
Technische Universität München

Max-Planck-Institut für Plasmaphysik

Deep Learning for Tomography,
State Classification and Event

Detection in Nuclear Fusion Plasmas

Francisco Duarte Pinto de Almeida Matos

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans-Joachim Bungartz

Prüfer der Dissertation: 1. Hon.-Prof. Dr. Frank Jenko

2. Prof. Dr.-Ing. Nils Thuerey

3. Prof. Dr. Vlado Menkovski

Eindhoven University of Technology

Die Dissertation wurde am 17.02.2021 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 30.06.2021 angenommen.

Technische Universität München
Department of Informatics

Deep Learning for Tomography,
State Classification and Event

Detection in Nuclear Fusion Plasmas

Francisco Duarte Pinto de Almeida Matos

Supervisor: Hon.-Prof. Dr. Frank Jenko

17.02.2021

Acknowledgments

The work described in this thesis would not have been possible without the

support of numerous people. I’d like to thank all the co-authors of my research

papers: Andrea Pavone, Jakob Svensson, Tomas Odstrcil, Alessandro Pau, Fed-

erico Felici, Gino Marceca, and in particular, Vlado Menkovski, both for the

many hours of discussions and conversations, and for his interest in being a

part of the examining committee for this dissertation. Naturally, none of this

work could have happened without the supervision of Frank Jenko, to whom I

am grateful for giving me the opportunity, resources and guidance necessary to

carry out this research. I would like to thank Nathan de Oliveira, Robert Brzo-

zowski, Andres Cathey and Karl Stimmel for their help with reviewing the the-

sis and their suggestions for improvements; Sebastian Huber and Colin Benz for

their help with translating necessary materials into German; Hans Bungartz for

agreeing to be the chair of this thesis’s examining committee; and Nils Thuerey

for agreeing to be a committee member. Finally, but most importantly, I thank

all of my friends and family, both in Munich and elsewhere, who were a source

of strength and resilience while I carried out my PhD.

Abstract

Nuclear fusion experiments regularly generate large amounts of data that can

constitute a rich source of information for new scientific and engineering in-

sights. Yet in many cases, the complexity of that data is such that it is difficult to

develop matching theoretical frameworks that can deliver such insights.

Concurrently, advancements in the field of artificial intelligence in the past

few years mean that deep learning algorithms now exist which can automati-

cally learn from complex, high dimensional data. This dissertation describes

several applications of such algorithms to data analysis problems in nuclear fu-

sion. Specifically, two projects are described.

One project concerns the development of models for automated detection of

plasma confinement states and ELMs at the TCV tokamak. For several TCV

discharges, the time traces of 4 different signals are collected, and are then used

to produce corresponding sequences of events, based on the features existing in

the data. Three different approaches are proposed, which use the same signals,

but differ from each other with regards to the assumptions they make about

the correlations existing in the data, and about how to model the outputs. The

first two approaches are discriminative neural networks that produce a single

sequence of outputs, while the third is a generative sequence-to-sequence model.

The second project builds up on previous approaches for tomography in fu-

sion plasmas. At the ASDEX Upgrade tokamak, soft X-ray signals can be used

to obtain the plasma emissivity profile through Gaussian process tomography.

A particular step of this algorithm – Bayesian model selection – can be compu-

tationally expensive. Thus, a neural network model is proposed to perform this

step, bypassing the need for iterative optimization.

iii

Zusammenfassung

Fusionsexperimente generieren große Mengen an Daten, die zu wissenschaftli-

cher und technischer Innovation beitragen können. In vielen Fällen erschwert

die hohe Komplexität der Daten jedoch die erfolgreiche Auswertung der Ergeb-

nisse auf theoretischer Ebene.

Durch Fortschritte in der Anwendung Künstlicher Intelligenz entstanden

über die letzten Jahre Deep-Learning-Algorithmen, die aus komplexen mehr-

dimensionalen Datenquellen automatisiert lernen können. Diese Dissertation

beschreibt die Anwendung solcher Algorithmen zur Lösung von Datenanaly-

seproblemen im Bereich der Kernfusion anhand von zwei Projekten.

Ein Projekt behandelt die Entwicklung von Modellen zur automatisierten Er-

mittlung von Plasmaeinschlusszustände und ELMs am TCV Tokamak in Lau-

sanne. Dabei werden vier verschiedene Signale bei mehreren TCV-Entladungen

im zeitlichen Verlauf verfolgt, um dann korrespondierende Sequenzen von Er-

eignissen zu produzieren, die auf den aufgezeichneten Daten basiert. Es werden

drei unterschiedliche Modelle vorgestellt, die dieselben Signale untersuchen,

sich jedoch in den Annahmen über die Korrelationen im Datensatz und der Mo-

dellierung der ausgegebenen Daten unterscheiden. Die ersten beiden Modelle

beruhen auf diskriminative neuronale Netzwerke, die eine einzige Ausgangs-

sequenz produzieren, während das dritte Modell ein generatives sequence-to-

sequence Netzwerk einsetzt.

Das zweite Projekt baut auf früheren Forschungsansätze aus der Plasmatomo-

grafie auf. Am ASDEX Upgrade Tokamak können weiche Röntgensignale dazu

benutzt werden, das Plasmaemissionsprofil durch Gaußsche Prozesstomografie

herzustellen. Insbesondere durch den Schritt der Bayesschen Modellselektion

kann dieser Algorithmus eine hohe Rechenleistung beanspruchen. Daher wird

vorgeschlagen, für diesen Schritt ein neuronales Netzwerkmodell zu benutzen,

um die Notwendigkeit iterativer Optimierung zu umgehen.

v

Contents

I. Introduction and Theory 1

1. Introduction 3

2. Background 9

2.1. Fusion Experiments . 10

2.2. Soft X-ray tomography at ASDEX Upgrade 12

2.2.1. Plasma tomography . 13

2.2.2. The SXR diagnostic at ASDEX Upgrade 14

2.3. Plasma confinement at TCV . 17

2.3.1. High confinement and Edge Localized Modes 17

2.3.2. TCV Diagnostics . 19

3. Methodology 21

3.1. Background concepts . 22

3.1.1. Types of learning . 22

3.1.2. Classification and regression 23

3.2. Deep Learning . 23

3.2.1. Neural Networks . 24

3.2.2. Training . 26

3.2.3. Overfitting and regularization 29

3.2.4. Convolutional neural networks 30

3.2.5. Recurrent neural networks 34

3.2.6. Sequence-to-sequence models 37

3.2.7. Attention mechanism . 42

3.3. Gaussian process regression . 43

3.4. Concluding remarks . 46

vii

Contents

II. Publications 49

4. Summary 51

5. Deep learning for Gaussian process soft X-ray tomography model se-
lection in the ASDEX Upgrade tokamak 55
5.1. Introduction . 56

5.2. Background . 58

5.2.1. Computed Tomography . 58

5.2.2. SXR tomography at ASDEX Upgrade 60

5.2.3. Regularization-based Methods 61

5.2.4. Deep Learning-based Methods 62

5.2.5. Gaussian Process Tomography 63

5.3. Methods . 68

5.3.1. Soft X-Ray Data . 68

5.3.2. Dataset Generation . 69

5.3.3. Deep Learning Model . 72

5.4. Results . 74

5.4.1. Neural Network . 74

5.4.2. Sample Reconstructions . 76

5.4.3. Model complexity and data fit 77

5.4.4. Discussion . 80

5.5. Conclusions . 81

6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks 85
6.1. Introduction . 86

6.2. Previous work . 88

6.3. Background . 90

6.3.1. Low, dither and high plasma confinement modes 90

6.3.2. Edge Localized Modes . 90

6.4. Methods . 91

6.4.1. Problem formulation and approach 91

6.4.2. Data and event features . 94

6.4.3. Model training . 98

viii

Contents

6.4.4. Model design . 101

6.4.5. Data split . 103

6.5. Evaluation metrics . 105

6.5.1. ROC curve . 105

6.5.2. Kappa statistic . 106

6.6. Results . 107

6.6.1. CNN . 108

6.6.2. Conv-LSTM . 109

6.6.3. Discussion . 111

6.7. Conclusions . 113

7. Plasma Confinement Mode Classification Using a Sequence-to-
Sequence Neural Network With Attention 117

7.1. Introduction . 118

7.2. Background . 121

7.2.1. Sequence-to-sequence models 121

7.2.2. Attention . 123

7.3. Methods . 124

7.3.1. Problem Formulation . 124

7.3.2. Data engineering . 126

7.3.3. Model architecture . 127

7.3.4. Dataset Preparation . 132

7.4. Results . 134

7.5. Discussion . 136

7.6. Conclusions . 139

III. Conclusions and outlook 143

8. Conclusions 145

List of Figures 149

List of Tables 153

ix

Contents

Bibliography 155

IV. Appendices 171

A. Original Publications 173

x

Part I:

Introduction and Theory

1

1. Introduction

Over the past decades, research has been carried out on developing nuclear fu-

sion as a viable source of energy for the world. Contrary to other, currently exist-

ing sources of energy (such as fossil fuels and nuclear fission), fusion promises to

be both cleaner and safer, yet also virtually inexhaustible. Generically, a nuclear

fusion reaction consists in the fusing of light atomic nuclei to produce a heav-

ier nucleus, with subatomic particles as by-products. In most fusion reactions,

there is also a release of energy, and it is this that could potentially be harvested

for humanity’s needs.

Fusion is the natural process through which stars produce energy. An example

of this is the proton-proton (p-p) cycle, which is the sequence of nuclear reac-

tions that predominates in stars like the sun. The cycle begins with the fusion of

protons (hydrogen nuclei), and ends with the release of energetic subatomic par-

ticles and helium nuclei (so-called α-particles), with several intermediate steps

involving different types of fusion reactions.

For two atomic nuclei to fuse, they must collide, so that the strong nuclear

force can bind their protons and neutrons together. This in turn requires that

the nuclei be sufficiently energetic to overcome their mutual Coulomb repul-

sion (a product of the electric charges of their protons). The kinetic energies

required for two nuclei to fuse are higher than the binding energy of their elec-

trons, and therefore, a fusion fuel is ionized, i.e. the nuclei and electrons of the

fuel’s constituent atoms separate[1]. Under these conditions, the fuel is said to

be a plasma. Generally, fusion can happen across a wide range of temperatures,

with the probability of a successful fusion reaction (the so-called fusion cross-

section) varying as a function of the velocity of the involved nuclei.

The Lawson criterion[2] establishes the conditions under which a fusion fuel

is ignited, that is, releasing energy to its surrounding environment while also

keeping enough energy to sustain the fusion processes within itself. The crite-

3

Chapter 1. Introduction

rion states that, for a fuel to be ignited, the product of a plasma’s density, its

temperature, and the rate at which it releases energy into its environment (the

so-called confinement time) should be above a certain threshold.

From a research point of view, the question is then how to best engineer fu-

sion processes in a controlled setting or reactor on Earth, with a view to energy

extraction. Such an endeavor would have several differences with regards to

stellar fusion. Firstly, the density conditions existing in stellar cores, which are

a product of the enormous gravitational pressure in those environments, can-

not be replicated. As a result, achieving the Lawson criteria to extract energy

from a plasma in a reactor would require extremely high temperatures, higher

than those in stars — on the order of 100 million degrees Kelvin[3]. In addi-

tion, a stellar core is a rather inefficient energy producer –– the fusion reactions

happening there typically have low cross-sections, i.e. nuclear collisions are,

relatively speaking, rare. This is, however, offset by the size of celestial bodies,

which means that even at low values of energy production per volume, the total

power output of a star is enormous. A working reactor would require a much

greater efficiency, i.e., it would need to produce much more energy per volume.

For these reasons, the most promising type of fusion reaction for terrestrial

energy production is that of deuterium-tritium (D-T). This reaction has a rela-

tively high cross-section and releases significant amounts of energy at a (com-

pared with other reactions) low temperature, while generating only energetic

neutrons and helium as waste products. Furthermore, deuterium and tritium

are both isotopes of hydrogen, an abundant element; deuterium is readily avail-

able on Earth, while tritium can be produced from lithium.

Several proposals exist for how to engineer fusion processes for energy extrac-

tion on Earth. One of them, that of magnetic confinement fusion (MCF), pro-

poses to use strong external magnetic fields to confine plasma inside a toroidal

chamber. Two main concepts for such chambers are currently being investigated

(the tokamak and the stellarator) which differ mainly with regards to how the

magnetic field is generated [4]. Another approach, that of inertial confinement

fusion, instead proposes to use small pellets of D-T fuel, and then heat them, for

example, with lasers, to the point where the nuclei are sufficiently energetic to

fuse. In this thesis, the problems described are relative to tokamaks.

In order to produce energy with a MCF reactor, the total amount of power

4

injected into the vessel to heat the plasma must be smaller than the output power

produced by the fusion reactions. In an ideal scenario for tokamak operation, an

initial burst of energy, provided, for example, by microwaves, neutral beams or

electric current, would heat up the fuel, turning it into a plasma and, through

the use of powerful external coils, a magnetic field would be produced to keep

the plasma in place. The energy produced by the fusion reactions would then

be harvested for human needs, but also keep the plasma ignited, allowing for

further reactions while waste products would be regularly extracted.

Unfortunately, when subject to the temperatures required for fusion, plasmas

are highly susceptible to instabilities, which can lead to fast bursts of particles

and energy that come into contact with the containment vessel. This means that,

in a typical tokamak fusion experiment, when the plasma becomes too unstable,

the experiment must be shut down to avoid damaging the reactor’s walls. Up

to the present, this has prevented the useful extraction of energy from fusion

plasmas.

From a tokamak engineering point of view, an important goal is therefore to

develop methods for keeping the plasma under control to allow for stable, long-

pulse operation of the reactor, thus preserving a positive net balance of input

versus output energy. This requires understanding the underlying physical phe-

nomena that occur during a discharge. One example of such a phenomenon is

the High confinement mode (H-mode): most modern tokamaks regularly ex-

ecute discharges where the plasma can, at some point, transition into a state

where the amount of particles and energy being transported to the outside of the

plasma edge is dramatically reduced. Yet no model exists that can completely

account for why this shift in the plasma’s behavior happens.

On the other hand, a typical tokamak contains dozens of different diagnos-

tics and measuring systems which provide information, both during and after

an experiment, about the plasma’s behaviour. These systems regularly produce

enormous amounts of data, yet much of it is not used because of its sheer vol-

ume and the difficulty inherent in thoroughly analysing it. Nevertheless, this

data frequently contains important information regarding phenomena happen-

ing in the plasma, with many events leaving clearly identifiable signatures in

signal time traces. Thus, it would be useful to have tools allowing for automated

analysis of this data, to extract new insights and information and facilitate sci-

5

Chapter 1. Introduction

entific discovery in nuclear fusion.

In the past decade, developments in the field of machine learning and arti-

ficial intelligence have led to a resurgence of interest in the area, after a long

so-called "AI winter" lasting for several decades during which the field mostly

stagnated. This change is mostly due to the emergence of new methods for

training deep learning algorithms such as convolutional and recurrent neural

networks. Though the principles behind these algorithms have been known and

studied for a long time, practical applications were always hindered by their

computational cost; it has only been recently, thanks to advancements in hard-

ware, particularly GPU[5] and parallel computing, as well as the appearance of

massive labeled datasets, that new architectures appeared which allow these al-

gorithms to realize their full potential. Deep learning algorithms can efficiently

find complex patterns and correlations in data, and are now in everyday usage

in many fields, with self-driving cars, medical image analysis, and automated

translation to name a few. Nevertheless, their usage for data analysis within the

field of fusion research remains rather limited, though interest has picked up in

the past few years.

The goal of this thesis is therefore to try to use some of the advancements of

the past few years in the field of deep learning, and apply them to current prob-

lems in fusion which could be aided by the usage of data-centric approaches. In

particular, this thesis focuses on the problem of Soft X-ray tomography in the AS-

DEX Upgrade tokamak, and on the problem of automated detection of plasma

confinement states and Edge Localized Modes in the TCV tokamak, and makes

a contribution to those problems through the usage of algorithms like convolu-

tional and recurrent neural networks, not only as stand-alone architectures, but

also as part of larger models like a sequence-to-sequence network or a gaussian

process framework for regression. The thesis is structured as follows: Chap-

ter 2 gives background information regarding TCV and ASDEX Upgrade, with

a particular emphasis on the datasets collected from the two tokamaks which

are used by the proposed models, as well as a description of the problems be-

ing modelled. Chapter 3 gives an overview of several concepts within the field of

machine learning which are required to model the problems being analysed, and

discusses convolutional neural networks, recurrent neural networks, as well as

frameworks such as sequence-to-sequence models and gaussian process regres-

6

sion. The work done is then reported as three peer-reviewed journal articles,

which are reproduced in this document. Chapters 5 and 6 refer to articles which

had already been published at the time of the submission of this thesis; chapter

7 refers to an article which had been formally accepted for publication at the

time of submission, and which was in the meantime published in its final form.

Finally, chapter 8 discusses the conclusions of this work and its potential impli-

cations. The published forms of the three papers (with journal layout) can be

found in the Appendices.

7

2. Background

A tokamak is a torus-shaped machine, inside of which fuel is heated up to tem-

peratures that ionize it, turning it into a plasma throughout most of the vessel

volume. The fuel itself is a gas mixture of hydrogen isotopes or helium, depend-

ing on the desired fusion reactions. Because a plasma is composed of electrically

charged particles (the positively-charged nuclei and electrons), it can be con-

fined through the application of a sufficiently strong magnetic field. In a toka-

mak, this field has two components: a toroidal component, imposed by external

coils, and a poloidal component, produced by the inductively driven plasma

electric current[3]. The resulting magnetic field lines, along which charged par-

ticles describe their trajectories, wind helically around the torus.

In a single deuterium-tritium reaction (which is planned to be the type of

fusion reaction happening in future industrial reactors) a helium nucleus (α-

particle with an energy of 3.54 MeV) and a neutron are produced. This neutron

carries most of the energy (14.05 MeV) released in the reaction; because it has

no charge, it is not affected by the tokamak’s magnetic field, escapes the plasma,

and is absorbed by, and heats, the vessel wall. In a future commercial reactor,

that heat would then be extracted with a coolant, and used for electricity pro-

duction. The α-particle contains the remaining reaction energy, but it remains in

the plasma, because it has a positive charge. Eventually, its energy is dissipated

into the surrounding particles through collisions (so called α-heating). In a sce-

nario of continuous tokamak operation, it would be the energy from α-particles

that would provide most of the necessary heating to preserve the plasma tem-

perature, with the remaining energy being provided by an additional, external

power source.

The wall surrounding the plasma chamber has a blanket made of a lithium

compound. When the incoming neutrons from the plasma are absorbed, they re-

act with the lithium to produce more tritium for the fusion reactions. The wall’s

9

Chapter 2. Background

plasma-facing components are usually made from an element with a high melt-

ing point, to withstand the energies of the incoming particles. In addition, in

modern tokamaks, the magnetic field lines are designed to carry waste products

of the fusion reactions to a component called the divertor, which acts as a sort

of tokamak exhaust. The divertor avoids the build-up of too many impurities,

whether α-particles or stripped ions produced by plasma-wall interactions, and

is more efficient than earlier schemes for particle removal such as limiters[6].

Figure 2.1 provides an illustration of a tokamak and its cross-section, as well as

many of the terms described up until this point.

Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field

Outer Poloidal field coils
(for plasma positioning

and shaping)

Toroidal field coils

Toroidal magnetic field

Resulting Helical
magnetic field

Plasma electric current
(secondary transformer circuit)

Separatrix
(i.e. LCFS)

Closed magnetic
surfaces

Open magnetic
surfaces

Scape-off layer

X-point

Private plasma

Strike
points

Divertor
plates

Figure 2.1.: Schematic drawing of a tokamak (left) and its 2D cross section
(right). Adapted from EuroFusion figures database and reprinted
from[7].

2.1. Fusion Experiments

A plasma discharge in a tokamak is commonly called a shot. During a shot, the

plasma can be in several different states or modes. The two most studied are the

Low (L) and High (H) confinement modes, though other ones, such as for exam-

ple the dithering (D) or intermediate mode, have also been described[8]. When a

shot begins, the plasma current is slowly increased up until a desired value, in a

phase known as the ramp-up. Once that target is achieved, the plasma is consid-

10

2.1. Fusion Experiments

ered to be in L-mode. However, given sufficient heating power, a phenomenon

occurs whereby a heat and particle transport barrier develops in the plasma edge

(the region close to the separatrix, shown on the right in Fig. 2.1). The sudden

appearance of this barrier corresponds to a switch in the plasma state from L

to H-mode; the barrier significantly reduces the transport of heat and particles

from the core (the central plasma region) to the outside of the edge. From a fu-

sion reactor design and operational perspective, this situation is ideal: once the

plasma is in H-mode, further increases in input power yield comparatively bet-

ter confinement, thus making the fusion process more efficient. The H-mode was

discovered at the ASDEX tokamak[9], but it has since been observed in almost

all tokamaks, and current plans envisage that in the future, tokamak plasmas

will regularly run in that state.

Running a tokamak continuously, however, is challenging. Instabilities can

develop in both L and H-mode plasmas that may provoke a total loss of power

and confinement, which forces the termination of a discharge. For example, dur-

ing H-mode, due to the reduced transport, there can be periodic bursts of parti-

cles and energy — edge localized modes, or ELMs — that threaten the plasma’s

stability. Therefore, any future continuously running tokamak must have the

tools necessary to accurately, and quickly, detect changes in the plasma, so as to

respond in a way that keeps it confined.

Concurrently, during a plasma discharge, contact between the plasma and the

surrounding vessel walls must be minimized. Due to the very high plasma tem-

peratures, when such contact happens, traces of the wall materials can become

diluted in the plasma, where they turn into impurities. These impurities can

cool down the plasma and limit the efficiency of the fusion reactions[10] once

their concentration level is above a certain threshold. They are not, however,

without their advantages: for example, in a tokamak, impurities can also help

reduce the power load on the divertor[11], by radiating away energy.

One way to obtain information about how impurities are distributed inside

the plasma is by studying their radiation signatures, in particular when they

are constituted mostly by elements with a high atomic number. In this case,

the radiation emitted by the impurities will be clearly distinguishable from the

background radiation emitted by the plasma. This requires obtaining the overall

emissivity distribution in a poloidal cross-section of the tokamak, which can be

11

Chapter 2. Background

done with tomographic algorithms. However, in the fusion setting, tomography

is a difficult problem because it is significantly under-determined: typically, due

to the restrictive environment of the tokamak, only a handful of line-integrated

measurements of the emitted plasma radiation are available. This means that

typical plasma tomography algorithms require some sort of regularization or

prior information. On top of that, these algorithms are often too slow to be used

for purposes of real-time analysis and control.

The issues described so far apply in general to all tokamaks. This thesis

describes work done for two of those machines: the Axially Symmetric Diver-

tor Experiment (ASDEX) Upgrade, and the Tokamak à Configuration Variable

(TCV). Both machines are mid-sized tokamaks equipped with many diagnostic

systems designed to obtain information about physical phenomena occurring in

the plasma during a discharge, with different diagnostics yielding information

about different events and quantities. The remainder of this chapter describes

the connection between plasma diagnostics and two problems: that of Soft X-ray

(SXR) tomography on ASDEX Upgrade, and that of detection of plasma confine-

ment modes on TCV. Those are the topics that were the focus of the research

presented in this work, and they are elaborated upon in chapters 5, 6 and 7.

2.2. Soft X-ray tomography at ASDEX Upgrade

Tomography generically refers to imaging the interior of a body without having

to section it. One way to achieve this is to focus some type of penetrating ra-

diation on the body of interest, and measuring the attenuated radiation values

on its opposite side — i.e., the object’s projection. The mathematical formulation

behind tomography has existed since at least 1917[12], but most applications of

tomography only came about in the 1950s and 60s with the advent of modern

computing[13].

When performing tomographic reconstruction of 2-dimensional object cross-

sections with parallel rays, the mathematical framework used by traditional

tomographic algorithms is the Fourier slice theorem[14]. It states that the

1-dimensional Fourier transform of a projection is a slice of the inverse 2-

dimensional transform of the full tomographic reconstruction. Thus, a recon-

12

2.2. Soft X-ray tomography at ASDEX Upgrade

struction can be obtained by applying this Fourier transform in succession on

many projections. In fact, it has been shown that, given an infinite number of

projections, it is possible to fully reconstruct the internal properties of any given

body. In practice, it is impossible to get an infinite number of projections, but

medical applications, for example, can rely on as many as 105 of them[15], taken

along different directions.

2.2.1. Plasma tomography

In fusion devices, as in other scientific domains, one is frequently interested in

the distribution of certain physical quantities inside the reactor, without hav-

ing direct access to them. For example, one might be interested in knowing the

distribution of the electron density or the magnetic flux surfaces[16]. At AS-

DEX upgrade, one motivating factor for the usage of tomographic algorithms is

to study the distribution of impurities in the plasma, namely tungsten, brought

on by interactions between the plasma and the vessel wall[17]. Much like the

plasma itself, these impurities radiate; however, they do so in different regions

of the electromagnetic spectrum — in particular, in the soft x-ray (SXR) region.

Therefore, obtaining the cross-sectional emissivity distribution in this spectral

region can yield information about the distribution of certain chemical elements

in the reactor. Conceptually, this problem is still tomography, because one

wishes to obtain the internal properties of a body (the emissivity distribution

inside the vessel) without direct access to it.

Nevertheless, there are some differences between plasma tomography, and

that which is done in other applications. For starters, in fusion experiments, the

tomographic projections are not obtained by focusing the vessel with radiation.

Rather, the radiation emitted by the phenomena occurring inside the vessel is, it-

self, considered the tomographic projection. This can be measured, for example,

with a bolometer system such as used in the JET[18] tokamak, or through arrays

of diodes in ASDEX upgrade[19]. However, unlike the case in other applications,

the number of measurements that can be made of the emitted plasma radiation

is rather limited: for example, in devices such as JET, the bolometer diagnostic

only has about 50 measurements (see Figure 2.2), while one is usually interested

in obtaining cross-sectional distributions with a much larger dimensionality (i.e.

13

Chapter 2. Background

number of pixels). For that reason, the tomography problem in fusion plasmas

is under-determined, meaning that a potentially infinite number of solutions for

the cross-sectional emissivity exist that can correctly match the obtained mea-

surements. Therefore, traditional plasma tomography algorithms require some

sort of regularizing factor that constrains the solution to a physically realistic

value.

Figure 2.2.: Bolometer system installed at JET (Source: EUROfusion Figures
Database)

2.2.2. The SXR diagnostic at ASDEX Upgrade

The ASDEX Upgrade tokamak has been operating since 1991. It is a medium-

sized tokamak, with a major radius of 1.65m and a minor radius of 0.5m and

a tungsten wall[20]. Though the machine is equipped with many different di-

agnostics, for the purposes of this thesis we focus on one in particular: the soft

X-ray (SXR) system.

The SXR system at ASDEX-upgrade consists of 8 cameras, each with a diode

array, that measure the radiation emitted by the plasma in the spectral interval

ranging from 2.3keV to 13keV. The cameras are all laid out in the same poloidal

plane of the tokamak, and generate a total of 208 volumes of sight through which

14

2.2. Soft X-ray tomography at ASDEX Upgrade

the plasma can be observed. In practice, the toroidal extent of the volumes of

sight is minor, and it is sufficient to consider lines of sight (LOS) instead. Each

LOS corresponds to a single sensor. The total radiation measured by a sensor, at

any given point in time, corresponds to the line-integrated values of SXR radia-

tion along its corresponding LOS.

The data from this diagnostic can be used for tomographic reconstruction of

the plasma emissivity profile. Previous work on tomography at ASDEX Upgrade

based on soft X-ray measurements was done with regularization-based methods.

In particular, the work in [21] uses a minimum Fisher-based operator[22] for the

regularization, which essentially finds solutions that tend to have strong gradi-

ents in areas of low intensity, but allows for large gradients (i.e. peaked plasma

profiles) in areas where the intensity is highest. Because the minimum Fisher

regularization is a function of the solution itself, it must be computed iteratively,

usually until a minimum of a cross-validation is reached. This approach can

produce excellent results for the reconstruction of the plasma emissivity profile,

but is too slow for real-time purposes. On the other hand, work has been done

on tomographic reconstruction for other machines using alternative frameworks

such as deep neural networks[23, 24] and gaussian process regression[25]. Yet

these methods have their own problems.

Deep neural networks can produce tomographic reconstructions at high speed

(enough for real-time analysis purposes), but discriminative neural networks

such as the ones used for tomography are unable to quantify the uncertainty in

their reconstructions. Neural networks have been shown to be able to generalize

even in very high-dimensional settings, but ultimately there are no guarantees

about the correctness of the obtained reconstructions[26]. This is a problem

inherent to this type of model, especially in a regression task. A well-chosen

train and validation set allow one to diagnose a neural network’s behavior, but

it would be more interesting to have direct uncertainty estimates on solutions.

On the other hand, Gaussian process regression allows for obtaining uncer-

tainties on the obtained tomographic profiles, and given some fixed model, can

obtain reconstructions in real-time, while offering guarantees of always finding

the best possible fit for the data given the model. This, however, opens up the

door to over- (or under-) fitting, since the chosen model might either be too tight

or too flexible for the given data. This particular problem can be solved through

15

Chapter 2. Background

R(m)

z(
m
)

Figure 2.3.: Existing tomographic reconstruction at ASDEX Upgrade, from shot
#31238 at t = 5.2841s.

Bayesian formalism: different models can be directly compared with each other

in terms of their evidence, and the best one will be guaranteed to have the op-

timal trade-off in terms of model simplicity and complexity. However, this last

step can require computationally-intense sampling techniques; even in the cases

where it is analytically solvable, it involves a series of matrix multiplications

which, in high-dimensional data settings (as is the case in plasma tomography)

significantly increase computational time, eliminating the possibility of obtain-

ing tomographic reconstructions in real-time.

Thus, it would be interesting to develop a framework where the advantages of

Gaussian process regression can be used together with the advantages of deep

learning for tomographic reconstruction, while eliminating their respective dis-

advantages. Chapter 5 delves into further detail on the work done in this regard,

as well as giving a more thorough description of the signal (SXR) data used.

16

2.3. Plasma confinement at TCV

2.3. Plasma confinement at TCV

Shortly after a tokamak discharge begins, the plasma is considered to be in Low

(L) confinement mode. In this regime, the plasma’s poloidal density profile is

rather flat, because there are significant losses of particles and energy into the

scrape-off layer[27]. However, at the TCV tokamak, as in others, given suffi-

cient heating power, a phase shift can occur in the plasma: the appearance of

the so-called edge transport barrier (ETB). This corresponds to a spontaneous,

self-organizing phenomenon of the plasma itself, and is so called because this

barrier significantly reduces the transport of particles and energy to outside of

the plasma. The emergence of the ETB corresponds with the appearance of a

large gradient in the plasma emissivity profile in the edge region. As time pro-

gresses, this gradient eventually spreads to the inner regions of the plasma. At

that point, for the same input power, the plasma can store more energy and

particles; it is for this reason that this new state is called high (H) confinement

mode. Compared to L-mode, a plasma in H-mode can have up to double the

confinement time[28].

In addition, it is also possible to observe an additional, intermediary state

— the so called Dithering (D) mode. During a discharge, the ETB which char-

acterizes the H-mode can collapse and reappear many times, with the plasma

correspondingly switching between Low and High confinement. The plasma is

considered to be dithering when the appearance and collapse of this barrier oc-

cur in quick succession, with a very high frequency, because it no longer exhibits

characteristics of either L or H-mode.

2.3.1. High confinement and Edge Localized Modes

It is known[8] that the development of a tokamak plasma from Low (L) to High

(H) confinement mode can be provoked by the application of a sufficient amount

of heating power on the ionized gas (the so-called power threshold). However,

many factors, such as for example the size of the tokamak and the plasma den-

sity[29], can influence the value of this threshold. The number of those factors

is large enough, and the interactions between them complex enough, that to

this day, no thorough explanation exists for why a plasma transitions from L to

17

Chapter 2. Background

H-mode. This can be particularly problematic for the operation of future ma-

chines. Current assumptions are that they will regularly run in H-mode, due to

its enhanced confinement of energy and particles. However, due to the afore-

mentioned problems, it is difficult to estimate, a priori, what the H-mode power

thresholds for those machines will be. In addition, there are various explana-

tions regarding the underlying microscopic phenomena responsible for the ap-

pearance of the ETB. One commonly accepted explanation[30] is that the tran-

sition into H-mode is caused by flows of particles that dampen the otherwise

existing turbulence, thus increasing the overall stability and confinement of the

plasma. Nevertheless, the exact mechanisms vary from experiment to experi-

ment and from machine to machine, and no overarching theory exists. Attempts

have been made to derive power scaling laws based on past experiments across

multiple machines that might indicate what power thresholds might be neces-

sary to trigger the H-mode in future experiments. Unfortunately, such power

scaling laws have a high degree of uncertainty[31].

Due to the enhanced confinement of the H-mode and the associated increase

in the plasma density in the edge region, periodic expulsions of particles and

energy can occur, which are the so-called edge localized modes (ELMs). In this

case, the H-mode is said to be ELMy, though ELM-free H-modes also exist[32].

ELMs can be useful because they allow for the periodic removal of impurities

from the plasma, but they can also provoke very high power loads, particularly

on certain tokamak components such as the divertor. Broadly, ELMs can be

placed into three categories. Type I ELMs correspond to bursts that result from

the plasma being close to its stability limit, and their frequency increases with

input power. Type II ELMs have a lower intensity, and their frequency does

not increase as a result of larger heating power. Type III ELMs correspond to

the plasma being significantly below its stability limit, and their frequency de-

creases as heating power increases.

When the input power is close to the L-H power threshold, a clear transition

from L to H-mode does not always happen immediately. In this case, a series

of oscillating fluctuations in the plasma edge density occur. These cycles can be

easily confused with the ELMs that are characteristic of the H-mode, particularly

type III ELMs, due to the signatures they imprint on data, and also due to the

fact that they occur for roughly the same input power values. Indeed, some

18

2.3. Plasma confinement at TCV

literature refers to this state as a "dithering H-mode"[8]. However, unlike the

H-mode, when the plasma is dithering, its confinement compared to L-mode

only improves marginally[33], a fact which justifies Dither’s classification as a

separate confinement mode.

2.3.2. TCV Diagnostics

It would be interesting to have algorithms and methods that allow for automated

detection or prediction of ELMs, and for real-time monitoring of the plasma to

detect changes between different confinement modes. Such algorithms could

then be used by feed-back systems to steer the plasma into an operational space

that maximizes confinement, for example through periodic, controlled expul-

sions of impurities and excess energy[34].

Changes between different plasma confinement modes, as well as ELMs, leave

signatures in diagnostic time traces. These signatures are usually mostly visi-

ble in the emitted plasma radiation[33]. When the plasma switches from L to

H-mode, the emitted radiation drops noticeably, tough the actual slope of the

descent (i.e. the speed with which the transition happens) can vary depending

on the discharge. Similarly, ELMs can usually be seen as a series of spikes in

the emitted radiation. Dithers can be observed as a series of oscillations, very

similar to the highly frequent spikes of type III ELMs.

Like ASDEX Upgrade, TCV is a medium-sized tokamak[35], featuring a major

radius of 0.88m and a minor radius of 0.25m. Its relatively high height-to-width

ratio makes it an ideal machine for experimenting with varying plasma shapes;

this might be important for future tokamak operation as some shapes might be

better suited for efficient machine operation. At TCV, experts routinely use 4

different diagnostics when determining the plasma’s confinement state and to

pinpoint ELMs, on a post-experimental basis. These are the plasma’s electric

current, its electron density, its magnetic field, and the emitted radiation in a

certain region of the spectrum. There has been previous work with using data-

based approaches, using these same signals, for detection of switches between

confinement states, and of ELMs. Many of those approaches, however — such as

threshold based detectors[36, 37, 38], support vector machines[39, 40, 41, 42],

and Kalman filters[43] — have several limitations. This is especially true when

19

Chapter 2. Background

comparing them to advanced deep learning methods like recurrent and convo-

lutional neural networks, which excel at processing very high-dimensional data

such as the timeseries involved in this task, and even more so when compared to

generative deep learning models such as sequence-to-sequence networks. This

motivates the use of those approaches for this task. That work, as well as a thor-

ough description of the data which was here briefly discussed, can be found in

Chapters 6 and 7.

20

3. Methodology

Many problems in engineering deal with the automation of systems. Many sys-

tems, while being complex, can nevertheless be handily described with rule-

based approaches that constitute satisfactory solutions; for example, a robot

working in a factory can be programmed with a set of instructions to do repeti-

tive tasks.

However, many problems have a level of complexity which makes it difficult,

if not impossible, to use this sort of approach. A typical example used in many

tutorials in machine (and in particular, deep) learning is the task of designing an

algorithm capable of distinguishing between different types of images — for ex-

ample, distinguishing between two different types of animals in a picture (such

as a dog and a cat). While this task is trivial for a human, it is not obvious how

to design a rule-based, automated, system to carry it out. Such a system would

require an extensive compilation of the inherent features of each class of animal,

and furthermore, many of those features overlap with each other in non-trivial

ways. For example, one could make the rule that a dog has features like eyes, ears

and a nose — but so does a cat. One could then try to specify more fine-grained

characteristics of those features for each type of animal, but then, how would

one explicitly enunciate the differences between the eyes of a dog, and those of a

cat? In this and many other problems, the amount of rules and exceptions is so

large that one cannot have any hope of enunciating them thoroughly.

Fortunately, modern machine learning algorithms can solve this problem by

attempting to find statistical patterns in data and discover any underlying fea-

tures and rules by themselves. The specifics of each machine learning algorithm

may vary, but the basic common theme is that these algorithms learn rules auto-

matically through experience, in a process known as training. Training involves

looking at many data samples, with the expectation that any existent statistical

patterns in the data can be picked up by the algorithm, and later, successfully

21

Chapter 3. Methodology

used to accurately make predictions about new, unseen data.

This chapter begins with an overview of several topics transversal to data anal-

ysis and machine learning. This is followed by an overview of the particular type

of machine learning algorithm — deep neural networks — which were used ex-

tensively for the work detailed in this thesis. Finally, the chapters wraps up with

an overview of Gaussian process regression, an algorithm which, while not qual-

ifying as machine learning per se, can also be employed in data analysis tasks,

and was also used for work done in the context of this dissertation.

3.1. Background concepts

3.1.1. Types of learning

Broadly, within the field of machine learning, three different branches can be

said to exist: supervised learning, unsupervised learning, and reinforcement learn-

ing[44].

Supervised learning refers to the process of training an algorithm on labeled
data. An example of a labeled data point would be an image, and a correspond-

ing encoded value (for example, a probability between 0 and 1) indicating what

is present in the image: a dog or a cat. In a typical supervised learning task,

an algorithm would look at many data samples of such images and learn the

existing patterns that allow for an accurate prediction of the animal therein.

Examples of supervised learning algorithms include support vector machines,

regression trees, and many neural network architectures such as convolutional

neural networks.

Unsupervised learning, on the other hand, requires no labeled samples. Typi-

cally, in this setting, one is interested in discovering existing patterns or features

in the data. This can be done, for example, through a process of dimensionality

reduction that attempts to force an algorithm to encode individual samples in

a lower-dimensional space. The expectation is that forcing an algorithm to find

such a lower-dimensional representation of the data entails finding the most

salient features and patterns in it; this is the idea behind unsupervised neu-

ral network algorithms such as autoencoders. Other examples of unsupervised

learning algorithms include clustering and principal components analysis[45].

22

3.2. Deep Learning

Finally, reinforcement learning deals with actions to be taken as a function

of input data. In this case, an algorithm can be thought of as an agent in an

environment, who must make choices with regards to both its input, and its cur-

rent state. Examples of such algorithms include Q-learning, SARSA and Deep

Q-learning algorithms.

3.1.2. Classification and regression

Two distinct classes of problems typically exist within supervised machine

learning: problems involving classification, and problems involving regression.

Classification problems describe situations where the output variable can be

modeled as a series of discrete, distinguishable classes. One example is the afore-

mentioned task of predicting what type of animal exists in an image. The clas-

sification can be binary (class A vs. class B), or multi-way (i.e., k distinct classes

exist). These variables can be modelled in a variety of different ways; a typical

way to do so is to use so-called ”one-hot encoding”, whereby a variable is en-

coded as a probability distribution, with a probability of 1 for the class to which

the variable belongs, and a probability of 0 for all other classes.

Regression, on the other hand, deals with problems where the output variable

is assumed to be continuous. An example here is the interpolation of a real-

valued function (see Figure 3.1).

3.2. Deep Learning

Deep learning has emerged as an umbrella term broadly describing machine

learning algorithms based on deep neural networks. Although machine learn-

ing and neural networks have been objects of research for a long time, it has

only been recently that the more specific field of deep learning has emerged[46].

The main reason for this is a series of advancements, in the past years, which

have enabled the appearance of neural network architectures with many layers

(hence the term ”deep”). This leap was made possible by advances in hard-

ware, namely GPU computing, which enabled training and inference on new

data within a reasonable time, but also by software developments such as new

activation functions, and most importantly as far as supervised learning is con-

23

Chapter 3. Methodology

Figure 3.1.: Classification versus regression. In the figure on the left, we are in-
terested in finding what class an input point maps to (either the class
of circles, or the class of squares). On the right, we are interested in
mapping an input to a real-valued output.

cerned, the appearance of massive labelled datasets with thousands, or millions,

of samples.

3.2.1. Neural Networks

The central idea, and indeed the main component, of any neural network is the

artificial neuron. In the most general formulation, a neural network consists in

a series of layers of many neurons, with units in successive layers connected to

each other. Typically, layers that neither process network inputs, nor produce

network outputs (i.e. in the middle of a network) are called hidden layers. Many

different types of layers exist; for now, we will limit ourselves to discussing fully

connected layers. Sections 3.2.4 and 3.2.5 describe convolutional and recurrent

layers and networks.

Roughly inspired by the functioning of biological neurons, an artificial neuron

receives a vector of inputs x from the neurons of the previous layer to which it is

connected. Each of these connections has an associated weight w, which is used

to compute a weighted sum of the inputs. To this sum, a bias term b is added,

and the neuron then merely computes its output o as o = φ(wT x + b), where φ is

the neuron’s pre-defined activation function. This is illustrated in Figure 3.2.

Many types of activation functions exist, but non-linear activations are usu-

24

3.2. Deep Learning

𝜙

𝑥2

𝑥1

𝑥3

𝑥𝑛

… 𝑤𝑛

𝑤3

𝑤2

𝑤1

𝑏

1

𝑜

Figure 3.2.: Schema of an individual neuron. xk denotes an output from a neu-
ron in the previous layer, wk denotes the weight of the connections,
b denotes the bias, and o denotes the output of the represented neu-
ron.

ally chosen to allow a network as a whole to approximate non-linear functions.

In many modern neural network architectures, this is frequently the rectified

linear unit (ReLU) function, defined as φ(x) = max(0,x). Either way, activation

functions must be differentiable, for reasons we will see later on.

In a fully connected layer, all neurons connect to all the outputs in the pre-

ceding layer; an example of this can be seen in Figure 3.3, where the hidden

(yellow) layer neurons all map to the neurons in the first (blue layer). When sev-

eral fully connected layers such as this are stacked together, the resulting neural

network architecture is typically called a multi-layer perceptron. As we will see,

stacking other types of layers, with different types of neurons, yields different

neural network architectures; different architectures can be used to efficiently

model different problems.

Although an individual neuron, by itself, performs a relatively simple com-

putation, the composition of many layers of non-linear neurons in a network

creates a powerful model, which is, in theory, a universal function approxima-

tor[47]. Thus, for any classification or regression task, a deep neural network

can, at least in theory, and given an appropriate training set, learn the under-

lying, unknown, function which maps inputs to their correct outputs; this de-

pends on the network weights and biases having the necessary values that gener-

ate that function. Finding those values requires that, like any machine learning

algorithm, a neural network be trained. In addition, when designing a neural

network, one must make an adequate choice for its hyperparameters. These are

25

Chapter 3. Methodology

manually set by the designer and ultimately depend on the task being modeled;

they express choices made about the desired type of model and can include, but

are not limited to, how many layers a network has, or what activation function(s)

it uses.

……

Figure 3.3.: Schema of a fully connected neural net (multilayer perceptron) with
three layers: to the left, the input layer; in the middle, a single hid-
den layer; to the right, an output layer with a single neuron.

3.2.2. Training

A machine learning task can be described as attempting to discover, or approxi-

mate, an unknown (but assumed to exist) function F(x); that could be for exam-

ple the function, or set of rules, that correctly maps all possible images of cats

and dogs to their respective animal class. A machine learning algorithm can be

conceptualized as the family of functions from which F(x) is drawn, with each

individual function fθ(x) in that family corresponding to a particular machine

learning model, specified by its individual set of parameters θ. These param-

eters can be, for example, the weights in a linear regression model; in a neural

network, they are the network’s weights and biases. The goal of training a neural

network is to use a finite set of datapoints drawn from F(x) to find the network

26

3.2. Deep Learning

weights that specify the model fθ̂(x), which is the best possible approximation

of F given the data.

Consider a dataset D = {(x1, y1), ..., (xn, yn)}, where n is the number of elements

in D, and each element (xk , yk) in D is a mapping between two values. In the

example above, x would be a vector of images, while y would be a matching

vector whose entries would be values denoting an animal class (for example,

yk = 0 for a dog, and yk = 1 for a cat).

We now treat D as the training set for a neural network. Training the network

is done in a series of discrete steps; at each step, a different model is evaluated

through a loss function L(θ), which returns a score indicating the mean distance

between y and fθ(x), the model under consideration. For example, the loss func-

tion can be a mean squared error:

L(θ) =
1
n

n∑
k=0

(yk − fθ(xk))
2. (3.1)

In practice, many different loss functions exist; the appropriate choice of L

depends on the underlying problem that is being modelled. The goal of the

training process is to find

θ̂ = argmin
θ

L(θ)

i.e., finding the parameters θ̂ of the model fθ̂(x) that minimizes the loss func-

tion and best approximates y, which is assumed to also best approximate F(x).

Finding θ̂ can be done with gradient descent, in conjunction with backpropagation.

Intuitively, the idea behind gradient descent is to, at each step t of the training

process, compute the gradient ∇L, i.e., the partial derivatives of the loss function

L with respect to all of the network’s parameters θ. Through this process, at

each training step, the gradient descent algorithm computes the direction in

the network parameter space for which the loss function’s slope is steepest, and

then updates the network parameters in that direction. The update rule for the

network parameters is simply

θt+1 = θt +∆θ,

27

Chapter 3. Methodology

where

∆θ = −η∂L(θ)
∂θ

.

Here, η is a pre-specified learning hyperparameter, the learning rate, and con-

trols the size of each step ∆θ. The partial derivatives ∂L(θ)
∂θ must be computed

for all the parameters in the network; it is here that backpropagation comes

into play. At any given training step, the first thing to be computed is the loss’s

derivative with respect to the network’s outputs. Assuming a mean squared

error loss function as described in Equation 3.1, and a network with a single

neuron in the final layer with output o = φ(wx+ b), that derivative is simply

∂L
∂o

=
∂
∂o

(y − o)2 = 2(y − o).

This value can then be recursively backpropagated layer by layer, via the chain

rule, to compute the derivative of L with respect to all of the network’s param-

eters. For example, if the activation function φ of the neuron in the final layer

is merely a linear mapping, then the derivative of the loss with respect to that

neuron’s weight w would be

∂L
∂w

=
∂L
∂o

∂o
∂w

= 2(y − o)x.

Derivatives for other weights and biases, in other layers, would be similarly

recursively computed; here we show an example with a single output neuron,

but this process can be extended for networks with many neurons and layers.

From here, it also becomes clear why activation functions must be differentiable.

The idea is that in consecutively repeating this process, one will eventually

approach a minimum of the loss function and therefore, the desired function

fθ̂(x). In general, in machine learning, the best one can achieve is to find a local

(but not a global) minimum of the loss, though in practice, in many settings, this

is enough to achieve good results. Many specific variations of gradient descent

exist; for example, stochastic gradient descent computes parameter updates on

randomly selected batches of training data, instead of the entire training set,

and is proven to be more efficient than simple gradient descent, while achiev-

ing in most cases the same results[48]. Other optimization algorithms include

28

3.2. Deep Learning

Adagrad, Adadelta, and RMSProp; a proper comparison between, and descrip-

tion of, all these algorithms is beyond the scope of this thesis but can be found

in[45].

3.2.3. Overfitting and regularization

In the previous section, we assumed that the vector y in D contains enough

information about the underlying, but unknown, function F(x), such that we

can compute a good approximation fθ̂(x) of F. Unfortunately, this assumption

is often not valid; in many problems, the number of points in the training set

is not sufficient to cover all possible regions of F, and as a result, the solution

fθ̂(x), while minimizing the loss function on the training set, can diverge from

the function we are interested in approximating. In this case, a machine learning

model is said to be overfitting: while it can very accurately map inputs to outputs

in the range of its training set, it cannot do so in the data domain outside of that

set.

Typically, a way to monitor whether a model overfits its training data is to hold

out another dataset, the validation set, which is not used for training; instead, it

is merely used to monitor training. This can be done by checking whether, as

the training progresses, the loss scores for the train and validation data remain

similar. If the losses start to diverge significantly, this is good indication that the

model is overfitting.

Several strategies exist to prevent overfitting. A simple strategy is that of early
stopping: once the train and validation losses start diverging, training is stopped,

and the best model up to that point is kept. Another option is to use regulariza-

tion: a penalty term R(θ) is introduced into the loss function, which becomes

L(θ) =
1
n

n∑
k=0

(yk − fθ(xk))
2 +λR(θ). (3.2)

In this case, the regularization function R can be, for example, the L1 or L2

Euclidean norm of θ. The choice of regularization function can yield different

results. The factor λ controls the regularization strength; too strong regulariza-

tion can prevent the discovery of a local minimum for the loss function (in which

case a model is said to underfit); too weak regularization might end up having

29

Chapter 3. Methodology

Figure 3.4.: Examples of overfitting (orange line), underfitting (green line) and
a good fit (black line) to the underlying data (blue points are the
training data, orange points are the validation data)

no effect in stopping overfitting.

Finally, one anti-overfitting strategy typically used with convolutional neural

networks (which we detail in section 3.2.4) is the usage of dropout[49]: in this

case, during training, certain parameters of the network are randomly switched

off and on. In theory, this means that during training, the network cannot rely

too much on any given parameter to accurately produce a prediction, since that

parameter is sometimes unavailable. The idea is that this forces a network to

find parameter values that are not too finely-tuned or restrictive, and in so doing,

converging to a model which can generalize to outside the training set.

3.2.4. Convolutional neural networks

Different problems generate different types of data, in particular with regards

to the correlations present. For example, in an image, any correlations can be

expected to be mostly localized: in the picture of a dog, the feature "nose" can

not be expected to be spread out in the image, but rather, it should be restricted

to a certain region, with the pixels in that region being correlated to each other.

Conversely, one can expect little correlation between pixels which are far apart.

Another example is the classification of what number is present in an image,

such as in the MNIST[50] digit dataset: when determining what number is in

30

3.2. Deep Learning

an image, the individual features that make up a number can be assumed to be

localized (see Figure 3.5).

