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Summary
This article addresses the problem of maneuvering multiple agents that must
visit a number of target sets, while enforcing connectivity constraints and avoid-
ing obstacle as well as interagent collisions. The tool to cope with the problem is
a formulation of model predictive control including binary decision variables. In
this regard, two mixed-integer linear programming formulations are presented,
considering a trade-off between optimality and scalability between them. Sim-
ulation results are also shown to illustrate the main features of the proposed
approaches.

K E Y W O R D S
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1 INTRODUCTION

Miniaturization, enhancement in communication capabilities and reduction in costs for building autonomous agents
have enabled the development of multiagent systems (MASs). A cooperative team of agents may accomplish tasks, such
as patrolling,1 area coverage,2 search and rescue,3 and exploration,4 in a better manner than a single agent. For com-
plex tasks, the performance of the agent team depends on coordination strategies, which often require communication
between agents.5 In this regard, maintaining connectivity of the communication network during the whole duration of the

Abbreviations: MAS, multiagent system; MILP, mixed-integer linear programming; MPC, model predictive control.
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task is necessary to avoid interruptions of the coordination algorithms.6 For modeling purposes, a common assumption
states that a communication link is established between two agents if they are within a given distance. The kind of
problem addressed in the present work is similar to Kantaros and Zavlanos (2016)7 and Stephan et al (2017).8 In Kantaros
and Zavlanos (2016)7 spatially distributed objectives (therein termed tasks) are assigned to a subgroup of the agents (the
so-called leaders), while the remaining ones move to comply with the connectivity constraints. However, the initial task
assignment does not consider obstacles and collisions between the agents, which are taken into account later in the plan-
ning phase. Another recent work that performs the task assignment and the planning in two distinct hierarchical layers
can be found in Stephan et al (2017).8

Considering a predefined task assignment, that is, an a priori definition of the final configurations for each agent,
Filotheou et al (2018)9 addressed the problem of guiding MAS in which each agent presented nonlinear second-order
Lagrangian dynamics while avoiding collisions and maintaining connectivity. Recently Karkoub et al (2019)10 pro-
posed an algorithm for the control of MAS with unicycle dynamics endowed with interagent collision avoidance
and connectivity maintenance capabilities. However, the article is restricted to the agent steering problem, under
the assumption that a preplanned trajectory is available. The higher layer concerning trajectory planning was not
addressed.

Many control laws have been proposed in the literature to maintain connectivity.6 In a more precise manner, the
interest here is to develop algorithms that guarantee the communication graph stays connected if it is so at the begin-
ning of the task. Early researches in this field usually worked with a concept termed local connectivity, where the
control law is developed to ensure that each initially active communication link will remain active for the rest of
the task.

Although keeping the local connectivity of each communication link guarantees the connectivity of the overall com-
munication graph, it is often overly conservative and the agent team may be better off to fulfill its objectives if global
connectivity is considered. At each time instant, global connectivity refers to the usual connectivity concept from graph
theory: the communication graph may have missing links, as long as a path exists between each pair of agents. Since
the agents move, creation, and deletion of links may happen dynamically, so global connectivity does not ensure local
connectivity.

Task allocation and motion planning stem as fundamental problems in many applications. Many motion planning
techniques for MASs are extensions of the ones developed for a single-mobile agent, which may be categorized mainly
into potential fields,11 graph-based,12 or sampling-based13 approaches. In a MAS, the agents should not only avoid col-
lision with environment obstacles but also take interagent collision avoidance into account.5 One alternative commonly
present in the literature to simplify the problem is to assume that some agents are “leaders” and others are their so-called
“followers.” In such formulations, usually only the leaders are assigned tasks and the followers are required to be kept
connected, but not necessarily perform any task. One interesting result for single-integrator agents are the bounds on the
ratio of leaders to followers that ensure connectivity can be kept.14 However, such formulations usually attain suboptimal
results in view of the simplifications brought by the assignment of agents to the roles of either leaders or followers. Thus,
in the present article we aim at coping with a topology in which each agent has the same role, being free to move as to per-
form the tasks (herein target set visitations) optimally, provided that the constraints are enforced, including connectivity
maintenance and collision avoidance.

An approach that uses model predictive control (MPC) with a mixed-integer linear programming (MILP) encoding
to allow trajectory planning endowed with circumvention of polygonal obstacles was proposed in Richards and How
(2006)15 in the context of a single-agent subject to disturbances. In the undisturbed case, a similar approach to a MAS was
proposed in Schouwenaars et al (2001).16 Moreover, Prodan et al (2012)17 proposed a scheme with two layers, namely, a
higher layer that assigns tasks represented as target states to each agent at the end of the horizon and a lower layer that
optimizes the trajectory of the agents toward their assigned tasks while avoiding collisions between them. Although this
method solves task allocation and trajectory planning within a MPC framework, it does so in separate layers, resulting in
suboptimality, since the optimization solver is not able to exploit the relationship between task allocation and trajectory
planning.

This article presents a MILP formulation for task allocation and trajectory planning, which respects collision
avoidance and connectivity constraints. Our work follows on the steps of previous MILP formulations for trajectory
planning,15,16,18-20 but novel contributions are brought to the field. To the best of our knowledge, our formulation is the
first one to explicitly consider global connectivity in MAS trajectory planning using an optimization framework. We may
add that a MPC formulation permits us to handle constraints that are relevant for real-world agents, such as actuator
saturation. In this regard, many proposed control laws only guarantee connectivity maintenance if high bandwidth
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unbounded control effort is available,21 which is unrealistic on real-world agents. Furthermore, in our problem, the agents
may collect rewards within specific regions during the task. Any agent may collect any reward, thus we also encode this
task allocation within the MILP, allowing an optimal choice of which agent should collect which rewards.

The main contributions are 2-fold: (i) the global connectivity problem is reformulated in a graph theoretical frame-
work and we propose constraints that enforce that the graph has a spanning tree, which ensures connectivity. Such an
approach in the context of global connectivity maintenance in a MAS is novel, to the best of our knowledge; (ii) we propose
alternative constraints to ensure the existence of a spanning tree within the graph, reducing the growth in the number
of constraints from exponential to linear regarding the number of agents, at the cost of additional conservatism. More-
over, we propose an algorithm to perform the initial enumeration of the agents and demonstrate that it yields a feasible
optimization problem, even with the more conservative constraints.

The remaining of this article is organized as follows. Section 2 provides theory background and explains the mathe-
matical formulation of the trajectory planner. In Section 3, simulation results are shown to validate the MILP approach
presented here. Finally, Section 4 concludes and shares our ideas for future investigation.

1.1 Notation

V Set of vertices

E Set of edges

G(V ,E) Graph formed by the vertices in V and edges in E

AG Adjacency matrix of the graph G

|•| Number of elements of a set •

•T Transpose of a matrix •

x ∈ Rnx State vector of the agent

u ∈ Rnu Control vector of the agent

nx ∈ N Dimension of the state vector of the agent

nu ∈ N Dimension of the control vector of the agent

xk ∈ Rnx State vector of the agent at sample time k

uk ∈ Rnu Control vector of the agent at sample time k

x Position of the agent regarding a coordinate axis

y Position of the agent regarding a coordinate axis perpendicular to x

vx Velocity of the agent regarding the x-axis

vy Velocity of the agent regarding the y-axis

ax Acceleration of the agent regarding the x-axis

ay Acceleration of the agent regarding the y-axis

A ∈ Rnx×nx State transition matrix

B ∈ Rnx×nu Control matrix

 ⊂ Rnx Target set

j ⊂ Rnx jth obstacle

No ∈ N Number of obstacles within the scenario

 ⊂ Rnx Set of admissible states

 ⊂ Rnu Set of admissible controls

N ∈ N Variable horizon

𝛾 ∈ R+ Weight of the control term within the cost function

Nos ∈ N Number of facets (half-planes) of each obstacle

np ∈ N Number of position dimensions
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C ∈ Rnp×nx Matrix that extracts position information from the state vector

Pobs
j ∈ RNos×np Constant matrix in the left-hand side of the half-plane inequalities defining obstacle j

qobs
j ∈ RNos Constant vector in the right-hand side of the half-plane inequalities defining obstacle j

pobs
j,n ∈ Rnp Constant column vector equal to the transpose of the nth row of Pobs

j

qobs
j,n ∈ R Constant equal to the nth element of qobs

j

M ∈ R “Big-M” constant

bobs
j,n,k ∈ {0, 1} Binary variable to impose that the position at the k+ 1th instant is to the outer side of the nth half-plane of the jth

obstacle

𝜖 ∈ R+ Constant subtracted from the right-hand side of the nonstrict inequalities “≤” to make the left-hand side obey a strict
inequality “<” with respect to the remaining terms on the right-hand side

