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We discuss spectral distortions, time delays, and refraction of light in an axion or axion-plasma
background. This involves solving the full set of geodesic equations associated to the system of
Hamiltonian optics, allowing us to self-consistently take into account the evolution of the frequency,
momentum, and position of photons. We support our arguments with analytic approximations and full
numerical solutions. We also describe both nonintegrated and integrated versions of these effects, the latter
of which depends on the whole history of the photon trajectory through the axion background. Remarkably,
the introduction of a plasma enhances the sensitivity to axion-induced optical phenomena, allowing chiral
refraction, integrated time delays, and integrated frequency shifts to occur at first order in the axion-photon
coupling. This suggests a general enhancement of many axion-induced dispersive effects when the
background refractive index is different from 1.
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I. INTRODUCTION

Axions remain promising candidates for beyond the
Standard Model physics. The QCD axion emerges as a
solution to the strong-CP problem [1–3], while string
theory extensions of the Standard Model predicate a
plethora of axionlike particles [4,5]. Axions could also
solve the dark matter problem [6–10]. The masses of axions
can span a large range of scales, with Compton wave-
lengths on the order of galaxies down to table-top sizes of
millimeters and below. As a result, the axion is the subject
of many current and proposed laboratory searches [11–19].
The aim of the present work is to explore the optical

properties of an axion background due to its coupling to
photons

Laγγ ¼ −
gaγγ
4

aFμνF̃μν; ð1Þ

where gaγγ is the axion-photon coupling, a is the axion
field, and Fμν and F̃μν ≡ ϵμνρσFρσ=2 are the photon field
strength and its dual, respectively. This interaction leads to
nontrivial dispersion in axion backgrounds and, since it
violates parity, leads to birefringence. This can generate a

relative phase velocity splitting between left and right
polarized light, leading to Faraday-like rotation of linearly
polarized light [20–23]. Modifications to the group velocity
were considered in Ref. [24], where it was suggested this
could lead to time delays for axion profiles around pulsars.
It was also proposed that axion backgrounds could lead to
polarization-dependent bending of light [25]. However,
a more systematic analysis of photon geodesics revealed
this could not happen at OðgaγγÞ [26] for a pure axion
background.
In fact, the authors of Ref. [26] made a very important and

general observation. While there are many references which
deal with the propagation of light through an axion back-
ground [20,25,27–30], these are, in general, not fully
realistic since they neglect either the time or space depend-
ence of the axion background, which both affect photon
propagation. For example, in this work, we show that an
axion background localized along the line of sight with space
and time dependence leads to integrated effects, dependent
on the whole history of the trajectory, including frequency
shifts, time delays, and refraction. This is reminiscent1 of the
integrated and nonintegrated Sachs-Wolfe effects [31].
As the axion background is both time and space

dependent, frequency and momentum are no longer con-
served quantities, and a proper discussion of dispersion
must self-consistently take into account variations of these
and the position along the ray path. This can be achieved by
deriving a system of Hamiltonian optics equations [32]
whose solutions give the photon geodesics and capture all
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the necessary details about group dispersion, frequency and
momentum shifts, time delays, and refraction. Furthermore,
these equations allow one to study general axion back-
grounds without the need to assume any hierarchy between
temporal and spatial gradients as would happen for non-
relativistic backgrounds.
The present paper is concerned with examining these

key observables within the optics equations, extending the
discussion of Ref. [26] by accounting for higher-order
effects in gaγγ, modifying the background refraction index
by the presence of a background plasma and studying a
wider class of observable effects.
First, we point out the difference between leading

and higher-order corrections to the photon frequency/
momentum. We show that, when plasma is present, one
can have integrated frequency shifts even for localized
axion profiles which vanish at the end points of the photon
trajectory. By contrast, in the absence of the plasma, at first
order in gaγγ , there is no integrated frequency shift,
consistent with Ref. [26]. Instead, the asymptotic (inte-
grated) frequency shift in the plasma-free case occurs at
order g2aγγ.
Second, we demonstrate polarization-dependent group

