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Abstract. We prove the existence of a global random attractor for a cer-
tain class of stochastic partly dissipative systems. These systems consist
of a partial and an ordinary differential equation, where both equations
are coupled and perturbed by additive white noise. The deterministic
counterpart of such systems and their long-time behaviour have already
been considered but there is no theory that deals with the stochastic ver-
sion of partly dissipative systems in their full generality. We also provide
several examples for the application of the theory.
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1. Introduction

In this work, we study classes of stochastic partial differential equations (SPDEs),
which are part of the general partly dissipative system

du1 = (dΔu1 − h(x, u1) − f(x, u1, u2)) dt + B1(x, u1, u2) dW1,
du2 = (−σ(x)u2 − g(x, u1, u2)) dt + B2(x, u1, u2) dW2,

(1.1)

where W1,2 are cylindrical Wiener processes, the σ, f, g, h are given functions,
B1,2 are operator-valued, Δ is the Laplace operator, d > 0 is a parameter, the
equation is posed on a bounded open domain D ⊂ R

n, u1,2 = u1,2(x, t) are the
unknowns for (x, t) ∈ D × [0, Tmax), and Tmax is the maximal existence time.
The term partly dissipative highlights the fact that only the first component
contains the regularizing Laplace operator. In this work we analyse the case
of additive noise and a certain coupling, more precisely,

B1(x, u1, u2) = B1, B2(x, u1, u2) = B2, g(x, u1, u2) = g(x, u1), (1.2)

We thank the anonymous referee for useful comments. CK and AN have been supported by
a DFG grant in the D-A-CH framework (KU 3333/2-1). CK and AP acknowledge support
by a Lichtenberg Professorship.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-020-00638-8&domain=pdf
http://orcid.org/0000-0002-2467-0194


35 Page 2 of 37 C. Kuehn et al. NoDEA

where B1,2 are bounded linear operators. A deterministic version of such a
system has been analysed by Marion [20]. We are going to use certain assump-
tions for the reaction terms, which are similar to those used in [20]. The precise
technical setting of our work starts in Sect. 2.

The goal of this work is to provide a general theory for stochastic partly
dissipative systems and to analyse the long-time behaviour of the solution us-
ing the random dynamical systems approach. To this aim, we first show that
the solution of our system exists globally-in-time, i.e. one can take Tmax = +∞
above. Then we prove the existence of a pullback attractor. To our best knowl-
edge the well-posedness and asymptotic behaviour for such systems (and for
other coupled SPDEs and SODEs) has only been explored for special cases,
i.e. mainly for the FitzHugh Nagumo equation, see [4,24] for solution theory
and [2,19,31,32] for long-time behaviour/attractor theory. Here we develop
a much more general theory of stochastic partly dissipative systems, moti-
vated by the numerous applications in the natural sciences such as the the
cubic-quintic Allen-Cahn equation [17] in elasticity. Moreover, unlike several
previous works mentioned above, we deal with infinite-dimensional noise that
satisfies certain regularity assumptions. These combined with the restrictions
on the reaction terms allow us to compute sharp a-priori bounds of the so-
lution, which are used to construct a random absorbing set. Even once the
absorbing set has been constructed, we emphasize that we cannot directly ap-
ply compact embedding results to obtain the existence of an attractor. This
issue arises due to the absence of the regularizing effect of the Laplacian in
the second component. To overcome this obstacle, we introduce an appropri-
ate splitting of the solution in two components: a regular one, and one that
asymptotically tends to zero. This splitting technique goes (at least) back to
Temam [28] and it has also been used in the context of deterministic partly
dissipative systems [20] and for a stochastic FitzHugh–Nagumo equation with
linear multiplicative noise [33,35]. The necessary additional technical steps for
our setting are provided in Sect. 3.4. Using the a-priori bounds, we establish
the existence of a pullback attractor [9,14,25,26]; which has been studied in
several contexts to capture the long-time behaviour of stochastic (partial) dif-
ferential equations, see for instance [3,5,8,12,15] and the references therein.
In the stochastic case pullback attractors are random invariant compact sets
of phase space that are invariant with respect to the dynamics. They can be
viewed as the generalization of non-autonomous attractors for deterministic
systems. In the context of coupled SPDEs and SODEs, to our best knowl-
edge, only random attractors for the stochastic FitzHugh–Nagumo equation
were treated under various assumptions of the reaction and noise terms: finite-
dimensional additive noise on bounded and unbounded domains [32,33] and for
(non-autonomous) FitzHugh–Nagumo equation driven by linear multiplicative
noise [1,19,35]. Here we provide a general random attractor theory for stochas-
tic partly dissipative systems perturbed by infinite-dimensional additive noise,
which goes beyond the FitzHugh–Nagumo system. To this aim we have to em-
ploy more general techniques than those used in the references specified above.
Furthermore, we emphasize that other dynamical aspects for similar systems
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have been investigated, e.g. inertial manifolds and master-slave synchroniza-
tion in reference [7].

We also mention that numerous extensions of our work are imaginable.
Evidently the fully dissipative case is easier from the viewpoint of attractor
theory. Hence, our results can be extended in a straightforward way to the
case when both components of the SPDE contain a Laplacian. Systems with
more than two components but with similar assumptions are likely just going
to pose notational problems rather than intrinsic ones. From the point of view
of applications it would be meaningful to incorporate non-linear couplings
between the PDE and ODE parts. For example, this would allow us to use
this theory to analyse various systems derived in chemical kinetics from mass-
action laws. However, more complicated non-linear couplings are likely to be far
more challenging. Moreover, one could also develop a general framework which
allows one to deal with other random influences, e.g. multiplicative noise, or
more general Gaussian processes than standard trace-class Wiener processes.
Furthermore, it would be interesting to investigate several dynamical aspects
of partly dissipative SPDEs such as invariant manifolds or patterns. Naturally,
one could also aim to derive upper bounds for the Hausdorff dimension of the
random attractor and compare them to the deterministic result given in [20].

This paper is structured as follows: Sect. 2 contains all the preliminaries.
More precisely, in Sect. 2.1 we define the system that we are going to analyse
and state all the required assumptions. Subsequently, in Sect. 2.2, we clarify
the notion of solution that we are interested in. The main contribution of this
work is given in Sect. 3. Firstly, some preliminary definitions and results about
random attractor theory are summarized in Sect. 3.1. Secondly, we derive the
random dynamical system associated to our SPDE system in Sect. 3.2. Thirdly,
we prove the existence of a bounded absorbing set for the random dynamical
system in Sect. 3.3. Lastly, in Sect. 3.4 it is shown that one can indeed find a
compact absorbing set implying the existence of a random attractor. In Sect. 4
we illustrate the theory by several examples arising from applications.
Notation. Before we start, we define/recall some standard notations that we
will use within this work. When working with vectors we use (·)� to denote
the transpose while | · | denotes the Euclidean norm. In a metric space (M,d)
we denote a ball of radius r > 0 centred in the origin by

B(r) = {x ∈ M |d(x, 0) ≤ r}.

We write Id for the identity operator/matrix. L(U,H) denotes the space of
bounded linear operators from U to H. O∗ denotes the adjoint operator of
a bounded linear operator O. We let D ⊂ R

n always be bounded, open, and
with regular boundary, where n ∈ N. Lp(D), p ≥ 1, denotes the usual Lebesgue
space with norm ‖·‖p. Furthermore, 〈·, ·〉 denotes the associated scalar-product
in L2(D). Cp(D), p ∈ N∪{0,∞}, denotes the space of all continuous functions
that have continuous first p derivatives. Lastly, for k ∈ N, 1 ≤ p ≤ ∞ we
consider the Sobolev space of order k as

W k,p(D) = {u ∈ Lp(D) : Dαu ∈ Lp(D) ∀|α| � k} ,

with multi-index α, where the norm is given by
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‖u‖W k,p(D) :=

⎧
⎨

⎩

(∑
|α|�k ‖Dαu‖p

Lp(D)

) 1
p

1 � p < ∞;

max|α|�k ‖Dαu‖L∞(D) p = ∞.

The Sobolev space W k,p(D) is a Banach space. Hk
0 (D) denotes the space of

functions in Hk(D) = W k,2(D) that vanish at the boundary (in the sense of
traces).

2. Stochastic partly dissipative systems

2.1. Basics

Let D ⊂ R
n be a bounded open set with regular boundary, set H := L2(D) and

let U1, U2 be two separable Hilbert spaces. We consider the following coupled,
partly dissipative system with additive noise

du1 = (dΔu1 − h(x, u1) − f(x, u1, u2)) dt + B1 dW1, (2.1)

du2 = (−σ(x)u2 − g(x, u1)) dt + B2 dW2, (2.2)

where u1,2 = u1,2(x, t), (x, t) ∈ D × [0, T ], T > 0, W1,2 are cylindrical Wiener
processes on U1 respectively U2, and Δ is the Laplace operator. Furthermore,
B1 ∈ L(U1,H), B2 ∈ L(U2,H) and d > 0 is a parameter controlling the
strength of the diffusion in the first component. The system is equipped with
initial conditions

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x), (2.3)
and a Dirichlet boundary condition for the first component

u1(x, t) = 0 on ∂D × [0, T ]. (2.4)

We will denote by A the realization of the Laplace operator with Dirichlet
boundary conditions, more precisely we define the operator A : D(A) → L2(D)
as Au = dΔu with domain D(A) := H2(D) ∩ H1

0 (D) ⊂ L2(D). Note that A
is a self-adjoint operator that possesses a complete orthonormal system of
eigenfunctions {ek}∞

k=1 of L2(D). Within this work we always assume that
there exists κ > 0 such that |ek(x)|2 < κ for k ∈ N and x ∈ D. This holds for
example when D = [0, π]n. For the deterministic reaction terms appearing in
(2.1)–(2.2) we assume that:

Assumption 2.1. (Reaction terms)
(1) h ∈ C2(Rn × R) and there exist δ1, δ2, δ3 > 0, p > 2 such that

δ1|u1|p − δ3 ≤ h(x, u1)u1 ≤ δ2|u1|p + δ3. (2.5)

(2) f ∈ C2(Rn ×R×R) and there exist δ4 > 0 and 0 < p1 < p − 1 such that

|f(x, u1, u2)| ≤ δ4(1 + |u1|p1 + |u2|). (2.6)

(3) σ ∈ C2(Rn) and there exist δ, δ̃ > 0 such that

δ ≤ σ(x) ≤ δ̃. (2.7)

(4) g ∈ C2(Rn × R) and there exists δ5 > 0 such that

|gu(x, u1)| ≤ δ5, |gxi
(x, u1)| ≤ δ5(1 + |u1|), i = 1, . . . , n. (2.8)
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In particular, Assumptions 2.1 (1) and (4) imply that there exist δ7, δ8 >
0 such that

|g(x, ξ)| ≤ δ7(1 + |ξ|), for all ξ ∈ R, x ∈ D, (2.9)

|h(x, ξ)| ≤ δ8(1 + |ξ|p−1), for all ξ ∈ R, x ∈ D. (2.10)

The Assumptions 2.1(1)–(4) are identical to those given in [20], except that in
the deterministic case only a lower bound on σ was assumed.

