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Decomposing the molecular complexity of brewing
Stefan A. Pieczonka 1,2, Marianna Lucio2, Michael Rychlik1 and Philippe Schmitt-Kopplin 1,2✉

The compositional space of a set of 120 diverse beer samples was profiled by rapid flow-injection analysis (FIA) Fourier transform
ion cyclotron mass spectrometry (FTICR-MS). By the unrivaled mass resolution, it was possible to uncover and assign compositional
information to thousands of yet unknown metabolites in the beer matrix. The application of several statistical models enabled the
assignment of different molecular pattern to certain beer attributes such as the beer type, the way of adding hops and the grain
used. The dedicated van Krevelen diagrams and mass difference networks displayed the structural connectivity of the annotated
sum formulae. Thereby it was possible to provide a base of knowledge of the beer metabolome far above database-dependent
annotations. Typical metabolic signatures for beer types, which reflect differences in ingredients and ways of brewing, could be
extracted. Besides, the complexity of isomeric compounds, initially profiled as single mass values in fast FIA-FTICR-MS, was resolved
by selective UHPLC-ToF-MS2 analysis. Thereby structural hypotheses based on FTICR’s sum formulae could be confirmed.
Benzoxazinoid hexosides deriving from the wheat’s secondary metabolism were uncovered as suitable marker substances for the
use of whole wheat grains, in contrast to merely wheat starch or barley. Furthermore, it was possible to describe
Hydroxymethoxybenzoxazinone(HMBOA)-hexosesulfate as a hitherto unknown phytoanticipin derivative in wheat containing
beers. These findings raise the potential of ultrahigh resolution mass spectrometry for rapid quality control and inspection purposes
as well as deep metabolic profiling, profound search for distinct hidden metabolites and classification of archeological beer
samples.
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INTRODUCTION
The yearly worldwide consumption of beer adds up to 1.96 billion
hectoliters (as of 2016). Thus, beer is, besides wine, the most
consumed fermented alcoholic beverage. Brewing handicraft
evolved in more than 5000 years from ancient brewers over the
German purity law from 1516 to high scaled, modern industrial
brewing1. The most recent developments, namely the “craft beer
revolution”, refuses the trend of “macrobreweries” and emerge a
multitude of smaller, more diverse brewhouses. Hops (Humulus
lupulus L.), which are the main focus of experimentation, are one
of the defining ingredients of beer. Besides that, (barley) malt,
water and yeast contribute to the complex aqueous mixture of
volatile and non-volatile molecules known as beer. The small
molecules (<1000 Da) are referred to as the beer metabolome and
play an important role in beer characteristics such as taste, aroma,
yeast fermentation, foam stability, or beer ageing. The measure-
ment of a group of chemically characterized and biochemically
annotated metabolites is known as targeted metabolomics. Using
different analytical methods such as GC- and LC-(ToF)-MS/MS
allowed to characterize the phenols and polyphenols2, hops bitter
acids3, the carbohydrates and their degradation during storage4,
or their reactions with amino acids and proteins analyzing Maillard
reaction markers5. Profiling specific volatile compounds in beer
enable to show a difference between top and bottom fermenting
yeasts6. In contrast, non-targeted metabolomics means a com-
prehensive analysis of all measurable analytes, including chemical
unknowns7, achieving an optimal metabolome coverage8. It
provides extensive datasets, which are used to explore novel
features or characterize differences between samples using
biostatistics, biochemistry, and informatics for data mining and
interpretation9,10. By non-targeted metabolic profiling it is possible
to differentiate beer types11,12, age groups13, origins14, different

storing conditions15, color characteristics16, or hop varieties17,18

using high-resolution analytical methods. Profiling of volatile
fingerprints of hops and barley19, yeast strains20, or different beer
types21 was carried out by means of either headspace or bubbling
burst (GC)-MS analysis. Besides mass spectrometry, nuclear
magnetic resonance (NMR) spectroscopy was applied to beer
analysis to differentiate beer types22, brewing sites23, raw
materials, or influences on yeast fermentation24. The range of
analyzed molecules, which characterize the differences of the
samples, reaches from carbohydrates, amino acids, small organic
acids over bitter acids, (poly)phenols and purines to more volatile
terpenes, esters, alcohols, aldehydes, and ketones. One major
drawback of non-targeted metabolomics is the dependence on
and limitation to database annotations. The outnumbering
unknown signals often referred to as “molecule features” are not
characterized.
Non-targeted metabolic profiling can exceedingly benefit from

