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Summary

Productivity-poor oligotrophic environments are plenti-
ful on earth. Yet it is not well understood how organisms
maintain population sizes under these extreme condi-
tions. Most scenarios consider the adaptation of a single
microorganism (isogenic) at the cellular level, which
increases theirfitness in such an environment. However,
in oligotrophic environments, the adaptation of microor-
ganisms at population level – that is, the ability of living
cells to differentiate into subtypes with specialized attri-
butes leading to the coexistence of different phenotypes
in isogenic populations – remains a little-explored area
of microbiology research. In this study, we performed
experiments to demonstrate that an isogenic population
differentiated to two subpopulations under low energy-
flux in chemostats. Fluorescence cytometry and turn-
over rates revealed that these subpopulations differ in
their nucleic acid content and metabolic activity. A
mechanistic modelling framework for the dynamic adap-
tation of microorganisms with the consideration of their
ability to switch between different phenotypes was
experimentally calibrated and validated. Simulation of
hypothetical scenarios suggests that responsivediversi-
fication upon a change in energy availability offers a
competitive advantage over homogenous adaptation for
maintaining viability andmetabolic activitywith time.

Introduction

In many natural environments, heterotrophic bacterial
growth and viability are limited by low availability of energy
– carbon, and/or nutrients such as nitrogen and phospho-
rus (Egli, 2010; Hoehler and Jørgensen, 2013; Lever
et al., 2015). These productivity-poor environments, the so-
called oligotrophic, impose a challenge to microorganisms
in sustaining metabolic activity and population size. Promi-
nent examples are groundwater ecosystems and the deep
sea, where readily available dissolved carbon is in the
μg l−1 range (Egli, 2010; Arrieta et al., 2015). However,
numerous microorganisms do exist in these aquatic envi-
ronments, even though cells are small, and their number is
in the range of 103–105 cells ml−1 (Griebler and
Lueders, 2009; Egli, 2010). It is assumed that only a small
fraction of these natural microbial communities remains in
an actively growing state (Griebler et al., 2001; Lennon and
Jones, 2011). So, a fundamental – yet still unresolved –

question is how these many microorganisms survive and
may even maintain population sizes in environments that
provide marginal energy for cell propagation or even barely
support the maintenance of basic cellular functions
(Hoehler and Jørgensen, 2013; Lever et al., 2015).

Abundant evidence suggests that energy-starved cells
may undergo several adaptations that confer fitness under
long-term energy limitation (Wick et al., 2001; Ihssen and
Egli, 2004; Franchini and Egli, 2006; Lever et al., 2015).
Most commonly observed responses under energy limita-
tion are changes in morphology (Rappé et al., 2002; Fida
et al., 2013; Mellage et al., 2015), cellular composition
such as DNA, RNA and proteins (Boylen and
Mulks, 1978), expression of stress-related proteins
(Holmquist and Kjelleberg, 1993; Hartke et al., 1998; Nair
and Finkel, 2004) and shifts in metabolic pathways
(Stouthamer et al., 1990; Wick et al., 2001; Franchini and
Egli, 2006). All these studies readily scale the average cell
behaviour to the cell population level, but still tend to over-
look the possibility that an individual population might
adapt to energy limitation by differentiating into subpopula-
tions. Several studies indicated phenotypic heterogeneity
in microbial species (Balaban et al., 2004; Acar
et al., 2008; Losick and Desplan, 2008; Ackermann, 2015;
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Kotte et al., 2015). For example, an isogenic population
(single strain) was observed to express multiple distinct
phenotypes due to stochastic gene expression (Balaban
et al., 2004; Acar et al., 2008; Losick and Desplan, 2008).
Also a responsive mechanism for phenotypic heterogene-
ity in carbon metabolism in Escherichia coli (Losick and
Desplan, 2008; Kotte et al., 2015) and nitrogen metabolism
in Klebsiella oxytoca (Schreiber et al., 2016) has recently
been demonstrated. Remarkably, the conceptual picture
obtained from natural microbial communities in oligotrophic
environments does convey the presence of different meta-
bolic states − co-existence of cells growing, growing at
extremely low rates, non-growing but metabolically active
and being non-active dormant (Lebaron et al., 2001a,b;
Lennon and Jones, 2011; Bayer et al., 2016). It is widely
believed that the phylogenetic composition of populations
with different metabolic states are different (Bernard
et al., 2000; Zubkov et al., 2002; Schattenhofer
et al., 2011; Vila-Costa et al., 2012). Taking into consider-
ation phenotypic heterogeneity in a single strain and the
different metabolic states observed in natural communities,
however, we hypothesize that – under low-energy flux –

