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Abstract

The aim of this work is to extend level-set modeling approaches for multi-phase flows with interfacial in-
stabilities, coupled with spatial and temporal adaptation techniques. The multi-phase flow configurations
investigated in this work - aerodynamic fragmentation and liquid-solid phase transition - are important for
a wide range of technical applications, such as the manufacturing of drugs and additive manufacturing,
respectively. Multi-phase flows often pose multi-scale problems. Therefore, spatial and temporal adap-
tation techniques are required to solve such problems efficiently. Special care is necessary to suppress
potentially incurred numerical errors, which may result in decreasing numerical stability and perturbed
simulation results. Therefore, the first goal of this work is to improve the overall stability and efficiency of
such adaptation techniques for multi-phase flows, in particular of local time-stepping schemes. Second,
the model is applied to perform high-resolution simulations of aerodynamic fragmentation in the high-
Weber number regime, i.e. shear induced entrainment, with focus on interface deformation dynamics
and the interaction of the interface with the surrounding flow field. The goal of this study is to improve the
understanding of the breakup mechanism, since the physical mechanisms driving the transient interface
deformation remain to this day unknown. Third, the applied level-set approach is extended to model
non-equilibrium liquid-solid phase transition of pure melts. Crystal growth exhibits physical interface in-
stabilities - side branching and tip splitting -, which influence the resulting microstructure. An accurate
numerical model allows for prediction and, in the long term, targeted modification of the crystal growth
process, thus mechanical part properties resulting from this microstructure could be controlled.

This publication-based thesis is structured as follows:
An overview of multi-phase flows and corresponding modeling approaches is given in chapter 1, together
with an introduction to aerodynamic fragmentation and non-equilibrium liquid-solid phase transition. In
chapter 2, the fundamental mathematical and numerical models are presented. The main findings of
this work are presented in chapter 3, together with a short literature review of the issues addressed in
each publication. A list of all publications, including peer-reviewed journal publications and conference
proceedings, is provided in chapter 4. The conclusion is given in chapter 5. The main publications are
attached in the appendix.
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Kurzfassung

Das Ziel dieser Arbeit ist die Weiterentwicklung der level-set basierten Modellierung von Mehrphasen-
strömungen unter Einfluss von Grenzflächen-Instabilitäten, gekoppelt mit räumlich und zeitlich adaptiven
Verfahren. Die Strömungskonfigurationen, die in dieser Arbeit untersucht werden - sekundärer Tropfen-
zerfall und Kornwachstum -, sind für viele technische Anwendungsbereiche relevant, beispielsweise die
Medikamenten-Herstellung oder die additive Fertigung. Solche Strömungen stellen Mehr-Skalen Prob-
leme dar, weswegen adaptive Verfahren für zeitliche und räumliche Diskretisierung für eine effiziente
Lösung benötigt werden. Adaptive Verfahren können jedoch zu numerischen Fehlern führen, die die
Stabilität der Methode potentiell reduzieren. Das erste Ziel dieser Arbeit ist daher die Verbesserung
der Stabilität und Effizienz solcher adaptiver Verfahren. Der Fokus liegt hierbei auf lokalen Zeitschrittver-
fahren. Das zweite Ziel ist die Untersuchung von sekundärem Tropfenzerfall bei hohen Weber-Zahlen mit
hoch-aufgelösten Simulationen. Besonderer Fokus liegt dabei auf der transienten Grenzflächenverfor-
mung sowie der Interaktion der Grenzfläche mit dem umgebenden Strömungsfeld. Das Ziel dieser Unter-
suchungen ist, ein besseres Verständnis des Tropfenzerfalls zu erlangen. Das dritte Ziel dieser Arbeit ist
die Weiterentwicklung des Modells auf die Berechnung von Kornwachstum. Solche Kristallwachstums-
vorgänge sind physikalisch instabil. Instabilitäten können sowohl an der Spitze des Kristalls als auch
an der Seite auftreten. Diese Instabilitäten beeinflussen das resultierende Kristallgefüge. Eine nu-
merische Modellierung ermöglicht somit die Vorhersage des Kristallwachstums und langfristig auch
deren gezielte Beeinflussung. Somit können mechanische Bauteileigenschaften durch die kristalline
Mikrostruktur gezielt erzeugt werden.

Diese publikationsbasierte Dissertation ist wie folgt aufgebaut:
Ein Überblick über Mehrphasenströmungen und entsprechende Modellierungsansätze erfolgt in Kapitel
1, zusammen mit einer Übersicht über sekundären Tropfenzerfall und Kornwachstum. Die grundlegen-
den mathematischen und numerischen Modelle werden in Kapitel 2 vorgestellt. Die Ergebnisse der
Publikationen in dieser Arbeit werden in Kapitel 3 erörtert. Es erfolgt ebenfalls ein kurzer Überblick über
bisherige Ergebnisse, wobei die offenen Punkte herausgearbeitet werden, die in der jeweiligen Pub-
likation untersucht werden. Eine tabellarische Übersicht über alle Publikationen, die im Rahmen dieser
Arbeit veröffentlicht wurden (Zeitschriftenaufsätze, Konferenzbeiträge), erfolgt in Kapitel 4. In Kapitel 5
werden die Ergebnisse zusammengefasst. Die Zeitschriftenaufsätze sind im Anhang aufgeführt.
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Chapter 1

Introduction

1.1 Motivation

In this thesis, I give an overview about my research on the numerical modeling of multi-phase flow
problems with interfacial instabilities using the level-set approach. The focus has been on three top-
ics: improving the efficiency of adaptation techniques to simulate such multi-scale flow problems, the
numerical investigation of aerodynamic fragmentation, and the modeling of crystal growth with level set.

My research is based on the German Research Foundation (Deutsche Forschungsgesellschaft,
DFG) project Direkte numerische Simulation des aerodynamischen Zerfalls flüssiger Tropfen (direct
numerical simulation of aerodynamic fragmentation of liquid drops; project number 277161739). This
project is on multi-phase flow modeling with focus on phenomenological investigations of interface insta-
bilities, and in particular how these instabilities result in various breakup mechanisms of liquid drops in
an ambient air flow.

Such multi-phase flows are at the core of many phenomena in nature and in technical applications,
and are essential for every-day life. They include the mixture of gas and small water droplets in breath-
able air, the air-water surface of the oceans, the mixture of fuel and oxidizer in combustion engines,
or simply stirring milk foam in a cappuccino. All of them have in common that at least two different
aggregate states - gaseous, liquid, or solid - occur.

Various schemes exist for the categorization of multi-phase systems. Based on the structure of the
interface, three systems may be distinguished: separated-phase, mixed-phase, and dispersed systems
[22]. Separated-phase systems comprise two immiscible phases, which are separated by a clearly
defined geometrical interface. Modeling of such systems requires an accurate representation of the
phase interface. To the contrary, in dispersed systems, one phase is dispersed in a continuous phase,
and the potential change of the interface structure is commonly neglected. The dispersed phase may
be modeled by tracking single particles, or by assuming a homogeneous or heterogeneous mixture
of the two phases. The mixed-phase systems describe the gradual transition from separated-phase
to dispersed systems. The required accuracy of the interface structure directly impacts the choice of
mathematical and numerical models, since they differ in their applicability to obtain an accurate prediction
of the flow-field behavior for each of these multi-phase systems.

Two frames-of-reference are commonly distinguished in mathematical and numerical modeling of
flow problems: Lagrangian and Eulerian. In the Lagrangian frame-of-reference, the evolution of the
state variables is analyzed for a fluid element which moves in space and time. For a numerical model,
this means that the nodes of the computational grid may alter their location in time. An example is
the Smoothed Particle Hydrodynamics (SPH) approach, which evolves the governing equations on a
set of moving particles. Examples for the simulation of multi-phase flows are given, e.g., in Monaghan
[84]. Yet, due to stability and convergence issues, the use of SPH in the Computational-Fluid-Dynamics
(CFD) community is still limited [2]. More widespread is the use of mesh-based approaches with fixed
grid points in the Eulerian frame-of-reference, where the evolution of the state variables is analyzed for a

1



2 CHAPTER 1. INTRODUCTION

control volume at a fixed location. As the fluid passes through a parcel, its state variables change. The
focus of this work is on multi-phase modeling in the Eulerian frame-of-reference.

For dispersed systems, the structures of the dispersed phase are usually too fine to be resolved on
the numerical grid. Thus, such systems may be resolved by an averaged or homogenized description
of the flow field, or by tracking the dispersed phase in a Lagrangian description. If the two phases can
both be resolved reasonably well on the numerical mesh, appropriate interface-tracking or capturing
schemes are required. Three classes of schemes may be distinguished [111]: In the first scheme, the
interface is explicitly represented by adapting the mesh to the progressing evolution front [46, 89]. These
methods have yet limitations when the interface is strongly distorted. The second class maintains a
fixed mesh and tracks the evolving interface by Lagrangian marker particles [34, 63]. However, these
so-called interface-tracking schemes are also limited for growing interface distortion. In the third class,
the interface is implicitly tracked by an Eulerian order function. The most common variants of these
interface-capturing schemes are the volume-of-fluid, phase-field, and level-set methods.

The volume-of-fluid method introduces the volume fraction α as additional order parameter which
needs to be evolved in time. The phase interface is smeared across multiple cells for which 0 < α < 1,
i.e. those cells which are occupied by more than one fluid. It is therefore also denoted as diffuse-interface
method. First proposed by Hirt and Nichols [47] for incompressible flows, it has been further extended to
compressible flows [69, 110]. In its original form, conservation equations for mass, momentum, energy,
and volume fraction need to be solved for each phase separately. Simplified models have been devel-
oped, which rely, for example, on four [69] or five [3] equations only. These reduced models assume,
e.g., an infinite relaxation, i.e. that pressure and velocity immediately reach equilibrium at the interface.
Yet, the major drawbacks of such diffuse-interface methods are that the interface cannot be exactly de-
termined, and that excessive numerical diffusion may deteriorate results. For an extensive review on the
volume-of-fluid approach, the reader is referred to Saurel and Pantano [111].

Similarly to the volume-of-fluid method, the phase-field method is in general a diffuse-interface
method [134]. It applies one or multiple phase-field parameters as order parameter, which indicate
the phase state at the location of interest. Therefore, it has been widely used for multi-phase simulations
including phase change, in particular for solidification processes in the material sciences. Comprehen-
sive reviews have been published by Boettinger et al. [11] and Tonks and Aagesen [134]. The evolution
of the phase-field parameters is driven by thermodynamic forces causing phase change. One or multiple
conservative and non-conservative parameters may be used to describe the interface. The Cahn-Hilliard
equation [12] describes the evolution of conservative parameters, and the Allen-Cahn equation [4] that
of non-conservative parameters. For example, the solidification of multi-component alloys may be rep-
resented by multiple conserved variables Ci describing the concentration of constituent i and multiple
non-conserved variables ψ describing the location of the grain boundaries [134]. The variable ψ is an
order parameter with, e.g., 0 ≤ ψ ≤ 1, where ψ = 0.5 denotes the interface and 0 < ψ < 1 the
transition zone between the phases. This width of this transition zone is a model parameter. Yet, the
application of phase-field models on a specific problem is complicated by multiple barriers. In particular,
the model requires extensive calibration of multiple model parameters for quantitative predictions, and
the interface needs high spatial resolution for accurate solutions [134].

This difficulty is overcome by the level-set method, which is a sharp-interface method. The interface
can be accurately located on the underlying numerical grid, which allows for computing geometrical
parameters, such as the surface normal or the curvature, in a straightforward manner. The level-set
method was first introduced by Osher and Sethian [93]. The interface is represented implicitly as the
zero contour of a higher dimensional function, the level set φ. The level-set function is defined as a
signed distance function, i.e. the sign of the level set indicates the fluid, and the absolute value the
normal distance to the interface. This property is used to compute interface normal and mean curvature
as gradient and Laplacian of the level-set field, respectively. The level-set field is evolved by solving
an advection equation, and requires subsequent reinitialization to maintain the signed-distance property
[124]. The level-set method has been widely used to solve incompressible and compressible multi-fluid
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flow configurations, such as the melting of metal powder in laser-based additive manufacturing [145], to
simulate near-wall bubble collapse as model of extracorporeal shock wave lithotripsy [73], or to predict
growth rates of interfacial instabilities [91]. For an extensive review, the reader is referred to Gibou et al.
[32]. Note that in its general form, the level-set method is limited to model the interaction of two fluids.
An extension to an arbitrary number of fluids is focus of ongoing research (e.g. [94, 95]).

The level-set method requires appropriate fluid-field boundary conditions to be prescribed on the
interface, which represents an irregular free boundary. This is paramount to accurately determining
the exchange of mass, momentum, and energy across the interface. The ghost-fluid method (GFM) of
Fedkiw et al. [23] has been commonly used, since it allows for a sharp treatment of the interface. It relies
on defining ghost values for each fluid on the opposite side of the interface, and the interaction problem
degenerates to determining these ghost values. The major advantage of the ghost fluid method is its
sharp treatment of the boundary conditions at the interface, since each fluid can be treated separately. A
detailed overview of the GFM is given by Gibou et al. [32]. Further simplifying the determination of ghost-
fluid values, Hu et al. [51] introduced a conservative interface-interaction method by deriving explicit
interface exchange terms. These terms are based on the solution of a two-material Riemann problem
at the interface. Ghost cells are solely required for single-phase discretization of cell-face fluxes near
the phase interface, and can be obtained by extrapolation from the real fluid. The interface-exchange
terms may include inviscid [51], viscous [81], and thermal [98] exchange, as well as mass transfer due
to evaporation [78]. The main advantages of the method are that the flux-based formulation enforces
conservation at the interface, and that including additional physical effects is straightforward. Therefore,
this method is used in the following.

This work aims at extending level-set based models for separated-phase systems with focus on
interfacial instabilities, and includes three contributions:

1. A novel temporal adaptation approach with local time stepping for the multiresolution scheme of
Harten [42], which improves stability and robustness as compared to previous local time-stepping
approaches, see section 3.1.

2. High-resolution numerical simulation results of aerodynamic fragmentation, which highlight the
influence of near-interface flow field phenomena on the interface deformation, see section 3.2.

3. A novel model to simulate liquid-solid phase transition with the conservative interface-interaction
approach, see section 3.3.

In the following two sections 1.2 and 1.3, a short introduction is given on the physical phenomena in-
vestigated within the scope of my work: aerodynamic fragmentation of liquid drops and solidification of
undercooled melts. In chapter 2, the governing equations and the fundamental approach of the level-set
model are introduced, including spatial and temporal adaptation techniques, which are required for the
efficient solution of such multi-scale problems. In the subsequent chapter 3, I give an overview of the
novelties presented in the three publications included in this work. Each of these publications is moti-
vated with a short review on the state-of-the-art, indicating the particular issues that have been overcome
in the corresponding publication. A list of all publications is provided in section 4. Finally, chapter 5 gives
a conclusion and outlook on possible future work.

1.2 Aerodynamic fragmentation

The fragmentation of coherent liquid structures into smaller sized, disjointed, stable fragments is a com-
plex multi-phase flow problem. A concise review on fragmentation processes is offered by Villermaux
[136], highlighting the relevance of this feature for a variety of applications, such as internal liquid-fuel
combustion engines and manufacturing of medical drugs. To optimize the outcome of such applications,
a-priori knowledge of the dependency of final fragment sizes on control parameters such as the flow
velocity is desirable.
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Figure 1.1: Fragmentation of a liquid drop with formation of a characteristic bag-like structure. Reprinted
from Villermaux [136] with permission from Annual Reviews.

In general, two types of liquid fragmentation are distinguished. Primary atomization describes the
breakup of a bulk fluid into drops. Secondary atomization denotes then the fragmentation of these drops
into smaller droplets, and is investigated in this work. An example for the aerodynamic fragmentation
of a drop is given in Fig. 1.1. The deformation process is initiated by a relative velocity of the liquid
drop with regard to the ambient gas phase, and shows several distinct stages: the flattening of the
drop (t ≤ 17 ms), the formation of the bag (17 ms < t ≤ 33 ms), and, finally, the breakup of the bag
and the rim into smaller fragments (t > 33 ms). This so-called bag breakup is one potential breakup
mode of secondary atomization. The relative velocity of the drop with regard to the ambient gas phase
drives the deformation and, finally, fragmentation of the drop. Viscous forces delay the deformation,
and capillary forces force the drop to maintain a spherical shape. This motivates the description of the
breakup mechanism by a set of non-dimensional numbers, see Guildenbecher et al [38]:

• the Weber number

We =
ρgu2

g D0

σ
(1.1)

denoting the ratio of inertial to capillary forces,

• the Ohnesorge number

Oh=
µl

p

ρl D0σ
(1.2)

describing the ratio of viscous forces to capillary forces in the liquid phase,

• the Reynolds number

Re =
ρgug D0

µg
(1.3)

giving the ratio of inertial forces to viscous forces in the gas phase, and

• the density ratio

ρ̃ =
ρl

ρg
(1.4)

relating the densities of liquid and gas phase.
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In the equations given above, ρ denotes the density, u the velocity, D0 the initial drop diameter, σ the
surface tension coefficient, µ the shear viscosity, and the subscripts l and g denote the liquid and gas
phase, respectively.

Historically, the Weber number We was considered to be the characteristic parameter for liquid drop
breakup [132]. Hinze [45] found that breakup occurs only once the Weber number exceeds a critical
value, i.e. once inertial forces strongly exceed capillary forces to cause the breakup of the droplet. Since
this critical Weber number Wecri t varies with the liquid viscosity, the Ohnesorge number Oh is expected
to affect the breakup mechanism as well. Therefore, breakup-mode classification considers We and
Oh in later works [38, 49, 99]. Typically, five breakup modes have been distinguished: vibrational, bag,
multimode, sheet-stripping or shear, and catastrophic. Their dependency on We and Oh is shown in Fig.
1.2. For Oh < 10−1, the Weber number ranges for these breakup modes are basically constant while
changing drastically for increasing Oh. Note that the transition from shear to catastrophic breakup is not
shown in this graph, since recent work states that this regime was erroneously derived from shadowgraph
visualizations [130, 132].

101
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104
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second criticality

W
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nu
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Bag [38]

Figure 1.2: Breakup-mode evolution for changing We and Oh. The solid black line denotes the transition
from vibrational to bag breakup, the dashed line from bag to multimode brekaup, and the dash-dotted
line from multimode to sheet-stripping breakup [38]. The solid blue line denotes the onset of the second
criticality, i.e. the onset of shear induced entrainment [132].

This traditional classification has been reformulated by Theofanous [132]. He suggested a system
based on the dominating interface instability mechanisms. During its deformation, the drop is subjected
to Rayleigh-Taylor instabilities near the upstream stagnation point, and Kelvin-Helmholtz instabilities at
the equator [96]. These two instability modes relate to the Rayleigh-Taylor piercing (RTP) and the shear-
induced entrainment (SIE) breakup regimes, respectively. Assuming small Ohnesorge numbers, Oh�
1, RTP is the dominating instability mechanisms for small Weber numbers. After the flattening of the
drop, surface waves grow on the upstream side near the stagnation point, and ambient gas pierces the
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liquid mass of the drop. This results in the well-known formation of the bag, which eventually disintegrates
[131]. The transition from RTP to SIE starts for We ∼ 100, and is completed for We ∼ 1000. For
larger Weber numbers, SIE is the terminal instability mode [130]. This breakup regime evolves as rapid
deformation process, that is characterized by Kelvin-Helmholtz instabilities near the droplet equator,
which occur already during the flattening stage of the drop. These shear forces result in the peeling of a
water sheet from the rim of the drop, which later fragments due to capillary breakup. For increasing Oh,
the transition from RTP to SIE is delayed to larger We, see also Fig. 1.2.

Despite extensive research on secondary atomization, many aspects of the breakup process remain
unknown due to the overall complexity of the problem. In particular, a concise understanding of the
interaction of Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and of the interplay of flow field and
interface deformation are aspects of ongoing research. In this context, numerical simulations appear as
helpful tool, since small spatial and temporal scales limit detailed experimental investigations. A concise
literature review on previous numerical investigations of aerobreakup and a summary of my contributions
are given in section 3.2.

1.3 Liquid-solid phase transition under non-equilibrium conditions

Phase transition from liquid to solid state under non-equilibrium conditions is a complex multi-phase
phenomenon. The inherent instability of the process complicates its experimental and numerical inves-
tigation. Growth patterns are thereby dominated by the interplay of macroscopic thermodynamics and
microscopic interface dynamics. Most commonly known is dendritic growth, due to its ubiquity in nature,
e.g. in the growth of a snowflake. The name dendritic thereby derives from the Greek δενδρον, which
translates to tree and refers to the branched structure of the resulting crystal.

10−4
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10−2

10−1

100

100 101

u Γ
[m

/s
]

∆T [K]

[116]
[27]
[77]
±∆σ

Figure 1.3: Analytical solution of Langer and Müller-
Krumbhaar [77] with stability range ±∆σ, and experimental
results of Furukawa and Shimada [27] and Shibkov et al. [116].
The x -axis denotes the undercooling of the melt, and the y-
axis the tip velocity of the dendrite.

In his seminal work, Ivantsov [58]
investigated the shape of solidification
fronts propagating into undercooled
melts, i.e. melts at a temperature below
the equilibrium temperature of the ma-
terial. He derived that for heat-diffusion
dominated processes, the solidification
front is parabolic. The model is, how-
ever, limited since it provides informa-
tion only on the product of the tip ra-
dius and the velocity of such a den-
drite, but does not allow for specify-
ing each one of them separately. This
poses the selection problem of dendritic
growth, since the Ivantsov solution in-
dicates a family of potential dendrites
for an arbitrary undercooling. Glicks-
man et al. [33] showed that each un-
dercooling corresponds to exactly one
tip radius and velocity. Langer and
Müller-Krumbhaar [75–77, 87] derived
a solution to find the selected tip radius
and velocity as marginally stable solu-
tion that is stabilized by surface tension.
They found that dendrites experience
tip-splitting instabilities once tip curva-
ture and velocity drop below critical val-
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ues. Side-branching instabilities occur if the dendrite is too fast and too sharp. These two interfacial
instabilities finally result in the typically known tree-like pattern that emerges during dendritic solidifica-
tion. Their model shows excellent agreement with experimental reference data for heat-diffusion domi-
nated growth. Yet, once interface kinetics dominate the growth process, their theory overestimates the
growth velocity, see Fig. 1.3. The diagram shows values for the solidification of water, which experiences
kinetics-driven solidification starting from approximately ∆T > 10 K.

A comprehensive model of liquid-solid phase transition needs to accurately consider the interplay
of microscopic interface forces with the macroscopic diffusion field to predict the interface instabilities
correctly. The microscopic forces at the interface are mathematically described by the Gibbs-Thomson
relation, expressing an equilibrium between minimal bulk and surface energies [5]. It reads

TΓ = Tm −
σTm

ρL
κ− εu||uΓ || (1.5)

with TΓ denoting the temperature at the phase interface, Tm the equilibrium melting temperature at a
flat interface, L the latent heat, κ the interface curvature, εu the kinetic coefficient, and uΓ the local
velocity of the phase front. Surface tension effects, modeled by the second term on the right-hand-side
of eq. (1.5), are intended to model the local equilibrium of a curved interface, where the free energy
of solid and melt are the same [10]. The last term of eq. (1.5), εu||uΓ ||, describes the microscopic
dynamics of surface kinetics, to model the inherent non-equilibrium of the phase-change process. Both
surface-tension and kinetic effects may experience strong anisotropies. The surface-tension anisotropy
reflects that the interface orientation affects the average bonding energy between atoms. Similarly, the
kinetic anisotropy represents that the interface orientation also affects the attach rate of atoms to the
interface [10]. These anisotropies may result in preferred crystal-growth directions. In addition, the melt
temperature may vary with the local solute concentration for alloys, and can be determined from a phase
diagram. This is intentionally neglected in this work, since the model is limited to the solidification of pure
melts.

The macroscopic, thermodynamic behavior is modeled by the Stefan condition

ṁ [L + (TΓ − Tm) (cl − cs)] = (ks∇nTs − kl∇nTl) · nΓ . (1.6)

Here, ṁ denotes the solidified mass of melt, c the specific heat capacity, k the thermal conductivity,∇nT
the interface-normal temperature gradient, and the indices s and l denote the solid and melt, respectively.
The Stefan condition describes the thermal equilibrium at the advecting phase front. The heat released
by the phase-change process (left-hand-side) has to be in equilibrium with the heat flux from the interface
into solid and liquid phase (right-hand-side). The square brackets on the left-hand-side thereby include
heat release due to latent heat (first term) and varying specific heat capacities in solid and melt (second
term). The interplay of macroscopic and microscopic effects is taken into account on the right-hand-side
of eq. (1.6), since the interface temperature, eq. (1.5), influences the local interface-normal temperature
gradients ∇nTs/l .

Including the Gibbs-Thomson relation (1.5) and the Stefan condition (1.6) in a numerical model re-
quires an accurate representation of the interface. Reconstructing the surface curvature in eq. (1.5) and
the interface-normal temperature gradient in eq. (1.6) are of particular interest, since both directly affect
the interface propagation and, therefore, the evolution of interface instabilities. In section 3.3, a review
on previous modeling approaches and a summary of my contributions are given.





Chapter 2

Mathematical and Numerical Model

2.1 Governing equations

The multi-phase problems investigated within this work are governed by the full Navier-Stokes equations
including viscous, capillary, and thermal effects. The governing equations read in vector notation

∂U
∂ t
+∇T · Fu +∇T · Fµ +∇T · Fk = X . (2.1)

Here,

U=





ρ

ρu

E



 , Fu =





uρ

ρu⊗ u+ pI

u(E + p)



 , Fµ =





0

T

T · u



 and Fk =





0

0

k∇T





denote the vector of conservative states, the convective flux vector, the viscous flux vector, and the
thermal flux vector, respectively, t the time, u the velocity vector, p the pressure, I the identity matrix, T
the Cauchy stress tensor, and E the total energy

E = ρe+
1
2
ρu · u , (2.2)

composed of the internal energy (ρe) and the kinetic energy (1/2ρu · u). The Cauchy stress tensor for
Newtonian fluids follows from

T= 2µS−
2
3
µ (∇ · u) I, (2.3)

where

S=
1
2

�

∇u+ (∇u)T
�

(2.4)

is the shear-rate tensor. The vector X denotes exchange terms between two fluids including capillary,
viscous, and thermal effects. Note that eq. (2.1) can be simplified for different flow configurations by
suppressing single physical effects.

The governing equations need to be closed by an equation of state (EOS), which relates the internal
energy with pressure, density, and temperature. The stiffened-gas equation of state

p = (γ− 1)ρe− γp∞ (2.5)

has been widely used for numerical simulations of compressible fluid flow with multiple immiscible fluids.
The parameters γ and p∞ are empirically determined fitting parameters, and allow for applying this EOS
for both gases and liquids. For p∞ = 0, the stiffened-gas EOS degenerates to the ideal-gas EOS.

9
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Yet, the drawback of this EOS is the inaccurate prediction of the temperature field. If heat transfer
is considered, an extended stiffened-gas equation of state needs to be applied as given by Hawker and
Ventikos [43] with

p+ (γ+ 1)p∞ = (γ+ 1)ρ(e+ e∞) (2.6)

and

RT =
p+ p∞
ρ

+ (γ+ 1)etρ
γ+1 , (2.7)

where e∞ and et are additional empirically determined fitting parameters, and R is the gas constant.