a promising mass spectrometric method in beer analysis, the
Fourier transform ion cyclotron resonance (FTICR) mass spectro-
metry. Gougeon et al.25,26 already described the chemical space of
wine by a direct flow-injection ESI-method coupled to the FTICR
instrument. It was shown that this approach has the power of
resolving not hundreds, but thousands of molecules in a short
time. Indeed, Fourier transform mass spectrometry techniques are
the most advanced mass analyzers concerning mass accuracy and
resolving power. The unrivaled mass resolution enables a Flow-
injection-analysis approach, which gives access to compounds of a
wide polarity range. Due to ultrahigh resolution (~500,000 res.
power at m/z 400) and accurate mass measurement (~0.1 ppm)
FTICR-MS can separate and assign a molecular formula to each
signal, providing information about the (bio)chemical class of
these often yet unknown analytes. As thousands of features can
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be characterized it provides universal information about the
analyzed samples that remain hidden otherwise. Furthermore, by
connecting marker substances by mass difference networks27 and
displaying patterns of chemical compositions in van Krevelen
diagrams28, it is possible to infer the markers’ compositional
nature. These visualization methods allow us to make well-
sustained assumptions of molecule groups, which differentiate
diverse samples. As a result, the disclosed metabolic signature of
unknown samples can be recognized and assigned. Specific
compositions, which are essential for characterizing certain
metabolic profiles, can be perceived by statistical evaluation of
rapid and holistic FTICR measurements. However, FIA-FTICR-MS
lacks information about isomers and concrete molecular struc-
tures, which requires a second analytical technique. Tandem
UHPLC-ToF-MS is able to resolve isomeric compounds and provide
deeper structural information. Based on the exact m/z values
found in FTICR, the fragmentation of dedicated compounds and
isomers enables identification of the most significant molecules
on a structural level. The presented approach closes a gap
between the availability of a huge multitude of analyzed features,
their compositional annotation and deep structural information. It
opens the application for the recognition of the metabolic
signatures and the profound search for distinct hidden
metabolites.

RESULTS
Visualization of the molecular complexity
A diverse set of 85 bottled beers from different countries and of
different types was profiled as the first batch. To explore the
compositional diversity and molecular complexity of each
individual beer the samples were analyzed by flow-injection ESI
(−) FTICR-MS. The chemical space of beer is as diverse as the
variety of different raw materials and their treatment during the
brewing process including malting, roasting, boiling, fermentation,
and filtration. As an example, Fig. 1 shows the spectrum of a
Pilsner beer. The macroscopic general view (Fig. 1a) shows the
abundancy of (oligo)saccharide patterns. However, the detailed
view of a single nominal mass (Fig. 1b) revealed up to 27m/z
values within the mass of 391, which could be assigned to
molecular formulae with a mean error of <0.1 ppm (<1/10 of an
electron mass, respectively). The molecular variety of the beer
samples, which ranges from peptides [C19H28N4O5], carbohydrates
[C13H24O11], fatty acids [C21H40O4] through their sulfates
[C18H31O7S] to isotopologues of potential Maillard reaction
products like desoxyfructosyl(iso-)leucine [13C1C11H23NO7], could
be displayed in one single nominal mass by highly resolved FTICR
measurements. In total, an average of 2800 compositions could be
found in each beer spectra. Bearing in mind that distinct isomers
exist for a given formula, the 27 molecular formulae in the
spectrum excerpt represent 68 hits reaching from 0 to 11 isomers
in common databases. Therefore, the FIA-FTICR-MS spectrum of a
single beer can be considered as an instantaneous overview of
several thousands of compounds present in various concentra-
tions. All m/z values assigned to a molecular formula and present
in at least 5% of all beer samples are depicted in a two-
dimensional van Krevelen diagram (Fig. 2). Thereby the masses
can be associated to chemical families like carbohydrates,
peptides, organic acids, phenolics, lipids, nucleotides or even
hops bitter acids and their corresponding derivatives29. Plotting in
the van Krevelen diagram the 350 formulae, which were present in
over 95% of the beers spectra, we can recognize that the beer
matrix seems, in general, to be defined by carbohydrates and
derivatives, peptides, but also the hops bitter acids. In contrast to
this, lipids and phenolic compounds were more specific for the
single beers or group of beers (Supplementary Fig. 1).