dispersion at first order in gaγγ for background refractive
indices different from 1, n0 ≠ 1, provided here by plasma.
We show that this leads to polarization-dependent time
delays at OðgaγγÞ. We also discuss higher-order group
velocity corrections atOðg2aγγÞ and discuss these in terms of
group versus signal velocities, relevant for the speed of
information transmission via pulses [33].
Third, we confirm that there is no asymptotic bending of

light at OðgaγγÞ when the background refractive index is
equal to 1, n0 ¼ 1 [26], but show that birefringent refrac-
tion does happen at OðgaγγÞ when n0 ≠ 1.
The structure of the paper is as follows. In Sec. II, we

derive the dispersion relations for photons in a general
axion background with an additional plasma component.
Here, we set up the geodesic equations and draw an analogy
with Hamiltonian perturbation theory as an interpretation
of our perturbative expansion. In Secs. III and IV, we study
a simple 1þ 1-dimensional axion background, which is
sufficient to illustrate frequency shifts, group dispersion,
and time delays. Then, in Sec. V, we work in 2þ 1
dimensions, which allows us to demonstrate refraction
within a plasma at OðgaγγÞ and without a plasma at
Oðg2aγγÞ. Finally, in Sec. VI, we summarize our results
and speculate on some applications and proposals for future
work. We have used natural Lorentz-Heaviside units
c; ϵ0; μ0 ¼ 1 in this work.

A. Physical motivation

The work presented here can be used as a general toolkit
which, when appropriately applied and extended, offers

the potential to probe the existence of axion backgrounds
in a variety of ways. There are, in particular, two note-
worthy optical features of axion backgrounds: first, that
they violate parity by generating polarization-dependent
dispersion and, second, that the observed frequency shifts,
varying arrival time, and refraction will undergo periodic
modulation due to the oscillating axion field. The following
aspects are relevant for a comprehensive discussion of
axion backgrounds:
(1) Axion profiles. There are, at least, two interesting

types of axion backgrounds to which our results
might be applied. One is to postulate axion dark
matter, either as a virialized QCD axion background
of particles or as an ultralight scalar whose Compton
wavelength is of galactic sizes [10]. Both of these
will lead to birefringent signals with a period
multiple of 2π=ma. Another possibility is to use a
superradiant black hole background [34–36], where
the axion field values can be especially high. For this
case, our discussion of optical properties of distant
sources, which rely on integrated effects, are parti-
cularly relevant.

(2) Time delays. Time delays from a galactic/
astrophysical axion background could possibly be
probed via precision pulsar timing, see, e.g.,
Ref. [37], although here they arise through a direct
coupling of the axion field to the photon, rather than
via geometric distortions. See also Refs. [38,24].
Equally, a local axion background could be studied
in a terrestrial timing experiment, possibly via
interferometry [22].

(3) Spectral shifts. Our analysis of integrated spectral
distortions from axion backgrounds along all or part
of the line of sight suggests that, for a line signal
from an astrophysical source, one would observe a
periodic shift in the position of the peak frequency.
For a linearly polarized signal, a double image in
frequency space for each polarization would be
produced, with the two peaks experiencing periodic
oscillation. This could be due—as with time
delays—to a dark matter background. Another
possibility is to observe the spectrum of a super-
radiant black hole accretion disk whose emission
passes through the axion background. In both cases,
the spectrum would be shifted periodically, with
lower frequencies experiencing a greater magnitude
of shifting. One could also hope to observe the
simpler plasma-free spectral distortions at OðgaγγÞ
in, e.g., a terrestrial experiment as suggested in
Ref. [26] where one measures the frequency changes
between emission and detection.

