
 

 

 
 

Technische Universität München 

TUM School of Life Sciences 

Lehrstuhl für Pflanzenzüchtung 

 

 

Discovery of novel beneficial alleles in maize landraces for 

the improvement of quantitative traits 

 

 

Manfred Mayer 

 

 

Vollständiger Abdruck der von der TUM School of Life Sciences der Technischen 

Universität München zur Erlangung des akademischen Grades eines 

 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

 

genehmigten Dissertation 

 

 

Vorsitzende:   Prof. Donna P. Ankerst, Ph. D. 

 

Prüfende der Dissertation: 1. Prof. Dr. Chris-Carolin Schön 

     2. Prof. Dr. Caroline Gutjahr 

     3. Prof. Natalia de Leon, Ph. D. 
      University of Wisconsin-Madison, USA 
 

 
Die Dissertation wurde am 02.12.2020 bei der Technischen Universität München 

eingereicht und durch die TUM School of Life Sciences am 29.04.2021 angenommen. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

There are no miracles in agricultural production. 

(Norman Borlaug) 



Content 

II 

Content 

Summary................................................................................................................... III 

Zusammenfassung................................................................................................... V 

List of figures .......................................................................................................... VII 

List of tables........................................................................................................... VIII 

List of abbreviations ............................................................................................... IX 

Publications included in this thesis ...................................................................... XI 

1   Introduction.......................................................................................................... 1 

1.1 Background ......................................................................................................... 1 

1.2 Outline ................................................................................................................ 4 

2   Material and methods ....................................................................................... 10 

2.1 Genotypic and phenotypic data ......................................................................... 10 

2.1.1 Plant material...............................................................................................................10 

2.1.2 Genotypic data ............................................................................................................12 
2.1.3 Field experiments ........................................................................................................14 

2.2 Analyses of molecular data ................................................................................ 16 

2.2.1 Site frequency spectrum ..............................................................................................16 

2.2.2 Diversity parameters ....................................................................................................18 

2.2.3 Population structure ....................................................................................................19 

2.2.4 Linkage disequilibrium .................................................................................................22 

2.3 Haplotype identification ..................................................................................... 23 

2.3.1 Haplotype construction ...............................................................................................23 
2.3.2 Association scans ........................................................................................................24 

2.3.3 Effect direction and stability of trait-associated haplotypes .........................................26 

2.3.4 Haplotypes with effects on multiple traits ....................................................................27 

2.3.5 Comparisons between landraces and breeding lines ...................................................27 

3   Discussion .......................................................................................................... 29 

3.1 Choice of source material .................................................................................. 29 

3.1.1 Variation within and across landraces ..........................................................................29 

3.1.2 Haplotype inventories in landraces and breeding lines .................................................32 

3.1.3 Adaptation and genomic background of landraces relative to elite germplasm ............34 

3.2 Representation of allelic diversity by DH libraries ................................................ 36 

3.3 Identification of novel beneficial variation............................................................ 39 

3.3.1 GWAS based on SNPs and haplotypes .......................................................................39 

3.3.2 Beneficial haplotypes for germplasm improvement ......................................................43 
3.3.3 Haplotype variation in trait-associated genomic regions ..............................................45 

3.4 Prospects of germplasm improvement through the use of landraces ................... 47 

4   References ......................................................................................................... 51 

5   Publications ....................................................................................................... 67 

6   Acknowledgements ........................................................................................ 104 



Summary 

III 

Summary 

Genetic variation is a fundamental prerequisite for selection and crop improvement. For 

most crops, today’s breeding material captures only a fraction of the genetic diversity 

available within the species. Therefore, broadening the genetic base of elite germplasm is 

considered essential for meeting the increasing demands on agricultural production under 

changing environmental conditions and resource limitations. Landraces are a rich source 

of novel diversity, but especially for quantitative traits and cross-pollinating species 

efficient strategies for their targeted utilization are lacking. Main challenges hampering the 

utilization of landraces are the lack of genetic and phenotypic information about most 

accessions, the heterogeneous and heterozygous nature of landraces and their 

performance gap to modern cultivars. In this thesis, a genome-based strategy was 

developed for identifying novel beneficial variation in landraces to improve elite germplasm 

for quantitative traits. The proposed strategy was validated experimentally in the context 

of European maize. 

The choice of source material is of major importance when working with genetic resources. 

In this thesis, different sampling strategies were evaluated with respect to their influence 

on genomic parameters affecting the accuracy and efficacy of genome-enabled mapping 

and prediction. Using dense genotypic data from 35 European maize landraces with more 

than 20 individuals per landrace, different sampling schemes were assessed. Most of the 

molecular variation was found within landraces while differences among landraces 

accounted only for a small proportion of the variation. On average, five landraces captured 

about 95% of the molecular diversity of the entire dataset. Within individual landraces, 

absence of pronounced population structure, moderate to low linkage disequilibrium (LD) 

and consistency of linkage phases were found. When combining landraces, LD decay 

distances decreased to a range harboring on average less than five genes. In summary, 

the results suggest that in studies aiming at gene discovery or genomic selection in 

landraces, the comprehensive sampling of diversity from few pre-selected landraces has 

many advantages. Pre-selected landraces can be chosen to show high levels of diversity 

for target traits, avoid confounding effects of strong adaptive alleles, allow optimal control 

for population structure, provide high resolution in association mapping and facilitate the 

introduction of relevant landrace alleles into the target breeding pool. 

Taking this strategy into practice, more than 1,000 doubled haploid (DH) lines were derived 

from three populations selected from the 35 European landraces analyzed in this thesis. 
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DH lines were genotyped at high density and phenotyped for more than 25 traits in up to 

eleven environments. A statistical framework for the identification of novel beneficial 

variation in landrace-derived material was developed, involving the construction of 

haplotypes, the test for haplotype-trait association, the assessment of effect stability and 

the comparison with elite germplasm. Haplotype-based genome-wide association scans 

identified many significant associations for the target trait early plant development at high 

resolution. In contrast, only few associations for flowering were detected, indicating that 

confounding effects of strong adaptive alleles were avoided. Part of the identified 

haplotypes with favorable effects on early plant growth were absent in a broad panel of 65 

European flint breeding lines, pointing to beneficial novel variation. DH lines carrying these 

novel haplotypes outperformed breeding lines with alternative haplotypes. Most 

haplotypes associated with target traits showed stable effects across populations and 

environments and only limited correlated effects with undesired traits making them ideal 

for introgression into elite germplasm. The proposed strategy to sample comprehensively 

individuals from a limited set of pre-selected landraces was successful in linking molecular 

variation to meaningful phenotypes and identifying novel variation for the genetic 

improvement of elite germplasm. The strategy and methods developed in this thesis can 

be extended to other maize germplasm groups and even to other allogamous crop species. 
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Zusammenfassung 

Genetische Variation ist die Grundvoraussetzung für Selektion und die genetische 

Verbesserung von Kulturpflanzen. Allerdings deckt das heutige Zuchtmaterial in den 

meisten Kulturpflanzen nur einen kleinen Teil der verfügbaren genetischen Diversität der 

jeweiligen Spezies ab. Es wird daher als essentiell angesehen, die genetische Basis des 

Elitematerials zu erweitern, um die pflanzliche Produktion unter sich verändernden 

Umweltbedingungen und Ressourcenknappheit zu sichern. Landrassen sind reichhaltige 

Quellen neuer Diversität, aber für quantitative Merkmale fehlen effiziente Strategien für 

deren gezielte Nutzung. Die größten Hindernisse für die Nutzung von Landrassen sind 

unzureichende genetische und phänotypische Information über die meisten Akzessionen, 

ihre Heterogenität und Heterozygotie und der Leistungsrückstand im Vergleich zu 

modernen Sorten. In dieser Arbeit wurde eine genombasierte Strategie für die 

Identifizierung neuer, vorteilhafter Variation in Landrassen entwickelt. Die vorgeschlagene 

Strategie wurde an europäischem Flint Mais experimentell überprüft. 

Bei der Nutzung genetischer Ressourcen ist die Auswahl des Ausgangsmaterials von 

größter Bedeutung. Daher wurden zunächst Schätzwerte genomischer Parameter, die die 

Genauigkeit und Effektivität genombasierter Methoden beeinflussen, zwischen 

verschiedenen Stichproben verglichen. Mittels hochauflösender genotypischer Daten von 

35 europäischen Maislandrassen wurde die molekulare Diversität von mehr als 20 

Individuen pro Landrasse untersucht. Der Großteil der molekularen Diversität war innerhalb 

von Landrassen zu finden, während Unterschiede zwischen Landrassen nur einen relativ 

kleinen Teil der Gesamtvariation des Datensatzes erklärten. Im Durchschnitt wurden ca. 

95% der Gesamtvariation durch fünf zufällig gezogene Landrassen repräsentiert. Es wurde 

gezeigt, dass innerhalb der Landrassen keine ausgeprägter Populationsstruktur 

vorherrscht, das Kopplungsphasenungleichgewicht („linkage disequilibrium“, LD) mäßig 

bis gering ist und die Kopplungsphasen konsistent sind. Durch die Kombination weniger 

Landrassen kann eine genetische Auflösung von weniger als fünf Genen erzielt werden. 

Insgesamt deuten die Ergebnisse darauf hin, dass für die Genidentifizierung oder die 

genomische Selektion die umfassende Beprobung von Diversität innerhalb weniger 

vorselektierter Landrassen viele Vorteile hat. Vorselektierte Landrassen können auf 

genetische Variation für Zielmerkmale selektiert werden, Störeinflüsse durch starke 

adaptive Allele werden vermieden, die optimale Kontrolle von Populationsstruktur ist 

möglich, eine hohe Auflösung in der Assoziationskartierung wird erreicht und die 
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Integration relevanter Landrassenallele in das entsprechende Elitezuchtmaterial wird 

begünstigt. 

Mit dieser neu konzipierten Strategie konnten in dieser Arbeit neue, vorteilhafte Allele aus 

Landrassen identifiziert werden. Dazu wurden zunächst drei der 35 europäischen 

Landrassen selektiert um insgesamt mehr als 1.000 doppelhaploide (DH) Linien zu 

erstellen. Die DH-Linien wurden hochauflösend genotypisiert und für mehr als 25 Merkmale 

in bis zu elf Umwelten phänotypisiert. Für die Untersuchung der Landrassen auf neue, 

vorteilhafte Variation, wurden aufeinander aufbauende statistische Modelle entwickelt, 

welche die Konstruktion von Haplotypen, deren Test auf Merkmalsassoziation, die 

Untersuchung der Effektstabilität und den Vergleich mit Elitezuchtmaterial erlauben. Mit 

der haplotypbasierten genomweiten Assoziationsanalyse konnten somit signifikante 

Assoziationen für das Zielmerkmal frühe Jugendentwicklung in hoher Auflösung auf dem 

Maisgenom kartiert werden. Für die Blüte wurden nur wenige Assoziationen entdeckt, was 

dafürspricht, dass Hintergrundeffekte starker adaptiver Allele vermieden werden konnten. 

Ein Teil der identifizierten Haplotypen mit vorteilhaften Effekten für das frühe 

Pflanzenwachstum trat in einer Auswahl von 65 europäischen Flint Züchtungslinien nicht 

auf. Sie repräsentieren somit neue vorteilhafte Variation, was dadurch validiert wurde, dass 

DH-Linien, die diese Haplotypen trugen, Züchtungslinien mit alternativen Haplotypen 

phänotypisch überlegen waren. Die meisten Haplotypen, die mit Zielmerkmalen assoziiert 

waren, zeigten stabile Effekte über Populationen und Umwelten. Korrelierte Effekte mit 

unerwünschte Merkmalen traten kaum auf, was die Einkreuzung in Elitematerial erleichtert. 

Die hier vorgeschlagene Strategie, große Stichproben aus einem begrenzten Set an 

vorselektierten Landrassen zu untersuchen, war erfolgreich. Es gelang molekulare 

Variation mit aussagekräftigen Phänotypen zu verknüpfen und neue Variation für die 

Verbesserung quantitativer Merkmale in Elitematerial zu identifizieren. Sowohl die Strategie 

als auch die hier entwickelten Methoden können auf andere Populationen in Mais sowie 

auf andere allogame Spezies erweitert werden. 
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Abstract 

Genome-enabled strategies for harnessing untapped allelic variation of landraces are 

currently evolving. The success of such approaches depends on the choice of source 

material. Thus, the analysis of different strategies for sampling allelic variation from 

landraces and their impact on population diversity and linkage disequilibrium (LD) is 

required to ensure the efficient utilization of diversity. We investigated the impact of 

different sampling strategies on diversity parameters and LD based on high-density 

genotypic data of 35 European maize landraces each represented by more than 20 

individuals. On average, five landraces already captured ~95% of the molecular diversity 

of the entire dataset. Within landraces, absence of pronounced population structure, 

consistency of linkage phases and moderate to low LD levels were found. When combining 

data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 

24 individuals per landrace with 5k SNPs was sufficient for obtaining representative 

estimates of diversity and LD levels to allow an informed pre-selection of landraces. 

Integrating results from European with Central and South American landraces revealed that 

European landraces represent a unique and diverse spectrum of allelic variation. Sampling 

strategies for harnessing allelic variation from landraces depend on the study objectives. 

If the focus lies on the improvement of elite germplasm for quantitative traits, we 

recommend sampling from pre-selected landraces, as it yields a wide range of diversity, 

allows optimal marker imputation, control for population structure and avoids the 

confounding effects of strong adaptive alleles. 
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Abstract 

Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries 

from three European flint maize landraces and characterized them with respect to their 

molecular diversity, population structure, trait means, variances, and trait correlations. In 

total, 899 DH lines were evaluated using high-quality genotypic and multi-environment 

phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular 

variation present in 35 landraces of an earlier study and represent the original three 

landrace populations in an unbiased manner. A comprehensive analysis of the target trait 

plant development at early growth stages as well as other important agronomic traits 

revealed large genetic variation for line per se and testcross performance. The majority of 

the 378 DH lines evaluated as testcrosses outperformed the commercial hybrids for early 

development. For total biomass yield, we observed a yield gap of 15% between mean 

testcross yield of the commercial hybrids and mean testcross yield of the DH lines. The 

DH lines also exhibited genetic variation for undesirable traits like root lodging and tillering, 

but correlations with target traits early development and yield were low or nonsignificant. 

The presented diversity atlas is a valuable, publicly available resource for genome-based 

studies to identify novel trait variation and evaluate the prospects of genomic prediction in 

landrace-derived material. 
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Abstract 

Genetic variation is of crucial importance for crop improvement. Landraces are valuable 

sources of diversity, but for quantitative traits efficient strategies for their targeted 

utilization are lacking. Here, we map haplotype-trait associations at high resolution in 

~1,000 doubled-haploid lines derived from three maize landraces to make their native 

diversity for early development traits accessible for elite germplasm improvement. A 

comparative genomic analysis of the discovered haplotypes in the landrace-derived lines 

and a panel of 65 breeding lines, both genotyped with 600k SNPs, points to untapped 

beneficial variation for target traits in the landraces. The superior phenotypic performance 

of lines carrying favorable landrace haplotypes as compared to breeding lines with 

alternative haplotypes confirms these findings. Stability of haplotype effects across 

populations and environments as well as their limited effects on undesired traits indicate 

that our strategy has high potential for harnessing beneficial haplotype variation for 

quantitative traits from genetic resources. 
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1   Introduction 

1.1 Background 

The global population is predicted to surpass nine billion people within the next 20 years 

and is expected to plateau at more than ten billion by the end of this century (United 

Nations 2019). At the same time, growing wealth leads to dietary changes towards higher 

meat consumption (Tilman and Clark 2014). Together with increasing bioenergy use (Popp 

et al. 2014) these factors generate an urgent need for a substantial increase in agricultural 

production. To keep up with the rising demand for food, feed, fiber and fuel, crop 

production needs to approximately double by 2050 (Tilman et al. 2011). A comparable 

increase in crop production has been achieved before, during the so-called green 

revolution, leading to a production gain of 125% from 1960 to 2000 (Khush 2001). 

However, today the effects of climate change, soil degradation, water and land shortages 

are threatening current cropping systems. As a consequence, agricultural production must 

be increased in a sustainable way and adapted to new environmental conditions (Godfray 

et al. 2010; Lobell and Tebaldi 2014). The main driver of the green revolution was the 

genetic improvement of crops with genes found in traditional varieties (Khush 2001). 

Genetic variation is the basis of selection and germplasm improvement. However, for most 

crops, today’s breeding material captures only a fraction of the genetic diversity available 

within the species (McCouch et al. 2013). Broadening the genetic diversity of elite 

germplasm through utilization of genetic resources is therefore considered essential for 

sustainably intensifying agricultural production (Hoisington et al. 1999; Cooper et al. 2001; 

Ortiz et al. 2010; McCouch et al. 2013; Sood et al. 2014). 

Maize (Zea mays L. ssp. mays) is one of the most important staple crops worldwide 

(www.fao.org/faostat) and an important model plant for basic and applied research (Strable 

and Scanlon 2009). On a global scale, maize shows tremendous genetic diversity relative 

to other crop species (Buckler et al. 2006). In contrast, high levels of relatedness are 

observed in today’s maize elite breeding pools (Romay et al. 2013; Gouesnard et al. 2017). 

Reduced genetic variation in elite germplasm compared to the species-wide diversity is 

the result of a history of strong demographic shifts accompanied by adaptation to novel 

environments and intensive selection for agronomic performance. Maize originated from a 

wild relative, teosinte (Zea mays L. ssp. parviglumis), approximately 9,000 years ago in 

today’s Mexico (Matsuoka et al. 2002; van Heerwaarden et al. 2011). Stringent selection 

for maize-like phenotypes, like increased ear size and reduced lateral branches (Piperno 
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et al. 2015), led to a reduction of effective population size accompanied with loss of allelic 

diversity (Wright et al. 2005; Hufford et al. 2012). The post-domestication spread of maize 

throughout the Americas was characterized by serial founder effects leading to decreasing 

diversity with increasing distance from the center of origin (Vigouroux et al. 2008; van 

Heerwaarden et al. 2011; Wang et al. 2017b). After the discovery of the New World by 

Columbus approximately 500 years ago, maize was introduced in Europe (Tenaillon and 

Charcosset 2011) and rapidly spread around the world (Mir et al. 2013). Local adaptation 

and selection by farmers led to the creation of thousands of landraces, also called farmers’ 

varieties. Due to the dynamic genome of maize, outcrossing mating and continued 

germplasm exchange (Anderson and Brown 1952; Tenaillon and Charcosset 2011), 

landraces retained a high level of phenotypic and genetic variation (Hufford et al. 2012; 

Sood et al. 2014). 

The transition from open-pollinated to hybrid varieties at the beginning of the last century 

(Troyer 2004; Barriere et al. 2006) represents a milestone in maize breeding and led to an 

enormous increase in yield (Duvick 2005). Today’s heterotic breeding pools, however, were 

established by the choice of only few founder lines derived through selfing from important 

landraces (Messmer et al. 1992; Mikel and Dudley 2006; White et al. 2020). New inbred 

lines were mainly developed by intercrossing within the respective breeding pools with an 

excessive use of few very successful elite lines, like e.g. B73, Mo17, PH207 for the US 

dent breeding pools and DK105, EP1, F2, F7 for the European flint breeding pool. Decades 

of advanced cycle breeding with high selection intensities shaped the genetic base of 

today’s elite germplasm (Duvick et al. 2004; Reif et al. 2005a). Comparing maize breeding 

populations from different breeding cycles, Yu and Bernardo (2004) showed that, except 

for grain yield, losses in genetic variances were greater than expected based on 

quantitative genetic theory. It can be assumed that for traits that were not primary targets 

of selection, favorable alleles were lost and unfavorable alleles fixed during the selection 

process, due to drift and hitchhiking effects (Flint-Garcia et al. 2003; Hartfield and Otto 

2011; Voss-Fels et al. 2017). Although annual gains in yield have not yet reached a plateau 

(Schauberger et al. 2018), limited genetic diversity for other traits, like abiotic stress 

tolerance and resource-use efficiency, hampers genetic improvement under changing 

environmental conditions and breeding goals (Lobell and Tebaldi 2014). 

Due to their high genetic diversity and local adaptation, landraces can serve as source of 

novel beneficial alleles for traits with limited variation in elite germplasm (Dwivedi et al. 

2016). Despite their assumed high genetic potential for germplasm improvement, the 
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thousands of landrace accessions stored in gene banks worldwide have remained widely 

unused so far (Ortiz et al. 2010; Wang et al. 2017a). Besides legal obligations making plant 

breeders reluctant to the use of genetic resources (CBD 2011), there are practical and 

genetic obstacles for introducing landrace material into breeding programs. First, limited 

information on seed bank accessions hampers an informed choice of suitable source 

material (Sood et al. 2014). While advances in sequencing and genotyping technologies 

enable a cost-efficient generation of comprehensive molecular inventories of plant genetic 

resources (Wang et al. 2018; Milner et al. 2019; http://seedsofdiscovery.org), meaningful 

phenotypic information is lacking (McCouch et al. 2012; Wang et al. 2017a). Second, for 

allogamous crops like maize, landraces represent collections of heterogeneous and 

heterozygous individuals, making their maintenance as well as their phenotypic evaluation 

difficult. Evaluating the breeding potential of individual genotypes or estimating the within-

landrace genetic variation requires the generation of reproducible genetic units, like inbred 

lines. The third obstacle for the utilization of genetic resources for breeding is the 

performance gap between landraces and modern cultivars (Wilde et al. 2010; Brauner et 

al. 2019). Landrace-derived lines cannot be directly integrated into modern breeding 

populations, as the supposed increase in genetic variation would come at a too high cost 

of reduced performance. Besides the assumed novel favorable alleles, landraces can be 

expected to harbor many deleterious and unfavorable alleles, which would compromise 

the elite breeding pools. Therefore, efficient strategies for a targeted utilization of beneficial 

landrace alleles for the improvement of elite germplasm are needed. 

A major factor influencing the prospects of success in the utilization of genetic resources 

is the genetic architecture of the trait of interest. For mono- or oligogenic traits, phenotypic 

screening of vast amounts of accessions is feasible (McCouch et al. 2012) and mapping 

of favorable alleles and their introgression into breeding germplasm should be possible 

with standard forward genetics and backcrossing approaches (Visscher et al. 1996; 

Ødegård et al. 2009). In fact, impressive examples exist, where the introgression of single 

alleles with very large effects led to a substantial improvement of disease resistance (Khush 

2001), nutrient uptake (Wissuwa et al. 2002) or submergence tolerance (Bailey-Serres et 

al. 2010) of elite germplasm and enabled changes in management practices. In contrast, 

successful examples for the use of genetic resources for the improvement of quantitative 

traits are scarce (Sood et al. 2014). Many traits of agronomic importance are quantitative 

in nature, i.e. large-effect quantitative trait loci (QTL) are already fixed while the remaining 

genetic variation is determined by many genes with comparably small effects. 

Furthermore, many quantitative traits are strongly influenced by the environment and often 
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show pronounced genotype by environment (G×E; van Eeuwijk et al. 2016) as well as 

epistatic interaction (Chandler et al. 2013). Allele mining in genetic resources for the 

improvement of quantitative traits still is a major challenge up to date, requiring the 

development of specialized experimental designs and efficient genome-enabled 

approaches. 

1.2 Outline 

The first and presumably most important decision to make, when working with genetic 

resources, is the choice of source material. Given limited capacities for material 

development, genotyping and phenotyping, different strategies for sampling the native 

diversity of landraces can be followed. When devising the optimum strategy for particular 

study objectives, two important aspects need to be considered: The composition of the 

sampled material regarding the number of landraces and the number of individuals per 

landrace (Figure 1a) as well as the environmental adaptation of chosen accessions 

(Figure 1b). 

For the investigation of landraces, one can broadly sample material across landraces of 

various origin, with only one or few individuals per landrace, or one can focus on the 

diversity within particular pre-selected landraces with large sample sizes per landrace 

(Figure 1a). Up to date, the genomic characterization of landraces was predominantly 

based on sampling individuals across a wide range of landraces, aiming at maximizing the 

level of diversity in the sampled genetic material (Tenaillon et al. 2001; Hufford et al. 2012; 

Sood et al. 2014). This can be advantageous for studying for example crop evolution 

(Matsuoka et al. 2002; van Heerwaarden et al. 2011), genomic signals of adaptation to 

different environments (Takuno et al. 2015; Romero Navarro et al. 2017) and the effects of 

rare alleles (Krakowsky et al. 2008; Kremling et al. 2018). Using this sampling approach, 

more than 1,000 candidate genes associated with flowering time and environmental 

adaptation to altitude and latitude were identified in Central and South American landraces 

(Romero Navarro et al. 2017). However, such broad samples are characterized by large 

variation in local adaptation and strong population structure, confounding genetic analyses 

aiming at linking molecular variation to meaningful phenotypes. In association mapping, 

these confounding factors limit the power of detecting true associations with non-adaptive 

traits of agronomic importance, especially if the associated alleles are restricted to 

particular subpopulations (Zhao et al. 2011; Brachi et al. 2011). As landraces represent 

self-contained, locally adapted populations (Dwivedi et al. 2016), sampling diversity within 

rather than across landraces should eliminate the confounding effects of strong adaptive 
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alleles in genome-wide association scans (GWAS; Figure 1a). Further, due to the random-

mating of landraces, samples of individuals from the same landrace can be expected to 

show absence of pronounced population structure and low levels of linkage disequilibrium 

(LD), leading to high mapping resolution in GWAS. Although sampling across many 

landraces can lead to even lower LD levels (Figure 1a), as indicated by Tenaillon et al. 

(2001), the admixture of many different source populations with varying linkage phases 

might decrease the accuracy and efficacy of GWAS. 

 

Figure 1: Expected changes of genomic parameters depending on the strategy for sampling 
genetic resources. a) Assumed trend for the level of genetic diversity, the extent of confounding 
effects in genetic analyses caused by adaptive alleles and hidden population structure, and the level 
of linkage disequilibrium, when comparing sampling schemes varying in their number of landraces 
and individuals per landrace, given a particular total number of individuals. b) Assumed trend for 
the level of genetic diversity, adaptation to the target environment and similarity to the genomic 
background of the target elite breeding pool, when comparing (sub)tropical landrace material from 
Central America (close to the center of maize domestication) with temperate European landraces. 
Here, the target environment as well as the target elite breeding pool are assumed to be in Europe. 

It was shown that in allogamous crops like maize, large proportions of the molecular (Sood 

et al. 2014) and genetic (Böhm et al. 2017; Brauner et al. 2018) variance lie within and not 

across landraces. Therefore, individual landraces should provide large variation for 
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mapping quantitative traits. If the landraces are pre-selected for variation in particular 

target traits, the chances of detecting useful novel alleles can even be increased. Despite 

these considerations, a comprehensive analysis of the influence of different sampling 

strategies on important genomic parameters, affecting the accuracy and efficacy of 

genome-enabled approaches in landraces, has been lacking so far. As part of this thesis, 

molecular diversity, population structure, LD and persistence of linkage phase were 

analyzed within and across 35 European maize landraces, with more than 20 individuals 

per landrace genotyped at high density (Mayer et al. 2017). Based on the change of 

parameters when varying the number of sampled landraces and individuals per landrace, 

the suitability of different sampling strategies for genome-enabled approaches, such as 

GWAS and genomic selection, were evaluated. 

In addition to molecular and phenotypic diversity, environmental adaptation is an important 

factor affecting the suitability of landraces as source of novel variation for elite germplasm 

improvement. The highest level of diversity can be expected for accessions from Central 

America close to the center of maize domestication (Vigouroux et al. 2008; Mir et al. 2013). 

However, for the improvement of temperate elite germplasm, accounting for 60% of 

today’s global maize production (Li et al. 2017), the suitability of (sub)tropical landrace 

material for mining novel alleles is limited by the lack of adaptation to temperate 

environmental conditions (Figure 1b). Incorporation of (sub)tropical germplasm into 

temperate breeding pools can cause maladaptive symptoms like low germination rates, 

poor seedling vigor, late flowering, high moisture at harvest, and high ear and plant height, 

which are partly caused by photoperiod sensitivity (Goodman 1999; Tarter and Holland 

2006; Sood et al. 2014). Such pronounced effects of adaptive traits hamper the phenotypic 

evaluation of unadapted genetic resources for traits of agronomic importance in the target 

environments (Castillo-Gonzalez and Goodman 1989). Examples exist which have 

overcome these restrictions by slowly adapting tropical material to temperate conditions 

using mild mass selection (Lewis and Goodman 2003; Teixeira et al. 2015), but these 

approaches are very time consuming and bear the risk of losing favorable alleles linked to 

unfavorable alleles at loci under selection during adaptation. As a further obstacle, the 

efficacy of incorporating favorable alleles of tropical origin into temperate elite germplasm 

might be decreased due to suppressed recombination between genetically distinct 

chromosomes (Lonnquist 1974; Rieseberg et al. 1999; Rodgers-Melnick et al. 2015). Even 

in case of their successful incorporation, favorable alleles of tropical origin might cause 

unexpected phenotypic effects in temperate germplasm due to their dependency on the 

genomic background. In view of these challenges, sampling genetic material from 
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landraces already adapted to the target environments and with shared historical ancestry 

with the target elite breeding pool can be a preferable strategy (Figure 1b). Among 

temperate genetic resources, more than 4,500 landraces are conserved in European gene 

banks (Böhm et al. 2014), which might be of special interest for promoting early plant 

development and cold tolerance (Peter et al. 2009; Rodríguez et al. 2010). For assessing 

the diversity of European maize landraces in a broader context, molecular diversity of 35 

temperate European landraces was analyzed in Mayer et al. (2017) together with a set of 

~4,000 (sub)tropical landrace accessions from Central and South America, which were part 

of the Seeds of Discovery (SeeD) project (http://seedsofdiscovery.org). 

After assembling the source material, the second step is the generation of adequate 

reproducible experimental units for conducting genome-enabled studies. The highly 

heterozygous individuals of the original landraces represent unique genotypes, which 

cannot be reproduced in subsequent generations due to recombination. The problem 

could be overcome by the development of inbred lines, but inbreeding by recurrent selfing 

is time consuming and might be hampered by high genetic load (Hallauer et al. 2010). Very 

large starting populations would be required, as many lines might be lost in advanced 

selfing generations due to fixation of detrimental or (sub)lethal alleles. Selective forces 

against deleterious alleles during selfing might further lead to the loss of favorable alleles 

due to hitchhiking (Hartfield and Otto 2011). Alternative approaches to access the native 

diversity of landraces include crosses of random samples of landrace individuals with elite 

genetic material (Stadler 1944; Sood et al. 2014; Gorjanc et al. 2016; Romero Navarro et 

al. 2017). Depending on the performance gap between the landrace and parental 

germplasm, such approaches bear the risk of selection in favor of alleles contributed by 

the elite parent in subsequent steps of line development (Sood et al. 2014; Gorjanc et al. 

2016). Further, if phenotypic evaluation is conducted based on heterozygous (Romero 

Navarro et al. 2017) or partly heterozygous (Stadler 1944) genotypes, the additive genetic 

variance is decreased compared to fully homozygous lines (Bernardo 2002) and the 

number of replicates, i.e. the precision of phenotyping, is limited by a finite number of 

seeds per genotype. Further, when selecting (partly) heterozygous genotypes for pre-

breeding, selected genotypes might have to be excluded in subsequent generations due 

to deleterious recessive alleles masked in the heterozygous state. 