We always consider an underlying filtered probability space denoted as
(Ω,F , (Ft)t≥0,P) that will be specified later on. In order to guarantee cer-
tain regularity properties of the noise terms, we make the following additional
assumptions:

Assumption 2.2. (Noise)
(1) We assume that B2 : U2 → H is a Hilbert-Schmidt operator. In particu-

lar, this implies that Q2 := B2B
∗
2 is a trace class operator and B2W2 is

a Q2-Wiener process.
(2) We assume that B1 ∈ L(U1,H) and that the operator Qt defined by

Qtu =
∫ t

0

exp (sA) Q1 exp (sA∗) u ds, u ∈ H, t ≥ 0,

where Q1 := B1B
∗
1 , is of trace class. Hence, B1W1 is a Q1-Wiener process

as well.
(3) Let U1 = H. There exists an orthonormal basis {ek}∞

k=1 of H and se-
quences {λk}∞

k=1 and {δk}∞
k=1 such that

Aek = −λkek, Q1ek = δkek, k ∈ N.

Furthermore, we assume that there exists α ∈
(
0, 1

2

)
such that

∞∑

k=1

δkλ2α+1
k < ∞.

Assumptions 2.2 guarantee that the stochastic convolution introduced
below is a well-defined process with sufficient regularity properties, see Lem-
mas 3.17 and 3.25. As an example, one could choose B1 = (−A)−γ/2 with
γ > n

2 −1 to ensure that Assumptions 2.2 (2)–(3) hold for α with 2α < γ− n
2 +1,

see [10, Chapter 4].
Let us now formulate problem (2.1)–(2.2) as an abstract Cauchy problem.

We define the following space

H := L2(D) × L2(D),

with norm ‖(u1, u2)�‖2
H

= ‖u1‖2
2 + ‖u2‖2

2 this becomes a separable Hilbert
space. 〈·, ·〉H denotes the corresponding scalar product. Furthermore, we let

V := H1
0 (D) × L2(D),

with norm ‖(u1, u2)�‖2
V

= ‖u1‖2
H1(D) + ‖u2‖2

2. We define the following linear
operator

A :=
(

A 0
0 −σ(x)

)

,
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where A : D(A) ⊂ H → H with D(A) = D(A) × L2(D). Since all the re-
action terms are twice continuously differentiable they obey in particular the
Carathéodory conditions [34]. Thus, the corresponding Nemytskii operator is
defined by

F((u1, u2)�)(x) :=
(

F1((u1, u2)�)(x)
F2((u1, u2)�)(x)

)

,

:=
(

−h(x, u1(x)) − f(x, u1(x), u2(x))
−g(x, u1(x))

)

,

where F : D(F) ⊂ H → H and D(F) := H. By setting

W :=
(

W1

W2

)

, B :=
(

B1

B2

)

, and u :=
(

u1

u2

)

we can rewrite the system (2.1)–(2.2) as an abstract Cauchy problem on the
space H

du = (Au + F(u)) dt + B dW, (2.11)
with initial condition

u(0) = u0 :=
(

u0
1

u0
2

)

. (2.12)

2.2. Mild solutions and stochastic convolution

We are interested in the concept of mild solutions to SPDEs. First of all, let
us note the following. We have

A =
(

A 0
0 0

)

︸ ︷︷ ︸
=:A1

+
(

0 0
0 −σ(x)

)

︸ ︷︷ ︸
=:A2

.

It is well known that A1 generates an analytic semigroup on H and A2 is a
bounded multiplication operator on H. Hence, A is the generator of an analytic
semigroup {exp (tA)}t≥0 on H as well, see [23, Chapter 3, Theorem 2.1]. Also
note that A generates an analytic semigroup {exp (tA)}t≥0 on Lp(D) for every
p ≥ 1. In particular, we have for u ∈ Lp(D) that for every α ≥ 0 there exists
a constant Cα > 0 such that

‖(−A)α exp (tA) u‖p ≤ Cαt−α exp (at) ‖u‖p, for all t > 0,

where a > 0, see for instance [27, Theorem 37.5]. The domain D((−A)α) can
be identified with the Sobolev space W 2α,p(D) and thus we have in our setting
for t > 0

‖ exp (tA)u‖W α,p(D) ≤ Cαt−α/2 exp (at) ‖u‖p. (2.13)

Remark 2.3. Omitting the additive noise term in equation (2.11), we are in
the deterministic setting of [20]. From there the existence of a global-in-time
solution (u1, u2) ∈ C([0,∞),H) for every initial condition u0 ∈ H already
follows.

Let us now return to the stochastic Cauchy problem (2.11)–(2.12). We
define
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Definition 2.4. (Stochastic convolution) The stochastic process defined as

WA(t) :=
(

W 1
A(t)

W 2
A(t)

)

:=
∫ t

0

exp ((t − s)A)B dW(s),

is called stochastic convolution.

More precisely, we have (see [22, Proposition 3.1])

WA(t) =
∫ t

0

(
exp ((t − s)A) 0

0 exp (−(t − s)σ(x))

)(
B1

B2

)

dW(s)

=

( ∫ t

0
exp ((t − s)A) B1 dW1(s)∫ t

0
exp (−(t − s)σ(x)) B2 dW2(s)

)

.

This is a well-defined H-valued Gaussian process. Furthermore, Assumptions
2.2 (1) and (2) ensure that WA(t) is mean-square continuous and Ft-measurable,
see [11].

Remark 2.5. As WA is a Gaussian process, we can bound all its higher-order
moments, i.e. for p ≥ 1 we have

sup
t∈[0,T ]

E‖WA(t)‖p
H

< ∞. (2.14)

This follows from the Kahane–Khintchine inequality, see [29, Theorem 3.12].

Definition 2.6. (Mild solution) A mean-square continuous, Ft-measurable H-
valued process u(t), t ∈ [0, T ] is said to be a mild solution to (2.11)–(2.12) on
[0, T ] if P-almost surely we have for t ∈ [0, T ]

u(t) = exp (tA) u0 +
∫ t

0

exp ((t − s)A)F(u(s)) ds + WA(t). (2.15)

Under Assumptions 2.1 and 2.2 (1)–(2) a mild solution exists locally-in-
time in

L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2([0, T ];V)),

for some T > 0, see [11, Theorem 7.7]. Hence, local in time existence for our
problem is guaranteed by the classical SPDE theory.

3. Random attractor

3.1. Preliminaries

We now recall some basic definitions related to random attractors. For more
information the reader is referred to the sources given in the introduction.

Definition 3.1. (Metric dynamical system) Let (Ω,F ,P) be a probability space
and let θ = {θt : Ω → Ω}t∈R be a family of P-preserving transformations (i.e.
θtP = P for t ∈ R), which satisfy for t, s ∈ R that
(1) (t, ω) �→ θtω is measurable,
(2) θ0 = Id,
(3) θt+s = θt ◦ θs.
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Then (Ω,F ,P, θ) is called a metric dynamical system.

The metric dynamical system describes the dynamics of the noise.

Definition 3.2. (Random dynamical system) Let (V, ‖·‖) be a separable Banach
space. A random dynamical system (RDS) with time domain R+ on (V, ‖ · ‖)
over θ is a measurable map

ϕ : R+ × V × Ω → V; (t, v, ω) �→ ϕ(t, ω)v

such that ϕ(0, ω) = IdV and

ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

for all s, t ∈ R+ and for all ω ∈ Ω. We say that ϕ is a continuous or differen-
tiable RDS if v �→ ϕ(t, ω)v is continuous or differentiable for all t ∈ R+ and
every ω ∈ Ω.

We summarize some further definitions relevant for the theory of random
attractors.

Definition 3.3. (Random set) A set-valued map K : Ω → 2V is said to be
measurable if for all v ∈ V the map ω �→ d(v,K(ω)) is measurable. Here,
d(A,B) = supv∈A inf ṽ∈B ‖v − ṽ‖ for A,B ∈ 2V , A,B �= ∅ and d(v,B) =
d({v},B). A measurable set-valued map is called a random set.

Definition 3.4. (Omega-limit set) For a random set K we define the omega-
limit set to be

ΩK(ω) :=
⋂

T≥0

⋃

t≥T

ϕ(t, θ−tω)K(θ−tω).

ΩK(ω) is closed by definition.

Definition 3.5. (Attracting and absorbing set) Let A,B be random sets and let
ϕ be a RDS.

• B is said to attract A for the RDS ϕ, if

d(ϕ(t, θ−tω)A(θ−tω),B(ω)) → 0 for t → ∞.

• B is said to absorb A for the RDS ϕ, if there exists a (random) absorption
time tA(ω) such that for all t ≥ tA(ω)

ϕ(t, θ−tω)A(θ−tω) ⊂ B(ω).

• Let D be a collection of random sets (of non-empty subsets of V), which is
closed with respect to set inclusion. A set B ∈ D is called D-absorbing/D-
attracting for the RDS ϕ, if B absorbs/attracts all random sets in D.

Remark 3.6. Throughout this work we use a convenient criterion to derive the
existence of an absorbing set. Let A be a random set. If for every v ∈ A(θ−tω)
we have

lim sup
t→∞

‖ϕ(t, θ−tω, v)‖ ≤ ρ(ω), (3.1)

where ρ(ω) > 0 for every ω ∈ Ω, then the ball centred in 0 with radius ρ(ω)+ε
for a ε > 0, i.e. B(ω) := B(0, ρ(ω) + ε), absorbs A.
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Definition 3.7. (Tempered set) A random set A is called tempered provided
for P-a.e. ω ∈ Ω

lim
t→∞

exp (−βt) d(A(θ−tω)) = 0 for all β > 0,

where d(A) = supa∈A ‖a‖. We denote by T the set of all tempered subsets of
V.

