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Abstract

Tissues are often heterogeneous in their single-cell molecular expression, and this can
influence the regulation of cell fate. To understand development and disease, it is
important to quantify transcriptional heterogeneity in a given tissue. Currently, this
is often done with gene expression data from single-cell sequencing experiments. In
addition, the joint measurement and analysis of a few cells in small-cell pools can add
further interesting information that might be lost during single-cell measurements
for example due to low signal.

In this thesis, I address the question of modeling low-input gene expression of single-
cell measurements and such small-pool measurements based on knowledge gained
from modeling single-cell data. Several tools analyze the outcome of single-cell RNA
sequencing experiments, often assuming a probability distribution for the observed
sequencing counts. Therefore, whenever a model-based tool is to be developed, the
most appropriate discrete distribution must be determined not only in terms of
model estimation, but also in terms of the interpretability, complexity and biological
plausibility of inherent assumptions. To address the question of interpretability, I
investigate mechanistic transcription and degradation models underlying commonly
used discrete probability distributions. Well-known bottom-up approaches derive
steady-state probability distributions such as Poisson or Poisson-beta distributions
from different underlying transcription-degradation models (Dattani and Barahonal,
2017). By turning this procedure upside down, I show how to derive a corresponding
biological model from a given probability distribution. This is done via a useful
connection between Ornstein-Uhlenbeck processes — a special kind of stochastic
processes — and steady state probability distributions. With this I derive in one case
the underlying mechanisms when using the negative binomial distribution. Realistic
mechanistic models underlying this distributional assumption for mRNA counts have
not yet been described explicitly but can be deducted from similar models (Berg, 1978,
Paulsson et al., 2000, Raj et al., 2006). I show that the negative binomial distribution
arises as steady-state distribution from a mechanistic model that produces mRNA
molecules in bursts. I demonstrate empirically that using this distribution to model
single-cell mRNA counts provides a convenient trade-off between computational
complexity and biological simplicity. For comparison further derived distributions
and mechanistic models with different inherent assumptions are included.
Furthermore, I present a model to dissect transcriptional heterogeneity from RNA
sequencing counts taken from small pools of cells. In the past many tools were
developed to deconvolute bulk measurements using information of purified single-cell
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measurements or sorted bulks (Aliee and Theis| 2020) or other prior information on
the measurements (Gaujoux and Seoighe, 2013, [Newman et al| 2015). However, I
present the stochastic profiling algorithm which does not need any prior knowledge
on the contained heterogeneity and thus does a blind deconvolution. Additionally
it is not tailored to bulk samples but to measurements of small pools of cells. This
algorithm was first proposed by Bajikar et al. (2014) and uses the maximum likelihood
principle to parameterize heterogeneity from the cumulative continuous expression
of small random pools of cells. In this thesis I provide the first complete description
of this algorithm together with an evaluation of the algorithm’s performance in
broad simulation studies among others regarding parameter uncertainty of pool
sizes. Stochastic profiling outweighs the necessary demixing of mixed samples with a
saving of experimental cost and effort and less measurement errors. I generate further
application opportunities in downstream analysis when investigating the inferred
heterogeneity. This offers now possibilities not only to parameterize heterogeneity
but also to estimate underlying pool compositions and to study detected differences
between cell populations and samples.

With the advent of sequencing technologies, it has become necessary to revise the
algorithm to meet the new requirements with a discrete model. Therefore, I have
developed such a new version using the negative binomial distribution, so that
the algorithm can now deconvolve sequencing measurements under consideration
of suitable assumptions. To incorporate uncertainty of the model parameters I
extended parameter inference to Bayesian methods using Hamiltonian Monte Carlo.
Computational efficiency is optimized using the Stan implementation of the No-
U-Turn sampler. Comparison with the standard maximum likelihood optimization
shows comparable results in shorter time especially for more complex mixtures.
Finally, I show an application of the discrete algorithm to real-world data. There I
study two real-world small pool datasets generated for this purpose of homogeneous
mouse embryonic stem cells and presumably heterogeneous cells derived from patients
suffering from acute myeloid leukemia. Although, I cannot see reduced noise or a
better heterogeneity detection in relation to pool size, I observe a general gain of
information with increasing pool size.



Zusammenfassung

Die Heterogenitat der molekularen Einzelzellexpression eines Gewebes kann das
Zellschicksal beeinflussen. Die Bestimmung der Gewebszusammensetzungen hilft
beim Verstandnis genetischer Entwicklungen und Krankheiten. Gegenwartig wird dies
oft mittels Genexpressionsdaten von Einzelzellen aus Sequenzierungsexperimenten
durchgefiihrt. Zusétzlich kann die gemeinsame Messung und Analyse weniger Zellen
in kleinen Zellpools interessante zusatzliche Informationen liefern, die bei einer
Einzelzellmessung, beispielsweise aufgrund niedrigen Signals, verloren gehen konnten.

In dieser Arbeit befasse ich mich mit der Frage der Modellierung der Low-Input-
Genexpression von Einzelzellmessungen und solcher Small-Pool-Messungen, indem
ich Erkenntnisse aus der Einzelzellanalyse iibertrage. Viele Tools modellieren die
Anzahl an RNA-Sequenzen mittels einer Wahrscheinlichkeitsverteilung. Diese muss
so ausgewahlt werden, dass sie nicht nur fiir die Modellschatzung, sondern auch fiir
Interpretierbarkeit, Komplexitat und biologische Plausibilitat der zugrundeliegen-
den Annahmen geeignet ist. Um die Interpretierbarkeit zu gewahrleisten, unter-
suche ich mechanistische Transkriptions- und Degradationsmodelle, die bestimmten
Wahrscheinlichkeitsverteilungen zugrundeliegen. So genannte Bottom-up-Ansétze
leiten Steady-State-Wahrscheinlichkeitsverteilungen wie zum Beispiel die Poisson-
oder die Poisson-beta-Verteilung aus den zugehorigen Transkriptions-Degradations-
Modellen ab (Dattani and Barahona) 2017). Indem ich dieses Verfahren umdrehe, zeige
ich, wie man ein entsprechendes biologisches Transkriptions-Degradations-Modell aus
einer gegebenen Wahrscheinlichkeitsverteilung ableiten kann. Dies wird mittels eines
niitzlichen Zusammenhangs zwischen Ornstein-Uhlenbeck-Prozessen - einer speziellen
Art von stochastischen Prozessen - und stationaren Wahrscheinlichkeitsverteilungen
erreicht. Damit leite ich in einem Fall den zugehorigen Mechanismus her, der bei
Verwendung der negativen Binomialverteilung angenommen wird. Ein realistisches
mechanistisches Modell, das dieser Verteilungsannahme fiir die Anzahl an vorhan-
denen mRNA-Molekiilen zugrundeliegt, ist bisher noch nicht explizit beschrieben
worden, kann aber tiber andere Wege von dhnlichen Modellen abgeleitet werden (Berg,
1978| [Paulsson et al.; 2000, Raj et al., 2006|). Ich zeige, dass die negative Binomi-
alverteilung als stationare Verteilung aus einem mechanistischen Modell stammt,
das mRNA-Molekiile in Bursts erzeugt. Ich veranschauliche empirisch, dass dieses
Burstingmodel und somit die negative Binomialverteilung ein geeigneter Kompromiss
zwischen Rechenaufwand und biologischer Vereinfachung darstellt. Zum Vergleich wer-
den weitere Verteilungen und mogliche zugehorige mechanistische Modelle vorgestellt,
die auf unterschiedlichen Annahmen beruhen.



Dartiber hinaus stelle ich ein Modell vor, mit dem man die Heterogenitat einer
Stichprobe bestimmen kann, indem von mehreren Zellen gemeinsam der RNA-Inhalt
gemessen und analysiert wird. In der Vergangenheit wurden viele Tools entwickelt,
um Bulk-Messungen mathematisch zu entfalten, wobei Informationen aus homogenen
Einzelzellmessungen bzw. sortierten Bulks (Aliee and Theis, [2020)) oder andere
Vorkenntnisse iiber die Messungen benétigt werden (Gaujoux and Seoighe, 2013,
Newman et al, 2015)). Ich stelle hier den Stochastic Profiling Algorithmus vor, der
keine Vorinformationen iiber die enthaltene Heterogenitat benotigt und somit eine
blinde Entfaltung durchfiihrt.

Dieser Algorithmus wurde erstmals von [Bajikar et al| (2014)) vorgestellt und
parametrisiert die Heterogenitat mittels Maximum-Likelihood-Schéatzung, indem
er die Gesamtexpression der Zellpools entmischt. In dieser Arbeit habe ich die erste
vollstandige Beschreibung dieses Algorithmus zusammen mit einer Bewertung seiner
Leistungsfahigkeit in breiten Simulationsstudien, unter anderem hinsichtlich der
Parameterunsicherheit von Poolgrofien, erstellt. Die Einsparung von Kosten fiir Ex-
perimente und die Reduktion von Messfehlern kompensieren den Rechenaufwand, der
beim Entmischen der Expressionsprofile durch den Stochastic Profiling Algorithmus
entsteht. Zudem habe ich weitere Anwendungsmoglichkeiten in der Downstream-
Analyse der entdeckten Heterogenitaten entwickelt. Somit kann man nicht nur
die enthaltene Heterogenitat parametrisieren sondern auch die Populationszusam-
mensetzung bestimmter Beobachtungen vorhersagen und Unterschiede zwischen
Zellpopulationen oder zwischen Stichproben genauer betrachten.

Mit dem Aufkommen der Sequenziertechnologien ist es notwendig geworden, den
Algorithmus zu iiberarbeiten, um den neuen Anforderungen mit einem diskreten
Modell gerecht zu werden. Daher habe ich eine solche neue Version unter Verwendung
der negativen Binomialverteilung entwickelt, sodass der Algorithmus nun Sequen-
zierungsmessungen unter Berticksichtigung geeigneter Annahmen entfalten kann.
Um die Unsicherheit der Modellparameter einzubeziehen, habe ich die Parameter-
schatzung um Bayes’sche Methoden unter Verwendung von Hamiltonian Monte Carlo
erweitert. Die Berechnungseffizienz wurde mit der Stan-Implementierung des No-U-
Turn-Samplers optimiert. Der Vergleich mit der bisherigen Maximum-Likelihood-
Optimierung zeigt iibereinstimmende Ergebnisse in kiirzerer Zeit, insbesondere fiir
komplexere Mischungen.

Abschlielend zeige ich die Anwendung des diskreten Algorithmus auf echte Daten.
Hier untersuche ich zwei Datensatze, die unterschiedliche Zellzahlen in ihren Mes-
sungen enthalten. Diese Daten wurden fiir diesen Zweck erstellt und bestehen aus
einerseits homogenen embryonalen Mausstammzellen und andererseits aus Zellen
von an akuter myeloischer Leukamie erkrankter Patienten, die somit vermutlich
heterogene Genexpression aufweisen. Obwohl sich anhand dieser Daten weder ein
reduziertes Rauschen noch eine bessere Heterogenitatserkennung bei wachsender
Poolgrofe feststellen lasst, ist ein ein generellen Informationsgewinn mit zunehmender
Poolgrofle erkennbar.
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Introduction

Curing all diseases is the hope of mankind. For some time now, the greatest possible
efforts have been made to understand the human body. It is of huge importance to
understand how the healthy processes work in order to deduce what goes wrong with
a disease in the body. It is now known that often the smallest components of tissues
- the cells - are responsible for changes by altering their function. Over time, newer
and newer technical methods have been developed to look into the cells of the body
and capture these changes. Especially recently, huge world wide initiatives such as
the Human Cell Atlas (HCA, [Regev et al., 2017) and the Human Biomolecular Atlas
Program (HuBMAP Consortium., Writing Group ., Snyder et al., 2019)) have joined
forces to collect data in order to generate atlases of all cell types and their distinct
molecular profiles in the human body. Furthermore, consortia such as the LifeTime
(Rajewsky et al., 2020) initiative investigate the development on the individual cell
level not only in healthy individuals but also during the progression of diseases and
possible therapies. These have led to ever more and larger amounts of data. In order
to be able to deal with these data, it has become more and more important to
develop appropriate statistical methods. This enables us to analyze the data and
to draw conclusions about biological processes through mathematical modeling, see

Figure [I.1]

1.1 Overview of the Thesis

The overall goal of this thesis is to develop suitable mathematical explanations for
the use of specific parametric distributions for modeling low-input mRNA sequencing
counts. Although several single-cell gene expression models have been developed in
the past, distributions are often used without further reference to the underlying
assumptions. Especially for low-input data, i.e. when little input material or samples
are available, parametric approaches are powerful. However, the parametric assump-
tions made thereby have a direct effect on prediction and its uncertainty. Therefore
it is important to know and justify these assumptions. We approach this research
question of appropriate distributions by linking suitable distributions for single-cell
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Figure 1.1: Transcriptomics measures gene expression quantities in many samples e. g. single-
cells. The resulting data is analyzed using statistical tools that are based on probability
distributions. These should be selected with regard to the inherent assumptions on the linked
stochastic model. Such models simplify the unknown gene expression generating biological
process. Assessing the model fits generates further knowledge on the unknown truth of the
underlying biology.

measurements with possible underlying transcription processes.

To be able to follow this close connection between mathematical and biological
concepts, we present the necessary biological and mathematical background knowl-
edge in the Chapters [2] and [3] In particular, we present details on transcriptomic
measurements and principals of the stochastic processes used.

In Chapter [, we mathematically investigate the connection between a selected
probability distribution and the inherent assumptions about the underlying biological
process. There, we relate statistical representations of single-cell nRNA measurements
to possible mechanistic models underlying the biological transcription process. We
show the linking of several models with distributions and extend those distributions
to real-world circumstances such as technical errors and heterogeneity. Through their
application to simulated and real-world data we can support that the often used
negative binomial distribution is in fact a very suitable choice to model single-cell
mRNA counts.

These findings are then transferred to joint measurements of several cells by mathe-
matical convolution. Such cell pools might be advantageous to measure in practice.
In Chapter 5| we present the statistical model of the existing stochastic profiling al-
gorithm, called stochprofML, which was developed to deconvolve continuous mRNA
measurements of such pools to single-cell profiles. Here we revise and extend this
continuous model to varying pool sizes and include extensive simulation studies. A
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complete statistical description of the core model is necessary, since our extension to
discrete sequencing measurements is based on it. Furthermore, we add a Bayesian
extension to incorporate parameter uncertainty, and thus introduce an additional
perspective. Next to the new model we also contribute to the downstream analysis
when studying the inferred heterogeneity. A new test allows to compare derived
distributions of different samples and a predictor specifies the pool composition of
selected measurements.

An application to real-world data of the proposed discrete deconvolution model is
given in Chapter [6] There we present mRNA measurements of varying small cell pools
in two datasets, one containing homogeneous and the other presumably heterogeneous
tissue. Although an increase in gene expression information per cell numbers can be
observed, we cannot confirm the assumed noise reduction and increased chances of
heterogeneity detection in these datasets.

Thereafter, we conclude in Chapter [7] our findings and offer an outlook to future
possible applications and extensions of the presented methods.

1.2 Contributing Manuscripts

Some parts of this thesis have been published or submitted to peer reviewed journals
and/or exist as published preprints on https://www.biorxiv.org or https://
arxiv.org/| Since they were written in collaboration with co-authors, especially with
colleagues from the Institute of Computational Biology, Helmholtz Zentrum Miinchen,
the articles are listed in the following, along with my individual contributions that
are relevant for this thesis.

e Amrhein, L., Harsha, K., and Fuchs, C. (2019). A mechanistic model for the
negative binomial distribution of single-cell mRNA counts. bioRziv 657619

This manuscript shows how to link suitable distributions for single-cell mea-
surements with possible underlying transcription processes using Ornstein-
Uhlenbeck processes. I conducted all mathematical derivations as described in
the paper. Further I designed and conducted the simulation study and applied
the models on real world datasets. I implemented the R package scModels with
help of my student assistant Kumar Harsha, who supported me especially with
C++ coding. All aspects of the project were supervised by Christiane Fuchs.
The manuscript was written in cooperation with Christiane Fuchs. Apart from
minor changes and the additional models that I have developed more recently,
Chapter 4| and |Amrhein et al| (2019) match. Some parts are contained in the
mathematical background in Chapter [3] and the Appendices [AJE]

e Amrhein, L. and Fuchs, C. (2020b). stochprofML: Stochastic Profiling Using
Maximum Likelihood Estimation in R. arXiv:2004.08809 [stat.AP].

In this manuscript I described the statistical model of the existing stochastic
profiling algorithm, called stochprofML, in detail. This tool as been proposed
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before by |Bajikar et al.| (2014)) and deconvolves continuous joint mRNA measure-
ments of several cells to single-cell profiles. I extended, modified and improved
the described method. With this I provided for the first time a detailed and
complete description of the complete model. I improved and extended the R
package stochprofML. I developed a new statistical test for the hypothesis
that two distributions that are inferred from different sample sizes and pool
sizes are the same. Additionally, I implemented a procedure to predict the
population composition of small cell pools based on the inferred population
parameters. I designed and conducted all simulations studies with help of my
student assistants Susanne Amrhein and Xiaoling Zhang. All aspects of the
project were supervised by Christiane Fuchs. The manuscript was written in
cooperation with Christiane Fuchs. Apart from minor modifications, the first
part of Chapter 5| and /Amrhein and Fuchs (2020b) match. Since the paper
discusses only the continuous models, the details of the discrete model are not
described there. Some parts are contained in the mathematical background in
Chapter [3] and the Appendices [F] and [G]

Amrhein, L. and Fuchs, C. (2020a). Stochastic Profiling of mRNA Counts
Using HMC. Proceedings of the 35th International Workshop on Statistical
Modelling (IWSM)

In this manuscript I described the discrete model extension for stochastic
profiling and introduce a Bayesian inference method to infer model parameters.
I developed and implemented the method described in the paper with help of my
student assistant Mara Santarelli, who helped especially in setting up the model
in the programming language Stan. I designed and conducted the simulation
study. The manuscript was written in cooperation with Christiane Fuchs. With
the exception of some small adjustments and an additional simplified version of
the model that was not yet included in the paper, the first part of Section [5.5.3]
and |Amrhein and Fuchs| (2020a) are identical. Some parts are contained in the
mathematical background in Chapter

Tirier, S. M., Park, J., Preufler, F., Amrhein, L., Gu, Z., Steiger, S., Mallm,
J.-P., Krieger, T., Waschow, M., Eismann, B., Gut, M., Gut, I. G., Rippe,
K., Schlesner, M., Theis, F., Fuchs, C., Ball, C. R., Glimm, H., Eils, R., and
Conrad, C. (2019). Pheno-seq — linking visual features and gene expression in
3D cell culture systems. Scientific Reports, 9(12367).

This manuscript describes a new sequencing technique that measures the joint
gene expression of complete spheroids of |colorectal cancer (CRC)} During this
collaboration I extended the stochastic profiling algorithm to allow different
pool sizes. This method extension is part of Chapter [f] Besides implementing
this new extension in our R package stochprofML, my part in this study was
focused on its application. Therefore, I conducted the needed preprocessing
of the CRC data followd by the stochastic profiling analysis. The CRC data
was provided by Stephan M Tirier. All aspects of the deconvolution part of
the project were supervised by Christiane Fuchs. The parts of the manuscript
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concerning the deconvolution of CRC pheno-seq data was written in cooperation
with Christiane Fuchs, Fabian J Theis and Stephan M Tirier. All other parts
of the project were performed by the remaining author team.

1.3 Contributing Software

The software and programming code generated during this thesis are published.
The two R packages scModels and stochprofML are available on CRAN (https:
//cran.r-project.org/)). All other relevant code can be found on the research
group’s GitHub repository https://github.com/fuchslab.


https://cran.r-project.org/
https://cran.r-project.org/
https://github.com/fuchslab




Biological Background

In this chapter we present important biological background information necessary to
follow this thesis. This thesis is partly based on transferring existing mathematical
and statistical models to biological questions. Therefore it is important to understand
at least the basic biological processes one wants to model and analyze. After a basic
overview of gene expression in cells we will describe the current experimental methods
used to measure the abundance of the products of these processes. Especially in
Chapter [6] of this thesis we will present the resulting data of such measurements. In
this context, we focus our analysis on cancer, particularly on acute [acute myeloid]
lleukemia (AML), which will be introduced in the course of this chapter. The AML
data presented in Chapter [0]is not directly taken from patients but stem from mouse
models. Therefore, we will also introduce this specific technique employed, namely
Ipatient derived xenograft (PDX)|

2.1 Gene Expression

Only about 60 years ago |Crickl (1958)) formulated for the first time the central
dogma of molecular biology, which describes the flow of the genetic information
within biological systems. Although it has since then been refined (Crick, |1970), it is
still valid and underlies the process of gene expression which explains how genetic
information is synthesized into a gene product. The most important steps of this
process in eukaryotic somatic cells are described below.

The main information in a cell is contained in its cellular [deoxyribonucleic acid (DNA)|
inside the cell nucleus. The DNA contains the genetic information of the organism.
Information carriers are the four different nucleobases, adenine (A), guanine (G),
thymine (T) and cytosine (C), which encode the DNA sequence. More precisely, the
DNA consists of two complementary DNA strands that contain the same information
as the complementary strand is built up by the counterparts of each nucleobase of
the other strand: A complements T and C complements G. Consisting of these two
connected complementary strands, the DNA forms the famous double helix by coiling
around its own axis (Watson and Crickl [1953). The DNA double helix is wrapped
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around histones and thereby forms a complex called chromatin. After additional
condensation the chromatin then organizes itself into several chromosomes. This is
called the genome and is generally the same in all cells of an organism.

The definition of “gene” is constantly being revised, as new findings are being gath-
ered. Gerstein et al. (2007) recently refined that “The gene is a union of genomic
sequences encoding a coherent set of potentially overlapping functional products”.
In general, genes are those parts of the DNA that are transcribed into functional
iribonucleic acid (RNA)| molecules. These new RNA molecules are complementary
copies of the DNA and built in the same way as single-stranded [complementary]
IDNA (cDNA)[with the difference that the nucleobase thymine (T) is replaced by a
different nucleobase uracil (U). Depending on the gene, RNA molecules can have dif-
ferent functions. For example, ftransfer RNA (tRNA)| or small nuclear RNA (snRNA )
directly perform tasks within a cell and therefore play a direct role for example in
gene regulation or protein translation. In contrary, messenger RNA (mRNA)| have
a more indirect function and the mRNA sequences serve themselves as templates
for proteins. During translation, the encoded amino acid sequence is built up and
therefore results in a more complex structure of proteins. In most organisms, the
DNA and thus the mRNA sequence codes for 20 different amino acids. Both mRNAs
and proteins degrade after some time.

With this we have only roughly described the steps of gene expression and left out
further intermediate steps such as for example mRNA splicing which follows directly
after the transcription of mRNA. Actually, the transcribed mRNA is called
MmRNA (pre-mRNA)[and has to be converted into mature mRNA. This is done by
cutting out non-coding regions of the pre-mRNA called introns and recombining the
coding parts called exons, see Figure 2.1 Gene expression measurement generally
refers to the quantitative measurement of either mRNAs (transcriptomics) or pro-
teins (proteomics) or both. In this thesis, when we mention gene expression and its
measurement, we usually refer to transcriptomics.

Unlike the DNA sequence, the activity of certain genes and therefore the amount of
their mRNA and protein content can differ in cells. Variations of mRNA and protein
content is the natural result of stochastic processes - such as mRNA transcription,
protein translation and their degradation. However, different cell types perform
different functions in an organism. These functions may be correlated to different
gene activities which are no longer the result of purely stochastic variation. Therefore,
these specific functions of the cells must have been ensured by regulatory mechanisms
that are activated during cell differentiation or other environmental influences. One
starting point is the modification of DNA, which is generally referred to as epigenetics.
The most frequently investigated modifications are the methylome, that characterizes
the methylation changes of nucleobases of the DNA and the chromatin architecture
that represents possible chemical changes in the histone proteins of the chromatin.
Figure (adapted from [Colomé-Tatché and Theis|, 2018) shows a scheme of the
aforementioned layers of gene expression. Nowadays there exist many experimental
technologies to measure each of these. Measurements quantifying the proteome or
transcriptome are of great use to analyze differences in gene expression between differ-
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Figure 2.1: Simplified scheme of the lifecycle of an mRNA. Red lines refer to introns and
untranslated regions, exons of the mRNA are depicted colored teal. The red ellipse depicts the
polymerases needed for transcription that attaches to DNA. The small blue ellispe shows the
ribosome that translates mRNA to proteins, depicted by a chain of small blue dashes. Freely
adapted on [Harries (2019) under the CC BY 4.0 license.

ent groups of cells. This includes the analysis of different cell types, the quantification
of drug effects vs. place, or other environmental changes. In the next section, we will
explain with more detail the methodology for the measurement of transcriptomic
data. Epigenetic or genetic differences generally have an effect on the gene products,
so if the cause of an effect is to be analyzed those layers might have to be measured.
For example analyzing the epigenetic layer, i.e. the methylome and chromatin archi-
tecture, helps to understand differentiation processes or other environmental changes.
Determining the genome and thus identifying genetic changes, helps to understand
for example the role of specific genes in the development of genetic diseases. Although
genetic changes such as the alterations of single nucleobases in the DNA sequence
occur constantly as part of evolution and often do not affect subsequent layers,
accumulation of these changes — including the deletion, duplication or shifting of
whole chromosomes or parts of them — can sometimes lead to diseases such as cancer.
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Figure 2.2: Scheme of the information flow in cells. Starting from the genetic information in
the genome, the epigenetic layer defined by the methylome and the chromatin architecture
governs its transcription into mRNA (transcriptome) and the subsequent translation into
proteins (proteome). Nowadays, all these layers can be analyzed individually and sometimes
jointly through experimental measurements. Figure adapted from |Colomé-Tatché and Theis
(2018)).

2.2 Transcriptomic Measurements

A revolution in the measurement of gene expression has taken place in recent years,
alike many other experimental methods. Most methods were originally developed for
genetic measurements, e. g. the identification of DNA sequences, and then further
developed and transferred to transcriptomic measurements. Determining the amount
of mRNA of particular genes in a sample is important to investigate which genes are
more or less active. Since the applications in this thesis are all based on transcriptomic
measurements, we will present some of the most popular experimental methods and
their development in recent years. In addition, we also include a small section on
raw data preprocessing, i.e. how the output of the machines needs to be processed
so that it can be analyzed with statistical tools.

2.2.1 DNA Microarrays Measure Relative mRNA Content

To determine the abundance of transcriptomes of many genes at once, |Schena
et al.| (1995) showed how DNA microarrays can be used to accomplish this task.
A microarray is a small chip that is covered with small wells, where each well can
be marked with one specific DNA array representing one gene sequence of interest.
Therefore, it is not possible to quantify an “unlimited” number of gene sequences, as
the plate size (= number of wells) is the upper limit. The mRNA of a tissue sample
to be analyzed needs some preparations before it can be loaded onto the microarray.
Since we want to determine mRNA abundances but the wells are marked with DNA
arrays, the mRNA needs to be translated into exact cDNA copies. In addition, these
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cDNAs are labeled with fluorescence. The material prepared in this way can then be
placed onto the microarray and the affected cDNAs hybridize with the complementary
DNA arrays in the wells by attaching to their counterparts. After washing the chip,
all unhybridized material is washed away. Next, the fluorescence of each well is
measured by scanning the chip with a laser. In this way, light intensities are obtained
for each gene sequence, which can then be translated to relative frequencies compared
to other measured intensities on this chip. Note that the DNA arrays on the plate
need to be prepared in advance. This means that one must already know in which
genes expression is to be measured and its complementary DNA sequence needs to be
known. See Figure for a schematic depiction of this process. A big disadvantage
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Figure 2.3: A general overview of DNA microarrays used in gene expression studies, based
on [Neugebauer et al| (2010)). The extracted mRNA of a tissue sample needs to be reverse
transcribed to cDNA. Additionally a fluorescent marker is attached to each of these cDNAs. Each
well of the microarray is marked with a DNA array, containing one specific gene sequence. After
loading the prepared cDNA on the microarray, affected cDNAs hybridize with the complementary
DNA arrays. In order to determine relative abundance of hybridized cDNA arrays for each well,
in a next step a laser measures their light intensities.

of this method is that each plate can only be compared with itself and the genes on
it. There is no meaningful way to compare the intensities of a gene abundance on one
plate with its intensity on a different plate. The intensities are always normalized
on the plates and depend strongly on the source material, which can vary greatly
from plate to plate, and on the laser used for scanning. When studying differentially
expressed genes between two groups, e.g. male vs. female or sick vs. healthy, each
group is labeled with its own fluorescence color, then mixed together and measured
on the same plate. The mixture of the colors or tendency towards one of them shows
the differences in gene expression between the two groups. Nowadays, microarray
measurements are still used and are suitable, for example, to find candidate genes
quickly and at low cost. Nevertheless, they are increasingly replaced by mRNA
sequencing, which we will introduce in the next part. For more details on microarrays,
see [Schena et al.| (1995), Malone and Oliver (2011]) and Draghici (2012]).

2.2.2 Sanger Sequencing and Next Generation Sequencing Tech-
nologies Measure mRNA Counts

In 1977, (Sanger et al., |1977)) laid the foundation for a revolution in genomics by
developing a method to read the sequence of nucleobases in DNA. In short, Sanger
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Figure 2.4: Rough illustration of the concept of Sanger sequencing. Complementary versions of
the DNA sequence to analyze are produced via chain termination PCR using classical nucleotides
and modified nucleotides with attached fluorescent labeling depending on the nucleotide. As
soon as one of the modified nucleotides is used during PCR, the chain terminates after this
position. The resulting copies of complementary DNA of different lengths are ordered by size
using gel electrophoresis. A laser detects the fluorescence of the modified nucleotide, which
determines the original base. In combination with the ordering the sequence can be read. Figure
adapted from Muzzey et al|(2015) under the CC BY 4.0 license.

sequencing consists of three steps (see Figure . First, the complementary version
of the DNA sequence of interest is generated many times using a method called
chain termination [polymerase chain reaction (PCR)| Additionally to the classical
four nucleotides of the DNA — the four |[deoxyribonucleotide triphosphates (ANTPs)|—
modified versions the so-called [dideoxyribonucleotide triphosphates (ddNTPs)| are
mixed in. Once one of these modified versions is used during PCR, the new sequence
is terminated at this point. In addition to the termination property, these ddNTPs
also have a fluorescent label attached. In a second step, all replicates are sorted by
size using gel electrophoresis. Then the fluorescence which is emitted by the ddNTPs
and thus defines the last nucleobase of the truncated replica, is determined by a
laser. Finally, the sequence of the nucleobases can be reconstructed by combining
the ordering of the replicates and the fluorescence.

The term NGS (Goodwin et al., 2016) describes advanced high-throughput methods
that make sequencing cheaper and faster and thus more useful. In contrast to Sanger
sequencing, NGS methods enable the sequencing of millions of DNA pieces at once.
With the transfer of sequencing methods to transcripts — now called RNA-seq — , a
big step was taken to determine the amount of RNA molecules in a sample (Wang
et al) [2009)). The main challenge is to create the so-called library, which contains
the synthetical cDNA, that corresponds to the RNAs of interest, but which are more
stable and can be sequenced with the usual available NGS methods. In contrast to
DNA sequencing, where one wants to determine the exact DNA sequence, the main
interest in RNA sequencing is to quantify mRNAs of the same gene. Using these
quantities one wants to determine highly expressed genes or to analyze different gene
expression between individuals or treatments. As there exist many different protocols
for library preparation and different NGS methods, the steps taken might differ. In
most protocols RNA is amplified several times before cDNA conversion so it is less
likely to loose some RNAs (including its replicates) during the process. To speed up
sequencing, often the mRNAs from one sample get attached sample specific barcodes,
so that sequencing of several samples can be performed together and afterwards the
reads can be separated by these barcodes again.
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2.2.3 Third Generation Sequencing
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Figure 2.5: Direct sequencing of poly(A) RNA strings. As the method was originally developed
of double stranded DNA, a dT adapter is attached to the poly(A) tale of the extracted mRNA
and with reverse transcription a cDNA strand is transcribed. A motor adapter is attached which
navigates to the nanopore and ensures that only the original mRNA strand gets passed through
it. The current is monitored and the mRNA sequence of interest can be determined. Figure
taken from |Workman et al.| (2019).

Sequencing technology is still developing. There are constantly new protocols being
published that allow to process more samples, increase the sequence depth and/or
decrease processing times and prices. These new techniques are called third-generation
sequencing methods. Nanopore sequencing (Goodwin et al.; 2016) is such an example.
Already described many years ago, newer technologies allow nowadays to efficiently
use this method. Initially it was constructed for the characterization of DNA strands.
The DNA string of interest is directly sequenced and no transformation to cDNA is
necessary. Also amplification is not needed. Roughly speaking the idea is the following:
A motor adapter is attached to the double helix and directs to the nanopore. In
fact the nanopore is a lipid membrane with many small (nanometer size) holes in
it, the pores. As soon as the adapter attaches to such a pore, the DNA strands
are up and one is directed through the pore. When the strand passes through the
pore an attached current is recorded as it changes for different bases of the passing
DNA. Afterwards when analyzing the current shifts one can reconstruct the DNA
sequence. Nowadays this technology is transferred to directly sequence RNA reads.
As Figure [2.5| shows, one reverse transcription step that generates cDNA needs to
be performed, but this is only for further adapter ligation, as it is the original RNA
that passes through the nanopore and hence gets directly sequenced. In contrast to
many NGS methods, long reads are no problem, as the sequences to be determined
are not fragmented. But also nanopore measurements are challenging, as it is hard
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to determine each base separately. This can be improved by either slowing down
the string passing through the pore or by improving its sensitivity. A nanopore
sequencing machine is very small and portable. As it is relatively cheap and easy to
use, this technology has the potential for fast analysis of genomes and transcriptomes.

2.2.4 Single-Cell Measurements

In general, the methods described above have been developed for bulk samples, i. e.
tissue samples containing thousands to millions of cells. These bulk measurements
are sufficient for many applications, such as genotyping of individuals or determining
changes in gene expression before and after treatment. However, gene expression is
not only heterogeneous between individuals and cell types, but also within cells of the
same type. Single-cell data appears to be better suited to fully identify heterogeneity.
Therefore, there has been great interest in developing methods to sequence the
information contained in each individual cell. In general, single-cell methods have
to overcome two main difficulties during library preparation: selection for single
cells and dealing with the small amount of input material. This has been solved
for single-cell microarrays (Kurimoto, 2006, Tietjen et al., 2003)), as well as for
scRNA-seq (Kolodziejczyk et al., 2015| Sandberg, [2014). Since we are only dealing
with sequencing data in this thesis, we will only focus on scRNA-seq technologies in
the following. The basic procedure that is common to all scRNA-seq experiments
is to first capture and lyse a single cell. After the reverse transcription step when
mRNA molecules are selected by poly(T) priming, the necessary cDNA is obtained,
which is then amplified by PCR or in vitro transcription. This amplified cDNA forms
the basis for the preparation of the sequencing library (Kolodziejezyk et al., 2015)).
Each protocol approaches these steps slightly differently (Ziegenhain et al., 2017).
Depending on the goal of the measurements a different library might be appropriate.
In Chapter [6] we will present data generated by our collaboration partners using their
plate-based improved [single-cell RNA barcoding and sequencing (SCRB-seq)| protocol
(Soumillon et al.l 2014), called molecular crowding SCRB-seq (mcSCRB-seq)| protocol
(Bagnoli et al, [2018). As shown in Figure [2.6] single-cells are isolated in multi-well
plates by [fluorescence-activated cell sorting (FACS)| The wells contain some material
so that the mRNA is extracted from the cells and reverse transcription is performed.
In that step the cDNA that is complementary to the targeted mRNA is generated.
Barcodes for the wells and the UMIs are also attached. Here the authors improved
SCRB-seq by adding polyethylene glycol (PEG8000) to the content of the lysis puffer
to make ligation more efficient. Next, all wells are pooled and PCR amplification is
performed, which was improved by using Terra polymerases. Afterwards the prepared
library is sequenced as usual in a sequencing machine.

Plate-based technologies existed prior to single-cell sequencing, but new technologies
tailored to single-cell measurements have also been developed. One of the key
contributions is the development of droplet-based technologies such as the 10x
Chromium (Zheng et al., 2017)) where tens of thousands of cells can be measured
in one single experiment. There each individual cell is captured in a microfluidic
droplet in a fast, automated manner. However, often errors occur and droplets do
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Figure 2.6: Schematic overview of the mcSCRB-seq protocol workflow. Cells are sorted via
FACS into the plates which contains the lysis buffer and reverse transcription using molecular
crowding is started. The barcoded material of all wells is pooled and PCR amplification is
performed. Figure taken from |Bagnoli et al.| (2018) under the CC BY 4.0 license.

not contain any cell since the flow of cells is slow to avoid doublets, triplets,... i.e.
more than one cell per droplet. With this sample sizes increased and thus data grew
bigger and bigger (Angerer et al., 2017)) but also cheaper.

Another major contribution in the field of scRNA-Seq was the introduction of
imolecular identifiers (UMIs)| see [Islam et al.| (2014) and Ziegenhain et al. (2018). In
addition to the barcode that identifies each sample, a unique identifier is attached
to each original mRNA molecule before amplification. Therefore, all mRNA reads
originating from the same mRNA molecule can be collapsed onto their UMI and
thus not only the number of reads but also the number of UMIs of each gene of each
sample can be counted and analyzed (see Figure . The usage of UMIs reduces the
bias introduced by the amplification step, where some molecules may be amplified
more often than others.

2.2.5 Measurements of Small Pools of Cells

Single-cell data is more cost-intensive and prone to technical noise than bulk measure-
ments where millions of cells are sequenced together. There, in contrast to single-cell
measurements, heterogeneous gene expression is averaged. A suitable trade-off be-
tween the bulk and single-cell approach is the joint measurement of small pools of
cells. |Janes et al.| (2010) proposed to use single-cell techniques to measure a random
selection of a specific number — e. g. 10 cells — in one sample together at this time
using microarray measurements. [Singh et al.| (2019) further developed this idea and
built a protocol called 10cRNA-seq which extends scRNA-seq to jointly sequence 10
micro-dissected cells.

Joint measurement of cells adds information to single-cell sequencing data. For
example, [Tirier et al.| (2019)) measure and image clonal tumor spheroids grown from
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Figure 2.7: cDNA reads (gray) with attached cell barcodes (light blue and magenta) and
UMIs (other colors) are assigned to two gene sequences. Collapsing reads to UMIs and correctly
assigning them to single cells requires to control for sequencing errors in barcodes and UMIs.
Figure adapted from Ziegenhain et al.| (2018]) under the |CC BY-NC 4.0 license.

single-cells using their technique called pheno-seq. The size of these spheroids span a
wide range from a few cells up to over 200. Through their analysis, morphological
features could be identified that were lost in single-cell measurements.

Another growing field that measures several cells simultaneously is spatial transcrip-
tomics (Asp et al., [2020]). Since it is not yet possible to mark the location of the
same single-cells that will be sequenced later, slides are extracted from the tissues,
imaged and then localized spots containing multiple cells are sequenced together.
Experimental techniques to do this are for example tomo-seq (Junker et al. 2014) or
10x visium (10x Genomics 1™ |2018) which was originally developed by [Stahl et al.
(2016)).

In Chapter [5| we will present a methodological approach for the analysis of small
pool measurements.

2.2.6 Data Preprocessing

In the previous sections on sequencing, we stopped at the point where the library
was fed into a sequencing machine and just assumed any result. In reality, this step
is much more complicated. The sequencer output contains several files with lots of
information. The mapping of the sequenced reads to a reference genome has not
yet been done, so a look at the output files does not give any information about
specific gene expressions. Parekh et al|(2018) developed a pipeline called zUMIs to
process such raw RNA-seq data from any sequencer. This is the pipeline we used
for data preprocessing for the data shown in Chapter [6] As shown in Figure [2.8]
first, the file containing the sequenced barcodes of the wells and UMIs is combined
with the file containing the sequenced cDNA reads. Quality controls are added to
filter out bad reads, i.e. cases where the sequencer has most likely made a mistake.
Then, cDNA sequences are mapped to the reference genome using the STAR (Spliced
Transcripts Alignment to a Reference) software (Dobin et al., [2013)). Many reads
cannot be mapped, either because they have errors or because they were not mRNA.
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In the counting step, the mapped reads are further divided into exonic and intronic
or both — depending on which part of the gene their read spans — and are collapsed
to their UMI numbers. The zUMIs output then provides read and UMI count tables
for these exons, intros, and intron.exon numbers. These are the data files that are
then analyzed further and their quality is summarized in some descriptive plots.
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Figure 2.8: Schematic representation of the zUMIs pipeline. First the two input data files
containing the reads are merged and filtered for bad reads. STAR is used to map the resulting
merged reads to the reference genome. The mapped reads are then distributed to the original
samples and molecules through their well and UMI-barcodes and count matrices are generated.
Finally zUMIs offers first descriptive summary plots. Figure taken from [Parekh et al. (2018
under the CC BY 4.0 license.

Of course there are other raw data processing pipelines that perform in general very
similar steps. For example Cell Ranger (Zheng et al., 2017) was tailored for raw
data preprocessing of single-cell 10x chromium data. After this as soon as read or
UMI count matrices are generated, further data preprocessing such as normalization
or batch correction starts and moves on to the actual data analysis. For this other
pipelines such as Seurat (Butler et al. [2018)) or Scanpy (Wolf et al.| 2018) have been
developed. With this nowadays data processing is pretty standardized. For more
information we refer to a review on best practices from |Luecken and Theis (2019).

2.3 Acute Myeloid Leukemia

Leukemia was recognized by John Hughes Bennett in 1845, when he recognized
leukemia as a clinical disease entity by realizing that people died from suppuration of
the blood (Bennett], 1845)). At the same time Rudolf Virchov established in parallel
the name ‘Leukhemia’ — Greek word of white blood — for the disease as he realized
the existence of more white blood cells in his patients as usual. Leukemia is a disease
that originates in the bone marrow, where blood cells are produced , .
Blasts are immature-looking cells that also occur in normal bone marrow, but with a
frequency lower than 2 % as early blood cell precursors. Actually, leukemia describes
a whole group of diseases of the bone marrow with varying degrees of severity and
symptoms. Therefore two classes are distinguished depending on the origin of the
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disease, see Figure for healthy haematopoiesis. The lymphoid leukemia originates
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Figure 2.9: The healthy development from haematopoietic stem cells to mature blood cells.
The lymphoid and the myeloid progenitors divide differentiation into the two developmental

groups. Figure of the simplified hematopoiesis shared by A. Rad and M. Haggstrom under the
CC BY-SA 3.0 license.

in the development of lymphoblasts, i.e. immature lymphocytes. If the myeloid line,
i.e. the progenitors of erythrozytes, monocytes and megakaryocytes is affected, then
we are dealing with a myeloid leukemia. Depending on the course of the disease, a
distinction is made between chronic and acute leukemias. Chronic leukemias develop
slowly and often do not show any symptoms in the early stages. The produced blasts
are relatively mature but still abnormal white blood cells. In contrast, acute leukemias
are fast developing diseases with severe disease progression and high mortality. They
are characterized by a rapid crowding of blasts in the bone marrow which leaves only
a very small space for healthy blood cells. Most symptoms are not directly caused
by malignant blasts but by a lack of healthy blood cells. Missing white blood cells
cause infections and fever, missing red blood cells are associated with a feeling of
fatigue and weakness, while bleeding is caused by missing platelets. In general if
blasts are increased to more than 20% an acute leukemia is present. Taken together,
this leaves four main categories of leukemias: facute lymphoblastic leukemia (ALL)|
[chronic Iymphocytic leukemia (CLL)|, [AML] and [chronic myeloid leukemia (CML)|
These can be subdivided into many more subtypes. In general — as they develop
over time — chronic leukemias occur more often in elderly patients. ALL is the most
common cancer in children and affects most frequently small children. In the last
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decade ALL is seen as the first neoplastic cancer that could be cured in children,
meaning that the survival rate nowadays is over 90% (PDQ ® Pediatric Treatment,
Editorial Board,, |2020)). In contrast, AML is the most frequent acute leukemia in
adults with a steep increase in age which will be a bigger issue in an aging society,

see Figure [2.10]

Age-specific SEER Incidencence Rates of Leukemias, USA 2012-2016

301

ALL
207 - AML
CLL
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Incidence per 100.000
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Figure 2.10: Age-specific incidence rates for the four main leukemia classes: Acute lymphoblastic
leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML) and
chronic myeloid leukemia (CML). Updated data from Howlader et al | (2016)).