Figure 3.5.: Sample images from the MNIST digit database.

Many different types of architectures of neural networks exist, each with a

different area of application. For data with localized correlations, deep con-

volutional neural networks (CNNs) have achieved the best performance[51].

Roughly inspired by the functioning of the human visual cortex, CNNs are typi-

cally composed of a series of convolutional layers interspersed with pooling and

dropout layers, with some fully connected layers at the end. The first layer in the

network receives the input, and the layers after it look for spatial features. Gen-

erally, the first layers look for lower level features (for example, eyes and nose in

the picture of a dog) while the final layers combine those to detect higher level

features (a dog’s face).

In a convolutional layer, the neurons do not all individually connect to all

inputs from the previous layer. Instead, the neurons all share the same kernel (i.e.

weights), and the kernel only links certain neurons to certain inputs. To process

the entire input, the kernel slides across it, activating in the regions where a

feature of interest has been found. This property of convolutional layers, called

weight sharing, cuts down the number of network parameters significantly when

compared to a fully-connected network, and is one of the reasons behind the

efectiveness of CNNs when processing image data.

The data processed by a CNN can have varying dimensionalities; furthermore,

regardless of the data dimensionality, one can frequently describe the data as

possessing several channels. For example, an image can be decomposed into its

RGB components; in this case, the data fed to a CNN would have a depth of

3 (red, green blue), plus a dimensionality of 2, requiring 2-dimensional convo-

lutions for processing. In a signal processing task, the data could have several

31

Chapter 3. Methodology

10 × 10 × 3 8 × 8 ×2

Figure 3.6.: Example of the operation performed by a CNN layer. 2 different
3× 3× 3 kernels or filters are applied on the input (the blue shape).
The kernels slide across the input, producing two outputs of smaller
dimensionality (the convolution operation decreases the input size).
Each output neuron in the second layer (i.e. the green and orange
grids) processes a different region of the input, convolved by the ker-
nel.

channels, corresponding, respectively, to different signals at the same moment

in time, though each signal itself would merely be a 1-dimensional vector of

scalar values, and thus, only 1-d convolutions would be required. For example,

Figure 3.6 shows two filters being applied on a 3-channel input. In any case, re-

gardless of the data dimensionality, CNNs are particularly suited for processing

data with localized correlations.

One assumption behind the data processed by CNNs is that of translational

invariance: the position of a certain feature (i.e., a certain localized correlation)

in the data is not as important as the existence of the feature itself. To deal

with this, CNNs frequently make use of pooling layers. These layers are not

trained, but rather, are responsible for performing pre-defined operations on

the outputs of the convolutional layers. For example, a max pooling layer will,

upon receiving the outputs from a convolutional layer, select (and pass on to

the next layer) only a fraction of the outputs with the largest activations, while

discarding the remaining values. The idea here is that this operation eliminates

information about feature location, while at the same time, selecting only the

32

3.2. Deep Learning

most salient features (see Figure 3.7). This further cuts down the number of

network parameters, helping to avoid overfitting.

0 2 3 1

2 5 6 2

4 9 9 7

1 5 8 8

5 6

9 9

Figure 3.7.: Example of a max pooling layer operating on a 1-channel 2×2 input.

State of the art CNN architectures typically contain many convolutional and

pooling layers; for example, the VGG net architecture[52] contains 5 successive

convolutional and pooling layers, with each layer having hundreds of kernels.

Most of these models achieve excellent results in supervised classification tasks

on public image datasets.

224 × 224 × 64

112 × 112 × 128

56 × 56 × 256

28 × 28 × 512

14 × 14 × 512

7 × 7 × 512 1 × 1 × 4096

1 × 1 × 4096 1 × 1 × 1000

Figure 3.8.: Schema of the VGG network architecture. Blue denotes convolu-
tional layers, green are pooling layers, gray are dense layers. Notice
how as one moves deeper into the CNN, the layers become smaller
and smaller.

We have so far given examples of using CNNs for types of data where points

are considered to be independent from each other. In some domains, this inde-

pendence assumption is not valid, and one can actually benefit from modelling

the data not as a series of points which are independent from each other, but

33

Chapter 3. Methodology

rather, as elements or steps of a sequence that are correlated. An example of se-

quential data is that of a film, where a single frame does not exist in isolation,

but instead, one can assume that a continuity, and therefore a correlation, exists

from one frame to the next (even if a frame itself is just an image). It contrasts

with random pictures of dogs, where one can assume that there is no correlation

between different images. The notion of time is critical to make the subtle, yet

nevertheless important, distinction between non-sequential and sequential data:

with sequential data, one assumes that whatever patterns exist are not limited

to a data point in itself; rather, these patterns are spread out across time (i.e.

across the sequence). Thus, the accurate output for a certain point (step) in time

depends not only on what occurs in that instant, but also on what occurs in other

timesteps, particularly in the past.

As it turns out, CNNs can be adapted to process sequential data like this as

well[53]; one merely has to model time as another input dimension, and can

then design a corresponding CNN architecture. However, CNNs excel mostly

in discovering localized features in data, and when used for sequence process-

ing, they can be inefficient when dealing with sequences whose time dimension

is very long, and when the temporal correlations are very far apart from each

other[54]. As we will see in section 3.2.5, recurrent neural networks are a type

of neural network architecture that is designed to deal precisely with these set-

tings.

3.2.5. Recurrent neural networks

Many types of sequential data exist. One good example is that of natural lan-

guage: when reading a text, the meaning of a word depends not only on the word

itself, but also on the wider context and meaning of the words and sentences not

only before, but potentially also after it. Unlike CNNs, recurrent neural net-

works (RNNs) explicitly assume that their input data is sequential (see Figure

3.9), and that any correlations can be spread out across time, and therefore are

ideal for processing this type of data. They can be used, among other tasks, to

map an entire sequence into a single output (for example, performing sentiment

analysis on a text), or to map a sequence into another sequence (for example,

performing automated translation)[55].

34

3.2. Deep Learning

Time

Si
g
n
a
l

Figure 3.9.: Example of sequential data. The events in the signal (shown as the
two spikes) are separated by a certain amount of time, yet they are
nevertheless correlated with each other.

The key behind the functioning of RNNs is the recurrent neuron. Recurrent

neurons have an internal state vector, normally denoted h, where they store in-

formation about past parts of the sequence which they are processing. Recurrent

neurons work by reading their input data in a series of timesteps; at each step,

they update their state vector to reflect the information they just saw; at every

new step, when processing the input, they use the information stored in the

state vector to process the incoming data, and in so doing, condition their out-

put to the past inputs (Figure 3.10). The actual calculations performed at each

timestep, for a simple recurrent neuron, are[56]:

ht = φh(Whxt +Uhht−1 + bh)

yt = φy(Wyht + by)

where:

• ht is the hidden state vector at t;

• φh and φy are activation functions;

• xt and yt are the input and output for timestep t;

• and, Wh,Wy ,Uh,bh and by are trainable parameters.

Like any other artificial neuron, recurrent neurons must be trained. As it turns

out, a modified backpropagation algorithm can also be applied to recurrent neu-

rons; in this case, the algorithm is called backpropagation through time (BPTT).

The name is due to the fact that, when training recurrent neurons, the flow of

gradients occurs not only from output to input, but also into the past, such that

the weights W and U can be updated.

35

Chapter 3. Methodology

ℎ

𝑦

𝑥

ℎ𝑡

𝑦𝑡

𝑥𝑡

ℎ𝑡+1

𝑦𝑡+1

𝑥𝑡+1

ℎ𝑘

𝑦𝑘

𝑥𝑘

= …

Figure 3.10.: Schematic representation of unrolled RNN processing an input of
k timesteps. At each timestep t, the output of the network depends
not only on the input xt, but also on the state vector ht−1 produced
after processing the previous timestep.

Recurrent neurons can be stacked into layers to create recurrent networks.

These networks can contain, in addition to the recurrent neurons, fully con-

nected (and non-recurrent) layers for additional processing, or convolutional

layers for detecting short-term correlations in data. In particular, convolutional

recurrent neural networks have been used[57] for tasks where one expects to

find both spatial and temporal correlations in data; in this case, convolutional

layers can extract and encode localized correlations, while the recurrent layers

use those encodings to extract longer-term correlations (see Figure 3.11).

ℎ𝑡

𝑦𝑡

𝑥𝑡

ℎ𝑡+1

𝑦𝑡+1

𝑥𝑡+1

ℎ𝑘

𝑦𝑘

𝑥𝑘

…

Figure 3.11.: Schematic representation of a convolutional recurrent network.

Unfortunately, in a simple recurrent neuron, the BPTT algorithm tends to pro-

duce vanishing or exploding gradients, especially when a network has to process

36

3.2. Deep Learning

long sequences. If a single timestep has a small gradient, this value will be recur-

sively propagated into the past timesteps, meaning that the network will have

difficulty updating its weights; if on the other hand a step has a large gradi-

ent, it will recursively increase in size as it is backpropagated, generating large

instabilities during training[46].

For this reason, more advanced architectures have been proposed for recur-

rent neurons. One of those variants is the Long Short-Term (LSTM) memory

unit[58]. LSTMs add a gating mechanism to the recurrent neuron’s architecture,

which essentially has the task of deciding, at each timestep, what information

to drop, and what information to preserve for the future; this prevents the van-

ishing and exploding gradients problem. Any of the network architectures men-

tioned before can be modified to use LSTM units instead of simple recurrent

neurons.

3.2.6. Sequence-to-sequence models

When mapping a sequence to another sequence — for example, when perform-

ing natural language translation — one can define the goal of a recurrent neural

network as that of finding the most likely output sequence ŷ = (ŷ1, ŷ2, ...ŷN) given

an input sequence x = (x1,x2, ...,xN) (where n is the sequences’ size). The output

sequence ŷ is a sample taken from the joint probability distribution P (y1, y2, ...yn)

conditioned on the input sequence:

(ŷ1, ŷ2, ...ŷN) = argmax
y1:N

P (y1, y2, ..., yN |x1:N).

Vanilla RNN architectures, such as convolutional LSTMs, can do this task

well[59], but they have several limitations. For example, their architectures

mean that the input and output sequences must be of the same length (see Fig-

ure 3.12). In natural language translation, this can be problematic (different lan-

guages might require a different number of words to express the same meaning).

It is for this task that sequence-to-sequence (seq2seq) models were developed.

Generically, seq2seq models are composed of two parts: an encoder and a de-
coder. This thesis focuses on models built with RNNs, but for example, encoders

can also be built with CNNs.

37

Chapter 3. Methodology

A source sentence

R
N
N

Timesteps

1 2 3

A target sentence

𝑥

𝑦

ℎ1 ℎ2

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

Figure 3.12.: RNN architecture for sequence-to-sequence mapping.

In seq2seq models, the encoder is responsible for receiving the input sequence,

and mapping it into a latent-dimensional encoding; the dimensionality of this

encoding is a model hyperparameter to be tuned according to the task being

modeled. This encoding can be thought of as a representation of the underlying

correlations present in the inputs. The decoder is then responsible for produc-

ing an appropriate output distribution, subject to the encoding (see Figure 3.14).

When both the encoder and decoder are RNNs, they can be jointly trained as any

other neural network. This separation into two components allows seq2seq mod-

els to produce misaligned outputs (i.e. target sequences with a length different

from their inputs), which is particularly suited for language translation.

En
co
d
er ℎ𝑒1 ℎ𝑒2

A source sentence

1 2 3

𝑥

𝑥1 𝑥2 𝑥3

Encoding Timesteps

<end>

D
e
co
d
er

Decoding timesteps

1 2 3 4

𝑦4

ℎ𝑑1 ℎ𝑑2 ℎ𝑑3

A target sentence𝑧

𝑦1 𝑦2 𝑦3

ℎ𝑒3

Figure 3.13.: Encoder-decoder architecture for sequence-to-sequence mapping.
Encoder and decoder are here assumed to be recurrent neural net-
works. The elements of output vector y are the tokens for which
the decoder gives highest probability at each decoding timestep.

38

3.2. Deep Learning

When the encoder receives a new sequence x, with s source timesteps, it pro-

cesses that sequence like any normal recurrent network; for example, the en-

coder can itself be a convolutional RNN. As the encoder reads the input sequence

step by step, it updates its internal hidden state vector h. After the final input

step has been processed, the final hidden state, hs, is an encoding of all the in-

formation found in the source sequence.

The decoder is then initialized such that its first hidden state is equal to hs;

from there on, at each timestep, the decoder updates its own internal state while

generating an output sequence of target length t, a length which may or may not

be equal to s.

One additional feature of vanilla RNNs is that they implicitly assume inde-

pendence between past and future outputs: an output value yk is conditioned

only on the inputs (x0,x1, ...,xk) until timestep k. In practice, this means that a

simple RNN architecture cannot reason on different possibilities for its past de-

cisions: the output yk−1 has no bearing on yk (see Figure 3.12). This is also the

assumption made in the simplest class of seq2seq models.

In many settings, this independence assumption on the joint output proba-

bility distribution P (y1, y2, ...yn) is not necessarily problematic; nevertheless, in

some problems, it is interesting to drop it. This way, an output yk no longer

depends only on the inputs up to that point, but also on the outputs (y1, ..., yk−1)

produced until that point. Seq2seq models allow for easily modelling this as-

sumption, by making the decoder autoregressive, i.e., feeding it with its own

past inputs.

Formally, in this case, the probability of a single timestep output yk is no

longer modelled as

P (yk |x1:k) (3.3)

but rather, as

P (yk |x1:k , y1:k−1). (3.4)

For the joint distribution of possible outputs, this yields

P (y1, y2, ..., yN |x1:N) = P (y1|x1)P (y2|x1:2, y1)...P (yN |x1:N , y1:N−1)

39

Chapter 3. Methodology

=
∏
k

P (yk |x1:k , y1:k−1). (3.5)

This distinction is important: with the independence assumption (expressed

in Equation 3.3), one can only produce a single output sequence for a given in-

put. Removing that assumption (as expressed in Equation 3.4), it is actually

possible to generate an entire probability distribution of outputs for a single in-

put; from that distribution, one can then collect samples of different output se-

quences, and explicitly choose the one with the highest probability. In addition,

when sampling, it is possible to explicitly select only sequences that are known

to be valid, subject to some expert domain knowledge; details about how this

was done in this work can be found in chapter 7. In this case, a seq2seq model

now directly computes the joint probability distribution of outputs, while an ad-

ditional algorithm, such as for example a beam search algorithm, is responsible

for drawing high-probability samples from that distribution.

ℎ𝑒3

En
co
d
er ℎ𝑒1 ℎ𝑒2

A source sentence

1 2 3

𝑥

𝑥1 𝑥2 𝑥3

Encoding Timesteps

A target sentence<start>

<end>

D
e
co
d
er

Decoding timesteps

1 2 3 4

𝑦4

𝑦1 𝑦2 𝑦3

ℎ𝑑1 ℎ𝑑2 ℎ𝑑3

A target sentence𝑦

𝑦1 𝑦2 𝑦3

Figure 3.14.: Seq2seq architecture with an autoregressive decoder.

The feeding of past outputs as new inputs allows the decoder to reason over

several possible sequences in parallel, and it is this that allows it to model the

whole joint probability distribution defined in Equation 3.5. In the example of

Figure 3.14, the encoder input at timestep t merely corresponds to the maxi-

mum probability output for time t − 1 (which is the token "A"). This is a valid

way to generate a solution (i.e. a sample from the target joint distribution), but

the generated sequence is not guaranteed to be optimal, because the past out-

puts are still fixed. To actually evaluate and compare different samples of the

target joint distribution requires reasoning over several different past outputs

40

3.2. Deep Learning

simultaneously. This can be done by, at each timestep, feeding all possible out-

puts back to the decoder, and at the next timestep, computing the new outputs

by conditioning them to each individual input (i.e. as per Equation 3.4). This

corresponds to evaluating different beams in a search tree: each beam is merely

a different sequence drawn from the output distribution, and the goal is to find

the beam with highest probability. The probability of each individual beam is

computed at every timestep through Equation 3.5; for example, in Figure 3.15,

the probability of beam (or sequence) "AA" will be P (AA) = P (A|x0:1)P (A|x0:2,A).

𝑷(𝑨|𝒙𝟎:𝟏)

𝑷(𝑩|𝒙𝟎:𝟏)

𝑷(𝑨|𝒙𝟎:𝟐, 𝑨)

𝑷(𝑩|𝒙𝟎:𝟐, 𝑨)

𝑷(𝑨|𝒙𝟎:𝟐, 𝑩)

𝑷(𝑩|𝒙𝟎:𝟐, 𝑩)

Decoding timesteps

1 2

Figure 3.15.: Decoding with tree search in a task where 2 possible output tokens
exist. x denotes the input to the seq2seq model, which has already
been processed by the encoder. At timestep 2, the decoder has 4
possible output sequences (AA,AB,BA,BB) under evaluation.

In practice, this procedure can quickly become infeasible, especially when

dealing with long outputs and a large number of possible output tokens, be-

cause the number of different sequences to evaluate grows exponentially. One

way to get around this problem is by using a beam search algorithm to traverse

the tree. In this case, at every timestep, only a pre-defined number of beams with

the highest probability are expanded, with the rest being discarded. While the

attained solution is then not guaranteed to be optimal, in many applications[60],

it is usually close to it.

41

Chapter 3. Methodology

3.2.7. Attention mechanism

Although they are powerful, seq2seq encoder-decoder RNN models ultimately

assume that the summary produced by the encoder, as its final hidden state,

can fully express the information in the input data which is used to condition

the decoder’s output. More recent research[61] indicates that this assumption

does not always hold, and it is for this reason that the attention mechanism was

proposed. Attention is merely an extension to se2seq models, whereby the de-

coder no longer receives only the last encoder state, but rather, at every decoding

timestep, the decoder has explicit access to all of the encoder’s hidden states —

in practice, the encoder can now access, albeit indirectly, all of the source (input)

timesteps.

ℎ𝑒3

En
co
d
er ℎ𝑒1 ℎ𝑒2

A source sentence

1 2 3

𝑥

𝑥1 𝑥2 𝑥3

Encoding Timesteps

A target sentence<start>

<end>

D
e
co
d
er

Decoding timesteps

1 2 3 4

𝑦4

𝑦1 𝑦2 𝑦3

ℎ𝑑1 ℎ𝑑2 ℎ𝑑3

A target sentence𝑦

𝑦1 𝑦2 𝑦3

A
tt
e
n
ti
o
n

Alignment

So
ft
m
ax

M
at
m
u
l 𝑐𝑡

Figure 3.16.: Sequence-to-sequence model with attention. At each decoding
timestep, the context vector ct is recomputed by the attention layer.

At each decoding timestep, the attention layer receives all of the source (en-

coder) hidden states. It then computes an alignment vector, whose elements are

individual weights to be assigned to different parts of the input hidden states,

and whose values add up to 1. Conceptually, this alignment vector expresses

how much attention should be paid to a particular encoder hidden state, at the

current decoder timestep. This alignment vector is then used to compute a con-
text vector which is fed back to the decoder. This way, the decoder has not only

42

3.3. Gaussian process regression

access to the entire input sequence, but can also explicitly assign greater impor-

tance to some parts of the sequence than others, at each decoding timestep. This

gives the decoder a much richer context, allowing it to produce better sequences.

Furthermore, the alignment weights produced by the attention layer can actu-

ally be used to visualize, in inference time, which parts of the source sentence

the decoder focused on when producing specific words. A thorough description

of different types of attention mechanisms can be found in [61] and [62]. Further

details about the implementation of seq2seq models and attention for this work

can be found in Chapter 7.

3.3. Gaussian process regression

Generically, a Gaussian process is merely a generalization of the concept of a

Gaussian probability distribution. Whereas a Gaussian distribution describes

the values that a random variable (or variables) can take, a Gaussian process

describes a family of functions, with some functions being more likely than oth-

ers. Though they can also be used for classification, we will limit this section to

discussing Gaussian processes for regression.

Just as with neural networks, when performing regression with the Gaussian

process framework, one is generically interested in finding, or at least approxi-

mating, an underlying (but unknown) function. Several points (x,y) belonging

to this function are previously known (they are equivalent to a neural network’s

training set), and the goal is to find an appropriate estimate of the function

which takes the train points into account. To that end, a Gaussian process model
must be specified. Generically, the term model can refer, for example, to para-

metric models for data, such as simple linear regression, or a different, complex,

non-linear model. Such models are called parametric because one usually tries

to discover a series of model weights, or parameters, that specify the model,

which one hopes will match the underlying function being looked for; in fact,

this is also the case with neural networks. In the Gaussian process framework,

models are non-parametric: they can be thought of as compositions of an infinite

amount of basis functions. This means that the underlying function’s parameters

are integrated out of the model, and gives Gaussian process models significant

43

Chapter 3. Methodology

flexibility.

A Gaussian process model has several components. Most important are the

prior and the posterior. The prior represents one’s beliefs about the underlying

function of interest without taking any training data points into account, and

is itself a distribution over possible functions. For example, one might assume

that the function of interest is smooth, and encode a prior that favors smooth

functions. For a certain model, the posterior is then the distribution of pos-

sible functions, subject to the model’s prior, that also contain the training set.

Although a Gaussian process model does not have function parameters per se, it

does have hyperparameters, which specify the characteristics of the model’s prior.

Note that, if the observations in the training set are considered to be noisy (with

a certain noise value σ), one can also compute the posterior on the same posi-

tions as the training data, and obtain an estimate of the real underlying values

of the function in the points of the (noisy) training set.

Mathematically, the posterior is obtained through Bayes’s rule, by multiplying

the prior with a likelihood term and dividing by a marginal likelihood[63]:

posterior =
likelihood × prior

evidence
. (3.6)

Because the terms in Equation 3.6 are probability distributions, for a fixed

model, the bottom term of the equation is just a normalizing constant and can

be ignored when computing the posterior. The prior is a probability distribu-

tion; in the multi-variate case, it is specified by a mean vector and a co-variance

matrix. In most applications of Gaussian process regression the prior mean is

specified to be 0 (as shown in Figure 3.17), which is the simplest possible as-

sumption that one can make about the unknown function. The prior co-variance

is computed through a co-variance function which is chosen to reflect what one

assumes about the underlying and unknown function. For instance, a typically

used co-variance function is the squared exponential: it encodes the belief that

the underlying data distribution is smooth. The extent to which that smooth-

ness holds across the function’s domain, i.e., the extent to which different points

are correlated, is usually called the model’s length scale, and is an example of a

Gaussian process model hyperparameter.

One of the differences between Gaussian process regression and typical dis-

44

3.3. Gaussian process regression

Figure 3.17.: Example of GP regression. The left figure shows the prior mean
(blue) and standard deviation, as well as 5 functions drawn from
the prior distribution. The right panel shows the posterior mean
and standard deviation (blue), and 5 other functions drawn from
the posterior, computed based on the shown points. In both cases,
the functions are computed at 100 points in the interval [0, 1].

criminative neural networks is that the former, unlike the latter, can yield un-

certainty estimates regarding their own outputs; this can be done by considering

the posterior standard deviation as a measure of the model’s uncertainty. Fur-

thermore, Gaussian processes are highly flexible: in theory, one can always add

more points, and the model (because it is non-parametric) will always be able

to fit them. This stands in contrast to, for example, linear regression: in that

case, one might try to fit non-linear data with a linear model, which becomes

problematic.

So far, we have limited this discussion to the cases where on has already de-

cided on a (Gaussian process) model, and then merely wishes to compute the

posterior and get samples of the underlying function from it. However, this

opens up the door to overfitting: how can one know that the chosen model isn’t

too complex, and therefore fitting the data too tightly while being unable to

generalize to unseen points? Fortunately, with Bayesian formalism, this can be

solved, through the mechanism of model selection. Essentially, this means eval-

uating the evidence term of Equation 3.6 for different models, and then select-

45

Chapter 3. Methodology

ing the model whose evidence is highest. A general mathematical description

of how this can be done can be found in [63], and chapter 5 of this thesis de-

scribes how it was done specifically in the context of this work. Nevertheless,

the high-level idea is that the evidence term incorporates two different features

of any model: its complexity (i.e. its capacity for generalization) and its capacity

for fitting the data. Models that are either too complex (very good at fitting data,

but poor at generalizing) or too simple (good at generalizing, but which fit the

data poorly) have lower evidence scores. In practice, this means that when the

evidence term is evaluated and compared for different models, the trade-off be-

tween models’ complexity and data fit is automatic; given a series of models and

their respective evidences, the one whose evidence is highest is guaranteed to be

the simplest model that can explain the data. This may sound counter-intuitive

at first, because it is easy to assume that one is interested in fitting the data as

well as possible. And indeed in theory, one can always find models that fit the

data ever more tightly; what the evidence term in Bayes’s theorem tells us is that

those models are not always, necessarily, the most likely ones, given the data.

The main drawback of performing model selection is its computational com-

plexity. First, it requires evaluating an integral which in many cases is analyt-

ically intractable and has to be approximated by Markov chain methods. But,

even in settings where the evidence term can be calculated analytically, its com-

putational complexity means that model selection can become prohibitively ex-

pensive. Indeed, that is one of the motivations behind the work described in

chapter 5.

3.4. Concluding remarks

This chapter gives an introduction to the algorithms and methods used over

the course of this thesis. All of these methods have in common their ability

to automatically extract information from data, with a view to discovering a

function that correctly allows them to make make correct predictions on new

points. With regards to neural networks, several topics are approached which

build up on top of each other. In the simplest case, fully connected neurons can

be composed into a multilayer perceptron for simple classification or regression

46

3.4. Concluding remarks

problems. More advanced units, such as convolutional and recurrent neurons,

can be used to build network architectures that excel in looking for, respectively,

localized and long term correlations in data with specific characteristics, namely

images and sequences. Yet all these architectures are merely discriminative, in

that they produce point-like estimates of outputs. A more advanced class of

models, the sequence-to-sequence models, can be used to directly target prob-

ability distributions instead, which makes them much more powerful. Finally,

Gaussian processes, which can be used for classification and regression, are very

flexible models for machine learning, capable of fitting complex functions while

at the same time estimating the uncertainty of their outputs. Furthermore, un-

der certain conditions, one can explicitly search for Gaussian process models

that reduce the likelihood of overfitting.

All of these algorithms have slight variations, as well as advantages and dis-

advantages. Sometimes, different models can be used for the same problem;

for example, CNNs can be used, like RNNs, to process sequential data. How-

ever, CNNs require, by definition, inputs of fixed length, which might make it

difficult to use them in settings where sequences of variable length exist (un-

less a strategy like padding is used). Furthermore, for long sequences, either

very long convolutional windows would be necessary to keep track of long term

correlations, or a CNN would need to have the entire sequence available to it,

which in some settings might not be possible. Similarly, vanilla RNN architec-

tures can generate sequences, but they cannot, for instance, be used for encoding

explicit domain rules into the prediction process, which sequence-to-sequence

models allow for. Gaussian processes, while interesting in many applications,

have nothing like the neural network weights that are fixed and saved after train-

ing, and re-used for every new data point. This means that, when performing,

for example, model selection for Gaussian processes, the process has to be re-

peated for every new point, whereas a neural network (which has a fixed model

once trained) only requires a forward pass to estimate an output.

In either case, the goal of this chapter is to show that many algorithms exist

that can learn from data, and that deciding which one to choose for a particular

task is not always a trivial question to answer. For the nuclear fusion problems

which were described in chapter 2, the following chapters will explain the ra-

tionale and assumptions behind why the models here described were used, and

47

Chapter 3. Methodology

how they were implemented.

48

Part II:

Publications

49

4. Summary

The goal of this work was to develop deep learning and artificial intelligence

based approaches for modelling several problems in nuclear fusion experiments.

That work is described in the three publications that constitute this thesis. At the

time the thesis was delivered, two of them had been published, and the third one

had been accepted for publication. At the time of the thesis defense, all papers

had been published. The citations for the papers are:

• F. Matos, J. Svensson, A. Pavone, T. Odstrčil, and F. Jenko. “Deep learn-

ing for Gaussian process soft x-ray tomography model selection in the AS-

DEX Upgrade tokamak”. In: Review of Scientific Instruments 91.10 (2020),

p. 103501.

• F. Matos, V. Menkovski, F. Felici, A. Pau, F. Jenko, T. Team, E. M. Team, et al.

“Classification of tokamak plasma confinement states with convolutional

recurrent neural networks”. In: Nuclear Fusion 60.3 (2020), p. 036022 .

• F. Matos, V. Menkovski, A. Pau, G. Marceca, F. Jenko, and the TCV Team.

“Plasma confinement mode classification using a sequence-to-sequence

neural network with attention”. In: Nuclear Fusion 61.4 (2021), p. 046019.

The first paper[64] presents a convolutional neural network (CNN) that au-

tomatically performs the Bayesian model selection procedure for Gaussian pro-

cess regression, applied to tomography in fusion. Gaussian process tomography

is an established method for performing tomographic inversion of certain phys-

ical properties of the plasma, given some data observation. The method first

requires specifying a prior that encodes one’s beliefs about the underlying dis-

tribution before any data is seen. A posterior is then computed, subject to the

51

Chapter 4. Summary

prior and the data, which can, under certain assumptions, readily yield the most

likely values for the distribution of interest.

The Gaussian process regression framework still leaves the door open to over-

fitting, since a chosen model can be overly complex. To overcome this, Bayesian

model selection can be used, whereby different models (individually specified

by different priors) are compared with regards to their evidence. This evidence

is a value that depends not only on how well a model fits the data, but also on

how complex the model is. This term can, under certain assumptions, be cal-

culated analytically, and one is interested in finding the model for which the

evidence is highest. This will be the simplest model that can explain the data,

and it solves the problem of overfitting. Yet even calculating this term analyt-

ically can be computationally intensive; this is especially true in settings such

as nuclear fusion, where one can have dozens or hundreds of measurements,

and is interested in discovering data distributions with possibly thousands of

dimensions. It is this that motivates the use of a CNN that is trained to automat-

ically determine, for individual measurements, their corresponding most likely

Gaussian process model, without the need for the analytical step.

The second paper[65] presents two discriminative neural network models —

one a CNN, the other a recurrent neural network (RNN). They are used to model

the problem of finding a sequence of plasma confinement states, and of detect-

ing edge localized modes (ELMs), given a series of signals collected from fusion

experiments. ELMs are important for tokamak operation because they can be

useful for removing impurities from the plasma. However, they can also, if

uncontrolled, constitute unacceptable power loads on the reactor. The ability

to understand and control ELMs is therefore essential for future fusion exper-

iments. Similarly, it is important to understand and detect changes between

different plasma confinement states, given that they yield different plasma be-

havior. However, the physical mechanisms behind the changes between these

states are still not completely understood.

Nevertheless, changes between confinement modes, as well as ELMs, leave

signatures in signal time traces. These can be used by experts to identify, after

an experiment, where they occurred. The models described in the second paper

replicate this process. They are trained on labeled samples to produce estimates

of the probability of the occurrence of an ELM, or of changes between different

52

confinement states, as a function of time, given measurement data.

The third paper[66] takes the previous approach one step further, by using a

generative sequence-to-sequence model that can produce the full output prob-

ability distribution of plasma confinement states, instead of point-estimates of

the sequences. A separate beam search algorithm is then responsible for finding

sequences of high probability from that distribution.

53

5. Deep learning for Gaussian
process soft X-ray tomography
model selection in the ASDEX
Upgrade tokamak

Authors Francisco Matos1

Jakob Svensson2

Andrea Pavone2

Tomas Odstrcil3

Frank Jenko1

Affiliations: 1Max Planck Institute for Plasma Physics, Garching, Germany
2Max Planck Institute for Plasma Physics, Greifswald, Germany
3Plasma Science and Fusion Center, Massachusetts Institute
of Technology, Cambridge, MA, USA

Published in: Review of Scientific Instruments
DOI: https://doi.org/10.1063/5.0020680

Author contributions: The first author carried out the work of code imple-

mentation, algorithm development and model design. The remaining authors

contributed significantly with discussions, suggestions, and reviewing the final

paper. In addition, Tomas Odstrcil was responsible for getting the required data.

55

https://doi.org/10.1063/5.0020680

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

Abstract. Gaussian process tomography (GPT) is a method used for obtain-

ing real-time tomographic reconstructions of the plasma emissivity profile in

tokamaks, given some model for the underlying physical processes involved.

GPT can also be used, thanks to Bayesian formalism, to perform model selec-

tion — i.e., comparing different models and choosing the one with maximum

evidence. However, the computations involved in this particular step may be-

come slow for data with high dimensionality, especially when comparing the

evidence for many different models. Using measurements collected by the Soft

X-ray (SXR) diagnostic in the ASDEX Upgrade tokamak, we train a convolu-

tional neural network (CNN) to map SXR tomographic projections to the corre-

sponding GPT model whose evidence is highest. We then compare the network’s

results, and the time required to calculate them, with those obtained through an-

alytical Bayesian formalism. In addition, we use the network’s classifications to

produce tomographic reconstructions of the plasma emissivity profile.

5.1. Introduction

Computed tomography generally refers to the process of imaging the interior of

a body through indirect measurements. In many applications, this is achieved

by focusing penetrating radiation on an object of interest from several directions

and measuring the resulting decrease in radiation intensity on the opposite side

(due to absorption by the body itself). Use of this information, the so-called

projection of the object, allows one to reconstruct its internal properties[14].

In the case of radiative bodies, an alternative way to determine their properties

is to perform cross-sectional imaging by treating the emitted radiation itself as a

projection[67]. In the field of nuclear fusion, this procedure is employed in many

tokamaks for the reconstruction of plasma emissivity profiles[68]. More specifi-

cally, in the ASDEX Upgrade tokamak, such imaging can be done with informa-

tion from the soft X-Ray (SXR) diagnostic, which measures the line-integrated

radiation emitted by the plasma along several lines of sight; these can be used

to perform tomographic reconstruction (or inversion) of the plasma emissivity

profile. Knowledge of this is useful for exploring magnetohydrodynamic phe-

56

5.1. Introduction

nomena, in addition to studying accumulation of impurities inside the plasma

(particularly tungsten) due to their large contribution to the total amount of ra-

diation[21].

Several techniques exist for solving the tomography problem[69]. One ap-

proach is to use regularization-based algorithms, namely Tikhonov[70, 71]- and

minimum Fisher-based techniques[72]. More recently, work has also been done

using machine learning methods, namely deep neural networks[24, 23, 73], that

are trained to create new reconstructions based on existing ones.

Yet another method is Gaussian process tomography (GPT)[25]. GPT is an es-

tablished method for performing tomographic inversion on many different types

of physical distributions, that are modeled as posterior Gaussian distributions in

a Bayesian setting. Computing a posterior first requires specifying a prior distri-

bution, which encodes one’s assumptions about the underlying physical process

before any measurements of it are taken. The posterior can then be computed

based on that prior, and on an observation (measurement) of the data generated

by the physical process. The prior itself can either be a fixed distribution, or be

drawn from a family of different models.

Knowing the posterior, GPT guarantees that one can obtain the most likely

(maximum a posteriori, MAP) estimate for the tomographic reconstruction as

well as its associated error values. More interestingly, however, through Bayesian

inference, GPT prescribes a way to estimate the evidence for different models,

through a process known as Bayesian model selection. This procedure can be

of particular importance in cases where the choice of prior might have a strong

effect on the results of the tomographic inversion.

Unfortunately, in a neural network, there are no guarantees[74] about whether

the reconstructions obtained correspond to the MAP estimate of the underly-

ing distribution, and there is no direct way, in standard Deep Neural Networks,

such as convolutional neural networks, to obtain uncertainty estimates on the

outputs. Bayesian neural networks[75, 76] and generative adversarial networks

(GANs)[77] can generate probability distributions for their outputs; however,

they can be computationally expensive and, in the case of GANs, difficult to

train[78].

On the other hand, neural networks essentially store whatever function they

have learned (through their training process) in their weights, making the in-

57

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

ference process for new data very fast. With GPT, computing the MAP estimate

based on a fixed model is also sufficiently fast for real-time purposes. This does

not necessarily hold true, however, when performing bayesian model selection,

since the process requires a series of additional computational steps, namely

matrix inversions or using non-linear optimizers, which can be time-consuming,

especially for data with a high dimensionality.

Thus, we propose an approach where we train a convolutional neural net-

work (CNN) to learn the GPT model selection procedure. To do this, we take

SXR measurement samples from several ASDEX Upgrade shots and, through

Bayesian model selection formalism, compute for each data point the corre-

sponding model (out of a set of possible, pre-defined ones) with the highest

evidence. We then train the CNN to reproduce this step, i.e., to map measure-

ments to their highest evidence model. Finally, through the GPT framework,

we compute the tomographic reconstruction of the plasma emissivity profile for

each measurement, given the most likely models predicted by the CNN.

This paper is organized as follows. Section 5.2 gives an overview of the prob-

lem of tomography, in particular soft x-ray tomography ASDEX Upgrade toka-

mak, and the existing techniques to solve it, including a review of GPT with

bayesian model selection. Section 5.3 details the data we collected, the formu-

lation of our problem, and the model proposed to solve it. Section 5.4 details

the direct results of the neural network classification, and the tomographic re-

constructions obtained based on them; section 5.5 describes and discusses our

conclusions.

5.2. Background

5.2.1. Computed Tomography

The purpose of tomography is to reconstruct the internal (either two- or three-

dimensional) properties of a given body from non-local measurements. Radon

showed[12] that a 2D distribution can be retrieved from an infinite set of line-

integrated measurements. In practical applications, the number of available

measurements is always finite, but it is nevertheless possible to produce ac-

curate reconstructions from a discrete set of measurements[79]. Tomographic

58

5.2. Background

algorithms can achieve this by taking many projections of the object of inter-

est from different directions[14]. Mathematically, a projection is a function that

computes the line-integrated absorbency (or, in the case of fusion plasmas, emis-

sivity) of a body along several paths or lines of sight (LOSs) as

Pθ(t) =
∫

L(θ,t)

G(x,y)dL (5.1)

where t is a point in the projection domain, L(θ,t) is the LOS crossing the

body mapping to t (along a direction given by an angle θ), and G(x,y) is the

two-dimensional physical distribution of interest (see Figure 5.1).

𝜃

𝑦

𝑥

𝑡

𝐺(𝑥, 𝑦)

Figure 5.1.: An illustrated projection, Pθ, measured along an angle θ. The blue
area G(x,y) is the cross section of interest, and is being traversed by
radiation. Because different rays traverse different areas of the ob-
ject, the value at each point t in the projection space will be different.
Figure reprinted with permission from F. Matos, "Deep Learning for
Plasma Tomography" M.Sc. Thesis (University of Lisbon, 2016) [7].

By computing several tomographic projections with different directions (i.e.

different values of θ), it is possible to reconstruct G(x,y). For an exact re-

construction based only on the projections, an infinite number of them would

need to be obtained. However, the problem is highly ill-posed[80], since small

changes in projection space can translate into large changes in the tomographic

reconstructions. Furthermore, in many settings such as nuclear fusion experi-

ments, it is difficult, or impossible, to obtain more than a handful of such pro-

jections, making the problem under-determined — that is, the dimensionality of

the reconstruction grid is much larger than that of the projection, ultimately re-

59

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

sulting in an infinite number of solutions (reconstructions) that can fit the data.

For these reasons, in most tomography applications in fusion plasmas, some ad-

ditional information, in the form of assumptions about the functionG(x,y), must

be introduced in order to obtain a tomographic reconstruction.

5.2.2. SXR tomography at ASDEX Upgrade

In the ASDEX Upgrade Tokamak, the Soft X-ray (SXR) diagnostic[19] consists

of eight pinhole cameras that measure the total radiation emitted by the plasma

along 208 different volumes of sight (VOSs)[21]. We considered the extent of

the VOSs in the toroidal and poloidal directions of the tokamak to be minimal,

and treated them instead as lines of sight (LOSs). In addition, we also ignored

the fact that the LOSs in the same camera array partially overlap. Based on this,

the measurements collected by the individual cameras correspond to a single

projection of the underlying plasma emissivity distribution, which is computed

at 208 discrete positions, in a poloidal plane. In terms of the poloidal coordinates

(R,z) of the 2D tokamak cross-section, the total brightness, bi , incident on a

single detector, i, is given by[81]

bi =
∫
r

G(R,z)dr (5.2)

where G(R,z) is the plasma emissivity distribution (in W/m3) and r is the LOS

corresponding to bi (Fig. 5.2).

By discretizing Equation 5.2, one obtains the plasma emissivity distribution at

a finite number of positions (or pixels) along a tomographic reconstruction grid.

In this case, the incident radiation on a single detector, assuming an associated

noise, ξ, is[82]

bi =
n∑
j=1

Mi,jgj + ξi i ∈ 1, ..,208. (5.3)

From now on, we will denote the set of values bi , that is, a set of 208 line-

integrated SXR measurements of the plasma emissivity taken at a certain point

in time, as the plasma’s tomographic projection in that instant. We denote Equa-

tion 5.3 as the forward model of the problem. Here, n corresponds to the total

60

5.2. Background

F
L
M

Soft X-Ray

Figure 5.2.: ASDEX Upgrade cross-section, and partial schema of the SXR mea-
surement system, with three cameras (F, L and M) shown (plot ob-
tained with diaggeom)

number of pixels on a tomographic reconstruction grid, whereas Mi,j is the dis-

cretization of the function M(R,z) in Equation 5.2, mapping the relative con-

tribution of pixel j of that grid to measurement i of the projection. The actual

values of M were pre-defined and contingent on the geometry and configura-

tion of the sensors inside the machine, which can vary between different shot

campaigns. Consequently, we denote M as the geometric matrix. The goal of a

tomographic reconstruction algorithm is then to solve the ill-posed problem by

using the tomographic projection (i.e., the 208 measurements bi) and some a pri-
ori knowledge about the plasma to find a suitable tomographic reconstruction g

that satisfies Equation 5.3.

5.2.3. Regularization-based Methods

To solve the ill-posed problem, traditional tomographic algorithms use regu-

larization techniques, usually based on assumptions regarding the smoothness

of the plasma emissivity profile, that constrain the space of possible solutions.

Such algorithms, however, are often computationally expensive and typically

can only be used for post-experimental tomographic reconstruction, due to com-

putational time constraints. In addition, the quality of the reconstructions is

61

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

highly dependent on assumptions made about the data[21]. Generally, those

assumptions are encoded into the reconstructions through the use of Tikhonov

regularization. In this case, computing the tomographic reconstruction of the

plasma emissivity profile becomes a matter of finding a reconstruction ĝ such

that

ĝ = argmin
g

(||Mg − b||2 +ΛO(g)) (5.4)

where O(g) is a penalty term that encodes information about expected prop-

erties of the target plasma distribution, multiplied by a regularizing parameter

Λ that controls the regularization strength[83]. There are several options for

the choice of the regularization term O; typical choices are the Laplace opera-

tor, which favors smooth solutions, and minimum Fisher information[22], that

favors solutions that are mostly flat in low-intensity regions, and peaked in high-

intensity ones.

5.2.4. Deep Learning-based Methods

Recent work has applied deep learning algorithms to the tomographic problem,

namely by using de-convolutional neural networks to produce tomographic re-

constructions taking measurement data as input[23, 73, 84]. This is achieved by

training the networks on reconstructions that have been previously computed

using standard tomographic algorithms. Generically, in a deep learning setting,

a Deep Neural Network is trained to learn a function mapping an input x into its

target output y[46]; that is,

y = y(x,θ) (5.5)

where θ denotes the neural network’s parameters, i.e. its weights and biases.

The training process consists in finding an optimal value for θ that minimizes

the mismatch between the network’s outputs and their corresponding labels.

In our setup, training a deep neural network to produce tomographic recon-

structions would have required training it with measurements from the SXR

diagnostic and pre-computed reconstructions, produced by other algorithms

62

5.2. Background

(namely, regularization-based ones). The expectation would then have been that

the parameters θ computed during training would have converged to values

such that if new, unseen data were fed into the network, it would be capable of

generalizing to outside of its training set. However, even assuming good general-

ization capacity of a neural network, it is at most as good as whatever data it has

been trained on. In other words, should existing tomograms have had errors, a

neural network would have learned to reproduce them.

5.2.5. Gaussian Process Tomography

Another alternative is to use bayesian probability theory to produce tomo-

graphic reconstructions, by treating the underlying unknown plasma emissiv-

ity distribution as a Gaussian process. Evaluating that process along a discrete

set of points (the tomographic reconstruction grid) yields a multi-dimensional

Gaussian distribution.

By definition, in the Gaussian process framework, one assumes that multiple

solutions for the tomographic reconstruction exist, in a Gaussian distribution of

possible solutions. Treating the tomography problem with this framework al-

lows using Bayesian formalism, which guarantees that the most likely solution

for the tomographic reconstruction (i.e. the maximum a posteriori, or MAP, es-

timate), subject to some assumptions about the underlying physical and data

distributions, can be computed through Bayes’s formula[45],

P (A|B) =
P (B|A)P (A)

P (B)
. (5.6)

In the Gaussian process tomography (GPT) setting, the terms in the formula

are multivariate probability distributions, which are assumed to be Gaussian.

Each of those distributions is specified by a vector of means (which we denote

µ), whose entries are the individual means of each random variable in the mul-

tivariate distribution, and a covariance matrix, which we denote Σ, where each

entry denotes the pair-wise covariance between those same variables.

In Bayes’s theorem, the term P (A) is called the prior. In GPT, by denoting

the underlying plasma emissivity as e, the prior distribution P (e) ∼ N (µpr ,Σpr)

encodes existing assumptions about the physical emission process, without ob-

63

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

serving any data (SXR measurements); this is equivalent to the assumptions one

might encode in the regularization parameter in traditional tomography (Equa-

tion 5.4). Each random variable in the prior distribution is also Gaussian, and

corresponds to the prior plasma emissivity e at each point x in the tomographic

reconstruction grid.

Here, the prior mean has a size equal to that of the tomographic reconstruc-

tion grid, n. Intuitively, the prior covariance matrix Σpr encodes information

about the expected smoothness of the plasma emissivity. The entries in the co-

variance matrix are computed for all pairs of points in the reconstruction grid

through a prior covariance function. One covariance function generally used in

Gaussian process regression is the squared exponential[85]; in using this func-

tion, the prior covariance between a pair of points x1 and x2 in the tomographic

reconstruction grid becomes

cov(x1,x2) = θ2
f exp

(
−d(x1,x2)

2θ2
x

)
, (5.7)

where d(x1,x2) is a distance metric between points x1 and x2. The prior co-

variance is only dependent on that distance and on θ = {θf ,θx}, which are the

model’s hyperparameters and are common to all points in the reconstruction grid.

The parameter θf controls the prior variance of the plasma emissivity at a given

location in the reconstruction grid, whereas the parameter θx, usually referred to

as the length scale, controls the extent to which points at a certain distance from

each other in the reconstruction grid are correlated. Models where the length

scale is large yield high correlations even between grid points which are far

apart, while smaller length scales yield covariance matrices where only points

which are closer to each other are significantly correlated.

With these definitions, the prior becomes a probability distribution for the

plasma emissivity, e, subject to the model’s hyperparameters, i.e., P (e|θ), before

any data, that is, a tomographic projection, has been observed. The prior can

then be updated by multiplying it with the likelihood of the data d (as per Bayes’

theorem), yielding the posterior distribution, P (e|d,θ):

P (e|d,θ) =
P (d|e,θ)P (e|θ)

P (d|θ)
(5.8)

64

5.2. Background

The denominator in Bayes’s theorem is known as the model evidence or

marginal likelihood; if one is merely computing the posterior P (e|d,θ), it can be

ignored, as it is just a normalizing constant. Interestingly, however, one can use

this term to compare several different models (each with their own prior), and

choose the one which best fits the data[25]. In this case, one assumes a hyper-
prior, from which different possible priors (individually specified by different

hyperparameters) are sampled. The evidence can then be computed for differ-

ent models — a process that is referred to as marginalization — and the model

with the highest evidence can be selected[86]. Calculating this requires an eval-

uation of the integral[63] over e

P (d|θ) =
∫
P (d|e,θ)P (e|θ)de (5.9)

which in many cases is analytically intractable. However, in our case, the prior

for an emissivity distribution is a multivariate Gaussian, defined as

P (e|θ) = (2π)−
k
2 |Σpr |−

1
2 exp(−1

2
(µpr − e)TΣ−1

pr (µpr − e)), (5.10)

where k denotes the number of variables in the prior distribution (that is,

the number of pixels in a reconstruction grid). In addition, we assume a data

distribution which is also Gaussian, P (d|θ) ∼N (µd ,K +Σd)[25]. The mean µd of

the data distribution is merely the value of the measurements in a projection.

The data co-variance has two components: matrix K denotes the (noise-free)

co-variance values, and is a linear transformation of the prior covariance Σpr

(imposed on the plasma emissivity) into measurement (data) space, given by K =

MΣprM
T , where M is the geometric matrix defined in Equation 5.3. The other

component, Σd , is a diagonal matrix whose non-zero entries are the absolute

noise values, ξ, of each measurement in a projection; we assume the noise values

are independent from each other. By assuming that this noise is also Gaussian,

the logarithm of the integral in Equation 5.9 can be analytically calculated as[63]

log(P (d|θ)) = −1
2

(
m log(2π) + log |K +Σd |+ (µd − fL)T (K +Σd)−1(µd − fL)

)
(5.11)

65

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

wherem is the number of SXR measurements in a tomographic projection and

fL is the mapping of the prior mean, µpr , (imposed in reconstruction space) onto

measurement space, given by fL =M ·µpr .
The marginalization procedure is particularly useful because the trade-off be-

tween model complexity and data fit is automatic — the model for which the

evidence score is highest is always the simplest model that can explain the data,

an embodiment of the Occam’s Razor principle[87]. In addition, the model evi-

dence is also a function of the variance σ2 of the data (through matrix Σd), which

means that it is possible to treat the expected projection error as an additional

hyperparameter of the model to be tuned; this can be done, for example, by

treating the data variance as a fraction of the measured value of SXR radiation

in the tomographic projection, with the value of the fraction constituting an ad-

ditional model hyperparameter. This means that, through the Gaussian process

tomography framework, one can estimate not only the most likely model for the

underlying plasma emissivity distribution, but also the most likely model for

the error values of the data(though this is no replacement for a calibration of the

detectors with a known source).

Once the most likely model is selected, and applying Bayes’s formula, the

posterior mean, µpost, and posterior covariance, Σpost, as a function of the prior

mean µpr and prior covariance Σpr for that model, are respectively given by[16]

µpost = µpr +ΣprM
T (K +Σd)−1(d − fL) (5.12)

and

Σpost = Σpr −ΣprMT (K +Σd)−1MΣpr . (5.13)

By computing the posterior distribution P (e|d,θ) ∼ N (µpost,Σpost), one can

then produce tomographic reconstructions either by sampling from P (e|d,θ), or

simply by taking the mean of that distribution as the tomographic reconstruc-

tion (because the distribution is Gaussian, the mean corresponds to the maxi-

mum a posteriori estimate). In addition, one can directly obtain uncertainties

for the tomographic reconstruction from the diagonal values of the posterior co-

variance matrix, which correspond to the individual posterior variances of each

pixel in the reconstruction grid.