Definition 3.8. (Tempered random variable) A random variable X ∈ R on
(Ω,F ,P, θ) is called tempered, if there is a set of full P-measure such that
for all ω in this set we have

lim
t→±∞

log |X(θtω)|
|t| = 0. (3.2)

Hence a random variable X is tempered when the stationary random
process X(θtω) grows sub-exponentially.

Remark 3.9. A sufficient condition that a positive random variable X is tem-
pered is that (cf. [3, Proposition 4.1.3])

E

(

sup
t∈[0,1]

X(θtω)

)

< ∞. (3.3)

If θ is an ergodic shift, then the only alternative to (3.2) is

lim
t→±∞

log |X(θtω)|
|t| = ∞,

i.e., the random process X(θtω) either grows sub-exponentially or blows up at
least exponentially.

Definition 3.10. (Random attractor) Suppose ϕ is a RDS such that there exists
a random compact set A ∈ T which satisfies for any ω ∈ Ω

• A is invariant, i.e., ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0.
• A is T -attracting.

Then A is said to be a T -random attractor for the RDS.

Theorem 3.11. ([9,25]) Let ϕ be a continuous RDS and assume there exists a
compact random set B ∈ T that absorbs every D ∈ T , i.e. B is T -absorbing.
Then there exists a unique T -random attractor A, which is given by

A(ω) =
⋃

D∈T
ΩD(ω).

We will use the above theorem to show the existence of a random attractor
for the partly dissipative system at hand.
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3.2. Associated RDS

We will now define the RDS corresponding to (2.11)–(2.12). We consider V =
H := L2(D)×L2(D) and T is the set of all tempered subsets of H. In the sequel,
we consider the fixed canonical probability space (Ω,F ,P) corresponding to a
two-sided Wiener process, more precisely

Ω :=
{
ω = (ω1, ω2) : ω1, ω2 ∈ C(R, L2(D)), ω(0) = 0

}
,

endowed with the compact-open topology. The σ-algebra F is the Borel σ-
algebra on Ω and P is the distribution of the trace class Wiener process W̃ (t) :=
(W̃1(t), W̃2(t)) = (B1W1(t), B2W2(t)), where we recall that B1 and B2 fulfil
Assumptions 2.2. We identify the elements of Ω with the paths of these Wiener
processes, more precisely

W̃ (t, ω) := (W̃1(t, ω1), W̃2(t, ω2)) = (ω1(t), ω2(t)) =: ω(t), for ω ∈ Ω. (3.4)

Furthermore, we introduce the Wiener shift, namely

θtω(·) := ω(· + t) − ω(t), for ω ∈ Ω and t ∈ R. (3.5)

Then θ : R×Ω → Ω is a measure-preserving transformation on Ω, i.e. θtP = P,
for t ∈ R. Furthermore, θ0ω(s) = ω(s) − ω(0) = ω(s) and θt+sω(r) = ω(r +
t + s) − ω(t + s) = θt(ω(r + s) − ω(s)) = θt(θsω(r)). Hence, (Ω,F ,P, θ) is a
metric dynamical system. Next, we consider the following equations

dz1 = Az1 dt + dω1, (3.6)

dz2 = −σ(x)z2 dt + dω2. (3.7)

The stationary solutions of (3.6)–(3.7) are given by

(t, ω) �→ z1(θtω) and (t, ω) �→ z2(θtω),

where

z1(θtω) =
∫ t

−∞
e(t−s)A dω1(s) =

∫ 0

−∞
e−sA dθtω1(s),

z2(θtω) =
∫ t

−∞
e−(t−s)σ(x) dω2(s) =

∫ 0

−∞
esσ(x) dθtω2(s).

Here, we observe that for t = 0

z1(ω) =
∫ 0

−∞
e−sA dω1(s), z2(ω) =

∫ 0

−∞
esσ(x) dω2(s).

Now consider the Doss–Sussmann transformation v(t) = u(t) − z(θtω), where
v(t) = (v1(t), v2(t))�, z(ω) = (z1(ω1), z2(ω2))� and u(t) = (u1(t), u2(t))� is a
solution to the problem (2.1)–(2.4). Then v(t) satisfies

dv

dt
= Av + F(v + z(θtω)). (3.8)
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More explicitly/or component-wise this reads as
dv1(t)

dt
= dΔv1(t) − h(x, v1(t) + z1(θtω))

− f(x, v1(t) + z1(θtω), v2(t) + z2(θtω)), (3.9)

dv2(t)
dt

= −σ(x)v2(t) − g(x, v1(t) + z1(θtω)). (3.10)

In the equations above no stochastic differentials appear, hence they can
be considered path-wise, i.e., for every ω instead just for P-almost every ω.
For every ω (3.8) is a deterministic equation, where z(θtω) can be regarded
as a time-continuous perturbation. In particular, [6] guarantees that for all
v0 = (v0

1 , v0
2)� ∈ H there exists a solution v(·, ω, v0) ∈ C([0,∞),H) with

v1(0, ω, v0
1) = v0

1 , v2(0, ω, v0
2) = v0

2 . Moreover, the mapping H � v0 �→ v(t, ω, v0) ∈
H is continuous. Now, let

u1(t, ω, u0
1) = v1(t, ω, u0

1 − z1(ω)) + z1(θtω),

u2(t, ω, u0
2) = v2(t, ω, u0

2 − z2(ω)) + z2(θtω).

Then u(t, ω, u0) = (u1(t, ω, u0
1), u2(t, ω, u0

2))
� is a solution to (2.1)–(2.4). In

particular, we can conclude at this point that (2.1)–(2.4) has a global-in-time
solution which belongs to C([0,∞);H); see Remark 2.3. We define the corre-
sponding solution operator ϕ : R+ × Ω × H → H as

ϕ(t, ω, (u0
1, u

0
2)) := (u1(t, ω, u0

1), u2(t, ω, u0
2)), (3.11)

for all (t, ω, (u0
1, u

0
2)) ∈ R

+ × Ω × H. Now, ϕ is a continuous RDS associated
to our stochastic partly dissipative system. In particular, the cocycle property
obviously follows from the mild formulation. In the following, we will prove
the existence of a global random attractor for this RDS. Due to conjugacy, see
[9,25] this gives us automatically a global random attractor for the stochastic
partly dissipative system (2.1)–(2.4).

3.3. Bounded absorbing set

In the following we will prove the existence of a bounded absorbing set for the
RDS (3.11). In the calculations we will make use of some versions of certain
classical deterministic results several times. Therefore, we recall these results
here for completeness and as an aid to follow the calculations later on.

Lemma 3.12. (ε-Young inequality) For x, y ∈ R, ε > 0, p̃, q̃ > 1, 1
p̃ + 1

q̃ = 1 we
have

|xy| ≤ ε|x|p̃ +
(p̃ε)1−q̃

q̃
|y|q̃. (3.12)

Lemma 3.13. (Gronwall’s inequality) Assume that ϕ, α and β are integrable
functions and ϕ(t) ≥ 0. If

ϕ′(t) ≤ α(t) + β(t)ϕ(t), (3.13)

then

ϕ(t) ≤ ϕ(t0) exp
(∫ t

t0

β(τ)dτ

)

+
∫ t

t0

α(s) exp
(∫ t

s

β(τ)dτ

)

ds, t ≥ t0. (3.14)
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Lemma 3.14. (Uniform Gronwall Lemma [28, Lemma 1.1]) Let g, h, y be pos-
itive locally integrable functions on (t0,∞) such that y′ is locally integrable on
(t0,∞) and which satisfy

dy

dt
≤ gy + h, for t ≥ t0,

∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3 for t ≥ t0,

where r, a1, a2, a3 are positive constants. Then

y(t + r) ≤
(a3

r
+ a2

)
exp (a1) , ∀t ≥ t0.

Lemma 3.15. (Minkowski’s inequality) Let p > 1 and f, g ∈ R, then

|f + g|p ≤ 2p−1(|f |p + |g|p).

Lemma 3.16. (Poincaré’s inequality) Let 1 ≤ p < ∞ and let D ⊂ R
n be a

bounded open subset. Then there exists a constant c = c(D, p) such that for
every function u ∈ W 1,p

0 (D)

‖u‖p ≤ c‖∇u‖p. (3.15)

Having recalled the relevant deterministic preliminaries, we can now pro-
ceed with the main line of our argument. For the following result about the
stochastic convolutions Assumption 2.2 (3) is crucial.

Lemma 3.17. Suppose Assumptions 2.1 and 2.2 hold. Then for every p ≥ 1

‖z1(ω)‖p
p and ‖z2(ω)‖2

2

are tempered random variables.



NoDEA Random attractors for stochastic partly dissipative systems Page 13 of 37 35

Proof. Using 0 < δ ≤ σ(x) ≤ δ̃ and the Burkholder-Davis-Gundy inequality
we have

E

(

sup
t∈[0,1]

‖z2(θtω)‖2
2

)

= E

(

sup
t∈[0,1]

∥
∥
∥
∥

∫ t

−∞
exp (−(t − s)σ(x)) dω2(s)

∥
∥
∥
∥

2

2

)

= E

(

sup
t∈[0,1]

∫

D

exp (−2tσ(x))
∣
∣
∣
∣

∫ t

−∞
exp (sσ(x)) dω2(s)

∣
∣
∣
∣

2

dx

)

≤ E

(

sup
t∈[0,1]

exp (−2tδ)
∫

D

∣
∣
∣
∣

∫ t

−∞
exp (sσ(x)) dω2(s)

∣
∣
∣
∣

2

dx

)

≤ E

(

sup
t∈[0,1]

∥
∥
∥
∥

∫ t

−∞
exp (sσ(x)) dω2(s)

∥
∥
∥
∥

2

2

)

≤ CE

(∫ 1

−∞
‖ exp (sσ(x)) ‖2

2 ds

)

≤ C|D|
∫ 1

−∞
exp

(
2sδ̃

)
ds =

C|D|
2δ̃

exp
(
2δ̃

)

< ∞.