A method for obtaining fully homozygous lines but circumventing the process of recurrent 

selfing is the production of doubled-haploid (DH) lines through in vitro or in vivo recovery 

of haploid gametes (Dwivedi et al. 2015). The DH technology is routinely applied in many 
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crop species, including maize (Chaikam et al. 2019). Success rates of DH production are 

much lower in landraces compared to elite material (Melchinger et al. 2017), requiring large 

starting populations similar to the recurrent selfing approach. However, deleterious and 

(sub)lethal alleles are readily expressed and potentially purged in the haploid stage and 

thus the time consuming and cumbersome development of large sets of segregating 

plants/families with various degrees of homozygosity over multiple generations are 

avoided. A comparative analysis of the allelic composition between original landraces and 

DH libraries derived from them, indicated that the DH lines captured the molecular diversity 

of the original landraces well and that purging from genetic load did not act on specific 

genomic regions (Melchinger et al. 2017). Somewhat contradicting results were obtained 

by Zeitler et al. (2020) based on the same genetic material but a different analysis 

framework. Zeitler et al. (2020) concluded that DH lines may be a valuable tool for making 

landrace variation amenable for elite germplasm improvement, but that the genetic 

diversity of the original landraces is not fully captured by DH libraries. These and other 

studies (Wilde et al. 2010; Strigens et al. 2013; Böhm et al. 2017; Brauner et al. 2018) gave 

important insights for the application of the DH technology to landrace material, but they 

were based on relatively small sample sizes with limited statistical power for genome-

enabled studies. During the course of this thesis, three European maize landraces were 

selected based on the results of Mayer et al. (2017) and in total ~1,000 DH lines were 

generated, representing the largest collection of DH lines derived from maize landraces so 

far. With these DH libraries, the strategy of focusing on a limited set of pre-selected 

landraces for identifying novel beneficial alleles, as proposed by Mayer et al. (2017), was 

put into practice and results are described in Hölker et al. (2019) and Mayer et al. (2020). 

DH lines were genotyped with 600k markers and phenotyped in up to eleven environments, 

with the main focus lying on traits related to early plant development and cold tolerance. 

In Hölker et al. (2019), a comprehensive analysis of the phenotypic data was conducted, 

characterizing the DH libraries in terms of line per se (LP) and testcross (TC) performance, 

trait correlations, and genetic variances. Further, population structure of DH lines and 

sampled individuals of the respective original landraces was analyzed (Hölker et al. 2019). 

Using GWAS, Mayer et al. (2020) mapped haplotype-trait associations at high resolution 

in the DH libraries. The comparison of molecular haplotype inventories between the DH 

lines and a broad panel of 65 European breeding lines, genotyped with the same 600k 

array, revealed that the landraces carry novel beneficial haplotype variation for traits related 

to early plant development. DH lines carrying these novel haplotypes outperformed 

breeding lines not carrying the respective haplotypes. Most haplotypes associated with 
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target traits showed stable effects across populations and environments and only limited 

correlated effects with undesired traits making them ideal for introgression into elite 

germplasm. The strategy proposed in Mayer et al. (2017) was successful in linking 

molecular variation to meaningful phenotypes and identifying novel variation for 

quantitative traits in plant genetic resources, as shown in Mayer et al. (2020). 

Here, results presented in Mayer et al. (2017), Hölker et al. (2019) and Mayer et al. (2020) 

are complemented by additional findings relevant for the development and evaluation of 

the proposed strategy for accessing the native diversity of landraces for elite germplasm 

improvement. 
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2   Material and methods 

2.1 Genotypic and phenotypic data 

2.1.1 Plant material 

The 35 European maize landraces investigated in Mayer et al. (2017) were chosen to 

represent the diversity of maize cultivated in Central and Western Europe before the hybrid 

breeding era, covering different biogeographical regions (Figure 2). Part of the landraces 

represented historically important varieties in terms of acreage (Oettler et al. 1976) and/or 

served as source of important inbred lines for establishing the European flint elite breeding 

pool (Messmer et al. 1992). From each landrace, 22 to 48 plants, hereafter referred to S0-

plants, were randomly drawn, resulting in a total of 952 individuals for genotyping (Table 1). 

The panel of European landraces was extended by data from 4,710 individuals from 4,020 

Central and South American maize landrace accessions of the International Maize and 

Wheat Improvement Center (CIMMYT; Hearne et al. 2012), which were part of the SeeD 

project (http://seedsofdiscovery.org). After filtering for accessions with known 

geographical origin, 3,560 individuals from 2,898 accessions remained. 

 

Figure 2: Map of biogeographical regions of Europe and the origin of 35 maize landraces 
analyzed in this thesis. The map of biogeographical regions was modified after Schmeller et al. 
(2012). Dots indicate the approximate origin of the landraces based on the coordinates provided in 
Mayer et al. (2017). The three landraces selected for generation of the DH libraries analyzed in Hölker 
et al. (2019) and Mayer et al. (2020) are colored in yellow. 

Three European maize landraces, Kemater Landmais Gelb (KE), Lalin (LL) and Petkuser 

Ferdinand Rot (PE), were selected for DH production, based on the population genetic 

analyses described in Mayer et al. (2017) as well as based on data from preliminary field 
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trials evaluating the genetic variation for traits related to early plant development. After a 

seed multiplication step, a total of 1,015 DH lines (516 KE, 67 LL and 432 PE) were 

generated and multiplied using the in vivo haploid induction method (Röber et al. 2005). 

For comparison of molecular diversity between S0-plants and DH lines, additional 48 S0-

plants from each of the three landraces were drawn randomly from the same seed batch 

that served as source for DH production. For a subset of 378 DH lines (190 KE and 188 PE), 

TCs were produced using the dent line F353 (Institut national de la recherche agronomique, 

INRA) as female parent. 

Table 1: Landraces under study. Name, abbreviation, geographical origin and number of 
genotyped S0-plants and DH lines of each landrace after quality filtering. Landraces from which DH 
lines were derived are highlighted in gray (Table modified after Mayer et al. 2017).  

Landrace name Abb. Geographical origin N genotyped 

   S0-plants DH lines 

Andoain AN Northern Spain 24 - 
Barisis BA Northern France 24 - 
Bugard BU Southern France (Pyrenees) 22 - 
Castellote CA Eastern Spain 24 - 
Colmar CO Eastern France (Alsace) 24 - 
Gazost GA Southern France (Pyrenees) 24 - 
Gelber Badischer Landmais GB South Western Germany 46 - 
Gleisdorfer GL South Eastern Austria 24 - 
Kemater Landmais Gelb KE Austria (Alpine valley) (*48) / 48 501 
Knillis KN South Eastern Austria 24 - 
Krajova c29 KR Slovakia 24 - 
Lacaune LC Southern France 24 - 
Lalin LL North Eastern Spain (Galicia) (*48) / 48 31 
Lucq de Bearn LB Southern France (Pyrenees) 24 - 
Mahndorfer MD Northern Germany 24 - 
Maleksberger MB Central/Northern Germany 24 - 
Millette du Lauragais 2 ML Southern France (Pyrenees) 24 - 
Moncassin MO Southern France (Pyrenees) 24 - 
Nostrano dell Isola ND Northern Italy 24 - 
Oberhuber Martha OM Austria (Alpine valley) 24 - 
Oesterreichische Landsorte OE Austria 24 - 
Petkuser Ferdinand Rot PE North Eastern Germany (*47) / 48 409 
Pfarrkirchner PF South Eastern Germany 24 - 
Polnischer Landmais PL Poland 24 - 
Rheintaler Monsheim RM Western Germany (Rhine valley) 24 - 
Rheintaler (St. Gallen) RT Switzerland (Lake Constance) 23 - 
Rottaler RO South Eastern Germany 24 - 
Roux de Chalosse RD Southern France (Pyrenees) 24 - 
Santiago SA North Eastern Spain (Galicia) 23 - 
Schindelmeiser SC North Eastern Germany 23 - 
Strenzfelder SF Central/Northern Germany 23 - 
Tremesino TR Southern Spain 24 - 
Tuy TU North Eastern Spain (Galicia) 24 - 
Viana VI North Eastern Spain (Galicia) 48 - 
Wantzenau WA Eastern France (Alsace) 24 - 

*In addition to the 48 S0-plants analyzed in Mayer et al. (2017), another set of S0-plants (LR3-S0; Table 2) were 

genotyped, after seed multiplication, from the same seed batch that served as source for DH production. 
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The 66 breeding lines described by Unterseer et al. (2014, 2016) served as representatives 

of the European flint elite breeding germplasm in comparisons with landrace-derived DH 

lines. In addition to the flint lines used in Mayer et al. (2020), genotypic data of 70 dent 

lines (16 European and 54 US American lines) were taken from Unterseer et al. (2016) and 

used in this thesis for extending the analysis of the genomic background of elite germplasm 

to the dent breeding pool. 

2.1.2 Genotypic data 

Table 2 gives an overview of the different genotypic datasets investigated in this thesis. 

For comparative analyses, datasets were combined using the respective overlapping 

markers. 

Table 2: Overview of genotypic datasets. Name, included material, genotyping platform, number 
of genotypes and markers, and publications in which the datasets were used. 

Name Material Genotyping 
platform 

N 
genotypes 

N 
markers 

Publications 

LR35-S0 S0-plants of 35 
European landraces 

600k array 952 516,797 Mayer et al. 
2017; Hölker 
et al. 2019 

LR3-S0 S0-plants of 3 landraces 
selected from LR35-S0; 
same seed batch as 
LR3-DH 

600k array 143 499,574 Hölker et al. 
2019 

LR3-DH DH-lines derived from 
three European 
landraces 

600k array 941 501,124 Hölker et al. 
2019; Mayer 
et al. 2020 

SeeD-S0 S0-plants of 2,601 
Central and South 
American landrace 
accessions 

GBS 3,101 104,223 Mayer et al. 
2017 

Flint-BL Breeding lines of 
European flint pool 

600k array, 
except for two 
lines with WGS 

65 501,124 Mayer et al. 
2020 

Dent-BL Breeding lines of Dent 
pool (mainly USA) 

600k array 70 501,124 - 

 

Individuals of the European landraces (Table 1) as well as 64 European flint and 70 dent 

breeding lines were genotyped with 616,201 markers, using the 600k Affymetrix® Axiom® 

Maize Array (Unterseer et al. 2014). For all 600k array datasets, markers were filtered for 

assignment to the best quality class (Poly High Resolution; Unterseer et al. 2014), a call 

rate ≥ 0.9 and a mapped position on the B73 reference sequence, AGPv2 (Chia et al. 2012) 

for Mayer et al. (2017) and AGPv4 (Jiao et al. 2017) for Hölker et al. (2019) and Mayer et al. 

(2020). 
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In Mayer et al. (2017), markers which were specifically developed to maximize differences 

among US Stiff-stalk and non-Stiff-stalk material (Ganal et al. 2011; Frascaroli et al. 2013) 

as well as insertion/deletion (indel) markers were excluded to avoid bias in population 

genetic analyses. The resulting dataset (LR35-S0; Table 2) comprised 952 S0-plants from 

35 landraces (Table 1) and 516,797 single nucleotide polymorphism (SNP) markers. The 

unimputed dataset of the SeeD panel (Hearne et al. 2012) used in Mayer et al. (2017) 

comprised 955,120 markers generated by genotyping by sequencing (GBS; Elshire et al. 

2011). Filtering for bi-allelic SNPs and for a call rate ≥ 0.8 resulted in a set of 3,101 

individuals from 2,601 accessions and 104,223 markers (SeeD-S0; Table 2). When analyses 

required data with known haplotype phases and without missing genotype calls, 

imputation and phasing was conducted for each landrace of LR35-S0 separately and for 

the entire set of SeeD-S0 using Beagle version 4.0 (Browning and Browning 2007) with 

default settings, except for parameter ‘nsamples’, which was set to 50. Comparative 

analyses between the European and American landraces were based on 5,045 overlapping 

markers (Mayer et al. 2017). 

For the landrace-derived DH lines used in Hölker et al. (2019) and Mayer et al. (2020), 

preliminary ancestry analyses were conducted with the software ADMIXTURE (Alexander 

et al. 2009), using the S0-plants of the three landraces for defining the ancestry groups. 

Lines with less than 75% concordance with the presumed landrace of origin were excluded 

from further analyses. A filter for < 5% heterozygous calls was applied, to exclude markers 

which potentially mapped to multiple positions in the genome as well as lines derived from 

diploid embryos. Remaining heterozygous calls (0.19%) likely resulted from technical 

errors and were set to missing. All missing genotype calls were imputed using Beagle 

version 5.0 (Browning et al. 2018) with default settings. The resulting dataset (LR3-DH; 

Table 2) comprised 941 DH lines of three landraces (501 KE, 31 LL and 409 PE; Table 1) 

and 501,124 markers. From the 144 S0-plants from the seed batch used for DH production, 

one line was excluded due to > 10% missing values. Missing genotype calls in these S0-

plants were imputed and gametic phase estimated separately for each landrace, using 

Beagle version 5.0 (Browning et al. 2018) with parameter settings ‘iterations’ = 50, ‘phase-

segment’ = 10, ‘phase-states’ = 500 and with the DH lines of the respective landrace used 

as reference panel. For comparative molecular analyses between the DH lines and the 

original landraces, 499,574 markers overlapping between LR3-DH and the set of 143 S0-

plants (LR3-S0; Table 1 and Table 2) were used in Hölker et al. (2019). 
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The 600k genotypic data of the breeding lines where filtered for the 501,124 high quality 

markers of LR3-DH. One flint breeding line (FV66) was excluded due to > 5% of calls 

indicating heterozygosity. For two flint breeding lines (EZ5 and F64), genotypic data of 

424,400 sites overlapping with the 501,124 markers (85%) were extracted from whole 

genome sequence (WGS) data of the HapMap panel (version 1.2.3; Bukowski et al. 2018). 

For combining the WGS and 600k array data, all alleles were coded according to the B73 

AGPv4 (Jiao et al. 2017) forward strand. After setting remaining heterozygous calls to 

missing, missing values for the set of 65 flint breeding lines (Flint-BL; Table 2), used in 

Mayer et al. (2020), as well as the set of 70 dent breeding lines (Dent-BL; Table 2) were 

imputed separately using Beagle version 5.0 (Browning et al. 2018) with default settings. 

2.1.3 Field experiments 

LP performance was evaluated for 958 DH lines as well as 14 flint and one dent breeding 

lines used as checks in up to eleven environments (location × year combinations). 

Genotypes were randomized using multiple 10 × 10 lattice designs with two replicates 

(single row plots with 3 m in length), with 1000 entries (958 DH lines plus checks) at four 

locations in 2017 and 800 entries (756 DH lines plus checks) at three locations in 2018 in 

Germany. A random subset of lines (500 entries, 458 and 468 DH lines plus checks in 2017 

and 2018, respectively) was phenotyped at two locations in Spain in both years. In addition 

to the line checks, evaluated as duplicate entries, the original landrace populations were 

included as quadruplicate entries. In total, 899 DH lines phenotyped in the field passed 

quality filtering of the corresponding genotypic data. Phenotypic data of the remaining lines 

were excluded from further analyses. Mean temperature per environment for the period of 

15th of April to 30th of September ranged between 14.0°C (Oberere Lindenhof; OLI, 2017) 

and 19.0°C (Tomeza; TOM, 2018), while minimum and maximum temperatures were -6.0°C 

(OLI, 2017) and 39.5°C (Bernburg; BBG, 2018). TC performance was evaluated at four 

locations in Germany in 2018 using 10 × 10 lattice designs with two replicates per genotype 

(400 entries, 378 DH lines × F353 plus checks). Three flint breeding lines were crossed to 

the same tester and used in addition to two commercial hybrids as checks in the TC trials. 

Checks were included in each of the four lattices (i.e. quadruplicate entries). For both, LP 

and TC trials, sowing density, fertilization and plant protection followed standard 

agricultural practices at the respective trial locations. 

More than 25 traits were measured in the LP trials. The focus lied on early-development-

related traits like early vigor (EV; at growth stages V3, V4, and V6, score 1-9, 1 = very poor 

vigor, 9 = very vigorous), early plant height (PH; at V3, V4 and V6, average over three 
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measured plants per plot, cm) and cold tolerance (1–9 score, 1 = low, 9 = high cold 

tolerance; symptoms were chlorosis and necrosis on the leaves). Further, agronomic traits 

like final plant height (PH_final; cm), female (FF; days after sowing until 50% of plants show 

silks) and male (MF; days after sowing until 50% of plants shed pollen) flowering as well 

as undesirable traits like tillering (TILL; score 1-9, 1 = no tillers, 9 = many and long tillers) 

and lodging (LO; 1 = no lodging, 9 = all plants showing severe lodging) were evaluated. 

Additionally, morphological traits like tassel architecture (tassel length, spike length, 

number of tassel branches, and tassel angle) as well as physiological traits like maximum 

efficiency of photosystem II (at V4 and V6, measured with fluorometer OS-30p, Opti-

Sciences Inc., USA) and leaf greenness (at V3, V4, and V6, measured with chlorophyll 

content meter CCM-200, Opti-Sciences Inc., USA) were measured. For TC trials, 

additionally forage total dry matter yield (dt/ha) and dry matter content (near infrared 

spectroscopy or drying, in %) were evaluated. 

The analysis of phenotypic data was based on the following model (Hölker et al. 2019): 

𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡 = µ + 𝛾𝑖  +  𝑑𝑖𝑗𝛿𝑗 + 𝑢𝑘(𝑖𝑗) + 𝑤𝑜 + 𝑑𝑖𝑗𝛿𝑤𝑗𝑜 + 𝑢𝑤𝑘𝑜(𝑖𝑗) + 𝑘𝑝(𝑜) + 𝑟𝑠(𝑜𝑝) + 𝑏𝑡(𝑜𝑝𝑠) + 𝑒𝑖𝑗𝑘𝑜𝑝𝑠𝑡  

𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡  trait observation 

µ  overall mean 

𝛾𝑖   effect of group i, with i = 1, 2, 3 (DH lines, checks, and S0-plants) for LP and 

i = 1, 2 (DH lines, checks) for TC 

𝛿𝑗  effect of landrace j in group i = 1, with j = 1, 2, 3 (KE, LL, PE) for LP and  

j = 1, 2, (KE, PE) for TC 

𝑑𝑖𝑗  dummy variable, with 𝑑𝑖𝑗 = 1 for i = 1 and 𝑑𝑖𝑗 = 0 otherwise 

𝑢𝑘(𝑖𝑗)  effect of genotype k nested in group i and landrace j 

𝑤𝑜  effect of environment o 

𝛿𝑤𝑗𝑜  interaction effect for landrace j and environment o 

𝑢𝑤𝑘𝑜(𝑖𝑗)   interaction effect for genotype k and environment o 

𝑘𝑝(𝑜)   effect of the lattice p nested in environment o 

𝑟𝑠(𝑜𝑝)  effect of replicate s nested in lattice p and environment o 

𝑏𝑡(𝑜𝑝𝑠)  effect of block t nested in replicate s, lattice p and environment o 

𝑒𝑖𝑗𝑘𝑜𝑝𝑠𝑡  residual error 

For estimating genotype and genotype × environment interaction variance components, 

all effects except 𝛾𝑖  and 𝛿𝑗 were treated as random. Variance components for 𝑢𝑘(𝑖𝑗) and 

(1)  
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𝑢𝑤𝑘𝑜(𝑖𝑗) were modeled individually for the three landraces, assuming that DH lines were 

unrelated. Residuals were assumed to be normally distributed with mean zero and different 

variances for DH lines (𝑑𝑖𝑗 = 1) and checks/S0-plants (𝑑𝑖𝑗 = 0), but equal residual variance 

for all three landraces in all environments. Raw data was manually filtered for outliers based 

on residual plots. Variance components and their standard errors were estimated using 

ASReml-R package version 3.0 (Butler et al. 2009). Heritabilities were calculated separately 

for each landrace on an entry-mean basis according to Hallauer et al. (2010):  

ℎ2 =
𝜎𝑢

2

𝜎𝑢
2  + 

𝜎𝑢𝑤
2

𝑛𝑤
 + 

𝜎𝑒
2

𝑛𝑤𝑛𝑟

 

ℎ2  entry-mean heritability 

𝜎𝑢
2  genotype variance 

𝜎𝑢𝑤
2   genotype × environment variance 

𝜎𝑒
2  residual variance 

𝑛𝑤  number of environments 

𝑛𝑟  number of replicates 

Adjusted genotype means (BLUEs; Best Linear Unbiased Estimates) across environments 

were calculated using the model in equation 1 without the terms 𝛾𝑖, 𝑑𝑖𝑗𝛿𝑗 and 𝑑𝑖𝑗𝛿𝑤𝑗𝑜  and 

treating 𝑢𝑘 as fixed effect. BLUEs within environments were calculated using the same 

model without environment-related model terms. Phenotypic correlations among traits 

were calculated based on Pearson correlation coefficients from BLUEs within DH libraries. 

Genetic correlations were estimated by expanding the model defined in equation 1 to a 

bivariate model for pairs of traits. 

2.2 Analyses of molecular data 

2.2.1 Site frequency spectrum 

In population genetic theory, the term site frequency spectrum (SFS) refers to the 

distribution of allele frequencies of all mutations in a population. In accordance with the 

infinite sites mutation model (Kimura 1969), segregating sites are assumed to be bi-allelic. 

The SFS is estimated by tabulating the sample allele frequencies of derived alleles at all 

segregating sites and is given by the vector 𝑓 = (𝑓1, 𝑓2, 𝑓3 , … , 𝑓𝑔−1), where 𝑓𝑖 is the 

proportion of sites with a derived allele frequency of 𝑖/𝑔 and 𝑔 is the number of gametes 

(2)  
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within the sample. The expected SFS under the standard coalescence model with infinite 

sites mutations is given by Nielsen and Slatkin (2013):  

𝐸[𝑓𝑖] =  
1

𝑖
∑

1

𝑗

𝑔−1 

𝑗=1

   , 𝑖 = 1,2, … , 𝑔 − 1 

The determination of which allele at a given locus is derived and which is ancestral is 

usually based on examining outgroups, i.e. closely related species. If outgroup information 

is not available, like in Mayer et al. (2017), an alternative approach is to fold the SFS by 

summing up respective frequency classes of reference alleles, which are arbitrarily chosen 

for each bi-allelic locus. The folded SFS 𝑓∗ is obtained by 𝑓∗ = 𝑓𝑖 + 𝑓𝑔−𝑖 for 𝑖 < 𝑔/2 and 

𝑓∗ = 𝑓𝑖 for 𝑖 = 𝑔/2 (Nielsen and Slatkin 2013). Using unimputed datasets for calculating 

SFS in Mayer et al. (2017), 𝑔 gametes with non-missing genotype calls were randomly 

sampled per marker, where 𝑔 = 2𝑛𝑐 with 𝑛 corresponding to the number of individuals 

and 𝑐 representing the minimum call rate in the respective dataset. The folded SFS was 

calculated by averaging allele frequencies per SNP over 1,000 random samples. 

Deviations of an empirical SFS from the expected SFS as defined in equation 3 can be 

caused by demographic as well as selective processes. While population growth and 

positive or negative selection shift the SFS towards extreme allele frequencies, population 

decline, population substructure and balancing selection can lead to an excess of 

intermediate allele frequencies (Hartl and Clark 1997). Distortions in the SFS can also be 

caused by nonrandom sampling of the genomic loci under consideration. This so-called 

ascertainment bias is common for genotyping arrays, where SNPs were previously 

discovered based on sequencing a relatively small panel of individuals and the resulting 

genotyping arrays are then applied to a much larger set of individuals. As the probability 

of discovering rare alleles depends on the sample size, i.e. in this case the size of the 

discovery panel, SNP array data tend to be enriched for intermediate allele frequencies 

(Nielsen et al. 2004). Further, ascertainment bias can arise, if the allelic composition of the 

discovery panel is not representative for the sample under consideration (Frascaroli et al. 

2013; Lachance and Tishkoff 2013). Population genetic analyses, like estimation of 

molecular diversity, LD and population differentiation, depend on allele frequencies and 

therefore are affected by ascertainment bias (Nielsen and Signorovitch 2003; Albrechtsen 

et al. 2010). To assess the extent and influence of ascertainment bias in the analyzed data 

(Mayer et al. 2017), SFS were calculated for different datasets and compared with the 

expected SFS (equation 3). 

(3)  
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2.2.2 Diversity parameters 

Various measures can be used for describing molecular diversity. A simple measure of 

DNA polymorphisms is the number of segregating sites, S, in a population (Hamilton 2009). 

S is usually calculated for samples of DNA sequences and can be expressed as the 

proportion of segregating sites relative to the total number of nucleotide sites. Analogously 

for the 600k array data, the proportion of polymorphic markers (PP; Nei 1987) was 

calculated for different datasets in Mayer et al. (2017). While PP is not affected by sample 

allele frequencies, other measures of diversity are sensitive to allele frequency changes 

and thus capture different information. Nucleotide diversity (π) is a commonly used 

measure and defined as the average number of pairwise nucleotide differences between a 

set of 𝑛 DNA sequences (Nei and Li 1979; Tajima 1989):  

�̂� =
1

(
𝑛
2

)
∑ ∑ 𝜋𝑖𝑗

𝑛

𝑗>𝑖

𝑛−1

𝑖

 

𝜋𝑖𝑗  number of nucleotide differences between the 𝑖-th and 𝑗-th DNA sequence 

When calculated per site, or as in Mayer et al. (2017) per marker, π is identical to the 

unbiased estimate of gene diversity, also known as expected heterozygosity (H), which is 

defined as (Nei and Roychoudhury 1974; Tajima 1989): 

𝐻 =
𝑛

𝑛 − 1
(1 − ∑ �̂�𝑖

2

𝐼

𝑖=1

) 

𝐼  number of distinct alleles at the locus (i.e. 𝐼 = 2 for bi-allelic SNPs or 

𝐼 = number of distinct haplotypes in a given genomic window) 

�̂�𝑖  frequency of allele 𝑖 in the sample 

A similar measure of diversity is polymorphism information content (PIC), which is used to 

assess a marker’s usefulness for linkage analysis (Botstein et al. 1980). PIC is the 

probability that a given marker genotype of an offspring of a heterozygous parent, affected 

with a dominant disease, will allow to deduce which marker allele the offspring inherited 

from this parent (Botstein et al. 1980): 

𝑃𝐼�̂� = 1 − ∑ �̂�𝑖
2

𝐼

𝑖=1

− ∑ ∑ 2�̂�𝑖
2�̂�𝑗

2

𝐼

𝑗=𝑖+1

𝐼−1

𝑖=1

 

(4)  

(5)  

(6)  
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Both, H and PIC, can be calculated based on SNPs (HSNP and PICSNP) or haplotypes (Hhap 

and PIChap), where haplotypes refer to particular combinations of jointly inherited 

nucleotides at neighboring markers in a defined genomic window. In Mayer et al. (2020), 

HSNP and PICSNP as well as Hhap and PIChap were used for assessing the molecular diversity 

of landrace-derived DH-libraries (LR3-DH) and breeding lines (Flint-BL). In Mayer et al. 

(2017), Hhap was used in addition to PP and π as an haplotype based diversity measure for 

LR35-S0 and SeeD-S0. Haplotype based parameters can be assumed to be less affected 

by ascertainment bias compared to SNPs (Conrad et al. 2006). In addition to the diversity 

of individual nucleotide sites comprised in the window under consideration, haplotype 

diversity depends on the number of recombinations that have occurred in the respective 

genomic region. Therefore, the minimum number of historical recombination events (nR) 

was calculated in Mayer et al. (2020) for LR3-DH and Flint-BL, based on the four-gamete 

test (Hudson and Kaplan 1985). 

2.2.3 Population structure 

The term population structure describes the grouping of a population into smaller 

subpopulations in which mating usually takes place (Hartl and Clark 1997). 

Characteristically, individuals are genetically more related to each other within than across 

subpopulations. Analyzing population structure and the phylogenetic relationships 

between sampled individuals can help in understanding evolutionary processes and 

inferring patterns of historical ancestry (Matsuoka et al. 2002; van Heerwaarden et al. 2011; 

Mir et al. 2013). Knowledge about population structure in the material under study is 

important, as population structure can be a confounding factor in genetic analyses like 

GWAS and genomic prediction (Zhao et al. 2011; Barton et al. 2019). 

Genetic dissimilarity between individuals can be estimated based on genetic distance 

measures calculated from molecular markers (Reif et al. 2005c). Modified Rogers’ distance 

(MRD; Wright 1978; Goodman and Stuber 1983) is a scaled Euclidean distance measure, 

ranging between 0 and 1:  

𝑀𝑅𝐷 =
1

√2𝑚
√∑ ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)

2

𝐼𝑖

𝑗=1

𝑚

𝑖=1

 

𝑚  number of markers 

𝐼𝑖  number of alleles at marker i (for bi-allelic SNPs, 𝐼𝑖 = 2) 

(7)  
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𝑝𝑖𝑗 , 𝑞𝑖𝑗  allele frequencies of the j-th allele at the i-th locus in the two populations or 

individuals under consideration (𝑝𝑖𝑗 , 𝑞𝑖𝑗 ∊ {0, 0.5, 1} for individuals) 

Fulfilling the Euclidean distance property, MRD is well suited to elucidate population 

structure with multivariate analysis methods, such as hierarchical cluster and principal 

coordinate analysis (PCoA). PCoA is a statistical method for representing a dissimilarity 

matrix (e.g. MRD) in a low-dimensional, Euclidean space (Gower 1966). PCoA decomposes 

the dissimilarity matrix into its latent roots and vectors, also called Eigenvalues and 

Eigenvectors. The Eigenvectors, standardized by the square root of the corresponding 

Eigenvalue and ordered according to their Eigenvalues, represent the principal coordinates 

(PCo). In contrast to the columns of the dissimilarity matrix, the PCos are uncorrelated 

(orthogonal) and the proportion of variance explained per PCo is maximized. PCoA based 

on pairwise MRD between individuals was calculated in Mayer et al. (2017), Hölker et al. 

(2019) and Mayer et al. (2020) for analyzing population structure in the respective dataset. 

In addition, an unrooted neighbor joining tree was constructed for dataset LR35-S0 (Mayer 

et al. 2017). The neighbor joining method (Saitou and Nei 1987) is a clustering algorithm 

applied to genetic (dis)similarity measures (e.g. MRD), resulting in an unrooted 

phylogenetic tree in which distances, represented by the length of the branches, are 

additive. The algorithm starts with a star-like tree, in which each sample represents a 

separate cluster, and iteratively joins two samples to a newly created node. The pair of 

samples to be joined in each step are chosen based on the principle of minimum evolution 

(Saitou and Nei 1987), minimizing the total branch length of the resulting tree. Besides such 

algorithmic approaches, ancestry coefficients can be estimated as parameters of statistical 

models, as implemented in programs like structure (Pritchard et al. 2000) and ADMIXTURE 

(Alexander et al. 2009). For a pre-defined number of groups, K, both programs 

simultaneously estimate group allele frequencies along with ancestry proportions of each 

individual, based on the probability of the observed genotypes. ADMIXTURE relies on 

maximum likelihood estimation, leading to a considerable reduction in computation time 

compared to the Bayesian approach of structure. If no a priori information on 

(sub)populations is available, K can be estimated using a cross-validation approach 

implemented in ADMIXTURE, predicting masked genotype scores and comparing them to 

observed values. ADMIXTURE can also be used in a supervised mode, where genetic 

groups are pre-defined by reference individuals. The algorithm was used for analyzing 

population structure in LR35-S0 and SeeD-S0 (Mayer et al. 2017) as well as estimating 

ancestry proportions for Flint-BL and Dent-BL. As ADMIXTURE assumes linkage 
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equilibrium between markers, the respective marker sets were pruned based on LD using 

PLINK (Purcell et al. 2007). 