By displaying assigned elemental formulae in a mass difference
network27 one can exploit the exact mass information provided by
FTICR-MS and set the CHO, CHNO, CHNOS, CHOS, and P chemical
spaces into relation. Figure 3a shows that the sulfur containing
spaces were separated from a highly connected CHO/CHNO
sphere. The same holds true for phosphate containing molecules,
which were mostly connected to the other spaces by glycerolpho-
sphate, phosphoethanolamine, hexosephosphate, and phosphor-
ylation itself. Mass differences indicating mainly reactions with
amino acids were the most dominant inside the CHNO chemical
space and between CHO and CHNO spaces (~50%). Condensation
of hexose and pentose species are the most abundant sugar-
related reactions connecting (oligo)saccharides with their dedi-
cated aglyca. Reactions regarding more specific metabolic path-
ways like prenylation (terpenoids) could be found besides the
condensation of nucleic bases and glycerol. Overall, raw chemical-
related reactions (roasting/malting/boiling) were represented on a
par with biochemically driven reactions (raw material/fermenta-
tion). An extract of the frequencies of individual modifications can
be found in Fig. 3b.

Multivariate analysis
The hierarchical clustering analysis (HCA) showed a general
overview of the similarities across the different samples revealed
a cluster of typical lager beers samples (Fig. 4). The quality control
samples, namely aliquots of one same lager beer, were correctly
located in exactly this group and build an own sub cluster, which
showed that the fingerprint of this beer is conserved through the
different batches. Beers with special grains like roasted malt, oat,
or gluten-free grain were grouped together as well as wheat beers
and alcohol-free beers. Besides these clusters there was a group
mainly but not exclusively consisting of craft beers and special
Belgian beers. Some more conventional beers were also allocated
inside this group, probably due to the overlap of specific
molecular patterns. A detailed inspection of the dendrogram plot
revealed two pairs of beer from one brewery (denominated
“brewery A” in the following)—namely the brewery A’s lager and
wheat beer with their corresponding alcohol-free versions. These
pairings reflect the fact that the dealcoholization process in this
brewery consists mainly of downdraft evaporation of the original
alcohol containing beer. The brewing process itself stays the same,
which makes these beers very similar.

OPLS-DA model 1: beer type
The first OPLS-DA model distinguishes between the different beer
types (Fig. 5). Wheat beers were separated from the other beer
types in the first component (x-axis). In the orthogonal second
component (y-axis) it was possible to differentiate between
classical lager beers and craft beers. The fourth class, the
traditional Belgian abbey beers, were located in the middle of
the score plot, whereas the spontaneous inoculated geuze beers
were excluded from the model as outliers. The detailed statistical
(Supplementary Table 1), loading plots (Supplementary Fig. 2), and
score-plot coordinates (Supplementary Table 2) for each model
are given in the supplementary information.
The first component revealed the most significant molecular

pattern separating wheat beers from the lager and craft beers.
Both the latter beer types feature a great amount of hops
compared with wheat beers and thus can be denominated “hops
rich beer types”. The masses with the most negative loadings
reflected this characteristic of a strong hops profile. The Van
Krevelen diagram of their formulae showed a specific cluster of
CHO-molecules in the region of 0.2 < O/C < 0.4 and 1.2 < H/C < 1.6,
respectively (Fig. 5i). As mentioned before, this area of the
diagram is typical for terpenoids and more accurately hops bitter
acids (terpeno-phenolics) in the beer matrix. This pattern was also
observed in the mass difference network, showing an
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agglomerated cluster of hop-rich beer-type markers in a certain
area (Fig. 3a). The annotation of the given masses in databases
offered exactly those hops bitter acids. Therefore, it is possible to
uncover the area of the mass difference network, where the
chemistry of the hops bitter acids is located. A number of 58
marker substances for rich hopped beers could be determined as
derivatives by their molecular formula, whereas only 20 of them
(35%) were found to have equivalent structures in the databases
and pertinent literature (Supplementary Table 3). As FTICR-MS is
not capable of distinguishing isomers, the [C21H30O5] marker can
represent humulone, adhumulone or iso-humulone, but most
likely a mixture. Further already known precursor molecules
like prenylphlorisobutyrophenone [C15H20O4] and prenylphlor-
isovalerophenone [C16H22O4] as well as bitter acid derivatives

like cohumulone [C20H28O5], deoxycohumulone [C20H28O4], dihy-
drohumulone [C21H32O5], or humulinone [C19H26O5] are sur-
rounded by molecular formulae without suitable hits (Fig. 6a).
A demethylation reaction of the potential cohumulinone
[C20H28O6] leads to the molecule [C19H26O6], whereas a decarbox-
ylation of [C20H30O7] leads to humulone [C21H30O5]. Overall,
finding literature equivalents of oxygenated structures like
[C19H26O6], which might indicate hydroxyl-, epoxy-, carboxy-, or
peroxyderivatives, turned out considerably difficult. Furthermore,
reduction/hydration and addition/elimination of water seem to be
important reactions inside this excerpt network of marker
substances. Pairs of marker molecules within the same nominal
mass (e.g., C20H28O6/C21H32O5; C19H26O6/C20H30O5; C20H26O6/
C21H30O5) underlined the necessity of high resolving analytical