2.2 Spatial and temporal discretization

2.2.1 Spatial discretization

The governing equations (2.1) are discretized in the domainΩ with a finite volume approach. The domain
is split into a set of finite volumes Ω(i, j,k),

⋃

(i, j,k)∈N3 Ω(i, j,k) = Ω, which are equivalent to a computational
cell with cell volume V(i, j,k). In each cubic cell (i, j, k) with edge length ∆x , the discretized governing
equations (2.1) without interface exchange terms X read as

∂U(i,j,k)
∂ t

= D
�

U(i, j,k)
�

(2.8)

=
(Fu,(i−1/2, j,k) − Fu,(i+1/2, j,k)) + (Fµ,(i−1/2, j,k) − Fµ,(i+1/2, j,k)) + (Fk,(i−1/2, j,k) − Fk,(i+1/2, j,k))

∆x

+
(Fu,(i, j−1/2,k) − Fu,(i, j+1/2,k)) + (Fµ,(i, j−1/2,k) − Fµ,(i, j+1/2,k)) + (Fk,(i, j−1/2,k) − Fk,(i, j+1/2,k))

∆x

+
(Fu,(i, j,k−1/2) − Fu,(i, j,k+1/2)) + (Fµ,(i, j,k−1/2) − Fµ,(i, j,k+1/2)) + (Fk,(i, j,k−1/2) − Fk,(i, j,k+1/2))

∆x
.

The overbar indicates cell-averaged quantities, i.e.

U(i,j,k) =
1

V(i, j,k)

∫

Ω(i, j,k)

UdΩ , (2.9)

and D
�

U(i, j,k)
�

denotes the divergence of the numerical flux functions F. The flux functions F are evalu-
ated at the cell patches, balancing in- and outgoing fluxes. Since the flux going out of one cell is identical
to the flux going into the neighbor cell, the finite volume discretization is exactly conservative - the
global mass, momentum and energy are conserved. For a more detailed discussion on the finite-volume
method, the reader is referred to the standard references of LeVeque [79] and Toro [135].

i − 2 i − 1 i i + 1 i + 2

S1

S3

S2

Figure 2.1: Stencil selection for the fifth-order
WENO scheme of Jiang and Shu [60].

The fifth-order weighted essentially non-
oscillatory (WENO) scheme of Jiang and Shu [60]
is applied for convective flux reconstruction of eq.
2.8. Is uses a weighted combination of multiple
third-order stencils Si , see Fig. 2.1. A fifth-order
accurate reconstruction with low dissipation is ob-
tained in smooth flow regions. In regions with
large local gradients, a non-linear combination of
these third-order stencils is applied. The weight
of each stencil is computed from smoothness in-
dicators of all stencils. For a more detailed introduction to WENO schemes and further developments,
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the reader is referred to Fu et al. [25]. Note that in this work the WENO scheme for convective flux-
reconstruction is applied on the characteristic projection of the convective term based on the work of
Roe [103]. For a description of this ”Roe“ solver, the reader is referred to the original publication of Roe
[103]. Reconstruction of viscous and thermal fluxes requires computation of velocity and temperature
gradients. In this work, these gradients are computed by the second order central differencing scheme

∂ U
∂ x

�

�

�

�

i+1/2

=
Ui+1 − Ui

∆x
(2.10)

and the fourth order central differencing scheme

∂ U
∂ x

�

�

�

�

i+1/2

=
27(Ui+1 − Ui)− (Ui+2 − Ui−1)

24∆x
. (2.11)

2.2.2 Temporal discretization

Strongly-stable Runge-Kutta schemes are used to evolve the finite volume discretization of the governing
equations (2.8) in time, see Gottlieb and Shu [36]. We apply both the second-order formulation

U
(∗)
= U

(n)
+∆t(n)D

�

U
(n)�

(2.12)

U
(n+1)

= U
(n)
+

1
2
∆t(n)

�

D
�

U
(n)�

+D
�

U
(∗)��

and the third-order formulation

U
(∗)
= U

(n)
+∆t(n)D

�

U
(n)�

(2.13)

U
(∗∗)

= U
(n)
+

1
4
∆t(n)

�

D
�

U
(n)�

+D
�

U
(∗)��

U
(n+1)

= U
(n)
+

1
6
∆t(n)

�

D
�

U
(n)�

+D
�

U
(∗)��

+
2
3
∆t(n)D

�

U
(∗∗)�

.

The time-step size is controlled according to the Courant-Friedrichs-Lewy (CFL) condition. The ad-
vective time-step size follows

∆tu =
∆x

max
�∑

i |ui ± c|
� , (2.14)

the time-step size due to viscous diffusion

∆tµ =
3

14
∆x2ρ

µ
(2.15)

[124], and the time-step size due to thermal diffusion

∆tk =
1
10
∆x2ρc

k
. (2.16)

For multi-phase flows, also the time-step size due to surface waves at phase interfaces

∆tσ =

√

√ρ+ +ρ−
8πσ

∆x3, (2.17)
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with ρ+ and ρ− being the densities of the two fluids [124], and the time-step size based on the phase-
interface advection velocity uΓ

∆tΓ =
∆x
||uΓ ||∞

(2.18)

[64] are included. The global time-step size is finally determined with the global minimum of all time-step
size limits

∆t = CFL ·min
�

∆tu,∆tµ,∆tk,∆tσ,∆tΓ
�

(2.19)

with CFL being the CFL-number. The maximum admissible CFL number depends on the temporal
discretization scheme. In this work, varying CFL numbers are used depending on the simulated setup.

2.3 Multi-phase treatment

2.3.1 Level-set approach

In the level-set approach, the material interface is prescribed by the zero-contour of a multi-dimensional
continuous function φ

x ∈ Ω+ → φ(x)> 0 ,

x ∈ Ω− → φ(x)< 0 , and

x ∈ Γ → φ(x) = 0 .

An example is shown in Fig. 2.2 for a two-dimensional contracting circular interface, for which the
corresponding multi-dimensional function is conically shaped. The circular interface contracts, thus the
isoline (green) representing the cut of the multi-dimensional function (black) with the two-dimensional
planar domain (blue) shrinks.

Figure 2.2: Multi-dimensional function for a two-dimensional contracting circular interface. The multi-
dimensional level-set function is shown in black, the two-dimensional domain in blue, the zero-level-set
marking the interface in green. From left to right, the circular interface shrinks.

The level-set function is chosen to have a signed-distance property |∇φ|= 1, i.e. the absolute value
of φ describes the normal distance of the cell center x to the interface Γ , and the level-set sign indicates
the sub-domain the cell center belongs to. The signed-distance property allows for straightforward com-
putation of geometrical characteristics of the interface. The interface normal unit vector nΓ is the gradient
of the level-set field, and the interface curvature κ the Laplacian of the level-set field

nΓ =∇φ and κ=∇ ·∇φ . (2.20)

The level-set field is evolved in time by solving the advection equation

∂ φ

∂ t
+ uΓ · ∇φ = 0 (2.21)
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φ = 0

φ > 0φ < 0 φ = φ+φ = φ−

cut cell narrow-band cell bulk cell

Figure 2.3: Cut cells and narrow band for a curved interface.

where uΓ is the level-set advection velocity, i.e. the velocity at the interface. This velocity is obtained from
the surrounding fluid field, which is further explained in section 2.3.2. When the level-set field is evolved
in time, in general the signed-distance property is not maintained. Since the accuracy of the level-set
method relies on the reconstruction of geometrical characteristics as described above, reinitializing the
level-set field is paramount to maintain the accuracy of the overall scheme. Reinitialization is achieved
by iterating the modified level-set advection equation

∂ φ

∂ τ
+ sign(φ0) (|∇φ| − 1) = 0 (2.22)

in pseudo-time τ to steady-state, where φ0 is the level-set field prior reinitialization. In the second
term on the left-hand side, the first contribution sign(φ0) enforces that the level-set sign at each cell
center does not alter during the iteration steps. The second contribution (|∇φ| − 1) enforces the linear
distance property. Note that reinitializing cells that are cut by the interface requires special treatment. As
shown e.g. by Russo et al. [109], performing reinitialization is necessary even in such cells to maintain
the signed-distance property. Yet, it may alter the position of the interface and violate the conservation
property of this method. This issue is addressed in section 3.3.

To improve the overall efficiency of the level-set approach, level-set related operations like advection
or reinitialization are only performed within a small area around the interface. Three types of cells need
to be distinguished:

• Cut cells: cells that are cut by the interface. Cut-cells are defined based on their level-set sign. If
any neighboring cell has a different level-set sign than the target cell, this cell is assumed to be a
cut cell.

• Narrow-band cells: cells which are located in a pre-defined distance to all cut-cells. The width of
the narrow band depends on the chosen temporal and spatial discretization schemes.

• Bulk cells: cells that are far away from the interface, i.e. outside the narrow band. Note that the
level-set value in the bulk cells can be chosen arbitrarily to have the correct sign, while the absolute
value is irrelevant.

The cell types for a narrow-band width of four cells are shown exemplary for a curved interface in Fig.
2.3. This pre-selection drastically reduces the computational cost of the level-set method.

2.3.2 Sharp-interface method with conservative interface interaction

Determining the exchange between the two fluids across the interface is at the core of multi-phase flow
modeling. In the level-set based conservative interface interaction method of Hu et al. [51], the interaction
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is modeled by explicit exchange fluxes across the interface. The fluxes are related to the local interface
segment of each cut cell. Otherwise, each fluid is solved separately, reconstructing local cell-face fluxes
based on real and ghost-fluid cells (see section 2.3.3). This enforces the sharp-interface property of the
method - the effect of the interface is limited to cut cells, but does not affect the flux reconstruction in
cells that are not cut by the interface. The discretized Navier-Stokes equations, eq. (2.8), are extended
by the interface exchange term

∂ α(i, j,k)U(i, j,k)
∂ t

= D
�

α(i, j,k)U(i, j,k)
�

+
X(i, j,k)(∆Γ(i, j,k))

(∆x)3
(2.23)

where α(i, j,k) denotes the volume fraction of cell (i, j, k) and ∆Γ(i, j,k) the interface segment in this cell.
A two-dimensional sketch of the cut-cell discretization with geometrical parameters is given in Fig. 2.4.

(i + 1, j)(i, j)(i − 1, j)

(i, j + 1)

(i, j − 1)

∆Γ

Ai, j−1/2

Ai, j+1/2

A
i−

1/
2,

j
=

0

A
i+

1/
2,

j
=

1
nΓ

Ω− Ω+
φ < 0 φ > 0

(i + 1, j − 1)(i − 1, j − 1)

(i + 1, j + 1)(i − 1, j + 1)

Figure 2.4: Two-dimensional schematic of cut-cell discretization. The interface is indicated by the dashed
black line, the linearized interface obtained from the level set by the blue solid line.

The method of Hu et al. [51] relies on an accurate definition of interface states to calculate interface
fluxes. For compressible flows without heat transfer, relevant interface states are the interface pressure
pΓ and the interface velocity uΓ = uΓnΓ . Hu and Khoo [50] suggested to solve a two-material Riemann
problem to determine the interaction of the two fluids at the interface. Based on the method of character-
istics, a formulation for the interface velocity and pressure can be found for each of the two fluids, which
are then combined and solved iteratively using Newton’s method. Alternatively, linearization results in
explicit algebraic formulations for uΓ and pΓ , namely

uΓ =
ρ−c−u− +ρ+c+u+ + p− − p+

ρ+c+ +ρ−c−
, (2.24)

pΓ =
ρ−c−p+ +ρ+c+p− +ρ−c−ρ+c+(u− − u+)

ρ+c+ +ρ−c−
(2.25)



2.3. MULTI-PHASE TREATMENT 15

This model was extended for capillary effects by Luo et al. [81]. Assuming that the positive level set
represents the surrounding fluid, and the negative level set the fluid inside the curved interface, the
mechanical equilibrium at the interface follows from

∆pΓ = pΓ ,− − pΓ ,+ = σκ . (2.26)

The linearized interface states including the pressure jump now read as

uΓ =
ρ−c−u− +ρ+c+u+ + p− − p+ −σκ

ρ+c+ +ρ−c−
, (2.27)

pΓ ,− =
ρ−c−(p+ +σκ) +ρ+c+p− +ρ−c−ρ+c+(u− − u+)

ρ+c+ +ρ−c−
, (2.28)

pΓ ,+ =
ρ−c−p+ +ρ+c+(p− −σκ) +ρ−c−ρ+c+(u− − u+)

ρ+c+ +ρ−c−
. (2.29)

Based on these interface states, Hu et al. [51] proposed interface-exchange terms for the Euler
equations, and Luo et al. [81] for viscous exchange. This model includes momentum and energy transfer,
but neglects mass transfer. Inviscid exchange due to the pressure forces between the two fluids are
computed following

Xp,+ = −pΓ ,+ [0, ∆ΓnΓ , ∆ΓnΓ · uΓ ]
T , (2.30)

Xp,− = pΓ ,− [0, ∆ΓnΓ , ∆ΓnΓ · uΓ ]
T . (2.31)

The viscous exchange terms follow

Xµ = [0, TΓ · nΓ∆Γ , (TΓ · nΓ ) · uΓ∆Γ ]
T (2.32)

where the Cauchy stress tensor at the interface TΓ is computed following eq. (2.3) using the harmonic
mean of the viscosity

µΓ =
µ+µ−

αµ− + (1−α)µ+
(2.33)

and real-fluid velocities from both fluids.
Piper [98] proposed an analogous model to include heat conduction across the interface. The inter-

face exchange term reads

Xk = [0,0, q̇Γ · nΓ ]
T . (2.34)

Here, q̇Γ denotes the interface heat flux, that is computed from real fluid temperatures on both sides of
the interface.

Lauer et al. [78] extended the original method of Hu et al. to include mass transfer due to evaporation.
Assuming that the liquid is the positive phase and vapor the negative phase, the exchange term of the
vapor phase reads for evaporation

Xm,− =
�

ṁ∆Γ , ṁ∆Γu+, ṁ∆Γ
�

ev +
1
2
||u+||2

�

+ pΓ∆q∗∆Γ
�T

, (2.35)

and for condensation

Xm,− =
�

ṁ∆Γ , ṁ∆Γu−, ṁ∆Γ
�

ev +
1
2
||u−||2

�

+ pΓ∆q∗∆Γ
�T

. (2.36)

Here, ṁ is the rate of evaporation or condensation, ev the internal energy of vapor, and ∆q∗ the phase-
change induced interface velocity. To satisfy conservation, the exchange term for the liquid phase follows
from

Xm,+ = −Xm,− . (2.37)
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For a detailed discussion of calculating the evaporation or condensation rate ṁ and the phase-change
induced interface velocity∆q∗ the reader is referred to Lauer et al. [78]. Note that the evaporation model
of Lauer et al. serves as foundation for the new interface-exchange model for liquid-solid phase transition
presented in section 3.3.

The interface segment ∆Γ(i, j,k) is computed from the level-set field, assuming the linear signed-
distance property. The original two-dimensional approach of Hu et al. [51] is based on cell-face apertures
A, see Fig. 2.4. Lauer et al. [78] proposed its three-dimensional formulation. For cubic cells, the interface
segment follows from

∆Γ(i, j,k) = (∆x)2
�

�

A(i+1/2, j,k) − A(i−1/2, j,k)

�2
+

�

A(i, j+1/2,k) − A(i, j−1/2,k)

�2

+
�

A(i, j,k+1/2) − A(i, j,k−1/2)

�2�1/2
. (2.38)

The volume fraction α(i, j,k) is approximated with seven pyramids following Lauer et al. [78], which results
for cubic cells in

α(i, j,k) =
A(i−1/2, j,k) + A(i+1/2, j,k) + A(i, j−1/2,k) + A(i, j+1/2,k) + A(i, j,k−1/2) + A(i, j,k+1/2)

6

+
∆Γ(i, j,k)φ(i, j,k)

3(∆x)3
. (2.39)

2.3.3 Ghost-fluid method

The ghost-fluid method was originally introduced by Fedkiw et al. [23] for a sharp-interface model of the
interaction of two fluids. The fundamental idea is to treat each fluid separately, and define ghost values
at the opposite side of the interface for each fluid to model the interaction, thus enforcing the sharp-
interface property of the method. The solution of the multi-phase problem degenerates to an accurate
prescription of the ghost cells. The major challenges of the ghost-fluid method are the accurate definition
of the ghost-fluid states, and the selection of ghost-fluid cells (or nodes in the finite difference scheme of
Fedkiw et al. [23]).

In the original approach, the ghost-fluid states are determined to model the interaction of the two
fluids at the interface. Thus, different types of fluid-fluid boundary conditions can be enforced by varying
the ghost states. Details on the approach and further developments are discussed by Gibou et al.
[32]. However, imposing ghost values may be challenging for flux-based boundary conditions [32]. This
problem does not occur for the conservative interface-exchange model of Hu et al. [51], since interface
exchange fluxes are prescribed to model the fluid-fluid interface interaction, see section 2.3.2. The
definition of the ghost states reduces to an extrapolation of real-fluid states across the interface by
iterating the extrapolation equation

∂ P
∂ τ
+ nΓ · ∇P = 0 (2.40)

to steady state. Here, P denotes the primitive fluid states, i .e. density ρ, pressure p, velocity u,
or temperature T , and τ a pseudo-time. Higher-order extrapolation schemes have been proposed by
Aslam et al. [7].

In a finite-difference discretization as employed by Fedkiw et al., ghost fluid nodes are defined by the
sign of the local level-set field. For the positive fluid φ > 0, all nodes in the vicinity of the interface with
φ < 0 are ghost cells (and vice versa all nodes with φ > 0 for the negative fluid). This definition has
been applied not only to finite-difference schemes [20], but also to finite-volume schemes (e.g. [26, 30,
51, 73, 115]). However, it may alter the interface evolution due to erroneous fluid values at the interface.
In the finite volume discretization, a cell that is cut by the interface may contain real fluid, even though
the level-set sign at the cell center differs from the sign of the fluid. With the standard definition of the
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(i + 1, j)(i, j)(i − 1, j)

(i, j + 1)

(i, j − 1) (i + 1, j − 1)(i − 1, j − 1)

(i + 1, j + 1)(i − 1, j + 1)

Figure 2.5: Ghost cells for a curved interface. Real fluid is shown in grey, cells tagged as ghost cells in
blue.

ghost fluid, these cells are nevertheless treated as ghost cells, and their states are overwritten. This is
shown in Fig. 2.5. The grey area marks real fluid, the blue area marks ghost cells. Cells (i, j − 1) and
(i, j + 1) contain real fluid, but are flagged as ghost cells. Depending on the order of the extrapolation
scheme and local flow field gradients, prescribing a value in these cells by solving eq. (2.40) instead of
using the physical ones may result in wrong solutions of the two-material Riemann problem, see section
2.3.2. Therefore, a new definition for cells requiring extrapolation may be used: Instead of the level-set
value at the cell center, the cell volume fraction α is considered. Defining a volume fraction threshold
αT , all cells with α < αT in the narrow band of the interface are tagged a ghost cells. The original
definition of Fedkiw et al. is obtained for αT = 0.5. For αT = 0, extension is enforced for cells that
contain only the opposite fluid, yet it may be numerically unstable. By extensive numerical tests it was
found that αT = 10−3 delivers accurate results and provides similar numerical stability as compared to
the original definition. As example, numerical shadowgraphs of the expansion of a single bubble near a
wall are given in Fig. 2.6. The left half shows results for the standard ghost-fluid definition with differing
level-set sign (αT = 0.5), and the right half for the modified definition with αT = 10−3. Prime states are
extrapolated into ghost cells by iterating eq. (2.40) to steady state. The setup is aligned to the numerical
investigation of Zeng et al. [146], who analyzed laser-induced bubble expansion and collapse near a
rigid wall. A small bubble filled with air at high-pressure is initialized at t = 0 in a domain filled with water
at ambient conditions. The bubble expands to its maximum radius at t ≈ 100 µs. The influence of the
wall on the flow field results in a flattening of the expanding bubble on the near-wall hemisphere, which
is clearly visible for both simulations. However, for αT = 0.5, also distinct grid effects are observed in
diagonal direction, resulting in a strongly disturbed interface. For the modified version with αT = 10−3,
the surface remains smooth.
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(a) t = 0 µs (b) t = 50 µs (c) t = 100 µs

Figure 2.6: Bubble expansion for αT = 0.5 (left half) and αT = 10−3 (right half) at multiple instants.

2.3.4 Small-cell mixing

A stable time integration based on the CFL condition assumes a full cell size ∆x , see section 2.2.2. If a
cell is cut by the interface, the time-step constraint of the full cell may be insufficient to guarantee a stable
numerical integration. Therefore, such small cells pose severe stability issues for the entire numerical
scheme. A more restrictive constraint, e.g. a sufficiently small CFL number, may remedy this issue, yet
results in prohibitively small time-step sizes. As a remedy, Hu et al. [51] introduced a small-cell mixing
procedure.

The general idea of mixing is to avoid integration of small cells and, instead, mix their conservative
states with surrounding cells with sufficiently large fluid volume fraction. These neighboring cells are
denoted as target cells. In the original version, all direct neighbors are possible target cells, and diagonal
neighbors are neglected. Later, Lauer et al. [78] extended the mixing also for diagonal neighbors as
possible target cells. After evolving the fluid from t(n) to t(n+1), three types of cells undergo mixing:

• Cells that are small cells at t(n+1).

• Cells that become empty at t(n+1), but contained fluid at t(n).

• Cells that did not contain fluid at t(n), but do at t(n+1).

The mixing contribution of each target cell is based on the volume fractions of mixed and target cell, their
conservative states, and some weighting factor. The weighting factor may be based on the interface-
normal unit vector of the cell to be mixed [51, 78], or the cell face aperture [48]. Finally, the mixing
contributions are added to the small cell and subtracted from the target cell, thus ensuring overall con-
servation.

2.4 Spatial and temporal adaptivity

2.4.1 Wavelet-based multiresolution scheme

The large range of temporal and spatial scales in multi-phase flow simulations poses a challenge even
for high-performance computing systems [105]. As a remedy, resolution-adaptation techniques are de-
veloped to reduce computational cost. For spatial adaptivity, Harten [42] proposed a multiresolution
framework to improve the efficiency of the finite-difference and finite-volume discretization of hyperbolic
conservation laws. This concept has been further developed by Cohen et al. [16]. In comparison to
other spatial adaptation methods, such as adaptive mesh refinement (AMR), multiresolution exhibits
improved CPU and memory compression rates for the same truncation-error order [19]. The multires-
olution scheme relies on a wavelet-based representation of the flow field. Each flow-field variable can
be represented by the solution on a coarse grid and higher-order wavelet coefficients on successively
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finer meshes. This allows for implicit mesh refinement. In smooth flow regions, only few wavelet coef-
ficients are required for representing all flow-field details. In regions with strong local gradients, high-
wavenumber wavelets are necessary for an accurate representation, resulting in a locally refined grid.
This concept is laid out in more detail in the following.

Assume that the cell-averaged solution U l,(i, j,k), eq. (2.9), of the governing equations (2.1) represents
the solution on a Cartesian grid with global cell indices (i, j, k) at a refinement level l. The cell may be
refined dyadically into 2D children cells. For the parent state U l,(i, j,k) at refinement level l, the children

at the next-finer level l + 1 are U l+1,(2i+α,2 j+β ,2k+γ), α,β ,γ ∈ {0, 1}. Two basic operations allow for data
exchange between two consecutive levels l and l + 1 [42]. To obtain data at level l from the child level
l+1, the projection operationQ(l+1→ l) is used. In its general three-dimensional formulation, it reads

U l,(i, j,k) = QU l+1 (2.41)

=
1
2D

1
∑

α=0

1
∑

β=0

1
∑

γ=0

U l+1,(2i+α,2 j+β ,2k+γ) . (2.42)

This operation is exact for cell-averaged data. To estimate data on level l +1 from the parent level l, the
prediction operation P(l → l + 1) is used. In three dimensions, it is given by

Ûl+1,(2i+i0,2 j+ j0,2k+k0) = PU l

= U l,(i, j,k) + (−1)i0Qs
x + (−1) j0Qs

y + (−1)k0Qs
z +

(−1)(i0+ j0)Qs
x y + (−1)(i0+k0)Qs

xz +

(−1)( j0+k0)Qs
yz + (−1)(i0+ j0+k0)Qs

x yz (2.43)

with
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s
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�
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and i0, j0, k0 ∈ {0, 1} for all child cells. The interpolation order of the prediction operation is r = 2s+ 1,
where s is the stencil half-width. For a fifth-order scheme (s = 2), the interpolation coefficients are
γi = {−22/128, 3/128}. For the lower-dimensional formulation of projection and prediction, see e.g.
Kaiser et al. [65].
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Projection and prediction operations are local and consistent (Q ◦ P = Id), but not commutative
(P ◦Q 6= Id):

• Consistent: if, first, prediction is performed to obtain data on level l + 1 from level l and, second,
projection is applied to obtain data on level l from level l+1, exactly the same solution is obtained
on level l.

• Not commutative: if, first, projection is applied to obtain data on level l from level l+1 and, second,
prediction is performed to obtain data on level l + 1 from level l, the predicted solution on level
l + 1 deviates from the exact solution.

This interpolation error motivates the definition of the so-called details d. The details quantify the differ-
ence of the exact solution U l,(i, j,k) and the predicted solution Ûl,(i, j,k)

dl,(i, j,k) = U l,(i, j,k) − Ûl,(i, j,k) . (2.44)

Thus, the cell-averaged solution on an arbitrary level l̃ can be represented in a tree-like structure by
the solution on the coarsest level l = 0 and the details of all subsequent levels 0 < l ≤ l̃. This
enables implicit mesh refinement, since only those details need to be considered that are larger than a
pre-defined error threshold and, therefore, result in significantly better results than interpolation from a
coarser grid. This level-dependent error-threshold is computed following

εl = εref · e−D(lmax−l) (2.45)

where lmax denotes the maximum multiresolution refinement level, and εref the maximum admissible
error for refinement from level lmax − 1 to lmax.

2.4.2 Block-based data structure

For efficiency reasons, Rossinelli et al. [106] and Han et al. [40] suggested to apply all multiresolution
operations, such as projection and prediction, refinement and coarsening of cells, or the evolution of the
flow field, on sets of multiple cells, so called blocks. Refinement is thereby triggered once the details
of one single cell in the block exceeds the level-dependent threshold. Halo cells are introduced at the
edges of the block since the operations mentioned above require data from neighboring blocks. To
facilitate data transfer, cell data is stored in these overlapping halo cells. This is shown in Fig. 2.7 for
two neighboring blocks on the same refinement level with eight internal cells and four halo cells in each
spatial direction. Halo cells are filled by copying data from the internal cells of the neighboring block prior
to performing the operations mentioned above. Note that block refinement is also triggered when details
in halo cells exceed the level-dependent threshold, therefore the resolution of internal cells is always
sufficient to accurately resolve the approaching flow field.

The governing equations (2.1) are only evolved on blocks that are not further refined, the so-called
leaves. All other blocks receive their values from their children by the projection operation eq. (2.41). As
emphasized by Roussel et al. [108], conservation may be violated at resolution jumps between leaves
at two different refinement levels. Assuming that for two neighboring leaves at level l and l +∆l in-
going fluxes are computed at level l and out-going fluxes at level l+∆l, the different cell sizes result in a
mismatch of the reconstructed fluxes. To correct this mismatch, fluxes of the coarser level are overwritten
by fluxes of the finer level at any resolution jump [108].