T ∈ N Fixed horizon for the reformulation of the time-fuel minimal maneuvering problem as a MILP

Nts ∈ N Number of facets (half-planes) of the target set 

Ptarget ∈ RNts×np Constant matrix in the left-hand side of the half-plane inequalities defining the target set 

qtarget ∈ RNts Constant vector in the right-hand side of the half-plane inequalities defining the target set 

bhor
k ∈ {0, 1} Binary variable to impose that the position at the k+ 1th instant is within the target set 

1• ∈ R• Column vector with • elements all equal to one

Na ∈ N Number of agents

x𝓁,k ∈ Rnx
State vector of the 𝓁th agent at sample time k

u𝓁,k ∈ Rnu
Control vector of the 𝓁th agent at sample time k

x𝓁,k Position of the 𝓁th agent regarding a coordinate axis at sample time k

y𝓁,k Position of the 𝓁th agent regarding a coordinate axis perpendicular to x at sample time k

vx,𝓁,k Velocity of the 𝓁th agent regarding the x axis at sample time k

vy,𝓁,k Velocity of the 𝓁th agent regarding the y axis at sample time k

ax,𝓁,k Acceleration of the 𝓁th agent regarding the x axis at sample time k

ay,𝓁,k Acceleration of the 𝓁th agent regarding the y axis at sample time k

bobs
𝓁,j,n,k ∈ {0, 1} Binary variable to impose that the position of the 𝓁th agent at the k+ 1th instant is to the outer side of the nth

half-plane of the jth obstacle

xj,min ∈ R x coordinate of the lower left extreme point of the jth rectangular obstacle

yj,min ∈ R y coordinate of the lower left extreme point of the jth rectangular obstacle

xj,max ∈ R x coordinate of the upper right extreme point of the jth rectangular obstacle

yj,max ∈ R y coordinate of the upper right extreme point of the jth rectangular obstacle

Ncs ∈ N Number of facets (half-planes) for interagent collision avoidance

Pcol ∈ RNcs×np Constant matrix in the left-hand side of the half-plane inequalities for interagent collision avoidance

qcol ∈ RNcs Constant vector in the right-hand side of the half-plane inequalities for interagent collision avoidance

bcol
i,𝓁,n,k ∈ {0, 1} Binary variable to impose that the position of the 𝓁th agent at the kth instant is to the outer side of the nth half-plane

of the interagent collision avoidance polyhedron around the ith agent

pcol
n ∈ Rnp Constant column vector equal to the transpose of the nth row of Pcol

qcol
n ∈ R Constant equal to the nth element of qcol

J Cost function used in the optimization problem

btarget
𝓁,m,k ∈ {0, 1} binary variable to impose that the position of the 𝓁th agent at the k+ 1th instant is within the mth target set

R ∈ R+ Reward for visiting a target set

Nsc ∈ N Number of facets (half-planes) for interagent communication range

Pcon ∈ RNsc×np Constant matrix in the left-hand side of the half-plane inequalities for connectivity constraints

qcon ∈ RNsc Constant vector in the right-hand side of the half-plane inequalities for connectivity constraints

bcon
i,𝓁,k ∈ {0, 1} Binary variable to impose that the position of the 𝓁th agent at the kth instant is within the communication range

polyhedron around the ith agent
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xc,max ∈ R Bound on the maximal distance between agents in the x direction for communication range
yc,max ∈ R Bound on the maximal distance between agents in the y direction for communication range
O(•) Notation to indicate that the order (either memory usage or computation time) of an algorithm is dominated by the

quantity •
TG A tree
r Root node of a tree
L A list of the vertices obtained by traversing a tree in postorder and their indices obtained during the traversal
i Set of children of the ith node of a tree, where i is the index of this node in postorder

2 MATHEMATICAL FORMULATION

In this section, the problem of maneuvering a connected MAS through an obstacle field populated with target sets is
formulated in mathematical terms using graph theory. Two encodings of the connectivity constraints are presented. Both
ensure connectivity maintenance throughout the maneuver, the difference being that the first one models exactly the
connectivity problem, at the cost of an exponential growth in the number of constraints with the number of agents,
whereas the second is more conservative, with the advantage of a polynomial (linear) dependence of the number of
constraints upon the number of agents.

2.1 Multiagent communication graph

When global connectivity is of concern, we may encode the MAS from a communication standpoint as a time-varying
graph G(t) = {V ,E(t)},6 where the set of vertices V = {v1, v2, … , vNa} represents the agents and the set of edges
E(t)={(vi,vj)|vi ∈V ,vj ∈V} represents the active communication links between agents at time t. In this work, we con-
sider that a communication link is established between two agents if they are within communication range of each other.
Since we are not interested in properties of the communication link, but merely in its existence, no weights are consid-
ered for the edges. Moreover, communication is considered to be bidirectional, thus the graph G(t) is undirected. Finally,
self-links are considered to be of no interest, so no edge (vi,vi) is ever present in G(t).

In this graph framework, agent i may send information to agent j if there is a path from vi to vj in G(t). The graph
G(t) may be represented by an adjacency matrix AG(t) ∈ RNa×Na . Let us denote aij(t) as the element at row i and column
j of AG(t), aij(t)= 1 if the edge (vi,vj) exists in G(t), while aij(t)= 0 otherwise. Given that G(t) is undirected, we also have
aij(t)= aji(t),∀i,∀j. Therefore, formally, the MAS has global connectivity at time t if for each vi ∈V and vj ∈V , there is a
path between vi and vj.

For the sake of providing background for the following discussions, we will introduce some additional concepts from
graph theory. For a more in-depth discussion, the interested reader may refer to textbooks on graph theory, such as Cormen
et al (2009).22

Definition 1. The graph G(S)= (S,E(S)) is called an induced subgraph of G= (V ,E) by S if S⊆V and E(S) = {(vi, vj) ∈
E|vi ∈ S, vj ∈ S}.

Definition 2. A path is a nonempty graph P= (V P,EP) such that V P ={vP,1, vP,2,… ,vP,n} and
EP ={(vP,1,vP,2), (vP,2,vP,3),… ,(vP,n−1,vP,n)}, where vP,i≠vP,j, for i= 1, 2,… ,n and i≠j.

Definition 3. A cycle is a nonempty graph P= (V P,EP) such that V P ={vP,1, vP,2,… ,vP,n} and
EP ={(vP,1,vP,2), (vP,2,vP,3),… , (vP,n−1,vP,n), (vP,n,vP,1)}, where vP,i≠vP,j, for i= 1, 2,… , n and i≠j.

Definition 4. A tree is a connected undirected graph from which none of the induced subgraphs are cycles.

Definition 5. A spanning tree TG = (V ,ET) of an undirected graph G= (V ,E) is a subgraph of G that is a tree.

Remark 1. A connected graph G has at least one spanning tree, and may have several if there are cycles in G. A graph that
is not connected does not have a spanning tree.

Remark 2. A spanning tree is a subgraph with the minimum possible number of edges while maintaining connectivity,
since the inexistence of cycles means that removing any edge would split the graph into two connected components.

Theorem 1. If an undirected graph G= (V ,E) has |E|=|V |− 1 and does not have cycles, then G is a tree.
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The proof of Theorem 1 is omitted for brevity, as it is standard in graph theory.

Corollary 1. A subgraph G′ = (V′,E′) of an undirected graph G= (V ,E) with |V′|=|V |, |E′|=|V′|− 1, and no cycles is a
spanning tree.

2.2 Mixed-integer linear programming for trajectory planning

In the present section, the employed model and notation are introduced alongside a discussion on how the maneuvering
problem of an agent avoiding obstacles may be reformulated as a MPC-MILP optimization problem. The adopted formula-
tion is that of Richards and How (2006),15 but a simplification is made: only the nominal (undisturbed case) is considered.
This simplification allows us to focus on the contributions of the present article, namely, coping with trajectory planning
for MAS encompassing obstacle and interagent collision avoidance, flexible assignment between agents and visited tar-
get sets, and connectivity constraints within a single MILP. However, the constraint-tightening approach in Richards and
How (2006)15 can be seamlessly incorporated to the proposal within the present work to enable robustness to unknown
disturbances.