(4) Refraction. Our results show that birefringent re-
fraction, i.e., light bending, can happen at OðgaγγÞ
when there is a nontrivial background refractive
index n0, here supplied by a plasma. The scenario of
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polarization-dependent refraction by a superradiant
black hole was considered in Ref. [25], but ruled out
at leading order in gaγγ by a more detailed analysis
[26] of the optics equations. However, in light of our
results, it could be interesting to rerun the analysis of
Ref. [25] with a plasma component from an accre-
tion disk or interstellar medium and compare the
refraction angles to resolutions of upcoming and
current telescopes.

II. DISPERSION IN AXION BACKGROUNDS

The term (1) leads to the following modification of
Maxwell’s equations,

∇ · E ¼ ρ − gaγγB ·∇a; ð2Þ

∇ ×B − _E ¼ Jþ gaγγ _aBþ gaγγ∇a ×E; ð3Þ

∇ ·B ¼ 0; ð4Þ

_Bþ∇ ×E ¼ 0; ð5Þ

where E and B are the electric and magnetic fields, J and ρ
are current and charge densities, and the dots represent time
derivatives. The electromagnetic fluctuations are related to
current fluctuations via

J ¼ σ ·E; ð6Þ

where σij is a conductivity tensor. Throughout, we assume
an isotropic and collisionless medium for which the
conductivity at a given frequency takes the form σijðωÞ ¼
iδijω2

p=ω where ω2
p ¼ ncce2=mcc is the plasma frequency

squared and ncc is the number density of charge carriers.
This could arise, for instance, from the interstellar medium,
the companion star of a black hole, or perhaps an accretion
disk, though the following discussion remains general.
One could also keep in mind the possibility of any
medium which endows the photon with a nontrivial
refractive index, which achieves the same end. This may
be relevant in exploring extensions of the following
analysis to laboratory setups.
With some straightforward manipulations of Maxwell’s

equations, we obtain

□Eþ∇ð∇ ·EÞ þ σ _Eþ gaγγ
d
dt

½ _aBþ∇a ×E� ¼ 0; ð7Þ

□Bþ σ _B − gaγγ∇ × ½ _aBþ∇a × E� ¼ 0: ð8Þ

The first equation is derived by taking the time derivative
of Eq. (3) and inserting (5) to eliminate _B. The second
equation follows by taking the time derivative of (5)
and using (3) to eliminate _E. Next, we use the geometrical

optics approximation, defined by the requirement that the
photon wavelength should be smaller than the gradient
scales of the axion background. This amounts, schemati-
cally, to the limit ∂μa=a ≪ ∂μE=E, ∂μB=B. This require-
ment allows us to consider solutions of the form

E ¼ E0eiS; B ¼ B0eiS; ð9Þ

where frequency and momentum are identified as ω ¼ − _S
and k ¼ ∇S. We derive dispersion relations by neglecting
further derivatives of ω, k andE0,B0. This is the standard
eikonal approximation, which leads to local dispersion
relations from which optics equations are derived. With
this, we can use charge conservation _ρþ∇ · J ¼ _ρþ σ∇ ·
E ¼ 0 to express

∇ ·E ¼ −
�
1 −

ω2
p

ω2

�−1
gaγγB ·∇a ð10Þ

and use the latter to eliminate the ∇ð∇ ·EÞ term in (7),

□Eþ ω2
pE − gaγγ

ð∇BÞ ·∇a
1 − ω2

p=ω2
þ gaγγ½ _a _Bþ∇a × _E� ≃ 0;

ð11Þ

□Bþω2
pB− gaγγ½ _a∇×Bþ∇að∇ ·EÞ− ð∇a ·∇ÞE�≃ 0;

ð12Þ

where we have neglected second derivatives of the axion
field in accordance with the geometric optics limit
described above. Upon using (9), this system can then
be written as [26,32]

Mðω;kÞ · ðE;BÞT ¼ 0; ð13Þ

where M is a matrix whose structure can be read from
Eqs. (11) and (12). The condition (13) is equivalent to
demanding that an eigenvalue of M must vanish, which
gives the dispersion relation of a particular mode.
Explicitly, the eigenvalues of (11) and (12) involving
the axion-photon coupling are given by