Genetic differentiation among identified or a priori known subpopulations can be assessed 

by partitioning the total molecular variance into within and across subpopulation 

(co)variance, using an analysis of variance framework (Weir and Cockerham 1984; 

Excoffier et al. 1992). Analysis of molecular variance (AMOVA) is based on Euclidian 

distances among gametes and estimates (co)variance components and F-statistic 

analogs, reflecting the correlation of molecular diversity at different levels of hierarchical 

subdivision (Excoffier et al. 1992). A typical hierarchical structure is given in Table 3 

(Excoffier and Lischer 2010): 

Table 3: Hierarchical structure in an analysis of molecular variance (AMOVA) 

Source of variation Degrees of freedom Expected mean squares 

Among subpopulations 𝑃 − 1 1

𝑃 − 1
(2𝑁 − ∑

2𝑁𝑃
2

𝑁
𝑝∊𝑃

) 𝜎𝑎
2 + 2𝜎𝑏

2 + 𝜎𝑐
2 

Among individuals 
within subpopulations 

𝑁 − 𝑃 2𝜎𝑏
2 + 𝜎𝑐

2 

Within individuals 𝑁 𝜎𝑐
2 

Total 2𝑁 − 1 𝜎𝑇
2 

𝑃  number of subpopulations 

𝑁  number of diploid individuals 

𝜎𝑎
2  covariance component due to differences among subpopulations 

𝜎𝑏
2  covariance component due to differences among individuals within 

subpopulations 

𝜎𝑐
2  covariance component due to differences among gametes within individuals 

𝜎𝑇
2  total molecular variance 

The following statistics can be derived from the (co)variance component estimates: 

𝐹𝑆𝑇 =
𝜎𝑎

2

𝜎𝑇
2                ,    𝐹𝐼𝑇 =

𝜎𝑎
2 + 𝜎𝑏

2

𝜎𝑇
2                ,     𝐹𝐼𝑆 =

𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑐

2
 (8) (9) (10) 
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𝐹𝑆𝑇  “fixation index”; proportion of molecular diversity due to allele frequency 

differences among subpopulations 

𝐹𝐼𝑇   departure of genotype frequencies from Hardy–Weinberg expectations 

relative to the entire population 

𝐹𝐼𝑆  “inbreeding coefficient”; average departure of genotype frequencies from 

Hardy–Weinberg expectations within subpopulations 

Significance of covariance components and F-statistic analogs can be tested using 

permutations (Excoffier et al. 1992). AMOVA was used in Mayer et al. (2017) for 

decomposing the total molecular variance of dataset LR35-S0 into within- and across-

landrace components, as well as for estimating the proportion of variance captured by 

groups of landraces. Further, 𝐹𝐼𝑆  was estimated separately for each landrace of LR35-S0. 

In Hölker et al. (2019), AMOVA was used for estimating proportions of molecular variance 

within and between the sets of DH lines (LR3-DH) and S0-plants (LR3-S0) of each landrace. 

2.2.4 Linkage disequilibrium 

LD refers to the nonrandom association of alleles at different loci in gametes of a 

population. Many genetic analyses rely on the concept of LD, such as marker-assisted 

selection, GWAS and genomic prediction. The extent of LD determines the resolution that 

can be obtained in GWAS, with lower LD levels leading to higher resolution, assuming 

marker density is high enough. For two bi-allelic loci with alleles A/a and B/b, respectively, 

LD can be measured as 𝐷, the difference between the observed and expected frequency 

of haplotype AB (Lewontin and Kojima 1960):  

𝐷 = 𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵 

𝑝𝐴𝐵  frequency of haplotype consisting of the pair of alleles A and B at the first 

and second locus, respectively 

𝑝𝐴 , 𝑝𝐵  frequencies of alleles A and B at the first and second locus, respectively 

The maximum range of 𝐷 spans from -0.25 to 0.25. The realized range depends on marker 

allele frequencies, with the largest positive value being 𝑝𝐴𝑝𝑏 or 𝑝𝑎𝑝𝐵, whichever is smaller, 

and the largest negative value being -𝑝𝐴𝑝𝐵 or -𝑝𝑎𝑝𝑏, whichever has the smaller absolute 

value. Lewontin (1964) introduced another measure of LD, 𝐷′, which is scaled by the 

maximum value of 𝐷, given the allele frequencies in the studied material, and thus ranges 

between 0 and 1. In contrast to 𝐷, the standardized measure 𝐷′ allows comparison of 

relative values across genomic regions or even across studies. Other standardized 

(11) 
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measures of LD are 𝑟 and 𝑟2 (Hill and Robertson 1968), where 𝑟 is defined as 

𝐷/√(𝑝𝐴𝑝𝑎𝑝𝐵𝑝𝑏) and represents Pearson’s correlation coefficient in allelic state between 

alleles in the same gamete. Whenever it is important to capture the information of gametic 

phase, as for example in the context of genomic prediction across populations, 𝑟, ranging 

from -1 to 1, is an appropriate measure of LD. In Mayer et al. (2017), 𝑟 was used for 

assessing the persistence of linkage phase between landraces of dataset LR35-S0, 

calculating the correlation of 𝑟 values of the respective landraces as well as the proportion 

of 𝑟 values with equal sign. In many cases, only the magnitude of LD and not the direction 

is relevant, like for example for detecting marker-trait associations in GWAS. In such cases, 

𝑟2, ranging from 0 to 1, is a commonly used parameter, as it is an intuitive measure of how 

well the allele at one locus (e.g. the QTL) can be predicted by the allele at another locus 

(e.g. the marker). Due to recombination, LD decays with physical distance. Therefore, the 

level of LD within a population under study is often described as an average decay 

distance. Hill and Weir (1988) derived an equation describing 𝑟2 as a function of physical 

distance between loci. Using this equation, LD decay distance was estimated for the 

datasets analyzed in this thesis (Table 2) by fitting a nonlinear regression curve and 

determining the crossing point with 𝑟2 = 0.2. 

2.3 Haplotype identification 

2.3.1 Haplotype construction 

Haplotypes derived from experimental data represent phased nucleotide sequences in a 

defined genomic segment comprising multiple SNPs. Therefore, haplotypes are generally 

more discriminative between individuals than single SNPs and better suited for tracking 

the inheritance of potentially trait-associated alleles (Stephens et al. 2001; Hayes 2013). 

Knowing the gametic phase is a prerequisite for haplotype construction. Phases are known 

when working with fully homozygous lines, as in Mayer et al. (2020). When working with 

heterozygous material, they can be inferred statistically (Browning and Browning 2011; 

Pook et al. 2020), as in Mayer et al. (2017). Various methods for haplotype construction 

exist. Haplotypes can be constructed for sliding windows with a fixed physical length (Hess 

et al. 2017) or based on a constant number of markers (Calus et al. 2009; Ferdosi et al. 

2016). If marker density is high, windows can be chosen according to the boundaries of 

annotated genes (Yano et al. 2016; Bustos-Korts et al. 2019). Pre-defining genomic 

windows for haplotype construction facilitates haplotype comparisons across populations, 

varying in their evolutionary history and extent of LD. Window sizes, however, should not 
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be chosen too large, for reducing the risk of haplotypes being broken up by recombination. 

Alternatively, many methods exist for generating haplotype blocks that are specific for the 

respective population under study. Most of those methods are based on identifying local 

patterns of increased LD or reduced recombination in the genome (Nothnagel et al. 2002; 

Gabriel et al. 2002; Barrett et al. 2005; Pattaro et al. 2008; Kim et al. 2017). Other methods 

infer haplotype blocks based on genomic segments with reduced diversity (Daly et al. 

2001; Patil et al. 2001) or based on pairwise (Browning and Browning 2013) or groupwise 

(Pook et al. 2019) segments identical by descent (IBD). For the analyses conducted in 

Mayer et al. (2020), comparability across datasets, in this case between landraces and 

breeding germplasm, was an important factor. Therefore, haplotypes were constructed for 

sliding windows with a constant number of ten SNPs. Parameters nR and Hhap as well as 

the average physical and genetic window size were considered for evaluating the extent 

of recombination that might have occurred in the constructed haplotypes. As the marker 

density of the 600k array roughly follows the average recombination rate (Unterseer et al. 

2014), using a fixed number of markers should result in similar probabilities of 

recombination per window. 

2.3.2 Association scans 

Mixed linear models are routinely used in GWAS, testing the association of a SNP (or 

haplotype) with a trait of interest, while simultaneously controlling confounding factors 

such as population structure and cryptic relatedness. In the standard model, the SNP (or 

haplotype) tested is fitted as a fixed effect, while additional fixed effects, e.g. principal 

components of the genotype data, account for population structure. In addition, a random 

polygenic effect, with a genomic relationship matrix defining the covariance structure, 

accounts for cryptic relatedness. Many variations of this model, initially proposed by Yu et 

al. (2006), were developed, for improving computational efficiency and/or GWAS power 

(Xiao et al. 2017). In Mayer et al. (2020), association analyses were conducted in two steps, 

following the approach of Millet et al. (2016). First, the genome-wide efficient mixed-model 

association (GEMMA; version 0.98.1) algorithm of Zhou and Stephens (2012) was used for 

conducting univariate GWAS within single environments as well as across environments, 

using the respective environment-specific and across-environment BLUEs as response 

variable in the model, respectively: 

𝐲 = 𝐖𝛂 + 𝐱𝛽 + 𝐙𝐮 + 𝐞 

𝐲  vector (n × 1) of phenotypic values (BLUEs), with n = number of lines 

𝐖  design matrix (n × 3) for fixed effects 

(12) 
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𝛂  vector (3 × 1) of fixed effects (intercept and landrace effects of KE and LL) 

𝐱  vector (n × 1) of genotype scores (0 or 2) of the haplotype tested 

𝛽  fixed effect of the marker tested 

𝐙  design matrix (n × n) for random effects 

𝐮  vector (n × 1) of random genotypic effects, with 𝐮~𝑁(0, 𝐊𝜎𝑔
2); where 𝐊 

denotes the (n × n) genomic relationship matrix according to Astle and 

Balding (2009) and 𝜎𝑔
2 the genetic variance pertaining to the model 

𝐞  vector (n × 1) of random genotypic effects, with 𝐞~𝑁(0, 𝐈𝒏𝜎𝑒
2); where 𝐈𝒏 

denotes the (n × n) identity matrix and 𝜎𝐞
2 the residual variance pertaining to 

the model 

Haplotypes were coded as binary presence/absence markers, leading to scores 0 and 2 

for fully homozygous lines. Haplotypes present less than three times in the dataset were 

excluded from GWAS. For each single environment as well as for the across-environment 

GWAS, significance of haplotype effects was determined using a likelihood-ratio test and 

a false discovery rate (FDR; Benjamini and Hochberg 1995) of 15%. Significant haplotypes 

from the same genomic region (within 1 Mb distance) and in high LD (𝑟2 ≥ 0.8) were 

considered as marking the same QTL. The respective trait-associated genomic region was 

defined as the interval between the start and end position of the first and last haplotype 

belonging to the QTL, respectively. For subsequent analyses, each QTL was represented 

by the haplotype with the lowest P-value in the respective region, referred to as the focus 

haplotype. 

In the second step, the candidate haplotypes obtained from the first step were tested in a 

multi-locus, multi-environment model as suggested by Millet et al. (2016): 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜔𝑖 + 𝛿𝑗 + ∑ 𝑥𝑘𝑞𝛽𝑞
𝑖

𝑞∊𝐐

+ 𝑢𝑘 + 𝑒𝑖𝑗𝑘 

𝑦𝑖𝑗𝑘  phenotypic value (BLUE) of line k belonging to landrace j tested in 

environment i 

𝜇  common intercept 

𝜔𝑖  fixed effect of environment i 

𝛿𝑗  fixed effect of landrace j 

𝑥𝑘𝑞  genotype score (0 or 2) of line k for haplotype q 

(13) 
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𝛽𝑞
𝑖   fixed effect of haplotype q in environment i comprising the haplotype main 

and haplotype by environment interaction effect, i.e. 𝛽𝑞
𝑖 = 𝛽𝑞 + (𝛽 × 𝜔𝑖)𝑞 

𝑢𝑘  random genotypic effect of line k, with 𝐮~𝑁(0, 𝐈𝜎𝑔′
2 ); where 𝐈 denotes the 

  identity matrix and 𝜎𝑔′
2  the genetic variance pertaining to the model 

𝑒𝑖𝑗𝑘  random residual error with environment-specific residual error variance 

Step-wise backward elimination of haplotypes based on the Wald test (Kenward and Roger 

1997) was performed, leading to a final set of haplotypes, Q. At every step, the significance 

of 𝛽𝑞
𝑖  was assessed for each haplotype when it was the last one entering the model and 

the haplotype with the highest P-value was removed, as long as P ≥ 0.01. The proportion 

of genetic variance explained by the final set of haplotypes, Q, was determined by the 

reduction in 𝜎𝑔′
2  when comparing the null model (excluding ∑ 𝑥𝑘𝑞𝛽𝑞

𝑖
𝑞∊𝐐 ) with the full model. 

For comparison, GWAS was conducted analogously based on SNPs instead of 

haplotypes, with a minor allele count of ≥ 3. 

Instead of testing each haplotype coded in a binary way separately, as described above, 

GWAS can also be performed by taking the haplotype window as fixed factor, treating the 

haplotypes within the respective window as levels of a categorical variable (Bustos-Korts 

et al. 2019). This approach was used in Mayer et al. (2020) for evaluating the effect of the 

chosen focus haplotype (element of Q) relative to the alternative haplotypes in a given 

genomic window, extending equation 13 to: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜔𝑖 + 𝛿𝑗 + ∑ 𝑥𝑘𝑞𝛽𝑞
𝑖

𝑞∊𝐐′

+ 𝑥𝑘ℎ𝛽ℎ
𝑖 + 𝑢𝑘 + 𝑒𝑖𝑗𝑘 

𝐐′  set of haplotypes Q without the focus haplotype of the window tested 

𝑥𝑘ℎ  haplotype h in the window tested, carried by line k 

𝛽ℎ
𝑖   effect of haplotype h relative to the focus haplotype in environment i 

The proportion of genetic variance explained by the haplotype window was estimated by 

comparing the genetic variance component pertaining to the null model (excluding 

∑ 𝑥𝑘𝑞𝛽𝑞
𝑖

𝑞∊𝐐′ + 𝑥𝑘ℎ𝛽ℎ
𝑖 ) and the model with the 𝑥𝑘ℎ𝛽ℎ

𝑖  term, respectively. 

2.3.3 Effect direction and stability of trait-associated haplotypes 

Significance of environment-specific haplotype effects, fitted by the models defined in 

equation 13 and 14, respectively, was assessed by constructing 95% confidence intervals 

(CI = effect estimate ± 1.96 × standard error), following Millet et al. (2016). A CI excluding 

(14) 
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0 indicated significance in a given environment. Haplotypes with constant effect direction 

for all environments where the effect was significant were categorized as ‘favorable’ or 

‘unfavorable’. For early plant development related traits (EV_V4, EV_V6, PH_V4, PH_V6) 

positive (negative) effects were defined as favorable (unfavorable). For the undesirable 

traits (LO, TILL), positive (negative) effects were defined as unfavorable (favorable). For 

traits like FF, MF and PH_final, for which breeding goals are varying, no categorization was 

made. Haplotypes with changing directions of significant effects, depending on the 

environment, were categorized as ‘interacting’. 

2.3.4 Haplotypes with effects on multiple traits 

Identified haplotypes with significant effects on one trait, according to equation 13, were 

tested for effects on other traits using a bivariate model, similar to Stich et al. (2008): 

𝑦𝑡𝑖𝑗𝑘 = 𝜇𝑡 + 𝜔𝑡𝑖 + 𝛿𝑡𝑗 + 𝑥𝑘𝛽𝑡 + 𝑢𝑡𝑘 + 𝑒𝑡𝑖𝑗𝑘 

𝑦𝑡𝑖𝑗𝑘  phenotypic value (BLUE) for trait t of line k belonging to landrace j tested in 

environment i 

𝜇𝑡  intercept for trait t 

𝜔𝑡𝑖  fixed effect of environment i for trait t 

𝛿𝑡𝑗  fixed effect of landrace j for trait t 

𝑥𝑘  genotype score (0 or 2) of line k for the tested haplotype 

𝛽𝑡  fixed effect of the tested haplotype for trait t 

𝑢𝑡𝑘  random genotypic effect of line k for trait t, with 𝐮~𝑁(0, 𝐆 ⊗ 𝐊) 

𝑒𝑡𝑖𝑗𝑘   residual with 𝐞~𝑁(0,  𝐄 ⊗ 𝐈𝑛), where G and E correspond to the genetic 

and error variance-covariance matrices among traits pertaining to the 

model, respectively 

Significance of haplotypes in each environment was again assessed, using 95% CIs for 

𝛽𝑡. 

2.3.5 Comparisons between landraces and breeding lines 

The frequency of trait-associated haplotypes identified in LR3-DH (equations 13 and 14) 

was assessed in Flint-BL for evaluating which favorable haplotypes were absent and which 

unfavorable haplotypes were common in breeding lines. The former represent potentially 

novel beneficial variation, while the latter represent potential targets for purging in breeding 

germplasm. Frequency distributions of favorable and unfavorable haplotypes were 

compared with a random set of 500 haplotypes present at least three times in LR3-DH. 

(15) 
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Significance of differences in mean frequencies between groups were assessed using the 

Mann-Whitney test (two-sided). In addition to the molecular comparisons, the potential 

effect of landrace haplotypes in elite material was assessed phenotypically based on the 

14 flint checks included in the field trials in 2017. Significance for differences in means 

between germplasm groups as well as between lines carrying or not carrying a particular 

haplotype was tested based on 10,000 permutations (two-sided test). 
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3   Discussion 

Meeting rising demands on crop production under changing environmental conditions and 

resource shortages requires genetic improvement of crops for stress resilience and 

resource use efficiency. For most crops, today’s elite breeding germplasm shows only 

limited genetic variation for such traits. In contrast, genetic resources, such as landraces, 

are assumed to harbor novel beneficial variation. However, for quantitative traits, efficient 

strategies for harnessing the native diversity of landraces are lacking. The objective of this 

thesis was to develop a genome-based strategy for the targeted utilization of genetic 

resources for elite germplasm improvement and to demonstrate its effectiveness 

experimentally in the context of temperate European maize. In this chapter, the combined 

results from the three publications underlying this thesis (Mayer et al. 2017; Hölker et al. 

2019 and Mayer et al. 2020) are discussed and complemented by additional findings. 

3.1 Choice of source material 

3.1.1 Variation within and across landraces 

For each major crop, such as maize, wheat and rice, > 50,000 accessions of genetic 

resources are stored in gene banks worldwide (Hoisington et al. 1999). For allogamous 

crops like maize, an accession mostly represents a diverse collection of seeds from an 

individual landrace (Sood et al. 2014). Understanding how the vast native diversity of 

genetic resources is distributed within and among landraces is essential for finding 

optimum strategies for sampling landrace material for genome-enabled studies. The 

molecular diversity of maize landraces of various origin has been studied based on isozyme 

(Doebley et al. 1988; Sanchez et al. 2000; Sood et al. 2014), restriction fragment length 

polymorphism (RFLP; Dubreuil and Charcosset 1998; Rebourg et al. 2001, 2003), and 

simple sequence repeat (SSR; Reif et al. 2005b; Vigouroux et al. 2008; Eschholz et al. 2010; 

Mir et al. 2013) markers. Part of these studies used multiple individuals per accession (up 

to twelve, except for Reif et al. 2005b with 30 individuals from five landraces) or DNA bulks 

of 15 plants for genotyping, enabling the comparison of variation within and among 

landraces. A common result of those studies was, that most of the molecular variation lies 

within rather than among landraces (Sood et al. 2014) or analogously within rather than 

among geographically defined groups of landraces (Vigouroux et al. 2008). This is a general 

characteristic for allogamous species. Similar observations were made in crops like rye 

(Persson and von Bothmer 2002), sunflower (Park and Burke 2020) and cassava (Tovar et 

al. 2016). Recent studies in maize used high density molecular data, based on GBS or 
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genotyping arrays, but either only one or few individuals per accession (Takuno et al. 2015; 

Arteaga et al. 2016; Romero Navarro et al. 2017) or a limited number of landraces 

(Melchinger et al. 2017) were genotyped. In Mayer et al. (2017), a panel of 35 European 

maize landraces, with 22 to 48 individuals per landrace, was genotyped with 600k SNPs 

(LR35-S0; Table 2), allowing a comprehensive analysis of molecular diversity, population 

structure and LD within and across landraces. In accordance with previous studies based 

on low density marker data (Sood et al. 2014), AMOVA revealed that 73.1% of the total 

molecular variance lied within landraces, whereas 26.9% were due to variation across 

landraces. On average, five landraces captured 95% of the total molecular variance in the 

panel of 35 landraces. Diversity parameters, such as PP, π and Hhap, calculated within 

landraces were on average lower than in random samples of an equal number of individuals 

across landraces. However, except for few landraces with substantially reduced diversity 

(minimum within: PP = 0.410, π = 0.142 and Hhap = 0.474), parameter estimates indicated 

high diversity within landraces, with the most diverse landraces (maximum within: 

PP = 0.913, π = 0.306 and Hhap = 0.787) almost reaching the across landrace level (average 

across: PP = 0.965, π = 0.323 and Hhap = 0.863). Estimates of molecular diversity based on 

SNP array data might be overestimated due to an overrepresentation of sites with 

intermediate allele frequencies (Nielsen et al. 2004). Considering that the genetic variance 

of a quantitative trait is a function of effect sizes and allele frequencies at associated QTL 

(Falconer and Mackay 2009), the obtained estimates should still reflect the magnitude of 

the genetic variance. If molecular variation is predictive of genetic variation, the results 

obtained in this thesis indicate that single landraces can already provide high variation for 

quantitative traits of agronomic importance and thus could be utilized in mapping studies 

and pre-breeding approaches. This hypothesis was validated in Hölker et al. (2019), where 

three landrace-derived DH libraries evaluated for LP and TC performance for more than 25 

traits, revealed large genetic variances within landraces and only small differences among 

landraces. 

Population structure analyses in Mayer et al. (2017) indicated that most of the 35 landraces 

represent largely unstructured populations, as expected under approximate random 

mating within landraces. Individuals consistently grouped according to their landrace-

membership in NJT and PCoA and had high ancestry proportions attributable to their 

respective pedigree, as estimated using ADMIXTURE. No pronounced sub-grouping of 

individuals within landraces was observed. Only five landraces showed significant, slightly 

positive 𝐹𝐼𝑆 values, indicating deviations from random mating in the last seed multiplication 

step. Especially for allogamous crops, seed multiplication and regeneration of accessions 
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in gene banks require special effort with a large number of controlled crosses, to avoid 

inbreeding or assortative mating and consequently loss of alleles (FAO 2016). The results 

of Mayer et al. (2017) suggest, that landraces were generally maintained properly, although 

it cannot be ruled out that the limited molecular diversity of few landraces might have been 

caused by bottlenecks during seed multiplication. The absence of pronounced population 

structure within landraces increases the power of association mapping and reduces the 

risk of spurious associations (Zhao et al. 2011). Further, absence of population structure 

increases the efficacy of genomic prediction in pre-breeding, because population structure 

can lead to biased estimates of genomic breeding values, genomic heritability, and 

prediction accuracy (Windhausen et al. 2012; Guo et al. 2014; Albrecht et al. 2014). Thus, 

it could be shown here that for samples within landraces, the prediction of breeding values 

of individual lines will not be masked by their membership to specific sub-populations, in 

contrast to broad species-wide samples (Yu et al. 2016). 

LD levels within the 35 landraces analyzed in Mayer et al. (2017) were low, as indicated by 

a median r2-decay distance of 251 kb, a range harboring on average less than six 

annotated genes according to current versions of flint reference genomes (Haberer et al. 

2020). These results show that samples within landraces provide sufficient mapping 

resolution in GWAS. Only two landraces exhibited r2-decay distances of > 1 Mb, at the 

same time also showing the lowest levels of molecular diversity. Such landraces must be 

excluded in a pre-screening step when choosing landrace material for mapping studies. In 

Mayer et al. (2017), LD levels were analyzed for sampling schemes varying in the number 

of landraces and number of gametes per landrace. In general, LD levels decreased with 

increasing numbers of landraces, with an r2-decay distance of 50 kb when calculated 

across the whole set of 35 landraces. Already by combining few landraces a substantial 

decrease in LD could be observed compared to the within landrace LD levels, with, for 

example, an average r2-decay distance of 79 kb when sampling from five landraces. The 

main reason for the drop in LD with increasing number of landraces might be differences 

in linkage phases between landraces. While for short physical distances (< 10 kb), high 

congruency of linkage phases was observed, the similarity in linkage phases decreased 

rapidly with physical distance, with for example < 65% of marker pairs within 190 – 200 kb 

showing equal phase between two randomly drawn landraces. The proportion of 

interchromosomal marker pairs in LD was generally low, but significantly increased for 

samples across landraces, indicating admixture induced LD. When sampling material from 

a limited number of landraces, sub-populations can be defined a priori in statistical 

analyses to avoid confounding effects of admixture induced LD. In contrast, for broad 
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samples across landraces, as for example the SeeD dataset (Romero Navarro et al. 2017), 

accounting for population structure is challenging, as many individuals show strong 

population admixture and thus cannot be clearly assigned to particular sub-populations 

(Mayer et al. 2017). 

Overall, the comprehensive analysis of 35 European maize landraces in Mayer et al. (2017) 

indicated that sampling from pre-selected landraces, with large sample sizes per landrace, 

is advantageous for genome-enabled studies aiming at gene discovery or genomic 

selection. Diversity levels are only slightly reduced compared to samples across many 

landraces. Due to a clear genetic differentiation between landraces and absence of 

pronounced population structure within landraces, confounding effects of hidden 

population structure in genetic analyses can be avoided. Low levels of LD within landraces 

or combinations of few landraces enable high mapping resolution in GWAS. Accordingly, 

high mapping resolution was obtained for the three landraces analyzed in Mayer et al. 

(2020), with a median of three annotated genes per trait-associated genomic region. While 

differences in linkage phases compromise accuracies of genomic prediction between 

landraces, the prospects of genomic selection within landraces are promising. Consistent 

linkage phases within landraces further facilitate genotype imputation and haplotype 

construction, which are important factors for the precise localization of causal genes in the 

genome. 

3.1.2 Haplotype inventories in landraces and breeding lines 

Haplotype inventories were analyzed in landrace and breeding germplasm, using 486,887 

SNPs overlapping across LR35-S0, LR3-DH, Flint-BL and Dent-BL. In total, LR35-S0 

comprised 9,391k haplotypes, constructed for non-overlapping windows of ten SNPs. 

Most of these haplotypes had low frequencies, which is expected under the standard 

neutral model (Kimura 1968) and in accordance with results based on isozyme markers 

(Sanchez et al. 2000). In fact, 94% of haplotypes showed frequencies < 0.01 in LR35-S0. 

For comparison, 353k and 328k haplotypes were found in Flint-BL and Dent-BL, 

respectively. Thereof, 340k (96.3%) and 310k (94.4%) of haplotypes were captured by the 

landrace panel. The probability of detecting a particular haplotype in a sample of gametes 

is a function of its frequency in the respective population and the sample size. Within each 

of the 35 landraces, sample sizes of 22 to 48 individuals (44 to 96 gametes; Table 1) were 

comparable to sample sizes of the breeding line panels. On average, 785k haplotypes were 

found within individual landraces, varying between 228k and 1,533k (Figure 3). Individual 
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landraces captured on average 36.5% of the haplotypes of the 65 flint breeding lines, 

varying between 20.0% and 64.1%.  

 
Figure 3: Number of haplotypes in each of the 35 landraces and in the panel of 65 flint breeding 
lines (Flint-BL). Haplotypes were constructed for non-overlapping windows of ten SNPs. The y-axis 
shows the number of haplotypes in thousands (k). Colors indicate the proportions of haplotypes 
present and absent in the Flint-BL panel, respectively. The dashed horizontal line marks the number 
of haplotypes (353k) detected in the Flint-BL panel. 

Almost all landraces showed a comparable or higher number of haplotypes compared to 

the breeding line panels. Further, all landraces harbored a large amount of haplotypes not 

found in the breeding lines (Figure 3; minimum 71k for SA). Most of these haplotypes can 

be expected to have neutral effects (Kimura 1968), part of them might be disadvantageous, 

but some of them might represent useful novel variation. If landraces are pre-selected for 

variation in target traits, for example in preliminary field trials, the proportion of potentially 

novel favorable haplotypes associated with the respective traits should be increased. 

As reported in Mayer et al. (2020), haplotype frequencies were correlated between 

landrace-derived material and breeding lines. Haplotypes absent from breeding 

germplasm tend to have low frequencies in landraces. Accordingly, also for LR35-S0, large 

differences in allele frequencies between haplotypes present and absent in the flint 

breeding lines were observed, showing mean frequencies of 0.085 (median = 0.041) and 

0.002 (median = 0.001), respectively. Only 270k of the novel haplotypes (i.e. absent in 

breeding lines; Figure 3) showed frequencies > 0.01 in the panel of 952 S0-plants. When 

looking at mean haplotype frequencies within individual landraces, values increased to 

0.155 (median = 0.127) and 0.028 (median = 0.021), respectively. On average, an individual 

landrace showed 225k novel haplotypes appearing at least twice in the landrace, i.e. 
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having a frequency of > 0.021 (
2

96
) or up to > 0.045 (

2

44
) within the respective landrace, 

depending on the sample size. As the power for detecting trait-associations in GWAS 

depends on the allelic effect size and allele frequency, these results indicate that novel 

favorable alleles might show high enough frequencies for detection within a pre-selected 

set of landraces, whereas they might remain undetected in broad species-wide samples 

(Brachi et al. 2011). 

When constructing haplotypes based on heterozygous material, the influence of phasing 

has to be taken into account. Phasing errors could generate false haplotypes leading to an 

overestimation of the number of haplotypes in the dataset. On the contrary, phasing 

algorithms favor parsimonious solutions (Browning and Browning 2011) and thus rare 

haplotypes might remain undetected. High phasing accuracies were reported when 

analyzing pseudo S0-plants generated from the DH libraries of LR3-DH (Pook et al. 2020), 

suggesting that the overall influence of phasing on haplotype construction for the S0-plants 

might be minor. When applying a conservative filter with haplotypes being present at least 

three times in LR35-S0, the number of haplotypes in the landrace panel decreased from 

9,391k to 3,756k. Still, 29 out of the 35 landraces comprised more haplotypes than the 

breeding line panels, and two landraces showed only < 4k less haplotypes than the Flint-

BL dataset. Another factor that could influence comparisons of molecular diversity 

between the landraces and breeding line panels is ascertainment bias. Although 

haplotype-based analyses should be less affected by ascertainment bias than SNPs 

(Conrad et al. 2006), it has to be considered that the 65 flint and 70 dent breeding lines 

were part of the discovery and/or validation panels when generating the genotyping array 

(Unterseer et al. 2014), whereas landrace material was not included. This could lead to an 

overestimation of diversity of the breeding lines compared to the landraces (Lachance and 

Tishkoff 2013). Thus, the landrace panel might carry additional novel haplotypes, which 

remained undetected in the analyses. 

3.1.3 Adaptation and genomic background of landraces relative to elite germplasm 

For avoiding unexpected allelic effects when incorporating novel alleles from landraces 

into elite germplasm and for increasing the incorporation efficacy, it is advantageous if the 

source material is adapted to the target environments and shows a similar genomic 

background compared to the elite breeding pool to be improved. For assessing the 

molecular diversity of the 35 European landraces (LR35-S0) in a broader context, molecular 

analyses were extended to the Central and South American landraces of the SeeD project 

(SeeD-S0; Mayer et al. 2017). The SeeD-S0 dataset showed higher haplotype diversity, as 
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measured by Hhap, compared to LR35-S0 (Mayer et al. 2017). This fits with theoretical 

expectations, considering the proximity of the American landraces to the center of maize 

domestication (Matsuoka et al. 2002; van Heerwaarden et al. 2011) and is in accordance 

to previous results based on RFLP (Rebourg et al. 2003) and SSR (Mir et al. 2013) markers. 

Despite their presumably higher genetic variation, the sub(tropical) Central and South 

American landraces might be less suitable for improving temperate dent and flint elite 

breeding pools, because they are not adapted to temperate environmental conditions 

(Sood et al. 2014). Flowering time played a key role in the local adaptation of maize 

(Bouchet et al. 2013; Romero Navarro et al. 2017; Huang et al. 2018). Adaptation to higher 

latitudes and temperate environments led to earlier maturity, which is a major characteristic 

of the European flint breeding germplasm. It was previously shown that genes presumably 

involved in promoting early flowering in European flint breeding lines had been under 

selection in European flint landraces (Unterseer et al. 2016). This indicates similarity in the 

allelic composition between European flint breeding and landrace material, for genes with 

major contribution to local adaptation. 

