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Abstract—Object detection (OD) methods are finding appli-
cation in various fields. The OD problem can be divided into
two sub-problems, namely object classification and localization.
While the former aims to answer the question what class a given
object belongs to, the latter focuses on locating an object within
a given image. For localization, both implicit representations,
which border the object and its features (e.g. bounding boxes,
polygons and masks), and explicit representations, which describe
the object’s pose in an image (e.g. 6D pose, keypoints), are used.
The 2D pose is a simple, yet effective representation that has so
far been overlooked. In this paper, we therefore motivate and
formulate the use of 2D poses for object localization. Further-
more, we present RetinaNet-2DP, an anchor-based convolutional
neural network (CNN) that is capable of detecting objects using
2D poses. To do so, we propose the idea of Anchor Poses and
the Gaussian Kernel Distance as a similarity metric between
poses. Experiments on the DOTA dataset and two robotics use
cases from industry emphasize the performance of the network
architecture and more generally demonstrate the potential of the
proposed localization representation. Finally, we critically assess
our findings and present an outlook of future work.

Index Terms—2D Pose, Object Detection, Computer Vision

I. INTRODUCTION

The emergence of deep neural networks has brought about

numerous advances in the field of computer vision that would

not be possible with conventional methods. One field that

has particularly benefited from this development is object

detection (OD). OD is the process of finding objects in a given

image (“Where is the object located in the image?”) and their

assignment to a semantic class (“What class does this object

belong to?”). The problem of OD can therefore be divided

into two sub-problems: the localization and classification of

objects.

In this paper, we propose using 2D poses as a means of

localization for multi-class object detection. The use of 2D

poses for localization purposes is common in robotics tasks

such as navigation of autonomous mobile robots or grasping

for robotic arms. In the field of object detection, however, only

bounding boxes, masks, 6D poses and keypoints are being

used. To still make use of the possibilities of object detection

for aforementioned use cases, the output representation is

being post-processed into a 2D pose representation. Unlike

OD using bounding boxes or masks, using a 2D pose rep-

resentation for multi-class object detection therefore enables

end-to-end learning for robotics without the need for post-

processing. Moreover, compared to OD using 3D poses, the
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Fig. 1. Localization techniques for object detection. Currently, objects
are localized using Horizontal Bounding Boxes (HBBs) (a) [1], Oriented
Bounding Boxes (OBBs) (b) [2] and Polygons and Masks (c) [3]. Furthermore,
explicit methods are used to represent an objects location, using 6D poses (d)
and keypoints (e) [3]. We propose using 2D poses (f) [2] a simple, yet effective
and common way of localization in the robotics domain. Reference denotes
image source. Best viewed in color.

2D pose representation is less complex due to the lack of

interpretation of the 3D space in a 2D image, which both

simplifies the manual annotation of real images and potentially

increases the performance and robustness of trained models.

This paper describes, formalizes and evaluates multi-class

object detection using 2D poses. Our contributions can be

summarized as follows:

• Object localization using 2D poses. We propose and

formalize the idea of using 2D poses as a means of

localization representation for OD systems in images.

• 2D pose multi-class object detection model. In this



paper, we develop an anchor-based single-shot detector

based on RetinaNet [4]. To achieve this, we propose

using Anchor Boxes and a Gaussian Kernel Distance as

a similarity measure.

• Evaluation and application scenarios. We first ablate

our novel concepts on the DOTA dataset. We then

demonstrate the generalizability and applicability of our

approach using two robotic case studies from industry.

II. RELATED WORK

This section summarizes different localization representa-

tions and their corresponding architecture implementations in

computer vision research.

Horizontal Bounding Boxes (HBB) are rectangular boxes

used to border an object and its features. HBBs are always

aligned parallel to the image edges. They are defined either

by their center point (x, y), box height h, and width w or

by specifying the left, top, right and bottom values of the

boxes’ corners, xmin, xmax, ymin and ymax. Due to the low

amount of annotation effort required, HBBs are a common

means of localization used in object detection. Convolutional

Neural Network (CNN) architectures able to predict HBBs

can be classified into two main categories: those that use

prior information and those that do not use prior information.