A discrete-time linear model involving positions, velocities, and accelerations of the agent in a plane with axes x and
y is considered. The inputs are ax and ay (accelerations along each axis). The velocities vx and vy and positions x and y
are components of the state vector. The discrete-time model can be written as xk+1 =Axk +Buk, with the state and control
vectors xT = [x vx y vy] ∈ Rnx and uT = [ax ay] ∈ Rnu , respectively. For a unit sampling time, the model matrices are

A =

⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

0.5 0
1 0
0 0.5
0 1

⎤⎥⎥⎥⎥⎥⎦
, (1)

which correspond to double integrator dynamics in each axis.
The maneuver in Richards and How (2006)15 consists of moving the agent starting at the initial state xinitial to a poly-

hedral target set  = {PtargetCxk ≤ qtarget}, where C is a matrix that extracts position information from the state vector,
while avoiding No polyhedral obstacles j, 1 ≤ j ≤ No, and minimizing a weighted time-fuel cost function. The state and
control are constrained to admissible sets  and  , respectively, such that 0 ∈  , with  and  also polyhedral. The
optimization problem results in a sequence of inputs uk that steer the state from x0 = xinitial to a point in . In this article,
the notation for predicted values will simply be an index k referring to the prediction at the kth instant from the current
instant (k= 0), as in Fleming et al (2015).23 The maneuvering optimization problem is posed as:

Problem 1.

min
xk ,uk ,N

N + 𝛾

N∑
k=0

||uk||1, (2)

subject to

x0 = xinitial, (3a)

xk+1 = Axk + Buk, 0 ≤ k ≤ N, (3b)

xk+1 ∈  , 0 ≤ k ≤ N, (3c)

uk ∈  , 0 ≤ k ≤ N, (3d)

xk+1 ∉ j, 0 ≤ k ≤ N, 1 ≤ j ≤ No, (3e)
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xN+1 ∈ . (3f)

The choice of the weight 𝛾 ∈ R+ balances between optimization of the cost of fuel during the maneuver and the time
to reach the terminal set, represented by the optimization variable N. The maneuver is concluded at time N + 1, as seen
in (3f).

This problem involves two major difficulties for using numerical optimization algorithms, namely: the variable hori-
zon N and the loss of convexity of the feasible set due to the obstacle avoidance constraints in (3e). These issues are
both dealt with by the introduction of binary optimization variables in the problem, along with the so-called “big-M”
approach.24 The interested reader is referred to some of the following references for a thorough presentation of the
schemes employed in writing a MILP whose solution is equivalent to the solution of Problem 1: Schouwenaars et al
(2001),16 Richards et al (2002),25 and Richards and How (2006).15 For general discussions about mixed-integer pro-
gramming and its application in control we refer the reader to Jünger et al (2009),26 Vielma (2015),27 and Prodan et al
(2016).28

The variable horizon issue is dealt with by using one binary variable bhor
k for each time instant and imposing the

terminal set constraints at every time instant along a fixed horizon T, using the “big-M” method to relax the constraints
up until the target is reached. Moreover, the optimal solution of Problem 1 does not impose the state, control, and obstacle
avoidance constraints after the variable horizon N (reaching of the target set). Therefore, the state, control, and obstacle
avoidance constraints written up to the fixed horizon T are relaxed after the target set is reached. Additionally, the equality
constraints in (3b) can be split into two inequalities and relaxed after the horizon. Now, with each constraint relaxed
after the horizon, since 0 ∈  , the optimal solution is to make uk = 0, k>N. Notice that for this to hold one must have T
greater than or equal to the optimal N. If that is the case, the optimal solution of the MILP problem with the presented
“big-M” constraints is the same as the one of the original Problem 1, but can now be obtained via faster and more reliable
numerical methods.

On the other hand, the nonconvexity of the exclusion constraints in (3e), that is, the obstacle avoidance constraints,
requires additional use of binary variables. If the sets j, 1 ≤ j ≤ No are polyhedra with Nos faces each, then the obsta-
cles can be represented as the intersection of Nos half-planes j = {Pobs

j Cxk ≤ qobs
j }, 1 ≤ j ≤ No, where the inequality

is elementwise. Generalization to polyhedra with different number of faces is straightforward. For a point to be out-
side the obstacle j, it suffices that one of the Nos inequalities is not respected, therefore the avoidance problem can
be written by using “or” constraints, with the choice being that one of the Nos inequalities does not hold, that is,
∃n, 1 ≤ n ≤ Nos | (pobs

j,n )TCxk > qobs
j,n , where (pobs

j,n )T is the nth row of Pobs
j and qobs

j,n the nth element of qobs
j . These “or”

constraints can be imposed using the “big-M” method.24

One interesting enhancement to the formulation in Richards and How (2006)15 was proposed in Maia and Galvão
(2009)18 involving the inclusion of additional constraints on the obstacle avoidance binary variables. The aim was to
ensure that the consecutive positions of the agent at times k and k+ 1 did not produce a continuous-time trajectory that
intersected the obstacle. This procedure was later made more economic in Richards and Turnbull (2015).19 The elegant
result in Richards and Turnbull (2015)19 is that, to avoid intersample collision with the obstacles, it suffices to impose the
same avoidance collisions at consecutive time instants. A later advancement was reported in Stoican et al (2018).20 Using
the so-called “shadow regions” the authors characterized the regions that may be reached by the agent in one time step
without colliding with the obstacles and merged them in a collection of convex polyhedra, which may require less binary
variables. However, the ensuing optimization problem is a mixed-integer nonlinear program (MILNP), which is known
to be more cumbersome. Simplifications could be introduced to recast the problem into a MILP form, but at the cost of
losing some of the benefits of the shadow region method. Therefore, in the present article, the approach in Richards and
Turnbull (2015)19 was adopted for its simplicity.

Finally, to cope with the appearance of the norm one of the control variables in (2), while keeping a linear cost function,
one may use additional real-valued variables 𝜈k,𝜄, k= 0, 1,… ,T, 𝜄 = 1, 2, … ,nu and constraints as in Section 6.1.1 of Boyd
and Vandenberghe (2009).29 Thus ,(T + 1)nu additional continuous variables and 2(T + 1)nu inequalities are required.

2.3 Multiagent trajectory planning with interagent collision avoidance

A formulation of the maneuvering problem using MPC-MILP for multiple agents is presented in Schouwenaars et al
(2001).16 This multiagent planner is not a direct extension of the one presented in Subsection 2.2, since it does not
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implement some of the features of the latter one, such as the variable horizon and the intersample avoidance constraints.
However, two additional characteristics are interesting to present: extension to the multiple agent case and collision avoid-
ance between agents. Such is also the case in the planner formulation in Richards et al (2002),25 in which the terminal
states can be chosen by the agents, but the horizon is still fixed.

In this case, the MAS consists of Na agents. Although in Schouwenaars et al (2001)16 and Richards et al (2002)25 the
possibility of each agent having different dynamics is considered, this will be not addressed in the present work, but the
reader can see that extension to this case is easily done. Thus, each agent will be supposed to have the dynamics given as

x𝓁,k+1 = Ax𝓁,k + Bu𝓁,k, 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T. (4)

For each agent, the state vector is defined similarly as in the single agent case as x𝓁,k = [x𝓁,k vx,𝓁,k y𝓁,k vy,𝓁,k]T and
the control vector is u𝓁,k = [ax,𝓁,k ay,𝓁,k]T . The formulation also contemplates state and command limits and obstacle
avoidance by employing the following constraints (once again different limits for each agent could be assumed, but this
is not done so in the present article to simplify the exposition):

−x𝓁,k+1 ≤ −xmin + M
k−1∑
i=0

bhor
i ,

x𝓁,k+1 ≤ xmax + M
k−1∑
i=0

bhor
i ,

⎫⎪⎪⎬⎪⎪⎭
1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T. (5)

−u𝓁,k ≤ −umin + M
k−1∑
i=0

bhor
i ,

u𝓁,k ≤ umax + M
k−1∑
i=0

bhor
i ,

⎫⎪⎪⎬⎪⎪⎭
1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T. (6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(pobs
j,n )T

[
x𝓁,k+1

y𝓁,k+1

]
≤ −qobs

j,n + M(1 − bobs
j,n,k) − 𝜖 + M

k−1∑
i=0

bhor
i , 1 ≤ j ≤ No, 1 ≤ n ≤ Nos, 0 ≤ k ≤ T, 1 ≤ 𝓁 ≤ Na,

−(pobs
j,n )T

[
x𝓁,k

y𝓁,k

]
≤ −qobs

j,n + M(1 − bobs
j,n,k) − 𝜖 + M

k−1∑
i=0

bhor
i , 1 ≤ j ≤ No, 1 ≤ n ≤ Nos, 0 ≤ k ≤ T, 1 ≤ 𝓁 ≤ Na,

Nos∑
n=1

bobs
𝓁,j,n,k ≥ 1, 1 ≤ 𝓁 ≤ Na, 1 ≤ j ≤ No, 0 ≤ k ≤ T.