66

5.2. Background

The drawback of the marginalization procedure, however, is its potential com-

putational complexity. First, the calculation of the evidence term involves a se-

ries of matrix multiplications and an inversion, which can be cumbersome par-

ticularly in our setting because of the dimensionality of the data, which gener-

ates very large matrices. Matrix K in Equation 5.11 can be previously computed

and kept in memory when performing model selection (which we do). How-

ever, in our setting, we treat the underlying error as a fraction of the data, and

therefore, the values appearing in matrix Σd change with every new data point.

As a result, the matrix determinant and inversion in Equation 5.11 must be re-

computed for every new point, which is the main reason behind the high cost of

the Bayesian optimization procedure. Furthermore, the evidence must be com-

puted for all models that are taken into consideration. When each model has

several hyperparameters, the number of possible models to evaluate can become

very large, which means that finding the optimal one can be time-consuming.

For practical purposes, this limits the number of models which can be evaluated

and thus, potentially limits the quality of the results.

We therefore propose to bypass the need for analytical marginalization, by

training a classifier (in this case, a convolutional neural network) to automati-

cally choose the most likely model (out of several pre-defined ones) for the to-

mographic projection data collected by the ASDEX Upgrade SXR system.

This has potentially several advantages. On one hand, a Gaussian process

model, while potentially having priors and posteriors with many dimensions,

can be fully specified by its much smaller set of hyperparameters. In practice,

this allows for parameterizing a distribution of high dimensionality with only

a few variables. In the case of this work, this means that neural networks will

learn to map tomographic projections to a lower-dimensional space (of dimen-

sionality equal to the number of models under consideration). This should fa-

cilitate the network’s learning process, allowing for easier generalization when

compared with deep learning methods that attempt to map projections directly

into a reconstruction space of larger dimensions. On the other hand, for poten-

tial real-time applications, this method potentially speeds up Gaussian process

tomography, since it bypasses the marginalization procedure.

67

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

5.3. Methods

5.3.1. Soft X-Ray Data

For this work, we had at our disposal a collection of 112 ASDEX Upgrade shots,

totalling 127528 data points (208-dimensional tomographic projections), with

each dimension corresponding to a specific detector in the Soft X-ray (SXR)

system. The projections come from the down-sampled signal of the SXR di-

agnostic, at a sampling rate of 250Hz. The dataset also contains an error model,

which assigns every measurement in every projection an estimated error value;

we develop this topic in Section 5.3.2. In many cases the SXR detectors can be

damaged and yield completely erroneous measurements, such as for example

negative brightness; in these cases, the measurement is simply considered to be

faulty. A sample projection can be seen in Figure 5.3.

0 50 100 150 200
Detector

0

500

1000

1500

2000

Br
ig

ht
ne

ss
 (W

/m
2)

Figure 5.3.: Sample tomographic projection (SXR measurements) from the AS-
DEX Upgrade tokamak, taken from shot #30294 at t = 5,8691s.
Faulty measurements have been removed.

We also possessed a geometric matrix M that maps the relative contribution

of each pixel in a 60 × 40(2400)-dimensional tomographic reconstruction grid

to each of the 208 SXR measurements in a projection. Each pixel in the grid

has a pair of poloidal coordinates (R,z), based on the poloidal dimensions of

ASDEX Upgrade; the tomographic reconstruction is computed on this grid. The

geometric matrix itself was computed based on the physical layout of the SXR

sensors in the ASDEX Upgrade vessel, and holds for all shots in our dataset.

68

5.3. Methods

5.3.2. Dataset Generation

Before training the neural network classifier, we generated its training and val-

idation dataset by individually computing, for all the measured tomographic

projections, the most likely model from which those projections were sampled.

To that end, the first task was to define different models and their respective

priors (individually specified by their specific set of hyperparameters) and then,

through Equation 5.11, compare them based on their evidence.

As is typical in Gaussian process regression tasks [63], for all models, we

defined the prior means, µpr , as vectors of zeros, of size 2400 (the size of the

reconstruction grid). We computed the prior covariance matrices Σpr using a

squared exponential function as defined in Equation 5.7; in essence, this co-

variance function encodes our belief that correlations between pixels on the to-

mographic reconstruction grid will decay exponentially as the distance between

those points increases. We computed the distance between pairs of points in

the reconstruction grid (expressed in terms of their poloidal coordinates) using

the Euclidean definition, i.e., d(x1,x2) =
√

(R1 −R2)2 + (z1 − z2)2. The covariance

function (Equation 5.7) has only two parameters: θf , the individual variance

of single pixels, and θx, the length scale which controls the extent of the corre-

lation between pixels in the reconstruction grid. Different models have priors

specified by different values of these hyperparemeters, but they all use the same

definition of co-variance function and distance.

Finally, we defined, for each model, our assumptions regarding the data distri-

bution associated with that model. For all models, we discarded measurements

that had been previously labeled as faulty. In practice, this meant that, when

evaluating the evidence for models, and when computing the maximum a pos-
teriori (MAP) estimate for the plasma emissivity, some of the 208 measurements

of each projection were not used. We treated the remaining (non-faulty) mea-

surements in the projections as the mean values µd of the data distribution.

The individual variances, σ2, of the variables in the data distribution corre-

spond to the entries in the diagonal of matrix Σd of Equation 5.11, and represent

the uncertainties in the measurements. We computed the values σ2 as fractions

of the measurement values themselves; those fractions depend on a scaling fac-

tor θerr which is multiplied by the measurements, and that constitutes an ad-

69

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

ditional hyperparameter for the models under consideration. We assumed this

value to be global, i.e., for any given model, we assume that the scaling factor is

the same for all measurements in a projection.

Formalizing, we iteratively computed, for each individual data point (i.e. pro-

jection), and from a set of pre-defined models for the plasma emissivity and data

distributions that might have generated that projection, the highest-evidence

model — that is, through Equation 5.11 we looked for θ̂ = (θ̂f , θ̂x, θ̂err) such that

θ̂ = argmax
θ

logP (d|θ),

where P (d|θ) is the model evidence from Equation 5.8. We searched for

the ideal hyperparameters (i.e. the hyperparemeters that specify the highest-

evidence model) in a grid by assuming a uniform hyper-prior (all models were

considered to be equally likely), and computed the model evidences at several

discrete positions in the hyper-prior space. The question was then, what po-

sitions in the hyper-prior space should one evaluate the models’ evidences on?

This required taking several factors into account.

The first requirement was the expected nature of the plasma emission process

itself. A previous analysis of the measurement data, and of existing tomographic

reconstructions from ASDEX Upgrade[21], showed that the plasma emissivity

has a wide dynamic range for different regions of the plasma, with emissivity in

the plasma core being up to 3 orders of magnitude higher than in the pedestal.

Likewise, in some periods of some shots, the maximum radiation value in the

reconstruction grid was in the order of magnitude of 102Wm−3, while in other

phases, it could be as large as 105W/m−3. Thus, we considered this range in

emissivities a good region to explore possible values for the hyperparameter θf .

In addition, ASDEX Upgrade has a minor radius a = 0.5m (horizontally) and

b = 0.8m (vertically)[88]; given this and the size of our reconstruction grid, we

assumed that a good region of the hyper-prior in which to evaluate the evidence

for certain values of θx ranged, in the limit, from 0 (no correlation at all between

pixels) to 1.6. For the hyparameter θerr we assumed that, in the limit, it could

range from 0 (no noise in the tomographic projections) to 1 (all of the measured

brightness corresponded to noise).

The second requirement related to the training process for neural networks.

70

5.3. Methods

For this work, we wanted to train a neural network to perform a classification

task — to learn to map measurements to the the most likely model. Typically, in

a machine learning classification setting, care should be taken such that training

samples fed to a network are reasonably balanced with respect to their differ-

ent classes; that is, a good training practice is that one class not be too over-

represented in the data when compared to others. In our setting, achieving this

balance required experimenting with different potential evaluation positions in

the hyperparameter search grid. This comes at the cost of leaving out some grid

positions for which some data points might have had higher evidence scores.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Class

0

2000

4000

6000

8000

10000

12000

Co
un

t

Figure 5.4.: Number of data samples (from all available shots) mapping to each
class (set of hyperparameter values), after the marginalization pro-
cedure.

In practice, considering these requirements, we performed several evaluations

through trial and error of the hyper-prior at different positions; we settled on

a 3 × 3 × 3 grid, where the points correspond to θf = {500,1000,2500}, θx =

{.15, .175, .2} and θerr = {.5, .75.,1}, which corresponds to 27 Gaussian process

models. Performing the Bayesian model selection procedure on all projections

in our dataset using the models parameterized by these values of (θf ,θx,θerr)

yielded a relative balance in terms of the amount of data samples mapping to

each of the 27 possible classes (points on the hyperparameter grid); this can be

seen in Figure 5.4, which shows the number of points mapping to each class.

71

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

Computing the evidence for different models for all tomographic projections

took a total of 48h.

This dataset — i.e., the mappings between tomographic projections and the

class to which their highest-evidence model belongs (out of 27 possible ones)

— was then used to train and test the neural network classifier. The choice of

modelling the task with a classifier, instead of treating it as a regression problem,

has one motivation: the loss function to use, and how to model the network

outputs.

If performing regression, one option would have been to have a separate

model output for each hyperparameter and combine them with a mean squared

error loss. However, it is not obvious that this would work correctly, because the

evidence term depends on all hyperparameters together. For example, a target

output yt = (θf = j,θx = k,θerr = l) could be approximated by the network as

yn = (θf = j,θx = 0.9k,θerr = l). Computing the mean squared error between

yt and yn would yield a potentially good score because on average because the

hyperparameter values are similar in both cases; however, there is no such guar-

antee for the evidence score, which could be very different from one case to the

other. In fact, it is for this very reason that when performing classification we

use a single output with 27 possible categories, instead of a separate output (and

loss function) for each hyperparameter, each with 3 possible categories. The al-

ternative would have been to use a loss function based on the evidence score it-

self; however that would have been computationally infeasible because it would

require the evaluation of Equation 5.11 for each network gradient update.

5.3.3. Deep Learning Model

Several possibilities exist when it comes to modelling deep neural network ar-

chitectures. For our purposes (the learning of the Bayesian model selection

procedure) we opted to use a convolutional neural network (CNN). CNNs are

widely used for signal processing tasks, due to their ability to efficiently detect

spatial correlations in data, which is what we expected to find in our SXR mea-

surements. The model we used is, with regards to its architecture, inspired by

the network for classification of images described in[52], popularly known as

the VGG network. We designed the model using the Keras framework for deep

72

5.3. Methods

learning[89].

C
o

n
v1

D
(3

2
, 3

)
C

o
n

v1
D

(3
2

, 3
)

B
at

ch
 N

o
rm

al
iz

at
io

n
M

ax
 P

o
o

lin
g(

2
)

C
o

n
v1

D
(6

4
, 3

)
C

o
n

v1
D

(6
4

, 3
)

B
at

ch
 N

o
rm

al
iz

at
io

n
M

ax
 P

o
o

lin
g(

2
)

C
o

n
v1

D
(6

4
, 3

)

C
o

n
v1

D
(1

2
8

, 3
)

C
o

n
v1

D
(1

2
8

, 3
)

B
at

ch
 N

o
rm

al
iz

at
io

n
M

ax
 P

o
o

lin
g(

2
)

C
o

n
v1

D
(1

2
8

, 3
)

C
o

n
v1

D
(2

5
6

, 3
)

C
o

n
v1

D
(2

5
6

, 3
)

B
at

ch
 N

o
rm

al
iz

at
io

n
M

ax
 P

o
o

lin
g(

2
)

C
o

n
v1

D
(2

5
6

, 3
)

Fl
at

te
n

In
p

u
t2

 (
2

0
8

)

In
p

u
t1

 (
2

0
8

)

D
en

se
(1

0
2

4
)

B
at

ch
 N

o
rm

al
iz

at
io

n

O
u

tp
u

t(
2

7
)

D
en

se
(1

0
2

4
)

B
at

ch
 N

o
rm

al
iz

at
io

n

D
en

se
(2

5
6

)
B

at
ch

 N
o

rm
al

iz
at

io
n

D
ro

p
o

u
t(

0
.5

)

D
en

se
(2

7
)

So
ft

m
ax

Figure 5.5.: Schematic of the deep learning model used for this work.

The network itself receives two inputs: a tomographic projection (208 SXR

measurements, fed as input 1 in Figure 5.5), and a corresponding mask of ones

and zeros (taken from the existing error model in our dataset) corresponding to

input 2 in Figure 5.5, that gives information regarding which measurements in

the projection are assumed to be faulty. The network uses a series of convolu-

tional layers followed by max pooling layers to process high-level features in the

measurement data. The output of those layers is then combined with the infor-

mation in the error mask and processed in the last layers of the network, which

are standard fully-connected layers. We also used batch normalization[90] layers

to speed up training, and dropout in the final layer[91] to increase the network’s

capacity for generalization outside of its training set. We used the rectified lin-

ear unit (ReLU) activation function throughout the entire network apart from

the last layer, which uses a softmax function, because we modelled the network

output as probabilities over 27 possible classes, which must add up to 1. For

the same reason, we used categorical cross-entropy as loss function. We used

the Adam optimizer[92], and left all optimizer hyperparameters at their default

values.

73

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

5.4. Results

We here performed two separate assessments. First, we evaluated the accuracy

of the neural network’s fit of the individual projections to their highest-evidence

models. Then, based on the highest-probability class determined (by the net-

work) for each data point, we computed the corresponding maximum a poste-
riori estimate of the tomographic profile, and measured the fit of those recon-

structions to the data by projecting them back into measurement space (through

the forward model in Equation 5.3), obtaining their back-projections. We then

measured the deviation between those back-projections and the original tomo-

graphic projections.

5.4.1. Neural Network

To increase the robustness of our methods, we opted to train an ensemble of

neural networks (of equal architectures), using the k-fold cross-validation strat-

egy[93]. K-fold cross validation is useful to determine whether the choice of the

train/test split has biased whatever results have been obtained, or whether the

results can be assumed to hold independently of the data split. We opted to di-

vide our data into k= 10 folds — that is, we trained 10 networks with different

overlapping splits of train data, and tested them on non-overlapping validation

splits. We trained the networks for 50 epochs, and ran them on an NVIDIA

Quadro RTX 5000 Graphics Processing Unit (GPU). The total training time for

the whole ensemble was 1h, while total prediction time for the validation data

was 41,62s.

As the networks performed a 27-way classification, we used top-k categorical

accuracy as a metric for network classification quality. We now follow with a

brief explanation of this metric.

Each data point x (corresponding to a tomographic projection) in our dataset

was assigned a label, ylabel , denoting for which of the 27 model classes the evi-

dence was highest. A classifier learns, through the training process, to compute

the probability of that point belonging to a certain class P (C(x) = c), where c can

take one out of 27 possible values; we denote the vector containing the prob-

abilities of belonging to each of those classes ypred . We further define ypredk as

74

5.4. Results

the k−th most likely class given by a classifier for x; for example, for ypred1
, one

would get

ypred1
= argmax

c
P (C(x) = c) = argmax

c
ypred

whereas for c27 one would have

ypred27
= argmin

c
P (C(x) = c) = argmin

c
ypred .

Based on this, the top-k accuracy metric then calculates for each data point:

acck(x) =

1 if ylabel ⊂ {ypred1
, ...ypredk }.

0 otherwise.

We then computed the categorical accuracy metric on the validation data for

the 27 different values of k. Because we opted for a cross-validation train and

test strategy (with an ensemble of 10 classifiers), we show the mean value and

standard deviation of the top-k accuracy across all members of the ensemble.

The results of the metric can be seen in Figure 5.6 (up to k=27) and Table 5.1

(up to k=5). In Table 5.1 we show the results only up to k=5 for ease of compre-

hension.

K
1 2 3 4 5

mean 0.509 0.783 0.903 0.955 0.977
st. dev. 0.041 0.038 0.033 0.016 0.01

Table 5.1.: Accuracy mean and standard deviation across ensemble of 10 neural
networks, for validation data, up to top-5 accuracy.

An analysis of Table 5.1 and Figure 5.6 shows that the ensemble of 10 neural

networks achieves very good results on the classification task, with a mean top-5

accuracy score of 0.976 (out of a maximum score of 1) for validation data. This

means that for any data point, the correct prior is found within the top-5 most

likely outputs predicted by the network in 97,7% of cases. In practice, if one is

exclusively interested in finding the single, most likely, prior, this result reduces

75

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

the search space for the right hyperparameters from 27 classes to 5. Should one

be interested only in comparing different models for certain physical distribu-

tions, this result also allows for quickly estimating which priors are more or less

likely. Furthermore, the standard deviation of the accuracy score demonstrates

consistently low values, indicating that the choice of train/test split for our data

did not significantly bias the achieved results; all neural networks in the ensem-

ble behave similarly, even if tested on different data.

1 3 5 7 9 11 13 15 17 19 21 23 25 27
K

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

k
ac

cu
ra

cy

Figure 5.6.: Top-k accuracy (up to k=27) for validation data. The blue bars indi-
cate the mean accuracy across the ensemble of 10 networks, while
the smaller black bars indicate the accuracy’s standard deviation
across the ensemble (for each k)

5.4.2. Sample Reconstructions

In addition to evaluating the neural network’s capacity for classification pur-

poses, we also produced and evaluated tomographic reconstructions. To that

end we took, for each data point in the validation dataset, the most likely class

prediction given by the neural network; this class prediction maps to one of the

models we have previously defined. We then computed, based on the class pre-

diction and on Equations 5.12 and 5.13, the posterior mean and covariance for

each data point. We took the posterior means (i.e. the maximum a posteriori
estimates) as the tomographic reconstructions of the plasma emissivity - each

mean was a 2400-dimensional vector, where each entry µj denotes the most

76

5.4. Results

likely value for the plasma emissivity in a point j in the reconstruction grid.

The posterior covariances allowed us to determine the error of the tomographic

reconstruction, by taking the diagonal of the covariance matrix, which corre-

sponds to the individual variance σ2
post of each pixel in the reconstruction grid;

we converted the value of that variance into a percentage error by once again

taking advantage of the 3−σ rule, and computing said percentage, for pixel j, as

%errj = 3

√
σ2
postj

µj
× 100%

Two sample results can be seen in Figures 5.7 and 5.8. For the reconstruction

error, we show only points where the percentage error was found to be below

100%. Notice how in Figure 5.8, despite the value of σf being 2500, a reconstruc-

tion with a much larger maximum intensity can still be produced. Furthermore,

in both cases, the reconstruction error values are noticeably lower in the center

of the grid. We explain this with two factors: the larger number of LOS covering

that region, which lower the uncertainty in the reconstructed values, and the

higher intensity of the plasma emissivity, which lowers the relative error.

5.4.3. Model complexity and data fit

To evaluate the quality of the models we performed, for each maximum a poste-
riori (MAP) tomographic reconstruction, a pass through the forward model de-

fined in Equation 5.3 to obtain the corresponding back-projection, i.e., the pro-

jection of the reconstruction back into measurement space. The marginalization

procedure guarantees that, from the ensemble of models that is evaluated for a

data point, the simplest model that can fit the data will be chosen, and we have

shown that the proposed convolutional neural network can in most cases do this

as well. However, a problem can arise if the ensemble of models from which we

sample is itself mostly composed of overly simple or overly complex models.

Computing the backprojections allowed us to see how the obtained MAP esti-

mates fit the original SXR data. Our expectation was that, if the models we de-

fined were too complex, we would observe very tight fits of the data, with very

low deviations between it and the backprojections. Conversely, if the models

were too simple, we would tend to see large differences between the backprojec-

77

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

1.15 1.42 1.69 1.96 2.20
R(m)

1.00

0.74

0.47

0.21

0.05

0.31

0.55

z(
m

)

Plasma Emissivity (W/m3)

400

0

400

800

1200

1600

2000

2400

2800

3200

1.15 1.42 1.69 1.96 2.20
R(m)

1.00

0.74

0.47

0.21

0.05

0.31

0.55

z(
m

)

Reconstruction error (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200

0

500

1000

1500

2000

SXR Measurements and Backprojection (W/m2)
Data (Projection) Backprojection

Figure 5.7.: Sample tomographic reconstruction and error, and comparison be-
tween the SXR measurement and the back-projected reconstruction,
for ASDEX Upgrade shot #30857, t=4,0441s. The determined model
hyperparameters by the classifier were θerr = 0,75,θf = 500,θx =
0,175; 200 measurements (out of 208) were used for this reconstruc-
tion.

78

5.4. Results

1.15 1.42 1.69 1.96 2.20
R(m)

1.00

0.74

0.47

0.21

0.05

0.31

0.55

z(
m

)

Plasma Emissivity (W/m3)

0

2400

4800

7200

9600

12000

14400

1.15 1.42 1.69 1.96 2.20
R(m)

1.00

0.74

0.47

0.21

0.05

0.31

0.55

z(
m

)

Reconstruction error (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200

0

2000

4000

6000

SXR Measurements and Backprojection (W/m2)
Data (Projection) Backprojection

Figure 5.8.: Sample tomographic reconstruction and error, and comparison be-
tween the SXR measurement and the back-projected reconstruc-
tion, from ASDEX Upgrade shot #31238, t= 3,2641. The deter-
mined model hyperparameters by the classifier were θerr = 1,0,θf =
2500,θx = 0,175. 199 measurements (out of 208) were used for this
reconstruction.

79

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

tions and the data.

To check this, we computed the percent deviation between the back-

projections and the original tomographic projections, and did this for every mea-

surement in every data point. We computed this value as

err =
|backprojection−measurement|

measurement
× 100%.

The histograms in Figures 5.9a and 5.9b show the results of this evaluation, up

to a deviation of 100%, a threshold which covers 99,38% of the validation data.

Note that the deviation was computed by comparing the back-projection only

with valid (non-faulty) measurements. On average, 91.25% of the 208 measure-

ments in each data point were used to compute the tomographic reconstructions.

0 25 50 75 100
error (%)

0

2

4

6

8

PD
F(

er
ro

r)

a)

Percent deviation values

0 25 50 75 100
error (%)

0.00

0.25

0.50

0.75

1.00

CD
F(

er
ro

r)

b)

Cumulative percent deviation values

Figure 5.9.: Cumulative distribution of the deviations between the tomographic
reconstructions’ back-projections into measurement space, and the
data. 54,4% of the individual back-projected measurements have a
relative deviation lower than 10%; 93.83% have a deviation lower
than 50%; and 99,38% have a deviation lower than 100%.

5.4.4. Discussion

Looking at the distribution of the deviations between backprojections and mea-

surement data in Figure 5.9, one can see that most backprojected values have

relatively low deviations from the data — 90% have a deviation lower than 50%.

On the other hand, one can also see that some backprojected values have larger

80

5.5. Conclusions

deviations, and in fact, a few had an error greater than 100% (though they are

not represented in the figure for ease of visualization; they represent only 0.6%

of cases). We interpret this as a good result: on one hand, the low backprojec-

tion deviations indicate that the models chosen for the tomographic reconstruc-

tions have the necessary rigidity to constrain the solutions to mostly match the

data, while at the same time being flexible enough to allow for large deviations,

when not doing so would render overly complex models. We would like to point

out the fact that many other types of models (other than the ones we used) can

be chosen. For example, we used Euclidean distance and a single length scale

for the covariance function. Nevertheless, it’s possible to use more complex co-

variance functions with different length scales in the R and z directions, or with

a distance metric that uses the radial and angular coordinates of pixels in the

reconstruction grid, to account for the fact that points in the same flux surface

are considered to be highly correlated. In principle, it’s always possible to define

more complex models that fit the data better, and reduce the deviation between

projection and backprojection; nevertheless, those models will not necessarily

have the highest evidence when compared with simpler ones.

5.5. Conclusions

Gaussian process tomography makes it possible to obtain the most likely es-

timate for an unknown, potentially infinite-dimensional, quantity, given some

assumptions about the underlying physical distribution and about the data gen-

erated by that distribution. The tomography problem, based on SXR measure-

ment data from the ASDEX Upgrade tokamak, lends itself to investigation under

this framework. If one assumes a fixed model for the behavior of the underly-

ing physical distribution (i.e. the plasma emissivity) and for the data, for ex-

ample by specifying the length-scales involved in the emission process and the

expected fraction of noise in the measurements, Gaussian process tomography

(GPT) inversion techniques readily yield the corresponding maximum a poste-
riori estimate of the plasma SXR emissivity in the two-dimensional tokamak

cross-section.

Nevertheless, this raises the issue of what models one would like to assume

81

Chapter 5. Deep learning for Gaussian process soft X-ray tomography model
selection in the ASDEX Upgrade tokamak

in the first place. Through the Bayesian Occam’s Razor principle, GPT answers

this question by computing the evidence for different possible models, out of

which the one with the highest score can then be selected. This can be useful

if one wishes to test different assumptions regarding the data distribution: for

example, what fraction of noise can be expected in the observations (measure-

ments)? However, in a setting such as SXR tomography with ASDEX Upgrade

data, this task can become cumbersome due to the dimensionality of the tomo-

graphic projections. This is further compounded when the number of models

under evaluation is large.

For these reasons, we developed a novel method for automatic selection of the

best model (out of 27 pre-defined ones) for the plasma SXR emissivity distribu-

tion and the corresponding data, for measurements from the ASDEX Upgrade

tokamak. The individual models had different assumptions regarding the noise

level in the collected data, the correlations between variables in the tomographic

reconstruction grid, and the individual variances of those same variables. The

method then consisted in training a convolutional neural network to perform

the bayesian model selection (marginalization) procedure, and bypass the need

to perform that task analytically. Our results show that the neural network

achieved good classification results when compared to the analytical bayesian

marginalization step, with top-5 accuracy (out of 27 possible classes) reaching

a value of 0.976 (out of a maximum of 1). Furthermore, while the marginal-

ization procedure across the entire dataset (of 127528 tomographic projections),

through analytical methods, took approximately 48h, the same computation,

performed by the neural network, took only 43s. Thus, the neural network

approach can be particularly useful for high-dimensional data settings such as

ours, as well as problems where the number of models under consideration is

large, which would otherwise render the model comparison problem too slow

through analytical methods. This can be particularly useful for settings where

not only real-time inversion of tomographic profiles, but also real-time compar-

ison of different models for certain physical distributions is a necessity.

82

5.5. Conclusions

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium

and has received funding from the Euratom research and training programme 2014-

2018 and 2019-2020 under grant agreement No 633053. The views and opinions ex-

pressed herein do not necessarily reflect those of the European Commission.

Data Availability

The data that support the findings of this study are available from the corresponding

author upon request.

83

6. Classification of tokamak plasma
confinement states with
convolutional recurrent neural
networks

Authors Francisco Matos1

Vlado Menkovski2

Federico Felici3

Alessandro Pau3

Frank Jenko1

Affiliations: 1Max Planck Institute for Plasma Physics, Garching, Germany
2Eindhoven University of Technology, Eindhoven, Netherlands
3Swiss Plasma Center, Lausanne, Switzerland

Published in: Nuclear Fusion
DOI: https://doi.org/10.1088/1741-4326/ab6c7a

Author contributions: The first author carried out the work of code imple-

mentation and algorithm development. The remaining authors contributed sig-

nificantly with discussions and suggestions, as well as reviewing and making

additions and corrections to the paper. Federico Felici was responsible for get-

ting the required data, and Alessandro Pau developed a tool for easing the data

labeling process.

85

https://doi.org/10.1088/1741-4326/ab6c7a

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

Abstract. During a tokamak discharge, the plasma can vary between differ-

ent confinement regimes: Low (L), High (H) and, in some cases, a temporary

(intermediate state), called Dithering (D). In addition, while the plasma is in

H mode, Edge Localized Modes (ELMs) can occur. The automatic detection of

changes between these states, and of ELMs, is important for tokamak operation.

Motivated by this, and by recent developments in deep learning (DL), we de-

veloped and compared two methods for automatic detection of the occurrence

of L-D-H transitions and ELMs, applied on data from the TCV tokamak. These

methods consist in a Convolutional Neural Network (CNN) and a Convolutional

Long Short Term Memory Neural Network (Conv-LSTM). We measured our re-

sults with regards to ELMs using ROC curves and Youden’s score index, and

regarding state detection using Cohen’s Kappa Index.

6.1. Introduction

In a fusion experiment, plasma can typically be described as being in one of

two different confinement regimes or modes: Low (L) and High (H). Further-

more, the plasma can also sometimes be described as being in a third, additional,

mode, called the Intermediate or Dithering (D)[94] phase. In addition, when the

plasma is in H mode, Edge Localized Modes (ELMs) can periodically occur.

Current tokamaks regularly run in H mode, which motivates the necessity

for some measure of control (and therefore, detection) of ELMs and transitions

between plasma modes. Furthermore, it is expected that future machines will

also run in the same operating conditions[95]. Thus, the development of au-

tomated, data-based approaches to automatically detect the occurrence of cer-

tain events would be useful for both existing and future tokamak experiments

and operation[96]. A detector would not only simplify and speed-up the post-

experimental, offline analysis of shots, but also (ideally) detect ELMs and plasma

state rapidly enough to allow for its usage in the real-time control systems of a

fusion experiment, for purposes of plasma control and real-time discharge mon-

itoring and supervision[97].

Due to uncertainties in the scaling laws, it is difficult to determine, a pri-

86

6.1. Introduction

ori, when, during a discharge, a switch between different plasma modes will

occur[98]. Nevertheless, physicists can usually pinpoint, through a post-

experimental visual analysis of several diagnostic signal time-traces, at what

point in time any transitions between different modes did take place. Similarly

to transitions between plasma modes, the occurrence of an ELM can usually be

pinpointed by looking at the time-traces of several diagnostics from a plasma

discharge post-shot. Yet through an analysis of signals, some types of ELMs can

be easily confused with dithers; a distinction between the two phenomena can

not always be clearly made[99].

Although the identification by an expert, through post experimental visual

analysis of signal time-traces, of a single ELM, or a single transition between

plasma modes, is relatively straightforward for a typical shot, it becomes much

more cumbersome to carry out that analysis effectively for many shots, espe-

cially when the associated time-series data is long, and when a shot has many

transitions between different modes.

Recent advances in the ML field with the introduction of deep learning (DL)

approaches deal with exactly such challenges. In the past years, the field of deep

learning has brought about significant advances in Computer Vision and Se-

quential Data Processing. Convolutional Neural Networks (CNNs) have proven

adept at localization, recognition and detection tasks in both 2-dimensional[100,

101, 102, 103, 104] and 1-dimensional[105, 106, 107, 108, 109, 110] data (i.e.

signal analysis) in many different fields of science. In addition, Long Short-Term

Memory (LSTM) Networks, which are one type of Recurrent Neural Network,

have been successfully used for processing of sequential data where one ex-

pects correlations to exist across time, namely, automatic translation, natural

language modelling[111], traffic analysis[112], and automated video descrip-

tion[113]. These tasks are much akin to what one can expect to find in terms

of processing fusion shot data.

Given this, a deep learning approach is well motivated to address this chal-

lenge. Specifically, deep neural network models offer particular advantages

when modeling high-dimensional data as given in this setting. In this work,

we develop an approach for automatic classification of L-D-H plasma states and

detection of ELMs based on two deep neural network models. The first model is

based on a sliding-window feed-forward neural network, specifically a convolu-

87

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

tional neural network (CNN). The second model is based on a recurrent neural

network (RNN), specifically a long short-term memory network (LSTM) with

convolutional layers. The first model captures the local correlations within the

windows to classify the transitions between plasma states from the shape of the

signals. The second model extends this to capturing longer-term dependencies

in the evolution of the states with the recurrent neural network layers.

We empirically demonstrate the approach on data collected from the TCV

tokamak experiment, labelled by an ensemble of experts. The presented re-

sults demonstrate the effectiveness of the proposed model to detect the state

and events of the plasma. We further discuss the trade-offs between increased

precision and increased complexity of both models.

This paper is organized as follows: Section 6.2 discusses related work and Sec-

tion 6.3 describes the physical phenomena being analyzed. Section 6.4 formal-

izes our problem, details the data we have available, and explains our decisions

regarding how we model the data and design and train the neural networks.

Section 6.5 gives an overview of the metrics we used to evaluate our results and

our rationale behind using those metrics. Section 6.6 gives an overview of the

results achieved, and we wrap up with a discussion in Section 6.7.

6.2. Previous work

Several different approaches for automated detection of events in plasma ex-

periments exist. One such approach is to use threshold-based detectors. This

corresponds to defining a point or series of points (in time) at which a sig-

nal surpasses a certain amplitude as corresponding to a detection[36, 37, 38],

with additional constraints such as an increasing probability of the occurrence

of an ELM as time passes since the last one. These approaches are limited to

simple thresholding and cannot compute complex patterns in the data. Other

work builds upon methods such as Kalman Filters to model the expected char-

acteristics of the signal over a period of time, whilst also keeping track (in each

time point) of the current plasma mode, according to a pre-defined model. In

both of these cases, a detection algorithm’s performance depends on the extent

to which the theoretical assumptions and mathematical descriptions as to how

88

6.2. Previous work

the signals should behave are correct, whether those assumptions are exhaustive

(i.e., whether there may be additional causes which are unaccounted for), and

whether some of those assumptions are more important than others; in other

words, it is difficult to design an exhaustive rule-based system to detect the oc-

currence of transitions between plasma modes, as well as to detect ELMs.

The alternative is to use a purely data-based, supervised, Machine Learning

(ML), approach, whereby a set of data, previously manually labeled by an ex-

pert (for example, through visual analysis), is used to train a detector. In this

case, one does not specify which characteristics or correlations in the data are

thought to correspond to the occurrence of an event; rather, it is expected that

the algorithm can automatically learn what those correlations are, based on the

labels, and then use the learned data features to make correct classifications

on new data. Examples of such work are the usage of Support Vector Machines

(SVMs)[39, 40, 41, 42] and Multi-Layer Perceptron (MLP) Neural Networks[114]

on data from several tokamaks for detection of L-H transitions, classification of

L and H modes, and detection of ELMs.

This type of scenario is, indeed, well suited for application of ML methods

towards enabling automation. However, traditional ML methods such as SVMs

and MLPs typically have limitations when faced with data with complex dy-

namics, such as the long sequences (i.e., signal time-series) present in this envi-

ronment. SVMs typically depend on expert-defined feature engineering, which,

while being superior to simple threshold-based detectors, is nevertheless insuffi-

cient when considering the complex data correlations which are observed in this

setting. On the other hand, MLPs, while not requiring that sort of expert-defined

input, are very inefficient when compared to modern deep learning models such

as CNNs and RNNs, requiring much larger numbers of neurons and layers to

perform the same task. These limitations are what motivate us to use deep learn-

ing approaches instead.

89

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

6.3. Background

6.3.1. Low, dither and high plasma confinement modes

When a discharge starts, the plasma is considered to be in Low (L) confine-

ment mode. Once a certain threshold of input heating power to the plasma

is reached[8], the plasma can spontaneously transition into High (H) confine-

ment mode. Originally discovered at the ASDEX-Upgrade Tokamak[115], High

(H) mode is nowadays regularly observed in almost all other machines[116]. H

mode is characterized by the appearance, in the plasma edge, of a steep gradient

in the electron density and the electron/ion temperatures, and a reduction in the

transport of particles and energy. As a consequence of this edge transport bar-

rier, the temperature and energy in the plasma core increase. When compared

to L-mode, H mode allows for a larger amount of stored plasma energy per in-

put power, thus rendering the fusion process more efficient. Yet the actual input

power threshold that triggers the transition between the two modes is depen-

dent on many factors, such as, for example, the configuration of the magnetic

field, plasma density, and plasma size [98]. Furthermore, when the input heat-

ing power passes the aforementioned threshold but a change from L to H mode

does not immediately occur, the plasma can be considered to be in a dithering

(D)[94] phase. In this case, a temporary, weak, edge transport barrier starts to

develop at the plasma edge, only to collapse and reappear in rapid succession[8].

These oscillations then repeat themselves until the plasma transitions into L or

H mode. The localization of transitions into, and out of, D mode can, however,

be difficult to identify, and there are often disagreements between experts as to

which periods of a shot are in a Dithering phase [117].

6.3.2. Edge Localized Modes

When the plasma enters H mode, the corresponding accumulation of energy

and the large pressure gradient at the plasma edge can trigger the occurrence

of Edge Localized Modes (ELMs). These consist of periodic bursts of particles

and energy which, if a long amount of time passes between successive ELMs,

can impose a significant power load on the divertor, potentially damaging it.

However, ELMs also allow for the periodic removal of accumulated impurities

90

6.4. Methods

from the plasma, and for a relaxation of the plasma density, which can other-

wise increase as the H mode progresses, eventually triggering a disruption[118].

On the other hand, frequent, less energetic, ELMs lower the power load on the

divertor, at the cost of reduced plasma confinement. Thus, tokamak operation

requires knowledge of the occurrence of ELMs, in particular for larger machines

where ELMs may cause deterioration of in-vessel components. Although several

different types of ELMs exist, for the purposes of this work, we did not make any

distinctions between them — we train the models to detect all occurring ELMs

equally, regardless of their subclass.

6.4. Methods

6.4.1. Problem formulation and approach

To develop a model for this task, we formulate the problem as follows:

We observe a sequence of measurements xt for 0 < t ≤ N from the sensors for

each shot. These observations are conditioned on the state of the plasma zt at

corresponding time t, where zt ∈ Z and Z : {′Low′,′Dither ′,′High′}. Our goal is

to find the most likely sequences ẑ1:N and ê1:N that explain the observations x0:N .

We define ẑ1:N as

ẑ1:N = argmax
z1:N

p(z1, z2, ..., zN).

We choose to represent the joint probability p(z1, z2, ..., zN) as

p(z1, z2, ..., zN) = log(p(z1|x0:1)p(z2|x0:2, z1)...p(zN |x0:N , zN−1))

where p(zt |x0:t, zt−1) denotes the probability of observing state z at time t, given

the sequence of observed signals x from time 0 to time t and the previous state

zt−1. This yields

ẑ1:N = argmax
z1:N

log(
∏
t

p(zt |x0:t, zt−1))

= argmax
z1:N

∑
t

logp(zt |x0:t, zt−1).

91

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

Similarly, we define ê1:N as

ê1:N = argmax
e1:N

p(e1, e2, ..., eN)

while representing p(e1, e2, ..., eN) as

p(e1, e2, ..., eN) = (p(e1|x0:1)p(e2|x0:2)...p(eN |x0:N)

where p(et |x0:t) denotes the probability of an ELM occurring at time t given the

observations x from time 0 to time t. This then yields

ê1:N = argmax
e1:N

log(
∏
t

p(et |x0:t))

= argmax
e1:N

∑
t

logp(et |x0:t).

To find ẑ1:N and ê1:N we develop two models. The first model is trained to

detect the transitions between the different states of the plasma defined as qt ∈Q
where Q : { ′Low → Dither ′, ′Dither → Low′, ′Low → High′, ′High → Low′,
′Dither→ High′, ′High→ Dither ′,′Notransition} and to detect the ELM events

as et ∈ E where E : {′ELM ′,′NoELM ′}.
We implement this model with a feed-forward CNN that processes a win-

dow of observations xt−w, ..,xt, ...,xt+w and produces a probability distribu-

tion over the transitions p(qzt−1→zt |xt−w:t+w) and over the presence of an ELM

p(ELMt |xt−w:t+w) at t.

We now define the probability of transitioning to zt after being in zt−1

(p(zt |x0:t, zt−1)) with our model p(qzt−1→zt |xt−w:t+w) where w is the number of ob-

servations around t, therefore:

ẑ1:N = argmax
z1:N

∑
t

logp(qzt−1→zt |xt−w:t+w)

Practically, we implement the argmax given above as a state evolution of a

final state machine St(z(a) → z(b)) where z(a) and z(b) are elements in Z and the

transition probabilities are given by p(qzt−1→zt |xt−w:t+w) at time t (see Figure 6.1).

The evolution of the state machine produces several possible sequences of states,

92

6.4. Methods

and the one most likely to have generated the observed sequence of transitions

can be found through an implementation of the Viterbi algorithm[119].

𝐿

𝐷𝐻

𝑞𝐿𝐷𝑞𝐿𝐻

𝑞𝐻𝐿 𝑞𝐷𝐿

𝑞𝐷𝐻

𝑞𝐻𝐷

𝑁
𝑜
_𝑡𝑟𝑎

𝑛
𝑠.𝑁

𝑜
_𝑡
𝑟𝑎
𝑛
𝑠.

𝑁𝑜_𝑡𝑟𝑎𝑛𝑠.
𝑆𝑡𝑎𝑟𝑡

Figure 6.1.: State machine for processing of the CNN outputs

The first model can capture the localized correlations in the signals that in-

dicate the transition of the state of plasma well. However, it is incapable of

capturing the longer distance correlations that may be present in the signal. To

generalize the approach further, we introduce a sequence model that models the

full sequence of observations up to time t and produce a probability distribution

p(zt |x0:t) for 0 < t ≤ N , as well as a distribution over the presence of the ELMs

(p(ELMt |x0:t). This model is implemented by extending the CNN with a recur-

rent (LSTM) neural network. In this case, the model now observes a sequence of

sliding windows xt−w, ...,xt, ...,xt+w for each t in the range {0, ..t}.
The first model has a lower computational complexity and can be trained more

efficiently, as we only need windows of the signal with or without the different

transitions, but it is limited to the information only present in the given win-

dow (see Figure 6.2). Increasing the size of this window that forms the context,

increases the complexity both of the model and of dealing with multiple transi-

tions appearing.

The second model addresses these challenges by modeling the sequence rather

than a fixed window (see Figure 6.3). As a sequential model, it has an internal

representation of the past observations x0, ..,xt, that enable it to weigh-in the

93

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

Conv Input

Feature
Extraction

Feature
Extraction

Feature
Extraction

Conv Input Conv Input… …

…

… …

Conv Input

Feature
Extraction

…

Tr
a

n
si

ti
o

n
In

p
u

t
Si

g
n

a
l

C
o

n
vo

lu
ti

o
n

s
+

M
a

x
P

o
o

lin
g

 +
D

ro
p

o
u

t
𝑥
𝑡+
1

𝑥
𝑡+
2

𝑥
𝑡+
3

𝑥
𝑡+
4

𝑥
𝑡+
5

𝑥
𝑡+
6

𝑥
𝑡+
7

𝑥
𝑡+
8

𝑥
𝑡+
9

𝑥
𝑡+
1
0

𝑥
𝑡+
1
1

𝑥
𝑡+
1
2

𝑥
𝑡+
1
3

𝑥
𝑡+
1
4

𝑥
𝑡+
1
5

𝑞
𝑡+
1

𝑞
𝑡+
2

𝑞
𝑡+
3

𝑞
𝑡+
4

𝑞
𝑡+
5

𝑞
𝑡+
6

𝑞
𝑡+
7

𝑞
𝑡+
8

𝑞
𝑡+
9

𝑞
𝑡+
1
0

𝑞
𝑡+
1
2

𝑞
𝑡+
1
3

𝑞
𝑡+
1
4

𝑞
𝑡+
1
5

𝑞
𝑡+
1
1

𝒘

𝑥
𝑡+
𝑛
−
1

𝑥
𝑡+
𝑛

𝑥
𝑡+
𝑛
+
1

𝑥
𝑡+
𝑛
+
2

𝑥
𝑡+
𝑛
+
3

𝑞
𝑡+
𝑛
−
1

𝑞
𝑡+
𝑛

𝑞
𝑡+
𝑛
+
1

𝑞
𝑡+
𝑛
+
2

𝑞
𝑡+
𝑛
+
3

Figure 6.2.: Representation of how a CNN can be used to model the transitions
between different plasma modes. The network’s output prediction
for a time slice t depends only on the data features in a defined re-
gion immediately surrounding t.

likelihood of transition based on information in the more distant past[120]. The

LSTM effectively assumes the role of the finite state machine and so the model

can directly model the state of the plasma rather than the transitions. However,

it introduces higher level of complexity, particularly for training, as we need to

train on sequences rather than fixed-length windows.

6.4.2. Data and event features

For the purposes of this work, we have assembled a dataset based on the time-

traces of four signals originating in the TCV tokamak[121, 122]. We opted, for

the purposes of this work, to use the same, limited set of diagnostic signals that

experimentalists use to determine, in post-shot analysis, the state of the plasma

(Figure 6.4).

1. Photodiode (PD) signal. Corresponds to the measurements given by the

photodiode diagnostic at TCV along a vertical chord, measuring the line-

integrated emitted visible radiation; the photodiode has an Hα filter which

measures radiation at 653.3 nm.

Transitions between different plasma states, as well as ELMs, can be most

easily observed through analysis of the photodiode (PD) signal (Figure 6.5).

94

6.4. Methods

Conv Input 1

Feature
Extraction 1

Feature
Extraction 2

Feature
Extraction 11

Conv Input 2 Conv Input 11… …

…

… …

Conv Input n

Feature
Extraction n

…

…

LS
TM

St
a

te
In

p
u

t
Si

g
n

a
l

C
o

n
vo

lu
ti

o
n

s
+

M
a

x
P

o
o

lin
g

 +
D

ro
p

o
u

t
𝑥
𝑡+
1

𝑥
𝑡+
2

𝑥
𝑡+
3

𝑥
𝑡+
4

𝑥
𝑡+
5

𝑥
𝑡+
6

𝑥
𝑡+
7

𝑥
𝑡+
8

𝑥
𝑡+
9

𝑥
𝑡+
1
0

𝑥
𝑡+
1
1

𝑥
𝑡+
1
2

𝑥
𝑡+
1
3

𝑥
𝑡+
1
4

𝑥
𝑡+
1
5

𝑥
𝑡+
𝑛
−
1

𝑥
𝑡+
𝑛

𝑥
𝑡+
𝑛
+
1

𝑥
𝑡+
𝑛
+
2

𝑥
𝑡+
𝑛
+
3

𝑧 𝑡
+
1

𝑧 𝑡
+
2

𝑧 𝑡
+
3

𝑧 𝑡
+
4

𝑧 𝑡
+
5

𝑧 𝑡
+
6

𝑧 𝑡
+
7

𝑧 𝑡
+
8

𝑧 𝑡
+
9

𝑧 𝑡
+
1
0

𝑧 𝑡
+
1
2

𝑧 𝑡
+
1
3

𝑧 𝑡
+
1
4

𝑧 𝑡
+
1
5

𝑧 𝑡
+
1
1

𝑧 𝑡
+
𝑛
−
1

𝑧 𝑡
+
𝑛

𝑧 𝑡
+
𝑛
+
1

𝑧 𝑡
+
𝑛
+
2

𝑧 𝑡
+
𝑛
+
3

𝒘

Figure 6.3.: Schematic representation of the flow of data inside a convolutional
LSTM Neural Network. The network’s prediction (i.e. output prob-
ability) at any time t of a shot depends not only on whatever features
the convolutional layers have extracted from the points immediately
around t, but also on features extracted in the past.

Transitions from L to H mode are characterized by a sudden drop in the

baseline value of the signal, whereas transitions back into L mode have the

opposite trace, i.e., the baseline PD signal suddenly increases and remains

at a steady level. ELMs are characterized by a sudden spike in the PD

signal, followed by a relaxation that takes at most 2ms. D modes generate

rapid fluctuations in the signal (see Figure 6.6); they do not necessarily cor-

respond to a change in the baseline signal value, unless they are followed

by a transition into a different state from the one at the point where they

started.

2. Interferometer (FIR) signal. The interferometers at TCV measure the line-

integrated electron density in the plasma along 14 parallel, vertical lines

of sight. Of these, we take the mean value, per time instant, of the 12

inner-most detectors.

In the interferometer signal, the transition between L and H mode can most

easily be seen as a sudden increase in the time derivative of the signal,

95

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 v

al
ue

s (
no

rm
.) PD

FIR
DML
IP
Low
Dither
High

Figure 6.4.: Switches between different plasma modes(Low, Dither and High),
and time-traces of the collected signals, TCV shot #32195

0.1 0.2 0.3 0.4 0.5 0.6
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 v

al
ue

s (
no

rm
.) PD

FIR
DML
IP
ELM
Low
Dither
High

Figure 6.5.: ELMs and L and H plasma modes, TCV shot #33446

while transitions back into L mode correspond to a decrease in the deriva-

tive. Similarly to what happens with the photodiode signal, ELMs may

provoke short (albeit less pronounced) spikes in the FIR signal.

3. Diamagnetic Loop (DML) signal. Refers to the measurement of the total

toroidal magnetic flux of the plasma[123]. The derivative of the DML sig-

nal frequently switches signs when a transition occurs between L and H

mode, as well as when an ELM occurs (Figure 6.7). Furthermore, the sign

of this signal’s derivative changes depending on the sign of the plasma cur-

rent.

4. Plasma Current (IP) signal. Refers to the total plasma electric current. For

this work, we use the current value to determine when the actual classifica-

tion of plasma states should begin. Specifically, we ignore, for classification

purposes, time points where the absolute value of the current is lower than

96

6.4. Methods

50 kA.

0.260 0.265 0.270 0.275 0.280 0.285 0.290
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 v

al
ue

s (
no

rm
.) PD

FIR
DML
IP
Low
Dither
High

Figure 6.6.: L, D and H modes from a section of TCV shot #32195.

0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 v

al
ue

s (
no

rm
.) PD

FIR
DML
IP
ELM
Low
Dither
High

Figure 6.7.: ELMs, and L and H modes from a section of TCV shot #31650.

The 4 different signals used for this work have different sampling rates. As a

first step, we resampled all of them to the same frequency of 10kHz. Since each

TCV shot is usually up to 2 seconds long, this means that our shot signal data

consists of time-series of up to about 20.000 time slices.

We want to train a classifier to recognize features in the data which allow

for detecting the occurrence of ELMs and transitions between different plasma

modes — i.e., a supervised learning task. As such, the first step was to collect

labels for each shot time series, through visual analysis taking into account the

data features described above. The collected data was visually labeled by 3 dif-

ferent experts for the same shots. This means for some shots, the same regions

might have different labels (namely, the experts might disagree on whether a

certain part of a shot is dithering). Training the network with labels which are

97

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

different in some regions has several potential advantages. For example, it com-

pensates for any possible discrepancies in labeling originating from human er-

ror. It also allows us to incorporate the uncertainty in the labels into the network

training process itself, that is, it acts as a form of regularization: if there is no

majority agreement between experts regarding a section of a shot, then it is to be

expected that the network will also learn not to strongly favor any class in that

region. Conversely, if the three experts agree, then the network will learn that

the features in that region most certainly correspond to a certain class, which

renders the classification more robust. Finally, getting labels from different ex-

perts allows us to increase the size of our training dataset.

6.4.3. Model training

The two proposed models develop different maps. The first model is a map be-

tween a fixed window of observations and a distribution over transitions, while

the second models a sequence of observations and produces a sequence of states

(see Figure 6.8).

Accordingly, the training data has different arrangements. For transition clas-

sification, we need to prepare a dataset D1, {(x,q,e)}, where a training point con-

sists of a section of the recorded signal(xt−w, ...xt, ...,xt+w), the corresponding la-

bel of one of the transitions qt in Q and the matching label et indicating the

presence (or not) of an ELM. Figure 6.9 illustrates this in detail.

For the second model D2, {(x,z,e)}, a training point consists of a sequence of

windows of observations drawn from xt to xt+l+w (where l is a defined sequence

length, and w is the window length), a sequence of state labels zt in Z of length

l, with each label corresponding to the state of the plasma at times t, and a

sequence of labels et of length l corresponding to the presence of an ELM at

times t. Figure 6.9 illustrates this in detail.