Fig. 1 FTICR-MS spectrum reveals the chemodiversity of a Pilsner beer and biochemical patterns therein. The full-scale view (a) shows
hexose condensation patterns and an excerpt of the nominal mass m/z 391 (b) illustrates the resolved chemodiversity of the beer inside one
single nominal mass. Annotated sum formulae and mass errors are given above the mass peaks. Color code of the sum formulae: CHO blue;
CHNO orange; CHOS green; CHNOS red. Adduct formation is expressed by +H2PO4 for dihydrogenphosphate and +Cl for chloride,
respectively.
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techniques. In the second component, more oxygenated bitter
acid species as well as phenolic and polyphenolic compounds and
their dedicated glycosides seem to be characteristic for craft beers
due to the typical dry hopping process (Fig. 5ii).
It was possible to confirm the calculated profiles of the beer

types by the vicinity of the different types between the model and
prediction sample sets (Fig. 5). Only the position of two samples in
the score plot defy the cluster. Sample numbers 100 and 119, both
brewed in a certified abbey and, therefore, characterized as abbey
beer, were located inside the craft beer region. Besides this origin,
the actual brewing technique of these beers is described as amber
ale and triple ale, both in agreement with craft beer styles
including dry hopping. Therefore, not the brewing location itself,
but the molecular signature of the brewing process stands in the
foreground. A second group of beers, that could not be assigned
precisely, were craft beers brewed with wheat and Belgian wit
beers made with raw wheat. These beers share the signature of
craft beers (ale yeast; preferably strongly hopped) and the
signature of wheat beers (wheat grain as ingredient), for which
reason they were located between those beer types. The organic
wheat beer (sample 109) differed slightly as well. These findings
suggested that the compounds with the most positive loadings
define the molecular pattern of wheat. For the investigation of
specifically the wheat signature a second model was created.

OPLS-DA model 2: grain
The second OPLS-model was created to extract the influence of
the ingredient wheat on the beer’s metabolome (Supplementary
Fig. 3). All beers brewed with some amount of wheat were defined
as wheat containing beers, regardless of their beer type and other
brewing parameters. These stood against beers brewed exclu-
sively with barley. Notwithstanding, that the model sample set
consisted of beers with a plurality of various characteristics, it was
possible to perform the separation based on the grain used
without any ambiguous assignments. In addition to the intended
separation it could be remarked that the wheat containing craft
beers (sample 53, 54, 73), which were brewed with ale yeasts and
dry hopped, were separated by the orthogonal information by the
second component (y-axis). In the loading plot, several highly
significant wheat grain markers, such as [C14H17NO8], [C14H17NO9],
and [C15H19NO9], are separated by simple biochemical reactions
(e.g., hydroxylation; methylation) and most likely belong to the
family of benzoxazinoid hexosides. The intensity distribution of

the mentioned markers is given in the supplementary information
(Supplementary Fig. 4). These compounds are described to be
specific phytoanticipines for wheat30 compared with barley and
partially described in wheat beer31. Again, an excerpt of the mass
difference network of the wheat marker substances revealed six
masses corresponding to benzoxazines, which were already
characterized by de Bruijn et al.32, and a plurality of potential
derivatives (Fig. 6c). Against this background, the sulfatation
reaction of the HMBOA-hexoside to the respective sulfate
appeared especially promising. These secondary metabolites and
their dedicated derivatives seemed to be a crucial part of the
metabolic signature of wheat containing beers.
The prediction model (Supplementary Fig. 3) showed that the

typical German wheat beers containing malted wheat were as well
recognized as the Belgian wit beers, which contain unmalted
wheat. In contrast, the metabolic pattern of the wheat grain in
wheat containing craft beers (sample numbers 100, 114, 118) was
recognized less strongly. The comparatively low amount of wheat
was opposed by the contrary heavy hops signature. For beers
brewed with merely wheat starch no wheat signature could be
observed. These findings confirmed the applicability of the
calculated pattern and advice to identify certain specific marker
substances to detect even low amounts of wheat metabolites.