D� ¼ k2 − ω2
p �

1

½ω2 − ω2
p�1=2

½ω2g2aγγððk · ∂aÞ2 − k2ð∂aÞ2Þ
þ ω2

pg2aγγð _a2k2 − 2_aωðk · ∂aÞ þ ð∂aÞ2ω2Þ�1=2;
ð14Þ

where kμ ¼ ðω;kÞ and k2 ¼ kμkμ and ∂a≡ ∂μa ¼
ð _a;∇aÞ. In the plasma-free case, we recover the
well-known dispersion relation (by setting D� ¼ 0) of
Refs. [20,25]

ωp ¼ 0∶ k2 ¼ �gaγγ½ðk · ∂aÞ2 − k2ð∂aÞ2�1=2: ð15Þ
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This is the standard form of eigenvalues found for a
Chern-Simons-like interaction considered in many works
[27–29] and references therein. Note that, in the present
work, we assume a sufficiently weak axion field value so
that the photon never suffers a tachyonic instability [28].
However, it is worth mentioning that, for sufficiently low
momenta and high density axion fields, this could have
interesting physical implications [39]. We speculate more
on these in the discussion.
In many of these references—especially for instance the

classic one [20]—the vector ∂μa was treated as a constant
background quantity in the spirit of Lorentz and CPT
violation. However, recently, the authors of Ref. [26] made
a very important observation, namely that when the axion
field a is dynamical, the phase space trajectories them-
selves are altered by temporal and spatial gradients. Due to
the dynamical nature of the background, the frequency and
momentum of the light ray are no longer conserved
quantities, and therefore need to be evolved, along the
its trajectory, by solving the full set of Hamiltonian optics
equations, along the lines of Ref. [32]. To set up the system
of equations, one first notes that to enforce dispersion
relations along rays, the eigenvalues D� must vanish
everywhere along trajectories, which implies

dD�

dτ
¼ ∂D�

∂kμ
dkμ

dτ
þ ∂D�

∂xμ
dxμ

dτ
¼ 0; ð16Þ

where τ is an arbitrary worldline parameter. We then define
trajectories according to [32]

dxμ

dτ
≡ −

∂D�

∂kμ ;
dkμ

dτ
≡ ∂D�

∂xμ ; ð17Þ

where kμ ¼ ðω;kÞ and kμ ¼ ðω;−kÞ. These are simply
generalizations of Hamilton’s equations. One can then
eliminate τ and instead use t as a worldline parameter to
arrive at

dx
dt

¼ −
∂D�=∂k
∂D�=∂ω ¼ ∂ω

∂k ; ð18Þ

dk
dt

¼ ∂D�=∂x
∂D�=∂ω ¼ −

∂ω
∂x ; ð19Þ

dω
dt

¼ −
∂D�=∂t
∂D�=∂ω ¼ ∂ω

∂t : ð20Þ

In fact, one notes that all these equations take the form

df
dt

¼ ff;ωg þ ∂tf; f ¼ ω;k;x; ð21Þ

where fA; Bg ¼ ∂xA∂kB − ∂kA∂xB is the Poisson
bracket. The interpretation of these equations becomes

immediately transparent: they are precisely a system of
Hamilton-Jacobi equations where ω ¼ ωðx;k; tÞ can be
seen as a one-particle, time-dependent Hamiltonian yield-
ing the particle energy and x and k can be seen as the
standard canonical position and momentum variables.

We can think of ω0ðx;k; tÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ ω2

p

q
as the (unper-

turbed) Hamiltonian, which is then modified by the axion
interaction. This can be treated formally by using
Hamilton-Jacobi perturbation theory, constructing a per-
turbative expansion (in powers of gaγγ) about the zeroth-
order solutions

ω2
0 ¼ k2

0 þ ω2
p; ð22Þ

x0ðtÞ ¼ v0gtþ xi; ð23Þ

v0g ¼ k0=ω0: ð24Þ

In Ref. [26], the authors kept only terms of OðgaγγÞ in this
expansion. In what follows, we discuss higher-order
corrections which reveal a number of interesting properties.
Since the dispersion relation (14) is, in general, quite
complicated and involves finding the roots of a sixth-order
polynomial, we will analyze some special cases where
ω ¼ ωðkÞ takes a simpler form and, can be solved exactly.