Anchor-based models [4], [5] learn to minimize the offset

between anchor box and ground truth box, while [6], [7] use

keypoints to directly predict objects. Reference [8] takes yet

another anchor-free approach, using heatmaps to predict the

object’s corners.

Oriented Bounding Boxes (OBB) extend the idea of using a

box that borders an object by additionally specifying the box’s

rotation. This kind of localization is often used in top-view

images, such as aerial images (e.g. DOTA [2], HRSC16 [9])

and poses various challenges for standard HBB detectors [10].

To overcome these challenges, existing HBB models have been

adapted to the OBB task. As before, anchor-based methods

[11] as well as anchor-free methods [12] have been proposed.

Polygons and Masks are a more detailed means of localiza-

tion used in various image understanding tasks. In a similar

way to the box approaches referred to above, polygons and

masks localize an object by bordering its features. In contrast

to the former, they allow a more precise, even pixel-level

object localization but require a high annotation effort. Masks

are usually represented by a discrete two-dimensional map,

whereas polygons are represented by a set of points. Note that

each of these representations can be converted to the other

respective form. Both, two-stage approaches [13] and single

shot methods [14] have been proposed in the literature.

Moving on from implicit localization techniques that border

an object’s features, explicit localization techniques are used

to locate an object by specifying its pose (i.e. position and/or

orientation):

6D Poses are an explicit means of localization describing

an object’s six-degree-of-freedom (6D) pose in space. 6D pose

estimation is used in a number of real-world applications,

such as robotic grasping [15] and augmented reality [16]. Due

to the nature of dimensionality reduction during the image

generation process (i.e. 3D space to 2D image), accurate

manual annotation of 6D poses in natural images is a difficult

endeavor. Therefore, 6D pose estimation relies on simulation

environments [17] or difficult ground-truth generation mecha-

nisms to create 6D pose annotations [18]. Again, various deep

learning architectures for object detection using HBBs were

adopted to enable the estimation of 6D poses, e.g. [19].

Keypoints are another explicit spatial localization represen-

tation used for marking objects or features that stand out

in an image, using single points or a set thereof. Keypoint

representations are used in human pose estimation [3] or object

keypoint estimation [18] datasets. State-of-the-art approaches

for keypoint detection adopt convolutional neural networks to

work for the given task of detecting keypoints, e.g. [20], [21].

To sum up, we have shown that both implicit and explicit

methods can be used to solve individual application-specific

problems. Whilst all of those localization techniques contain

a spatial localization component, only some consider the

localization orientation. To the best of our knowledge, the use

of a 2D pose (i.e. center point (x, y) and orientation θ) for

object detection has not yet been considered, which is why we

wish to formulate, conceptualize and motivate this localization

technique in this paper.

III. PROBLEM FORMULATION

Let I ∈ R
W×H×C be an input image of width W , height H

and channel C, with C = 3 for color and C = 1 for

monochrome images. We aim to detect objects, i.e. to both

classify and localize them, using a 2D pose representation.

Therefore, we try to find a function F that maps the input

image I to a set of object detections D:

F (I) = D;D = {d1, d2, ..., dn} (1)

Here, di represents the detection of object i by specifying its

location pi and class ci:

di = (ci, pi) (2)

The object’s location pi is described using a 2D pose represen-

tation, pi = (xi, yi, Θi), where (xi, yi) describes the object’s

center point and Θi its orientation with respect to the image

coordinate frame. Fig. 2 illustrates the problem.

IV. MULTI-CLASS OBJECT DETECTION USING 2D POSES

This section presents our simple, yet effective, method of

performing multi-class object detection using 2D poses. We

propose an anchor-based single-shot deep convolutional neural

network that utilizes 2D poses for object localization. We first

describe the intuition behind two general concepts applicable

to this type of object localization, namely Anchor Poses and

Gaussian Kernel Distance, before detailing our RetinaNet-2DP

implementation.



Fig. 2. Object Detection using 2D Poses. We are interested in detecting
objects (COLORED SHAPES) in an input image I . Therefore, we aim to find
a function F that maps an input image I to a set of object detections D =
{d1, d2, ..., dn}. Where di describes the ith object’s location using a 2D
pose representation pi (ARROWS) and its class cj (SHAPE GEOMETRY AND

COLOR).

A. Anchor Poses

As discussed in Section II, CNNs are commonly infused

with prior information in order to improve their performance.