UHPLC-ToF-MS: marker identification
To support the interpretation of the FTICR-MS data and verify the
predicted structures, we performed UHPLC-ToF-MS2 measure-
ments on selected samples. The marker substances for a rich hops
profile and the wheat metabolome were investigated in depth.
The marker substances of beers with a rich hops profile in the

Van Krevelen region of 0.2 < O/C < 0.4 and 1.2 < H/C < 1.6, respec-
tively (Fig. 5i), were proposed as hops bitter acid derivatives. The
UHPLC-MS measurements of a hops rich beer revealed mass traces
fitting to 46 of the 58 sum formulae (80%) of the mentioned
markers (Supplementary Fig. 5). This is a notably high rate because
only 35% of the markers were found to have structural equivalents
in mentioned databases or cited pertinent literature (Supplemen-
tary Table 3). Moreover, the LC-dimension gave a better idea of
how complex the structures behind these masses are as up to 21
peaks could be found for one single formula, all being eluted in the
chromatogram region, where hops bitter acid derivatives were
found (3.5–7.0 min). The 22 detected isomeric compounds for
humulinone [C21H30O6] stood in contrast to other formulae like

Fig. 2 Van Krevelen diagram (H/C vs. O/C) of beer compositions shows their diversity and associated compounds classes. Annotations,
which appear in at least 5% of all beer samples are shown. Areas specific for certain compound classes are marked with dotted lines. Color
code: CHNO blue; CHNO orange; CHOS green; CHNOS red; P violet; Cl light violet. The bubble size indicates the mean relative intensities.

S.A. Pieczonka et al.

4

npj Science of Food (2020)    11 Published in partnership with Beijing Technology and Business University



[C19H26O4] (cohulupone), which were represented by only one
chromatographic peak (Supplementary Fig. 5). By tandem mass
spectrometry we were able to identify twelve hops bitter acid
derivatives like cohumulinic acid [C14H20O4], hulupinic acid
[C15H20O4], cohulupone [C19H26O4], (ad)humulone[C21H30O5], tricy-
clocohumol [C20H30O6], or tetracyclohumol [C20H30O6] on level
two33 by comparison of fragmentation patterns and intensities
with literature data (Supplementary Table 4). Opposing a wheat
beer, which does not feature a rich hops profile, shows, that the
corresponding mass traces are decisively higher in hops richer craft
and lager beers verifying their discriminating character (Supple-
mentary Fig. 5). It is worth noting that more than 100 MS2 spectra
did not lead to hits in databases or literature, and therefore are
considered level 3 identifications (Supplementary Table 5).
Benzoxazinoidic phytoanticipines of the wheat plant were

proposed as specific wheat grain markers in the beer matrix (Fig.
6c). Again, the marker formulae of the FTICR-MS models were
transferred into a preference list to selectively acquire tandem mass
spectrometric spectra. By comparison with literature known MS2

fragmentation, eight HBOA-derivatives could be identified in wheat
beer (level 2) (Supplementary Table 6). The retention time sequence
of the HBOA-, DHBOA-, DIBOA-, and HMBOA-hexoside coincides
with the one described by de Bruijn et al.32, whereas
the predicted HMBOA-hexosesulfate was eluted earlier than the
corresponding hexoside due to the polar sulfate group. The MS2-
spectra of the monohexosides are compared in Fig. 6c. The
cleavage of the hexose group from the HBOA-hexoside (1) [M–H]−-
ion [C14H16NO8] results in an m/z value of 164.0348 [C8H6NO3]. The
additional hydroxygroup of the DIBOA-hexoside (2) leads to the
180.0299m/z ion [C8H6NO4]. Replacing the hydroxygroup by a
methoxygroup, the m/z value of 194.0455 [C9H8NO4] can be found
for the HMBOA-hexoside (3). The same pattern holds true for the
136.0399 [C7H6NO2], 118.0283 [C7H4NO], and 108.0438 [C6H6NO]
fragment ions of the HBOA-hexoside. It was not possible to extract
complex fragmentation pattern of the HMBOA-hexosesulfate (4) as
it was a minor component with a peak intensity about 30 times
lower than the respective hexoside. However, the loss of the sulfate
group from the quasi-molecular ion 436.0554 [C15H18NO12S] to the
dedicated HMBOA-hexoside (3) [M–H]−-ion 356.0993 [C15H18NO9]
could be observed. Hereupon both compounds share the loss of
the hexose sugar. The dihexoside DHBOA-, DIBOA-, and HMBOA-
equivalents showed several closely eluting isomeric peaks and were
detected with lower retention times as they are more polar. All the
substantiated compounds were only observed in wheat beer and
none of them is present in beer exclusively brewed with barley,
which confirms the assumption that benzoxazinoidic phytoantici-
pines are suitable specific compounds for the use of wheat grain. To
our knowledge, the existence of a HMBOA-hexosesulfate has not
been described before. However, for definite identification the
synthesis of a corresponding standard would be needed.