Since in Chapter [6]we will present AML data, in the following we will focus on this type
of leukemia. An AML occurs when a progenitor cell in the bone marrow accumulates
many different changes in its DNA, proliferates and takes over a part in the bone
marrow. These cells are then called a clone. AML is a disease where genetic factors
play a role and thus some people are more likely to develop AML. But environmental
factors also play a major role. Since risk factors include radiation exposure, secondary
therapy-related AML can occur after myelodysplastic disease such as myelodysplastic|
isyndrome (MDS)| or after chemotherapy as well as radiotherapy for other types
of cancer (PDQ ® Adult Treatment Editorial Board, 2020). For all these reasons,
AML is highly heterogeneous and each AML is unique in its features. The WHO has
classified many AML subtypes, but in general two AMLs from two randomly selected
patients are very different and do not show the same genetic changes. Such a leukemic
cell population is called a clone. Since 2008, the WHO classifies AML to be present
when more than 20% of myeloid blasts can be found in blood or bone marrow (PDQ
® Adult Treatment Editorial Board, 2020). To prove that the blasts seen are myeloid
blasts, one uses chemical stains (peroxidase stains) and flow cytometry. In AML there
is always a founding clone that started the AML. This founding clone proliferates
and occasionally accumulates new mutations, and forms so-called subclones. Hence,
inside an AML many parallel subclones can exist. To cure AML a therapy has to
target all types of subclones. Surviving clones can cause a relapse of the disease (as

shown in Figure [2.11]).
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Initiation Diagnosis Treatment MRD Relapse
Model 1
Model 2
Founding clone Relapse enrichted clone @ Relapse specific clone

@ Primary specific clone Primary specific clone

Figure 2.11: Scratch of clonal evolution over time in AML. Two major patterns are depicted
that are observed most frequently. The first model shows the dominant founding clone evolving
to give rise to the relapse clone while clones present at diagnosis vanish. In contrary, in model
2 a minor clone that originally evolved from the founding clone survives the treatment, stays
undetected as minimal residual clone during the [minimal residual disease (MRD)| period and
expands at relapse to finally give rise to the relapse specific clone. Figure adapted from [Ding
et al.[(2012) under the BY-NC-SA 3.0 license.

2.4 PDX Mouse Models

The AML data treated in Chapter [6] was generated using [PDX| mouse models.
Therefore we will shortly give an overview on cancer mouse models. In the past two
different murine models have been developed: |genetically engineered mouse model
and xenograft models (Richmond and Su, 2008)). Both are used for different
purposes of a study. In [GEMM] specific genes of interest are altered so that they
are mutated, deleted or over-/underexpressed. Typically these are genes that are
assumed to be important for example in tumor development. Afterwards the mice
are studied for tumor development over some time. In contrast, in human xenograft
models, human cancer cells are transplanted into immunosuppressed mice. These
are mice that lack a working complete immune system and thus do not reject the
implanted human cells. As these mice carry for example cancer cells of a specific
patient, one can study their response to different therapies in vivo. Xenograft models
can be subdivided into two categories depending on whether they are cell line derived
or patient derived xenograft models.

In detail the [AMI] cells that we will analyze in Chapter [6] were generated as follows:
human leukemia cells are transplanted into immunosuppressed mice, which in this
case serve as a kind of “incubator”. The human cells can settle in the bone marrow
niche and start to proliferate. After several weeks to months, 1 million cells have
become 50 million cells, which we isolate from the bone marrow of the mice and
use for analysis - or transplant into the next mouse for further amplification. More
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information can be found in |Vick et al. (2015). During the sequencing process it was
then important to separate the human cells from the murine cells. Therefore, the
murine cells were depleted by “Mouse Cell Depletion MACS” (Miltenyi) and the
human cells were sorted by ARIA to obtain the appropriate cell count. More
information on these purification steps are explained in |[Ebinger et al.| (2020)) and
Ebinger et al.| (2016)).

(NN (N

foon-

Figure 2.12: Scheme of the process of generating transgenic PDX (t-PDX) AML cells. PDX
cells were transduced after first or second retransplantation cycle. Figure adapted from [Vick
et al.| (2015) under the CC BY 4.0 license.
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3 Mathematical Background

In this thesis we apply different concepts of mathematical modeling to biological
questions and medical data. Data modeling can be approached from different perspec-
tives: The procedure used in stochastics and probability theory is generally driven by
the data generating process. After proposing a mechanistic and/or stochastic process
that describes the individual components of the mechanism, one is interested in what
the data generated by this process would look like. These can be simulated and then
be compared with real data. Note that although in general a mechanistic process
can also be deterministic, in this thesis we always consider it to be stochastic. In
contrast to many tangible mechanistic models as known and widely used in physics,
it is not as easy to build and verify such a model for biological processes.
Therefore, a different perspective is often chosen, rooted in traditional statistics,
where the focus is on the given data and the question of which model best fits the
data. This model does not necessarily describe the underlying mechanistic process
but can also be a parametric distribution. We include both perspectives in this thesis.
In this chapter we give important background information that is needed to follow
the derivations of the mathematical models in the course of this thesis.

First, we introduce how new parametric distributions can be constructed using
known distributions (see Appendix . Some of these distributions will appear in
Chapter [4 where we link distributional assumptions of mRNA counts to possible
underlying transcriptional processes. Deeper knowledge, especially of the convolution
of distributions is important to follow Chapter 5| where the described stochastic
profiling algorithm deconvolves data measurements using parametric distributions.
Afterwards, we give a short introduction to the Ornstein-Uhlenbeck processes, a
special form of stochastic differential equations. These are needed in Chapter 4] where
we link parametric steady state distributions and mechanistic transcription processes.
Parameter inference is required to fit parametric distributions or models to given data
measurements. This model parameter estimation is a large scientific area where we
will only roughly sketch the main components of frequentist and Bayesian inference.
In general, different models can be fitted to some given data set. Therefore, in the
last section of this chapter we will show how to select the best model. We also show
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how to reject a forced model fit where the data is not modeled well enough by a
goodness-of-fit test. Model fitting and selection is required in all parts of this thesis.

3.1 Construction of Parametric Probability Distribu-
tions

A major part of this thesis is focused on the appropriate statistical modeling of data:
To be able to draw some conclusions about a given data set, the right software for
its analysis must be selected. This selection requires knowledge of the underlying
mathematical assumptions of the software, which the data must fulfill. For example,
if a given data set contains continuous values, only software with underlying model
assumptions applicable to continuous data should be selected. Conversely, if an
algorithm is constructed to analyze certain data, the nature of that dataset must
be respected. All models shown in this thesis are so-called parametric models, i.e.
they are based on parametric probability distributions. Since parametric models
generally give more power to the result of the analysis, they should be preferred over
non-parametric models whenever possible.

Probability distributions and other mathematical terms are often not uniquely defined
in the literature. Therefore all standard continuous and discrete distributions and their
parameterization used in this thesis are listed in Appendix[A]l However, in this section
we will present some more complicated parametric probability distributions. Using the
univariate distributions listed in Appendix [A] we introduce further distributions that
are constructed by combining several of them by mixing, convolving or compounding.
References include [Dormann| (2013)), the NIST library (Olver et al.; 2019), Karlis
and Xekalaki (2005]), and |Graham et al.| (2017)).

3.1.1 Mixture of Probability Distributions

When talking about heterogeneity, e.g. when a sample contains gene expression
measurements of different cell types, it is common to use a separate probability dis-
tribution for each underlying population. This leads directly to mixture distributions.
Since typically continuous and discrete distributions are not mixed in one model, f
describes in the following either a[probability density function (PDF)|or a
imass function (PMF)|

Definition 3.1 (Mixture Distribution) X follows a T'-fold mizture distribution (Tmiz)
of
D1 with probability p;
i Dy with probability po

Dy with probability pr,
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where Dy, ... Dy are T distributions with PDFs or PMFs fy,..., fr with mizing
weights p = (p1,...,pr), where pr =1 —py —- -+ —pr_1. The resulting PDF or PMF
s given by

mez’x (J,’| B,p) = p1f1 (.73‘91) + ... +phfh ($|9h) 4+ ...+ (1 — th> fT <I|9T) s
h=1

where @ = {01,...,0r} are the (not necessarily disjoint) distribution parameters of
the T distributions.
A random variable X ~ Tmix(0,p) has expectation and variance

T
ETmiX [X] = Z pthh, [X]
h=1

T
Varrui[X] = Y pa(Varg, [X] + Ej, [X]* = Eraux[X]%)
h=1

As a general rule, we assume f; (x|6;) # f;(z|0;) for all 7,j. This includes the
possibility that distributions are the same, i.e. f; = f; but come with different
distribution parameter 6; # 0; for i # j.

Example 3.1 (Mixture of Two Populations) If a sample consists of two popula-
tions and the measurements of each of these populations are modeled by one single
distribution Dy and Dy, with PDFs or PMFs given by fi and fs, which are parame-
terized via 01 and 605. Then a measurement of this mizture is distributed according to
pf1(01) + (1 — p) fo(62) with p € [0,1]. With a probability of p the distribution of this
measurement is thus Dy, otherwise Dy. The corresponding mixture PDF or PMF is
given by

fomin(2|0 = {01,023, p = (p, (1 —p))) = p f1(]01) + (1 — p) fa(z]02).

One special case of mixture distributions are zero-inflated distributions. If there are
many (more than expected) zeros in the data, an indicator function with point mass
at zero can be introduced to model the first mixture. If the data to be analyzed is
continuous but contains zeros, a zero-inflated distribution should be used. This is
one of the typical cases where a discrete distribution (the zero part) is mixed with a
continuous distribution. The corresponding PDF or PMF reads

Ja-Tmix(2]0,p) = pl]l{o}(x) +p2 fi(x]01) + ... + (1 — Zm) Jr—1(z|07_1).
h=1

Example 3.2 (Univariate Distribution with Zero-Inflation) If there is only one popu-
lation but for some technical reason there are more zeros than expected in the data,
the PDF or PMF corresponding to the zero-inflated distribution is given by

fai(x|0,p) = plioy(z) + (1 — p) f(]0).
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In Chapter [5| we will use continuous mixtures consisting of lognormal (LN) and/or
exponential (EXP) distributions and discrete mixtures using negative binomial (NB)
distributions. Although, in general, all distributions contained in one mixture can be
different, often only one type of distribution (with different parameters) is used for
the mixture.

3.1.2 Compound Probability Distributions

Another way to create a new probability distribution is compounding. In general,
both continuous and discrete distributions can be used, but care must be taken to
ensure appropriate choices.

Definition 3.2 (Compound Distribution) A compound distribution (Comp) is ob-
tained when a random variable X follows some parameterized distribution Dy with
PDF/PMF fi(z|\) with unknown parameter \. This distribution parameter X\ itself
follows some parameterized distribution Dy with PDF/PMF f5(\|0), which in turn is
parameterized by some parameter 6. The resulting PDF or PMF is given by

Feomp(2]0) = / " AN LA

Note that if X is a discrete parameter, Dy must be a discrete distribution and fs is a
PMF. In this case the integral changes to a sum and the new PDF or PMF fcomp 1S
a special case of a mizture distribution (see Definition [3.1) where T corresponds to
all the countable values that Dy can take.

In this thesis we will only use compound Poisson distributions, i.e. fi = fpois-

Definition 3.3 (Compound Poisson Distribution) A compound Poisson distribution

18 a Poisson distribution with intensity parameter \, which is not a constant but
itself follows a distribution with PMF f, parameterized by 6. Hence, the PMF of X

s given by

6—>\ T

fComp—Pois(fEW) = / 2 f()\w)d/\ fm" T e ]N().
0 .

A random variable X ~ Comp-Pois(0) has ezpectation and variance
Ecomp-pois(9)[X] = Ej, [A] and  Varcomp-prois@)[X] = Ef,[A] + Vary, [A]

Note that these distributions are sometimes called mixed distributions or in the
latter case mixed Poisson distributions (see, e.g. [Karlis and Xekalaki, 2005)). To avoid
confusion with the mixture distributions in the previous Chapter we call them
compound distributions in this thesis or just combine the names of the compound
distributions. Next, we will list the specific compound Poisson distributions used in
this thesis and derive their probability functions and other properties.
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Example 3.3 (Poisson-Gamma (PG) Distribution)  The most popular example of an
compound Poisson distribution is the (compound) Poisson-gamma (PG) distribu-
tion, 1. e. the intensity parameter of the Poisson distribution itself follows a gamma
distribution (Definition . Since the resulting PG distribution is equivalent to
the NB distribution (Definition , they can be transformed into each other by
re-parameterization. To show this, we start with the construction of a PG distribution.
Let o, 3 > 0 and x € Ny. Then, according to Definitions[3.3 and[A.3,

[e%s) —A)\aj o0 —/\)\ac oc)\oc—l —BA
fratela.8) = [T 0la s = [T EE

_ 18 /eMWWM%u
z! T(«)

Substitution with w = A (1+ ) and § = 115 and use of T'(k) = [ t* " e~'dt for
k>0 leads to

B ﬁa S . u r+a—1 1 B 6@ 1
ﬁdﬂmﬁ”‘ﬂf@)é ¢ (1+5) 33N T ar G g @t
T+ aw)p _<x+a—1>( 1 )z( B )O‘

~ 2ll(a)(B + 1)ete T B41 B41

:fNB (x a,%).

This is the PMF of the NB distribution (Definition . With regard to the NB

parameters, the PG parameters are thus given by

fxg (z]r,p) = fre (967’ ) forr € RY and p € (0,1).

Y 1 _ p
Another compound Poisson distribution that we will use in this thesis is the Poisson-
beta distribution.

Example 3.4 (Poisson-Beta (PB) Distribution) The (compound) Poisson-beta (PB)
distribution, is a Poisson distribution where the intensity parameter follows a beta
distribution (Definition . Note that here we use the generalized form of the beta
distribution with four parameters. The resulting PB distribution is not as famous as
the previous PG distribution, but appears in some literature, often without any name
(Raj et al., 2006). The resulting PMF can be calculated as shown in the following:

%) —)\)\1‘ P a—1 -\ -1
fes(zla, B, a,c) :/0 f(Aev, B, a,c)dA —/O : ] ((C_ Z§a+ﬂ(clB(a) 3)

B c e—)\)\z ()\ _ a)a—1<c _ )\)6—1
= [ g™

Often a = 0. With this we can proceed and simplify

FeN (V) e = AT e ()T (5
frntalas 0.0 = [ R GEe g [

o0 —)\)\x
dA

D

dA
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Substituting z = \/c and d\/dz = ¢ leads to

L [Te(ze)” ()21 —2)P
B /0 xle B(a, 8) Edz

— er(a—i_ﬁ) 1€—zczx Za—l _2,6’—1 7
= ST, ¢ e

1 Fy is the confluent hypergeometric function of first order (Definition . With
this, we get
cT(a+ )N (a+ )
I'(z4+ D) (a+ 6 + )

fes(z|a, ,0,¢) = WFila+z,a+ B+x;,—c) forx €Ny.

(3.1)

A random variable X ~ PB(«, 3,0, ¢) has expectation and variance

ac

d
a+p a

EPB(a,B,O,c) [X] = EBeta(a,B,O,c) [)\] =

__ac afc?
S a+ B (a+B)Xa+B8+1)

VarPB(a,,B,O,c) [X] - EBeta(a,,B,O,c) [/\] +VarBeta(a,B70,c) [/\]

Another compound Poisson distribution that will show up in this thesis is the Poisson-
inverse Gaussian (PIG) distribution. In contrast to the PB distribution the PIG is
more popular.

Example 3.5 (Poisson-Inverse Gaussian (PIG) Distribution) The PMF of the (com-
pound) Poisson-inverse Gaussian distribution is a Poisson distribution whose inten-
sity parameter itself follows an inverse Gaussian distribution (Definition . The
PMF of the PIG distribution can be derived and is given in (Holla, |1967) by

o] e—A)\x

z!

1
22\2 1 A A
_<?) e K, s <\/2A(1+2—MQ>>.
2<1+ﬁ>

Its probability generating function (PGF) is given by

Frrclali N) = / fre (M A

Grra(eln, N) = exp (=5 [[1+26(1 = 2))F —1]).

A random variable X ~ PIG(u, \) has expectation and variance

3
Epicun[X] =n and  Varpig(n[X] =+ 'uy

Note, that sometimes the PIG distribution is parameterized via (u,0) where o = & is
the dispersion parameter (see|Rigby et al., |2019).



3 Mathematical Background 29

Example 3.6 (Poisson-shifted Gamma (PsG) Distribution) The PMF of the (com-
pound) Poisson distribution where the intensity parameter itself follows a shifted
gamma distribution, i. e. a gamma distribution with shape parameter o > 0 and rate
parameter B > 0 that is shifted by some value \ > 0 is given by

xT

B F(Oz —|—i)ﬂi)\x_ie_)‘
Feaal@los ) =2 Fyai 5 Tee =1

A random variable X ~ PsG(a, 5,\) has expectation and variance

Epsa[X] = A+ % and Varpsg[X] = A + O‘“ﬁﬂ; B)

This distribution is also called Delaporte distribution (see Definition with

parameters i, o and v, where p = A+ 3, 0 = é and v = /\-‘1)-\ .

@[

3.1.3 Convolution of Distributions

In case only the sum of several latent observations can be measured and needs to
be modeled, the resulting distribution must be determined. In other words, we need
the probability distribution of Y = X; + --- + X,, which is the convolution of the
individual probability distributions of the latent observations Xy, ..., X,,.

Definition 3.4 (Convolution of Distributions) Let Y be the sum of n independent
random variables Xy, ..., X, following distributions Dy, ... D, with PDFs or PMFs

fi, .-+, fn and parameters 0y, ... ,0,. Then in case the D; are continuous distributions,
the PDF of Y s given by

Yy [y—o y—>
fr(yl@) = /0 /0 /0 fi(x1|6h) foly — 21]02) - -
-1

fn (y_zxj

Jj=1

0n> dl’nfl cee dl’gdl’l.

en) |

fr(y16) = / " @180 folly — 21 l6a)de, (3.2)

In case the D; are discrete distributions, the PMF of Y is given by

n—2

frle)=>_ > - 2 Ji(@1|00) faly — 116) -+ - £ (y—ij

x1=0 x2=0 Tpn—1=0 j=1

In the case of Y = X; + X, this simplifies in the continuous case to

and in the discrete case to

Fr@l0) =" fi(a1161) faly — 21]65). (3.3)

r1=0
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Deriving the resulting probability distribution for Y is not straightforward and often
it is impossible to calculate it explicitly. Therefore, approximation methods must
often be used. However, there are special cases where the resulting distribution can be
calculated, since it is again a known parametric distribution. Next, we will give some
examples of these cases and present the convolutions used in this thesis. In general
it is easier to calculate the convolution if the f; come from the same distribution
family and differ only in their parameters 6;. We start with distributions that are
infinitely divisible, i.e. a random variable Y following a probability distribution
D that can be divided for each positive integer n in n i.i.d. random variables with
Y = X; + -+ X, (see Satol [1999)). Clearly the normal distribution is such an
infinitely divisible distribution. We start with the convolution of normally distributed
random variables, where the resulting convolution is itself a normal distribution.
This is true for all possible parameters of the original normal distributions.

Example 3.7 (Convolution of Normal(y;, o) Distributions) — The normal distribution
is one of the rare distributions where the random variables do not have to follow the
same normal distribution i.e. the 0; = (,uj,a]?) may differ, so that their sum still
follows a normal distribution. In detail, if the independent X; ~ Normal(y;, O'JQ-) then

Y =X;+ -+ X, follows a Normal(py + -+ + p, 0% + -+ - + 02) distribution.

Next, we look at random variables that need to share some common parameter in
order to maintain the parametric distribution for their convolution.

Example 3.8 (Convolution of NB(r;,p) Distributions) The convolution of n NB
distributions that share the same p parameter is again a NB distribution. In detail, if
the independent X; ~ NB(r;,p) (see Definition thenY = X +---+ X, follows
a NB(ry+ -+ 4 r,,p) distribution (see e.g. |Furmanl, |2007).

Some distributions require that all X; come from exactly the same distribution,
i.e.0; = 0; to maintain the parametric distribution for the convolution. Trivially,
this is the case for both normal and NB distributions. Here we will present the
convolution of exponentially distributed random variables, since we will need this in

Chapter

Example 3.9 (Convolution of EXP(A) Distributions) The sum Y of independent
exponentially distributed random variables (Definition with the same intensity
parameter X follows an Erlang distribution (see |Feldman and Valdez-Flores, |2010).
An Erlang distribution is a gamma distribution (Deﬁm'tion with integer shape
parameter o = n, which represents the number of exponentially distributed summands,
i. e. Gamma(n, \). Note that the exponential distribution itself is a special case of

the gamma distribution, with shape parameter o = 1. Taken together, this means if
X; ~ EXP(\) = Gamma(1,\), then Y = X; +--- + X, ~ Gamma(n, \).

As mentioned before, not all distributions maintain their distribution after convolution.
However, for the convolution of the NB distribution with different parameters r; and
p; the resulting distribution can still be described. We use this result in Chapter [5
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Example 3.10 (Convolution of NB(r;, p;) Distributions) |Furman (2007) shows that
fy describing the PMF of the convolution Y = X1 + ...+ X,, of n independent
random variables X; ~ NB(r;,p;) (see Definition , is given by

fY(y|T’p) = fn—NB(y|’r7p) = RZ 5kaB(y|r + kapmax) fO?" y e N07 (34)

k=0

where r =1y 4+ -+ + 1, and Popez = man{Pj}~

R= ﬁ(l_p]pmam> 7 and

ey Prmaz)P;j

k+1 n
Prmaz)P;
0 1— Opt1—i,
T Z ]Zr” ( (1- pj)pmaw) i

for k=0,1,... with 6y = 1.

This distribution can also be described as'Y following a compound NB distribution
whose size parameter itself follows some discrete distribution, i. e.

Y ~ NB(r 4+ K, ppaz) with P(K = k) = Rdy, for k=0,1,..., where R and 0, are

given above.

In Chapter 5| we use the convolution of lognormally distributed random variables.
Even if all parameters are equal, the convolution of lognormals has no analytic form.
In contrast to the convolution of NB distributions, as far as we know, the resulting
distribution of the convolution of lognormals can not be written analytically down.
However, it is possible to apply the method by [Fenton (1960) to approximate the
resulting distribution.

Example 3.11 (Convolution of LN(y;, 03) Distributions)  The PDF fy of Y = X +

..+ X, with independent X; ~ LN(u;, 0 ]2) 18 approximated by using the method by

Fenton (1960), i. e. the resultz'ng convolution 1s approrimated by the distribution of a
random variable B ~ LN(up,0%) such that

EB)=E(X1+...+X,) and Var(B) = Var(X;+ ...+ X,).

According to the expectation and variance of the lognormal distribution (see Defini-
tion it follows that ug and og are chosen such that the following equations are

fulfilled:
0,23 a% 02
exp /LB—F? = exp ul—i-? + ...+ exp ,un—i—2 =T

exp (2,uB + 0%) (exp (0129) —1) =
exp (21 + 07) (exp (07) —1) + ...+ exp (2u, + 02) (exp (02) — 1) =t A.

and
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That is achieved by choosing

pp = log(T') — %a% and o3 = log (% - 1) .

In these examples we have always convolved distributions of the same distribution
family. If we want to determine the convolution of different distributions we have
to calculate the integral or the sum given in Definition [3.4] In particular, if we are
convolving only two distributions, the integral or the sum should not be
too difficult to calculate using mathematical software such as R or MATLAB.

An exception from this necessity could occur if different compound Poisson distribu-
tions (Definition are to be convoluted. Karlis and Xekalaki (2005)) show that
a convolution of a compound Poisson distribution with another compound Poisson
distribution leads again to a compound Poisson distribution. More precisely, the new
intensity density equals the convolution of the original intensity densities.

Definition 3.5 (Convolution of Compound Poisson Distributions) The sum Y =
X1 4+ X5 of two compound Poisson random variables, where Xy ~ Comp—Poisfl(Gl)
and Xy ~ Comp—Poisfz(Qg), itself follows a compound Poisson distribution, where the
intensity density is the convolution of the two original intensity densities fi and fs.

Therefore, a convolution of a Poisson distribution with some compound Poisson
distribution leads in turn to a compound Poisson distribution in which the intensity
density is the intensity density of the original compound distribution but is shifted
by the parameter of the Poisson distribution. This is used in the following example,
where a NB distribution and a Poisson distribution are convoluted.

Example 3.12 (Convolution of NB(r,p) and Pois(A) Distribution) The convolu-
tion of a Poisson distribution and a NB distribution results in a PsG distribu-
tion, i.e. a compound Poisson distribution with a shifted gamma intensity den-
sity, see Example [3.0, This resulting distribution is also called Delaporte distri-
bution, see Definition [A.10. In detail, if X1 ~ NB(r,p) and X, ~ Pois()), then
Y = Xy + Xz ~ PsG (715, \) = DEL <)\+ fip) 1A

P r(1—p) ‘
P )

Note, that in Chapter 4] we need distributions that are not only infinitely divisible,
but self-decomposable.

Definition 3.6 (Self-decomposable Distribution) Let ji be the characteristic function
of a random variable X following the one-dimensional law D. D is self-decomposable

uf

=) = fe2)fie(2)
for all z € R and all ¢ € (0,1) and some family of characteristic functions
{itc : c€(0,1)}.
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Hence, self-decomposable distributions are a subclass of infinitely divisible distribu-
tions.

3.2 Stochastic Processes

In Chapter 4] we will show how to connect steady state distribution with stochastic
processes of gene transcription. The approach that we will present uses a special form
of stochastic differential equations (SDEs) involving a stochastic process (X;)ser,
called Ornstein-Uhlenbeck (OU) process. Here we will give some background infor-
mation that is needed to follow that chapter. Although there exist many stochastic
processes, we will only focus on Markov, Lévy and OU processes. References can
be found among others in [Kijima, (1997),Barndorff-Nielsen and Shephard| (2001b)),
Barndorff-Nielsen and Shephard (2001a), [Sato (1999)) and |Rogers and Williams
(2000). A Markov process is a stochastic process that satisfies the Markov property.

Definition 3.7 (Markov Process) A process (Xi)i>o is called a Markov process if,
for each n and every iq, ..., i, and j € N the Markov property holds, 1. e.

P<Xn+1 - ]|X0 - jOa S 7Xn - ]n) - ,P<Xn+1 - j’Xn - ]n>7
with P(X = x) > 0.

Markov processes can be subdivided in different types, depending on a discrete or
continuous state space and on the time parameter being discrete or continuous. Often
discrete-time Markov processes are called Markov chains and continuous-time Markov
processes with discrete state space are called Markov jump processes. However, in
this thesis we only refer to a Markov process that runs on discrete state spaces. All
birth-death processes and queuing systems in Chapter [l and Appendix [E] are such
Markov jump processes. Lévy processes fulfill the Markov property and are therefore
a subset of Markov processes.

Definition 3.8 (Lévy Process) A process (X;)i>o with values in R? is called a Lévy
process (or process with stationary independent increments) if it has the following
properties:

e For almost all w in the considered probability space, the mapping t — X;(w) is
right-continuous on [0, 0o],

o for0 <ty <ty <---<ty,, the random variables Y; := X;, — Xy, (j=1,...,n)
are independent,

o the law of Xy — Xy depends on h > 0, but not on t.

One famous example for a Lévy process is the Brownian motion. However, we will
only use non-Gaussian increasing Lévy processes. Additionally we are only looking
at Lévy processes with positive increments.
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Definition 3.9 (Subordinator) An increasing Lévy process is called a subordinator.

In the following we will introduce the non-Gaussian subordinators that we will use
in this thesis.

Definition 3.10 (Poisson Process) A Poisson process X; with intensity parameter A
starts almost surely in zero and for all 0 < s < t one has independent X; — X ~

Pois((t — s)A).

The just defined Poisson process is also called Poisson point process, as it just marks
time points when events happen. This is used to construct the following compound
Poisson process.

Definition 3.11 (Compound Poisson Process, CPP) A compound Poisson process
(CPP) Z; with intensity parameter \ is defined as

Ny
Zi=) Y
i=1

where N; is a Poisson process with parameter X, and the jumps Y; are independent
and identically distributed random variables. The characteristic function of a CPP
depends on the distribution of the Y; and is given by

fiz,(z) = exp(t A(fiy () — 1)),
where [iy is the characteristic function of the Y;.

Another type of increasing Lévy process is the inverse Gaussian (IG) process. An
(IG) process X; can be defined in several ways. Originally it was defined through the
first-passage time of a Gaussian process (Applebauml, 2004)). (Ye and Chen| 2014
showed how to define the inverse Gaussian process analogously to the well known
gamma process by its increments.

Definition 3.12 (Inverse Gaussian (IG) Process) The IG process X;,t > 0 is a stochas-
tic process characterized by the following properties:

o X, has independent increments, i.e. X, — Xy, and X;, — X, are independent
fO’/’ all t4 > t3 >ty > 17.

o X,—X, follows an IG distribution (see Definition[A.2) IG(M (t)—M (s), n[M (t)—
M(s)]?), for allt > s >0,

where n > 0 and M (t) is a monotone increasing function of the process. In detail
M (t) is the mean function of the process. The variance function is given by nM (t)
and therefore is also a monotone increasing function.

In case M(t) is a linear function, the distribution of increments is only dependent on
the time step ¢t — s and hence Definition [3.§] directly implies that the inverse Gaussian
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process is a Lévy process. Since it is increasing it is a subordinator (Definition .
In fact the IG process is a pure jump Lévy process and can be seen as a limiting
CPP, where the jump arrival rate goes to infinity and the jump sizes, that follow a
specific IG distribution go to zero.

The main part of theory that we will use in Chapter [4] centers around Ornstein-
Uhlenbeck (OU) processes. Their construction using a Lévy process will be defined
next.

Definition 3.13 (Ornstein-Uhlenbeck (OU) Process) Following |Barndorff-Nielsen
and Shephard (2001b), an Ornstein-Uhlenbeck (OU) process y; is the solution of a
stochastic differential equation (SDE) of the form

dyt = _>\yt dt -+ dZt, (35)

where z;, with zo = 0 almost surely, is a Lévy process (see Definition @) If the
Lévy process has no Gaussian components, the process z; is called a non-Gaussian
OU process or also a process of OU-type. Often, this is also shortened to OU process.
Barndorff-Nielsen and Shephard (2001a) also call z; a background-driving Lévy
process as it drives the OU process.

In Chapter [4 we will only use OU processes that are driven by non-Gaussian
subordinators z;, that were introduced above.

3.3 Parameter Inference

Whenever a parametric model needs to be fitted to given data, parameter inference is
needed. As mentioned before this is a huge field and a lot of literature and methods
exist. Here, we will only list the methods we need in this thesis. In general there exist
two different ways to perform parameter inference: the frequentist and the Bayesian
approach. Both need the likelihood of the model.

Given some data a of length k£ and some model f with parameter vector 6 the
likelihood function L is given by

L(@lz) =[] £ (xil6). (3.6)

3.3.1 Maximum Likelihood Estimation

The traditional frequentist approach uses maximum likelihood (ML)|inference, mean-
ing to find an estimate of the parameter @ for which the likelihood function is
maximized. This is the same as maximizing the log-likelihood function ¢ of the model
parameters, given by

(0|x) = Zlog (x;0)] . (3.7)



36 3.3 Parameter Inference

Since often it is easier to find a minimum value than a maximum value, often the
negative log-likelihood function is minimized. The resulting g is called maximum)
llikelihood estimator (MLE)L There exist many different algorithms to perform ML
estimation. In this thesis, we use the Nelder-Mead (Nelder and Mead, |1965) algorithm
— downbhill simplex method — or the BFGS (Broydenl, 1970, Fletcher} 1970}, Goldfarb,
1970, |[Shanno, |1970)) algorithm — a quasi Newton method. These are often used
standard algorithms. For more information we refer among many others to |[Rossi
(2018).

3.3.2 Bayesian Parameter Inference

Bayesian methods in general consider the model parameter not as a fixed value
that needs to be determined but as a random variable that follows a distribution.
Therefore Bayesian parameter inference determines the distribution of the parameter.
Bayesian inference is computationally more expensive. With increasing computational
power its usage has become increasingly popular over the last 30 years. The core
of Bayesian inference is the computation of the posterior probability of the model
parameter 6 given the data via Bayes’ theorem:

p(6le) = 20O, 59

p(x)

where for independent z;, p(x|@) is given by the likelihood function of the parametric
model, see Equation (3.6). [Markov chain Monte Carlo (MCMC)| methods use Equa-
tion to accept or decline proposed parameter values and move around in the
parameter space to generate a sample from the posterior distribution. Using MCMC
chains, Bayesian credibility intervals and other properties such as mean and quantiles
of the sample can be calculated. For more information see |Lee (2012) and |Gelman
et al.| (2013).
However, these sampling schemes can be computationally more demanding than
optimization which is why we use in Section [5.5| an optimized sampling scheme. This
Hamiltonian Monte Carlo (HMC)-based algorithm called No-U-Turn sampler (NUTS,
Hoffman and Gelman, [2014) is implemented in the programming language Stan
through its interface RStan (Stan Development Team) 2019). HMC (also known as
hybrid Monte Carlo) is an MCMC method that works similar to the Metropolis-
Hastings algorithm. The main difference is the proposal and acceptance of new
parameters. Using the evolution of Hamiltonian dynamics, new propositions are
generated via the so-called leapfrog integrator, i.e. a new parameter set is proposed
after L intermediate step updates of the old parameter set using so-called momentum
variables, that are also updated in each intermediate step. The step size of these
intermediate steps is given by the step size parameter €. This procedure leads to new
parameter proposals that are more likely to be accepted than standard Metropolis
propositions generated by Gaussian random walks. Since HMC proposals move
more in space, HMC chains propose less correlated parameter sets. Therefore fewer
samples (which results in shorter chains), are sufficient to approximate the posterior
distributions.
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In contrast to the original HMC, NUTS does not require the specification of the
number of leapfrog steps L. In addition, the Stan (and thus Rstan) implementation
tunes the step size € in an automated manner.

3.4 Model Selection and Goodness of Fit

If several models are available for data fitting, an objective criterion is needed to
select the model that fits the data best. To avoid over-fitting, it is advisable to use a
criterion that penalizes more complicated models. In this thesis we use the Bayesian
information criterion (BIC, Schwarz, 1978) which is given by

BIC(0) = —2((6) + log (k) dim(8), (3.9)

where 6 is the maximum likelihood parameter estimate and ¢() the log-likelihood
function, see , of the respective model. dim(é) is the number of model parameters
and k the size of the dataset. Taken together, the model with the smallest BIC is
considered most appropriate among all models considered.

In practice, only the best available model is selected during model selection. This
does not necessarily mean that the model really matches the data. This goodness of
fit can be assessed via statistical hypothesis testing. In the case of fitting parametric
distributions to datsets, we therefore want to check whether the dataset X really
follows this specific distribution, i.e. whether it has a probability distribution Fj.
This leads to the null hypothesis:

H()ZXNF().

The x? test from Pearson| (1900), which we will use in this thesis, bins the observations
and compares their numbers per bin with the expected frequency of each bin given
by the probability distribution. The test statistic that described the deviation of
those two frequencies then follows a y? distribution.

Before applying this test, the observations and the probability distribution to test
must be prepared. This means that the data and the probability distribution must be
binned in the same way. When this test is used for discrete distributions, the discrete
counts of the distribution are a natural choice of bins. Since a finite number of bins
is needed, we choose a threshold above which all observations are combined to one
final bin. In Chapter 4] we use our own implementation of this goodness-of-fit test
for the proposed distributions, since they are not all available by default in already
existing packages of the y? test.
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In this chapter, we describe how to link mechanistic processes which describe possible
models of mRNA transcription to steady state distributions that are used to model
single-cell mRNA counts. The chapter is based on and is partly identical to the
following preprint:

Amrhein, L., Harsha, K., and Fuchs, C. (2019). A mechanistic model for the
negative binomial distribution of single-cell mRNA counts. bioRziv 657619.

Picking a distribution is crucial for data modeling and analysis. There are two
ways to approach this decision. Traditionally, an underlying mechanistic model of
the mRNA transcription process is selected and steady state distributions of the
molecules involved are calculated. In the first part of this chapter we will show how
this is done for the most common models in literature. Afterwards we will focus on
the second approach: A distribution is selected based on its data fit. We will show
how a possible underlying mRNA transcription model can be derived from this.

4.1 Prior Work

When analyzing the outcomes of [single-cell RNA sequencing (scRNA-seq)| exper-
iments, it is essential to adequately consider the properties of the resulting data.
Many methods assume a parametric distribution for the sequencing counts due to
its larger power compared to non-parametric approaches. To that end, a family of
parametric distributions needs to be chosen which adequately models the data. This
is particularly important for users since the distribution of a selected tool directly
impacts preprocessing.

Count data is most accurately described by discrete distributions (see Appendix
unless count numbers are without exception very high in which case continuous
distributions (see Appendix might also be suitable.

A commonly chosen count distribution is the Poisson distribution (Definition [A.7),
which can be derived from a simple birth-death model of mRNA transcription and
degradation. However, due to widespread overdispersed data, which means that the
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observed variance is higher than explained by the model, a Poisson distribution is
seldom suitable. Another typical choice is a three-parameter PB distribution (see
Example , Delmans and Hemberg, 2016, Vu et al., [2016) which can be derived
from a DNA switching model (also called random telegraph model, see Dattani
and Barahonal 2017, or basic model of gene activation and inactivation, see [Raj
et al) |2006)). This mechanistic description is most often used when transcription
processes are discussed (e.g. Buettner et al.| 2015, Jansen and Pfaffelhuber, 2015).
Parameters of the PB distribution can be estimated from scRNA-seq data (Kim
and Marioni, [2013), as well as experimentally measured and inferred (Suter et al.|
2011)). This distribution provides good estimates of scRNA-seq data; however, it
entails the estimation of three parameters which introduces a high computational
cost (Kim and Marioni, [2013). A frequent third choice is the NB distribution,
used by several tools that analyze single-cell gene expression measurements such
as SCDE (Kharchenko et al., 2014]), Monocle 2 (Qiu et al. 2017) and many more
(see Table [4.1)). This distribution is chosen due to computational convenience and
good empirical fits. Some papers already derived the NB distribution as steady
state distribution for either mRNA or protein numbers. For mRNA distributions,
the NB was only derived by considering it as asymptotic steady state distribution
of the switching model (see Raj et al. 2006]). However, our discussion shows that
this will entail biologically unrealistic assumptions. However, our discussion shows
that this will entail biologically unrealistic assumptions. Others like Shahrezaei and
Swain| (2008) extend the basic model by adding the step of protein translation and
inferred the distribution of those proteins. When mRNA degrades much faster than
proteins, this distribution converges in steady state to a NB distribution. In this case
protein translation can be described as instantaneous bursts that follow a geometric
distribution. The derivation of geometric bursts of proteins and a NB distribution as
their steady state distribution was already described by Berg| (1978)) and Paulsson
et al.| (2000). In theory, this mechanism can be transferred to mRNA transcription,
but as far as we know, it has not yet been explicitly formulated.

Table provides an overview of computational tools to analyze scRNA-seq data
and their distributional assumptions.

Tool Category Distribution Model Notes
[«5)
s 3
m m = . &
Z A O N T
BASiCS e Normalization X O O O (O Poisson-gamma,
e Differential Expression Bayesian hierarchi-
e Variable Genes cal models, |Vallejos et al.
e Simulation (2015)
bayNorm e Normalization X O O O (O Binomial sampling with
e Imputation NB priors, Tang et al.

e Simulation (2020))
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BEAM e Ordering X O O O O Branch-dependent gene
e Fxpression Patterns expression as a contrast
o Differential Expression between two NB GLMs,

Qiu et al.| (2017)

BPSC e Differential Expression O X O & (O BP3 is PB; BP4 adds
fractions scaling param-
eter; BP5 adds ZI; [Vu
et al.| (2016))

ComBat e Batch Correction O O ® O O Uses normal distribu-
tion on normalized data,
Stein et al.| (2015)

DCA e Imputation X O O X (O [Eraslan et al|(2019)

DPT e Ordering O O ¥ O & Normal distribution,

e Expression Patterns Haghverdi et al.| (2016)
e Visualization

D3E e Differential Expression O ¥ O O (O |Delmans and Hemberg
(2016)

diffxPy o Differential Expression @@ O O K (O  https://github.com/
theislab/diffxpy

limma e Normalization O O ® O O Linear model using

e Differential Expression normal  distributions,
e (lene Sets Ritchie et al.| (2015)
e DBatch Correction
lineagePulse e Differential Expression X O O & (O  https://github.
e Expression Patterns com/YosefLab/
e Visualization LineagePulse
e Simulation
MAST e Quality Control O O O O & Logistic regression &
e Normalization Gaussian linear model
e Differential Expression for expressed genes, |Fi;
e Gene Sets nak et al.| (2015
e Gene Networks
M3Drop o Differential Expression X O O (O (O  Depth-adjusted NB,
o Marker Genes Andrews and Hemberg
e Visualization (2018)
e Simulation
powSimR e Visualization X O O X (O  The user has the option
e Simulation to include zero-inflation
(default is not to use it),
Vieth et al.| (2017)
SAVER e Imputation X O O O O |Huanget al|(2018)



https://github.com/theislab/diffxpy
https://github.com/theislab/diffxpy
https://github.com/YosefLab/LineagePulse
https://github.com/YosefLab/LineagePulse
https://github.com/YosefLab/LineagePulse
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SCDE o Differential Expression ) Poisson-NB mixture:
e Gene Sets Poisson for dropout, NB
e Visualization for amplified expression,
Kharchenko et al.| (2014)
SCHiRM e Normalization O Poisson-lognormal,
o Gene Networks Intosalmi et al.| (2018)
e Visualization
e Simulation
scImpute e Imputation ) Gamma-normal mixture
on log-transformed ex-
pression: dropouts mod-
eled via normal distribu-
tion, [Li and Li| (2018)
sctransform e Normalization O Regularized NB regres-
e Integration sion, |[Hafemeister and
e Differential Expression Satija) (2019)
e Transformation
e Visualization
scVI e Dimensionality X ZINB-like generative
Reduction model, |Lopez et al.
(2018)
Splatter e Visualization X Some intermediate steps;
e Simulation gene- and cell-wise mean
are modeled with gamma
distribution, |Zappia et al.
(2017)
ZIFA e Dimensionality X Zero-inflated Gaussian
Reduction (Bernoulli-normal mix-
ture), [Pierson and Yau
(2015)
ZINB-WaVE e Normalization X Risso et al.|(2018)
e Dimensionality
Reduction
e Simulation

Table 4.1: Overview of single-cell analysis tools with underlying distributional assumptions
(black ticks, gray ticks for available alternative assumption). Categories of the tools are taken
from www.scrna-tools.org. Tools that were not listed are categorized by us. Those categories
are written in italics. Details on the categories are listed in Appendix |E|

Among the 23 listed tools, 13 use a negative binomial (NB) distribution and two
a Poisson-beta (PB) distribution. In eleven tools a zero-inflated distribution is
implemented to take into account the more than expected zeros. This can overlap
with the cases before as these models extend a parametric distribution by adding a
dropout part. We will discuss zero-inflation and its integration into models later in
Section [4.5.1] when we will discuss real-world data and suitable models.
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4.2 Inferring Distributions from Gene Expression Mech-
anisms

The aim of this section is to show how to infer a mechanistic transcription process after
selecting a probability distribution for mRNA counts. We will get there by reversing
the traditional way. Therefore we will sketch first how steady state distributions
can be inferred from the most common mechanistic processes and how this can be
generalized. These models describe the number of mRNA molecules in a cell for
either one gene or for a group of genes for which we can assume identical kinetic
parameters. We start with the simple birth-death model, that is later generalized
so that we obtain a general approach how to infer steady state distributions for
this type of models. Alterations in the transcription and degradation model lead
to alterations in the resulting mRNA count distribution. The well known switching
model fits into this generalized form, and its resulting steady state distribution will
be put into context.