In addition to similarities in adaptation, it can be assumed that temperate European maize 

landraces show a more similar genomic background to temperate elite germplasm than 

sub(tropical) Central and South American landraces. In previous analyses with the 65 flint 

and 70 dent breeding lines, six major genetic groups were defined (Unterseer et al. 2014, 

2016): ‘Northern Flint’, ‘Non-Northern Flint’, ‘Iodent’, ‘Lancaster’, ‘Non-Stiffstalk’ and 

‘Stiffstalk’. Here, ancestry proportions for the breeding lines were estimated using the 35 

European landraces of LR35-S0 as well as the 16 genetic groups of the SeeD-S0 dataset 

as reference groups, as defined in Mayer et al. (2017). Calculations were conducted using 

the software ADMIXTURE in supervised mode based on 4,754 SNPs overlapping among 

datasets. As expected, the European flint breeding lines were almost exclusively assigned 

to genetic groups defined by European flint landraces (Figure 4). The landrace Gelber 

Badischer Landmais showed the most pronounced contribution to ‘Northern Flint’ 

breeding lines, which is in accordance to historical records (Oettler et al. 1976; Messmer 

et al. 1992). Landraces from the Pyrenean region and Galicia showed most pronounced 

contributions to ‘Non-Northern Flint’ breeding lines. To a minor extent, the ‘Non-Northern 

Flint’ breeding lines had ancestry proportions attributable to Central and South American 

landraces, mainly from Argentina and the Caribbean. This is in accordance with previous 

reports, suggesting that southern European maize partly originated from Caribbean and 

South American material, whereas northern European maize originated most likely from 

North American Northern Flint maize (Tenaillon and Charcosset 2011). Interestingly, 
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ancestry proportions of the 70 dent breeding lines were mainly attributable to European 

maize landraces with dent-like kernel morphology (Unterseer et al. 2016), whereas Central 

and South American landraces contributed to a lesser extent and mainly only to ‘Lancaster’ 

and ‘Non-Stiffstalk’ lines (Figure 4). The here obtained ancestry proportions cannot be 

interpreted as ancestry by pedigree, as most of the analyzed landraces did not serve as 

source for today’s heterotic breeding pools. However, the results indicate that the genomic 

background of temperate breeding lines is more similar to temperate European landraces 

than to (sub)tropical landraces. 

 

Figure 4: Ancestry proportions of 65 flint and 70 dent breeding lines. The 35 European landraces 
and 16 genetic groups of the Central and South American landraces were used as templates in 
calculations with ADMIXTURE in supervised mode. Only landrace individuals with clear group 
assignment (> 50% ancestry; Mayer et al. 2017) were used as reference. Each bar represents one 
breeding line consisting of up to 51 colors according to their ancestry proportions attributable to 
each of the 51 groups. The 29 and six European landraces with flint-like and dent-like kernel 
morphology (Unterseer et al. 2016) are represented by shades of blue and pink, respectively. The 
16 groups of the SeeD-S0 dataset are colored in shades of red. The x-axis shows the group 
membership of the breeding lines, as defined by Unterseer et al. (2014, 2016). 

3.2 Representation of allelic diversity by DH libraries 

Performing genome-enabled studies with landrace material requires the generation of 

reproducible genetic units. For this thesis, DH lines were derived from three landraces 

selected based on the results of Mayer et al. (2017). DH lines represent “immortalized” 

genetic units, allowing for ad libitum seed multiplication and thus evaluation in repeated 

experiments with any degree of precision desired (Hölker et al. 2019). It can be expected 

that the instantaneous inbreeding associated with DH production leads to a purge of 

recessive deleterious alleles (Charlesworth and Willis 2009). As an allogamous species, 

maize harbors many deleterious, partly recessive alleles, mostly at low frequency 

(Mezmouk and Ross-Ibarra 2014; Yang et al. 2017). Modern inbred lines have been shown 

to have an overall lower proportion of deleterious alleles compared to landraces (Yang et 
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al. 2017). This is in accordance with considerably higher success rates of DH production 

in elite material compared to landraces (Melchinger et al. 2017; Romero Navarro et al. 

2017; Hölker et al. 2019). Substantial differences in DH production success rates were 

observed for the three landraces analyzed in the course of this thesis, with one landrace 

(LL) yielding only 31 DH lines, compared to several hundred for the other two landraces 

(KE and PE), despite approximately equal efforts per landrace (Hölker et al. 2019). The 

different success rates might point to differences in population history, as some landraces 

might have undergone mild inbreeding and/or anthropogenic selection in the past, 

decreasing the number of deleterious, (sub)lethal alleles in the population. In accordance 

with the low DH production efficiency, LL showed higher inbreeding depression in LP 

evaluations compared to KE and PE (Hölker et al. 2019). 

Concern was arising that the selection against deleterious alleles during DH production 

might lead to loss of diversity in DH libraries compared to the original landraces (Zeitler et 

al. 2020). While the purging of deleterious alleles itself is desired, it could also lead to the 

loss of potentially useful alleles linked to deleterious sites. Comparing genome-wide 

diversity statistics, such as π and HHAP, Zeitler et al. (2020) found consistently lower 

diversity levels in DH libraries compared to five European landraces from which they were 

derived. The findings contradict results of Melchinger et al. (2017), who found comparable 

values of HSNP between DH libraries and original landraces for the same material. The 

different results can be explained by the use of different marker sets (38k vs. 28k), due to 

a minor allele frequency filter applied by Melchinger et al. (2017). Here, genome-wide 

estimates of PP, π, HHAP and LD were compared between S0-plants of two different seed 

batches (LR35-S0, LR3-S0) and DH lines (LR3-DH) for the three landraces under study, 

using no minor allele frequency filter. As in Zeitler et al. (2020), HHAP was calculated for non-

overlapping windows of 50 kb harboring at least five SNPs. Overall, diversity measures 

were comparable in LR3-DH and the batch of S0-plants from which they were derived (LR3-

S0; Figure 5), with only PE showing slightly decreased values of π and HHAP in the DH lines. 

LD levels were highest in the DH libraries, for all three landraces, but for KE and LL the 

difference to LR3-S0 was minor. Interestingly, LR3-S0 showed slightly lower values of PP, 

π and HHAP and higher values of LD compared to the preceding generation, LR35-S0, 

consistently for all three landraces. At the level of haplotypes, the samples of LR35-S0 were 

most diverse compared to LR3-S0 and the DH library for all three landraces (Figure 5). 

While for KE and LL, S0-plants of LR3-S0 and the DH library showed comparable numbers 

of haplotypes, the number was slightly reduced in the DH library of PE. Haplotypes not 
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captured by the DH libraries mostly had very low frequencies in LR3-S0, with 50%, 25% 

and 70% of haplotypes occurring only once for KE, LL and PE, respectively. 

KE  LL  PE 
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S0 

LR3-
DH 

 
 

LR35-
S0 

LR3-
S0 

LR3-
DH 

 
 

LR35-
S0 

LR3-
S0 

LR3-
DH 

n 96 96 501  n 96 96 31  n 96 94 409 

PP 0.818 0.718 0.773  PP 0.917 0.818 0.847  PP 0.837 0.813 0.807 

π 0.254 0.227 0.248  π 0.295 0.271 0.288  π 0.245 0.244 0.232 

HHap 0.589 0.509 0.542  HHap 0.699 0.638 0.659  HHap 0.583 0.573 0.529 

LD 420 932 984  LD 90 182 207  LD 287 329 490 
 

 

Figure 5: Comparison of diversity measures and number of haplotypes between DH libraries 
and original landraces. Top: Number of gametes (n), proportion of polymorphic markers (PP), 
nucleotide diversity (π), haplotype heterozygosity (HHAP) and r2-decay distance (r2 < 0.2; in kb; LD) 
for the DH library (LR3-DH), the batch of S0-plants from which they were derived (LR3-S0) and a 
preceding batch of S0-plants (LR35-S0), for landraces KE (left), LL (middle) and PE (right). Bottom: 
Venn diagrams show the number of haplotypes, constructed in windows of ten SNPs, occurring in 
LR3-DH, LR3-S0 and LR35-S0, for landraces KE (left), LL (middle) and PE (right). Analyses were 
based on 486,887 SNPs. 

Changes in allele frequencies and loss of alleles during the course of seed multiplication in 

gene banks have been reported previously for allogamous crops (Holden et al. 1984; 

Chebotar et al. 2003). Genetic changes can be caused by unintended selection based on 

the environmental conditions during seed multiplication, especially upon occurrence of 

abiotic and biotic stresses (Chebotar et al. 2003). Also in situ conservation of crop genetic 

resources involves dynamic changes in a population’s allelic composition, due to natural 

or farmer-induced selection (Bellon et al. 2017). Selective forces undoubtedly also act 

during the generation of DH lines (Charlesworth and Willis 2009; Melchinger et al. 2017; 

Hölker et al. 2019; Zeitler et al. 2020). However, as shown in this thesis, DH libraries capture 

large proportions of the molecular diversity of the initial landraces, as indicated by AMOVA 

(Hölker et al. 2019). Genetically, DH libraries can clearly be assigned to their respective 

landrace, as indicated by PCoA (Hölker et al. 2019). Previous reports suggest, that 

selection against deleterious alleles acts across the whole genome, although it might be 
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slightly increased in regions of low recombination (Melchinger et al. 2017; Zeitler et al. 

2020). Most signals of selection were landrace-specific (Melchinger et al. 2017; Zeitler et 

al. 2020), which was also observed for the three landraces under study, supporting the 

assumption of no systematic directional selection. Phenotypically, large genetic variances 

in landrace-derived DH libraries were observed (Hölker et al. 2019), in accordance with 

results of Strigens et al. (2013) and Brauner et al. (2019). When comparing original 

landraces with synthetic populations resulting from randomly intermating thereof derived 

DH lines, differences in agronomic trait performance were mostly small or not significant 

(Strigens et al. 2013). 

In conclusion, the results presented here and from previous studies suggest that the DH 

technology is a valuable tool for making the native diversity of landraces amenable for crop 

improvement, provided that landrace-specific success rates of DH production allow the 

generation of sufficiently high numbers of DH lines. Even though the loss of potentially 

useful alleles, linked to negatively selected deleterious alleles, cannot be excluded, 

landrace-derived DH libraries harbor high genetic variation for mapping quantitative traits. 

In fact, large sample sizes of the DH libraries under study enabled the identification of trait 

associations at high resolution and for QTL with low or moderate allele frequencies (Mayer 

et al. 2020). Some of the identified trait associated haplotypes were absent or at low 

frequency in the panel of breeding lines and are assumed to represent novel beneficial 

variation (Mayer et al. 2020). 

3.3 Identification of novel beneficial variation 

3.3.1 GWAS based on SNPs and haplotypes 

Exploiting molecular diversity and historical recombination events captured in a 

population, GWAS assesses the degree of association between genetic variants and a trait 

of interest. GWAS is based upon the concept of LD (Zondervan and Cardon 2004). LD is 

generated by evolutionary forces such as mutation, migration, drift and selection and is 

broken down by recombination (Hartl and Clark 1997). The probability of recombination 

decreases with decreasing genetic distance between two loci and thus, in general, tightly 

linked loci exhibit stronger LD than loci far apart from each other. Assuming absence of 

population structure, genetic markers associated with a trait of interest should point to 

(unobserved) QTL in their proximity. Commonly used GWAS models use single biallelic 

SNP markers for detecting trait associations. Alternatively, haplotypes can be constructed, 

representing combinations of jointly inherited alleles at neighboring markers. In theory, 
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haplotypes increase the power of GWAS if they show higher LD with QTL alleles than single 

SNP markers (Hamblin and Jannink 2011). Haplotypes capture information about genomic 

segments IBD between individuals better than SNPs (Meuwissen and Goddard 2000; 

Hayes 2013). In other words, haplotypes represent segments of the genome tracing back 

to a common ancestor without being separated by recombination. If haplotypes are IBD, 

they will carry the same alleles at a potential QTL within that segment. With increasing 

probability of two identical haplotypes being IBD, the proportion of QTL variance explained 

by the haplotypes increases, particularly for QTL with low minor allele frequencies (Hayes 

2013). An additional advantage of the use of haplotypes over SNPs might be the 

consideration of short-range epistasis in the analysis (Schaid 2004). Examples exist, where 

different haplotype variants in the same genomic segment were shown to be associated 

with specific phenotypes (Yang et al. 2013; Jiang et al. 2015; Si et al. 2016; Yano et al. 

2016). Previous studies comparing the power of SNP and haplotype based GWAS reported 

contrasting results and suggest that it has to be assessed on a case-by-case basis weather 

the use of haplotypes is beneficial (Long and Langley 1999; de Bakker et al. 2005; Lorenz 

et al. 2010). Empirical studies reported cases where haplotype based GWAS detected trait 

associations which remained undetected in SNP based GWAS (Trégouët et al. 2009; Pryce 

et al. 2010). Other studies reported large overlaps in identified QTL between the two 

approaches (Liu et al. 2019) or trait associations, which were only detected with SNPs but 

not with haplotypes (Sato et al. 2016; Li et al. 2019). In this study, overall similar patterns 

of trait associations along the genome were observed for GWAS with SNPs and haplotypes 

of ten SNPs (Mayer et al. 2020). For the univariate GWAS (equation 12) using the adjusted 

genotype means across environments as response variable, on average ~80% of the trait 

associations detected with SNPs were located in regions also detected with haplotypes, 

ranging from ~68% for MF to ~86% for PH_V4. Vice versa, on average ~65% of trait 

associations detected with haplotypes were also detected with SNPs, ranging from ~47% 

for TILL to ~80% for LO. This indicates a slightly increased number of identified trait 

associations by the use of haplotypes compared to SNPs. However, the main reason for 

the focus on haplotypes for the analyses in Mayer et al. (2020) was that haplotypes are 

more suitable for tracking potentially shared ancestral alleles between landraces and 

breeding lines. 

Various methods for haplotype construction exist. Methods constructing haplotype blocks 

based on patterns of LD (Nothnagel et al. 2002; Gabriel et al. 2002; Barrett et al. 2005; 

Pattaro et al. 2008; Kim et al. 2017), linkage (Pook et al. 2019) or diversity (Daly et al. 2001; 

Patil et al. 2001) might capture the haplotype structure specific for the population under 
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consideration better than window based approaches. In contrast, fixed window based 

approaches might be better suited for conducting comparisons among populations varying 

in their evolutionary history and extent of LD, as for example landraces and breeding lines. 

Therefore, in Mayer et al. (2020) haplotypes were constructed for non-overlapping 

windows with a fixed number of markers. The choice of window size influences the number 

of haplotypes per window as well as the risk of haplotypes being broken up by 

recombination. Further, the chosen window size has to be adjusted according to the 

available marker density. For evaluating which window size might provide the best balance 

between a high probability of haplotypes indicating IBD (in contrast to identity by state; 

IBS) and at the same time low probability of recombination, the average physical and 

genetic length of haplotypes as well as different diversity parameters were calculated for 

varying window sizes (Table 4). The average number of distinct haplotypes per window, 

HHAP, and nR were assessed for dataset Flint-BL. 

Table 4: Parameters of diversity and recombination for varying numbers of SNPs per window. 
Average physical (kb) and genetic (cM) length of haplotypes constructed for non-overlapping 
genomic windows with varying numbers of SNPs as well as the average number of distinct 
haplotypes, haplotype heterozygosity (HHAP) and the number of historical recombination events (nR) 
per window, calculated for the panel of 65 flint breeding lines (Flint-BL). Measures of genetic length 
are according to a genetic map generated from a F2 mapping population of a cross of EP1 × PH207 
(Haberer et al. 2020). 

N SNPs Physical size 
(kb) 

Genetic size 
(cM) 

N 
haplotypes 

HHAP nR 

2 4.2 0.003 2.75 0.44 0.07 

5 16.8 0.012 4.69 0.59 0.44 

10 37.8 0.026 7.25 0.67 1.20 

20 79.7 0.055 11.06 0.74 2.79 

40 163.7 0.113 16.46 0.81 6.00 

80 331.6 0.229 23.38 0.87 12.43 

160 667.7 0.460 30.92 0.91 25.29 

320 1341.3 0.907 37.67 0.94 50.99 

640 2693.9 1.761 43.06 0.95 102.37 

 

Consider two extreme cases of window sizes of two and 640 SNPs (Table 4). In the case 

of two SNPs, haplotypes have a low probability of recombination, but a high probability to 

occur just by chance in any population (IBS instead of IBD) and thus they are not predictive 

for a potential underlying QTL allele of interest. In the case of 640 SNPs, haplotypes are 

extremely specific and predictive for a potential QTL allele, but the probability that they 

have been broken up by recombination is very high and thus an absence of the respective 

haplotype of interest does not imply an absence of the underlying QTL allele. In this study, 

a window size of ten SNPs provided high enough haplotype diversity and specificity, as 
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indicated by an average number of 7.25 haplotypes per window, while having a low 

probability of recombination, as indicated by low physical and genetic window sizes as 

well as moderate HHAP and low nR values. Therefore, a window size of ten SNPs was used 

in the analyses in Mayer et al. (2020). 

After the construction of haplotypes, various approaches can be used for conducting 

haplotype-based GWAS. Two main types of tests can be distinguished: i) testing each 

haplotype within a specified genomic window separately against all remaining haplotypes, 

or ii) jointly testing all haplotypes within the respective window in a global test. In the former 

case, each haplotype is treated as a presence/absence variable, which can be coded as 

0/1/2 for diploid individuals, and thus it is similar to SNP based tests (Abdel-Shafy et al. 

2014; Howard et al. 2017; Li et al. 2019; Srivastava et al. 2020; Mayer et al. 2020). In the 

latter case, each haplotype represents one level of a categorical variable and the effect of 

each haplotype is estimated relative to an arbitrary reference haplotype (Yano et al. 2016; 

Chen et al. 2016; Bustos-Korts et al. 2019; Maldonado et al. 2019; Abed and Belzile 2019). 

Alternatively, haplotype effects within a window can be treated as a random variable (Druet 

and Georges 2010; Zhang et al. 2012). The prospects of each method for QTL detection 

depends on the distribution of haplotype effects within the respective window. If there are 

groups of multiple haplotypes having opposing effects on a trait, a global test might have 

greater power for detection compared to the single haplotype test. In contrast, if there is 

only one haplotype (potentially at low frequency) strongly differing from the remaining 

haplotypes in its corresponding phenotype, the single haplotype test might be 

advantageous. In many cases, both approaches might detect the underlying QTL. Here, 

both approaches were tested for conducting haplotype-based GWAS in the landrace data 

(Figure 6). Overall, similar patterns of trait associations along the genome were observed 

for both approaches, as exemplarily shown in Figure 6 for PH_V4, using the adjusted 

genotype means across environments. In total, 487 and 455 genomic windows showed 

significant associations for the single and joint haplotype approach, respectively. Thereof, 

422 were overlapping. For the 65 windows significant in the single haplotype approach but 

not in the joint approach, 58 (89%) had P-values smaller than the 1% quantile of non-

significant windows in the joint approach, indicating similar tendencies. Nevertheless, 

some genomic regions showed significant trait associations (FDR < 15%) only in one of 

the two approaches, as for example two regions on chromosomes 6 and 7 detected only 

in the joint haplotype approach and two regions on chromosomes 1 and 3 only detected 

in the single haplotype approach (Figure 6). The main goal of the GWAS in Mayer et al. 

(2020) was the detection of particular haplotypes with strong effects on the traits of 
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interest, representing potentially useful novel alleles for elite germplasm improvement. 

Therefore, the single haplotype based approach was used for screening the landrace-

derived material for novel variation in Mayer et al. (2020). The single haplotype based 

approach further facilitated the performed backward elimination in the multi-locus model 

described in equation 13. In a later step, for obtaining a deeper understanding of the 

haplotype variation at trait-associated loci, the effects of all haplotypes within the 

respective genomic window relative to the identified favorable or unfavorable focus 

haplotype were estimated in a joint haplotype approach (equation 14). 

 
Figure 6: Genome-wide association scans for PH_V4 based on two different approaches. 
Manhattan plots (left) and corresponding QQ plots (right) when testing haplotypes within non-
overlapping genomic windows of ten SNPs (a) individually or (b) jointly, using adjusted genotype 
means across eleven environments for 899 landrace-derived DH lines. Significant associations (FDR 
15%) are colored in orange. Results are based on (a) 154,104 non-collinear single haplotypes and 
(b) 46,049 non-collinear haplotype windows, respectively. 

3.3.2 Beneficial haplotypes for germplasm improvement 

As commonly assumed (Ortiz et al. 2010; McCouch et al. 2013; Sood et al. 2014; Hellin et 

al. 2014; Melchinger et al. 2017) but demonstrated only for qualitative traits (Khush 2001; 

Wissuwa et al. 2002; Bailey-Serres et al. 2010), the results of Mayer et al. (2020) show 

convincing evidence that landraces harbor novel beneficial variation for agronomically 

important quantitative traits like early plant development. The complexity of haplotype 

structures in maize, the masking effects of adaptation and the generally small effects of 
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novel variants have so far hindered this kind of study. In Mayer et al. (2020), confounding 

effects of adaptation were mostly eliminated by focusing on a limited set of pre-adapted 

landraces, and the use of sufficiently large samples of homozygous DH lines allowed 

reliable estimation of haplotype effects. Most haplotypes were identified for traits related 

to early plant development, reflecting the success of pre-selecting landraces for variation 

in target traits. In contrast, only few haplotypes were detected for flowering time, explaining 

together only 2% (FF) and 33% (MF) of the total genetic variance (Mayer et al. 2020). It can 

be assumed that alleles with large effects on flowering time were fixed during adaptation 

of the respective landraces to local environmental conditions. The remaining variation for 

flowering time results most likely from highly polygenic effects too small to be detected in 

GWAS with the given sample sizes. The low number of associations for flowering time in 

Mayer et al. (2020) compared to studies with different sampling strategies (Romay et al. 

2013; Romero Navarro et al. 2017; Gouesnard et al. 2017), supports the assumption that 

the study design successfully eliminated confounding effects of strong adaptive alleles. 

The usefulness of trait-associated landrace haplotypes for elite germplasm improvement 

is determined by the size and direction of their effects as well as their dependency on the 

environment and genetic background. The haplotypes identified in Mayer et al. (2020) were 

categorized into ‘favorable’, ‘unfavorable’ and ‘interacting’ according to their effect sign 

and stability across environments. Most haplotypes showed moderate to high effect 

stability across a wide range of test environments, including 53 haplotypes with 

consistently favorable effects on early plant development. The average frequency of these 

53 haplotypes in the panel of 65 flint breeding lines was increased compared to randomly 

drawn haplotypes (Mayer et al. 2020), suggesting that part of these haplotypes might have 

been positively selected during the last decades of breeding. Part of the haplotypes, 

however, showed low frequencies in the breeding line panel, with six haplotypes being 

completely absent, representing potentially novel beneficial variation. Most trait-

associated haplotypes explained only a small proportion (< 5%) of the genetic variance of 

the respective trait in the landrace-derived DH lines, as expected for self-contained 

populations and absence of pronounced effects of population structure and adaptive 

alleles. The genetic variance explained is a function of allele frequency and effect size 

(Falconer and Mackay 2009). Frequencies of haplotypes absent in breeding germplasm 

tend to be small also in landraces with shared historical ancestry, as shown in section 3.1.2 

and Mayer et al. (2020). In contrast, absolute effect sizes of these haplotypes can be 

substantial, as exemplarily shown for a novel favorable haplotype on chromosome 9 

increasing early plant height (Mayer et al. 2020). The relative advantage of individuals 
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inheriting a favorable allele compared to the population mean is highest if the allele is 

initially absent in the population (Falconer and Mackay 2009), as would be the case when 

introducing novel landrace haplotypes into breeding germplasm. When transferring alleles 

across populations, however, it is well recognized that dependencies on the genetic 

background can lead to unexpected allelic effects (Chandler et al. 2013; Boyle et al. 2017). 

Unlike specifically designed mapping populations, like multi- or biparental populations (Lee 

et al. 2002; McMullen et al. 2009; Dell’Acqua et al. 2015), in which the number of founder 

lines is limited, landraces represent natural open-pollinated populations. This should result 

in a less pronounced background dependency of identified trait-associated alleles. The 

fact that most trait-associated haplotypes had equal effect signs across landraces 

supports this hypothesis (Mayer et al. 2020). Further, if landraces are chosen for sharing 

historical ancestry with the elite germplasm to be improved, genetic background effects 

might be minimized when introducing landrace haplotypes into breeding material. 

Nevertheless, the final validation of the supposed effects of landrace haplotypes in elite 

germplasm will require specific crosses between landrace-derived material and lines of the 

particular target breeding pool to be improved. 

3.3.3 Haplotype variation in trait-associated genomic regions 

In addition to the effect size and direction as well as the stability over environments and 

populations, the potential of novel favorable landrace haplotypes for elite germplasm 

improvement depends on the haplotype inventory of the elite breeding material. If the 

breeding germplasm to be improved comprises alternative haplotypes at high frequencies, 

which have comparable or even greater effects on the target trait as the proposed landrace 

haplotype, an allele substitution might have negligible or even undesired effects. Therefore, 

within a given trait-associated genomic window, the effect of each landrace haplotype was 

estimated relative to the selected focus haplotype and their frequencies were assessed in 

the panel of 65 flint breeding lines (Mayer et al. 2020). Further, the phenotypic performance 

of landrace-derived DH lines carrying particular haplotypes of interest was compared with 

a subset of 14 phenotyped breeding lines carrying alternative haplotypes. As expected, 

the identified trait-associated focus haplotypes exhibited distinct phenotypes compared 

to the remaining haplotypes, which in most cases showed opposite effect signs. Figure 7 

shows exemplarily the haplotypes and their corresponding effects for a genomic window 

on chromosome 3, carrying a favorable focus haplotype significantly increasing PH_V6 as 

well as PH_V4 in ten out of eleven environments. The focus haplotype (A) had a frequency 

of 4.1% in the landraces and was absent in the panel of breeding lines. The genomic 

window comprised eight alternative haplotypes (B-I), occurring at least three times in the 
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landrace panel, as well as one additional haplotype (J) solely occurring in the breeding line 

panel. The six most frequent haplotypes in the landrace panel (B-G) showed significant 

negative effects on PH_V6 relative to the focus haplotype in almost all environments. 

Overall, 93.8% of breeding lines carried one of these inferior haplotypes, suggesting that 

a targeted substitution with the favorable focus haplotype could lead to improvement of 

the breeding lines. For haplotype J, carried by 6.2% of the breeding lines but none of the 

DH lines, no effect could be estimated, but it showed a distinct nucleotide sequence 

compared to the focus haplotype (9/30 nucleotide differences in the surrounding genomic 

region; Figure 7). 

 
Figure 7: Effects of alternative haplotypes relative to a favorable focus haplotype for PH_V6. 
(a) Haplotype sequences for the focus window as well as the two neighboring windows. Nucleotides 
equal to the focus haplotype are colored in dark, alternative nucleotides in light gray, respectively. 
The focus haplotype (A) is at the top, the remaining haplotypes (B-J) are ordered according to their 
frequency in the panel of 941 DH lines derived from three landraces (LR). Numbers indicate 
haplotype frequencies (%) for LR and the panel of 65 flint breeding lines (BL). The positions of each 
SNP are indicated at the bottom. The green rectangles indicate coding regions of annotated genes. 
(b) Effect of each haplotype relative to the focus haplotype for each tested environment. Values are 
in units of environment-specific phenotypic standard deviations. Non-significant effects are 
indicated by “ns”. For haplotype J, no effects were estimated, as it is only present in BL. 

DH lines carrying beneficial landrace haplotypes outperformed significantly the set of 14 

phenotyped breeding lines carrying alternative haplotypes, especially in cold 

environments, as exemplarily shown for two haplotypes on chromosome 3 and 9 

associated with early plant growth (Mayer et al. 2020). These results strengthen the 

conclusion that a targeted introduction of the identified novel beneficial haplotypes into 

elite breeding germplasm might lead to the improvement of early plant development, 
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especially under cold conditions. In addition, TCs of the landrace-derived DH lines 

outperformed commercial hybrids in early plant development (Hölker et al. 2019). 

3.4 Prospects of germplasm improvement through the use of 

landraces 

Despite the potential of landraces for broadening the genetic base of elite germplasm 

(Cooper et al. 2001; McCouch et al. 2013; Sood et al. 2014), the direct integration of 

landrace-derived lines into elite breeding pools is hampered by the large performance gap 

to modern cultivars (Wilde et al. 2010; Brauner et al. 2019; Hölker et al. 2019). Instead, 

more targeted strategies have to be employed for the utilization of landraces for elite 

germplasm improvement. While molecular inventories of germplasm repositories are 

growing steadily, the link to meaningful phenotypes is missing (McCouch et al. 2012; Wang 

et al. 2017a; Mascher et al. 2019). Deciphering the genotype-to-phenotype map (Lewontin 

1974) should be the long-term goal for an efficient use of genetic resources (Mascher et 

al. 2019). In Mayer et al. (2020), a strategy for linking the molecular variation of landraces 

to meaningful phenotypes and identifying novel favorable haplotypes for quantitative traits 

was proposed and demonstrated successfully with European flint maize. 

The proposed study design (Mayer et al. 2017, 2020) provides an ideal basis for fine 

mapping and functional characterization of genes controlling agronomically important 

quantitative traits. By focusing on variation within pre-selected landraces high power and 

resolution in GWAS can be obtained, as reflected by a large number of identified genomic 

regions associated with target traits and a limited number of annotated genes per region 

(Mayer et al. 2020). Trait-associations identified within landraces might remain undetected 

in elite breeding pools, because relevant loci are likely to show extreme frequencies or 

even fixation of alleles and increased LD levels decrease mapping resolution (Van 

Inghelandt et al. 2011; Brauner et al. 2018; Allier et al. 2019; White et al. 2020). In addition 

to identification and characterization of favorable variants, it is important to generate 

functional knowledge on alleles with unfavorable effects, making it possible to avoid 

inadvertent selection for unfavorable traits, like tillering and lodging, thus making 

germplasm improvement from genetic resources more efficient. Furthermore, elite material 

could be screened for and if applicable purged from newly identified unfavorable alleles, 

potentially fixed in the respective breeding pool due to hitchhiking effects (Voss-Fels et al. 

2017). Functional validation of relevant haplotypes will allow a more effective mining of 

germplasm sources for beneficial variants and can facilitate designs of complex crosses 
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among complementary genotypes. Further, functional knowledge is the prerequisite for 

genome editing approaches, allowing targeted modifications of single genes or gene 

combinations (Ran et al. 2013; Scheben et al. 2017). Biotechnological tools like 

CRISPR/Cas9 allow multiplex editing of several genomic sites at once or deletion/insertion 

of whole gene clusters (Xing et al. 2014), and thus represent a well-suited approach for 

gene introgression and improvement of quantitative traits (Jenko et al. 2015; Chen et al. 

2019). The approach also allows trait stacking, which means that several beneficial genes 

from potentially different germplasm sources can be linked and will subsequently be 

inherited as a single locus. A successful example for the use of genetic engineering on a 

functionally characterized gene is given by Wu et al. (2019), who altered the expression of 

the native maize gene, zmm28, leading to a consistent increase in grain yield over multiple 

environments. 

Apart from genome editing and transgenic approaches, a limited number of identified 

beneficial landrace haplotypes, preferably the ones with largest effects, can be readily 

introgressed into elite breeding pools through established forward breeding procedures, 

using marker assisted backcrossing (Servin et al. 2004; Ødegård et al. 2009; Han et al. 

2017). Alternatively, favorable alleles could be accumulated and unfavorable alleles 

depleted in landrace material in a genome-wide approach, bridging the performance gap 

between landraces and elite cultivars through pre-breeding (Simmonds 1993; Sood et al. 

2014). Pre-breeding can be described as the recurrent improvement of a donor population 

harboring novel variation, for obtaining improved genotypes that can be crossed with the 

elite breeding pool. In case of very large performance gaps between donor and elite 

germplasm, theoretical (Gorjanc et al. 2016; Allier et al. 2020) and practical (Sood et al. 

2014) pre-breeding schemes often involve a bridging population resulting from preliminary 

crosses with elite breeding lines. This bears the risk, however, of reconstructing the elite 

parent genome in subsequent selection based on genome-wide predicted breeding values 

(Sood et al. 2014; Gorjanc et al. 2016). Pre-breeding progress might be accelerated 

through the use of genomic selection, but except for studies with comparably small sample 

sizes (Brauner et al. 2018) and simulation studies (Gorjanc et al. 2016; Allier et al. 2020) its 

implementation in that context is an unexplored area of research. The unique experimental 

data generated during the course of this thesis (Hölker et al. 2019; Mayer et al. 2020) is 

ideal for studying and optimizing genome-based pre-breeding schemes. The goal of both, 

backcrossing and pre-breeding approaches, is to disentangle favorable and unfavorable 

alleles to avoid linkage drag. The results in Hölker et al. (2019) and Mayer et al. (2020) 

indicated only limited genomic and locus-induced correlation between desirable and 
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undesirable traits. Therefore, it can be assumed that unfavorable pleiotropic effects are 

limited and that for breaking up unfavorable allele combinations in linkage a few cycles of 

recombination might be sufficient. 