DISCUSSION
Many studies have been published in the literature about beer
metabolome analysis employing LC- and GC–MS either with time-
of-flight or orbitrap instruments. The use of high-field Fourier
transform ion cyclotron mass spectrometry is shown here for the
non-targeted metabolic profiling of a diverse set of beer samples
and enables a flow-injection analysis due to the ultrahigh
resolution provided. We were able to demonstrate the benefits
of the superior mass accuracy paired with the annotation in
compositional networks. Constructing compositional mass differ-
ence networks exploits the exact mass information provided by
FTICR-MS and enabled coverage of complex formulae and the
whole compositional space. Thereby it was possible to assign
molecular formulae like [C29H35N5O10S] to an exact mass
likely corresponding to an Asp-Asp-Phe-Phe-Cys peptide or
[C10H14N5O8P] to guanosinemonophosphate (GMP). Even at low
masses (m/z 362.05072 for GMP) over 10 formulae are valid inside
a 3 ppm window (Supplementary Fig. 6). By the provided mass
error window of 0.1 ppm (0.002 ppm for GMP) and the possibility
to resolve isotopic fine structure we could ensure correct
annotations with our FIA-FTICR-MS approach. It allows us to
directly proceed from m/z values to the compositional space,
depict thousands of yet unknown structures and assign their
structural family concerning their position in the van Krevelen
diagram and connectivity inside the mass difference network.
Respective patterns were found for hops bitter acids and
biochemical connectivity of blepharine derivatives.
By supervised OPLS-DA modeling, we were able to extract the

profound metabolic signature underlying different beer types
within the brewing process. The classification power of the models
was highly significant. The p-values (calculated after the CV-
ANOVA) were lower than 2E−19; such values bring us to exclude
possible overfitting. Both models exceed Q2 values of 0.6, for the
quality of prevision, and R2Y values of 0.95, for the goodness of the
fit, proving their statistical relevance34. The molecular signatures

Fig. 3 Mass difference network of the beer samples’ annotations
and their (bio)chemical connectivity. Chloride adducts were
converted into their dedicated [M–H]− ions in silico. Color code
compare Fig. 2. The area of hops bitter acid derivatives inside
the mass difference network (a) is marked. An excerpt of (bio)
chemical reactions with their dedicated mass and sum formula
differences and the frequencies they occur in the network is given
below (b).
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for both lager and craft beers were dominated by the quantity of
hops used. However, lager beer is predominantly brewed with
hops varieties, which are rich in bitter acid compounds.
Confirmatory, humulone and cohumulone isomers and derivatives
appeared as marker masses for these types of beers. By the

analysis of the mass differences of masses dedicated to precursors
and intermediates even the whole biosynthesis of these typical
hops metabolites could be traced inside the beer matrix. The
position of discriminating compositions in the Van Krevelen
diagram showed, that more oxygenates bitter acid species as well

Fig. 4 Hierarchical clustering arranges the beer samples’ FTICR mass spectra with regard to their beer type. Color code of the observed
clusters: lager beer blue; beer brewed with special grain red; wheat beer green; craft beer yellow; alcohol-free beer light blue. The cluster of
QC lager beer samples is framed. The enlarged excerpt shows the cluster of one brewing site’s alcohol containing and alcohol-free beers. The
samples’ order is stated below.

Fig. 5 OPLS-DA model’s score plot for the beer-type observation. The score plot is surrounded by the different observations’ van Krevelen
diagrams (lager beers (I); craft beers (II); rich hopped beer types (III); wheat beers (IV)). Color code and bubble size compare Fig. 2. Samples
included in the model calculation are depicted as circles, whereas predicted samples are represented as triangles. Craft and lager beers are
summarized as hops rich beer types to reflect the separation of metabolites in the first component.
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as phenols, polyphenols, and dedicated glycosides are character-
istic for craft beers. Dry hopping of aroma hops after the boiling or
fermentation process, which is typical for this type of beers, adds a
multitude of mentioned compounds to their dedicated metabolic
profile due to ethanolic extraction of the hops35. Moreover, adding
hops umbels to the wort or young beer represents a heavy input
of oxygen, which advances oxidation processes. Hydrolysis, (de-)
hydration, epoxidation, peroxidation, and cyclisation mechanisms
of hops compounds, which also lead to an altered bitterness
perception, are known and described in literature as well as the
presence of phenolic acids, coumarins, flavonoid polyphenols, and
their glycosides36. However, the immense compositional complex-
ity, which evolves from these reactions and is addressed in this
work, still needs to be discovered. Duarte et al.37 already
suggested using 1H-NMR that the main difference between lager
and craft beers in terms of the metabolome can be traced back to
aromatic compounds. The prevision of a sub-sample set confirmed
the universal applicability of our model and strengthen the fact
that we were able to differentiate type and parameters of
brewing. Both beer types are commonly brewed without wheat.
Therefore, the wheat metabolome was assumed to be an
important discriminating and defining factor for wheat beers.
1H-NMR analyses22,38 again held aromatic compounds responsible