4.2.1 Basic Model: Constant Transcription and Degradation

The simple birth-death model — we will call it basic model — for mRNA transcription
and degradation (Dattani and Barahonaj, 2017) Peccoud and Ycart], 1995)) in which
transcription and degradation occur at constant rates 7, and 74, is shown in

Figure

Basic model
DNA mRNA
Ttran Tdeg ““ _",‘;:

Figure 4.1: Basic model of gene expression consists of constant transcription and constant
degradation of mRNA.

Although the steady state distribution of this simple model can be easily inferred,
we included the complete derivation in Appendix [D.1]} This is particularly important
not only because it forms the basis for all subsequent sections, but also to introduce
consistent notation. In short, the master equation

dP(n,t)

dt - Ttmnp(n - 17 t) + Tdeg(n + 1)7)<7’L + 17 t) - (Ttmn + Tdeg n)P(n, t) (41)

leads to the probability generating function of the number of molecules at time point
t, given by

G(Z,t’no) — |:(Z i 1)€7Tdegt + 1:| 10 el(t)(zfl)’ Wlth ]’(t) — Ttmn (1 o e*rdegt) )
Tdeg
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This is the probability generating function of the number of mRNA molecules at
time t with initial number of mRNA molecules ng. In steady state, i.e. t — oo the
first part disappears and thus the steady state distribution is independent of the
starting material of molecules. The second part, which corresponds to the probability
generating function of a compound Poisson distribution with intensity function
I(t), is simplified to a Poisson distribution with time-independent, constant intensity
parameter [ = % In summary, the steady state distribution of mRNA molecules is

described in the basic model by a Poisson distribution with intensity parameter ’;jﬂ
Note that the basic model can be understood as a queuing system (Adan and Resingg,
2015) where costumers ( = mRNA molecules) arrive, wait until they are called and
then served (= mRNA molecule is present in the cell) until they finally leave the
system (= mRNA molecule degrades). Further calculations (see Appendix show

that this results in the same Poisson distribution.

4.2.2 Generalization: Time-Varying Transcription and Constant
Degradation

The basic model can be generalized, so that in the general context, we consider a
transcription-degradation model with stochastic time-varying transcription rate R;
and deterministic constant degradation rate rqey as shown in Figure {£.2]

Generalized model
DNA MRNA

.....
3 .
SEERT
o ¥
NN
— —_— fo, %o
Y e
.
R -
t . * *
.
as®

Figure 4.2: Generalized model of gene expression consists of transcription governed by some
time-varying transcription rate R; and constant degradation of mRNA.

The derivation is completely identical to the one for the basic model, only the
transcription rate is now described by the stochastic time-varying rate R;. Therefore
the master equation reads

dP(n,t
Pgtl; )~ RPM—10) + iy + )P0+ 1,8) — (Ry + ragm)P(n, 1), (4.2)

and the moment generating function of mRNA counts is analogously given by
t
G(z,tIng) = [(z — 1)e "ot +1]™ elt=h with [, = / R Jrraed™ gz (4.3)
0

Again, the first factor of G(z,t|ng) reflects the dependence of the distribution on
the initial value ng. The second factor exp(l;(z — 1)) corresponds to the long-term
behavior of the mRNA content and equals the time-dependent probability generating
function of a Poisson distribution with intensity parameter I; (see Definition
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that is now generalized as some stochastic process. Analogously, in steady state the
first part vanishes so that only the second part remains and describes the mRNA
count distribution. Again, the mRNA counts follow a compound Poisson distribution
with intensity parameter [; being governed by the transcription and degradation
process. From Definition [3.3] we get

n

o
Psteady state (n> t) = PIt (TL, t) - / me_xf[t (.T, t)dl' (44)
0 .

for n € Ny and t > 0 (but large), where f;, denotes the density of ;. Remember
that the intensity function in the basic model could be further simplified. To exactly
specify the compound Poisson distribution we need to take a closer look at the
intensity process I;, defined through , and examine its long-term (steady state)
behavior. I, = fot R e™ Jiraewd™ dr is a solution of the random differential equation
(RDE)

dl,

n + rgegly = Ry,

which can be rewritten as
d[t = —Tdegjtdt + tht, (4.5)

for t > 0 and fixed Iy = 79 > 0. In this representation, we can directly recognize
the impact of the mRNA degradation rate 74, and the transcription rate R; on the
number of mRNA molecules: Larger 4., will lead to lower mRNA numbers, larger R;
to higher numbers. The properties and steady state of I; clearly depend on the choice
of R;. Depending on the transcription process R; this RDE has different solutions.

Example 4.1 (Deterministic Continuous Transcription Model)  If R, is a deterministic
rather than a stochastic function R(t), Iy itself becomes deterministic, then denoted
by I(t). |Dattani and Barahond (2017) show that the probability to have n mRNA
molecules at time t is a Poisson distribution with time-dependent intensity 1(t), 1. e.

I n
(t) oI
n!

PPois—I(t) (nv t) =
The solution for I(t) is then analogous to the calculations in Appendix given by
t . / t t
I(t) = / R(r)e” Jrraeet™ g7 = / R(r)e mesl=T) dr = e~ aest / R(7)e"="dr.
0 0 0
(4.6)

Example 4.2 (Basic Transcription Model)  The basic model in Section[{.2.1] equals
the special case of the deterministic continuous transcription model in Example
when R(t) takes only one time-independent value Tyan. The RDE then simplifies
to the ordinary differential equation (ODE)

AI(t) = —Taeg (£)dt + rrandt, (4.7)
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and Equation (4.6]) simplifies to

t
— erdes” — 1 Ttran —
[(t) = Ttran€ Tdegt (— = (1 — e Tdegt) .
T'deg T'deg

All together, for t — oo, the steady state distribution of the mRNA counts follows a
Poisson distribution with constant intensity parameter I = rian/Tdeg-

4.2.3 Switching Model: Gene Activation and Deactivation

In the well-known switching model, a gene switches between an inactive state where
transcription is impossible, and an active state where transcription occurs. This
can be explained by polymerases binding and unbinding to the specific gene as
depicted in Figure . Transcription is assumed to be governed by R; = rguien(t),

Switching model

B

e — — L A —
Ton Tdeg "-, :',\‘-’ Tswitch (f) Tdeg "', ,‘:“-.
Tact ] l Tdeact Tact [ l Tdeact

I DNA
Tswitch (t) {

Ton if DNA active at time ¢

I W mRNA I
@ (~> Polymerase @ J

Figure 4.3: (A) Switching model as model of gene activation and inactivation, transcription
and degradation. (B) Switching model as model of transcription — modeled by a two-state
Markov process — and degradation.

B rorf if DNA inactive at time ¢

which is a continuous-time Markov process (see Definition with two states on
(or active) and off (or inactive). A Switching between these two states happens
after exponentially distributed waiting times with rates 74, and 7g4e.0:. During the
active state, transcription happens with rate r,,, whereas in the inactive state,
either strongly down-regulated transcription happens (small r,5) or none (r,p = 0).
Figure depicts this detailed process.

The steady state distribution of mRNA content can be calculated by following the
derivation of Smiley and Proulx (2010), who show how to obtain the density function
for the mRNA expression level. Dattani and Barahona| (2017) use this result and
transfer it into the probability distribution. Raj et al.| (2006)) arrive at the same
solution. The complete calculation in our notation can be found in Appendix [D.3]
The RDE becomes

d]t = _Tdegltdt + Tswitch(t)dt (48)
with

ron 1f DNA active at time ¢
/rswitch(t) -

rog if DNA inactive at time ¢,
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where 1,4 < 1,,. The transcription rate is modeled by a continuous-time Markov
process (Tswiten (t))e>0 that switches between two discrete states r,, and r,gp with
activation and deactivation rates 74, and rge..¢, respectively. Again, the probability
distribution for the amount of mRNA at time ¢ is a compound Poisson distribution
as described by Equation . To determine the steady state distribution of mRNA
counts, the steady state distribution of I; governed by (7switen(t))i>0 in Equation (4.8))
needs to be calculated. Following the calculations in Appendix [D.3] we find in
Equation that I; follows in steady state a four-parametric beta distribution
(see Definition with parameters a = 7,5 /T4eg, ¢ = Ton/Tdegs & = Tact/Tdeg
and ﬁ = 7ndeact/rdey

The overall steady state distribution of mRNA counts is by construction a compound
Poisson distribution (see Equation (4.4])). When conditioning the Poisson distribution
on an intensity parameter following a beta distribution defined by Equation ,
the overall distribution will be a (compound) PB distribution with PMF given in
Example |3.4] Taken together, the probability of having n mRNA molecules at time ¢
is time-independent. With the parameters given above and for 7,54 = 0 (i.e. no
transcription possible during inactive DNA state), the PMF can be simplified as
shown in Equation to

n
F <M + rdeact) (M) F (Tact _|_ n>
Tdeg Tdeg Tdeg Tdeg /ract Tdeact ract TO’VL
P(n,t) = 1F1( +n; + +n; —
1_‘ (M) F(n + 1)F (Tact + Tdeact + n) /r'deg rdeg Tdeg rdeg
Tdeg Tdeg

(4.9)

where 1Fi(a;b;2) = m fo e*u (1 — u)’ "2 1du is the confluent hypergeo-
metric function of first order, also called Kummer function (see Definition |A.6) and
I' denotes the gamma function.

4.2.3.1 Asymptotic Limits of the Switching Model

The density function of this PB (74ct/T degs Tdeact /T degs 0s Ton/Tdeqg) distribution con-
verges to the density function of a NB distribution under specific conditions. For
large 7geact /Tdeg and 7o /T deact < 1, the PMF of this distribution converges towards
the one of a NB distribution (see Definition and |Raj et al., [2000]):

o N (X =n)
PB act7 deact ,0, Lon
Tdeg = Tdeg Tdeg

F (T‘act + Tdeact ) < Ton > (T‘H,ct )
Tdeg Tdeg Tdeg Tdeg Tact Tdeact Tact Ton
1F1 ( —+ n; + +n;

(7- > n_l_ 1 F <7"act + Tdeact +n>
deg
°9

)
Tdeg Tdeg Tdeg Tdeg

Tdeg

Tact rdeact Ton Tact + n
Tdeg Tdeg Tdeg Tdeg

(7- > n_l_ 1 F <Tact + Tdeact +n>

Tdeg
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Taking the limit of T;f;‘“t to infinity, the asymptotic approximation given in Identity
leg
can be applied twice. Therefore,

lim P , X=n
T Odg)( )
_ T(pmen) (. )f (1) (e )
T (m) I‘(n + 1) T deact i :Z:; +n—1 Tdeact
Tdeg

Using Equation (B.1)) with 7, /7 geaet < 1 simplifies to:
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M rmw, n 7%
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This is the PMF of the NB (74ct /T degs Tdeact / (T deact + Ton)) distribution.

Taken together, for vy, = Tan, Tact — 00 and 7 geeer = 0, the switching model reduces
to the basic model, and the above PB distribution collapses to a Poisson distribu-
tion with intensity parameter 7.4, /74, in consistency with the above-derived results.

4.2.3.2 Connecting to Queuing Systems

The switching model can also be transformed into the following queuing system: An
officer puts up a sign: “Please do not queue anymore”, i.e. queuing is not possible
for some time. The system is unchanged w.r.t. rates compared to the basic model,
but additional rates regulate the putting up and taking away of the sign. Setting
up the sign is done with rate rg.; and is only possible if there is no sign at the
moment. Removing the sign is done at rate r,.; and is only possible if the sign is
currently there. As long as the sign is present, no new customers can arrive, but
present customers can still leave as depicted in Figure For this complex scenario
no example is present in |Adan and Resing| (2015).

4.3 Connecting SDEs with Steady State Distributions

Both models — the basic and the switching model — lead to mRNA counts which
follow Poisson distributions with different intensity processes, see Equations
and . These intensity processes are governed by the respective transcription
and degradation mechanisms. They determine the steady state distribution of the
intensity parameter, and thus the overall steady state distribution of the mRNA
content. Importantly, changes in the intensity process lead to different steady state
distributions.
Next, we generalize the RDE to a stochastic differential equation by considering
R;dt = dL;, where L, is an arbitrary increasing Lévy process (also called subordinator,
see Definition . Then

dly = —rgeglydt +dL,. (4.10)

for t > 0 and fixed Iy = i > 0. Since the trajectories of a Lévy process are not
necessarily left-continuous, their derivatives may not exist in the classical sense.
Care has to be taken here. In the following, we show how to derive the steady state
distribution of I; for different choices of L;.
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Figure 4.4: Switching model with all possible states and transitions: First component shows the
number of mRNA, the count we want to model via the queuing theory, the second component
the state of the DNA: which is either “on" or “off".

The generalized process given in Equation with subordinator L; can be identi-
fied as an Ornstein-Uhlenbeck (OU) process, see Definition [3.5] OU processes and the
concept of linking them to distributions is widely used in financial mathematics, es-
pecially in the areas of option pricing and volatility modeling. Among others (Rogers
and Williams,, 2000, Satol [1999)), especially Barndorff-Nielsen and Shephard| (2001b])
and [Barndorff-Nielsen and Shephard (2001a) used OU processes in a wide range and
showed and proved a substantial amount of their properties. In the following we will
use properties of OU processes and apply them to the generalized intensity process
in (4.10]).

Lemma 4.1 (Barndorff-Nielsen and Shephard, 2001a) A special property of OU
processes is that, given a one-dimensional distribution D, there exists an OU-type
stationary process whose one-dimensional law is D if and only if D s self-decomposable

(see Definition[3.6]).

This means that, under these specific conditions for a chosen distribution D there is
an OU process that in steady state leads to this distribution D. The other direction,
i. e. the existence of a steady state distribution D for a chosen OU process (in terms
of its subordinator), holds as well. In most applications in financial mathematics,
the SDE is transformed to

dy, = =My, dt + dzy for some A >0

such that whatever value of X is chosen, the marginal distribution of 3; remains
unchanged. However, in the context of this thesis, we work with the original, untrans-
formed SDE (4.10). Hence, in our notation, for a given Lévy subordinator L, the
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characteristic function of D, and thus D itself, can be derived as follows (Barndorff;
Nielsen et al., 1998, |Satol [1999):

1. Find the characteristic function fir,(z) of the Lévy subordinator L.

2. Calculate fi,(z) and write the result in the form exp(¢(z)) for some func-

tion ¢(z).

3. Calculate the characteristic function fiz,(z) of the stationary distribution D
of I, by setting fiy,(z) = exp(rgy, [5 ¢(w)w™" dw). Identifying /iy, () leads to D.

Despite this apparently clear line of action, finding a corresponding law D and
process L; is challenging without prior knowledge, e. g. if D is not well-known or L;
is only specified through the characteristic function of L;.

As an example we will show the derivation of the steady state distribution of the
basic model.

Example 4.3 (OU Process Derivation for the Basic Model) In the following, we will
show how to use an OU process and its properties to infer the steady state distribution
of the basic model shown in Figure[{.1. We use the following general OU equation

introduced in Equation (4.10)):
d-[t = _Tdeg]t dt + st

This general SDE is transformed to the ODE of the basic model by setting L; := riant,
with ALy = ryandt, yielding the ODE

d[t = _TdegIt dt + rtrandty

which was already given in Equation . In this simple case, the Lévy subordina-
tor Ly = riant describes a state-continuous process without any jumps or Brownian
components. Still, this ODFE fulfills all required properties and can be used for deriving
a steady state distribution for the mechanistic model according to the procedure that
was described before.

To do so, we now follow the three steps described above:

1. Find the characteristic function of the Lévy subordinator Ly = riyant. For the
basic model, that is

i, (z) = Elexp(izryant)] = exp(i27rant).

2. Calculate fir,(z) and write the result in the form exp(¢(z)) to determine ¢(z).
For the basic model, that is

fir, (2) = exp(i2riran),

=(2)

so it follows that ¢(z) = i2T¢an-
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3. Calculate the characteristic function fi,(z) of the stationary distribution D

of I by
ﬂ]t(z) = EXp (T(;elg/ Z.("thranu(f‘}_1 dw) = exp (W> .
0 Tdeg

This is the characteristic distribution of a point distribution where all mass is con-
centrated at a single point Tyan/Taeg,see Example 2.19 in |Sato (1999). This equals
the solution that we obtained in Section by solving the master equation directly.

In the following, we cast the NB distribution as an alternative distribution for which
a subordinator can be derived.

4.3.1 Negative Binomial Distribution: Deriving an Explanatory
Bursting Process

A widely considered model for scRNA-seq counts is the NB distribution. Like the
PB distribution — the steady state distribution of the switching model as shown in
Section —, it accounts for overdispersion by modeling the variance indepen-
dently of the mean of the data. Having one parameter less than the PB, the NB
distribution is an appealing choice. However, mechanistic models underlying the
NB distributional assumption for the steady state distribution of mRNA content
have not been formulated explicitly before. We aim to derive such a mechanistic
model of transcription and degradation by reversing the steps that led from the
switching model to the PB distribution. For that purpose, an important fact is that
a NB distribution can be expressed as a Poisson-gamma (PG) distribution , i.e. as a
conditional Poisson distribution with gamma distributed intensity parameter 7. In
Example |3.3] we showed that

. 5
PG(a,8) = NB (a, 51 1> (4.11)
for a, 5 > 0.

In analogy to the derivation of the PB distribution from the switching model, we
now seek to describe the mRNA content by a Poisson distribution with intensity
parameter [;, which in steady state follows a gamma distribution instead of a beta
distribution.

Thus, we aim to specify an OU process with the gamma distribution as steady
state distribution. In terms of mechanistic modeling, this means that we need to
describe a suitable transcription process. Mathematically, we need to specify the
Lévy subordinator L; accordingly. But it is important to remember that this is
only the first step in finding the underlying transcriptional mechanism. In case the
subordinator is found, only the intensity process is inferred. This completed intensity
process can then be used to possibly infer the underlying transcriptional mechanism.
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4.3.1.1 Deriving the Subordinator

From financial mathematics it is known that a stationary gamma distribution is
obtained if L; is chosen to be a compound Poisson process (CPP, see Definition [3.11)
with exponentially distributed jump sizes (Barndorff-Nielsen and Shephard, [2001a)).
This will be our choice of subordinator; however, the parameters of this process still
need to be specified.

In the following, we will show that the Lévy subordinator of the Ornstein-Uhlenbeck
process whose one-dimensional stationary distribution is Gamma(a, f), is a
compound Poisson process (CPP) with intensity parameter « - 74, and mean jump
size 1.

To obtain this result, we follow the three-step procedure described above in reverse
order. We start with D = Gamma(c, 5) and transform its characteristic function to
exp {rd_ez Js d(w)w™dw}, using the characteristic function of D as given in Defini-

tion [A3L
1= () - o9

|

D
>
o]
o)
O\N
=

|| .
=.| &
£

&

o,
&
H—/

with ¢(w) = a7 geg </3_% - 1) and 7 the imaginary number. Next, we use fir, (2) =
exp(¢(z)) to obtain

09 s arin (2 1)), i

We aim to bring this into agreement with fiz,(2), the time-dependent characteristic
function of a general compound Poisson process L; with intensity parameter A. This
is given by
fir,(z) = exp(t A(fiy (2) — 1)),

where Y is a random variable following the distribution of the jump sizes of the
compound Poisson process, and iy is its characteristic function (see Definition .
A compound Poisson process with intensity A = a - rge and i.i.d. exponentially
distributed increments Y ~ EXP(3) with characteristic function iy (z) = /(5 — i2)
yields the overall characteristic function

fr,(z) = exp (tardeg (ﬁ fiz - 1)) :
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This is in accordance with fir, (z) as derived in Equation (4.12)), and hence, a mathe-
matically appropriate subordinator is a compound Poisson process with intensity
parameter « - 74, and mean jump size 7.

Lévy Subordinators L;

Switching model Transition model Bursting model
L, L, Ly
A J N ' N
C
.25 -
o2 461 Approxi- 1 . ) ‘?
_8-§ < : - /_ Limit 0@
» c ﬁ mation : 29
5 / g
a Y — '
L L L
—— —— t t —— 13
DNA DNA DNA waiting for
off on off next burst

Figure 4.5: The Lévy subordinator of the switching model is shown on the left by means of
an exemplary trajectory. As depicted in the middle (transition model), this trajectory moves
(yellow arrow) up as soon as the duration of the DNA being active gets smaller accompanied by
a larger transcription strength. The limit of this approximation, with infinitesimally small DNA
activation time interval and infinitesimally large transcription strength, leads to a trajectory of
the subordinator of the bursting model that is now described by a step function which is shown
on the right.

4.3.1.2 Deriving the Underlying Mechanism

As a consequence, transcription is expressed via a stochastic process L;, namely
the CPP, which experiences jumps after exponentially distributed waiting times.
In contrast to the Lévy subordinators of the basic model, L)€ = r ¢ and of
the switching model, Li‘WitCh = fot Tswiteh (8)ds, it possesses pointwise discontinuous
sample paths (Figure right). Intervals without any transcription activity seem
to be disrupted by sudden explosions of mRNA numbers. This burstiness led us
to call the mechanism behind the NB distribution the bursting model. We denote
its subordinator by LP'"s' and argue the biological justification of the model in the
Section [4.6]

We aim to derive the mechanistic transcription process of the bursting model in more
detail. Specifically, we tackle the distribution of burst sizes of mRNA counts. For
this we look at a heuristic transition from L§Vitch to LPurst,

First, we dismantle the shape of the trajectories of L5l As depicted in Figure
on the left, such a trajectory consists of alternating piecewise constant and piecewise
linear parts. The constant parts appear during time intervals without transcription,
i.e. where the DNA is inactive. The length of such a time interval depends only on
the rate 7, of the switching model. Once the DNA switches into the active mRNA
transcribing state, the time interval with transcription depends only on the rate rgeqet-
The slope of the trajectory during this active DNA state represents the transcription
strength and depends only on the parameter r,,.
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In case the length of the time interval of active DNA becomes infinitesimally small,
and at the same time the transcription strength becomes infinitesimally large, the
trajectory of L{V*! turns into a step function as depicted in Figure on the right.
This limit is obtained if r e — 00 and r,, — 00 in a way that needs to be specified.
For that reason, we in the following seek to describe a mechanistic model for the
transition phase (Figure [4.5] middle) leading to the bursting model.

In the switching model, as soon as DNA becomes active, a competition starts between
the events transcription and deactivation. In addition, degradation may happen,
which will affect the intensity process I; and the number of mRNA molecules, but not
the transcription process. If a transcription event occurs, the competition between
transcription and deactivation continues at the same probability rates as before; the
only affected event probability is the one for degradation because this probability
depends on the current mRNA count. We now consider the following approximation
of the switching model and call it the transition model: When DNA becomes active,
we allow the events transcription and deactivation to happen, but not degradation.
To correct for the missing degradation events, we introduce a waiting time W after
DNA deactivation in which only degradation can occur, but no DNA activation. For
appropriately chosen 7 e, — 00 and r,, — 00, the approximation error will tend to
Z€ero.

The number of transcription events S during one active DNA phase is geomet-
rically distributed with success probability parameter 7geuct/(Tdgeact + 7on ). In the
interpretation of the geometric distribution, transcription events are considered as
failures, deactivation as success. The waiting time W needs to accumulate the times
before S transcriptions and one deactivation. Thus, W =T} + --- 4+ Ts + D, where
T; ~ EXP(r,,), i = 1,...,5, are the single waiting times for each transcription
event and D ~ EXP(7jeucr) is the waiting time till the next DNA deactivation.
Taken together, the bursting process can be considered as the limiting process of
the approximation of the switching process as r,, — o0 and 7geer — 00 under
the condition that the success probability parameter of the geometric distribution,
Tdeact | (Tdeact + Ton) stays constant. As the link between the switching model and
the PB distribution is known, and since a PB distribution converges towards a NB
distribution under certain conditions (Section[4.2.3.1)), we can connect the parameters
of the bursting model with those of the NB distribution and the compound Poisson
process.

That is, the bursting model can mechanistically be described as follows: After
EXP (7pyrst )-distributed waiting times, a Geo((1 + Spure) ~!)-distributed number of
mRNAs are produced at once, where sy, is the mean burst size (see also (Golding
et al., [2005). As in the basic and switching models, degradation events occur with
EXP (744 )-distributed waiting times.

The just described mechanistic bursting model is shown in Figure [4.6] It can equiv-
alently be described by the OU process with L; being a compound Pois-
son process with EXP (7, )-distributed waiting times and EXP(sb_Jrst)—distributed
jump sizes. Thus, in steady state, mRNA counts follow a PG(ryurst /T deg, Spurst )
distribution or, equivalently with Equation (4.11)), a NB(7yurst /T degs (1 4 Spurst) ™)
distribution if the bursting model is assumed.
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Bursting model
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Figure 4.6: Bursting Model of gene expression consists of transcription, where bursts create
geometrically distributed bulks of mRNA and their constant degradation.

The NB(7purst /T deg, (1 + Spurst) ) model, again, can be interpreted as follows: Assume
you have an empty bucket into which you put balls according to the following
stochastic procedure. You perform a number of independent Bernoulli trials, each
with success probability (1 + sbmt)_l. If there is a failure, you add one ball to the
bucket. If there is a success, you do not do anything but count the success event. You
continue until there have been 74,5 /7 4¢y successes. (For interpretation purposes, we
here assume 75 /74y t0 be a whole-valued number.) The larger sy, the smaller
the success probability, i.e. by expectation you will put more balls in the bucket for
large spyre. Similarly, the larger the ratio of ry,. to 74, the more success events
will be waited for, thus the more balls will tend to be added. The final number of
balls in the bucket represents the number of mRNA molecules in a cell at steady
state.

The above top-down derivation from the steady state distribution to the mechanistic
process is motivated heuristically in parts. Next, we prove bottom-up that the above
described mechanistic bursting model indeed leads to the steady state NB distribution
by directly calculating the master equation. To do so we first set up the corresponding
queuing system

4.3.1.3 Queuing System and Master Equation

When the mechanistic model of the bursting process in known, its master equation
can be set up easily, especially if one draws a connection to queuing theory. In a
general queuing model, customers arrive at one or several service desks according
to some arrival process, which in our case corresponds to the transcription process.
The number of customers waiting is equivalent to the number of mRNA molecules
in a cell. As soon as a customer can proceed from the queue to a service desk, this
number decreases by one, corresponding to mRNA degradation. Here, service time is
zero and thus plays no role in our model.

The bursting model described in the main text corresponds to the following queuing
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system: Customers do not arrive separately at constant rate, but they arrive in
groups (e. g., in buses) after exponentially distributed waiting times with rate 7.
Then, several people start queuing at the same time. The number of people arriving
with each group follows a geometric distribution with mean sp,;..

This process corresponds to a mixture of two queuing problems from|Adan and Resing]
(2015). The first queuing problem is the basic M/M /oo queuing setup (Example 11.1.1
in that reference), and the second one is the M/G/1 model which corresponds to a
queue with group arrivals (Chapter 10.4 in that reference). (The notation here is due
to Kendall: In the three-part code a/b/c, a specifies the inter-arrival time distribution,
b the service time distribution and ¢ the number of servers. The letter G is used for
a general distribution, M for the exponential distribution and D for deterministic
times.) A standard waiting process is modeled where the group arrival time is
exponentially distributed, service time and group size follow arbitrary distributions,
but only one service counter is open. With those two models in mind, we set up our
bursting queuing process (as mentioned above we do not have service times). We
illustrate all possible state changes in Figure [4.7|

ThurstP(X=n)

7'burstP(X:1) j'bu'rstp(le) 7'burstP(X:1) 7"burstP(X:l) \rburstp(le)

{

o 12 . onlin

S " S "

Tdeg 2rd(zg 37‘deg (n - l)rdeg Nrdeg

Figure 4.7: Bursting model with all states and possible transitions between states, assuming
that at most one event (transcription or degradation) can happen at the same time. Transitions
from one node to itself are not depicted. Here, P(X = k) stands for the probability of a
geometrically distributed random variable X taking the value k.

Along Figure [4.7, we can set up the master equation directly:

dP(n,t >
Eit ) — ;rbump(n - :U,t)PGeO(X = x) + Tdeg(n + 1)'])(n + 17t)

- (Z TburstPGeo(X = ilf) + Tdeg n) P(”a t)a
=0
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where Pge, denotes the PMF of a random variable X that is geometrically distributed
with success probability p (see Definition |[A.9)). The derivative of the probability-
generating function then reads

8G(Z, P = Z o dP(n,t)

ot L7t
= Z 25T hurst PGeo (X = ) Z ZVTEP(n— 2, t) + Teg Z(n +1)2"P(n+1,t)
x=0 n=0 n=0
— Tburst Z PGeo<X = iL’) Z an])(n’ t) — Tdeg2 Z nz"flp(n, t)
x=0 n=0 n=0
With

G(z,t) = Z Z"TEP(n — x,t)
n=0

G(z,t) =Y 2"P(n,t)

n=0

aG = n—1
a(z,t} = nz%nz P(n,t)

aa—(j(z,t) = i(n +1)2"P(n+1,t)

n=0

it follows that

= () =Thur (Z Z"Pieo(X =17) = Y Peeo(X = $)> G(z,t) + Taeg(1 — z)%(z, t).

=0 =0
Because of Pgeo(X =) = (1 — p)*p and >~ Paeo(X = z) = 1, it follows that

oG 1 oG
E(z,t) = Thurst (p T—(-p= 1) G(z,t) + Taeg(1 — Z)a(zat)

Taken together, the result is a PDE of order one and equivalent to
1—(1-— oG
(1-p)= 9G
TburstP — rburst(l - (1 - p)Z) ot
rag(1 = 2)(1— (1-p)2) G
TburstP — 7,burst(l - (1 - p)’Z) aZ

G(z,t) =

(2,1). (4.13)

In the following we show how to solve the PDE
G(2(y),t(y)) = G.2 + Git.
Ansatz: G(z,t) = U(z,w) = U2 + Uit
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To use this ansatz, we need to determine = and w. We read 2 and ¢ from the full

equation given by (4.13)):

Taeg(1 — 2)(1 — (1 —p)2)
TburstD — rburst(l - (1 - p)’Z)

i 1—(1-p)z
TburstP — Tburst(l - (]- - p)Z)
. dz
f — @ — % — _rde!](l B Z)(l — (1 _p)z)(rburstp - Tburst<1 _ (1 —p)Z) = —ry (1 o Z)
j_; dt (Tburstp - rburst(]- - (1 - p)Z))(]. - (]- —p)Z) “
Thus, it follows that
g
Tdeg(z — 1)

Integrating both sides yields

1
dt = | ————=d 1 —1)=rgyt+c
/ /T‘deg(z—l) 2 & 0g(z — 1) = rget + ¢

for an arbitrary constant ¢. Next, we take the exponential of both sides
y—1= Cerdegt = c= (Z _ 1)6—7"de_qt

for a constant ¢. Choose = ¢ = (2 — 1)e "#' and w = ¢. Then it follows that

z = xe"s™ + 1. For the derivatives, we obtain
7, = ¢ Tant 2 = —(z = L)rage” !
w, =0 w; = 1.

Next, we need to determine U, and U;:
U, =U,x, + Uyw, = e "',
Uy =Upzy + Uywy = —rgege” " (2 — 1)U, + U,
Finally, we can compute U:
Uz, w) =U,% + Uy

_ o Tdeal] (—Taeg)(L —2)(1 — (1 —p)z)
! TburstD — Tburst(l - (]- - p)Z)

1-(1—p) iy
+ ’]"eerdﬁg 1_ZUJ;+U’U)
ThurstD — Tourst (1 — (1 — p)2) ( deg ( ) )
1-— (1 —p)z

w-e

B TourstP — Tburst<1 - (1 - p)Z)
Plug in z and ¢ to get U only in terms of x and w:

Uz, w) = 1— (1 —p)(ze™®” +1) .
5 B ThurstD — 'rburst(l — (1 — p)(merdegw + 1)) w
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B 1 — xeldes®” — 1+ preds™ +p I

TourstD — Thurst + rburstxerdﬁgw + Tburst — rburstpwerdegw — TburstP
eriea™ (pr — x 4 pe~"dea™)

erdegw(rburstl’ — Tburstp'r>

w-

As U, = dU/dw, we can separate the terms depending on U and the terms depending
on w:

dw du

pr— + pe_rdegw U(Tburstx - Tburstp'r)

Integrating both sides leads to:
log (et s —weteo® 4 p)  log(U)
J— — x ,
Tdeg — T'degPT Tburstl — PTourstL

where f(x) is seen as a constant with respect to w and U and thus can only be a
function that depends on x. Then

B Tburstx<1 - p)
Tdeg®(1 — p)
Next, we take the exponential on both sides

log(U) = log (pre"@s® — xei™ + p) + f(x).

_ Tburst _ Tbhurst

U = (pre'is®” — ge™i™ 4+ p) Td f(x) = (—xe" (1 —p) +p) "o f(x)
Return to the parameterization in terms of 2z and t¢:
G(z,t) =U(z = (z — 1)e "' w =1t)
= (~(e = DeTrsstermat(1 = p) ) i (= — )

where f((z — 1)e "4!) =: f(z,t) now represents a function that depends on z and t.
We get

_ Tburst
G(z,t)=(—z+zp+1—p+p) " f(z,1)
_ Thurst
=(1—=2(1—=p)) rie f(z,t).
The right hand side is of the form of the probability generating function of a
NB distribution with parameters ryg and pyg as stated in Definition if one
chooses f(z,t) = pNs "NB = Tburst/Tdeg a1d pxp = p. Since the mean burst size in
the bursting model is Sy, the parameter p of the geometric distribution and hence
the parameter pyp of the NB distribution is equal to (1 + sbmt)_l.

4.4 Further Distributions and Models

In the previous section, we showed how some of the most known gene transcription
models fit into the generalized framework and how a steady state distribution can
be connected via OU processes to the intensity process of the compound Poisson dis-
tribution. This intensity process gives already hints on how the underlying biological
transcription model looks like. In this section we investigate further distributions
and models.
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4.4.1 Basic-Bursting Model

Another obvious consideration is to check what happens when combining two of the
previously discussed models. Here, we calculate the resulting steady state distribution
when combining the basic and the bursting model, depicted in Figure 4.8 We call
the resulting model basic-bursting model.

Basic-bursting model
MRNAs

Ttran ::";-Z':
DNA / \QS 5 Tdeg L

Sburst \
rr-deg ‘...:. ,:..;

Figure 4.8: Basic-bursting model of gene expression consists of constant and bursty transcription
and constant degradation of mRNA

We do this along the line of the calculations in Appendix and Section [4.3.1.3

d t -
/P;;% ) = Z Thurst P(1 — 2, 1)Pgeo(X = 7) + TpanP(n — 1,1) 4 7aeg(n + 1)P(n + 1,1)
=0

- (Z 'rburstPGeo(X = ZC) + Ttran + Tdeg n) P(”: t)?
=0

where P denotes the probability mass function of a random variable X that is
geometrically distributed with success probability p. The derivative of the probability-
generating function then reads

ot o dt
= Z ZxrburstPGeo(X = ilf) Z Zn—x/])(n -, t) + Z antmn,])(n - 17 t)
=0 n=0 n=0

+ Y ragn+1)2"P(n+1,t) — ZrbwstPGeo(X =x) Z 2"P(n,t)

n=0 =0 n=0
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— i Tiran 2" P(n,t) — i Taegn2"P(n, t)
n=0 n=0
= Pyurst i 2"Peo(X = ) i 2EP(n = 2, t) 4 Tan? i 2" P(n — 1,t)
2=0 n=0 n=0
+ Tgeg i(n + 1)2"P(n+ 1,t) — Thurst i Paeo(X = 1) i 2"P(n,t)
n=0 2=0 n=0
With
G(z,t) = i 2"EP(n — x,t)
n=0
G(z,t) = f: 2"P(n,t)
n=0
%(z,t) = gnznlp(n,t)
aa—f(z,t) = g(n +1)2"P(n + 1,1)

it follows that

oG

E(z,t) = G(z,t)

Tburst (Z ZmPGeo<X = ZL') - Z PGeo(X = l’)) + rtmn(z - 1)
=0 =0

oG
+ Tdeg(l - Z)&(th)'

Because of Pgeo(X =) = (1 —p)*p and >~ Paeo(X = 2) = 1, it follows that

%0 o) = [ (v Tz 1) + ol 1] €1

oG
+ Tdeg(l - Z)a(z,t)

Taken together, the result is a PDE of order one and equivalent to

B 1—2(1—p) 9G |
G(Z’t) _rburstp - T'burst<1 - 2(1 _p)) + Ttmn('z - 1)(1 - 2(1 _p)) ot ( 7t)
Faeg(1 —2)(1 = 2(1 - p)) oG

" o — T (L — (1= p)2) + ren (s — D —2(1 = p)) 02 ")
(4.14)

In the following we show how to solve the PDE

G(Z(y>v t(y)) = G,z + Gtt
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Ansatz: G(z,t) = U(x,w) = U2 + Ut

To use this ansatz, we need to determine = and w. We read # and ¢ from the full

equation given by (|4.14]):

raeg(1 = 2)(1 = 2(1 = p))

T urst? — Towrat(L— 2(L— ) + Tran(z — D(L — 2(1 — p))
P 1—2(1-p)

TourstD — Tourst (1 — 2(1 = D)) + Tiran(z — 1)(1 — 2(1 — p))
P _de_ cra(-9(-sop) g
{7 (1—2(1-p)) " '

Thus, it follows that
dz

dt = ——M—.
Tdeg(z — 1)

Integrating both sides yields

1
dt = [ ———d & 1 — 1) = rget +c.
/ /Tdeg(z—l) z og(z ) = Tgegt + €

for an arbitrary constant ¢. Next, we take the exponential of both sides
y—1= cerdegt = c= (Z o 1)6—7"degt

for a constant ¢. Choose = ¢ = (2 — 1)e "4' and w = ¢. Then it follows that
z = xe'd™ + 1. For the derivatives, we obtain

x, = et = —(z = 1)rgege """

w, = 0 Wt = 1.
Next, we need to determine U, and U;:

U, =U,x, + Uyw, = e "t
Uy =Upzy + Uywy = —1gege” " (2 — 1)U, + U,

Finally, we can compute U:

Uz,w) =U.2 + Uyt

_ _rdﬁgtU . . 1 —’r‘degtU Z Z U
e 22— (2 )Tdege m_rdeg(l —2) " —Tdeg(1 — 2) ’
z
—T'deg<1 - Z>
) 1—2(1-p)

_Tburstp - rburst(l - Z(l _p)) + rtmn(z - 1)(1 - Z(l - p))
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Fill in z and ¢ in terms of z and w.

B (1 — (ze"@e™ +1)(1 — p))U,
 ThurstD — Tourst (1 — (w720 + 1) (1 — D)) 4 Typan(wedes® + 1 — 1)(1 — (zeraea® + 1)(1 — p))
_ (ac’v® 4 paetit 4 p)U,
_Tburstp — Tburst (p + pxerdegw - xerdegw) + Ttmnxerdegw(p + pxerdegw - xerdegw)
Uw

Tb“mtp(p + prerds? — xe”egw)_l — Thurst + Ttranxe’ des?

As U, = dU/dw, terms depending on U and w can be separated:

dU o T burstP
U \p+ preris® — perdea®

— Tburst + Ttranxerdﬁgw) .

Integrating both sides leads to:

TdegW — lOg (p + pxerdegw B xerdegw) Ttmnxerdegw
— ThurstW + f(l’),

PTdeg

lOg(U) = TburstP (

Tdeg

where f(x) is seen as a constant with respect to w and U and thus can only be a
function that depends on x. Then

T deqW
Tburst Ttran € deg

+ f(z).

log (p + preds® — xe"e™) — rygqw +
Tdeg Tdeg

=ThurstW —
Next, we take the exponential on both sides

L TdeqW
U = ( + TdegW __ Tdegw)i fg:;t —Ttranxe Y f( )
= (p + pxe xTe exp . Z).
deg

Return to the parameterization in terms of 2z and ¢:
G(z,t) =U(xr = (z — 1)e "= w = t)
— Tburst Ttran\Z — 1 —r
= e = 1) = (1) e (B (e e,

T deg

where f((z — 1)e ") =: f(z,t) now represents a function that depends on z and t.
We get

_ Thurst —1
Glet) = (ppz—p— 2+ 1) o exp (Q) )

Tdeg

— (1= 2(1—p)) " exp <w> f(z1).

Tdeg

With Definition we know that

mn( - 1)
() ) = (%)

Tdeg
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is the probability generating function of a Poisson distribution with parameter Trt;—::
Analogously to the master equation of the bursting model in Section [4.3.1.3] we
choose f(z,t) = puB s "NB = Thurst/Tdeg and pxB = P = (14 Spurst) - Then here again,
the remaining parts describe the probability generating function of a NB distribution

Tburst

(]_ + Sburst)il ) "deg
G = )
NB(p’Tfsj> ) ((1 = 2(1 = (1 + Spurst) )

Taken together G(z,t) = G(z) is time-independent and the product of the two

babilit ting functi G d G . Thi
probability generating functions G (Tmm) (2) an . (%7(1“1)%04) (2) is

"deg
results in G(z) describing the probability generating function of some random

variable Z that is the sum of two independent random variables X and Y, where
X ~ Pois <’;fﬂ> and Y ~ NB (M (1+ sbmﬂst)*1>. This means that the steady

deg Tdeg ’
state distribution of the basic-bursting model is exactly the sum of the steady state

distributions of the individual processes.
We know from Example that the convolution of a Poisson and a NB distribution
results in a Delaporte (DEL) distribution, given in Definition |A.10, With this G(z)

describes the probability generating function of

7 ~ DEL (Ttmn + T burst Sburst Tdeg Ttran > '

) )
Tdeg Tourst Ttran T TburstSburst

Taken together, the steady state distribution of mRNA counts that are created in a
basic-bursting transcription process is a DEL distribution. Constructions like this
might be interesting when modeling for example biallelic gene expression, i.e. both
alleles transcribe independent but with different underlying mechanistic processes.