3.5 Conclusions 

In this thesis, a genome-based strategy was developed for the identification of novel 

beneficial variation in genetic resources and demonstrated experimentally in the context 

of European maize. The main conclusions from this work can be summarized as follows: 

 The comprehensive analysis of high-density genotypic data of 35 European maize 

landraces, with large sample sizes per landrace, revealed that most of the molecular 

variation can be found within landraces while differences among landraces account 

only for a small proportion of the variation. Absence of pronounced population 

structure and moderate to low LD levels were found for samples from individual 

landraces. Together, these findings indicate high power and resolution for GWAS 

within landraces. 

 Consistency of linkage phases within landraces facilitates genotype imputation and 

construction of haplotypes. In combination with the observed limited population 

structure and high diversity levels, consistent linkage phases lead to high accuracy 

and efficacy of genomic prediction within material derived from the same landrace. 

In contrast, low prediction accuracies can be assumed across landraces, due to 

varying linkage phases. 

 Comparing molecular inventories of European with Central and South American 

landraces showed that European landraces represent a distinct set of diversity. 

Integrating results from landraces and diverse panels of temperate elite material 

revealed that the allelic composition of temperate elite germplasm is more similar 

to temperate European than to (sub)tropical American landraces. 

 The optimal strategy for sampling landrace material depends on the study 

objective. If the goal is the identification and utilization of novel variation for the 

improvement of elite germplasm for quantitative traits, sampling the diversity of 

pre-selected landraces with large sample sizes per landrace is recommended. This 

sampling strategy may have multiple advantages for genome-enabled studies 

compared to sampling individuals across a wide range of landraces: i) avoiding 

confounding effects of strong adaptive alleles, ii) increasing the frequency of alleles 

associated with the traits of interest in the material under study, iii) absence of 
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pronounced population structure, iv) low levels of LD, v) consistency of linkage 

phases, and vi) easier integration of landrace alleles into the target breeding pool. 

 The phenotypic evaluation of landrace material requires the generation of 

reproducible genetic units. It was shown that the generation of DH lines can be a 

valuable approach for making the native diversity of landraces accessible, provided 

that landrace-specific success rates of DH production are sufficient. Although the 

potential loss of alleles during the DH production process cannot be excluded, DH 

libraries retain high levels of molecular and genetic diversity and represent the 

original landraces in an unbiased way. 

 In total, more than 1,000 DH lines derived from three landraces were generated and 

evaluated with high-quality genotypic and multi-environment phenotypic data for 

more than 25 traits. The generated datasets represent an unprecedented resource 

for genome-based studies in landraces. 

 Using haplotype-based GWAS, many associations for target traits but only few 

associations for flowering were identified. Some of the landrace haplotypes 

significantly improving early plant growth were absent in a broad panel of 65 

breeding lines. Phenotypically, landrace-derived DH lines carrying these 

haplotypes outperformed breeding lines with alternative haplotypes, demonstrating 

the potential for germplasm improvement. Haplotype-trait associations were 

mostly stable across populations and environments and had no or only limited 

undesired effects on other traits, making them ideal for introgression into breeding 

germplasm. 

 The proposed strategy to sample comprehensively individuals from a limited set of 

pre-selected landraces was successful in linking molecular variation to meaningful 

phenotypes, and in identifying novel beneficial alleles for quantitative traits. 

Demonstrated experimentally in the context of European flint maize, the approach 

may be extended to other maize germplasm groups and even to other allogamous 

crop species. 
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population structure, consistency of linkage phases and mod-
erate to low LD levels were found. When combining data of 
up to 10 landraces, LD decay distances decreased to a few 
kilobases. Genotyping 24 individuals per landrace with 5k 
SNPs was sufficient for obtaining representative estimates of 
diversity and LD levels to allow an informed pre-selection 
of landraces. Integrating results from European with Cen-
tral and South American landraces revealed that European 
landraces represent a unique and diverse spectrum of allelic 
variation. Sampling strategies for harnessing allelic variation 
from landraces depend on the study objectives. If the focus 
lies on the improvement of elite germplasm for quantitative 
traits, we recommend sampling from pre-selected landraces, 
as it yields a wide range of diversity, allows optimal marker 
imputation, control for population structure and avoids the 
confounding effects of strong adaptive alleles.

Introduction

Maize (Zea mays L. ssp. mays) landraces are a rich source of 
untapped allelic variation, but efficient strategies for explor-
ing their genetic diversity are lacking. The successful use of 
landraces for improving elite germplasm has been hampered 
by insufficient genetic and phenotypic information and their 
heterogeneous and heterozygous nature (Sood et al. 2014). 
Linking genotypes to meaningful phenotypes by genome-
enabled studies will pave the way for accessing the native 
diversity of landraces in a targeted way (McCouch et al. 
2013; Tanksley and McCouch 1997). The success of these 
studies strongly depends on the choice of genetic material.

Genome-enabled studies with landrace material have 
successfully investigated crop evolution (Hufford et  al. 
2012; Matsuoka et al. 2002; van Heerwaarden et al. 2011), 
genomic signals and marker-trait associations for adaptation 

Abstract 
Key message Capitalizing upon the genomic character‑
istics of long‑term random mating populations, sampling 
from pre‑selected landraces is a promising approach for 
broadening the genetic base of elite germplasm for quan‑
titative traits.
Abstract Genome-enabled strategies for harnessing 
untapped allelic variation of landraces are currently evolv-
ing. The success of such approaches depends on the choice 
of source material. Thus, the analysis of different strate-
gies for sampling allelic variation from landraces and their 
impact on population diversity and linkage disequilibrium 
(LD) is required to ensure the efficient utilization of diver-
sity. We investigated the impact of different sampling strate-
gies on diversity parameters and LD based on high-density 
genotypic data of 35 European maize landraces each repre-
sented by more than 20 individuals. On average, five land-
races already captured ~95% of the molecular diversity of 
the entire dataset. Within landraces, absence of pronounced 
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to different environments (Romero Navarro et al. 2017; 
Takuno et al. 2015) as well as the effects of rare alleles (Kra-
kowsky et al. 2008). As such studies capitalize on maximiz-
ing diversity, mostly few individuals are sampled from many 
landraces covering a wide range of geographic regions. For 
the improvement of elite germplasm, an alternative approach 
might be more suitable, namely sampling many individu-
als from few pre-selected landraces. This sampling strategy 
comes at the expense of diversity, but might be advanta-
geous for identifying novel alleles adapted to a specific set of 
environments and to the genetic background of a target elite 
breeding pool (Goodman 1999; Tarter and Holland 2006). 
Pre-selecting a representative set of landraces facilitates 
collection of meaningful phenotypes in the given environ-
ments and increases the incorporation efficacy of favorable 
alleles by reducing the risk of unexpected allelic effects 
(Lonnquist 1974; Sood et al. 2014). For allogamous crops 
such as maize, it has been shown that a large proportion of 
the molecular and phenotypic variation can be found within 
individual populations, whereas differences between major 
groups of landraces account only for a small proportion of 
the total variation (Sood et al. 2014; Vigouroux et al. 2008). 
In addition, the within-landrace sampling approach capital-
izes upon the genomic characteristics of long-term random 
mating populations such as absence of hidden population 
structure and consistency of linkage phases. These factors 
can increase the accuracy and efficacy of genome-enabled 
approaches, such as genome-wide association studies 
(GWAS) and genomic selection. Thus, we hypothesize that 
in studies aiming at gene discovery or genomic selection 
based on landrace-derived material, an optimum rather than 
a maximum level of diversity might be beneficial. The com-
prehensive sampling of diversity within a few pre-selected 
landraces can be especially promising if the focus lies on 
the improvement of elite germplasm for quantitative traits. 
Recently, different strategies have been proposed for access-
ing the native diversity of landraces (Gorjanc et al. 2016; 
Melchinger et al. 2017) but a comprehensive comparison of 
within- and across-landrace estimates of genomic parameters 
with impact on the power of genome-enabled approaches has 
been lacking so far.

In this study, we analyzed genetic diversity, population 
structure, linkage disequilibrium (LD) and persistence of 
linkage phase within and across 35 European maize land-
races with more than 20 individuals per landrace genotyped  
at high density. We investigated the effect of varying  
the number of sampled landraces and individuals per 
landrace on these parameters and give practical recom-
mendations for assembling datasets for genome-enabled 
studies. We extended our analyses to Central and South  
American landraces of the Seeds of Discovery (SeeD) project  
(http://seedsofdiscovery.org) to assess the genetic diversity 
of European landraces in a broader context.

Materials and methods

Plant material and genetic data

We investigated 35 European maize landraces which were 
carefully chosen to cover a broad geographical region of 
Europe comprising different agro-ecological conditions 
(Fig. 1a). The panel included landraces with major histori-
cal relevance in terms of acreage (Oettler et al. 1976) and 
landraces from which important inbred lines of the European 
Flint elite breeding pool were derived (Messmer et al. 1992). 
Each landrace was represented by 22 to 48 plants, resulting 
in a total of 952 individuals. Name, abbreviation, geographi-
cal origin, seed source and the number of genotyped indi-
viduals (nLR) for each landrace are listed in Table S1. After 
DNA extraction following the protocol of Saghai-Maroof 
et al. (1984), each sample was genotyped with the 600k 
 Affymetrix®  Axiom® Maize Array (Unterseer et al. 2014). 
Markers designed to specifically differentiate between two 
Dent lines (Ganal et al. 2011) and indels were excluded. 
Analyses were performed based on markers assigned to 
the best quality class (Unterseer et al. 2014), with a call 
rate ≥0.9 and known physical position in the B73 reference 
sequence (AGP_v2; Chia et al. 2012). All individuals exhib-
ited a call rate ≥0.9, consequently the dataset EU-Array con-
sisted of 952 individuals and 516,797 SNPs.

The publicly available unimputed dataset of the SeeD 
maize GWAS panel (Hearne et al. 2014) of the International 
Maize and Wheat Improvement Center (CIMMYT) com-
prises 4710 individuals from 4020 Central and South Amer-
ican maize landrace accessions (with different CIMMYT  
germplasm IDs) and 955,120 markers generated by genotyp-
ing by sequencing (GBS; Elshire et al. 2011). The dataset 
was filtered for landraces with known geographical origin, 
bi-allelic SNPs with a minimum call rate of 0.8 and indi-
viduals with a minimum call rate of 0.8. Thus, dataset SeeD-
GBS consisted of 3101 individuals from 2601 accessions 
(Fig. 1b) and 104,223 SNPs. The CIMMYT germplasm IDs 
and the number of individuals per accession are listed in 
Table S2. For comparing European and American landraces, 
the two datasets EU-OL and SeeD-OL were created, each 
comprising the 5045 SNPs which overlapped between EU-
Array and SeeD-GBS. The distribution of SNPs in the dif-
ferent marker sets is shown exemplarily for chromosome 
10 in Fig. S1. A summary of the different datasets is given 
in Table S3.

If not denoted otherwise, analyses within landraces were 
based on samples of 22 to 24 individuals (24 individuals 
were randomly sampled for nLR > 24; Table S1) and for 
analyses across landraces individuals were randomly sam-
pled under the side condition that each individual originated 
from a different landrace. Analyses were done using R ver-
sion 3.0.1 (R Core Team 2013).

http://seedsofdiscovery.org
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Site frequency spectrum

The term site frequency spectrum (SFS) refers to the distri-
bution of allele frequencies for a given set of SNPs. Let fi be 
the proportion of SNPs with a derived allele frequency of i/g 
in a sample of g gametes. The (unfolded) SFS is then given 
by the vector f = (f1, f2, …, fg−1). Following Nielsen and 
Slatkin (2013), the expected SFS under the standard neutral 
coalescence model with infinite sites mutations is given by:

Here, we calculated a folded SFS f* which describes the 
distribution of minor allele frequencies and is obtained by 
fi* = fi + fg−i for i < g/2 and fi* = fi for i = g/2. For a given 
dataset, g gametes with non-missing genotype calls were 
randomly sampled per SNP, where g corresponds to 2n × c 
with n referring to the respective number of individuals 
and c to the minimum call rate (c = 0.8 and c = 0.9 for 
American and EU landrace datasets, respectively). For the 
estimation of the folded SFS, the number of minor alleles 
per SNP was averaged over 1000 random samples.

Genetic diversity

Genetic diversity was assessed based on proportion of poly-
morphic markers (PP), nucleotide diversity (π) per marker 

(1)E[fi] =
1

i
∑g−1

j=1

1

j

i = 1, 2,… , g − 1.

(Nei and Li 1979) and haplotype heterozygosity (H; Nei and 
Tajima 1981). H was measured for sliding windows of 100 kb, 
with steps of 1 SNP and a minimum number of 5 SNPs per 
window. To obtain genome-wide estimates, mean π over all 
markers and mean H over all windows were calculated. Aver-
age deviation of genotype frequencies from Hardy–Weinberg 
expectations within populations was calculated using Weir 
and Cockerham’s Fis (Weir and Cockerham 1984). For data-
set EU-Array, genetic diversity parameters and Fis were esti-
mated within each landrace and for 1000 random samples of 
24 individuals across landraces. To assess the effects of sam-
ple size on diversity estimates, the parameters were calculated 
for 24 randomly sampled as well as for all genotyped indi-
viduals within the five landraces with nLR > 24. The results 
were compared between EU-Array and EU-OL to evaluate 
the effects of marker number and distribution. For datasets 
EU-OL, SeeD-OL and SeeD-GBS, diversity parameters and 
Fis were estimated based on 1000 random samples of 35 indi-
viduals across landraces. Using the R-package ade4 (Dray 
and Dufour 2007) version 1.6.2, an analysis of molecular 
variance (AMOVA; Excoffier et al. 1992) was performed to 
partition the total molecular variation of dataset EU-Array 
into within- and between-landrace components. Furthermore, 
AMOVA was used to estimate the proportion of the total 
molecular variance captured by groups of l landraces, with 
l = 1, 2, 3, 4, 5, 6, 7, 9, 18. For each l, landraces of dataset 
EU-Array, with 22 to 24 individuals per landrace (24 indi-
viduals were randomly sampled for nLR > 24; Table S1), were 
randomly assigned to groups of l landraces, with the number 

Fig. 1  Geographical origin of European (a) and American (b) maize 
landraces investigated in this study. a North-eastern and south-west-
ern European landraces (Table  S1) are colored in blue/green and 
red/orange, respectively. b The coloring of the American landraces 
from the SeeD project (Table  S2) refers to different geographical 
macro regions: Caribbean islands (yellow), Central American and 

Mexican lowlands (brown), South America (violet-red) and Mexi-
can highlands (aquamarine). The grouping of landraces was inferred 
by the analysis of population structure using ADMIXTURE with 
16  genetic groups. Admixed landraces with less than 50% of their 
ancestry attributable to one of the 16  genetic groups are shown in 
light gray 
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of groups being the smallest integer ≥35/l. If 35 was not a 
multiple of l (for l = 2, 3, 4, 6, 9, 18), one group comprised 
only l − 1 landraces. For each l, we conducted 10,000 ran-
dom repeats. Following Excoffier et al. (1992), significance 
for AMOVA and Fis was evaluated based on 1000 permuta-
tions, respectively.

Population structure

To analyze the genetic relationship between individuals, an 
unrooted neighbor joining tree (NJT; Saitou and Nei 1987) 
was constructed and principal coordinate analysis (PCoA; 
Gower 1966) was performed, using the R-package ape (Para-
dis et al. 2004) version 3.4. NJT and PCoA were based on 
pairwise modified Rogers’ distances (MRD; Wright 1978) 
between individuals. NJT was constructed for dataset EU-
Array. PCoA was calculated for each individual dataset as 
well as for a combined dataset based on SeeD-OL and one 
representative of each of the 35 landraces sampled from 
EU-OL. The correlations between MRD matrices obtained 
by datasets EU-Array/EU-OL and SeeD-GBS/SeeD-OL were 
evaluated using a Mantel test (Mantel 1967). PCoA patterns 
for the first three axes were compared between EU-Array and 
EU-OL and between SeeD-GBS and SeeD-OL via Procrustes 
analysis, using R-package ade4 (Dray and Dufour 2007) ver-
sion 1.6.2. The software ADMIXTURE (Alexander et al. 
2009) version 1.23 was used to analyze population structure. 
The algorithm implemented in ADMIXTURE assumes link-
age equilibrium between SNPs, therefore, we pruned SNPs 
based on pairwise LD using the sliding window approach of 
PLINK (Purcell et al. 2007) version 1.7 with a window size 
of 50 SNPs, in steps of 5 SNPs and with an r2 threshold of 
0.8. For the estimation of the most likely number of genetic 
groups K in a given dataset a fivefold cross-validation (CV) 
approach was applied as implemented in ADMIXTURE. In 
dataset EU-Array we performed one run for each K varying 
from 1 to 25 and 20 runs with different seed settings for each 
K varying from 26 to 50. Additionally, for K = 35, 20 runs 
were conducted in a supervised mode, in which 35 genetic 
groups were pre-defined by choosing one individual per 
landrace as representative of the respective genetic group. 
In dataset SeeD-GBS, we performed 20 runs with different 
seed settings for each K varying from 1 to 25 and one run for 
each K varying from 26 to 50. For K = 35 (EU-Array) and 
K = 16 (SeeD-GBS) population structure according to the 
model with the lowest CV error of the respective 20 runs was 
visualized using a customized R-script.

Linkage disequilibrium

Following Hill and Robertson (1968), LD was estimated 
as r2. We calculated r2 for pairs of SNPs with a maximum 

distance of 1 Mb and investigated the decay of r2 with 
physical distance using non-linear regression accord-
ing to Hill and Weir (1988). An r2 of 0.2 was used as 
the threshold to obtain the physical LD decay distance. 
For EU-Array, mean r2 and r2 decay distance were esti-
mated within each landrace and for 1000 random samples 
of 24 individuals across landraces. For datasets EU-OL, 
SeeD-OL and SeeD-GBS, mean r2 and r2 decay distance 
were estimated for 1000 random samples of 35 individuals 
across landraces.

For dataset EU-Array, interchromosomal LD 
was estimated for 24  individuals sampled from 
l = 1, 2, 3, 4, 6, 8, 12, 24 landraces, with an equal num-
ber of individuals per landrace and 10 random repeats 
per l. To obtain comparable results, SNPs were binned 
according to their minor allele frequency in the respec-
tive sample of individuals in steps of 0.05 and for each 
chromosome 100 SNPs were randomly sampled per bin. 
The resulting 1000 polymorphic SNPs per chromosome 
were used for the calculation of interchromosomal LD. 
The significance of higher fractions of marker pairs with 
r2 > 0.2  across landraces (l > 1) compared to within 
landraces (l = 1) was assessed using the two-sided Wil-
coxon rank sum test (Wilcoxon 1945) with Bonferroni 
correction.

The effect of sample size on LD estimates was evaluated 
by calculating LD decay distances within the five landraces 
of dataset EU-Array with nLR ≥ 46 (Table S1). In addition 
to calculations including all individuals within the respec-
tive landrace, the number of individuals was varied from 
5 to 45 in steps of 5. The effect of sample composition on 
LD estimates was assessed based on dataset EU-OL. LD 
calculations were performed for sampling schemes vary-
ing in the number of landraces l and the number of gametes 
g per landrace. In steps of 1, l varied from 1 to 35 and g 
from 1 to 44, as 44 was the minimum number of gametes 
per landrace in EU-OL. For each g × l combination, LD 
decay distances were averaged over 10 random samples. 
Calculations were performed for sampling schemes with 
g × l ≥ 12. To evaluate the effects of marker distribution 
on LD estimation, LD calculations for varying g and l were 
performed analogously for dataset EU-Array, with g and l 
varying in steps of 5.

To assess the persistence of linkage phase between 
landraces of dataset EU-Array, marker pairs were binned 
according to their physical distance in steps of 10 kb. For 
each bin and each pair of landraces, we calculated the cor-
relation between the r values of the respective landraces and 
the proportion of marker pairs with equal phase (PEP), i.e. 
with equal sign of r (Technow et al. 2012). Both parameters 
were also estimated for 100 random samples of half of the 
individuals within each of the five landraces with nLR ≥ 46 
(Table S1) compared to the second half.
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Imputation and phasing

For AMOVA, population structure analyses using ADMIX-
TURE, and the estimation of H, Fis, MRD and LD, miss-
ing genotype calls were imputed and the haplotype phase 
inferred using BEAGLE (Browning and Browning 2009) 
version 4.0 with default settings except for parameter  
nsamples, which was set to 50. Phasing and imputation for 
dataset EU-Array were done for each landrace separately, 
while for Seed-GBS they were performed based on the 
entire dataset. For datasets EU-OL and SeeD-OL haplotype 
information and imputed genotypes were extracted from EU-
Array and SeeD-GBS, respectively.

Availability of data and materials Genotype calls for 
the European and the SeeD datasets are available at figshare 
(https://doi.org/10.6084/m9.figshare.4789414.v1) and the 
CIMMYT Seeds of Discovery dataverse repository (http://
hdl.handle.net/11529/10034; Hearne et al. 2014), respectively.

Results

Genetic diversity and population structure 
within and across European maize landraces

Dataset EU-Array comprised 952 individuals from 35 land-
races (Fig. 1a; Table S1) and 516,797 SNPs with an overall 

call rate of 0.991. As expected for SNP array data, an excess 
of intermediate allele frequencies compared to the neutral 
expectation was observed (Fig. S2a), with an average minor 
allele frequency of 0.239. PP, π and H estimated across all 
952 individuals were 0.999, 0.323 and 0.831, respectively. 
Landraces varied in their level of genetic diversity (Fig. 2; 
Table S4), with PP, π, and H ranging from 0.410 to 0.913, 
0.142  to 0.306 and 0.474  to 0.787, respectively. Within 
landraces, the average levels of PP, π, and H were 0.735, 
0.234 and 0.669, respectively. The average levels of PP, π, 
and H for 24 individuals randomly sampled across landraces 
were 0.965, 0.323 and 0.863, respectively. Genetic diver-
sity parameters were on average higher within south-western 
compared to north-eastern European landraces (Table S5), 
though the three landraces with the highest PP and π val-
ues originated from Austria (GL, KN, OE; Table S4). For 
the five landraces with nLR ≥ 46 (Table S1), estimates of 
diversity parameters for 24 randomly sampled individuals 
were comparable to levels observed including all individu-
als within these landraces (Table S6). Values of Fis were 
low and not significant for most landraces, ranging from 
−0.064 to 0.118 with a mean of 0.006 (Table S4). Five land-
races showed a small but significant excess of homozygotes 
at the 0.05 significance level suggesting deviation from 
Hardy–Weinberg equilibrium due to inbreeding and/or pop-
ulation structure. AMOVA revealed that 73.1 and 26.9% of 
the total molecular variance of the 35 landraces originated 
from within and across landrace variation, respectively. The 

Fig. 2  Genetic diversity and LD within and across European land-
races. Proportion of polymorphic markers (PP), mean nucleotide 
diversity per marker (π), mean haplotype heterozygosity (H) and 
LD (mean r2) were calculated based on dataset EU-Array. Boxplots 
represent values for samples of 22  to 24  individuals within each  

landrace (blue), and for 1000  random samples of 24  individuals 
across landraces (red). Boxplots show the upper and lower quartile, 
median (horizontal bar), mean (gray diamond) and whiskers (vertical 
bars) of the respective statistic. Points above and below the whiskers 
indicate values ±1.5 times the interquartile range

https://doi.org/10.6084/m9.figshare.4789414.v1
http://hdl.handle.net/11529/10034
http://hdl.handle.net/11529/10034
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across landrace variance component was significant with 
p < 0.001. On average, ~95% of the molecular variation 
of the entire dataset (EU-Array) was already captured by 
groups of five landraces (Fig. 3). 

The NJT revealed a clear genetic differentiation between 
the 35  landraces of dataset EU-Array, with a landrace- 
specific grouping of individuals (Fig. S3). Different levels 
of relatedness between landraces were indicated by the for-
mation of geographical clusters, e.g. for landraces from the 
Alsace region (CO, GB, WA), from Galicia (LL, SA, TU, 
VI) and from the French Pyrenees (BU, GA, LB, MO, RD). 
Plotting the first and second principal coordinates (PCo) 
of the PCoA, a group of north-eastern European landraces 
was located in the first and fourth quadrant and a group of 
south-western European landraces in the second quadrant 
(Fig. S4). The third quadrant contained landraces from both 
regions. With the exception of ND, these landraces differed 
from the remaining landraces in their kernel morphology. 
While most landraces in dataset EU-Array showed typical 
Flint-like kernels with a thick, hard and vitreous outer layer, 
these landraces (CA, GL, KN, OE, PL, TR) displayed ker-
nels with a small indentation, characteristic for Dent maize. 
Analogously, the NJT (Fig. S3) showed groups of Dent-like 

north-eastern European (GL, KN, OE, PL) and Dent-like 
Spanish landraces (CA, TR), respectively.

Population structure of the landraces in the EU-Array 
panel was analyzed using the software ADMIXTURE. The 
most likely number of genetic groups K in the dataset could 
not be resolved unambiguously for K ranging from 1 to 50. 
CV errors decreased until K = 35, showed only minor dif-
ferences for 35 ≤ K ≤ 40 and reached a plateau for K > 40 
(Fig. S5). Therefore, given the 35 landraces in the panel, we 
chose one individual per landrace to represent the genetic 
composition of the respective landrace. A distinct separation 
of the 35 landraces was detected, whereas within landraces 
only limited evidence of population structure was observed 
(Fig. 4). The five Austrian landraces (GL, KL, KN, OE, OM) 
as well as AN, GA, LB and PE exhibited higher levels of 
admixture than the remaining landraces, but for almost all 
individuals more than 50% of their ancestry was attributed 
to the respective landrace.

Linkage disequilibrium within and across European 
maize landraces

Based on 22 to 24 individuals per landrace of dataset EU-
Array, mean r2 of SNP pairs within 1 Mb distance ranged 
from 0.115 to 0.379 with a mean of 0.188 (Table S4). Mean 
r2 estimates calculated for 1000 random samples of 24 indi-
viduals across landraces were on average 0.096 and showed 
substantially less variation compared to within-landrace esti-
mates, ranging from 0.091 to 0.102 (Fig. 2). Within land-
races, LD decay distances ranged from 99 to 1809 kb with 
a mean of 342 kb (Fig. 5a; Table S4). For the majority of 
landraces, LD decay distance estimates were smaller than 
500 kb, with north-eastern European landraces showing 
on average higher LD levels than south-western European 
landraces (Table S5). Compared to within-landrace esti-
mates, smaller LD decay distances were obtained for sam-
ples across landraces (Fig. 5a; Table S4) ranging from 56 to 
73 kb with a mean of 63 kb.

Persistence of linkage phase within and across 
European maize landraces

The persistence of linkage phase for all pairwise compari-
sons of the 35 landraces of dataset EU-Array was evalu-
ated based on the correlation of r values as well as PEP. 
For marker pairs with distances smaller than 10 kb, both 
parameters were high with a mean correlation of r values 
of 0.783 (Fig. 5b) and a mean PEP of 0.889 (Fig. S6). 
However, values of both parameters decreased rapidly with 
increasing physical distance between markers and reached 
moderate to low levels for marker pairs within distances of 
990 to 1000 kb (mean correlation of r values = 0.238, mean 
PEP = 0.549). The persistence of linkage phase between 

Fig. 3  Proportion of the total molecular variance captured by differ-
ent numbers of landraces. Landraces of EU-Array, with 22 to 24 indi-
viduals per landrace, were randomly assigned to groups comprising l 
landraces, with l = 1, 2, 3, 4, 5, 6, 7, 9, 18. The proportion of the total 
molecular variance of the panel of 35 landraces captured by groups of 
l landraces was estimated using AMOVA. Boxplots show the upper 
and lower quartile, median (horizontal bar), mean (gray diamond) 
and whiskers (vertical bars) for 10,000 random repeats per l. Points 
above and below the whiskers indicate values ±1.5 times the inter-
quartile range
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pairs of landraces was associated with proximity of geo-
graphical origin and kernel type. The correlation of r values 
for marker pairs within 1 Mb distance was lowest for the 
comparison of the northern European Dent-like landrace PL 
and the southern European Flint-like landrace ND (0.298) 

and highest for a pair of two Flint-like German landraces 
(SC, SF; 0.747). PEP for marker pairs within 1 Mb distance 
was lowest for the comparison of the southern European 
Dent-like landrace TR and the northern European Flint-like 
landrace CO (0.564) and highest for a pair of two Dent-like 

Fig. 4  Population structure in European landraces. Population struc-
ture within dataset EU-Array was inferred using ADMIXTURE for 
35  pre-defined genetic groups, colored according to Fig.  1a. Each 
bar represents one individual consisting of up to 35  colors accord-
ing to their ancestry proportions attributable to each of the 35 genetic 

groups. The red horizontal line indicates an ancestry proportion of 
50%. Landraces are ordered according to their position in the neigh-
bor joining tree (Fig S3), with north-eastern and south-western Euro-
pean landraces at the top and bottom, respectively

Fig. 5  Decay of LD with physical distance and correlation of r 
within and across European landraces. a The decay of LD was esti-
mated via non-linear regression using r2 values for marker pairs 
within a maximum distance of 1  Mb. Based on dataset EU-Array, 
estimates for samples of 22  to 24  individuals within each landrace 
(colored according to Fig. 1a) and the mean over 1000 random sam-
ples of 24  individuals across landraces (black) are shown. The red 
dashed line indicates the threshold of r2  =  0.2  for calculating the 
physical LD decay distance. b Cubic smoothing spline fits are shown 

for the correlation of r values between samples within (blue) and 
across (red) landraces as a function of physical distance, based on 
dataset EU-Array. For the within-landrace estimates, 100 times half 
of the individuals within each of the five landraces with nLR  ≥  46 
(Table  S1) were randomly sampled and compared with the second 
half. Across-landrace estimates are based on pairwise comparisons 
of all 35 landraces. Mean values for within- and across-landrace esti-
mates are shown in dark blue and dark red, respectively
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Austrian landraces (GL, KN; 0.749). As expected, when 
comparing samples within each of the five landraces with 
nLR ≥ 46 (Table S1), the two parameters were consistently 
high, for marker pairs within distances smaller than 10 kb 
(mean correlation of r values = 0.977, mean PEP = 0.972) 
as well as for marker pairs within distances of 990 to 1000 kb 
(mean correlation of r values = 0.836, mean PEP = 0.815; 
Fig. 5b; Fig. S6).

Comparison of European and American landraces

To compare the molecular variation of the 35 temperate 
European landraces in this study with tropical Central and 
South American landraces and to assess specific proper-
ties of these datasets with respect to the use of different 
genotyping technologies, we extended our analyses to the 
SeeD maize GWAS panel. Dataset SeeD-GBS comprised 
3101 individuals from 2601 accessions (Fig. 1b; Table S2) 
and 104,223 SNPs with an overall call rate of 0.907. Com-
parisons between European and American landraces were 
based on marker subsets of EU-Array and SeeD-GBS, each 
containing 5045 overlapping SNPs (datasets EU-OL and 
SeeD-OL). Compared to SeeD-GBS, an overrepresentation 
of intermediate allele frequencies pertained in these two 
subsets (Fig. S2b-d).

For each dataset, we estimated PP, π, H, mean r2 and r2 
decay distance (Table S7) based on 1000 random samples of 
35 individuals across landraces. All five parameters differed 
significantly between datasets (p < 0.001), as revealed by 
two-sided t tests with Bonferroni correction. The levels of 
PP and π were highest for EU-OL, slightly lower for SeeD-
OL and lowest for SeeD-GBS. SeeD-GBS showed the high-
est level of H and only slightly lower values were observed 
for SeeD-OL, whereas H was lowest for EU-OL. Mean r2 
for marker pairs within 1 Mb distance and r2 decay distances 
were highest for EU-OL, substantially lower for SeeD-OL 
and lowest for SeeD-GBS.