The temperedness of ‖z2(ω)‖2
2 then follows directly using Remark 3.9. Now,

we consider the random variable ‖z1(ω)‖p
p. Note that using the so-called fac-

torization method we have for (x, t) ∈ D × [0, T ] and α ∈ (0, 1/2) (see [11, Ch.
5.3])

z1(x, θtω) =
sin(πα)

π

∫ t

−∞
exp ((t − τ)A) (t − τ)α−1Y (x, τ) dτ, (3.16)

with

Y (x, τ) =
∫ τ

0

exp ((τ − s)A) (τ − s)−αB1 dW1(x, s)

=
∞∑

k=1

∫ τ

0

exp ((τ − s)A) (τ − s)−αB1ek(x)dβk(s)

=
∞∑

k=1

∫ τ

0

exp (−(τ − s)λk) (τ − s)−α
√

δkek(x)dβk(s),

where we have used the formal representation W1(x, s) =
∑∞

k=1 βk(s)ek(x)
of the cylindrical Wiener process, with {βk}∞

k=1 being a sequence of mutually
independent real-valued Brownian motions. Y (x, τ) is a real-valued Gaussian
random variable with mean zero and variance



35 Page 14 of 37 C. Kuehn et al. NoDEA

Var(Y (x, τ)) = E
[
|Y (x, τ)|2

]

= E

[ ∞∑

k=1

(∫ τ

0

exp (−(τ − s)λk) (t − s)−α
√

δk dβk(s)
)2

|ek(x)|2
]

=
∞∑

k=1

δk|ek(x)|2E
[(∫ τ

0

exp (−(τ − s)λk) (t − s)−α dβk(s)
)2

]

=
∞∑

k=1

δk|ek(x)|2
∫ τ

0

exp (−2sλk) s−2α ds,

where we have used Parseval’s identity and the Itô isometry. Our assump-
tion on the boundedness of the eigenfunctions {ek}∞

k=1 yields together with
Assumption 2.2 (3) that

Var(Y (x, τ)) <

∞∑

k=1

δkκ2

∫ ∞

0

exp (−2sλk) s−2α ds

= κ222α−1Γ(1 − 2α)
∞∑

k=1

δkλ2α−1
k < ∞.

Hence, E
[
|Y (x, τ)|2m

]
≤ Cm for Cm > 0 and every m ≥ 1 (note that all odd

moments of a Gaussian random variable are zero). Thus we have

E

[∫ T

0

∫

D

|Y (x, τ)|2mdxdτ

]

≤ TCm|D|,

i.e., in particular for all p ≥ 1 we have Y ∈ Lp(D × [0, T ]) P-a.s.. We now
observe

‖z1(θtω)‖W α,p(D)

≤ sin(πα)
π

∫ t

−∞
(t − τ)α−1‖ exp ((t − τ)A) Y (·, τ)‖W α,p(D) dτ

≤ C
sin(πα)

π

∫ t

−∞
(t − τ)α−1(t − τ)−α/2e−λ(t−τ)‖Y (·, τ)‖p dτ

≤ C sup
τ∈(−∞,t]

‖Y (·, τ)‖p

∫ t

−∞
(t − τ)α/2−1e−λ(t−τ) dτ,

where we have used (2.13) and thus

E

(

sup
t∈[0,1]

‖z1(θtω)‖p

)

≤ C E

(

sup
t∈[0,1]

sup
τ∈(−∞,t]

‖Y (·, τ)‖p

)∫ ∞

0

τα/2−1e−λτ dτ

= C E

(

sup
t∈[0,1]

sup
τ∈(−∞,t]

‖Y (·, τ)‖p

)
Γ(α/2)
λα/2

.
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Now, the right hand side is finite as all moments of Y (x, τ) are bounded uni-
formly in x, τ , see above. Due to embedding of Lebesgue spaces on a bounded
domain we have that

E

(

sup
t∈[0,1]

‖z1(θtω)‖p

)

< ∞ implies E

(

sup
t∈[0,1]

‖z1(θtω)‖p
p

)

< ∞,

i.e., temperedness of ‖z1(ω)‖p
p follows again with Remark 3.9. �

Remark 3.18. (1) Note that Assumption 2.2 (3) together with the bounded-
ness of ek for k ∈ N are essential for this proof. One can extend such
statements for general open bounded domains in D ⊂ R

n, according to
Remark 5.27 and Theorem 5.28 in [11].

(2) Regarding again Assumption 2.2 (3) one can show in a similar way that
z1 ∈ W 1,p(D) and in particular also ‖∇z1(ω)‖p

p is a tempered random
variable for all p ≥ 1.

Remark 3.19. Alternatively, one can introduce the Ornstein–Uhlenbeck pro-
cesses z1 and z2 using integration by parts. We applied the factorization
Lemma for the definition of z1 in order to obtain regularity results for z1

based on the interplay between the eigenvalues of the linear part and of the
covariance operator of the noise.
Using integration by parts, one infers that

z1(θtω) =
∫ t

−∞
exp((t − τ)A) dω1(τ) = ω1(t) + A

∫ t

−∞
exp((t − τ)A)ω1(τ) dτ

= −A

∫ t

−∞
exp((t − τ)A)(ω1(t) − ω1(τ)) dτ.

This expression can also be used in order to investigate the regularity of z1 in
a Banach space H as follows:

∥
∥
∥A

∫ t

−∞
exp((t − τ)A)(ω1(t) − ω1(τ)) dτ

∥
∥
∥

H

≤ C

∫ t

−∞
(t − τ)−1‖ exp(t − τ)A‖H‖ω1(t) − ω1(τ)‖H dτ.

Here one uses the Hölder-continuity of ω1 in an appropriate function space in
order to compensate the singularity in the previous formula.
In our case, we need z1 ∈ D(Aα/2) = Wα,p(D). Letting ω1 ∈ D(Aε) for ε ≥ 0
and using that ω1 is β-Hölder continuous with β ≤ 1/2 one has

‖z1(θtω)‖W α,p(D) ≤
∫ t

−∞
(t − τ)β+ε−α/2−1‖ω1‖β,ε‖ exp((t − τ)A)‖ dτ,

which is well-defined if β + ε > α/2. Such a condition provides again an
interplay between the time and space regularity of the stochastic convolution.

Based on the results regarding the stochastic convolutions we can now
investigate the long-time behaviour of our system. The first step is contained
in the next lemma, which establishes the existence of an absorbing set.
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Lemma 3.20. Suppose Assumptions 2.1 and 2.2 hold. Then there exists a set
{B(ω)}ω∈Ω ∈ T such that {B(ω)}ω∈Ω is a bounded absorbing set for ϕ. In
particular, for any D = {D(ω)}ω∈Ω ∈ T and every ω ∈ Ω there exists a
random time tD(ω) such that for all t ≥ tD(ω)

ϕ(t, θ−tω,D(θ−tω)) ⊂ B(ω). (3.17)

Proof. To show the existence of a bounded absorbing set, we want to make use
of Remark 3.6, i.e. we need an a-priori estimate in H. We have for v = (v1, v2)�

solution of (3.8)

1
2

d
dt

(
‖v1‖2

2 + ‖v2‖2
2

)
=

1
2

d
dt

‖v‖2
H

=
〈

d
dt

v, v

〉

H

= 〈Av + F(v + z(θtω)), v〉H

= 〈dAv1, v1〉 + 〈F1(v + z(θtω)), v1〉 − 〈σ(x)v2, v2〉 + 〈F2(v + z(θtω)), v2〉
= −d‖∇v1‖2

2 −〈h(x, v1 + z1(θtω)), v1〉
︸ ︷︷ ︸

=:I1

−〈f(x, v1 + z1(θtω), v2 + z2(θtω)), v1〉
︸ ︷︷ ︸

=:I2

− δ‖v2‖2
2 −〈g(x, v1 + z1(θtω)), v2〉
︸ ︷︷ ︸

=:I3

,

where we have used (2.7). We now estimate I1-I3 separately. Deterministic
constants denoted as C,C1, C2, . . . may change from line to line. Using (2.5)
and (2.10) we calculate

I1 = −
∫

D

h(x, v1 + z1(θtω))v1 dx

= −
∫

D

h(x, v1 + z1(θtω))(v1 + z1(θtω)) dx

+
∫

D

h(x, v1 + z1(θtω))z1(θtω) dx

≤ −
∫

D

δ1|u1|p dx +
∫

D

δ3 dx +
∫

D

|h(x, v1 + z1(θtω))||z1(θtω)| dx

≤ −δ1‖u1‖p
p + C + δ8

∫

D

(1 + |u1|p−1)|z1(θtω)| dx

= −δ1‖u1‖p
p + C + δ8‖z1(θtω)‖1 + δ8

∫

D

|u1|p−1|z1(θtω)| dx

≤ −δ1‖u1‖p
p + C + C1‖z1(θtω)‖2

2 +
δ1

2
‖u1‖p

p + C2‖z1(θtω)‖p
p

= −δ1

2
‖u1‖p

p + C + C1

(
‖z1(θtω)‖2

2 + ‖z1(θtω)‖p
p

)
.
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Furthermore, with (2.6) we estimate

I2 = −
∫

D

f(x, v1 + z1(θtω), v2 + z2(θtω))v1 dx

≤
∫

D

|f(x, v1 + z1(θtω), v2 + z2(θtω))||u1 − z1(θtω)| dx

≤
∫

D

δ4(1 + |u1|p1 + |u2|)|u1| dx

+
∫

D

δ4(1 + |u1|p1 + |u2|)|z1(θtω)| dx

=
∫

D

δ4(|u1| + |u1|p1+1) dx +
∫

D

δ4|u1||u2| dx + δ4‖z1(θtω)‖1

+
∫

D

δ4|u1|p1 |z1(θtω)| dx +
∫

D

δ4|u2||z1(θtω)| dx

≤
∫

D

δ4(|u1| + |u1|p1+1) dx +
∫

D

δ4|u1||u2| dx + δ4‖z1(θtω)‖2
2 + C

+
∫

D

δ4

2
|u1|p1+1 dx + C1‖z1(θtω)‖p1+1

p1+1 +
∫

D

δ4|u2||z1(θtω)| dx

≤
∫

D

δ4
3
2
(|u1| + |u1|p1+1) dx +

∫

D

δ4|u1||u2| dx + C

+ C1

(
‖z1(θtω)‖2

2 + ‖z1(θtω)‖p1+1
p1+1

)
+

∫

D

δ4|u2||z1(θtω)| dx.