We adapt the idea of using anchors as a means of incorporating

prior information to work with 2D poses, which we refer to

as Anchor Poses. Instead of having to learn to directly predict

an object’s pose, the network is able to use the anchors as

prior information and only needs to predict the offset of those

anchors to best match a given object.

In a similar way to anchor boxes, Anchor Poses represent

a set of predefined poses of a certain position and orientation,

which can be thought of as being tiled across the input image

for each image scale of the feature extractor. Due to the use

of Anchor Poses, the network prediction task is simplified to

only refine those prior poses to optimally localize an object.

Before training, the predefined Anchor Poses generally do not

overlap with the ground truth poses (i.e. there is a rotational

and translational offset between ground truth and anchor).

During training, our model learns the offsets to be applied

to each Anchor Pose and therefore refines the position and

orientation.

In order to come up with good anchors, [22] chose to

manually define them, whereas [5] used k-means clustering

to find the optimal parameters on a large-scale dataset. As no

large-scale dataset with 2D pose annotations is available, we

search for the best anchor pose parameters as further discussed

in Section V.

B. Gaussian Kernel Distance

Intersection over union (IoU) is a similarity measure used

for implicit localization tasks. IoU compares a ground truth

shape SGT with a predicted shape SP by computing their

intersection over union:

IoU =
area(SGT ∩ SP )

area(SGT ∪ SP )
(3)

In most applications, a prediction is considered correct if the

IoU is greater than or equal to a predefined threshold. When

using 2D poses as a means of localization, calculating the

overlap (and hence the IoU) is no longer feasible.

Therefore, we replace the IoU concept and use a non-

linear Gaussian kernel to evaluate the similarity between two

poses. The Gaussian Kernel Distance (GKD) maps the distance

between predicted and ground truth pose in a value between

zero and one. Similar to IoU, GKD tends to one the closer

the predicted and ground truth pose are. We calculate the one-

dimensional GKD for each element kx, ky and kΘ, before

multiplying them to get the final GKD K that replaces the

IoU metric:

kx = e
−(x−x∗)2

σ2
x ; ky = e

−(y−y∗)2

σ2
y ; kΘ = e

−(Θ−Θ∗)2

σ2
Θ (4)

K = kx × ky × kΘ (5)

Here, x, y, Θ are the center coordinates and the orientation

of the predicted pose, x∗,y∗,Θ∗ are the center coordinates and

the orientation of the ground truth pose, and σ2 is the variance.

This function tends to one if two poses are similar and zero if

they are rather different. Hence, instead of equally penalizing

all negative locations and not considering them, the function

allows the penalty given to the negative predictions within

some radius around the ground truth to be reduced.

A prediction is considered correct if the GKD is greater

than or equal to 0.5. Fig. 3 illustrates this behavior.

Fig. 3. Gaussian Kernel Distance. In order to evaluate the similarity of two
poses, we use the non-linear Gaussian Kernel Distance (GKD). This figure
illustrates the GKD under different hyperparameter settings.



Fig. 4. RetinaNet-2DP Architecture. The proposed architecture builds on the modularity of RetinaNet [4]. Semantically rich feature maps are extracted by
using residual networks (ResNet) [23] (a) and a feature pyramid [24] (b). Feature maps from different pyramid scales get fed into task-specific subnets for
classification and localization (c). Those two parallel, task-specific branches predict class and 2D pose offset for an object using fully-convolutional layers
(e). Instead of directly coming up with an objects pose, we deploy Anchor Poses and learn to predict the offset (RED) between anchor pose (BLACK) and
object pose (YELLOW) (d).

C. RetinaNet-2DP

Previously discussed concepts are generally applicable to

anchor-based object detection systems. Due to its modularity

and strong foundation in the research community, we chose

to modify the RetinaNet architecture [4] to incorporate those

concepts. We call this architecture RetinaNet-2DP. The model

comprises a feature extractor and two task-specific networks

corresponding to the subtasks (localization and classification)

that make up object detection (see Fig. 4). The class network

is responsible for classification, whereas the novel pose subnet

is responsible for predicting the Anchor Pose offset.