There is an inherent uncertainty in the labeling of the ELMs and plasma states,

particularly when it comes to transitions into and out of dithers. The raw data

only has hard, binary, one-hot encodings[124] — that is, a transition between

two states, for example, is labeled as a sudden switch (from one time slice to the

next) from one state to another. This means that it is easy to mistakenly label an

event or transition in a slightly shifted time slice. This type of hard threshold

98

6.4. Methods

also makes it difficult for a neural network to generalize to outside of its training

set[125].

Therefore, for the first model (CNN), we process the target time-series such

that the probability of an ELM, or of a given state transition, is a continuous

value, starting at zero and peaking at one, with several intermediate probabili-

ties. In practical terms, we apply on each event a gaussian smoothing such that,

if an ELM or state transition occurs at time t, its probability at that point is

1, and we define an interval ∆t — before and after t — where the probability,

respectively, smoothly increases and decreases. We defined these smoothing in-

tervals as corresponding to 2ms, which, at the defined sampling rate, translates

to 20 time slices. We do the same with the states zt for the second model (Conv-

LSTM), such that a switch between two different states, from z1 to z2, does not

happen immediately from one time slice to the next, but rather, the probability

of z1 decreases, while that of z2 increases, over a span of 20 time slices.

This procedure not only models the uncertainty in the labeling process, but

also acts as an automatic regularization for the neural network training process,

i.e., it makes it easier for a neural network to generalize what it learns to unseen

data[126].

The choice of the size of the temporal windows with which the CNN is trained

is a trade-off between the assumptions made about the data, and computational

feasibility. Larger windows contain more spatial information and thus, intu-

itively, should make the classification at a particular time slice more precise, but

also make the training and inference process by the network slower. Smaller

windows contain arguably less information, but can be processed faster. We

opted to train the CNN with temporal windows with a length of 20ms, which

we judged to be a good compromise between those two requirements. At our

sampling rate, these windows are 200 time slices long. This is illustrated in Fig-

ure 6.9: the green region represents a window of signals (in this case, only the

PD signal) which is fed to the neural network, and its associated target, which is

the probability of an ELM occurring at t = 0.304s. There is an offset between the

time at the window’s rightmost edge, and the time for which the probability is

computed; in the example of 6.9, the offset is of 2ms, which means that to detect

the ELM occurring at t = 0.304s, the window would have information on the

signals from t = 0.286s to t = 0.306s. In formal terms, the windows compute in

99

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

1

2

PD
 (n

or
m

.)

PD

0

1

Pr
ob

. LH
HL

DH
HD

LD
DL

0

1

Pr
ob

. Low
Dither
High

1.6325 1.6350 1.6375 1.6400 1.6425 1.6450 1.6475 1.6500
t(s)

0

1

Pr
ob

. ELM

Figure 6.8.: Representation of the different types of encoding of the target
“smooth” data distributions, to be learned by the two classifiers,
from TCV shot #30262. Here, we show only the labels produced
by a single expert, though the networks are trained with labels from
all of them. The second plot from the top illustrates the transitions
to be learned by the CNN, while the bottom-most plot illustrates the
states to be learned by the Conv-LSTM.

that case p(et |xt−w1:t+w2
) and p(qzt−1→zt |xt−w1:t+w2

), where w1 = 180 and w2 = 20.

In practice, in a real-time setting, that offset would constitute a minimum delay

between the occurrence of an event in a machine, and a detection by the classi-

fier. Once again, the size of this offset is a trade-off: a smaller offset is ideal for

real-time applications because it gives more time for feedback control mecha-

nisms, but it also contains less information for the network to accurately classify

an event.

We train the Conv-LSTM not with windows, but with sequences of windows.

The distinction is an important one, for it implies different assumptions about

the data. In the case of the windows fed to the CNN, it is assumed that each

window is independent of each other. In the data fed to the Conv-LSTM, each

sequence itself is composed of several windows, with future windows depending

on past ones. We defined each of those sequences to consist of 200 windows

(since that was also the length of the windows fed to the CNN). In this case,

each of the individual windows has a length of 4ms (40 time slices), with an

100

6.4. Methods

20𝑚𝑠

2𝑚𝑠

Figure 6.9.: Representation of the sliding temporal windows fed to the CNN on
top of the PD signal, and their corresponding ELM probability out-
put. At inference time, these windows slide over the 4 signals across
the whole shot, each of them rendering an output probability for a
single time slice.

offset of 2ms, as in the data for the CNN (see Figure 6.10). The sequences have

a stride[127] of 1: each window starts and ends exactly 1 time slice after the

previous one finishes. Each of these sequences is randomly subsampled from

the whole shots, and the corresponding targets for them are chosen randomly

from one of the three labelers.

Although not all of these subsamples start in L mode, our expectation is that

the network would learn by itself that an actual shot always begins in that state.

There are several reasons for this. First, the network will learn to recognize any

features in the subsequences that are consistent with the beginning of a shot,

and learn that those features correlate to L mode. Second, even if some training

sequences start in D or H mode, the network will statistically learn that these

modes are more frequently the result of a transition from a previous mode.

6.4.4. Model design

The architecture of the neural networks used for the transition detection starts

with a 1-D convolutions with four channels, each of which receives the values

101

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

20𝑚𝑠

4𝑚𝑠 2𝑚𝑠

Figure 6.10.: Example of a sequence fed to the LSTM. At a 10kHz sampling rate,
it consists of 200 overlapping temporal windows of length 40. The
output probability for a given window depends not only on what
data features are present in that window, but also on the past win-
dows in the sequence.

from the PD, FIR, IP and DML signals. These are followed by several convolu-

tional layers, interspersed with pooling and dropout layers, which are trained

for feature extraction, with deeper layers extracting higher-level data features

(Figure 6.11). The last layers of the network are fully-connected, and are re-

sponsible for receiving the pre-processed high-level features and producing an

appropriate output for them, i.e., the desired classification. This model is loosely

inspired by the VGG architecture for classification of images where fixed sized

filters are used[52].

Our convolutional LSTM network builds on top of CNN model that showed

the best performance on the transition detection task. We add a recurrent layer

that processes the output of the CNN to capture the longer-distance correlations

in the data (Figure 6.12).

We designed the networks using the Keras framework for deep learning[89].

Both networks used a categorical cross-entropy loss function, and were trained

with the Adam optimizer[92] using the default learning rate value provided by

Keras.

102

6.4. Methods

Conv1D (64,3)
Conv1D (128,3)
Dropout (0,5)
Maxpool (2)

Conv1D (256,3)
Conv1D(256,3)
Conv1D(256,3)
Dropout (0,5)
Maxpool (2)

Dense(64)
Dense(16)

Dense (7)/
Dense(2)

Conv1D (256,3)
Conv1D(256,3)
Conv1D(256,3)
Dropout (0,5)
Maxpool (2)

Figure 6.11.: Architecture of the convolutional NN

Conv1D (64,3)
Conv1D (128,3)
Dropout (0,5)
Maxpool (2)

Conv1D (256,3)
Conv1D(256,3)
Conv1D(256,3)
Dropout (0,5)
Maxpool (2)

Dense(64)
Dense(16)

Conv1D (256,3)
Conv1D(256,3)
Conv1D(256,3)
Dropout (0,5)
Maxpool (2)

LSTM(32)
LSTM(32)

Dense (32)
Dropout (0,5)

Dense (3)/
Dense(2)

(Time-
Distributed)

(Time-
Distributed)

(Time-
Distributed)

Figure 6.12.: Architecture of the convolutional LSTM. All layers and nodes use
ReLU activation functions, apart from the final output layer, which
uses Softmax activation.

6.4.5. Data split

In total, we possessed 54 shots fully labeled by the three experts. In a typi-

cal deep learning setting, some sort of normalization[128] is usually applied on

the available data. The most common procedure would have been to normal-

ize across the entire dataset. However, because of the different calibrations of

the PD signals and the subsequent large variance and multimodal distribution

associated with it, we decided, at this stage, to normalize each shot separately

dividing each signal in each shot by its own mean across the whole shot. For

potential real-time applications, as any new shots could fall outside the normal-

103

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

ization range, the procedure would require grouping and normalizing the shots

with respect to different signal gains and calibrations.

From these normalized full sequences, we draw batches of smaller temporal

windows and subsequences to train the neural networks. There are several rea-

sons for this subsampling. First, the full shot time-series are up to about 20,000

time slices long, but the actual length of a shot can vary significantly. Yet for

purposes of training the networks, we require batches of data of fixed length,

which can be achieved by subsampling from the full sequences.

Second, this method allows us to automatically perform data augmentation

for training, since one long sequence will contain many shorter subsequences

and windows.

Third, feeding very large temporal windows to a CNN would be computation-

ally difficult, as the number of network parameters requiring training would

grow considerably.

Finally, the distribution of the data in the full sequences is highly unbalanced:

in most shots, dithering phases are significantly shorter than L and H phases;

only a few dozen transitions happen at most per shot; and, some transitions

tend to be more frequent than others. Training with whole sequences would sig-

nificantly bias the networks towards the events and transitions that occur more

frequently in the labeled data. Drawing subsequences allows us to control the

data fed to the network such that this inherent bias is mitigated. To do this, the

training data batches must be balanced, i.e., generated such that they contain

roughly equal fractions of the different types of events and/or transitions of in-

terest. In the CNN, there are 8 possible events of interest — LH, HL, HD, DH,

LD, DL, ELM, and no transition. Generating batches for the CNN means that, for

a batch containing n data samples, n/8 of those samples will correspond to each

of those different types of transitions. Similarly, for the Conv-LSTM, the batches

are generated such that the three target distributions (L, D and H) correspond to

approximately 1/3 of the data samples each.

104

6.5. Evaluation metrics

6.5. Evaluation metrics

6.5.1. ROC curve

We consider the detection of single, discrete ELMs by the networks as corre-

sponding to a point in time (in a shot) where the direct network outputs for

ELM probability ê1:N reach a maximum value. This is not necessarily a point

where the output network probability for ELM is 1, but rather, a point t where

the output probability P (ELMt) follows a series of strictly increasing probability

values, and precedes a series of strictly decreasing ones. Because we defined the

length of the gaussian smoothing of the probabilities as 20, here we consider a

local maximum for P (ELMt) within a 20-wide interval to correspond to the de-

tection of a single ELM — which we denote as a positive. The remaining points

are considered non-detections, i.e., negatives. In addition, we defined different

probability thresholds for what can be considered a detection of an ELM by the

network. For example, defining a threshold of 50% implies that only ELM prob-

ability maxima above that threshold are considered positives.

Positives and negatives must then be compared to the labeled ELMs. To that

end, we build the ELM Confusion Matrix, which defines several variables: neg-

atives that match their label at the same point in time are True Negatives (TN),

while those that do not are False Negatives (FN). Similarly, positives that match

their label are True Positives (TP) and those that do not are False Positives(FP).

Using this method to determine the points in which the network detects in-

dividual ELMs, one can then compute the True Positive Rate (TPR) and False

Positive Rate (FPR) for different detection thresholds:

T PR =
T P

T P +FN
(6.1)

FPR =
FP

FP + TN
(6.2)

Plotting the TPR versus FPR for a series of different detection thresholds yields

the classifier’s ROC curve[129], which illustrates the network’s capacity for dis-

crimination given different detection thresholds. There are several ways to com-

105

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

pute the ideal detection threshold based on the ROC curve, depending on the

task in question. In our case, we use the Youden index[130], whereby the best

threshold is the value which maximizes the difference T PR−FPR, the maximum

value being 1.

6.5.2. Kappa statistic

To compare the models’ accuracy with that of the human labelers, we use Co-

hen’s Kappa-statistic coefficient, which measures agreement between two sets of

categorical data[131], defined as

κ =
p0 − pe
1− pe

(6.3)

where p0 denotes the actual relative agreement between the two sets, and

pe denotes the probability of the two sets randomly agreeing with each other.

Generically, the κ coefficient’s values oscillate between 0 and 1, the former indi-

cating poor performance, and the latter indicating perfect performance. In our

case, given two sequences z1 and z2 of plasma states, Kohen’s Kappa measures

the overlap between them. If z1t = z2t for all time instants t, the metric will yield

a score of 1; if there are mismatches between the two sequences, the score will

go down.

The κ-statistic can be interpreted differently based on the sections of the data

for which it is computed. For that reason, we will now define several variables

that allow us to interpret the κ-statistic scores.

Remember that we possess labels drawn from three different experts; as such,

generically, labeled shot states at each point in time t of a shot can be in one of

three possible categories:

• No majority agreement, i.e., all labelers disagree as to what state the

plasma is in, which we denote as category C1.

• Majority agreement, i.e., two labelers agree on the state of the plasma,

while one disagrees, which we denote as category C2.

• Consensual agreement — all labelers agree as to what state the plasma is

in, which we denote as category C3.

106

6.6. Results

We define the union of C2 and C3 as ground truth (C4), i.e., they are sections of

shots where there is at least a majority opinion as to what state the plasma is in.

We also have, for each shot, the most likely sequences ẑ1:N of states (given the

observed data) produced by the neural networks, which we will now denote as

C5.

Computing the κ-statistic score, κl , between sets C2 and C4 gives an indication

of the probability that a single labeler disagrees with the ground truth: a κl-score

of 1 would indicate that there is agreement between all the labelers all the time,

while a lower score would indicate that at least some of the time, one labeler dis-

agrees with the others. Simultaneously, computing the κ-statistic score between

sets C5 and C4 (κn) gives an indication of the networks’ performance given the

ground truth. But, in addition, we can directly compare κl and κn. This com-

parison allows to test how a network and a single labeler compare against each

other, on average, given the ground truth.

The κ-coefficient is calculated separately for each of the three possible labels

for the plasma state (L, D and H), and as a weighted mean across all three states.

The weights of that mean are taken to be the relative frequencies of each indi-

vidual state in the dataset, based on the ground truth (C4) labels.

6.6. Results

We performed several training runs using the data labeled by the three experts;

we carried out experiments where we trained both models (CNN and Conv-

LSTM) three times, each time randomizing the training and test shots, to test

whether differences in the data could lead to different results. In a typical deep

learning setting, the data is usually split so that approximately 80−90% is used

for training, and 20 − 10% is used for validation of the results, i.e., testing the

network’s capability to accurately predict on data that was not used for train-

ing. In our case, we opted for a training/test data split of 50%, i.e., of the 54

shots, we used 27 for training and 27 for testing. The results that follow are the

best results of those three experiments, for each model. We also experimented

with varying offsets (see Figure 6.9) for the convolutional windows to see what

effect that factor could have on the results; we settled for an offset value of 2ms

107

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

(20 time slices), as smaller offsets degraded results, while larger ones did not

improve them. We computed the metric scores on the training and test data

at several points during training to control for overfitting[44], and present the

results from the epoch where the state detection results on test data were the

highest. We ran the neural networks on an NVIDIA Quadro RTX 5000 GPU.

6.6.1. CNN

We computed the κ-statistic based on the regions defined in Subsection 6.5.2

— that is, we compute scores based on the network output versus the ground

truth (κn), and based on labeler disagreement versus the ground truth (κl). We

computed the scores on a per-state (L, D and H) basis, and also computed a mean

of the values obtained for each state.

We trained the CNN for 250 epochs, allowing for the loss function to stabilize;

each epoch consisted in 32 batches, with each batch containing 64 data samples.

Upon completion of training, we tested the CNN’s accuracy on both the training

and test data. The model’s results on ELM classification (ROC curve) can be seen

in Figure 6.13. Table 6.1 shows the scores κn and κl for the entire dataset, while

Figure 6.14 contains histograms showing the κns distribution on a per-shot basis.

L D H Mean

Kn
Train 0.691 0.358 0.657 0.649
Test 0.219 0.115 0.157 0.182

Kl
Train 0.937 0.896 0.987 0.958
Test 0.941 0.848 0.986 0.962

Table 6.1.: κ-statistic scores (κn and κl) for each plasma mode and as a mean, on
training and test data (values across all shots), for the CNN

108

6.6. Results

0.0 0.5 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 0.00.2

1.0

(a) Training data.

0.0 0.5 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 0.00.1

1.0

(b) Test data.
Figure 6.13.: ROC curves for ELM detection for the CNN model. The detec-

tion thresholds that maximize the Youden index are 0.2 and 0.1 for
training and test data, respectively yielding index values of 0.993
and 0.99. Using the ideal threshold for the training data (0.2) on
the test data gives a slightly lower Youden index of 0.986.

0

10

20

Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(a) Training data.

0

10

20

Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(b) Test data.

Figure 6.14.: Distribution of the κ-statistic score (κn) on a per-shot basis, for the
CNN.

6.6.2. Conv-LSTM

We trained the convolutional LSTM for 400 epochs, allowing the loss function to

stabilize. Each epoch consisted of 64 batches, with each batch containing 64 data

samples. The results of computing scores κl and κn, using the same definitions

as for the CNN, can be seen in Table 6.2. The ROC curves detailing the results

on ELM detection can be seen in Figure 6.15. Figure 6.16 contains histograms

showing the score Kn values on a per-shot basis.

109

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

L D H Mean

Kn
Train 0.96 0.889 0.967 0.96
Test 0.82 0.766 0.85 0.832

Kl
Train 0.96 0.94 0.992 0.98
Test 0.901 0.808 0.98 0.935

Table 6.2.: κ-statistic scores (κn and κl) for each plasma mode on training and
test data, for the Conv-LSTM

0.0 0.5 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 0.00.5

1.0

(a) Training data.

0.0 0.5 1.0
False Positive Rate

0.0

0.5

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 0.00.4

1.0

(b) Test data.
Figure 6.15.: ROC curves for ELM detection for the Conv-LSTM model. The

detection threshold which maximizes the Youden index is 0.5 for
training and 0.4 for test data; this yields index values of 0.977 and
0.969 for each set respectively. Using the ideal threshold for the
training data (0.5) on the test data gives a slightly lower Youden
index of 0.95.

0

10

20

Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(a) Training data.

0

10

20

Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(b) Test data.

Figure 6.16.: Distribution of the κ-statistic score (κn) on a per-shot basis, for the
Conv-LSTM

110

6.6. Results

6.6.3. Discussion

A comparison of the κn scores on training and test data for each classifier shows

that the convolutional LSTM performs better than the CNN for all three plasma

states. Furthermore, looking at the distribution of the mean κn scores on a per-

shot basis through the histograms, one can see that the worst Conv-LSTM classi-

fications do not have a score lower than 0.6 on training data, while for the CNN

alone, even on training data, mean κn scores lower than 0.2 exist. For both clas-

sifiers, the performance on training data surpasses that on test data, both on a

state-by-state basis, and as a mean across all states, which indicates the occur-

rence of overfitting.

For both networks, an analysis of the κl scores of their training and test data

indicates that human labeler disagreement is highest for dithers — the scores

for that particular state are consistently lower. Interestingly, both networks also

score their lowest results for dithers.

Comparing the Conv-LSTM’s κl and κn scores shows that, at least on train-

ing data, the network behaves, on average, similarly to a single human labeler,

making errors (or disagreeing with the ground truth) at approximately the same

rate — the mean κl score for training data is 0.98, while the mean κn score for

training data is 0.96. On test data, the Conv-LSTM performs slightly worse than

a single human labeler, as seen by the fact that the network’s mean K-index score

on test data κn is 0.832, while κl is 0.935.

As measured by the Youden index, we achieve excellent performance in de-

tection of ELMs on both training and test data using both models; the ideal

detection thresholds generate true positive detection rates very close to 1, while

bringing false positive detection rates essentially to 0. The Youden indexes for

test data are only slightly lower than for training data, which suggests that over-

fitting is minimal. Furthermore, for both models, on both training and test data,

the ROC curves’ points are mostly concentrated close to True Positive Rates of 1

and False Positive Rates of 0, which indicates that the choice of ELM detection

threshold does not significantly change the behavior of the classifiers.

Finally, the scores for ELMs being essentially the same for both models in-

dicates that the features in the data which allow for identification of ELMs are

mostly local: the CNN, even without knowledge of long-term temporal correla-

111

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

tions, performs excellent classification.

Because the Conv-LSTM has highest κn scores, we made a case-by-case analy-

sis of that network’s classification of all our available shots. Broadly, the Conv-

LSTM’s results on state detection, on a per-shot basis, can be placed into six

different categories:

1. A (sometimes very) short detection, of a dither that is not labeled in the

data. Due to the way the K-score κn is computed, a mistaken dither clas-

sification by the network of a single time point (in a whole sequence), in

a shot which has no regions where the ground truth (C4) is dithering, will

bring the score for that state down to 0, even if the remainder of the shot

is correctly classified (17 shots).

2. A clearly incorrect classification, of a temporal region of a shot as being in

a dithering state (4 shots);

3. A missed detection of an L-H transition (1 shot);

4. A missed detection of an H-L transition (2 shots);

5. An overall bad detection across an entire shot (7 shots);

6. An overall good detection across an entire shot (23 shots).

Table 6.3 lists 6 shots which are representative of each of the types of results

listed above. The table shows the computed κn scores for each of those shots on a

per-state basis, as well as the score’s mean value, and the fraction of time, for the

ground truth of each shot, that a particular state is labeled. The table also lists

which of the 6 cases above the shot is representative of. Figures 6.17, 6.18, 6.19,

6.20, 6.21, and 6.22 are plots of those same shots, where the background color

in the top plot denotes the state detected by the Conv-LSTM, and in the bottom

plot, denotes the ground truth label. Small gray areas in the bottom plot denote

regions where ground truth is not defined, i.e., there is no majority agreement

between labelers.

112

6.7. Conclusions

Case Shot ID
L D H

Mean
Fraction Score Fraction Score Fraction Score

1 57751 0.756 0.97 0 0 0.243 0.97 0.97
2 34010 0.679 0.856 0.073 0.232 0.248 0.602 0.748
3 58182 0.22 0.912 0.095 0.969 0.685 0.927 0.928
4 30197 0.951 0.384 0 1 0.049 0.384 0.384
5 33459 0.811 0.662 0 0 0.189 0.846 0.697
6 33942 0.455 0.953 0.183 0.884 0.412 0.997 0.962

Table 6.3.: κ-statistic (κn) scores for each plasma mode on training and test data
for selected shots representative of each of the six result categories

0

10

PD
, n

or
m

al
ize

d L
D
H

Classification

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time, s

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Gr.
 Truth

Shot #57751

Figure 6.17.: TCV shot #57751 (PD signal) and the Conv-LSTM’s classification of
state as the shot evolves. Notice the (very short) detected dithering
phase shortly after t = 0.75: no dithers are present in the labels, so
the score for D is 0.

6.7. Conclusions

We have developed two deep learning-based classifiers to perform automatic de-

tection of ELMs and classification of plasma modes. The task was two-fold: on

one hand, to perform a binary classification, for each time slice of a plasma shot,

on whether an ELM is occurring or not; and, to automatically determine which

plasma mode (or alternatively, whether a transition between plasma modes)

is occurring. One approach is to use a convolutional Neural Network (CNN),

which uses only local correlations in data to perform classification. The second

approach uses a Convolutional LSTM (Conv-LSTM) neural network, which also

takes advantages of long-term temporal correlations in data.

113

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

0

2

PD
, n

or
m

al
ize

d L
D
H

Classification

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time, s

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Gr.
 Truth

Shot #34010

Figure 6.18.: In TCV shot # 34010, the network correctly identifies the transi-
tion into H mode at t = 0.3s, but it shortly thereafter (incorrectly)
switches back to dithering.

0

5

10

PD
, n

or
m

al
ize

d L
D
H

Classification

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
time, s

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Gr.
 Truth

Shot #58182

Figure 6.19.: In TCV shot #58182, the network correctly identifies a transition
into H mode (shortly before t = 0.5s) but then incorrectly switches
back to L mode and remains there until the first ELMs (spikes in
the PD signal) appear.

On ELM detection, the two networks can achieve essentially equal results.

On the plasma state classification, a clear difference can be seen between the

results obtained with the CNN, and those obtained with the Conv-LSTM. Com-

paring the κ-index (κn) scores of each network shows that the LSTM’s scores

are clearly higher, which suggests that, at least when it comes to detection of

plasma modes, the processing of long-term correlations in data facilitates accu-

rate classification. There is some indication that overfitting occurred. However,

114

6.7. Conclusions

0

2

4

PD
, n

or
m

al
ize

d L
D
H

Classification

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
time, s

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Gr.
 Truth

Shot #30197

Figure 6.20.: In shot #30197, the network misses the transition from H to L
mode, which happens immediately after the series of spikes in the
PD signal, and only makes the switch after t = 0.5s.

0

2

4

PD
, n

or
m

al
ize

d L
D
H

Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time, s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Gr.
 Truth

Shot #33459

Figure 6.21.: Shot #33459 represents an overall bad classification by the net-
work; many dithers are incorrectly classified, while the transition
from L to H mode is missed. Around t = 0.3s, immediately after
classifying a D mode, the network oscillates between L and H in
quick succession for about 0.01s, which to the naked eye might ap-
pear in this plot as a gray area; in reality, it is an artifact of the plot,
with alternating red and green regions.

our monitoring of the training progression indicated that, while the metric val-

ues for test data are always lower, they did, nevertheless, become better as train-

ing progressed. Thus, an overfitting-avoidance strategy such as early stopping

would, in this case, not have helped achieve better test accuracy.

115

Chapter 6. Classification of tokamak plasma confinement states
with convolutional recurrent neural networks

0

10

PD
, n

or
m

al
ize

d L
D
H

Classification

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time, s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Gr.
 Truth

Shot #33942

Figure 6.22.: Shot #33942 is an example of an overall good detection.

While the results from the Conv-LSTM are better, that network is also more

complex with both network training and inference taking longer.

Although this work used data from the TCV tokamak, it should also be possi-

ble to adapt it to other machines; as a matter of fact, the data sources used exist

on most tokamaks. As long as the data fed to the neural networks is from those

same sources, this model could in principle be used for automatic labeling of

shots from a number of different machines.

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium

and has received funding from the Euratom research and training programme 2014-

2018 and 2019-2020 under grant agreement No 633053. The views and opinions ex-

pressed herein do not necessarily reflect those of the European Commission. We would

like express our gratitude to B. Labit, R. Maurizio and O. Sauter at SPC/EPFL for taking

the time to manually label the data used for training. This work was supported in part

by the Swiss National Science Foundation.

116

7. Plasma Confinement Mode
Classification Using a
Sequence-to-Sequence Neural
Network With Attention

Authors Francisco Matos1

Vlado Menkovski2

Alessandro Pau3

Gino Marceca3

Frank Jenko1

Affiliations: 1Max Planck Institute for Plasma Physics, Garching, Germany
2Eindhoven University of Technology, Eindhoven, Netherlands
3Swiss Plasma Center, Lausanne, Switzerland

Published in: Nuclear Fusion
DOI: https://doi.org/10.1088/1741-4326/abe370

Author contributions: The first author carried out the work of code imple-

mentation and algorithm development. The remaining authors contributed sig-

nificantly with discussions and suggestions, as well as reviewing and making

additions and corrections to the paper. Alessandro Pau and Gino Marceca were

responsible for collecting the new data.

117

https://doi.org/10.1088/1741-4326/abe370

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

Abstract. In a typical fusion experiment, the plasma can have several possible

confinement modes. At the TCV tokamak, aside from the Low (L) and High (H)

confinement modes, an additional mode, dithering (D), is frequently observed.

Developing methods that automatically detect these modes is considered to be

important for future tokamak operation. Previous work[65] with deep learning

methods, particularly convolutional long short-term memory networks (conv-

LSTMs), indicates that they are a suitable approach. Nevertheless, those models

are sensitive to noise in the temporal alignment of labels, and that model in par-

ticular is limited to making individual decisions taking into account only the

input data at a given timestep and the past data, represented in its hidden state.

In this work, we propose an architecture for a sequence-to-sequence neural net-

work model with attention which solves both of those issues. Using a carefully

calibrated dataset, we compare the performance of a conv-LSTM with that of

our proposed sequence-to-sequence model, and show two results: one, that the

conv-LSTM can be improved upon with new data; two, that the sequence-to-

sequence model can improve the results even further, achieving excellent scores

on both train and test data.

7.1. Introduction

During nuclear fusion experiments, the plasma can be described as being in one

of several possible confinement states. At the TCV tokamak, it is typically clas-

sified as being in either Low(L), Dithering(D) or High(H) confinement mode. All

shots, during the ramp-up phase of the plasma, begin in L mode. By applying

sufficient heating power, the plasma spontaneously transitions into H mode[8]

(typically at TCV this process lasts approximately 1 ms). This mode is termed

High confinement because, once it is reached, one can observe significantly re-

duced transport of particles and energy from the plasma to the surrounding

vessel walls. This allows for a larger energy confinement per input power; for

this reason, most current designs for future tokamaks assume that they will reg-

ularly run in H-mode. In some cases the transition from L to H mode does not

happen directly, but rather the plasma oscillates rapidly between the two con-

118

7.1. Introduction

finement regimes. In this case, the plasma is considered to be in a Dithering[27]

mode.

Many studies have been done on the physical factors behind the transition

between L and H mode, but the phenomenon is still not completely under-

stood[98]. Furthermore, there is no simple set of rules that can be used to de-

termine the plasma mode given the values of the signals during a fusion exper-

iment. Nevertheless, most of the time, there are highly salient patterns in these

measured signals that can be used by domain experts to determine the plasma

mode with high confidence. For example, a transition from L to H mode can

typically be identified by observing a sudden drop in the emitted H-α radiation.

However, these data patterns can be rather complicated and ambiguous; for ex-

ample, Dithers leave signatures in the emission of photons similar to that of type

III Edge Localized Modes[99], which are events that occur during H-mode.

This process of manually labeling the experimental data can be quite cum-

bersome in many cases, particularly when one wishes to conduct large studies

and analyze many shots. For that reason, work has been put into developing

tools capable of automating the task of detecting different confinement modes.

In particular, in the past few years, research has been done on using machine

learning[39, 40, 41, 42, 114] and, more recently, deep learning[65] for this task.

These algorithms are particularly suitable for dealing with such challenges of

extracting patterns from high-dimensional data collected during these experi-

ments.

For example, when analyzing transitions between L and H modes, the type of

correlations one expects to find in the data — localized, spatial correlations as

well as long-term temporal ones — can be, respectively, efficiently discovered

using Convolutional[132, 133] and Recurrent Neural Networks (RNNs)[134,

56]. Previous work with models of this sort, in particular with Long Short-

Term Memory (LSTM) networks, indicates that they can be very accurate in this

task[65]. One of the main challenges of these models, however, is that they have

to produce a decision about the plasma mode at each timestep by looking only

at a given context of the signals and their own past states, which represent past

data values. Bi-directional LSTMs can look at future information, but they still

only have access to the data when making decisions. In contrast, when a hu-

man expert faces a difficult decision, they not only look at the data, but also rea-

119

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

son through several possible sequences of plasma confinement mode evolutions.

They go back and forward through the input signal, consider the consequences

of labeling a mode with a given value for all consecutive modes, and in doing so,

frequently revise decisions until the most likely sequence of plasma confinement

modes can be determined.

Conceptually, the tasks of automated language translation and the automated

labeling of plasma confinement modes are closely related: one wishes to trans-

late a sentence in a source language to a different sentence with the same mean-

ing in a target language. In the case of automated labeling of plasma confine-

ment modes, one can consider signal time traces to constitute the sentence in the

source language, while the corresponding confinement modes can be thought of

as the “translated” sentence in the target language.

For this reason, in this paper, we propose an approach that builds upon pre-

vious work with deep learning applied to automated detection of plasma con-

finement modes, by using recent developments in the field of neural machine

translation (NMT). Broadly, in that field, one can talk of two main types of algo-

rithms in use: sequence-to-sequence models based on RNNs, and transformers.

Transformers are ideal when a large amount of data is available, since they par-

allelize and scale well with large amounts of data when compared to RNNs, and

have achieved tremendous success in processing of short sequences[135].

However, those are not the conditions we face in our setting: the amount of

data we have is (compared to typical NMT tasks) rather limited, and further-

more, the sequences we deal with (i.e., plasma shots) are quite long. This sug-

gests that RNN-based models are a more suitable approach, given their capacity

to process long sequences with their hidden states. A general, vanilla RNN, such

as a conv-LSTM, is, by itself, incapable of producing decisions over sequences

of outputs, and is limited to making a sequence of independent decisions based

only on the observed data. It is also susceptible to noise produced by misaligned

labels. However, sequence-to-sequence models can solve both of these prob-

lems. These models, as well as associated mechanisms such as attention[61, 62,

136], have considerably advanced the field of neural machine translation and

transduction in the past few years.

This paper is organized as follows. Section 7.2 provides an overview of the

field of neural machine translation, in particular by explaining the function-

120

7.2. Background

ing of sequence-to-sequence models, and how we can adapt them to suit our

task. Section 7.3 details our considerations regarding the data and the problem

formulation, our preprocessing steps and the proposed model architecture. Sec-

tion 7.4 shows some of the obtained results and scores, and in particular, we

compare the results of this model with those obtained in[65]. We then wrap up

with a discussion in section 7.5.

7.2. Background

7.2.1. Sequence-to-sequence models

Sequence-to-sequence models have achieved tremendous success in the field of

neural machine translation[59, 137]. These models are characterized by two sep-

arate components performing different tasks: an encoder that reads a sentence in

the source language and produces an encoded representation of that sentence,

and a decoder that, based on the encoding, produces an appropriate translation

into the target language. The encoder and decoder can technically be any type

of algorithm, though in most applications, they are built with RNNs[55] that are

jointly trained.

In neural machine translation, the encoder typically maps a word or sequence

of words in the source language to a numerical representation of said words, as

a function of a pre-defined size of the source language vocabulary. This is then

followed by a recurrent layer, typically a long short-term memory (LSTM) layer,

or a gated recurrent unit (GRU) that is trained to find sequential correlations in

the embedded input sentences. These models can keep track of correlations be-

tween points that are far apart in time because they have internal hidden states,
though their capacity deteriorates if the time interval is large enough. At every

source timestep j, with 0 < j < k (where k is the length of the source sequence),

the encoder computes a new hidden state, hj ; each vector hj in the sequence of

hidden states (h0, ...,hk) constitutes a summary of the information that the en-

coder has processed until timestep j, and the final hidden state of the encoder’s

recurrent layer (hk) can thus be considered to be an encoded representation of

the entire input sequence.

The decoder must, subject to the encoding produced by the encoder (hk), pro-

121

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

duce an appropriate corresponding sequence of words in the target language.

When using an RNN decoder, this is done by setting its initial hidden state to hk.

Therefore, unlike a simple RNN model, which only receives a part of the source

data as input at each timestep, in the sequence-to-sequence model, the decoder

can work with a representation of the entire source sequence. The decoder then

outputs, at each decoding timestep, a probability distribution over the discrete

set of possible outputs, conditioned on the source sequence. Furthermore, in

the general formulation of the sequence modeling problem, where the input se-

quence is not aligned to the output (e.g., different sampling rates of the input

and output), the model needs not only to determine the output sequence, but

also to align the symbols of the output sequence with the input. Lastly, the de-

coder can be made autoregressive, by feeding it a selected output at the previous

timestep as an input in the next.

Figure 7.1 illustrates this mechanism: the encoder produces an encoding of

the input sequence; the decoder, using that encoding as a starting state, produces

a translation into a target sentence. At timestep 1 of the decoding process, a

<start> character is fed to the decoder; in subsequent steps, the selected output

from the previous timestep is fed as input.

A source sentence

Encoded summary

A target sentence<start>

A target sentence <end>

En
co
d
er

D
e
co
d
er

Decoding timestep

1 2 3 4

Encoding timestep

1 2 3

Figure 7.1.: Representation of the flow of information in a sequence-to-sequence
encoder-decoder model. Dashed lines denote model inputs and out-
puts, while solid lines denote hidden states. At decoding timestep
1, the output distribution gives highest probability to the word A,
which is then fed as input at timestep 2.

An autoregressive decoder can, at inference time (i.e., after training), evaluate

several output sequences, by conditioning its prediction at each timestep on dif-

ferent past outputs. Therefore, it is not limited to outputting a single solution,

122

7.2. Background

but rather, it can produce a probability distribution of possible solutions.

In practice, sampling from the output joint probability distribution can be

done by treating the distribution as a tree data structure, where each path in the

tree represents a sample from the distribution, i.e., a different possible output

sequence. Expanding a new node in that tree corresponds to sampling a differ-

ent output from the previous timestep to condition future outputs; searching

this tree for solutions (paths) of high probability can be done efficiently with

a beam search algorithm[138]. In addition, the tree search can be done (and

simplified) by explicitly incorporating domain knowledge, which can allow for

pruning paths that are known to be impossible (for example, in our case, by dis-

carding paths that start in H-mode). All of this contrasts with using a simple

RNN for translation. In that case, one expects the model to output a (single) so-

lution of high likelihood, there is no way (in inference time) to explicitly encode

knowledge that rules out certain solutions, and the source and target must be of

the same length.

7.2.2. Attention

While encoder-decoder models achieve very good results, they can nevertheless

still lose performance when translating long input sequences[61]. There are sev-

eral reasons for this, but the main one is that the encoder is expected to be able

to encode all the information of the source sentence in a single vector; in prac-

tice, especially for long input sentences, training such models with algorithms

that back-propagate gradient updates can be challenging. For this reason, the

attention mechanism was developed. The main idea behind it is to extend the

decoder with an attention layer that can access the entire sequence of encoder

hidden states h = (h0, ...,hk). The attention layer can then, at every decoding

timestep i, compute an attention vector αi , whose values are normalized to add

up to 1, and which constitute a series of weights that are used to compute the

decoder’s context vector ci , defined as:

ci =
k∑
j=0

αijhj .

Intuitively, at every decoding timestep i, the corresponding context vector ci

123

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

will change to reflect the greater (or lesser) relevance of some components of h

for computing the decoder output at that timestep. While the final encoder state

hk is still fed into the decoder as an initial hidden state, the decoder is no longer

wholly dependent on it, and has access to a much richer context thanks to the

attention layer, which is trained with the rest of the model. Moreover, the exis-

tence of the attention layer can give additional insight into the inner working of

the model. At evaluation time, the attention vectors can be collected and used to

visualize what parts of an input have been focused on by the model when gen-

erating a certain output. Attention significantly improved the results obtained

by sequence-to-sequence models, and is also the main mechanism behind the

functioning of transformer networks[135].

7.3. Methods

7.3.1. Problem Formulation

The data used for this work comes from 4 different signals from the TCV toka-

mak: the photodiode (PD), measuring H-α radiation; the plasma current (IP);

the diamagnetic loop (DML) measuring the plasma toroidal flux; and the inter-

ferometer (FIR), measuring the line-integrated electron density. All of the sig-

nals are re-sampled to a frequency of 10 kHz; a more thorough description can

be found in [65]. As in that work, we are generically interested in finding, for a

given temporal sequence of measurements xt, with 0 < t ≤ N (which constitute

a single shot), the most likely sequence of plasma confinement mode ẑ1:N that

explain the observations x0:N .

The approach proposed in this paper does this in two parts. On the one hand,

a model is trained to estimate the joint probability distribution of the sequence

of plasma modes p(z1, z2, ..., zN |x0:N) for a given shot. Second, an algorithm finds

a sequence ẑ1:N , drawn from the joint distribution, with high probability. For-

mally, the task is to find:

ẑ1:N = argmax
z1:N

p(z1, z2, ..., zN |x0:N).

with zt ∈ Z and Z : {′Low′,′Dither ′,′High′}, and z0 = {′Low′}, since any shot is

124

7.3. Methods

assumed to begin in L-mode.

In practice, in a real-time environment, we would not possess the entire se-

quence of measurements (the whole shot), but rather, only the signal values up

to a certain point in time t. Thus, one of our requirements is to find a sequence

of high probability up until t while looking only at past measurements. For this

task, a simple recurrent neural network (LSTM) model can be used[65]. How-

ever, such models, when making a decision, rely only on the input data and their

own internal state. They cannot take their own past outputs into account when

making a decision, and therefore, are limited to producing a single point-like

estimate for the output sequence of confinement states. In contrast, sequence-

to-sequence models can explicitly take their own past outputs into account when

making a decision. This way, at time t, a sequence-to-sequence model does not

decide on a single output for t, but rather, it decides on the entire sequence of

plasma mode evolutions up to that point in time; that is, the model computes

the distribution p(z|x) as:

p(z1, z2, ..., zN |x0:N)

= p(z1|x0:1, z0)p(z2|x0:2, z0:1)...p(zN |x0:N , z0:N−1)

=
∏
t

p(zt |x0:t, z0:t−1),

where p(zt |x0:t, z0:t−1) denotes the probability of observing mode z at time t,

given the sequence of observed signals x from time 0 to time t, and the sequence

of outputs until t. It is the additional conditioning on past outputs that allows

the sequence-to-sequence model to approximate the full joint distribution p(z|x).

One caveat of the sequence-to-sequence model architecture is that it requires

that the model observe windows, or subsequences, of the input data (up un-

til time t) of fixed size. This means that in a real-time environment, for most

values of t, a sequence-to-sequence model would have a delay when computing

p(zt |x0:t). This delay corresponds to a pre-defined size of the signal windows that

the model receives, which therefore must be minimal.

With a sequence-to-sequence model, using the notation above, finding a se-

quence of high probability means finding:

125

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

ẑ1:N = argmax
z1:N

∏
t

p(zt |x0:t, z0:t−1). (7.1)

The task of finding samples of high probability from the distribution is done,

in the case of this work, with a beam search algorithm[138]. Because in our set-

ting the sequences have potentially thousands of timesteps, computing their in-

dividual likelihoods using products as in Equation 7.1 would yield numerically

unstable results; thus, the beam search uses the logarithm of the probabilities:

ẑ1:N = argmax
z1:N

log(
∏
t

p(zt |x0:t, z0:t−1))

= argmax
z1:N

∑
t

logp(zt |x0:t, z0:t−1),
(7.2)

which allows it to use sums instead, and to look for the sequence whose log-

probability is greatest.

7.3.2. Data engineering

Events such as, for example, the LH transition can be roughly pinpointed in a

signal time trace. However, it is difficult to specify precisely, on a consistent ba-

sis, at which exact point in time the transition happens; for example, in some

shots, the transition might be quite sudden, whereas in others, the transition

signatures in the data can be more spread out over time. The typical time that

a TCV shot takes to make an HL transition is on the order of 1 ms. Consider-

ing also that the sampling frequency of our signals is 10 kHz, this translates to

an intrinsic uncertainty for the label determination of at least 10 timesteps. So,

for example, one expert might determine, for a shot, the start of the H mode at

the point in time where the PD signal starts dropping, whereas another expert

might claim that the H mode actually only starts at the point where the signal

has already stabilized (perhaps 1 ms later). While the difference may sound triv-

ial, this can become problematic in a supervised learning task such as the one

we face in this work. In principle, if the amount of training data is sufficiently

large, small inconsistencies in labels (such as variations of 1 ms in the localiza-

tion of transitions) will tend to be averaged out by a classifier. Nevertheless,

126

7.3. Methods

these mismatches can produce instabilities during training and can ultimately

degrade performance.

For that reason, one of the steps we took in this work is to reduce the tem-

poral resolution of the sequence-to-sequence model’s outputs. This can be done

thanks to the model’s architecture, which allows for a mismatch between the size

of the input and output sequences. We do this by grouping the existing labels

(i.e., sequences of shot classifications) in our dataset into blocks of a fixed size.

In the pre-processing stage, each of those blocks is mapped to a certain plasma

confinement mode (L, D or H); this mapping is done by computing the source

label with the highest number of occurrences within that block (see Figure 7.2).

Our expectation is that this decrease in temporal resolution will yield better per-

formance in both training and inference time, at a minimal cost to the physical

validity of the results.

0 1 2 3 4 5 6 7 8 9 10 11

10 2

Figure 7.2.: Representation of the computation of a block of target labels, where
each bottom block corresponds to 4 source timesteps. The green
color indicates a label of L (Low confinement) while red represents
H mode. A majority of the labels in the source timesteps 4 - 7 are in
H mode, so the corresponding block at target timestep 1 is labeled
as H.

7.3.3. Model architecture

Our model’s architecture is based on existing architectures for neural machine

translation, in particular, the one proposed in [62]. The architecture consists

of an encoder-decoder model with attention, which we detail in the following

paragraphs.

Unlike most work with language translation, where one receives discrete units

(words) as inputs, in our case, the inputs to the model are the continuous signal

time-traces from TCV shots. In those time-traces, one expects to find not only

localized, spatial correlations in the data — for example, a sudden drop in the

PD signal — but also long-term contextual correlations, namely, which modes

127

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

a shot may have been in in the past. For that reason, the encoder in our model

consists of a convolutional recurrent neural network, much like the conv-LSTM

used in[65]. We made slight adjustments, namely in the number of convolu-

tions used, but otherwise preserved that model’s architecture, and used long

short-term memory (LSTM) units for the recurrent layers. The inputs fed to the

encoder are sequences of overlapping windows, which slide across the signal

time-series. These windows were defined to have a size of 40 source timesteps,

with a stride between windows of 10 timesteps. This last detail, in particular,

means that the full sequence-to-sequence model has approximately 10 times

fewer network parameters than the convolutional LSTM in previous work.

The convolutional layers are trained to find local correlations in the windows,

while the recurrent layers, based on the output of the convolutions, keep track

of long-term correlations in the input sequences. For example, the convolutional

layers can detect a local shape in a signal window indicating a possible L-H tran-

sition, and the recurrent layers then use that, as well as their stored information

about the current plasma mode (i.e. the long-term dependency), to determine

whether a transition indeed has occurred.

In [65], the conv-LSTM was used to directly map the input sequence of mea-

surements, xt, into a sequence of outputs, zt, indicating a plasma confinement

mode at a particular point in time (see Equation 7.1). In this work, the task of

this particular submodel is instead to produce an encoded summary of xt, which

is stored in its internal hidden state vector h. During both training and inference

time, we feed the encoder not with entire shots, but rather, subsequences of sig-

nals drawn from the shots. There are several reasons for this. On one hand,

in recurrent neural networks, gradients can vanish when being backpropagated

through time, which can be particularly problematic when working with long

sequences; training with smaller subsequences mitigates this problem. On the

other hand, the existing data is imbalanced with regard to the labels; for exam-

ple, Dithers tend to be much less frequent than L and H modes. Using subse-

quences allows us to feed the entire model, during the training process, with a

more balanced number of samples for each class (by oversampling the dithers),

thus preventing a potential source of biased results. Finally, any future usage of

the methods proposed in this paper for real-time plasma data analysis implies,

by definition, that only information until a particular point in time, and not the

128

7.3. Methods

entire shot, is available for classification.

In training time, the subsequences are drawn uniformly (with respect to the

three classes) from our existing data ensemble. In inference time, for any given

shot, the subsequences are drawn and fed to the encoder consecutively. In both

cases, the encoder’s state is reset each time a new subsequence is fed to it, which

means that the context vectors only hold information about the current subse-

quence under consideration.

LSTM

ℎ1 ℎ2 ℎ3 ℎ27… …

0 29939 260

Figure 7.3.: Illustration of the encoder architecture and how a single subse-
quence is processed and encoded in the encoder hidden state vector
h. The dark blue line represents a subsequence of a signal timeseries.
The sliding windows are in light blue.

In practice, we defined the subsequences drawn for training and inference to

have a size of 300 source timesteps (this contrasts with a typical shot size of, at

least, 10000 timesteps at a 10kHz sampling rate). This value also corresponds to

the delay that the model would have in a real-time setting. With a window size

of 40 and a window stride of 10, these 300 timesteps are fed to the convolutional

layers as sequences of 27 convolutional windows (further shrinking the total size

of the sequence fed to the LSTM), with window 1 observing xt from t = 0 to

t = 39, and window 27 observing xt from t = 260 to t = 299. The convolutional

LSTM processes these windows to produce the hidden state vector h, which has

a length of 27 elements and is fed to the decoder. An illustration of this can be

found in Figure 7.3.

The task of the decoder is to approximate a probability distribution p(z|x) of

plasma confinement modes, subject to the summary given to it by the encoder.

129

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

Our decoder is composed of a recurrent neural network (specifically, an LSTM

layer), an attention layer, and a series of dense layers.

Each individual element of the output sequence is processed in a single

timestep, with each target timestep corresponding to a single block of classi-

fications. We defined the blocks as having a size of 10 — that is, each target

timestep yields a single classification for 10 source timesteps.

LSTM Attention

Dense

ℎ1, ℎ2, …, ℎ270 1 2 3 4

1 2 3 4 5

𝑐𝑖

𝛼𝑖

Figure 7.4.: Schematic representation of the decoder’s architecture. Represented
here is the sequence of operations carried out by the decoder to pro-
duce the output distribution of plasma confinement modes at decod-
ing timestep t = 2. Gray arrows denote data flows at t. The purple
arrow denotes the autoregressive feeding of the output at t + 1. The
blue arrow denotes the initial setting of the decoder state to the last
encoder state. Joining arrows denote concatenation, αi and ci are the
attention weights and the context vector, respectively.

In the first decoding timestep of each new subsequence, the decoder’s initial

hidden state is set to the decoder’s final hidden state, hk, for that subsequence.

At each decoding timestep, the decoder receives as input its own last processed

output (plasma confinement mode zt−1), and the last output from its own LSTM

cell; these are concatenated as suggested in [62] and fed to the decoder’s LSTM,

which also updates its own internal state. The output of the LSTM is then con-

catenated to the output of the attention layer (which receives the entire encoder

130

7.3. Methods

hidden state vector h), and fed through a series of dense layers to produce the

final decoder output, which is a vector whose entries add up to 1 and which,

individually, represent the computed probability of a given plasma confinement

mode zt (see Figure 7.4). The decoder’s LSTM is built with a latent dimension-

ality of 32 units, that is, we process each target timestep with 32 LSTM cells. In

terms of the attention layer, in [62], several different mechanisms for computing

the alignment scores are proposed; we opted for the general form described in

that paper.

One of our considerations when designing the decoder was to take into ac-

count how a human expert would label the signals. Our intuition was that, when

looking at a time point of a shot, a labeler always takes into consideration infor-

mation around that point — namely, the events happening immediately before

and after. For that reason, we designed the decoder such that, for each incoming

context vector (which encodes information regarding 300 source timesteps), the

decoder produces a sequence of 18 blocks of labels (with a block size of 10, this

corresponds to 180 source timesteps), which are the classifications for source

subsequence steps [60 : 240]. The idea is that the extra information present in

the remaining source timesteps would help improve the classification results.

In evaluation time, this setup requires that the consecutive subsequences drawn

from a shot overlap with each other, so that an output sequence can be produced

for the entire shot. This also leads to the loss of the initial and final 6 target clas-

sification blocks of a shot (see Figure 7.5), but we consider this to have no bearing

on our results.