III. SPECTRAL DISTORTIONS

One notable case for which the optics equations are
easily tractable and the dispersion relation is simple is a
1þ 1-dimensional background with

a ¼ aðt; xÞ; and kk∇a; ð25Þ

so the photon momentum k is always parallel to the axion
gradients ∇a. We can then choose coordinates such that

kðtÞ ¼ ðkðtÞ; 0; 0Þ; xðtÞ ¼ ðxðtÞ; 0; 0Þ: ð26Þ

In this case, D� is

D�ðt; xÞ ¼ ω2 − k2 − ω2
p � gaγγðk _aþ ωa0Þ; ð27Þ

where primes denote differentiation with respect to x. The
exact dispersion relation is then straightforward:

ωðkÞ ¼
�
k2 þ ω2

p ∓ gaγγk _aþ g2aγγa02

2

�
1=2

∓ gaγγa0

2
: ð28Þ

This case is particularly interesting since it allows us to
study the passage of light rays through an axion back-
ground localized in space. Furthermore, it is sufficient to
study group dispersion, time delays, and frequency/
momentum shifts. Refraction cannot occur in this geometry
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and will be studied in Sec. V. The geodesic equations then
read

dx
dt

¼ 2k ∓ gaγγ _a

2ω� gaγγa0
; ð29Þ

dk
dt

¼ �gaγγ
k _a0 þ ωa00

2ω� gaγγa0
; ð30Þ

dω
dt

¼ ∓gaγγ
käþ ω _a0

2ω� gaγγa0
: ð31Þ

We now discuss the possibility of detecting spectral shifts
when there is no axion profile at the end points of the
trajectory. By perturbing about a background solution
ðω0; k0Þ, from Eqs. (30) and (31), we obtain the following
expression for the frequency evolution up to Oðg2aγγÞ,

dω�

dt
¼ ∓ gaγγ

2
½n0äþ _a0� − g2aγγ∂tð∂aÞ2

4k0
�Oðg3aγγÞ; ð32Þ

where

n0 ¼
k0
ω0

¼ k0
½k20 þ ω2

p�1=2
ð33Þ

is the refractive index of the background plasma associated
to the trajectory of an unperturbed ray. Note this is also
equal to the unperturbed group velocity, v0g ¼ dx0=dt ¼
k0=ω0, for a plasma background. Thus, by integration
of (32), we have that

ω�ðtÞ ¼ ω�
i þ δω�ðtÞ; ð34Þ

where ω�
i is the initial frequency and

δω�ðtÞ ¼ �Δωp þ Δωa �Oðg3aγγÞ ð35Þ

is the frequency variation, with

Δωp ¼ −
gaγγ
2

Z
t

0

dt0½n0ä½t0; x0ðt0Þ� þ _a0½t; x0ðt0Þ��; ð36Þ

Δωa ¼ −
g2aγγ
4k0

Z
t

0

dt0∂tð∂aÞ2; ð37Þ

where x0ðtÞ is the unperturbed photon trajectory—a
straight line with constant phase and group velocity
v0g ¼ dx0=dt ¼ k0=ω0 ¼ n0,

x0ðtÞ ¼ v0gtþ xi: ð38Þ

Note these are integrated frequency shifts, dependent on
the whole evolution along the trajectory.