With (2.9) we compute

I3 = −
∫

D

g(x, v1 + z1(θtω))v2 dx

≤
∫

D

|g(x, u1)||u2 − z2(θtω)| dx

≤
∫

D

δ7(1 + |u1|)|u2| dx +
∫

D

δ7(1 + |u1|)|z2(θtω)| dx

=
∫

D

δ7(1 + |u1|)|u2| dx + δ7‖z2(θtω)‖1 +
∫

D

δ7|u1||z2(θtω)| dx

≤
∫

D

δ7(1 + |u1|)|u2| dx + δ7‖z2(θtω)‖2
2 + C +

∫

D

δ7|u1||z2(θtω)| dx.
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Now, combining the estimates for I2 and I3 yields

I2 + I3

≤
∫

D

δ7(1 + |u1|)|u2| dx +
∫

D

δ7|u1||z2(θtω)| dx

+
∫

D

δ4
3
2
(|u1| + |u1|p1+1) dx +

∫

D

δ4|u1||u2| dx +
∫

D

δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)

≤ (δ4 + δ7)
∫

D

(1 + |u1|)|u2| dx +
∫

D

δ7|u1||z2(θtω)| dx

+
∫

D

δ4
3
2
(|u1| + |u1|p1+1) dx +

∫

D

δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)

≤ δ

16
‖u2‖2

2 + C2

∫

D

(1 + |u1|)2 dx +
∫

D

δ7|u1||z2(θtω)| dx

+
∫

D

δ4
3
2
(|u1| + |u1|p1+1) dx +

∫

D

δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)

=
δ

16
‖u2‖2

2 + δ4
3
2

∫

D

(
|u1| + |u1|p1+1 + C2(1 + |u1|)2

)
dx

+
∫

D

δ7|u1||z2(θtω)| dx +
∫

D

δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)

≤ δ

16
‖u2‖2

2 + C2

∫

D

(1 + |u1|q) dx +
δ1

8
‖u1‖2

2 +
δ

16
‖u2‖2

2

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)
,

where we have used that for q = max{p1 + 1, 2} < p there exists a constant
C2 such that

C1

(
|ξ| + |ξ|p1+1 + C(1 + |ξ|)2

)
≤ C2(|ξ|q + 1), for all ξ ∈ R. (3.18)

Thus,

I2 + I3

≤ δ

8
‖u2‖2

2 +
δ1

8
‖u1‖2

2 +
δ1

4
‖u1‖p

p

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)

≤ δ

4
‖v2‖2

2 +
δ13
8

‖u1‖p
p + C

+ C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1

)
.
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Hence, in total we obtain

1
2

d
dt

(‖v1‖2
2 + ‖v2‖2

2)

≤ −d‖∇v1‖2
2 − δ1

2
‖u1‖p

p − δ‖v2‖2
2 +

δ

4
‖v2‖2

2 +
δ13
8

‖u1‖p
p

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1 + ‖z1(θtω)‖p
p

)

= −d‖∇v1‖2
2 − δ1

8
‖u1‖p

p − 3δ

4
‖v2‖2

2

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖2
2 + ‖z1(θtω)‖p1+1

p1+1 + ‖z1(θtω)‖p
p

)

≤ −d

2
‖∇v1‖2

2 − d

2c
‖v1‖2

2 − 3δ

4
‖v2‖2

2

+ C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖p
p

)
(3.19)

and thus

d
dt

(‖v1‖2
2+‖v2‖2

2) ≤ −C2

(
‖v1‖2

2 + ‖v2‖2
2

)
+C+C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖p
p

)
.

(3.20)
Now, applying Gronwall’s inequality we obtain

‖v1‖2
2 + ‖v2‖2

2

≤
(
‖v0

1‖2
2 + ‖v0

2‖2
2

)
exp (−C2t) + C3 (1 − exp (−C2t))

+ C1

∫ t

0

exp (−C2(t − s))
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

≤
(
‖v0

1‖2
2 + ‖v0

2‖2
2

)
exp (−C2t) + C3

+ C1

∫ t

0

exp (−C2(t − s))
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds. (3.21)

We replace ω by θ−tω (note the P-preserving property of the MDS) and carry
out a change of variables

‖v1(t, θ−tω, v0
1(θ−tω))‖2

2 + ‖v2(t, θ−tω, v0
2(θ−tω))‖2

2

≤
(
‖v0

1(θ−tω)‖2
2 + ‖v0

2(θ−tω)‖2
2

)
exp (−C2t) + C3

+ C1

∫ t

0

exp (−C2(t − s))
(
‖z2(θs−tω)‖2

2 + ‖z1(θs−tω)‖p
p

)
ds

≤
(
‖v0

1(θ−tω)‖2
2 + ‖v0

2(θ−tω)‖2
2

)
exp (−C2t) + C3

+ C1

∫ 0

−t

exp (C2s)
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds.
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Now let D ∈ T be arbitrary and (u0
1, u

0
2)(θ−tω) ∈ D(θ−tω). Then

‖ϕ(t, θ−tω, (u0
1, u

0
2)(θ−tω))‖2

H

= ‖v1(t, θ−tω, u0
1(θ−tω) − z1(θ−tω)) + z1(ω)‖2

2

+ ‖v2(t, θ−tω, u0
2(θ−tω) − z2(θ−tω)) + z2(ω)‖2

2

≤ 2‖v1(t, θ−tω, u0
1(θ−tω) − z1(θ−tω))‖2

2 + 2‖z1(ω)‖2
2

+ 2‖v2(t, θ−tω, u0
2(θ−tω) − z2(θ−tω))‖2

2 + 2‖z2(ω)‖2
2

≤ 2
(
‖u0

1(θ−tω) − z1(θ−tω)‖2
2 + ‖u0

2(θ−tω) − z2(θ−tω)‖2
2

)
exp (−C2t)

+ 2C3 + 2C1

∫ 0

−t

exp (C2s)
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ 2‖z1(ω)‖2
2 + 2‖z2(ω)‖2

2

≤ 4
(
‖u0

1(θ−tω)‖2
2 + ‖z1(θ−tω)‖2

2 + ‖u0
2(θ−tω)‖2

2 + ‖z2(θ−tω)‖2
2

)
exp (−C2t)

+ 2C3 + 2C1

∫ 0

−t

exp (C2s)
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ 2‖z1(ω)‖2
2 + 2‖z2(ω)‖2

2.

Since (u0
1, u

0
2)(θ−tω) ∈ D(θ−tω) and since ‖z1(ω)‖p

p (p ≥ 1), ‖z2(ω)‖2
2 are

tempered random variables, we have

lim sup
t→∞

(
‖u0

1(θ−tω)‖2
2 + ‖z1(θ−tω)‖2

2 . . .

+‖u0
2(θ−tω)‖2

2 + ‖z2(θ−tω)‖2
2

)
exp (−C2t) = 0.

Hence,

lim sup
t→∞

‖ϕ(t, θ−tω, (u0
1, u

0
2)(θ−tω))‖2

H

≤ 2C3 + 2C1

∫ 0

−∞
exp (C2s)

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ 2‖z1(ω)‖2
2 + 2‖z2(ω)‖2

2

=: ρ(ω). (3.22)

Due to the temperedness of ‖z1(ω)‖p
p for p ≥ 1 and ‖z2(ω)‖2

2, the improper
integral above exists and ρ(ω) > 0 is a ω-dependent constant. As described in
Remark 3.6, we can define for some ε > 0

B(ω) = B(0, ρ(ω) + ε).

Then B = {B(ω)}ω ∈ T is a T -absorbing set for the RDS ϕ with finite
absorption time tT (ω) = supD∈T tD(ω). �

The random radius ρ(ω) depends on the restrictions imposed on the non-
linearity and the noise. These were heavily used in Lemma 3.20 in order to
derive the expression 3.22 for ρ(ω). Regarding the structure of ρ(ω) we infer
by Lemma 3.17 that ρ(ω) is tempered. Although we have now shown the
existence of a bounded T -absorbing set for the RDS at hand, we need further
steps. To show existence of a random attractor, we would like to make use of
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Theorem 3.11, i.e., we have to show existence of a compact T -absorbing set.
This will be the goal of the next subsection.

3.4. Compact absorbing set

The classical strategy to find a compact absorbing set in L2(D) for a reaction-
diffusion equation is the following: Firstly, one needs to find an absorbing set
in L2(D). Secondly, this set is used to find an absorbing set in H1(D) and due
to compact embedding this automatically defines a compact absorbing set in
L2(D). In our setting the construction of an absorbing set in H1(D) is more
complicated as the regularizing effect of the Laplacian is missing in the second
component of (3.8). That is solutions with initial conditions in L2(D) will in
general only belong to L2(D) and not to H1(D). To overcome this difficulty,
we split the solution of the second component into two terms: one which is
regular enough, in the sense that it belongs to H1(D) and the another one
which asymptotically tends to zero. This splitting method has been used by
several authors in the context of partly dissipative systems, see for instance
[20,32]. Let us now explain the strategy for our setting in more detail. We
consider the equations

dv1
2(t)
dt

= −σ(x)v1
2(t) − g(x, v1(t) + z1(θtω)), v1

2(0) = 0, (3.23)

and
dv2

2

dt
= −σ(x)v2

2 , v2
2(0) = v0

2 , (3.24)

then v2 = v1
2 + v2

2 solves (3.10). Note at this point that we associate the initial
condition v0

2 ∈ L2(D) to the second part. Now, let D = (D1,D2) ∈ T be
arbitrary and u0 = (u0

1, u
0
2) ∈ D. Then

ϕ(t, θ−tω, u0(θ−tω))

= (u1(t, θ−tω, u0
1(θ−tω)), u2(t, θ−tω, u0

2(θ−tω)))

=
(
v1(t, θ−tω, v0

1(θ−tω)) + z1(ω),

v1
2(t, θ−tω, v0

2(θ−tω)) + v2
2(t, θ−tω, v0

2(θ−tω)) + z2(ω)
)

=
(
v1(t, θ−tω, v0

1(θ−tω)) + z1(ω),

v1
2(t, θ−tω, 0) + z2(ω)

)
+

(
0, v2

2(t, θ−tω, v0
2(θ−tω))

)

=: ϕ1(t, θ−tω, v0
1(θ−tω)) + ϕ2(t, θ−tω, v0

2(θ−tω))

If we can show that for a certain t∗ ≥ tD(ω) there exist tempered random
variables ρ1(ω), ρ2(ω) such that

‖v1(t∗, θ−t∗ω, v0
1(θ−t∗ω)) + z1(ω)‖H1(D) <ρ1(ω), (3.25)

‖v1
2(t∗, θ−t∗ω, 0) + z2(ω)‖H1(D) <ρ2(ω), (3.26)

then, because of compact embedding, we know that ϕ1(t∗, θ−t∗ω,D1(θ−t∗ω))
is a compact set in H. If, furthermore

lim
t→∞

‖v2
2(t, θ−tω, v0

2(θ−tω))‖2 = 0, (3.27)
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then ϕ2(t, θ−tω,D2(θ−tω)) can be regarded as a (random) bounded perturba-
tion and ϕ(t, θ−tω,D(θ−tω)) is compact in H as well, see [28, Theorem 2.1].
Then,

ϕ(t∗, θ−t∗ω,B(θ−t∗ω)) (3.28)

is a compact absorbing set for the RDS ϕ. We will now prove the necessary
estimates (3.25)–(3.27).