A residual network (ResNet) [23] in combination with a

feature pyramid (FPN) [24] is used to extract multi-scale,

semantically strong feature maps from a single-resolution

input image. These feature maps are used as an input to both

task specific branches. The classification branch predicts the

probability of an object being present at every pyramid level

for each Anchor Pose A and class K. In order to predict a

2D pose from these feature maps, we modify the localization

subnet to work with 2D pose offsets as regression targets.

The pose subnet is a fully convolutional network that receives

extracted feature maps on different scales as input and predicts

the translational and rotational offset from a given Anchor

Pose (as detailed in Sec. IV-A). Due to its multi-scale and

anchor-based nature, the network returns multiple possible

poses for a single object. In order to determine the single most

reliable pose, we use non-maximum suppression that internally

builds on top of the GKD metric as introduced above.

V. EXPERIMENTS

This section presents the ablation study results and il-

lustrates two general industrial use cases that showcase the

benefits of our robot-intuitive, end-to-end learning approach.

All experiments used the RetinaNet-2DP implementation, as

described in Section IV. The training was conducted in parallel

on two Nvidia GeForce GTX 1080Ti GPUs using the Adam

optimizer in Pytorch.

All models were assessed using the mean average preci-

sion metric, in which we replace the intersection over union

calculation by the Gaussian Kernel Distance as discussed in

Section IV-B. Note that due to this change, the results are no

longer absolutely comparable to other models’ performance.

However, it still allows ablation of previously discussed fea-

tures. The quantitative results are accompanied by qualitative

visuals (see Fig. 5).

A. Ablation study

This section covers the influence of the Gaussian Kernel

Distance as well as the anchor pose configuration on detection

performance. For this purpose, we utilize the DOTA dataset

[2]. The dataset consists of images collected from Google

Earth and remote sensing satellites. It contains 2806 RGB

images and comes with horizontal and oriented bounding box

annotations for 15 different classes (e.g. plane, ship, storage

tank, tennis and basketball court, etc.). We use the annotated

OBBs and automatically convert them to 2D poses.



Influence of the standard deviation on model performance:

First, we studied the influence of the standard deviation on the

model performance. Since standard deviation plays a role in

both loss and performance evaluation, we fixed the evaluation

standard deviation to (20, 20, 70) and searched for the best loss

standard deviation by training with different configurations.

The results are shown in Table I. The loss standard deviation

has a significant impact on the model’s performance. Choosing

a relatively big or small standard deviation during training

(i.e. loss calculation) causes a drop in mAP. We found that

choosing a standard deviation of (10, 10, 35) for the loss

calculation resulted in the best model performance. Additional

experiments were all conducted using this configuration for the

loss standard deviation.

TABLE I
RETINANET-2DP ABLATION RESULTS FOR STANDARD DEVIATION σ AND

ANCHOR POSE CONFIGURATION ON DOTA. ANCHOR POSES ARE

SPECIFIED USING SET-BUILDER NOTATION: {Ax |x ∈ N0, 0 ≤ x ≤ B}.
MODEL: R101-FPN-2DP

Anchor pose Model performance
Std. deviation σ configuration mAP@0.5 GKD

for loss calculation A B with σ = (20, 20, 70)

(5, 5, 35) 45 2 32.8%
(10, 10, 35) 45 2 41.8%

(10, 10, 70) 45 2 38.2%
(20, 20, 70) 45 2 21.8%

(10, 10, 35) 45 1 6.8%
(10, 10, 35) 45 4 36.9%
(10, 10, 35) 45 8 37.8%

Influence of good anchors on model performance: Next, we

evaluated the impact of different anchor pose configurations.

Table I shows the effect of the anchor configuration on the

accuracy of the network. The experiment showed that an

anchor configuration with the angles of (0, 45, 90) degree

gives the best accuracy. Both adding and removing additional

anchors causes a drop in accuracy.