In the absence of plasma, the background refraction
index is n0 ¼ 1þOðgaγγÞ, so the first-order effect (36)
reduces to

Δωp → −
gaγγ
2

Z
t

0

dt0½ä½t0; x0ðt0Þ� þ _a0½t; x0ðt0Þ��

¼ −
gaγγ
2

ð _aðt; x0ðtÞÞ − _að0; x0ð0ÞÞÞ; ð39Þ

where we have used the definition of Eulerian derivative,
d=dt ¼ ∂t þ ðdx0=dtÞ∂x ¼ ∂t þ ∂x, to write the integrand
as a total derivative, thereby obtaining Eq. (16b) of
Ref. [26]; the OðgaγγÞ result then becomes nonintegrated,
depending only on the value of the axion field at the end
points of the photon trajectory. Since we are investigating
the case where there is no axion profile at the end points of
the trajectory, the frequency shift (36) vanishes. In this case,
the integrated effects occur instead at Oðg2aγγÞ, where it is
given by (37).
Furthermore, from the form of Eqs. (32), (36), and (37),

it becomes apparent that one cannot simultaneously write
both (36) and (37) as total derivatives when the background
has both space and time dependence. Therefore, a localized
axion profile can still impart a spectral shift onto the
photon, even if it vanishes at the end points of the photon
trajectory.
This is also apparent from simple kinematic arguments

by considering a photon with initial/final frequencies and
momenta ðωi;kiÞ and ðωf;kfÞ, respectively, where the
momentum transfer is provided by the axion background.
If, asymptotically, the photon satisfies the axion-free mass-
shell condition ω2

i;f ¼ ðk2i;f þ ω2
pÞ, then an overall shift in

frequency after passing through a local axion region must
be accompanied by a shift in momentum, which requires
both space and time translation symmetry to be broken. On
the other hand, if the background has only one of space or
time dependence, it is easy to see that, after a little algebra
and using x0ðtÞ ¼ v0gtþ x0, the integrands in (36) and (37)
can be written as a total derivatives, so Δωp and Δωa

depend only on the end points of the axion trajectory,
preventing any asymptotic frequency shift for a localized
axion background.
The former is a very important point. It means that a

distant axion profile can impart integrated spectral shifts
onto the photon, even if the profile vanishes at the
asymptotic points of emission and detection. The different
scenarios can be seen from the middle panel of Fig. 1. One
especially interesting feature is that the frequency shift as
measured at detection will modulate with the oscillation
phase of the axion background, as shown in Fig. 2.
Clearly, it is also worth investigating whether any

background which endows the photon with a nontrivial
refractive index will lead to the same conclusions. This
could have particular relevance for dielectric media in
laboratory settings.
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IV. GROUP DISPERSION, BIREFRINGENCE,
AND TIME DELAYS

After extracting appropriate powers of gaγγ from all
quantities involved, including momentum, we obtain the
following expression for the group velocity perturbed about
the zeroth-order trajectory

dx�

dt
¼ 1 −

ω2
p

2k20
� gaγγω2

pða0 − _aÞ
2k30

þ g2aγγð∂aÞ2
8k20

� g3aγγð∂aÞ2½ _a − a0�
8k30

þOðg4aγγ;ω2
pg2aγγÞ: ð40Þ

Note that there is a polarization-dependent group dispersion
at Oðgaγγ) in the presence of plasma.
This can be seen in Fig. 1 numerically with a localized

profile which vanishes at x → �∞. Since the one-
dimensional example contains no transverse gradients,
photons travel in straight lines but with varying group
velocity. Thus, the group arrival times are

t ¼
Z

dt0

vgðt0Þ
: ð41Þ

In the presence of a plasma, we find the following axion
contribution to the time delay:

Δtp ¼ ∓ gaγγ
4k0

ω2
p

k20

Z
tf

0

dt0½a0 − _a�: ð42Þ

This corresponds to the leading-order group velocity

vg ¼ 1 −
ω2
p

k20
� gaγγ

4k0

ω2
p

k20
½a0 − _a� þOðg2aγγÞ: ð43Þ

The time delay is similar to that in a magnetized plasma,
where the background magnetic field provides the breaking
of isotropy, giving a group velocity [40]

vg ¼ 1 −
ω2
p

k20
� 2ω2

pωB

k30
; ωB ¼ ejBj=me: ð44Þ

We note in passing, with an eye to future astrophysical
applications, that the axion birefringent time delays can be
distinguished from the magnetic version via the modulation
of the axion signal due to axion oscillations, even though
the two effects both run as ∝ 1=k30.
Therefore, in the plasma case, vg < 1, so it seems

reasonable to assume that vg can be treated as the speed
of information transport, thus a meaningful observable for
timing experiments. However, one should be cautious with

FIG. 2. Modulation of final frequency shift jωfj ¼ jωðtÞ − ω0j
at the point of detection for passage through a distant axion cloud
which vanishes at the points of emission and detection. Other
values are as for Fig. 1.