(7)
Constraints (5), (6), and (7) refer to state limits, command limits, and obstacle avoidance, respectively. In Schouwe-

naars et al (2001)16 and Richards et al (2002)25 rectangular obstacles are considered as defined by their lower left and
upper right extremes [xj,min ,yj,min ]T and [xj,max ,yj,max ]T , respectively, for j= 1, 2,… ,No. Notice that this is a particular
case of the obstacle constraints presented in Subsection 2.2. The constant 𝜖 is subtracted from the right-hand side of the
nonstrict inequalities “≤” to make the left-hand side obey a strict inequality “<” with respect to the remaining terms on
the right-hand side, thus removing the possibility that the agent occupies a position at the boundary of the obstacles.

In this multiagent setting, agents may collide with each other, so new constraints must be added for interagent col-
lision avoidance. As in the case of obstacle avoidance, assuming that the safe region around an agent is represented by
a polyhedron {PcolCx ≤ qcol}, to impose that the agents do not collide it is sufficient to impose the following constraints
(similar to the obstacle avoidance ones):

− (pcol
n )T

[
xi,k+1 − x𝓁,k+1

yi,k+1 − y𝓁,k+1

]

≤ −qcol
n + M(1 − bcol

i,𝓁,n,k) + M
k−1∑
i=0

bhor
i − 𝜖, 1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 1 ≤ n ≤ Ncs, 0 ≤ k ≤ T,
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Ncs∑
n=1

bcol
i,𝓁,n,k ≥ 1, 1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T,

bcol
i,𝓁,n,k = 0, 1 ≤ i ≤ Na, 1 ≤ 𝓁 ≤ i, 1 ≤ n ≤ Ncs, 0 ≤ k ≤ T, (8)

where each bcol
i,𝓁,n,k is a binary variable employed for the interagent collision avoidance mechanism, (pcol

n )T is the nth row
of Pcol, qcol

n is the nth element of qcol, and 𝜖 has the same role as in (7). The idea here is very similar to the one used for
obstacle avoidance, with the remark that, since the safe region around each agent is assumed to be the same, if agent i
does not collide with agent 𝓁, this pair does not need to be considered twice, which allows the reduction in the number
of binary variables expressed by the last equality in (8).

2.4 Multiagent trajectory planning with connectivity assurance

The problem to be solved in the present article is that of guiding one of Na agents (which one of the agents is also an opti-
mization variable) to a fixed terminal target set, collecting rewards when one of the agents passes through one of the other
Nt − 1 intermediate targets (if possible and profitable, that is, if it is feasible and if the time and fuel consumption to pass
through an intermediate set is compensated by the reward it offers), while maintaining connectivity of the graph repre-
senting the communication network of the agents, avoiding collisions between agents and the No obstacles and between
pairs of agents. As such, the proposal within this article allows complete flexibility, since there is no preassignment of an
agent to a target set nor a leader is chosen beforehand, rather these choices are made during the optimization to cope with
the constraints and achieve the minimal cost. Therefore, this formulation can be regarded as a strategy with no leader,
the agents being bound only by collision avoidance and communication ranges around each of them. The cost function
that encompasses these objectives is:

J =
T∑

k=0
kbhor

k + 𝛾

Na∑
𝓁=1

T∑
k=0

||u𝓁,k||1 − R
Nt∑

m=1

Na∑
𝓁=1

T∑
k=0

btarget
𝓁,m,k. (9)

The agents are assumed to have a certain communication range, which is common for all agents, represented as a
polyhedron with Nsc faces: {PconCx ≤ qcon}. Therefore, the pair of agents i and 𝓁 is considered connected at instant k if
{PconC(xi,k − x𝓁,k) ≤ qcon}. Considering symmetric polygons with respect to the origin allows the conclusion {PconC(xi,k −
x𝓁,k) ≤ qcon} ⇔ {PconC(x𝓁,k − xi,k) ≤ qcon}. Minor changes must be made to deal with the case where the polyhedron
is not symmetric. In particular, in the present article the communication ranges will be defined by the bounds on the
absolute values of the distances in each axis, namely, xc,max and yc,max , resulting in a rectangular communication range
with sides parallel to the x and y axes. Any other form that results in a polyhedron could be used, therefore this presents
no restriction of the proposal. In fact, even scenarios where the communication range may be better described as a circle
can be coped with by inscribing a polygon in the circle. The enforcement of the polygonal constraints would ensure that
the circle communication connectivity constraints are also respected. The amount of conservatism introduced by the
approximation of the circle by a polygon can be reduced by increasing the number of sides of the polygon, at the cost of
an increase in the number of constraints.

We remark that the adjacency matrix does not penalize the distances between the agents in our formulation. Penaliz-
ing the distances between agents might steer the optimal solution toward keeping the agents within communication range
of one another, although no guarantee of connectivity arises by solely doing this without the connectivity constraints.
On the other hand, weights depending on the distance between agents might lead to a more cumbersome optimization
problem, as the weights in the adjacency matrix themselves would be optimization variables. For example, if one intends
to use the euclidean distance, the relation between the weights and the positions of the agents would be nonlinear.

In order to impose the constraints over a horizon of at most T + 1 time steps, T + 1 binary variables are necessary.
Moreover, constraints must be added to the classical maneuvering optimization Problem 1, resulting in Problem 2.

Problem 2.

min
x𝓁,k ,u𝓁,k ,bhor

k ,bobs
𝓁,j,n,k ,b

col
i,𝓁,n,k ,b

target
𝓁,m,k ,b

con
i,𝓁,k

J, (10)
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subject to

x𝓁,0 = x𝓁,initial, 1 ≤ 𝓁 ≤ Na, (11a)

x𝓁,k+1 ≤ Ax𝓁,k + Bu𝓁,k + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11b)

− x𝓁,k+1 ≤ −Ax𝓁,k − Bu𝓁,k + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11c)

− x𝓁,k+1 ≤ −xmin + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11d)

x𝓁,k+1 ≤ xmax + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11e)

− u𝓁,k ≤ −umin + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11f)

u𝓁,k ≤ umax + M
k−1∑
i=0

bhor
i , 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11g)

− (pobs
j,n )T

[
x𝓁,k+1

y𝓁,k+1

]
≤ −qobs

j,n + M(1 − bobs
𝓁,j,n,k) + M

k−1∑
i=0

bhor
i − 𝜖, 1 ≤ 𝓁 ≤ Na, 1 ≤ j ≤ No, 1 ≤ n ≤ Nos, 0 ≤ k ≤ T,

(11h)

− (pobs
j,n )T

[
x𝓁,k

y𝓁,k

]
≤ −qobs

j,n + M(1 − bobs
𝓁,j,n,k) + M

k−1∑
i=0

bhor
i − 𝜖, 1 ≤ 𝓁 ≤ Na, , 1 ≤ j ≤ No, 1 ≤ n ≤ Nos, 0 ≤ k ≤ T,

(11i)

− (pcol
n )T

[
xi,k+1 − x𝓁,k+1

yi,k+1 − y𝓁,k+1

]
≤ −qcol

n + M(1 − bcol
i,𝓁,n,k) + M

k−1∑
i=0

bhor
i − 𝜖,

1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 1 ≤ n ≤ Ncs, 0 ≤ k ≤ T, (11j)

Ptarget
m

[
x𝓁,k+1

y𝓁,k+1

]
≤ qtarget

m + M(1 − btarget
𝓁,m,k)1Nst , 1 ≤ 𝓁 ≤ Na, 1 ≤ m ≤ Nt, 0 ≤ k ≤ T, (11k)

