types of tools should be investigated, thus allowing 
the approaches to be rated based on their general usability. 
Besides increasing the training data and adapting the network 
architecture, transfer learning strategies should be investigated 
for an efficient knowledge transfer among different cutting 
tools. 
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