We used ADMIXTURE to identify major genetic groups 
within the American landrace panel (SeeD-GBS). CV errors 
decreased for the number of genetic groups K varying from 
1 to 16 and reached a plateau for K > 16 (Fig. S7). Thus, we 
defined 16 genetic groups within SeeD-GBS. The resulting 
groups reflected the geographical origin of the respective 
landraces (Fig. S8). Five groups originated from the Mexi-
can and Central American lowlands, four groups comprised 
landraces from the Mexican highlands, four groups referred 
to landraces from South America and three groups origi-
nated from the Caribbean islands and north-eastern South 
America. Individuals showed high levels of admixture, espe-
cially between geographically adjacent groups.

In the joint PCoA of SeeD-OL and one representa-
tive of each of the 35 European landraces sampled from 
EU-OL (Fig. S9), the first two PCos mainly separated South 

American from Mexican highland landraces with tropical 
Caribbean and Central American lowland landraces at the 
center. A group of north-eastern European Flint landraces 
was clearly separated from the American landraces. Part of 
the temperate European landraces, mainly from the south-
west, grouped together with part of south-eastern South 
American landraces, but was clearly separated from the 
remaining groups. The genetic distance of European land-
races to tropical Caribbean and Central American lowland 
landraces increased with increasing geographical distance 
to Mediterranean regions and was larger for Flint-like than 
for Dent-like landraces.

To evaluate the representation of population structure 
by the reduced marker sets EU-OL and SeeD-OL, we com-
pared MRDs and PCoA between EU-OL and EU-Array and 
between SeeD-OL and SeeD-GBS, respectively. MRDs 
between individuals obtained by the respective reduced 
and full marker sets were highly correlated (correlation of 
0.991 and 0.942 for EU and SeeD datasets, respectively; with 
a significance of p < 0.001; Fig. S10). Consistently larger 
MRDs were observed for SeeD-OL compared to SeeD-GBS. 
For the first three principle coordinates, the correlation-like 
statistic of Procrustes analyses was 0.994 for the comparison 
between EU-OL and EU-Array, and 0.991 between SeeD-
OL and SeeD-GBS, respectively (p < 0.001).

Influence of sample size, sample composition 
and marker distribution on LD estimates

Based on dataset EU-Array, we analyzed the effect of 
sample size on LD estimates by calculating LD decay 
distances for random samples of individuals within 
each of the five landraces GB, KL, LL, PE and VI with 
nLR ≥ 46. For sample sizes smaller than 20 individuals 
(40 gametes), a strong increase in mean and variance of 
LD decay distance estimates was observed with decreas-
ing sample size (Fig. S11). We also calculated LD decay 
distances for sampling schemes varying in the number 
of landraces l and the number of gametes g per landrace, 
based on dataset EU-OL. As expected, estimates of LD 
decay distance increased with decreasing total number of 
gametes (Fig. 6). For a given total number of gametes, LD 
decay distances were larger within landraces (l = 1) than 
across landraces (l > 1). For example, an LD decay dis-
tance of 174.3 kb was observed for 35 gametes sampled 
from one landrace in contrast to 8.3 kb when sampling 
35 landraces with one gamete each. In general, LD decay 
distances decreased for increasing l, with the largest 
decrease observed for l from 1 to 10, and only marginal 
changes for l larger than 10. Analogously, LD calculations 
for varying g and l were performed for dataset EU-Array. 
A decrease in LD estimates with increasing g and l was 
also observed for EU-Array, but with substantially higher 
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overall levels of LD compared to EU-OL (Fig. S12). The 
different levels of genome-wide LD estimates between 
EU-OL and EU-Array can be explained by differences 
in the distribution of markers, with EU-OL showing a 
higher marker density in telomeric regions compared to 
EU-Array (Fig. S1). However, LD estimates of landraces 
relative to each other were comparable between EU-OL 
and EU-Array (Table S6).

In admixed populations, LD can appear between 
unlinked markers due to differences in allele frequencies 
of subpopulations. To assess the extent of admixture-
induced LD, we calculated interchromosomal LD for 
24 individuals sampled from l = 1, 2, 3, 4, 6, 8, 12, 24 
landraces. Overall, the proportion of interchromosomal 
marker pairs with r2 > 0.2 was low (Table S8), but the 
Wilcoxon rank sum test revealed significantly higher pro-
portions of marker pairs with r2 > 0.2 across landraces 
(l > 1) than within landraces (l = 1).

Discussion

When building GWAS discovery panels or training sets for 
genomic prediction from landraces, large data sets of several 
hundreds or even thousands of individuals are required to 

obtain sufficient power of QTL detection and high accuracy 
of prediction. Different sampling strategies can be devised 
depending on the aim of the study. When aiming at eluci-
dating mechanisms of plant adaptation or discovering novel 
alleles for disease resistance or quality traits, maximizing the 
allelic diversity of the discovery panel is crucial. Thus, indi-
viduals might be sampled from many landraces covering a 
wide range of diversity with each landrace being represented 
by one or few individuals. An alternative strategy is to sam-
ple many individuals from each of a few pre-selected land-
races, which might be especially promising for broadening 
the genetic diversity of elite material for quantitative traits.

In this study, we compared estimates of genomic 
parameters with impact on the power of genome-enabled 
approaches between different sampling strategies, using 
dense genotyping data from 35 European maize landraces 
with more than 20 individuals per landrace. We show for 
this unique set of landraces covering a wide range of eco-
geographic conditions in the temperate maize growing 
regions of Europe that the majority of the landraces rep-
resented unstructured populations as indicated by low Fis 
values, a consistent landrace-specific grouping of individ-
uals in NJT and PCoA, and high ancestry proportions of 
individuals attributable to their respective landrace (Fig. 4; 
Fig. S3–S4). With current advances in assembling complex 
genomes de novo (Unterseer et al. 2017) generating high-
quality reference sequences that represent the diversity of a 
defined set of landraces is within reach. Given that linkage 
phases were highly consistent within landraces over fairly 
long genomic distances, imputation of missing genotypes 
from skim whole-genome sequencing should be possible 
with high accuracy for a broad range of allele frequencies. 
This should allow efficient characterization of haplotype 
variation within and across landraces.

Sampling individuals from a limited number of pre-
selected landraces yields only slightly reduced levels of 
molecular diversity compared to sampling from the entire 
set of 35 European landraces. On average more than 70% 
of the total molecular variance present in the 35 landraces 
was found within landraces and about 95% was captured 
by samples of five landraces. Based on this high molecular 
variation, we can assume high genetic variation for quantita-
tive traits of interest within a pre-selected set of landraces, 
which is in concordance with phenotypic investigations of 
landrace-derived material (Böhm et al. 2017; Wilde et al. 
2010). LD levels within landraces were comparable to or 
lower than levels reported previously for diverse collections 
of temperate maize elite lines genotyped with the same array 
(Unterseer et al. 2014), thus yielding comparable mapping 
resolution in gene discovery studies. Moreover, mapping 
resolution for gene discovery can be increased by combin-
ing data from several landraces (Fig. 6). When sampling 
individuals from 10 landraces, LD decay distances of a few 

Fig. 6  Effects of sample size and sample composition on the estima-
tion of LD decay distances. Based on dataset EU-OL, LD decay dis-
tances were calculated using non-linear regression and an r2 threshold 
of 0.2 for sampling schemes varying in the number of landraces l and 
the number of gametes g per landrace. Bars and colors represent the 
average LD decay distance for 10 random samples per l × g combina-
tion
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kb were observed, comparable to the level of the entire set 
of 35 European landraces and sufficiently low for candidate 
gene identification. Diversity and LD parameters varied 
between landraces with the majority of landraces retain-
ing high levels of diversity and moderate to low levels of 
LD during their maintenance by farmers, their recollection 
and/or their preservation in gene banks. When adding a pre-
screening step, the molecular and genetic variance in the 
data can be increased, as landraces deviating from expec-
tations with respect to diversity, inbreeding or population 
structure can be excluded. Our results suggest that genotyp-
ing 24 individuals per landrace with 5k SNPs was sufficient 
for obtaining representative estimates of diversity and LD 
levels for each population (Fig. S11; Table S6). The useful-
ness of the data set can be further increased by evaluating 
a broad panel of landraces well adapted to a given target 
environment in the pre-screening step and by assuring that 
the selected landraces are segregating for target traits.

We found a gradually decreasing level of relatedness 
of European to Central and South American landraces 
with increasing geographical distance to Mediterranean 
regions (Fig. S9) consistent with previous observations 
(Dubreuil et al. 2006; Rebourg et al. 2003). This indicates 
that European landraces represent a broad spectrum of 
allelic variation, shaped by local adaptation to different 
agro-ecological zones. Haplotype diversity in the 35 Euro-
pean landraces was lower compared with the SeeD data 
but still sufficiently high to warrant high genetic variance 
for quantitative traits of interest. This was also confirmed 
by a recent study by Böhm et al. (2017) who described 
high levels of genetic variance for a suite of quantitative 
traits in doubled-haploid libraries derived from landraces 
of similar origin as those investigated in this study. While 
the haplotype based parameter H was presumably less 
affected by ascertainment bias than single SNP measures 
(Conrad et al. 2006), an enrichment of intermediate allele 
frequencies as well as an increase in PP, π and r2 esti-
mates indicated an overestimation of these parameters 
in the SeeD dataset when filtering for SNPs overlapping 
with the 600k array (Fig. S2; Table S7). Array-derived 
SNPs are restricted to the initial SNP discovery panel and 
affected by subsequent filtering steps, leading to an enrich-
ment of intermediate allele frequencies compared to GBS-
derived SNPs. As the array was optimized for temperate 
maize, PP, π and r2 estimates were likely overestimated in 
European relative to American landraces. In both, the EU-
Array and the SeeD-GBS datasets, SNPs were called using 
the B73 reference sequence and are, therefore, restricted to 
genomic regions present in B73. GBS-derived data depend 
on restriction enzyme cutting sites and hence are highly 
overrepresented in telomeric regions (Romay et al. 2013), 
as it was also observed in this study when comparing the 

distribution of SNPs between the Seed-GBS and EU-
Array datasets. The differences in marker distributions 
were likely the main reason for the observed differences in 
genome-wide LD estimates between EU-Array and EU-OL 
(Fig. S1, S12) as the two datasets showed similar SFS 
(Fig. S2). Thus, comparisons of diversity parameters and 
LD between datasets analyzed with different genotyping 
technologies need to be interpreted with caution. However, 
inferences within the respective datasets of European or 
American landraces should be affected to a minor extent 
by these limitations and as can be seen from Fig. S9 the 
results of the PCoA obtained with the SNPs represented in 
the SeeD-OL dataset were consistent with those presented 
by Romero Navarro et al. (2017).

Within the European dataset, the grouping of the 35 land-
races (Fig. S3–S4) with respect to their geographical origin 
and kernel type was clearly reflected in the genomic analy-
ses. The level of interchromosomal LD induced by admix-
ture was overall low, but, as expected, varied significantly 
depending on the sampling strategy (Table S8). However, 
when constructing data sets by sampling individuals from 
pre-selected landraces, the clear differentiation between pop-
ulations allows a priori definition of subpopulations in sta-
tistical analyses to avoid false-positive marker-trait associa-
tions or inflation of prediction accuracies. In addition, when 
sampling a sufficiently high number of individuals within 
landraces, specific marker effects can be estimated using 
appropriate statistical models as suggested by Lehermeier 
et al. (2015).

Even though only one or few individuals were sam-
pled from individual landraces in the SeeD-GBS data set, 
population structure was prevalent with 16 genetic groups 
mainly representing the geographic origin of the landraces 
(Fig. S8). With a high proportion of individuals exhibiting 
strong population admixture, accounting for population 
structure in the SeeD data set is challenging. Furthermore, 
the consistency of allelic effect estimates of samples of 
landraces covering a wide range of geographic regions 
with respect to a given target elite breeding pool warrants 
further research. It has been shown that strong correlations 
of geographic coordinates and specific adaptive traits per-
sist in these data sets (Romero Navarro et al. 2017; Zhao 
et al. 2007). As these authors pointed out, disentangling 
associations of target traits from adaptation as well as esti-
mation of genotype × environment interactions is difficult 
in highly diverse landrace collections. Thus, we conclude, 
that the incorporation of favorable alleles from landraces 
into elite germplasm can be expected to be most efficient if 
landraces are chosen not solely based on maximum allelic 
diversity but also with respect to a similar environmen-
tal adaptation and genomic background as the target elite 
breeding pool.
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Conclusions

We show that sampling a limited number of pre-selected 
landraces should provide high genetic variance for quanti-
tative traits of interest and high mapping resolution in gene 
discovery. Absence of pronounced population structure 
within landraces and clear genetic differentiation between 
landraces allows a priori definition of subpopulations in 
statistical analyses and consistency of linkage phases facili-
tates genotype imputation and haplotype characterization. 
Thus, for broadening the genetic diversity of elite material 
for quantitative traits, we recommend capitalizing upon the 
genomic characteristics of long-term random mating popu-
lations and the genetic diversity within a pre-selected set of 
landraces adapted to a comparable environment as the target 
elite breeding pool.
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Key message Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantita-
tive traits and make it accessible for breeding and genome-based studies.
Abstract Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European 
flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, 
variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment 
phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces 
of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis 
of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic 
variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the 
commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross 
yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for 
undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or 
nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify 
novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.

Introduction

Maize (Zea mays L. ssp. mays) seed banks around the world 
harbor thousands of landrace accessions, representing a rich 
resource of currently untapped native diversity that could 
be harnessed for plant improvement and adaptation to 
environmental changes (Hoisington et al. 1999; Ortiz et al. 
2010; McCouch et al. 2013; Hellin et al. 2014; Wang et al. 
2017). European flint maize went through several bottle-
necks, the first of which occurred in the Americas (Doe-
bley et al. 1986), followed by the introduction to Europe 
(Rebourg et al. 2003). In the course of maize breeding, lan-
draces were replaced by hybrids. For the establishment of 
hybrid breeding, only a limited set of founder landraces was 
sampled, and the inbred lines produced were subjected to 
second cycle breeding (Messmer et al. 1992; Barrière et al. 
2006). Subsequent selection at high intensities has led to an 
additional decline in genetic diversity of elite germplasm, 
especially within the flint heterotic pool important for Euro-
pean maize breeding (Messmer et al. 1992; Reif et al. 2005a, 
b; Lu et al. 2009). Revisiting the vast diversity of landraces 
stored in seed banks is considered a promising approach 
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for broadening the genetic base of current germplasm pools 
(Pollak 2003; Salhuana and Pollak 2006; Warburton et al. 
2008; Strigens et al. 2013; McCouch et al. 2013; Navarro 
et al. 2017). However, opening this avenue for quantitative 
traits entails considerable challenges, and efficient strategies 
are still lacking.

In a first step, the most promising landraces have to be 
identified from several thousand stored in seed banks, even 
if only the flint pool is of interest. Information on stored 
landraces is limited, and the choice has to be based either on 
passport data from seed banks, or the per se and/or testcross 
performance of the landraces has to be evaluated in field 
trials (Pollak 2003; Salhuana and Pollak 2006; Böhm et al. 
2014). In allogamous species like maize, landrace collec-
tions represent populations of heterogeneous and heterozy-
gous individuals. Thus, the evaluation of populations either 
per se or in testcrosses would disregard the large genetic 
variation found within landraces, and without prior self or 
cross, it is not possible to evaluate the breeding potential of 
individual genotypes. In order to harness the genetic diver-
sity within landraces, reproducible genetic units such as 
libraries of doubled-haploid (DH) lines from landraces have 
been suggested to overcome some of the aforementioned 
drawbacks since they are suitable for genotyping and high-
precision phenotyping (Wilde et al. 2010; Strigens et al. 
2013; Melchinger et al. 2017). Diversity from landraces 
captured in such DH libraries could help in improving traits 
such as plant development at early growth stages, for which 
genetic variation is small in breeding material. However, 
improving quantitative traits by utilizing lines derived from 
landraces is complex because the targeted introgression of 
favorable alleles at major genes is not possible (Bernardo 
2002). Any introgression of landrace material therefore car-
ries the risk of an undesired correlated response in traits 
other than the trait under selection due to the overall poor 
agronomic performance of the landrace material. To achieve 
a targeted utilization of natural diversity, an exhaustive char-
acterization of line per se and testcross performance for the 
trait of interest and as many other agronomic and morpho-
logical traits as possible has to be carried out in order to 
develop a pre-breeding strategy that allows introgression of 
favorable diversity into elite germplasm without introducing 
major disadvantages in other traits (Sood et al. 2014).

In the research at hand, we employed large-scale produc-
tion of DH lines to make native diversity for quantitative 
traits in maize landraces accessible for the purpose of germ-
plasm improvement and genome-based studies. Our objec-
tives were (i) to create a publicly available diversity atlas 
of European flint maize by characterizing landrace-derived 
DH libraries genotypically and phenotypically for line per se 
and testcross performance, (ii) to provide a comprehensive 
analysis of the DH libraries in terms of population structure, 
performance level, trait correlations, and genetic variances 

for a broad range of traits, and (iii) to gain insights into 
potential strategies for capturing native diversity for use in 
germplasm improvement.

Materials and methods

Plant material

The three landraces Kemater Landmais Gelb (KE, Austria), 
Petkuser Ferdinand Rot (PE, Germany), and Lalin (LL, 
Spain) were chosen for the production of DH lines because 
they showed phenotypic variation for early development as 
well as low levels of linkage disequilibrium (LD) and popu-
lation structure within populations. They were selected from 
a set of 35 European maize landraces covering a broad geo-
graphical region of Europe that was described in detail by 
Mayer et al. (2017). Together, they represented 95.0% of the 
molecular variance of the full set of 35 landraces. From the 
selected landraces, 1015 DH lines (516 KE, 432 PE, 67 LL) 
were produced and multiplied using the in vivo haploid 
induction method (Röber et al. 2005). Phenotyping of lines 
per se (LP) was conducted in 2017 and 2018. Testcrosses 
(TC) of a subset of 378 DH lines from landraces KE and PE 
were evaluated in 2018. To warrant successful TC evalua-
tion, the shortest, earliest, and late maturing lines as well as 
lines with a high score for lodging were not included in the 
TC production. The dent line F353 (Institut national de la 
recherche agronomique, INRA) was used as the female par-
ent in TC production to ensure uniform seed quality across 
DH lines and because variation in tassel architecture of DH 
lines hampered detasseling.

Analysis of genotypic data and population structure

The 1015 DH lines and 144 S0 plants (48 per landrace) 
from the landraces KE, PE, and LL were genotyped using 
the 600 k  Affymetrix®  Axiom® Maize Array (Unterseer 
et al. 2014). Only markers assigned to the best quality class 
(Unterseer et al. 2014), with a call rate of ≥ 0.9 and with 
a known physical position in the B73 reference sequence 
[AGPv4, (Jiao et al. 2017)], were used for the analyses. One 
 S0 plant from landrace PE was excluded due to an insuffi-
cient call rate (≤ 0.9). Assignment of lines to their respective 
landrace was performed using the ADMIXTURE software 
tool (Alexander et al. 2009) in supervised mode with three 
pre-defined groups (KE, PE, and LL) that were determined 
from  S0 plants. DH lines with less than 75% concordance 
with the landrace to which they were assigned by pedigree 
records were excluded from further analysis. Markers and 
individuals with > 10% missing values were removed. In DH 
lines, markers and individuals with > 5% heterozygous geno-
type calls were discarded, and all remaining heterozygous 
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calls were set to missing values. Missing values in the 
DH lines were imputed separately for each landrace using  
BEAGLE 5.0 (default parameters) (Browning et al. 2018). 
Missing values in the  S0 plants were imputed, and two 
gametes were phased from each  S0 plant separately in each 
landrace using BEAGLE 5.0 (iterations = 50, phase-seg-
ment = 10, phase-states = 500) and a reference panel consist-
ing of the corresponding DH lines. Pairwise modified Rog-
ers’ distances [MRD; (Wright 1978)] were calculated, and 
DH lines showing a pairwise MRD of < 0.05 were assumed 
to be duplicates and excluded from further analyses. Markers 
were identified which overlapped between DH lines and  S0 
gametes. Quality filtering and imputation resulted in 941 DH 
lines (501 KE, 409 PE, and 31 LL) and 286  S0 gametes (96 
KE, 94 PE, and 96 LL) genotyped with 499,574 common 
markers.

We performed a principal coordinate analysis [Gower 
(1966), R-package ape] based on MRD for DH lines and  S0 
plants. The MRD matrices of DH lines and  S0 plants were 
hierarchically clustered using the unweighted pair group 
method with arithmetic mean (UPGMA) implemented in the 
hclust function in R and are displayed as 1-MRD. In order 
to estimate the proportion of molecular variance explained 
by the three landraces under study, an analysis of molec-
ular variance [AMOVA; Excoffier et al. (1992)] was per-
formed to partition the molecular variation into within- and 
between-landrace components. This analysis used the panel 
of 35 European landraces described by Mayer et al. (2017) 
for comparison. In addition, a second AMOVA decomposing 
the variance within and between DH lines and  S0 gametes 
was performed to investigate how much of the molecular 
variance lies within and between those two groups.

Field experiments and phenotypic analysis

Line per se (LP) performance was evaluated in Germany 
during 2017 using ten separate 10 × 10 lattice designs in four 
locations (1000 entries: 958 DH lines plus checks) and dur-
ing 2018 using eight 10 × 10 lattice designs in three locations 
(800 entries: 756 DH lines plus checks). A randomly chosen 
subset (five 10 × 10 lattice designs, 458 and 468 DH lines 
plus checks in 2017 and 2018, respectively) was evaluated 
in two locations in Spain in both years. The trial locations 
were Einbeck (EIN, Germany, 2017 + 2018), Roggenstein 
(ROG, Germany, 2017 + 2018), Bernburg (BBG, Germany, 
2017), Klein Wanzleben (KLW, Germany, 2018), Oberer 
Lindenhof (OLI, Germany, 2017), Golada (GOL, Spain, 
2017 + 2018), and Tomeza (TOM, Spain, 2017 + 2018). 
See Table S1 for a detailed description of the test locations 
[geographical coordinates, elevation, precipitation, tem-
perature; the climate data was obtained from the Bavarian 
State Research Center for Agriculture, Landwirtschaftli-
ches Technologiezentrum Augustenberg, and Menne et al. 

(2012)]. Each combination of year and location was consid-
ered to be one environment in later analyses. The number 
of lines tested had to be reduced between 2017 and 2018 
due to seed shortage and the exclusion of lines that did not 
pass the quality control described above for the genotypic 
data analysis. In 2017, 14 flint (CH10 provided by Agro-
scope Changins-Wädenswil (Switzerland); D152, DK105, 
UH006, UH007, and UH009 provided by the University of 
Hohenheim (Germany); EP1 and EP44 provided by Misión 
Biológica de Galicia, Consejo Superior de Investigaciones 
Científicas, (CSIC, Spain); F03802, F2, F283, F64, and F7 
provided by Institut national de la recherche agronomique 
(INRA, France); EC49A provided by Centro de Investiga-
ciones Agrarias Mabegondo, Instituto Galego da Calidade 
Aumentaria (CIAM-INGACAL, Spain) and one dent (F353, 
INRA, tester in testcross evaluation) inbred line served as 
checks and were included as duplicate entries. The checks 
were chosen in order to exhibit variation in plant develop-
ment at early growth stages and flowering time. In 2018, the 
number of checks was reduced to four lines (DK105, EP1, 
F2, and F353) included in each lattice design per location 
(eight in Germany, five in Spain). In both years, the three 
landraces were included as quadruplicate entries. Plots were 
single rows 3 m in length with a distance of 0.75 m between 
rows and twenty plants per plot, corresponding to a sowing 
density of about 9 plants  m−2.

The testcrosses (TC) were evaluated in four 10 × 10 lattice 
designs in four locations in Germany in 2018 (EIN, KLW, 
ROG, OLI). In the TC trials, testcrosses of lines DK105, 
EP1, and F2 as well as testcrosses of the two landraces KE 
and PE and two commercial hybrid varieties (CH1 = KWS 
Stabil, CH2 = KWS Figaro) were planted as checks. The test-
crosses of landraces KE and PE were planted in one lattice 
only, while all other checks were planted in every lattice. In 
TC, plots were double rows 5 m in length at locations ROG 
and OLI and 6 m in length at locations KLW and EIN, in 
both cases with 0.75 m distance between rows. Sowing den-
sity followed local practice at the experimental stations and 
varied between 9 and 11 plants  m−2. Fertilization and plant 
protection were carried out according to standard agricul-
tural practices in both the LP and the TC trials.

In the LP trial, a total of 25 morphological, agronomic, 
and early-development-related traits were measured 
(Table S2 provides detailed information on trait × environ-
ment combinations). The traits that were scored in ≥ 10 envi-
ronments included emergence (EME, ratio of emerged plants 
to sown seeds, %), early vigor (EV, at three different growth 
stages V3, V4, and V6, 1–9 score, 1 = very poor vigor, 
9 = very vigorous), early plant height (PH, at V4 and V6, 
average over three measured plants per plot, cm), final plant 
height (PH_final, cm), and female flowering (FF, d). Root 
lodging at the R6 stage (RL, 1 = no lodging, 9 = all plants 
showing severe lodging) was scored in six environments; 
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tillering (TILL, 1 = no tillers, 9 = all plants showing many 
and long tillers) and male flowering (MF, d) were scored 
in five environments. The anthesis-silking interval (ASI, d) 
was calculated for the environments in which both MF and 
FF were scored. Ear height (EH, cm) was measured in four 
environments. In the Spanish environments, physiological 
traits like the maximum efficiency of photosystem II [Fv/
Fm, using a fluorometer (OS-30p, Opti-Sciences Inc., USA)] 
were measured at stages V4 (2017 + 2018) and V6 (only 
2017), and leaf greenness (SPAD) was measured by a chlo-
rophyll content meter (CCM-200, Opti-Sciences Inc., USA; 
V3, V4 in both years, V6 only 2017). Reaction to stress 
was scored as cold tolerance (CT, 1–9 score, 1 = low cold 
tolerance, 9 = high cold tolerance; symptoms were chlorosis 
and necrosis on the leaves) after a very cold night with a 
slight frost at OLI 2017, drought/heat tolerance (DT, 1–9 
score, 1 = low drought/heat tolerance, 9 = high drought/heat 
tolerance; symptoms were dry leaves and tassels) at EIN 
2018, and rust susceptibility (binary) at TOM 2018. Traits 
related to tassel architecture were measured in ROG 2018. 
Tassel length was measured from the lowest tassel branch 
to the tassel tip (TL, cm), spike length was measured as the 
length of the top spike (SL, cm), the number of branches was 
counted (NB), and the tassel angle was scored on a 1–9 scale 
(TA, 1 = completely upright, 9 = branches horizontal). In the 
TC trial, EME, EV, PH, EH, PH_final, FF, TILL, and RL 
were scored as was described for LP. In addition, TC plots 
were harvested with a forage harvester to measure total dry 
matter yield (TDMY, dt/ha) and dry matter content (DMC, 
through near infrared spectroscopy or drying, in %).

The statistical model for estimating genotype and geno-
type × environment interaction variance components for 
lines derived from the same landrace was

where i = 1, 2, 3 denotes three groups, i.e., DH lines from 
landraces (DHL), checks (CH), and landrace populations 
 (LR_S0); j = 1, 2, 3 denotes the three landraces KE, PE, and 
LL; µ is the overall mean; mi is the effect of group i; lj is the 
effect of landrace j in group i = 1; �ij is a dummy variable 
with �ij = 1 for i = 1 and j = 1, 2, 3 and �ij  = 0 otherwise; 
gk(ij) is the effect of line k nested in group i and landrace 
j; uo is the effect of environment o; lujo is the interaction 
of landrace j and environment o; guko(ij) is the interaction 
effect for genotype k and environment o. The effects kp(o) , 
rs(op) , bt(ops) , and �ijkopst refer to the effect of the lattice (nested 
in environments), replicate (nested in lattices in environ-
ments), incomplete block (nested in replicates in lattices 
in environments), and the residual error, respectively. All 
effects except mi and lj were treated as random. Genotype 
and genotype × environment ( guko(ij) ) variance components 

(1)
yijkopst = � + mi + �ijlj + gk(ij) + uo + �ijlujo

+ guko(ij) + kp(o) + rs(op) + bt(ops) + �ijkopst

were modeled individually for the three landraces (j = 1, 2, 
3), assuming that DH lines across and within landraces were 
unrelated. Residuals were assumed to be normally distrib-
uted with mean zero and two heterogeneous variances, one 
for �ij = 1 and one for �ij = 0 assigning the same residual 
variance to all three landraces in all environments. Raw data 
and outliers were manually curated by inspection of residual 
plots. Since genotyping and the first year of phenotyping 
were carried out in parallel, some lines were evaluated in 
the field during 2017 that did not pass quality control in 
the genotypic data analysis. Measurements for those entries 
were treated as missing values in the data analysis. The same 
model was used for the analysis of TC experiments, except 
that i = 1, 2 referred to DHL and CH and j = 1, 2 referred 
to landraces KE and PE. Restricted maximum-likelihood 
estimation implemented in the ASReml-R package (Butler 
et al. 2009) was used for estimating variance components 
and their standard errors. Differences among means lj were 
tested with pairwise t-tests using the R-package asremlPlus. 
Trait heritabilities were calculated on an entry-mean basis 
within landraces (Hallauer et al. 2010), and standard errors 
of heritability estimates were derived from standard errors of 
corresponding variance components using the delta method 
(Holland et al. 2010). Heritabilities and variance component 
estimates exceeding twice their standard errors were consid-
ered significant. Best linear unbiased estimates (BLUEs) of 
the genotype mean for each trait and DH line were obtained 
from a simplified version of the model in Eq. (1), dropping 
factors mi , �ijlj and �ijlujo and treating genotype ( gk ) as a 
fixed effect. This model was also used to form linear con-
trasts used to test for significant differences (t-tests) between 
original landraces and the mean of the corresponding DH 
library (LP and TC) and between the mean of the two check 
hybrids and the mean of the DH library (TC only). We cal-
culated the predicted response from selection within DH 
libraries (LP and TC) according to Falconer and Mackay 
(1996) as ΔG(�) = i(�)h�G , where i(�) = selection intensity 
for selection with � = 10%

(

i(10%) ≈ 1.76
)

 , h = square root of 
heritability, and �G = genetic standard deviation. To account 
for mean differences and different selection responses, 
we calculated the usefulness criterion (Schnell 1983) as 
U(10%) = x̄ ± ΔG(10%) where x̄ = mean of the respective DH 
library. Phenotypic correlations among traits were calcu-
lated from BLUEs as Pearson correlation coefficients within 
libraries in LP and TC, respectively. For evaluating the pros-
pects of selection on LP performance in this material, we 
calculated Spearman rank correlations for same traits across 
LP and TC. To adjust for multiple testing, Bonferroni–Holm 
correction was applied for significance tests of phenotypic 
correlations in each DH library (Holm 1979). For estimating 
genetic covariances and genetic correlations between traits, 
the model in Eq. (1) was expanded to a bivariate model 
with pairs of traits. Genetic correlations were considered 
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significant if they exceeded twice their standard error. The 
same method was applied for estimating genetic correlations 
between LP and TC performance.

In summary, high-quality phenotypic line per se data 
are available from up to 11 environments for 899 DH lines 
(471 KE, 402 PE, and 26 LL) and for a subset of 378 lines 
(190 KE, 188 PE) that were evaluated as testcrosses in four 
environments. For all lines, data on almost 500,000 SNP 
markers are available.