4.4.2 Poisson-Inverse Gaussian Distribution

Another interesting distribution to model count data is the Poisson-inverse Gaussian
(PIG) distribution (see Example [3.5]). This distribution is used to model for example
species abundances (Ord and Whitmore, |1986) or in assurance modeling (Zha et al.|
2016)).

The aim of this section is to see if we can derive a possible underlying biological
transcription model if we assume mRNA to follow in steady state the PIG distri-
bution. This is done in two steps, analogously to the derivation of the underlying
transcription model of the NB distribution in Section [4.3.1] First, using the com-
pounding distribution, the corresponding subordinator of the intensity process I;
given by the OU process in Equation will be derived. Then the subordinator
is used to come up with possible mechanisms that might describe the underlying
transcription process.

We start with the compounding distribution of the target distribution which is here the
PIG distribution. We want to derive the subordinator on the OU process under
the assumption that in steady state the intensity I is modeled by an inverse Gaussian
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distribution (see Definition|A.2)). The IG distribution fulfills the prerequisites to apply
Lemma and therefore the three step approach (described in Section can be
applied with D being the IG distribution. With this the corresponding subordinator

can be easily calculated.
The characteristic function of I ~ IG) , is given by (see Definition [A.2)

2012
©r(z) = exp 2(1— 1— /L)\m)>
B A1 2u%iz\ "7 (242
- ﬁ/o <_5<1_ A ) (T o

. . 20\ 2
with ¢(x) = xpirge, (1 - 2”T> :

The next step is to find the corresponding subordinator L;. For this, the characteristic
function of L; is given by:

P, (2) = exp((2)) = exp (Wdeg (1 _ mz)-%)

B rdeg,uzz B rdeg -1+ M +1
= exp = exp

2,u 1z / 2;1, 12
T de 2 12
= exp dg —4/1 M —14 —
/ 2,u 12

B A

= oy (2)ps (2)

This shows that the characteristic function of L; is a product of two characteristic
functions. Therefore the subordinator L; = Y; + J; is the sum of two subordinators
Y; and J;. In fact, vy, (2) and ¢y, (z) are known characteristic functions:

e vy, (2) is the characteristic function at t = 1 of an IG process (Definition |3.12))
T3€g>\
4

deg/J'

with mean parameter p;op = and shape parameter \;qp =

e o (2) is the characteristic function at ¢t = 1 of a CPP (Definition [3.11)) with

1

ATdeg 1
27

o ﬁ) distributed jump sizes.

the waiting time parameter and I’ (
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This connection between the IG distribution and the subordinator, that consists
of the sum of a IG process and a CPP with gamma distributed jump sizes has
been inferred before using Lévy densities (Barndorff-Nielsen and Shephard, |2001al,
Valdivieso et al., [2009). In our calculation we used the three step method described
in Section [4.3| using characteristic functions.

We have found the subordinator and thus the corresponding SDE. This does not
mean that the corresponding mechanistic process has been identified. In contrary
to the new first part of the subordinator — the IG process —, the second part of the
subordinator — the new CPP subordinator — is not entirely unknown to us as it is
similar to the CPP subordinator that we already know from the bursting model in
Section [£.3.1.1] To infer a plausible biological transcription process which we will call
IG bursting model from the new subordinator, we need to understand what this sum
of subordinators means. From the basic-bursting model in Section we know that
the transcription process can consist of two independent parts whereas degradation
is not changed. In the following we will look at both parts of the subordinator
separately.

Note that all parameters above are described in terms of the parameters of the target
IG distribution A and p and the degradation rate 74,. This means we have three
parameters in the model — two in addition to the degradation rate r4.,. When inferring
a new transcription model, we want to use the parameters of this mechanistic model
and describe the IG steady state distribution using these. Since the subordinator
splits in two parts and our goal is to infer two (independent) transcription processes,
we will use one model parameter for each part. So we will use pg for the first part,
as the mean transcription rate and 7, as the rate parameter for a possible second
bursty part.

4.4.2.1 1G Subordinator

We start with the unknown IG subordinator (see Definition and compare it to
the subordinator of the basic model. The IG subordinator has increments (= jumps)
Y; — Y, which are IG (ug(t — s), Ag(t — s)?) distributed for all ¢ > s > 0. Hence for
Twan = Mg the mean function of the IG process is the same as the basic subordinator.
Comparing this with the constant transcription rate 74.,,s of the basic process, we
propose as first part of the new IG bursting model a modified basic model, where
the constant transcription rate is replaced by a random variable R that follows an
IG (R, R burst) distribution. This means that the transcription rate is not fixed in
a cell over time, but at each event a different transcription rate has to be taken into
account. This is depicted in Figure 4.9|

4.4.2.2 New CPP Subordinator
In Section [4.3.1.1, the CPP subordinator L' has jumps that are exponentially

distributed and lead to a bursty transcription process with geometrically distributed
burst sizes. The new CPP has jumps that follow the more general gamma distribution.
However, this can be analogously translated into a mechanistic bursting process with
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Basic subordinator IG subordinator

Ly Yy

slope: R

Comparison

(]

L

(W)
slope
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R, Tdeg
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Ry = Tirans Ry ~1G(pR, (iR burst)

Figure 4.9: Comparison of the |G subordinator with the subordinator of the basic model. The
mean function of the IG subordinator u gt is exactly the basic subordinator if 744, = g. The
IG subordinator is a pure jump process, where the jumps are IG(ug(t — 5), LR burst (t — 5)?)
distributed. Comparing these increments with the constant rate of the basic process, we propose
as second part of the new IG bursting model, a modified basic model where the transcription
rate R; of mRNAs is not a constant but follows an IG(ug, trTburst) distribution. Note that
this rate is not fixed for a cell over time, but continuously newly drawn transcription rates have
to be taken into account.

NB distributed burst sizes. The bursts occur with EXP(ry,,.s¢) distributed times but
the bursts S follow a NB (%, Tourst/ (Tourst + ZMR)) distribution.

Comparing these we see that both CPP are similar, as both have I' distributed jump
sizes. In fact, Lb%"st had exponentially distributed jump sizes which are the same
as I'(a =1, ) (see Definition [A.3). Therefore we can also generalize the resulting
biological burst process. In the bursting model in Section the burst sizes
follow a geometric distribution. The geometric distribution is a special case of the
NB distribution. In detail Geo(p) = NB(r = 1, p). So with respect to the parameters
in the new CPP subordinator, we generalize the burst process to a new burst process.
In this new burst process, waiting times are still EXP(7y,,s) distributed. Bursts
follow now a NB distribution, whose parameters are determined by the gamma
distribution of the I' distributed jumps sizes of the new CPP subordinator. Therefore
the parameters of the NB bursts are r = % and p = ﬁ—_ﬁé% Like this the mean
burst size £~ is the same for the new CPP subordinator and the new bursting

. burSt . . . . . .
model. This derivation is also depicted in Figure [4.10]

4.4.2.3 The IG Bursting Model

With this reasoning, combining the two proposed parts to one model, an actual
underlying process resulting in a PIG steady state distribution could look like the
one shown in Figure 4.11] We are calling this model IG bursting model.
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Figure 4.10: Comparison of the new CPP subordinator with the CPP subordinator of the
bursting model. The CPP differ in their jump distributions. In the CPP of the bursting model
this intensity was exponentially distributed with mean size spy5;. In the new CPP model jump
sizes follow a gamma distribution, where the first parameter is 1 and the second parameter

is given by ryurst/(21r). From the Section [4.3.1.2) we know that this CPP as subordinator in
Equation leads to the depicted bursting process. The exponential distribution is a special
form of the gamma distribution as well as the geometric distribution is a special form of the
NB distribution. Using this, we propose for the 2nd part a possible new transcription model —
called IG bursting model — to consist of a burst with the depicted rates.

Note that both parts are not independent of the other part, as they use both the ug
and 7y, parameters. Only together they result in a model that is a possible under-

lying model, where the steady state distribution then follows a PIG <2“—R 4”’“5—“”)

Tdeg ’ Tdeg
Note that, analogously to the previous models, the three IG bursting model parame-

ters are not identifiable. We can only infer fi—R and %
eg eg

4.5 Application: Data Generation and Model Selec-
tion
In this section we show how the distribution models can be applied to real-world

data. To do so, we need to consider the real-world conditions and include them in
the distribution models. First, we specify the adjustments that need to be made.
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|G bursting model
mMRNAs
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27 Thurst T21R

Figure 4.11: |G bursting model of gene expression consists of an IG distributed transcription
rate that generates one mRNA at a time and of a parallel bursty transcription, both transcription
events are determined by the mean parameter of the IG distribution and the rate parameter of
the bursts. The degradation rate of mMRNA remains constant.

Then we describe our implementation in the R package scModels, which we use for
the distribution fitting. In addition, we have also implemented the five transcription
models proposed above so that we can generate data via their respective Gillespie
algorithm (Gillespie}, [1976). Using these we present a simulation study in which
we generate perfect-world data with all five transcription models (i.e. via the
respective Gillespie algorithm without any technical or biological noise) and fit the
presented distributions to the data. By model selection we want to investigate which
distribution assumption fits most often to the respective transcription models and
which distribution could be the best general choice. Finally, we will model real-world
data by the modified distributions. We want to asses if the selected distributions also
perform best here, and we will investigate if we can find some gene traits that allow
simpler (or more complicated) distribution models.

4.5.1 Heterogeneity and Dropout

The transcription and degradation models considered so far describe the number
of mRNA molecules for homogeneously expressed genes that are actually present
in a cell. Real-world data is usually more complex: First, cell populations may be
heterogeneous in their gene expression. Second, scRNA-seq measurements will be
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subject to measurement error. For example, they often contain a large number of zeros.
Dropouts are zero values caused by technical errors. Thus, in reality some mRNA
was present, but due to some circumstances the measurement is zero. Regardless of
what causes this phenomenon, a data model should take this property into account.
Therefore we describe three model extensions, one for zero inflation, one for mixing
two distributions and the third for zero inflation and simultaneous mixing of two
distributions.

Although D can in general be every possible distribution, we will discuss below the
Pois, NB, PB, DEL and PIG distribution, as we have done in the previous sections.
Data that originates from different cell populations (in terms of different tran-
scriptomic properties) can be modeled mathematically by mixture distributions, as
introduced in Section [3.1.1 We will use the case described in Example 3.1} where a
population consists of two subpopulations and each of them is modeled by one single
distribution. Here, we assume that both populations follow the same distribution D
with PMF f but are parameterized with different parameters 6; and 5. Therefore,
the corresponding mixture density is given by

fomix (701,02, p) = p f(2]01) + (1 — p) f(2]02),

where p describes the share between the two distributions.

An appropriate model for the occurrence of the above-mentioned dropout is a zero-
inflated distribution (see Equation and [Kharchenko et al., 2014). We add zero
inflation to a homogeneous population, which is described by the discrete count
distribution D with PMF f and parameter 6, as shown in Example [3.2] With this
the resulting PMF is given by

fa(x|0,p) = plioy(z) + (1 — p) f(]0),

where 1oy (2) is the indicator function with point mass at zero and f is the PMF of
the selected distribution D.

Analogously these two mixtures can be combined so that zero-inflation is added to a
mixture of several distributions. This leads to mRNA counts being modeled by

Jricomix (2|01, 02,1, p2) = p1lioy(z) + p2 f(2]601) + (1 — p1 — p2) f(x]02),

where p;, po and 1 — p; — py describe the shares of the three parts of the new
mixture. We investigate heterogeneity in real-world data using these extended model

in Section [4.5.41

4.5.2 R Package scModels

We provide the R package scModels which contains all functions needed for max-
imum likelihood estimation (Section of the considered distribution models.
Five applications of the Gillespie algorithm (Gillespie, 1976)) allow synthetic data
simulation via the basic, switching, bursting, basic-bursting and IG bursting model,

respectively (see Sections and for details on the models). Implementations
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of the likelihood functions for the one-population case and two-population mixtures,
with and without zero-inflation, allow inference of the Poisson, NB, PB, DEL and
PIG distributions. We provide a new implementation of the PB density — given
in Equation (4.9) — , based on our novel implementation of the Kummer function
(Definition , also known as the generalized hypergeometric series of Kummer.
This became necessary, because the existing R function (kummerM() contained in
package fAsianOptions) was only valid for specific parameter values, and hence, was
not suited for optimization in continuous unconstrained space.

4.5.2.1 Implementation of the PB Distribution

We need to evaluate the PMF of the PB distribution (see Example in some parts
of this thesis. In detail, we calculate the PB distribution in terms of the parameters
of the switching model, see Section (4.2.3]). The general form of the PMF of the

PB(«, 3,0, ¢) distribution for «, 8, ¢ > 0 is given by
I'(a+B)cT (a+ x)
IM'o)T(z+ 1) (a+ B+ x)

PPB((E‘Oé,ﬁ,O,C): 1F1<Oé+$;04+ﬁ+l';—c)

for x € INg. To compute this function, the Kummer function 1 F; (a;b; z) (see Defini-
tion [A.6]) needs to be calculated with the following constraints on its parameters:

(i) z € R<p (where z is the third parameter of ;F7). We only look at the case
where z = —c¢ and with Equation (4.9)) we set ¢ = ”;" € Rxo.
eg =

T

(ii) a,b € Rspand 0 < a < b. We have a = o+ x and b = o +  + x and with
Equation (4.9) we set a = 2t € Rxo and B = Tdeact € Ry.
€qg - -

T Tdeg

Muller| (2001) showed how hard it is to compute the Kummer function, because
its computational behavior splits into a number of distinct regions, which makes it
impossible to have a unified algorithm for all possible input parameters. One of the
well-behaved analytical solutions to the function is in the form of an infinite series.
Additionally, for specific constraints on the parameters (which are fulfilled when the
function appears inside the PB distribution), there exists an integral representation of
the solution. Nevertheless, neither the integral nor the infinite sum can be computed
directly, and thus approximations and workarounds have to be implemented. There
exist different methods to address this problem. On the one hand, there are methods
that compute the PB distribution by approximating the integral representation of
the Kummer function (see BPSC [Vu et al. [2016, implemented in Python); while
on the other hand methods employ the characteristics of the PB distribution to
estimate its parameters, circumventing the evaluation of the Kummer function (see
D3E, Delmans and Hemberg, 2016, implemented in R). Our approach is to calculate
the density by truncating the infinite series solution to the Kummer function at a
reasonable error bound. This is also a challenge, because for example the existing R
function kummerM() (Package:fAsianOptions) tries a similar approach, but fails for
many parameters. Figure displays the comparison between the implementation
of the Kummer function by the fAsianOptions package and our new implementation.
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Figure 4.12: Behavior of the Kummer function for different parameter sets based on the
implementations of fAsianOptions in black and scModels in blue. (A,C and E) As long as z is
positive, the Kummer function of both packages return the correct values. (B,D and E) As
soon as z is negative (smaller than -50) the Kummer function of the fAsianOptions returns
wrong values for a, b and z for values that cannot be expressed by the general formula m - 277,
m,n € Ng. This bug is fixed in the new implementation of the Kummer function in scModels.

In the following, we will first go into detail of the existing methods and will then
present our new implementation. Afterwards we compare our method to existing
ones in terms of fitting and computation time.

e BPSC: |Vu et al| (2016) present how to use the integral representation to
calculate the PMF of a PB distribution. This is implemented in their R-package
BPSC. |Vu et al.| (2016) define three different beta-Poisson models (they use this
name rather than PB) where the so-called three-parameter beta-Poisson model
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corresponds to the one we presented in the Section and Equation (4.9),
and thus is the one we want to use here and later in the comparison. Parameter
estimation is done via likelihood maximization, where two techniques are used
to speed up the calculations: First, the authors bin the data into intervals
and for each bin the probability is calculated separately via the PMF of the
beta-Poisson distribution in this interval. Second, to calculate the PMF of such
an interval, the integral-notation of the Kummer function is used and the value
of this integral is approximated by using the Gaussian quadrature method.
Starting values for a and g for the parameter optimization are calculated based
on the method of moments whereas ¢ is assumed to be the maximum of the
data points.

D3E: Delmans and Hemberg (2016) implemented two different methods to
estimate the parameters of the PB distribution in their D3E package that
is available in Python: The first implementation is a “fast but inaccurate
method” (Delmans and Hemberg, 2016) using the moment matching approach
that was first proposed by [Peccoud and Ycart| (1995). The second implementa-
tion is the Bayesian inference method proposed by |Kim and Marioni (2013))
where gamma priors are used for the parameters «, § and ¢ and a collapsed
Gibbs sampler, using slice sampling, is used for parameter estimation. Addition-
ally, D3E provides a differential gene expression test by using a likelihood ratio
test. To overcome the problem of calculating the Kummer function, a Monte
Carlo method is used that approximates the PMF as average of empirical
PMFs of a large number of datasets generated from a PB distribution.

scModels: All functions needed to simulate data or estimate distributions
are collected in our R package scModels which is published on CRAN (https:
//CRAN.R-project.org/package=scModels). The current working version
can be found on Github under https://github.com/fuchslab/scModels.
Included are the Poisson, the NB, the PIG, the DEL and the new imple-
mentation of the PB distribution (probability density function, cumulative
distribution function, quantile function and random number generation) to-
gether with a necessary new implementation of the Kummer function (also
called confluent hypergeometric function of the first kind). Additionally, five
implemented Gillespie algorithms allow synthetic data simulation via the basic,
switching, bursting, basic-bursting and IG bursting mRNA generating process,
respectively. Lastly, we added likelihood functions for one population and two
population mixtures — with and without zero-inflation — that allow estima-
tion of the Poisson, NB, PIG DEL and the PB distribution. These can be
performed with one included wrapper function fit_params() that uses the
general-purpose optimization function optim().

As stated above, we implemented a new version in R of the Kummer function
that uses the infinite sum representation. The only existing (at least to our
knowledge) implementation in R, kummerM(), which is contained in the package
fAsianOptions, works only for some specific parameter choices but not for
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others, e.g. for negative z the kummerM() does not return the correct values
(see Figure . More specifically, this implementation returns the correct
result only for parameter values that can be written as mQLn with m,n € Ny.
Because this is impracticable when numerically determining parameters during
likelihood optimization, we decided to solve this issue by reimplementing the
Kummer function.

Our new implementation aims to be as close as possible to the true solution
for the parameter values we need, when the Kummer function is used during
calculation of PMF of the PB distribution. Muller| (2001)) stated that if neither
a nor b are negative integers, then the series converges for all finite z. In reality,
however, calculations fail when, for example, a and z have opposite signs. The
problem arises because of cancellations. One of Kummer’s transformations
(given in Equation 13.2.39 in |Olver et al., [2019)) promises to circumvent this
problem: Suppose that a,b € RS’F and 0 < a <bbut z€ R_, then

M(a,b, z) = exp(z) M(a, b, 2),
where @ = b —a,b=b, 2 = —z. Now for the new parameters it holds that

(i) 2 € Ro.
(i) @,b € Rsg for 0 < a < b.

With these new constraints, the power series does not have convergence issues.
However, the series is difficult to compute due to the limits of machine precision.
Consequently, we use the MPFR library (see https://www.mpfr.org) for
arbitrary-precision floating-point computation. To make the code more readable,
we use another MPFR C++ wrapper (http://www.holoborodko.com/pavel/
mpfr/), written by Pavel Holoborodko. The precision of the temporary results
in an expression is chosen as the maximum precision of its arguments, and the
final result is rounded to the precision of the target variable.

Although the final result of the function is quite large, the logarithmic value can
be casted into double, which is then used further. We implement the iterative
algorithm described as Method 1 in Muller| (2001). Convergence and error
analysis for Taylor series summation using multiple precision arithmetic has
been explained in Brent| (2010).

Convergence of the Kummer series as given in Definition can be checked
using the ratio test, and an appropriate lower bound on the number of terms
needed for computation can be subsequently calculated. One has

M(a,b,z) = ZTZ" where T; = (a_)‘z_.

2 (b
For convergence, we need
1> fim | 51| = gy (@D
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which is easily fulfilled for all reasonable positive values of a, b, z. With this, we
can have a lower bound on the number of terms needed for a good approximation.
Specifically, we need to sum up at least until the term where the ratio falls
below one. Hence, the condition is

(a+1)z

1
briyi

and this implies
i +i(b—2) —az > 0.

Since only positive values of ¢ are sensible, we have

i —(b—z)+\/2(b—z)2+4az < Vaz.

Therefore, the series converges after y/az terms. Nevertheless, our new imple-
mentation of the Kummer function that is contained in scModels stops the
calculations of the infinite sum as soon as a new summand is smaller than 1075,

In a simulation study, we compare the implemented functions of the PB distribution
that are contained in the three described packages. We first generate sample data on
which to test the three packages by using our gmRNA_switch() function contained
in scModels. We use this function to generate data from the switching model as
this is the mechanistic model that leads to the PB distribution in steady state (see
Section [4.2.3). We simulate 1,000 data points from four different sets of parameters,
respectively. Table shows the chosen PB parameters which are calculated from
the parameters used in the data simulation, & = 7r4ct/Taeg, B = Tdeact/Tdeg and
€ = Ton/Tdeg, as well as the results of this comparison study. These results are also
depicted in Figure The estimation procedures and time measurements were
performed on a cluster of machines with the following specifications: Intel(R) Xeon(R)
CPU E5620 (2.40GHz). Jobs were submitted using the Univa Grid Engine queuing
system with 1 GB of memory for each job. Package-specific details of the procedure
are described in the following:

e BPSC: The function getInitParam() estimates initial parameters of the
distribution to be passed to the optimization function. The estimateBP ()
function calls the standard optim() routine to generate final results.

e D3E: D3E is designed for identifying differentially expressed genes based on
scRNA-seq data. The data needs to be provided in a tab-separated read-count
table, where rows correspond to genes, and columns correspond to cell types.
Since it works for differentially expressed genes, the columns in the read-count
table have to be labeled for the two different types of cells or conditions. The
output is the parameter values of the PB distribution along with other statistics
for comparison. Here, we do not aim to test for differential expression but only
intend to estimate model parameters for one type of cells. Hence, we have to
circumvent this procedure: We use the function getParamsBayesian() from
inside the package to bypass the differential expression step.
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e scModels: We use the method of moments combined with bootstrap to predict
initial values for the optimization. The final result is obtained by minimizing
the negative log-likelihood function that employs the implemented density
function dpb() of the PB distribution.

The estimation results, given in Table and depicted in Figure show that
all three packages are able to estimate the density function that describes the data
well and is close to the true density curve. The obtained values of the negative
log-likelihood are in the same range, with our package scModels always leading to
the lowest or equally low (i. e. best) value. Computing times and parameter estimates
are variable and do not show a clear picture besides that the BPSC package takes the
least amount of time and scModels sometimes takes very long. Note that although
the values of some of the estimates are far from the true one, the overall likelihood

is close. Having a look at the mean and the variance of the PB distribution (see
Definition [4.5.2.1)) individual parameters might not be identifiable in all cases.
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Figure 4.13: Histograms of the four simulated datasets (A-D) and PB densities using the true
and estimated parameters from Table [4.2] respectively: true (blue), scModels (green), BPSC
(red) and D3E (orange).
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computing value of negative
Q@ B c time in sec log-likelihood
Dataset 1
true values 50 200 4,000 - 6,041
BPSC estimate 23 13 1,243 0.61 6,058
D3E estimate 64 270 4,214 188.77 6,044
scModels estimate 66 2,927 36,384 116,760.21 6,038
Dataset 2
true values 50 200 500 - 4,210
BPSC estimate 41 83 304 1.05 4,208
D3E estimate 62 1,298 2,195 165.67 4,211
scModels estimate 45 135 399 1,528.39 4,208
Dataset 3
true values 50 20 100 - 3,738
BPSC estimate 19 3 82 0.737 3,735
D3E estimate 92 191 221 174.49 3,741
scModels estimate 17 2 80 110.57 3,735
Dataset 4
true values 50 20 10 - 2,415
BPSC estimate 73 69 14 0.686 2,415
D3E estimate 43 2,160 368 163.43 2,418
scModels estimate 0.56 0.0037 7.18 89.67 2,413

Table 4.2: Results of parameter estimation for the PB distribution using the software packages
BPSC, D3E and scModels. We simulated four datasets of size 1,000 each. The table shows
values of the parameters «, 8 and c: the true values used for synthetic data generation, and the
point estimates obtained through application of the different packages. The last two columns
show the computation time measured in seconds for each algorithm and the value of the
negative log-likelihood function (computed using the function scModels: :nlogL pb() for all)
evaluated at the respective parameter values. Smaller values of the negative log-likelihood
indicate better point estimates.

With our new implementation of the PB density we did not overcome the problem
of time-consuming calculation, but we for the first time provided an implementation
of the Kummer function in R valid for all values required inside the PB density.

4.5.3 Simulation Study

In a simulation study, we generate in silico data from the five considered mechanistic
models: the basic model (Figure[4.1]), the switching model (Figure [£.3A), the bursting
model (Figure , the basic-bursting model (Figure and the IG bursting model
(Figure using our Gillespie implementations in scModels. In order to choose
realistic values for the rate parameters, we are guided by experimental studies which
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aim to determine rates of the switching process in specific cases. For example, Suter
et al.| (2011)) identify rates for so-called short-lived genes where mRNA and protein
pulses are directly connected to one single on-and-off-switch of a gene. From these we
calculate ranges for the basic and the bursting models to ensure that the simulated
data is comparable between the models: 74, = 7on U T4e (this is informal notation
for the union of the two ranges of r,, and 7.t), Spurst = Ton/Tdeact AN Tpurst = T'act-
For the basic-bursting model, we use the same ranges as for the stand-alone basic
and bursting models. For the IG bursting model we take for pg the same range as
Tran aNd Thyse to contain the range of ry,. parameter of the bursting model but
raise it up to 3 so that the mean burst size of the IG bursting model which is defined
by pr/Teurst lies in the range of sy, of the bursting model. For each of the five
considered models, we generate a grid of 1,000 unique parameter sets and generate
one dataset for each of those parameter sets resulting in the generation of 5,000
datasets. Each of those contains 1,000 observations. The employed ranges for the
parameter grids are displayed in Table [4.3]

Mechanistic model Rate parameter Minimum value Maximum value

ran . 2.
Basic model "t 0.005 o
Tdeg 0.001 0.05
Thurst 0.005 0.06
Bursting model Shurst 0.8 250
T deg 0.001 0.05
Tact 0.005 0.06
cac 0.01 0.6
Switching model Fdeact
Ton 0.5 2.5
Tdeg 0.001 0.05
Ttran 0.005 2.5
urs 0.005 0.06
Basic-bursting model Mburst
Sburst 0.8 250
Tdeg 0.001 0.05
LR 0.005 2.5
IG bursting model T burst 0.005 3
T deg 0.001 0.05

Table 4.3: Ranges of rates in the simulation study for all five different transcription models.

As a proof of concept, we estimate the five corresponding distributions, i.e. the
Poisson, PB, NB, PIG, and the DEL distribution, on all generated datasets via
maximum likelihood estimation (Section [3.3.1)).

As described in Section [3.4] we use the BIC to select the model which fits the data
best. Afterwards we perform the x*-test to assess the [goodness-of-fit (GOF)| i.e.
whether the distribution estimated with the model fits to the underlying data. We
neglect those models respectively datasets for which the estimated distribution is
rejected at the 5% significance level. This reduces the total number of 1,000 simulated
datasets per model to the amounts displayed in Figure [4.14A.
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We investigate whether the selected distributions correspond to the distributions
that arise from the respective mechanistic models: For the datasets generated from
the basic model, model selection via BIC (after GOF) indeed prefers the Poisson
distribution in most cases, independently of the used distribution parameter A

A Best model fits via BIC (after GOF) D Data generated by bursting model
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Figure 4.14: Model selection on in silico data: (A) Frequencies of chosen distributions (Poisson,
PB, NB, DEL, PIG) via BIC (after GOF) based on datasets generated by the five different
transcription models (basic, bursting, switching, basic-bursting, IG bursting) using the Gillespie
algorithm. (B-F) Employed parameter values (indicated by horizontal/vertical position) and
chosen distributions (indicated by color/symbol) for basic model (B), switching model (C),
bursting model (D), basic-bursting model (E) and IG bursting model (F). The names of the

parameters correspond to those in Definitions [A.7] [A.8 Equation (3.1), Definition and
Example
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(Figure , first row, and Figure ) In contrast, for datasets generated by
the switching model, selection via BIC (after GOF) mostly chooses either the NB
or the PB distribution (Figure , second row). The choice seems to depend
on the employed rate parameters: Figure 4.14C indicates a tendency towards the
PB distribution for low values of 3; otherwise, the NB distribution often seems to
model the data generated by the switching model sufficiently well. This indicates
that, the NB distribution is complex enough to describe the data generated from the
switching model. The BIC decides in many cases that a potentially better fit is not
worth the extra effort for estimating an additional parameter in the PB distribution.
For datasets generated by the bursting model, BIC (after GOF) selection picks the
NB distribution for the majority of the time without any obvious bias (Figure
third row and Figure 4.14D). Data generated either via the basic-bursting model
or the IG bursting model do not show a general distribution preference. The last
two bars in Figure |4.14A show that all distributions but the PB are selected in large
numbers. Figure 4.14[E shows that for large v parameter of the DEL distribution the
data is best modeled by a Poisson distribution and for small v with simultaneously
small o the NB is preferred. This is what we expect, since the basic-bursting model
generates in theory data following a DEL distribution, which is the sum of a NB

and a Poisson distribution. The parameter v = W describes the relations of

the means of the involved Poisson and NB distributions. If v & 1, the mean of the
Poisson distribution is much higher than the mean of the NB. Therefore the Poisson
dominates the distribution and therefore the data can be modeled sufficiently well
by a Poisson distribution. The other way around, if v =~ 0, the NB dominates the
DEL distribution and therefore data can be modeled sufficiently well by a single NB
distribution. We cannot identify parameter ranges where the model selection prefers
a PIG over a DEL. Lastly data generated by the IG bursting model is best fitted by
a Poisson distribution for small p and additional large A. In this case ugr is much
smaller than r,, which induces less IG-transcription and more bursts. At the same
time burst sizes are very small so that this process can be approximated by the basic
process and therefore the Poisson distribution is sufficient to model the data. On
the other side, the DEL distribution seems to model the data best for large ;1 and
small A which corresponds to a process containing mainly the IG-transcription and
very rare bursts with large burst sizes. We do not know anything about such a pure
IG-process but apparently it is best modeled by a more complex distribution such as
the DEL. We cannot find a criterion when to use the NB or the PIG distribution to
model the data. Clearly, the PIG is the distribution most often preferred. Both have
the same complexity in terms of parameter numbers. Note, that the IG bursting
model does not have the bursting model as a special case: Choosing pg small so that
IG-transcription does not happen, we note that the burst sizes also depends on ug.
This means that for a mean burst size greater than 1, 7y, needs to be smaller than
pr. This in turn means that bursts occur less frequently than the IG-transcription.
To better understand the five univariate distributions used above, we depict in
Figure how the shapes of the distributions differ for the same mean E and
variance Var.
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Four mean-variance combinations are selected. With small and large mean value and,
based on this, small and large variance.

The parameters of the five distributions in dependence of mean and variance are
easily computed for the two parametric distributions NB and PIG. NB can be directly
parameterized via its mean p = E and size a = Va’iu (see Definition [A.8)). The PIG

. . . Var—
is parameterized via mean y = F and 0 = a;2 £ (see Example .

Since the PB and the DEL distributions are defined by three parameters, one
parameter needs to be chosen manually. Therefore we discuss several choices to show
the whole flexibility of these distributions. In detail for the PB, we select values for
c. Note that ¢ has to be larger than the mean we set it to be either 10E or 1000E.

With this , ,
E“(c—E E“(c—E
( Vér—E) - E) ( Vér—E) - E) (c—E)
and [ =
c Ec

o =

can be calculated.

For the DEL distribution we set the v parameter manually. It needs to be between 0
and 1 and therefore we selected it to be 0.1, 0.5 and 0.9, respectively. Since the DEL
distribution is also parameterized via the mean p = F we only need to calculate
0= ek,

Figure shows that the NB distribution and the PB distribution with the large ¢
always lie on top of each other. This explains why often the NB distribution is good
enough to model data that originate from the switching model or a PB distribution.
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Figure 4.15: Comparison of the characteristics of the four distributions for four different
mean and variance settings. PB and DEL are defined by three parameters and hence this third
parameter is chosen several times to show the bandwidth of shapes of possible distributions.
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Furthermore the two PB do not show very different shapes. Compared to these, the
PIG distribution differs in its shapes. However, the DEL distributions, especially the
shape of the one with the largest v of 0.9, is very different to all other distributions.
Since a large v means that the distribution resembles a Poisson distribution (not
shown here), this seems reasonable. Taken together since the five distributions are
able to model very similar shapes, often the less complex NB or PIG distribution are
selected. These two share the same complexity and therefore often only very small
differences in BIC make the final decision.

4.5.4 Application to Real-World Data

We perform a comprehensive comparison of the considered mRNA count distributions,
that is the Poisson, NB, PB, DEL and PIG distribution, when applied to real-world
data. Within each of the five distributions we further consider mixtures of two
populations (from identical distribution types but with different parameters) with and
without additional zero-inflation, as described in Section[4.5.1] In total, we investigate
twenty different models as shown in Figure The numbers of parameters in these

models are listed in Table [4.4]

Selected distributions fitted on genes using BIC followed by a goodness-of-fit test

A mm10:10x (NIH3T3 cells) # B Nestorowa (HSPC cells) I_Tﬁ_Tﬁ.
0 100 1,000 0 100 10,000

Pois NB PB PIG DEL > Pois NB PB PIG DEL >
1-pop 42 25 21 1-pop 0 619 24 306 | 1,026 | 1,975 |
ZI-1-pop | 115 137 3 91 22 368 ZI-1-pop 0 171 1 771
2-pop 24 16 23 55 0 118 2-pop 0 26 [
z1-2-pop P 2 0 14 12 20 zl-2-pop 0 170 0 589 s11 |[[1270
s s = =Kl = o s I I

Figure 4.16: Frequencies of chosen distributions via BIC followed by a x> GOF test across
genes of two real-world datasets: (A) 4,257 genes measured in 3,356 homogeneous NIH3T3
mouse cells (see |Official 10x Genomics Support, [2017)) and (B) 13,417 genes measured in 1,656
heterogeneous mouse HSPCs (see [Nestorowa et al., 2016]). Twenty different distributions were
fitted to the genes: Poisson (Pois), negative binomial (NB), Poisson-beta (PB), Poisson-inverse
Gaussian (PIG) and Delaporte (DEL) distributions. Each was fitted as a univariate (1-pop)
without and with zero-inflation (ZI-1-pop) and as a mixture of two distributions (2-pop) without
and with zero-inflation (ZI-2-pop).

We estimate these twenty distribution models on two real-world datasets. Before
interpreting the results we will explain the data preparation. The first one contains
3,356 homogeneous NIH3T3 mouse cells (a standard cell line established from primary
mouse embryonic fibroblast cells) and has been generated using the 10x Chromium
technique, see details in Section [2.2.4] which incorporates [UMIs. This is a procedure
that collapses all reads that are measured from the same mRNA transcript to one
molecule count (see Section [2.2.2] and [Islam et al., 2014)). It is part of the publicly
available 10x dataset “6k 1:1 Mixture of Fresh Frozen Human (HEK293T) and
Mouse (NTH3T3) Cells” (Official 10x Genomics Support} 2017)). Here, we refer to
this dataset as mm10:10x.
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The second dataset stems from Nestorowa et al.[ (2016]), contains 1,656 mouse HSPCs
(Hemapoietic stem and progenitor cells) and was generated using the Smart-Seq2
(Picelli et al., [2014) protocol, and thus does not employ UMIs.

The data preprocessing including a gene filtering has been performed as follows.

e mm10:10x dataset (Official 10x Genomics Support, 2017). This dataset con-
tains UMI counts. The raw UMI matrix (only the mouse part) consists of
27,998 genes in 3,427 cells. To filter out cells with only a few expressed genes
that could, for example, be generated by empty droplets, we apply a cell filter
that only selects cells that express more than 1,500 genes. The gene filter is
slightly less strict than the one for the second dataset as UMI count matrices
show smaller entries (by definition several read counts collapse to less UMI
counts). Thus, we filtered for genes that are expressed in at minimum ten cells
with at minimum three UMIs.

e Nestorowa dataset (Nestorowa et al., [2016). As described above, this data
was generated using the Smart-Seq2 protocol and thus the resulting data
consists of read counts. The original data matrix contains 45,771 genes and
1,656 cells. We use two filters: The first one selects only those genes that have
mean expression larger than one, whereas the second filter additionally removes
all genes that are only lowly expressed, i.e. after application of this filter, only
those genes remain that have at minimum five reads in at minimum 20 cells.
After having applied the two filters, we are left with a read count matrix of
16,364 genes and 1,656 cells.

Using these gene matrices, we estimate the model parameters of the twenty con-
sidered models via maximum likelihood estimation, and performed model selection
analogously as described in the simulation study in Section [4.5.3 In contrast to the
simulation study, the model extensions for heterogeneity and dropout are included.
Figure summarizes the frequencies of the chosen models across genes. We only
display those choices where the chosen distribution (via BIC) with estimated pa-
rameters was not rejected by a GOF y2-test at 5% significance level with multiple
testing correction (see Section .

Figure shows that in the mm10:10x data 4,257 genes remained after filtering
and the GOF test. For 49% of these genes, a NB distribution variant and for 44%
of these genes, a PIG distribution variant was chosen as most appropriate model.
However, a standard distribution (for one population, without zero-inflation) was
sufficient in the majority of cases.

We looked for commonalities between the gene profiles that led to the same distri-
bution choice in the mm10:10x dataset. To that end, we estimated one-population
models of the Poisson, NB, PB, PIG and DEL distributions for all genes and chose
the most appropriate model among those five based on BIC and GOF. Figure [4.17]
visualizes the values of the parameter estimates for each model and indicate the
chosen models by different colors. Figure shows for example that if the NB
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distribution is estimated, the following pattern can be observed: If the NB distri-
bution is also the chosen one, the corresponding estimated parameters cover wide
ranges p € (0,1) and r € [0,12]. Same holds for the PIG distribution. In contrast,
gene profiles that are most adequately described by a Poisson distribution would have
resulted in a fairly large value of the parameter p in the NB distribution (i.e. p > 0.2,
but more than 90% of them show p > 0.6) and larger values of r (i.e. r € [0, 16]).
Those genes that chose the PB or DEL distribution would have had smaller values
in both parameters, namely p < 0.6 and r < 7. Similar observations can be made for
the other distributions. Therefore, Figure suggests an interdependence between
the chosen one-population distributions and the range of the parameter estimates.
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Figure 4.17: We estimated one-population models of the Poisson, NB, PB, PIG and DEL
distributions for all genes in the mm10:10x dataset and plot their fitted parameters for each
and color the most appropriate model based on BIC after GOF. (A) Estimated A parameters
for the Poisson distribution. Each dot corresponds to one gene. In the first column, estimated
values are colored in dark blue for those genes where the Poisson distribution was chosen. In the
second column, turquoise symbols indicate estimated values in the Poisson model where the NB
distribution would have been preferred. In the third column, green color indicates the estimates
for those genes that chose the PB distribution. The forth column shows the genes which prefer
the PIG distribution in violet and the last line shows in yellow the Poisson parameters of those
genes that were best fitted by a DEL distribution. (B-E) Similarly for the NB, PB, PIG and
DEL distributions.
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In Figure , we observed a relatively large number of genes (in compari-
son to Figure [£.16B) for which mRNA count data from the mm10:10x dataset
(Official 10x Genomics Support, 2017) was best described by some variant of the
Poisson distribution, a distribution model that—for general contexts—is considered
too simple. We thus searched for patterns in the gene ontology (GO) terms of these
genes, see Figure but did not observe any apparent differences in the char-
acteristics of the Poisson genes (i.e., those genes where the Poisson distribution
was chosen) and the non-Poisson genes. To conduct this analysis, we used GO term
information from http://supfam.org/SUPERFAMILY/cgi-bin/go.cgi and the R
packages biomaRt and GOfuncR. biomaRt determines all GO terms of a gene, and
GOfuncR determines all parents of a GO term. This information was then filtered
for the first children GO terms.


http://supfam.org/SUPERFAMILY/cgi-bin/go.cgi
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Figure 4.18: GO term analysis of the mm10:10x dataset (Official 10x Genomics Support, 2017)
comparing groups of genes which where best described by a variant of the Poisson model
and those that were not (see Figure [4.16)A). (A) Amount of Poisson and non-Poisson genes
(after GOF) that are contained in the first level of GO term children of the families biological
process and molecular function. (B) Distribution of the first children GO terms of the families
biological process and molecular function for Poisson and non-Poisson genes. (C) Distribution
of the overall number of GO terms a gene is contained in. GO terms were taken from the initial
biomaRt determination. (D) Gene importance of Poisson and non-Poisson genes: Functional
coupling network of genes taken from [funcoup.sbc.su.se. Each link with weight > 0.75 was
taken and the distribution of the number of coupled genes per gene in this network is plotted.
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In the Nestorowa et al.| (2016]) data, 16,364 genes remained after filtering, of which
13,417 were not rejected by the GOF test. Figure shows that nearly half of
the genes prefer some variant of the DEL distribution. Most remaining genes prefer
either some variant of the NB distribution (30%) or PIG distribution (22%). There,
however, most often the mixture of two distributions best describes the mRNA
counts. This pattern can be explained by taking a closer look at the gene expression
counts of the affected genes.

In Figure [£.19] we exemplarily display the count frequencies for five known blood
differentiation genes from this dataset (see [Paul et al., 2015]). Most of those genes
not only show many zeros, but also many low non-zero counts, i.e. many ones, twos
etc., next to higher counts. Such expression profiles are not covered by a simple
zero-inflated model but prefer a mix of two distributions, one of them mapping to
low expression values.
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Figure 4.19: (A)-(E) Log-transformed mRNA count histograms for five genes (based on 1,656

single cells) from the dataset by Nestorowa et al.| (2016, known as blood differentiation marker

genes (see |Paul et al., [2015). Colored lines indicate the densities of the estimated distribution
variants: NB distributions (left: shades of turquoise), PIG distributions (middle: shades of violet)
and DEL distributions (right: shades of yellow).




4 Modeling Single-Cell mRNA Counts 91

Table contains more estimation details including BIC values for these five genes.