Pcon

[
xi,k+1 − x𝓁,k+1

yi,k+1 − y𝓁,k+1

]
≤ qcon + M(1 − bcon

i,𝓁,k)1Nsc + M
k−1∑
j=0

bhor
j , 1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11l)

T∑
k=0

bhor
k = 1, (11m)
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Na∑
𝓁=1

T∑
k=0

btarget
𝓁,m,k ≤ 1, 1 ≤ m ≤ Nt, (11n)

T∑
k=0

k(btarget
𝓁,m,k − bhor

k ) ≤ 0, 1 ≤ 𝓁 ≤ Na, 1 ≤ m ≤ Nt, (11o)

Na∑
𝓁=1

btarget
𝓁,Nt ,k

− bhor
k = 0, 0 ≤ k ≤ T, (11p)

Nos∑
n=1

bobs
𝓁,j,n,k ≥ 1, 1 ≤ 𝓁 ≤ Na, 1 ≤ j ≤ No, 0 ≤ k ≤ T, (11q)

Ncs∑
n=1

bcol
i,𝓁,n,k ≥ 1, 1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (11r)

bcol
i,𝓁,n,k = 0, 1 ≤ i ≤ Na, 1 ≤ 𝓁 ≤ i, 1 ≤ n ≤ Ncs, 0 ≤ k ≤ T, (11s)

Na−1∑
i=1

Na∑
𝓁=i+1

bcon
i,𝓁,k = Na − 1, 0 ≤ k ≤ T, (11t)

∑
vi,vl∈S

bcon
i,𝓁,k ≤ |S| − 1, 0 ≤ k ≤ T, ∀S ⊂ V , (11u)

bcon
i,𝓁,k = 0, 1 ≤ i ≤ Na, 1 ≤ 𝓁 ≤ i, 0 ≤ k ≤ T. (11v)

For the sake of completeness, all the constraints involved in the proposed formulation are presented in Problem 2;
however, we will focus our discussion here on the ones that were added to the problem in the present article. Constraints
(11h) impose obstacle avoidance, while (11i) enforce the corner cutting avoidance, as described in Richards and Turn-
bull (2015).19 One of the complements of the half-planes defining an obstacle side must be occupied by the agents at
every sample time. This is ensured by (11q), in which a small difference regarding the encoding in Schouwenaars et al
(2001)16 and Richards and How (2006)15 can be noticed: in the former papers, the choice is to consider the binary variable
equal to one when the avoidance constraint is relaxed by the “big-M” procedure and zero otherwise, as opposed to the
present formulation, where the binary variable is one when the corresponding constraint is imposed and zero in case it is
relaxed. This small difference does not imply any negative consequence, if constraints (11h), (11i), and (11q) are modified
accordingly, as was done.

Collision between each pair of agents is prevented by constraints (11j), which are similar to obstacle avoidance con-
straints. Therefore, at least one half-plane associated with the faces of the agent polyhedron must be imposed, which
is done by (11r). Again, the same remark highlighted in the previous paragraph is valid: the choice for the encoding
is opposed to the one in Schouwenaars et al (2001),16 but the constraints are accordingly modified and the change is
immaterial to the results.

A certain number of target sets may be visited; therefore, there are decision variables related to the choice of visiting
a target set or not. These are associated with rewards that diminish the cost function and may only be collected if one of
the agents occupies a position within the associated target set at one instant, as imposed in (11k). The decision binary
variables are constrained as in (11n) to allow collection of the rewards only once per target. Moreover, the optimization
must be considered up to the instant when the last target set is visited. This is ensured by (11o), which imposes that the
optimization horizon is greater or equal than all the instants of visitation of the target sets. Moreover, (11p) imposes that
the last target set in the list of possible target sets should be the last visited. The maneuver is guaranteed to finish within
the maximal horizon T + 1 by the constraint in (11m). This last feature allows a maneuver with a goal end position and
consideration of additional opportunities of visiting other intermediate targets if convenient.

The main contribution of this work is related to (11l). This constraint, associated with (11t), (11u), and (11v), imposes
that each agent must be within the communication range of at least one other agent and that no pair needs to be considered
twice (meaning that, if it was imposed that agent i is already considered in the communication range of agent j, than agent
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j is not again imposed to be within the communication range of agent i). Note that a polyhedral communication area
must be considered. Despite a circular communication area being a more natural model, this is avoided as there would be
a need to include quadratic constraints, which would make the optimization problem more challenging. In practice, the
communication polyhedron may have as many faces as desired, therefore an arbitrarily precise approximation to a circle
may be considered at the cost of adding inequalities to the optimization problem. For illustration, Nos = 4 was considered
in the simulations in the present article.

These constraints also impose that the graph must be connected. The equalities in (11v) encode the fact that the
connectivity is bidirectional; therefore, there is no need to reconsider the terms bcon

i,j,k in the lower left triangles of the
adjacency matrices (recall that the communication graph is time-varying, so we must have one adjacency matrix per time
step), actually reducing the number of necessary binary variables.

For each time step k, Theorem 2 formally attests that the constraints (11t) and (11u) only permit generation of con-
nected graphs. Moreover, all possible connected graphs are taken into account, as discussed later. First of all, we may say
that these constraints are selecting a spanning tree for the communication graph.

Theorem 2. At time step k, satisfaction of constraints (11t) and (11u) guarantees that the communication graph is
connected.

Proof. Theorem 1 imposes two conditions for a graph G= (V ,E) to be a tree: |E|=|V |− 1 and no cycles must be present.
Constraints (11t) directly impose the first condition. The second one is guaranteed by constraints (11u), which are called
subtour elimination constraints in the literature.30 These constraints prevent the existence of cycles for each induced
subgraph, therefore inexistence of cycles for the graph follows.

In fact, assume, for the sake of contradiction, that a cycle exists, then one could consider the induced subgraph
G(S)= (S,E(S)), where S is the set of the vertices in this cycle. For this cycle, we have |S| vertices, so counting the edges due
to the cycle entails at least |S| edges, that is, |E(S)|≥ |S| (edges other than the ones in the cycle may also be present) and
constraints (11u) do not hold, which is a contradiction. Therefore, the communication graph imposed by constraints (11t)
and (11u) must a tree. Since a tree is connected by definition, the connectedness of the communication graph follows. ▪

To verify that the tree imposed by these constraints is really a spanning tree of a less restricted connected communica-
tion graph which may be chosen by the optimization, observe that the “big-M” technique used in (11l) works by imposing
the constraint if the edge is present in the adjacency matrix, but simply relaxing it otherwise. In other words, the exis-
tence of an edge constrains the two agents to be within communication range; however, the inexistence of it leaves the
optimization free to decide whether these agents should be placed within communication range or not. Hence, the actual
communication graph may have more links than the ones seen by constraints (11t) and (11u), which is actually choos-
ing a spanning tree. Since these constraints are able to generate any spanning tree and no constraints are imposed to the
other (redundant) edges of the graph, the optimization is free to select the most convenient connected graph.

On the other hand, the amount of constraints introduced by (11u) may limit the applicability of the proposal in this
article due to scalability issues. Since each induced subgraph must be considered, a priori we would need 2Na of these
constraints. In practice, some of these cases do not make sense or trivially hold. For |S|= 0 and |S|= 1, no edges are present.
For |S|=Na, constraint (11t) is already a more restricted version. For |S|= 2, the constraints reduce to:

bcon
i,𝓁,k ≤ 1, 1 ≤ i ≤ Na − 1, i + 1 ≤ 𝓁 ≤ Na, 0 ≤ k ≤ T, (12)

which are trivially true given that bcon
i,𝓁,k are binary variables. Thence, (11u) actually introduces (T + 1)(2Na − Na − 2 −

Na(Na − 1)∕2) constraints, that is still O(T2Na ), that is, the number of constraints increases exponentially with the number
of agents, which is theoretically undesirable for scalability. In practice, in terms of optimization time, this is not much
of a downsize, as our simulation results support. On the other hand, if one considers memory usage, a larger number of
inequalities may pose stringent requirements on hardware.