Results

Population structure and molecular variation

The principal coordinate analysis clearly separated the 
three landraces, with the first two coordinates explaining 
13.3% and 4% of the total molecular variance, respectively 
(Fig. 1). DH lines and  S0 gametes derived from the same 
landrace clustered together except for four gametes from 
 S0_PE, which fell outside the PE-cluster. Complementing 
our data with those from Mayer et al. (2017) revealed that 
 S0 gametes sampled from landraces KE, PE, and LL indi-
vidually accounted for 77, 75, and 89% of the total molec-
ular variance captured in the collection of 35 European 
landraces used in their study. The AMOVA on  S0 gam-
etes and DH lines from the same landrace confirmed the 
results from the PCoA. While 95.3, 96.6, and 96.7% of the 
molecular variance were found within  S0 and DH of KE, 
PE, and LL, respectively, less than 5% of the molecular 
variance was explained by differences between  S0 gametes 
and DH lines of different landraces. Matrices of 1-MRD 

Fig. 1  Principal coordinate analysis (PCoA) of DH libraries and  S0 
gametes based on modified Rogers’ distances between individuals. 
Landrace KE is colored in green, PE in blue, and LL in red. Darker 
colors were used for  S0 gametes and brighter ones for DH.  S0 gam-
etes were plotted as filled circles and DH lines as filled triangles. Axis 
labels show the percentage of explained variance per principal coor-
dinate (PCo)

Fig. 2  Heatmaps of 1-MRD matrices  S0_KE (N = 48 individuals), 
DH_KE (N = 471 lines),  S0_PE (N = 47 individuals), DH_PE (N = 409 

lines),  S0_LL (N = 48 individuals), and DH_LL (N = 31 lines). Matri-
ces were ordered according to hierarchical clustering with UPGMA
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(Fig. 2) gave no indication of pronounced population struc-
ture for either DH or  S0 plants. As expected, the similarity 
between  S0 plants within landraces was on average higher 
than in DH lines due to the higher level of heterozygosity 
in the former.

Phenotypic variation within and across landraces

In the following, we will refer to a subset of traits as 
“core traits” since they are considered most important for 
improvement of early plant development in elite germplasm. 
These traits were EV_V4 and PH_V4 as representatives 
for early development, RL and TILL as representatives for 
traits for which genetic variation is not acceptable in elite 
germplasm, PH_final and FF as important agronomic traits, 
and DMC and TDMY for evaluating yield performance. 
Phenotypic variation for core traits within and across lan-
draces is shown in Fig. 3 (LP) and Fig. 4 (TC) and for all 
other traits in Fig. S1 (LP) and Fig. S2 (TC). Phenotypic 
means, variance components, and heritabilities for all 
traits are provided in Table S3 and Table S4 for LP and 
TC performance, respectively. The DH libraries exhibited 
considerable phenotypic variation for all traits. In LP and 
TC, a similar range of trait values was observed for all DH 

libraries. Probably due to the small sample size, distribution 
of phenotypes in LL deviated slightly from the other two 
landraces, e.g., for traits EV and TILL. Mean performance 
differed significantly (P < 0.05) across landraces for 20 out 
of 25 traits in LP and for 5 out of 14 traits in TC, which was 
a result of the high-quality phenotypic data and large sam-
ple sizes of KE and PE. As expected, mean LP performance 
of the DH libraries was significantly (P < 0.05) lower than 
the respective landraces for almost all traits. The reduction 
was most pronounced for early development traits, final 
plant height, and photosynthetic efficiency (Fig. 3, Fig. S1). 
Flowering time of the DH library was delayed by 10 (LL) 
and 6 (KE, PE) days compared to the non-inbred material. 
While the LL DH library had consistently lower mean per-
formance in early development traits, ear height, and final 
plant height compared to KE and PE, this was not true for 
the original landraces.

When choosing DH lines to be evaluated as TC, we had 
applied mild selection for flowering time, plant height, and 
lodging (see “Materials and methods” for details). Mean TC 
performance of the DH libraries KE and PE did not differ 
significantly from the TC mean of their respective landrace 
populations for all traits except for TDMY in PE, indicating 
that DH lines evaluated as TC represented a random sample 

Fig. 3  Boxplots of phenotypic data for line per se (LP) performance 
for the DH libraries from landraces KE, PE, and LL. Boxplots show 
the upper and lower quartiles, median (horizontal bar), mean (open 
diamond), whiskers (vertical bars), and the performance of the 
respective landrace (filled circle in green, blue, and red for KE, PE, 
and LL, respectively). Points above and below the whiskers indicate 

values ± 1.5 times the interquartile range. Usefulness for a selection 
intensity of 10%  (U10 %) is indicated with black filled triangles. Traits 
are early vigor and early plant height at stage V4 (EV_V4, PH_V4), 
final plant height (PH_final), female flowering (FF), root lodging 
(RL), and tillering (TILL)
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of the entire DH library. The TC of many DH lines outper-
formed the commercial hybrids as well as the TC of founder 
lines and landraces for the target trait early development, as 

is shown for PH_V4 in Fig. 5. Only the testcross of inbred 
DK105 fell into the upper 10% of the distribution of PH_V4. 
As expected, the commercial hybrids significantly (P < 0.05) 
outperformed the TC mean of DH lines for TDMY by about 
15% and, in contrast to the DH lines, showed no TILL or 
RL (Fig. 4).

Genetic variances were highly significant in LP and TC 
for most traits under investigation (Table S3, Table S4). 
Variance component estimates for LL were similar to the 
other two libraries, but, due to the small sample size, they 
were estimated with considerably larger error, resulting in 
nonsignificant genetic variances for PH_V3, TILL, ASI, 
photosynthesis-related traits, and SPAD. As expected from 
quantitative genetic theory, genetic variance component 
estimates were smaller in TC than in LP. In the statistical 
model, we allowed for heterogeneity of genetic variances 
estimated within landraces, but only a few traits (e.g., DT, 
RL) showed strong differences (> twofold) in genetic vari-
ance estimates between KE and PE in LP, which were even 
alleviated in TC.

In LP, trait heritabilities were generally high and simi-
lar across landraces, ranging from 0.35 to 0.96. Except 
for PH_V3, TILL, ASI, Fv/Fm, and SPAD in LL, the 

Fig. 4  Boxplots of phenotypic data for testcross (TC) performance 
for DH libraries from landraces KE and PE. Boxplots show the upper 
and lower quartiles, median (horizontal bar), mean (open diamond), 
whiskers (vertical bars) and the performance of the respective lan-
drace (filled circle in green and blue for KE and PE, respectively). 
Points above and below the whiskers indicate values ± 1.5 times the 
interquartile range. Performance of the two commercial check hybrids 

is indicated with a filled circle and filled triangle in magenta for 
CH1 and CH2, respectively. Usefulness for a selection intensity of 
10%  (U10  %) is indicated with black filled triangles. Traits are early 
vigor and early plant height at V4 stage (EV_V4, PH_V4), final plant 
height (PH_final), female flowering (FF), root lodging (RL), tiller-
ing (TILL), dry matter content (DMC), and total dry matter yield 
(TDMY)

Fig. 5  Histogram of testcross (TC) performance of DH lines from 
landraces KE (N = 190, colored in green) and PE (N = 188, colored 
in blue) for trait early plant height at V4 stage (PH_V4), including 
the mean of the DH lines per population (green and blue horizontal 
bar) and the performance of testcrosses of lines EP1, F2, DK105, the 
landrace populations (LR_KE, LR_PE), as well as two commercial 
check hybrids (CH1, CH2) indicated by labeled black triangles 



3340 Theoretical and Applied Genetics (2019) 132:3333–3345

1 3

heritability estimate always exceeded twice its standard 
error (Table S3). In TC, heritabilities were slightly lower 
overall than in LP (Table S4), ranging from 0.31 to 0.92, 
which was expected from the lower number of testing 
environments and the lower genetic variance compared 
to LP.

Variation across environments

DH libraries were evaluated in a total of 11 environments 
comprising seven different locations and two years. Loca-
tions covered a geographical region spanning from north-
ern Germany to northwestern Spain at altitudes ranging 
from 29 to 706 m above sea level (Table S1). Average 
temperatures differed by 5 °C between the coldest (OLI 
2017, 14.0 °C) and the warmest (TOM 2018, 19.0 °C) 
environments, and precipitation varied from 159 (KLW 
2018) to 548  mm (ROG 2018) during the vegetation 
period. The ratio of genotype by environment and geno-
type variance components depended on the trait under 
study. In LP, values ranged from 0.11 (EH in KE) to 1.22 
(ASI in PE), but varied between 0.2 and 0.7 for most 

traits with a mean of 0.51 (Table S3). Similar ratios were 
observed in TC (Table S4).

Correlations between locations for traits measured in at 
least five environments ranged from 0.40 to 0.87 in 2017 
and from 0.19 to 0.86 in 2018 (Table S6). Correlations 
between years of a given trait and location ranged from 
0.31 to 0.83 (Table S6).

Trait correlations

In LP and TC, phenotypic correlations among early devel-
opment traits measured at different growth stages were 
high and stable across DH libraries, ranging from 0.58 to 
0.95 (Fig. 6). The corresponding genetic correlations were 
slightly higher, ranging from 0.65 to 1 (Fig. S3). For LL in 
LP, only phenotypic correlations among early development 
traits (ranging from 0.82 to 0.93, data not shown), PH_final 
and EH (0.75), and FF and MF (0.69) were significant.

In LP, the early development traits showed intermediate 
to high positive phenotypic and genetic correlations with 
final plant height (phenotypic 0.4 to 0.6, genetic 0.4 to 0.7). 
In TC, only the phenotypic correlation between PH_V6 and 

Fig. 6  Phenotypic Pearson correlation coefficients for line per se [LP, 
left, N = 471 (KE) and 402 (PE)] and testcross [TC, right, N = 190 
(KE) and 188 (PE)] data within DH libraries KE (above diagonal) 
and PE (below diagonal) for the traits emergence (EME), early vigor, 
and early plant height at stages V4 and V6 (EV_V4, EV_V6, PH_V4, 
PH_V6), ear height (EH), final plant height (PH_final), male flower-

ing and female flowering (MF, FF), anthesis-silking interval (ASI), 
root lodging (RL), tillering (TILL), cold tolerance (CT), drought/
heat tolerance (DT), maximum photosynthetic efficiency at V4 stage 
(Fv/Fm_V4), dry matter content (DMC), and total dry matter yield 
(TDMY). P-values were adjusted using Bonferroni–Holm correction 
for multiple testing. Nonsignificant correlations are labeled with ns
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final plant height was significant, but it was lower than in LP. 
Genetic correlations for EV_V4, EV_V6, PH_V4, and PH_
V6 with PH_final ranged between 0.2 and 0.5. Intermediate 
positive correlations were found between early development 
traits and TDMY in TC (phenotypic 0.3 to 0.6, genetic 0.4 
to 0.8) as well as negative correlations of early development 
with flowering time in LP (FF and MF, phenotypic − 0.2 to 
− 0.4, genetic − 0.2 to − 0.5) in KE and PE libraries. Phe-
notypic and genetic correlations of RL with all other traits 
were nonsignificant or small in LP and TC. The same was 
true for TILL except for TC of PE, where intermediate cor-
relations with early and late plant height, ear height, and 
TDMY were observed.

Phenotypic correlations between LP and TC performance 
were significant for all traits except EME. Genetic correla-
tions between LP and TC were intermediate (early develop-
ment traits, 0.35 to 0.68) to high (PH_final and FF > 0.78) 
(Table S5).

Discussion

Our study is part of a long-term research project which aims 
to make maize landrace diversity amenable to plant breeding 
(www.europ eanma ize.net). We produced DH libraries from 
three landraces for obtaining reproducible genetic units for 
phenotyping and genotyping and characterized them com-
prehensively to build a publicly available, immortal genetic 
resource that is ready to use for pre-breeding and for investi-
gations on functional diversity and the prospects of genomic 
prediction.

DH libraries capture native diversity for germplasm 
improvement

The three landraces were chosen to represent the molecular 
variance of the European landraces characterized by Mayer 
et al. (2017). Individually, they accounted for more than 
75% of the molecular variance in this collection, together 
for 95%. These findings corroborate results from the litera-
ture where it has been shown for several outcrossing species, 
including maize, that a large proportion of the molecular 
variation can be found within landraces, while differences 
between landraces account only for a small proportion 
(Böhm et al. 2014; Greene et al. 2014; Monteiro et al. 2016). 
Genotyping with the SNP array technology might have led 
to an overestimation of the captured molecular variance 
due to an enrichment of markers with intermediate allele 
frequencies. For truly quantitative traits, however, the con-
tribution of rare alleles to the additive genetic variance is 
small and the molecular variance assessed with array data 
should translate directly into genetic variation observable 
in phenotypes. With only three (LP) or two (TC) landraces 

in the statistical model, decomposition of the genetic vari-
ance within and across landraces is not meaningful, but from 
Figs. 3, 4 and Figs. S1, S2 it becomes obvious that differ-
ences in trait means across landraces were small compared 
to the range of values within landraces. Although each lan-
drace accounted for a large proportion of molecular variance 
individually, we still advise to analyze progenies from sev-
eral landraces for capturing the genetic variance segregating 
in a germplasm pool. Molecular variance might be a good 
indicator for genetic variance averaged across traits, but vari-
ation for individual traits must be evaluated for each landrace 
specifically, as was shown here for TILL, RL, DT, and CT. 
Different landraces may also differ with respect to their suc-
cess rates in DH production (Melchinger et al. 2017), point-
ing to different multiplication histories. While KE and PE 
may have encountered bottlenecks or inbreeding in the past, 
LL seems to carry a much higher genetic load that limited 
the production of fully homozygous DH lines for this lan-
drace. This assumption is also supported by the significantly 
lower LP mean performance of the LL DH library for early 
development, ear height, and final plant height compared to 
KE and PE that was not observed for the original landraces.

The DH libraries generated in this study represented 
their respective landraces accurately in terms of molecular 
variance. DH lines and  S0 gametes from the same landrace 
overlapped nicely in the PCoA (Fig. 1) and the AMOVA 
showed that almost all molecular variation was found within 
 S0 gametes and DH lines (> 95%) and not between them. 
Individuals sampled from a maize landrace are assumed to 
be unrelated, but pairwise comparisons share different num-
bers of alleles alike in state, leading to variation in similar-
ity between them. Patterns of variation in similarity were 
comparable for  S0 plants and DH lines (Fig. 2), corroborat-
ing that the two types of progeny represent their original 
landraces in a similar way. We thus conclude that the three 
DH libraries derived from KE, PE, and LL represent a valu-
able resource for genetic improvement of elite flint germ-
plasm, since they cover a large proportion of the genomic 
and genetic variance of the landrace collection described in 
Mayer et al. (2017).

Improving early plant development

In many growing regions worldwide, maize encounters 
low to moderate temperatures during the early vegetative 
phase. Under these conditions, accelerated early develop-
ment can increase final biomass yield. Genetic enhancement 
of early growth can also improve resource efficiency, pre-
serve soil fertility, and reduce the need for herbicide treat-
ment. European flint maize germplasm has been adapted to 
the temperate climate conditions of Northern and Central 
Europe through breeding, but genetic variation for early 

http://www.europeanmaize.net
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development under cool temperatures has been depleted 
simultaneously (Greaves 1996; Rodríguez et al. 2010).

In LP and TC of the DH libraries, the target trait early 
development assessed through early vigor scores and early 
plant height measurements showed ample genetic variation 
(Figs. 3, 4, Figs. S1, S2). In TC, the majority of DH lines 
outperformed the commercial hybrids for PH_V4, and only 
one check (F353 × DK105) ranged among the best 10% DH 
lines, suggesting that the DH libraries can serve as a valu-
able source of alleles for improving early development traits 
of the elite European flint pool (Fig. 5).

Identifying maize flint germplasm with superior early 
growth has been the objective of several studies in both, 
field and controlled environments (Peter et al. 2009a, b; Rod-
ríguez et al. 2010; Revilla et al. 2016). In most studies, early 
development was assessed as a visual score, which delivers 
ordinal endpoints and can be rather subjective. On the other 
hand, early plant height measurements consume consider-
able resources. Early vigor scores showed a substantially 
higher correlation with plant emergence compared to early 
plant height in this research (Fig. 6, Fig. S3). Even though all 
TC seed was produced on inbred line F353, the higher phe-
notypic and genetic correlation of early vigor and EME was 
maintained. For PH_V4, the commercial hybrids were on 
average not different from the TC mean of the DH libraries, 
but they scored better for EV. Thus, the early plant height 
measurement neglects information that can be accounted for 
by EV scores, such as differences in leaf coloration or the 
overall lower EME of the DH library testcrosses. In addi-
tion, genetic correlations between TDMY and EV were sub-
stantially higher compared to between TDMY and PH_V4 
supporting the hypothesis that, although highly correlated, 
the two types of measurements target different components 
of early development. For a comprehensive characterization 
of early growth development, it seems advisable to assess 
both, EV and early plant height. To allow dissection of early 
growth development into its genetic components and con-
sequently provide a better understanding of the underlying 
genetic mechanisms, we propose establishing growth models 
by monitoring early development at high resolution in time 
using remote sensing in the field (Huang et al. 2013; Bendig 
et al. 2015) or in controlled conditions (Gioia et al. 2017). 
The three DH libraries KE, PE, and LL are most suitable 
for further investigation on this topic as they exhibit more 
pronounced genetic variation in early growth traits than can 
be expected from elite material (Revilla et al. 1999; Peter 
et al. 2009a).

Comprehensive phenotypic characterization of DH 
libraries

The prospects for the genetic improvement of elite germ-
plasm for early growth development through the use of 

landrace-derived material have to be evaluated in a multi-
trait context. Comprehensive data on trait correlations are 
crucial in order to avoid undesired selection response in 
traits of agronomic importance.

In LP, EV_V4 and PH_V4 showed intermediate nega-
tive genetic correlations with flowering time and positive 
genetic correlations with PH_final, corroborating results of 
Böhm et al. (2017) on DH lines derived from landraces. 
Thus, selection for accelerated early development will lead 
to increased plant height and early flowering which, depend-
ing on the target environment, might not be desirable. The 
DH libraries also showed variation for RL and TILL. Given 
the low levels of genetic correlations with early develop-
ment traits and the usefulness of the best 10% of DH lines 
being close to zero, a simultaneous reduction or removal of 
lodging and tillering should be possible in a recurrent selec-
tion program devoted to the improvement of early develop-
ment traits. In TC, correlations between early development 
traits and TDMY were positive. However, the commercial 
hybrids significantly outperformed the DH lines for TDMY, 
while testcrosses of founder lines (F2, EP1, DK105) lay well 
within the range of the DH libraries for both traits (Fig. 4, 
Fig. S4). The yield gap between the mean testcross yield of 
the DH lines and the mean testcross yield of two commer-
cial hybrids amounted to about 15% and was comparable 
to what was reported in the literature for other European 
landraces (Wilde et al. 2010; Brauner et al. 2019). The use-
fulness of the best 10% DH lines in KE and PE, respectively, 
remained 8% below the performance level of the commer-
cial hybrids for TDMY (Fig. 4). Given that the inbred line 
F353 used as tester for the DH libraries was developed about 
20 years ago (year of release 2001, C. Bauland, personal 
communication) and that the parental components of the 
commercial check hybrids were highly selected based on 
their general and specific combining ability, the difference 
in TDMY between commercial hybrids and the top 10% 
DH lines seems small and could likely be reduced by the 
use of modern testers (Hölker et al. 2019). In many material 
groups, a negative correlation between DMC and TDMY is 
expected. In our research, phenotypic correlations between 
TDMY and DMC were nonsignificant when averaged across 
environments (Fig. 6, Fig. S4) as well as in all four indi-
vidual environments where TC performance was evaluated 
(data not shown). This outcome can most likely be attributed 
to the exceptionally hot and dry conditions during the 2018 
growing season (Table S1), the genetic material under study, 
or an interaction of both. Thus, an additional year of TC 
evaluation, including more and also later maturing commer-
cial check hybrids, will be conducted for investigating the 
DMC/TDMY relationship in material derived from genetic 
resources more closely and for evaluating the overall yield 
potential of the DH libraries.
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Multi‑environment testing

One of the aims of this study was to assess trait differen-
tiation in diverse environments and to estimate the mag-
nitude of genotype × environment interactions of landrace-
derived material. Thus, the chosen environments covered a 
broad spectrum of target regions for European flint material 
(Table S1). Despite locations with very different climatic 
conditions (e.g., OLI and TOM) and large differences in 
temperature and precipitation in 2017 and 2018, the ratio 
of genotype × environment and genetic variance ( �2

gu
∶ �2

g
 , 

Tables S3, S4) was moderate for most traits. If landraces 
from which DH libraries are derived are adapted to simi-
lar environmental conditions as the target elite breeding 
germplasm, the confounding effects of adaptive alleles and 
strong genotype × environment interactions can be avoided 
and meaningful phenotypes obtained. Thus, our results are 
encouraging with respect to the prospects of incorporating 
environmentally stable alleles from pre-selected DH librar-
ies into elite germplasm.

Evaluating landrace-derived material in 11 environments 
might not be practicable for applied pre-breeding programs. 
In this study, the large number of test environments was 
highly useful because we detected the segregation of unfa-
vorable alleles in specific environments such as segregation 
for rust in TOM (Fig. S5) and drought susceptibility in EIN 
(Fig. S6), both in 2018. Although infections with rust or 
severe drought may not occur frequently, it would be devas-
tating if these susceptibilities were transferred inadvertently 
to elite germplasm through the introgression of landrace-
derived material. If evaluating the landrace-derived material 
in a large number of environments is not possible, prioritized 
testing in environments known for high disease pressure, 
abiotic stress, or frequent occurrence of undesirable traits 
like RL is highly advisable.

DH libraries from landraces make native diversity 
accessible

The DH libraries presented in this study link the large 
molecular diversity present in landraces to meaningful phe-
notypes. DH lines from landraces outperformed flint founder 
lines and commercial hybrids in early development, and 
as immortal genetic units they are directly accessible for 
plant breeding. Improving one or several target traits and 
simultaneously closing the performance gap between elite 
and landrace-derived genetic material for multiple traits of 
agronomic importance requires efficient recurrent popula-
tion improvement. In this context, knowledge of trait cor-
relations is crucial in order to broaden the narrow genetic 
base of the elite flint germplasm pool without introducing 

undesired traits from landraces into elite breeding popu-
lations. To obtain maximum selection gain per unit time, 
theory offers different strategies, such as multi-stage or index 
selection (Bernardo 2002), which need to be evaluated in 
the framework of the respective breeding programs. Opti-
mal strategies may vary conditional on species, budget, and 
short-term or long-term perspectives. Böhm et al. (2017) 
suggested multi-stage phenotypic selection of landrace-
derived DH libraries. In a simulation study, Gorjanc et al. 
(2016) compared different scenarios for initiating pre-breed-
ing for maize landraces using genomic prediction (GP) and 
suggested starting directly from landraces (e.g., without 
crossing to elite lines).

The implementation of GP in pre-breeding of landrace-
derived material is still underexploited. The comprehensive 
phenotypic data and derived quantitative genetic parameters 
presented for the three DH libraries in this study provide an 
excellent basis for optimizing genome-based pre-breeding 
schemes. Multi-environment phenotypic data are available 
for model training in LP and TC. Sample sizes and marker 
densities are large, allowing to investigate the effects of 
population size and required marker densities in popula-
tions with relatively low linkage disequilibrium compared to 
elite germplasm. In addition to investigating the prospects of 
genome-based prediction, our data provide a comprehensive 
framework for the discovery of genes controlling favorable 
and unfavorable traits as well as for the genetic analysis of 
additional relevant traits such as nutrient efficiency, pho-
tosynthesis-related traits, and additional biotic and abiotic 
stress tolerances.
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Discovery of beneficial haplotypes for complex
traits in maize landraces
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Milena Ouzunova3, Albrecht E. Melchinger4 & Chris-Carolin Schön 1✉

Genetic variation is of crucial importance for crop improvement. Landraces are valuable

sources of diversity, but for quantitative traits efficient strategies for their targeted utilization

are lacking. Here, we map haplotype-trait associations at high resolution in ~1000 doubled-

haploid lines derived from three maize landraces to make their native diversity for early

development traits accessible for elite germplasm improvement. A comparative genomic

analysis of the discovered haplotypes in the landrace-derived lines and a panel of 65 breeding

lines, both genotyped with 600k SNPs, points to untapped beneficial variation for target traits

in the landraces. The superior phenotypic performance of lines carrying favorable landrace

haplotypes as compared to breeding lines with alternative haplotypes confirms these find-

ings. Stability of haplotype effects across populations and environments as well as their

limited effects on undesired traits indicate that our strategy has high potential for harnessing

beneficial haplotype variation for quantitative traits from genetic resources.
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Harnessing the allelic diversity of genetic resources is con-
sidered essential for overcoming the challenges of climate
change and for meeting future demands on crop

production1,2. For most traits of agronomic importance, modern
breeding material captures only a fraction of the available
diversity within crop species1. In the case of maize (Zea mays L.),
today’s elite germplasm went through several bottlenecks, first by
geographical dispersion from its center of origin3,4, second
through the selection of only a few key ancestors sampled from a
small number of landraces to establish heterotic groups5,6, and
third through decades of advanced cycle breeding with high
selection intensities7,8. For traits that were not targets of selection
in the past, but are important today, like abiotic stress tolerance
and resource-use efficiency9, this might have resulted in the loss
of favorable alleles during the breeding process. In addition,
unfavorable alleles might have become fixed during the selection
process due to drift and/or hitchhiking effects10–12.

Impressive examples exist where introgression of alleles from
genetic resources has improved mono- or oligogenic traits13–15,
but for broadening the genetic diversity of complex traits, such as
yield or abiotic stress tolerance successful examples are scarce2.
Up to date, the genomic characterization of genetic resources has
been based predominantly on sampling individuals across a wide
range of accessions, maximizing the level of diversity in the
genetic material under study2,16–20. Such diverse samples are
characterized by high variation in adaptive traits and strong
population structure, leading to spurious associations and limited
power for detecting associations with nonadaptive traits of
agronomic importance21,22. Furthermore, alleles which are locally
common, but globally rare likely remain undetected in broad,
species-wide samples, whereas in a more targeted approach they
might show sufficiently high frequencies for detection22.

Here, we propose a genome-based strategy (Supplementary
Fig. 1) for making native diversity of maize landraces accessible
for improving quantitative traits, showing limited genetic varia-
tion in elite germplasm, such as cold tolerance and early plant
development23–25. Capitalizing on low levels of linkage dis-
equilibrium (LD), we map haplotype-trait associations at high
resolution in ~1000 doubled-haploid (DH) lines derived from

three European flint maize landraces. The genetic material has
been preselected for adaptation to target environments to avoid
confounding effects of strong adaptive alleles as suggested by
Mayer et al.26. We assess promising haplotypes genotypically by
quantifying their frequency in a diverse panel of 65 European flint
breeding lines. Phenotypically, we evaluate the direction and
magnitude of haplotype effects relative to a subset of breeding
lines. Many of the discovered haplotypes show stable trait asso-
ciations across populations and environments. In addition, most
of them do not exhibit undesired trait associations, making them
ideal for introgression into elite germplasm. We show that our
strategy to sample comprehensively individuals from a limited set
of preselected landraces is successful in linking molecular varia-
tion to meaningful phenotypes, and in identifying alleles for
quantitative traits that will enrich the genetic diversity of
our crops.

Results
Molecular variation in landraces and breeding lines. The
genetic differentiation of 941 DH lines derived from three land-
races (Kemater Landmais Gelb, KE; Lalin, LL; and Petkuser
Ferdinand Rot, PE) and a diverse panel of 65 European breeding
lines27 based on principal coordinate analysis (PCoA) with
501,124 single-nucleotide polymorphism (SNP) markers is shown
in Fig. 1a. The first principal coordinate explained 6.2% of the
molecular variation and separated the landrace-derived and the
breeding lines based on their geographical origin within Europe
from northeast (Germany) to southwest (southern France, Spain).
The second principal coordinate explained 5.4% of the variation
and separated the two landraces KE and PE from the panel of
breeding lines. Diversity parameters polymorphism information
content (PIC), gene diversity (H), and minimum number of
historical recombination events (nR) were higher in the set of
breeding lines compared to the three landrace-derived DH
libraries, irrespectively if they were calculated from SNP or
haplotype information (Supplementary Table 1). This was
expected, as the landraces represent self-contained populations,
whereas the breeding line panel was derived from a large number
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Fig. 1 Molecular inventories point to untapped variation in landraces. a Principal coordinate analysis based on pairwise modified Rogers’ distances of 66
landrace-derived DH lines and 65 breeding lines (triangles), including four prominent founder lines (downward triangles). From each of three DH libraries,
KE (circles), LL (squares), and PE (diamonds), 22 lines were sampled randomly. Axis labels show the percentage variance explained per principal
coordinate. Venn diagram shows overlap of 456,911 haplotypes between 941 landrace-derived DH lines (LR) and 65 European breeding lines (BL).
Haplotypes were constructed for nonoverlapping genomic windows of 10 SNPs. b Frequency of 456,911 haplotypes in DH lines (x-axis) and breeding lines
(y-axis). Colors indicate the number of haplotypes within each cell of the heat map. Source data are provided as a Source data file.
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of different source populations across Europe27. Combined across
landraces, the DH lines almost reached the level of diversity of the
breeding line panel.

In total, the landrace and breeding line panels comprised
356,724 and 363,290 haplotypes (Fig. 1a), constructed for
nonoverlapping windows of ten SNPs, corresponding to an
average of 7.12 and 7.25 haplotypes per window, respectively. As
expected for genetic material originating from the same
germplasm group (European flint maize), haplotype frequencies
were positively correlated (Pearson’s r= 0.74, P < 2.2e−16)
between the two panels (Fig. 1b). Overall, 26.2% of the haplotypes
of the landrace panel were not present in the breeding lines,
indicating untapped haplotype variation. For those haplotypes,
median and mean frequencies in the landrace panel were 0.005
and 0.039, respectively. Only 2.7% of those haplotypes occurred
in all three landraces, whereas 82.8% occurred in only one
landrace. Within the respective individual landraces their median
and mean frequencies increased to 0.065 and 0.101, respectively.
The landrace panel captured 72.4% of the haplotypes present in
the panel of breeding lines.

Trait-associated genomic regions. A key question for the targeted
utilization of genetic resources is, if molecular inventories of
landrace-derived material are predictive of their potential to
improve traits of agronomic importance. Using SNPs and haplo-
types for genome-wide association scans (GWAS), we identified
associations for all nine traits under study. Results were very similar
for both types of genomic information, as exemplarily shown in
Supplementary Fig. 2 for the trait tillering (TILL). As haplotypes are
more informative than biallelic SNPs for the comparison with
breeding lines, we focused on haplotypes in further analyses. Trait-
associated genomic regions were defined based on LD between
significant haplotypes (“Methods” section; Fig. 2 and Supplemen-
tary Data 1). As landraces were preselected for variation in early
plant development26,28, most associations (37–55) were detected for
the traits early vigor (EV_V4/V6) and early plant height (PH_V4/
V6). Haplotypes explained between 2 (female flowering time, FF)
and 57% (lodging, LO) of the total genetic variance of the respective
traits (Fig. 2). Despite the large sample size (n= 899), the propor-
tion of genetic variance explained might be somewhat
overestimated29,30, and thus has to be interpreted with caution.
Only few genomic regions were detected for flowering time, indi-
cating that alleles with large effects were fixed during adaptation of
the respective landraces to their geographical region, thus having
little impact on GWAS for other traits.

Average r2 decay distances (r2 < 0.2) within the three DH
libraries were 203 (LL), 484 (PE), and 973 kb (KE), and 201 kb for
the combined set. This is consistent with previous results26 and
warrants high mapping resolution in the three DH libraries under
study. For comparison, the diverse panel of 65 breeding lines
across Europe exhibited an average r2 decay distance of 107 kb.
The lower LD level in the breeding line panel can be explained by
admixture of many different source populations with varying
linkage phases, which is generally undesired in GWAS. The
median size of genomic regions associated with the nine traits
under study was 92 kb, with a median number of three annotated
genes per region (Supplementary Fig. 3), enabling prediction of
candidate genes and functional analyses. Only for a few regions
(<5%) resolution was not optimal, as they comprised >100
annotated genes. Mapping resolution in the three DH libraries is
best demonstrated by an example of an already well-characterized
locus: teosinte branched 1 (tb1). The gene tb1 played a major role
in the transition from highly branched teosinte to maize with
strongly reduced branch development31. In our study, a strong
significant association for TILL was found in a genomic region on
chromosome 1 comprising the tb1 locus (size 1.3 Mb, including in
total 22 genes; Supplementary Data 1 and Supplementary Fig. 2).
In silico fine-mapping in the respective region (“Methods”
section) identified a ten-SNP window, which overlapped perfectly
with tb1 and its regulatory upstream region.