In evaluation time, the decoder always produces a distribution of possible

plasma confinement states whose probabilities add up to 1. One possibility

would be to use a greedy aproach and simply take, at each target timestep, the

plasma state for which the output probability is highest, and feed that state at

the next decoding timestep. This would yield a possible solution (i.e., a single

sequence of plasma confinement states), but there would be no guarantee of it

being optimal. For that reason, we use a beam search algorithm[138] to traverse

the tree structure of possible solutions (different sequences of z), which allows

for obtaining samples closer to the optimal ẑ. This is done by, at each target

timestep, expanding the search tree for all previous outputs, and not just for the

output of highest probability. Then, for each previous output zt−1 under consid-

131

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

ℎ1

𝐵1, … , 𝐵18, … , 𝐵𝑛

Encoder

Decoder

0 240 300 600

ℎ2 ℎ𝑛

Encoder Encoder

Decoder Decoder

Figure 7.5.: Representation of the full sequence-to-sequence model’s architec-
ture. Notice how the subsequences (translucid blue) overlap with
each other. The encoder’s state vectors, hk (where k is the current
subsequence), are fed to the decoder, which produces blocks of out-
puts.

eration, the conditional probability, and the log-likelihood, defined in Equation

7.2 are computed for the current timestep t. Once all target timesteps have been

processed, the value of z for which the likelihood is highest is returned.

Naturally, expanding the full tree at every timestep would quickly become

unwieldy, owing to the large number of different paths to be processed. On

the other hand, expanding a single beam at each timestep would be equivalent

to a greedy search. For these reasons, we defined the beam search to have a

maximum width of 20, i.e., at every step, only the 20 paths with the highest log-

probability are expanded, while the rest are discarded. In addition, we encoded

in the beam search a rule for expanding only those paths that start in L-mode,

which simplifies the search; an illustration of this can be seen in Figure 7.6.

7.3.4. Dataset Preparation

For the work in [65], a total of 54 shots were used for training and testing the

proposed models. In this work, we carried out a more careful treatment of the

dataset preparation with respect to the previous publication. In the first place,

the selection of the discharges for training and testing was done in order to cover

as exhaustively as possible the space of the plasma confinement modes in TCV,

132

7.3. Methods

𝑷(𝑳𝟏|𝑿)

𝑷(𝑳𝟐|𝑿, 𝑳𝟏)

𝑷(𝑯𝟐|𝑿, 𝑳𝟏)

Decoding timesteps

1 2

Low

Low

High

Dither

𝑷(𝑫𝟐|𝑿, 𝑳𝟏)

𝑷(𝑳𝟑|𝑿, 𝑳𝟏, 𝑫𝟐)

𝑷(𝑫𝟑|𝑿, 𝑳𝟏, 𝑫𝟐)

Low

High

Dither

𝑷(𝑯𝟑|𝑿, 𝑳𝟏, 𝑫𝟐)

3

𝑷(𝑳𝟏, 𝑫𝟐, 𝑫𝟑) =
log𝑷(𝑳𝟏| 𝑿) +
log𝑷 𝑯𝟐 𝑿, 𝑳𝟏 +
log𝑷 𝑯𝟑 𝑿, 𝑳𝟏, 𝑯𝟐)

Figure 7.6.: Illustration of the beam search algoritm in the first 3 target
timesteps. X denotes the context vector and the final encoder state
which condition the output. In timestep 1, the decoder computes the
probability of a path starting in L mode, and we manually set that
to be the only path to be expanded. In timestep 2, the conditional
probabilities of three paths ({L1L2}, {L1D2}, {L1H2}) are computed;
the paths are then expanded (for simplicity, only one expansion, that
of {L1D2}, is shown here, but 9 paths would be evaluated in timestep
3).

accounting for the different temporal evolutions of the plasma. Using a Dynamic

Time Warping (DTW)[139] algorithm, we measured the similarity between pairs

of temporal sequences and assigned them to a given group, based on a similarity

measure. The desired number of groups was obtained by applying a hierar-

chical clustering algorithm to univariate time sequences corresponding to the

entire plasma discharges. A total of 293 discharges were selected and processed

through the DTW, setting the number of clusters to 100. From each of the 100

clusters, shots were extracted and classified as an interesting (or not) shot from

the physics point of view, as far as our problem (i.e., the presence of L/D/H

transitions) is concerned. Some clusters were discarded since they consisted of

disruptions without even achieving an H mode confinement state, while others

presented technical issues in the ramp-up phase before reaching the stationary

phase. Limiting ourselves to the interesting shots and maximizing the number of

clusters where a given shot arose from, 88 discharges were selected for ground

truth determination. For the latter, instead of having different annotations by

133

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

different labelers for a particular shot, a consensus on a common convention be-

tween two experts was established to determine the label of each timestep for all

shots. A detailed revision of the different transitions was performed with par-

ticular attention to the presence of short transitions on the order of 2 ms. The

outcome was a unique, consistent, ground truth per shot. A test set to evaluate

the final results of the model was carefully determined and fixed during all the

experiments. A total of 27 shots were selected, each extracted from a different

cluster. Out of 27 shots, 17 shots were “unpolluted” cases (without the presence

of type III ELMs), while the others 10 were special “noisy” discharges with type

III ELMs. The proportion between the noisy and “unpolluted” discharges in the

test set followed approximately the same proportion as in the complete dataset.

7.4. Results

We begin this section with a direct comparison between this sequence-to-

sequence model, and the conv-LSTM used in[65]. To that end, we trained and

tested the old model, preserving all the original architecture and hyperparame-

ters, with the new train and test data (shots and labels) compiled for this work.

Table 7.1 shows the results. As in the previous work, we performed the evalu-

ation using Cohen’s Kappa-statistic coefficient[131], which gives an indication

of the match between two sets of categorical data (with a score of 1 for a perfect

match and 0 for no match). In our case, it reflects the match between the models’

outputs, and the labeled data. We computed the score on a per-class basis and

also on a weighted mean basis, in order to indicate whether the classifications

produced by the sequence-to-sequence model match the data’s labels. We de-

signed the model with Tensorflow[140], and ran it on an NVIDIA Quadro RTX

5000 Graphics Processing Unit (GPU).

A comparison between the results in Table 7.1 and those described in [65]

shows that the current dataset already improved the capacity of the old model.

Nevertheless, it was still underperforming, particularly on dithers; even on

training data, the mean dither score was 0.9.

We then ran the new sequence-to-sequence model. The results on both the

134

7.4. Results

L D H Mean

κ scores
Train 0.98 0.91 0.98 0.98
Test 0.92 0.78 0.91 0.9

Table 7.1.: κ-statistic scores for each plasma mode and as a mean, on training
and test data, for the conv-LSTM model from[65] on the data used
for this work.

train and test sets can be seen in Table 7.2. They were obtained by training the

network for 150 epochs, with each epoch consisting of 128 batches of data, and

each batch consisting of 128 data samples, i.e., uniformly sampled subsequences

of each of the existing classes drawn from the training shots. We downsampled

the source labels to the same temporal resolution as the model’s output blocks

to compute the scores. Figures 7.7a and 7.7b show the distribution of the scores

on a per-class basis, for train and test data, as well as a weighted mean value,

taking into account the relative frequencies of each class in the labels.

L D H Mean

κ scores
Train 0.99 0.99 0.99 0.99
Test 0.94 0.86 0.96 0.94

Table 7.2.: κ-statistic scores for each plasma mode and as a mean, on training
and test data, for the sequence-to-sequence model.

0

50

100
Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100
High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(a) Training data.

0

10

20

Low Dither

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

High

0.0 0.2 0.4 0.6 0.8 1.0

Mean

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

Fr
eq

ue
nc

y

Score

(b) Test data.

Figure 7.7.: Distribution of the κ-statistic score on a per-shot basis

135

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

7.5. Discussion

In this section, we discuss the results in further detail, in particular, the cases

where the sequence-to-sequence model’s performance was poorer.

With regards to the training data, the classification was excellent in all cases;

all shots achieved scores, both on a per-mode basis and as a mean, above 0.8.

The lowest mean train score for a shot was 0.965, while the lowest scores for

L, D and H modes were, respectively, 0.96, 0.8 and 0.98. Nevertheless, for all

modes, the mean score was 0.99, a result that indicates that the sequence-to-

sequence model has the capacity to learn the underlying correlations in the data

to make accurate predictions.

Shot ID
L D H

Fraction Score Fraction Score Fraction Score Mean
42197 0.57 0.5 0.35 0.66 0.08 0.46 0.55
61057 0.5 0.72 0.04 0.68 0.46 0.73 0.72
61274 0.69 0.84 0.12 0.7 0.19 0.96 0.84
32911 0.52 0.84 0.28 0.79 0.20 0.97 0.85
61043 0.78 0.92 0.13 0.69 0.1 0.76 0.87
45105 0.42 0.91 0.02 0.52 0.56 0.94 0.92
34309 0.14 1 .03 0.8 0.83 0.96 0.96
33459 0.8 0.98 0.01 0.5 0.19 1 0.98
64376 0.92 0.9 .01 0.73 0.08 1 0.98
30268 0.24 1 0 0 0.76 1 1

Table 7.3.: κ-statistic scores for shots with at least one mode whose score was
lower than 0.8. The “fraction” column indicates what percentage of
the labels were labeled in a particular state for that shot.

With regard to the test data, the scores are slightly lower. Table 7.3 shows

the detailed breakdown of the scores for all shots where at least one mode had a

score lower than 0.8. Some of those shots have low scores on more than one class:

for example, #42197 had a score lower than 0.8 for both L and D modes. Notice

how, even though there are more shots with lower dither scores, the overall mean

values are in most cases above 0.8; this is due to the fact that dithers are rather

less frequent in the data than L and H modes.

Figure 7.8 shows the classification results for shot #42197, together with the

ground truth (label), shown in the lower panel of the Figure (we show only the

136

7.5. Discussion

photodiode signal values for ease of comprehension). The classification has two

major errors: the non-detection of a switch to L mode at the end of the shot,

around t = 1.2s, and the rapid oscillation between L and D modes from ap-

proximately t = 0.8s to t = 1.1s. This oscillation in particular is questionable

because this dithering phase presented particularly odd fluctuations that were

not a common behavior in our dataset.

0

2

4

PD
 (n

or
m

.) L
D
H

Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Gr.
 Truth

Figure 7.8.: Detection results for shot #42197. The blue line denotes the photo-
diode signal, while the solid background color denotes the confine-
ment states.

For shot #61057, two short dither bursts near t = 1.5s are missed, as well as

the final transition back into H mode near t = 1.6s (see Figure 7.9).

0

2

4

PD
 (n

or
m

.) L
D
H

Classification

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t(s)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Gr.
 Truth

Figure 7.9.: Detection results for shot #61057.

For shot #61274, the overall classification score is already above 0.8; the

model’s largest mistake is in incorrectly classifying a region around t = 1.5s as

137

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

L mode, which explains both the lower score for that mode and for dither (see

Figure 7.10).

0

2

4

PD
 (n

or
m

.) L
D
H

Classification

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t(s)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Gr.
 Truth

Figure 7.10.: Detection results for shot #61274.

In shot #32911, the lower scores for dither and L mode are also due to rapid

fluctuations between the two modes; we think that a big factor behind the lower

score is the accumulation of many small mismatches between the labels and the

classifications (see Figure 7.11).

0

2

PD
 (n

or
m

.) L
D
H

Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Gr.
 Truth

Figure 7.11.: Detection results for shot #32911.

Shot #61043 contains several switches between H mode and dithering; the

model incorrectly classifies some of these (see Figure 7.12).

We consider the remaining test shots to be good classifications overall. We

explain the occasionally lower dither scores by the fact that the labeled dither

phases are very short (at most 3% of any given shot); any mismatch, even if

small, between the label and dither classification produces a low score.

138

7.6. Conclusions

0

2

4

PD
 (n

or
m

.) L
D
H

Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Gr.
 Truth

Figure 7.12.: Detection results for shot #61043.

7.6. Conclusions

This work developed a sequence-to-sequence neural network model with atten-

tion for automated classification of plasma confinement modes at the TCV toka-

mak. Taking previous work [65] with a convolutional long short-term memory

network (conv-LSTM) for the same task as a baseline, our intuition was that one

of the factors holding previous models back from achieving even better scores

was the fact that vanilla LSTMs cannot reason over different past outputs, and

are limited to the signal observations. This contrasts with the way a human la-

beler would perform the same task; typically, a labeler will reason over different

possibilities for past confinement modes before deciding on a label for a given

timestep, which is a process that a sequence-to-sequence model can emulate.

In addition, we theorized that the varying length of transitions between plasma

confinement modes, and resulting misalignment between data and labels, was

producing instabilities during the training of the conv-LSTM. Finally, we also

hypothesized that performance was limited by the lack of sufficient train data.

Therefore, we extended the dataset used in previous work with more shots and

chose a train/test split that thoroughly represented the operational shot space

of TCV. In addition, we took particular care with the labeling process, to ensure

a high quality of the data.

Testing the conv-LSTM from [65] on the new dataset increased its scores on

both test and train data, suggesting that indeed the size and quality of the dataset

was having an impact on the obtained results. Nevertheless, even with the new

139

Chapter 7. Plasma Confinement Mode Classification Using a
Sequence-to-Sequence Neural Network With Attention

dataset, the conv-LSTM still failed to completely fit the training set, particularly

with regards to dithers.

On the other hand, running the sequence-to-sequence model with the new

data, we achieved excellent results on the train set (with a mean score of 0.99 out

of 1) and likewise, very good results on the test set (with a mean score of 0.94

out of 1). Both of these scores are important. On the one hand, the training score

shows that the sequence-to-sequence model can correctly fit all the training data.

This is something that the previous model (the conv-LSTM) could not do, and

suggests that that model, in spite of achieving good results, had indeed some

limitations compared to the new one. This is particularly interesting given that

the sequence-to-sequence model has a lower number of network parameters:

approximately 100 000, compared to the conv-LSTM’s 1 000 000 (i.e., an order

of magnitude less). We explain the fact that the results are nevertheless better

with three factors, which coincide with our initial assumptions: firstly, the larger

context from the data available to the sequence-to-sequence model; secondly, the

model’s ability to deal with misaligned labels and with transitions of varying

length; and finally, the autoregressive decoder which can reason over several

sequences instead of independent outputs.

On the other hand, the test scores indicate that the sequence-to-sequence

model can also generalize well. They are slightly lower, but we explain that

with the fact that several test shots were particularly challenging to classify,

even for a human labeler. Nevertheless, the results obtained indicate that the

task of plasma confinement mode classification can be best carried out by the

sequence-to-sequence model presented here, given that it achieves a significant

improvement over the conv-LSTM, reaching almost domain expert accuracy.

Finally, we would like to make a comment regarding a real-time (RT) imple-

mentation of this model, which is outside the scope of this publication, but

should be possible. As we mentioned in section 7.3, the only fixed constraint,

as far as an RT implementation would be concerned, is the size of the subse-

quences fed to the encoder, which induce a small minimum delay (30 ms) into

any model prediction. Ideally, an RT implementation would make extensive use

of parallelization, in particular in the beam search; that step could otherwise

become a potential performance bottleneck in a non-parallel implementation,

given that the time of the search scales with the number of beams. Also, an RT

140

7.6. Conclusions

implementation would ideally require multiple CPUs or GPUs, such as what we

used for developing the method, since deep learning frameworks can efficiently

run convolutional layers in parallel. Nevertheless, the model shown here, as it

stands, can already be used for offline labeling of data. In addition, in light of

the current research, within the field of Neural Language Processing, on transfer

learning with encoder-decoder networks, we believe that this model could also

be suited for tasks of domain adaptation, for example with a view to creating

useful databases for future fusion devices such as ITER and DEMO. It would

also be interesting to investigate, in the future, applications of transformer net-

works to this and similar problems in fusion.

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium

and has received funding from the Euratom research and training programme 2014-

2018 and 2019-2020 under grant agreement No 633053. The views and opinions ex-

pressed herein do not necessarily reflect those of the European Commission.

141

Part III:

Conclusions and outlook

143

8. Conclusions

In this work, deep learning methods and algorithms were used for modelling

several outstanding problems in nuclear fusion from a data-centric point of

view. One problem — that of detecting plasma confinement states and edge

localized modes (ELMs) — is difficult to model with a rules-based system due

to the inherent complexity of the phenomena of interest, which motivates the

use of an approach with artificial intelligence that discovers those rules auto-

matically. The other problem — that of model selection in Gaussian process

tomography — while analytically solvable, is computationally expensive, and

would benefit from an approach that can more easily estimate the parameters of

interest.

For the detection of ELMs and plasma confinement states (Low, Dither and

High), several models were proposed, which are detailed in chapters 6 and 7.

They all treat the problem as that of producing a sequence of classifications,

where each classification is the probability of being in a certain plasma state,

or of the occurrence of an ELM. The models differ from each other, however,

with regards to their architectures, which reflect different assumptions about

the existing data.

In the simplest case, only localized, short-term correlations in signal time-

series are assumed, and concurrently, a convolutional neural network model,

with a Viterbi decoding algorithm for post processing, are proposed. To also

account for long-term correlations in the temporal data, a second approach pro-

poses also using recurrent neural networks. Both of these approaches use dis-

criminative neural networks that are trained to produce single-point outputs

(sequences of events and plasma confinement states) based on the signals fed

to them as input. Finally, a third approach uses a sequence-to-sequence model

with an encoder-decoder architecture with an attention layer. This model can

generate a full output probability distribution, instead of a single point estimate,

145

Chapter 8. Conclusions

making it much more powerful. Pairing it with a beam search algorithm to find

samples of high probability from the output distribution, this model achieves

excellent results, being capable of fully fitting the training data, achieving only

slightly lower scores only for Dither modes. We explain this mostly with the

fact that dithers are often quite short, which, given the rather harsh metric used,

tends to bring down their score, though other factors cannot be excluded.

For the Bayesian model selection of Gaussian process models for tomographic

reconstruction, a convolutional neural network model was proposed, which is

detailed in chapter 5. As a first step, the target values which were to be ap-

proximated by the network had to be analytically computed for the entire set of

measurement data. For each measurement, that target was the set of Gaussian

process hyperparameter values that parameterized the most likely correspond-

ing model for the distribution which generated the data. Those parameter values

were computed in a grid search, and this was a motivating factor for designing a

neural network for classification. A k-fold cross-validation strategy was used to

make sure that the choice of train and test sets did not bias the results. The neu-

ral network is based on existing architectures for image detection, and achieves

very good results on validation data.

Regarding this problem, several avenues of research are still open. For exam-

ple, it should be possible to take into account the temporal evolution of the SXR

measurement data, by using a recurrent neural network model, in parallel with

the proposed CNN architecture. In addition, the Gaussian process priors could

be chosen to have poloidal coordinate systems and correlations (as opposed to

the Euclidean correlations used in this work). Such an approach, however, would

open up the door to searching for ideal hyperparameters in an even larger space,

making the generation of a labeled training set more difficult.

Nevertheless, as they stand, the algorithms described in this thesis already

show the potential for using deep learning to aid in fusion research. The

sequence-to-sequence model from Chapter 7 achieved an accuracy comparable

to a human expert, and therefore could already be used, for example, for the

labeling of data; this can be useful if one is interested in creating large databases

for further analysis. The same model could also be used for real-time monitoring

of fusion experiments; here, we deal with the evolution in the plasma’s confine-

ment states, but it would also be interesting to see whether the algorithm can be

146

used for detecting other physical events and phenomena. One other avenue of

research which was not explored is the potential for transfer learning and do-

main adaptation, specifically with regards to using the proposed methods for

other tokamaks; it would be interesting to verify whether one can adapt the

models for use on data from other machines. With regards to the model used for

Bayesian estimation of tomographic priors, it should be noted that it can also be

used for exploring the effect of the choice of the prior on the posterior solution.

For example, one might not select the highest-output, but the k-highest proba-

bility classes given by the network, and compute the respective posteriors. In

this case, one might be interested not in the highest-evidence model, but rather,

in studying the effect of the choice of the prior on the estimated data values.

In short, the described models can learn the correlations existing in data from

fusion experiments, and can be used, or readily adapted, for several different

tasks. However, supervised deep learning models are always dependent on the

existence of good quality labels for data. And, while a lot of data is generated

by nuclear fusion experiments, the quality and amount of labels existing for

supervised learning techniques is often rather limited, which diminishes the ex-

pressiveness, and potential for extrapolation, of the results.

Therefore, for both projects, it would be interesting to use unsupervised, or

semi-supervised, learning algorithms to explore the data. For example, with re-

gards to plasma state classification, one could attempt to explore why dithers

are consistently more difficult to correctly classify than the other states. To this

end, one possible next step would be to use fully generative, unsupervised mod-

els based on variational auto-encoders (VAEs)[141], built with the same build-

ing blocks as the models proposed in this work. General-purpose VAEs require

only data observations, eliminating the need for expert labeling. In addition,

they can also offer certain guarantees regarding interpretability and quantifica-

tion of the uncertainty of their results. Such models could be used for simula-

tion and synthetic data generation: neural networks excel in learning in high-

dimensional data spaces, and in situations where one wishes to generate a lot

of data from such complex distributions, generative models can provide an effi-

cient alternative to currently existing simulation software, which is often much

more computationally intensive. However, certain types of generative models,

namely domain invariant VAEs[142], can go even further, and could (in theory)

147

Chapter 8. Conclusions

be useful for facilitating scientific discovery, for example by disentangling fac-

tors that explain the behavior of data. Those models do require some labels, as

their learning approach is semi-supervised. However, they are highly promising,

since they would (in theory) allow for knowing the full joint probability distri-

butions of data observations and the latent factors behind them, which could

permit the development of models for design of experiments. For example, if

the relationship between a shot’s operational space and the confinement states

of the plasma were to be fully known, it should be possible to develop tools capa-

ble of designing an experiment such that a transition from L to H mode happens

at a specified point in time.

Finally, it is also important to mention that most of the supervised learning

algorithms presented here, while achieving very good results, do not take any

explicit physical or theoretical constraints into account when computing their

outputs. The only exception is the sequence-to-sequence architecture, where

the beam search step allows for the use of such an approach. It would be in-

teresting to further explore models (whether supervised or unsupervised) that

can take physical laws into account, as such laws provide additional information

and context.

In conclusion, the research into the use of deep learning for nuclear fusion

is still very much an open and recent field, and as such, much work remains

to be done with regards to exploring the use of these algorithms for this scien-

tific domain. Nevertheless, the methods presented here already give a glimpse

into these models’ potential. Future work with applying these methods to fu-

sion, together with continued developments in the capabilities of AI algorithms,

means that deep learning can become an important tool for aiding scientists and

engineers in the future design of nuclear fusion reactors.

148

List of Figures

2.1. Schematic drawing of a tokamak and its 2D cross section. 10

2.2. Bolometer system installed at JET 14

2.3. Existing tomographic reconstruction at ASDEX Upgrade 16

3.1. Classification versus regression. 24

3.2. Schema of an individual neuron . 25

3.3. Schema of a fully connected neural net 26

3.4. Examples of overfitting, underfitting and a good fit 30

3.5. Sample images from the MNIST digit database 31

3.6. Example of the operation performed by a CNN layer. 32

3.7. Example of a max pooling layer operating on a 1-channel 2 × 2

input. 33

3.8. Schema of the VGG network architecture. 33

3.9. Example of sequential data. 35

3.10. Schematic representation of unrolled RNN 36

3.11. Schematic representation of a convolutional recurrent network . . 36

3.12. RNN architecture for sequence-to-sequence mapping. 38

3.13. Encoder-decoder architecture for sequence-to-sequence mapping. 38

3.14. Seq2seq architecture with an autoregressive decoder. 40

3.15. Decoding with tree search. 41

3.16. Sequence-to-sequence model with attention. 42

3.17. Example of Gaussian process regression. 45

5.1. An illustrated tomographic projection 59

5.2. ASDEX Upgrade cross-section . 61

5.3. Sample tomographic projection from the ASDEX Upgrade tokamak 68

5.4. Number of data samples mapping to each class 71

5.5. CNN used for the SXR tomography project 73

149

List of Figures

5.6. Top-k accuracy for validation data 76

5.7. Sample tomographic reconstruction and error 1 78

5.8. Sample tomographic reconstruction and error 2 79

5.9. Distribution of the deviations between back-projections and the

data . 80

6.1. State machine for processing of the CNN outputs 93

6.2. Representation of a CNN . 94

6.3. Representation of a convolutional LSTM 95

6.4. Switches between different plasma modes, TCV shot #32195 . . . 96

6.5. ELMs and L and H plasma modes, TCV shot #33446 96

6.6. L, D and H modes from a section of TCV shot #32195. 97

6.7. ELMs, and L and H modes from a section of TCV shot #31650. . . 97

6.8. Different types of encoding of the target data distributions, from

TCV shot #30262 . 100

6.9. Sliding temporal windows fed to the CNN 101

6.10. Example of a sequence fed to the LSTM 102

6.11. Architecture of the convolutional NN 103

6.12. Architecture of the convolutional LSTM 103

6.13. ROC curves for ELM detection for the CNN model 109

6.14. Distribution of the κ-statistic score (κn) on a per-shot basis, for

the CNN. 109

6.15. ROC curves for ELM detection for the Conv-LSTM model 110

6.16. Distribution of the κ-statistic score (κn) on a per-shot basis, for

the Conv-LSTM . 110

6.17. TCV shot #57751 (PD signal) and the Conv-LSTM’s classification . 113

6.18. TCV shot #34010 (PD signal) and the Conv-LSTM’s classification . 114

6.19. TCV shot #58182 (PD signal) and the Conv-LSTM’s classification . 114

6.20. TCV shot #30197 (PD signal) and the Conv-LSTM’s classification . 115

6.21. TCV shot #33459 (PD signal) and the Conv-LSTM’s classification . 115

6.22. TCV shot #33942 (PD signal) and the Conv-LSTM’s classification . 116

7.1. Flow of information in a sequence-to-sequence encoder-decoder

model . 122

150

List of Figures

7.2. Representation of the computation of a block of target labels for

the sequence-to-sequence model . 127

7.3. Illustration of the encoder architecture 129

7.4. Schematic representation of the decoder’s architecture 130

7.5. Representation of the full sequence-to-sequence model’s architec-

ture. 132

7.6. Illustration of the beam search algoritm in the first 3 target

timesteps. 133

7.7. Distribution of the κ-statistic score on a per-shot basis 135

7.8. Detection results for shot #42197. 137

7.9. Detection results for shot #61057. 137

7.10. Detection results for shot #61274. 138

7.11. Detection results for shot #32911. 138

7.12. Detection results for shot #61043. 139

151

List of Tables

5.1. Accuracy mean and standard deviation for validation data across

ensemble . 75

6.1. κ-statistic scores for the CNN . 108

6.2. κ-statistic scores for the Conv-LSTM 110

6.3. κ-statistic scores for selected shots 113

7.1. κ-statistic scores for the conv-LSTM model on the new data 135

7.2. κ-statistic scores for each plasma mode and as a mean, on training

and test data . 135

7.3. κ-statistic scores for shots with at least one mode whose score was

lower than 0.8 . 136

153

Bibliography

[1] G. Merlo. “Flux-tube and global grid-based gyrokinetic simulations of

plasma microturbulence and comparisons with experimental TCV mea-

surements”. PhD thesis. École Polytechnique Fédérale de Lausanne,

2016.

[2] J. D. Lawson. “Some Criteria for a Power Producing Thermonuclear Re-

actor”. In: Proceedings of the Physical Society. Section B 70.1 (Jan. 1957),

pp. 6–10.

[3] J. Wesson. Tokamaks. 4th. Oxford University Press, 2011.

[4] Y. Xu. “A general comparison between tokamak and stellarator plasmas”.

In: Matter and Radiation at Extremes 1.4 (2016), pp. 192–200.

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips. “GPU computing”. In: Proceedings of the IEEE 96.5 (2008),

pp. 879–899.

[6] K. Finken. “Divertor concepts I: Edge physics, divertors, pump limiters”.

In: Fusion science and technology 41.2T (2002), pp. 330–336.

[7] F. Matos. “Deep Learning for Plasma Tomography”. MA thesis. Técnico

Lisboa, 2016.

[8] G. Xu, H. Wang, M. Xu, B. Wan, H. Guo, P. Diamond, G. Tynan, R.

Chen, N. Yan, D. Kong, et al. “Dynamics of L–H transition and I-phase in

EAST”. In: Nuclear Fusion 54.10 (2014), p. 103002.

[9] A. Team et al. “The H-mode of ASDEX”. In: Nuclear Fusion 29.11 (1989),

p. 1959.

[10] T. Pütterich, R. Neu, R. Dux, A. Whiteford, M. O’Mullane, H. Summers,

et al. “Calculation and experimental test of the cooling factor of tung-

sten”. In: Nuclear Fusion 50.2 (2010), p. 025012.

155

Bibliography

[11] T. Odstrčil. “On the origin, properties, and implications of asymmetries

in the tungsten impurity density in tokamak plasmas”. PhD thesis. Tech-

nische Universität München, 2017.

[12] J. Radon. “Über die Bestimmung von Funktionen durch ihre Integral-

werte längs gewisser Mannigfaltigkeiten”. In: Berichte über die Verhand-
lungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse 69 (1917), p. 262.

[13] W. A. Kalender. “X-ray computed tomography”. In: Physics in Medicine &
Biology 51.13 (2006), R29.

[14] A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging.

IEEE Press, 1988.

[15] P. J. Carvalho. “Tomography Algorithms for Real-Time Control in IST-

TOK”. PhD thesis. IST, Apr. 2010.

[16] J. Svensson, A. Werner, and JET-EFDA Contributors. “Current tomogra-

phy for axisymmetric plasmas”. In: Plasma Physics and Controlled Fusion
50.8 (2008), p. 085002.

[17] D. Vezinet, D. Mazon, D. Clayton, R. Guirlet, M. O’mullane, and D. Vil-

legas. “Fast nickel and iron density estimation using soft X-ray measure-

ments in Tore Supra: preliminary study”. In: Fusion Science and Technol-
ogy 63.1 (2013), pp. 9–19.

[18] A. Huber, K. McCormick, P. Andrew, P. Beaumont, S. Dalley, J. Fink,

J. Fuchs, K. Fullard, W. Fundamenski, L. Ingesson, et al. “Upgraded

bolometer system on JET for improved radiation measurements”. In: Fu-
sion Engineering and Design 82.5 (2007), pp. 1327–1334.

[19] V. Igochine, A. Gude, M. Maraschek, and the ASDEX Upgrade Team.

Hotlink based Soft X-ray Diagnostic on ASDEX Upgrade. Tech. rep. IPP

1/338. Max-Planck-Institut für Plasmaphysik, 2010.

[20] A. Bock, H. Doerk, R. Fischer, D. Rittich, J. Stober, A. Burckhart, E. Fa-

ble, B. Geiger, A. Mlynek, M. Reich, et al. “Advanced tokamak inves-

tigations in full-tungsten ASDEX Upgrade”. In: Physics of Plasmas 25.5

(2018), p. 056115.

156

Bibliography

[21] T. Odstrčil, T. Pütterich, M. Odstrčil, A. Gude, V. Igochine, U. Stroth, and

the ASDEX Upgrade Team. “Optimized tomography methods for plasma

emissivity reconstruction at the ASDEX Upgrade tokamak”. In: Review of
Scientific Instruments 87.12 (2016), p. 123505.

[22] M. Anton, H. Weisen, M. Dutch, W. Von der Linden, F. Buhlmann, R.

Chavan, B. Marletaz, P. Marmillod, and P. Paris. “X-ray tomography on

the TCV tokamak”. In: Plasma physics and controlled fusion 38.11 (1996),

p. 1849.

[23] F. A. Matos, D. R. Ferreira, P. J. Carvalho, and JET Contributors. “Deep

learning for plasma tomography using the bolometer system at JET”. In:

Fusion Engineering and Design 114 (2017), pp. 18–25.

[24] D. R. Ferreira, P. J. Carvalho, and H. Fernandes. “Deep learning for

plasma tomography and disruption prediction from bolometer data”. In:

IEEE Transactions on Plasma Science 48.1 (2019), pp. 36–45.

[25] J. Svensson. Non-parametric tomography using Gaussian processes. Tech.

rep. EFDA-JET-PR(11)24, 2011.

[26] A. Malinin and M. Gales. “Predictive uncertainty estimation via prior

networks”. In: Advances in Neural Information Processing Systems. 2018,

pp. 7047–7058.

[27] A. H. Nielsen, G. Xu, J. Madsen, V. Naulin, J. J. Rasmussen, and B. Wan.

“Simulation of transition dynamics to high confinement in fusion plas-

mas”. In: Physics Letters A 379.47-48 (2015), pp. 3097–3101.

[28] J. Lohr, B. Stallard, R. Prater, R. Snider, K. Burrell, R. Groebner, D. Hill,

K. Matsuda, C. Moeller, T. Petrie, et al. “Observation of H-mode confine-

ment in the DIII-D tokamak with electron cyclotron heating”. In: Physical
review letters 60.25 (1988), p. 2630.

[29] J. Connor and H. Wilson. “A review of theories of the LH transition”. In:

Plasma Physics and Controlled Fusion 42.1 (2000), R1.

[30] P. H. Diamond, S. Itoh, K. Itoh, and T. Hahm. “Zonal flows in plasma—a

review”. In: Plasma Physics and Controlled Fusion 47.5 (2005), R35.

157

Bibliography

[31] C. Bourdelle. “Staged approach towards physics-based LH transition

models”. In: Nuclear Fusion 60.10 (2020), p. 102002.

[32] H. Zohm. “Edge localized modes (ELMs)”. In: Plasma Physics and Con-
trolled Fusion 38.2 (1996), p. 105.

[33] H. Zohm. “Dynamic behavior of the L-H transition”. In: Physical review
letters 72.2 (1994), p. 222.

[34] J. Vega, R. Moreno, A. Pereira, G. Rattá, A. Murari, S. Dormido-Canto,

S. Esquembri, E. Barrera, and M. Ruiz. “Review of disruption predic-

tors in nuclear fusion: Classical, from scratch and anomaly detection ap-

proaches”. In: IECON 2016-42nd Annual Conference of the IEEE Industrial
Electronics Society. IEEE. 2016, pp. 6375–6379.

[35] S. Coda, J. Ahn, R. Albanese, S. Alberti, E. Alessi, S. Allan, H. Anand, G.

Anastassiou, Y. Andrèbe, C. Angioni, et al. “Overview of the TCV toka-

mak program: scientific progress and facility upgrades”. In: Nuclear Fu-
sion 57.10 (2017), p. 102011.

[36] A. Webster and R. Dendy. “Statistical characterization and classification

of edge-localized plasma instabilities”. In: Physical review letters 110.15

(2013), p. 155004.

[37] J. Greenhough, S. Chapman, R. Dendy, and D. Ward. “Probability distri-

bution functions for ELM bursts in a series of JET tokamak discharges”.

In: Plasma physics and controlled fusion 45.5 (2003), p. 747.

[38] A. Shabbir, G. Verdoolaege, O. J. Karadaun, A. J. Webster, R. O. Dendy,

and J.-M. Noterdaeme. “Discrimination and visualization of ELM types

based on a probabilistic description of inter-ELM waiting times”. In: 41st
European Physical Society Conference on Plasma Physics (Berlin, Germany).

2014.

[39] J. Vega, A. Murari, G. Vagliasindi, G. Rattá, J.-E. Contributors, et al. “Au-

tomated estimation of L/H transition times at JET by combining Bayesian

statistics and support vector machines”. In: Nuclear Fusion 49.8 (2009),

p. 085023.

158

Bibliography

[40] S. Gonzalez, J. Vega, A. Murari, A. Pereira, S. Dormido-Canto, J. Ramirez,

J.-E. contributors, et al. “Automatic location of L/H transition times for

physical studies with a large statistical basis”. In: Plasma Physics and Con-
trolled Fusion 54.6 (2012), p. 065009.

[41] A. Murari, G. Vagliasindi, M. K. Zedda, R. Felton, C. Sammon, L. Fortuna,

and P. Arena. “Fuzzy logic and support vector machine approaches to

regime identification in JET”. In: IEEE Transactions on Plasma Science 34.3

(2006), pp. 1013–1020.

[42] A. Lukianitsa, F. Zhdanov, and F. Zaitsev. “Analyses of ITER operation

mode using the support vector machine technique for plasma discharge

classification”. In: Plasma Physics and Controlled Fusion 50.6 (2008),

p. 065013.

[43] G. R. A. Akkermans. Real-time, Model-based Event Detection in Tokamaks.
Master’s Thesis. Jan. 2017.

[44] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[45] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow, 2nd Edition. O’Reilly Media, Incorporated, 2019.

[46] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[47] K. Hornik, M. Stinchcombe, H. White, et al. “Multilayer feedforward

networks are universal approximators.” In: Neural networks 2.5 (1989),

pp. 359–366.

[48] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D.

Henderson, R. E. Howard, and W. Hubbard. “Handwritten digit recogni-

tion: Applications of neural network chips and automatic learning”. In:

IEEE Communications Magazine 27.11 (1989), pp. 41–46.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov. “Dropout: a simple way to prevent neural networks from overfit-

ting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–

1958.

159

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[50] Y. LeCun, C. Cortes, and C. Burges. “MNIST handwritten digit database”.

In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2

(2010).

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learn-

ing applied to document recognition”. In: Proceedings of the IEEE 86.11

(1998), pp. 2278–2324.

[52] K. Simonyan and A. Zisserman. “Very deep convolutional networks for

large-scale image recognition”. In: International Conference on Learn-
ing Representations (San Diego, USA). 2015. url: https://iclr.cc/

archive/www/2015.html.

[53] C. Lea, R. Vidal, A. Reiter, and G. D. Hager. “Temporal convolutional

networks: A unified approach to action segmentation”. In: European Con-
ference on Computer Vision. Springer. 2016, pp. 47–54.

[54] D. Zhang and D. Wang. “Relation classification: Cnn or rnn?” In: Natu-
ral Language Understanding and Intelligent Applications. Springer, 2016,

pp. 665–675.

[55] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio. “Learning phrase representations using RNN

encoder-decoder for statistical machine translation”. In: The 2014 Confer-
ence on Empirical Methods In Natural Language Processing (Doha, Qatar).

Oct. 2014. url: https://emnlp2014.org/.

[56] J. L. Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),

pp. 179–211.

[57] A. Hassan and A. Mahmood. “Convolutional recurrent deep learning

model for sentence classification”. In: Ieee Access 6 (2018), pp. 13949–

13957.

[58] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[59] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing sys-
tems. 2014, pp. 3104–3112.

160

https://iclr.cc/archive/www/2015.html
https://iclr.cc/archive/www/2015.html
https://emnlp2014.org/

Bibliography

[60] P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. Tech.

rep. UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY

INFORMATION SCIENCES INST, 2003.

[61] D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by

jointly learning to align and translate”. In: International Conference on
Learning Representations (San Diego, USA). 2015. url: https://iclr.

cc/archive/www/2015.html.

[62] M.-T. Luong, H. Pham, and C. D. Manning. “Effective Approaches to

Attention-based Neural Machine Translation”. In: Conference on Empir-
ical Methods in Natural Language Processing (Lisbon, Portugal). 2015. url:

http://www.emnlp2015.org/.

[63] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learn-
ing. Cambridge, MA: MIT press, 2006.

[64] F. Matos, J. Svensson, A. Pavone, T. Odstrčil, and F. Jenko. “Deep learning

for Gaussian process soft x-ray tomography model selection in the AS-

DEX Upgrade tokamak”. In: Review of Scientific Instruments 91.10 (2020),

p. 103501.

[65] F. Matos, V. Menkovski, F. Felici, A. Pau, F. Jenko, T. Team, E. M. Team,

et al. “Classification of tokamak plasma confinement states with con-

volutional recurrent neural networks”. In: Nuclear Fusion 60.3 (2020),

p. 036022.

[66] F. Matos, V. Menkovski, A. Pau, G. Marceca, F. Jenko, and the TCV Team.

“Plasma confinement mode classification using a sequence-to-sequence

neural network with attention”. In: Nuclear Fusion 61.4 (2021), p. 046019.

[67] L. Ingesson, B. Alper, B. Peterson, and J.-C. Vallet. “Chapter 7: Tomog-

raphy diagnostics: bolometry and soft-x-ray detection”. In: Fusion science
and technology 53.2 (2008), pp. 528–576.

[68] J. Mlynar, V. Weinzettl, G. Bonheure, A. Murari, and JET-EFDA contrib-

utors. “Inversion techniques in the soft-X-ray tomography of fusion plas-

mas: toward real-time applications”. In: Fusion Science and Technology
58.3 (2010), pp. 733–741.

161

https://iclr.cc/archive/www/2015.html
https://iclr.cc/archive/www/2015.html
http://www.emnlp2015.org/

Bibliography

[69] J. Mlynar, T. Craciunescu, D. R. Ferreira, P. Carvalho, O. Ficker, O.

Grover, M. Imrisek, J. Svoboda, and Jet Contributors. “Current research

into applications of tomography for fusion diagnostics”. In: Journal of Fu-
sion Energy 38.3-4 (2019), pp. 458–466.

[70] A. N. Tikhonov. “Regularization of incorrectly posed problems”. In:

Dokl. Akad. Nauk. SSSR. Vol. 153. 1963, p. 49.

[71] A. N. Tikhonov. “Solution of incorrectly formulated problems and the

regularization method”. In: Dokl. Akad. Nauk. SSSR. Vol. 151. 1963,

p. 501.

[72] V. Loffelmann, J. Mlynar, M. Imrisek, D. Mazon, A. Jardin, V. Weinzettl,

and M. Hron. “Minimum Fisher Tikhonov regularization adapted to

real-time tomography”. In: Fusion Science and Technology 69.2 (2016),

pp. 505–513.

[73] A. Jardin, J. Bielecki, D. Mazon, J. Dankowski, K. Król, Y. Peysson, and

M. Scholz. “Neural networks: from image recognition to tokamak plasma

tomography”. In: Laser and Particle Beams 37.2 (2019), pp. 171–175.

[74] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. “Weight Un-

certainty in Neural Network”. In: Proceedings of the 32nd International
Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Pro-

ceedings of Machine Learning Research. Lille, France: PMLR, July 2015,

pp. 1613–1622. url: https://icml.cc/2015/.

[75] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Rep-

resenting Model Uncertainty in Deep Learning”. In: ed. by M. F. Bal-

can and K. Q. Weinberger. Vol. 48. Proceedings of Machine Learning Re-

search. New York, New York, USA: PMLR, June 2016, pp. 1050–1059.

url: http://proceedings.mlr.press/v48/gal16.html.

[76] A. Pavone, J. Svensson, A. Langenberg, N. Pablant, U. Hoefel, S. Kwak, R.

Wolf, and the Wendelstein 7-X Team. “Bayesian uncertainty calculation

in neural network inference of ion and electron temperature profiles at

W7-X”. In: Review of Scientific Instruments 89.10 (2018), 10K102.

162

https://icml.cc/2015/
http://proceedings.mlr.press/v48/gal16.html

Bibliography

[77] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation

learning with deep convolutional generative adversarial networks”. In:

arXiv preprint arXiv:1511.06434 (2015).

[78] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen. “Improved techniques for training gans”. In: Advances in neu-
ral information processing systems (Barcelona, Spain). 2016, pp. 2234–

2242. url: http://papers.nips.cc/book/advances- in- neural-

information-processing-systems-29-2016.

[79] R. M. Lewitt. “Reconstruction algorithms: transform methods”. In: Pro-
ceedings of the IEEE 71.3 (1983), pp. 390–408.

[80] A. Murari, E. Joffrin, R. Felton, D. Mazon, L. Zabeo, R. Albanese, P. Arena,

G. Ambrosino, M. Ariola, O. Barana, et al. “Development of real-time

diagnostics and feedback algorithms for JET in view of the next step”.

In: Plasma physics and controlled fusion 47.3 (2005), p. 395.

[81] A. Jardin, J. Bielecki, D. Mazon, J. Dankowski, K. Król, Y. Peysson, and

M. Scholz. “Synthetic X-ray Tomography Diagnostics for Tokamak Plas-

mas”. In: Journal of Fusion Energy (2020), pp. 1–11.

[82] L. Ingesson, P. Böcker, R. Reichle, M. Romanelli, and P. Smeulders.

“Projection-space methods to take into account finite beam-width effects

in two-dimensional tomography algorithms”. In: JOSA A 16.1 (1999),

pp. 17–27.

[83] M. Odstrcil, J. Mlynar, T. Odstrcil, B. Alper, A. Murari, and JET contribu-

tors. “Modern numerical methods for plasma tomography optimisation”.

In: Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 686 (2012),

pp. 156–161.

[84] D. Carvalho, D. Ferreira, P. Carvalho, M. Imrisek, J. Mlynar, H. Fernan-

des, and J. Contributors. “Deep neural networks for plasma tomography

with applications to JET and COMPASS”. In: Journal of Instrumentation
14.09 (2019), p. C09011.

163

http://papers.nips.cc/book/advances-in-neural-information-processing-systems-29-2016
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-29-2016

Bibliography

[85] D. Li, J. Svensson, H. Thomsen, F. Medina, A. Werner, and R. Wolf.

“Bayesian soft X-ray tomography using non-stationary Gaussian Pro-

cesses”. In: Review of Scientific Instruments 84.8 (2013), p. 083506.

[86] D. J. MacKay. “Comparison of approximate methods for handling hyper-

parameters”. In: Neural computation 11.5 (1999), pp. 1035–1068.

[87] D. MacKay. “Bayesian Methods for Adaptive Models”. PhD thesis. Cal-

tech, 1991.

[88] C. Lechte, G. Conway, T. Görler, C. Tröster-Schmid, and the ASDEX Up-

grade Team. “X mode Doppler reflectometry k-spectral measurements in

ASDEX Upgrade: experiments and simulations”. In: Plasma Physics and
Controlled Fusion 59.7 (2017), p. 075006.

[89] F. Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

[90] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on Machine Learning. Ed. by F. Bach and

D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:

PMLR, July 2015, pp. 448–456. url: http://proceedings.mlr.press/

v37/ioffe15.html.

[91] X. Li, S. Chen, X. Hu, and J. Yang. “Understanding the Disharmony Be-

tween Dropout and Batch Normalization by Variance Shift”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(Long Beach, USA). June 2019, pp. 2677–2685. doi: 10.1109/CVPR.2019.

00279. url: http://cvpr2019.thecvf.com/.

[92] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[93] G. James. An introduction to statistical learning: with applications in R. New

York, NY: Springer, 2013. isbn: 978-1-4614-7138-7.

[94] T. Zhang, X. Gao, S. Zhang, Y. Wang, X. Han, Z. Liu, B. Ling, E. Team,

et al. “Characteristics of dithering cycles during the L–I–H transition on

Experimental Advanced Superconducting Tokamak (EAST)”. In: Physics
Letters A 377.28-30 (2013), pp. 1725–1735.

164

https://github.com/fchollet/keras
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/CVPR.2019.00279
https://doi.org/10.1109/CVPR.2019.00279
http://cvpr2019.thecvf.com/

Bibliography

[95] A. Loarte, G. Huijsmans, S. Futatani, L. Baylor, T. Evans, D. Orlov, O.

Schmitz, M. Becoulet, P. Cahyna, Y. Gribov, et al. “Progress on the ap-

plication of ELM control schemes to ITER scenarios from the non-active

phase to DT operation”. In: Nuclear Fusion 54.3 (2014), p. 033007.

[96] D. Rastovic. “Fuzzy scaling and stability of tokamaks”. In: Journal of fu-
sion energy 28.1 (2009), pp. 101–106.

[97] D. Humphreys, G. Ambrosino, P. de Vries, F. Felici, S. H. Kim, G. Jackson,

A. Kallenbach, E. Kolemen, J. Lister, D. Moreau, et al. “Novel aspects of

plasma control in ITER”. In: Physics of Plasmas 22.2 (2015), p. 021806.

[98] Y. R. Martin, T. Takizuka, and the ITPA CDBM H-mode Threshold Data

Group. “Power requirement for accessing the H-mode in ITER”. In: Jour-
nal of Physics: Conference Series 123 (July 2008), p. 012033. doi: 10.1088/

1742-6596/123/1/012033.

[99] F. Ryter, K. Buchl, C. Fuchs, O. Gehre, O. Gruber, A. Herrmann, A.

Kallenbach, M. Kaufmann, W. Koppendorfer, F. Mast, et al. “H-mode re-

sults in ASDEX Upgrade”. In: Plasma physics and controlled fusion 36.7A

(1994), A99.

[100] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich. “Going Deeper With Convolutions”. In:

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Boston, USA). June 2015. url: http://www.pamitc.org/cvpr15/.

[101] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj. “Real-Time Mo-

tor Fault Detection by 1-D Convolutional Neural Networks.” In: IEEE
Trans. Industrial Electronics 63.11 (2016), pp. 7067–7075.

[102] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger. Red Hook, USA: Curran Associates, Inc., 2012,

pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-

classification-with-deep-convolutional-neural-networks.pdf.

165

https://doi.org/10.1088/1742-6596/123/1/012033
https://doi.org/10.1088/1742-6596/123/1/012033
http://www.pamitc.org/cvpr15/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography

[103] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. “Efficient Ob-

ject Localization Using Convolutional Networks”. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (Boston, USA).

June 2015. url: http://www.pamitc.org/cvpr15/.

[104] T. Lähivaara, L. Kärkkäinen, J. M. Huttunen, and J. S. Hesthaven. “Deep

convolutional neural networks for estimating porous material parame-

ters with ultrasound tomography”. In: The Journal of the Acoustical Society
of America 143.2 (2018), pp. 1148–1158.

[105] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli. “Deep

convolutional neural network for the automated detection and diagnosis

of seizure using EEG signals”. In: Computers in biology and medicine 100

(2018), pp. 270–278.

[106] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman. “Real-

time vibration-based structural damage detection using one-dimensional

convolutional neural networks”. In: Journal of Sound and Vibration 388

(2017), pp. 154–170.

[107] S. Malek, F. Melgani, and Y. Bazi. “One-dimensional convolutional neural

networks for spectroscopic signal regression”. In: Journal of Chemometrics
32.5 (2018), e2977.

[108] P. Golik, Z. Tüske, R. Schlüter, and H. Ney. “Convolutional neural net-

works for acoustic modeling of raw time signal in LVCSR”. In: Sixteenth
annual conference of the international speech communication association
(Dresden, Germany). 2015. url: http://interspeech2015.org/.

[109] S. Kiranyaz, T. Ince, and M. Gabbouj. “Real-time patient-specific ECG

classification by 1-D convolutional neural networks”. In: IEEE Transac-
tions on Biomedical Engineering 63.3 (2015), pp. 664–675.

[110] C. A. Ronao and S.-B. Cho. “Human activity recognition with smart-

phone sensors using deep learning neural networks”. In: Expert systems
with applications 59 (2016), pp. 235–244.

[111] M. Sundermeyer, R. Schlüter, and H. Ney. “LSTM neural networks for

language modeling”. In: Thirteenth annual conference of the international
speech communication association. 2012.

166

http://www.pamitc.org/cvpr15/
http://interspeech2015.org/

Bibliography

[112] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang. “Long short-term mem-

ory neural network for traffic speed prediction using remote microwave

sensor data”. In: Transportation Research Part C: Emerging Technologies 54

(2015), pp. 187–197.

[113] S. Venugopalan, L. A. Hendricks, R. Mooney, and K. Saenko. “Improving

LSTM-based Video Description with Linguistic Knowledge Mined from

Text”. In: Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Austin, Texas: Association for Computational

Linguistics, Nov. 2016, pp. 1961–1966. doi: 10.18653/v1/D16- 1204.

url: https://www.aclweb.org/anthology/D16-1204.