2.4.3 Local time-stepping approach

Temporal integration of the finite-volume discretization of the governing equation (2.8) is affected by a
varying spatial grid resolution. Local adaptation techniques may exploit that the stability criterion, eq.
(2.19), depends on the local grid size.
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Figure 2.7: Halo cells for two neighboring blocks on the same level. The center shows the full domain,
the single blocks are shown on the left and right. The thick black line marks the internal cells. The
internal cells that are sent into the halo cells are marked in blue and red. Adapted from Kaiser et al. [65].
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Figure 2.8: Two-dimensional domain with multiresolution refinement (left), sketched multiresolution tree-
like data structure (center), and corresponding level, cell size, and time-step size relations (right).
Adapted from Kaiser et al. [65].

A straightforward definition of a stable time-step size based on the CFL condition (see section 2.2.2)
relies on the globally smallest occurring cell size [35, 108]. This constant time-stepping approach is algo-
rithmically simple, since the entire domain is always evolved synchronously. Yet, overall efficiency could
be further increased since larger cells could be evolved in time by larger time-step sizes. To overcome
this issue, local time-stepping approaches can be used. Local time stepping was first introduced by Os-
her and Sanders [92] to solve one-dimensional scalar conservation laws on grids with varying spatial cell
sizes. In their approach, the fluid field is evolved on each refinement level l with a level-dependent time-
step size ∆t l . In multiresolution schemes with dyadic refinement strategies, level-dependent time-step
sizes ∆t l can be easily formulated by scaling from the finest admissible time-step size at the maximum
refinement level ∆t lmax

∆t l =∆t lmax
· 2lmax−l (2.46)

[21, 41]. Level-dependent time-step sizes are shown for a two-dimensional domain together with a
sketched multiresolution tree in Fig. 2.8. For the given example of three levels, the coarsest level
l = 0 is updated once, while the finest level lmax is updated eight times. This drastically decreases the
computational effort in comparison to constant time stepping. Previous works [1, 9, 21, 41, 44, 97, 107]
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underline the advantages of the method. In section 3.1, an overview about potential issues of such local
time-stepping schemes and a summary of my contributions are given.



Chapter 3

Accomplishments

3.1 An adaptive local time-stepping scheme for multiresolution sim-
ulations of hyperbolic conservation laws

Time LTS

0 1 2 Level

t(n+2)

t(n+1)

refinement and
coarsening allowed

2nd RK stage

1st RK stage

of halo cells
Synchronization

LTS

refinement allowed

t(n+3)

t(n+4)

Figure 3.1: Sketch of the steps in the local time-stepping approach,
see also Domingues et al. [21] or Kaiser et al. [65].

Local time-stepping schemes for
instationary problems as intro-
duced in section 2.4.3 have two
major drawbacks [21], see Fig.
3.1: First, synchronization is re-
quired at resolution jumps be-
tween two neighboring blocks to
use only data at the same time
instant for reconstructing cell-face
fluxes. Second, the time-step
size has to remain constant un-
til the coarsest level has evolved
in time by one time-step size,
since all levels advance to the
first stage within the first evolu-
tion step. Thus, the efficiency of
the time-step size adaptation de-
creases with increasing number of
maximum refinement levels lmax,
since the time-step size on the
finest level is only updated after
2lmax cycles. In the event of strong
temporal wave-speed gradients,
such as during bubble collapse,
this may result in severe stabil-
ity issues, since the CFL stabil-
ity criterion is potentially violated.
As remedy, small CFL numbers
may be used to compute the max-
imum admissible time-step size,
decreasing the overall efficiency of
the method.

A first approach to overcome this difficulty was proposed by Müller and Stiriba [86]. They introduced
transition zones between coarser and finer grids for synchronization. Evolving the solution in time from

23
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finer to coarser grids allowed to update the time-step size after each full cycle on the finest level. The
approach was extended to multi-fluid simulations by Coquel et al. [17]. Yet the approach is limited to
stepwise grid refinements and low-order flux-reconstruction schemes.
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Jakob W. J. Kaiser, Nils Hoppe, Stefan Adami, Nikolaus A. Adams: An adaptive local time-stepping
scheme for multiresolution simulations of hyperbolic conservation laws. Journal of Computational Physics:
X, Volume 4, 100038, 2019 [65]

In this publication, a novel algorithm is proposed for a block-based multiresolution method with local time
stepping that allows for instantaneous time-step size adaptation. The method is not limited with regard
to the order of the flux-reconstruction scheme or the level difference between neighboring blocks. To
synchronize flow field data at resolution jumps between neighboring leaves, projection and prediction
operations are applied on the divergence of the numerical flux function. By sending the divergence first
into halo cells of resolution jumps and, second, evolving them in time on the finer level with the level-
dependent time-step size, data on different levels are synchronized without prior temporal evolution on
a coarser level. This is possible since, as derived mathematically in the publication, applying projection
and prediction on the divergence and afterwards evolving it in time on the target level is equivalent to
performing the projection and prediction on the already integrated conservative states. This approach
allows for evolving coarser resolution levels only when they reach the same instant in time as all sub-
sequent finer levels, thus the time-step size can be adapted efficiently after each full Runge-Kutta cycle
on the finest level. Therefore, the prescribed CFL stability criterion is always enforced, including in the
event of strong wave-speed changes.

Projection and prediction of the flux divergence do not deteriorate the convergence order of the
overall scheme. Spatial and temporal error analyses are presented for a linear wave-advection case and
a non-linear wave-steepening case.

The instantaneous time-step size adaptivity enables the use of larger CFL numbers than for standard
local time-stepping schemes, even in the case of strong temporal wave-speed gradients. This is shown
for the one-dimensional test cases of Sod [119] and Woodward and Colella [140] with discontinuities
in the initial flow states. Standard local time stepping becomes unstable for large CFL numbers since
the wave speed increases drastically during the first few iterations, which is not accounted for by the
time-step size. In contrast, the new approach allows for time-step size adaptation corresponding to the
wave speed increase, and the method remains stable.

The applicability of the new scheme to real-life problems is presented for an axisymmetric description
of a biomedical application modeling non-invasive targeted drug delivery [120]. A bubble located near a
solid wall is subjected to a lithotripter pulse, initiating the collapse of the bubble and finally resulting in a
radial pressure wave and a water hammer impinging on the wall post-collapse. For more details on this
case, see Johnsen and Colonius [61]. The new method shows improved stability properties for high CFL
numbers as compared to the standard local time-stepping scheme. At collapse time, strong temporal
wave speed gradients occur. These cause numerical instabilities for the standard local time stepping
approach. For the novel scheme, the on-time time-step size adaptivity enables stable simulations. The
accuracy of the method is shown by a comparison of the detected wall pressure with the empirical
formula of Johnsen and Colonius [61].

Finally, the overall computational efficiency is analyzed for the one-dimensional, single-fluid shock
tube case of Sod [119] and the two-dimensional, multi-phase case of Johnsen and Colonius [62]. The
additional operations account for an overall compute time increase of approximately 10% and 5% of the
total compute time, respectively, which is considered acceptable for the significantly improved stability of
the method.

My contribution to this work lies in developing the algorithm of the adaptive local time-stepping
scheme and deriving the mathematical foundation. I implemented the approach in our in-house code
and performed the validation and verification of the method through numerical simulations. I selected
the simulation setups presented in the paper, and post-processed the results. Finally, the manuscript for
the publication was written predominantly by me.
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3.2 Investigation of interface deformation dynamics during high-
Weber number cylindrical droplet breakup

Systematic experimental investigations have improved the knowledge about the breakup of liquid drops.
Extensive reviews have been published by Guildenbecher et al. [38] and Theofanous [132]. However,
small temporal and spatial scales of the dominating instability modes hinder detailed experimental inves-
tigations of the breakup modes and the interplay of the occurring interface instability mechanisms. This,
as well as increasing computational resources, motivates numerical investigations.

The first three-dimensional simulations in the low-Weber number regime have been presented by
Khosla et al. [71]. More recently, further three-dimensional studies have been performed in the RTP
regime by Yang et al. [144] assuming incompressible flow, and by Meng and Colonius [83] in the SIE
regime, assuming compressible flow. Yet, these studies are limited in the applied spatial resolution
since the number of degrees-of-freedom required to simulate three-dimensional drop breakup events
exceeds the compute power even of modern supercomputers. To limit the numerical effort, many stud-
ies therefore decrease the setup size by assuming axisymmetry or choosing two-dimensional setups.
The latter is motivated by the work of Igra et al. [52] and Igra and Takayama [55]. They reported phe-
nomenological similarity of early-stage interface deformation of quasi two-dimensional water columns
and three-dimensional spherical drops in crossflow in the SIE regime. Also, experimental results of the
quasi two-dimensional breakup of liquid columns in crossflow [52, 54, 56, 113] are available for model
validation [29, 53, 57, 90, 112, 128, 137, 138, 141, 143].

In a detailed analysis, Meng and Colonius [82] investigated two-dimensional cylindrical drop breakup
in the SIE regime based on the setup of Igra and Takayama [52, 54], applying a volume-of-fluid approach.
They highlighted the important role of local recirculation zones in the wake and at the equator of the drop
for the peeling of sheets at the drop equator. In their study, they neglected viscous and capillary forces,
assuming that the breakup mechanism is basically independent of these forces at large Weber and small
Ohnesorge numbers. However, due to the applied diffuse interface multi-phase model, small scales at
the interface were suppressed, and the interface remained smooth during the entire deformation.
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Jakob W. J. Kaiser, Josef M. Winter, Stefan Adami, Nikolaus A. Adams: Investigation of interface
deformation dynamics during high-Weber number cylindrical droplet breakup. International Journal of
Multiphase Flow, Volume 132, 103409, 2020 [66]

In this publication, high-fidelity simulations are performed for the experimental setup of Igra and
Takayama [52, 54]. The Weber number of this case is We = 7.3 × 103, the Ohnesorge number
Oh = 1.7× 10−3, the Reynolds number Re = 1.3× 105, and the density ratio ε = 459. Hence, the ex-
pected breakup regime is shear-induced entrainment. The previously presented level-set sharp-interface
approach with conservative interface interaction provides low numerical dissipation and high-order shock
capturing. This enables an accurate prediction of interface waves during the deformation process, and
the interaction of these interface waves with local flow field disturbances. In addition, viscous and capil-
lary forces are considered in the setup by applying the extended conservative interface-interaction model
of Luo et al. [81].

The setup is first validated using experimental data of Igra and Takayama [52, 54] and numerical
data of Meng and Colonius [82]. Integral parameters, such as the upstream stagnation point drift and
the center-of-mass drift, and schlieren images of the wave patterns near the cylinder agree well with
the reference data, underlining the accuracy of the setup. A grid convergence study indicates that grid
resolutions used in previous work were insufficient to capture small scale details of the deformation
process. Yet, integral parameters are accurately reproduced already for fairly coarse grid resolutions.

The simulation accurately predicts the flattening of the cylindrical drop and the subsequent shearing
of a water sheet from the drop equator, as expected for breakup in the shear induced entrainment regime.
Small scale interface waves form already during the flattening of the droplet after shock passage near
the drop equator. These waves grow to a hat-like structure on the windward side of the cylinder, which
remains smooth during the entire simulation time. Both the hat-like structure and the smooth windward
side were observed in experimental investigations of Theofanous [133]. Resolving early-stage interface
waves is critical for hat-formation. For coarser grid resolutions or more dissipative schemes, these waves
are not resolved, and the hat does not form during later deformation stages. The interface waves are
linked to pressure waves at the droplet equator. These form in a local supersonic flow region shortly
after shock passage, and disappear once the supersonic flow regions dissolve.

Multiple local recirculation zones are found along the circumference of the cylindrical droplet. In
addition to the recirculation zones in the wake and at the equator, which were reported by Meng and
Colonius [82], recirculation zones form near the hat and further downstream near the tip of the water
sheet. This underlines the conclusion of Meng and Colonius, who emphasized the importance of such
recirculation zones for the overall breakup process.

As new integral parameter, the skewness of the axial droplet displacement is introduced to charac-
terize the transient droplet deformation. The skewness allows for distinguishing subsequent deformation
stages of the droplet - flattening, hat formation, and sheet stripping. Flattening results in an increase
of skewness. During hat formation, skewness decreases, before increasing again once the sheet is ad-
vected downstream. In addition, this quantity is also sensitive to small-scale interface structures, and
therefore can be used to estimate the overall convergence of the spatial grid resolution.

Finally, simulation results are presented for a reduced setup, intentionally neglecting the effect of
viscous and capillary forces on the breakup mechanism. These results show only minor differences
to the full model with viscous and capillary effects. Thus, the usual assumption that these effects are
negligible can be confirmed for the chosen spatial and temporal discretization schemes and resolution.

My contribution to this work is the calibration of the modeling parameters in our in-house code for this
setup. Moreover, I performed the simulations and post-processed the simulation results, and validated
the setup against experimental and numerical reference data. Finally, the manuscript for the publication
was written predominantly by me.
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3.3 A semi-implicit conservative sharp-interface method for liquid-
solid phase transition

Liquid-solid phase transition poses an initial-boundary value problem with moving boundary, a so-called
Stefan problem. The boundary conditions at the interface are the Gibbs-Thomson relation, eq. (1.5),
and the Stefan condition, eq. (1.6). The numerical solution of the interface dynamics of the Stefan
problem requires accurate predictions of the topologically complex, time-dependent solidification front.
In literature, both mesh-free [85, 121–123, 147] and mesh-based methods have been proposed to solve
the Stefan problem. The mesh-based methods can be considered to be either front-tracking [37, 63, 104]
or front-capturing [6, 8, 15, 18, 28, 31, 39, 70, 72, 74, 88, 101, 102, 118, 125–127, 129, 142] methods.
A review on front-capturing methods was recently published by Jaafar et al. [59], naming the phase-
field method and the level-set method as most common front-capturing methods to solve solidification
problems.

As introduced in section 1.1, phase-field models are widely used to simulate phase-change pro-
cesses such as liquid-solid phase transition [6, 8, 28, 39, 70, 74, 88, 118, 142]. Comprehensive reviews
are given by Singer-Loginova and Singer [117] and Boettinger et al. [11]. A major challenge regarding
phase-field models is an appropriate choice of the interface thickness, which is a free model parameter.
For quantitatively accurate predictions, the interface thickness needs to be sufficiently small. Since the
cell size must be comparable to the interface thickness, this may incur prohibitively high computational
cost [59].

The level-set method does not suffer from this limitation. Instead, its sharp-interface property al-
lows for accurately computing the local interface geometry (interface normal and curvature). The first
approach to model solidification processes with level set stems from Osher and Sethian [93]. They
introduced a curvature-dependent interface-velocity formulation, which is a first step to model the Gibbs-
Thomson relation and the Stefan condition. Such a model was presented by Sethian and Strain [114],
and extended by Chen et al. [15] with focus on crystal growth. In their approach, the thermal diffusion
equation is approximated by a finite-difference scheme on a homogeneous grid with implicit time inte-
gration. They show good results for the Stefan problem and unstable crystal growth. A validation of their
approach with the solvability theory was performed by Kim et al. [72]. Gibou et al. [31] showed that the
overall accuracy and convergence rate of the method can be improved by applying high-order stencils.
To improve computational efficiency, Chen et al. [14] applied a local mesh adaptation approach, refining
the mesh only near the phase interface. An extension to non-isothermal solidification of binary alloys
was presented by Theillard [129]. Tan and Zabaras combined the level-set method with a front tracking
approach to model the growth of melts [126, 127] and multi-component alloys [125]. Ramanuj et al. [101]
applied a second-order level-set approach [100], underlining the advantages of high-order reconstruc-
tion schemes for overall accuracy and convergence rate. Criscione et al. [18] and Rauschenberger et al.
[102], to the contrary, used a finite-volume discretization, which improves overall conservation. Yet, they
relied on finite-difference based interface treatment, which may violate local conservation at the interface.
Such non-conservative interface treatment may result in physically incorrect interface evolution.
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In this publication, a sharp-interface method with conservative interface interaction is proposed to model
liquid-solid phase transition. The developed model is based on the original approach of Hu et al. [51]
and the extension of Lauer et al. [78] for phase change, see section 2.3.2. To focus on the phase-change
process, convection is neglected in the model and all validation cases.

The Gibbs-Thomson relation, eq. (1.5), is prescribed as Dirichlet boundary condition, which allows
for simple consideration of surface-tension, kinetic, and anisotropic effects on the interface tempera-
ture. The Stefan condition, eq. (1.6), is reformulated as interface exchange flux of the conservative
interface interaction method. The reconstruction of the interface-normal temperature gradient, which is
required for the Stefan condition, is a known challenge for this application [18]. In the presented model,
a weighting based on WENO smoothness indicators is applied. This approach suppresses numerically
induced oscillations. The high-order reconstruction, together with an explicit third-order strongly stable
Runge-Kutta time integration scheme, provides low numerical dissipation.

A standard explicit level-set approach as used in the previous work of Lauer et al. [78] turned out to
be insufficient to correctly predict the interface evolution in more than one dimension. This results from
inaccurate solidification mass flux computations when the interface moves diagonally through a cell.
Therefore, we propose a semi-implicit approach, splitting the integration of level-set and fluid fields in the
algorithm. This enables a semi-implicit treatment of the level-set field in the computation of the interface
exchange terms, since the interface position of the old and the new time instant can be used. The
approach allows for an exact computation of solidification mass fluxes, which drastically improves stability
and enforces conservation. Since the level-set field is reinitialized prior to computing interface exchange
fluxes, numerical errors introduced by cut cell reinitialization are suppressed. The conservation property
is presented for a two-dimensional complex crystal growth case, in which the total mass is conserved
during the simulated time.

The model is validated for the one-dimensional Stefan problem with the analytical solution of Carslaw
and Jaeger [13]. The interface propagation and the temperature field are accurately resolved, and the
convergence order for spatial refinement is one for both the interface location and the temperature field.
Comparison with the marginal stability hypothesis for a growing parabolic dendrite yields good agreement
with the model of Langer and Müller-Krumbhaar [77]. For this case kinetic effects are not considered,
resulting in good agreement with the model also for large undercoolings. The advantages of high-order,
low-dissipation schemes are demonstrated for a two-dimensional crystal-growth problem with tip-splitting
instability, which occurs earlier for our presented method than for previous approaches.

Finally, a multi-crystal growth case underlines the capabilities of the method to simulate complex
microstructures. Anisotropic surface tension results in the growth of each crystal along four main axes.
The low-dissipation spatial and temporal discretization schemes allow for resolving small scale struc-
tures, especially in those areas where crystals interfere in their growth. Yet, the crystals do not merge
artificially.

My contribution to this work is the development of the phase-change model, its implementation,
verification and validation. I have chosen the test cases and performed the post-processing. Finally,
the manuscript for the publication was written predominantly by me. A significant part of this work was
done during my research stay at the Skolkovo Institute of Science and Technology (Skoltech) in Moscow,
Russia. This stay was supported by the TUM-Skoltech cooperation agreement, and my host at Skoltech,
Prof. Iskander S. Akhatov, is co-author of this publication.
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Chapter 5

Discussion with Respect to the State of the
Art and Conclusion

Simulating flow problems for dispersed systems with multiple immiscible fluids remains still today a chal-
lenge in computational fluid dynamics. An accurate representation of the interface and the interaction
between the two fluids in a conservative formulation are required for a consistent representation of inter-
facial instabilities, which are paramount to an accurate physical model. In addition, the development of
spatial and temporal adaptation techniques is required since the multi-scale nature of such multi-phase
flow configurations complicates numerical investigations. Such techniques offer vast opportunities since
experimental investigations are often limited due to the small temporal and spatial scales of multi-phase
phenomena. In this work, contributions are presented improving stability and robustness of temporal
adaptation techniques for single- and multi-phase simulations in an Eulerian frame of reference. This
approach is applied for high-fidelity simulations of secondary atomization, which is a problem driven by
the growth of Rayleigh-Taylor and Kelvin-Helmholtz instabilities at the gas-liquid interface [132]. Further-
more, a model for non-equilibrium liquid-solid phase transition is proposed for the conservative interface
interaction method of Hu et al. [51]. Such liquid-solid phase-transition problems are dominated by the
interplay of tip-splitting and side-branching instabilities at the progressing solidification front, which de-
termine the resulting crystalline microstructure. High-fidelity models as the one presented in this work
are required for validation of low-fidelity microstructure simulation tools, which play an important role in
modern manufacturing.

Time-step size adaptivity is a widely discussed topic in computational fluid dynamics, since such
adaptation techniques are paramount to the efficient simulation of real-life flow problems. The algorithm
with full time-step size adaptivity presented in the first publication, see section 3.1, extends previous local
time-stepping approaches for the multiresolution scheme of Harten [42], as given by, e.g., Domingues
et al. [21] and Han et al. [41]. The novel scheme provides improved stability and robustness, while
the incurred increase of computational cost is considered to be negligible. The proposed method can
be implemented in a straightforward way in an already existing multiresolution code framework, since
only standard operations of the multiresolution approach - projection and prediction - are used, without
significant changes in the main evolution algorithm. The method was used in multiple subsequent inves-
tigations [24, 48, 64, 66, 67, 139], underlining its general applicability beyond the setups presented in
the publication.

The multiresolution scheme with improved local time-stepping was applied for high-fidelity simula-
tions of cylindrical droplet breakup in the high-Weber number regime (shear induced entrainment) in
the second publication, see section 3.2. Previous work by Meng and Colonius [82, 83] on this setup
underlined the importance of locally varying grids to obtain sufficient spatial resolution near the phase
interface or in areas with large spatial flow-field gradients. Due to run-time spatial and temporal adap-
tation provided by the method, even higher resolutions are obtained in this work. Cells are added in
areas of interest, but removed once the droplet moves away or local gradients flatten. This enables finer
effective grid resolutions than in any previous study, resulting in an improved representation of the flow

33



34 CHAPTER 5. DISCUSSION WITH RESPECT TO THE STATE OF THE ART AND CONCLUSION

field. In addition, the level-set approach yields lower numerical diffusion than the volume-of-fluid diffuse-
interface approach [111] which was used by Meng and Colonius [82, 83]. In their study, the excess
numerical diffusion of the volume-of-fluid method artificially smoothened the interface. This has little
effect on integral parameters, which agree well with experimental reference data of Igra and Takayama
[52, 54] for both studies. Yet, low numerical dissipation is required to accurately resolve small-scale
interface features. In particular, the close connection of local interface disturbances and pressure waves
in the flow field was observed for the first time. The disturbances later result in the formation of the
hat-like interface structure on the windward side of the droplet, which is known from experimental visual-
izations of the shear-induced-entrainment breakup mode [132]. These findings have motivated ongoing
investigations on the influence of ambient gas flow parameters on the breakup evolution. In addition, a
more detailed investigation of low-Weber number breakup is required to investigate the transition from
shear-induced-entrainment breakup to Rayleigh-Taylor-piercing breakup.

Finally, a novel approach to simulate non-equilibrium liquid-solid phase transition of pure melts is
presented in the third publication, see section 3.3. A two-phase Stefan problem is solved at the interface,
coupled with the Gibbs-Thomson relation as local Dirichlet boundary condition. The spatial and temporal
adaptivity of the multiresolution approach with adaptive local time stepping is advantageous to model
the inherent multiscale nature of the crystallization process efficiently, as was already shown in previous
literature [14, 129]. At the same time, the conservation property of the sharp-interface approach with
semi-implicit level-set treatment provides a physically consistent evolution of the interface instabilities. In
contrast to previous level set-based schemes prescribing the interface boundary conditions using ghost
cells (e. g. [18, 102]), the presented method employs that the conservative interface-interaction method
of Hu et al. [51] prescribes interface boundary conditions in a flux-based formulation. This corresponds
directly to the energy fluxes on the right-hand-side of the Stefan condition, eq. (1.6), which include
the Gibbs-Thomson relation, eq. (1.5). Comparisons to the analytical solution of the one-dimensional
Stefan problem [13] and to experimental and numerical reference data for the stable growth of a two-
dimensional parabolic dendrite [75–77, 87, 116] yield good agreement. The proposed method is more
sensitive to detect physical tip-splitting instabilities than previous models, as presented by comparison
with reference work for the unstable growth of a four-fold symmetric crystal [80, 127]. This is in line
with the previously reported improved representation of interfacial instabilities of the level-set scheme
with conservative interface interaction for aerodynamic fragmentation. An extension of the interface-
interaction model to binary and multi-component alloys, which are relevant for more realistic applications
such as additive manufacturing, is subject of ongoing work.

In conclusion, the level-set approach with conservative interface interaction, coupled with spatial and
temporal adaptation techniques, has proven to be very well suited to solve a variety of complex multi-
phase flow configurations. This work presents new modeling techniques which improve the stability of
the overall scheme, and enforce conservation at the interface. This enforced conservation, together
with the low numerical dissipation of the level-set method, enables an accurate prediction of interfacial
instabilities for both flow-field-driven and interface-driven multi-phase problems at high accuracy. This is
underlined by the numerical investigations of aerodynamic fragmentation and liquid-solid phase transition
in this work. This versatility makes the method directly applicable for a wide range of fluid-dynamics
applications in research and industry.
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We present an adaptive local time-stepping (ALTS) scheme for a block-structured multires-
olution scheme of hyperbolic conservation laws for fluid flow. The stability of standard local 
time-stepping (LTS) schemes with level-dependent time-step sizes is improved by local 
time-step size adaptation when progressing through the underlying multi-stage time inte-
gration scheme. The novelty of the approach is that it merges flux computation and time 
integration of the state vector with projection and prediction operations of the multireso-
lution scheme [15]. This enables consistent time integration of subdomains with different 
refinement levels without the need for intermediate time synchronization which can be 
prohibitively expensive in parallel computations. Consequently, coarser subdomains are ad-
vanced in time only once finer subdomains have advanced to the same time instant. Full 
spatial resolution adaptivity for integrated regions after each substep is maintained.
The new scheme exhibits significantly improved numerical stability as compared to previ-
ous LTS schemes due to the local time-step size adaptation at each substep. The compu-
tational overhead of the incurred additional operations is small. In applications, the ALTS 
scheme demonstrates the same computational efficiency as standard LTS schemes.
The new scheme can be applied to any explicit single-step time-integration scheme and 
is independent of the employed spatial discretization scheme. The improved stability is 
demonstrated with several one- and two-dimensional examples of flows with one and two 
phases, applying second- and third-order Runge-Kutta time integration schemes.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational simulations of complex flows remain a challenge even today. The large range of temporal and spatial 
scales in combustive or turbulent flows or flow cavitation challenges the performance of even the largest parallel computers 
[26]. While a wide range of spatial scales causes high memory consumption, small temporal scales lead to small time-
step sizes that inversely proportionally increase the number of required computational operations. Although the smallest 
spatial and temporal scales predominantly govern the flow evolution, in particular interfacial flows or flows with reaction 
fronts require the highest spatial resolution levels on co-dimension one-manifolds. Therefore, spatial and temporal resolution 
adaption schemes have been and are being developed as a remedy to reduce computational cost.
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As an approach for spatial adaptivity, Harten [15,16] proposed a multiresolution (MR) framework for the spatial dis-
cretization of hyperbolic conservation laws to improve the efficiency of existing finite-volume solvers. The concept, which 
has been further developed to provide full spatial adaptivity [4], relies on a wavelet-based representation of the flow fields. 
This allows for compressing data to the minimum necessary amount for representing a field function at desired accuracy. 
Starting from a solution on a coarse mesh, higher-order wavelet coefficients are added successively to achieve the required 
accuracy using an increasingly finer mesh. In smooth flow regions only few wavelet coefficients may suffice to approximate 
the solution with the required accuracy on a coarse grid. In regions where the solution has strong local gradients, higher-
wavenumber wavelets need to be used to represent the solution which results in a locally refined grid. The underlying 
refinement strategy is based on dyadic refinement, where the cell spacing is halved in each direction for every additional 
set of wavelet coefficients. Compared to other spatial adaption methods, such as adaptive mesh refinement (AMR), MR 
techniques result in improved CPU and memory compression rates for the same truncation-error order discretizations of 
hyperbolic conservation laws [6].