an isogenic population could differentiate into two or more
subpopulations maintaining a small fraction of relatively
more active ‘growing’ cells while the remaining population
would be in maintenance mode, hereafter referred as ‘non-
growing’. By maintaining such phenotypic heterogeneity in
an energy-limited environment, an isogenic population
would improve its fitness so that one fraction of the popula-
tion is prepared for unforeseen environmental conditions.
For example, ‘growing’ cells will respond quickly to sudden
energy availability while ‘non-growing’ cells can withstand
extreme low energy availability (Gray et al., 2019). The rel-
evant scenario, however – the adaptation of cells that face
conditions of constant catabolic energy limitation – has
hardly been explored yet. Experiments conducted in the
past mainly captured the extreme scenario of no energy
availability (Finkel and Kolter, 1999; Zinser and
Kolter, 2000; 2004; Finkel, 2006), that is, a rapid change
from growth to starvation, such as in the stationary phase
of batch experiments resulting in dormant cells, often sub-
sumed into conceptual models for environmental systems
(Stolpovsky et al., 2011; Wang et al., 2014). In contrast,
the scenario we refer to here is the harsh condition of a
constant energy limitation that acts on active microbial
communities and individual populations within these com-
munities and which – according to our hypothesis – may
stimulate these populations to differentiate into ‘growing’
and ‘non-growing’ subpopulations when energy flux
becomes very low and consequently less favourable for
growth. This would also be in line with the findings of Egli
and others that microorganisms physiologically adapt at
the cellular level (e.g. proteome state) to prepare them-
selves in time for the worst case, that is, conditions of

extremely low or no energy availability (Wick et al., 2001;
Ihssen and Egli, 2004; Franchini and Egli, 2006;
Egli, 2010). In contrast, the experiments in batch cultivation
focusing on stationary phase provide an understanding of
the adaptation strategy for the worst-case scenario – dor-
mancy – but fail to capture the response of a population in
a transition from high to low energy flux.

The aim of our study was, first, to explore the physiologi-
cal and morphological adaptation of an environmentally rel-
evant microorganism growing on low concentrations of
carbon and nitrogen (sub-μM range) using appropriate
staining assays and flow cytometry. For this purpose,
Arthrobacter aurescens TC1 was grown on atrazine – a
well-known micropollutant in aquatic environments – that
acted as limiting nutrient source (both C and N). Initially, we
investigated to what extent the population of A. aurescens
TC1 exhibited signs of differentiation when atrazine supply
was changed from high energy conditions (batch experi-
ments) to medium energy flux (fed-batch experiments) by
following the heterogeneity (growing and non-growing cells)
in the population after each cell division. Later, chemostat
experiments were performed to study the population adap-
tation along with long-term exposure to constant low energy
availability by observing the difference in the nucleic acid
content of the cells. The chemostats were also operated
with biomass retention, that is, in retentostat mode. Bio-
mass retention leads to a high cell density, which results in
very low residual concentrations mimicking extremely low
energy availability for the population. To verify our observa-
tion, the adaptation of another environmentally relevant
bacterial strain – Arthrobacter chlorophenolicus A6 – was
also studied in chemostat experiments. Second, based on
our experimental observations, we bring forward a new
mathematical modelling framework. In contrast to existing
models (Pirt, 1982; Heijnen, 1999; Trautwein et al., 2012),
we included responsive differentiation into isogenic pheno-
types resulting in population heterogeneity. The model can
account for subpopulation dynamics as observed in
chemostat experiments with consideration of repetitive and
bidirectional transitions between different phenotypes. The
potential advantage of microbial population differentiation
was assessed and predicted for different hypothetical sce-
narios representing ecological challenges that microorgan-
isms face under oligotrophic conditions. Our model
framework therefore bridges the gap between chemostat
and ecosystem models.

Results and discussion

Dynamic adaptation at population level under different
energy fluxes

In batch and fed-batch experiments, cell proliferation of
A. aurescens TC1 was monitored by cell membrane
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staining. In principle, as the cell membrane is stained,
each cell’s fluorescent intensity is halved with every cell
division. Hence, actively growing cells will be having low
fluorescence, while non-growing cells retain high fluo-
rescence. This allowed tracking the proliferation or
growth of individual cells or subpopulations. A bimodal
distribution of ‘growing’ versus ‘non-growing’ cells within
the populations was observed (Fig. 1). In detail, the fluo-
rescence pattern in flow cytometric measurements of
samples collected at multiple time points exhibited three
times higher (18% ± 4%) proportion of non-growing cells
in fed-batch cultivation of A. aurescens TC1 compared
to energy excess in batch (6% ± 3%). Live/dead staining