[114] A. Meakins, D. McDonald, et al. “The application of classification meth-

ods in a data driven investigation of the JET L–H transition”. In: Plasma
Physics and Controlled Fusion 52.7 (2010), p. 075005.

[115] F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engel-

hardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, et al. “Regime

of improved confinement and high beta in neutral-beam-heated diver-

tor discharges of the ASDEX tokamak”. In: Physical Review Letters 49.19

(1982), p. 1408.

[116] S.-I. Itoh and K. Itoh. “Model of L to H-Mode Transition in Tokamak”.

In: Phys. Rev. Lett. 60 (22 May 1988), pp. 2276–2279. doi: 10 . 1103 /

PhysRevLett.60.2276.

[117] N. Basse, S. Zoletnik, G. Antar, J. Baldzuhn, A. Werner, et al. “Charac-

terization of turbulence in L-and ELM-free H-mode Wendelstein 7-AS

plasmas”. In: Plasma physics and controlled fusion 45.4 (2003), p. 439.

[118] Y. Martin. ELMing H-mode accessibility in shaped TCV plasmas. Tech. rep.

TCV Team, 2001.

[119] D. Jurafsky and J. H. Martin. Speech and Language Processing, second edi-
tion. USA: Prentice Hall, 2014. isbn: 9780131873216.

[120] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. “High-

dimensional sequence transduction”. In: 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (Vancouver, Canada). IEEE.

167

https://doi.org/10.18653/v1/D16-1204
https://www.aclweb.org/anthology/D16-1204
https://doi.org/10.1103/PhysRevLett.60.2276
https://doi.org/10.1103/PhysRevLett.60.2276

Bibliography

2013, pp. 3178–3182. url: https://www2.securecms.com/ICASSP2013/

default.asp.

[121] F. Hofmann, J. Lister, W. Anton, S. Barry, R. Behn, S. Bernel, G. Besson, F.

Buhlmann, R. Chavan, M. Corboz, et al. “Creation and control of variably

shaped plasmas in TCV”. In: Plasma Physics and Controlled Fusion 36.12B

(1994), B277.

[122] S. Coda et al. “PHYSICS RESEARCH ON THE TCV TOKAMAK FACIL-

ITY: FROM CONVENTIONAL TO ALTERNATIVE SCENARIOS AND

BEYOND”. In: Nuclear Fusion 59 112023 (2019).

[123] J.-M. Moret, F. Buhlmann, and G. Tonetti. “Fast single loop diamagnetic

measurements on the TCV tokamak”. In: Review of Scientific instruments
74.11 (2003), pp. 4634–4643.

[124] D. Harris and S. Harris. Digital Design and Computer Architecture. Com-

puter organization bundle, VHDL Bundle. Elsevier Science, 2010. isbn:

9780080547060.

[125] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethink-

ing the inception architecture for computer vision”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016,

pp. 2818–2826.

[126] Q. Zheng, M. Yang, J. Yang, Q. Zhang, and X. Zhang. “Improvement of

generalization ability of deep CNN via implicit regularization in two-

stage training process”. In: IEEE Access 6 (2018), pp. 15844–15869.

[127] V. Dumoulin and F. Visin. “A guide to convolution arithmetic for deep

learning”. In: arXiv preprint arXiv:1603.07285 (2016).

[128] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Else-

vier, 2011.

[129] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition let-
ters 27.8 (2006), pp. 861–874.

[130] X. Liu. “Classification accuracy and cut point selection”. In: Statistics in
medicine 31.23 (2012), pp. 2676–2686.

168

https://www2.securecms.com/ICASSP2013/default.asp
https://www2.securecms.com/ICASSP2013/default.asp

Bibliography

[131] J. R. Landis and G. G. Koch. “The measurement of observer agreement

for categorical data”. In: biometrics (1977), pp. 159–174.

[132] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification

with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems (Lake Tahoe, Nevada). Dec. 2012, pp. 1097–

1105. url: https://nips.cc/Conferences/2012.

[133] D. Ciregan, U. Meier, and J. Schmidhuber. “Multi-column deep neural

networks for image classification”. In: 2012 IEEE conference on computer
vision and pattern recognition. IEEE. 2012, pp. 3642–3649.

[134] A. Graves, A.-r. Mohamed, and G. Hinton. “Speech recognition with deep

recurrent neural networks”. In: 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE. 2013, pp. 6645–6649.

[135] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin. “Attention is All you Need”. In:

Advances in Neural Information Processing Systems. Ed. by I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett. Vol. 30. Curran Associates, Inc., 2017, pp. 5998–6008.

url: https : / / proceedings . neurips . cc / paper / 2017 / file /

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[136] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

and Y. Bengio. “Show, attend and tell: Neural image caption genera-

tion with visual attention”. In: International conference on machine learn-
ing (Lille, France). July 2015, pp. 2048–2057. url: https://icml.cc/

Conferences/2015/.

[137] F. Stahlberg. “Neural machine translation: A review”. In: Journal of Arti-
ficial Intelligence Research 69 (2020), pp. 343–418.

[138] A. Graves. “Sequence transduction with recurrent neural networks”. In:

arXiv preprint arXiv:1211.3711 (2012).

[139] M. Łuczak. “Hierarchical clustering of time series data with parametric

derivative dynamic time warping”. In: Expert Systems with Applications
62 (2016), pp. 116–130.

169

https://nips.cc/Conferences/2012
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://icml.cc/Conferences/2015/
https://icml.cc/Conferences/2015/

Bibliography

[140] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Software available from tensor-

flow.org. 2015. url: https://www.tensorflow.org/.

[141] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In:

ICLR Conference Proceedings (Banff, Canada). Apr. 2014. url: https://

iclr.cc/archive/2014/old-site/.

[142] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling. “Diva: Domain in-

variant variational autoencoders”. In: Medical Imaging with Deep Learn-
ing. PMLR. 2020, pp. 322–348.

170

https://www.tensorflow.org/
https://iclr.cc/archive/2014/old-site/
https://iclr.cc/archive/2014/old-site/

Part IV:

Appendices

171

A. Original Publications

173

PAPER

Classification of tokamak plasma confinement states with convolutional
recurrent neural networks
To cite this article: F. Matos et al 2020 Nucl. Fusion 60 036022

View the article online for updates and enhancements.

This content was downloaded from IP address 130.183.102.150 on 11/08/2020 at 17:24

1 © EURATOM 2020  Printed in the UK

1.  Introduction

In a fusion experiment, plasma can typically be described as
being in one of two different confinement regimes or modes:
low (L) and high (H). Furthermore, the plasma can also some-
times be described as being in a third, additional, mode, called
the intermediate or dithering (D) [1] phase. In addition, when
the plasma is in H mode, edge localized modes (ELMs) can
periodically occur.

Current tokamaks regularly run in H mode, which moti-
vates the necessity for some measure of control (and there-
fore, detection) of ELMs and transitions between plasma
modes. Furthermore, it is expected that future machines will

also run in the same operating conditions [2]. Thus, the devel-
opment of automated, data-based approaches to automatically
detect the occurrence of certain events would be useful for
both existing and future tokamak experiments and operation
[3]. A detector would not only simplify and speed-up the
post-experimental, offline analysis of shots, but also (ideally)
detect ELMs and plasma state rapidly enough to allow for its
usage in the real-time control systems of a fusion experiment,
for purposes of plasma control and real-time discharge moni-
toring and supervision [4].

Due to uncertainties in the scaling laws, it is difficult to
determine, a priori, when, during a discharge, a switch
between different plasma modes will occur [5]. Nevertheless,
physicists can usually pinpoint, through a post-experimental
visual analysis of several diagnostic signal time-traces, at
what point in time any transitions between different modes did
take place. Similarly to transitions between plasma modes, the
occurrence of an ELM can usually be pinpointed by looking

Nuclear Fusion

Classification of tokamak plasma
confinement states with convolutional
recurrent neural networks
F. Matos1 , V. Menkovski2, F. Felici3 , A. Pau3 , F. Jenko1, the TCV Team3,a
and the EUROfusion MST1 Teamb

1  Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching, Germany
2  Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
3  École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne,
Switzerland

E-mail: francisco.matos@ipp.mpg.de

Received 19 November 2019, revised 10 January 2020
Accepted for publication 16 January 2020
Published 20 February 2020

Abstract
During a tokamak discharge, the plasma can vary between different confinement regimes:
low (L), high (H) and, in some cases, a temporary (intermediate state), called dithering (D).
In addition, while the plasma is in H mode, edge localized modes (ELMs) can occur. The
automatic detection of changes between these states, and of ELMs, is important for tokamak
operation. Motivated by this, and by recent developments in deep learning, we developed and
compared two methods for automatic detection of the occurrence of L-D-H transitions and
ELMs, applied on data from the TCV tokamak. These methods consist in a convolutional
neural network and a convolutional long short term memory neural network. We measured our
results with regards to ELMs using ROC curves and Youden’s score index, and regarding state
detection using Cohen’s Kappa index.

Keywords: CNN, LSTM, deep learning, ELM, H mode, L mode, dither

(Some figures may appear in colour only in the online journal)

F. Matos et al

Classification of tokamak plasma confinement states with convolutional recurrent neural networks

Printed in the UK

036022

NUFUAU

© EURATOM 2020

60

Nucl. Fusion

NF

10.1088/1741-4326/ab6c7a

Paper

3

Nuclear Fusion

IOP

International Atomic Energy Agency

a See Coda et al (https://doi.org/10.1088/1741-4326/ab25cb) for the TCV
team.
b See Labit et al (https://doi.org/10.1088/1741-4326/ab2211) for the
EUROfusion MST1 team.

2020

1741-4326

1741-4326/ 20 /036022+16$33.00

https://doi.org/10.1088/1741-4326/ab6c7aNucl. Fusion 60 (2020) 036022 (16pp)

F. Matos et al

2

at the time-traces of several diagnostics from a plasma dis-
charge post-shot. Yet through analysis of signals, some types
of ELMs can be easily confused with dithers; a distinction
between the two phenomena can not always be clearly made
[6].

Although the identification by an expert, through post
experimental visual analysis of signal time-traces, of a single
ELM, or a single transition between plasma modes, is rela-
tively straightforward for a typical shot, it becomes much
more cumbersome to carry out that analysis effectively for
many shots, especially when the associated time-series data is
long, and when a shot has many transitions between different
modes.

Recent advances in the ML field with the introduction of
deep learning (DL) approaches deal with exactly such chal-
lenges. In the past years, the field of deep learning has brought
about significant advances in computer vision and sequential
data processing. Convolutional neural networks (CNNs) have
proven adept at localization, recognition and detection tasks
in both two-dimensional [7–11] and one-dimensional [12–17]
data (i.e. signal analysis) in many different fields of science. In
addition, long short-term memory (LSTM) networks, which
are one type of recurrent neural network, have been success-
fully used for processing of sequential data where one expects
correlations to exist across time, namely, automatic transla-
tion, natural language modelling [18], traffic analysis [19],
and automated video description [20]. These tasks are much
akin to what one can expect to find in terms of processing
fusion shot data.

Given this, a deep learning approach is well motivated
to address this challenge. Specifically, deep neural network
models offer particular advantages when modeling high-
dimensional data as given in this setting. In this work, we
develop an approach for automatic classification of L-D-H
plasma states and detection of ELMs based on two deep neural
network models. The first model is based on a sliding-window
feed-forward neural network, specifically a CNN. The second
model is based on a recurrent neural network (RNN), specifi-
cally a long short-term memory network (LSTM) with convo-
lutional layers. The first model captures the local correlations
within the windows to classify the transitions between plasma
states from the shape of the signals. The second model extends
this to capturing longer-term dependencies in the evolution of
the states with the recurrent neural network layers.

We empirically demonstrate the approach on data collected
from the TCV tokamak experiment, labelled by an ensemble
of experts. The presented results demonstrate the effective-
ness of the proposed model to detect the state and events of the
plasma. We further discuss the trade-offs between increased
precision and increased complexity of both models.

This paper is organized as follows: section 2 discusses
related work and section 3 describes the physical phenomena
being analyzed. Section 4 formalizes our problem, details the
data we have available, and explains our decisions regarding
how we model the data and design and train the neural net-
works. Section 5 gives an overview of the metrics we used
to evaluate our results and our rationale behind using those

metrics. Section 6 gives an overview of the results achieved,
and we wrap up with a discussion in section 7.

2.  Previous work

Several different approaches for automated detection of
events in plasma experiments exist. One such approach is to
use threshold-based detectors. This corresponds to defining
a point or series of points (in time) at which a signal sur-
passes a certain amplitude as corresponding to a detection
[21–23], with additional constraints such as an increasing
probability of the occurrence of an ELM as time passes since
the last one. These approaches are limited to simple thresh-
olding and cannot compute complex patterns in the data.
Other work builds upon methods such as Kalman Filters to
model the expected characteristics of the signal over a period
of time, whilst also keeping track (in each time point) of the
current plasma mode, according to a pre-defined model. In
both of these cases, a detection algorithm’s performance
depends on the extent to which the theoretical assumptions
and mathematical descriptions as to how the signals should
behave are correct, whether those assumptions are exhaus-
tive (i.e. whether there may be additional causes which are
unaccounted for), and whether some of those assumptions
are more important than others; in other words, it is diffi-
cult to design an exhaustive rule-based system to detect the
occurrence of transitions between plasma modes, as well as
to detect ELMs.

The alternative is to use a purely data-based, supervised,
machine learning (ML), approach, whereby a set of data, pre-
viously manually labeled by an expert (for example, through
visual analysis), is used to train a detector. In this case, one
does not specify which characteristics or correlations in the
data are thought to correspond to the occurrence of an event;
rather, it is expected that the algorithm can automatically learn
what those correlations are, based on the labels, and then use
the learned data features to make correct classifications on
new data. Examples of such work are the usage of support
vector machines (SVMs) [24–27] and multi-layer perceptron
(MLP) neural networks [28] on data from several tokamaks
for detection of L-H transitions, classification of L and H
modes, and detection of ELMs.

This type of scenario is, indeed, well suited for application
of ML methods towards enabling automation. However, tradi-
tional ML methods such as SVMs and MLPs typically have
limitations when faced with data with complex dynamics,
such as the long sequences (i.e. signal time-series) present in
this environment. SVMs typically depend on expert-defined
feature engineering, which, while being superior to simple
threshold-based detectors, is nevertheless insufficient when
considering the complex data correlations which are observed
in this setting. On the other hand, MLPs, while not requiring
that sort of expert-defined input, are very inefficient when
compared to modern deep learning models such as CNNs and
RNNs, requiring much larger numbers of neurons and layers
to perform the same task. These limitations are what motivate
us to use deep learning approaches instead.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

3

3.  Background

3.1.  Low, dither and high plasma confinement modes

When a discharge starts, the plasma is considered to be in L
confinement mode. Once a certain threshold of input heating
power to the plasma is reached [29], the plasma can spon-
taneously transition into H confinement mode. Originally
discovered at the ASDEX-Upgrade Tokamak [30], H mode
is nowadays regularly observed in almost all other machines
[31]. H mode is characterized by the appearance, in the
plasma edge, of a steep gradient in the electron density and
the electron/ion temperatures, and a reduction in the transport
of particles and energy. As a consequence of this edge trans-
port barrier, the temperature and energy in the plasma core
increase. When compared to L mode, H mode allows for a
larger amount of stored plasma energy per input power, thus
rendering the fusion process more efficient. Yet the actual
input power threshold that triggers the transition between
the two modes is dependent on many factors, such as, for
example, the configuration of the magnetic field, plasma den-
sity, and plasma size [5]. Furthermore, when the input heating
power passes the aforementioned threshold but a change from
L to H mode does not immediately occur, the plasma can be
considered to be in a D [1] phase. In this case, a temporary,
weak, edge transport barrier starts to develop at the plasma
edge, only to collapse and reappear in rapid succession [29].
These oscillations then repeat themselves until the plasma
transitions into L or H mode. The localization of transitions
into, and out of, D mode can, however, be difficult to identify,
and there are often disagreements between experts as to which
periods of a shot are in a Dithering phase [32].

3.2.  Edge localized modes

When the plasma enters H mode, the corresponding accu-
mulation of energy and the large pressure gradient at the
plasma edge can trigger the occurrence of edge localized
modes (ELMs). These consist of periodic bursts of particles
and energy which, if a long amount of time passes between
successive ELMs, can impose a significant power load on the
divertor, potentially damaging it. However, ELMs also allow
for the periodic removal of accumulated impurities from the
plasma, and for a relaxation of the plasma density, which
can otherwise increase as the H mode progresses, eventu-
ally triggering a disruption [33]. On the other hand, frequent,
less energetic, ELMs lower the power load on the divertor,
at the cost of reduced plasma confinement. Thus, tokamak
operation requires knowledge of the occurrence of ELMs,
in particular for larger machines where ELMs may cause
deterioration of in-vessel components. Although several dif-
ferent types of ELMs exist, for the purposes of this work, we
did not make any distinctions between them—we train the
models to detect all occurring ELMs equally, regardless of
their subclass.

4.  Methods

4.1.  Problem formulation and approach

To develop a model for this task, we formulate the problem
as follows: we observe a sequence of measurements xt for
0 < t � N from the sensors for each shot. These observations
are conditioned on the state of the plasma zt at corresponding
time t, where zt ∈ Z and Z : {‘Low’, ‘Dither’, ‘High’}. Our
goal is to find the most likely sequences ẑ1:N and ê1:N that
explain the observations x0:N. We define ẑ1:N as

ẑ1:N = arg max
z1:N

p(z1, z2, ..., zN).

We choose to represent the joint probability p(z1, z2, ..., zN) as

p(z1, z2, ..., zN) = log(p(z1|x0:1) p(z2|x0:2, z1)...p(zN |x0:N , zN−1))

where p(zt|x0:t, zt−1) denotes the probability of observing
state z at time t, given the sequence of observed signals x from
time 0 to time t and the previous state zt−1. This yields

ẑ1:N = arg max
z1:N

log(
∏

t

p(zt|x0:t, zt−1))

= arg max
z1:N

∑

t

log p(zt|x0:t, zt−1).

Similarly, we define ê1:N as

ê1:N = arg max
e1:N

p(e1, e2, ..., eN)

while representing p(e1, e2, ..., eN) as

p(e1, e2, ..., eN) = (p(e1|x0:1) p(e2|x0:2)...p(eN |x0:N)

where p(et|x0:t) denotes the probability of an ELM occurring
at time t given the observations x from time 0 to time t. This
then yields

ê1:N = arg max
e1:N

log(
∏

t

p(et|x0:t))

= arg max
e1:N

∑

t

log p(et|x0:t).

Figure 1.  State machine for processing of the CNN outputs.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

4

To find ̂z1:N and ̂e1:N we develop two models. The first model
is trained to detect the transitions between the different states
of the plasma defined as qt ∈ Q where Q : { ‘Low → Dither’,
‘Dither → Low’, ‘Low → High’, ‘High → Low’, ‘Dither →
High’, ‘High → Dither’, ‘Notransition’} and to detect the
ELM events as et ∈ E where E : {‘ELM’, ‘NoELM’}.

We implement this model with a feed-forward CNN
that processes a window of observations xt−w, .., xt, ..., xt+w
and produces a probability distribution over the trans
itions p(qzt−1→zt |xt−w:t+w) and over the presence of an ELM
p(ELMt|xt−w:t+w) at t.

We now define the probability of transitioning to zt after being
in zt−1 (p(zt|x0:t, zt−1)) with our model p(qzt−1→zt |xt−w:t+w)
where w is the number of observations around t, therefore:

ẑ1:N = arg max
z1:N

∑

t

log p(qzt−1→zt |xt−w:t+w).

Practically, we implement the arg max given above as a
state evolution of a final state machine St(z(a) → z(b)) where
z(a) and z(b) are elements in Z and the transition probabili-
ties are given by p(qzt−1→zt |xt−w:t+w) at time t (see figure 1).
The evolution of the state machine produces several possible
sequences of states, and the one most likely to have generated
the observed sequence of transitions can be found through an
implementation of the Viterbi algorithm [34].

The first model can capture the localized correlations in the
signals that indicate the transition of the state of plasma well.
However, it is incapable of capturing the longer distance cor-
relations that may be present in the signal. To generalize the
approach further, we introduce a sequence model that models
the full sequence of observations up to time t and produce a
probability distribution p(zt|x0:t) for 0 < t � N , as well as a
distribution over the presence of the ELMs (p(ELMt|x0:t). This
model is implemented by extending the CNN with a recurrent
(LSTM) neural network. In this case, the model now observes
a sequence of sliding windows xt−w, ..., xt, ..., xt+w for each t
in the range {0, ..t}.

The first model has a lower computational complexity and
can be trained more efficiently, as we only need windows of
the signal with or without the different transitions, but it is
limited to the information only present in the given window
(see figure 2). Increasing the size of this window that forms
the context, increases the complexity both of the model and of
dealing with multiple transitions appearing.

The second model addresses these challenges by modeling
the sequence rather than a fixed window (see figure 3). As a
sequential model, it has an internal representation of the past
observations x0, .., xt , that enable it to weigh-in the likeli-
hood of transition based on information in the more distant
past [35]. The LSTM effectively assumes the role of the finite
state machine and so the model can directly model the state of
the plasma rather than the transitions. However, it introduces
higher level of complexity, particularly for training, as we
need to train on sequences rather than fixed-length windows.

4.2.  Data and event features

For the purposes of this work, we have assembled a dataset
based on the time-traces of four signals originating in the TCV
tokamak [36, 37]. We opted, for the purposes of this work,
to use the same, limited set of diagnostic signals that exper
imentalists use to determine, in post-shot analysis, the state of
the plasma (figure 4).

	 (i)	�Photodiode (PD) signal. Corresponds to the measure-
ments given by the photodiode diagnostic at TCV along
a vertical chord, measuring the line-integrated emitted
visible radiation; the photodiode has an Hα filter which
measures radiation at 653.3 nm.

		 Transitions between different plasma states, as well as
ELMs, can be most easily observed through analysis of
the photodiode (PD) signal (figure 5). Transitions from
L to H mode are characterized by a sudden drop in the
baseline value of the signal, whereas transitions back

Figure 2.  Representation of how a CNN can be used to model the transitions between different plasma modes. The network’s output
prediction for a time slice t depends only on the data features in a defined region immediately surrounding t.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

5

into L mode have the opposite trace, i.e. the baseline PD
signal suddenly increases and remains at a steady level.
ELMs are characterized by a sudden spike in the PD
signal, followed by a relaxation that takes at most 2ms.
D modes generate rapid fluctuations in the signal (see
figure 6); they do not necessarily correspond to a change
in the baseline signal value, unless they are followed by

a transition into a different state from the one at the point
where they started.

	(ii)	�Interferometer (FIR) signal. The interferometers at TCV
measure the line-integrated electron density in the plasma
along 14 parallel, vertical lines of sight. Of these, we take
the mean value, per time instant, of the 12 inner-most
detectors.

Figure 3.  Schematic representation of the flow of data inside a convolutional LSTM neural network. The network’s prediction (i.e.
output probability) at any time t of a shot depends not only on whatever features the convolutional layers have extracted from the points
immediately around t, but also on features extracted in the past.

Figure 4.  Switches between different plasma modes (low, dither and high), and time-traces of the collected signals, TCV shot #32195.

Figure 5.  ELMs and L and H plasma modes, TCV shot #33446.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

6

		 In the interferometer signal, the transition between L and
H mode can most easily be seen as a sudden increase in
the time derivative of the signal, while transitions back
into L mode correspond to a decrease in the derivative.
Similarly to what happens with the photodiode signal,
ELMs may provoke short (albeit less pronounced) spikes
in the FIR signal.

	(iii)	�Diamagnetic Loop (DML) signal. Refers to the measure-
ment of the total toroidal magnetic flux of the plasma [38].
The derivative of the DML signal frequently switches
signs when a transition occurs between L and H mode, as
well as when an ELM occurs (figure 7). Furthermore, the
sign of this signal’s derivative changes depending on the
sign of the plasma current.

	(iv)	�Plasma Current (IP) signal. Refers to the total plasma
electric current. For this work, we use the current value to
determine when the actual classification of plasma states
should begin. Specifically, we ignore, for classification
purposes, time points where the absolute value of the cur
rent is lower than 50 kA.

The 4 different signals used for this work have different
sampling rates. As a first step, we resampled all of them to the
same frequency of 10 kHz. Since each TCV shot is usually
up to 2 s long, this means that our shot signal data consists of
time-series of up to about 20 000 time slices.

We want to train a classifier to recognize features in the
data which allow for detecting the occurrence of ELMs and
transitions between different plasma modes—i.e. a super-
vised learning task. As such, the first step was to collect labels
for each shot time series, through visual analysis taking into
account the data features described above. The collected data

was visually labeled by three different experts for the same
shots. This means for some shots, the same regions might
have different labels (namely, the experts might disagree on
whether a certain part of a shot is dithering). Training the
network with labels which are different in some regions has
several potential advantages. For example, it compensates for
any possible discrepancies in labeling originating from human
error. It also allows us to incorporate the uncertainty in the
labels into the network training process itself, that is, it acts
as a form of regularization: if there is no majority agreement
between experts regarding a section of a shot, then it is to be
expected that the network will also learn not to strongly favor
any class in that region. Conversely, if the three experts agree,
then the network will learn that the features in that region most
certainly correspond to a certain class, which renders the clas-
sification more robust. Finally, getting labels from different
experts allows us to increase the size of our training dataset.

4.3.  Model training

The two proposed models develop different maps. The first
model is a map between a fixed window of observations and
a distribution over transitions, while the second models a
sequence of observations and produces a sequence of states
(see figure 8).

Accordingly, the training data has different arrangements.
For transition classification, we need to prepare a dataset
D1,{(x,q,e)}, where a training point consists of a section of
the recorded signal(xt−w, ...xt, ..., xt+w), the corresponding
label of one of the transitions qt in Q and the matching label
et indicating the presence (or not) of an ELM. Figure 9 illus-
trates this in detail.

Figure 6.  L, D and H modes from a section of TCV shot #32195.

Figure 7.  ELMs, and L and H modes from a section of TCV shot #31650.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

7

For the second model D2,{(x,z,e)}, a training point con-
sists of a sequence of windows of observations drawn from xt
to xt+l+w (where l is a defined sequence length, and w is the
window length), a sequence of state labels zt in Z of length
l, with each label corresponding to the state of the plasma at
times t, and a sequence of labels et of length l corresponding
to the presence of an ELM at times t. Figure 9 illustrates this
in detail.

There is an inherent uncertainty in the labeling of the ELMs
and plasma states, particularly when it comes to transitions
into and out of dithers. The raw data only has hard, binary,
one-hot encodings [39]—that is, a transition between two
states, for example, is labeled as a sudden switch (from one
time slice to the next) from one state to another. This means
that it is easy to mistakenly label an event or transition in a

slightly shifted time slice. This type of hard threshold also
makes it difficult for a neural network to generalize to outside
of its training set [40].

Therefore, for the first model (CNN), we process the target
time-series such that the probability of an ELM, or of a given
state transition, is a continuous value, starting at zero and
peaking at one, with several intermediate probabilities. In
practical terms, we apply on each event a gaussian smoothing
such that, if an ELM or state transition occurs at time t, its prob-
ability at that point is 1, and we define an interval ∆t—before
and after t—where the probability, respectively, smoothly
increases and decreases. We defined these smoothing intervals
as corresponding to 2ms, which, at the defined sampling rate,
translates to 20 time slices. We do the same with the states
zt for the second model (Conv-LSTM), such that a switch

Figure 8.  Representation of the different types of encoding of the target ‘smooth’ data distributions, to be learned by the two classifiers,
from TCV shot #30262. Here, we show only the labels produced by a single expert, though the networks are trained with labels from all of
them. The second plot from the top illustrates the transitions to be learned by the CNN, while the bottom-most plot illustrates the states to
be learned by the Conv-LSTM.

20

Figure 9.  Representation of the sliding temporal windows fed to the CNN on top of the PD signal, and their corresponding ELM
probability output. At inference time, these windows slide over the 4 signals across the whole shot, each of them rendering an output
probability for a single time slice.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

8

between two different states, from z1 to z2, does not happen
immediately from one time slice to the next, but rather, the
probability of z1 decreases, while that of z2 increases, over a
span of 20 time slices.

This procedure not only models the uncertainty in the labe-
ling process, but also acts as an automatic regularization for
the neural network training process, i.e. it makes it easier for
a neural network to generalize what it learns to unseen data
[41].

The choice of the size of the temporal windows with which
the CNN is trained is a trade-off between the assumptions
made about the data, and computational feasibility. Larger
windows contain more spatial information and thus, intui-
tively, should make the classification at a particular time slice
more precise, but also make the training and inference pro-
cess by the network slower. Smaller windows contain argu-
ably less information, but can be processed faster. We opted to
train the CNN with temporal windows with a length of 20 ms,
which we judged to be a good compromise between those
two requirements. At our sampling rate, these windows are
200 time slices long. This is illustrated in figure 9: the green
region represents a window of signals (in this case, only the
PD signal) which is fed to the neural network, and its associ-
ated target, which is the probability of an ELM occurring at
t  =  0.304 s. There is an offset between the time at the win-
dow’s rightmost edge, and the time for which the probability
is computed; in the example of figure 9, the offset is of 2 ms,
which means that to detect the ELM occurring at t  =  0.304
s, the window would have information on the signals from
t  =  0.286 s to t  =  0.306 s. In formal terms, the windows com-
pute in that case p(et|xt−w1:t+w2) and p(qzt−1→zt |xt−w1:t+w2),
where w1  =  180 and w2  =  20. In practice, in a real-time set-
ting, that offset would constitute a minimum delay between
the occurrence of an event in a machine, and a detection by
the classifier. Once again, the size of this offset is a trade-off:
a smaller offset is ideal for real-time applications because it
gives more time for feedback control mechanisms, but it also

contains less information for the network to accurately clas-
sify an event.

We train the Conv-LSTM not with windows, but with
sequences of windows. The distinction is an important one, for
it implies different assumptions about the data. In the case of
the windows fed to the CNN, it is assumed that each window
is independent of each other. In the data fed to the Conv-
LSTM, each sequence itself is composed of several windows,
with future windows depending on past ones. We defined each
of those sequences to consist of 200 windows (since that was
also the length of the windows fed to the CNN). In this case,
each of the individual windows has a length of 4 ms (40 time
slices), with an offset of 2 ms, as in the data for the CNN (see
figure 10). The sequences have a stride [42] of 1: each window
starts and ends exactly 1 time slice after the previous one fin-
ishes. Each of these sequences is randomly subsampled from
the whole shots, and the corresponding targets for them are
chosen randomly from one of the three labelers.

Although not all of these subsamples start in L mode, our
expectation is that the network would learn by itself that an
actual shot always begins in that state. There are several rea-
sons for this. First, the network will learn to recognize any
features in the subsequences that are consistent with the
beginning of a shot, and learn that those features correlate to
L mode. Second, even if some training sequences start in D or
H mode, the network will statistically learn that these modes
are more frequently the result of a transition from a previous
mode.

4.4.  Model design

The architecture of the neural networks used for the transi-
tion detection starts with 1-D convolutions with four channels,
each of which receives the values from the PD, FIR, IP and
DML signals. These are followed by several convolutional
layers, interspersed with pooling and dropout layers, which
are trained for feature extraction, with deeper layers extracting

20

4 2

Figure 10.  Example of a sequence fed to the LSTM. At a 10 kHz sampling rate, it consists of 200 overlapping temporal windows of length
40. The output probability for a given window depends not only on what data features are present in that window, but also on the past
windows in the sequence.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

9

higher-level data features (figure 11). The last layers of the
network are fully-connected, and are responsible for receiving
the pre-processed high-level features and producing an appro-
priate output for them, i.e. the desired classification. This
model is loosely inspired by the VGG architecture for clas-
sification of images where fixed sized filters are used [43].

Our convolutional LSTM network builds on top of CNN
model that showed the best performance on the transition
detection task. We add a recurrent layer that processes the
output of the CNN to capture the longer-distance correlations
in the data (figure 12).

We designed the networks using the Keras framework for
deep learning [44]. Both networks used a categorical cross-
entropy loss function, and were trained with the Adam optim
izer [45] using the default learning rate value provided by Keras.

4.5.  Data split

In total, we possessed 54 shots fully labeled by the three
experts. In a typical deep learning setting, some sort of nor-
malization [46] is usually applied on the available data. The
most common procedure would have been to normalize across
the entire dataset. However, because of the different calibra-
tions of the PD signals and the subsequent large variance
and multimodal distribution associated with it, we decided,

at this stage, to normalize each shot separately dividing each
signal in each shot by its own mean across the whole shot. For
potential real-time applications, as any new shots could fall
outside the normalization range, the procedure would require
grouping and normalizing the shots with respect to different
signal gains and calibrations.

From these normalized full sequences, we draw batches
of smaller temporal windows and subsequences to train the
neural networks. There are several reasons for this subsam-
pling. First, the full shot time-series are up to about 20 000
time slices long, but the actual length of a shot can vary signif-
icantly. Yet for purposes of training the networks, we require
batches of data of fixed length, which can be achieved by sub-
sampling from the full sequences.

Second, this method allows us to automatically perform
data augmentation for training, since one long sequence will
contain many shorter subsequences and windows.

Third, feeding very large temporal windows to a CNN
would be computationally difficult, as the number of network
parameters requiring training would grow considerably.

Finally, the distribution of the data in the full sequences is
highly unbalanced: in most shots, dithering phases are signifi-
cantly shorter than L and H phases; only a few dozen trans
itions happen at most per shot; and, some transitions tend to
be more frequent than others. Training with whole sequences

Figure 11.  Architecture of the convolutional NN.

Figure 12.  Architecture of the convolutional LSTM. All layers and nodes use ReLU activation functions, apart from the final output layer,
which uses Softmax activation.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

10

would significantly bias the networks towards the events and
transitions that occur more frequently in the labeled data.
Drawing subsequences allows us to control the data fed to
the network such that this inherent bias is mitigated. To do
this, the training data batches must be balanced, i.e. generated
such that they contain roughly equal fractions of the different
types of events and/or transitions of interest. In the CNN,
there are eight possible events of interest—LH, HL, HD, DH,
LD, DL, ELM, and no transition. Generating batches for the
CNN means that, for a batch containing n data samples, n/8 of
those samples will correspond to each of those different types
of transitions. Similarly, for the Conv-LSTM, the batches are
generated such that the three target distributions (L, D and
H) correspond to approximately 1/3 of the data samples each.

5.  Evaluation metrics

5.1.  ROC curve

We consider the detection of single, discrete ELMs by the net-
works as corresponding to a point in time (in a shot) where
the direct network outputs for ELM probability ê1:N reach a
maximum value. This is not necessarily a point where the
output network probability for ELM is 1, but rather, a point
t where the output probability P(ELMt) follows a series of
strictly increasing probability values, and precedes a series of
strictly decreasing ones. Because we defined the length of the
gaussian smoothing of the probabilities as 20, here we con-
sider a local maximum for P(ELMt) within a 20-wide interval
to correspond to the detection of a single ELM—which we
denote as a positive. The remaining points are considered non-
detections, i.e. negatives. In addition, we defined different
probability thresholds for what can be considered a detection
of an ELM by the network. For example, defining a threshold
of 50% implies that only ELM probability maxima above that
threshold are considered positives.

Positives and negatives must then be compared to the
labeled ELMs. To that end, we build the ELM Confusion
Matrix, which defines several variables: negatives that match
their label at the same point in time are true negatives (TN),

while those that do not are false negatives (FN). Similarly,
positives that match their label are true positives (TP) and
those that do not are false positives (FP).

Using this method to determine the points in which the net-
work detects individual ELMs, one can then compute the true
positive rate (TPR) and false positive rate (FPR) for different
detection thresholds:

TPR =
TP

TP + FN
� (1)

FPR =
FP

FP + TN
.� (2)

Plotting the TPR versus FPR for a series of different detec-
tion thresholds yields the classifier’s ROC curve [47], which
illustrates the network’s capacity for discrimination given dif-
ferent detection thresholds. There are several ways to com-
pute the ideal detection threshold based on the ROC curve,
depending on the task in question. In our case, we use the
Youden index [48], whereby the best threshold is the value
which maximizes the difference TPR  −  FPR, the maximum
value being 1.

5.2.  Kappa statistic

To compare the models’ accuracy with that of the human
labelers, we use Cohen’s Kappa-statistic coefficient, which
measures agreement between two sets of categorical data [49],
defined as

κ =
p0 − pe

1 − pe
� (3)

where p 0 denotes the actual relative agreement between the
two sets, and p e denotes the probability of the two sets ran-
domly agreeing with each other. Generically, the κ coeffi-
cient’s values oscillate between 0 and 1, the former indicating
poor performance, and the latter indicating perfect perfor-
mance. In our case, given two sequences z1 and z2 of plasma
states, Kohen’s Kappa measures the overlap between them.
If z1t = z2t for all time instants t, the metric will yield a score
of 1; if there are mismatches between the two sequences, the
score will go down.

The κ-statistic can be interpreted differently based on the
sections of the data for which it is computed. For that reason,
we will now define several variables that allow us to interpret
the κ-statistic scores.

Remember that we possess labels drawn from three dif-
ferent experts; as such, generically, labeled shot states at

(a) Training data. (b) Test data.

Figure 13.  ROC curves for ELM detection for the CNN model. The
detection thresholds that maximize the Youden index are 0.2 and
0.1 for training and test data, respectively yielding index values of
0.993 and 0.99. Using the ideal threshold for the training data (0.2)
on the test data gives a slightly lower Youden index of 0.986. (a)
Training data. (b) Test data.

Table 1.  κ-statistic scores (κn and κl) for each plasma mode and
as a mean, on training and test data (values across all shots), for the
CNN.

L D H Mean

Kn Train 0.691 0.358 0.657 0.649
Test 0.219 0.115 0.157 0.182

Kl Train 0.937 0.896 0.987 0.958
Test 0.941 0.848 0.986 0.962

Nucl. Fusion 60 (2020) 036022

F. Matos et al

11

each point in time t of a shot can be in one of three possible
categories:

	 •	�no majority agreement, i.e. all labelers disagree as to
what state the plasma is in, which we denote as category
C1;

	 •	�majority agreement, i.e. two labelers agree on the state
of the plasma, while one disagrees, which we denote as
category C2; and

	 •	�consensual agreement—all labelers agree as to what state
the plasma is in, which we denote as category C3.

We define the union of C2 and C3 as ground truth (C4), i.e.
they are sections of shots where there is at least a majority
opinion as to what state the plasma is in. We also have, for
each shot, the most likely sequences ẑ1:N of states (given the
observed data) produced by the neural networks, which we
will now denote as C5.

Computing the κ-statistic score, κl, between sets C2 and
C4 gives an indication of the probability that a single labeler
disagrees with the ground truth: a κl-score of 1 would indicate
that there is agreement between all the labelers all the time,
while a lower score would indicate that at least some of the
time, one labeler disagrees with the others. Simultaneously,
computing the κ-statistic score between sets C5 and C4 (κn)
gives an indication of the networks’ performance given the
ground truth. But, in addition, we can directly compare κl
and κn. This comparison allows to test how a network and a
single labeler compare against each other, on average, given
the ground truth.

The κ-coefficient is calculated separately for each of the
three possible labels for the plasma state (L, D and H), and as
a weighted mean across all three states. The weights of that
mean are taken to be the relative frequencies of each individual
state in the dataset, based on the ground truth (C4) labels.

6.  Results

We performed several training runs using the data labeled
by the three experts; we carried out experiments where we
trained both models (CNN and Conv-LSTM) three times, each
time randomizing the training and test shots, to test whether
differences in the data could lead to different results. In a
typical deep learning setting, the data is usually split so that
approximately 80%–90% is used for training, and 20%–10%
is used for validation of the results, i.e. testing the network’s
capability to accurately predict on data that was not used for
training. In our case, we opted for a training/test data split of
50%, i.e. of the 54 shots, we used 27 for training and 27 for
testing. The results that follow are the best results of those

(a) Training data. (b) Test data.

Figure 14.  Distribution of the κ-statistic score (κn) on a per-shot basis, for the CNN. (a) Training data. (b) Test data.

Table 2.  κ-statistic scores (κn and κl) for each plasma mode on
training and test data, for the Conv-LSTM.

L D H Mean

Kn Train 0.96 0.889 0.967 0.96
Test 0.82 0.766 0.85 0.832

Kl Train 0.96 0.94 0.992 0.98
Test 0.901 0.808 0.98 0.935

(a) Training data. (b) Test data.

Figure 15.  ROC curves for ELM detection for the Conv-LSTM
model. The detection threshold which maximizes the Youden index
is 0.5 for training and 0.4 for test data; this yields index values of
0.977 and 0.969 for each set, respectively. Using the ideal threshold
for the training data (0.5) on the test data gives a slightly lower
Youden index of 0.95. (a) Training data. (b) Test data.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

12

three experiments, for each model. We also experimented with
varying offsets (see figure 9) for the convolutional windows to
see what effect that factor could have on the results; we settled
for an offset value of 2 ms (20 time slices), as smaller offsets
degraded results, while larger ones did not improve them. We
computed the metric scores on the training and test data at
several points during training to control for overfitting [50],
and present the results from the epoch where the state detec-
tion results on test data were the highest. We ran the neural
networks on an NVIDIA Quadro RTX 5000 GPU.

6.1.  CNN

We computed the κ-statistic based on the regions defined in
section 5.2—that is, we compute scores based on the network
output versus the ground truth (κn), and based on labeler
disagreement versus the ground truth (κl). We computed the
scores on a per-state (L, D and H) basis, and also computed a
mean of the values obtained for each state.

We trained the CNN for 250 epochs, allowing for the loss
function to stabilize; each epoch consisted in 32 batches,

(a) Training data. (b) Test data.

Figure 16.  Distribution of the κ-statistic score (κn) on a per-shot basis, for the Conv-LSTM. (a) Training data. (b) Test data.

Table 3.  Kappa statistic (κn) scores for each plasma mode on training and test data for selected shots representative of each of the six result
categories.

Case Shot ID

L D H Mean

Fraction Score Fraction Score Fraction Score
1 57751 0.756 0.97 0 0 0.243 0.97 0.97
2 34010 0.679 0.856 0.073 0.232 0.248 0.602 0.748
3 58182 0.22 0.912 0.095 0.969 0.685 0.927 0.928
4 30197 0.951 0.384 0 1 0.049 0.384 0.384
5 33459 0.811 0.662 0 0 0.189 0.846 0.697
6 33942 0.455 0.953 0.183 0.884 0.412 0.997 0.962

Figure 17.  TCV shot #57751 (PD signal) and the Conv-LSTM’s classification of state as the shot evolves. Notice the (very short) detected
dithering phase shortly after t  =  0.75: no dithers are present in the labels, so the score for D is 0.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

13

with each batch containing 64 data samples. Upon comple-
tion of training, we tested the CNN’s accuracy on both the
training and test data. The model’s results on ELM classifica-
tion (ROC curve) can be seen in figure 13. Table 1 shows the
scores κn and κl for the entire dataset, while figure 14 contains
histograms showing the κns distribution on a per-shot basis.

6.2.  Conv-LSTM

We trained the convolutional LSTM for 400 epochs, allowing
the loss function to stabilize. Each epoch consisted of 64
batches, with each batch containing 64 data samples. The
results of computing scores κl and κn, using the same defi-
nitions as for the CNN can be seen in table 2. The ROC

Figure 18.  In TCV shot # 34010, the network correctly identifies the transition into H mode at t  =  0.3 s, but it shortly thereafter
(incorrectly) switches back to dithering.

Figure 19.  In TCV shot #58182, the network correctly identifies a transition into H mode (shortly before t  =  0.5 s) but then incorrectly
switches back to L mode and remains there until the first ELMs (spikes in the PD signal) appear.

Figure 20.  In shot #30197, the network misses the transition from H to L mode, which happens immediately after the series of spikes in
the PD signal, and only makes the switch after t  =  0.5 s.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

14

curves detailing the results on ELM detection can be seen in
figure 15. Figure 16 contains histograms showing the score Kn
values on a per-shot basis.

6.3.  Discussion

A comparison of the κn scores on training and test data
for each classifier shows that the convolutional LSTM
performs better than the CNN for all three plasma states.
Furthermore, looking at the distribution of the mean κn
scores on a per-shot basis through the histograms, one can
see that the worst Conv-LSTM classifications do not have
a score lower than 0.6 on training data, while for the CNN
alone, even on training data, mean κn scores lower than 0.2
exist. For both classifiers, the performance on training data
surpasses that on test data, both on a state-by-state basis,
and as a mean across all states, which indicates the occur-
rence of overfitting.

For both networks, an analysis of the κl scores of their
training and test data indicates that human labeler disagree-
ment is highest for dithers—the scores for that particular state
are consistently lower. Interestingly, both networks also score
their lowest results for dithers.

Comparing the Conv-LSTM’s κl and κn scores shows that,
at least on training data, the network behaves, on average, sim-
ilarly to a single human labeler, making errors (or disagreeing
with the ground truth) at approximately the same rate—the
mean κl score for training data is 0.98, while the mean κn
score for training data is 0.96. On test data, the Conv-LSTM
performs slightly worse than a single human labeler, as seen
by the fact that the network’s mean K-index score on test data
κn is 0.832, while κl is 0.935.

As measured by the Youden index, we achieve excel-
lent performance in detection of ELMs on both training and
test data using both models; the ideal detection thresholds
generate true positive detection rates very close to 1, while
bringing false positive detection rates essentially to 0. The
Youden indexes for test data are only slightly lower than
for training data, which suggests that overfitting is minimal.
Furthermore, for both models, on both training and test data,
the ROC curves’ points are mostly concentrated close to true
positive rates of 1 and false positive rates of 0, which indicates
that the choice of ELM detection threshold does not signifi-
cantly change the behavior of the classifiers.

Finally, the scores for ELMs being essentially the same for
both models indicates that the features in the data which allow

Figure 21.  Shot #33459 represents an overall bad classification by the network; many dithers are incorrectly classified, while the transition
from L to H mode is missed. Around t  =  0.3 s, immediately after classifying a D mode, the network oscillates between L and H in quick
succession for about 0.01 s, which to the naked eye might appear in this plot as a gray area; in reality, it is an artifact of the plot, with
alternating red and green regions.

Figure 22.  Shot #33942 is an example of an overall good detection.

Nucl. Fusion 60 (2020) 036022

F. Matos et al

15

for identification of ELMs are mostly local: the CNN, even
without knowledge of long-term temporal correlations, per-
forms excellent classification.

Because the Conv-LSTM has highest κn scores, we made
a case-by-case analysis of that network’s classification of all
our available shots. Broadly, the Conv-LSTM’s results on
state detection, on a per-shot basis, can be placed into six dif-
ferent categories:

	 (i)	�a (sometimes very) short detection, of a dither that is not
labeled in the data. Due to the way the K-score κn is com-
puted, a mistaken dither classification by the network of
a single time point (in a whole sequence), in a shot which
has no regions where the ground truth (C4) is dithering,
will bring the score for that state down to 0, even if the
remainder of the shot is correctly classified (17 shots);

	(ii)	�a clearly incorrect classification, of a temporal region of a
shot as being in a dithering state (4 shots);

	(iii)	�a missed detection of an L-H transition (1 shot);
	(iv)	�a missed detection of an H-L transition (2 shots);
	(v)	�an overall bad detection across an entire shot (7 shots);

and
	(vi)	�an overall good detection across an entire shot (23 shots).

Table 3 lists six shots which are representative of each of the
types of results listed above. The table shows the computed
κn scores for each of those shots on a per-state basis, as well
as the score’s mean value, and the fraction of time, for the
ground truth of each shot, that a particular state is labeled.
Table 3 also lists which of the six cases above the shot is rep-
resentative of. Figures 17–22 are plots of those same shots,
where the background color in the top plot denotes the state
detected by the Conv-LSTM, and in the bottom plot, denotes
the ground truth label. Small gray areas in the bottom plot
denote regions where ground truth is not defined, i.e. there is
no majority agreement between labelers.

7.  Conclusions

We have developed two deep learning-based classifiers to
perform automatic detection of ELMs and classification of
plasma modes. The task was two-fold: on one hand, to perform
a binary classification, for each time slice of a plasma shot, on
whether an ELM is occurring or not; and, to automatically
determine which plasma mode (or alternatively, whether a
transition between plasma modes) is occurring. One approach
is to use a convolutional neural network (CNN), which uses
only local correlations in data to perform classification. The
second approach uses a Convolutional LSTM (Conv-LSTM)
neural network, which also takes advantages of long-term
temporal correlations in data.

On ELM detection, the two networks can achieve essen-
tially equal results. On the plasma state classification, a
clear difference can be seen between the results obtained
with the CNN, and those obtained with the Conv-LSTM.
Comparing the κ-index (κn) scores of each network shows
that the LSTM’s scores are clearly higher, which suggests
that, at least when it comes to detection of plasma modes,
the processing of long-term correlations in data facilitates

accurate classification. There is some indication that overfit-
ting occurred. However, our monitoring of the training pro-
gression indicated that, while the metric values for test data
are always lower, they did, nevertheless, become better as
training progressed. Thus, an overfitting-avoidance strategy
such as early stopping would, in this case, not have helped
achieve better test accuracy.

While the results from the Conv-LSTM are better, that net-
work is also more complex with both network training and
inference taking longer.

Although this work used data from the TCV tokamak, it
should also be possible to adapt it to other machines; as a
matter of fact, the data sources used exist on most tokamaks.
As long as the data fed to the neural networks is from those
same sources, this model could in principle be used for auto-
matic labeling of shots from a number of different machines.

Acknowledgments

This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom research and training programme 2014–2018 and
2019–2020 under Grant Agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission. We would like express our grat-
itude to B. Labit, R. Maurizio and O. Sauter at SPC/EPFL for
taking the time to manually label the data used for training.
This work was supported in part by the Swiss National
Science Foundation.