Model — abbr. (# parameter) Csflr Ccl5  Prss34 H2-Aa Gfilb
l-pop  — Pois (1) | 377,837 62,721 194,047 1,224,382 1,690,010

bty ZEl-pop - ZIPois  (2) | 830413 20741 107502 984,306 1,618,095
2-pop — Pois2 3) 60,829 9,930 20,889 390,636 489,696

ZI-2-pop - ZIPois2 (4) 74,845 8,759 150,63 568,092 502,270

lpop  _NB @) | 10,295 1,878 1,545 8454 29,842

«p  ZFlpop ~ZINB (3) | 10202 1865 1490 8454 18,653
2pop  — NB2 (5) | 8505 1,693 1,387 7,672 17,585

ZL-2-pop ~ZINB2  (6) | 9978 1,713 1401 8ATT 18,676

lpop _PB (3) | 10407 1,865 1,490 8516 18,675

O,y Zklpop ~ZIPB  (5) | 10414 1897 1555 8,618 18,803
A 2-pop - PB2 (7) 10,187 1,920 1,570 8,467 18,778
ZL2-pop —ZIPB2  (8) | 10,727 1937 1,653 8,564 18,787

lpop - PIG 2) | 8979 1,732 1,338 8,040 18,088

i ZFlpop - ZIPIG  (3) | 8888 1720 1345 7817 18,355
2-pop - PIG2 (5) 8,798 1,690 1,357 7,832 18,369

ZL2-pop — ZIPIG2 (6) | 8910 1,732 1,368 7.840 18,377

lpop - DEL (3) | 8597 8458 16,810 7.710 18,600

DEL Z1-1-pop — ZIDEL (4) 8,016 1,689 1,383 7,697 17,669
2pop - DEL2  (7)| 8571 1711 3,307 7719 17,692

Z1-2-pop — ZIDEL2 (8) | 8520 1,716 1,600 7.716 17,650

Selected model NB2 ZIDEL PIG NB2 NB2
p-value of GOF (x?) test 0.01515  0.5542 0.05752 0.9371  2.233e-04
Percentage of zero counts 29.0%  91.4% 93.5% 54.0% 6.2%
Percentage of one counts 26.3% 5.6% 3.7% 19.1% 8.1%
Percentage of counts larger than one 44.6% 3.0% 2.7% 26.9% 85.7%

Table 4.4: BIC values for selected blood differentiation marker genes (based on 1,656 single
cells) of the [Nestorowa et al. (2016]) dataset. Columns: Results for five genes Csflr, Ccl5,
Prss34, H2-Aa, Gfilb. Rows: BIC values for all twenty estimated models; the smallest BIC
shows in bold which model is selected. The selected models and the corresponding p-value of
the GOF test, together with percentages of zero counts, one counts, and counts larger than
one are listed at the bottom of the table. These five genes and the corresponding distribution
fits are depicted in Figure [4.19

Taken together, the zero-inflated DEL distribution and the two population mixture
of the PIG or the NB distribution are chosen for most gene profiles. This clearly
proves the heterogeneous nature of the data.
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4.5.5 NB Distribution as Commonly Chosen Count Model

While the mechanistic models and their steady-state distributions describe actual
mRNA contents in single cells, real-world data underlies technical variation, such
as measurement errors in addition to biological complexity. In Section [4.5.3], we
investigated in a simulation study and in Section [4.5.4] on real-world data which
distributions were most appropriate among those considered to describe gene expres-
sion profiles in general. The simulation study showed that a NB distribution may be
best suited even if the in silico data had been generated from the switching model.
Using more complex data generation models, such as the basic-bursting model or the
IG bursting model results in a mix of distribution preferences. These more complex
models generate data for certain parameters that are very similar to the data of
the basic or of the bursting model. A direct comparison of the five investigated
distributions showed that all of them can model very similar shapes of distributions
and therefore distribution selection is often only made with regard to distribution
complexity. Since the NB and PIG distribution share the same complexity in terms
of parameter numbers, there is often no substantial difference. The same applies to
the PB and DEL distribution, with the difference that calculating the PB distribu-
tion is the most time-consuming. We cannot find relevant advantages of the PIG
compared to the NB. This implies that the NB distribution is suited to be chosen
as the distribution family to model all different types of gene expression profiles,
although we know that the mechanistic process might have been more complex in
reality. Also in the real-data application, the NB distribution was often chosen. In
line with our expectations, gene profiles of the non-UMI-based dataset by Nestorowa
et al.| (2016) showed strong preference for a two-population mixture or zero-inflated
variant of the NB or PIG distribution. Surprisingly the DEL distribution was most
often selected for homogeneous genes with or without zero inflation. Apparently
its additional parameter and thus higher complexity was sufficient to model the
data but still less complex than a two-population model of the less complex NB or
PIG distributions. In contrast, the mm10:10x dataset consists by construction of
homogeneous cells, and 10x Chromium is not known for large amounts of unexpected
zeros in the measurements. Accordingly, the homogeneous NB or PIG distribution
was sufficient for most gene profiles here. For 4% of the considered genes in the
mm10:10x dataset, mRNA counts were most appropriately described by some form of
the Poisson distribution. We have examined these 183 genes for functional similarities;
while estimated parameters show some apparent pattern (see Figure , we did
not find any defining biological characteristics (Figure {4.18)).

Similar to us, |Vieth et al.| (2017) performed model selection among Poisson, NB and
PB distributions by BIC and GOF on several publicly available datasets. Although
they used the method of |[Vu et al. (2016) it was not possible for them to calculate a
GOF statistics for PB fits. In our study, we represent the PB density in terms of
the Kummer function, which allows us to compute the GOF statistics accordingly.
Furthermore, we added two additional distributions, the PIG and the DEL distribu-
tion. With more included distributions we can confirm the tendency towards the NB
distribution as preferred distribution that Vieth et al. (2017)) observed.
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Different sequencing protocols might lead to differences in distributions and also
might generate data of different magnitudes. [Ziegenhain et al. (2017)) applied various
sequencing methods to cells of the same kind to understand the impact of the ex-
perimental technique on the data. Based on the data generated in that paper, |Chen
et al.| (2018)) investigated differences in gene expression profiles between read-based
and UMI-based sequencing technologies. They concluded that, other than for read
counts, the NB distribution adequately models UMI counts. [Townes et al.| (2019)
suggest to describe UMI counts by multinomial distributions to reflect the nature
of the sequencing procedure; for computational reasons, they propose to approxi-
mate the multinomial density again by an NB density. Overall, the NB distribution
appears sufficiently flexible to hold independently of the specific sequencing approach.

4.6 Discussion and Conclusion

In this chapter, we derived a mechanistic model for stochastic gene expression that
results in the NB distribution as steady-state distribution for mRNA content in
single cells. According to the so-obtained bursting model, transcription happens in
chunks, rather than in a one-by-one production as commonly assumed in mechanistic
modeling (Dattani and Barahonal 2017)). We discuss the biological plausibility of
bursty transcription further below. The consideration of the bursting model and its
derivation is interesting from both practical and theoretical points of view:

First of all, the NB distribution is defined through two parameters whereas the PB
distribution typically requires three parameters to be specified in the current context.
Therefore, the parameters of a NB distribution are computationally less elaborate to
estimate, given some data, than the ones of a PB distribution. Several tools employ
the NB distribution to parameterize mRNA read counts (see Table [4.1]). However,
other than for the Poisson and the PB distributions (Figures and [4.3)), there
has been no explicitly described mechanistic transcription model leading to the NB
distribution. In Section we provide an explanatory transcription process. Note
that the PIG distribution is of the same complexity than the NB distribution in
terms of parameters. But none of the listed tools (see Table uses this distribution.
Therefore, we keep in mind that the PIG could be another suitable distribution
equivalent to the NB but does not play a role in current tool development. When
studying simulated and real-world data in Section [4.5] we could not find relevant
advantages of using the PIG compared to the NB. Figure 4.20] contains an overview
of the five presented models and their assumptions, i.e. the mechanistic process, the
subordinator of the OU process that drives transcription and the resulting steady
state distribution for the mRNA counts.

Second, we demonstrated how to generally link a probability distribution to an OU
process and derive a mechanistic model. This brings a new field of mathematics
to single-cell biology. The procedure can be used to deduce possible mechanistic
processes leading to different steady-state distributions, exploiting the rich literature
on OU processes from financial mathematics.
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Figure 4.20: Overview of the five transcription and degradation models and their assumptions.

Third, although we focused on the resulting steady-state distributions of the mecha-
nistic models here, our mathematical framework also provides model descriptions in
terms of stochastic processes. Nowadays, sequencing counts are commonly available as
snapshot data. However, time-resolved measurements may become standard (Golding
et al., |2005), and in that case our models open up the statistical toolbox of stochastic
processes to extract information from interdependencies within single-cell time series.

Limiting cases of the switching model that give rise to the NB distribution
are biologically unrealistic. The NB and PB distributions have been linked before.
Among others, Raj et al.| (2006 and Grun et al. (2014) have shown that the NB
distribution is an asymptotic result of the switching model and the corresponding
PB distribution as shown in Section However, this result holds only under
biologically unrealistic assumptions as we elaborate in the following. Our derivation
of the NB steady-state distribution, in contrast, is based on a thoroughly realistic
mechanism of bursty transcription. The approach by Raj et al.| (2006) and (Griin et al.
(2014) requires 7 geqct /T deg — 00 and 7o /T geaet < 1. That means, the deactivation rate
has to be substantially larger than the mRNA degradation rate and, simultaneously,
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the transcription rate needs to be smaller than the gene deactivation rate. Here, we
discuss the plausibility of these presumptions:

Schwanhausser et al. (2011) showed that mRNA half-life is in median around
tij2 = 9h (range: 1.61h to 40.47 h), which results in a degradation rate rqe, =
log(2)/t1/2 of 0.077h™' = 0.00128 min~' (range: 0.00718 min~" to 0.00029 min™").
For 7geqct/Tdeg — 00, the mRNA degradation rate needs to become much smaller
than the gene deactivation rate. Visual comparison shows that density curves of
the PB and according NB distributions start to look similar for rgeset/7 4y = 20,000
(not shown here). Assuming a 20,000-fold larger gene deactivation rate results in
Tdeact = 29.67min""' (range: 143.51 min~" to 5.71 min~'). This means that on average
the gene switches approximately 30 times per minute into the off-state, i.e. on
average the gene is in its active state for only two seconds. RNA polymerases proceed
at 30nt/sec (without pausing at approximately 70nt/sec) (Darzacq et al., 2007).
Genes have a length of hundreds to thousands of nucleotides. Thus, according to this
speed and such length of genes, genes cannot be transcribed in such short phases.
The switching model assumes the DNA to stay active during the whole transcription
process of one (or more) mRNAs; as soon as the DNA turns inactive, all currently
running transcriptions are stopped. In other words, although the NB distribution can
mathematically be derived as a limiting steady-state distribution of the switching
model, this entails biologically implausible assumptions.

This criticism is underpinned by the work of Suter et al.| (2011) who derived ranges
of the rates of the switching model experimentally and by calculations. Here, only
so-called short-lived genes were taken into account. Thus, observed mRNA half-lives
were on a smaller scale, mainly between 30 and 140 min, resulting in mRNA degra-
dation rates between 0.005min~! and 0.023 min~!. At the same time, deactivation
rates were found in the range between 0.1 min~' and 0.6 min~'. Hence, their quotient
is at maximum around 120 and thus nowhere close to infinity. Another mathematical
assumption for deriving the NB limit distribution was that the transcription rate
needed to be smaller than the deactivation rate. This is not confirmed by [Suter et al.
(2011) for most genes.

Biological plausibility of bursting model. Burst-like transcription has been dis-
cussed, e. g.|Golding et al. (2005)), Schwanh&dusser et al.| (2011) and [Suter et al.| (2011)).
We take a look at the inherent assumptions of the bursting model: The bursting
rate ry,. represents the waiting time until the DNA turns open for transcription in
addition to the time which the polymerase needs to transcribe. The model assumes
that several polymerases attach simultaneously to the DNA and terminate transcrip-
tion at the same time. By simplifying this part of the transcription process model,
the problem of persisting DNA activation during the whole transcription process in
the switching model is avoided.

Practical relevance. There is no unambiguous answer to the question of the most
appropriate probability distribution for mRNA count data. Pragmatic reasons will
often lead to NB distribution as already employed by many tools (see Table [4.1]).
However, the choice may depend on experimental techniques, the statistical analysis



96 4.6 Discussion and Conclusion

to be performed, and also differ between genes within the same dataset. For large
read counts, even continuous distributions may be most suitable.

While statistics quantifies which model is the most plausible one from the data
point of view, mathematical modeling points out which biological assumptions may
implicitly be made when a particular distribution is used. Importantly, while the
mechanistic model leads to a unique steady-state distribution, the reverse conclusion
is not true. In general, the basic model and the corresponding Poisson distribution
may appear too simple in most cases (both with respect to biological plausibility
and the ability to describe measured sequencing data). The switching and bursting
models are harder to distinguish. Apparently the data does not show the additional
complexity that a PB distribution can in theory model better than a NB. Thus, from
the mathematical point of view, in the cases considered their densities are of similar
shape, such that the less complex NB model will often be preferred. Answering the
question from the biological perspective may require measuring mRNA generation at
a sufficiently small time resolution (e.g. Golding et al., [2005) to see whether several
mRNA molecules are generated at once (bursting model) or in short successional
intervals (switching model).

Additionally, we created two new mechanistic models for mRNA transcription and
degradation and inferred possible steady state distributions. First we combined the
basic and the bursting model to create a process called basic-bursting model that
consists of a constant “background” transcription with occasional bursts leading to
DEL distributed mRNA content. When trying to find a process that results into
the PIG distribution as steady state distribution we created a similar dual process
called IG bursting model where the rate of the basic “background” process is not
constant but follows an IG distribution. These dual processes might be interesting
to look at when investigating cells with two different alleles that transcribe mRNA
with different mechanisms.

Taken together, we have identified mechanistic models for mRNA transcription and
degradation with good interpretability, and established a link to mathematical repre-
sentations by stochastic processes and steady-state count distributions. Specifically,
the commonly used NB distribution model is supplied with a proper mechanistic
model of the underlying biological process. The R package scModels overcomes a
previous shortcoming in the implementation of the PB density. It provides a full
toolbox for data simulation and parameter estimation, equipping users with the
freedom to choose their models based on content-related, design-based or purely
pragmatic motives.



Estimating Single-Cell Properties

from Pooled Cell Data

Tissues are often heterogeneous in their single-cell molecular expression, and this
can govern the regulation of cell fate. For the understanding of development and
disease, it is important to quantify heterogeneity in a given tissue. We showed in
the previous chapter the importance of selecting an appropriate distribution and
knowing the inherent assumptions when selecting a tool for analysis. This is even
more important if there is no suitable analysis method yet and a new one has to be
developed or an existing one must be adapted to new conditions. In this chapter
we aim to select a suitable distribution to adapt the stochastic profiling algorithm
to discrete measurements. This algorithm has been developed to mathematically
deconvolve joint measurements of several cells to their single-cell gene expression.
Such joint measurements can be advantageous and their analysis might add to
findings from single-cell or bulk analysis. Originally, it was developed by |[Bajikar
et al.| (2014) together with an early version of the R package stochprofML. Since
then, we have developed and improved the implemented software by also extending
the statistical model and the optimization procedure.

In this chapter we will present both the general idea of the statistical deconvolution
method and highlight the extensions that we have added. Big parts of this chapter
are based on and partly identical to the following preprint which is submitted and
currently under revision:

Amrhein, L. and Fuchs, C. (2020b). stochprofML: Stochastic Profiling Using
Maximum Likelihood Estimation in R. arXiw:2004.08809 [stat.AP].

With this we provided for the first time a complete description of the existing
statistical model and the algorithm. During a collaboration with Stephan Tirier and
Christian Conrad we included the possibility to handle pools of different sizes to
the model. This is included in the following publication and as well is part of this
chapter.

Tirier, S. M., Park, J., Preufler, F., Amrhein, L., Gu, Z., Steiger, S., Mallm,
J.-P., Krieger, T., Waschow, M., Eismann, B., Gut, M., Gut, I. G., Rippe,
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K., Schlesner, M., Theis, F., Fuchs, C., Ball, C. R., Glimm, H., Eils, R., and
Conrad, C. (2019). Pheno-seq — linking visual features and gene expression in
3D cell culture systems. Scientific Reports, 9(12367).

The most important addition to the original model and the R package that we have
added is the ability to model discrete counts by including the negative binomial
distribution. In order to include the uncertainty on the true model parameters we
included Bayesian inference. Some details in this chapter on these extensions are
based on and partly identical to the following publication:

Amrhein, L. and Fuchs, C. (2020a). Stochastic Profiling of mRNA Counts
Using HMC. Proceedings of the 35th International Workshop on Statistical
Modelling (IWSM).

5.1 Background

Gene expression is stochastic. It can differ significantly between, e.g., types of cells or
tissues, and between individuals. In that case, one refers to differential gene expression.
In particular, cells can be differentially expressed between healthy and sick tissue
samples from the same origin. Moreover, cells can differ even within a small tissue
sample, e.g. within a tumor that consists of several mutated cell populations. More
details are described in Section Mathematically, two populations are regarded to
be different if their mRNA numbers follow different probability distributions. If there
is more than one population in a tissue, we call it heterogeneous. The expression
of such tissues can be described by mixture models. Detecting and parametrizing
heterogeneities is of utmost importance for understanding development and disease.
The amount of mRNA molecules of a gene in a tissue sample can be assessed by
various techniques such as microarray measurements (see Section or sequencing
(see Section . Bulk measurements are suitable for analyses like mean comparisons
but make it difficult to describe in-bulk heterogeneity. To infer partial information
about cell populations, bulk deconvolution methods like CIBERSORT (Newman
et al., [2015) require the availability of so-called signature matrices. Measurements of
single cells that were described in the models of the previous Chapter {4 yield the
highest possible resolution. They are best suited for identification and description
of heterogeneity in large and error-free datasets. In practice, however, single-cell
data often comes along with high cost, effort and technical noise (Griin et al.
2014)). Heterogeneity can still be revealed given sufficient sample size and additional
information such as the expression of cell cycle genes (e.g. |Buettner et al., 2015)). In
our work, we consider the case of comparatively small samples without further prior
knowledge. Instead of considering single-cell data, we analyze the cumulative gene
expression of small pools of randomly selected cells, see Section [2.2.5] The pool size
should be large enough to substantially reduce measurement error and cost, and at
the same time small enough such that heterogeneity is still identifiable. The analysis
of such small cell pools could add additional information that is lost in single cell
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measurements due to the stress in which the cells find themselves once they are
separated from their tissue.

Such new kind of data requires new analysis tools. We thus developed the stochastic
profiling algorithm to infer single-cell regulatory states from small pools of cells
(Bajikar et al. 2014). In contrast to previously existing deconvolution methods,
which were not tailored to small cell pools, we neither require a priori knowledge
about the mixing weights (such as |Erkkila et al., 2010, [Shen-Orr et al., [2010) nor
about expression profiles (such as |Abbas et al., 2009, Gong et al.| |2011]). Only Wang
et al. (2016) perform unsupervised deconvolution for clusters of genes, however with
the aim to find marker genes. Several of these methods are implemented in the R
package CellMix (Gaujoux and Seoighe, 2013)), but for the above reasons, they are
not directly comparable. In Bajikar et al.| (2014])), it is demonstrated on synthetic data
how stochastic profiling led to more accurate estimates than competing approaches.
Recently many tools were developed with the aim to deconvolute bulk measurements
using the available huge datasets of single-cell data or purified bulk samples (such
as |Aliee and Theis, [2020, |Frishberg et al., 2019, Hunt et al.| 2018)). However, decon-
volution without any basis such as purified expression datasets of sub populations
or other prior knowledge is much harder. Here we present the stochastic profiling
algorithm that blindly deconvolves the joint measurements purely by applying a
combinatorial mixture model. In Bajikar et al.| (2014)), stochprofML is applied
to measurements from human breast epithelial cells and revealed the functional
relevance of the heterogeneous expression of a particular gene. Fluorescence in situ
hybridization confirmed that the computationally identified population fractions
corresponded to experimentally detected transcriptional populations. In another
study (Tirier et al., [2019), we applied the algorithm to clonal tumor spheroids of
colorectal cancer. There, a single tumor cell was cultured, and after several rounds of
replication, each resulting spheroid was imaged and sequenced. However, pool sizes
differed between tissue samples as each spheroid contained a different number of cells
ranging from less than ten to nearly 200 cells. Therefore, we extended stochprofML
to be able to handle pools of different sizes.

Since recent technological advances make small-pool sequencing possible, resulting
in discrete small-pool mRNA counts (see and Singh et al 2019)), we develop
the stochastic profiling algorithm further to apply it to novel discrete count data.
Certainly, it is possible to simply keep on using the continuous model, but you have
to be aware that you will make wrong model assumptions regarding the data and
therefore you cannot trust the results as much as with a model without violations of
the underlying assumptions.

In this chapter, we present such modeling extensions alongside numerical and com-
putational details. We include a complete description of the existing continuous
algorithm since the new discrete version is based on it and various extensions are also
applied to the continuous version. We explore the performance of the algorithm in
simulation studies for various settings, especially in the realistic case of uncertainty
about the pool size. To expand the range of applications, we propose a test for
significant differences between the estimated populations and inference of original
pool compositions. We include a discrete model using NB distributions and compare
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the stochprofML parameter inference with Bayesian parameter inference using the
programming language Stan. An application of the discrete version to real-world
data is included in Chapter [6]

5.2 Statistical Model Underlying Stochastic Profiling

In this section, we present the statistical convolution model and derive the likelihood
functions of the parameters including recent extensions. Note that we will use a
combinatorial mixture since we aim for a blind convolution model that does not need
any prior input information on the contained subpopulations or their fractions. After
a first description of the nomenclature, we introduce basic statistical descriptions
of univariate single-cell gene expression. The complexity of the model is increased
step by step: First, we account for cell-to-cell heterogeneity through the use of
mixture distributions. Then, we extend the modeling from single-cell to small-pool
measurements by introducing convolutions of statistical distributions. Finally, we
calculate the likelihood that is needed for parameter inference.

5.2.1 Notation

Suppose there are k (tissue) samples, indexed by i € {1,...,k}. From each tissue
sample i, we collect a pool of a known number of cells. The cells are either indexed
by 7 € {1,...,n} if the cell pool size is the same in all measurements, or, as possible
in the latest implementation, by j; € {1,...,n;} in case cell pool sizes vary between
measurements. In the latter, more general case, the cell numbers are variable over
the k cell pools and summarized by the vector 77 = (nq, ..., ng). From each sample, the
gene expression of m genes is measured, indexed by g € {1,..., m}. We assume that
each cell stems from one out of T cell populations, indexed by h € {1,..., T} T > 1
in the set of all cells of interest, the tissue is called heterogeneous. The notation is
illustrated in Figure [5.1} Biologically, the different cell populations correspond to
different regulatory states or — especially in the context of cancer — to different
(sub-)clones. For example, there might be two populations within a considered tissue:
one occupying a basal regulatory state, where the expression of genes is at a low
level, and one from a second regulatory state, where genes are expressed at a higher
level.

5.2.2 Single-Cell Models of Heterogeneous Gene Expression

As described in Section [2.2] there are various technologies to measure gene expression.
Microarrays (as considered in previous applications of stochastic profiling, see |Janes
et al. (2010) and [Bajikar et al.| (2014)) measure relative gene expression, which is
appropriately described in terms of continuous probability distributions. Sequencing
experiments produce discrete molecule counts. However, if these numbers are large,
or if preprocessing blurs the discrete character of the data, one often still describes
such sequencing output by continuous probability distributions as well. Conditioned
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Sample 1 Sample i Sample k

cells cells cells

12 71 m 12 Ji ny 12 Je ng

/ } /

Gene l Yl(l) }/7':(1) Yk(l)
Gene g Y1(g) Yi(g) Yk(g)
Gene m Yl(m) Yi(m) Yk(m)
Population1 @ Observed n;-cell measurements
: n;
Population h Yi(g) :'Zle(fi)
: ji=
Populétion T @ with latent single-cell measurements Xi(ji)

Figure 5.1: Experimental design of pooling cells into samples, measuring the pooled gene
expression across several genes for which identical population structures are assumed. The table
illustrates the index notation of (tissue) samples, single cells, populations and genes as well as
observed and latent measurements.

on the cell population, originally two continuous choices for the single-cell distri-
bution of the expression of one gene, the lognormal (see Definition and the
exponential distribution (see Definition . In general, the lognormal distribution
is an appropriate description of continuous gene expression (Bengtsson, 2005). With
its two parameters, it is more flexible than the exponential distribution. However,
the lognormal distribution cannot model zero gene expression. In case of zeros in the
data, it could be modified by adding very small values such as 0.0001, or one uses
the exponential distribution to model this kind of expression.

Recently, we added the negative binomial (NB) distribution (see Definition as
a discrete single-cell distribution. The NB distribution with its two parameters is
flexible and can model zero expression at the same time. In the previous chapters,
especially in Chapter [4] we have already discussed in detail the NB distribution as a
distribution for discrete single-cell sequencing measurements.

Given T cell populations, the expression of one gene is described by a stochastic
mixture model described by a T-fold mixture distribution (see Definition [3.1). Let
(p1,...,pr) with p; + ... 4+ pr = 1 denote the fractions of populations in the overall
set of cells. Different combinations of lognormal and the exponential distributions
lead to the following three continuous mixture models, offered by stochprofML:

Lognormal-lognormal (LN-LN): FEach population h is represented by a log-
normal distribution with population-specific parameter py, (different for each pop-
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ulation h) and identical o for all T' populations. The single-cell expression X that
originates from such a mixture of populations then follows

LN(p1,0?)  with probability p;

X ~ { LN(up,0?%)  with probability py,

| LN(pur, 0?) with probability (1 -y ph> :
Relaxed lognormal-lognormal (rLN-LN): This model is similar to the LN-LN

model, but each population A is represented by a lognormal distribution with a
different parameter set (up, o). The single-cell expression X follows

(LN(p1,0?)  with probability p,

X ~ { LN(pp,0%)  with probability py

\LN(,uT, 02) with probability (1 - Zz;ll ph> .

Exponential-lognormal (EXP-LN): Here, one population is represented by an
exponential distribution with parameter A\, and all remaining 7" — 1 populations
are modeled by lognormal distributions analogously to LN-LN, i.e. with population-
specific parameters u; and identical . The single-cell expression X then follows

(LN(/Jq? o?) with probability p;
LN(pn, 0%) with probability py,

LN(uzr_1,02) with probability pr_,
EXP()) with probability <1 — Zz;ll ph> )

The LN-LN model is a special case of the rLN-LN model. It assumes identical o
across all populations. Biologically, this assumption is motivated by the fact that,
for the lognormal distribution, identical o lead to identical coefficient of variation

CV(X) = v Var(X) = y/exp(o?) — 1

B(X)

even for different values of p. In other words, the linear relationship between the
mean expression and the standard deviation is maintained across cell populations
in the LN-LN model. The appropriateness of the different mixture models can be
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discussed both biologically and in terms of statistical model choice.

In the case of discrete gene expression we included the following NB mixture model,
which is now also implemented in the stochprofML package:

Negative binomial-negative binomial (NB-NB): FEach population A is repre-
sented by a NB distribution with population-specific parameter set (up, ). Note
that here, we use the alternative parametrization of the NB distribution via the
mean p as described in Definition to be able to order the populations directly
by their mean expression analogously to the continuous distributions. The single-cell
expression X that originates from such a mixture of populations follows

(NB(p1,71)  with probability p

X ~ { NB(pp,rn) with probability py,

\NB(,uT, rr) with probability (1 — Zf;ll ph> .

Within one set of genes under consideration, we assume that the same type of model
(LN-LN, rLN-LN, EXP-LN, NB-NB) is appropriate for all genes. The parameter
values, however, may differ. With Deﬁnitionthe the single-cell gene expression X (9)
for gene g by a T-fold mixture distribution with PDF/PMF in the continuous/discrete
case is given by

Frpop (x(g)’ g(g)7p) —

(9)19(9) (@[ e ) (9)19(9)
plfl(l“g\91g>+---+thh<xg‘9hg)+--~+(1 ;ph fT(x"\Hq?),

where f, with h € {1,...,T} represents the PDF/PMF of population h that here
are assumed to be in the continuous case either lognormal or exponential or in the
discrete case NB. 819) = {059), . ,0%7)} are the distribution parameters of the T’
populations for gene g.

Example 5.1 (Mixture of two populations - Part 1)  We exemplify the two-population
case. Here, the PDF/PMF of the mixture distribution for gene g reads

Fopop(@@]09) = pfi (291017) + (1 — p) fo(z9|657),

where p is the probability of the first population. The univariate distributions fl(g)
and fz(g) depend on the chosen model :

LN-LN: fi(z@[01") = fon(2@|u{”,0%) and fo(z@(057) = fn(a@|ps”, 0?), i.e.
there are four unknown parameters: p, ,ugg), ,u2g) and o?.

rLN-LN: fi(z@[0{") = fon(z @[, 012) and fo(x@|05”) = fr(a@|pus”, 02?) ice.
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there are five unknown pammeters P, ,ug ),/ng), 012 and 092

EXP-LN: fi(z9[0{") = fuy(z9|u®,0) and fo(z@[05”) = frxp(z@A9). i.e.
there are four unknown parameters: p, n'9, o and \9)

Note that although each lognormal population has its individual o, these o-values
remain identical across genes in all models.

NB-NB: fi(2@[01") = fxp(z@|u{” , 11”) and fo(x@[05”) = fxp(@@|us”, ri?) ie.

there are five unknown parameters: p, ,ug ),uég), 9 and ry®

5.2.3 Small-Pool Models of Heterogeneous Gene Expression

Stochastic profiling is tailored to analyze gene expression measurements of small
pools of cells, beyond the analysis of standard single-cell gene expression data. In
other words, the single-cell gene expression Xi(jgi ) described above is assumed latent.
Instead, consider observations

ng

Ji=1
for © = 1,...,k, which represent the overall gene expression of the ith cell pool

for gene g. In the first Versmn of stochprofML, pools had to be of equal size n, i.e.
for each measurement Y, @ one had to extract the same number of cells from each
tissue sample. This was a restrictive assumption from the experimental point of view.
One recent extension of stochprofML allows each cell pool 7 to contain a different
number n; of cells (see also Figures[5.1]and [5.2). This was done during a collaboration
with Stephan Tirier and Christian Conrad (Tirier et al., |2019) where we applied the
algorithm to clonal tumor spheroids of colorectal cancer. A single tumor cell was
cultured, and after several rounds of replication, each resulting spheroid was imaged
and sequenced. However, pool sizes differed between tissue samples as each spheroid
contained a different number of cells ranging from less than ten to nearly 200 cells.
The algorithm aims to estimate the single-cell population parameters despite the fact
that measurements are available only in convoluted form. To that end, the likelihood
function of the parameters in the convolution model is derived, where the gene
expression of the single cells is assumed to be independent within a tissue sample.
For better readability, we suppress for now the superscript (¢) and introduce it again
later.

Next, we derive the distribution of Y;, the PDF of n-cell measurements of T cell
populations. We derive this convolution of mixed distributions in four steps: We start
with the simplest case of 2-cell measurements in the presence of two populations.
Then, we continue with 2-cell samples and three populations. Next, the cell number
is increased to n and finally the population number is raised to T'. Here, we only
look at the continuous case. However, to calculate the resulting PMF in the discrete
case similar: all integrals are replaced by sums.

PDF of 2-Cell Measurements of Two Populations (n =2, T'=2) First, the
PDF of a measurement y of a 2-cell pool is derived, i.e. of Y = X; + X5. Assume
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Figure 5.2: Stochastic Profiling can be performed either on measurements of (A) homogeneous
pool size of n cells or of (B) different pool sizes given by the cell number vector 7. In both cases,
the stochprofML algorithm estimates the parameters for the specified number of populations
from pooled data, leading to inferred single-cell distributions for each population. Finally the
mixture distribution can be summarized. Section [5.2.3] contains a description how this density
is visualized in the case of measurements of different pool sizes.
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we know that two cell populations are present in the tissue, and each of them is
described by an individual distribution. In this section,the univariate population
distributions is denoted by Dy, h =1,...,T = 2 and can in general be replaced by
any distribution. For now, we consider for j = 1,2

X iid | D1 with probability p,

! D, with probability 1 — py,
where p; € [0, 1]. Hence, the , PDF of each X is a mixture distribution (see Definition
5]
Ix(x) = p1fp, () + pafp,(7)

with po = 1 — p;. To determine the distribution of Y, we use the convolution (see
Definition of the single-cell PDFs, which are the same functions fx for both X;
and X:

fr(y) = /0 (@) fx (g — o) da

= /Oy<[p1fD1 (1) ‘|—p2fD2($1)} [plfDl (y — 21) + pafp,(y — 371)]>dg;1
— /Oy (pffpl (1) fp, (y — 1) + P2 fp, (x1) f, (y — 1)

+ pip2fo, (21) f, (v — 21) + pap1fo, (1) fo, (v — 1‘1)) dxy

=52 [ oo oy = ou)de 83 [ o) oy — 1)
0 0
Yy Yy
—|—p1p2/ fDl(I1>fD2(y - xl)dl‘l +p2p1/ fDQ(ﬂUl)fpl (y - xl)d%-
0 0

Each of these integrals foy fp,(71) fp,(y —21)dx1 is the PDF of a random variable Z; +
Zy evaluated at y, where Z; ~ D; and Zy ~ D; are independent. This holds for
both ¢ # j and 7 = j. Denoting this density by f; ;, we get

2 2

fr(y) = Z Zpipjfi,j(y)'

i=1 j=1

An alternative formulation is

2
2
o) = 3 ()rsk fio) (5:2)
t=0 N1
where /; and ¢, = 2 — {1 show how often a cell of population 1 and 2 is present in
the pool. The two PDF's f, 4,y and f; ; are directly connected: f(, ¢,y considers how
often populations 1 and 2 are represented, and f; ; denotes which populations are

present. For example, f(l,l)(y) = f1,2<y) and f(0,2) (y) = fz,z(y)-



5 Estimating Single-Cell Properties from Pooled Cell Data 107

PDF of 2-Cell Measurements of Three Populations (n =2, T = 3) Next,
we derive the PDF of a measurement y of a 2-cell pool, i.e. of Y = X; + X5. Now,
we assume three cell populations to be present in the tissue. Again, each of them is
described by an individual distribution Dy, for h=1,...,T = 3:

D, w.p.p
iid
X] ~ DQ W.P. P2
D; w.p.1—p1—po,

for j = 1,2 where p1,p2 € [0, 1] and p; + p» < 1. Hence, the mixture PDF of each X
is

fx(x) = p1fp, () + p2fp, (x) + psfps(x)

with p3 = 1 — p; — po. To determine the distribution of ¥ = X; + X5, we again use
the convolution of the single-cell PDFs:

frly) = /0 (@) fx (y — )

- /0 y ( (1 foy (1) + pafs(1) + pa oy (1)
X [plfDl (y — @1) + p2fp, (Y — 1) + p3fos (v — $1)] ) dz

= /Oy (p%fDl (z1) fp, (y — 1)

+ D3 foy (1) o (Y — 1) + D3 oy (21) fou (y — 1)
+ pivafo, (1) fo, (Y — 21) + pap1 fp, (21) fp, (Y — 21)
+ P13 fo, (v1) fos(y — 1) + pap1fo, (21) fo, (v — 71)

+ paps fo, (1) fo, (Y — 1) + p3pa fo, (1) f, (Y — I1)>d$1,
leading to
Fr) =52 [ oo (o = )y
0
+P§/ [y (1) fp, (y — w1)dy +p§/ Iy (1) fo,(y — 21)d
0 0
y y

+P1P2/ fo (1) fp, (y — x1)day +P2p1/ [ (1) fo, (y — 21)day
0 0

+p1p3/ fo.(71) fp, (y — 21)dxy +P3p1/ Iy (1) f, (y — 21)d2y
0 0

T paps /O ! o (@0) s (y — 1)1 + pspo /O " fon(@1) fon(y — 1),
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Once more, we make use of the fact that foy fo, (ml)fpj (y — z1)dz; is the PDF of the
sum Z; + Z of two independent random variables, where Z; ~ D; and Zy ~ D; (now
with 4, j € {1,2,3}). As before, we denote this density by f; ;. Overall, we obtain

3
Y y) = Zzplpjflj

i=1 j=1

or alternatively

2 24, oo
1 2 3
N3 (51) ( ly ) PUDSPS S ) () (5.3)

£1=0/¢2=0

where 01, (5, (3 = 2— {1 — {5 show how often cells of population 1, 2 and 3 are present in
the pool. Again, fi, s, 2-¢,—4,)(y) is connected to f; ;. For example, fo11)(y) = f2,3(y)
and f(2,0,0) (y) = fl,l(y)'

PDF of n-Cell Measurements of Three Populations (n arbitrary, 7' = 3)

Next, we suppose that we measure pools of n cells originating from three cell
populations. Let Y = X; + ... + X,,. Then Equation (5.3)) turns into

=33 () (" )ttt s, (5.4

where p3 =1 —p; — po and 3 =n — 01 — {s.

PDF of n-Cell Measurements of 7" Populations (n and 7" arbitrary) Finally,
we extend Equation (5.4)) to the most general case, where n-cell pools are measured
from a tissue that consists of T' cell populations. Here, we obtain

n n—~0 n—~01—...—p_q
0=0 £,=0 bp_1=0
(B (rmh—e b
(gl> ( l ) ( r s ) 7 i) (),
where pr =1—p1—...—priand bp=n—»0; — ... —lp_.

Since f, .. ¢r)(y) in general can be describe a PDF but also a PMF, the following
is valid for both — continuous and discrete — models. Using Identity |5 leads to the
final PDF/PMF f,, (y;|0,p) of an observation y; which represents the overall gene
expression from sample i (consisting of n; cells)

fm (Zh’ o,p) =

T—2
ng MNi— ni— Zh 1£h

n;
Z Z Z PIDY - D Flenstrtry (:16) (5.5)
617627' c aET

£1=0 £2=0 br_1=0
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where {7 = n; — Zz;ll l, and pp =1 — Z;‘C:_ll Dh.-

The terms ( zln ZT) pfl e péTT are probabilities arising from the multinomial distribu-
tion and therefore can be seen as multinomial weights of the densities fy,  ¢,)(y).Note
that, here, f, s, ¢ describes the PDF/PMF of a pool of n; cells with known com-
position of the single populations, i.e. it is known that there are ¢; cells from
population 1, 5 cells from population 2 etc. Therefore, (M;ﬁ'“h) pil pg2 e pé? repre-
sents the multinomial probability of obtaining exactly this composition (¢4, ..., {r)
using the multinomial coefficient (el,ﬁr:j.i.., ZT) =n;!/(¢1!. .. ¢7!). Equation sums up
over all possible compositions (¢, ..., 0r) with ¢4,...,¢p € Ngand 1 + ...+l = n;.
Taken together, f,.(y;|@,p) determines the PDF/PMF of y; with respect to each
possible combination of n; cells of T populations.

Thus, the calculation of f,, (y;|0,p) requires knowledge of fis, ¢, ¢r)(4i|@). The
derivation of this PDF/PMF depends on the choice of the single-cell model (LN-LN;
rLN-LN, EXP-LN or NB-NB)that was made for X;,.

LN-LN:

Tttty Wi10) = S0y Wil sty i, 0%)

is the PDF of a sum Y; = X;; + ... + X}, of n; independent random variables with

(LN(ju,0?) if1<j,<J,

Xz'ji ~ LN(uh,Uz) if Jh—l < jz < Jh

\LN<,UT70'2) it Jpo1 < g < Jp=ny,

with Jl :fl,...,Jh:€1+€2+...+€h,...,JT:€1+€2+...+£T:ni. Y;IS the
convolution of random variables X;q, ..., X}, , which is here the convolution of T’
sub-convolutions: a convolution of ¢; times LN(u1, 0?), plus a convolution of £, times
LN(p2,0?), and so on, up to a convolution of ¢7 times LN (ur,o?).

Hence there is no analytically explicit form for the convolution of lognormal random
variables it is approximated using the method by [Fenton| (1960)) as described in
Example [3.11] In the stochprofML package, this approximation is implemented in
the function d.sum.of.lognormals(). The overall PDF given in of the LN-LN
model, fENN(yi\py, o g, i, 0201, - Phs -, pT), With py 4+ pp =1, s
computed through d.sum.of .mixtures.LNLN(Q).

rLN-LN:

f(glv-"fgh:"'vET)(yi|0) = f(rélil,\l_ljfli,,ZT)(yAMl? ceey MRy e BT O-%J cee 7Gl21,7 te 70-%‘)
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is the PDF of a sum Y; = X;; + ... + X,,, of n; independent random variables with

/

Xij, ~ S LN(up, 07)  if Jpoy < ji < Ji

\LN<,UT>U%) it Jp_y < g < Jr=mny,

with Jy = ,....Jpn =L+ l+ ...+ ..., Jp = 41+ ...+ {r = n;. Again,
f{}lNLg ) is approximated using the method by [Fenton| (1960), using the function
that was used in the LN-LN model. The overall PDF given in (5.5 of the rLN-
LN model, ffLI;N‘LN (Yilptn, -y fhy oo U5 T2y o OBy % DLy« s Phy - - -, DT), With
p1+ -+ 4+ pr = 1, is implemented in the stochprofML package via the function

d.sum.of .mixtures.rLNLN().

EXP-LN:
f(ﬁl,fz,...,ET) (yz|0) = f(El;f(,Z:Ll\jZT)(yA)\a M1y ooy -1, 0-2)

is the PDF of a sum Y; = X;; + ... + X}, of n; independent random variables with
(LN(p,0%)  if1<j; <y

LN(pn, 0%) if Jo1 <ji < Ui
Xiji~ o

LN(pr—1,0?) if Jr_o < j; < Jr_y

\EXP()\) if Jr_1 < jl < Jr= Ny,

with J1 = 6,...,Jp =bi+bb+...4+4y,....Jp = {1+ ... 4+ ¢y = n;. On the
highest level, this is a convolution consisting of two sub-convolutions. The first
sub-convolution, convolves ¢; times EXP()). As shown in Example [3.9] the sum
of independent exponentially distributed random variables with equal intensity
parameter follows an Erlang distribution which is a special case of the gamma
distribution (see Definition [A.3]). The second sub-convolution consists of the con-
volution of all remaining lognormals. For this we reuse the convoluted lognormals
from above where the method by Fenton| (1960)) is used to approximate this convolu-
tion by another lognormal distribution. Taken together, the PDF for the EXP-LN
mixture model is approximated by the convolution of one Erlang (or gamma) dis-
tribution and one lognormal distribution. The PDF for this convolution is not
known in analytically explicit form but expressed in terms of an integral that
is solved numerically through the function lognormal.exp.convolution(). Its
computation thus takes substantially longer in terms of run time than for LN-
LN. In the stochprofML package the function d.sum.of.mixtures.EXPLN() con-
tains the implementation of the overall PDF given in of the EXP-LN model,

VEXP_LN (yi|)\7,u17'"7Mh7'"7MT7027p17"'7ph7"'7pT)7 with p1+ - +pr= L.
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NB-NB:

f(fl ----- Lhy.ess ET)(yl|0) :f(lzjﬁ_l\{?h ..... ET)(yi’:ulw"7Mh7"'7NT7T17"‘7rh7"'7rT) (56)
is the PMF of a sum Y; = X;; + ... + Xj,,, of n; independent random variables with

NB(p1,r) 1< <A

Xij, ~ § NB(pp,rp)  if Jpoq < g < Jp,

NB(ur,rr) if Jry < ji < Jr =n,,

\

with Jl :gl,...,Jh :€1+€2+...—|—€h,...,JT:€1—|—...—|—€T:ni. fIEBN],SZh ..... i
can be calculated using the convolution of NBs described in Example w Before
using this, the computation of the PMF can be simplified further: Within each
population A, the distribution parameters u;, and rj, are identical and can be trans-
formed to the NB-parameter setting involving the size parameter r, and prob
parameter p,. Then it follows as shown in Example that the sum of the /;
random variables follows the NB(¢;ry,py,) distribution. Consequently, fu, . ¢ is
the convolution of at maximum 7' different NB distributions (exactly T-fold if
all £; > 0). These can than be calculated as shown in Example [3.10} In practice,
Equation (3.4) is not easy to calculate as it contains an infinite sum. Therefore,
we need to cut this and stop the calculation as soon as the following summands
equal zero. The approximation of the density of the convoluted NBs is implemented
in C++ and can be used via d_snb(). The overall PMF given in (5.5)) of the NB-

NB model, fTIL\zB‘NB (Yil 1y ooy Bohy e oo s T 1y oo o s Thy oo o s Ty D1y e o vy Phy - - -, PT), With
p1 + -+ 4+ pr = 1 was recently implemented in d.sum.of .mixtures.NBNB().