showed that this ‘non-growing’ fraction consisted of via-
ble cells in both cases (Fig. 1). Active degradation of
atrazine was observed in both batch and fed-batch
experiments with residual atrazine concentrations of
2 ± 0.8 mg l−1 and 200 ± 50 μg l−1 (72 h), respectively.
Artefacts such as a possible influence of pre-existing
heterogeneity with a constant fraction of ‘non-growing’
cells or that the ‘growing’ subpopulations that increase
in abundance in nutrient-rich conditions can be
excluded. In that case, a constant number (cells ml−1) of
‘non-growing’ cells would be expected under both condi-
tions as both experiments were started with the same
inoculum. Here, a 1.5 times higher number of ‘non-

Fig 1. Heterogeneous adaptation of Arthrobacter aurescens TC1 cells with time under different energy fluxes. The areas of two subclasses of
the population were calculated by determining the minima between the two prominent peaks in the distributions.
A. Batch experiment with high energy condition (atrazine concentration of 30 mg l−1).
B. Fed-batch experiment with medium energy condition (atrazine supply rate of 0.16 mg h−1).
C. Cell counts during batch and fed-batch experiments. Data points represent the average of samples and error bars indicate standard
error (n = 2).
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growing’ cells (cells ml−1) was observed in fed-batch
than in batch.
Overall, the results from fed-batch and batch experi-

ments demonstrated a heterogeneous adaptation of the
cells to a change in energy availability – that is, only part
of the cells resumes growth – but the results did not
yet allow to follow temporally resolved adaptation steps.
First, it cannot reveal the possible stochasticity in adapta-
tion since cells which grew in the early phase of the
experiment and switched to ‘non-growing’ later could still
be in the low fluorescence intensity area as ‘growing’
cells. Second, after a certain number of cell divisions, the
cell-specific fluorescence decreases so much that it is
impossible to observe whether a synchronous population
is established in the end. Hence, as a next step, the exis-
tence of multiple phenotypes at a condition of constant
and long-term low energy availability in chemostat culti-
vation was explored.

Phenotypic heterogeneity influencing dynamics and
steady-state population level in chemostats under
different energy availabilities

Chemostat cultivation of A. aurescens TC1 at all dilution
rates (D) resulted in a steady-state residual substrate con-
centration in the range of 80–420 μg l−1 (Supporting Infor-
mation Table S1). The biomass or total cell concentration
did not increase significantly (2.1–2.69 × 107 cells ml−1,
Supporting Information Table S1) at higher D ≥ μmax

2 (0.068,
0.056 and 0.048h−1) compared to lower D (0.032 and
0.023h−1). Similar to the cell membrane staining in the
fed-batch and batch experiment, total cell count after
SYBR Green I staining revealed the progressive develop-
ment of a subpopulation of cells with low nucleic acid
(LNA) content at low D (Fig. 2A). Contrary to the earlier
batch experiments that relied on cell membrane staining
whose intensity was proportional to the number of cell
divisions, the fluorescence intensity recorded here
directly relates to the molecular composition of the cells –

the total nucleic acid content [double-stranded (ds) DNA,
single-stranded (ss) DNA, RNA] which is closely linked to
the cells’ physiological state or its gene expression phe-
notype (Neidhardt et al., 1990; Bremer and Dennis, 1996;
Klumpp et al., 2009; Boer et al., 2010). The physiological
state of the cells is reflected in the downstream pheno-
type such as growth which is mirrored in the nucleic acid
content as growing cells have a higher gene and plasmid
copy number, RNA, than the cells with low or no growth
(Cooper and Helmstetter, 1968; Akerlund et al., 1995;
Bremer and Dennis, 1996; Boer et al., 2010; Roller
et al., 2016). Hence, high nucleic acid (HNA) and LNA
cells detected by SYBR Green I staining correspond to
two different phenotypes. Although we did not look at