ORCID iDs

F. Matos https://orcid.org/0000-0002-3110-6639
F. Felici https://orcid.org/0000-0001-7585-376X
A. Pau https://orcid.org/0000-0002-7122-3346

References

	 [1]	 Zhang T. et al 2013 Phys. Lett. A 377 1725–35
	 [2]	 Loarte A. et al 2014 Nucl. Fusion 54 033007
	 [3]	 Rastovic D. 2009 J. Fusion Energy 28 101–6
	 [4]	 Humphreys D. et al 2015 Phys. Plasmas 22 021806
	 [5]	 Martin Y. et al 2008 J. Phys.: Conf. Ser. 123 012033
	 [6]	 Ryter F. et al 1994 Plasma Phys. Control. Fusion 36 A99
	 [7]	 Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D.,

Erhan D., Vanhoucke V. and Rabinovich A. 2015 Going
deeper with convolutions The IEEE Conf. on Computer
Vision and Pattern Recognition 1–9

	 [8]	 Ince T., Kiranyaz S., Eren L., Askar M. and Gabbouj M. 2016
IEEE Trans. Ind. Electron. 63 7067–75

	 [9]	 Krizhevsky A., Sutskever I. and Hinton G.E. 2012 Imagenet
classification with deep convolutional neural networks
Advances in Neural Information Processing Systems 25 ed
Pereira F et al (Curran Associates, Inc.) pp 1097–105

	[10]	 Tompson J., Goroshin R., Jain A., LeCun Y. and Bregler C.
2015 Efficient object localization using convolutional
networks The IEEE Conf. on Computer Vision and Pattern
Recognition

	[11]	 Lähivaara T., Kärkkäinen L., Huttunen J.M. and
Hesthaven J.S. 2018 J. Acoust. Soc. Am. 143 1148–58

Nucl. Fusion 60 (2020) 036022

F. Matos et al

16

	[12]	 Acharya U.R., Oh S.L., Hagiwara Y., Tan J.H. and Adeli H.
2018 Comput. Biol. Med. 100 270–8

	[13]	 Abdeljaber O., Avci O., Kiranyaz S., Gabbouj M. and
Inman D.J. 2017 J. Sound Vib. 388 154–70

	[14]	 Malek S., Melgani F. and Bazi Y. 2018 J. Chemometr.
32 e2977

	[15]	 Golik P., Tüske Z., Schlüter R. and Ney H. 2015 Convolutional
neural networks for acoustic modeling of raw time
signal in LVCSR 16th Annual Conf. of the Int. Speech
Communication Association (Dresden, Germany, 6–10
September 2015) (https://www-i6.informatik.rwth-aachen.
de/publications/download/974/Golik--2015.pdf)

	[16]	 Kiranyaz S., Ince T. and Gabbouj M. 2015 IEEE Trans.
Biomed. Eng. 63 664–75

	[17]	 Ronao C.A. and Cho S.B. 2016 Expert Syst. Appl. 59 235–44
	[18]	 Sundermeyer M., Schlüter R. and Ney H. 2012 LSTM neural

networks for language modeling 13th Annual Conf. of the
Int. Speech Communication Association

	[19]	 Ma X., Tao Z., Wang Y., Yu H. and Wang Y. 2015 Transp. Res.
C 54 187–97

	[20]	 Venugopalan S., Hendricks L.A., Mooney R. and Saenko K.
2016 Proc. 2016 Conf. Empirical Methods Natural
Language Processing 1961–6

	[21]	 Webster A. and Dendy R. 2013 Phys. Rev. Lett. 110 155004
	[22]	 Greenhough J., Chapman S., Dendy R. and Ward D. 2003

Plasma Phys. Control. Fusion 45 747
	[23]	 Shabbir A., Verdoolaege G., Karadaun O.J., Webster A.J.,

Dendy R.O. and Noterdaeme J.M. 2014 Discrimination
and visualization of elm types based on a probabilistic
description of inter-elm waiting times 41st European
Physical Society Conf. on Plasma Physics (Berlin,
Germany, 23–27 June 2014) (http://ocs.ciemat.es/
EPS2014PAP/html/)

	[24]	 Vega J. et al 2009 Nucl. Fusion 49 085023
	[25]	 González S. et al 2012 Plasma Phys. Control. Fusion

54 065009
	[26]	 Murari A., Vagliasindi G., Zedda M.K., Felton R., Sammon C.,

Fortuna L. and Arena P. 2006 IEEE Trans. Plasma Sci.
34 1013–20

	[27]	 Lukianitsa A., Zhdanov F. and Zaitsev F. 2008 Plasma Phys.
Control. Fusion 50 065013

	[28]	 Meakins A. et al 2010 Plasma Phys. Control. Fusion 52 075005

	[29]	 Xu G. et al 2014 Nucl. Fusion 54 103002
	[30]	 Wagner F. et al 1982 Phys. Rev. Lett. 49 1408
	[31]	 Itoh S.I. and Itoh K. 1988 Phys. Rev. Lett. 60 2276–9
	[32]	 Basse N. et al 2003 Plasma Phys. Control. Fusion 45 439
	[33]	 Martin Y. 2001 Elming h-mode accessibility in shaped TCV

plasmas Technical Report TCV Team
	[34]	 Jurafsky D. and Martin J.H. 2014 Speech and Language

Processing 2nd edn (Englewood Cliffs, NJ: Prentice Hall)
	[35]	 Boulanger-Lewandowski N., Bengio Y. and Vincent P. 2013

High-dimensional sequence transduction IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (IEEE)
(Vancouver, Canada, 26–31 May 2013) 3178–82
(https://www2.securecms.com/ICASSP2013/default.asp)

	[36]	 Hofmann F. et al 1994 Plasma Phys. Control. Fusion
36 B277

	[37]	 Coda S. et al 2019 Nucl. Fusion 59 112023
	[38]	 Moret J.M., Buhlmann F. and Tonetti G. 2003 Rev. Sci.

Instrum. 74 4634–43
	[39]	 Harris D. and Harris S. 2010 Digital Design and Computer

Architecture (Computer Organization Bundle, VHDL
Bundle) (Amsterdam: Elsevier)

	[40]	 Szegedy C., Vanhoucke V., Ioffe S., Shlens J. and Wojna Z.
2016 Rethinking the inception architecture for computer
vision Proc. IEEE Conf. on Computer Vision and Pattern
Recognition pp 2818–26

	[41]	 Zheng Q., Yang M., Yang J., Zhang Q. and Zhang X. 2018
IEEE Access 6 15844–69

	[42]	 Dumoulin V. and Visin F. 2018 A guide to convolution
arithmetic for deep learning (arXiv:1603.07285)

	[43]	 Simonyan K. and Zisserman A. 2014 Very deep
convolutional networks for large-scale image recognition
(arXiv:1409.1556)

	[44]	 Chollet F. et al 2015 Keras (https://github.com/fchollet/keras)
	[45]	 Kingma D.P. and Ba J. 2014 (arXiv:1412.6980)
	[46]	 Han J., Pei J. and Kamber M. 2011 Data Mining: Concepts

and Techniques (Amsterdam: Elsevier)
	[47]	 Fawcett T. 2006 Pattern Recognit. Lett. 27 861–74
	[48]	 Liu X. 2012 Stat. Med. 31 2676–86
	[49]	 Landis J.R. and Koch G.G. 1977 Biometrics 159–74
	[50]	 Bishop C.M. 2006 Pattern Recognition and Machine Learning

(Berlin: Springer)
	[51]	 Labit B. et al 2019 Nucl. Fusion 59 086020

Nucl. Fusion 60 (2020) 036022

Rev. Sci. Instrum. 91, 103501 (2020); https://doi.org/10.1063/5.0020680 91, 103501

© 2020 Author(s).

Deep learning for Gaussian process soft
x-ray tomography model selection in the
ASDEX Upgrade tokamak
Cite as: Rev. Sci. Instrum. 91, 103501 (2020); https://doi.org/10.1063/5.0020680
Submitted: 02 July 2020 . Accepted: 29 September 2020 . Published Online: 19 October 2020

 F. Matos, J. Svensson, A. Pavone, T. Odstrčil, and F. Jenko

ARTICLES YOU MAY BE INTERESTED IN

Apparatus to investigate liquid oxygen droplet combustion in hydrogen under microgravity
conditions
Review of Scientific Instruments 91, 105110 (2020); https://doi.org/10.1063/5.0020988

A low-pass filtering Fresnel zone plate for soft x-ray microscopic analysis down to the
lithium K-edge region
Review of Scientific Instruments 91, 103110 (2020); https://doi.org/10.1063/5.0020956

A radiofrequency voltage-controlled current source for quantum spin manipulation
Review of Scientific Instruments 91, 104708 (2020); https://doi.org/10.1063/5.0011813

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

Deep learning for Gaussian process soft x-ray
tomography model selection in the ASDEX
Upgrade tokamak

Cite as: Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680
Submitted: 2 July 2020 • Accepted: 29 September 2020 •
Published Online: 19 October 2020

F. Matos,1,a) J. Svensson,2 A. Pavone,2 T. Odstrčil,3 and F. Jenko1

AFFILIATIONS
1Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
2Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
3Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

a)Author to whom correspondence should be addressed: francisco.matos@ipp.mpg.de

ABSTRACT

Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in
tokamaks, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform
model selection, i.e., comparing different models and choosing the one with maximum evidence. However, the computations involved in this
particular step may become slow for data with high dimensionality, especially when comparing the evidence for many different models. Using
measurements collected by the Soft X-Ray (SXR) diagnostic in the ASDEX Upgrade tokamak, we train a convolutional neural network to map
SXR tomographic projections to the corresponding GPT model whose evidence is highest. We then compare the network’s results, and the
time required to calculate them, with those obtained through analytical Bayesian formalism. In addition, we use the network’s classifications
to produce tomographic reconstructions of the plasma emissivity profile.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020680., s

I. INTRODUCTION

Computed tomography generally refers to the process of imag-
ing the interior of a body through indirect measurements. In many
applications, this is achieved by focusing penetrating radiation on an
object of interest from several directions and measuring the result-
ing decrease in radiation intensity on the opposite side (due to
absorption by the body itself). The use of this information, the so-
called projection of the object, allows one to reconstruct its internal
properties.1

In the case of radiative bodies, an alternative way to determine
their properties is to perform cross-sectional imaging by treating the
emitted radiation itself as a projection.2 In the field of nuclear fusion,
this procedure is employed in many tokamaks for the reconstruc-
tion of plasma emissivity profiles.3 More specifically, in the ASDEX
Upgrade tokamak, such imaging can be done with information from
the Soft X-Ray (SXR) diagnostic, which measures the line-integrated
radiation emitted by the plasma along several lines of sight (LOSs);

these can be used to perform the tomographic reconstruction (or
inversion) of the plasma emissivity profile. Knowledge of this is use-
ful for exploring magnetohydrodynamic phenomena in addition to
studying the accumulation of impurities inside the plasma (particu-
larly, tungsten) due to their large contribution to the total amount of
radiation.4

Several techniques exist for solving the tomography problem.5

One approach is to use regularization-based algorithms, namely,
Tikhonov-based6,7 and minimum Fisher-based techniques.8 More
recently, work has also been done using machine learning meth-
ods, namely, deep neural networks,9–11 that are trained to create new
reconstructions based on existing ones.

Yet another method is Gaussian process tomography (GPT).12

GPT is an established method for performing tomographic inversion
on many different types of physical distributions that are modeled as
posterior Gaussian distributions in a Bayesian setting. Computing a
posterior first requires specifying a prior distribution, which encodes
one’s assumptions about the underlying physical process before any

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-1

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

measurements of it are taken. The posterior can then be computed
based on that prior and on an observation (measurement) of the data
generated by the physical process. The prior itself can either be a
fixed distribution or be drawn from a family of different models.

Knowing the posterior, GPT guarantees that one can obtain the
most likely [maximum a posteriori (MAP)] estimate for the tomo-
graphic reconstruction as well as its associated error values. More
interestingly, however, through Bayesian inference, GPT prescribes
a way to estimate the evidence for different models through a pro-
cess known as Bayesian model selection. This procedure can be of
particular importance in cases where the choice of prior might have
a strong effect on the results of the tomographic inversion.

Unfortunately, in a neural network, there are no guarantees13

about whether the reconstructions obtained correspond to the MAP
estimate of the underlying distribution, and there is no direct way,
in standard deep neural networks, such as convolutional neural
networks (CNNs), to obtain uncertainty estimates on the outputs.
Bayesian neural networks14,15 and generative adversarial networks
(GANs)16 can generate probability distributions for their outputs;
however, they can be computationally expensive and, in the case of
GANs, difficult to train.17

On the other hand, neural networks essentially store what-
ever function they have learned (through their training process)
in their weights, making the inference process for new data very
fast. With GPT, computing the MAP estimate based on a fixed
model is also sufficiently fast for real-time purposes. This does not
necessarily hold true, however, when performing Bayesian model
selection, since the process requires a series of additional computa-
tional steps, namely, matrix inversions or using non-linear optimiz-
ers, which can be time-consuming, especially for data with a high
dimensionality.

Thus, we propose an approach where we train a convolutional
neural network (CNN) to learn the GPT model selection procedure.
To do this, we take SXR measurement samples from several ASDEX
Upgrade shots and, through Bayesian model selection formalism,
compute for each data point the corresponding model (out of a set of
possible, pre-defined ones) with the highest evidence. We then train
the CNN to reproduce this step, i.e., to map measurements to their
highest evidence model. Finally, through the GPT framework, we
compute the tomographic reconstruction of the plasma emissivity
profile for each measurement, given the most likely models predicted
by the CNN.

This paper is organized as follows. Section II gives an overview
of the problem of tomography, in particular, the soft x-ray tomog-
raphy ASDEX Upgrade tokamak, and the existing techniques to
solve it, including a review of GPT with Bayesian model selection.
Section III details the data we collected, the formulation of our
problem, and the model proposed to solve it. Section IV details
the direct results of the neural network classification and the tomo-
graphic reconstructions obtained based on them; Sec. V describes
and discusses our conclusions.

II. BACKGROUND

A. Computed tomography

The purpose of tomography is to reconstruct the internal
(either two- or three-dimensional) properties of a given body from

non-local measurements. Radon showed18 that a 2D distribution
can be retrieved from an infinite set of line-integrated measure-
ments. In practical applications, the number of available measure-
ments is always finite, but it is, nevertheless, possible to produce
accurate reconstructions from a discrete set of measurements.19

Tomographic algorithms can achieve this by taking many projec-
tions of the object of interest from different directions.1 Math-
ematically, a projection is a function that computes the line-
integrated absorbency (or, in the case of fusion plasmas, emis-
sivity) of a body along several paths or lines of sight (LOSs)
as

Pθ(t) = ∫
L(θ,t)

G(x, y)dL, (1)

where t is a point in the projection domain, L(θ, t) is the LOS cross-
ing the body mapping to t (along a direction given by an angle θ),
and G(x, y) is the two-dimensional physical distribution of interest
(see Fig. 1).

By computing several tomographic projections with different
directions (i.e., different values of θ), it is possible to reconstruct
G(x, y). For an exact reconstruction based only on the projections,
an infinite number of them would need to be obtained. However, the
problem is highly ill-posed21 since small changes in the projection
space can translate into large changes in the tomographic recon-
structions. Furthermore, in many settings such as nuclear fusion
experiments, it is difficult, or impossible, to obtain more than a
handful of such projections, making the problem under-determined,
that is, the dimensionality of the reconstruction grid is much larger
than that of the projection, ultimately resulting in an infinite num-
ber of solutions (reconstructions) that can fit the data. For these
reasons, in most tomography applications in fusion plasmas, some
additional information, in the form of assumptions about the func-
tion G(x, y), must be introduced in order to obtain a tomographic
reconstruction.

FIG. 1. An illustrated projection, Pθ, measured along an angle θ. The blue area
G(x, y) is the cross section of interest and is being traversed by radiation. Because
different rays traverse different areas of the object, the value at each point t
in the projection space will be different. Figure reprinted with permission from
F. Matos, “Deep learning for plasma tomography,” M.Sc. thesis, Técnico Lisboa,
2016.20

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-2

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

B. SXR tomography at ASDEX Upgrade

In the ASDEX Upgrade tokamak, the Soft X-Ray (SXR) diag-
nostic22 consists of eight pinhole cameras that measure the total
radiation emitted by the plasma along 208 different volumes of sight
(VOSs).4 We considered the extent of the VOSs in the toroidal and
poloidal directions of the tokamak to be minimal and treated them
instead as lines of sight (LOSs). In addition, we also ignored the fact
that the LOSs in the same camera array partially overlap. Based on
this, the measurements collected by the individual cameras corre-
spond to a single projection of the underlying plasma emissivity dis-
tribution, which is computed at 208 discrete positions, in a poloidal
plane. In terms of the poloidal coordinates (R, z) of the 2D tokamak
cross section, the total brightness, bi, incident on a single detector, i,
is given by23

bi = ∫
r

G(R, z)dr, (2)

where G(R, z) is the plasma emissivity distribution (in W/m3) and r
is the LOS corresponding to bi (Fig. 2).

By discretizing Eq. (2), one obtains the plasma emissivity
distribution at a finite number of positions (or pixels) along a

FIG. 2. ASDEX Upgrade cross section, and partial schema of the SXR mea-
surement system, with three cameras (F, L, and M) shown (plot obtained with
diaggeom).

tomographic reconstruction grid. In this case, the incident radiation
on a single detector, assuming an associated noise, ξ, is24

bi = n∑
j=1

Mi,jgj + ξi i ∈ 1, . . . , 208. (3)

From now on, we will denote the set of values bi, that is, a set
of 208 line-integrated SXR measurements of the plasma emissivity
taken at a certain point in time, as the plasma’s tomographic pro-
jection in that instant. We denote Eq. (3) as the forward model of
the problem. Here, n corresponds to the total number of pixels on a
tomographic reconstruction grid, whereas Mi ,j is the discretization
of the function M(R, z) in Eq. (2), mapping the relative contribution
of pixel j of that grid to the measurement i of the projection. The
actual values of M were pre-defined and contingent on the geome-
try and configuration of the sensors inside the machine, which can
vary between different shot campaigns. Consequently, we denote
M as the geometric matrix. The goal of a tomographic reconstruc-
tion algorithm is then to solve the ill-posed problem by using the
tomographic projection (i.e., the 208 measurements bi) and some a
priori knowledge about the plasma to find a suitable tomographic
reconstruction g that satisfies Eq. (3).

C. Regularization-based methods

To solve the ill-posed problem, traditional tomographic algo-
rithms use regularization techniques, usually based on assumptions
regarding the smoothness of the plasma emissivity profile, that con-
strain the space of possible solutions. Such algorithms, however,
are often computationally expensive and typically can only be used
for post-experimental tomographic reconstruction due to computa-
tional time constraints. In addition, the quality of the reconstruc-
tions is highly dependent on assumptions made about the data.4

Generally, those assumptions are encoded into the reconstructions
through the use of Tikhonov regularization. In this case, comput-
ing the tomographic reconstruction of the plasma emissivity profile
becomes a matter of finding a reconstruction ĝ such that

ĝ = arg min
g
(∥Mg − b∥2 + ΛO(g)), (4)

where O(g) is a penalty term that encodes information about
expected properties of the target plasma distribution, multiplied by a
regularizing parameter Λ that controls the regularization strength.25

There are several options for the choice of the regularization term
O; typical choices are the Laplace operator, which favors smooth
solutions, and minimum Fisher information,26 which favors solu-
tions that are mostly flat in low-intensity regions and peaked in
high-intensity ones.

D. Deep learning-based methods

Recent work has applied deep learning algorithms to the tomo-
graphic problem, namely, by using de-convolutional neural net-
works to produce tomographic reconstructions taking measurement
data as input.10,27 This is achieved by training the networks on
reconstructions that have been previously computed using standard
tomographic algorithms. Generically, in a deep learning setting, a
deep neural network is trained to learn a function mapping an input

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-3

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

x into its target output y,28 that is,

y = y(x, θ), (5)

where θ denotes the neural network’s parameters, i.e., its weights and
biases. The training process consists in finding an optimal value for
θ that minimizes the mismatch between the network’s outputs and
their corresponding labels.

In our setup, training a deep neural network to produce tomo-
graphic reconstructions would have required training it with mea-
surements from the SXR diagnostic and pre-computed reconstruc-
tions, produced by other algorithms (namely, regularization-based
ones). The expectation would then have been that the parameters θ
computed during training would have converged to values such that
if new unseen data were fed into the network, it would be capable of
generalizing outside of its training set. However, even assuming good
generalization capacity of a neural network, it is at most as good as
whatever data it has been trained on. In other words, should existing
tomograms have had errors, a neural network would have learned to
reproduce them.

E. Gaussian process tomography

Another alternative is to use Bayesian probability theory to
produce tomographic reconstructions, by treating the underlying
unknown plasma emissivity distribution as a Gaussian process. Eval-
uating that process along a discrete set of points (the tomographic
reconstruction grid) yields a multi-dimensional Gaussian distribu-
tion.

By definition, in the Gaussian process framework, one assumes
that multiple solutions for the tomographic reconstruction exist
in a Gaussian distribution of possible solutions. Treating the
tomography problem with this framework allows using Bayesian
formalism, which guarantees that the most likely solution for the
tomographic reconstruction (i.e., the maximum a posteriori, or
MAP, estimate), subject to some assumptions about the underlying
physical and data distributions, can be computed through Bayes’s
formula,29

P(A∣B) = P(B∣A)P(A)
P(B) . (6)

In the Gaussian process tomography (GPT) setting, the terms
in the formula are multivariate probability distributions, which are
assumed to be Gaussian. Each of those distributions is specified by
a vector of means (which we denote μ), whose entries are the indi-
vidual means of each random variable in the multivariate distribu-
tion, and a covariance matrix, which we denote Σ, where each entry
denotes the pair-wise covariance between those same variables.

In Bayes’s theorem, the term P(A) is called the prior. In GPT,
by denoting the underlying plasma emissivity as e, the prior distri-
bution P(e) ∼ N(μpr ,Σpr) encodes existing assumptions about the
physical emission process, without observing any data (SXR mea-
surements); this is equivalent to the assumptions one might encode
in the regularization parameter in traditional tomography [Eq. (4)].
Each random variable in the prior distribution is also Gaussian and
corresponds to the prior plasma emissivity e at each point x in the
tomographic reconstruction grid.

Here, the prior mean has a size equal to that of the tomographic
reconstruction grid, n. Intuitively, the prior covariance matrix Σpr

encodes information about the expected smoothness of the plasma
emissivity. The entries in the covariance matrix are computed for
all pairs of points in the reconstruction grid through a prior covari-
ance function. One covariance function generally used in Gaussian
process regression is the squared exponential;30 in using this func-
tion, the prior covariance between a pair of points x1 and x2 in the
tomographic reconstruction grid becomes

cov(x1, x2) = θ2
f exp(−d(x1, x2)

2θ2
x
), (7)

where d(x1, x2) is a distance metric between points x1 and x2.
The prior covariance is only dependent on that distance and on
θ = {θf , θx}, which are the model’s hyperparameters and are common
to all points in the reconstruction grid. The parameter θf controls
the prior variance of the plasma emissivity at a given location in the
reconstruction grid, whereas the parameter θx, usually referred to
as the length scale, controls the extent to which points at a certain
distance from each other in the reconstruction grid are correlated.
Models where the length scale is large yield high correlations even
between grid points that are far apart, while smaller length scales
yield covariance matrices where only points that are closer to each
other are significantly correlated.

With these definitions, the prior becomes a probability distri-
bution for the plasma emissivity, e, subject to the model’s hyper-
parameters, i.e., P(e|θ), before any data, that is, a tomographic
projection, has been observed. The prior can then be updated by
multiplying it with the likelihood of the data d (as per Bayes’
theorem), yielding the posterior distribution, P(e|d, θ),

P(e∣d, θ) = P(d∣e, θ)P(e∣θ)
P(d∣θ) . (8)

The denominator in Bayes’s theorem is known as the model
evidence or marginal likelihood; if one merely computes the pos-
terior P(e|d, θ), it can be ignored, as it is just a normalizing con-
stant. Interestingly, however, one can use this term to compare
several different models (each with their own prior) and choose
the one that best fits the data.12 In this case, one assumes a hyper-
prior, from which different possible priors (individually specified
by different hyperparameters) are sampled. The evidence can then
be computed for different models—a process that is referred to as
marginalization—and the model with the highest evidence can be
selected.31 Calculating this requires an evaluation of the integral32

over e,

P(d∣θ) = ∫ P(d∣e, θ)P(e∣θ)de, (9)

which in many cases is analytically intractable. However, in our case,
the prior for an emissivity distribution is a multivariate Gaussian,
defined as

P(e∣θ) = (2π)− k
2 ∣Σpr ∣− 1

2 exp(−1
2
(μpr − e)TΣ−1

pr (μpr − e)), (10)

where k denotes the number of variables in the prior distribution
(that is, the number of pixels in a reconstruction grid). In addi-
tion, we assume a data distribution that is also Gaussian, P(d∣θ)∼ N(μd,K + Σd).12 The mean μd of the data distribution is merely
the value of the measurements in a projection. The data co-variance
has two components: matrix K denotes the (noise-free) co-variance

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-4

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

values and is a linear transformation of the prior covariance Σpr
(imposed on the plasma emissivity) into the measurement (data)
space, given by K = MΣprMT , where M is the geometric matrix
defined in Eq. (3). The other component, Σd, is a diagonal matrix
whose non-zero entries are the absolute noise values, ξ, of each
measurement in a projection; we assume the noise values are inde-
pendent from each other. By assuming that this noise is also Gaus-
sian, the logarithm of the integral in Eq. (9) can be analytically
calculated as32

log(P(d∣θ)) = −1
2
(m log(2π) + log ∣K + Σd∣ + (μd − fL)T

× (K + Σd)−1(μd − fL)), (11)

where m is the number of SXR measurements in a tomographic pro-
jection and f L is the mapping of the prior mean, μpr (imposed in
the reconstruction space), onto the measurement space, given by
f L = M ⋅ μpr .

The marginalization procedure is particularly useful because
the trade-off between the model complexity and data fit is
automatic—the model for which the evidence score is highest is
always the simplest model that can explain the data, an embodi-
ment of Occam’s razor principle.33 In addition, the model evidence
is also a function of the variance σ2 of the data (through matrix
Σd), which means that it is possible to treat the expected projection
error as an additional hyperparameter of the model to be tuned; this
can be done, for example, by treating the data variance as a frac-
tion of the measured value of SXR radiation in the tomographic
projection, with the value of the fraction constituting an additional
model hyperparameter. This means that through the Gaussian pro-
cess tomography framework, one can estimate not only the most
likely model for the underlying plasma emissivity distribution but
also the most likely model for the error values of the data (though
this is no replacement for a calibration of the detectors with a known
source).

Once the most likely model is selected, and applying Bayes’s
formula, the posterior mean, μpost , and posterior covariance, Σpost ,
as functions of the prior mean μpr and prior covariance Σpr for that
model are, respectively, given by34

μpost = μpr + ΣprMT(K + Σd)−1(d − fL) (12)

and

Σpost = Σpr − ΣprMT(K + Σd)−1MΣpr . (13)

By computing the posterior distribution P(e∣d, θ) ∼ N(μpost ,
Σpost), one can then produce tomographic reconstructions either by
sampling from P(e|d, θ) or simply by taking the mean of that distri-
bution as the tomographic reconstruction (because the distribution
is Gaussian, the mean corresponds to the maximum a posteriori
estimate). In addition, one can directly obtain uncertainties for the
tomographic reconstruction from the diagonal values of the poste-
rior covariance matrix, which correspond to the individual posterior
variances of each pixel in the reconstruction grid.

The drawback of the marginalization procedure, however, is its
potential computational complexity. First, the calculation of the evi-
dence term involves a series of matrix multiplications and an inver-
sion, which can be cumbersome particularly in our setting because of

the dimensionality of the data, which generates very large matrices.
Matrix K in Eq. (11) can be previously computed and kept in mem-
ory when performing model selection (which we do). However, in
our setting, we treat the underlying error as a fraction of the data,
and therefore, the values appearing in matrix Σd change with every
new data point. As a result, the matrix determinant and inversion in
Eq. (11) must be re-computed for every new point, which is the main
reason behind the high cost of the Bayesian optimization procedure.
Furthermore, the evidence must be computed for all models that
are taken into consideration. When each model has several hyper-
parameters, the number of possible models to evaluate can become
very large, which means that finding the optimal one can be time-
consuming. For practical purposes, this limits the number of models
that can be evaluated and, thus, potentially limits the quality of the
results.

We, therefore, propose to bypass the need for analytical
marginalization, by training a classifier (in this case, a convolutional
neural network) to automatically choose the most likely model (out
of several pre-defined ones) for the tomographic projection data
collected by the ASDEX Upgrade SXR system.

This has potentially several advantages. On one hand, a Gaus-
sian process model, while potentially having priors and posteriors
with many dimensions, can be fully specified by its much smaller set
of hyperparameters. In practice, this allows for parameterizing a dis-
tribution of high dimensionality with only a few variables. In the case
of this work, this means that neural networks will learn to map tomo-
graphic projections to a lower-dimensional space (of dimensionality
equal to the number of models under consideration). This should
facilitate the network’s learning process, allowing for easier general-
ization when compared with deep learning methods that attempt to
map projections directly into a reconstruction space of larger dimen-
sions. On the other hand, for potential real-time applications, this
method potentially speeds up Gaussian process tomography since it
bypasses the marginalization procedure.

III. METHODS

A. Soft x-ray data

For this work, we had at our disposal a collection of 112 ASDEX
Upgrade shots, totaling 127 528 data points (208-dimensional tomo-
graphic projections), with each dimension corresponding to a spe-
cific detector in the Soft X-Ray (SXR) system. The projections come
from the down-sampled signal of the SXR diagnostic, at a sampling
rate of 250 Hz. The dataset also contains an error model, which
assigns every measurement in every projection an estimated error
value; we develop this topic in Sec. III B. In many cases, the SXR
detectors can be damaged and yield completely erroneous measure-
ments, such as negative brightness; in these cases, the measurement
is simply considered to be faulty. A sample projection can be seen in
Fig. 3.

We also possessed a geometric matrix M that maps the relative
contribution of each pixel in a 60 × 40(2400)-dimensional tomo-
graphic reconstruction grid to each of the 208 SXR measurements
in a projection. Each pixel in the grid has a pair of poloidal coordi-
nates (R, z) based on the poloidal dimensions of ASDEX Upgrade;
the tomographic reconstruction is computed on this grid. The

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-5

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 3. Sample tomographic projection (SXR measurements) from the ASDEX
Upgrade tokamak, taken from shot No. 30294 at t = 58 691 s. Faulty measure-
ments have been removed.

geometric matrix itself was computed based on the physical layout
of the SXR sensors in the ASDEX Upgrade vessel and holds for all
shots in our dataset.

B. Dataset generation

Before training the neural network classifier, we generated its
training and validation dataset by individually computing, for all
the measured tomographic projections, the most likely model from
which those projections were sampled. To that end, the first task was
to define different models and their respective priors (individually
specified by their specific set of hyperparameters) and then, through
Eq. (11), compare them based on their evidence.

As is typical in Gaussian process regression tasks,32 for all
models, we defined the prior means, μpr , as vectors of zeros, of
size 2400 (the size of the reconstruction grid). We computed the
prior covariance matrices Σpr using a squared exponential func-
tion, as defined in Eq. (7); in essence, this covariance function
encodes our belief that correlations between pixels on the tomo-
graphic reconstruction grid will decay exponentially as the dis-
tance between those points increases. We computed the distance
between pairs of points in the reconstruction grid (expressed in
terms of their poloidal coordinates) using the Euclidean definition,
i.e., d(x1, x2) = √(R1 − R2)2 + (z1 − z2)2. The covariance function
[Eq. (7)] has only two parameters: θf , the individual variance of
single pixels, and θx, the length scale that control the extent of the
correlation between pixels in the reconstruction grid. Different mod-
els have priors specified by different values of these hyperparameters,
but they all use the same definition of the co-variance function and
distance.

Finally, we defined, for each model, our assumptions regarding
the data distribution associated with that model. For all models, we
discarded measurements that had been previously labeled as faulty.
In practice, this meant that, when evaluating the evidence for mod-
els, and when computing the maximum a posteriori (MAP) estimate
for the plasma emissivity, some of the 208 measurements of each
projection were not used. We treated the remaining (non-faulty)
measurements in the projections as the mean values μd of the data
distribution.

The individual variances, σ2, of the variables in the data dis-
tribution correspond to the entries in the diagonal of matrix Σd

of Eq. (11) and represent the uncertainties in the measurements.
We computed the values σ2 as fractions of the measurement val-
ues themselves; those fractions depend on a scaling factor θerr that
is multiplied by the measurements and constitutes an additional
hyperparameter for the models under consideration. We assumed
this value to be global, i.e., for any given model, we assume that the
scaling factor is the same for all measurements in a projection.

Formalizing, we iteratively computed, for each individual data
point (i.e., projection), and from a set of pre-defined models for
the plasma emissivity and data distributions that might have gen-
erated that projection, the highest-evidence model, that is, through
Eq. (11), we looked for θ̂ = (θ̂f , θ̂x, θ̂err) such that

θ̂ = arg max
θ

logP(d∣θ),
where P(d|θ) is the model evidence from Eq. (8). We searched for
the ideal hyperparameters (i.e., the hyperparameters that specify the
highest-evidence model) in a grid by assuming a uniform hyper-
prior (all models were considered to be equally likely) and computed
the model evidence at several discrete positions in the hyper-prior
space. The question was then, what positions in the hyper-prior
space should one evaluate the models’ evidence on. This required
taking several factors into account.

The first requirement was the expected nature of the plasma
emission process itself. A previous analysis of the measurement
data, and of existing tomographic reconstructions from ASDEX
Upgrade,4 showed that the plasma emissivity has a wide dynamic
range for different regions of the plasma, with emissivity in the
plasma core being up to 3 orders of magnitude higher than in the
pedestal. Likewise, in some periods of some shots, the maximum
radiation value in the reconstruction grid was in the order of mag-
nitude of 102 W m−3, while in other phases, it could be as large as
105 W/m−3. Thus, we considered this range in emissivities a good
region to explore possible values for the hyperparameter θf . In addi-
tion, ASDEX Upgrade has minor radii a = 0.5 m (horizontally) and
b = 0.8 m (vertically);35 given this and the size of our reconstruction
grid, we assumed that a good region of the hyper-prior in which to
evaluate the evidence for certain values of θx ranged, in the limit,
from 0 (no correlation at all between pixels) to 1.6. For the hyper-
parameter θerr , we assumed that, in the limit, it could range from
0 (no noise in the tomographic projections) to 1 (all the measured
brightness corresponded to noise).

The second requirement related to the training process for neu-
ral networks. For this work, we wanted to train a neural network to
perform a classification task—to learn to map measurements to the
most likely model. Typically, in a machine learning classification set-
ting, care should be taken such that training samples fed to a network
are reasonably balanced with respect to their different classes, that is,
a good training practice is that one class not be too over-represented
in the data when compared to others. In our setting, achieving this
balance required experimenting with different potential evaluation
positions in the hyperparameter search grid. This comes at the cost
of leaving out some grid positions for which some data points might
have had higher evidence scores.

In practice, considering these requirements, we performed sev-
eral evaluations through trial and error of the hyper-prior at dif-
ferent positions; we settled on a 3 × 3 × 3 grid, where the points

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-6

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 4. Number of data samples (from all available shots) mapping to each class
(set of hyperparameter values), after the marginalization procedure.

correspond to θf = {500, 1000, 2500}, θx = {0.15, 0.175, 0.2}, and
θerr = {0.5, 0.75, 1}, which corresponds to 27 Gaussian process mod-
els. Performing the Bayesian model selection procedure on all pro-
jections in our dataset using the models parameterized by these val-
ues of (θf , θx, θerr) yielded a relative balance in terms of the amount
of data samples mapping to each of the 27 possible classes (points on
the hyperparameter grid); this can be seen in Fig. 4 that shows the
number of points mapping to each class. Computing the evidence
for different models for all tomographic projections took a total of
48 h.

This dataset—i.e., the mappings between tomographic projec-
tions and the class to which their highest-evidence model belongs
(out of 27 possible ones)—was then used to train and test the
neural network classifier. The choice of modeling the task with a
classifier, instead of treating it as a regression problem, has one

motivation: the loss function to use, and how to model the network
outputs.

If performing regression, one option would have been to have a
separate model output for each hyperparameter and combine them
with a mean squared error loss. However, it is not obvious that
this would work correctly because the evidence term depends on all
hyperparameters together. For example, a target output yt = (θf = j,
θx = k, θerr = l) could be approximated by the network as yn = (θf
= j, θx = 0.9 k, θerr = l). Computing the mean squared error between
yt and yn would yield a potentially good score because on average
because the hyperparameter values are similar in both cases; how-
ever, there is no such guarantee for the evidence score, which could
be very different from one case to the other. In fact, it is for this very
reason that when performing classification, we use a single output
with 27 possible categories, instead of a separate output (and loss
function) for each hyperparameter, each with three possible cate-
gories. The alternative would have been to use a loss function based
on the evidence score itself; however, it would have been computa-
tionally infeasible because it would require the evaluation of Eq. (11)
for each network gradient update.

C. Deep learning model

Several possibilities exist when it comes to modeling deep neu-
ral network architectures. For our purposes (the learning of the
Bayesian model selection procedure), we opted to use a convo-
lutional neural network (CNN). CNNs are widely used for sig-
nal processing tasks due to their ability to efficiently detect spa-
tial correlations in data, which is what we expected to find in
our SXR measurements. The model we used is, with regards to
its architecture, inspired by the network for the classification of
images described in Ref. 36, popularly known as the VGG net-
work. We designed the model using the Keras framework for deep
learning.37

FIG. 5. Schematic of the deep learning model used for this work.

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-7

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

The network itself receives two inputs: a tomographic projec-
tion (208 SXR measurements, fed as input 1 in Fig. 5) and a cor-
responding mask of ones and zeros (taken from the existing error
model in our dataset) corresponding to input 2 in Fig. 5, which
gives information regarding which measurements in the projection
are assumed to be faulty. The network uses a series of convolutional
layers followed by max pooling layers to process high-level features
in the measurement data. The output of those layers is then com-
bined with the information in the error mask and processed in the
last layers of the network, which are standard fully connected lay-
ers. We also used batch normalization38 layers to speed up training
and dropout in the final layer39 to increase the network’s capacity for
generalization outside of its training set. We used the rectified lin-
ear unit (ReLU) activation function throughout the entire network
apart from the last layer, which uses a softmax function, because we
modeled the network output as probabilities over 27 possible classes,
which must add up to 1. For the same reason, we used categorical
cross-entropy as the loss function. We used the Adam optimizer40

and left all optimizer hyperparameters at their default values.

IV. RESULTS

We here performed two separate assessments. First, we eval-
uated the accuracy of the neural network’s fit of the individual
projections to their highest-evidence models. Then, based on the
highest-probability class determined (by the network) for each data
point, we computed the corresponding maximum a posteriori esti-
mate of the tomographic profile and measured the fit of those recon-
structions to the data by projecting them back into the measure-
ment space [through the forward model in Eq. (3)], obtaining their
back-projections. We then measured the deviation between those
back-projections and the original tomographic projections.

A. Neural network

To increase the robustness of our methods, we opted to train
an ensemble of neural networks (of equal architectures), using the
k-fold cross-validation strategy.41 The k-fold cross-validation is use-
ful to determine whether the choice of the train/test split has biased
whatever results have been obtained or whether the results can be
assumed to hold independently of the data split. We opted to divide
our data into k = 10 folds, that is, we trained ten networks with
different overlapping splits of train data and tested them on non-
overlapping validation splits. We trained the networks for 50 epochs
and ran them on an NVIDIA Quadro RTX 5000 graphics processing
unit (GPU). The total training time for the whole ensemble was 1 h,
while the total prediction time for the validation data was 41.62 s.

As the networks performed a 27-way classification, we used
top-k categorical accuracy as a metric for network classification
quality. We now follow with a brief explanation of this metric.

Each data point x (corresponding to a tomographic projection)
in our dataset was assigned a label, ylabel, denoting for which of the 27
model classes, the evidence was highest. A classifier learns, through
the training process, to compute the probability of that point belong-
ing to a certain class P(C(x) = c), where c can take one out of 27
possible values; we denote the vector containing the probabilities of
belonging to each of those classes ypred. We further define ypredk as

FIG. 6. Top-k accuracy (up to k = 27) for validation data. The blue bars indicate the
mean accuracy across the ensemble of ten networks, while the smaller black bars
indicate the accuracy’s standard deviation across the ensemble (for each k).

the kth most likely class given by a classifier for x; for example, for
ypred1 , one would get

ypred1 = arg max
c

P(C(x) = c) = arg max
c

ypred,

whereas for c27, one would have

ypred27 = arg min
c

P(C(x) = c) = arg min
c

ypred.

Based on this, the top-k accuracy metric then calculates for each
data point,

acck(x) = {1 if ylabel ⊂ {ypred1 , . . . , ypredk}
0 otherwise.

We then computed the categorical accuracy metric on the val-
idation data for the 27 different values of k. Because we opted for
a cross-validation train and test strategy (with an ensemble of ten
classifiers), we show the mean value and standard deviation of the
top-k accuracy across all members of the ensemble. The results of
the metric can be seen in Fig. 6 (up to k = 27) and Table I (up to
k = 5). In Table I, we show the results only up to k = 5 for ease of
comprehension.

An analysis of Table I and Fig. 6 shows that the ensemble of
ten neural networks achieves very good results on the classification
task, with a mean top-5 accuracy score of 0.976 (out of a maxi-
mum score of 1) for validation data. This means that for any data
point, the correct prior is found within the top-5 most likely out-
puts predicted by the network in 97.7% of cases. In practice, if one
is exclusively interested in finding the single, most likely, prior, this
result reduces the search space for the right hyperparameters from

TABLE I. Accuracy mean and standard deviation across the ensemble of ten neural
networks, for validation data, up to top-5 accuracy.

K

1 2 3 4 5

Mean 0.509 0.783 0.903 0.955 0.977
St. dev. 0.041 0.038 0.033 0.016 0.01

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-8

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

27 classes to 5. Should one be interested only in comparing different
models for certain physical distributions, this result also allows for
quickly estimating which priors are more or less likely. Furthermore,
the standard deviation of the accuracy score demonstrates consis-
tently low values, indicating that the choice of train/test split for our
data did not significantly bias the achieved results; all neural net-
works in the ensemble behave similarly, even if tested on different
data.

B. Sample reconstructions

In addition to evaluating the neural network’s capacity for clas-
sification purposes, we also produced and evaluated tomographic
reconstructions. To that end, we took, for each data point in the

validation dataset, the most likely class prediction given by the neu-
ral network; this class prediction maps to one of the models we have
previously defined. We then computed, based on the class prediction
and Eqs. (12) and (13), the posterior mean and covariance for each
data point. We took the posterior means (i.e., the maximum a pos-
teriori estimates) as the tomographic reconstructions of the plasma
emissivity—each mean was a 2400-dimensional vector, where each
entry μj denotes the most likely value for the plasma emissivity in a
point j in the reconstruction grid. The posterior covariances allowed
us to determine the error of the tomographic reconstruction, by tak-
ing the diagonal of the covariance matrix, which corresponds to the
individual variance σ2

post of each pixel in the reconstruction grid; we
converted the value of that variance into a percentage error by once
again taking advantage of the 3 − σ rule and computing the said

FIG. 7. Sample tomographic reconstruction and error, and comparison between the SXR measurement and the back-projected reconstruction, for ASDEX Upgrade shot No.
30857, t = 4.0441 s. The determined model hyperparameters by the classifier were θerr = 0.75, θf = 500, and θx = 0.175; 200 measurements (out of 208) were used for this
reconstruction.

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-9

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

percentage, for pixel j, as

%errj = 3

√
σ2
postj

μj
× 100%.

Two sample results can be seen in Figs. 7 and 8. For the recon-
struction error, we show only points where the percentage error was
found to be below 100%. Note how in Fig. 8, despite the value of σf
being 2500, a reconstruction with a much larger maximum intensity
can still be produced. Furthermore, in both cases, the reconstruc-
tion error values are noticeably lower in the center of the grid. We
explain this with two factors: the larger number of LOSs covering
that region, which lowers the uncertainty in the reconstructed val-
ues, and the higher intensity of the plasma emissivity, which lowers
the relative error.

C. Model complexity and data fit

To evaluate the quality of the models, we performed, for each
maximum a posteriori (MAP) tomographic reconstruction, a pass
through the forward model defined in Eq. (3) to obtain the corre-
sponding back-projection, i.e., the projection of the reconstruction
back into the measurement space. The marginalization procedure
guarantees that from the ensemble of models that is evaluated for a
data point, the simplest model that can fit the data will be chosen,
and we have shown that the proposed convolutional neural network
can in most cases do this as well. However, a problem can arise if the
ensemble of models from which we sample is itself mostly composed
of overly simple or overly complex models.

Computing the back-projections allowed us to see how
the obtained MAP estimates fit the original SXR data. Our

FIG. 8. Sample tomographic reconstruction and error, and comparison between the SXR measurement and the back-projected reconstruction, from ASDEX Upgrade shot
No. 31238, t = 3.2641. The determined model hyperparameters by the classifier were θerr = 1.0, θf = 2500, and θx = 0.175; 199 measurements (out of 208) were used for
this reconstruction.

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-10

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

expectation was that if the models we defined were too complex,
we would observe very tight fits of the data, with very low devia-
tions between it and the back-projections. Conversely, if the models
were too simple, we would tend to see large differences between the
back-projections and the data.

To check this, we computed the percent deviation between the
back-projections and the original tomographic projections and did
this for every measurement in every data point. We computed this
value as

err = ∣backprojection −measurement∣
measurement

× 100%.

The histograms in Figs. 9(a) and 9(b) show the results of
this evaluation, up to a deviation of 100%, a threshold that cov-
ers 99.38% of the validation data. Note that the deviation was
computed by comparing the back-projection only with valid (non-
faulty) measurements. On average, 91.25% of the 208 measure-
ments in each data point were used to compute the tomographic
reconstructions.

D. Discussion

Looking at the distribution of the deviations between back-
projections and measurement data in Fig. 9, one can see that most
back-projected values have relatively low deviations from the data—
90% have a deviation lower than 50%. On the other hand, one can
also see that some back-projected values have larger deviations, and
in fact, a few had an error greater than 100% (though they are not
represented in the figure for ease of visualization; they represent
only 0.6% of cases). We interpret this as a good result: on one hand,
the low back-projection deviations indicate that the models cho-
sen for the tomographic reconstructions have the necessary rigid-
ity to constrain the solutions to mostly match the data, while at
the same time being flexible enough to allow for large deviations,
when not doing so would render overly complex models. We would
like to point out the fact that many other types of models (other
than the ones we used) can be chosen. For example, we used the
Euclidean distance and a single length scale for the covariance func-
tion. Nevertheless, it is possible to use more complex co-variance
functions with different length scales in the R and z directions, or
with a distance metric that uses the radial and angular coordinates
of pixels in the reconstruction grid, to account for the fact that

FIG. 9. Distribution of the deviations between the tomographic reconstructions’
back-projections into the measurement space and the data. 54.4% of the indi-
vidual back-projected measurements have a relative deviation lower than 10%,
93.83% have a deviation lower than 50%, and 99.38% have a deviation lower
than 100%.

points in the same flux surface are considered to be highly cor-
related. In principle, it is always possible to define more complex
models that fit the data better and reduce the deviation between
projection and back-projection; nevertheless, those models will not
necessarily have the highest evidence when compared with simpler
ones.

V. CONCLUSIONS

Gaussian process tomography makes it possible to obtain
the most likely estimate for an unknown, potentially infinite-
dimensional, quantity, given some assumptions about the underly-
ing physical distribution and about the data generated by that dis-
tribution. The tomography problem, based on SXR measurement
data from the ASDEX Upgrade tokamak, lends itself to investigation
under this framework. If one assumes a fixed model for the behavior
of the underlying physical distribution (i.e., the plasma emissivity)
and for the data, for example, by specifying the length scales involved
in the emission process and the expected fraction of noise in the
measurements, Gaussian process tomography (GPT) inversion tech-
niques readily yield the corresponding maximum a posteriori esti-
mate of the plasma SXR emissivity in the two-dimensional tokamak
cross section.

Nevertheless, this raises the issue of what models one would
like to assume in the first place. Through Bayesian Occam’s razor
principle, GPT answers this question by computing the evidence
for different possible models; out of which, the one with the high-
est score can then be selected. This can be useful if one wishes
to test different assumptions regarding the data distribution, for
example, what fraction of noise can be expected in the observations
(measurements)/. However, in a setting such as SXR tomography
with ASDEX Upgrade data, this task can become cumbersome due
to the dimensionality of the tomographic projections. This is fur-
ther compounded when the number of models under evaluation is
large.

For these reasons, we developed a novel method for the auto-
matic selection of the best model (out of 27 pre-defined ones)
for the plasma SXR emissivity distribution and the corresponding
data, for measurements from the ASDEX Upgrade tokamak. The
individual models had different assumptions regarding the noise
level in the collected data, the correlations between variables in
the tomographic reconstruction grid, and the individual variances
of those same variables. The method then consisted in training a
convolutional neural network to perform the Bayesian model selec-
tion (marginalization) procedure and bypass the need to perform
that task analytically. Our results show that the neural network
achieved good classification results when compared to the analyt-
ical Bayesian marginalization step, with top-5 accuracy (out of 27
possible classes) reaching a value of 0.976 (out of a maximum of
1). Furthermore, while the marginalization procedure across the
entire dataset (of 127 528 tomographic projections), through ana-
lytical methods, took ∼48 h, the same computation, performed
by the neural network, took only 43 s. Thus, the neural network
approach can be particularly useful for high-dimensional data set-
tings such as ours, as well as problems where the number of mod-
els under consideration is large, which would otherwise render
the model comparison problem too slow through analytical meth-
ods. This can be particularly useful for settings where not only the

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-11

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

real-time inversion of tomographic profiles but also the real-time
comparison of different models for certain physical distributions is a
necessity.

ACKNOWLEDGMENTS

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from the
Euratom Research and Training Programme 2014-2018 and 2019-
2020 under Grant Agreement No. 633053. The views and opinions
expressed herein do not necessarily reflect those of the European
Commission.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE
Press, 1988).
2L. C. Ingesson, B. Alper, B. J. Peterson, and J.-C. Vallet, “Chapter 7: Tomography
diagnostics: Bolometry and soft-x-ray detection,” Fusion Sci. Technol. 53, 528–
576 (2008).
3J. Mlynar, V. Weinzettl, G. Bonheure, A. Murari, and JET-EFDA Contributors,
“Inversion techniques in the soft-x-ray tomography of fusion plasmas: Toward
real-time applications,” Fusion Sci. Technol. 58, 733–741 (2010).
4T. Odstrčil, T. Pütterich, M. Odstrčil, A. Gude, V. Igochine, U. Stroth, and
ASDEX Upgrade Team, “Optimized tomography methods for plasma emissivity
reconstruction at the ASDEX Upgrade tokamak,” Rev. Sci. Instrum. 87, 123505
(2016).
5J. Mlynar, T. Craciunescu, D. R. Ferreira, P. Carvalho, O. Ficker, O. Grover,
M. Imrisek, J. Svoboda, and JET Contributors, “Current research into appli-
cations of tomography for fusion diagnostics,” J. Fusion Energy 38, 458–466
(2019).
6A. N. Tikhonov, “Regularization of incorrectly posed problems,” Dokl. Akad.
Nauk. SSSR 153, 49 (1963).
7A. N. Tikhonov, “Solution of incorrectly formulated problems and the regular-
ization method,” Dokl. Akad. Nauk. SSSR 151, 501 (1963).
8V. Loffelmann, J. Mlynar, M. Imrisek, D. Mazon, A. Jardin, V. Weinzettl,
and M. Hron, “Minimum Fisher Tikhonov regularization adapted to real-time
tomography,” Fusion Sci. Technol. 69, 505–513 (2016).
9D. R. Ferreira, P. J. Carvalho, and H. Fernandes, “Deep learning for plasma
tomography and disruption prediction from bolometer data,” IEEE Trans. Plasma
Sci. 48, 36 (2019).
10F. A. Matos, D. R. Ferreira, P. J. Carvalho, and JET Contributors, “Deep learning
for plasma tomography using the bolometer system at JET,” Fusion Eng. Des. 114,
18–25 (2017).
11A. Jardin, J. Bielecki, D. Mazon, J. Dankowski, K. Król, Y. Peysson, and
M. Scholz, “Neural networks: From image recognition to tokamak plasma tomog-
raphy,” Laser Part. Beams 37, 171–175 (2019).
12J. Svensson, “Non-parametric tomography using Gaussian processes,” Techni-
cal Report No. EFDA-JET-PR(11)24, 2011.
13C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncer-
tainty in neural network,” in Proceedings of the 32nd International Con-
ference on Machine Learning, Proceedings of Machine Learning Research
Vol. 37, edited by F. Bach and D. Blei (PMLR, Lille, France, 2015), pp.
1613–1622.
14Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Represent-
ing model uncertainty in deep learning,” in International Conference on Machine
Learning (PMLR, 2016), Vol. 48, pp. 1050–1059.