Lemma 3.21. Let Assumptions 2.1 and 2.2 hold. Let D2 ⊂ L2(D) be tempered
and u0

2 ∈ D2. Then

lim
t→∞

‖v2
2(t, θ−tω, v0

2(θ−tω))‖2
2 = 0.

Proof. The solution to (3.24) is given by

v2
2(t) = v0

2 exp (−σ(x)t)

and thus

lim
t→∞

‖v2
2(t, θ−tω, v0

2(θ−tω))‖2
2

= lim
t→∞

∥
∥v0

2(θ−tω) exp (−σ(x)t)
∥
∥2

2

≤ lim
t→∞

‖v0
2(θ−tω)‖2

2 exp (−δt)

≤ lim
t→∞

(
‖u0

2(θ−tω)‖2
2 + ‖z2(θ−tω)‖2

2

)
exp (−δt) = 0,

as u0
2 ∈ D2 and ‖z2(ω)‖2

2 is a tempered random variable. �

We now prove boundedness of v1 and v1
2 in H1(D). Therefore we need

some auxiliary estimates. First, let us derive uniform estimates for u1 ∈ Lp(D)
and for v1 ∈ H1(D).

Lemma 3.22. Let Assumptions 2.1 and 2.2 hold. Let D1 ⊂ L2(D) be tempered
and u0

1 ∈ D2. Assume t ≥ 0, r > 0, then
∫ t+r

t

‖u1(s, ω, u0
1(ω))‖p

p ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ ‖v1(t, ω, v0
1(ω))‖2

2 + ‖v2(t, ω, v0
2(ω))‖2

2, (3.29)
∫ t+r

t

‖∇v1(s, ω, v0
1(ω))‖2

2 ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ ‖v1(t, ω, v0
1(ω))‖2

2 + ‖v2(t, ω, v0
2(ω))‖2

2, (3.30)

where C,C1 are deterministic constants.
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Proof. From (3.19) we can derive

d
dt

(‖v1‖2
2 + ‖v2‖2

2)

≤ −d‖∇v1‖2
2 − δ1

4
‖u1‖p

p + C + C1

(
‖z2(θtω)‖2

2 + ‖z1(θtω)‖p
p

)
,

and thus by integration

d

∫ t+r

t

‖∇v1(s, ω, v0
1(ω))‖2

2 ds +
δ1

4

∫ t+r

t

‖u1(s, ω, u0
1(ω))‖p

p ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ ‖v1(t, ω, v0
1(ω))‖2

2 + ‖v2(t, ω, v0
2(ω))‖2

2.

The two statements of the lemma follow directly from this estimate. �

Lemma 3.23. Let Assumptions 2.1 and 2.2 hold. Let D1 ⊂ L2(D) be tempered
and u0

1 ∈ D1. Assume t ≥ r, then

∫ t+r

t

‖u1(s, ω, u0
1(ω))‖2p−2

2p−2 ds

≤ C6r +
∫ t+r

t−r

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t − r, ω, v0
1(ω))‖2

2 + C5‖v2(t − r, ω, v0
2(ω))‖2

2, (3.31)

where C2, C3, C4, C5, C6 are deterministic constants.
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Proof. Remember that v1 satisfies equation (3.9). Multiplying this equation
by |v1|p−2v1 and integrating over D yields

1
p

d
dt

∫

D

|v1|p dx

= d

∫

D

Δv1(t)|v1|p−2v1 dx −
∫

D

h(x, v1(t) + z1(θtω))|v1|p−2v1 dx

−
∫

D

f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))|v1|p−2v1 dx

= −d(p − 1)
∫

D

|∇v1|2|v1|p−2 dx −
∫

D

h(x, v1(t) + z1(θtω))|v1|p−2v1 dx

−
∫

D

f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))|v1|p−2v1 dx

≤ −
∫

D

(
δ1

2p
|v1|p − C − C1(|z1(θtω)|2 + |z1(θtω)|p)

)

|v1|p−2 dx

+
∫

D

|f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))||v1|p−2v1 dx

≤ −
∫

D

δ1

2p
|v1|2p−2 dx + C

∫

D

|v1|p−2 dx

+ C1

∫

D

(|z1(θtω)|2 + |z1(θtω)|p)|v1|p−2 dx

+
∫

D

δ4(1 + |v1 + z1(θtω)|p1 + |v2 + z2(θtω)|)|v1|p−2v1 dx

≤ −
∫

D

δ1

2p
|v1|2p−2 dx + C

∫

D

|v1|p−2 dx + C1

∫

D

|v1|p−1 dx

+ C2

∫

D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx +
∫

D

δ4

(
|v1|p−1 . . .

+ C3

(
|v1|p1+p−1 + |z1(θtω)|p1 |v1|p−1 + |v2||v1|p−1 . . .

+|z2(θtω)||v1|p−1
))

dx

≤ −
∫

D

δ1

2p
|v1|2p−2 dx +

δ1

2p4

∫

D

|v1|2p−2 dx + C6

+ C2

∫

D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+
∫

D

C3(|z1(θtω)|p1 |v1|p−1 + |v2||v1|p−1 + |z2(θtω)||v1|p−1) dx,

where we have used condition (2.6), the relations p−1, p−2, p1 +p−1 < 2p−2
and the inequality

h(x, v1 + z1)v1 ≥ δ1

2p
|v1|p − C − C1(|z1|2 + |z1|p),
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that can be proved by using conditions (2.5) and (2.10)

h(x, v1 + z1)v1 = h(x, v1 + z1)(v1 + z1) − h(x, v1 + z1)z1

≥ δ1|v1 + z1|p − δ3 − |h(x, v1 + z1)||z1|
≥ δ1|v1 + z1|p − δ3 − (δ8 + δ8|v1 + z1|p−1)|z1|
≥ δ1|v1 + z1|p − C − C1|z1|2 − δ1/2|v1 + z1|p − C2|z1|p

=
δ1

2
|v1 + z1|p − C − C1(|z1|2 + |z1|p)

≥ δ1

2
||v1| − |z1||p − C − C1(|z1|2 + |z1|p)

≥ δ1

2p
|v1|p − C − C1(|z1|2 + |z1|p).

Hence we have

1
p

d
dt

∫

D

|v1|p dx +
∫

D

3
4

δ1

2p
|v1|2p−2 dx

≤ C6 + C2

∫

D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+
∫

D

C3(|z1(θtω)|p1 + |v2| + |z2(θtω)|)|v1|p−1 dx

≤ C6 + C2

∫

D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx +
∫

D

1
4

δ1

2p
|v1|2p−2 dx

+
∫

D

C3(|z1(θtω)|p1 + |v2| + |z2(θtω)|)2 dx

and thus

1
p

d
dt

∫

D

|v1|p dx +
∫

D

1
2

δ1

2p
|v1|2p−2 dx

≤ C6 + C2

∫

D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+
∫

D

C3(|z1(θtω)|2p1 + |v2(t)|2 + |z2(θtω)|2) dx. (3.32)

We arrive at the following inequality

1
p

d
dt

‖v1‖p
p +

δ1

2p+1
‖v1‖2p−2

2p−2 ≤ C6 + C2‖z1(θtω)‖p2−p
p2−p + C3‖z2(θtω)‖2

2 + C3‖v2‖2
2

(3.33)
and hence

d
dt

‖v1‖p
p ≤ C6 + C2‖z1(θtω)‖p2−p

p2−p + C3‖z2(θtω)‖2
2 + C3‖v2‖2

2 − δ1

2p+1
‖v1‖p

p.

(3.34)
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With (3.29) we have
∫ t+r

t

‖v1(s, ω, v0
1(ω))‖p

p ds

=
∫ t+r

t

‖u1(s, ω, v0
1(ω)) − z1(θsω)‖p

p ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ C2‖v1(t, ω, v0
1(ω))‖2

2 + C2‖v2(t, ω, v0
2(ω))‖2

2.

Thus by applying the uniform Gronwall Lemma to (3.34) we have

‖v1(t + r, ω, v0
1(ω))‖p

p

≤ rC6 +
∫ t+r

t

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t, ω, v0
1(ω))‖2

2 + C5‖v2(t, ω, v0
2(ω))‖2

2. (3.35)

Now integrating (3.33) between t and t + r yields
∫ t+r

t

‖v1(s, ω, v1(ω))‖2p−2
2p−2 ds

≤ C6r +
∫ t+r

t

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C3‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C‖v1(t, ω, v0
1(ω))‖p

p

and thus for t ≥ r using (3.35)
∫ t+r

t

‖v1(s, ω, v1(ω))‖2p−2
2p−2 ds

≤ C6r +
∫ t+r

t−r

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t − r, ω, v0
1(ω))‖2

2 + C5‖v2(t − r, ω, v0
2(ω))‖2

2.

In total this leads to
∫ t+r

t

‖u1(s, ω, v1(ω))‖2p−2
2p−2 ds

≤ C6r +
∫ t+r

t−r

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t − r, ω, v0
1(ω))‖2

2 + C5‖v2(t − r, ω, v0
2(ω))‖2

2

+
∫ t+r

t

‖z1(θsω)‖2p−2
2p−2 ds

≤ C6r +
∫ t+r

t−r

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖v2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t − r, ω, v0
1(ω))‖2

2 + C5‖v2(t − r, ω, v0
2(ω))‖2

2,

and this finishes the proof. �
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One can also use appropriate shifts within the integrals on the left hand
sides in (3.29), (3.30), (3.31) to obtain simpler forms of the ω-dependent con-
stants on the right hand side, see for instance [33, Lemma 4.3, 4.4]. More
precisely, in case of (3.29) one can for instance obtain an estimate of the form

∫ t+r

t

‖u1(s, θ−t−rω, u0
1(θ−t−rω))‖p

p ≤ c(1 + ρ̃(ω)),

where ρ̃(ω) is a random constant. Nevertheless such estimates hold for every
ω, independent of the shift that one inserts inside the integral on the left hand
side. Without the appropriate shifts on the left hand sides, as in the lemmas
above, the constants on the right hand sides depend on the shift. Next, we are
going to show the boundedness of v1 in H1(D).