Example 5.2 (Mixture of two populations - Part 2)  We continue with Example
where we suppose that the sample contains two populations. If each observation consist
of the same number of n = 10 cells, Y; are 10-fold convolutions for all i, and the

PDF/PMF (b.5)) simplifies to
10

oll6.) =3 ()00 9 fasnoo (010). 6.7

£=0

where f10-¢) are the specific PDF/PMF of the sum'Y; of ten independent random
variables, 1. e. Y; = Xj1 + ... + Xi10, where we know how many summands come from
each of the two populations. This PDF/PMF depends on the particular chosen model,

which are given by
LN-LN:

f(é,lO—Z) (%’9) = f(%\lbe_% (?h’ﬂla M2, 02)
1s the PDF of a sum Y; = X;1 4+ ... + X;10 of ten independent random variables with

X LN(p,0%) if1<j<¢
“ LN(p2,02) if € < j < 10.
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rLIN-LN:
f(f,loff) (y2|9) = f&l,llj\(g_—llg(yAMl) K2, 0-%7 0-%)
1s the PDF of a sum Y; = X;1 4+ ... + X0 of ten independent random variables with

X LN(p,07) if1<j <t
Y LN(po,03) if ¢ < j < 10.

EXP-LN:
feao—o(vil0) = FEX028 (Wil A 1, 0?)
1s the PDF of a sum Y; = X;1 4+ ... + X0 of ten independent random variables with

LN(u,0?) if 1 <j </
“ EXP(\)  if ¢ < j < 10.

NB-NB:
Ffieao—o(il0) = fE5628 (Wilpn, pa,m1,7m2)
1s the PMF of a sum Y; = X;1 + ... + Xj10 of ten independent random variables with

X NB(p1,m1) if1 <5<t
Y NB(pg,72) if £ < j < 10.
Depending on which of the models is chosen, fui0—e) (v:|60) and therefore fio (y:|0, p)
can be calculated with the methods described above.

PDF of Pooled Gene Expression for Mixed Pools When estimating a gene
expression model from data, one may want to verify whether the estimated model
adequately describes the data. In Figure [5.14] we do this by comparing the estimated
PDF to the histogram of the data and to the true PDF: The orange curve is known
since we synthetically generated this data. For the blue curve, we first estimate the
model parameters and then plug these in into the general model PDF. In case of a
uniform pool size across all measurements, this procedure is straightforward. For a
vector of pool sizes, i.e. a mix of e.g. 1-cell, 2-cell and 10-cell data, the PDF/PMF
(see e. g. Figure[5.2B) is less obvious. We calculate this function as follows:

e For each cell number contained in the n-vector, calculate the PDF/PMF of
the respective pool size and plug in the parameter estimates.

e Calculate the weighted sum of these PDFs/PMFs — weighted according to
the times the respective pool size occurs in the n-vector.

The resulting PDF/PMF approximates the PDF /PMF of a sample where the obser-
vations are based on the pool sizes of the considered n-vector. While this PDF/PMF
describes a mixture distribution with randomly drawn pool sizes (according to the
weights used), we in our applications assume the pool sizes to be known for each
measurement.
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5.2.4 Likelihood Function

In the previous section we described the employed mathematical models of hetero-
geneous gene expression. In order to perform parameter inference, the likelihood
function (see Sectaion of the parameters given some data is needed.

Overall, after re-introducing the superscript (g) for measurements of genes g =
1,...,m, Equation (5.5]) results in the gene-wise PDF

fnz‘ (yz(g)|0(g)’p) -

n; Mni— n;— ZZ 12€h N
2 D LR b e (W7109)  (58)
617627' - 7£T
=0 £=0 tr_1=0
with model-specific choice of fiy, ¢,... 7). While n = (n4,...,ny) is considered known,
we aim to infer the unknown model parameters 8 = {81, ... 8™ pl. Assuming

independent observations y = {y§9)|z' =1,...,k;g=1,...,m} of Yi(g) for m genes
and k tissue samples, where sample ¢ contains n; cells, the likelihood function is
given by

m k

LOly) =]]] - (y 6 ,p)

g=11=1

Consequently, the log-likelihood function (Equation of the stochprofML model

parameters reads
(Ol =303 log o (47109, p) . (5.9)

g=1 =1

Example 5.3 (Mixture of two populations - Part 3)  Continuing with Example
where the 10-cell measurements originate from a two population mixture, the log-
likelihood for k = 100 tissue samples and m =5 genes from s given by

100

(Bly) = Zzlog[ (yfg)|9(g),p)],

g=1 i=1

where fio (y§g)\0(9),p) is given by Equation (5.7) and depends on the chosen distri-
bution model.

5.3 Maximum Likelihood Estimation and Model Se-
lection

The stochprofML algorithm aims to infer the unknown model parameters using
maximum likelihood estimation (see Section [3.3.1)). As input, an m x k data matrix
of pooled gene expression, known cell numbers 77, the assumed number of populations
T and the choice of single-cell distribution (LN-LN, rLN-LN, EXP-LN,NB-NB)
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is expected. Based on this input, the algorithm aims to find parameter values
of @ = {60, ... 0™ pl that maximize £(@|y) as given by Equation (5.9). Here we
describe practical aspects of the implemented optimization procedure. As it is very
complex describing this in general, we go back to the example of 10-cell measurements
of a two population mixture.

Example 5.4 (Mixture of two populations - Part 4)  Several challenges occur during
parameter estimation. We explain these on the two-population LN-LN example:
First, one needs to ensure parameter identifiability. This is achieved for the two-
population LN-LN model by constraining the parameters to fulfill either p < 0.5
or wy > po. Otherwise, the two combinations (p, @1, pe,0) and (1 — p, pa, @1, 0)
would yield identical values of the likelihood function and could cause computational
problems. For this implementation, the second possibility was preferred, i. e. py > pis.
The alternative, i. e. requiring p < 0.5, led to switchings between py and o in case
of p =~ 0.5. As a second measure, we implement unconstrained rather than constrained
optimization: Instead of estimating (p, p1, p2, o) under the constraints p € [0, 1],
w1 > pe and o > 0, the parameters are transformed to (logit(p), p, p2,log(o)), and
an unconstrained optimization method is used. This is substantially faster. In detail
p s transformed to
w = logit(p) = log <L) eR
L—=p
and later back-transformed via
1 : exp(w)
p = logit " (w) = expit(w) = T+ exp(u) €[0,1] .
The aforementioned transformations are likewise employed for all other models (rLN-
LN and EXP-LN, NB-NB) and population numbers. In particular, in the continuous
models o and A are log-transformed, and the lognormal populations are ordered ac-
cording to the log-means ug) of the first gene in the gene list. In the discrete model,
all population parameters — o and r — are log-transformed analogously. The NB
populations are ordered according to the means /LS) of the first gene in the gene list.
To allow unconstrained optimization, the population probabilities are transformed
to R in all models as described for the LN-LN model above.

All transformations of population parameters are analogously applied to the general

case, where T' > 2. However, transforming the probabilities py,...,pr to the unre-
stricted space, has to be adapted to fulfill py € [0,1]  for
all h = 1,...,T and 25:1 pn = 1 after back-transformation. Therefore, we set

Pn = p1 + - -+ + pp and use the following transformations
whzlogit( p1+ -+ ) :logit<~ph ) eR forallhel,...,T —1.
D1+t + Phtt

Phi1
For the back-transformations, start at h =T — 1 and calculate

pr = expit(wy) pra1 € [0, 1] forallhe T —1,...,1
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in reverse order. Setting pr = 1 ensures that the probabilities sum up to one.
Additionally, one has p, < ppi1 as expit(wy) € [0,1] for all h € 1,...,7 —1.
Obviously, p; = p1, and the remaining population probabilities are given by

prh = Pn — Pr-1 € [0, 1] forallhe€2,...,T.

The log-likelihood function is multimodal. Thus, a single application of some gradient-
based optimization method does not suffice to find a global maximum. Instead, two
approaches are combined which are alternately executed: First, a grid search is
performed, where the log-likelihood function is computed at many randomly drawn
parameter values. In the second step, the (computationally more costly) Nelder-Mead
algorithm Nelder and Mead| (1965) is repeatedly executed at few points. This way,
high likelihood regions can be identified with low computational cost. A next grid
search again explores the regions around the obtained local maxima, followed by
another Nelder-Mead optimization. Here, the starting values are randomly drawn
from the high-likelihood regions found before. This combination of grid search and
local optimization is carried out three times. The whole procedure is repeated five
times by default, with the aim to find an overall optimal parameter combination,
but this number can be changed or can be stopped early as soon as the algorithm
has converged, this is when the improvement in the likelihood during the last round
is less than 5-107°.

If a dataset contains gene expressions for m genes, and 1" populations are assumed,
there are at minimum 7'(m + 1) parameters which one seeks to estimate depending
on the model framework. This is computationally difficult, because the number
of modes of the log-likelihood function increases with the number of parameters.
The performance of the numerical optimization crucially depends on the quality of
the starting values, and a large number of restarts is required. When analyzing a
large gene cluster, it is advantageous to start by considering small clusters and use
the derived estimates as initial guesses for larger clusters. Approximate marginal
95% confidence intervals for the parameter estimates are obtained as follows: We
numerically compute the Hessian matrix of the negative log-likelihood function on
the unrestricted parameter space and evaluate it at the (transformed) maximum
likelihood estimator. Denote by d; the ith diagonal element of the inverse of this
matrix. Then the confidence bounds for the ith transformed parameter 6; are

0; +1.961/d;.

We obtain respective marginal confidence intervals for the original true parameters
by back-transformation of the above bounds. This approximation is especially ap-
propriate in the two-population LN-LN example for the parameters p and ¢ when
conditioning on pq and ps. In this case, in practice, the profile likelihood is seemingly
unimodal. In Appendix [F] examples are shown how to use the stochprofML package.
Run times for maximum likelihood estimation differ substantially between two- and
three-population models, and also between LN-LN, rLN-LN and EXP-LN. The latter
is due to the integral convolution of an exponential and an Erlang distribution in
EXP-LN as described above. Table displays run times using the R function
microbenchmark() on simulated data.
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T LN-LN rLN-LN EXP-LN
2 | 13.00 (12.55- 18.99) | 27.06 (17.04 - 34.76) 16,762.22 (10,764.77 - 21,576.25)
3 | 96.76 (47.07 - 130.92) | 162.59 (86.84 - 346.98) | 160,391.65 (117,985.89 - 186,557.13)

Table 5.1: Run times for maximum likelihood estimation for LN-LN, rLN-LN and EXP-LN
models with T = 2 and T' = 3 populations. The study was performed on simulated data using
the R function microbenchmark(). Reported numbers are run times in seconds across five
repetitions: median (min - max).

Example: Mixture of three populations Figure|5.3/shows estimation results for
an LN-LN model with three populations, based on synthetic 10-cell data. (Synthetic
data generation is described later in this text.) 1,000 10-cell datasets each with
k = 1,000 observations were generated using underlying population parameters
p1=0.1,po =04, 3 = 1.5, s = —0.4, u3g = —2.5 and 0 = 0.2.

Parameter estimates for 3 populations on 1000 datasets
true value

1.0 4 1.0 10 4 4

0.8 1 0.8 1 4 5 8 -10
0.6 0.6 6 —20 4
P1 P2 o H1 H2 oA <> M3
0.4 - 0.4 - 2 - 44
_30 .
_2 -
0.2 0.2 - 24
<> e
0.0 - 0.0 - 0- 0- -4 -
Figure 5.3: Parameter estimates for the LN-LN model on 1,000 simulated 10-cell datasets.

The true underlying population parameters are p; = 0.1, po = 0.4, uy = 1.5, po = —0.4,
p3 = —2.5 and o = 0.2, as indicated by the orange dashed lines.

As described above, the number of populations is not determined during parameter
inference. Instead parameter inference has to be performed for several population
numbers and then the model that fitted the data best has to be selected. In general
by increasing the number 7' of populations, the observed data can be modeled more
precisely, but this comes at the cost of potential overfitting. For example, a three-
population LN-LN model may lead to a larger likelihood at the maximum likelihood
estimator than a two-population LN-LN model on the same dataset. However, the
difference may be small, and the additional third population may not lead to a gain
of knowledge. For example, the estimated population probability ps may be tiny,
or the log-means of the second and third population, ji; and fi3 might hardly be
distinguishable from each other.

To objectively find a trade-off between necessary complexity and sufficient inter-
pretability, we employ the Bayesian information criterion (BIC, see that includes
maximum likelihood estimate of the respective model, the number of parameters and
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the size of the dataset.

In practice, it is required to estimate all models of interest separately with the
stochprofML algorithm, e. g. the LN-LN model with one, two and three populations,
and/or the respective rLN-LN and EXP-LN models. For discrete models the NB-
NB model can be fitted with different number of populations. The BIC values are
returned by the function stochprof.loop().

5.4 Simulation Studies Using the stochprofML Pack-
age

Next we demonstrate the performance of the maximum likelihood estimation via
the stochprofML package depending on pool sizes (Section [5.4.1]), true parameter
values (Section and in case of uncertainty about pool sizes (Section [5.4.3).
These investigations shed light on the algorithm’s performance from a statistical
point of view and complement the experimental validation that were performed
in |Bajikar et al| (2014). All scripts used in these studies can be found in our
open GitHub repository https://github.com/fuchslab/Stochastic_Profiling_
in_R. The general procedure in the following simulation studies is to first generate
synthetic datasets with some predefined population parameters and frequencies using
r.sum.of .mixtures (). Thereby datasets with either fixed or varying pool sizes are
generated, i.e. the numbers of cells contained in one pool are fixed or vary from
cell pool to cell pool within a dataset. Next, we assume that we do not know the
predefined model parameters and estimate them using stochprof.loop(). Using
simple summary statistics, we compare the estimates of the parameters in different
ways, e.g. how they are influenced by increasing cell numbers or how their variance
differs when the dataset was generated with differing population parameters.

First, we give an overview about the different model parameter settings and pool
sizes used in data generation: We use datasets with fixed pool sizes that contain
single-cells, 2 cells, 5 cells, 10 cells, 15 cells, 20 cells or 50 cells. Additionally, we
chose two types of datasets with varying pool sizes. The first contains small cell
pools with 1, 2, 5 and 10 cells, the second contains larger cell pools with 10, 15, 20
and 50 cells. Thus, in total we have nine different cell pool settings that we use for
data generation.

In all simulation studies, we use the LN-LN model with the five different parameter
settings, given in Table 5.2l While the first set is considered to be the default, each of
the other parameter sets differs from it in one of the population parameters. Taken
together, for each of the nine cell pool settings and each of the five parameter settings
1,000 datasets are generated using r.sum.of .mixtures.LNLN(), so that in total we
have generated 5%9%1000 = 4.5 x 10* datasets.

5.4.1 Simulation Study on Optimal Pool Size

Stochastic profiling, i.e. the analysis of small-pool gene expression measurements, is a
compromise between the analysis of single cells and the consideration of large bulks:


https://github.com/fuchslab/Stochastic_Profiling_in_R
https://github.com/fuchslab/Stochastic_Profiling_in_R
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p o p2 O

Set1 02 2 0 02
Set2 0.1 2 0 0.2
Set3 04 2 0 0.2
Set4 02 2 1 02
Set5 0.2 2 0 0.5

Table 5.2: Overview of the five model parameter settings used in the and in the

Single-cell information is most immediate, but a fixed number £ of samples will only
cover k cells. In pools of cells, on the other hand, information is convoluted, but
k pools of size n cover n times as much material. An obvious question is the optimal
pool size n. The answer is not available in analytically closed form. We hence study
this question empirically.

As described above, we generate synthetic data for different pool sizes with identical
parameter values and settings. Then, we re-infer the model parameters using the
stochprofML algorithm. This is repeated 1,000 times for each choice of pool size,
enabling us to study the algorithm’s performance by simple summary statistics of
the replicates.

Figure [5.4] summarizes the point estimates of the 1,000 datasets for each of the nine
pool size settings generated with parameter set 1. It seems that (for this particular
choice of model parameter values) parameter estimation works reliably for pool sizes
up to ten cells, with smaller variance from single-cells to 5-cells. This applies also for
the mixture of pool sizes for the small cell numbers. For cell numbers larger than
ten, the range of estimated values becomes considerably larger, but without obvious
bias, which also applies to the mixture of the larger pool sizes.

Figure suggests n = 5 or varying small pool sizes as ideal choices since its
estimates show smaller variance than the other pool sizes. This simulation study,
however, has been performed in an idealized in silico setting: We did not include
any measurement noise. In practice, however, it is well known that single-cells suffer
more from such noise than samples with many cells. The ideal choice of pool size
may hence be larger in practice.

Appendix [G] shows the figures of the repetitions of this study for the other four sets
of population parameters. The results there confirm the observations just made.

In the second parameter setting, the fraction of the first population was reduced to
10% as compared to the first parameter setting. The results are shown in Figure |G.1}
They are similar to the results of the first parameter set in Figure [5.4] For set 2,
however, single cells lead to large variance of estimates, supposedly due to the
small sample size of 50 in combination with the small probability (10%) of the first
population: We can only expect five single cells of the first population to be measured
on average. In some datasets, this will be too low to estimate the parameters of
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Figure 5.4: Violin plots of parameter estimates for two-population LN-LN model on 9,000
simulated datasets, i.e. on 1,000 datasets for each pool size composition. Left: Results for
single-cell, 2-cell, 5-cell, 10-cell pool and their mixture. Right: Results for larger pool sizes,
namely 10-, 15-, 20-, 50-cell pools and their mixture. Turquoise: Results for 10-cell pools; these
are repeated across the left and right panels. The true parameters are marked in orange.

the first population and/or their proportion satisfactorily. Consequently, the violins
of the single-cell estimates show a higher variance, especially for the estimates of
the parameters of the first population. In the third parameter setting, the fraction
of the first population was increased to 40%. The resulting estimates are shown in
Figure [G.2] In this setting, both populations are similarly frequent; hence, it seems
plausible that the single-cell estimates show similar variability as for example the
2-cell estimates. The estimates of the mixed pools of the lower cell numbers provide
estimates that are as accurate as the ones for single-cell and 2-cell data. From a pool
size of five cells on, the estimates vary strongly. Apparently, low cell numbers are
advisable if a tissue is not dominated by one cell population. In the fourth parameter
setting, uo is increased to 1 and thus larger than in the first parameter setting. The
two populations are more similar. The resulting estimates are shown in Figure [G.3]
Starting from a pool size of 10 cells, it seems as if the variance of the estimates did not
increase any more. The estimates for the mixed pools with larger cell numbers can
sometimes not distinguish the populations, therefore the violin of p is bi-modal. We
draw the same conclusion as for two populations with similar frequencies that more
similar populations should be investigated in pools with lower cell numbers because
their individual expression profile is blurred for small pool sizes already. Finally, we
investigate the effect of different pool sizes in the fifth parameter set, where the
log-sd o of both populations is increased to 0.5. The resulting estimates of the model
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parameters are shown in Figure [G.4 With an increase of o, both populations have
broader distributions. It appears that there is an increase in variance in the estimates
between the 5-cell and the 10-cell measurements. Increasing cell numbers in the pools
mainly influences the estimate of o, which is increasingly underestimated.

5.4.2 Simulation Study on Impact of Parameter Values

The underlying data-generating model obviously influences the ability of the maxi-
mum likelihood estimator to re-infer the true parameter values: Values of p; close to
0.5, small differences between p; and ps and large o blur the data and complicate
parameter inference in practice. In the next simulation study, we investigate the
sensitivity of parameter inference and which scenarios could be realistically identified.
We use the same datasets as in the previous simulation study: The parameter choices
from set 1 are considered as the standard and compared to the other four settings.
In detail, p; is reduced from 0.2 to 0.1 in one setting and increased to 0.4 in the next.
{12 is increased from 0 to 1, and o increases from 0.2 to 0.5. p; is kept fixed to 2 in
all settings. As before, we consider 1,000 data sets for every parameter setting and
compare the resulting estimates to the true values.
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Figure 5.5: Violin plots of parameter estimates for two-population LN-LN model for varying
parameters p, uo and o. Five parameter sets (see Appendix were used to simulate 1,000
datasets from each of which they were back-inferred. Violin plots for the standard setting
p =202, up =2, ugp =0 and ¢ = 0.2 are colored turquoise. The true parameters used to
simulate the data are marked in orange.

Figure |5.5| shows the results of the study. In each row of the plot, we compare the
estimates of the datasets that were simulated with the standard parameters to the
estimates of the datasets that were simulated with one of the parameters changed.
Even if only one parameter is changed all parameters are estimated. Each violin



5 Estimating Single-Cell Properties from Pooled Cell Data 121

accumulates the estimates of 1,000 datasets. For easier comparison, each of the twelve
tiles shows the standard setting as turquoise violin, which means those are repeated
in each row.

When changing the parameter values, they can still be derived without obvious
additional bias, but accuracy decreases for increasing p, decreasing s — p; and
increasing o (with few exceptions).

Appendix [G] contains the remaining figures of the other pool sizes. Results for
single-cell and 2-cell pools look alike (Figures and . As discussed before,
the variance of the estimates become large for a small value of p in combination
with the small pool sizes. For both single-cell and 2-cell data, varying o does not
affect the estimation accuracy of the estimation, whereas a larger value of ¢ leads to
higher variance of all parameter estimates but for p. In contrast to this, the 5-cell
data results in a different pattern (Figure : As compared to the estimates from
the standard setting, the estimates show a larger variance. The mixture of small
cell pool numbers (Figure , however, lead to similar results as the pure 2-cell
datasets. Figure displays the results for the 15-cell data. For most parameter
combinations, the variance of the estimates does not change dramatically. The most
accurate estimates are achieved for small p, the least accurate ones for large o,
in which case o gets underestimated. The same holds true for the 20- and 50-cell
datasets (Figures|G.10| and |G.11]), with even larger variance. For the mixture of large
cell pools (Figure [G.12)), estimation performance is comparable to the one for the
pure 50-cell measurements.

Taken together, the result for other pool sizes show that the observations made on
the 10-cell pools can be transferred to other pool sizes with some additions: Larger
pool sizes infer parameters more accurately if p is smaller. In an increased first
population setting (p = 40%), p1 can be better inferred if the data set consists
of smaller pools. For larger pools, the estimation of p; and u, works comparably
well after increasing . In general, the estimation of ¢ is the most difficult one: As
shown in Equation , the mean (and variance) of the lognormal distribution
is determined by both the parameters p; and ps and by o. Estimates of o will be
negatively correlated with estimates [i; and fi5 if the mean is determined correctly.
Indeed, in pools of 15 cells with increased o, we see that p; is slightly overestimated.
Therefore, to keep the mean ¢ is underestimated. This worsens in larger pools.

5.4.3 Simulation Study on the Uncertainty of Pool Sizes

One key assumption of the stochprofML algorithm is that the exact number of cells
in each cell pool is known. In|Janes et al.|(2010)), accordingly, ten cells were randomly
taken from each sample by experimental design. However, different experimental
protocols may not reveal the exact cell number: In Tirier et al.| (2019), for example,
tissue samples were taken as whole cancer spheroids. Here, the cell numbers were
experimentally unknown but estimated using light sheet microscopy and 3D image
analysis. Since the stochprofML algorithm requires the pool sizes as input parameter,
some estimate has to be passed to it. It is intuitively obvious that the better the prior
knowledge about the cell pool sizes, the better the final model parameter estimate.
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In this simulation study, we investigate the consequences of misspecification.

In the first part of this simulation study, we reuse the 1,000 synthetic 10-cell datasets
from Section [5.4.1] Each of these contains 50 10-cell samples, simulated with under-
lying model parameters p = 0.2, u; = 2, uo = 0 and o = 0.2. As before, we re-infer
the population parameters using the stochprofML algorithm. This time, however,
we use varying pool sizes from 5 to 15 as input parameters of the algorithm. This is
a misspecification except for the true value 10. The resulting parameter estimates
(empirical median and 2.5%-/97.5%-quantiles across the 1,000 datasets) are depicted
in Figure .6

true value
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Figure 5.6: Parameter estimates for (partly) misspecified pool sizes across 1,000 synthetic
datasets: The true pool size is 10 in every dataset. The stochprofML algorithm, however, uses
values from 5 to 15 as input parameter. Bars cover the range between the empirical 2.5%-
and 97.5%-quantiles. The dots mark the empirical median, the orange line the true parameter
values used for simulation.

Estimates are optimal or at least among the best in terms of empirical bias and
variance when using the correct pool size. With increasing assumed cell number, the
estimates of p decrease, i.e. the fraction of cells from the higher expressed population
is assumed to be smaller. This is a reasonable consequence of overestimating n,
because in this case the surplus cells are assigned to the second population with lower
(or even close-to-zero) expression. Consequently, at the same time the estimates of o
decrease to be even smaller.

In the second part of this simulation study, we use the two settings with mixed cell
pool sizes as introduced in Section One setting embraces cell pools with rather
small cell numbers (single-, 2-, 5- and 10-cell samples), the other one pools with
larger cell numbers (10-, 15-, 20- and 50-cell samples). For each of the two scenarios,
we generate one dataset with 50 samples. We denote the true 50-dimensional pool
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size vectors by flgman and 7ijaee and employ these vectors for re-estimating the model
parameters p, i1, o and o. Then, we estimate the parameters again for the same two
datasets for 1,000 times, but this time using perturbed pool size vectors as input to
the algorithm, introducing artificial misspecification. These 50-dimensional pool size
vectors are generated as follows: For each component, we draw a Poisson-distributed
random variable with intensity parameter equal to the respective component of the
true vectors fgmal OF Marge. Zeros are set to one, the minimum pool size. Figure
shows these 2 x 1,000 parameter estimates as compared to the true parameter values
and those for which the true size vectors figman and 7ijaee Were used as input.
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Figure 5.7: Parameter inference under misspecification of the cell pool size: Parameters are
estimated for two datasets, one generated based on a pool size vector 7igma with values
between 1 and 10 (/eft violin in each panel); the other one based on a vector 7ijarge With values
between 10 and 50 (right violin in each panel). From left to right: Estimates of p, p1, p2 and o.
The violins depict estimates across 1,000 estimation runs, where each relies on a randomly
sampled misspecified pool size vector as described in the main text. Orange: True parameters
values. Light blue: Estimates without misspecification of the pool size vector.

The violins of the estimates for the smaller cell pools (based on gy, ) indicate that
the estimates of p and p; are fairly accurate, but the estimates of s have large
variance, and o is overestimated in all 1,000 runs. This is plausible as population 1
(the one with higher log-mean gene expression) is only present on average in 20%
of the cells; even when misspecifying the pool sizes, the cells of population 1 are
still detectable since this is the population responsible for most gene expression.
Consequently, all remaining cells are assigned to population 2, which has lower or
even almost no expression. If the pool size is assumed too low, this second population
will be estimated to have on average a higher expression; if it is assumed too large,
the second population will be estimated to have a lower expression. This leads to a
broader distribution and thus an overestimation of o.

The results for the larger cell pools (based on 7,..) show a similar pattern. In
this case, however, the impact of misspecification is less visible, as also confirmed
by additional simulations in Appendix [G For large cell pools, the averaging effect
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across cells is strong anyway and in that sense more robust. In the study here, due
to variability of parameter estimates, the o parameter is often even better estimated
when using a misspecified pool size vector than when using the true one. It might
also be appropriate to repeat the parameter estimation, as shown here, with similar
pool size vectors to get more robust estimates.

Taken together, stochprofML can be used even if exact pool sizes are unknown. In
that case, the numbers should be approximated as well as possible.

5.5 Bayesian Parameter Inference

In all models presented in this thesis, we assume that gene expression is stochastic
and therefore contains large parts of variability. This variability is not only found in
the data, but is also part of the rate parameters that control gene expression. Using
the classical maximum likelihood inference as described above, this variability of
parameters is not taken into account, since only point estimates of the parameters
are returned.

Bayesian parameter estimation (Section enables us to estimate the variability
of the parameters by assuming that they are not fixed values but follow a distribution.
Kurz| (2015) proposed a Bayesian extension for the LN-LN model. Here, we will
present an approach that concentrates on the discrete NB-NB model.

For this, we use the HMC-based No-U-Turn sampler (NUTS, Hoffman and Gelman,
2014)) implemented in the programming language Stan through its interface RStan
(Stan Development Team), 2019) to estimate parameters @ and p of Equation (/5.8]).
More information can be found in Section [3.3.2] Remember that in the NB-NB model,
0 is the parameter vector of all T" involved NB distributions, defined by p and r i.e.
0 = (bh,...,07) = ((e1,71), ..., (r,7r7)). In the following, we will introduce two
different implementations of our model, i.e. the sum of NB mixtures in Stan.

5.5.1 Implementation of the Likelihood Function in Stan

We use the same model as in the NB-NB version of the stochprofML algorithm,
described in Section B.2]1. e.

Yi=Xa+ -+ Xin,

where n is the number of cells in each measurement and i € {1,...,k} are the
observations. Now,

o ) ( Br )
X;: ~pNB ,— | +---+prNB , ,
j ™~ D1 (Oé1 B+ 1 pr ar Br+1

fori = 1,....,kand j = 1,...,n are the latent single-cell observations with
Zle pr. = 1 and NB(r, p) is given in Definition Note that in the following, we
use the NB distribution parameterized by a and § as shown in Example [3.12]

When using RStan, the model needs to be written in Stan language. There, we cannot

use our implementation of the density function fi, e, . ¢ (yi(g ) |0(9)> — the PMF of
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a sum of n; NBs as described in Equation ({5.6) — since we cut the infinite sum at
different points as soon as the subsequent summands are zero. This cutting point
depends on the parameters and the given data.

The NUTS requires calculating the gradient of the log-posterior density. For this
purpose, Stan uses auto-differentiation and creates a so-called expression tree to
evaluate all required gradients of the likelihood. Since this cutting point is parameter
dependent, but the expression graph is built only once at the beginning (independent
of parameter inputs), the auto differentiation fails. This is because the number
of summands cannot vary for each iteration (i.e. for a new parameter proposal)
since the size of the expression tree would vary but can only be fix. Therefore, we
need to re-implement the density function and with this the complete likelihood
function in Stan code without such a varying cutting point. One way is to always
approximate the sum by a constant very high number of summands, e.g. 10,000. We
use an alternative solution, that implements different versions with different constant
numbers of summands (i.e. 1, 5, 10, 50, 100, 500, 1,000, 5,000 and 10,000). Then
one expression tree can be built with several subtrees (in this case: nine), and in
each iteration, it is checked whether more summands are needed and thus which
subtree to use. We call this Stan model the NB implementation.

We apply the NB implementation to a synthetic dataset with 1,000 2-cell samples
of two populations and frequencies p = (0.2,0.8) and NB parameters a = (20, 70)
and B = (12 = 0.111, {25 = 0.667).

Figure [5.8| shows the chains and density plots of the resulting run. It indicates that
our algorithm is able to capture the true parameter values.
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Figure 5.8: Parameter traces and densities of the posterior sample obtained with the
isampler (NUTS)[ using the NB implementation.

It is worth mentioning that running this Stan model does not return any errors, i.e.
no divergences, tree depth was not exceeded and the |estimated Bayesian Fraction of|
[Missing Information (BFMI)|indicates no pathological behavior. Additionally, the
effective sample size neg is larger than 100 and R close to one, which tells us that
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chains have mixed and the posterior distribution of the parameters were adequately
estimated.
However, as shown in Table the runtime of all four chains is three to four weeks.

Chain 1  Chain 2  Chain 3  Chain 4 Mean
Warmup time ins 563,376 521,653 568,014 884,648 634,423
Sample time in s 1,161,320 1,233,040 1,299,130 1,476,770 | 1,292,565

Total time in days 19.96 20.31 21.61 27.33 22.30

Table 5.3: Runtimes of the four chains (shown in Figure of the INUTS| using the NB
implementation.

Modifying this implementation to approximate Formula (3.4]) more efficiently and to
decrease its evaluation time will be the topic of the next section.

5.5.2 Alternative Model: Using the Poisson-Gamma Distribution

The previous section showed that the implemented Stan model works but is very
time consuming (see Table |5.3[ with runtimes between 20 and 27 days). Calculating
more complicated models with more cells and populations would take even longer.
Therefore, we search for an alternative parametrization. To additionally circumvent
the problem of cutting the infinite sum and creating huge expression trees, we use
the fact that a NB distribution is the same as a PG (Poisson-gamma) distribution
(see Example . The hierarchical perspective of using a Poisson distribution with
gamma distributed intensity parameter results in the same random variables but
allows us to look at a convolution of PGs instead of a convolution of NBs. In the
Bayesian world, this is a difference. By Defnition [3.5] the convolution of compound
Poisson distributions results in a compound Poisson distribution where the intensity
parameter is a convolution of intensity distributions, in our case Gamma distributions.
Therefore, we introduce latent parameters A that follow Gamma(a, 3) distributions
into the Stan model. In detail, we now use the following model:

Yi=Xa+ -+ Xin,

where n is the number of cells in each measurement and ¢ € 1, ...,k are the observa-
tions. As before
Xij ~ plPOiS()\l) —+ - +pTPOiS(/\T>

are the latent single-cell observations with 22:1 pr = 1. Additionally,

)\h ~ Gamma(ah, 5]1)

introduces a layer of latent parameters \.
This model does not need the expensive implementation and calculation of Equa-
tion (3.4), and thus, the expression tree is much smaller. However, chains are sampled
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for all T' latent parameters \,. Reparametrizing them to An, where A, = A\, /B, leads
to more stable chains for the latent parameters A;, since

A ~ Gamma(ay, 1)

only depends on one parameter.

Figure shows results from this alternative version using the hierarchical PG
distribution and the reparametrization introduced above. We will call this alternative
model PG implementation. In contrast to the NB implementation in Section [5.5.1
we already see in the trace plots of the PG implementation that chains did not mix
very well. This can also be detected in the effective sample size neg which is very
low (between 12 and 19) and R is greater than one (1.2 — 1.8). Note that we already
increased chain lengths from 1,000 to 20,000 in order to get larger effective sample
sizes. Although the run does not return problems in divergence or tree depth, the
BFMIs of all four chains are below 0.2 indicating that we may need to reparametrize
the model. We know that this is possible but comes with higher computational costs.
Nevertheless, Table shows that even with these longer chains, run times are
substantially smaller (between 8 and 12 hours) than before.
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Figure 5.9: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation.

Chain 1 Chain 2 Chain 3 Chain 4 | Mean
Warmup time ins 4,753 4,396 6,842 4,364 5,089
Sample time in s 27,546 27,078 34,199 27,096 | 28,990

Total time in h 8.97 8.74 11.40 8.74 9.46

Table 5.4: Runtimes of the four chains (shown in Figure of the INUTS| using the PG
implementation.



128 5.5 Bayesian Parameter Inference

Simulated data and fitted Stan PMFs
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Figure 5.10: Histogram of the simulated data with the true 10-cell PMF of the original param-
eters in red. The resulting NB implementation is plotted in brown and the PG implementation
in turquoise. For both the median of the parameter estimates is selected.

In the density plots of Figure [5.9] we can observe that the estimated population
parameters are close to the original ones.

Figure [5.10] shows the histogram of the simulated data and its density estimates.
The true PMF with the original parameter values is also shown. Now, we compare
the fitted PMF's of the NB implementation and the PG implementation with the
data. First, we see that both fitted PMFs lie nearly perfectly on top of each other,
showing that the simplified, unperfect PG implementation comes to the same result.
Additionally, both PMFs are close to the true and the real density of the data. This
means, that the simplified PG implementation fits the 10-cell PMF comparably well
to the data as the time-consuming NB implementation.

Taken together, we conclude that this alternative parametrization is not as good as
the original NB parametrization. The chains look worse together with the R as well
as the effective sample size neg, we conclude that chains have not mixed very well.
Additionally, the low values of the BFMI suggest to reparametrize the model. On
the bright side, this model takes much less time to be computed (between 8 and 12
hours with a mean of 9.45 hours) and the fits seem comparably well.

We suggest that if we want to use the Stan model, we use the simplified PG imple-
mentation. The NB implementation just takes too long and therefore is not usable.
When using the PG implementation, we can still tune the step size parameter €
manually as well as the maximal tree size parameter.

5.5.3 stochprofML: Bayesian Inference versus ML Optimization

Next, we compare the results when fitting data with the proposed Stan model using
the simplified PG implementation from the previous section with the output of the
stochprofML algorithm using the NB-NB model. For this, we generated 8 synthetic
datasets with either one homogeneous population or a two-population mixture. For
each of these population compositions, we generate four datasets that contain 1,000
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observations of single cells, pools of 2 cells, 5 cells or 10 cells, respectively. We applied
the PG Stan model as well as the stochprofML algorithm using the NB-NB model
to infer the population parameters.

In Figure [5.11 we show the histogram of the data and its true density together
with the fitted densities of both fits. As in the previous section, we use the median
for the Stan parameter fit. Appendix [H] contains all parameter chains and densities.

1,000 observations of different pool sizes and
different population compositions
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Figure 5.11: Histogram of the simulated data with the true PMF of the original parameters in
red. The PMF of the stochprofML fit using the NB-NB model is plotted is brown and the Stan
fit using the PG implementation in turquoise. For the Stan fit, the median of the parameter
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Table |5.5[ shows the true and the estimated parameters together of the stochprofML
fit using the NB-NB model and the Stan fit using the PG implementation with their
BICs for all of the 8 simulated datasets (all values are rounded). We see that for
each dataset both the stochprofML NB-NB model and the Stan PG implementation
result in BICs very close to and often smaller than the BIC calculated for the true
parameters that were used for the data simulation. Note that often the BIC of the
Stan fit is much closer. In more than half of the datasets the Stan fit resulted in the
smallest BIC.

Both models are very time consuming, especially for more cells and more populations.
Computing times range from 8 seconds to 6.5 days for the stochprofML and from 56
minutes to 14 hours for the Stan runs. Since the Stan run creates comparably long
chains for all model specifications, parameter inference for a small model such as one
population fit on single-cell data take substantially longer than the stochprofML
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1 Population 2 Populations

NB,, r, BIC p1 NB,, »,+p2 NB,, 1, BIC

Truth NBiso20 10,300 0.20 NB150,20+0.80 NBg5,70 9,264

%  stochprofML NBi7s20 10,295 0.21 NBi72,12+0.79 NBjo4,78 9,458
Stan NBi7920 10,300 0.16 NB17522+0.84 NB1g585 9,250

w Truth NBig0,20 11,026 0.20 NBig0,20+0.80 NBjgs5,70 10,462
€ stochprofML  NBisoso 11,034 0.16 NByggss+0.84 NBygrss 10,569
' Stan NBi7g20 11,025 0.23 NBigg134+0.77 NB1gs7s 10,457
«  Truth NBiso20 12,029 0.20 NBjg0,20+0.80 NBjo5.70 11,629
S stochprofML  NBigooo 12,048 0.32 NBysgeo+0.68 NBygsas 11,697
” Stan NBigo1s 12,025 0.23 NBigs22+0.77 NByosrs 11,629
2 Truth NBigo20 12,695 0.20 NB130,20+0.80 NBg5,70 12,370
;%3: stochprofML  NBjigo19 12,677 0.45 NBj45,11+0.55 NBgg 27 12,435
—  Stan NBigo1o 12,693 0.20 NBj7420+0.80 NByys 7, 12,381

Table 5.5: Parameter values and BIC of the true parameters used for data simulation, the
stochprofML fit using the NB-NB model and the Stan fit using the PG implementation. Values
are rounded. The model with the smallest BIC is printed in bold.

run. But then again computation time is greatly reduced for bigger models compared
to the stochprofML implementation because the complex and time-consuming log-
likelihood does not have to be calculated.

We conclude that both methods to infer the population parameters work in general.
We need to have in mind that the Stan model does not run perfectly and we cannot be
sure that samples are generated from the posterior distribution. Therefore, we cannot
recommend to use the output for any posterior distribution-based investigations.
Nevertheless, we can use the chains to generate a median estimate and to calculate
the resulting BIC for model comparison. In Section we found a good Stan
model, but since it is very time consuming, it is not usable in practice.

Taken together, using the stochprofML package with its maximum likelihood op-
timization is a good suggestion, since then we are sure that all the conditions are
fulfilled and we can really trust the results. Furthermore, additional model and
parameter statistics can be calculated such as confidence intervals.

5.6 Interpretation of Estimated Heterogeneity

We investigate what we can learn from the parameter estimates about the heteroge-
neous populations (Section [5.6.1)) and about sample compositions (Section [5.6.2)).



5 Estimating Single-Cell Properties from Pooled Cell Data 131

5.6.1 Comparison of Inferred Populations

The stochprofML algorithm estimates the assumed parameterized single-cell dis-
tributions underlying the samples and; as described in Section [3.4] we can select
the most appropriate number of cell populations using the BIC. Assume we have
performed this estimation for samples from two different groups, cases and controls.
One may in practice then want to know whether the inferred single-cell populations
are substantially different between the two groups, e.g. in case the estimated log-
means fleases aNd [leontrols are close to each other. A related question is whether the
difference is biologically relevant.

We hence seek a method that can judge statistical significance and potentially reject
the null hypothesis that two single-cell populations are the same; and at the same
time allow the interpretation of similarity. Direct application of Kolmogorov-Smirnov
or likelihood-ratio tests to the observed data is impossible here since the single-cell
data is unobserved: We only measure the overall gene expression of pools of cells.
Calculation of the Kullback-Leibler divergence of the two distributions would be
possible; however, it is not target-oriented for our application where we seek an
interpretable measure of similarity rather than a comparison between more than two
population densities.

For our purposes, we use a simple intuitive measure of similarity — the overlap of
two PDF's, that is the intersection of the areas under both PDF curves:

OVL(f,g) = /_OO min{ f(x), g(x)}dx (5.10)

for two continuous one-dimensional PDFs f and g (see also Pastore and Calcagni,
2019). The overlap lies between zero and one, with zero indicating maximum dis-
similarity and one implying (almost sure) equality. In our case, we are particularly
interested in the overlap of two lognormal PDFs:

OVL_LN_LN <- function(mu_1, mu_2, sigma_1, sigma_2) {
f1 <- function(x){dlnorm(x, meanlog = mu_1, sdlog
f2 <- function(x){dlnorm(x, meanlog = mu_2, sdlog
£3 <- function(x){pmin(£f1(x), f2(x))}
integrate(f3, lower = 0, upper = Inf, abs.tol = 0)$value
}

sigma_1) }
sigma_2) }

Certainly, the formula can also be applied to discrete distributions (e.g. the NB
distributions), where the integral is exchanged for a sum.