Spatially varying grid resolution affects the temporal integration of the governing equations. The choice of a stable 
time-step size �t from a stability criterion, such as the CFL condition, depends on the local cell sizes. Constant time-
stepping (CTS) schemes choose the minimum �t based on the globally maximum wave speed |u ± c| together with the 
smallest occurring cell size to ensure stability in the entire domain [10,29]. Although formally and algorithmically simple, 
this approach is not very efficient as larger cells could use larger time-step sizes.

As a remedy, Osher and Sanders [25] introduced a local time-stepping (LTS) scheme for solving one-dimensional conser-
vation laws on grids with varying spatial cell size. Each level of refinement uses its specific cell size to scale the time-step 
size �t . For dyadic refinement in one dimension, the time step at each successively coarser level l is twice the time-step 
size of the finer level l + 1, thus the required number of time integration steps are strongly reduced compared to the CTS 
scheme. The LTS scheme has been combined with the MR approach by Domingues et al. [7–9] and Lopes et al. [22]. In their 
approach, the time-step size is fixed during each full cycle on the coarsest resolution level. At intermediate stages, inter-
polation is required in cells at resolution jumps. Müller and Stiriba [24] introduced transition zones between coarser and 
finer cells. This enables updating the time-step size after each full cycle on the finest levels and propagating this change 
upwards to coarser grid regions. Their scheme has been successfully employed for multi-fluid simulations [5]. However, 
their LTS algorithm is limited to stepwise grid refinements and cell-flux reconstruction schemes which require two adjacent 
cells only. Han et al. [12,13] applied the local time-stepping approach on a block-structured multiresolution scheme, with a 
fixed time-step size during each full cycle on the coarsest resolution level.

Several works [2,18,28] have demonstrated that the LTS approach with MR outperforms the computational efficiency of 
CTS. The minimum time-step size, however, can be determined only after each full cycle on the coarsest mesh, regardless 
of the interim local flow evolution on the finest mesh. Hence, the method does not deliver instantaneous time-step size 
adaptivity [8], and eventually may violate the stability criterion. Flows with strong temporal gradients, i.e. fast physical 
processes such as collapsing bubbles during cavitation [1] or chemical reactions [2] reveal such a deficiency of the LTS 
scheme. In the standard LTS approach, stability for such cases can be achieved by choosing a smaller CFL number, thus 
decreasing overall efficiency. Alternatively, the number of refinement levels can be reduced to allow more frequent time-
step size adjustments, which decreases memory compression.

In this work, we present a revised LTS scheme without limitations on the spatial and temporal adaptivity for a block-
structured MR scheme. Projection and prediction operations of Harten [15] are applied on the numerical divergence of the 
flux vector rather than the state vector of the finite-volume discretization of the governing equations, similar to the approach 
of Bihari and Harten [3]. By advancing also halo cells of cell blocks in time, time-step size adaptation for different resolutions 
in different domain regions without additional synchronization on coarser resolution levels is obtained. The time-step size 
is adapted after each full cycle on the finest level, thus recovering the stability properties of the CTS approach. This is not 
limited to single-stage time-integration schemes, but also applies to multi-stage time integration schemes, e.g., the two-
stage second order Runge-Kutta (RK) Total Variation Diminishing (TVD) scheme [11,14]. In addition, the scheme does not 
constrain spatial discretization. Hence, it can be used with high-order spatial schemes, such as WENO, and does not limit 
the resolution jumps between neighboring domain regions.

The organization of the paper is the following: in section 2, the adaptive MR scheme for the finite volume (FV) method 
is reviewed. In section 3, we describe the new adaptive local time-stepping scheme. In section 4, we present simulation 
results of our fully adaptive scheme for one- and two-dimensional problems. We compare our simulation results with exact 
solutions and other numerical schemes to discuss the accuracy and stability of the new scheme. In section 5, we conclude 
our results.

2. Multiresolution scheme

2.1. Finite volume representation

We consider a finite-volume representation of hyperbolic conservation laws

∂u

∂t
+ ∇ · f (u) = 0 (1)
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Fig. 1. Dyadic refinement scheme in 3D, following Domingues et al. [8].

on a Cartesian grid (x, y, z, t) ∈ � × [0, ∞), � ⊂ R3 to evolve the state vector u. The governing equations (1) constitute 
an initial-boundary value problem with u(x, y, z, 0) = u0(x, y, z) and appropriate boundary conditions on the boundary 
� = ∂�. In the finite volume approach, the cell-averaged numerical solution U can be advanced in time by solving the 
ordinary differential equation (ODE) system

dU

dt
+ D(U ) = 0 , (2)

where D(U ) represents the divergence of the evaluated numerical flux function. High-order shock capturing is achieved in 
this paper with a 5th-order WENO shock-capturing scheme for the reconstruction of the numerical flux function [19]. The 
ALTS scheme, however, can be applied with every other linear or nonlinear finite-volume or finite-difference scheme.

The semi-discrete ODE system (2) is integrated in time using the 2nd-order RK-TVD scheme

U
(n+1/2) = U

(n) + �t(n) D
(

U
(n)

)
(3)

U
(n+1) = U

(n) + �t(n) 1

2

[
D

(
U

(n)
)

+ D
(

U
(n+1/2)

)]
(4)

of Gottlieb and Shu [11]. The solution at time t(n) and t(n+1) = t(n) + �t(n) is denoted as U
(n)

and U
(n+1)

, respectively. 
The intermediate stage of the RK scheme is denoted as U

(n+1/2)
. The time-step size �t is chosen according to a Courant-

Friedrichs-Lewy (CFL) stability criterion

�t ≤ CFL

(∑
i

||ui ± c||∞
�xi

)−1

(5)

with CFL ≤ 1, where c, ui and �xi are the local speed of sound, the velocity component in i-direction, and the cell size in 
i-direction of the Cartesian mesh, respectively [11]. We use the discrete evolution operator

E = E
(

U
(n)

,D(U 1),D(U 2),�t(n)
)

(6)

as short notation for a single RK step [29]. For the first stage, it is D(U 1) = D(U 2) = D(U
(n)

), for the second stage D(U 1) =
D(U

(n)
) and D(U 2) = D(U

(n+1/2)
).

2.2. Multiresolution representation

Following the original concept of Harten [15], the cell average solution U is represented by the combination of data on a 
coarse grid and a series of values on successively finer grids. We use a Cartesian grid with global indices i, j, and k, where 
each cell can be refined dyadically into 2D children cells, with D being the number of dimensions. Starting from the parent 
cell states Ul,(i, j,k) at level l, the children at the next-finer level l + 1 are denoted as Ul+1,(2i+α,2 j+β,2k+γ ) , α, β, γ ∈ {0, 1}. 
A sketch of this dyadic refinement strategy is shown in Fig. 1.

Two basic operations are introduced to exchange data between consecutive levels l and l + 1 [15]. Cell averages at level 
l are estimated from a finer level l + 1 by the projection operation Q(l + 1 → l)

Ul,(i, j,k) = QUl+1 = 1

2D

1∑
α=0

1∑
β=0

1∑
γ =0

Ul+1,(2i+α,2 j+β,2k+γ ) . (7)

Note that we formulate the projection operator for 3D data sets. For lower dimensions, the indices k (2D) or j and k (1D) 
as well as γ and β are omitted. This operation is exact for cell-averaged data.
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The prediction operation P(l → l + 1) is used to estimate cell averages at level l + 1 from a coarser level l and is given by

Ûl+1,(2i+i0,2 j+ j0,2k+k0) = PUl

= Ul,(i, j,k) + (−1)i0 Q s
x + (−1) j0 Q s

y + (−1)k0 Q s
z +

(−1)(i0+ j0) Q s
xy + (−1)(i0+k0) Q s

xz +
(−1)( j0+k0) Q s

yz + (−1)(i0+ j0+k0) Q s
xyz (8)

with

Q s
x =

s∑
m=1

γm
(
Ul,(i+m, j,k) − Ul,(i−m, j,k)

)
,

Q s
y =

s∑
n=1

γn
(
Ul,(i, j+n,k) − Ul,(i, j−n,k)

)
,

Q s
z =

s∑
o=1

γo
(
Ul,(i, j,k+o) − Ul,(i, j,k−o)

)
,

Q s
xy =

s∑
m=1

γm

s∑
n=1

γn
(
Ul,i+m, j+n,k − Ul,i+m, j−n,k − Ul,i−m, j+n,k + Ul,i−m, j−n,k

)
,

Q s
xz =

s∑
m=1

γm

s∑
o=1

γo
(
Ul,i+m, j,k+o − Ul,i+m, j,k−o − Ul,i−m, j,k+o + Ul,i−m, j,k−o

)
,

Q s
yz =

s∑
n=1

γn

s∑
o=1

γo
(
Ul,i, j+n,k+o − Ul,i, j+n,k−o − Ul,i, j−n,k+o + Ul,i, j−n,k−o

)
,

Q s
xyz =

s∑
m=1

γm

s∑
n=1

γn

s∑
o=1

γo
(
Ul,i+m, j+n,k+o − Ul,i+m, j+n,k−o − Ul,i+m, j−n,k+o

−Ul,i−m, j+n,k+o + Ul,i+m, j−n,k−o + Ul,i−m, j+n,k−o + Ul,i−m, j−n,k+o

−Ul,i−m, j−n,k−o
)

and i0, j0, k0 ∈ {0, 1} depending on the location of the finer cell. The order of this central interpolation scheme is r =
2s + 1, with the stencil half-width s. The interpolation coefficients are γ1 = {1/8} for a 3rd order scheme (s = 1) and 
γi = {−22/128, 3/128} for a 5th order scheme (s = 2). For lower dimensions, the prediction operation is given by eq. (8)
without higher-dimensional terms (2D: Q s

xyz = Q s
xz = Q s

yz = Q s
z = 0, 1D: additionally Q s

xy = Q s
y = 0). These operations can 

be applied on both the cell-averaged state vector and the numerical divergence of the flux functions [3].
Projection and prediction operations are local and consistent (Q ◦ P = Id), but not commutative (P ◦ Q 
= Id). This 

motivates the definition of the so-called details d as the difference between the exact solution and the predicted solution

dl+1,(2i,2 j,2k) = Ul+1,(2i,2 j,2k) − Ûl+1,(2i,2 j,2k) . (9)

This definition shows that knowing the cell average of the coarsest cell and details of all successively finer cells is equivalent 
to knowing the cell-averaged values of all finer cells. Implicit mesh adaption is achieved by considering details larger than 
a pre-defined level-dependent threshold ε, only. As details become negligible, i.e. ||d|| < ε, further grid refinement is not 
necessary, as a finer mesh does not lead to significantly better results than interpolation from a coarser grid.

For efficiency reasons, we follow the approach of Rossinelli et al. [27] and apply P , Q, and all other operations, e.g. the 
numerical flux estimation, always on a set of multiple cells, which is called a block. The refinement of cells occurs block-
wise, too, i.e., all cells of a block are refined as soon as one single cell in the block triggers refinement. A two-dimensional 
example of the resulting tree structure for a maximum refinement level of lmax = 3 is shown in Fig. 2. In this example, we 
start with one single block on the coarsest level, which is successively refined three times to give the maximum resolution 
in the region of interest.

The following definitions are introduced for the tree-structure to reflect the relationship between different blocks. Taking 
the single block at the coarsest level l = 0 from Fig. 2, the four blocks which are at the next finer level l = 1 are called chil-
dren, the blocks at the next level l = 2 are correspondingly the grandchildren. Vice versa, we speak of parent and grandparent
blocks. When a block does not have any children, it is called a leaf. The governing equations are evolved in time only on 
leaves, all other blocks receive their values from their children by the projection operation eq. (7).

When performing E (or other operations) close to the edge of a block, data from neighboring blocks are required. We 
apply the approach of Han et al. [12] who use halo cells for each block to facilitate these operations without requiring 
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Fig. 2. Sketch of the multiresolution discretization: Grid representation with locally refined regions (left) with lmax = 3 in two dimensions. The graph shows 
the tree-structure with corresponding level labels, cell sizes, and time-step sizes for a local time-stepping algorithm. In the grid representation and the 
tree, existing blocks are shown as circles, where empty circles denote further refined blocks and filled circles mark leaves.

Fig. 3. Relationship of internal cells and halo cells for two neighboring blocks on the same level. In the center, the actual domain of two blocks with 
surrounding halo cells for external boundary conditions is shown. Each block is displayed separately to the left and right with its own halo cells. The 
internal cells which are halo cells for these blocks are marked grey.

frequent data exchange with neighboring blocks. Halo cells overlap with internal cells from neighboring blocks or external 
boundary conditions and contain copies of their states without being evolved themselves. These halo cells are then used to 
update the solution of internal cells in time. Halo cells need to be updated after each stage to be consistent. A 2D example 
for a domain with two blocks is shown in Fig. 3.

When evaluating the divergence of the numerical flux function D(U ) at resolution jumps, conservation may be violated. 
For two neighboring leaves at levels l and l + m, with the outgoing flux being computed at level l and the incoming flux 
at level l + m at their block boundaries, the flux-reconstruction operation performed on different levels may result in a 
mismatch of the incoming and outgoing fluxes. This mismatch is corrected by overwriting the fluxes of the coarser cell at 
the resolution jump with the fluxes computed on the finer mesh [29]. Note that fluxes of successive iterations need to be 
scaled with the different time-step sizes to ensure conservation. This way, we maintain strict conservation at cell patches 
between leaves on different resolution levels.

3. Adaptive local time-stepping scheme

The fixed cell-size ratio of successive refinement levels allows for the efficient formulation of a local time-stepping (LTS) 
scheme [8]. The level-dependent increment �tl is scaled from the finest admissible stepsize at the maximum refinement 
level �tlmax

�tl = �tlmax · 2lmax−l (10)

for an arbitrary level l, where lmax is the maximum number of refinement levels, and �tlmax the time-step size computed 
with the cell size of the finest level. This leads to an improved efficiency of the scheme as compared to the CTS approach, 
where all cells are integrated in time with �tlmax regardless of their resolution. Drawbacks of the LTS scheme are the 
necessary time synchronization at resolution jumps and the constant time-step size �tl within each full cycle of the coarsest 
level [8]. Therefore, the time-step size adaption loses efficiency with increasing number of refinement levels. For example, 
for a setup with lmax = 4, �tlmax is updated only after 24 = 16 full cycles on lmax . For a setup with lmax = 8, the earliest 
possible adjustment of �tlmax occurs after 28 = 256 full cycles on lmax . In case of strong non-linear effects such as wave-
steepening or bubble collapse events, this procedure may result in severe stability issues.

In this work, we propose a fully adaptive local time-stepping (ALTS) algorithm for multiresolution simulations to solve 
the aforementioned limitations. We split the evolution operation E into the evaluation of the divergence of the numerical 
flux functions F = F(U ), and the time integration T = T

(
U

(n)
,D(U 1),D(U 2),�t(n)

)
, so that

T ◦ F = E . (11)

The key step to allow for instantaneous time-step size adaptivity is to apply the projection and prediction operations to the 
numerical divergence of the flux functions in halo cells at resolution jumps. The halo cells are integrated in time together 
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with the internal cells according to their level-dependent time-step size. This is mathematically equivalent to performing 
first the time integration of the internal cells followed by the projection and prediction to update the halo cells, which is 
shown in the following derivation.

The projection operation (7) with an Euler-forward time update can be written as

U
(n+1)

l,(i, j,k) = QU
(n+1)

l+1,(2i,2 j,2k)

= 1

2D

imax∑
α=0

jmax∑
β=0

kmax∑
γ =0

U
(n+1)

l+1,(2i+α,2 j+β,2k+γ )

= 1

2D

imax∑
α=0

jmax∑
β=0

kmax∑
γ =0

[
U

(n)

l+1,(2i+α,2 j+β,2k+γ ) + �tl+1D
(

U
(n)

l+1,(2i+α,2 j+β,2k+γ )

)]

= 1

2D

imax∑
α=0

jmax∑
β=0

kmax∑
γ =0

U
(n)

l+1,(2i+α,2 j+β,2k+γ )

+�tl+1
1

2D

imax∑
α=0

jmax∑
β=0

kmax∑
γ =0

D
(

U
(n)

l+1,(2i+α,2 j+β,2k+γ )

)

= U
(n)

l,(i, j,k) + �tl+1QD
(

U
(n)

l+1,(2i,2 j,2k)

)
= U

(n)

l,(i, j,k) + �tl+1(Q ◦ F)U
(n)

l+1,(2i,2 j,2k) .

The prediction operation (8) yields

Û (n+1)

l+1,(2i+i0,2 j+ j0,2k+k0)
= PU

(n+1)

l,(i, j,k)

= U
(n+1)

l,(i, j,k) +
(−1)i0 Q s,(n+1)

x + (−1) j0 Q s,(n+1)
y + (−1)k0 Q s,(n+1)

z +
(−1)(i0+ j0) Q s,(n+1)

xy + (−1)(i0+k0) Q s,(n+1)
xz +

(−1)( j0+k0) Q s,(n+1)
yz + (−1)(i0+ j0+k0) Q s,(n+1)

xyz

= U
(n)

l,(i, j,k) + �tlD
(

U
(n)

l,(i, j,k)

)
+

(−1)i0 Q s,(n+1)
x + (−1) j0 Q s,(n+1)

y + (−1)k0 Q s,(n+1)
z +

(−1)(i0+ j0) Q s,(n+1)
xy + (−1)(i0+k0) Q s,(n+1)

xz +
(−1)( j0+k0) Q s,(n+1)

yz + (−1)(i0+ j0+k0) Q s,(n+1)
xyz .

The Q s,(n+1)
α terms change accordingly, for any component α. For example, α = x can be written as

Q s,(n+1)
x =

s∑
m=1

γm

(
U

(n+1)

l,(i+m, j,k) − U
(n+1)

l,(i−m, j,k)

)

=
s∑

m=1

γm

(
U

(n)

l,(i+m, j,k) + �tlD
(

U
(n)

l,(i+m, j,k)

)
− U

(n)

l,(i−m, j,k) − �tlD
(

U
(n)

l,(i−m, j,k)

))

=
s∑

m=1

γm

(
U

(n)

l,(i+m, j,k) − U
(n)

l,(i−m, j,k)

)
+

�tl

s∑
m=1

γm

(
D

(
U

(n)

l,(i+m, j,k)

)
− D

(
U

(n)

l,(i−m, j,k)

))

= Q s,(n)
x + �tl

s∑
m=1

γm

(
D

(
U

(n)

l,(i+m, j,k)

)
− D

(
U

(n)

l,(i−m, j,k)

))

= Q s,(n)
x + �tl Q s,(n)

D,x .



J.W.J. Kaiser et al. / Journal of Computational Physics: X 4 (2019) 100038 7

Fig. 4. Sketch of the time integration scheme: ALTS with �t(n+i) 
= �t(n+ j) , i 
= j (left) and classical LTS (right). See also Domingues et al. [8] for a similar 
presentation of LTS.

Combining these operations for all terms Q s,(n+1)
α demonstrates the equivalence of the new approach with the standard 

time integration and projection operations of cell-averaged values (here for i0 = j0 = k0 = 0)

Û (n+1)

l+1,(2i,2 j,2k)
= U

(n)

l,(i, j,k) + Q s,(n)
x + Q s,(n)

y + Q s,(n)
z +

Q s,(n)
xy + Q s,(n)

xz + Q s,(n)
yz + Q s,(n)

xyz +
�tl

[
D

(
U

(n)

l,(i, j,k)

)
+ Q s,(n)

D,x + Q s,(n)
D,y + Q s,(n)

D,z +
Q s,(n)

D,xy + Q s,(n)
D,xz + Q s,(n)

D,yz + Q s,(n)
D,xyz

]
= Û (n)

l+1,(2i,2 j,2k)
+ �tl(P ◦ F)U

(n)

l,(i, j,k) .

In other words, instead of integrating cells close to resolution jumps in time, we only compute the divergence of cell-face 
fluxes for both coarser and finer cells at the resolution jump. Then, we exchange them in the halo cells and integrate them 
in time for the finer block with its level-dependent time-step size. Halo cells at resolution jumps are now at the same time 
instant as the internal cells, hence we avoid costly synchronization in time which is necessary for the standard LTS scheme. 
In fact, the temporal integration of the coarser level is postponed until all finer levels reach the same time. This allows for 
adapting the time-step size after every full cycle on the finest level, and ensures strongly improved time-step size adaptivity.

Our scheme imposes no limits on the number of resolution jumps between two neighboring leaves. Assume two neigh-
boring blocks, with block A being a leaf at level l and block B a leaf at level l + m with m = 2. First, halo values are 
exchanged at level l, thus the grandparent block of block B has updated halo values. Second, the halo cells are predicted 
twice, first to the parent block of block B, and from there to block B itself. Third, the predictions in the halo cells at level 
l + 2 are evaluated 22 times until the neighboring levels are synchronous again. This scheme works accordingly for m > 2.

Fig. 4 illustrates our new algorithm in comparison to the classical LTS. The basic algorithm works as follows: the diver-
gence of cell-face fluxes on all parent and child levels are computed. They are projected to update divergences of parent 
blocks in the full tree, exchanged with neighboring blocks in their halo cells, and then predicted to update halo cells at res-
olution jumps. The evolution is finished by finally performing the integration in time on the target level. In short notation, 
the full step is abbreviated with the updated evolution operator

Ẽ = T ◦ P ◦ Q ◦ F . (12)
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Following Domingues et al. [8], the three basic steps to evolve the numerical solution from U
(n)

to U
(n+1)

can be expressed 
as

1.Refinement : RU
(n)→ U

(n+)

2. Evolution : ẼU
(n+)→ Ũ

(n+1)

3. Coarsening : C(ε)Ũ
(n+1)→U

(n+1)
.

Here R is the refinement operator and C(ε) the coarsening operator with the coarsening threshold ε.
The main aspects of one time-step iteration in this scheme are:

1. Each macro cycle extends from t(n) to t(n+2lmax ) .
2. Each sub-cycle can be described by the tuple (τ , ς). 0 ≤ τ < 2lmax describes the number of full time-step iterations 

on the finest level (micro time step) per iteration on the coarsest level (macro time step). 0 ≤ ς < ςmax describes the 
number of intermediate steps for the explicit time integration scheme. E.g., for the 2nd-order RK-TVD scheme employed 
here, ςmax = 2.

3. All sub-cycles τ with ς = 0 start with an update of the current time-step size at the finest level �tτlmax
. Time-step sizes 

on all coarser levels accumulate the evolved steps and yield

�tτl =
2(lmax−l)−1∑

i=0

�tτ+i
lmax

. (13)

4. In the first cycle of each macro time step, i.e. cycle (0, 0), we compute the divergence of the fluxes (F) for the first RK 
stage for all levels. We then perform the projection and prediction of the divergence to update halo cells at resolution 
jumps (Q, P).

5. In each following sub-cycle (τ , ς), leaves at all levels l which fulfill the constraint

(τ + ς) mod 2lmax−l = 0

are integrated in time (T ). Afterwards, cells at the parent levels are updated through cell average projection (Q). Then, 
flux divergences are computed (F), projection is performed, and halo cells at jump conditions are filled by prediction 
(Q, P).

6. In each sub-cycle, refinement (R) and coarsening (C) can be performed after time integration (T ). The condition for 
refining level l again is

(τ + ς) mod 2lmax−l = 0,

i.e. this level was integrated in this sub-cycle. For coarsening, the more restrictive condition

(τ + ς) mod 2lmax−(l−1) = 0

is applied. Note that a leaf at level l can only be removed when also the parent level was updated in time during this 
iteration. This is required to allow for a consistent computation of the details as refinement criterion.

7. The last sub-cycle (2lmax − 1, ςmax − 1) ends with the time integration of the second RK stage for all levels.

The scheme allows an update of �tτlmax
during each full cycle at the finest level. The update ensures that the CFL-condition 

is fulfilled at every level at all times τ , which is demonstrated in the following, for simplicity, for the two finest levels lmax

and lmax − 1. The maximum wave-speed ||ui ± c||τ∞ is computed at all levels from the last completed full RK step and is 
used to determine the time-step size �tτlmax

from the CFL-condition (5), giving �tτlmax
. The timestep size �tτ+1

lmax
is computed 

analogously from the maximum wave-speed ||ui ± c||τ+1∞ . The time-step size at level lmax − 1 is �tτlmax−1 = �tτlmax
+ �tτ+1

lmax
. 

We analyze at which level the maximum wave-speed ||ui ±c||τ∞ occurs during two time steps on the finest level to estimate 
whether the time-step size at levels lmax and lmax − 1 is within the bounds of the CFL-criterion:

• ||ui ± c||τ∞ = ||ui ± c||τ∞,lmax
> ||ui ± c||τ∞,lmax−1 and ||ui ± c||τ+1∞ = ||ui ± c||τ+1

∞,lmax
> ||ui ± c||τ∞,lmax−1: the maximum wave-

speed in the domain occurs for both time steps at level lmax , the maximum admitted time-step size at level lmax − 1
therefore is larger than �tτlmax−1 = �tτlmax

+ �tτ+1
lmax

. Hence, the CFL-condition is fulfilled at lmax − 1 and lmax .

• ||ui ± c||τ∞ = ||ui ± c||τ∞,lmax−1 > ||ui ± c||τ∞,lmax
and ||ui ± c||τ+1∞ = ||ui ± c||τ∞,lmax−1 > ||ui ± c||τ+1

∞,lmax
: the maximum wave-

speed in the domain occurs for both time steps at level lmax − 1, therefore �tτlmax−1 = 2 · �tτlmax
= 2 · �tτ+1

lmax
. Hence, the 

CFL-condition is fulfilled at lmax − 1 and lmax .
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• ||ui ± c||τ∞ = ||ui ± c||τ∞,lmax−1 > ||ui ± c||τ∞,lmax
and ||ui ± c||τ+1∞ = ||ui ± c||τ+1

∞,lmax
> ||ui ± c||τ∞,lmax−1: the level of the 

maximum wave-speed changes after the first time step. For level lmax −1, �tτlmax−1 = 2 ·�tτlmax
satisfies the CFL-condition 

exactly, 2 · �tτ+1
lmax

< 2 · �tτlmax
is too restrictive, hence �tτlmax−1 = �tτlmax

+ �tτ+1
lmax

also satisfies the CFL-condition at both 
levels lmax − 1 and lmax .

Thus, the ALTS scheme provides a CFL-number which globally is always within the bounds of the prescribed stability crite-
rion for every RK cycle.

4. Examples

The following examples illustrate the accuracy, improved stability, and efficiency of the proposed scheme. Grid adaptation 
is employed using the MR analysis with level- and dimension-dependent error levels

εl = εref · e(−D·(l−lmax)) , (14)

with the number of dimensions D . Unless stated otherwise, we use εref = 0.01 for the refinement from lmax − 1 to lmax , and 
each simulation is performed with one block at level 0 using 16 internal cells in each spatial direction.