2.5 More restrictive formulation using fewer constraints

To cope with scalability issues in the number of constraints, an alternative heuristic formulation is presented, which
requires less constraints and is shown to always produce a connected graph (though possibly suboptimal). Consider
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(A)

(B)

(C)

F I G U R E 1 The loop considered in the Proof of Theorem 3: A, loop with
undirected edges, B, loop representing the assignment where bcon

q,p = 1, and C, loop
representing the assignment where bcon

p,q = 1

replacing the constraints (11t) and (11u) with the following alternative constraints:

Na∑
𝓁=i+1

bcon
i,𝓁,k = 1, 1 ≤ i ≤ Na − 1, 0 ≤ k ≤ T, (13)

which impose that a single edge exists in each row of the adjacency matrix, except for the last one, which must have none.
In this case, we have merely (T + 1)(Na − 1) = O(TNa) constraints, thus the optimization problem scales much better. The
graphs generated by this constraint are also connected, in fact they are also spanning trees as before. This fact is formally
stated as Theorem 3.

To better grasp Theorem 3 and other following discussions, let us introduce an intuitive representation of the possible
assignments for binary variables bcon

i,𝓁,k. For a given time step k, we may associate an adjacency matrix to these binary
variables. Due to constraint (11v), no self-loops exist and all elements below the main diagonal are zero. Therefore, we
may think of possible assignments for bcon

i,𝓁,k as building a directed graph where bcon
i,𝓁,k = 1 means the directed edge (vi,v𝓁)

exists.

Theorem 3. The graphs whose adjacency matrices respect constraints (11v) and (13) are trees.

Proof. Consider any of these such graphs G= (V ,E) with |V |=Na. First, since the constraint guarantees that each row of
the adjacency matrix has exactly one active column, except for the last none, which has none, and we have Na − 1 rows,
the graph has Na − 1 edges. Let us assume, by absurd, that cycles exist in the graph. Without loss of generality, let us pick
one of these cycles such that its set of edges is: {(vp, vp+1), (vp+1, vp+2), … , (vq−2, vq−1), (vq−1, vq), (vq, vp)}. Figure 1A shows
this loop. Considering the edge (vq,vp) of this undirected graph, there are two possible assignments for the adjacency
matrix: bcon

q,p = 1 or bcon
p,q = 1 (where we dropped the time step index for conciseness). Due to (11v), bcon

i,j = 0,∀j ≤ i, thus
bcon

q,p = 1 and bcon
p,q = 1 imply q < p and p<q, respectively. Let us consider these two cases separately.

If bcon
q,p = 1, we must have q < p. Since no other column in row q may be active due to (13), we necessarily have bcon

q−1,q = 1
for edge (vq−1,vq) to exist. Analogously, we have bcon

q−2,q−1 = 1, … , bcon
p+1,p+2 = 1, bcon

p,p+1 = 1, which impose the following
numbering between vertices (due to (11v)): p<p+ 1 < · · ·< q− 1 < q. This situation is illustrated in Figure 1B. Thence,
q < p and p<q creates a contradiction.

The case where bcon
p,q = 1 and p<q is analogous. We must have bcon

p+1,p = 1 for edge (vp,vp+1) to exist. Propagating this, we
obtain bcon

p+2,p+1 = 1, … , bcon
q−1,q−2 = 1, bcon

q,q−1 = 1 (see Figure 1C), then q < q− 1 < · · ·< p+ 1 < p and the same contradiction
arises.

Therefore, the graph cannot have any cycle. Since the graph has |E|=|V |− 1 edges and no cycles, by applying
Theorem 1, we prove that this graph is a tree. ▪

Still, the not obvious downside is that this new formulation is suboptimal since the alternative set of constraints does
not generate some spanning trees. To verify this, we will show a counterexample. If Na = 3, V = {v1, v2, v3} and we have
three possible spanning trees:
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1. G1 = (V ,E1) with E1 = {(v1, v2), (v2, v3)}.
2. G2 = (V ,E2) with E2 = {(v1, v3), (v2, v3)}.
3. G3 = (V ,E3) with E3 = {(v1, v2), (v1, v3)}.

However, the spanning tree G3 violates constraint (13) and will not be taken into account by the optimization. To see
this, consider the adjacency matrix of this graph:

(bcon
i,𝓁,∗) =

⎡⎢⎢⎢⎣
∗ 1 1
∗ ∗ 0
∗ ∗ ∗

⎤⎥⎥⎥⎦ , (14)

where the symbol * was used to denote values that do not matter. The sum of the first row yields 2 in this example, then
constraint (13) does not hold. In general, this comes from the fact that agents with a higher index have the privilege of
being able to have a higher degree in this formulation. Consider the first agent, the only edge this agent may be in the
chosen spanning tree comes from the first row, so the maximum degree for this agent is 1. For agent 2, the edges may
come from rows 1 and 2, then the maximum degree is 2 in this case, and so on. Therefore, the ith agent has a maximum
degree of i, except for the last one, which has the same maximum degree as the penultimate, that is, Na − 1.

Despite this theoretical limitation, in simulation experiments, if the agents’ numbering is initially selected so an ini-
tial spanning tree respecting constraint (13) exists, we have observed that this heuristic formulation is able to generate
multiagent trajectories very close in terms of optimality to the ones provided by the more complex optimization problem
resulting from constraints (11t) and (11u). Indeed, if the communication graph is initially connected, it is always possible
to enumerate the agents respecting constraint (13). In the following, Algorithm 1 is proposed to do this numbering and
Theorem 4 states that the resulting numbering yields feasibility of constraints (11v) and (13) whenever a connected graph
exists.

First, consider the initial connected communication graph. If this graph is not known beforehand, we may construct it
by checking if each pair of agents are within communication range of each other, which takes O(N2

a) time. As a connected
graph, it admits at least one spanning tree. Let us pick any of these spanning trees. A spanning tree may be easily obtained
by executing a breadth-first search (BFS) or a depth-first search (DFS), which are known to construct a tree22 and have
computational complexity of O(N2

a) if an adjacency matrix is used to represent the graph.
Then, recall that in a tree each node has exactly one parent. Therefore, directing each edge of this tree from node

to parent, it appears that an assignment respecting constraint (13) exists. We still need to take into account the fact that
agents with lower numbers have a lower degree limit. Since the first agent has a degree limit of 1, we must select a leaf
for it. In this sense, our intuition says that we should enumerate leaves first, then go on enumerating the parents of these
leaves, and so on. In fact, enumerating the agents in postorder31 results in the required numbering, which needs O(Na)
time. The pseudocode for a postordering of a tree TG with initial index i is presented in Algorithm 1.

Algorithm 1. Postorder tree vertex ordering

function PostOrder(TG,L, i)
r ← TG.RootNode ⊳ root node of the tree
for Child ∈ Children(r) do

T′
G ← SubTree(TG,Child) ⊳ returns the subtree with root node Child

(L, i) ← PostOrder(T′
G,L, i)

end for
if i = 1 then

L ← (r, i)
else

L ← append(L, (r, i)) ⊳ returns the ordered list L with the pair (r, i) added at the end
end if
i ← i + 1
return (L, i)

end function
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Moreover, the following theorem states that the resulting numbering from Algorithm 1 ensures feasibility of con-
straints (11v) and (13).

Theorem 4. If an initially connected graph exists, then labeling according to Algorithm 1 results in feasibility of constraints
(11v) and (13).

Proof. If the graph is initially connected, then in view of Remark 1 it has a spanning tree; therefore, its nodes can be
labeled using Algorithm 1, and it is assumed in the following that such a labeling has been done. Let us consider a node
labeled with i in the spanning tree and its ci children labeled as 𝓁i,1, 𝓁i,2, … ,𝓁i,ci .

A possible choice of representation of the adjacency matrix at instant k is to set the binary variables representing the
connection between each node 𝓁i,j and its parent i to one in row 𝓁i,j, that is,

bcon
𝓁i,j,i,k

= 1, (15)

and set the remaining as

bcon
𝓁i,j,m,k = 0, m ≠ i. (16)

By applying Algorithm 1 to label the nodes of this tree, it is clear that the label of a parent is greater than the label of
all of its children, then it is true that:

i ≥ 𝓁i,j, j = 1, 2, … , ci. (17)

In view of (15), (16), and (17), both (11v) and (13) are trivially satisfied for rows 𝓁i,j of the adjacency matrix.
This constructive procedure can be applied to each level of the tree, entailing that constraints (11v) and (13) are

respected, filling the adjacency matrix up until the level of the root of the tree. The label attributed by Algorithm 1 to the
root is Na and since the root has no parent

bcon
Na,m,k = 0, m = 1, 2, … , Na, (18)

which enforces (11v). ▪

Algorithm 2 summarizes the procedure presented here to enumerate the agents in a way that constraint (13) is true
(the algorithm assumes DFS, but BFS may be used as well). Considering the computational complexity of each of its parts,
the overall procedure takes O(N2

a) time, which is already the lowest time complexity we may achieve, given that we have
to first build the connected graph by checking each pair of agents.