FIG. 1. Top panel.—Relative position/time splitting between
left-right polarized photons in the presence of plasma. Middle
panel.—Frequency shift for the left-polarized mode. We show the
analytic results with and without plasma for comparison. The
analytic results in the legend correspond to Eq. (39) (blue dashed)
as well as the asymptotic frequency shifts from Eqs. (36) and (37)
shown as the dashed horizontal lines. Bottom panel.—Axion
profile evaluated along trajectory. We used the toy profile a ¼
a0 sinðmatÞe−x2=r2c with gaγγa0 ¼ 10−4,marc ¼ 0.5 and k0rc ¼ 5.
The plasma density is ωp=k0 ¼ 0.08, and the frequency and
position are given in units with rc ¼ 1.
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identifying the group velocity with the speed of signal
propagation in all instances, as we now discuss.
In the absence of plasma, one has vgðx; tÞ≃

1þ g2aγγð∂aÞ2=8k20. Thus, for timelike field gradients,
ð∂μaÞ2 > 0, we have vg > 1, i.e., a superluminal group
velocity. This is in fact not forbidden [33,41]. However,
in this case, the group velocity should not be interpreted
as the speed at which information propagates [41,42].
Instead, the signal speed, rather than the group or phase
velocity should be used for inferring the arrival of
information [33,43,44]. The signal velocity derivation
is more subtle and cannot be inferred in a simple way
from the dispersion relation as for the phase and group
velocity. Instead, it requires a more detailed treatment of
the detection apparatus and the shape of the waveform to
be detected [33]. We therefore leave such considerations
for future work.

V. REFRACTION

We now discuss refraction of light rays passing through a
localized axion profile. For this, it is sufficient to consider a
2þ 1-dimensional background. If the photon is to expe-
rience deflection after passing through a localized axion
profile, the outgoing phase velocity must have a different
orientation than the incoming one.

A. Refraction with plasma

The leading-order correction to the momentum is

dk
dt

¼ � gaγγ
2

½n0∇ _aþ ðk̂0 ·∇Þ∇a�; ð45Þ

where we have used unperturbed solutions for ω and x.
When n0 ≠ 1, the right-hand side is not a total derivative:
upon integration, it is not simply given by the surface terms
associated with the asymptotic field values at xi and xf.
This allows momentum changes through a localized axion
background and therefore refraction to occur at OðgaγγÞ for
nontrivial refractive indices. Integrating the momentum
along the trajectory, the transverse component of the
outgoing wave vector gives the deflection angle

sin θ ¼ � gaγγ
2jk0j

Z
t

0

dt0½n0∇⊥ _aþ ðk̂0 ·∇Þ∇⊥a�; ð46Þ

where ∇⊥ is the gradient normal to the direction of initial
propagation. Equation (46) shows that the existence of a
plasma can induce polarization-dependent ray bending at
leading order OðgaγγÞ. Indeed, this will hold whenever the
medium endows the photon with constant refractive index
different from 1.
In the limit ωp ¼ 0, one has n0 ¼ 1, and this integral

becomes a total derivative, just as shown in (39). This
reproduces the conclusions of Ref. [26] that there is no
chiral bending at OðgaγγÞ for a pure-axion background.
We verified the validity of this approximation by solving

the full geodesic equations in 2þ 1 dimensions, the results
of which are shown in Fig. 3.