4.1. Accuracy-order analysis

Two one-dimensional test cases are presented to demonstrate the accuracy of the underlying methods of our adaptive 
local time-stepping scheme. First, we solve the linear scalar advection equation

∂u

∂t
+ ∂u

∂x
= 0 (15)

for a sinusoidal profile u0(x) = 1 +0.25 sin(2πx) on the one-dimensional periodic domain x ∈ [0, 1]. The problem is advanced 
to a final time of t = 1, when the wave is again at its initial position. The second test case is the non-linear steepening of a 
sinusoidal pressure wave p0(x) = 1 + 0.25 sin(2πx) on the one-dimensional periodic domain x ∈ [0, 1]. The one-dimensional 
Euler equations

∂ρ

∂t
+ ∂uρ

∂x
= 0 ,

∂ρu

∂t
+ ∂uρu

∂x
+ ∂ p

∂x
= 0 , (16)

∂ρe

∂t
+ ∂u(ρe + p)

∂x
= 0 ,

govern the problem, where ρ is the density, u the velocity, p the pressure, and e the specific energy. The system is closed 
by the stiffened-gas equation-of-state

p = (γ − 1)ρe − γ p∞ , (17)

with the material parameters γ for the ratio of specific heats and p∞ for the background pressure. Here, we use γ = 1.4
and p∞ = 0. Initial conditions for velocity and density fields are obtained from the Rankine-Hugoniot conditions for an 
ideal gas (γ = 1.4, p∞ = 0). The problem is advanced to a final time of t = 0.2, when the wave has steepened already but 
still is continuous. For both cases, we present convergence rates for the spatial scheme (WENO 5), the standard RK2-TVD 
time-integration scheme, and the RK3-TVD time-integration scheme to demonstrate the applicability to higher-order explicit 
time-integration schemes. The simulations for the spatial error are run with CFL = 10−3 to minimize the temporal error, 
and εref = 0.001 for a refinement from level 0 to level 1. The simulations for the temporal error are computed on a mesh 
with maximum level lmax = 4.

Error plots of the L1 norm of the density field

L1 = 1

V

∑
n

|ρn,exact − ρn,sim|
ρn,exact

dVn , (18)

are given in Fig. 5 for the two cases, numeric values are given in Table 1. The convergence rates of both the linear and 
the non-linear examples agree well with the values expected from theory. Only close to CFL= 1.0, the convergence rate of 
RK2 deviates from the expected value. Note that for RK3 the second-order treatment at resolution jumps [7,22] reduces the 
global order of the convergence to slightly less than three.
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Fig. 5. Accuracy-order analysis for the linear (a) and non-linear (b) advection cases: temporal errors for RK2-TVD ( ) and RK3-TVD (•), and spatial error for 
WENO5 (�). For comparison, convergence plots for second ( ), third ( ), and fifth ( ) order are given.

Table 1
The spatial and temporal accuracy of the linear sine-wave advection and non-linear sine-
wave steepening for RK2-TVD, RK3-TVD, and WENO5 schemes.

Type resolution L1 error L1 accuracy L1 error L1 accuracy
linear linear non-linear non-linear

1 1.3450E-4 7.7143E-5
0.5 3.3719E-6 6.32 5.4441E-6 3.76

temporal 0.25 8.4330E-7 2.00 8.8377E-7 2.48
(RK2-TVD) 0.125 2.1083E-7 2.00 2.1691E-7 2.02

0.0625 5.2706E-8 2.00 5.3878E-8 2.01

1 4.2420E-8 1.5239E-7
0.5 5.3045E-9 2.83 1.9113E-8 2.82

temporal 0.25 6.6339E-10 2.83 2.3964E-9 2.82
(RK3-TVD) 0.125 8.3011E-11 2.83 3.0006E-10 2.83

0.0625 1.0551E-11 2.81 3.7514E-11 2.83

16 9.4091E-4 5.6337E-4
32 3.3506E-5 5.30 3.3520E-5 4.10

spatial 64 1.0500E-6 5.65 1.2419E-6 5.20
(WENO5) 128 3.2178E-8 5.71 5.0419E-8 4.96

256 1.0517E-9 5.53 1.4527E-9 5.89

4.2. One-dimensional examples

Two one-dimensional testcases with strong discontinuities and therefore strong temporal gradients in the wave-speeds 
are considered. The simulations are again governed by the compressible Euler equations (16).

The first setup is the inviscid shock-tube problem of Sod [30]. The initial conditions for a domain of length 1.0 are

(ρ, u, p) =
{

(1.0,0.0,1.0) ,0.0 ≤ x < 0.5

(0.125,0.0,0.1) ,0.5 ≤ x ≤ 1.0
. (19)

The domain is refined to lmax = 7 and the final simulation time is t = 0.2.
The second one-dimensional case is the two blast-waves problem of Woodward and Colella [31]. The initial conditions 

are

(ρ, u, p) =

⎧⎪⎨
⎪⎩

(1.0,0.0,1000.0) ,0.0 ≤ x < 0.1

(1.0,0.0,0.01) ,0.1 ≤ x < 0.9

(1.0,0.0,100.0) ,0.9 ≤ x ≤ 1.0

(20)

The domain is refined to lmax = 7 and the final simulation time is t = 0.038.
Results for both 1D test cases are shown in Fig. 6. The applied CFL-number is CFL= 1.0. The standard local time stepping 

cannot resolve the wave dynamics for this high CFL-number and becomes unstable within the first macro time step in both 
cases. The ALTS scheme allows for stable simulations in both cases. The results show good agreement with the ones from 
an equally-spaced grid without adaptive mesh. This underlines that the ALTS scheme shows the same temporal stability 
behavior as an homogeneous grid without local spatial adaptation, which is not the case for the classical LTS scheme.
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Fig. 6. One-dimensional examples. Upper half: Sod shock tube, density a) and velocity b) profiles at t = 0.2. Lower half: interacting blast waves, density c) 
and velocity d) at t = 0.038. Shown are results for a homogeneous grid (solid line) and an adaptive grid (lmax = 7) applying ALTS (dots) with CFL= 1.0. The 
results of every tenth cell are shown for ALTS.

4.3. Two-dimensional example

As two-dimensional test case we present the non-symmetric shock-induced collapse of a bubble near a rigid wall [20]. 
This problem is of practical relevance in a range of applications, e.g. shock-induced lithotripsy [21]. The wave-speed in-
creases strongly during the bubble collapse, therefore instant adaption of the time-step size is required. Initial conditions 
for an axisymmetric domain [4.0 × 8.0] μm, discretized with lmax = 7, two blocks in y-direction and one block in x-direction 
on l = 0 (effective resolution 2048 × 4096 cells), are

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(1011.05,0.0,21.36,351 × 105) post-shock water,

(998.0,0.0,0.0,105) pre-shock water,

(1.2,0.0,0.0,105) air bubble

(21)

for a 35 MPa shock, which hits the bubble at t = 0.0. To model the second phase, we introduce a level-set function. The 
initial level-set field for the bubble is

φ = −R0 +
√

(x − x0)2 + (y − y0)2 (22)

with the bubble radius R0 = 50 μm, x0 = 0, and y0 = 0.7 mm. This leads to a stand-off distance of 2R0 of the bubble center 
from the wall. The bubble is resolved with 256 cells per initial radius on lmax , and we use CFL= 0.9 for the simulation. A 
sketch of this setup, which was investigated by Johnsen and Colonius [20], is shown in Fig. 7. We consider the compressible 
Euler equations in axisymmetric formulation and employ a level-set approach for multi-phase flows. The system is closed 
by the complete stiffened-gas equation-of-state

p + γ p∞ = (γ − 1)ρ(e + E∞) , (23)

where E∞ is the energy translation factor. We use γ = 4.4, p∞ = 6.0 × 108, E∞ = 7.456 × 106 for water, and γ = 1.4, 
p∞ = 0, E∞ = 0 for air [17,23].

The pressure and axial velocity fields are shown in Fig. 8 at t = 2.47 ms and t = 2.48 ms for both schemes. At t =
2.47 ms, the bubble is already strongly deformed. The maximum pressure regions are slightly shifted from the center axis, 
and coincide with the location where the bubble is thinnest (a). The high-speed water-jet has formed in the inner part 
of the bubble (b). For this instant, both schemes exhibit the same results. At t = 2.48 ms, the jet strikes the downstream 
bubble wall, and the bubble breaks up at the location of the maximum pressure in the previous instant. The jet accelerates 
even further, and a strong shock wave can be observed propagating away from the bubble (c, d). This leads to a strong 
increase in the wave speed, so the time-step size needs to be adapted immediately to satisfy the stability criterion. The LTS 
scheme cannot provide this immediate adaption, and spurious oscillations occur at the wave front of the water hammer. 
These oscillations indicate the onset of nonlinear numerical instability near the wave front. The ALTS provides immediate 
time-step size adaption, and does not exhibit such spurious oscillations.
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Fig. 7. Initial conditions for the shock-induced bubble collapse near a rigid wall in two dimensions.

Fig. 8. Contour plots for LTS (left) and ALTS (right) at two different time instants: at t = 2.47 ms pressure (a) and streamwise velocity (b), and at t = 2.48 ms 
pressure (c) and streamwise velocity (d). The interface is denoted by the black line.

Fig. 9. Pressure profile along the wall at different instants with the analytical approximation of [20] (eq. (24)).

Johnsen and Colonius [20] have proposed an empirical analytical profile for the localized maximum wall pressure as 
function of the circular off-center distance along the wall

pw

(
r

R0

)
= c1√

H2
c + (r/R0)

2
+ c2 . (24)

Here, c1 and c2 are two constants, which are determined from two arbitrary pressure profiles of the temporal evolution, 
and Hc is the stand-off distance at collapse time. For the given case, Hc = 1.5, c1 = 0.34, and c2 = 0.025. In Fig. 9, a 
series of radial wall-pressure profiles at several time instants is shown together with the asymptotical maximum wall-
pressure function eq. (24). The time difference between two subsequent radial profiles is 20 μs, and the first profile shows 
the pressure profile at t = 2.80 ms. Due to the radial spreading, the maximum pressure decreases in time. The overall 
maximum pressure at the wall infact occurs not at the centerline, but is shifted slightly outwards as the collapsing bubble 
shields the wall from the incoming pressure wave. This maximum pressure is slightly larger than the prediction of Johnsen 
and Colonius [20], which was already found earlier for this model configuration [1].
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Table 2
Percentage of different operations on computational cost during each full Runge-
Kutta cycle. We separate between the update of the time-step size, functions which 
are introduced for ALTS (ALTS related), and other functions which appear both during 
LTS and ALTS (common operations).

simulation update �t ALTS related common operations

1D (single fluid) 4.9 % 10.7 % 84.4 %
2D (multi-fluid) 2.1 % 5.2 % 92.7 %

4.4. Performance estimation

Finally, we analyze the additional cost due to computational operations which were introduced for the ALTS scheme: 
the projection and prediction of flux functions and the temporal integration of halo cells. We analyze the results for the 
one-dimensional single-fluid shock-tube simulation (lmax = 7) and the two-dimensional multi-fluid shock-bubble interaction 
(lmax = 8) presented in sections 4.2 and 4.3. We have performed our numerical tests on a homogeneous cluster of Intel 
Xeon E5-2697 v3 “Haswell” CPUs with 28 cores at 2.7 GHz and 2.3 GB memory. One-dimensional single-fluid simulations 
are executed sequentially, on one core only. Two-dimensional multi-fluid results are run in parallel on all 28 cores using 
28 MPI ranks. Operations of a full Runge-Kutta cycle are split into three main categories: the update of the time-step size, 
additional operations that were introduced with the ALTS algorithm (ALTS related), and operations that are required for both 
LTS and ALTS schemes (common operations). We compute for each category its share of the compute time over several macro 
time steps. Results are given in Table 2.

The share of each category varies with the simulation type: the time step size update and ALTS-related operations 
account for approximately 16% of computational cost in the one-dimensional single-phase simulation, and for approximately 
7% in the two-dimensional multi-phase simulation. We conclude that the additional cost has no significant adverse impact 
on the overall computing efficiency.

5. Conclusion and outlook

We have presented an adaptive local time-stepping scheme for a block-based multiresolution algorithm. The key im-
provement of the new approach is the projection and prediction of the right-hand-side terms of the governing equations 
and additional halo-cell time integration. The benefit of the improved time-stepping scheme is full adaptivity of the numer-
ical time-step size down to blocks with highest resolution and, thus, improved stability for larger CFL numbers.

The ALTS scheme is applied to various one- and two-dimensional examples with strong velocity gradients to demonstrate 
its advantages. Even for large CFL numbers up to CFL = 1.0, our approach allows for stable and accurate simulations. The 
scheme is not limited to single-phase simulations, but can also be used for multiple phases without constraints on, e.g., the 
variation of the wave speed across the material interface.

Despite the fact that additional operations are required during each iteration (projection and prediction of the numerical 
divergence of the flux function, time integration of halo cells), the additional work of the ALTS scheme in comparison to the 
LTS scheme is negligible for multi-dimensional realistic flow problems. The numerical stability is improved as compared to 
the classical LTS scheme. Overall, the stability behavior of the constant time-stepping scheme is recovered, which was lost 
with the introduction of the LTS scheme.
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a b s t r a c t 

In this work, we study the interface deformation during the early-stages of breakup of a water column in 

an ambient flow field by high-resolution numerical simulation. The compressible Navier–Stokes equations 

govern the motion of the two fluids, and capillary forces and viscous effects are considered. We model 

the multiphase flow with a level-set based sharp-interface method with conservative interface interac- 

tion. The governing equations are discretized with a finite-volume approach with low-dissipation flux 

reconstruction at cell faces based on a fifth-order WENO scheme, and a third-order Runge–Kutta TVD ex- 

plicit time integration scheme. We validate our numerical simulations by comparison with experimental 

reference data. 

We achieve an accurate prediction of wave dynamics and interface deformation of the liquid column. Both 

flattening of the cylinder (first stage) and shearing of the sheet at the droplet equator (second stage) are 

reproduced. We show that a distinct pressure-wave pattern forms in the supersonic flow region near the 

cylinder equator after shock passage. These waves interact with the phase interface, resulting in local 

interface disturbances that coincide with the onset of the second stage. Resolving these waves is essen- 

tial for the prediction of the hat-like structure at the upstream face of the cylinder during the second 

stage of the breakup, which so far only has been observed in experimental visualizations of this partic- 

ular breakup mode. Our results support the connection of the sheet-stripping mechanism with the local 

formation of recirculation zones. Extending previous work, our high-resolution results indicate that recir- 

culation zones appear at multiple locations along the interface, and are directly linked to the growth of 

water sheet-forming interface disturbances. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The breakup of a spherical liquid drop into smaller fragments 

is of fundamental importance for many technological applications 

and environmental phenomena, ranging from internal liquid-fuel 

combustion engines to manufacturing of medical drugs and splat- 

ter of rain drops on supersonic aircrafts ( Villermaux, 2007 ). The 

initial deformation of the drop is driven by the relative velocity 

with respect to the ambient flow field, which may be realized by 

injection into a crossflow or sudden acceleration by shock waves, 

eventually resulting in drop breakup. The characteristics of the 

∗ Corresponding author. 

E-mail addresses: jakob.kaiser@tum.de (J.W.J. Kaiser), josef.winter@tum.de (J.M. 

Winter), stefan.adami@tum.de (S. Adami), nikolaus.adams@tum.de (N.A. Adams). 

breakup process are determined by the relation of inertial forces, 

viscous forces, and capillary forces acting on the drop. 

The breakup process can be classified by two non-dimensional 

numbers: the Weber number and the Ohnesorge number, which 

describe the ratio of inertial to capillary forces and the ratio of 

viscous to capillary forces, respectively. Different breakup modes 

have been observed in experimental investigations upon variations 

of these two parameters, resulting in the postulation of five fun- 

damental breakup regimes: vibrational, bag, multi-mode, sheet- 

stripping, and catastrophic breakup ( Guildenbecher et al., 2009 ). At 

small Ohnesorge numbers ( Oh < 0.1), vibrational and bag modes 

have been observed for small Weber numbers, and sheet-stripping 

and catastrophic modes for high Weber numbers. The multi-mode 

breakup has been assumed to be a transitional mode from bag 

breakup to sheet-stripping ( Dai and Faeth, 2001 ). It occurs either 

as bag/plume or plume/sheet-stripping breakup. Theofanous et al. 

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103409 

0301-9322/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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(2004) suggested a re-classification of the breakup mechanisms, 

which is motivated by fundamental physical mechanisms that 

dominate the breakup process: Rayleigh-Taylor piercing (RTP) and 

shear-induced entrainment (SIE). RTP is the main instability mode 

for small Weber numbers, and SIE is the terminal instability mode 

for increasing Weber numbers. The RTP regime is characterized 

by ambient fluid penetrating the liquid bulk of the drop. The SIE 

regime, in comparison, exhibits a shearing of liquid material from 

the “edge” of the drop. 

Systematic experimental and numerical investigations of drop 

breakup for wide parameter ranges have improved the un- 

derstanding of the breakup process, we refer to reviews by 

Guildenbecher et al. (2009) and Theofanous (2011) . With regard 

to numerical investigations, Khosla et al. (2006) were among the 

first to consider a fully three-dimensional setup. They investigated 

the breakup process in the low Weber number regime. Since then, 

further three-dimensional studies of the breakup process in the 

different regimes have been performed, assuming incompressible 

flow in the RTP regime ( Yang et al., 2017 ) and fully compress- 

ible fluid flow in the SIE regime ( Meng and Colonius, 2018 ). Nu- 

merical studies often apply (quasi) two-dimensional setups to de- 

crease the required computational cost for breakup simulations. 

Supporting this simplification, previous experimental studies ob- 

served phenomenological similarity of early-stage interface de- 

formation for (quasi) two-dimensional water columns and three- 

dimensional spherical drops in crossflow in the shear breakup 

regime ( Igra et al., 2002; Igra and Takayama, 2001a ), in particu- 

lar regarding the flattening of the drop / cylinder and shearing at 

the equator. Experimental results of shock-column interaction ( Igra 

and Takayama, 20 01c; 20 03; Sembian et al., 2016 ) often have been 

used in two-dimensional numerical studies for model validation 

on shock-interface interaction ( Garrick et al., 2017; Igra and Sun, 

2010; Ireland and Desjardins, 2016; Nonomura et al., 2014; Schmid- 

mayer et al., 2017; Terashima and Tryggvason, 2009; Wan et al., 

2019; Wang et al., 2018; Xiang and Wang, 2017; Yang and Peng, 

2019 ). Also, more detailed physical investigations of the sheet- 

stripping process have been performed ( Aslani and Regele, 2018; 

Chen, 2008 ). More specifically, the experimental setup of Igra and 

Takayama (2001c) has been used in the seminal work of Meng and 

Colonius for two-dimensional simulations of the breakup of a liq- 

uid column in the SIE regime ( Meng and Colonius, 2015 ). Later, 

they presented fully three-dimensional simulation results of the 

breakup of a spherical liquid drop at the same flow conditions 

( Meng and Colonius, 2018 ). Analyzing both the breakup of the liq- 

uid column and the transient flow field, the important role of near- 

interface recirculation zones in the sheet-stripping process was re- 

ported. These zones appeared at the drop equator and in the wake 

of the drop. Due to the high Weber number and the low Ohnesorge 

number of the setup, viscous and capillary forces were explicitly 

suppressed in these simulations. 

In the current work, we consider effects of viscous and capil- 

lary forces during breakup of a liquid column in the SIE regime. 

The setup follows that of Igra and Takayama (2001c) . We ap- 

ply a finite volume approach with low-dissipation shock capturing 

based on WENO reconstruction ( Jiang and Shu, 1996 ) for an accu- 

rate representation of small-scale flow structures, and a third-order 

strongly-stable Runge–Kutta scheme for explicit time integration 

( Gottlieb and Shu, 1998 ). A level-set sharp interface method rep- 

resents the liquid-gas phase interface, and conservative interface- 

exchange terms determine the interaction of the two phases ( Hu 

et al., 2006; Luo et al., 2015 ). A block-structured multiresolution 

scheme with adaptive local timestepping allows for full spatial 

and temporal adaptivity ( Han et al., 2014; Kaiser et al., 2019 ). The 

multiresolution compression enables high computational efficiency 

even at late stages of the interface deformation, as the mesh adapts 

to the ongoing liquid-column deformation. 

Table 1 

Material parameters for the stiffened-gas equation-of-state for 

water and air. 

Fluid γ [-] p ∞ [GPa] μ [Pa s] σ [ 10 −3 N/m] 

Water 6.12 0.343 1 . 0 × 10 −3 72.75 

Air 1.4 0.0 1 . 8 × 10 −5 

The structure of the paper is the following: in Section 2 , we 

briefly discuss the physical model. The numerical model is de- 

scribed in Section 3 . In Section 4 , we study the results of the 

shock-induced breakup of a liquid column with an initial diam- 

eter of D 0 = 4 . 8 mm at a shock Mach number of Ma S = 1 . 47 . We 

compare our results to experimental data of Igra et al. (2002) , Igra 

and Takayama (2001b,c) and Theofanous et al. (2012) , and investi- 

gate the influence of viscous and capillary effects. We discuss the 

formation of a hat-like structure on the upstream face of the cylin- 

der which is known from experimental investigations and link it to 

the interaction of pressure disturbances with the phase interface 

during the early deformation stages. For quantitative comparison, 

we introduce the skewness of the axial deformation to quantify 

small scales during the ongoing deformation and the main breakup 

stages. We conclude the work in Section 5 . 

2. Physical model 

The governing equations including viscous and capillary forces 

read in vector notation 

∂U 

∂t 
+ ∇ 

T · F + ∇ 

T · F ν = X (1) 

with 

U = 

( 

ρ
ρu 

E 

) 

, F = 

( 

u ρ
ρu � u + pI 

u (E + p) 

) 

, and F ν = 

( 

0 

T 

T · u 

) 

denoting the vector of conservative states, the convective flux vec- 

tor, and the viscous flux vector, respectively. Here, ρ denotes the 

density, t the time, u the velocity vector, p the pressure, I the iden- 

tity matrix, T the Cauchy stress tensor, and E the total energy 

E = ρe + 

1 

2 

ρu · u , (2) 

composed of the internal energy ( ρe ) and the kinetic energy 

(1/2 ρu · u ). The vector X denotes exchange terms between the 

two phases air and water including capillary and viscous effects, 

for more details see the following Section 3 . The system of equa- 

tions is closed by the stiffened-gas equation-of-state (EOS) 

p = (γ − 1) ρe − γ p ∞ 

, (3) 

where the ratio of specific heats γ and the background pressure 

p ∞ 

are empirically determined parameters. The stiffened-gas EOS 

has been widely used in simulations with multiple immiscible 

compressible fluids. We use this EOS for both fluids air and water, 

for model parameters see Table 1 . Note that for the gas phase with 

p ∞ 

= 0 , the stiffened-gas EOS degenerates to the ideal-gas EOS. 

The parameters for water are calibrated for the given setup follow- 

ing the procedure described in Johnsen and Colonius (2007) with 

the experimental data of Gojani et al. (2016) , see also Meng and 

Colonius (2015) . Note that the stiffened-gas EOS is an incomplete 

EOS, providing an inaccurate prediction of the temperature. Since 

we neglect heat transfer, this deficit is not relevant. For a more de- 

tailed discussion as well as an extended EOS the reader is referred 

to Hawker and Ventikos (2012) . 

As mentioned above, the breakup behavior during aerody- 

namic fragmentation is dominated by inertial, viscous, and cap- 

illary forces. Inertial forces result in a deformation of the drop, 
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Fig. 1. Schematic finite-volume discretization of the domain � on Cartesian square cells. The green line denotes the exact solution, the blue line the linearized approximation 

by the level-set function. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

eventually causing its disintegration, while viscous forces retard 

the deformation, and capillary forces cause the drop to preserve 

its spherical shape. Two non-dimensional numbers characterize the 

breakup process: the Weber number We and the Ohnesorge num- 

ber Oh . They describe the ratio of inertial to capillary forces and 

the ratio of viscous to capillary forces, respectively, and are defined 

as 

W e = 

ρg,s u 

2 
g,s D 0 

σ
(4) 

Oh = 

μl √ 

ρl d 0 σ
(5) 

with the post-shock density of the gas phase ρg,s , the post-shock 

velocity of the gas phase u g,s , the initial droplet diameter D 0 , the 

surface-tension coefficient σ , the dynamic viscosity of the liq- 

uid phase μl , and the density of the liquid phase ρ l . Other non- 

dimensional numbers used to classify secondary atomization are 

the Reynolds number 

Re = 

ρg,s u g,s D 0 

μg 
(6) 

describing the surrounding flow field, the Mach number Ma S of the 

shock wave that initiates the breakup process, and the density ra- 

tio ε = ρl /ρg,s . 

3. Numerical model 

3.1. Finite-volume based sharp-interface model with conservative 

interface interaction 

The governing equations (1) are discretized by a finite-volume 

approach on Cartesian square cells in the domain �, which is 

divided into two subdomains �l (liquid phase) and �g (gaseous 

phase) by a time-evolving interface 	. Fig. 1 shows a sketch of the 

two subdomains with a sharp interface. We integrate Eq. (1) in 

each computational cell 
i,j of each subdomain �m 

and apply 

Gauß’ theorem to obtain 

t (n +1) ∫ 
t (n ) 

d t 

∫ 

i, j ∩ �m 

d 
i, j 

∂U 

∂t 
+ 

t (n +1) ∫ 
t (n ) 

dt 

∮ 
∂(
i, j ∩ �m ) 

(F + F ν ) · n d 
(
∂
i, j 

)

= 

t (n +1) ∫ 
t (n ) 

dt 

∮ 
	

X · n 	d	 (7) 

where 
i, j = 
x 1 
x 2 denotes the cell volume in two dimensions, 


i,j ∩ �m 

each cell volume of phase m , ∂( 
i,j ∩ �m 

) the cell face, 

n the cell-face normal unit vector, and n � the interface-normal 
unit vector. We replace 
i,j ∩ �m 

by 
i,j αi,j , where αi,j is the time- 

dependent volume fraction of phase m , with 0 ≤ αi,j ≤ 1. The cell 
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face ∂( 
i,j ∩ �m 

) can be approximated by the cell-face apertures A , 

0 ≤ A ≤ 1, and the segment of the interface 	 inside this cell, 
	i,j . 

Eq. (7) is then rewritten for a single forward-time integration step 

of phase m as 

α(n +1) 
i, j 

U 

(n +1) 
i, j 

= α(n ) 
i, j 

U 

(n ) 
i, j 

+ 


t 


x 1 

[
A (n ) 

i −1 / 2 , j 

(
F (n ) 

i −1 / 2 , j 
+ F (n ) 

ν,i −1 / 2 , j 

)
− A (n ) 

i +1 / 2 , j 

(
F (n ) 

i +1 / 2 , j 
+ F (n ) 

ν,i +1 / 2 , j 

)]
+ 


t 


x 2 

[
A (n ) 

i, j−1 / 2 

(
F (n ) 

i, j−1 / 2 
+ F (n ) 

ν,i, j−1 / 2 

)
− A (n ) 

i, j+1 / 2 

(
F (n ) 

i, j+1 / 2 
+ F (n ) 

ν,i, j+1 / 2 

)]
+ 


t 


x 1 
x 2 
X 

(n ) 
i, j 

(
	i, j ) (8) 

where 
t denotes the timestep size, U i,j the cell-averaged state 

vector of the considered phase in cell ( i, j ), and F i,j the fluxes in 

or out of this cell. The term X i,j describes momentum and energy 

exchange between the two fluids in a cell cut by the interface (“cut 

cell”), and includes inviscid, viscous and capillary effects. 