Algorithm 2. Enumerates agents so the heuristic formulation may be used

function enumerateAgents(
{

xi,0
}

i∈{1,…,Na})
V ← {1,… ,Na}
E ← ∅
for i = 1,… ,Na − 1 do

for 𝓁 = i + 1,… ,Na do
if ||xi,0 − x𝓁,0|| ≤ xc,max and ||yi,0 − y𝓁,0

|| ≤ yc,max then
E ← E ∪ {(i,𝓁)}

end if
end for

end for
G ← (V ,E)
TG ← DFS(G) ⊳ TG is the tree built by DFS
L ← PostOrder(TG,∅, 1) ⊳ L maps nodes to their postorder numbering and output ∗ is not used

end function
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3 SIMULATION RESULTS

Three scenarios are compared in the following subsection to illustrate the use of the proposed approaches: (i) the
proposal in Problem 2, (ii) the simplification to Problem 2 proposed in Subsection 2.5, and (iii) the imposition of a
totally connected graph in the multiagent problem without using the proposed connectivity assurance method based
on writing the adjacency matrix with binary optimization variables. In this last approach, to ensure connectivity, each
agent is constrained to be within the polyhedron that represents the communication range of each of the Na − 1 other
agents.

The adopted conditions for the simulations are presented in Table 1. In this table, the obstacles have Nos = 4 facets,
the safe regions around the agents have Ncs = 4 facets, and the polyhedra representing the communication ranges have
Nsc = 4 facets, each with the projection of each facet parallel either to the x- or y-axis; therefore, they are represented
by the upper and lower limits on x and y. We stress that the representation of the safety regions and communication
ranges as squares in these examples do not represent a limitation of the proposed approach, as other polygons with more
sides could be used. It is rather an arbitrary choice for illustration. For other more general nonpolygonal safety regions
or communication ranges, for example, circles, inner polygonal approximations of arbitrary accuracy are enabled by our
proposal.

The software Matlab was used for the simulations, with CPLEX as the optimizer in a computer with an Intel Core i7
6700K processor (4.0 GHz clock) and 24GB RAM.

In all figures depicting trajectories and the associated connectivity graphs in the illustrative examples the follow-
ing convention is used: the obstacles are depicted as black-filled polygons, the target sets are white-filled polygons
with black borders and contain a roman number inside corresponding to the order in Table 1, the trajectories of
each agent are depicted with a different color (with the corresponding agent id depicted in the legend), with their
positions depicted as crosses (×). The communication range of each agent is depicted as a semitransparent square
with sides of 2 length units compatible with the communication range presented in Table 1 and of the same color
as the respective agent; however, these are just depicted at the instants of visitation of the target sets, since draw-
ing them throughout the whole trajectory would clutter the figures excessively. Moreover, the connectivity graphs are
not depicted at every instant, rather only at instants in which at least one target set is visited, as to avoid show-
ing excessive information. In these cases, dark gray lines are used to represent a connection between agents at that
instant.

3.1 Comparison of the results in the three simulation scenarios

In employing a numerical optimizer, one may define a maximal time for returning the feasible solution with the least
cost at the moment. Figure 2A shows the results with a maximal time of 20 seconds for the proposed Problem 2. As can
be seen, the agents move toward the fixed ultimate goal (target set 5). In their trajectory, two other target sets are visited.
The connectivity graph of the agents is depicted in Figure 2B,C only at the instants of visitation of the targets, although
the graph always remains connected, since showing it at every instant would demand excessive space. It can be noticed
that the connectivity is maintained and, in fact, the flexibility of the positions of the agents is used to visit two target sets
at once, while maintaining the connectivity.

To provide insight into the proposed formulation, the connectivity matrices at the instants of visitation of the target
sets are presented:

(bcon
i,𝓁,4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 1
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)
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Parameter name Symbol Values

Maximal horizon T 20

Number of agents Na 6

Number of targets Nt 5

Number of obstacles No 2

Fuel weight 𝛾 0.1

Reward per target R 10

“Big-M” M 100

Initial states x1,initial [0 0 0 0]T

x2,initial [0.4 0 0 0]T

x3,initial [0.8 0 0 0]T

x4,initial [0 0 0.4 0]T

x5,initial [0.4 0 0.4 0]T

x6,initial [0.8 0 0.4 0]T

State constraints xmax [10 1 10 1]T

xmin [0 −1 0 −1]T

Control constraints umax [0.5 0.5]T

umin [−0.5 −0.5]T

Target sets [xtI,min xtI,max ] [1.4327 1.9327]

[ytI,min ytI,max ] [1.9192 2.4192]

[xtII,min xtII,max ] [7.7625 8.2625]

[ytII,min ytII,max ] [0.8571 1.3571]

[xtIII,min xtIII,max ] [9.1561 9.6561]

[ytIII,min ytIII,max ] [3.7841 4.2841]

[xtIV,min xtIV,max ] [5.5272 6.0272]

[ytIV,min ytIV,max ] [4.9745 5.4745]

[xtV,min xtV,max ] [1.2356 1.7356]

[ytV,min ytV,max ] [5.8694 6.3694]

Obstacles [xo1,min xo1,max ] [0.7905 2.4531]

[yo1,min yo1,max ] [2.5992 3.6251]

[xo2,min xo2,max ] [6.2389 9.6468]

[yo2,min yo2,max ] [4.3813 6.1894]

Communication range xc,max 1

yc,max 1

Agent safe region [xa,min xa,max ] [−0.05 0.05]

[ya,min ya,max ] [−0.05 0.05]

T A B L E 1 Simulation parameters
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F I G U R E 2 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting three target sets
(white-filled squares). B, Connectivity graph at the instant target sets I and, C, IV and V are visited. Maximal time for obtaining this solution
is 20 seconds with Problem 2. The communication range of each agent is depicted as a semitransparent square [Colour figure can be viewed
at wileyonlinelibrary.com]

and

(bcon
i,𝓁,7) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

The configurations in the connectivity matrices reflect the graphs in Figure 2B,C. Notice that the matrix in (19) cor-
responds to a graph in which agent number 1 (red trajectory) is connected to three others, since the terms bcon

1,3,4 = bcon
1,4,4 =

bcon
1,6,4 = 1, a situation that could not be achieved with the modified version of Problem 2. On the other hand, (bcon

i,𝓁,7)
corresponds to a graph in which no agent has degree greater than two.

As the optimization time is increased to 40 seconds, Figure 3A depicts the ensuing trajectory still visiting three target
sets. It can be seen again in Figure 3C that the topology is explored to allow visiting two targets at once, namely, target
sets IV and V.

In Figure 4A, it can be seen that with 60 seconds the trajectory with the least cost so far visits all five target sets.
Figure 4B-F shows the connectivity graph at the instants each target set is visited.

Figures 5, 6, and 7 depict the same scenarios as Figures 2, 3, and 4, respectively, but employing the proposed modified
version of Problem 2 in Subsection 2.5. It is most interesting to note that the results, given the same amount of time, are

http://wileyonlinelibrary.com
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F I G U R E 3 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting three target sets
(white-filled squares). B, Connectivity graph at the instant target sets I and, C, IV and V are visited. Maximal time for obtaining this solution
is 40 seconds with Problem 2. The communication range of each agent is depicted as a semitransparent square [Colour figure can be viewed
at wileyonlinelibrary.com]

similar to the ones obtained with Problem 2, despite the fact that the modified version has more stringent constraints. As
a matter of fact, by comparing the trajectories in Figures 6 and 3, one can see that the modified version was able to visit 4
targets given 40 seconds, whereas the best solution available so far to Problem 2 visits only three. After 60 seconds, both
approaches find solutions that visit all five target sets.

For comparison, the trajectories when all the agents are required to remain within the communication range of each
other are shown in Figure 8A. The optimal solution up until 20 seconds of computation time can be seen to visit three
targets, as well as the case when the minimal connectivity is required in Figure 2A. Figure 8B-D shows the connectivity
graph, which is totally connected, at the target visitation instants.