for the differentiation of grains. A statistical model opposing the
grains used was established to tackle the challenge of a
comprehensive description of the wheat metabolome and
eventually gain access to structural information. The fact that
some beers share the molecular signature of hops and wheat (see
prevision of the first OPLS-DA model) and the circumstance that
wheat beers are to different extents brewed with barley malt as
well, made this step of a second model essential.
The occurrence of blepharine derivatives as secondary meta-

bolites derived by the wheat grain as marker substances in beer
emphasizes the holistic and deep nature of our profiling approach.
Hydroxybenzoxazinone (HBOA) and its derivatives are known to
be phytoanticipines with antifungal, antimicrobial and insecticide
properties in the wheat plant30. Blepharines are stored in the
vacuole and activated following cell damage through
β-glucosidase activity30. It may be anticipated that the described
sulfate plays a role in either storage or transportation of the
phytoanticipines. It was previously shown that the phytoantici-
pines are modified during food processing and fermentation39,40.
Thus, chemical reactions during malting and boiling may also
contribute to the multitude of possible derivatives yet unknown in
the wheat and beer matrix. Compositional networks provided
access to new metabolites even in the beer matrix, which makes a

Fig. 6 Detailed excerpts of the mass difference networks for selected hops rich beer-type markers and wheat grain markers. The nodes
represent the annotated ions with given sum formulae or molecule names. They are connected by edges representing the sum formula
differences for the hops rich beer-type markers (a) and the biochemical reaction for the wheat grain markers (b), respectively. All nodes
depicted are considered marker substances. Wheat grain markers are additionally characterized by UPLC-MS2 of wheat beer sample 41 with
literature matching retention time order and MS2-spectra showing respective fragmentation and mass difference pattern (c)32,39.
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similar approach inside the wheat plant, grain or its compartments
especially promising. Worth mentioning is the fact that no
signature of wheat metabolites could be found in FTICR- and
LC-ToF-MS measurements with regard to beers merely brewed
with wheat starch. These beers lack the secondary metabolome of
the wheat grain. The combination of analytical and statistical
techniques presented here raise the potential of substantial
advances in yet open questions regarding both brewing science
and industry. In total, the metabolic profile of beer type and grains
provided by FIA-FTICR-MS could be verified by the identification of
18 (level 2) and 118 (level 3) compounds, respectively, for the
signature of rich hopping and the use of wheat. As an outlook, the
potential of ultrahigh resolution for food inspection or quality
control applications is shown by the differentiation between beers
brewed with wheat and merely wheat starch. Ongoing work focuses
on expending the approach toward other descriptive parameters
and archeochemical application of the presented metabolic
signatures. Archeochemical investigations on wines and beers are
generally executed by GC–MS-41 and IR-based42 measurements or
are restricted to targeted approaches43. The presented metabolic
profiles in future will be beneficial in deep profiling of ancient beer-
like beverages and beers of the earlier modern era.

MATERIALS AND METHODS
Beer samples
A total of 85 samples of bottled beers produced in different countries were
analyzed. They range from common lager or wheat over craft and abbey to
lacto fermented geuze beers. Light and dark, top and bottom fermented,
filtrated and non-filtrated, organic and gluten-free samples with alcohol
contents of 0–12% are covering the whole variety of purchasable beers in
close to any possible combination. Thereby the most comprehensive
mapping of beers’metabolome and prevention of covarying metadata was
achieved. The samples were purchased at local grocery stores in December
2017 and stored at −20 °C prior preparation for analyses. A second
independent sample batch, which includes 35 beers, was purchased in
2019 and used as prediction and validation set. The beer specifications are
summarized in the supplementary information (Supplementary Table 2).