Convective fluxes at cell faces are approximated by the fifth- 

order WENO (Weighted Essentially Non-Oscillatory) scheme on 

characteristic fluxes, split by the global Lax-Friedrich (GLF) scheme 

( Jiang and Shu, 1996; Roe, 1981 ). Viscous fluxes are discretized 

with a fourth-order central scheme. For temporal discretization, we 

use a strongly stable third-order Runge–Kutta scheme ( Gottlieb and 

Shu, 1998; Harten, 1983 ). The maximum admissible timestep size 

is determined from a Courant–Friedrichs–Lewy (CFL) stability crite- 

rion considering the maximum wave speed, viscous diffusion, and 

propagation of capillary waves at the interface 


t = CFL · min 

( 


x ∑ | u i ± c| ∞ 

, 
3 

14 

(
x ) 2 ρ

μ
, 

√ 

ρl + ρg 

8 πσ

x 3 

) 

(9) 

where c is the speed of sound ( Sussman et al., 1994 ). In all simu- 

lations we use CFL = 0 . 5 . Advancing the flow field by this timestep 

size may lead to an unstable fluid state in cells with small volume 

fraction α. Therefore, we apply a mixing procedure in cells with 

α < 0.5 to maintain numerical stability ( Hu et al., 2006 ). 

3.2. Multi-phase treatment 

The interaction of the two fluids is solved with the 

level-set-based conservative interface-interaction model of 

Hu et al. (2006) with the extension for viscous and capillary 

forces of Luo et al. (2015) . The water-air phase interface is de- 

scribed by a level-set function φ. The level-set represents the 

interface as the zero-crossing of a multi-dimensional continuous 

function. The liquid subdomain �l is indicated by the negative 

level-set φ( x ) < 0, the gaseous subdomain �g by the positive 

level-set φ( x ) > 0, and the interface 	 by the zero-level-set 

φ(x ) = 0 . The absolute value of φ( x ) describes the normal signed 

distance of the cell center x to the interface 	. The level-set is 

evolved in time with the advection equation 

∂φ

∂t 
+ u φn 	 · ∇φ = 0 , (10) 

with u φ being the level-set advection velocity. 

In cut-cells, the level-set advection velocity is equal to the 

interface velocity u 	 , which is the contact-wave solution of 

a two-material Riemann problem at the phase interface, see 

Luo et al. (2015) . The interface velocity u 	 and the interface pres- 

sures p 	, l and p 	, g are obtained from a linearized two-material Rie- 

mann solver 

u 	 = 

ρl c l u l + ρg c g u g + p l − p g − σκ

ρl c l + ρg c g 
(11) 

p 	,l = 

ρl c l (p g + σκ) + ρg c g p l + ρl c l ρg c g (u l − u g ) 

ρl c l + ρg c g 
(12) 

p 	,g = 

ρl c l p g + ρg c g (p l − σκ) + ρl c l ρg c g (u l − u g ) 

ρl c l + ρg c g 
. (13) 

If capillary effects are neglected, i.e. the pressure jump at the in- 

terface due to surface tension vanishes, the interface pressures 

coincide p 	,l = p 	,g = p 	 . The curvature κ is the divergence of 

the interface-normal vector κ = ∇ · n 	, and is numerically ob- 

tained from n 	 = ∇ φ/ |∇ φ| . The curvature is evaluated at the 

cell center and then subjected to a subcell correction step to 

take into account the distance between the cell center and the 

interface 

κ	 = 

(D − 1) κ

D − 1 − φκ
, (14) 

where D is the number of spatial dimensions ( Luo et al., 2015 ). 

In non-cut cells, the level-set advection velocity is equal to the 

extrapolated interface velocity ˜ u 	, which is determined from the 

steady-state solution of the extension equation 

∂ ̃  u 	

∂τ
+ n 	 · ∇ ̃

 u 	 = 0 . (15) 

The numerical solution of the level-set advection does not 

maintain the signed-distance property |∇φ| = 1 . Therefore, the re- 

initialization equation 

∂φ

∂τ
+ sign (φ0 ) ( |∇φ| − 1 ) = 0 (16) 

is iterated in pseudo time τ to steady state to restore the signed- 

distance property after each timestep ( Sussman et al., 1994 ). Here, 

φ0 is the level-set field prior the re-initialization step. 

Similarly to the interface velocity extrapolation from cut cells 

to adjacent bulk cells, the fluid states are extrapolated across 

the interface to define a “ghost” fluid within the opposing phase 

( Fedkiw et al., 1999 ). These ghost-fluid states are used in the re- 

construction of the cell-face fluxes near the interface. This ap- 

proach assures the sharp-interface property of the method. 

Momentum and energy exchange across the interface are mod- 

eled for phase m by explicit exchange terms 

X m 

= X p,m 

+ X ν (17) 

where 

X p,m 

= ( 0 , p 	,m 


	n 	, u 	 p 	,m 


	) T (18) 

represents the inviscid exchange including the pressure jump due 

to capillarity in liquid ( m = l) and gas ( m = g), and 

X ν = ( 0 , F ν
	n 	, (F ν
	n 	) · n 	u 	) T (19) 

Fig. 2. Sketch of the simulation domain, including an exemplary multiresolution 

mesh. The water column is sketched in blue, the shock in red. Note that the water 

column is not drawn to scale. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Normalized streamwise velocity (top) and numerical schlieren images (bottom) of the breakup of a water cylinder with diameter D 0 = 4 . 8 mm, initiated by a shock 

wave with Ma S = 1 . 47 . Shown are different time instants t ∗ ∈ {0.00, 0.02, 0.11, 0.19, 0.26, 0.44, 0.54, 0.76, 0.98} for the subfigures (a)–(i) (left to right, top to bottom). 

models the viscous exchange. Here, F ν = [ τxx , τxy ; τyx , τyy ] is the 

viscous stress tensor. The length of the interface segment in each 

cut-cell 
	i,j is computed from the cell-face apertures following 


	i, j = 
x 

√ (
A i +1 / 2 , j − A i −1 / 2 , j 

)
2 + 

(
A i, j+1 / 2 − A i, j−1 / 2 

)
2 (20) 

( Lauer et al., 2012 ). Note that more details on the model and in 

particular generic test cases for model validation can be found in 

Hu et al. (2006) for the base model and in Luo et al. (2015) for 

the extended model including capillary and viscous 

effects. 

3.3. Wavelet-based multiresolution approach with adaptive local 

timestepping 

High grid resolution is required to resolve the interface defor- 

mation and the surrounding flow field accurately. A coarser reso- 

lution is sufficient further away from the cylinder. Therefore, spa- 

tial and temporal adaptation techniques are necessary to efficiently 

solve the breakup process numerically. 

We apply a block-structured wavelet-based multiresolution ap- 

proach based on the work of Harten (1994) to adapt the mesh 

to the deforming phase interface and the evolving flow field ( Han 

et al., 2014; Hoppe et al., 2019; Rossinelli et al., 2011 ). The proce- 

dure is described in detail in Hoppe et al. (2019) . The cell-averaged 

solution is represented in a hierarchical data structure. Two basic 
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Fig. 4. (a) Pressure field around the deforming cylinder at t ∗ = 0 . 13 . Pressure fluctuations appear near the equator on the upstream side of the secondary wave system, 

which is where interface instabilities grow. (b) Temporal evolution of the pressure disturbances. The first frame is at t ∗ = 0 . 033 , subsequent frames follow with 
t ∗ = 0 . 022 

from left to right and top to bottom. The white line denotes Ma = 1 . 

operations enable data transfer between successive refinement lev- 

els: projection and prediction. The projection operation is applied 

to obtain data on a refinement level l from the finer level l + 1 and 

corresponds to averaging the cell-states on the finer level. The pre- 

diction operation approximates data on level l + 1 from level l , and 

corresponds in our work to a fifth-order interpolation. Projection 

and prediction are local and consistent, but not commutative: ap- 

plying first prediction to send data from level l to level l + 1 and 

afterwards projection to send data from level l + 1 to level l re- 

sults in exactly the same solution on level l . To the contrary, ap- 

plying first projection to send data from level l + 1 to level l and 

afterwards prediction to send data from level l to level l + 1 results 

in an error on level l + 1 . This motivates the definition of the so 

called details as the deviation between the exact solution and the 

predicted solution on any level l . The exact solution on any level l 

can thus be represented by the exact solution on the coarsest level 

and the details of all successively finer levels. 

Implicit mesh adaption is performed by considering only those 

details that are larger than a level-dependent threshold 

ε l = ε ref · e ( −D ·( l max −l) ) , (21) 

where l max denotes the maximum level to which the mesh is re- 

fined, and εref is the admissible relative error on this level. We ap- 

ply a dyadic refinement strategy, where each cell can be refined 

into 2 D smaller cells, with a reference error ε ref = 0 . 01 . 

Efficient time integration is obtained by applying a local 

timestepping approach, where each refinement level is advanced 

with its level-dependent timestep size ( Osher and Sanders, 1983 ). 

We use an improved version of this local timestepping scheme 

which allows for adapting the timestep size after each full Runge–

Kutta cycle on the finest refinement level ( Kaiser et al., 2019 ). 

4. Results 

4.1. Configuration and simulation setup 

The numerical domain of the water-cylinder breakup simulation 

is shown in Fig. 2 , together with a schematic multiresolution block 

structure for this case. Note that we simulate the full cylinder 

( D 0 = 4 . 8 mm), as our previous work indicated asymmetric flow- 

field patterns in the wake of the cylinder already at early breakup 

stages ( Kaiser et al., 2017 ). We prescribe zero-gradient boundary 
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Fig. 5. Positive (orange) and negative (purple) z -vorticity streams that interact and form multiple recirculation zones at various instants. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. The flow field in the vicinity of the water column for resolutions of 50 ((a1) – (b1)), 100 ((a2) – (b2)), 200 ((a3) – (b3)), and 300 ((a4) – (b4)) cells per initial diameter 

at t ∗ = 0 . 11 and t ∗ = 0 . 53 . The upper half of each image shows the normalized axial velocity, the lower half numerical schlieren images. 
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Fig. 7. (a)–(d): Comparison of deformed cylinder interface for resolutions of D 0 / 
x = 50 , 10 0, 20 0 and 30 0. The time interval between two subsequent interface contour 

lines is 
t ∗ = 0 . 11 . (e)–(f): the deformed cylinder for these resolutions at t ∗ = 0 . 11 (e) and t ∗ = 0 . 55 (f). 

conditions at all external boundaries. The domain size is chosen 

sufficiently large to prevent spurious effects of wave reflections at 

the domain boundaries. 

The ambient uniform flow field is generated by a shock wave. 

This wave interacts with the cylinder at t = 0 . Pre-shock air and 

water are at rest at standard conditions ( ρg = 1 . 20 kg/m 

3 , ρl = 

10 0 0 . 0 kg/m 

3 , p g = p l = 1 . 0 atm). Post-shock conditions follow from 

the Rankine-Hugoniot relation for a shock Mach number of Ma S = 

1 . 47 ( ρg,s = 2 . 18 kg/m 

3 , p g,s = 2 . 35 atm, u g,s = 225 . 9 m/s). Material 

parameters for air and water are given in Table 1 . The Weber num- 

ber of this case is W e = 7 . 3 × 10 3 , the Ohnesorge number Oh = 

1 . 7 × 10 −3 , the Reynolds number Re = 1 . 3 × 10 5 , and the density 

ratio ε = 459 , thus SIE is expected to be the dominating breakup 

mode. We first perform simulations including viscous and capil- 

lary forces with a grid resolution of 200 cells per initial cylinder 

diameter, which relates to an effective resolution of 8192 × 8192 

cells in the entire domain. Grid-resolution effects are analyzed by 

varying the resolution from 50 to 300 cells per initial cylinder 

diameter, which relates to effective resolutions of 2048 × 2048, 

4096 × 4096, 8192 × 8192, and 12288 × 12288 cells. Note that a 

full resolution of capillary waves with 

W e 
 = 

(ρl + ρg,s ) u 

2 
g,s 
x 

4 πσ
� 1 , (22) 

where We 
 is the cell Weber number ( Popinet, 2018 ), would im- 

ply a resolution of approximately 3 × 10 5 cells per initial cylinder 

diameter. Thus, our simulations do not resolve the terminal disin- 

tegration of the liquid sheet due to capillary effects. Good agree- 

ment with experimental and numerical reference data indicates 

that the numerical resolution suffices to capture the early stages 

of the breakup process (see Sections 4.3 and 4.4 ). 

We non-dimensionalize our results using the initial cylinder di- 

ameter D 0 , the post-shock velocity u g,s , the pre-shock pressure p g , 

and the characteristic time by Ranger and Nicholls (1969) given by 

(D 0 

√ 

ε ) /u g,s . All non-dimensionalized quantities are denoted by an 

asterisk ( ∗). Flow direction in all contour plots is from left to right. 

4.2. Overall breakup evolution 

Fig. 3 shows the temporal evolution of the numerical breakup 

simulation results for a resolution of 200 cells per initial diameter, 
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Fig. 8. Evolution of the normalized upstream stagnation point drift (a), the normalized center-of-mass drift (b) and the skewness (c) for various grid resolutions. Where 

applicable, present results are compared to experimental data of Igra et al. (2002) and Igra and Takayama (2001c) (symbols) and numerical data of Meng and Colo- 

nius (2015) (dashed line). 

at time instants t ∗ ∈ {0.00, 0.02, 0.11, 0.19, 0.26, 0.44, 0.54, 0.76, 

0.98} (left to right, top to bottom). In each subfigure, the upper 

half domain displays the streamwise velocity field, and the lower a 

numerical schlieren image. Following Quirk and Karni (1996) , the 

numerical schlieren images are computed with 

φ = e −k | ∇ρ| / max ( | ∇ρ| ) , (23) 

where the parameter k is used for scaling the schlieren of differ- 

ent fluids. Here, we use k = 40 and k = 400 for the air and water 

phase, respectively ( Johnsen and Colonius, 2007; Meng and Colo- 

nius, 2015 ). 

The wave patterns in the vicinity of the cylinder agree well with 

current state-of-the-art simulation results in literature ( Meng and 

Colonius, 2015 ). Initially, the cylinder is unaffected by the shock 

passage, as the shock-passage time is much shorter than the relax- 

ation time of the cylinder ( Aalburg et al., 2003 ). The shock wave 

is partially reflected at the upstream side of the cylinder. Once 

the angle between the initial shock wave and the water-air inter- 

face exceeds a critical value, the reflected shock wave transforms 

to a Mach reflection ( Igra and Takayama, 2001a ). The Mach stems 

merge once the incident shock wave has passed the cylinder and 

form a secondary wave system, which eventually travels further 

upstream along the cylinder’s surface ( Fig. 3 (a)–(c)). 

The non-uniform pressure field along the interface results in 

the flattening of the cylinder ( Fig. 3 (c)–(e)). At the same time, 

regular wave-like interface disturbances develop at the equator 

( Fig. 3 (d)). Interface disturbances are related to small pressure fluc- 

tuations at the phase interface. These fluctuations are detailed in 

Fig. 4 (a), and their temporal evolution is shown in Fig. 4 (b). We 

observe the formation of a supersonic flow region near the cylin- 

der equator from the location of the sonic line (isoline for Ma = 

|| u || /c = 1 in white). The pressure fluctuations appear once this 

supersonic zone reaches the windward side of the cylinder, but 

do not form on the leeward side. These characteristic waves do 

not travel upstream with the progressing secondary wave system, 

but remain at the same location until they merge with the sec- 

ondary wave system. The pressure waves finally vanish once the 

secondary wave system detaches from the cylinder interface, and 

the supersonic flow region disappears. The pressure fluctuations 

coincide with the onset of the interface waves. We believe that the 

interaction of these local pressure waves with the phase interface 

generates small disturbances that trigger interface waves. The in- 
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Fig. 9. (a)–(b) Comparison of experimental visualizations of Igra and Takayama (2001b) (upper half) and numerical schlieren images (lower half) at t ∗ = 0 . 035 ((a); t = 

16 . 18 μs) and t ∗ = 0 . 07 ((b); t = 32 . 14 μs). (c) Flow field in the vicinity of the attached secondary wave at t ∗ = 0 . 07 . Shown are results for simulations with resolutions of 200 

cells ((a1)–(c1)) and 300 cells ((a2)–(c2)) per initial cylinder diameter. Reprinted from Igra and Takayama (2001b) with permission from Springer. 

terface disturbances eventually develop cusps, which merge into 

a single large water sheet and are stripped off from the cylinder 

equator ( Fig. 3 (e)–(h)). The thin sheet is advected further down- 

stream, where it is subjected to strongly fluctuating forces in the 

unsteady wake of the cylinder and, eventually, breaks up. Our sim- 

ulations do not resolve this terminal breakup of the sheet. The 

smallest sheet dimension is limited by the smallest computational 

cell size. 

The simulation confirms the development of a hat-like shape 

( Fig. 3 (f)–(i)) with a smooth windward region and two distinct 

cusps near the edge, which so far has been reported only in exper- 

imental investigations ( Theofanous et al., 2012 ). It is further dis- 

cussed in the following Section 4.4 . 

Moreover, multiple recirculation zones establish around the 

cylinder interface forming during the simulated time until t ∗ = 

0 . 98 , whereas Meng and Colonius (2015) have reported a single re- 

circulation zone each in the wake of the cylinder and at the cylin- 

der equator. They play an important role during the deformation 

and sheet-stripping process, and are initiated by unsteady vortex 

shedding at the cylinder equator. Fig. 5 shows the z -vorticity at 

various time instants. Unsteady vortex shedding after the shock 

passage results in the formation of the wake recirculation zone 

( t ∗ = 0 . 10 ). The shed vortex originating from the cylinder equa- 

tor is diverted at the downstream stagnation point of the cylin- 

der. It interacts with the vorticity stream near the cylinder equator, 

which leads to the formation of the equatorial recirculation zone 

( t ∗ = 0 . 14 ). We extend these observations, which agree well with 

that of Meng and Colonius, by the detection of additional recircu- 

lation zones along the interface, which can be related to local un- 

steady vortex shedding at the deformed interface. Previously men- 

tioned interface disturbances upstream of the cylinder equator are 

linked to the formation of a recirculation zone on the upstream 

side of the cylinder near the equator ( t ∗ = 0 . 26 ), which occurs at 

later time instants between the hat-like structure on the upstream 

side and the developing liquid sheet ( t ∗ = 0 . 54 ). Another recircula- 

tion zone forms at the tip of the liquid sheet due to the interaction 

of multiple vortices in this area, and contributes to the observed 

flapping of the sheet in the wake of the cylinder ( t ∗ = 0 . 65 ). 

4.3. Grid resolution 

We have investigated the effect of the spatial resolution on the 

numerical results for the cylinder deformation. Fig. 6 depicts con- 

tour plots for resolutions of 50 ((a1) – (b1)), 100 ((a2) – (b2)), 200 

((a3) – (b3)), and 300 ((a4) – (b4)) cells per initial cylinder di- 

ameter at t ∗ = 0 . 11 and t ∗ = 0 . 53 . The upper half of each image 

shows the normalized axial velocity, the lower half shows numeri- 

cal schlieren. 

At t ∗ = 0 . 11 , recirculation zones have formed in the wake of 

the cylinder and at the equator. Flattening and shift of the up- 

stream stagnation point are similar for all four resolutions. The 

primary wave system, which consists of the incident and the re- 

flected shock wave, is at the same position for all investigated res- 

olutions. The secondary wave system, which forms near the rear 

stagnation point once the Mach stems on both sides converge, is 

attached to the cylinder interface downstream of the equator up 
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Fig. 10. Qualitative comparison of the interface deformation process. The experimental figures are obtained from online-available videos. Reprinted from 

Theofanous et al. (2012) , with the permission from AIP Publishing. 

to a resolution of 20 0 cells per diameter. With 30 0 cells, more de- 

tails of the local wave-interface interaction are reproduced, and the 

secondary wave system crosses the cylinder equator slightly ear- 

lier ( Fig. 6 (a4)). This also affects the development of the pressure 

waves, that are visible in the Schlieren image. They only appear 

for a resolution of at least 100 cells. For a resolution of 300 cells, 

the secondary wave system moves further upstream, the super- 

sonic flow region is about to disappear, and pressure waves almost 

vanish. The resolution of the interface disturbance at the equa- 

tor requires more than 100 cells per initial diameter ( Fig. 6 (a1) 

and (a2)). From grid resolutions of 200 cells per cylinder diame- 

ter, interface waves are resolved that are responsible for hat for- 

mation and denote the onset of the sheet stripping ( Fig. 6 (a3) 

and (a4)). 

A similar behavior is found for the results at t ∗ = 0 . 53 . Gen- 

eral features such as the recirculation zones are reproduced for all 

resolutions. Resolutions of at least 200 cells per diameter repro- 

duce the hat-like structure on the upstream side of the cylinder 

( Fig. 6 (b3) and (b4)), while simulations with coarser resolutions 

exhibit a smooth interface ( Fig. 6 (b1) and (b2)). Only with suffi- 

cient grid resolution, implying sufficiently small numerical dissi- 

pation, interface disturbances are accurately resolved and the hat 

shape develops. This is also the case for the formation of the sheet, 

which is strongly affected by proper resolution of interface distur- 

bances. With increasing resolution, the sheet exhibits finer details, 

see for example the multiple cusps at the edges, each of which is 

associated with a local recirculation zone ( Fig. 6 (b2)–(b4)). 

Fig. 7 shows the evolution of the phase interface for resolu- 

tions of D 0 / 
x = 50 , 10 0, 20 0 and 30 0 ((a)–(d)), and overlapping 

at times t ∗ = { 0 . 11 , 0 . 55 } ((e)–(f)). The plots are centered at the re- 

spective centers-of-mass 

x 

∗
com 

= 

∫ 
�l 

x 

∗ρ dV ∫ 
�l 

ρ dV 

= 

∑ 

i 

x 

∗
i 
ρi V i ∑ 

i 

ρi V i 

, (24) 

where x ∗ stands for the cell-center location and �l denotes the 

liquid subdomain. The time interval between two subsequent grid 

lines is 
t ∗ = 0 . 11 . At the coarsest resolution ( Fig. 7 (a)), flattening 

is reproduced, while stripping at the droplet equator is underesti- 

mated. The liquid sheet appears for the finer resolution of D 0 / 
x = 

100 ( Fig. 7 (b)). For resolutions of D 0 / 
x = 200 , 300, ( Fig. 7 (c) and 

(d)) additionally the hat-shaped structure is observed. The overlap- 

ping contour lines in subfigures (e) and (f) indicate that coarser 

grids have a minor effect on typical geometrical parameters. At 

both instants, the interface overlaps near the upstream and down- 

stream stagnation points, and the extend in streamwise direction 

is similar. Yet, interface waves are more pronounced for finer res- 

olutions ( Fig. 7 (e)), and result in a more detailed representation of 

the sheet and the hat-like structure ( Fig. 7 (f)). 
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Fig. 11. Evolution of the normalized upstream stagnation point drift (a), the normalized center-of-mass drift (b) and the skewness (c) for simulations with and without 

capillary and viscous forces. 

A quantitative comparison of the normalized upstream stagna- 

tion point drift 
x ∗sp , the normalized center-of-mass drift 
x ∗com 

, 

and the third moment of the axial displacement μ3 /μ
3 / 2 
2 

is shown 

in Fig. 8 . Higher-order moments are computed following 

μk = 

∫ 
�l 

(x ∗ − x ∗com 

) k ρdV = 

∑ 

i 

(x ∗
i 
− x ∗com 

) k ρi V i ∑ 

i 

ρi V i 

. (25) 

The second moment ( k = 2 ) μ2 is the variance, and the normal- 

ized third moment ( k = 3 ) μ3 /μ
3 / 2 
2 

the skewness of the mass 

distribution. The skewness measures the asymmetry between the 

upstream and the downstream side of the cylinder. For the up- 

stream stagnation point drift, we also show experimental results 

of Igra et al. (2002) and Igra and Takayama (2001c) , and numer- 

ical results of Meng and Colonius (2015) for comparison. For the 

center-of-mass drift, numerical reference data of Meng and Colo- 

nius are included. In the study of Meng and Colonius, the authors 

apply a volume-of-fluid (VOF) approach, and the results are given 

for a volume faction of αT = 0 . 5 . 

The upstream stagnation point drift 
x ∗sp ( Fig. 8 (a)) is con- 

verged for the considered resolutions, and agrees well with refer- 

ence numerical data of Meng and Colonius (2015) and experimen- 

tal data of Igra et al. (2002) and Igra and Takayama (2001c) . The 

normalized center-of-mass drift 
x ∗com 

( Fig. 8 (b)) is converged for 

a resolution of 200 cells per initial cylinder radius, and agrees well 

with the reference solution of Meng and Colonius (2015) . This un- 

derlines that such integral parameters are insensitive to small scale 

interface structures which are resolved only for finer meshes. The 

overall evolution of the cylinder drift is well captured already for 

fairly coarse resolutions, and remains unaffected by the artificial 

dissipation of the applied numerical scheme. The skewness plots 

( Fig. 8 (c)) overlap for 200 and 300 cells per initial cylinder diame- 

ter, indicating grid convergence. At the higher resolutions, different 

stages of the drop deformation can be related to the skewness evo- 

lution. The initial increase is related to the flattening of the drop. 

The onset of the hat-like structure at t ∗ ≈ 0.3 results in a strong 

decrease of skewness. From t ∗ ≈ 0.75, the liquid sheet is advected 

downstream, which increases skewness. 

In summary, cylinder flattening is least dependent on resolu- 

tion, and appears already at the coarsest resolution of D 0 / 
x = 50 . 

The most resolution-critical features are interface waves and the 

formation of the hat shape at the upstream side, which is re- 

solved with D 0 / 
x = 20 0 , 30 0. Geometrical parameters are less 

affected by resolution. However, the normalized third moment 
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Fig. 12. The flow field in the vicinity of the water column for simulations with capillary and viscous forces ((a1) – (e1)) and without ((a2) – (e2)) for a mesh resolution of 

200 cells per initial cylinder diameter at t ∗ ∈ {0.11, 0.19, 0.26, 0.44, 0.76}. The upper half of each image shows the normalized axial velocity field, the lower half numerical 

schlieren images. 

(skewness) appears to deliver a good integral measure to detect 

the evolution of small-scale features. Our findings extend previ- 

ously published results ( Meng and Colonius, 2015 ), which showed 

grid convergence for a resolution of 100 cells per initial diame- 

ter. Our results indicate that higher resolutions of at least 200 

cells per initial diameter are required, along with low-dissipation 

temporal and spatial discretization schemes, for resolving detailed 

breakup features, such as the formation of the upstream hat-shape 

structure. 

4.4. Comparison with experimental visualizations 

In the following, we compare our numerical results with avail- 

able experimental visualizations. Schlieren images reveal wave pat- 

terns around the cylinder, as shown in Fig. 9 at times t ∗ = 0 . 035 

( Fig. 9 (a); t = 16 . 18 μs) and t ∗ = 0 . 07 ( Fig. 9 (b) and (c); t = 32 . 14 μs). 

The experimental images of Igra and Takayama (2001b) are de- 

picted in the upper half, numerical schlieren images in the lower 

half. Fig. 9 (a1)–(c1) give results for a resolution D 0 / 
x = 200 , and 
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Fig. 9 (a2)–(c2) for D 0 / 
x = 300 . The time instants are chosen as 

described by Meng and Colonius (2015) . At t = 16 . 18 μs, the numer- 

ical simulation accurately reproduces the propagation of the pri- 

mary wave system (initial and reflected shock), independent of the 

chosen resolution. The propagation of the secondary wave system, 

which consists of the converged Mach stems, is slightly underes- 

timated for both resolutions. This delay has been reported pre- 

viously in literature for this case, e.g. Meng and Colonius (2015) . 

At t = 32 . 14 μs, the primary waves are accurately predicted by the 

simulation. The propagation of the wave system close to the in- 

terface shows a dependency on the chosen mesh resolutions (see 

the area marked by the blue arrows in Fig. 9 (b), and the fo- 

cus on this area in Fig. 9 (c)). For the higher-resolved simulation 

( D 0 / 
x = 300 ), the interaction of the upstream-travelling wave 

with the increasingly disturbed interface results in a faster progres- 

sion of the wave in comparison to the simulation with D 0 / 
x = 

200 , and, thus, in a better agreement with the experimental 

data. 