individual cell populations, the proteome analysis of the
HNA-dominated cell population revealed significantly
higher abundance of many proteins in compared to LNA-
dominated one in retentostat (Kundu et al., 2019). This
might indicate a differential gene expression, which in
turn gives a hint of difference in DNA and RNA content of
the HNA and LNA cells. The distribution of cells in LNA
and HNA populations is a general characteristic of natu-
ral microbial communities (Gasol et al., 1999; Lebaron
et al., 2001a,b; Sherr et al., 2006; Bouvier et al., 2007;
Prest et al., 2013). As a general pattern, HNA subgroups
are composed of more active and growing cells, whereas
LNA populations contain cells with a low activity that are
likely to be slow or non-growing (Li et al., 1995; Gasol
et al., 1999; Lebaron et al., 2001a,b; 2002; Servais
et al., 2003). Exceptions are a few taxa that cluster in
LNA subgroups despite relatively high metabolic activity
(Zubkov et al., 2001; Wang et al., 2009; Proctor
et al., 2018). To explore whether LNA cells indeed repre-
sented a phenotype of ‘non-growing’, retentostat experi-
ments were performed. Retentostat experiments provide
a unique condition of extremely low (near-zero) growth
rates and low substrate concentrations. This is achieved
by the full retention of biomass. As substrate is still con-
stantly supplied, cells initially continue to grow under
these conditions. As a consequence, the amount of sub-
strate per bacterial cell decreases with time. At a certain
point, the amount of energy available becomes equal to
the energy required for maintaining basic cellular func-
tions. Hence, substrate addition does not provide suffi-
cient resources for growth anymore, and cells inevitably
remain in an active but ‘non-growing’ state. Retentostat
cultivation has been recognized to create a ‘twilight’
between growth and stationary phase (Ercan
et al., 2015). When cell concentration reached the pla-
teau phase (‘non-growing’ phase) in our experiments,
the flow-cytometry analysis revealed that the population
was dominated by LNA cells – confirming that the LNA
cells belonged to a ‘non-growing’ phenotype (Fig. 2B).
As atrazine was nevertheless continuously degraded
(the inflow concentration of 30mg l−1 decreased to
10 ± 5 μg l−1 in the retentostat), this confirms that LNA
cells were still active in substrate utilization. Active sub-
strate utilization by ‘non-growing’ cells puts them apart
from dormant cells as the later completely shutdown
their metabolism and do not utilize substrate any more
(Hoehler and Jørgensen, 2013; Sekhar et al., 2016). In
this study, the HNA subpopulation increased with higher
metabolic activity as measured in the form of a specific
substrate (atrazine) conversion rate at higher D, whereas
the LNA subpopulation dominated in retentostats, which
showed less metabolic activity and no growth (Fig. 2C,
Supplementary Information Table S1). Thus, we
obtained evidence that the phenotypic heterogeneity
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characterized by subpopulations of HNA and LNA con-
tent was related to functional differences between the
two subpopulations.

The capability of one genotype (individual strain) to
alter its phenotypic state or activity (e.g. metabolism) in
response to external environmental stimuli – phenotypic

Fig 2. Long-term exposure to specific energy fluxes leads to differentiation into two phenotypes – a growing and a non-growing population where
the non-growing fraction decreases with increasing energy availability.
A. Cytogram of green fluorescence versus side scatter for the steady-state population in chemostats revealed two cell types with different fluores-
cent intensity. Cells displaying a pronounced region of low fluorescence intensity are characterized by a low nucleic acid (LNA) content indicative
of non-growers (D = 0.023 h−1, 0.02 KJ mg biomass −1 h−1 in the cultivation of Arthrobacter aurescens TC1, left), whereas high nucleic acid
(HNA) cells are considered fast growers (D = 0.056 h−1, 0.06 KJ mg biomass −1 h−1 in the cultivation of A. aurescens TC1, right). The data are
presented in a density plot where the shade of the colour is proportional to the points in each area.
B. Retentostat experiment, that is, chemostat with 100% biomass retention, shows HNA dominated population at the beginning of the cultivation
later switched to LNA-dominated one at the end of cultivation.
C. Plot of percentage of LNA subpopulation derived in dependence on energy fluxes in chemostats and retentostats. Two bacterial strains –