FIA-FTICR-MS measurements
High-resolution mass spectra were acquired on a Bruker solariX Ion
Cyclotron Resonance Fourier Transform Mass Spectrometer (Bruker Dal-
tonics GmbH, Bremen, Germany) equipped with a 12 Tesla superconducting
magnet (Magnex Scientific Inc., Yarton, GB) and a APOLO II ESI source
(Bruker Daltonics GmbH, Bremen, Germany) operated in negative ionization
mode. The negative ion mode was preferred based on greater variety in the
composition, abundance of compounds and a smaller number of
suppressing adducts with respect to heavy potassium adduct formation in
the positive ionization mode. The beer samples were injected once into the
microelectrospray source diluted 1:500 in methanol and the total analysis
time of a sample was 10min. The used reagents, sample preparation, and
instrumental parameters are given in Supplementary Table 7. Possible space
charge effects were recalibrated by mass difference mapping44. The samples
were measured over a period of 18 months in randomized order using a
representative lager beer as quality control. Mass accuracies reached values
lower than 0.1 ppm between and within measurement days. Furthermore,
the conservation of the ion intensities and the molecular fingerprint could
be observed by this approach (see data-mining HCA).

FTICR-MS data processing and visualization
The FTICR spectra were exported to peak lists with a cut-off of signal-to-noise
ratio (S/N) of 6 using the DataAnalysis 4.2 software. Only singly charged ions
were included. Processing and filtration of the peak lists (FT-side loops and
isotopologue filtering) were performed by an in-house R-based software tool
on basis of single spectra. Peak alignment was performed within a threshold
of 1 ppm. Thereby an overall matrix of 13,800 masses was created. To obtain
molecular formulae, the exact masses were subjected to mass difference
network (MDN) analysis using the NetCalc software tool27. The network
calculation was repeated ten times and coinciding formula assignments were
kept, which led to approximately 10,500 unambiguous molecular formulae in

the C, H, N, S, O, P, Cl space. The developed mass difference network, in which
nodes represent molecular formulae and edges represent chemical reactions,
was visualized by the open accessible Gephie Viz Platform45 using the open
order algorithm. The masses with a frequency below 5% through all the
samples were not considered during further data mining. Small mass
transitions like oxidation, methylation, hydrogenation, or amination were
withheld for visualization due to computing power. Van Krevelen diagrams
were chosen to associate annotated m/z values to chemical families based on
the procedure illustrated by Schmitt-Kopplin et al.29. Library searches were
executed using an R script based on the MassTRIX approach46 including the
Human Metabolome Database (HMDB)47, the Chemical Entities of Biological
Interest (ChEBi)48, Metacyc49, Lipid maps50, the Yeast Metabolome Database
(YMDB)51, and an in-house peptide database consisting of all in silico peptides.

UHPLC-ToF-MS measurements and structural identification
The beer sample 52 (hops rich craft beer) and sample 41 (wheat beer) were
analyzed in a fivefold concentration on a time-of-flight mass spectrometer
(maXis, Bruker Daltonics, Bremen, Germany), coupled to an UHPLC system
(Acquity, Waters, Eschborn, Germany). The preference list for fragmenta-
tion was compiled based on the substances’ masses, which occurred as
marker for the hop rich beer types (sample 52) and wheat grain (sample
41) observations (Supplementary Tables 4–7). Further instrumental
parameters are given in Supplementary Table 7. The search for comparable
tandem mass spectrometric data was executed using the MassBank of
North America52 and in silico fragmentation by MetFrag53 based on the
KEGG54, HMDB47, and YMDB51 databases. Spectra were checked in
mentioned literature source. The level of identification was assigned
based on the criteria given by Sumner et al.33.

Statistical analyses
The dataset, divided into a first batch defining the model and a second
batch used for prevision and validation, was analyzed with different
multivariate techniques. First, we used an unsupervised technique to cluster
the different beer samples. The intensities were normalized (z-scores) and
the clustering was calculated by using the average group linkage and the
Pearson correlation coefficient for the distance measure (Hierarchical
Clustering Explorer tool; HCE, 3.0). Afterward, the dataset was analyzed by
different classification models applying supervised orthogonal partial least-
square discriminant analysis (OPLS-DA). The Hotelling’s T2 test (95%) was
applied to prohibit the influence of strong outliers on the models. For both
the beer type and grain model it was possible to extrapolate the most
discriminant features (m/z values). The lists of the most important masses
were defined choosing the highest loadings values. The top characteristic
masses were selected within the 95th percentile (264 masses for each class).
The goodness of the fit and of the prediction were evaluated with the R2 and
Q2 values. To exclude overfitting, we provide the p-value of the cross-
validation analysis of variance (CV-ANOVA). In addition, based on the
robustness of the classification models we could use them to make a
prevision of a second sample set. The recognition of molecular pattern for
the independent samples and thus the localization of those in the score plot
could verify the universal applicability of the models. Those elaborations
were done in SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). The marker
formulae were depicted in van Krevelen diagrams for each class. By plotting
H/C versus O/C atomic ratios it is possible to depict common compositional
patterns within observations’ markers25,28.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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