Figure shows examples of such overlaps. Here, the overlap ranges from 12%
for two quite different distributions to 86% for two seemingly similar distributions.
The question is where to draw a cutoff, that is, at what point we decide to label
two distributions as different. Current literature considers two cases: Either the
parametric case (e.g. Inman and Bradley] [1989), where both distributions are given
by their distribution families and parameter values; or the non-parametric case (e.g.
Pastore and Calcagni, [2019), where observations (but no theoretical distributions)
are available for the two populations. Our application builds a third case: On the one
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Figure 5.12: Four examples of overlapping PDFs, together with the overlap area as defined in
Equation (|5.10)).

hand, we want to compare two parametric distributions, but the model parameters are
just given as estimates based on (potentially small) datasets, thus they are uncertain;
on the other hand, we do not directly observe the single-cell gene expression but
just the pooled one. To address this issue, we suggest to again take into account the

60 and 200 single—cells 60 and 60 single—cells
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Figure 5.13: Variability of the overlap between the PDFs of the two distributions described
in Figure 5.I2D. The panels show histograms of N = 1,000 simulated overlap values which
are simulated as described in the main text. Left: We assume that the estimates of the orange
distribution relied on 60 single cells and the blue distribution on 200 single cells. Right: For
both distributions, parameters are assumed to be estimated on 60 single cells. The 86%

overlap of the original PDFs from Figure[5.12D, i.e. LN(fi1 cases = 2.10,62,,., = 0.19%) and
LN (i1 controis = 2.03,62% ... = 0.202), is marked in turquoise. The light gray bars of the

histogram indicate values below the empirical 5%-quantile. If the original overlap falls into this
range, we reject the null hypothesis that both distributions identical.

original data that led to the estimated parametric PDFs. As an example, assume
that we consider two sets of pooled gene expression, one for a group of cases and
one for a group of controls. In both groups, pooled gene expression is available
as 10-cell measurements, but the two groups differ in sample size. Let’s say the
cases contain 50 samples and the controls 100. We assume the LN-LN model with
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two populations and estimate the mixture and population parameters using the
stochprofML algorithm separately for each group, leading to estimates Peages, f11,casess
/lZ,Casesa é—Cases and ﬁcontrolm ﬂl,controlsa ﬂ2,c0ntrolsa é—controls- We now aim to assess whether
the first populations in both groups have identical characteristics, i.e. whether
LN (/i1 casess O ases) a0 LN (/11 controls) O nirols) ar€ estimates of the same distribution.
Figure displays the single-cell PDFs of the first population and their over-
laps for various values of the estimates. For example, in Figure [5.12]D, the orange
curve shows the Single cell PDF of population 1 inferred from the cases, yielding
LN (fi1 cases = 2.10,62,.. = 0.19%), and the blue one shows the inferred single-cell
PDF of population 1 from the controls, LN(fi1 controls = 2.03, 62 = 0.20%). The
overlap of these two inferred PDF's equals 86%.

We now aim to test the null hypothesis that the underlying populations
LN (141 cases, Oases) AN LN (41 controlss Oopirols) are the same versus the experimen-
tal hypothesis that they are different. We perform a sampling-based test: Taking
into account the inferred population probabilities pPeases and Peontrols and the num-
ber of samples and cells in the data, we can estimate the number of cells which
the estimates OCases and Ocontrols relied on. The larger this cell number, the less ex-
pected uncertainty about the estimated population distributions LN(,ulvcases, 02 os)
and LN (fi1 controlss 0 2niros) (N€glecting the impact of pool sizes).

In our example, let Peases = 12%. Then, approximately 12% of the 500 cells from
the cases group (50 x 10-cell samples) belonged to population 1, that is 60 cells.
For Peontrols = 20%, 200 cells were expected to be from the first population (that is
20% of 1,000 cells, coming from the 100 x 10-cell measurements for the controls). In
our procedure, we compare parameter estimates that are based on the respective
numbers of single cells, i.e. 60 cells for cases and 200 cells for controls. We perform
the following steps:

e Calculate OVLgyiginal, the overlap of the PDFs of LN(fi1 cases = 2.10, 05,005 =
0.19?) and LN({i; controls = 2.03, 62 = 0.20?%).

controls —

controls

e Under the null hypothesis, the two distributions are identical. We approximate
the parameters of this identical distribution as fiy mean = (11 cases + f41 controls) /2
and

&mean = (a-cases + a-controls)/Q-

e Repeat N = 1,000 times:

mean) *

— Draw dataset B of size 200 from LN(fi1 mean; &

— Draw dataset A of size 60 from LN(fi1 mean, &

2 Y,
— Estimate the log-mean and log-sd for these two datasets using the method
of maximum likelihood, yielding ji4, 4, fip and op.

— Calculate OVL <fLN(ﬂA’5'I24)7 fLN(ﬂBﬁ.QB)) .
e Sort the N overlap values and select the empirical 5% quantile OVLg gs.

e Compare the overlap from the original data to this quantile:
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— If OVLgriginar < OVLgs, the null hypothesis that both populations are
the same can be rejected.

— If OVLyiginat > OVLg 05, the null hypothesis cannot be rejected.

This procedure is related to the idea of parametric bootstrap with the difference that
our original data is on the n-cell level and the parametrically simulated data is on
the single-cell level.

The left panel of Figure |5.13| shows one outcome of the above-described procedure
(i. e. the stochastic, sampling-based algorithm was run once) with the above-specified
values of the parameter estimates. Here, OVL,,gina lies in the critical range such
that we reject the null hypothesis that the gene expression of the populations in
question stem from the same lognormal distribution. We thus assume a difference
here. The right panel of Figure demonstrates the importance of taking into
account the number of cells which the original estimates were based on: Here, we
show one outcome of the above described steps, but this time we assume that for
the control group there were only 30 10-cell samples (i.e. 300 cells in total). With
the same population fraction as before (Peontrors = 20%), the datasets B now contain
only 60 cells. Here, the value OVLygina does not fall into the critical range, and
therefore we would not reject the null hypothesis that the two populations of interest
are the same.

When testing for heterogeneity for several genes simultaneously, multiple testing
issues should be taken into account. However, genes will not in general be independent
from each other.

5.6.2 Prediction of sample compositions

The stochprofML algorithm estimates the parameters of the mixture model, i.e. — in
case of at least two populations — the probability for each cell within a pool to fall
into the specific populations. It does not reveal the individual pool compositions. In
some applications, however, exactly this information is of particular interest. Here,
we present how one can infer likely population compositions of a particular cell pool.
This is done in a two-step approach via conditional prediction: First, one estimates
the model parameters from the observed pooled gene expression, i.e. one obtains an
estimate @ of 8. Then, one assumes that 6 equals 6 and derives the most probable
population composition via maximizing the conditional probability of a specific
composition given the pooled gene expression.

A key formula here is the conditional probability of a cell composition given the
measured gene expression, which we derive here. We use the following notations and
assumptions:

e The overall gene expression of a cell pool is denoted by Y and assumed a
continuous/discrete random variable with PDF/PMF fy (y).

e L= (Ly,...,Lr) denotes the specific cell population combinations, i.e. L; is the
number of cells of population ¢ for all = 1,..., T, within a pool of L1+...4+ Ly
cells. L is a discrete random vector with PMF P(L = /).
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® fyir=c(y) is the conditional PDF/PMF of the overall gene expression in a cell
pool whose composition is known to equal ¢. For shorter notation, this was

referred to as fe, 4,,...er) (¥5]@) in Section [5.2.3]

e In turn, P(L = ¢|Y = y) is the conditional PMF of the cell pool composition
given the pool gene expression measurement Y = v.

We use Bayes’ theorem to derive the latter PMF":
 Iyip=W)P(L=10)  fyp=(y)P(L =1

=Y =) = =S huswPE=y O

where J is the set of all possible compositions of the cell pool, i.e. the set of all
vectors (ji,...,Jr) with j; € Ngand jy + ...+ jr =01+ ...+ {p.

The terms in Equation depend on the population probabilities p = (p1, ..., pr)
and the gene expression model (in this work: LN-LN, rLN-LN, EXP-LN or NB-NB),
characterized by its respective parameters. We assume the expression model to be
fixed and denote all model parameters (including p) by 8. In practice, 8 is unknown,
and hence we use its maximum likelihood estimates here.

Given the estimate p of p, L = ¢ = ({4,...,¢r) approximately follows a multi-
nomial distribution with parameters n = ¢; + ...+ {7 and p. The PMF of the cell
pool composition (¢q,...,¢r) hence reads

n NN N
P(L=(ly,... 07) = (61 0. €T>pf1p§2~~p?,
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Figure 5.14: Histogram of simulated data underlying the prediction of cell pool compositions
in Figure [5.I5A: 100 synthetic 5-cell measurements arising from the LN-LN model with two
populations with parameters p = (0.2,0.8), # = (2,0) and ¢ = 0.2. The PDF with true
model parameters is shown in orange, the PDF with estimated parameters p = (0.14,0.86),
fr = (2.04,0) and 6 = 0.20 in blue.
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where (51 egn... ZT) = W'ZT' is the multinomial coefficient. With this, the conditional
PMF of the cell pool composition given the pooled gene expression measurement Y

reads:
 Prin=ew;0)(,, " )D0P

fy(y; 0)
NN D N

_ Y|L o )(51,52,...,%) 1172 T (5.12)

Zjej fY|L=j(y; 0) (jhj;“,jT)ﬁ{lﬁ? o ﬁ%‘T
We evaluate this procedure via a simulation study. As before, we simulate data
using the stochprofML package. In particular, we use the LN-LN model with two
populations with parameters p = (0.2,0.8), u = (2,0) and o = 0.2. Each simulated
measurement shall contain the pooled expression of n = 5 cells, and we sample £ = 100
such measurements. We store the original true cell pool compositions from the data
simulation step in order to later compare the composition predictions to the ground
truth. Having generated the synthetic data, we apply stochprofML to estimate the
model parameters p, p and o. Figure |5.14| shows a histogram of one simulated data
set along with the PDF of the true population mixture and the PDF of the estimated
population mixture (that is the LN-LN model with parameters p = (0.14,0.86),
= (2.04,0) and 6 = 0.20).
Next, we calculate the conditional PMF (see Equation (5.12))) for each possible
population composition conditioned on the particular pooled gene expression mea-
surement. Figure and Table [5.6/show results for the first six (out of 100) pooled
measurements.
In particular, Figure displays the conditional PMF of all possible compositions
(i.e. k times population 1 and 5 — k times population 2 for k € {0,1,...,5}). Blue
bars stand for these probabilities when 6 is used as model parameter value. Orange
stands for the hypothetical case where the true value 8 is known and used. These
two scenarios are in good agreement with each other.
We regard the most likely sample composition to be the one that maximizes the
conditional PMF (maximum likelihood principle). The true composition (ground
truth) is marked with a black box around the blue and orange bars. We observe in
Figure that the composition is in all six cases inferred correctly and mostly
unambiguously. Only for the fifth measurement, there is visible probability mass
on a composition other than the true one. In fact, it is the only pool (out of the
six considered ones) with two cells from the first population. Alternatively to the
maximum likelihood estimator, one can also regard the expected composition — the
empirical weighted mean of numbers of cells in the first population — or confidence
intervals for this number. The respective estimates for the first six measurements of
the dataset are shown in Table |5.6| The results are consistent with the interpretation
of Figure [5.15A.
Certainly, the precision of the prediction depends on the employed pool sizes, the
underlying true model parameters and how reliably these were inferred during the
first step. We showed in Section [5.4] that larger cell pools lead to less precise parameter
inference. Hence, we repeat the prediction of sample compositions on another dataset,

P(L=1(]Y =y)
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Figure 5.15: Estimation of cell pool compositions in the two-population LN-LN model: Condi-
tional probabilities of numbers of cells from the first population in the first six measurements of
the synthetic datasets described in the main text and in Figure[5.14] given the respective pooled
gene expression measurement. Blue bars show the conditional probabilities using estimated
model parameters, and orange bars show those when using the true parameters. True cell
numbers from the first population are marked with a black box around the bars. Results for (A)
simulated 5-cell data and, (B) 10-cell data.

this time based on 10-cell pools. All other parameters remain unchanged. The
resulting conditional probabilities are depicted in Figure [5.15B. Since p = 0.2, one
expects on average two cells to be from the first population in each 10-cell pool. As in
the previous 5H-cell case, most predictions show a clear pattern. However, probability
masses are spread more widely. Measurements 3 and 4 exemplify that almost identical
gene expression measurements (y = 19.69 and y = 19.79) can arise from different
underlying pool compositions (two times population 1 in measurement 3 vs. three
times population 1 in measurement 4). For more similar population parameters,
the estimation will get worse, which will then propagate to the well composition
prediction. In such cases, to predict the pool compositions, one may use additional
parallel measurements of other genes that might separate the population better by
their different expression profiles while the pool composition stays the same across
genes.
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Estimator for # Measurement index

of cells in pop. 1 1 2 3 4 5 6 # of hits
Estimated | Mean 0.00 1.00 1.00 1.00 2.14 1.01 98
parameters | MLE (CI) | 0 (0,0) 1(1,1) 1(1,1) 1(1,1) 2(23) 1(1,1) 98 (100)

True Mean 0.00 1.00 1.00 1.00 2.39 1.02 97
parameters | MLE (CI) | 0 (0,0) 1(1,1) 1(1,1) 1(1,1) 2(2,3) 1(1,1) 97 (100)

True # of cells

from population 1 0 ! 1 1 2 !

Table 5.6: Estimates of numbers of cells from the first population in the simulated 5-cell data
described in Figures and and in the main text. Columns: Estimation results for the
first six measurements from the datasets and (last column) summary across all 100 samples.
Rows: Estimation of cell numbers are based on conditional probabilities that use either the
estimated model parameters (rows 1 and 2, corresponding to blue bars in Figure [5.15)A) or the
true values (rows 3 and 4, orange bars). Within each of these two choices one can consider the
mean number of cells from population 1 as determined by the conditional probabilities (rows 1
and 3) or the MLE that maximizes the conditional probabilities (rows 2 and 4, first value)
including a 95% confidence interval that covers at least 95% of the conditional probability mass
(rows 2 and 4, in parentheses). The last row shows the true pool composition. The last column
shows for each estimator how many of the 100 cell numbers were inferred correctly (defined as
follows: rounded mean is exact match; MLE is exact match; Cl includes correct number).

5.7 Discussion and Conclusion

With the stochprofML package, we provide an environment to profile gene expression
measurements obtained from small pools of cells. Experimentalists may choose this
approach if single-cell measurements are impossible in their lab, e. g. if the drop-out
rate of the tissue of interest is too high in single-cell libraries, if budget or time are
limited, or if one prefers to avoid the stress which is put on the cells during cell
separation. One of the latest implementations even allows to combine information
from different pool sizes, in particular, to simultaneously analyze single-cell and
n-cell data. Another major addition to the software now includes the discrete NB
distribution, which adapted the underlying model assumptions to the discrete nature
of sequencing data.

We demonstrated the usage and performance of the stochprofML algorithm in
various examples and simulation studies. These have been performed in an idealized
in silico environment. This should be kept in mind when incorporating the results into
experimental planning and analysis. Subsequent interpretation of heterogeneity will
be informative if based on a good model estimate. The assumption of independent
expression across genes within the same tissue sample is a simplification of nature
that leads to less complex parameter estimation. Previous experimental validation
(Bajikar et al., 2014) provided evidence that transcriptional heterogeneity can be
parameterized through stochastic profiling even for non-ideal settings such as small
sample sizes or in the presence of gene-gene correlation. If populations are similar
or diffuse, they may not be identified as distinct populations through stochprofML.
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The same, however, applies to other statistical methods and also to the analysis of
single-cell data. For the latter, noise is expected to be more pronounced than in
n-cell pools, which again motivates the use of our method.

The optimal pool size with respect to bias and variance of the corresponding parameter
estimators will depend on unknown properties such as numbers of populations and
their characteristics, and also on the relationship between the pool size and the
amount of technical measurement noise. The latter aspect has been excluded from the
studies here but further supports the application of stochastic profiling. We compare
the discrete stochprofML variant with a newly implemented Bayesian version using
Stan. We show that both deliver comparable results with very much reduced runtimes
in the Bayesian version. This underlines a strength of these methods for accelerating
runtimes by bypassing the computationally intensive likelihoods. Other Bayesian
methods such as variational Bayesian inference (Blei et al., [2017) could reduce them
even further.






Application to Real-World Small

Pool Data

We discussed in the previous chapters discrete probability distributions that model
mRNA counts and how to deconvolve single-cell population profiles from pooled
cell measurements. Based on our models, in this chapter we want to explore the
hypotheses that cell pooling might be advantageous to measure less noise and to
better detect heterogeneities by using real data from small cell pools generated
for this purpose. Therefore, we need to establish a suitable study design which is
explained below.

6.1 Experimental Setup

The biological truth about inherent heterogeneity in a sample is generally unknown.
Therefore we have to rely on assumptions when selecting a suitable tissue for
this experiment. To investigate the detection of heterogeneity we want to analyze
some heterogeneous as well as homogeneous cells in two parallel experiments. We
have chosen [mouse embryonic stem cells (mESC)| and [AMI] cells: The were
selected because they are presumably homogeneous, cheap and convenient to use
(according to our collaboration partners). The cells were selected because
we are part of the Collaborative Research Center (CRC) 1243 Cancer Evolution:
Genetic and Epigenetic Evolution of Hematopoietic Neoplasms in Munich, where the
majority of the participating cooperation partners are working on different types of
leukemia. Since AML often contains several subpopulations — so called subclones
(see Chapter —, it can be assumed that this is an appropriate choice to study.
Additionally, it is worth mentioning that there exist not many gene expression
datasets of AML cells since this measurement is very challenging. We know from
personal correspondence with our collaboration partners of the Enard lab (Johannes
Bagnoli, Faculty of Biology, LMU Munich), that they contain much fewer RNA than
for example mESCs which means that you simply start with less input material
for the reactions. In addition, they also have more RNases, i.e. internally expressed
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enzymes that attack RNA. This leads to the fact that when the cells are lysed these
enzymes attack the RNA at the same time and you have even less input material.
Therefore one has to make sure that these RNases cannot work too well before the
reverse transcription. In addition, AML cells are incredibly sensitive when it comes
to thawing. Many cells do not survive this and depend on how the cells are sorted
(e.g. with which stainings). Therefore, many cells are either already completely dead
or at least have started to die, which also leads to the fact that the RNA is broken
or even actively destroyed.

To investigate the measured mRNA material in terms of the contained cell numbers
of the cell pools, we have to determine pool sizes as well as their frequencies in the
experiment. In general, sequencing plates contain a finite number of wells. In order
to get many samples, several plates need to be used (their number is restricted by
financial constraints). Using several plates will almost surely introduce batch effects.
Therefore we need to generate plate designs that include measurements of some pool
sizes on each plate to ensure comparability between all plates. Figure [6.1] shows the
frequencies of pool sizes on each 96 well plate. We created five different designs where
each contains the same number of single cells and 10 cells with which we hope to
correct possible batch effects later. Additionally, each plate contains two wells with
zero cells to control the background noise. The cell numbers of the remaining wells
were selected such that pool sizes up to 50 cells are measured while simultaneously
the designs used in one batch contain a comparably same number of total cells. This
is important when determining the sequencing depth which should be approximately
equal per cell. Sequencing depth was set to 300 million reads for plates of design A
and B and to 200 million reads for plates of design C, D and E.

The experiments are run in three batches. Batch 1 contains three plates of plate C,
batch 2 consists of three plates of design A and of three plates of design B. Finally,
batch 3 consists of five plates of design D and of five plates of design E. Taken
together, 19 plates with mESC cells and another 19 plates with AML cells were
sequenced. Table shows all planned plates and pool sizes. In total, 437 single-cell
measurements and the same number of 10-cell measurements were planned for each of
the tissues. To be sure that the correct number of cells is contained in each well, the
cells are [FACS] sorted into the wells. Due to a FACS error during batch 3 of the AML
experiment, single-cells were sorted into the forty wells originally planned for 15-cell
measurements. Therefore we miss the 15-cell measurements on these plates and got
additional single-cell measurements. By this the mESC and AML experiments are
no longer completely parallel but since we analyze the tissues separately and do not
want to compare them one-by-one this will pose no problem.
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Figure 6.1: Overview of the five plate designs of the mESC and AML small pool measurements.
96 well plates are used. Numbers in wells show the number of cells in this measurements.
Design C is used in the first experiment run, designs A and B in the second one. The third
round of experiments uses designs D and E. Note, that plate designs C and D are the same,
but differ slightly in the library preparation during the experiments, see main text for more
information. Well positions are named with letters A - G for the rows and with numbers 1 - 12
for the columns. Total numbers of cells measured on each plate differ.

Differences between batches do not only lie in different time points when the experi-
ments were conducted, but also the [FACS| machine and the lysis buffer that was used.
All three batches used the KAPA polymerase. In summer and winter 2017, when
batch 1 and 2 of both cell types were generated, a SH800 sorter (Sony Biotechnology,
100 g m chip) with ”Single Cell (3 Drops)“ purity setting (see Bagnoli et al. [2018)
was used to get the planned cell number in the wells. The library uses a PPP (short
for Primer, ProteinaseK and Phusion Buffer) lysis buffer. In contrast to that the
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0 1 2 3 4 5 7 10 12 15 17 20 30 40 50

3xA 6 69 0 o 0 72 24 69 0 0 24 0 0 0 24
3xB 6 69 72 0 0 0 0 69 24 0 0 0 24 24 O
3xC 6 69 24 24 24 24 0 69 0 24 0 24 0 0 O
5xD 10 115 40 40 40 40 O 115 0 40 O 40 O O O
oxE 10 115 60 O O 60 40 115 40 O 40 0 O O O

Total 38 437 196 64 64 196 64 437 64 64 64 64 24 24 24

Table 6.1: Overview of all sequenced pool sizes. This was the planned setup, for both AML
and mESC experiments. In practice during preparation of the five AML plates of Design D,
some error occurred, and instead of 40 15-cell measurements, additional 40 single-cells were
sequenced, see numbers in italics. This results into 155 single cells and no 15-cell measurements.

cells of batch 3 were sorted in winter 2019 using a BD Aria III FACS machine and
lysis buffer was changed to PPi (Primer, Phusion Buffer and RNAse inhibitor).
The experiment described above was performed in cooperation with labs of the CRC.
The AML cells were derived from PDX mouse models (see Section generated by
the Jeremias lab (Research Unit Apoptosis in Hematopoietic Stem Cells, HMGU
and Dr. von Hauner Children’s Hospital, LMU Munich). Homogeneous mESC cells
for comparisons were provided by the Leonhardt lab (Faculty of Biology, LMU
Munich). Library preparation and sequencing using mcSCRB-seq (see Section
was performed by the Enard lab (Faculty of Biology, LMU Munich).

6.2 Experiment Output and Further Data Processing

After sequencing, data pre-processing has to be performed. We use the zUMIs pipeline
(see Section to map the sequences to the wells and to the reference genome.
The sequencing depth only defines the (planned) number of raw reads of all material
on one plate. The raw reads include reads that cannot be mapped to a well or the
reference genome.

If we look at the total reads for both cell types we see a positive dependency on
the pool size (Figure [6.2] left). This dependency seems to be different for the three
batches. In contrast, the UMI content does not show a systematic difference for the
batches. In detail, when normalizing the total UMIs to the contained cell number of
each measurement, these normalized UMI counts are fairly constant by clustering
around a horizontal line which is the same for the three batches (Figure [6.2B).
However, the single-cells display a greater variance, especially in batch 3 with many
larger measurements.

6.2.1 Downsampling

To make sure that each well was comparably often sequenced — which might cause
the effect that the single-cells sometimes show higher UMI numbers — we downsample
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Figure 6.2: Total reads (left) and total UMIs per cell number (right) versus the number of
cells contained in each sample separated by batches. (A) shows the mESC data and (B) the
AML data. Colors identify the three experimental batches.

the raw reads per cell for each well to 76,877 raw reads per cell in the mESC dataset
and 73,008 raw reads per cell in the AML dataset. These numbers were selected in
an early analysis step of the raw reads in the first two batches. The goal was to find
a high raw read number to which we can downsample each cell without loosing many
measurements that contain less raw reads per cell. However, during the following
downsampling we loose some measurements (32 in the mESC dataset and 27 in the
AML dataset). After this, each measurement has exactly the same raw read number
per cell. As before, we are interested in the mapped reads, i.e. sequences that can
be assigned to genes in the reference genome and their collapse to UMI counts.
Figures depicts the total reads and UMI counts per cell per sample after these
downsamplings for both cell types. Compared to Figure the counts reduced to
approximately a fifth in reads and a third in UMIs per cell. Hence, much information
that was originally contained in the data is ignored when using the downsampled
data. However, after downsampling the batches are depicted more clearly in the read
counts, which were previously more blurred. The single-cell outliers in the UMIs are
still there and could not be removed by downsampling.

6.2.2 Batch Effects of Merged Datasets

The next step is to identify possible batch effects. Since the three batches stand for
three experiments and the results are given in three different data files, they need to
be merged. Not all genes are present in all three batches which poses a problem in
batch correction and gene analysis. A gene that is completely missing in one batch
cannot be corrected or added in the dataset where it is completely missing and thus
can this gene be used to identify the batches. This is why we choose to only keep
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Figure 6.3: Total reads (left) and total UMIs per cell number (right) after downsampling
versus the number of cells contained in each sample separated by batches. (A) shows the mESC
data and (B) the AML data. Colors identify the three experimental batches.

the genes present in all batches. Hence, after merging, the complete mESC dataset
consists of 22,331 genes and 1,753 observations and the AML dataset contains 27,838
genes in 1,741 observations. The UMAPs (McInnes et al., 2020) in Figures[6.4 and [6.5]
visualize possible contained batch effects. We can identify clearly the batch effects
introduced by the three experiment runs. Additionally the cells cluster by growing
pool sizes. Since we want to analyze the effect of pool sizes, we do not want to
correct for them. Therefore a batch effect correction is conducted by using the tool
ComBat-seq (Zhang et al. |2020) — the new version of ComBat (Johnson et al., 2006])
tailored to sequencing data — in which we enter the three batches for correction.
The lower plots of Figures [6.4] and show the UMAP of the downsampled data
corrected in this way. We can see a huge improvement of mixing of the batches on
the right, but a preservation of the cell number ordering. The same can be done to
the original (not downsampled dataset). The corresponding figures can be found in

Appendix [[] in Figures [[.T] and [[.2}

6.3 Noise Reduction by Cell Pooling

One of the aims of this study was to investigate if we can reduce technical noise
by cell pooling. Since in larger pools more mRNA material is available (percentage
wise) less material is lost for example during library preparation. Figure already
showed that the larger pool sizes led to more counts, but now we want to investigate
this further.

Our first step is to model the relationship between total UMI counts of a well and
its cell number. Especially in Chapter [4] we have put emphasis on using discrete
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Figure 6.4: UMAPs of the UMIs of the merged downsampled mESC datasets before (top row)
and after batch correction via ComBat-seq (bottom row). Colors identify cell numbers (left)
and the three experimental batches (right).
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distributions to model discrete data. Since UMI counts are discrete, we choose to
model them analogously by using the flexible NB distribution (see Definition [A.8]).
We use a GAMLSS NB regression model (Stasinopoulos et al., [2017) to model the
ComBat-seq corrected dataset with cell numbers as covariates. Figure shows
these results for both cell types. Note that we do not use the downsampled dataset
here since we are interested in all the information we could get out of the data.

From previous studies (Amrhein and Fuchs| 2020bl Bajikar et al.l 2014), we know that
10 cells are a reasonable pool size to use stochastic profiling on. Therefore, we include
a linear relationship induced by the mean UMI counts of the 10-cell measurements
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GAMLSS negative binomial regression: ComBat-seq corrected dataset, cellnumbers as covariates
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Figure 6.6: GAMLSS NB regression model using the ComBat-seq corrected UMI datasets of
the mESC data (A) and the AML data (B). Cell numbers serve as covariates. For comparison
the induced linear relationship by the 10-cell UMI content is added in gray.

to compare this to the model fitting of the GAMLSS. The mESC data clearly shows
that the UMI content can be modeled by a roughly linear dependency, similar to the
added 10-cell linearization. Note that single-cells but especially the UMI counts of
the large pool sizes lie above this straight line and therefore contain slightly more
material per cell than the 10-cell samples would indicate. This is different in the
AML dataset. There it would be a great simplification to call the relationship of UMI
counts and cell numbers linear. Small pool sizes measure more UMIs per cell while
large pool sizes measure much less than expected. Similar results can be seen on an
alternative approach using the GAMLSS negative binomial (NB) regression on the
non corrected dataset that distinguishes between the batches. Again the cell numbers
serve as covariates but additionally the batches are included as mixed effects. The
plots can be found in Appendix [[] in Figure [.3]

Next, we want to look at this at the gene level. Pooling cells can only show its
advantages with weakly expressed genes. These genes show often no expression or
only noise in single-cells but might have a real signal in larger cell pools. For this
reason we look at low expressed genes in the following.

We will only look at single-cells, 2-cell pools, 5-cell pools and 10-cell pools. In
Figure 6.7 we zoomed into the normalized mean UMI counts of the different pool
sizes in contrast to the single-cell means for all genes of the dataset. The complete
figure can be found in Appendix [[|in Figure[[.4] In a perfect world we would expect
the points to lie on the gray line which describes the case that both means are the
same. The mESC data is close to this case which confirms what we saw in the (linear)
result of the GAMLSS model. In contrast, the AML data shows that the mean UMI
counts of single-cell measurements are often higher than the normalized means of the
pools. This is not what we expected, since our hypothesis was that pooling reduces
measurement errors and results in higher counts but confirms what we have seen in
the GAMLSS model fits where the single-cells have a higher UMI expression than
expected. Here we see that this does not only hold on the total UMI level but also
on the gene level.

Taken together, we cannot support the assumption that larger cell pools reduce noise
and therefore we get higher UMI counts per cell based on the data generated in
this study. Still we can confirm that cell pools consisting of more cells return higher
UMIs and therefore contain more information than single-cells. In the homogeneous
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mESC dataset we can see a roughly linear relationship of UMI counts and pool sizes.
The AML data is more challenging and higher cell pools seem to show some kind
of saturation so that information is not growing linearly with cell sizes. We already
described above that it is more challenging to measure AML cells than mESC cells.
In detail, ESCs or other cells can be kept in culture (this is very difficult with AML
cells, which is why there are PDX models, see Section . This is why you have to
take these frozen cells, which are not very healthy in contrast to very healthy mESCs
directly from the cell culture. It might be that not all subclones in the AML cells
could not be measured as single-cells or that they carried very little information so
that they got filtered out. Maybe these are contained in the larger pool sizes and
therefore their content does not increase linearly compared to the small pool sizes.

Also note that the meSCRB-seq protocol was adapted and improved to work especially
well for single-cell measurements and does not generate many dropouts. Therefore
the single-cell measurements here are already pretty good and do not carry much
noise at all.
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6.4 Heterogeneity Detection by Cell Pooling

Another aim of this study is to investigate if heterogeneities can be detected in
UMI measurements of small cell pools. Since we saw before that the measurement
information is not necessarily linearly increasing with cell numbers this is quite
challenging. Moreover, this violates one of the main assumptions when using our
stochprofML algorithm. Nevertheless, we saw that in larger cell pools more UMI
counts could be measured than in smaller cell pools. For this reason we will not use
different pool sizes in one analysis. We use the NB-NB model of our stochprofML
algorithm on the single-cells, the 2-cell pools, the 5-cell pools and the 10-cell pools
separately. Next, we compare the results of the inferred heterogeneity in the different
pool sizes. From Table [6.1, we know that we planned to have 437 single-cells and
10-cell measurements and 196 2-cell and 5-cell measurements. In practice, we have 430
single-cell, 186 2-cell, 196 5-cell and 427 10-cell observations in the mESC data set and
471 single-cell, 188 2-cell, 186 5-cell and 429 10-cell observations in the AML data set.
We select 50 genes that are likely to be bimodal in the single-cell data of both datasets
by looking at possible bimodality in the kernel estimates of the single-cell data. Then
we apply the NB-NB model of the stochprofML algorithm (see Chapter [5| for details)
to estimate model parameters for one or two populations. With this we get eight fits
per gene. For each pool size we use model selection via BIC, given in Formula ((3.9)
to decide if the sample is homogeneous or rather heterogeneous with two populations.
Our hypothesis is that the samples of the mESC dataset select more often the one
population model and are thus homogeneous, while the AML genes show certain
heterogeneity by selecting more often the two-population model. Additionally, we
are interested if possible heterogeneities can be better detected in larger pools (e. g.
10 cells) than in single-cell data or small pools. The collapsed results are depicted
in Table [6.2] More than half (26 genes) of the selected mESC genes seem to be
homogeneous in all four pool sizes. Another 14 genes show homogeneity in all but one
of the four subsets of a gene. Surprisingly most of them inferred heterogeneity in the
small pools, i.e. in the single-cells or the 2-cell pools. 7 genes show heterogeneity in 3
subsets and also here mostly in the single-cell dataset. This confirms our expectation
that the mESC data is thought to be a homogeneous dataset. Since, we selected the
50 genes based on the single-cell profiles we find there heterogeneity in these subsets
if any.

The AML data unexpectedly shows an interesting picture: Although more hetero-
geneity is discovered overall, most of the genes (33 genes) show no heterogeneity
or only in one or two subsets of the genes. If heterogeneity is found it is present
in the subsets where the pool size is rather small. We could only find in 4 genes
heterogeneity in three subsets and overall only in 6 genes the heterogeneity is found
in the larger pools that contain 5 or 10 cells. Hence, compared to the 50 mESC genes
we could infer less homogeneity.

Since this selection of the 50 genes was rather random, based on the single-cell profiles
and not based on any biological knowledge, we additional selected 34 interesting
AML genes (see, Boyd et al., 2018, [Herold et al., [2018, Ng et al., 2016]) and repeated
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combinations of selected populations
é single-cell 12 111 2 22111122 2 2
f;@ 2-cell 11 211 2 112 2 1212 2 2
i 5-cell 11 121 1 21212 2 21 2 2
7 10-cell 11 112 1 1212 2 2 2 2 1 2
§ mESC (50 genes) |26 9 1 2 3 0 4 0 010
&  AML (50 genes) 12 17 3 12 10
¥ AML IT (34 genes) |31 2 0 0 0 0 0 1 0 0

Table 6.2: Collapsed result of model selection via BIC of stochprofML NB-NB model fits of 50
mESC, 50 AML genes that are presumably heterogeneous. A second set of 34 interesting AML
genes was selected via literature. The observations were grouped into four sub datasets which
only contain single-cells, 2-cell pools, 5-cell pools and 10-cell pools measurements, respectively.
The NB-NB model of our stochprofML algorithm was applied for one and two populations
on each sub-dataset. The number of genes describes how often the combination of specific
population was chosen for the four sub-datasets.

the population inference. However, we could hardly infer any heterogeneity in these
genes. Nearly all of them (31 genes) infer one population in all four sub-datasets.
Only 3 genes found heterogeneity in the single-cell data, one of which also showed
heterogeneity in the 10-cell sub dataset.

6.5 Discussion and Conclusion

With this real-world study on sequenced small pools of homogeneous and heteroge-
neous data we wanted to investigate if and how measurement noise decreases with
pool sizes and if we can detect heterogeneities in such small pool data. We can
confirm that gene expression information such as mRNA counts via reads or UMIs
increase with additional cell numbers in the measured pools. The slope and details on
this increase is dependent on the used tissue and its heterogeneity but probably also
on the sequencing protocol. Batch effects might influence this additionally. These will
be always present since to our knowledge sequencing cell pools can only be performed
on plate based technologies. The use of a protocol — such as mcSCRB-seq —, that is
specialized in single-cell experiments and in the extraction of the contents of sensitive
tissue (like AML), leads to relatively better measurements of single-cells with rare
dropout and noise, so that the advantages of cell pooling can not stick out. In general,
single-cell measurements that are tailored to the specific tissue and heterogeneity
are preferred if possible. For these reasons one would hardly use stochastic profiling
if good single-cell data is available. It should rather be used if single-cells are not
measurable and you would like to still like to know something about the underlying
heterogeneity that would be lost in bulk measurements. In addition, for very lowly
expressed genes more information might be contained in larger pool sizes. This might
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be seen on data with lower sequencing depth or heterogeneous samples where gene
expressions in at least one population are very weak.



Summary and Outlook

Biological processes are incredibly complex, so every opportunity for a better under-
standing of them must be taken. Particularly the evaluation of data generated by
biological experiments through mathematical and statistical models contributes to
this goal. There, the interaction of disciplines such as biology and mathematics is of
utmost importance. Such cooperations (and research in general) work in loops with
many iterations: The experimentalist generates data which should be analyzed or
modeled through appropriate mathematical methods. Since in general mathematical
models are always a simplification of reality, models are only approximations of the
ground truth and new questions may arise. In many cases these lead to the need
of new experiments and further experimental validation. Through this continuous
refinement of knowledge, mathematical modeling contributes to a better understandig
of development, interactions and the progress of biological processes (e.g. diseases).
In addition, experimental methods are evolving and computing power is increasing
over time, which requires a revision and adaption of existing methods.

This thesis summarizes the results of such a process by developing methods, analysing
experimental data and readjusting experimental settings: Previously, (Bajikar et al.,
2014) have shown that stochastic profiling is suitable to deconvolve measurements
of small cell pools to their single-cell profiles. Recent technological achievements
now enable us via sequencing to count mRNA numbers directly. In addition, many
new experimental protocols for sequencing gene expression of single cells have
been established. However, single-cell profiling destroys the natural environment
of the cells and affects e.g. cell-to-cell communication which might be preserved
when profiling cells together. Results of sequencing experiments contain discrete
measurements which in turn should be modeled by discrete distributions rather
than continuous distributions. In terms of explainability it is advised to select a
distribution that is suitable not only with respect to model estimation but also with
respect to interpretability, complexity and biological plausibility of the underlying
model assumptions.

We have specifically investigated these developments using the example of AML. In
recent years, many new insights on its formation have been gained, but needless to
say, the research is not yet complete. Since the AML profiles of different patients
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differ widely, quantifying the heterogeneity and its evolution over time and thus of
the contained subclones is an important research question. Freeze-and-thaw cycles
have a huge impact on gene expression profiles which is especially true for AML cells
which are known to be very sensitive.

The work this thesis is based on steps further on the way of gaining knowledge. Linking
single-cell probability distributions to stochastic processes driving transcription allows
us to infer possible corresponding biological transcription models. Although there are
several ways to achieve this, we introduce the methodology of Ornstein-Uhlenbeck
processes. This general approach of connecting the SDE of the transcription driving
process with probability distributions adds a new perspective on transcription models.
We support empirically the selection of the negative binomial distribution as a
reasonable statistical model for single cell sequencing data. In the future, however,
new technologies will certainly emerge that could lead to further conclusions. With the
provided toolbox, more distributions and models can be derived. Moreover, stochastic
processes will gain additional importance as soon as experimental techniques are
developed that generate time-resolved single-cell measurements of mRNA counts.
The explanatory value of our models is not affected because noise is not included
in the core model. The recent idea of studying gene expression velocity of single-
cells (La Manno et al., |2018) is a step in this direction since they present a way to
use the gene expression measurements of one time-point and infer its development
in the next future by analyzing unspliced mRNA variants which were often ignored
during analysis. Therefore a new layer for the splicing of mRNA has to be introduced
in the gene expression model. scVelo (Bergen et al| 2020) generalized the method by
accounting for stochasticity in gene expression through dynamical modeling.
Further, we determine heterogeneity in pooled cell data by inferring single cell
distributions via deconvolution. Integrating the selected NB distribution extends
the stochastic profiling algorithm to discrete data. In addition to the revision of
the general procedure of deriving single-cell expression profiles from pooling several
cells, we are developing further analytical methods. Varying cell numbers in pools
and comparing inferred single-cell distributions in different samples is of great use.
Often the prediction of population compositions of specific observations is needed to
explain specific experimental observations.

Parameter estimation with Bayesian methods allows us to consider not only the
measurements as a random variable that follows a distribution, but also the es-
timated model parameters. Thereby we take into account the uncertainty of the
parameter, which is contained in the data and the model. Bayesian computations are
becoming more popular as the field of computation evolves and computing power
increases even further. Through smart applications of the Bayesian theorem and
other approximations computing time and thus costs can be saved.

Discussing noise modeling and heterogeneity detection, it is generally important to
define exactly what you are referring to in order not to mix concepts. When using
distributions, a homogeneous population shows some variance, which is explained by
the univariate distribution. Some (e. g. Brennecke et al.| |2015]) discover heterogeneity
already when there is a large variability, but in our understanding this is not yet
heterogeneity but only stochastic variability of gene expression. The same applies
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to noise. A variable can be regarded as a fixed value, where all deviations can
be considered as noise, or as a random variable that follows a distribution and
describes the biological variability within a population. Technical and biological
variability might not mean anything in terms of real heterogeneity. The analysis
of possible noise reduction and heterogeneity detection by cell pooling in both — a
presumably homogeneous mESC and an expected heterogeneous AML — datasets
of real-world small pool data generated for our purposes gave us valuable insights
into the information gain with increasing pool size. However, we could not show that
pooling cells substantially reduces noise since the given single-cell measurements
already carried less noise than expected. Nevertheless, it must be considered that cell
pooling can be advantageous especially if it is not possible to obtain many single cell
measurements of high quality. The application of the proposed discrete stochastic
profiling algorithm to the further processed datasets showed that heterogeneity
can be inferred, but again we could not confirm that larger pool sizes detect more
heterogeneity than single-cells. We were able to confirm the presence of heterogeneity
in the AML data, but could not derive any further findings.

A possible future application of the stochastic profiling idea lies in the currently
growing field of spatial transcriptomics (Asp et al.; 2020). There each sequenced spot
contains several, but only a small number of cells. These are sequenced together and
the location in the tissue is stored. An additional imaging of the slides allows to
estimate cell numbers at each spot. Since the entire spot is sequenced together, the
gene expression matrix does not contain single-cell measurements, but of small cell
pools. Their expression needs to be deconvolved to obtain the contained single-cell
expression profiles (Andersson et al., [2020)). Note that one of the main assumptions
in stochastic profiling is that the cells in one pool are randomly selected. This is not
the case in spatial transcriptomics where the cells remain together. This assumption
would therefore need to be adjusted.
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Abbreviations

ALL
AML

BFMI
BIC

cDNA
CDX
CLL
CML
CRC

ddNTPs
DEL
DNA
dNTPs

EXP
FACS

GEMM
Geo
GOF

HMC
LN
MCMC

acute lymphoblastic leukemia.
acute myeloid leukemia.

estimated Bayesian Fraction of Missing Information.

Bayesian information criterion.

complementary DNA.

cell line derived xenograft.
chronic lymphocytic leukemia.
chronic myeloid leukemia.
colorectal cancer.

dideoxyribonucleotide triphosphates.
Delaporte (distribution).
deoxyribonucleic acid.
deoxyribonucleotide triphosphates.

exponential (distribution).
fluorescence-activated cell sorting.

genetically engineered mouse model.
geometric (distribution).
goodness-of-fit.

Hamiltonian Monte Carlo.
lognormal (distribution).

Markov chain Monte Carlo.

mcSCRB-seq molecular crowding SCRB-seq.

MDS
mESC
ML
MLE
MRD
mRNA

myelodysplastic syndrome.
mouse embryonic stem cells.
maximum likelihood.
maximum likelihood estimator.
minimal residual disease.
messenger RNA.



160 Abbreviations
NB negative binomial (distribution).

NGS next generation sequencing.

NUTS No-U-Turn sampler.

PB Poisson-beta (distribution).

PCR polymerase chain reaction.

PDF probability density function.

PDX patient derived xenograft.

PIG Poisson-inverse Gaussian (distribution).
PMF probability mass function.