Lemma 3.24. Let Assumptions 2.1 and 2.2 hold. Let D = (D1,D2) ∈ T and
u0 ∈ D. Assume t ≥ tD(ω) + 2r for some r > 0 then

‖∇v1(t, θ−tω, v0
1(θ−tω))‖2

2 ≤ ρ1(ω), (3.36)

where ρ1(ω) is a tempered random variable.

Proof. Remember that v1 satisfies the equation (3.9) and thus

1
2

d
dt

‖∇v1‖2
2 =

〈
d
dt

v1,−Δv1

〉

= 〈dΔv1 − h(x, v1 + z1(θtω)) − f(x, v1 + z1(θtω), v2 + z2(θtω)),−Δv1〉
= −d‖Δv1‖2

2 + 〈h(x, v1 + z1(θtω)),Δv1〉
+ 〈f(x, v1 + z1(θtω), v2 + z2(θtω)),Δv1〉

≤ −d‖Δv1‖2
2 +

∫

D

δ8(1 + |u1|p−1)|Δv1| dx

+
∫

D

δ4(1 + |u1|p1 + |u2|)|Δv1| dx

≤ −d‖Δv1‖2
2 + C

∫

D

(2 + |u1|p−1 + |u1|p1 + |u2|)|Δv1| dx

≤ −d

2
‖Δv1‖2

2 + C

∫

D

(1 + |u1|p−1 + |u1|p1 + |u2|)2 dx

≤ −d

2
‖Δv1‖2

2 + C

∫

D

(1 + |u1|2p−2 + |u2|2) dx

= −d

2
‖Δv1‖2

2 + C1 + C‖u1‖2p−2
2p−2 + C‖u2‖2

2

≤ −dc

2
‖∇v1‖2

2 + C1 + C‖u1‖2p−2
2p−2 + C‖u2‖2

2.
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We want to apply the uniform Gronwall Lemma now. Therefore, note

d
dt

‖∇v1(t, ω, v0
1(ω))‖2

2︸ ︷︷ ︸
:=y(t)

≤ −dc
︸︷︷︸
:=g(t)

‖∇v1(t, ω, v0
1(ω))‖2

2

+ C1 + C‖u1(t, ω, u0
1(ω))‖2p−2

2p−2 + C‖u2(t, ω, u0
2(ω))‖2

2
︸ ︷︷ ︸

:=h(t)

.

We calculate ∫ t+r

t

g(s) ds ≤ 0 (3.37)

and
∫ t+r

t

‖∇v1(s, ω, v0
1(ω))‖2

2 ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ C2

(
‖v1(t, ω, v0

1(ω))‖2
2 + ‖v2(t, ω, v0

2(ω))‖2
2

where we have applied Lemma 3.22. By Lemma 3.23 for t ≥ r
∫ t+r

t

‖u1(s, ω, u0
1(ω))‖2p−2

2p−2 ds

≤ C6r +
∫ t+r

t−r

C2‖z1(θsω)‖p2−p
p2−p + C3‖z2(θsω)‖2

2 + C4‖u2(s, ω, v0
2(ω))‖2

2 ds

+ C5‖v1(t − r, ω, v0
1(ω))‖2

2 + C5‖v2(t − r, ω, v0
2(ω))‖2

2.

Now, the uniform Gronwall Lemma yields for t ≥ r

‖∇v1(t + r, ω, v0
1(ω))‖2

2

≤ C + C1

∫ t+r

t

(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds

+ C2

(
‖v1(t, ω, v0

1(ω))‖2
2 + ‖v2(t, ω, v0

2(ω))‖2
2

)

+ C3

∫ t+r

t−r

‖z1(θsω)‖p2−p
p2−p + ‖z2(θsω)‖2

2 + ‖u2(s, ω, v0
2(ω))‖2

2 ds

+ C4

(
‖v1(t − r, ω, v0

1(ω))‖2
2 + ‖v2(t − r, ω, v0

2(ω))‖2
2

)

+ C5

∫ t+r

t

‖u2(s, ω, u0
2(ω))‖2

2 ds

≤ C + C1

∫ t+r

t−r

‖u2(s, ω, u0
2(ω))‖2

2 ds

+ C2

∫ t+r

t−r

‖z1(θsω)‖p2−p
p2−p + ‖z2(θsω)‖2

2 ds

+ C3

(
‖v1(t, ω, v0

1(ω))‖2
2 + ‖v2(t, ω, v0

2(ω))‖2
2 . . .

+‖v1(t − r, ω, v0
1(ω))‖2

2 + ‖v2(t − r, ω, v0
2(ω))‖2

2

)
.
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That is, for t ≥ 0 we have

‖∇v1(t + 2r, ω, v0
1(ω))‖2

2

≤ C + C1

∫ t+2r

t

‖v2(s, ω, u0
2(ω))‖2

2 ds

+ C2

∫ t+2r

t

‖z1(θsω)‖p2−p
p2−p + ‖z2(θsω)‖2

2 ds

+ C3

(
‖v1(t + r, ω, v0

1(ω))‖2
2 + ‖v2(t + r, ω, v0

2(ω))‖2
2 . . .

+‖v1(t, ω, v0
1(ω))‖2

2 + ‖v2(t, ω, v0
2(ω))‖2

2

)
.

Let us recall that our goal is to find a t∗ ≥ tD(ω) such that (3.25) holds. Now
assume that t ≥ tD(ω). We replace ω by θ−t−2rω (again note the P-preserving
property of the MDS), then

‖∇v1(t + 2r, θ−t−2rω, v0
1(θ−t−2rω))‖2

2

≤ C + C1

∫ t+2r

t

‖v2(s, θ−t−2rω, u0
2(θ−t−2rω))‖2

2 ds

+ C2

∫ t+2r

t

‖z1(θs−t−2rω)‖p2−p
p2−p + ‖z2(θs−t−2rω)‖2

2 ds

+ C3

(
‖v1(t + r, θ−t−2rω, v0

1(θ−t−2rω))‖2
2 . . .

+ ‖v2(t + r, θ−t−2rω, v0
2(θ−t−2rω))‖2

2 . . .

+ ‖v1(t, θ−t−2rω, v0
1(θ−t−2rω))‖2

2 . . .

+‖v2(t, θ−t−2rω, v0
2(θ−t−2rω))‖2

2

)
.

As t ≥ tD(ω) we know by the absorption property that there exists a ρ̃(ω)
such that

‖v1(t, θ−tω, v0
1(θ−tω))‖2

2 ≤ ρ̃(ω),

and thus replacing ω by θ−2rω

‖v1(t, θ−t−2rω, v0
1(θ−t−2rω))‖2

2 ≤ ρ̃(θ−2rω).

Similarly, we know that

‖v1(t + r, θ−t−rω, v0
1(θ−t−rω))‖2

2 ≤ ρ̃(θ−rω),

and thus by replacing ω by θ−rω

‖v1(t + r, θ−t−2rω, v0
1(θ−t−2rω))‖2

2 ≤ ρ̃(θ−2rω).

The same arguments hold for v2. Furthermore, as t ≥ tD(ω) and we know from
Lemma 3.20 that there exists a tempered random variable ρ̂(ω) such that for
s ∈ (t, t + 2r)

‖v2(s, θ−sω, u0
2(θ−sω))‖2

2 ≤ ρ̂(ω)



35 Page 30 of 37 C. Kuehn et al. NoDEA

and thus
∫ t+2r

t

‖v2(s, θ−t−2rω, u0
2(θ−t−2rω))‖2

2ds

≤
∫ t+2r

t

ρ̂(θs−t−2rω) ds =
∫ 2r

0

ρ̂(θτ−2rω) dτ =
∫ 0

−2r

ρ̂(θyω)dy.

With similar substitutions in the integral over ‖z1(θs−t−2rω)‖p2−p
p2−p and

‖z2(θs−t−2rω)‖2
2 we arrive at

‖∇v1(t + 2r, θ−t−2rω, v0
1(θ−t−2rω))‖2

2

≤ C + C1

∫ 0

−2r

ρ̂(θyω)dy + C2

∫ 0

−2r

‖z1(θyω)‖p2−p
p2−p + ‖z2(θyω)‖2

2 dy

+ C3ρ̃(θ−2rω),

where the right hand side is independent of t. Due to the temperedness of
all terms involved, they can be combined into one tempered random variable
ρ1(ω) such that for t ≥ tD(ω) + 2r =: t∗ we have

‖∇v1(t, θ−tω, v0
1(θ−tω))‖2

2 ≤ ρ1(ω),

this concludes the proof. �

We are now able to prove the boundedness of the first term of v2 in
H1(D).

Lemma 3.25. Let Assumptions 2.1 and 2.2 hold. Let D = (D1,D2) ∈ T and
u0 ∈ D. Assume t ≥ tD(ω) + 2r for some r > 0. Then we have

‖∇v1
2(t, θ−tω, 0)‖2

2 ≤ ρ2(ω), (3.38)

where ρ2(ω) is a tempered random variable.

Proof. Remember that v1
2 satisfies the equation (3.23) and thus

1
2

d
dt

‖∇v1
2‖2

2 = 〈 d
dt

v1
2 ,−Δv1

2〉

= 〈−σ(x)v1
2 − g(x, v1 + z1),−Δv1

2〉
= 〈σ(x)v1

2 ,Δv1
2〉

︸ ︷︷ ︸
=:L1

+ 〈g(x, v1 + z1),Δv1
2〉

︸ ︷︷ ︸
=:L2

.

We estimate L1 and L2 separately

L1 =
∫

D

σ(x)v1
2Δv1

2dx

= −
∫

D

∇(σ(x)v1
2) · ∇v1

2dx

≤ −δ‖∇v1
2‖2

2 −
∫

D

∇σ(x)v1
2 · ∇v1

2dx,
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and

L2 =
∫

D

g(x, v1 + z1)Δv1
2 dx = −

∫

D

∇g(x, v1 + z1) · ∇v1
2 dx

= −
∫

D

(∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)) · ∇v1
2 dx,

where in the last equation the gradient is to be understood as

∇g(x, v1 + z1) = (∂x1g(x, v1 + z1), . . . , ∂xn
g(x, v1 + z1))�.