As the optimization time is increased to 40 seconds, the trajectories are displayed in Figure 9A. Similarly to the case
of minimal connectivity (Figure 6), in this case four target sets are visited. The fully connected graph can be observed at
the target visitation instants in Figure 9B-E.

On the other hand, to find a solution that includes trajectories visiting all five targets, a computation time of
450 seconds is required with the full connectivity imposition. This is 7.5 times the computation time required by the pro-
posed minimal connectivity algorithm. The trajectories are shown in Figure 10A, and the connectivity graphs at each
target visitation instant are shown in Figure 10B-F.

As a matter of fact, the capacity of finding solutions with lesser cost than the full-connectivity imposition is inher-
ent to the proposal in this work, since the solution with full connectivity is a particular one to the minimal connectivity
algorithm. Table 2 shows the cost value obtained at each computation time with the three approaches, where (i) is
Problem 2, (ii) is the modified Problem 2, and (iii) is the fully connected graph version. Three facts deserve comment-
ing: (1) the cost obtained with approaches (i) and (ii) is smaller than the one obtained with the full connectivity given
the same optimization time, (2) the best cost obtained after 450 seconds with the full connectivity is still greater than

http://wileyonlinelibrary.com
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F I G U R E 4 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting five target sets
(white-filled squares). B, Connectivity graph at the instant target sets I, C, II, D, III, E, IV, and F, V are visited. Maximal time for obtaining this
solution is 60 seconds with Problem 2. The communication range of each agent is depicted as a semitransparent square [Colour figure can be
viewed at wileyonlinelibrary.com]

the one obtained after 60 seconds with the proposals (i) and (ii), and (3) the modified Problem 2 (approach (ii)) yields
solutions with better cost compared with (i), given the same optimization time). This may be a counterintuitive result,
as the approach (ii) is suboptimal when compared with (i), but the smaller number of constraints facilitates the obtain-
ment of better solutions within the same optimization time. Of course, one might expect that, given enough time, the
cost of approach (i) becomes smaller than or equal to the cost of approach (ii). Moreover, both approaches (i) and (ii)
involve more binary variables than (iii), and still less computation time is required by (i) and (ii) to achieve better solu-
tions, illustrating that the proposed algorithms, though in principle more computationally demanding, in practice show
better results within the same amount of computation time.
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F I G U R E 5 A,
Trajectories of each of the six
agents avoiding the obstacles
(black-filled rectangles) and
visiting three target sets
(white-filled squares). B,
Connectivity graph at the
instant target sets I and, C, IV
and V are visited. Maximal
time for obtaining this solution
is 20 seconds with modified
Problem 2. The communication
range of each agent is depicted
as a semitransparent square
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 A,
Trajectories of each of the six
agents avoiding the obstacles
(black-filled rectangles) and
visiting four target sets
(white-filled squares). B,
Connectivity graph at the
instant target sets I, C, II, and
D, IV and V are visited.
Maximal time for obtaining
this solution is 40 seconds with
modified Problem 2. The
communication range of each
agent is depicted as a
semitransparent square
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 7 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting five target sets
(white-filled squares), B, connectivity graph at the instant target sets I, C, II, D, III, E, IV, and, F, V are visited. Maximal time for obtaining this
solution is 60 seconds with modified Problem 2. The communication range of each agent is depicted as a semitransparent square [Colour
figure can be viewed at wileyonlinelibrary.com]

3.2 Results of Algorithm 2

In this subsection, we present results regarding Algorithm 2. We implemented this algorithm in C++ and executions with
up to 100 agents were resulting in execution times on order of 10−5 seconds, thus we may say that its execution time may
be neglected when compared to the planning time.

In Figures 11A, 12A, and 13A, the initial communication graphs are shown, with agents assigned arbitrary id numbers,
whereas Figures 11B, 12B, and 13B present the resulting numbering employing Algorithm 2. To verify its correctness, see
Figure 11A, where the choice of numbering for the agents would not satisfy constraint (13), since the agent labeled with
#1 must connect to two others, but this violates constraint (13). On the other hand, with the renumbering in Figure 11B,

http://wileyonlinelibrary.com
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F I G U R E 8 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting three target sets
(white-filled squares). B, connectivity graph at the instant target sets I, C, IV, and D, V are visited. Maximal time for obtaining this solution is
20 seconds with all agents connected. The communication range of each agent is depicted as a semitransparent square [Colour figure can be
viewed at wileyonlinelibrary.com]

Approach Maximal time (s) Cost Visited targets

(i) 20 −21.89 3

40 −21.95 3

60 −29.16 5

(ii) 20 −21.97 3

40 −23.63 4

60 −30.06 5

(iii) 20 −17.12 3

40 −20.57 4

450 −28.02 5

T A B L E 2 Cost evolution with time

the label #1 can be seen to have been assigned to the rightmost agent, which needs only to be connected to one neighbor
(namely, the one labeled as #2 in Figure 11B), satisfying constraint (13).

4 CONCLUSION

In this work, we developed mixed-integer linear programs for multiagent task allocation and trajectory planning
with obstacle avoidance and global connectivity maintenance. In the considered task, the agents had to reach a final

http://wileyonlinelibrary.com
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F I G U R E 9 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting four target sets
(white-filled squares). B, Connectivity graph at the instant target sets I, C, II, D, IV, and E, V are visited. Maximal time for obtaining this
solution is 40 seconds with all agents connected. The communication range of each agent is depicted as a semitransparent square [Colour
figure can be viewed at wileyonlinelibrary.com]

destination, but were allowed to collect rewards during the task. The proposed formulations plan trajectories for the team
of agents while deciding which agent should collect which reward.

Two optimization formulations were presented. The first one is optimal, considering the exact number of constraints
that are necessary to model the connectivity problem. However, the number of connectivity maintenance constraints
grows exponentially in the number of agents. Therefore, we also introduced an heuristic formulation where the connec-
tivity maintenance increases linearly in the number of agents, which is a more scalable solution. We call this approach
heuristic, because it does not consider all possible communication graphs the MAS may assume, so it is not ruled out that
a lower cost solution using the exact connectivity constraints might be found.

Simulation results were used to evaluate the proposed approaches. The planner indeed found feasible trajecto-
ries for the MAS while respecting the constraints and was able to find solutions where the agents collect all rewards
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F I G U R E 10 A, Trajectories of each of the six agents avoiding the obstacles (black-filled rectangles) and visiting five target sets
(white-filled squares). B, Connectivity graph at the instant target sets I, C, II, D, III, E, IV, and F, V are visited. Maximal time for obtaining this
solution is 450 seconds with all agents connected. The communication range of each agent is depicted as a semitransparent square [Colour
figure can be viewed at wileyonlinelibrary.com]

when the optimization solver was allowed to run for enough time. Moreover, we showed that both formulations
obtained better solutions than a planner, which obligates the communication graph to be fully connected during
the task.

Further enhancements that could be done with small additional overhead include: (i) implementation of a constraint
tightening-approach to ensure robustness to external disturbances; (ii) incorporation of penalties proportional to the pro-
jection of the vectors connecting pairs of agents over some predefined directions so as to approximate the interagent
distances, thus prioritizing solutions with lower dispersion between the agents; (iii) introduction of bounds on the fuel
expense (herein represented by the sum of the absolute values of the control vector) of each agent; and (iv) introduc-
tion of a capacity bound of each agent, which is consumed by visiting the target sets, so as to consider knapsack-like
problems.
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F I G U R E 11 An example of application of Algorithm 2 where the
agents are initially disposed in a line: A, communication graph with numbers
representing arbitrary agents’ ids and, B, spanning tree and agents’ numbers
as computed by Algorithm 2 (the directed edges connect each node to its
parent) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 12 An example of application of Algorithm 2 where the agents
are initially disposed in a shape that resembles a kite: A, communication graph
with numbers representing arbitrary agents’ ids and, B, spanning tree and
agents’ numbers as computed by Algorithm 2 (the directed edges connect each
node to its parent) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 An example of application of Algorithm 2 where the
agents are initially disposed in an hexagon shape: A, communication graph
with numbers representing arbitrary agents’ ids and, B, spanning tree and
agents’ numbers as computed by Algorithm 2 (the directed edges connect each
node to its parent) [Colour figure can be viewed at wileyonlinelibrary.com]

Future work could also encompass consideration of more realistic agent models and validation of the proposal with
laboratory experiments.
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