B. Case Studies

In addition to the experiments on the DOTA dataset, we

present two case studies that illustrate our method’s application

in industry. Both studies refer to robots operating in an

industrial environment. Case study A describes the use of

the presented method for automated container handling by

a robotic arm with a vacuum gripping system. Container

classification and localization using a 2D pose are performed

with RetinaNet-2DP and an RGB-D camera mounted on the

robot arm. For this purpose, we first created and annotated

a dataset. The dataset consists of 588 RGB images of two

container types. A threefold split was applied: training set

(70 %), validation set (20 %), and testing set (10 %). The

dataset contains two different class types. Both training and

validation set were annotated using 2D poses representing the

object’s pose in 2D space. With a relatively simple system

we achieve a maximum performance of 91.59 % mAP using

(0, 45, 90, 135) as Anchor Poses. We further conducted

experiments on the performance impact when using ResNeXt

for feature extraction and different network depths (see Ta-

ble II for further results). In case study B, we consider the

application of autonomous mobile robots for the transportation

of goods in industry. To enable fine positioning, the system has

to classify and locate the pallets to be transported. Again, we

use RetinaNet-2DP to perform object detection. In contrast to

the previous case study, however, we do not rely on camera

images for detection, but data from a 2D laser rangefinder.

This type of scanner is commonly used in industrial mobile

robots to ensure human safety. We use the publicly available

pallet scan dataset from [25]. The dataset consists of 446

monochrome images of pallets. As the pallet dataset came

with horizontal bounding boxes only, we manually created 2D

pose annotations for it. A threefold split was applied: training

set (70 %), validation set (15 %), and testing set (15 %).

We achieve a maximum performance of 89.29 % mAP using

ResNet-101 and (0, 45, 90, 135) as Anchor Poses. Again,

we tried using ResNeXt and two different network depths as

documented in Tables II.

TABLE II
RETINANET-2DP PERFORMANCE ON TWO INDUSTRIAL CASE STUDIES.

ANCHOR POSES ARE SPECIFIED USING SET-BUILDER NOTATION:
{Ax |x ∈ N0, 0 ≤ x ≤ B}. MODEL DECLARATION: R: RESNET, RX:

RESNEXT, FPN: FEATURE PYRAMID NETWORK

Anchor pose Performance mAP@0.5 GKD
configuration with σ = (20, 20, 70)

Model A B Case Study A Case Study B

R101-FPN-2DP 45 2 88.3 % 88.0%
R101-FPN-2DP 45 3 91.6% 89.3%

R101-FPN-2DP 45 4 88.1% 85.0%
R101-FPN-2DP 45 8 90.2% 88.0%

RX50-FPN-2DP 45 3 86.5% 84.0%
R50-FPN-2DP 45 3 89.2% 87.2%

RX101-FPN-2DP 45 3 89.8% 87.7%

VI. DISCUSSION AND FUTURE WORK

We have presented a simple, yet effective, localization

paradigm using 2D poses and illustrated its applicability in

two industrial case studies. In addition to its end-to-end

learning ability, the robot-intuitive localization highlights the

advantages of the localization paradigm introduced. The end-

to-end learning approach enables cost-effective application

and helps to overcome current challenges in industry (e.g.

dynamic environment, flexibility, adaptability). Furthermore,

the intuitive representation offers the potential to reduce de-

velopment efforts, as post-processing procedures are omitted.

Nevertheless, we see challenges that need to be overcome in

future research. The GKD similarity metric introduces three

additional hyperparameters (i.e. σx, σy and σθ) that need to

be specified. Depending on the parameter configuration, the

model performance using mean average precision as a key

performance indicator can be misleading. Future work needs

to either test other similarity metrics or define the above



(a) DOTA (b) Case Study A (c) Case Study B

Fig. 5. Qualitative evaluation results using RetinaNet-2DP. We train and evaluate on three different tasks the remote sensing dataset DOTA (a), industrial
robotic manipulation (b) and object detection in lidar data (c). Red arrows: predictions, label: class and twist angle.

mentioned hyperparameters to best match the intersection over

union metric.

VII. CONCLUSION

In this paper, we explore the idea of using 2D poses for

object detection. Within this context, we introduce RetinaNet-

2DP, which implements this paradigm. To perform the im-

plementation, we propose the concept of Anchor Poses and

deploy the Gaussian Kernel Distance as a similarity metric be-

tween poses. Beyond our use in RetinaNet-2DP, these concepts

are generally applicable to anchor-based 2D pose networks.

We use the DOTA dataset to determine hyperparameters and

present two case studies to highlight the model’s applicability

for robotic automation in industry. We show that the proposed

architecture is able to learn to localize objects using 2D poses

and achieves a mAP (using GKD) of greater than 89% on both

industrial case studies.
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