B. Refraction without plasma

When the refractive index is equal to 1, the momentum
and frequency evolution are total derivatives at OðgaγγÞ.
Therefore, the nontrivial asymptotic shift in momentum is
given at next-to-leading order,

FIG. 3. Left panel.—Refraction through an axion cloud of left/right modes (black lines) with plasma, compared to the asymptotic
trajectory (red dashed) predicted by Eq. (46). The black lines show the rays ðxðtÞ; yðtÞÞ given by solving the geodesic equations (18)–
(20) numerically. The axes have been arbitrarily rescaled for visibility. We chose an impact parameter b ¼ rc and a localized Gaussian
axion profile, a ¼ a0 sinðmatÞ expð−ðx2 þ y2Þ=r2cÞ, for illustration purposes. With gaγγa0 ¼ 5 × 10−6 andmarc ¼ 0.3, k0rc ¼ 30, and a
plasma mass ωp=jk0j ¼ 0.01. Right panel.—Refraction though an axion background without plasma, ωp ¼ 0, with comparison to the
asymptotic trajectory (red dashed) predicted by Eq. (48). The other values are the same. Rays propagate from the left to the right of the
plot in both cases.
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δkðtÞ¼−
g2aγγ
8jk0j

Z
t

0

dt0ðk0ðk0 ·∇Þþk̂⊥
0 ∇⊥Þ½ð∂aÞ2�; ð47Þ

where k⊥
0 is a unit vector normal to the initial vector. The

angle of deflection is then given by

sin θ ¼ −
g2aγγ
8jk0j2

Z
∞

0

dt0∇⊥ð∂aÞ2: ð48Þ

The analytic and numerical results in this case are com-
pared in Fig 3. We therefore conclude that bending of light
does occur in axion backgrounds, but to leading order in
perturbation at Oðg2aγγÞ, which is nonchiral. Indeed, since
the axion background is generically space and time
dependent, there is no symmetry property to conserve
group or phase velocities, and thus it is not only surprising
but indeed inevitable that the rays should be deflected at
some order in perturbation theory, as these results show.

VI. CONCLUSIONS

In this work, we have examined the dispersive
properties of axion backgrounds which lead to spectral
distortions, time delays, and refraction of crossing light. We
studied these effects by solving the geodesic equations of
Hamiltonian optics, deriving both numerical and analytic
results.
Building on the work of Blas et al. [26], we verified the

following: (i) There is no OðgaγγÞ asymptotic deflection of
light for pure axion backgrounds, but OðgaγγÞ birefringent
deflection can occur for a nontrivial refractive index of the
unperturbed background, induced here by the presence of
plasma. (ii) In the absence of a nontrivial background
refractive index, we found that Oðg2aγγÞ refraction does
occur. It is unsurprising that refraction should occur at
higher order, since there is no symmetry principle to
prevent it as the background is both time and space
dependent with an inhomogeneous refractive index.

Perhaps the former effect, induced by the plasma, can
have some implications in terms of reviving the idea of
Ref. [25], where if a sufficiently dense plasma surrounds
the black hole the refraction generated by a nontrivial axion
profile could still be probed at first order in gaγγ . It is also
worth considering the possibility of probing geodesic
deviations from vacuum trajectories in laboratory settings
as a means to probe local axion backgrounds. (iii) A
nontrivial constant background refractive index, provided
here by a homogeneous plasma, led to integrated frequency
shifts in the photon, even for axion profiles localized along
the line of sight—see (36) and (37) and Fig. 1. These results
could have implications for timing delays and spectral
distortions of astrophysical sources, since the effect is
present even when the axion field vanishes at the trajectory
end points. This is especially interesting in light of the fact
that plasmas are ubiquitous in astrophysical settings.
Another possibility that we have not considered here is

the tachyonic instability for dense axion fields/low fre-
quency photons [20,28,39,45,46], where, for one mode, the
frequency becomes imaginary. This can lead to a relative
intensity shift between the two modes as one is amplified
relative to the other—i.e., dichroism [9].
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