Igra et al. (2002) and Igra and Takayama (2001a) reported 

phenomenological similarities for the interface deformation 

and breakup of two-dimensional liquid columns and three- 

dimensional spherical drops in the shear breakup regime. With 

this motivation, we show in Fig. 10 snapshots of the deformed 

interface from our numerical study of two-dimensional liquid- 

column breakup ( Fig. 10 (a)), and qualitatively similar visu- 

alizations of three-dimensional drop-breakup experiments of 

Theofanous et al. (2012) ( Fig. 10 (b)). The experimental visualiza- 

tions are taken from a breakup configuration in the SIE regime, 

with W e = 7 . 8 × 10 2 , Oh = 2 . 4 × 10 −3 , and Re = 2 . 2 × 10 4 (run 

W2 in Theofanous et al. (2012) ). We consider the main flow 

characteristics as precise flow conditions and time information do 

not match, see also Meng and Colonius (2018) for a corresponding 

discussion. Nevertheless, the characteristic interface deforma- 

tion patterns agree well in both visualizations. At t ∗ = 0 . 14 , the 

cylinder flattens due to the non-uniform pressure distribution 

along the interface. The downstream side is nearly planar, with 

two small cusps near the equator. At t ∗ = 0 . 23 , interface waves 

appear on the upstream side. These disturbances later form the 

hat-like structure and the liquid sheet, which is typical for this 

breakup mode ( t ∗ = 0 . 76 ). The capillary breakup of the sheet in 

the wake of the cylinder cannot be observed in our simulation, 

most likely due to resolution limits (see Section 4.1 ). In summary, 

the main characteristics of the drop evolution agree with the 

experiment: 

(i) hat-like upstream structure with smooth windward region and 

two cusps at the edge, 

(ii) transition region between hat and sheet, and 

(iii) sheet deformation in the wake of the cylinder. 

4.5. Capillary and viscous forces 

Capillary and viscous forces may be negligible at high We- 

ber and low Ohnesorge numbers. We assess the significance of 

these forces on overall breakup evolution and on interface defor- 

mation for the given set of physical and numerical parameters. 

Fig. 11 shows the temporal evolution of the upstream stagnation 

point drift, the center-of-mass drift, and the skewness of the de- 

formation in x -direction for simulations with and without capillary 

and viscous effects for a resolution of 200 cells per initial diame- 

ter. The upstream stagnation point drift 
x ∗sp ( Fig. 11 (a)) and the 

center-of-mass drift 
x ∗com 

( Fig. 11 (b)) overlap, indicating that cap- 

illary and viscous effects are insignificant at the considered We and 

Oh . Generally, also the skewness ( Fig. 11 (c)) shows similar evolu- 

tion through the main stages: increase during the flattening stage, 

decrease during the hat-formation, and subsquent increase during 

sheet stripping. However, for t ∗ < 0.5, the skewness differs more 

significantly, indicating that small scale interface structures at early 

deformation stages indeed are affected by surface tension and vis- 

cous forces. With progressing interface deformation, inertial forces 

dominate and overwhelm capillary and viscous effects. 

Fig. 12 shows contour plots at time instants t ∗ ∈ {0.11, 0.19, 0.26, 

0.44, 0.76} (top to bottom) for the cases with ((a1) – (e1)) and 

without ((a2) – (e2)) capillary and viscous forces. The upper half 

domain shows the normalized axial velocity, the lower numerical 

schlieren images. The general flow-field and interface-deformation 

evolution agree well qualitatively for both cases. However, the for- 

mation of the two small water sheets on the leeward side of the 

cylinder is delayed ( t ∗ = 0 . 19 , 0 . 26 ) when neglecting capillary and 

viscous effects. Also, interface disturbances at the equator appear 

to be sharper ( t ∗ = 0 . 19 , 0 . 26 ), which has some effect on the shape 

of the sheet at later instants ( t ∗ = 0 . 76 ). Nonetheless, flow field 

characteristics such as the recirculation zones are well reproduced 

in both cases. At t ∗ = 0 . 76 , both cases exhibit the hat-shape struc- 

ture at the upstream side and the liquid sheet at the downstream 

side. 

5. Conclusion 

We have analyzed interface deformation of shock-induced 

breakup of a liquid column by simulation with a high-resolution 

numerical scheme. The numerical model has beed validated by 

comparison with experimental results of Igra et al. (2002) , Igra and 

Takayama (2001b,c) and Theofanous et al. (2012) . The analysis fo- 

cuses on the unsteady deformation of the water cylinder for differ- 

ent mesh resolutions, and on comparison of results for simulations 

with and without capillary and viscous forces. 

The simulations accurately predict wave dynamics and inter- 

face deformation of the liquid column, reproducing the flatten- 

ing of the cylinder (first stage) and the stripping of the sheet 

(second stage). Pressure waves form in a supersonic region up- 

stream of the cylinder equator after shock impact and interact 

with the phase interface. This results in local interface distur- 

bances, coinciding with the onset of the second stage. Resolving 

these interface waves is essential for a numerical prediction of 

a hat-shape structure at the upstream side of the cylinder dur- 

ing the second stage of the breakup, which is found in experi- 

mental results of Theofanous et al. (2012) for this breakup mode. 

To our knowledge, this structure has not been reproduced by nu- 

merical simulations in previous works. We assume that the pres- 

sure waves initiate the interface disturbances, since these pressure 

waves also appear for a coarser resolution of 100 cells per ini- 

tial diameter, for which the interface remains smooth due to nu- 

merical dissipation. The results confirm the relation between the 

sheet-stripping mechanisms and the local formation of recircula- 

tion zones, as reported by Meng and Colonius (2015) . Extending 

their findings, we find that additional recirculation zones appear 

at multiple locations near the interface, and are directly linked 

to the evolution of liquid sheets from interface disturbances. At 

very early stages of the shock-column interaction, correct predic- 

tion of the interaction between the secondary wave system and 

interface instabilities is critical for qualitative agreement between 

simulation and experimental results of Igra and Takayama (2001b) . 

A comparative study shows that capillary and viscous forces have 

small effect on integral parameters for the considered Weber and 

Ohnesorge numbers and for the early stages of breakup. Late 

stages of breakup evolution increasingly develop three-dimensional 

flow structures. Simulations and analyses of three-dimensional 

configurations at late breakup stages are subject of ongoing 

work. 
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a b s t r a c t 

The solidification of an undercooled liquid is physically unstable. The dominating instability modes are 

affected by both the evolving temperature field in the solid and liquid phases, and characteristics of 

the phase interface such as the curvature and the propagation velocity. To capture the instability mode, 

therefore both the temperature field and the interface have to be represented accurately in a numerical 

model of the phase-change process. In this work, we develop conservative interface exchange terms for 

a sharp-interface formulation of liquid-solid phase transition. Conservation at the interface is maintained 

by explicit formulation of interface fluxes into both solid and liquid phases. We propose a semi-implicit 

level-set formulation to evolve the phase interface. A new formulation for the interface surface in a cut 

cell is derived, which includes the Stefan condition. We achieve low numerical dissipation by an explicit 

third-order Runge-Kutta scheme for time discretization, and a novel WENO-like (Weighted Essentially 

Non-Oscillatory) interface-gradient reconstruction. This distinguishes our level-set based sharp-interface 

model from previous level-set based approaches, which rely on finite-difference based interface treat- 

ment, and thus do not ensure discrete conservation at the interface. The flux terms in our approach take 

into account surface-tension and kinetic effects on the interface temperature (Gibbs-Thomson relation). 

The Stefan condition provides a relation between interface fluxes of mass and energy, and the interface- 

propagation velocity. Computational efficiency is maintained by a multiresolution approach for local mesh 

adaptation, and an adaptive local time-stepping scheme. 

We present one- and two-dimensional simulation results for the growth of a planar solidification front 

and a single parabolic dendrite affected by surface tension. The results agree well with experimental and 

analytical reference data, showing that the model is capable to capture both stable (planar) and unsta- 

ble (dendritic-like) growth processes in the heat-diffusion dominated regime. The convergence order for 

successively finer meshes in the one-dimensional case is one for the interface location and the tempera- 

ture field, outperforming previously reported level-set based approaches. We present numerical data of a 

growing crystal with four-fold symmetry. Our results indicate that the artificial dissipation of the under- 

lying numerical scheme affects its capability to reproduce consistently physical tip-splitting instabilities. 

The proposed low-dissipation scheme is able to resolve such instabilities. Finally, we demonstrate the ca- 

pability of the method to simulate multiple growing crystals with anisotropic surface-tension and kinetic 

effects. 
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1. Introduction 

Under suitable conditions, liquids can be cooled down to a tem- 

perature well below their solidification temperature. A disturbance 

of the undercooled liquid initiates sudden solidification processes, 

which manifest themselves as dendrites. Dendrites have a highly 

branched, tree-like structure. Anisotropic growth is caused by in- 
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homogeneities of the phase-change process in preferred crystal 

growth directions. Small perturbations of the initial state of the 

undercooled liquid or during the growth process may cause signif- 

icant changes in the resulting crystalline structure [21] . Although 

the dendritic growth process itself is inherently unstable, a steady- 

state solution exists for the tip radius and the growth velocity, 

which depend on both the material properties and the degree of 

undercooling. The steady-state growth mechanism can be charac- 

terized by diffusion or interface kinetics [46] . For the diffusion- 

dominated regime, Langer and Müller-Krumbhaar [28–30,34] de- 

rived an analytical stability theory, which extends the seminal 

work of Ivantsov [20] . Their theory shows good agreement with 

experimental results [9,46–48] in the diffusion-dominated regime, 

but differs in the kinetics-dominated regime. Once tip radius and 

tip growth velocities exceed their stability region, tip-splitting or 

side-branching instabilities may occur that eventually lead again 

to a stable configuration. 

The dendritic solidification process poses a Stefan problem at 

the phase interface, i.e. an initial-boundary value problem with 

moving boundary. Phase-interface dynamics are governed by the 

local temperature field and a Dirichlet boundary condition for 

the interface temperature considering local interface characteris- 

tics, such as the curvature or the propagation velocity. There- 

fore, an accurate representation of the topologically complex, time- 

dependent solidification front in multiple dimensions is necessary 

[11] . Various multiphase models have been applied to solve the 

Stefan problem numerically, both for mesh-free [50–52] and mesh- 

based discretization methods. For the mesh-based discretization, 

approaches can be related to either front-tracking [13,23,41] or 

front-capturing methods. Among the front-capturing methods, 

phase-field [2,3,10,14,25,27,35,49,57] and level-set [5–7,11,26,45,54–

56] approaches are the most popular choices for representing the 

solidification front [21] . In the phase-field approach, an additional 

order parameter, the phase field variable, is introduced. This vari- 

able indicates the physical state at the location of interest. The 

phase interface is located in the transition region of this param- 

eter, and the interface width is a model parameter. Hence, the in- 

terface is artificially thickened so it can be resolved on the given 

mesh. Phase-field models are therefore often classified as diffuse- 

interface model. The accuracy of the simulation depends on the 

thickness of the phase interface. Quantitatively accurate predic- 

tions of the phase front therefore require sufficiently small numer- 

ical grids, which may incur prohibitively high computational cost 

[21] . 

This difficulty is alleviated by the level-set approach. It also em- 

ploys an order parameter, the level set, which describes the signed 

distance from the interface. The zero-level-set contour denotes the 

interface location. The sharp-interface property of the level set 

enables an accurate localization of the phase interface, and sim- 

plifies the computation of local interface characteristics. An ap- 

proach to couple the interface velocity with the interface curvature 

was introduced by Osher and Sethian [37] . This work was a first 

step towards simulating dendritic solidification with the level-set 

method [44] . Chen et al. [6] extended this approach and proposed 

a model to solve the Stefan problem, focusing on crystal growth. 

They applied a finite difference approach to discretize the diffu- 

sion equation in solid and liquid phases on a homogenoeous grid, 

and used implicit time integration schemes. Their approach shows 

good agreement with the analytical solution obtained from solv- 

ability theory [26] . Higher-order stencils improved accuracy and 

convergence rates [11] . Overall computational efficiency was im- 

proved by a local mesh adaptation approach, which accounts for 

the different length scales near the phase interface [5] . Their ap- 

proach was applied to compute the solidification of binary al- 

loys by Theillard et al. [56] . An extended level-set model was in- 

troduced by Criscione et al. [7] , who employed a finite-volume 

scheme using ghost cells to solve the temperature field. Good re- 

sults were obtained for the simulation of both a stable, planar so- 

lidification front and the unstable growth of a single parabolic den- 

drite. Ramanuj et al. [39] presented simulations of unstable solid- 

ifying systems based on a second-order level-set approach [38] . 

They showed the advantages of high-order spatial schemes and 

explicit time integration schemes for dendrite-growth simulations. 

Yet, most previous works rely on implicit time integration schemes, 

introducing comparably large numerical dissipation and therefore 

require higher spatial resolutions to resolve topologically complex 

crystalline structures. In addition, non-conservative numerical in- 

terface models may compromise physically correct interface evolu- 

tion. 

In this work, we develop a conservative interface-interaction 

method for a sharp-interface formulation of liquid-solid phase 

transition of pure liquids. Conservation at the interface is main- 

tained by explicit formulation of interface fluxes into both solid 

and liquid phases. We propose a semi-implicit level-set formula- 

tion to evolve the phase interface. A new formulation for the inter- 

face surface in a cut cell is derived, which includes the Stefan con- 

dition. We achieve low numerical dissipation by an explicit third- 

order Runge-Kutta scheme for time discretization [12,16] , and a 

novel WENO-like (Weighted Essentially Non-Oscillatory) interface- 

gradient reconstruction [22] . This distinguishes our level-set based 

sharp-interface model from previously published level-set based 

approaches, which rely on finite-difference based interface treat- 

ment and may violate discrete conservation at the interface. The 

flux terms in our approach take into account surface-tension and 

kinetic effects on the interface temperature (Gibbs-Thomson re- 

lation), including anisotropic behavior. The Stefan condition pro- 

vides a relation between interface fluxes of mass and energy, and 

the interface-propagation velocity. The sharp-interface property is 

ensured by extrapolating fluid states across the interface for the 

single-phase reconstruction of the cell-face fluxes near the inter- 

face [8] . Computational efficiency is improved by dynamic mesh 

adaptation with respect to the evolving interface and temperature 

field using the multiresolution approach of Harten [17] . We em- 

ploy an adaptive local time-stepping scheme for efficient and ro- 

bust time integration [24] . 

The structure of the paper is the following: in section 2 , we de- 

scribe the sharp-interface method for modeling solid-liquid phase- 

transition problems. The new conservative interface-interaction ap- 

proach for liquid-solid phase transition is given in section 3 , to- 

gether with the employed level-set method. Section 4 provides 

one- and two-dimensional numerical example simulations for sta- 

ble and unstable phase-change processes. We conclude the work 

in section 5 . 

2. Sharp-interface method for liquid-solid phase transition 

The governing equations for the phase-change problem can be 

written as 

∂U 

∂t 
= ∇ · F k , (1) 

where U = ( ρ, ρcT ) T is the state vector of mass and energy, and 

F k = (0 , k ∇T ) T represents heat conduction. Here, ρ is the density, 

c the specific heat capacity, T the temperature, and k the thermal 

conductivity. We solve eq. (1) separately for the solid and liquid 

subdomain, and assume the specific heat capacity c and the ther- 

mal conductivity k to be constant in each subdomain. The con- 

vection in the liquid phase is suppressed in order to focus on the 

phase-change model. 

Eq. (1) needs to be completed by a set of interface conditions 

to fully describe the Stefan problem. We assume that the temper- 

ature field is continuous across the interface. The temperature at 
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Fig. 1. Schematic finite volume discretization of the domain � on a Cartesian quadratic grid. 

the interface T � is prescribed as Dirichlet boundary condition, and 

follows from the Gibbs-Thomson relation 

T � = T m 

− γ T m 

ρL 
κ − εu || u �|| (2) 

including surface tension and kinetic effects. Here, T m 

is the melt- 

ing temperature of the material, γ the surface tension coefficient, 

L the latent heat, κ the interface curvature, εu the kinetic coeffi- 

cient, and u � the interface velocity vector. Unless noted otherwise, 

we assume isotropic surface tension and kinetic coefficients. The 

Stefan condition represents the balance of local heat fluxes and the 

latent heat released by phase change and yields 

˙ m [ L + ( T � − T m 

) ( c l − c s ) ] = ρ ‖ u � ‖ [ L + ( T � − T m 

) ( c l − c s ) ] 

= ( k s ∇ T s − k l ∇ T l ) · n �. (3) 

Here, ˙ m is the mass rate of solidifying liquid, ∇ n T 	 = ∇T 
	

· n � is 

the interface-normal temperature gradient of the solid ( 	 = s ) and 

liquid ( 	 = l) phases, and n � is the interface-normal vector, which 

points from the solid to the liquid phase. 

The governing equations (1) are discretized by a finite-volume 

approach in the domain �, which is divided into two subdomains 

�l and �s by a time-evolving interface �. Fig. 1 shows a sketch of 

the two subdomains with a sharp interface. We integrate eq. (1) in 

each computational cell S ij of each subdomain �	 and apply Gauß’ 

theorem to obtain 

t (n +1) ∫ 
t (n ) 

d t 

∫ 
S i j ∩ �	

d S i j 

∂U 

∂t 
= 

t (n +1) ∫ 
t (n ) 

d t 

∫ 
∂(S i j ∩ �	) 

d S i j F k · n (4) 

where dS i j = 
x 1 
x 2 denotes the cell volume in two dimensions, 

S i j ∩ �	 each cell volume of phase 	, ∂(S i j ∩ �	) the cell face, 

and n the surface normal of this cell face. We replace S i j ∩ �	 by 

S ij αij , where αij is the time-dependent volume fraction of phase 	, 

with 0 ≤ αij ≤ 1. The cell face ∂(S i j ∩ �	) can be approximated 

by the cell-face apertures A , 0 ≤ A ≤ 1, and the segment of the 

interface � inside this cell, 
�ij . Eq. (4) is then rewritten for a 

single forward-time integration step of phase 	 as 

α(n +1) 
i, j 

U 

(n +1) 
i, j 

= α(n ) 
i, j 

U 

(n ) 
i, j 

+ 


t 


x 1 
(A 

(n ) 
i −1 / 2 , j 

F (n ) 
k i −1 / 2 , j 

− A 

(n ) 
i +1 / 2 , j 

F (n ) 
k i +1 / 2 , j 

) 

+ 


t 


x 2 
(A 

(n ) 
i, j−1 / 2 

F (n ) 
k i, j−1 / 2 

− A 

(n ) 
i, j+1 / 2 

F (n ) 
k i, j+1 / 2 

) 

+ 


t 


x 1 
x 2 
X 

(n,n +1) 
S i, j 

(
�i, j ) (5) 

where 
t denotes the timestep size, U i,j the cell-averaged state 

vector of the considered phase in cell ( i, j ), and F k i, j 
the fluxes in 

or out of this cell. The term X S , i,j describes the mass and energy 

exchange across the interface for the phase-change process. It van- 

ishes if a cell is not a cut cell. We follow the approach of Hu et al. 

[19] , and formulate the exchange terms as conservative interface 

fluxes. The fluxes also model the interface conditions (2) and (3) . 

All terms on the right hand side are calculated at time t ( n ) , except 

for the interface exchange term X S , i,j , which is further detailed in 

the following section 3 . 
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In this work, cell-face heat fluxes are reconstructed by a 

second-order central difference scheme. Low-dissipation time in- 

tegration is achieved by a strongly stable third-order Runge-Kutta 

scheme 

u 

(1) = u 

(n ) + 
t L (u 

(n ) ) 

u 

(2) = 

3 

4 

u 

(n ) + 

1 

4 

u 

(1) + 

1 

4 


t L (u 

(1) ) (6) 

u 

(n +1) = 

1 

3 

u 

(n ) + 

2 

3 

u 

(2) + 

2 

3 


t L (u 

(2) ) 

[12,16] . The maximum admissible timestep size is determined from 

a CFL-type stability criterion considering the propagation speed of 

the phase interface and heat diffusion in both phases 


t = CFL · min 

(

x 

| u �| , 
3 

14 

( 
x ) 
2 ρc 

k 

)
. (7) 

In all examples we use CFL = 0 . 5 . Advancing the flow field by this 

timestep size may lead to an unstable fluid state in cells with small 

volume fraction α. Therefore, we apply a mixing procedure in cells 

with α < 0.5 to maintain numerical stability [19] . 

Resolution of all scales of dendritic solidification on a homoge- 

neous mesh is computationally expensive. Several orders of mag- 

nitude lie between the wavelength of the dominating instability 

modes of a growing dendrite and the size of the dendrite itself 

[56] . Therefore, spatial adaptation techniques are necessary to ef- 

ficiently solve dendritic solidification problems numerically. We 

apply a block-structured wavelet-based multiresolution approach 

based on the work of Harten [17] to adapt the mesh to the pro- 

gressing solidification front and the evolving temperature field 

[15,18,42] . The procedure is in detail described in Hoppe et al. 

[18] . In the multiresolution approach, the cell-averaged solution 

is represented by cell-averaged data on a coarse grid and a se- 

ries of values on successively finer refinement levels. In this tree- 

based structure, the two basic operations to communicate data be- 

tween successive refinement levels are projection and prediction. 

The projection operation is applied to obtain data on a refinement 

level l from level l + 1 . Cell-averaged data on level l + 1 can be in- 

terpolated from level l using the prediction operation. Projection 

and prediction operations are local and consistent, but not com- 

mutative, i.e: 

• Applying first the prediction operation to obtain data on level 

l + 1 from level l , and afterwards again the projection operation 

results in exactly the same solution on level l . 
• Applying first the projection operation to obtain data on level l 

from level l + 1 , and interpolating afterwards the data on level 

l + 1 from level l using the prediction operation results in an 

error for data on level l + 1 . 

This motivates the definition of the so-called details d , which 

are the deviation of the predicted solution to the exact solution. 

The exact solution on the finest level can be replaced by a hier- 

archical data structure, which contains the exact solution on the 

coarsest level and the details of all successively finer levels. For 

implicit mesh adaptation, details are only considered when they 

are larger than a pre-defined level-dependent threshold 

ε l = ε ref · e ( −D ·(l−l max ) ) , (8) 

where l max denotes the maximum level to which the mesh can be 

refined, D the number of dimensions, and εref the admissible rel- 

ative error on level l . If the details are sufficiently small, further 

grid refinement does not lead to significantly better results than 

interpolation from a coarser grid. In our simulations, we refine the 

mesh based on the local error of the energy field. In addition, the 

phase interface is enforced to be always on the finest level [15] . 

We apply dyadic refinement, where each cell can be refined into 

2 D smaller cells. The reference error is set to ε ref = 0 . 01 for a re- 

finement between the finest level and the next coarser one. Effi- 

cient time integration is obtained by applying a local time-stepping 

approach, where each refinement level is advanced with its level- 

dependent timestep size [36] . The method is described in detail in 

Kaiser et al. [24] . It allows for adapting the timestep size after each 

full Runge-Kutta cycle on the finest refinement level based on the 

CFL stability criterion (7) . 

3. Conservative interface-interaction model for liquid-solid 

phase transition 

3.1. Conservative interface-exchange terms 

The level-set function φ represents the phase interface as 

the zero-crossing of a multi-dimensional continuous function φ
with > 

x ∈ �s → φ(x ) < 0 , 

x ∈ �l → φ(x ) > 0 , and 

x ∈ � → φ(x ) = 0 . 

The absolute value of φ describes the normal distance of the cell 

center x to the interface �, which leads to the signed-distance 

property |∇φ| = 1 . 

We develop conservative interface-exchange terms to model the 

phase-change process. We model mass and energy exchange across 

the interface, and for now suppress exchange of momentum. The 

interface fluxes for the solid phase are 

X S s = ( − ˙ m 
�, − ˙ m c s T �
� + k s ( ∇T s · n �) 
�) 
T 
, (9) 

and for the liquid phase 

X S l = ( ˙ m 
�, ˙ m c l T �
� + k l ( ∇T l · n �) 
�) 
T 
. (10) 

The first term of the energy exchange describes the material trans- 

port through the interface, and the second term the heat flux into 

each material due to the Stefan condition (3) . The interface tem- 

perature T � is obtained from the Gibbs-Thomson relation eq. (2) . If 

kinetic effects are taken into account, the interface temperature is 

computed using the interface velocity at time t ( n ) [11] . 

In previous work, the area of the interface segment in a cut-cell 


� is computed from cut-cell apertures [19,31] . For ˙ m = ρ|| u �|| , 
the interface segment moves within the cut-cell by a distance 


t || u �||. The linearized volume-fraction change is 
t 
�|| u �||. 

However, this formulation potentially violates conservation for 

multi-dimensional problems, see Fig. 2 . The linearized volume- 

fraction change differs from the correct volume-fraction change for 

the given case. Therefore, we propose a new way for determining 


� based on a semi-implicit level-set approach (see section 3.2 ). 

First, we compute the time derivative of the liquid volume fraction 

˙ α from level-set fields φ( n ) and φ(n +1) 

˙ α = 

∂α

∂t 
≈ α(φ(n +1) ) − α(φ(n ) ) 


t 
. (11) 

It is thus possible to reformulate the mass exchange across the in- 

terface in terms of ˙ α as ˙ m 
� = ρ ˙ αV c , where V c denotes the cell 

volume. Second, we formulate the energy conservation in a single 

cut cell based on the Stefan condition, eq. (3) , 

˙ Q ˙ α = 

˙ Q λ

˙ αρV c [ L + ( T � − T m 

) ( c l − c s ) ] = ( k s ∇ T s − k l ∇ T l ) · n �
�

where ˙ Q ˙ α denotes the heat released in the phase-change process, 

and 

˙ Q λ the released heat into both solid and liquid phases due to 

heat conduction. The interface area 
� follows from 


� = 

˙ αρV c 

[
L + 

(
T �i, j 

− T m 

)
( c l − c s ) 

]
( k s ∇ T s − k l ∇ T l ) · n �

= 

˙ αV c 

‖ u � ‖ 

(12) 
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Fig. 2. Schematic of the volume-fraction change in a single cell during an Euler step. The included volume-fraction change is shown in blue. Fig. (a): change for the linearized 

approach. Fig. (b): the new semi-implict level-set approach, which correctly predicts the entire volume-fraction change. 

Thus, the interface-exchange terms eqs. (9) and (10) can be written 

as 

X S s = ( −ρs ˙ αV c , − ρs ˙ αV c c s T � + k s ( ∇T s · n �) 
�) 
T 
, (13) 

X S l = ( ρl ˙ αV c , ρl ˙ αV c c l T � + k l ( ∇T l · n �) 
�) 
T 
. (14) 

We compare our approach with the linearized formulation in 

section 4.3 . 