Effect size and stability of trait-associated haplotypes. The
potential of the identified landrace haplotypes for elite germplasm
improvement depends on the size and direction of their effects on
the traits of interest, their environmental stability and their
dependence on the genetic background. In a given trait-associated
genomic region, one window of ten SNPs comprising several
haplotypes was selected. Significant haplotypes, hereafter referred
to as focus haplotypes, entered into a multi-environment model
(Supplementary Fig. 4) and were classified into favorable, unfa-
vorable, or interacting based on the direction and stability of their
effects in the different test environments (Supplementary Fig. 5).
According to this categorization scheme, a high number of
favorable haplotypes for early plant development traits were found
in the DH libraries (Table 1 and Fig. 3a), representing potential
candidates for introgression into elite germplasm. For the unde-
sirable traits LO and TILL, many haplotypes had unfavorable
effects. Overall, haplotypes identified for all nine traits showed
moderate to high effect stability across environments, with similar
patterns for favorable and unfavorable haplotypes (Fig. 3a, b).

EV_V4: 55 (45%)

EV_V6: 53 (50%)

PH_V4: 37 (41%)

PH_V6: 48 (53%)

PH_final: 26 (42%)

FF: 1 (2%)

MF: 18 (33%)

LO: 51 (57%)

TILL: 35 (54%)

1 2 3 4 5
Chromosome

6 7 8 9 10

Fig. 2 Results from GWAS in DH libraries derived from maize landraces. Black vertical bars indicate the position of genomic regions significantly
associated with nine traits (y-axis) in 899 landrace-derived DH lines. The x-axis shows the ten chromosomes of maize. Triangles mark the position of the
centromere for each chromosome. The y-axis indicates the trait, the number of significant regions per trait, and the percentage genetic variance explained.
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The dependency of haplotype effects on the genomic back-
ground can be evaluated comparing effect significance and sign of
the identified focus haplotypes between landraces. From the 48
haplotypes associated with PH_V6, 19 haplotypes were present in
both KE and PE. Together, these 19 haplotypes showed 115
environment-specific haplotype-trait associations, of which 35

(30%) were significant for both landraces (Supplementary Fig. 6a).
All of those 35 associations had equal effect signs for both
landraces. Also for the 80 environment-specific associations
significant for only one of the two landraces, a large majority
(90%) had equal effect signs for both landraces. Similar patterns
were observed for PH_V4 (Supplementary Fig. 6b).

Haplotype congruency in landraces and breeding lines. The
ultimate criterion for assessing the usefulness of landrace haplo-
types for germplasm improvement is their frequency in breeding
material. If favorable haplotypes are already present at high fre-
quency in the genetic material to be improved, they are of no
additional value. We assessed the frequencies of the identified
trait-associated focus haplotypes in a panel of 65 breeding lines
based on genotypic data. When tracking an ancestral haplotype
potentially shared between landrace and breeding material,
recombination might have broken up the respective haplotype,
but the trait-associated causal mutation might still be present.
Small window sizes (mean= 0.026 cM), low values of historical
recombination events (mean= 1.20), and high levels of haplotype
similarity (mean= 0.33) found in the panel of breeding lines
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Fig. 3 Effect stability of focus haplotypes across environments. a Genomic position as well as effect size, and direction for 48 haplotypes associated with
PH_V6 across 11 environments. Circles indicate significant haplotypes with effect sizes given in phenotypic standard deviations. Positive and negative
effects are colored in blue and red, respectively. Arrows at the top indicate the positions of haplotypes described in Supplementary Fig. 5. b Number of
environments in which favorable (n= 65), unfavorable (n= 93), interacting (n= 36), and all (n= 194) haplotypes had significant effects on four early plant
development traits (EV_V4, EV_V6, PH_V4, and/or PH_V6). Boxplots show the upper and lower quartile, median (bold vertical bar), mean (gray
diamond), and whiskers (dashed horizontal lines). Points outside the whiskers indicate values ±1.5 times the interquartile range. Source data are provided
as a Source data file.

Table 1 Number and percentage of favorable, unfavorable,
and interacting focus haplotypes per trait.

Trait Favorable,
n (%)

Unfavorable,
n (%)

Interacting,
n (%)

EV_V4 16 (29%) 29 (53%) 10 (18%)
EV_V6 14 (26%) 26 (49%) 13 (25%)
PH_V4 15 (41%) 15 (41%) 7 (19%)
PH_V6 20 (42%) 22 (46%) 6 (13%)
LO 11 (22%) 35 (70%) 4 (8%)
TILL 11 (31%) 23 (66%) 1 (3%)

Haplotypes with consistent effect direction across environments were categorized as favorable
or unfavorable. For EV_V4, EV_V6, PH_V4, and PH_V6 positive (negative) effects were defined
as favorable (unfavorable). For LO and TILL negative (positive) effects were defined as favorable
(unfavorable). Haplotypes with changing effect direction were categorized as interacting.
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pointed to a low probability of haplotypes being broken up by
recombination.

Frequency distributions of favorable landrace haplotypes in the
65 breeding lines are given for early development traits (EV_V4,
EV_V6, PH_V4, and PH_V6) in Fig. 4. As the haplotypes
identified for each of the four single traits (Table 1) were partly
from similar genomic regions, we only considered 53 favorable
haplotypes with a minimum distance of 1 Mb and/or r2 < 0.8. The
frequency of favorable haplotypes (mean= 0.20) was significantly
increased (P < 0.01) compared to randomly drawn haplotypes
(mean= 0.16). Six favorable focus haplotypes (11%) were absent
in the set of breeding lines, and thus have potential for elite
germplasm improvement. The mean frequency of 80 unfavorable
haplotypes associated with early plant development did not differ
significantly (P > 0.30) from the frequency of random haplotypes.
A substantial proportion of unfavorable haplotypes (27.5%) were
common in the breeding lines (Fig. 4), suggesting that a targeted
substitution with favorable haplotypes could lead to further
germplasm improvement.

Linking haplotype variation to phenotypes. The potential of
individual focus haplotypes to improve elite germplasm has to be
evaluated phenotypically, comparing the performance of
landrace-derived lines carrying these focus haplotypes and elite
lines of the breeding pool one aims to improve. Using a subset of
the breeding line panel (n= 14) phenotyped at six locations in
2017, we report exemplarily the results of such comparisons for
two genomic regions on chromosomes 3 and 9, found to affect
PH_V6 in the GWAS analysis (Fig. 5). On chromosome 3, the
focus haplotype (haplotype A in Fig. 3a and Supplementary
Fig. 5) was localized in a ten-SNP window, which explained 4.8%
of the genetic variation for PH_V6 and comprised eight addi-
tional haplotypes in the DH lines. The focus haplotype had a
frequency of 4.1% in the DH lines, outperformed six out of the

eight alternative haplotypes significantly and was absent in the
panel of breeding lines. A proportion of 93.8% of the 65 breeding
lines carried one of the six haplotypes with significant negative
effects relative to the focus haplotype (on average 0.61 standard
deviations) in almost all environments. The remaining breeding
lines (6.2%) carried a haplotype absent in the landrace panel, and
thus without effect estimate. Averaged across environments, DH
lines carrying the focus haplotype showed an increase of 6.06 cm
over breeding lines, but the difference was not significant (P >
0.056; Fig. 5a). When looking at individual environments, how-
ever, significant differences (P < 0.044) were observed for loca-
tions OLI, EIN, and ROG (Supplementary Fig. 7a), which showed
the lowest temperatures in the field28, suggesting that the relative
advantage of the identified haplotype might be temperature
dependent.

On chromosome 9 in a genomic region of ~3Mb, three
independent focus haplotypes affected PH_V6 significantly (two
favorably, one unfavorably). One of the three focus haplotypes
(haplotype D in Fig. 3a and Supplementary Fig. 5) increased
PH_V6 compared to the six alternative haplotypes in the
respective window. The genetic variance explained by the
haplotypes in this window was small (1.7%) most likely due to
the low frequency (0.4%) of the focus haplotype in the DH lines.
The focus haplotype was absent in the panel of 65 breeding lines.
Instead, 95.4% of the breeding lines carried one of the six inferior
haplotypes, while 4.6% carried haplotypes not present in the
landrace panel. DH lines carrying the focus haplotype showed a
significant increase of 15.1 cm compared to the breeding lines
(P < 0.009). Similar as for the haplotype on chromosome 3, the
difference was most pronounced in environments showing low
temperature during early plant development (Supplementary
Fig. 7b).

We also assessed genomic regions in more detail where the
focus haplotype was unfavorable like, for example, the window
comprising the tb1 locus, which explained 13.1% of the genetic
variance for TILL in the landrace panel. DH lines carrying the
unfavorable focus haplotype showed a significant increase of
1.51 scores compared to the 14 phenotyped breeding lines not
carrying the haplotype (Supplementary Fig. 8a; P < 0.0001). Here,
the focus haplotype was carried by only two of the 65 breeding
lines, but for other genomic regions associated with TILL
frequencies were higher, e.g., 15.5% for a region on chromosome
5 explaining 6.6% of the genetic variance in the DH lines. In this
case, DH lines carrying the focus haplotype showed a significant
increase of 1.69 scores compared to 13 breeding lines not carrying
the haplotype (Supplementary Fig. 8b; P < 0.0004). For a genomic
region on chromosome 1 associated with EV_V4 (Supplementary
Fig. 9), more than half of the 65 breeding lines carried the
unfavorable focus haplotype, including six of the 14 phenotyped
lines. The window in which the focus haplotype was located
comprised four additional haplotypes and accounted for 5.1% of
the genetic variance in the DH lines. We tested the effect of the
focus haplotype in the 14 breeding lines and found a significant
difference of 0.875 scores between lines with and without the
focus haplotype (P < 0.039, Supplementary Fig. 9), indicating that
a targeted substitution of the focus haplotype with one of the
alternative haplotypes could lead to germplasm improvement.

Introducing landrace alleles into elite germplasm for a target
trait comes at the risk of undesired effects on other traits due to
pleiotropy or linkage. We tested the identified focus haplotypes
for each of the early plant development traits in bivariate models
for significant effects on other traits (PH_final, FF, MF, LO, and
TILL). Of the 53 favorable haplotypes referred to in Fig. 4, 20 had
a significant effect on at least one out of the five other traits.
Thereof, only three haplotypes increased LO or TILL, whereas
four haplotypes slightly decreased LO or TILL. Fourteen
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Fig. 4 Favorable and unfavorable landrace haplotypes in breeding lines.
Density estimation for favorable (n= 53, blue), unfavorable (n= 80, red),
and random (n= 500, gray) haplotypes in 65 breeding lines. Haplotypes
significantly associated with four early plant development traits (EV_V4,
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haplotypes, 22 (27.5%) were common in the panel of breeding lines, i.e.,
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haplotypes. Source data are provided as a Source data file.
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haplotypes increased PH_final and/or led to earlier flowering,
whereas one haplotype slightly delayed FF. For some of those
haplotypes the effect on traits other than early plant development
was substantial (e.g., haplotype J in Supplementary Fig. 10a
increasing LO). An enrichment of such haplotypes in the
breeding germplasm is therefore not advisable. In contrast,
haplotypes which explained more of the genetic variance for early
plant development than for other traits (e.g., haplotypes E or G in
Supplementary Fig. 10a) can still be used for improving
germplasm for early plant development resulting in only slightly
altered flowering time and/or PH_final. Of the 80 focus
haplotypes unfavorable for early plant development (Fig. 4), 48
were significant for at least one other trait. Thereof, 14 haplotypes
decreased TILL, while 40 decreased PH_final and/or delayed
flowering. However, most of them had only moderate effects on
these traits (Supplementary Fig. 10b). Therefore, in many cases
selection against those haplotypes can still be recommended.

Discussion
The importance of genetic variation for selection and genetic
improvement of crops is undisputed. Genetic resources of
domesticated species, such as landraces, are a valuable source of
diversity for broadening the genetic base of elite germplasm1.
However, efficient strategies for utilizing this native diversity for
the improvement of quantitative traits are lacking. Here, we
developed a strategy to discover beneficial haplotypes for quan-
titative traits in maize landraces (Supplementary Fig. 1). The
combination of comprehensive molecular inventories and
meaningful phenotypes collected in landrace-derived DH libraries
in multi-environment trials allowed detection of haplotype-trait
associations for quantitative traits with limited genetic variation
in elite material. Even though the DH libraries were derived from
only three preselected populations, 26% of landrace haplotypes
were absent in the panel of breeding lines, representing the allelic
diversity of multiple diverse source populations27. While most of
these haplotypes can be expected to be neutral32 or dis-
advantageous, some might represent beneficial novel variation.

Landraces represent self-contained populations adapted to
their geographical origin33. By focusing on diversity within rather
than across landraces, confounding effects of strong adaptive
alleles are avoided. Consequently, individual trait-associated

haplotypes are expected to have moderate to small effects only.
Our results meet these expectations. The majority of haplotype-
trait associations detected in the DH libraries explained <5% of
the genetic variance for all traits under study, including flowering
time. However, as shown for the haplotype affecting PH_V6 on
chromosome 9 (Fig. 5b), the genetic variance explained in GWAS
is not only a function of effect size, but also of haplotype fre-
quency. As DH and breeding lines were sampled from the same
germplasm group (European flint maize), haplotype frequencies
were positively correlated between the two panels (Fig. 1b). This
exemplifies one of the key challenges when searching for untap-
ped variation for quantitative traits, as haplotypes absent in the
breeding material tend to have low frequencies also in landraces
with shared historical ancestry. Focusing on a set of landraces
preselected for variation in target traits increases the chances that
they harbor alleles at frequencies large enough to be detected in
GWAS. The success of this strategy was reflected in the high
number of significant haplotype-trait associations found for target
traits early vigor and early plant height.

The large sample of landrace-derived DH lines employed in
this study enabled mapping of haplotypes with moderate effect
size and comparably low frequency, but as is known for GWAS
studies, some of these significant trait associations might be
spurious34. Here, the sequential determination of significance
(Supplementary Fig. 4) should have minimized the proportion of
false positives35. In addition, the haplotype-based approach
enabled tracking of ancestral alleles between landrace-derived and
breeding material, and the phenotypic comparison between the
two groups supported the usefulness of identified haplotypes for
germplasm improvement. Nevertheless, the construction of
haplotypes in landrace-derived material warrants further
research. Different methods for haplotype construction exist,
generating population-specific haplotype blocks based on LD36,37

or linkage38. Here, we used fixed window sizes, as it is advanta-
geous in comparing haplotype frequencies across datasets varying
in their extent of LD. The choice of window size depends on the
available marker density and affects the number of haplotypes
per window as well as the risk of haplotypes being broken up
by recombination. Thus, defining the haplotype inventories
of landraces and comparing them to elite germplasm is not
trivial. Comprehensive sampling of individuals or lines from a
limited number of landraces mitigates difficulties in haplotype
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construction and at the same time warrants sufficient statistical
power and mapping resolution in GWAS through absence of
pronounced population structure, rapid decay of LD, and con-
sistency of linkage phases26. Here, we put this strategy into
practice and showed its potential in identifying favorable alleles
not present in breeding lines for improving quantitative traits.

For early development traits, overall performance did not differ
significantly between the DH libraries and the subset of pheno-
typed breeding lines, but DH lines carrying specific focus hap-
lotypes not present in breeding lines outperformed the set of
breeding lines significantly in environments favoring trait dif-
ferentiation. This is a first step toward identifying haplotypes
from genetic resources for germplasm improvement, but the final
proof of concept will have to come from crosses of landrace-
derived material with elite material. As landraces represent open-
pollinated populations, background dependency of the identified
trait-associated haplotypes should not be as pronounced as in
mapping populations tracing back to few genetic founders, such
as multi- or biparental crosses. In our study, the vast majority of
trait-associated haplotypes occurring in landraces KE and PE had
equal effect signs across landraces and environments, supporting
this hypothesis. In addition, for cases where it was possible to
contrast different haplotypes in the breeding lines (Supplemen-
tary Fig. 9), the effect of the focus haplotype in the breeding lines
was consistent with the effect in the DH lines. If the selected
landraces and the target germplasm to be improved share his-
torical ancestry, we expect only minor genetic background effects
when introducing favorable haplotypes discovered in landraces
into elite material.

After identification of trait associations, fine-mapping of the
respective genomic regions and functional characterization of
candidate genes is a logical next step. With a limited number of
annotated genes per trait-associated genomic region, high map-
ping resolution was obtained in this study. The envisaged func-
tional validation of relevant haplotypes opens many options for
utilization: targeted allele mining from genetic resources,
unlocking diversity trapped in disadvantageous or incompatible
haplotypes, broadening the genetic diversity at relevant loci in
elite germplasm, and improvement of unfavorable haplotypes
through gene editing39. In addition to targeted haplotype man-
agement, genome-wide approaches will also profit from func-
tional knowledge. Pre-breeding programs2 might be accelerated
through the use of genome-based prediction40,41. It has been
shown that the prediction accuracy is increased if known trait
associations are included as fixed effects in prediction models42.
As our results indicate high stability of haplotype effects across
environments and genetic background, as well as limited
haplotype-induced correlations between traits, the prospects of
the germplasm improvement through the use of landrace-derived
material are promising.

By successfully linking molecular inventories of landraces to
meaningful phenotypes and identifying beneficial variation for
quantitative traits of agronomic importance, the results of this
study represent a first step toward the long-term goal of accessing
native biodiversity in an informed and targeted way. The strategy
proposed in this study and demonstrated experimentally with the
European flint germplasm can be extended to other maize
germplasm groups and even to other allogamous crop species. The
key to an efficient use of genetic resources is to understand how
genomic information of gene bank accessions can be translated
into plant performance43. We envision a future where haplotypes
characterized for their genomic structure, allele content and
functional relevance can be freely moved between populations.
Our goal is to create plants with novel combinations of alleles that
will lead to varieties with novel combinations of traits, thus
securing sustainable crop production in a changing world.

Methods
Plant materials. We generated >1000 DH lines derived from three European
maize landraces: Kemater Landmais Gelb (KE), Lalin (LL) and Petkuser Ferdinand
Rot (PE)28. The landraces were preselected for phenotypic variation in cold-related
traits assessed in field trials and population genetic analyses26. The set of breeding
lines used in this study was selected from a broad panel of 68 flint lines27. The
initial dataset included two US sweetcorn lines, IL14H and P39, which we excluded
from our analyses. The remaining 66 lines, released between ~1950 and 2010, were
selected to represent the genetic diversity of the European flint elite breeding
germplasm. The panel also includes prominent founder lines like EP1, F2, F7, and
DK105 (ref. 44).

Genotypic data. In total, 1015 landrace-derived DH lines were genotyped with the
600k Affymetrix® Axiom® Maize Array45. After stringent quality filtering28, 941
lines (KE= 501, LL= 31, and PE= 409), and 501,124 markers mapped to B73
AGPv4 (ref. 46) remained for genetic analyses. Calls indicating heterozygosity
(0.19%) were set to missing as in DH lines they can be assumed to result from
technical artefacts, and all missing values were imputed separately for each land-
race using Beagle version 5.0 (ref. 47) with default settings. From the set of 66
breeding lines, 64 lines were genotyped with the same 600k array27, whereas for
two lines (EZ5 and F64) overlapping SNP positions (85%) were extracted from the
HapMap data48, which is based on whole-genome sequences. For making the 600k
genotyping data comparable to the HapMap data, all alleles were coded according
to the B73 AGPv4 (ref. 46) forward strand. The breeding line data were filtered for
the 501,124 high-quality markers of the set of DH lines. Applying the same quality
filter criteria as for the DH panel (heterozygous calls < 5%; callrate > 90%, except
for EZ5 and F64 with callrate >84%), one breeding line (FV66) was removed due to
an increased number of heterozygous calls. For the remaining 65 lines, calls
indicating heterozygosity (0.31%) were set to missing and missing values imputed
using Beagle version 5.0 (ref. 47) with default settings. For the combined set of
landrace-derived DH lines and breeding lines, PCoA49 was conducted based on
modified Rogers’ distances50, using the R-package ape version 5.3 (ref. 51). Pairwise
r2 (ref. 52) between SNPs within 1Mb distance was calculated for the DH libraries
(within and across the three landraces) and the panel of breeding lines, respectively.
Average LD decay distance (r2 < 0.2) was estimated using nonlinear regression53. If
not denoted otherwise, analyses were done using R version 3.6.0 (ref. 54). For
plotting of results, R-packages ggplot2 version 3.2.0 (ref. 55), plot3D version 1.3,
and VennDiagram version 1.6.20 were used.

Phenotypic data. In total, 958 DH lines were phenotyped for 25 traits in replicated
field trials28. Briefly, line per se performance was evaluated in five locations across
Germany, and in two locations in northern Spain in 2017 and 2018, resulting in up
to 11 environments (location by year combinations) per trait. In each environment,
up to ten separate 10 × 10 lattice designs with two replicates per DH line were used.
In addition to the DH lines, 15 breeding lines (duplicate entries) and the original
landraces (quadruplicate entries) were included as checks in 2017. Fourteen checks
comprised important lines of the European flint breeding pool and were included
in the set of 65 genotyped breeding lines. In 2018, only four breeding lines were
used as checks (three flint lines). A subset of nine traits was analyzed in this study
(Supplementary Table 2), related to early plant development, maturity, as well as
agronomic characteristics. After stringent quality filtering based on genotypic
data28, phenotypic data of 899 DH lines (KE= 471, LL= 26, and PE= 402)
remained for further analyses. Best linear unbiased estimates (BLUEs) for each DH
line and check were calculated across environments using a mixed linear model,
with genotypes as fixed and environment as well as design factors as random
effects28. Analogously, BLUEs were calculated within each environment using the
same model without environment-related model terms.

Haplotype construction. For both, the landrace-derived DH lines, as well as the
breeding lines, haplotypes were defined as a given nucleotide sequence within
nonoverlapping windows of ten SNPs (Supplementary Fig. 4a), using the R-
package zoo version 1.8-6 (ref. 56). For the 600k chip, the density of SNPs along the
chromosomes follows the average recombination rate45. Therefore, using a fixed
number of SNPs per window leads to similar window sizes as defined based on
genetic map units. The median physical window size was 13.5 kb (mean= 37.8 kb),
corresponding to 0.006 cM (mean= 0.026 cM) according to a genetic map gen-
erated from a F2 mapping population of a cross of EP1 × PH207 (ref. 44). Within
each window, haplotypes were coded as presence/absence markers, yielding gen-
otype scores 0 and 2, respectively. To evaluate the potential of untapped variation
in landraces for elite germplasm improvement, we compared haplotype frequencies
between the landrace-derived DH lines and the panel of 65 breeding lines.

Diversity measures. PIC57 and H58 were calculated based on SNPs (PICSNP and
HSNP) as well as on haplotypes (PIChap and Hhap) constructed as described above.
nR59 was calculated within the genomic windows used for haplotype construction.
For all five parameters mean values across SNPs or ten-SNP windows, respectively,
were calculated for each DH library individually and for the combined set of 941
DH lines, as well as for the set of 65 breeding lines.
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Identification of trait-associated haplotypes. For GWAS in the DH lines,
haplotypes which were present less than three times in the panel of 899 phenotyped
DH lines were excluded from the analysis. For haplotypes with r2= 1, only one was
retained, resulting in 154,104 haplotypes used for GWAS (Supplementary Fig. 4a),
with on average 5.73 haplotypes per window. The identification of trait-associated
haplotypes was conducted in two steps following Millet et al.35, (i) identification of
candidate haplotypes in GWAS (Supplementary Fig. 4b) and (ii) backward elim-
ination in a multi-locus multi-environment model (Supplementary Fig. 4c). GWAS
were conducted for single environments, as well as across environments using the
corresponding environment-specific and across-environment BLUEs as response
variable in the model, respectively. A univariate linear mixed model, implemented
in GEMMA version 0.98.1 (ref. 60), was used:

y ¼ Wαþ xβþ Zuþ e; ð1Þ

where y is the n-dimensional vector of phenotypic values (BLUEs), with n being
the number of lines; α is a three-dimensional vector of fixed effects (intercept
and landrace effects of KE and LL); β is the fixed effect of the tested haplotype; x
is the vector of corresponding genotype scores coded as 0 and 2; u is the n-
dimensional vector of random genotypic effects, with u�Nð0;Kσ2gÞ; and e is the
n-dimensional vector of random residual effects, with e~N(0, Inσ2). K denotes
the (n × n) genomic relationship matrix based on SNP markers according to
Astle and Balding61, calculated using the R-package synbreed version 0.12-9
(ref. 62). In denotes the (n × n) identity matrix. σ2g and σ2 refer to the genetic and
residual variance pertaining to the model defined in Eq. (1), respectively.
Matrices W (n × 3) and Z (n × n) assign phenotypic values to fixed and random
effects, respectively. Significance of haplotype-trait associations was assessed for
each single-environment as well as for the across-environment GWAS based on
the likelihood ratio test, as implemented in GEMMA, using a 15% false discovery
rate63. Haplotypes with a physical distance of <1 Mb and in high LD (r2 ≥ 0.8)
were considered to mark the same genomic region. The corresponding trait-
associated genomic region was described by the start and end positions of the
first and last haplotype fulfilling the defined criteria, respectively. To represent
genomic regions equally in subsequent analyses, only the most significant
haplotype, the focus haplotype, was retained per region in the respective GWAS,
resulting in a set of candidate haplotypes.

In the multi-locus, multi-environment mixed linear model, we conducted a
backward elimination of those candidate haplotypes as suggested by Millet et al.35,
using the ASReml-R package version 3.0 (ref 64):

yijk ¼ μþ ωi þ δj þ
X

q2Q
xkqβ

i
q þ uk þ eijk; ð2Þ

where yijk is the phenotypic value (BLUE) of line k belonging to landrace j tested in
environment i; μ is the common intercept; ωi is the fixed effect of environment i; δj
is the fixed effect of landrace j; xkq is the genotype score (0 or 2) of line k for
haplotype q; βiq is the fixed effect of haplotype q in environment i, comprising the
haplotype main and haplotype by environment interaction effect, i.e.,

βiq ¼ βq þ ðβ ´ωiÞq; ð3Þ

uk is the random genotypic effect of line k, and eijk is the random residual error
with environment-specific residual error variance. Q represents the final set of
haplotypes obtained through step-wise backward elimination based on the Wald
test for βiq (ref.

65). At each step, significance of each haplotype was tested when
it was the last one entering the model and the least significant haplotype was
removed if P ≥ 0.01. The proportion of genetic variance explained by the set of
trait-associated haplotypes was estimated by calculating the reduction in genetic
variance between models including and excluding the haplotype effects,
following Millet et al.35. For evaluating effect stability across landraces for the
final set of haplotypes Q, we extended Eq. (2) by changing the term

P
q2Q

xkqβ
i
q to

P
q2Q

xkqβ
ij
q , with

βijq ¼ βq þ ðβ ´ωi ´ δjÞq: ð4Þ

For comparison, GWAS was also performed with 175,810 SNPs (minor allele
counts ≥ 3 and r2 ≠ 1), analogously as described above.

Favorable and unfavorable haplotypes and their effect stability. The number of
environments in which a haplotype was significant was estimated by generating
95% confidence intervals (CI= effect estimate ± 1.96 × standard error) based on
Eq. (2), following Millet et al.35. A CI not including 0 indicated significance of the
haplotype in a given environment. Haplotypes with constant effect sign across
significant environments were classified as favorable or unfavorable. For EV_V4,
EV_V6, PH_V4, and PH_V6 positive (negative) effects were defined as favorable
(unfavorable). For LO and TILL negative (positive) effects were defined as favor-
able (unfavorable). No classification was made for PH_final, FF, and MF, as
breeding goals vary for these traits. Haplotypes with changing sign of significant
effects in different environments were classified as interacting.

Haplotypes associated with multiple traits. We tested if haplotypes identified for
early plant development also had an effect on other traits using a bivariate model,
similar to Stich et al.66:

ytijk ¼ μt þ ωti þ δtj þ xkβt þ utk þ etijk; ð5Þ
where ytijk is the phenotypic value (BLUE) for trait t of line k belonging to
landrace j tested in environment i; μt is the intercept for trait t; ωti is the fixed
effect of environment i for trait t; δtj is the fixed effect of landrace j for trait t; xk
is the genotype score (0 or 2) of line k for the tested haplotype; βt is the fixed
effect of the haplotype for trait t; utk is the random genotypic effect of line k for
trait t, with u ~ N(0, G⊗ K); and etijk is the residual with e~N(0, E⊗ In). G and
E correspond to the (t × t) genetic and error variance–covariance matrices
among traits pertaining to the model defined in Eq. (5), respectively, and ⊗
denotes the Kronecker product. Haplotypes for which the 95% CIs for both βt
did not include 0 were considered significant for both traits. The proportion of
genetic variance explained per trait by significant haplotypes was estimated by
calculating the respective reduction in G between models including and
excluding the haplotype.

Haplotype comparison between landraces and breeding lines. We assessed
frequency distributions of identified trait-associated favorable and unfavorable
landrace haplotypes in the panel of 65 breeding lines, and compared them with
500 haplotypes randomly drawn out of the set of haplotypes occurring at least
three times in the landrace panel. Significance for differences in means between
the frequencies of favorable and random haplotypes, as well as unfavorable and
random haplotypes was tested with the Mann–Whitney test (two-sided). When
tracking potentially shared ancestral haplotypes between populations, the
probability of a haplotype being broken up by recombination depends on the
haplotype length, the recombination rate in the respective genomic region and
the time span back to the most recent common ancestor. To evaluate to what
extent recombination might have occurred in the haplotypes constructed in this
study, we considered the physical and genetic length of each haplotype, as well
as haplotype similarity (1 –Hhap) and nR within the respective genomic
windows.

To evaluate the effect of the selected focus haplotype relative to the alternative
haplotypes in a given ten-SNP window, we followed the approach of Bustos-Korts
et al.67, extending Eq. (2) to:

yijk ¼ μþ ωi þ δj þ
X

q2Q0
xkqβ

i
q þ xkhβ

i
h þ uk þ eijk; ð6Þ

where Q0 represents the set of haplotypes Q as described above without the respective
focus haplotype of the window tested, xkh identifies the haplotype (categorical
variable) in the window tested carried by line k, and βih represents the effect of the
respective haplotype relative to the focus haplotype. Similar as above, significance of
haplotype effects relative to the focus haplotype was determined by constructing 95%
CIs. We further estimated the proportion of genetic variance explained by the given
window by calculating the reduction in genetic variance between the null model
(without

P
q2Q0

xkqβ
i
q þ xkhβ

i
h) and the model with the xkhβ

i
h term.

To evaluate to what extent haplotypes with favorable or unfavorable effects in
landraces also have favorable or unfavorable effects in elite material, respectively,
we compared performance levels between the landrace-derived DH lines and the 14
breeding lines used as checks. As phenotypic data for the 14 breeding lines were
only available for 2017, only the six environments from 2017 were considered. For
some traits, differences in means between the landraces were observed28, thus
comparisons were conducted for each landrace separately. Significance for
differences in means between the respective landrace and the 14 checks was tested
based on 10,000 permutations (two-sided test). In addition to a comparison of the
overall performance level between all lines of the respective landrace and the 14
breeding lines, we compared means between groups of lines carrying a particular
haplotype and lines not carrying the haplotype.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A reporting summary for this article is available as a Supplementary Information file. The
datasets generated and analyzed during the current study are available from the
corresponding author upon request. Seeds from all genotypes used in the study are
available through material transfer agreements. The genotypic data of 941 DH lines and
the phenotypic data of 899 DH lines and 14 breeding lines are available in figshare
(https://doi.org/10.6084/m9.figshare.12137142). The 600k data of 63 breeding lines can
be accessed at figshare (https://doi.org/10.6084/m9.figshare.3427040.v1), while for two
lines genotypic data based on whole-genome sequences were downloaded from CyVerse
Data Store (http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?
filegroupid=34). The Source data underlying Figs. 1 and 3–5, as well as Supplementary
Figs. 2, 3, 5, and 7–10 are provided as a Source data file. Source data are provided with
this paper.
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Code availability
All custom codes used in the article can be found at Github (https://github.com/
Manfred-Mayer/GWAS_DHs_landraces).
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