15A. Pavone, J. Svensson, A. Langenberg, N. Pablant, U. Hoefel, S. Kwak,
R. C. Wolf, and Wendelstein 7-X Team, “Bayesian uncertainty calculation in
neural network inference of ion and electron temperature profiles at W7-X,” Rev.
Sci. Instrum. 89, 10K102 (2018).
16A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv:1511.06434
(2015).
17T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” in Advances in Neural Information
Processing Systems (2016), pp. 2234–2242.
18J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte
längs gewisser mannigfaltigkeiten,” Ber. Verh. Königlich-Säch. Gesellschaft Wiss.
Leipzig, Math.-Phys. Kl. 69, 262 (1917).
19R. M. Lewitt, “Reconstruction algorithms: Transform methods,” Proc. IEEE 71,
390–408 (1983).
20F. Matos, “Deep learning for plasma tomography,” M.Sc. thesis, Técnico Lisboa,
2016.
21A. Murari, E. Joffrin, R. Felton, D. Mazon, L. Zabeo, R. Albanese, P. Arena,
G. Ambrosino, M. Ariola, O. Barana et al., “Development of real-time diagnostics
and feedback algorithms for jet in view of the next step,” Plasma Phys. Controlled
Fusion 47, 395 (2005).
22V. Igochine, A. Gude, M. Maraschek, and ASDEX Upgrade Team, “Hotlink
based soft x-ray diagnostic on ASDEX upgrade,” Technical Report IPP 1/338,
Max-Planck-Institut für Plasmaphysik, 2010.
23A. Jardin, J. Bielecki, D. Mazon, J. Dankowski, K. Król, Y. Peysson, and
M. Scholz, “Synthetic x-ray tomography diagnostics for tokamak plasmas,”
J. Fusion Energy 1–11 (2020).
24L. C. Ingesson, P. J. Böcker, R. Reichle, M. Romanelli, and P. Smeul-
ders, “Projection-space methods to take into account finite beam-width effects
in two-dimensional tomography algorithms,” J. Opt. Soc. Am. A 16, 17–27
(1999).
25M. Odstrcil, J. Mlynar, T. Odstrcil, B. Alper, A. Murari, and JET Contribu-
tors, “Modern numerical methods for plasma tomography optimisation,” Nucl.
Instrum. Methods Phys. Res., Sect. A 686, 156–161 (2012).
26M. Anton, H. Weisen, M. J. Dutch, W. Von der Linden, F. Buhlmann,
R. Chavan, B. Marletaz, P. Marmillod, and P. Paris, “X-ray tomography on the
TCV tokamak,” Plasma Phys. Controlled Fusion 38, 1849 (1996).
27D. D. Carvalho, D. R. Ferreira, P. J. Carvalho, M. Imrisek, J. Mlynar,
H. Fernandes, and JETContributors, “Deep neural networks for plasma tomog-
raphy with applications to JET and COMPASS,” J. Instrum. 14, C09011
(2019).
28I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016),
http://www.deeplearningbook.org.
29A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow, 2nd ed. (O’Reilly Media, Incorporated, 2019).
30D. Li, J. Svensson, H. Thomsen, F. Medina, A. Werner, and R. Wolf, “Bayesian
soft x-ray tomography using non-stationary Gaussian processes,” Rev. Sci.
Instrum. 84, 083506 (2013).
31D. J. C. MacKay, “Comparison of approximate methods for handling hyperpa-
rameters,” Neural Comput. 11, 1035–1068 (1999).
32C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine Learning
(MIT Press, 2006).
33D. MacKay, “Bayesian methods for adaptive models,” Ph.D. thesis, Caltech,
1991.
34J. Svensson, A. Werner, and JET-EFDA Contributors, “Current tomogra-
phy for axisymmetric plasmas,” Plasma Phys. Controlled Fusion 50, 085002
(2008).
35C. Lechte, G. D. Conway, T. Görler, C. Tröster-Schmid, and ASDEX Upgrade
Team, “X mode Doppler reflectometry k-spectral measurements in ASDEX
upgrade: Experiments and simulations,” Plasma Phys. Controlled Fusion 59,
075006 (2017).
36K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Representa-
tions, 2015.
37F. Chollet, Keras, https://github.com/fchollet/keras (2015).

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-12

Published under license by AIP Publishing

Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

38S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in Proceedings of the 32nd International
Conference on Machine Learning, Proceedings of Machine Learning Research
Vol. 37, edited by F. Bach and D. Blei (PMLR, Lille, France, 2015), pp. 448–456.
39X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony
between dropout and batch normalization by variance shift,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2019),
pp. 2677–2685.
40D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).
41G. James, An Introduction to Statistical Learning: With Applications in R
(Springer, New York, NY, 2013).

Rev. Sci. Instrum. 91, 103501 (2020); doi: 10.1063/5.0020680 91, 103501-13

Published under license by AIP Publishing

PAPER • OPEN ACCESS

Plasma confinement mode classification using a sequence-to-sequence
neural network with attention
To cite this article: F. Matos et al 2021 Nucl. Fusion 61 046019

View the article online for updates and enhancements.

This content was downloaded from IP address 95.94.29.217 on 26/07/2021 at 15:52

Bureau International des poids et Mesures Nuclear Fusion

Nucl. Fusion 61 (2021) 046019 (11pp) https://doi.org/10.1088/1741-4326/abe370

Plasma confinement mode classification
using a sequence-to-sequence neural
network with attention

F. Matos1,∗ , V. Menkovski2, A. Pau3 , G. Marceca3 , F. Jenko1 and the
TCV Team3,a

1 Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
2 Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
3 École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne,
Switzerland

E-mail: francisco.matos@ipp.mpg.de

Received 2 November 2020, revised 1 January 2021
Accepted for publication 5 February 2021
Published 12 March 2021

Abstract
In a typical fusion experiment, the plasma can have several possible confinement modes. At
the tokamak à configuration variable, aside from the low (L) and high (H) confinement modes,
an additional mode, dithering (D), is frequently observed. Developing methods that
automatically detect these modes is considered to be important for future tokamak operation.
Previous work (Matos et al 2020 Nucl. Fusion 60 036022) with deep learning methods,
particularly convolutional long short-term memory networks (conv-LSTMs), indicates that
they are a suitable approach. Nevertheless, those models are sensitive to noise in the temporal
alignment of labels, and that model in particular is limited to making individual decisions
taking into account only the input data at a given timestep and the past data, represented in its
hidden state. In this work, we propose an architecture for a sequence-to-sequence neural
network model with attention which solves both of those issues. Using a carefully calibrated
dataset, we compare the performance of a conv-LSTM with that of our proposed
sequence-to-sequence model, and show two results: one, that the conv-LSTM can be improved
upon with new data; two, that the sequence-to-sequence model can improve the results even
further, achieving excellent scores on both train and test data.

Keywords: CNN, LSTM, H mode, L mode, dither, sequence-to-sequence, attention

(Some figures may appear in colour only in the online journal)

1. Introduction

During nuclear fusion experiments, the plasma can be
described as being in one of several possible confinement
states. At the tokamak à configuration variable (TCV) toka-

∗ Author to whom any correspondence should be addressed.
a See Coda et al 2019 (https://doi.org/10.1088/1741-4326/ab25cb) for the
TCV team.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

mak, it is typically classified as being in either low (L), dither-
ing (D) or high (H) confinement mode. All shots, during the
ramp-up phase of the plasma, begin in L mode. By applying
sufficient heating power, the plasma spontaneously transitions
into H mode [2] (typically at TCV this process lasts approxi-
mately 1 ms). This mode is termed high confinement because,
once it is reached, one can observe significantly reduced trans-
port of particles and energy from the plasma to the surrounding
vessel walls. This allows for a larger energy confinement per
input power; for this reason, most current designs for future
tokamaks assume that they will regularly run in H-mode. In

1741-4326/21/046019+11$33.00 1 © EURATOM 2021 Printed in the UK

Nucl. Fusion 61 (2021) 046019 F. Matos et al

some cases the transition from L to H mode does not happen
directly, but rather the plasma oscillates rapidly between the
two confinement regimes. In this case, the plasma is considered
to be in a dithering [3] mode.

Many studies have been done on the physical factors behind
the transition between L and H mode, but the phenomenon is
still not completely understood [4]. Furthermore, there is no
simple set of rules that can be used to determine the plasma
mode given the values of the signals during a fusion experi-
ment. Nevertheless, most of the time, there are highly salient
patterns in these measured signals that can be used by domain
experts to determine the plasma mode with high confidence.
For example, a transition from L to H mode can typically
be identified by observing a sudden drop in the emitted H-α
radiation. However, these data patterns can be rather compli-
cated and ambiguous; for example, Dithers leave signatures in
the emission of photons similar to that of type III edge local-
ized modes (ELMs) [5], which are events that occur during
H-mode.

This process of manually labeling the experimental data can
be quite cumbersome in many cases, particularly when one
wishes to conduct large studies and analyze many shots. For
that reason, work has been put into developing tools capable of
automating the task of detecting different confinement modes.
In particular, in the past few years, research has been done on
using machine learning [6–10] and, more recently, deep learn-
ing [1] for this task. These algorithms are particularly suitable
for dealing with such challenges of extracting patterns from
high-dimensional data collected during these experiments.

For example, when analyzing transitions between L and
H modes, the type of correlations one expects to find in the
data—localized, spatial correlations as well as long-term tem-
poral ones—can be, respectively, efficiently discovered using
convolutional [11, 12] and recurrent neural networks (RNNs)
[13, 14]. Previous work with models of this sort, in particu-
lar with long short-term memory (LSTM) networks, indicates
that they can be very accurate in this task [1]. One of the main
challenges of these models, however, is that they have to pro-
duce a decision about the plasma mode at each timestep by
looking only at a given context of the signals and their own
past states, which represent past data values. Bi-directional
LSTMs can look at future information, but they still only have
access to the data when making decisions. In contrast, when a
human expert faces a difficult decision, they not only look at
the data, but also reason through several possible sequences
of plasma confinement mode evolutions. They go back and
forward through the input signal, consider the consequences
of labeling a mode with a given value for all consecutive
modes, and in doing so, frequently revise decisions until the
most likely sequence of plasma confinement modes can be
determined.

Conceptually, the tasks of automated language translation
and the automated labeling of plasma confinement modes are
closely related: one wishes to translate a sentence in a source
language to a different sentence with the same meaning in a
target language. In the case of automated labeling of plasma
confinement modes, one can consider signal time traces to
constitute the sentence in the source language, while the

corresponding confinement modes can be thought of as the
‘translated’ sentence in the target language.

For this reason, in this paper, we propose an approach
that builds upon previous work with deep learning applied to
automated detection of plasma confinement modes, by using
recent developments in the field of neural machine translation
(NMT). Broadly, in that field, one can talk of two main types
of algorithms in use: sequence-to-sequence models based on
RNNs, and transformers. Transformers are ideal when a large
amount of data is available, since they parallelize and scale
well with large amounts of data when compared to RNNs,
and have achieved tremendous success in processing of short
sequences [15].

However, those are not the conditions we face in our set-
ting: the amount of data we have is (compared to typical NMT
tasks) rather limited, and furthermore, the sequences we deal
with (i.e., plasma shots) are quite long. This suggests that
RNN-based models are a more suitable approach, given their
capacity to process long sequences with their hidden states.
A general, vanilla RNN, such as a convolutional long short-
term memory network (conv-LSTM), is, by itself, incapable
of producing decisions over sequences of outputs, and is lim-
ited to making a sequence of independent decisions based only
on the observed data. It is also susceptible to noise produced
by misaligned labels. However, sequence-to-sequence models
can solve both of these problems. These models, as well as
associated mechanisms such as attention [16–18], have con-
siderably advanced the field of NMT and transduction in the
past few years.

This paper is organized as follows. Section 2 provides an
overview of the field of NMT, in particular by explaining the
functioning of sequence-to-sequence models, and how we can
adapt them to suit our task. Section 3 details our considerations
regarding the data and the problem formulation, our prepro-
cessing steps and the proposed model architecture. Section 4
shows some of the obtained results and scores, and in particu-
lar, we compare the results of this model with those obtained
in [1]. We then wrap up with a discussion in section 5.

2. Background

2.1. Sequence-to-sequence models

Sequence-to-sequence models have achieved tremendous suc-
cess in the field of NMT [19, 20]. These models are char-
acterized by two separate components performing different
tasks: an encoder that reads a sentence in the source lan-
guage and produces an encoded representation of that sen-
tence, and a decoder that, based on the encoding, produces an
appropriate translation into the target language. The encoder
and decoder can technically be any type of algorithm, though
in most applications, they are built with RNNs [21] that are
jointly trained.

In NMT, the encoder typically maps a word or sequence
of words in the source language to a numerical representa-
tion of said words, as a function of a pre-defined size of the
source language vocabulary. This is then followed by a recur-
rent layer, typically a LSTM layer, or a gated recurrent unit

2

Nucl. Fusion 61 (2021) 046019 F. Matos et al

that is trained to find sequential correlations in the embedded
input sentences. These models can keep track of correlations
between points that are far apart in time because they have
internal hidden states, though their capacity deteriorates if the
time interval is large enough. At every source timestep j, with
0 < j < k (where k is the length of the source sequence), the
encoder computes a new hidden state, h j; each vector h j in the
sequence of hidden states (h0, . . . , hk) constitutes a summary of
the information that the encoder has processed until timestep
j, and the final hidden state of the encoder’s recurrent layer
(hk) can thus be considered to be an encoded representation of
the entire input sequence.

The decoder must, subject to the encoding produced by the
encoder (hk), produce an appropriate corresponding sequence
of words in the target language. When using an RNN decoder,
this is done by setting its initial hidden state to hk. Therefore,
unlike a simple RNN model, which only receives a part of
the source data as input at each timestep, in the sequence-to-
sequence model, the decoder can work with a representation of
the entire source sequence. The decoder then outputs, at each
decoding timestep, a probability distribution over the discrete
set of possible outputs, conditioned on the source sequence.
Furthermore, in the general formulation of the sequence mod-
eling problem, where the input sequence is not aligned to the
output (e.g., different sampling rates of the input and output),
the model needs not only to determine the output sequence,
but also to align the symbols of the output sequence with
the input. Lastly, the decoder can be made autoregressive, by
feeding it a selected output at the previous timestep as an
input in the next.

Figure 1 illustrates this mechanism: the encoder produces
an encoding of the input sequence; the decoder, using that
encoding as a starting state, produces a translation into a tar-
get sentence. At timestep 1 of the decoding process, a <start>
character is fed to the decoder; in subsequent steps, the selected
output from the previous timestep is fed as input.

An autoregressive decoder can, at inference time (i.e., after
training), evaluate several output sequences, by condition-
ing its prediction at each timestep on different past outputs.
Therefore, it is not limited to outputting a single solution, but
rather, it can produce a probability distribution of possible
solutions.

In practice, sampling from the output joint probability dis-
tribution can be done by treating the distribution as a tree
data structure, where each path in the tree represents a sample
from the distribution, i.e., a different possible output sequence.
Expanding a new node in that tree corresponds to sampling a
different output from the previous timestep to condition future
outputs; searching this tree for solutions (paths) of high prob-
ability can be done efficiently with a beam search algorithm
[22]. In addition, the tree search can be done (and simpli-
fied) by explicitly incorporating domain knowledge, which
can allow for pruning paths that are known to be impossi-
ble (for example, in our case, by discarding paths that start
in H-mode). All of this contrasts with using a simple RNN
for translation. In that case, one expects the model to out-
put a (single) solution of high likelihood, there is no way (in
inference time) to explicitly encode knowledge that rules out

certain solutions, and the source and target must be of the
same length.

2.2. Attention

While encoder–decoder models achieve very good results,
they can nevertheless still lose performance when translat-
ing long input sequences [16]. There are several reasons for
this, but the main one is that the encoder is expected to be
able to encode all the information of the source sentence in a
single vector; in practice, especially for long input sentences,
training such models with algorithms that back-propagate gra-
dient updates can be challenging. For this reason, the atten-
tion mechanism was developed. The main idea behind it is to
extend the decoder with an attention layer that can access the
entire sequence of encoder hidden states h = (h0, . . . , hk). The
attention layer can then, at every decoding timestep i, compute
an attention vector αi, whose values are normalized to add up
to 1, and which constitute a series of weights that are used to
compute the decoder’s context vector ci, defined as:

ci =
k∑

j=0

αi jh j.

Intuitively, at every decoding timestep i, the correspond-
ing context vector ci will change to reflect the greater (or
lesser) relevance of some components of h for computing the
decoder output at that timestep. While the final encoder state
hk is still fed into the decoder as an initial hidden state, the
decoder is no longer wholly dependent on it, and has access
to a much richer context thanks to the attention layer, which
is trained with the rest of the model. Moreover, the exis-
tence of the attention layer can give additional insight into
the inner working of the model. At evaluation time, the atten-
tion vectors can be collected and used to visualize what parts
of an input have been focused on by the model when gen-
erating a certain output. Attention significantly improved the
results obtained by sequence-to-sequence models, and is also
the main mechanism behind the functioning of transformer
networks [15].

3. Methods

3.1. Problem formulation

The data used for this work comes from four different signals
from the TCV tokamak: the photodiode (PD), measuring H-α
radiation; the plasma current; the diamagnetic loop measur-
ing the plasma toroidal flux; and the interferometer, measur-
ing the line-integrated electron density. All of the signals are
re-sampled to a frequency of 10 kHz; a more thorough descrip-
tion can be found in [1]. As in that work, we are generically
interested in finding, for a given temporal sequence of mea-
surements xt, with 0 < t � N (which constitute a single shot),
the most likely sequence of plasma confinement mode ẑ1:N that
explain the observations x0:N .

The approach proposed in this paper does this in two
parts. On the one hand, a model is trained to estimate the
joint probability distribution of the sequence of plasma modes
p(z1, z2, . . . , zN |x0:N) for a given shot. Second, an algorithm

3

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 1. Representation of the flow of information in a sequence-to-sequence encoder–decoder model. Dashed lines denote model inputs
and outputs, while solid lines denote hidden states. At decoding timestep 1, the output distribution gives highest probability to the word A,
which is then fed as input at timestep 2.

finds a sequence ẑ1:N , drawn from the joint distribution, with
high probability. Formally, the task is to find:

ẑ1:N = arg max
z1:N

p(z1, z2, . . . , zN|x0:N).

with zt ∈ Z and Z: {‘low’, ‘dither’, ‘high’}, and z0 = {‘low’},
since any shot is assumed to begin in L-mode.

In practice, in a real-time (RT) environment, we would
not possess the entire sequence of measurements (the whole
shot), but rather, only the signal values up to a certain point
in time t. Thus, one of our requirements is to find a sequence
of high probability up until t while looking only at past mea-
surements. For this task, a simple RNN (LSTM) model can
be used [1]. However, such models, when making a decision,
rely only on the input data and their own internal state. They
cannot take their own past outputs into account when mak-
ing a decision, and therefore, are limited to producing a sin-
gle point-like estimate for the output sequence of confinement
states. In contrast, sequence-to-sequence models can explic-
itly take their own past outputs into account when making a
decision. This way, at time t, a sequence-to-sequence model
does not decide on a single output for t, but rather, it decides
on the entire sequence of plasma mode evolutions up to that
point in time; that is, the model computes the distribution
p(z|x) as:

p(z1, z2, . . . , zN|x0:N) = p(z1|x0:1, z0)p(z2|x0:2, z0:1) . . .

× p(zN |x0:N , z0:N−1)

=
∏

t

p(zt|x0:t, z0:t−1),

where p(zt|x0:t, z0:t−1) denotes the probability of observing
mode z at time t, given the sequence of observed signals x
from time 0 to time t, and the sequence of outputs until t.
It is the additional conditioning on past outputs that allows
the sequence-to-sequence model to approximate the full joint
distribution p(z|x).

One caveat of the sequence-to-sequence model architecture
is that it requires that the model observe windows, or sub-
sequences, of the input data (up until time t) of fixed size.
This means that in a RT environment, for most values of t,
a sequence-to-sequence model would have a delay when com-
puting p(zt|x0:t). This delay corresponds to a pre-defined size

of the signal windows that the model receives, which therefore
must be minimal.

With a sequence-to-sequence model, using the notation
above, finding a sequence of high probability means finding:

ẑ1:N = arg max
z1:N

∏

t

p(zt|x0:t, z0:t−1). (1)

The task of finding samples of high probability from the
distribution is done, in the case of this work, with a beam
search algorithm [22]. Because in our setting the sequences
have potentially thousands of timesteps, computing their indi-
vidual likelihoods using products as in equation (1) would
yield numerically unstable results; thus, the beam search uses
the logarithm of the probabilities:

ẑ1:N = arg max
z1:N

log(
∏

t

p(zt|x0:t, z0:t−1))

= arg max
z1:N

∑

t

log p(zt|x0:t, z0:t−1),
(2)

which allows it to use sums instead, and to look for the
sequence whose log-probability is greatest.

3.2. Data engineering

Events such as, for example, the LH transition can be roughly
pinpointed in a signal time trace. However, it is difficult to
specify precisely, on a consistent basis, at which exact point
in time the transition happens; for example, in some shots,
the transition might be quite sudden, whereas in others, the
transition signatures in the data can be more spread out over
time. The typical time that a TCV shot takes to make an HL
transition is on the order of 1 ms. Considering also that the
sampling frequency of our signals is 10 kHz, this translates to
an intrinsic uncertainty for the label determination of at least
ten timesteps. So, for example, one expert might determine,
for a shot, the start of the H mode at the point in time where
the PD signal starts dropping, whereas another expert might
claim that the H mode actually only starts at the point where
the signal has already stabilized (perhaps 1 ms later). While
the difference may sound trivial, this can become problematic
in a supervised learning task such as the one we face in this
work. In principle, if the amount of training data is sufficiently

4

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 2. Representation of the computation of a block of target
labels, where each bottom block corresponds to four source
timesteps. The green color indicates a label of L (low confinement)
while red represents H mode. A majority of the labels in the source
timesteps 4–7 are in H mode, so the corresponding block at target
timestep 1 is labeled as H.

large, small inconsistencies in labels (such as variations of
1 ms in the localization of transitions) will tend to be averaged
out by a classifier. Nevertheless, these mismatches can pro-
duce instabilities during training and can ultimately degrade
performance.

For that reason, one of the steps we took in this work is
to reduce the temporal resolution of the sequence-to-sequence
model’s outputs. This can be done thanks to the model’s archi-
tecture, which allows for a mismatch between the size of the
input and output sequences. We do this by grouping the exist-
ing labels (i.e., sequences of shot classifications) in our dataset
into blocks of a fixed size. In the pre-processing stage, each of
those blocks is mapped to a certain plasma confinement mode
(L, D or H); this mapping is done by computing the source
label with the highest number of occurrences within that block
(see figure 2). Our expectation is that this decrease in temporal
resolution will yield better performance in both training and
inference time, at a minimal cost to the physical validity of the
results.

3.3. Model architecture

Our model’s architecture is based on existing architectures for
NMT, in particular, the one proposed in [17]. The architecture
consists of an encoder–decoder model with attention, which
we detail in the following paragraphs.

Unlike most work with language translation, where one
receives discrete units (words) as inputs, in our case, the inputs
to the model are the continuous signal time-traces from TCV
shots. In those time-traces, one expects to find not only local-
ized, spatial correlations in the data—for example, a sudden
drop in the PD signal—but also long-term contextual correla-
tions, namely, which modes a shot may have been in in the past.
For that reason, the encoder in our model consists of a convo-
lutional RNN, much like the conv-LSTM used in [1]. We made
slight adjustments, namely in the number of convolutions used,
but otherwise preserved that model’s architecture, and used
LSTM units for the recurrent layers. The inputs fed to the
encoder are sequences of overlapping windows, which slide
across the signal time-series. These windows were defined to
have a size of 40 source timesteps, with a stride between win-
dows of ten timesteps. This last detail, in particular, means
that the full sequence-to-sequence model has approximately
ten times fewer network parameters than the conv-LSTM in
previous work.

The convolutional layers are trained to find local correla-
tions in the windows, while the recurrent layers, based on the

output of the convolutions, keep track of long-term correla-
tions in the input sequences. For example, the convolutional
layers can detect a local shape in a signal window indicating a
possible L–H transition, and the recurrent layers then use that,
as well as their stored information about the current plasma
mode (i.e. the long-term dependency), to determine whether a
transition indeed has occurred.

In [1], the conv-LSTM was used to directly map the input
sequence of measurements, xt, into a sequence of outputs, zt,
indicating a plasma confinement mode at a particular point in
time [see equation (3.1)]. In this work, the task of this particu-
lar submodel is instead to produce an encoded summary of xt,
which is stored in its internal hidden state vector h. During both
training and inference time, we feed the encoder not with entire
shots, but rather, subsequences of signals drawn from the shots.
There are several reasons for this. On one hand, in RNNs, gra-
dients can vanish when being backpropagated through time,
which can be particularly problematic when working with long
sequences; training with smaller subsequences mitigates this
problem. On the other hand, the existing data is imbalanced
with regard to the labels; for example, dithers tend to be much
less frequent than L and H modes. Using subsequences allows
us to feed the entire model, during the training process, with a
more balanced number of samples for each class (by oversam-
pling the dithers), thus preventing a potential source of biased
results. Finally, any future usage of the methods proposed in
this paper for RT plasma data analysis implies, by definition,
that only information until a particular point in time, and not
the entire shot, is available for classification.

In training time, the subsequences are drawn uniformly
(with respect to the three classes) from our existing data
ensemble. In inference time, for any given shot, the subse-
quences are drawn and fed to the encoder consecutively. In
both cases, the encoder’s state is reset each time a new sub-
sequence is fed to it, which means that the context vectors
only hold information about the current subsequence under
consideration.

In practice, we defined the subsequences drawn for train-
ing and inference to have a size of 300 source timesteps (this
contrasts with a typical shot size of, at least, 10 000 timesteps
at a 10 kHz sampling rate). This value also corresponds to the
delay that the model would have in a RT setting. With a win-
dow size of 40 and a window stride of 10, these 300 timesteps
are fed to the convolutional layers as sequences of 27 convolu-
tional windows (further shrinking the total size of the sequence
fed to the LSTM), with window 1 observing xt from t = 0 to
t = 39, and window 27 observing xt from t = 260 to t = 299.
The conv-LSTM processes these windows to produce the hid-
den state vector h, which has a length of 27 elements and
is fed to the decoder. An illustration of this can be found in
figure 3.

The task of the decoder is to approximate a probability dis-
tribution p(z|x) of plasma confinement modes, subject to the
summary given to it by the encoder. Our decoder is composed
of a RNN (specifically, an LSTM layer), an attention layer, and
a series of dense layers.

Each individual element of the output sequence is processed
in a single timestep, with each target timestep corresponding

5

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 3. Illustration of the encoder architecture and how a single
subsequence is processed and encoded in the encoder hidden state
vector h. The dark blue line represents a subsequence of a signal
timeseries. The sliding windows are in light blue.

to a single block of classifications. We defined the blocks as
having a size of 10—that is, each target timestep yields a single
classification for ten source timesteps.

In the first decoding timestep of each new subsequence, the
decoder’s initial hidden state is set to the decoder’s final hid-
den state, hk, for that subsequence. At each decoding timestep,
the decoder receives as input its own last processed output
(plasma confinement mode zt−1), and the last output from its
own LSTM cell; these are concatenated as suggested in [17]
and fed to the decoder’s LSTM, which also updates its own
internal state. The output of the LSTM is then concatenated
to the output of the attention layer (which receives the entire
encoder hidden state vector h), and fed through a series of
dense layers to produce the final decoder output, which is a
vector whose entries add up to 1 and which, individually, rep-
resent the computed probability of a given plasma confinement
mode zt (see figure 4). The decoder’s LSTM is built with a
latent dimensionality of 32 units, that is, we process each tar-
get timestep with 32 LSTM cells. In terms of the attention
layer, in [17], several different mechanisms for computing the
alignment scores are proposed; we opted for the general form
described in that paper.

One of our considerations when designing the decoder was
to take into account how a human expert would label the sig-
nals. Our intuition was that, when looking at a time point of
a shot, a labeler always takes into consideration information
around that point—namely, the events happening immediately
before and after. For that reason, we designed the decoder such
that, for each incoming context vector (which encodes infor-
mation regarding 300 source timesteps), the decoder produces
a sequence of 18 blocks of labels (with a block size of 10, this
corresponds to 180 source timesteps), which are the classifica-
tions for source subsequence steps [60 : 240]. The idea is that
the extra information present in the remaining source timesteps
would help improve the classification results. In evaluation
time, this setup requires that the consecutive subsequences
drawn from a shot overlap with each other, so that an output
sequence can be produced for the entire shot. This also leads
to the loss of the initial and final six target classification blocks
of a shot (see figure 5), but we consider this to have no bearing
on our results.

In evaluation time, the decoder always produces a distribu-
tion of possible plasma confinement states whose probabilities
add up to 1. One possibility would be to use a greedy approach

Figure 4. Schematic representation of the decoder’s architecture.
Represented here is the sequence of operations carried out by the
decoder to produce the output distribution of plasma confinement
modes at decoding timestep t = 2. Gray arrows denote data flows at
t. The purple arrow denotes the autoregressive feeding of the output
at t + 1. The blue arrow denotes the initial setting of the decoder
state to the last encoder state. Joining arrows denote concatenation,
αi and ci are the attention weights and the context vector,
respectively.

Figure 5. Representation of the full sequence-to-sequence model’s
architecture. Notice how the subsequences (translucid blue) overlap
with each other. The encoder’s state vectors, hk (where k is the
current subsequence), are fed to the decoder, which produces blocks
of outputs.

and simply take, at each target timestep, the plasma state for
which the output probability is highest, and feed that state at
the next decoding timestep. This would yield a possible solu-
tion (i.e., a single sequence of plasma confinement states), but
there would be no guarantee of it being optimal. For that rea-
son, we use a beam search algorithm [22] to traverse the tree
structure of possible solutions (different sequences of z), which
allows for obtaining samples closer to the optimal ẑ. This is
done by, at each target timestep, expanding the search tree
for all previous outputs, and not just for the output of highest
probability. Then, for each previous output zt−1 under con-
sideration, the conditional probability, and the log-likelihood,
defined in equation (3.1) are computed for the current timestep

6

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 6. Illustration of the beam search algorithm in the first three target timesteps. X denotes the context vector and the final encoder state
which condition the output. In timestep 1, the decoder computes the probability of a path starting in L mode, and we manually set that to be
the only path to be expanded. In timestep 2, the conditional probabilities of three paths ({L1L2}, {L1D2}, {L1H2}) are computed; the paths
are then expanded (for simplicity, only one expansion, that of {L1D2}, is shown here, but nine paths would be evaluated in timestep 3).

Table 1. κ-statistic scores for each plasma mode and as a mean, on
training and test data, for the conv-LSTM model from [1] on the
data used for this work.

L D H Mean

κ scores Train 0.98 0.91 0.98 0.98
Test 0.92 0.78 0.91 0.9

Table 2. κ-statistic scores for each plasma mode and as a mean, on
training and test data, for the sequence-to-sequence model.

L D H Mean

κ scores Train 0.99 0.99 0.99 0.99
Test 0.94 0.86 0.96 0.94

t. Once all target timesteps have been processed, the value of
z for which the likelihood is highest is returned.

Naturally, expanding the full tree at every timestep would
quickly become unwieldy, owing to the large number of dif-
ferent paths to be processed. On the other hand, expanding a
single beam at each timestep would be equivalent to a greedy
search. For these reasons, we defined the beam search to have
a maximum width of 20, i.e., at every step, only the 20 paths
with the highest log-probability are expanded, while the rest
are discarded. In addition, we encoded in the beam search
a rule for expanding only those paths that start in L-mode,
which simplifies the search; an illustration of this can be seen
in figure 6.

3.4. Dataset preparation

For the work in [1], a total of 54 shots were used for train-
ing and testing the proposed models. In this work, we car-
ried out a more careful treatment of the dataset preparation
with respect to the previous publication. In the first place, the
selection of the discharges for training and testing was done
in order to cover as exhaustively as possible the space of the
plasma confinement modes in TCV, accounting for the differ-
ent temporal evolutions of the plasma. Using a dynamic time
warping (DTW) [23] algorithm, we measured the similarity

between pairs of temporal sequences and assigned them to a
given group, based on a similarity measure. The desired num-
ber of groups was obtained by applying a hierarchical cluster-
ing algorithm to univariate time sequences corresponding to
the entire plasma discharges. A total of 293 discharges were
selected and processed through the DTW, setting the num-
ber of clusters to 100. From each of the 100 clusters, shots
were extracted and classified as an interesting (or not) shot
from the physics point of view, as far as our problem (i.e.,
the presence of L/D/H transitions) is concerned. Some clus-
ters were discarded since they consisted of disruptions with-
out even achieving an H mode confinement state, while others
presented technical issues in the ramp-up phase before reach-
ing the stationary phase. Limiting ourselves to the interesting
shots and maximizing the number of clusters where a given
shot arose from, 88 discharges were selected for ground truth
determination. For the latter, instead of having different anno-
tations by different labelers for a particular shot, a consensus
on a common convention between two experts was established
to determine the label of each timestep for all shots. A detailed
revision of the different transitions was performed with partic-
ular attention to the presence of short transitions on the order
of 2 ms. The outcome was a unique, consistent, ground truth
per shot. A test set to evaluate the final results of the model
was carefully determined and fixed during all the experiments.
A total of 27 shots were selected, each extracted from a differ-
ent cluster. Out of 27 shots, 17 shots were ‘unpolluted’ cases
(without the presence of type III ELMs), while the others 10
were special ‘noisy’ discharges with type III ELMs. The pro-
portion between the noisy and ‘unpolluted’ discharges in the
test set followed approximately the same proportion as in the
complete dataset.

4. Results

We begin this section with a direct comparison between this
sequence-to-sequence model, and the conv-LSTM used in [1].
To that end, we trained and tested the old model, preserv-
ing all the original architecture and hyperparameters, with the
new train and test data (shots and labels) compiled for this

7

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 7. Distribution of the κ-statistic score on a per-shot basis.

work. Table 1 shows the results. As in the previous work, we
performed the evaluation using Cohen’s Kappa-statistic coef-
ficient [24], which gives an indication of the match between
two sets of categorical data (with a score of 1 for a perfect
match and 0 for no match). In our case, it reflects the match
between the models’ outputs, and the labeled data. We com-
puted the score on a per-class basis and also on a weighted
mean basis, in order to indicate whether the classifications pro-
duced by the sequence-to-sequence model match the data’s
labels. We designed the model with Tensorflow [25], and ran
it on an NVIDIA Quadro RTX 5000 graphics processing unit
(GPU).

A comparison between the results in table 1 and those
described in [1] shows that the current dataset already
improved the capacity of the old model. Nevertheless, it was
still underperforming, particularly on dithers; even on training
data, the mean dither score was 0.9.

We then ran the new sequence-to-sequence model. The
results on both the train and test sets can be seen in table 2.
They were obtained by training the network for 150 epochs,
with each epoch consisting of 128 batches of data, and each
batch consisting of 128 data samples, i.e., uniformly sampled
subsequences of each of the existing classes drawn from the
training shots. We downsampled the source labels to the same
temporal resolution as the model’s output blocks to compute
the scores. Figures 7(a) and (b) show the distribution of the
scores on a per-class basis, for train and test data, as well
as a weighted mean value, taking into account the relative
frequencies of each class in the labels.

5. Discussion

In this section, we discuss the results in further detail, in
particular, the cases where the sequence-to-sequence model’s
performance was poorer.

With regards to the training data, the classification was
excellent in all cases; all shots achieved scores, both on a
per-mode basis and as a mean, above 0.8. The lowest mean
train score for a shot was 0.965, while the lowest scores for

Table 3. Kappa statistic scores for shots with at least one mode
whose score was lower than 0.8. The ‘fraction’ column indicates
what percentage of the labels were labeled in a particular state for
that shot.

L D H

Shot ID Fraction Score Fraction Score Fraction Score Mean

42197 0.57 0.5 0.35 0.66 0.08 0.46 0.55
61057 0.5 0.72 0.04 0.68 0.46 0.73 0.72
61274 0.69 0.84 0.12 0.7 0.19 0.96 0.84
32911 0.52 0.84 0.28 0.79 0.20 0.97 0.85
61043 0.78 0.92 0.13 0.69 0.1 0.76 0.87
45105 0.42 0.91 0.02 0.52 0.56 0.94 0.92
34309 0.14 1 .03 0.8 0.83 0.96 0.96
33459 0.8 0.98 0.01 0.5 0.19 1 0.98
64376 0.92 0.9 .01 0.73 0.08 1 0.98
30268 0.24 1 0 0 0.76 1 1

L, D and H modes were, respectively, 0.96, 0.8 and 0.98.
Nevertheless, for all modes, the mean score was 0.99, a result
that indicates that the sequence-to-sequence model has the
capacity to learn the underlying correlations in the data to
make accurate predictions.

With regard to the test data, the scores are slightly lower.
Table 3 shows the detailed breakdown of the scores for all shots
where at least one mode had a score lower than 0.8. Some
of those shots have low scores on more than one class: for
example, #42197 had a score lower than 0.8 for both L and
D modes. Notice how, even though there are more shots with
lower dither scores, the overall mean values are in most cases
above 0.8; this is due to the fact that dithers are rather less
frequent in the data than L and H modes.

Figure 8 shows the classification results for shot #42197,
together with the ground truth (label), shown in the lower panel
of the figure (we show only the PD signal values for ease of
comprehension). The classification has two major errors: the
non-detection of a switch to L mode at the end of the shot,
around t = 1.2 s, and the rapid oscillation between L and D
modes from approximately t = 0.8 s to t = 1.1 s. This oscilla-
tion in particular is questionable because this dithering phase

8

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 8. Detection results for shot #42197. The blue line denotes the PD signal, while the solid background color denotes the confinement
states.

Figure 9. Detection results for shot #61057.

Figure 10. Detection results for shot #61274.

Figure 11. Detection results for shot #32911.

presented particularly odd fluctuations that were not a common
behavior in our dataset.

For shot #61057, two short dither bursts near t = 1.5 s are
missed, as well as the final transition back into H mode near
t = 1.6 s (see figure 9).

For shot #61274, the overall classification score is already
above 0.8; the model’s largest mistake is in incorrectly
classifying a region around t = 1.5 s as L mode, which
explains both the lower score for that mode and for dither (see
figure 10).

9

Nucl. Fusion 61 (2021) 046019 F. Matos et al

Figure 12. Detection results for shot #61043.

In shot #32911, the lower scores for dither and L mode
are also due to rapid fluctuations between the two modes; we
think that a big factor behind the lower score is the accumu-
lation of many small mismatches between the labels and the
classifications (see figure 11).

Shot #61043 contains several switches between H mode
and dithering; the model incorrectly classifies some of these
(see figure 12).

We consider the remaining test shots to be good classifica-
tions overall. We explain the occasionally lower dither scores
by the fact that the labeled dither phases are very short (at most
3% of any given shot); any mismatch, even if small, between
the label and dither classification produces a low score.

6. Conclusions

This work developed a sequence-to-sequence neural network
model with attention for automated classification of plasma
confinement modes at the TCV tokamak. Taking previous
work [1] with a conv-LSTM for the same task as a base-
line, our intuition was that one of the factors holding previ-
ous models back from achieving even better scores was the
fact that vanilla LSTMs cannot reason over different past out-
puts, and are limited to the signal observations. This con-
trasts with the way a human labeler would perform the same
task; typically, a labeler will reason over different possibili-
ties for past confinement modes before deciding on a label
for a given timestep, which is a process that a sequence-to-
sequence model can emulate. In addition, we theorized that
the varying length of transitions between plasma confinement
modes, and resulting misalignment between data and labels,
was producing instabilities during the training of the conv-
LSTM. Finally, we also hypothesized that performance was
limited by the lack of sufficient train data. Therefore, we
extended the dataset used in previous work with more shots
and chose a train/test split that thoroughly represented the
operational shot space of TCV. In addition, we took particu-
lar care with the labeling process, to ensure a high quality of
the data.

Testing the conv-LSTM from [1] on the new dataset
increased its scores on both test and train data, suggesting
that indeed the size and quality of the dataset was having an
impact on the obtained results. Nevertheless, even with the
new dataset, the conv-LSTM still failed to completely fit the
training set, particularly with regards to dithers.

On the other hand, running the sequence-to-sequence
model with the new data, we achieved excellent results on
the train set (with a mean score of 0.99 out of 1) and like-
wise, very good results on the test set (with a mean score of
0.94 out of 1). Both of these scores are important. On the one
hand, the training score shows that the sequence-to-sequence
model can correctly fit all the training data. This is something
that the previous model (the conv-LSTM) could not do, and
suggests that that model, in spite of achieving good results,
had indeed some limitations compared to the new one. This
is particularly interesting given that the sequence-to-sequence
model has a lower number of network parameters: approxi-
mately 100 000, compared to the conv-LSTM’s 1000 000 (i.e.,
an order of magnitude less). We explain the fact that the results
are nevertheless better with three factors, which coincide with
our initial assumptions: firstly, the larger context from the
data available to the sequence-to-sequence model; secondly,
the model’s ability to deal with misaligned labels and with
transitions of varying length; and finally, the autoregressive
decoder which can reason over several sequences instead of
independent outputs.

On the other hand, the test scores indicate that the sequence-
to-sequence model can also generalize well. They are slightly
lower, but we explain that with the fact that several test shots
were particularly challenging to classify, even for a human
labeler. Nevertheless, the results obtained indicate that the task
of plasma confinement mode classification can be best car-
ried out by the sequence-to-sequence model presented here,
given that it achieves a significant improvement over the
conv-LSTM, reaching almost domain expert accuracy.

Finally, we would like to make a comment regarding a RT
implementation of this model, which is outside the scope of
this publication, but should be possible. As we mentioned in
section 3, the only fixed constraint, as far as an RT implementa-
tion would be concerned, is the size of the subsequences fed to
the encoder, which induce a small minimum delay (30 ms) into
any model prediction. Ideally, an RT implementation would
make extensive use of parallelization, in particular in the beam
search; that step could otherwise become a potential perfor-
mance bottleneck in a non-parallel implementation, given that
the time of the search scales with the number of beams. Also,
an RT implementation would ideally require multiple central
processing units (CPUs) or GPUs, such as what we used for
developing the method, since deep learning frameworks can
efficiently run convolutional layers in parallel. Nevertheless,

10

Nucl. Fusion 61 (2021) 046019 F. Matos et al

the model shown here, as it stands, can already be used for
offline labeling of data. In addition, in light of the current
research, within the field of neural language processing, on
transfer learning with encoder–decoder networks, we believe
that this model could also be suited for tasks of domain adap-
tation, for example with a view to creating useful databases
for future fusion devices such as ITER and DEMO. It would
also be interesting to investigate, in the future, applications of
transformer networks to this and similar problems in fusion.

Acknowledgments

This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom research and training programme 2014–2018 and
2019–2020 under Grant Agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission.

ORCID iDs

F. Matos https://orcid.org/0000-0002-3110-6639
A. Pau https://orcid.org/0000-0002-7122-3346
G. Marceca https://orcid.org/0000-0002-8850-614X

References

[1] Matos F., Menkovski V., Felici F., Pau A. and Jenko F. (the TCV
Team and the EUROfusion MST1 Team) 2020 Nucl. Fusion
60 036022

[2] Xu G.S. et al 2014 Nucl. Fusion 54 103002
[3] Nielsen A.H., Xu G.S., Madsen J., Naulin V., Rasmussen J.J.

and Wan B.N. 2015 Phys. Lett. A 379 3097–101
[4] Martin Y.R. and Takizuka T. (the ITPA CDBM H-mode Thresh-

old Data Group) 2008 J. Phys.: Conf. Ser. 123 012033
[5] Ryter F. et al 1994 Plasma Phys. Control. Fusion 36 A99
[6] Vega J., Murari A., Vagliasindi G. and Rattá G.A. (JET-EFDA

Contributors) 2009 Nucl. Fusion 49 085023
[7] González S., Vega J., Murari A., Pereira A., Dormido-Canto

S. and Ramírez J.M. (JET-EFDA Contributors) 2012 Plasma
Phys. Control. Fusion 54 065009

[8] Murari A., Vagliasindi G., Zedda M.K., Felton R., Sammon C.,
Fortuna L. and Arena P. 2006 IEEE Trans. Plasma Sci. 34
1013–20

[9] Lukianitsa A.A., Zhdanov F.M. and Zaitsev F.S. 2008 Plasma
Phys. Control. Fusion 50 065013

[10] Meakins A.J. and McDonald D.C. 2010 Plasma Phys. Control.
Fusion 52 075005

[11] Krizhevsky A., Sutskever I. and Hinton G.E. 2012 Ima-
genet classification with deep convolutional neural networks
Advances in Neural Information Processing Systems (Lake
Tahoe, Nevada, US, December 2012) pp 1097–105 (https://
nips.cc/Conferences/2012)

[12] Ciresan D., Meier U. and Schmidhuber J. 2012 Multi-
column deep neural networks for image classification
2012 IEEE Conf. on Computer Vision and Pattern
Recognition (IEEE) (Providence, RI, USA, June 2012)
pp 3642–9

[13] Graves A., Mohamed A.R. and Hinton G. 2013 Speech recog-
nition with deep recurrent neural networks 2013 IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (IEEE)
(Vancouver, BC, Canada, May 2013) pp 6645–9

[14] Elman J.L. 1990 Cogn. Sci. 14 179–211
[15] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L.,

Gomez A.N., Kaiser L.U. and Polosukhin I. 2017 Attention
is all you need Advances in Neural Information Processing
Systems (Long Beach, CA, USA, December 2017) vol 30 ed
I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan and R. Garnett (Curran Associates, Inc.)
pp 5998–6008 (https://nips.cc/Conferences/2017)

[16] Bahdanau D., Cho K. and Bengio Y. 2015 Neural machine trans-
lation by jointly learning to align and translate Int. Conf.
on Learning Representations (San Diego, USA, May 2015)
(https://iclr.cc/archive/www/2015.html)

[17] Luong M.T., Pham H. and Manning C.D. 2015 Effective
approaches to attention-based neural machine translation
Conf. on Empirical Methods in Natural Language Processing
(Lisbon, Portugal, September 2015) (http://emnlp2015.org/)

[18] Xu K., Ba J., Kiros R., Cho K., Courville A., Salakhudinov R.,
Zemel R. and Bengio Y. 2015 Show, attend and tell: neu-
ral image caption generation with visual attention Int. Conf.
on Machine Learning (Lille, France, July 2015) pp 2048–57
(https://icml.cc/Conferences/2015/)

[19] Sutskever I., Vinyals O. and Le Q.V. 2014 Sequence to sequence
learning with neural networks Advances in Neural Informa-
tion Processing Systems (Montreal, Canada, December 2014)
pp 3104–12 (https://nips.cc/Conferences/2014)

[20] Stahlberg F. 2020 J. Artif. Intell. Res. 69 343–418
[21] Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D.,

Bougares F., Schwenk H. and Bengio Y. 2014 Learning
phrase representations using rnn encoder–decoder for statis-
tical machine translation The 2014 Conf. on Empirical Meth-
ods in Natural Language Processing (Doha, Qatar, October
2014) (https://emnlp2014.org/)

[22] Graves A. 2012 Sequence transduction with recurrent neu-
ral networks Int. Conf. on Machine Learning (Edinburgh,
Scotland, June 2012) (https://icml.cc/2012/)

[23] Łuczak M. 2016 Expert Syst. Appl. 62 116–30
[24] Landis J.R. and Koch G.G. 1977 Biometrics 33 159–74
[25] Abadi M. et al 2015 TensorFlow: large-scale machine learning

on heterogeneous systems software available from tensor-
flow.org (https://www.tensorflow.org/)

11

	I Introduction and Theory
	1 Introduction
	2 Background
	2.1 Fusion Experiments
	2.2 Soft X-ray tomography at ASDEX Upgrade
	2.2.1 Plasma tomography
	2.2.2 The SXR diagnostic at ASDEX Upgrade

	2.3 Plasma confinement at TCV
	2.3.1 High confinement and Edge Localized Modes
	2.3.2 TCV Diagnostics

	3 Methodology
	3.1 Background concepts
	3.1.1 Types of learning
	3.1.2 Classification and regression

	3.2 Deep Learning
	3.2.1 Neural Networks
	3.2.2 Training
	3.2.3 Overfitting and regularization
	3.2.4 Convolutional neural networks
	3.2.5 Recurrent neural networks
	3.2.6 Sequence-to-sequence models
	3.2.7 Attention mechanism

	3.3 Gaussian process regression
	3.4 Concluding remarks

	II Publications
	4 Summary
	5 Deep learning for Gaussian process soft X-ray tomography model selection in the ASDEX Upgrade tokamak
	5.1 Introduction
	5.2 Background
	5.2.1 Computed Tomography
	5.2.2 SXR tomography at ASDEX Upgrade
	5.2.3 Regularization-based Methods
	5.2.4 Deep Learning-based Methods
	5.2.5 Gaussian Process Tomography

	5.3 Methods
	5.3.1 Soft X-Ray Data
	5.3.2 Dataset Generation
	5.3.3 Deep Learning Model

	5.4 Results
	5.4.1 Neural Network
	5.4.2 Sample Reconstructions
	5.4.3 Model complexity and data fit
	5.4.4 Discussion

	5.5 Conclusions

	6 Classification of tokamak plasma confinement states with convolutional recurrent neural networks
	6.1 Introduction
	6.2 Previous work
	6.3 Background
	6.3.1 Low, dither and high plasma confinement modes
	6.3.2 Edge Localized Modes

	6.4 Methods
	6.4.1 Problem formulation and approach
	6.4.2 Data and event features
	6.4.3 Model training
	6.4.4 Model design
	6.4.5 Data split

	6.5 Evaluation metrics
	6.5.1 ROC curve
	6.5.2 Kappa statistic

	6.6 Results
	6.6.1 CNN
	6.6.2 Conv-LSTM
	6.6.3 Discussion

	6.7 Conclusions

	7 Plasma Confinement Mode Classification Using a Sequence-to-Sequence Neural Network With Attention
	7.1 Introduction
	7.2 Background
	7.2.1 Sequence-to-sequence models
	7.2.2 Attention

	7.3 Methods
	7.3.1 Problem Formulation
	7.3.2 Data engineering
	7.3.3 Model architecture
	7.3.4 Dataset Preparation

	7.4 Results
	7.5 Discussion
	7.6 Conclusions

	III Conclusions and outlook
	8 Conclusions
	List of Figures
	List of Tables
	Bibliography

	IV Appendices
	A Original Publications