Hence,

d
dt

‖∇v1
2‖2

2 + 2δ‖∇v1
2‖2

2

≤ 2
∫

D

∣
∣∇σ(x)v1

2 + ∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)
∣
∣ |∇v1

2 | dx

≤ 1
δ

∫

D

∣
∣∇σ(x)v1

2 + ∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)
∣
∣2 dx

+ δ‖∇v1
2‖2

2

and further with (2.8)

d

dt
‖∇v1

2‖22 + δ‖∇v1
2‖22

≤ 1

δ

∫

D

n∑

i=1

(|∂xiσ(x)v1
2 | + |∂xig(x, v1 + z1)| . . .

+|∂ξg(x, v1 + z1)∂xi (v1 + z1)|
)2

dx

≤ 1

δ

∫

D

n∑

i=1

(
C|v1

2 | + δ5(1 + |v1 + z1|) + δ5|∂xi(v1 + z1)|
)2

dx

≤ 2

δ
(C + δ5)

2n

∫

D

(|v1
2 | + 1 + |v1 + z1|)2 dx +

2δ25
δ

∫

D

n∑

i=1

|∂xi(v1 + z1)|2 dx

=
2

δ
(C + δ5)

2n

∫

D

(|v1
2 | + 1 + |v1 + z1|)2 dx +

2δ25
δ

‖∇(v1 + z1)‖22
≤ C1 + C2(‖v1

2‖22 + ‖v1‖22 + ‖z1‖22) + C3(‖∇v1‖22 + ‖∇z1‖22).

where C := max1≤i≤n maxx∈D |∂xi
σ(x)|. Next, we apply Gronwall’s inequality

while taking the initial condition into account and we obtain for t ≥ 0

‖∇v1
2‖2

2 ≤
∫ t

0

[
C1 + C2(‖v1

2‖2
2 + ‖v1‖2

2 + ‖z1‖2
2) + C3(‖∇v1‖2

2 + ‖∇z1‖2
2)
]
. . . .

× exp ((s − t)δ) ds. (3.39)

We have from (3.19) the following equation

d
dt

(‖v1‖2
2+‖v2‖2

2)+M(‖v1‖2
2+‖v2‖2

2)+d‖∇v1‖2
2 ≤ Ĉ+C̃(‖z2(θtω)‖2

2+‖z1(θtω)‖p
p),

(3.40)
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where M = min{d/c, δ} and certain constants Ĉ, C̃. We multiply (3.40) by
exp(Mt) and integrate between 0 and t

∫ t

0

exp(Ms)
d
ds

(‖v1‖2
2 + ‖v2‖2

2)ds + M

∫ t

0

exp(Ms)(‖v1‖2
2 + ‖v2‖2

2)ds

+ d

∫ t

0

exp(Ms)‖∇v1‖2
2ds

≤
∫ t

0

Ĉ exp(Ms)ds + C̃

∫ t

0

exp(Ms)(‖z2(θsω)‖2
2 + ‖z1(θsω)‖p

p)ds.

This yields

∫ t

0

exp(M(s − t))‖∇v1(s, ω, v0
1(ω))‖2

2ds

≤ 1
d

exp(−Mt)(‖v0
1(ω)‖2

2 + ‖v0
2(ω)‖2

2) + Ĉ

+ C̃

∫ t

0

exp(M(s − t))(‖z2(θsω)‖2
2 + ‖z1(θsω)‖p

p)ds, (3.41)

as well as

‖v1(t, ω, v0
1(ω))‖2

2 + ‖v2(t, ω, v0
2(ω))‖2

2

≤
(
‖v0

1(ω)‖2
2 + ‖v0

2(ω)‖2
2

)
exp (−Mt) + Ĉ

+ C̃

∫ t

0

exp (M(s − t))
(
‖z2(θsω)‖2

2 + ‖z1(θsω)‖p
p

)
ds.

In particular, from the last estimate we obtain

∫ tD(ω)

0
(‖v1(s, θ−tω, v0

1(θ−tω)‖22 + ‖v2(s, θ−tω, v0
2(θ−tω))‖22) exp(M(s − t))ds

≤
∫ tD(ω)

0

(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22
)
exp (−Mt) ds + Ĉ

∫ tD(ω)

0
exp(M(s − t))ds

+ C̃

∫ tD(ω)

0

∫ s

0
exp (M(τ − t))

(‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖p
p

)
dτds

≤ (‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22
)
exp (−Mt) tD(ω) + Ĉ

+ C̃tD(ω)

∫ tD(ω)

0
exp (M(τ − t))

(‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖p
p

)
dτ. (3.42)

where we have replaced ω by θ−tω after integrating and used that t ≥ tD(ω).
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Now, replacing ω by θ−tω in (3.39), noting that δ ≥ M and assuming
that t ≥ tD(ω), we compute

‖∇v1
2(t, θ−tω, 0)‖22

≤ C1

δ
+ C2

∫ t

0

[‖v1
2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v0

1(θ−tω))‖22 + ‖z1(θs−tω)‖22
+‖∇v1(s, θ−tω, v0

1(θ−tω))‖22 + ‖∇z1(θs−tω)‖22
]
exp ((s − t)M) ds

≤ C1 + C2

∫ tD(ω)

0

[‖v1
2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v0

1(θ−tω))‖22
]
exp ((s − t)M) ds

+ C2

∫ t

tD(ω)

[‖v1
2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v0

1(θ−tω))‖22
]
exp ((s − t)M) ds

+ C3 exp(−Mt)(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) + C4

∫ t

0
exp(M(s − t))

× (‖z2(θs−tω)‖22 + ‖z1(θs−tω)‖p
p + ‖z1(θs−tω)‖22 + ‖∇z1(θs−tω)‖22)ds

≤ C1 + C2

(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22
)
exp (−Mt) tD(ω)

+ C5tD(ω)

∫ tD(ω)

0
exp (M(τ − t))

(‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖p
p

)
dτ

+ C2

∫ t

tD(ω)
ρ(ω) exp ((s − t)M) ds

+ C3 exp(−Mt)(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22)

+ C4

∫ 0

−∞
exp(Ms)(‖z2(θsω)‖22 + ‖z1(θsω)‖p

p + ‖z1(θsω)‖22 + ‖∇z1(θsω)‖22)ds

≤ C1 + C2(tD(ω))
(‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−Mt) + C3ρ(ω)

+ C4(tD(ω))

∫ 0

−∞
exp(Ms)

× (‖z2(θsω)‖22 + ‖z1(θsω)‖p
p + ‖z1(θsω)‖22 + ‖∇z1(θsω)‖22)ds

where we have used (3.41) in the second inequality and (3.42) in the third
inequality. Furthermore, we made use of the absorption property in the third
inequality. Finally, since ‖z2(θsω)‖2

2, ‖z1(θsω)‖p
p, ‖z1(θsω)‖2

2, ‖∇z1(θsω)‖2
2 (see

Lemma 3.17 and Remark 3.18) and ‖v0
1(θ−tω)‖2

2, ‖v0
2(θ−tω)‖2

2 (by assumption)
are tempered random variables, we can combine the right hand side into one
tempered random variable ρ2(ω) and this concludes the proof. �

Theorem 3.26. Let Assumptions 2.1 and 2.2 hold. The random dynamical sys-
tem defined in (3.11) has a unique T -random attractor A.

Proof. By the previous lemmas there exist a compact absorbing set given by
(3.28) in T for the RDS ϕ. Thus Theorem 3.11 guarantees the existence of a
unique T -random attractor. �



35 Page 34 of 37 C. Kuehn et al. NoDEA

4. Applications

4.1. FitzHugh–Nagumo system

Let us consider the famous stochastic FitzHugh–Nagumo system, i.e.,

du1 = (ν1Δu1 − p(x)u1 − u1(u1 − 1)(u1 − α1) − u2) dt + B1dW1,
du2 = (α2u1 − α3u2) dt + B2dW2,

(4.1)

with D = [0, 1] and αj ∈ R for j ∈ {1, 2, 3} are fixed parameters. We always
assume that the noise terms satisfy Assumptions 2.2 and p ∈ C2. Such systems
have been considered under various assumptions by numerous authors, for in-
stance see [4,31] and the references specified therein. Our general assumptions
are satisfied in this example as follows. Identifying the terms with the terms
given in (2.1)–(2.2) we have

h(x, u1) = p(x)u1 + u1(u1 − 1)(u1 − α1), f(x, u1, u2) = u2,

σ(x)u2 = α3u2, g(x, u1) = −α2u1.

We have σ(x) = α3 and |f(x, u1, u2)| = |u2| , i.e., (2.7) and (2.6) are fulfilled.
Furthermore, |∂ug(x, u1)| = |α2| and |∂xi

g(x, u1)| = 0 for i = 1, . . . , n, hence
(2.8) is satisfied. Finally, as a polynomial with odd degree and negative coeffi-
cient for the highest degree, h fulfils (2.5). Thus the analysis above guarantees
the existence of global mild solutions and the existence of a random pullback
attractor for the stochastic FitzHugh–Nagumo system.

4.2. The driven cubic-quintic Allen–Cahn model

The cubic-quintic Allen–Cahn (or real Ginzburg–Landau) equation is given by

∂tu = Δu + p1u + u3 − u5, u = u(x, t), (4.2)

where (x, t) ∈ D × [0, T ), p1 ∈ R, is a fixed parameter and we will take D as
a bounded open domain with regular boundary. The cubic-quintic polynomial
non-linearity frequently occurs in the modelling of Euler buckling [30], as a
re-stabilization mechanism in paradigmatic models for fluid dynamics [21],
in normal form theory and travelling wave dynamics [13,16], as well as a test
problem for deterministic [17] and stochastic numerical continuation [18]. If we
want to allow for time-dependent slowly-varying forcing on u and sufficiently
regular additive noise, then it is actually very natural to extend the model (4.2)
to

du1 =
(
Δu1 + p1u1 + u3

1 − u5
1 − u2

)
dt + B1 dW1,

du2 = ε(p2u2 − q2u1) dt + B2 dW2,
(4.3)

where p2, q2, 0 < ε � 1 are parameters. One easily checks again that (4.3)
fits our general framework as h(x, u1) = −p1u1 − u3

1 + u5
1 satisfies the crucial

dissipation assumption (2.5).
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Faculty of Mathematics
Technical University of Munich
Boltzmannstr. 3
85748 Garching bei München
Germany
e-mail: pein@ma.tum.de

Christian Kuehn
e-mail: ckuehn@ma.tum.de

Alexandra Neamţu
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