The overall accuracy and stability of the method are sensitive to 

the evaluation of the interface-normal temperature gradient [7] . A 

common method provided in previous work is to reconstruct the 

temperature at one or multiple points in a fixed normal distance 

to the interface. The interface-normal temperature gradient then 

is computed by a finite-difference scheme [7,32,40] . Through ex- 

tensive numerical tests we found that a directional splitting ap- 

proach with weighting of local interface-normal temperature gra- 

dients based on third-order WENO smoothness indicators [22] pro- 

vides the best approximation of ∇ n T in terms of efficiency and 

accuracy, see Fig. 3 . Filled dots mark cells which are considered 

for computing the interface-normal temperature gradient. First, we 

compute the interface temperature gradient in each cell for each 

direction with a finite difference stencil 

∂T 

∂x 1 

∣∣∣∣
i + l, j 

= 

∣∣∣∣
∣∣∣∣ T i + l, j − T �

| φi, j | + l 
x 

∣∣∣∣
∣∣∣∣sgn (n �,x 1 ) , 

∂T 

∂x 2 

∣∣∣∣
i, j+ l 

= 

∣∣∣∣
∣∣∣∣ T i, j+ l − T �

| φi, j | + l 
x 

∣∣∣∣
∣∣∣∣sgn (n �,x 2 ) (15) 

with l ∈ {1, 2, 3}, the sign function sgn() and n �,x i 
the compo- 

nent of the interface-vector in x i -direction. We weight the cell- 

wise interface gradients based on the smoothness indicators of the 

third-order WENO scheme to obtain the overall interface-normal 

temperature gradient in the cut-cell (i,j) in each spatial direction 

∂ T / ∂ x 1 , ∂ T / ∂ x 2 . These are then projected onto the normal direction 

∇ n T = n �,x 1 

∂T 

∂x 1 
+ n �,x 2 

∂T 

∂x 2 
. (16) 

Similar to Criscione et al. [7] , the interface-normal temperature 

gradient finally is averaged within all direct neighbor cells. This 

procedure decreases spurious oscillations of the interface-normal 

temperature gradient. 

3.2. Level-set evolution 

The level-set field φ is evolved in time by an advection equation 

∂φ

∂t 
+ u � · ∇φ = 0 . (17) 

The level-set advection equation is solved for cut cells using the 

interface velocity u � , which is computed from the Stefan condition 

( eq. (3) ) following 

‖ u � ‖ = 

k s ∇ n T s − k l ∇ n T l 
ρ[ L + ( T � − T m 

) ( c l − c s ) ] 
. (18) 

Non-cut cells are evolved using an interface velocity ˜ u � extrapo- 

lated from adjacent cut cells, which is determined from the steady- 

state solution of the extrapolation equation 

∂ ̃  u �

∂τ
+ n � · ∇ ̃  u � = 0 . (19) 

The level-set field is evolved with the phase states at time t ( n ) be- 

fore advecting the fluid field. Thus, the solid and liquid phases can 

be updated afterwards from time t ( n ) to t (n +1) using the interface 

locations φ( n ) and φ(n +1) , e.g. when computing ˙ α in eq. (11) . We 

have found that this type of operator splitting improves mass con- 

servation of the overall level-set scheme, see section 4.3 for a nu- 

merical example. 

The numerical solution of the level-set advection does not 

maintain the signed-distance property |∇φ| = 1 . Therefore, the re- 

initialization equation 

∂φ

∂τ
+ sign (φ0 ) ( |∇φ| − 1 ) = 0 (20) 

is iterated in pseudo time τ to steady state to restore the signed- 

distance property after each timestep [53] . Here, φ0 is the level- 

set field prior the re-initialization step. Note that we also re- 

initialize cut cells to maintain the signed-distance property. The 

re-intialization of cells cut by the interface generally may affect the 

overall conservation of the level-set scheme by shifting the loca- 

tion of the zero-level-set [43] . This issue is, however, not relevant 

for the developed scheme, as the incorporation of the reinitial- 

ized level-set fields at t ( n ) and t (n +1) within the interface-exchange 

terms ensures local conservation, see section 3.1 . 

Similarly to the interface velocity extrapolation from the inter- 

face to the adjacent bulk cells, the fluid states are extrapolated 

across the interface to define a “ghost” fluid within the opposing 

phase [8] . These ghost-fluid states allow for the single-phase re- 

construction of the cell-face fluxes near the interface. This main- 

tains the sharp-interface property of the method. 
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Fig. 3. Schematic of the relevant cells for the computation of the interface-normal temperature gradient. Filled dots mark cell centers which are used to reconstruct the 

interface-normal temperature gradient. 

Fig. 4. Schematic of the narrow-band approach: shown are the interface (blue), cut cells (dark gray), narrow-band cells (light gray), and bulk cells (white). The solid phase 

is on the left side of the interface ( φ < 0), the liquid phase on the right side ( φ > 0). 

We introduce a narrow band around the interface to further im- 

prove the overall efficiency of our method. The narrow-band con- 

cept is shown in Fig. 4 . Three cell types are distinguished: 

1. Cut cells: cells that are cut by the interface. 

2. Narrow-band cells: cells which are in the vicinity of the inter- 

face. The width of the narrow band depends on the applied 

spatial and temporal discretization schemes. As example, a nar- 

row band with a width of four cells is shown in the figure. 

3. Bulk cells: cells that are far away from in the interface. 

All previously mentioned level-set operations (advection, reini- 

tialization, interface velocity and ghost cell extrapolation) are only 

performed in cut cells and narrow-band cells. All bulk cells are set 

to a constant level-set value depending on whether they contain 

liquid ( φ+ ) or solid ( φ−) states. This approach limits costly level-set 

related operations to only a fraction of the domain, thus improv- 

ing overall performance, without adversely affecting the accuracy 

of the method. 

The Gibbs-Thomson relation given in eq. (2) includes the inter- 

face temperature as function of the interface curvature. The cur- 

vature is the divergence of the interface-normal vector κ = ∇ · n �, 

which is numerically obtained from n � = ∇ φ/ |∇ φ| . The curvature 

is evaluated at the cell center by 

κ = ∇ · ∇φ

|∇φ| , (21) 

using a third-order WENO scheme. Finally, the interface curvature 

is subjected to a subcell correction step depending on spatial di- 
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Table 1 

Material parameters for the one-dimensional Stefan problem: water at 

243.15K and ice at 263.15K. 

ρ [kg/m 

3 ] c [J/(kg K)] k [W/(m K)] L [kJ/kg] T m [K] 

water 1000 4864.0 0.4829 333.6 273.15 

ice 1000 2030.0 2.319 

mensionality D 

κ� = 

(D − 1) κ

D − 1 − φκ
(22) 

to take into account the distance between the cell center and the 

interface [33] . 

4. Numerical results 

4.1. Growth of a planar solidification front (Stefan problem) 

The classical Stefan problem describes the non-stationary 

growth of a planar solidification front, and is solved to investi- 

gate the accuracy of the model for non-stationary problems. We 

simulate the propagation of an ice front in undercooled water, as 

proposed by Rauschenberger et al. [40] . In a domain of length 

2.5 mm, the phase interface is initially located at x �, 0 = 0 and 

propagates into the semi-infinite liquid subdomain x �( t ) > x �,0 . 

Both phases are initially at constant temperatures of T s = 263 . 15 K 

(solid) and T l = 243 . 15 K (liquid). Material parameters are provided 

in Table 1 . We prescribe a constant temperature T w 

= T s = 263 . 15 K 

at the wall, and use a zero-gradient boundary condition to rep- 

resent a semi-infinite liquid subdomain. The domain size is chosen 

sufficiently large to prevent spurious effects from the far-field zero- 

gradient boundary condition on the ice-layer growth. 

The numerical solution of the temperature field is compared to 

the analytical solution given by Carslaw & Jaeger [4] 

0 < x < x �(t) , t > 0 : T (x, t) = T w 

+ (T m 

− T w 

) 
erf 

(
x −x �, 0 

2 
√ 

αs t 

)
erf (β) 

x > x �(t) , t > 0 : T (x, t) = T ∞ 

+ (T m 

− T ∞ 

) 
erfc 

(
x −x �, 0 

2 
√ 

αl t 

)
erfc ( ̃  αβ) 

(23) 

with 

β
√ 

π = 

St s 

erfc ( β) 
e ( −β2 ) + 

St l 
˜ α erfc ( ̃  α β) 

e ( − ˜ α2 β2 ) (24) 

and the ratio of the thermal conductivities ˜ α = 

√ 

αs /αl . The Stefan 

number St denotes the ratio of sensible heat to latent heat and is 

computed following 

St s = 

c s (T m 

− T w 

) 

L 
, St l = 

c l (T m 

− T ∞ 

) 

L 
. 

Eq. (24) yields β = 0 . 2685 for the described case. The interface lo- 

cation at time t is given by 

x �(t) = x �, 0 + 2 β
√ 

αs t , (25) 

and the interface velocity is 

u �(t) = 

dx �(t) 

dt 
= β

√ 

αs 

t 
. (26) 

The simulations are initialized with the analytical solution for the 

temperature field from eq. (23) at t = 0 . 01 , and a corresponding 

level-set field with the interface located at x �(t = 0 . 01) from eq. 

(25) . 

A temporal series of simulated temperature profiles is shown in 

Fig. 5 , together with the corresponding analytical solutions. The ef- 

fective resolution for this case is 512 cells in the entire domain. The 

Fig. 5. Temperature profiles of the 1D Stefan problem at various instants for an 

effective resolution of 512 cells: analytical solution (—) and numerical results (sym- 

bols). 

Fig. 6. Interface location for the one-dimensional Stefan problem for different res- 

olutions: analytical solution (—) and numerical results (symbols). 

agreement with the reference is good at all time instants. Steep 

temperature gradients in both phases diminish over time, as solid 

and liquid phases absorb the latent heat released by the solidifying 

undercooled liquid. Therefore, the propagation of the phase inter- 

face slows down. 

The temporal evolution of the interface location is shown in 

Fig. 6 for successively finer meshes. The numerical results repli- 

cate the square-root behavior of the moving solidification front 

in time. The accuracy of the solution improves for successively 

finer meshes. Error plots are given in Fig. 7 for the interface lo- 

cation (left) and the temperature field (right) at t = 0 . 5 , for effec- 

tive mesh resolutions between 64 and 4096 cells. The temperature- 

field error is given as L ∞ 

norm, and as L 1 norm following 

L 1 = 

1 

V 

∑ 

n 

|| T n,exact − T n,sim 

|| 
T n,exact 

dV n , (27) 

with T n,exact being obtained from the analytical solution eq. (23) . 

The global convergence order of the scheme is one for both the in- 

terface location and the temperature field, which is higher than for 

previously published level-set based approaches [40] , underlining 

the advantages of applying high-order low-dissipation schemes. 
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Fig. 7. Fig. (a): error of the interface location x � at t = 0 . 5 . Fig. (b): error of the temperature field (right) at t = 0 . 5 . Given are reference convergence orders (dashed line) 

and simulation results (symbols). 

4.2. Growth of a parabolic dendrite 

The growth of a parabolic dendrite has been investigated ana- 

lytically, experimentally, and numerically in the past. Based on the 

work of Ivantsov [20] , Langer and Müller-Krumbhaar developed a 

stability theory for the growth of a single dendrite [28,29,34] . They 

derived a universal solution to compute the tip radius and veloc- 

ity of a parabolic dendrite. First, the Péclet number of the growth 

process 

P e = 

r t 

l 
(28) 

is introduced, which describes the ratio of the tip radius r t (i.e. the 

length scale of the growing dendrite) to the range of the diffusion 

field l given by 

l = 

2 α

u �
. (29) 

Here, α denotes the thermal diffusivity of the melt and u � is the 

interface velocity at the tip of the dendrite. For dendritic growth 

cases, Pe < 0.1 is usually valid. According to Langer et al. [29] , the 

Stefan number and the Péclet number are related by 

St ≈ P e exp P e E 1 (P e ) (30) 

if the dendrite is of parabolic shape, rotationally symmetric, and 

isothermal. Here, E 1 describes the exponential integral. 

A second non-dimensional parameter 

σ = 

ld c 

r 2 t 

(31) 

can be formulated, which relates the capillary length scale 

d c = 

γ cT m 

ρL 2 
(32) 

to the diffusion length l and the tip radius r t . The parameter σ
plays a crucial role in the stability analysis of dendritic growth. 

Depending on the number of dimensions D , Müller-Krumbhaar & 

Langer [34] derived that only solutions which satisfy 

σ ∗ = 

{
0 . 020 ± 0 . 007 D = 2 

0 . 025 ± 0 . 007 D = 3 

(33) 

are stable. Here, σ = σ ∗ is the operating point of dendritic growth. 

The tip radius and velocity for a given undercooling and mate- 

rial parameters are obtained as follows. First, eq. (30) is solved to 

Table 2 

Material properties of ice and water at 273.15K [40] . 

ρ k c L γ

[kg m 

−3 ] [W (m K) −1 ] [J (kg K) −1 ] [kJ kg −1 ] [kg s −2 ] 

Ice 1000.0 2.216 2103.0 333.0 0.028 

Water 1000.0 0.5624 4218.0 

obtain the Péclet number. Then, the formula for the growth veloc- 

ity 

V = σP e 2 = 

d c u �

2 α
(34) 

is employed to compute the tip velocity and, eventually, the tip 

radius is found from eq. (28) . 

In the following, we compare the simulation results with 

both the analytical solution of the theory of Langer and Müller- 

Krumbhaar and experimental results [9,48] at various undercool- 

ings 
T . We prescribe a single dendrite of tip length l D with the 

parametric function 

x (s ) = s (35) 

y (s ) = − s 2 

r t 
+ l D , (36) 

s ∈ [0 , 
√ 

r t l D / 2] . We choose l D = 3 r t , and an initial tip-radius which 

is half the tip radius expected from theory. We simulate only half a 

dendrite in a domain of size [20 r t × 40 r t ], utilizing the symmetry 

of the problem, see Fig. 8 for the initial interface location together 

with a sketch of the multiresolution block structure. Each phase is 

initialized at constant temperature, the ice subdomain with T s = T m 

and the undercooled water subdomain with T l = T m 

− 
T . Material 

parameters for water and ice at 273.15K are given in Table 2 . The 

domain is chosen big enough to eliminate boundary effects. We re- 

solve the domain with 256 × 512 cells. All far-field boundary con- 

ditions are assumed to be adiabatic. 

Fig. 9 shows the transient tip velocity for an undercooling of 


T = 10 K for various refinement levels ( Fig. 9 (a)), and the tem- 

perature field in the growing crystal ( Fig. 9 (b)). The discontinu- 

ous temperature field at initialization leads to an overestimation 

of the tip velocity at early times, and the dendrite grows rapidly. 

The energy released by the solidifying melt results in a flattening 
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Fig. 8. Schematic of the simulation domain for the two-dimensional dendritic 

growth case, including the multiresolution block structure. The solidification front 

is shown in red. Note that the dendrite is not drawn to scale. 

of the temperature gradient in both phases, and the tip velocity 

decreases. Note that the cell spacing only affects the early stages 

of the growth for t < 200 ns. Once a smooth temperature field has 

developed in the near field of the dendrite, the temporal evolution 

overlaps for different mesh sizes. Curvature effects on the interface 

temperature result in a heterogeneous temperature distribution in 

the parabolic dendrite (see Fig. 9 (b)). The minimum temperature 

occurs at the dendrite tip, which is where the interface velocity 

reaches its maximum. 

Table 3 

Relative error of the presented results to the analytical solution. 


T [ K ] 1 2 5 8 10 15 20 

error ( u � ) [%] 11.6 12.8 16.0 10.2 9.0 9.7 10.3 

Based on these results, we performed multiple simulations with 

various undercoolings to compare our model with analytical, ex- 

perimental, and numerical reference data. Note that the interface 

radius r t decreases with increasing undercooling 
T . Therefore, we 

adapt the cell size to maintain a constant resolution per tip ra- 

dius for all investigated cases. The strong initial temperature gra- 

dient results in a high interface velocity, so that the crystal grows 

rapidly. To assure that the crystal does not grow beyond its sta- 

bility limit due to the initial transient, we initialize the dendrite 

with a tip radius smaller than what is predicted from the analtical 

solution r t, 0 < r t,LM−K . Once a smooth temperature field has devel- 

oped, the tip curvature decreases. We evaluate the interface veloc- 

ity once the tip radius is equal to the radius of the theory of Langer 

and Müller-Krumbhaar r t,LM−K [40] . Our results are presented in 

Fig. 10 , together with the analytical solution [29] and previously 

published experimental [9,48] and numerical [7,40] data. The devi- 

ation to the analytical solution for each undercooling is presented 

in Table 3 . The results of our model lie within the experimental 

scatter, and numerical errors are similar to previously published 

level-set based models [7,40] . For 
T > 10 K, experimental results 

deviate from analytically and numerically determined tip veloci- 

ties. This deviation can be attributed to kinetic effects [48] , which 

play an increasingly important role for such large undercoolings, 

and are neither included in the simulation models nor in the ana- 

lytical model. 

4.3. Growth of a crystal with four-fold symmetry 

Juric and Tryggvason [23] proposed a test problem for the un- 

stable growth of a crystal with four-fold symmetry. The initial 

phase interface is given by the parametric function 

x (s ) = x c + ( R 0 + R s cos (8 π s ) ) cos (2 π s ) (37) 

y (s ) = y c + ( R 0 + R s cos (8 π s ) ) sin (2 π s ) (38) 

Fig. 9. Fig. (a): temporal evolution of the tip velocity for 
T = 10 K for various grid resolutions and the analytical solution. Fig. (b): temperature field in the growing dendrite. 
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Fig. 10. Tip velocity as function of the undercooling 
T from the presented numer- 

ical simulations, numerical reference data [7,40] , experimental reference data [9,48] , 

and analytical results [29] . Present numerical results are marked with filled sym- 

bols, open symbols denote reference data from literature, and the solid and dashed 

lines give the analytical results together with the variance 
σ . 

with s ∈ [0, 1], R 0 = 0 . 1 , R s = 0 . 02 , and x c = y c = 2 in a domain 

of size [0, 4] × [0, 4] with periodic boundary conditions. We 

use constant material parameters for the densities ρl = ρs = ρ = 1 , 

the specific heat capacities c l = c s = c = 1 , the thermal conductiv- 

ities k l = k s = k = 1 , and the latent heat L = 1 . The melting tem- 

perature is set to T m 

= 1 , and the initial temperature field in the 

solid ( T s = T m 

) and liquid ( T l = 0 . 5 ) phase is constant. The surface- 

tension coefficient and the kinetic coefficient are set to γ = 0 . 002 

and εu = 0 . 002 , respectively [23] . 

The Stefan number of this problem is 

St = 

c(T m 

− T l ) 

L 
= 0 . 5 = X s (t → ∞ ) 

and indicates that at equilibrium, half of the domain is solidified, 

while the other half remains in a liquid state at melting temper- 

ature. The temporal evolution of the solid volume fraction X s and 

of the mass m normalized with the initial mass m 0 are given in 

Fig. 11 for effective grid resolutions of 256, 320, 384, 448, and 

512 cells per spatial direction. For the coarsest resolution, we find 

an overprediction of the steady-state solid volume fraction, but 

with increasing resolution this overshoot vanishes. The temporal 

behavior converges for increasing mesh refinement, too. At steady 

state, the solid and the liquid mass each account for approximately 

one half of the total mass, as expected for this setup. The total 

mass ( Fig. 11 (b)) remains constant during the simulated time, con- 

firming the conservation property of our method. For comparison, 

Fig. 12 shows the relative local deviation of the simulated density 

field ρsim 

to the exact solution ρ = 1 for an effective resolution of 

256 cells per spatial direction at t = 0 . 4 with the linearized ap- 

proach, Fig. 12 (a), and the semi-implicit scheme proposed here, 

Fig. 12 (b). The linearized scheme exhibits large density errors in 

cut cells where the main direction of the crystal growth deviates 

from the main grid axes, see e.g. the area between two neighbour- 

ing fingers, Fig. 12 (a). For the present scheme, the density errors 

vanish, Fig. 12 (b)). 

Fig. 13 shows the isolines of the evolving solid-liquid interface 

for the previously mentioned grid resolutions. The time interval 

between isolines is 
t = 0 . 05 . The initial four protrusions develop 

each into a single dendrite. The tip-splitting instability occurs at 

each of these protrusions. In previous studies, the onset of this in- 

stability was reported at t ≈ 0.3 (e.g. [32,55] ). Our low-dissipation 

simulations indicate that the numerical dissipation of the under- 

lying numerical discretization scheme is critical for observing the 

first occurrence of tip-splitting, which in our case is at t = 0 . 15 . 

This underlines the advantageous effect of low-dissipative spatial 

and temporal discretization schemes on the occurrence of interfa- 

cial instabilities, as already mentioned by Gibou et al. [11] . Such 

high-order methods benefit from their low intrinsic numerical dif- 

fusion which does not prevail over the physical instability mecha- 

nism. With increasing refinement, the secondary dendrites flatten, 

and the onset of additional tip-splitting instabilities is observed, 

see the results in Fig. 13 for resolutions above 384 cells. To the au- 

thors’ knowledge, this kind of instability has not been reported for 

numerical simulations of this test case in previous literature. 

The temperature field at t = 0 . 6 and t = 1 is given in Fig. 14 . 

The anisotropic growth behavior is a consequence of the non- 

uniform temperature distribution in the solid and liquid phases, 

see t = 0 . 6 . Between two neighboring fingers, the liquid temper- 

ature is close to the melting temperature, leading to a low growth 

velocity. Near the tips of the crystal, the liquid is still undercooled. 

In combination with the lower interface temperature at the tips, 

which follows from the Gibbs-Thomson relation for curved inter- 

faces ( eq. (2) ), this results in a local increase of the growth ve- 

locity. At t = 1 , the temperature is approximately homogeneous in 

solid and liquid phases. This results in small interface temperature 

gradients, thus the crystal ceases to grow. 

4.4. Growth of multiple crystals with four-fold symmetry 

Finally, we simulate the growth of a complex multi-crystal 

growth configuration in an undercooled liquid to mimic a realis- 

tic solidification microstructure. On a domain of size [0, 8] × [0, 

4], we initialize four spherical seeds with initial radius r = 0 . 2 . The 

arbitrarily chosen seed centers are located at (1, 2), (2.5, 3.5), (4, 1), 

and (6, 2). The initial temperature is T l = 0 . 2 for the undercooled 

liquid, and T s = T m 

= 1 in the solid seeds. We use constant material 

parameters for the densities ρl = ρs = ρ = 1 , the specific heat ca- 

pacities c l = c s = c = 1 , the thermal conductivities k l = k s = k = 1 , 

the latent heat L = 1 , and the kinetic coefficient εu = 0 . 002 . For the 

anisotropic surface tension, we use 

γ (�) = γ0 

{ 

1 + A s 

[ 
8 

3 

sin 

4 
(

1 

2 

m s (� − �0 ) 
)

− 1 

] } 

(39) 

[1] . Here, γ 0 describes the undisturbed surface tension coefficient, 

A s the magnitude of anisotropy, � the angle between the interface 

normal and the x -axis, �0 the angle between the symmetry axis 

of the crystal and the x -axis, and m s the symmetry mode of the 

crystal. We choose γ0 = 0 . 002 , A s = 0 . 4 , �0 = 0 , and m s = 4 for a 

crystal with four-fold symmetry. The maximum mesh resolution of 

the adaptive grid is 1024 × 512 cells, and periodic boundary con- 

ditions are applied in x - and y -direction. 

Interface contour lines are given in Fig. 15 , with an equal time 

spacing of 
t = 0 . 005 between isolines. The initial growth stages 

are similar to the growth of a single nucleus in an undercooled 

melt, since the growing crystals do not influence each other yet. 

The four-fold anisotropy of the surface tension causes the crys- 

tal to grow along four main directions, similarly to the case pre- 

sented in section 4.3 . Interfacial instabilities at the tip of each of 

the protrusions result in the characteristic tip-splitting patterns. 

At later stages, the growing crystals interact with each other and 

block each others growth, which results in the locally degenerated 
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Fig. 11. Fig. (a): evolution of the solid volume fraction for successively finer meshes. Fig. (b): evolution of the total mass, the liquid mass, and the solid mass for various 

resolutions. The total mass for for the different resolutions is shown in black, the mass in the liquid phase in green, and the mass in the solid phase in blue. 

Fig. 12. Relative error of the density field at t = 0 . 4 . Fig (a): linearized approach. Fig. (b): semi-implicit approach. 

fingers. This behavior is connected to inhomogeneities in the tem- 

perature field, which is shown in Fig. 16 at t = 0 . 03 and t = 0 . 07 . 

At t = 0 . 03 , temperature-field inhomogeneities are restricted to the 

near field of each single crystal, while their surrounding consists of 

homogeneous undercooled liquid. Therefore, the shape of all four 

crystals is comparable to that of a single-crystal growth case, and 

symmetric to the main growth directions. The ongoing heat release 

during phase transition results in a temperature increase in the 

ambient undercooled liquid. At t = 0 . 07 , the liquid between crys- 

tals 1 and 2 has reached the melting temperature locally, and the 

growth ceases. The low numerical dissipation of the model ensures 

that the liquid areas between the solid crystals are preserved, and 

are not merged with each other. Between crystals 1 and 3, the fluid 

is still undercooled, thus the crystals grow in this direction. 

5. Conclusion and outlook 

We have presented a conservative interface-interaction method 

for a sharp-interface formulation of liquid-solid phase transition. 

Conservation at the interface is maintained by explicit formula- 

Fig. 14. The temperature field for an effective resolution of 512 cells in each spatial direction. The solidification front is shown in black. Fig. (a): t = 0 . 6 . Fig. (b): t = 1 . 0 
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Fig. 13. The solid-liquid interface for various grid resolutions. The time interval between isolines is 
t = 0 . 05 . 

Fig. 15. The solid-liquid interface for the growth of multiple cystals subjected to 

four-fold anisotropic surface tension. The time interval between two successive iso- 

lines is 
t = 0 . 005 . 

tion of interface fluxes into both solid and liquid phases. A semi- 

implicit level-set formulation is applied to evolve the phase inter- 

face. A new formulation for the interface surface in a cut cell has 

been derived, which includes the Stefan condition. The reconstruc- 

tion of interface gradients based on third-order WENO smoothness 

indicators [22] and an explicit third-order Runge-Kutta scheme for 

time discretization [12,16] ensures low numerical dissipation. The 

interface-interaction model takes into account surface-tension and 

kinetic effects on the interface temperature (Gibbs-Thomson re- 

lation), including anisotropic behavior. The Stefan condition pro- 

vides a relation between interface fluxes of mass and energy, and 

the interface-propagation velocity. The sharp-interface property is 

ensured by extrapolating fluid states across the interface for the 

single-phase reconstruction of the cell-face fluxes near the inter- 

Fig. 16. The temperature field of the multi-crystal growth case. The solidification 

front is shown in black. Fig. (a): t = 0 . 03 . Fig (b): t = 0 . 07 . 

face [8] . Computational efficiency is improved by dynamic mesh 

adaptation with respect to the evolving interface and temperature 

field using the multiresolution approach of Harten [17] , and an 

adaptive local time-stepping scheme for efficient and robust time 

integration [24] . 



J.W.J. Kaiser, S. Adami and I.S. Akhatov et al. / International Journal of Heat and Mass Transfer 155 (2020) 119800 13 

We have validated the presented method with analytical solu- 

tions for the one-dimensional Stefan problem and the growth of a 

two-dimensional parabolic dendrite. This shows that the model is 

capable to capture both unstable (dendritic-like) and stable (pla- 

nar) growth processes accurately. Numerical results of a growing 

single crystal with four-fold symmetry and multiple crystals with 

four-fold symmetry demonstrate the capabilities of the method to 

model crystal-growth problems with complex interfaces, and that 

it recovers the tip-splitting instability correctly. Our results indicate 

that the numerical dissipation of the underlying numerical scheme 

is critical for the prediction of tip-splitting instabilities. Our simu- 

lation predicts an earlier onset of this instability than reported in 

previous literature which is consistent with lower numerical dissi- 

pation. The numerical examples presented here are limited to one 

and two dimensions, extension to three dimensions is subject of 

ongoing work. 
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