Pois Poisson (distribution).

pre-mRNA  precursor mRNA.

RNA ribonucleic acid.

SCRB-seq single-cell RNA barcoding and sequencing.
scRNA-seq single-cell RNA sequencing.

snRINA small nuclear RNA.

STAR spliced transcripts alignment to a reference.
tRNA transfer RNA.

UMIs unique molecular identifiers.
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Probability Distributions

A big part of my thesis concentrates on appropriate statistical modeling of data. In
practice some measured data needs to be analyzed in order to draw some conclusions.
Selecting the right software to analyze given data requires some basic knowledge
of the underlying assumptions. For example if the given data is of continuous form
only software with underlying models that are applicable to continuous data should
be selected. The other way around, if somebody wants to construct some algorithm
to analyze some given data, one has to take into account the nature of the data.
All models that we use in this thesis are so called parametric models which means
they are based on parametric probability distributions. Using parametric models
give more power to the result of the analysis. In this part of the Appendix we will
introduce all different parametric distributions that will be used in course of the
thesis.

Probability distributions and other mathematical terms are often not uniformly
defined in literature. In this section, we explain the terminology used in the present
work. References include Dormann (2013)), the NIST library (Olver et al., 2019)),
Karlis and Xekalaki| (2005)), Robertson et al. (2019), [Teugels and Sundt| (2004) and
Graham et al.| (2017)).

A.1 Continuous Probability Distributions

In this section we present the continuous distributions, that will be used in this thesis.
Since a random variable that follows these distributions can take any real value X
the probability of X taking one specific value is zero. In general, these distributions
are applicable to data with real values, but no value should appear more than once
in the data.

Definition A.1 (Lognormal Distribution) The two parameters defining a univariate
lognormal distribution LN(u, 0?) are called log-mean p € R and log-standard deviation
o > 0. These are the mean and the standard deviation of the normally distributed
random variable log(X), the natural logarithm of X. The probability density function
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(PDF) of X is given by

1 (logx — p)”
2y — -
fux(x|p, 0%) = \/%033 exp ( 252

A random variable X ~ LN(u,0?) has expectation and variance

) for x> 0.

Ern(X) = exp (,u + U—2> and Varpn(X) = exp (2u+ 0°) (exp (6°) — 1)

2
(A.1)

Definition A.2 (Inverse Gaussian Distribution)  The inverse Gaussian distribution is
a continuous distribution on [0,00), parameterized through a mean parameter p > 0

and shape parameter A > 0 The PDF of X reads

[ A Max — p)?
fIc;(a:\,u, )\) = 27‘(’1‘3 exp (-%) .

A random variable X ~ 1G(u, A) has expectation and variance

3

E[X] =p and  Varig[X] = %

The characteristic function is given by

R A 22z
ux(z):exp<; (1— 1-— 3 ))

Definition A.3 (Gamma Distribution) The gamma distribution is a continuous
distribution on [0,00), parameterized through a shape parameter o > 0 and rate
parameter 3 > 0 (which is the inverse of the often-used scale parameter). The PDF
of X reads

(67

Fy(ala,8) = o™ exp(=Ao)

where T'(z) = [ t*"Lexp(—t)dt for z > 0 is the gamma function. A random variable
X ~ Gamma(a, ) has expectation and variance

E,[X] = % and  Var,[X] = %.

The characteristic function is given by

fix(2) = (1 - g)

For a =1, one obtains the exponential distribution. For integer valued o the distri-
bution is also known under the name FErlang distribution.
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Definition A.4 (Exponential Distribution) An exponential distribution EXP(X) is
defined by the rate parameter A > 0. The PDF is given by

fexp(x|\) = Aexp (=Azx)  forx > 0.

A random variable X ~ EXP(A) has expectation and variance

1 1
EEXP [X] = X and VarEXp[X] = F

The characteristic function is given by

A
A— 1z

fix(z) =

Definition A.5 (Beta Distribution) The standard beta distribution is a continuous
distribution on (0,1), parameterized through a shape parameter o > 0 and scale
parameter 3 > 0. The state space can be generalized from (0,1) to (a,c) by introducing
the minimum and mazimum values a and ¢ as additional parameters. The probability
density function is

(z—a)*He—z)""
(c—a)**?~'B(a, 5)

fs(z|a, B,a,c) =

where B(x,y) = fol "1 =t ldt =T(z + y)/(T(x)T(y)) for z,y > 0 is the beta
function. A random variable X ~ Beta(a, 5, a,c) has expectation and variance

af(c — a)?
(a+ B (a+pB+1)

Ey[X] = O‘;ig“ and  Varg[X] =

The characteristic function of the beta distribution is given by

A~

1 .
fx(z) = ElFl(a; a+ Biz),

where 1Fy is the confluent hypergeometric function of the first kind (see Defini-

tion .

Definition A.6 (Confluent Hypergeometric Function of First Order) Let w, z,a,b € C.

Kummer’s equation
d*w dw
22—+ (b—2)— —aw =0
dz? ( ) dz
has a reqular singularity at the origin and an irreqular singularity at infinity. One
standard solution of this differential equation that only exists if b is not a non-positive

integer is given by the Kummer confluent hypergeometric function M(a,b, z) with

n

= a™z
M(a,b,z) = Z bl 1F1(a; b; 2),
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where 1 F1 s the confluent hypergeometric function of the first kind with the rising
factorial defined through

-1 T
a® =1 and a("):a(&—l—l)(a—i-Z)---(a—i—n—l):(a+n >: (a—i—n).

(a—1)! T'(a)
The generalized hypergeometric function is given by
ay ...0p %
qu<a1"H 7ap;b17"' 7bq;z): tn) fn)
neo bi .. bg n!

If Re(b) > Re(a) > 0, M(a,b,z) can be represented as an integral

M(a,b,z) = %/{) e (1 —u)P ! du.

A.2 Discrete Probability Distributions

In this section we will present the discrete probability distributions, that will be used
in this thesis. Discrete probability distributions model random variables that can
only take on a countable number of values. In contrary to continuous distributions,
discrete distributions are tailored to model data with repeating values.

Definition A.7 (Poisson Distribution) The Poisson (Pois) distribution is a discrete
count distribution with probability measure

T

fPois(ajp\) = PPois()\)(X = ZL’) = g eXP(—)\) f07" x € INy.

The probability generating function of X reads
Gpois(2z) = exp(A(z — 1)) for|z] <1
and the moment generating function of X is given by
Mpois(t) = exp(\(e' — 1))  fort € R.
A random variable X ~ Pois(\) has expectation and variance
Epois|X] = A and Varpeis[ X| = A.

Definition A.8 (Negative Binomial Distribution) The negative binomial (NB) distri-
bution is a discrete distribution that describes the probability of an observed number

of failures
X ~ NB(r, p)

in a sequence of independent Bernoulli trials until a predefined number of successes
has occurred. In each trial, the probability of success is denoted by p € [0,1], and the
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predefined number of successes is r € Ny, respectively. The probability mass function
of X 1s given by

r+r—1Y\ , .
fxe(z|r,p) = Paperp) (X =) = < . >p (1—p) for x € INg.

The probability generating function of X is given by

Grp(z) = (%) for|z| < 1.
The above definition of the NB distribution can be extended to r € Ry. All equations
remain valid except for the interpretation in terms of Bernoulli trials. This general-
1zation of v is underpinned by the construction of the Poisson-gamma distribution
that is derived along Definition|3.5. Expected value and the variance of NB distributed
random variables are given by:

1—p)

Exp[X] = r( rl—p)

and  Varyg|X] = r( 5

p p
Note: Here, we describe X to represent the number of failures. Literature also provides
different parameterizations, where X e. g. denotes the total number of trials (including
the last success). The notation used here is the one implemented in the R function
nbinom (package stats), with r and p being called size and prob. Another commonly
specified parameter is the mean mu of X, given by mu = size/ prob — size.

Definition A.9 (Geometric Distribution) The geometric (Geo) distribution is a
discrete distribution that describes the probability of

X ~ Geo(p)

failures before the first success in independent Bernoulli trials with success probability
p each. The probability mass function of X is given by

fceo (D) = Pieop)(X =) = p(1 — p)* for x € N,.
A random variable X ~ Geo(p) has expectation an variance

1—p
2

]__
Eeo[ X] = Tp and  Varge[X] = —

Note: fNB(‘rle) = fGeo(a:‘p)'

Definition A.10 (Delaporte Distribution) The Delaporte (DEL) distribution is a
discrete distribution with probability measure

fDEL(‘/E““’LJ g, V) = PDEL(MK’J’) (X - .T)

1
o

(o (1 —v) +1] for x € Ny,

B C(e)  emiuy

— Ny —)IT()
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where p,0 >0 and 0 < v < 1. The probability generating function of X reads
Gopn(2) = exp(uv(z = D)1+ po(l=1)(1=2)] 7= for|s| <1,
A random variable X ~ DEL(u, 0,v) has expectation and variance

EpgL[X] = p and  Varpg[X] = p+ pPo(1 —v)*



B Mathematical ldentities

This thesis contains many calculations. Some of these derivations need specific
mathematical identities, which are listed in the following.

Identity 1 For the gamma function I, one has

r
i LY L eR
n—00 F(n)na

Next we present some identities involving the binomial series.

Identity 2 For |z| < 1 and r arbitrary real or complex, it holds

i (Z) o = (1+2)".

k=0

Identity 3 Binomial coefficients are symmetric
z\ z

w) \z—w)’

Identity 4 The upper negation of binomial coefficients is given by
r k—r—1
= (—=1)*
()= (i),

Combining Identities 2|3 and [4] leads to

S e =Sent () e =3 (V)= gy

with z€ R>weR > 0.

where k is an integer.

Here, r can be any arbitrary real or complex number but |z| < 1.
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Identity 5 The binomial coefficients form together the multinomial coefficient

() )

N Ellfgl...ET_ll(n — El)‘(n — 61 — 62)' cee (n — 61 — ... ET—I)! B €1'€2| N ET'

. n
“ N\, )




Overview of Single-Cell Analy-

sis Tools

Many tools exist that are frequently used in single-cell analysis. In Table [4.1], we
provide an overview of those tools that use an underlying probability distribution to
describe the counts of a specific gene’s mRNA. Most of the tools can be found at
https://www.scrna-tools.org and at https://omictools.com. In the following,
we describe the single categories, taken from www.scrna-tools.org. Additionally,
we added the category batch correction.

Batch Correction: Dealing with data from different batches

Clustering: Unsupervised grouping of cells based on expression profiles
Differential Expression: Testing of differential expression across groups of cells
Dimensionality Reduction: Projection of cells into a lower-dimensional space
Expression Patterns: Detection of genes that change over a trajectory

Gene Networks: Identification of co-regulated gene networks

Gene Sets: Testing or other uses of annotated gene sets

Imputation: Estimation of expression where zeros have been observed
Normalization: Removal of unwanted variation that may affect results
Ordering: Ordering of cells along a trajectory

Quality Control: Removal of low-quality cells

Simulation: Generation of synthetic scRNA-seq datasets

Variable Genes: Identification or use of highly (or lowly) variable genes

Visualization: Functions for visualizing some aspect of scRNA-seq data or
analysis


https://www.scrna-tools.org
https://omictools.com
www.scrna-tools.org




D Master Equations

In Chapter [4} we show a way how to derive a underlying transcription model from a
selected distribution. In order to get there it is important to understand how this is
traditionally done the other way around: Using a transcription model and calculating
its steady state distribution. To stay consistent in notation and to be complete we
included these derivations based on Dattani and Barahona| (2017)) and |Peccoud and
Ycart| (1995)) here in the Appendix.

D.1 Master Equation of the Basic Model

In this section we show in detail how to derive the steady state distribution of the
basic model, given in Section Even though this model is easy to use and steady
state distributions can be easily inferred, we will show how to do so in detail. This is
particularly important as this builds the basis for all following sections. First we will
show how to set up the master equation and determine the steady state distribution
of the mRNA counts.

P(,t) describes the probability of having n M mRNAs at time ¢ in the system. The
(chemical) master equation that we use to build the stochastic model, is easily set up
by looking at the different events that can happen in At. We assume that at maximum
one event can occur during this short time interval and that the reaction probability
is the reaction propensity times At. The reaction propensity for transcription is fixed
and given by 74.4,. In contrast, the reaction propensity for degradation is dependent
on the number of mRNAs currently available. In order to have n mRNAs after a
degradation event there must have been n+ 1 mRNAs before and thus the propensity
is given by r4e,(n 4 1). Teken together, in the basic model in one time interval either
a molecule is generated, degrades or nothing happens.

P(n,t) =P(n—1,t — At)P(“mRNA is transcribed”)
+P(n+1,t — At)P(“mRNA degrades”)
+ P(n,t — At)P(“no event”)
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Filling in the probabilities of the different scenarios leads to

=P(n—1,t — At)(ryan At + 0(Al))
+P(n+1,t — At)(rgeg(n + 1)At 4 0o(At))
+ P(n,t — At)(1 = ripan At — 74eg NAE + 0(Al)).

Subtract P (n,t — At) on both sides

P(n,t) — P (n,t — At) = (rganAt + o(AL))P(n — 1,t — At)
+ (Taeg(n + 1) At + o(At))P(n + 1, — At)
— (Tiran At + 74eg NAL 4+ 0(AL))P(n, t — At).
Divide by At
P(”’? t) - P(?”L,t - At) (Ttr(mAt + O(At))

Al = A7 P(n—1,t — At)
n (Tdgeg(n + 1)AAtt + O(At))P(n Lt A
B (T tran At + 174y DAL + O<At))79(n, - A
At
o( At
= (T’tran + (At )> P(TL — 1,t — At)

+ <rdeg(n +1)+ O(TA;)> P(n+1,t— At)

At
- (rtmn + Tdeg T + O(A_t )) P(n,t - At)

Let At =0

dP(n,t)
dt

With help of the probability generating function

= Ttmnp(n — 1, t) —+ Tdeg (n + 1)73(77/ + 1, t) - (rtran + Tdeg Tl)P(n, t)

G(Z, t) = Z ZﬂP(”, tyrtmna rdeg)a

n=0

we get its partial derivatives

oG .
E(zat) :an( 1)P<nat’rtranardeg)
n=0

oG o = ndP(n, t|Ttmn> Tdeg)
E(z,t) —Zz T

n=0

= Z 2" (PranP(n— 1,t) + 7geg(n + D)P(n+ 1,t) — (Tyran + Taeg n)P(n, 1))
n=0
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o0 (e 9]

:Ttmnzz e lp(n—lt —i-?”degzzn”-i-l n—i—l,t)
n=0 n=0
— Ttran Z 2"P(n,t) — Tgeg 2 Z 2" InP(n,t)
n=0 n=0
oG oG

= Ttran ZG(Za t) + rdeg%(zy t) - 7ntmnG((Za t) - Tdeg Za

2(z,t)
The resulting partial differential equation (PDE) is given by

%_?(27 t) :(Z - 1)TtranG(Z7t) - (Z - 1)rdegg_§(za t)- (D2)

The solution of (D.2) with initial condition of ny molecules is calculated by using
the methods of characteristics, where u is the characteristic curve and without loss
of generality we let £(0) = 0 and reparametrize

dG (9Gdz n %ﬁ
du Oz du = Ot ds’

so that

dz dt dG
@ = (2; — 1>rdeg — =1 and —_ = (Z - 1>rtranG-

du du
Next, we solving these:

s

log(z — 1) —log(z0 — 1) = | raede

/
(2—1) = (20— 1) exp ( /O s rdegd:c> (D.3)

and
t = s.

Furthermore

log(G) — log(Gy) = /Os(z — D)7 yrandr

G = Goexp (/ (z — l)TtmndT) = Gyexp (/ Ttran (20 — 1) €xp (/ rdegdx) dT) )
0 0 0
= Gpexp ((zo — 1)/ T tran €XP (/ rdegd:r) dT) (D.4)
0 0

With P(ng,0) = 1 it follows that Gy = G(20,0) = (20)" and with (D.3) it follows
that zo = (z — 1) exp <— fot rdegdx> + 1. Therfore
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exp ((z —1)exp (—/ rdegda:> / T tram €XP (/ rdegdx> dT)
0 0 0

_ |:(Z — 1)6_ f(f rdegd‘z _.I_ ]_:| " e(z_l) f(f Ttran€ Iz Tdﬁgdwd'r.

This can be writen as:
t
G(Z7t|7’l,0> = [(Z — 1)6*7"(1@1‘/ + 1i| no ef(t)(Z—l)’ with [(t) — / Ttranei f: rdeng/dT
0

The first part is the distribution of the starting condition, i. e. the number of molecules
at the beginning ny and the second part corresponds to the long term distribution of
the molecules content. The second part is the time dependent probability generating
function of a compound Poisson distribution with time dependent intensity parameter
I(t) (see Definition . Note that here, we have a constant rates 7y, and 74, but
we treated them as they were not. We have done this so that the calculation can
also be reused for all other processes where the rates are not constant.

Therefore in this model 7(t) can be further simplified:

t t
I(t) - / Ttran€ f" TdegdT dr = / Ttran€ Tdeg (¢ T)dT
0 0

t Td t
- - eldea” — 1 Ttran _
= Ttran€ Tdegt/ Ttmnerdﬁgq—dT = Ttran€ Tdegt ( ) — (1 — € Tdﬁgt)
0 Tdeg T deg

For t — oo the steady state distribution of molecules is independent of the starting
material of molecules and of time and hence is a Poisson distribution with time-
independent, constant intensity parameter I = 7;f;—::

The corresponding calculations can also be performed from the perspective of queueing

systems (see Appendix [E.1]).

D.2 Master Equation of the Generalized Model

Next, we describe the derivation of steady-state distributions for mRNA counts in
the generalized model. In the following, P(n,t) describes the probability of having n
mRNA molecules at time ¢ in the system. The derivation is completely similar to the
one for the basic model. The master equation is set up by looking at the reactions
(at most one) that can happen within an infinitesimally small time interval: Either
one mRNA molecule is transcribed, which happens with probability rate R;, or one
mRNA molecule degrades with rate r4,, or nothing happens. In the following, we
write P(n, t| Ry, Taeq) = P(n,t) for the sake of simpler notation. The master equation
reads

dP(n,t
EZZ ) =RP(n— 1,t) +raeg(n + 1)P(n+1,t) — (Ri + raegn)P(n, t).

Again analog to the basic model the probability generating function

G(z,t) =) 2"P(n,t)
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and its partial derivatives are obtained

= Z n 2" VP(n,t)
n=0

and

LdP(n,t)
d

t
"(RyP(n—1,t) + ragg(n+ 1)P(n+ 1,t) — (Rt + raegn)P(n, 1))

oG =
E(Z’t) :nzzoz
n=0

:thz 2" P(n —1,t) —i—rdegZz” P(n+1,t)
n=0 n=0
- Ry Z 2"P(n,t) — Tgeg 2 Z 2" InP(n,t)
n=0 n=0

oG oG
=R, 2G(z,t) + rdegg(z, t) — RiG(z,t) — Taeq zg(z, t).
and results in the PDE

%f(z t) =(z — HRG(z,t) — (2 — 1)Tdeg%(z,t).

that is solved with initial condition of having ny mRNA molecules by using the
methods of characteristics:

t

G(z,tng) = [(z — 1)e Tdea® 1} "o li(==1) with [, = / R.e” S racgdr g
0
The first factor of G(z,t|ng) reflects the dependence of the distribution on the initial
value ng. The second factor exp(I;(z — 1)) corresponds to the long-term behaviour of
the mRNA content and equals the time-dependent probability generating function of
a Poisson distribution with intensity parameter I; (see Definition . One commonly
considers the distribution in steady state (if that state exists), meaning ¢t — oo.
In this limit, the first factor vanishes (i.e. becomes one). Thus, the steady-state
distribution is independent of the starting condition. The second term remains. Thus,
in steady state the mRNA count follows a conditional Poisson distribution with
intensity parameter I; being governed by the transcription and degradation process.
From Definition [3.3] one gets

n

7Dsteady state(na t) = Plt (TL, t) = / _xflt (l’ t)d
0

nl

D.3 Masterequation of the Switching Model

In this part of the Appendix, we follow the calculations of Dattani and Barahona
(2017), |Smiley and Proulx| (2010) and Raj et al.| (2006) who show how to derive the
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steady state distribution of mRNA content in the switching model (Figure . As
written in the main text, the RDE (4.5) now reads

d]t = _Tdeg]tdt + T switch (t)dt

As transcription is governed by a Markov process which is a random process and not
deterministic anymore, the probability distribution for the amount of mRNA at time ¢
is a compound Poisson distribution as described by . Again, in order to determine
the steady-state distribution of mRNA counts, the steady-state distribution of I; in
needs to be determined. The Markov process rgc;(t) can be characterized by

its infinitesimal generator
—Taet Tdeact
Q= ;
Tact —Tdeact

where the entries on the anti-diagonal ();; (i # j) are the transition rate constants
from state j to ¢ and its reciprocals are the means of the exponential waiting times.
States 1 and 2 correspond to the inactive and the active state, respectively. This
means 7, corresponds to the rate with which a gene is activated (transition from
state 1 to 2), and 74 is the deactivation rate, that is the rate of the transition
from state 2 to 1. The probability transition matrix P(t) is defined as

P(t) =

1 T deact + racte_(?”dea,ct‘i"r’act)t T deact — rdeacte—(’l‘dmct—f—ract)t
Tact + Tdeact

—(r +7Tact)t —(r t+7Tact)t
ract _ Tacte ( deact act) ract + rdeacte ( deact act)

P(t) satisfies the Kolmogorov differential equation P'(t) = QP(t), and the initial

condition is
10
P(0) = .
o [0 1]

The entry P,;(t) denotes the probability of a transition from state j to i. (Note:
Here, () and P(t) are the transpose of the usual notation as this notation is more
convenient in the present stationary analysis.) If the probabilities for 7y, (0) being
in state 1 or 2 are given by p(0) = [po(0), pon(0)]7, then the distribution of ryiten(t)
is given by p(t) = P(t)p(0) and it follows that

Tdeact + (Tactpoﬁ (0) — Tdeactpon(()))e_(rdeact'i‘?“uct)t

Tact + (rdeactpgn(()) — ractpoﬁ(O))€_<Tdm“”+r““)t

The vector p(t) has to fulfill the Kolmogorov differential equation

P'(t) = Qp(t) (D.6)

as well. Assume 0 < 7,5 < 7o, then Iy € [Tog/Tdegs Ton/Tdeg) annd, with probability
one, one has Iy € [Tof /T deg, Ton/Tdeg) for t > 0. One has

,P<It S [‘T7 T+ AJI]) = P<It S [l‘, T+ AJI], Tswitch(t> = Ton)

1
)= ——
p( ) Tact + Tdeact

(D.5)
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+ P(1; € [x,x + Az], Tswiten(t) = Tog)-

The joint cumulative distribution functions (CDF's) associated with the joint proba-
bilities of I; being equal to x and 7 (t) being equal to r; are given by

Ui (z,t) = Py < x, Tswiten(t) = 7i), for x > 0 and i € {on, off}.

Their derivatives with respect to x given the joint distribution of I, = z and
Tswiten (t) = 15 is denoted as ¢;(z, t). The probability density function (PDF) ¢ (x,t)
associated with I; can be characterized by a system of two PDEs

B, t) = Yonl,) + (1), @ € {—ﬁ —] |

)
Tdeg Tdeg

Clearly, with (D.5]) one obtains

To7L/Tdeg Toﬁ Ton
/ Vi(x,t)dx =P (It € { ; }  Tswiteh (1) = 7“i> = pi(t), i € {on, off}.

aﬁ/rdeg rdeg rdeg
(D.7)

We now set

q(z,t) =

1/}015[ (I, t)]
Gon(z,1) ]

which is still directly connected with the two-state Markov process 7syiten(t). Both
components of ¢(z,t) are continuous PDFs, one for each state of 7y (t). This is
again a two-state Markov process and adopts the transition rate matrix () from the
process Tguien(t). It hence inherits its property , and thus, ¢(z,t) fulfills the
Kolmogorov differential equation as well, i.e.

¢ (z,t) = Qq(x,1).
[%¢0ﬁ (‘7:7 t)] _ [_Tact Tdeact ] [¢oﬁf (ZL’, t)]
%won(x7 t) Tact —Tdeact won (a:, t)

[%woﬁ (-737 t) + %woﬁ<x7 t) ((11_520] _ [_Tactwoﬁ (.CE, t) + Tdeactwon<x> t)]
%won (l’, t) + %won (l’, t) ?l_f Tactwoﬁ ($7 t) - rdeact¢on(x> t)

All together

and thus

Using (4.8), we get 9 = —r @ + 7yuiten (). Plugging this in, the system of PDEs
can be simplified to

0 0
awoﬁ(xa t) + % [woﬁ<$7 t) (Toﬁ - rdegx)] = _Tact¢oﬁ (xa t) + Tdeactwon<:[;7 t) (DS)
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0 0
awon (fﬂ, t) + %[won (x, t) (ron - rdegx)] = ractwoﬁ (33', t) - Tdeactwon(xa t); (Dg)

which correspond to Equations (6) in [Smiley and Proulx| (2010). Integrating both

sides of and with respect to « over the range from 7, /74y 10 Ton /T deg
leads us to

O [ Ti Ty O
a Toﬁq woﬁ(x’t)d‘T_F /;Oﬁq %[woﬁ(a:at)/r()ﬁ - rdegaj):ldx
Tdeg Tdeg
" ot
= —Tact ot woﬁ<x) t)dSE + T deact gy 77Don<x? t)dl’
@ Tdeg
and
0 [ Tie Ty O
a ﬁg won(l’, t)dx + /Toﬁj %[w(m(x’ t)(?”(m — TdegQ?)]d.T
Tdeg "deg
=Tact roff 77Doff(-ra t)d[t — Tdeact ot 1/}071 ((L‘, t)d[E

With (D.7)), it follows that

a Ton/"' e
Pl () + [Yog (z,) (rog — rdegm)]raﬁ/rdd; = —TactPoff (t) + TdeactPon (1)
and
D t) + [on (. (o — g = racspagr () — T duacepon ()
atpon on\+) on deg Toff /T deg actPoff deactPon .

Since Equation still has to be fulfilled, it follows directly that the redundant

terms have to be equal to zero:

|

TOTL TO L
%ﬁ( ﬂf) (Toff — Ton) + Yog (Tﬁﬂf) (Tof — 7o) = 0,

Tdeg deg

which is equivalent to

Yog (rﬂ,t> =0 for t > 0.

Tdeg

Similarly,

won (’ron 7t) (Ton - Ton) - won <rﬂ;t> (Ton - Toﬁ) ; 07

Tdeg deg

which implies

Yon (T"ﬁ ,t) =0 for t > 0. (D.10)

Tdeg
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Following |Smiley and Proulx (2010), the PDF of the stationary distribution of ¢ (z,t),
denoted by f7,, which is analogously determined by a pair of functions f7, .4 and fr, on
is investigated via

fIt(x) = f[moﬁ(x) + flt,on(x)>

with fr, o and fr, on being the time-independent solutions of (D.8) and (D.9)). Those
can be calculated by solving the time-independent versions of (D.8|) and (D.9]), given
by

d
@[f[t,oﬁ(x)(roﬁ - rdegx)] = _ractflt,oﬁ(x) + Tdeactflt,on<x) (D11>
%[f[t,on<x) (ron - 7ﬁdegx)] = ractflt,oﬁ (.CC) - Tdeactflt,on(x) <D12)

with integral conditions derived from Equation for t — oo

Ton

Tdeg T deact
off (1)dr = ——r, D.13
/T"fjr fIt, ﬁ(x) v Tact + Tdeact ( )
Tdeg
/Td; f1.on(z)de = lact (D.14)
Toff fu.on B Tact T Tdeact ' .
"deg
Summing up (D.11)) and (D.12) results in
d To Ton
d—[flt,oﬁ(x)(roﬁ — Tdeg®) + f1,.0n(T)(Ton — Tdegx)] =0 for — <4< )
€T Tdeg Tdeg

For any solution of (D.11)) and (D.12)) and for any constant K it follows that

To Ton
f[t,oﬁ (x)(roﬁ - rdegaj) + f[t,on<x> (ron - 7ﬁdegx) =K for il <r< s
Tdeg Tdeg
thus %
Fron(e) = La? Lol 1on @) £ (D.15)

Ton — Tdeg

Plugging in (D.15)) into (D.11]) and setting K = 0 (as all steady-state solutions have
to satisfy the condition given in (D.10))), one gets

Tact Tdeact Tdeg
Froop@ = (- - v ) fuarte)
It 0ff Tojj” _ Tdegx Ton — rdegx roﬁ — rdegx t,0ff )
which can be solved up to a normalizing factor C"
Tact -1 Tdeact
flt,ojj” («T) (Tdegx - Toﬁ)”” (Ton - Tdegx) "deg
= C Tact Tdeact 1
f[t’(m(x) (rdegx _ Toﬁ) Tdeg (ron — Tdegff) Tdeg

Equations (D.13)) and (D.14]) are used to determine C":
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Cr Tact _ Tdeact
T s
- (Tdeg® — Tofr) 49 (Ton — Taeg®) "o dx
Tdeg
( ) Tact 7" deact
Ton — To "deg Tact Tdeact
T deg Tdeg T deg
Tact tTdeact
_ (ron - roﬁ) "deg B Tact Tdeact T deact
- )
Tdeg Tdeg Tdeg Tact + Tdeact
and
:;eng Tact Tdeact _q
(Tdeg® — Tofr) "4 (Ton, — TdegT) "o dx
Toﬁ'
Tdeg

Tact+"deact

_ (ron - Toﬁ) "deg B <1 + @ rdeact)

Tdeg Tdeg Tdeg
Tact " deact
_ (Ton - Toﬁ) e B Tact Tdeact Tact
= , X
Tdeg Tdeg Tdeg Tact + Tdeact

Here, B denotes the beta function as introduced in Definition Both of the above
integrals have to be normalized by

Tactt"deact

(Ton - Toﬁ) "deg B Tact Tdeact
)
Tdeg Tdeg Tdeg

in order to result in 7geser /(Tact + Tdeact) @s given by (D.13]) and rue /(T act + Tdeact) @s
given by (D.14)), respectively. All together, this results into

Tact Tdeact

Tdeg(TdegT — Topr) @ 71(7“ TdegT) "
— eg — €g
f]t,oﬁ<x> _ deg\! deg off on deg

TacttTdeact r
Tac 8
(ron —Tog) "o B <—wf —dew>

Tdeg ’ Tdeg

Tact Tdeact -1

— T de o oy
Frron(1) = Tdeg(Tdeg® — Toff) "% (Ton, — TdegT) "deo

- TacttTdeact
T r r
(/ron _ roﬂ) deg B ( act deact )

Tdeg ’ Tdeg

Adding these up will provide the final solution
f[t(ZL‘) = fft#m(x) + fft,Oﬁc(x)

Tact _q Tdeact _ 1

Tdeg(TdegT = To) 0 (Ton = Taeg®) "0 [(Ton = Taeg®) + (Taeg® — Tog7)]

Tact T deact r
T
(o rap) (e )

Tdeg ’ Tdeg

Tact —1 Tdeact —1
— Tdeg ( — ) Tdeg
Tdeg (Tdeg~r roﬁ) Ton Tdeg
Tact T deact 1 (

(/,aon _ /r:oﬁ_) Tdeg Tact Tdeact)

Tdeg ’ Tdeg
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1+ :th -1 rop :;Lct -1 ngact -1 . "'g;act -1
eg __ 1o €g =Y on.  __ €g
Tdeg <aj Tdeg ) rd&Q <7"deg x)

Tact+7"deact -1
r
(Ton = Tog) e B (—”“ —dw“)

Tdeg ’ Tdeg

Tact Tdeact __ 1

(I . :o_f’f) 'misg_l (:ﬂ _ x) Tdeg
— deg deg . <D16)

TacttTdeact -1
(m — To_ff) Tdeg B (m M)
Tdeg Tdeg Tdeg’ Tdeg
This is the density of the stationary distribution of [; from Equation (4.8)), and it is
the density function of a four-parametric beta distribution (see Definition |A.5)) with

parameters a = 7o /Tdeg, € = Ton/Tdegs & = Tact/Tdeg A0 S = Tdeqct /T deg-







Queueing Systems

All birth-death processes can be linked to queueing systems, where the process
is understood as a system where customers arrive, wait until they are called and
then are served at some counter until they finally leave the system. Literature can
be found in |Adan and Resing| (2015). All this models and derivations belong to
Bottom-Up processes, i.e. one starts with model assumptions and calculates the
resulting distributions.

E.1 Queueing System of the Basic Model

The basic model can be easily translated in such a queuing process: Customers
arrive constantly with rate r;.,,. We suppose to have infinitely many counters, so no
costumer has to wait and is immediately served at one of the counters. Still they

need some service time until they are finished and so they leave with rate rq, (see
Figure [E.1)). |/Adan and Resing (2015) uses the following notation:

Ttran Ttran Ttran Ttran

7\
4
(n—1D)rgeg NTaeg

Figure E.1: Basic model is a simple birth-death process. Representation as basic M /M /oo
queue.

e Distribution of L: L denotes the number of customers in the system. Denote
by p, the probability that n costumers are in the system.

e )\: Arrival rate of the customers
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e p: mean amount of people (= work) that arrives per unit time.
e E[B]: mean service time, needed for each customer.

The basic model corresponds to the M /M /oo queue (Example 11.1.1) which means,
that the arriving times are exponentially distributed, the service times are exponen-
tially distributed and infinitely many counter are available. Hence it follows that
E[L] = p and at the same time p = AE[B]. This means in the settings of the basic
model that A := ry,, and B ~ EXP(r4,) and hence E[B] = ﬁ Taken together,

this results to

Ttran
p= E.1
s (E.1)

The distribution of L is calculating by equating all flows from state n — 1 to n and n

ton — 1 (see Figure [E.1)):

Prn—1Ttran = PnM T deg

Ttran P ,02 ,0”
Pn = Pn-1 = “Pn1= < Pn-2= - = D0
T T deg n n(n —1) n!
o0 oo pn
With 1 = an = Do Z i poe’, it follows:
n=0 n=0
V0
Dn = p—'e_p.
n!

This means, that the number of costumers beeing in the system follows a Poisson

distribution with parameter p = = (see Definition , which is the same result
eg

as for the chemical master equation in the previous section.



Usage of stochprofML

This section illustrates the usage of the stochprofML package for simulation and
parameter estimation. There are two ways to use the stochprofML package: (i) Two in-
teractive functions
stochasticProfilingData() and stochasticProfilingML() provide low-level ac-
cess to synthetic data generation and maximum likelihood parameter estimation
without requiring advanced programming knowledge. They guide the user through
entering the relevant input parameters: Working as question-answer functions, they
ask for prompting the data (or file name), the number of cells per sample, the number
of genes etc. (ii) The direct usage of the package’s R functions allows more flexibility
and is illustrated in the following.

F.1 Synthetic data generation

We first generate a dataset of k£ = 1000 sample observations, where each sample
consists of n = 10 cells. We choose a single-cell model with two populations, both
of lognormal type, i.e. we use the LN-LN model. Let us assume that the overall
population of interest is a mixture of 62% of population 1 and 38% of population 2, i.e.
p1 = 0.62. As population parameters we choose p; = 0.47, s = —0.87 and o = 0.03.
Synthetic gene expression data for one gene is generated as follows:

R> library("stochprofML")

R> set.seed(10)

R> k <- 1000

R> n <- 10

R> TY <- 2

R> p <- ¢(0.62, 0.38)

R> mu <- ¢(0.47, -0.87)

R> sigma <- 0.03

R> gene_LNLN <- r.sum.of.mixtures.LNLN(k = k, n = n, p.vector = p,
+ mu.vector = mu, sigma.vector = rep(sigma, TY))
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Simulated Gene

—— data generating pdf

Density
00 02 04 06 08 1.0

Sum of mixtures of lognormals

Figure F.1: Histogram of 1000 synthetic 10-cell observations, together with theoretical PDF.
We assumed a two-population LN-LN model with parameters p = 0.62, p; = 0.47, uo = —0.87
and o = 0.03.

Figure [F.1]| shows a histogram of the simulated data as well as the theoretical PDF
of the 10-cell mixture. The following code produces this figure:

R> x <- seq(from = min(gene_LNLN), to = max(gene_LNLN), length = 500)
R> stochprofML: : :set.model.functions ("LN-LN")

R> y <- d.sum.of.mixtures(x, n, p, mu,rep(sigma,TY), logdens = FALSE)
R> hist(gene_LNLN, main = paste("Simulated Gene"), breaks = 50,

+ xlab = "Sum of mixtures of lognormals", ylab = "Density",

+ freq = FALSE, col = "lightgrey")

R> lines(x, y, col="blue", lwd = 2)

R> legend("topright", legend = "data generating pdf", col = "blue",

+ lwd = 2, bty = "n")

F.1.0.1 Parameter estimation

Next, we show how the parameters used above can be back-inferred from the generated
dataset using maximum likelihood estimation.

R> set.seed(20)

R> result <- stochprof.loop(model = "LN-LN",

+ dataset = matrix(gene_LNLN, ncol = 1), n = n, TY = TY,

+ genenames = "SimGene", fix.mu = FALSE, loops = 10,

+ until.convergence = FALSE, print.output = FALSE, show.plots = TRUE,
+ plot.title = "Simulated Gene", use.constraints = FALSE)

When the fitting is done, pressing jenter; causes R to show plots of the estimation
process, see Figure [F.2] and displays the results in the following form.
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Figure F.2: Graphical output of the parameter estimation procedure for p, u1, pu2 and o
as described in Section [Parameter estimation| Each point in the plots corresponds to one
combination of values for p, u1, o and o. Each plot depicts the functional relationship between
one parameter (e.g. p in the upper left panel) and the log-likelihood function, whilst the
remaining three parameters are integrated out.

Maximum likelihood estimate (MLE):
p_1 mu_1_gene_SimGene mu_2_gene_SimGene sigma
0.6146 0.4710 -0.8720 0.0310

Value of negative log-likelihood function at MLE:
1204.371

Violation of constraints:
none

BIC:
2436.373

Approx. 95% confidence intervals for MLE:
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lower upper

p_1 0.60501813 0.6240938
mu_1_gene_SimGene 0.46972264 0.4722774
mu_2_gene_SimGene -0.87827704 -0.8657230
sigma 0.02967451 0.0323847

Top parameter combinations:
p_1 mu_1_ge_SimGene mu_2_gene_SimGene sigma  target
p-1 mu_1_gene_SimGene mu_2_gene_SimGene sigma  target

[1,] 0.6146 0.471 -0.872 0.031 1204.371
[2,] 0.6146 0.470 -0.872 0.031 1204.371
[3,] 0.6146 0.471 -0.872 0.031 1204.371
[4,] 0.6146 0.470 -0.872 0.031 1204.371
[5,] 0.6145 0.471 -0.872 0.031 1204.371
[6,] 0.6146 0.471 -0.872 0.031 1204.371

Hence, the marginal confidence intervals cover the true parameter values.



Further Plots of the stochprofML

Simulation Studies

G.1 Impact of pool sizes

In the first simulation study in Section we investigate how parameter estimation
is influenced by increasing cell numbers within the cell pools. The results for parameter
set 1 are depicted in the main part of the thesis. Here, we show the corresponding
figures for the remaining four parameter settings.
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Parameter estimates for different pool decompositions
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Figure G.1: Estimated parameters of LN-LN-model on 9,000 simulated datasets, i.e. 1,000
datasets of each pool composition generated with parameter set 2 (see Table . Left:
Accumulated parameter fits of the single-cell, 2-cell, 5-cell, 10-cell and mixture of single-, 2-, 5-
and 10-cell pools. Right: Results of the 10-cell pools are repeated (turquoise violins), next to
those of the larger pool sizes, namely 15-, 20-, 50-cells and their mixture. Each violin is based
on 1,000 parameter estimates. The true parameter values are marked in orange.
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Figure G.2: Parameter estimates as in Figure but for parameter set 3 (see Table .
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Figure G.4: Parameter estimates as in Figure but for parameter set 5 (see Table .

G.2

In Section [5.4.2] we investigate the influence of the model parameter values on the
estimation performance while fixing the pool size. In the main part of the thesis,
we presented results for 10-cell pools (see Figure [5.5)). Here, corresponding figures

Impact of parameter values
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Parameter estimates for single cells true value
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Figure G.5: Parameter estimates for single-cell data and varying parameter values: Synthetic
data is generated using the LN-LN model for varying values of p, o and o. Results for the
standard setting p = 0.2, u1 = 2, uo = 0 and o = 0.2 are shown in turquoise, results for four
more settings in grey. For each setting, we generate 1,000 synthetic datasets and back-infer the
model parameters. Violin plots summarize the 1,000 estimates. The underlying true parameter
values are marked in orange.

for the remaining eight cell pool sizes (n € {1,2,5,15,20,50} and two mixtures) are
shown.
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Parameter estimates for mixed pools of 10-, 15—, 20—, and 50-cells
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Figure G.12: As Figure but for a mixture of 10-, 15-, 20- and 50-cell data.



Details on Stan fits

Here we depict the results of the nine Stan fits used in Section [5.5.3| when comparing
them to the corresponding stochprofML runs using the NB-NB model.

1 Population

Single-cells
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Figure H.1: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on single-cell data fitting one population.
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Figure H.2: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 2-cell data fitting one population.
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Pool of 5 cells
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Figure H.3: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 5-cell data fitting one population.

Pool of 10 cells
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Figure H.4: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 10-cell data fitting one population.
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2 Populations
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Figure H.5: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on single-cell data fitting two populations.
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Pool of 2 cells
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Figure H.6: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 2-cell data fitting two populations.
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Figure H.7: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 5-cell data fitting two populations.
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Pool of 10 cells
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Figure H.8: Parameter traces and densities of the posterior sample obtained with the NUTS
using the PG implementation on 10-cell data fitting two populations.






Additional Plots and Results of SFB

Data

1.1 Descriptive Plots and GAMLSS Results

Figure [[.1| shows the UMAPs before and after ComBat-seq of the mESC dataset.
Figure [.2] contains the AML data.
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Figure 1.1: UMAPs of the UMIs of the merged mESC datasets. The bottom row shows the
UMAP after batch correction via ComBat-seq. Colors identify cellnumbers (left) and the three
experimental batches (right).
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Figure 1.2: UMAPs of the UMIs of the merged AML datasets. The bottom row shows the
UMAP after batch correction via ComBat-seq. Colors identify cellnumbers (left) and the three
experimental batches (right).

A GAMLSS negative binomial regression with cellnumbers as covariates and dates
as mixed effects is shown in Figure [[.3, A GAMLSS after batch correction where no
mixed effectes are included is shown in the main text in Figure [6.6]

GAMLSS negative binomial regression: Cellnumbers as covariates, batches as random mixed effects
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Figure 1.3: GAMLSS NB regression model using the non corrected UMI datasets of the mESC
data (A) and the AML data (B). Cellnumbers serve as covariates and batches as mixed effects.
For comparison the induced linear relationship by the 10-cell UMI content is added in grey for
each batch.

A comparison of mean single-cell UMI counts per cell for different pool sizes are
shown in Figure [[.4] Figure[6.7)in the main part of this thesis zoomed into this figure.
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Figure 1.4: Mean single-cell UMI counts per gene compared to the normalized mean UMI-count
per cell for 2-cell pools, 5-cell pools and 10-cell pools. The mESC dataset is depicted in A and
the AML dataset in B. The gray line describes the case that both means are the same.
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