A. aurescens TC1 and A. chlorophenolicus A6 were grown on atrazine and 4-chlorophenol, respectively, in chemostats and retentostats at different dilu-
tion rates. Metabolic activity of A. aurescens TC1 cells are shown as specific substrate (i.e. atrazine) consumption rate (mg-atrazine mg-biomass−1 h−1).
Chemostat A, B, C represents the cultivation of A. aurescens TC1 at dilution rates of 0.023, 0.032, and 0.056 h−1, respectively. Chemostat D, E,
F represents the cultivation of A. chlorophenolicus A6 at dilution rates of 0.015, 0.022, and 0.081 h-1 respectively. Data points represent the aver-
age of samples, and error bars indicate standard error (n = 2).
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plasticity – is a well-known phenomenon (Garland and
Kelly, 2006; Kelly et al., 2011). Interestingly, here the
isogenic population was not observed to adapt its activ-
ity or physiological state synchronously but instead
underwent differentiation (or diversification) into multiple
phenotypes at a given time under the natural selection
pressure from limited energy availability. To exclude that
this heterogeneity was specific to A. aurescens TC1,
another strain – A. chlorophenolicus A6 – was cultivated
in a chemostat under the same operating conditions but
with 4-chlorophenol instead of atrazine as sole carbon
and energy source. Indeed, observations with
A. chlorophenolicus A6 were similar to A. aurescens
TC1: while initially, HNA cells dominated, a subpopula-
tion of LNA cells emerged that increased in importance
with decreasing energy availability (Fig. 2C). Phenotypic
heterogeneity is often observed in nature upon large
variations in environmental conditions when sensing
environmental cues and responding accordingly by
changing gene expression may not always be possible
(Acar et al., 2008; Ackermann, 2015). Hence, as a pro-
tective feature for survival, individual strains can
express phenotypic variants without even sensing envi-
ronmental cues – a strategy known as ‘bet-hedging’
(Philippi and Seger, 1989; Ackermann, 2015). Remark-
ably, in this study, phenotypic heterogeneity, that is, het-
erogeneous adaptation, was observed at steady-state
conditions when at least 5–6 hydraulic retention times
had passed. This time span provided ample opportunity
to the cells for sensing external environmental condi-
tions, adapting accordingly, and establishing a synchro-
nous population fit for the specific circumstance. Hence,
the detection of LNA and HNA cells in chemostats indi-
cates that phenotypic heterogeneity also enters the pic-
ture when energy flux remains steady but is small and
insufficient to sustain growth and metabolic activity of
the entire population so that it should not solely be con-
sidered as an outcome of ‘bet-hedging’.
Since chemostat cultivation represents a stable system

with a constant residual substrate concentration over time,
this raises the question for the origin of the observed varia-
tion in the intracellular concentration of macromolecules at
the single-cell level. A well-recognized factor in E. coli is
stochasticity in gene expression within individual cells
(Elowitz et al., 2002; Raser and O’shea, 2005; Acar
et al., 2008; Ackermann, 2015). Other reasons contributing
to phenotypic heterogeneity are different timers controlling
cell division (Nishimura and Bailey, 1981; Raser and
O’shea, 2005) and cellular memory (Losick and
Desplan, 2008). Microorganisms also employ specific
mechanism for differentiating into subpopulation with resis-
tance against certain antibiotics (Balaban et al., 2004). An
intra-cellular metabolite flux sensor was suggested as a
trigger for the switch into a different phenotype with

respect to the central carbon metabolism in E. coli (Kotte
et al., 2015). In the case of A. aurescens TC1 a mecha-
nism must also exist by which one phenotype is trans-
formed into the other to justify the observation of both
HNA and LNA cells, in particular in chemostats under con-
tinuous biomass washout. Hence, a continuous switch of
cells between the putative ‘growing’ – HNA and ‘non-grow-
ing’ – LNA state is required. In retentostat experiments, ini-
tially, an HNA-dominated population prevailed, which later
changed to an LNA-dominated population, providing a
second line of evidence of active switching. Exploring the
mechanism by which A. aurescens TC1 diversifies into
two phenotypes is beyond the scope of this study. Never-
theless, the increased fraction of ‘non-growing’ cells at low
substrate loads (low D) in a chemostats and retentostats
indicates that the amount of available catabolic energy is a
potential trigger for such a phenotypic switch. It has been
previously suggested by cytometric analysis of microbial
communities from various aquatic habitats that there is a
possibility of dynamic exchanges between the LNA and
HNA cells (Servais et al., 2003; Bouvier et al., 2007).
Recently, both cytometric analysis and 16S rRNA
sequencing data showed that individual operational taxo-
nomic units were well represented in both LNA and HNA
groups (Rubbens et al., 2019). Hence, our results are con-
sistent with these observations and, for the first time, pro-
vide experimental evidence of phenotypic heterogeneity
characterized by HNA and LNA cells in the isogenic popu-
lation – of a continuous switch between these two subpop-
ulations as a way of adaptation to constant low energy
availability. In the following section, a mechanistic model-
based analysis of microbial physiological states is brought
forward to capture the population heterogeneity in microbi-
allydriven processes.

Model construction and analysis

Based on our hypothesis that two subpopulations emerge
under constant low energy flux, a conceptual framework
for model-based analysis of population dynamics towards
heterogeneous adaptation in chemostats was developed
(Fig. 3 and Eqs 1–11). The proposed model extended
currently available frameworks in the literature (Jones
and Lennon, 2010; Wang et al., 2014) to capture the
essential microbial system dynamics towards differences
in energy availability. The model framework (i) is based
on the concept of a ‘non-growing’ state which represents
the ‘twilight’ between growth and dormancy; (ii) accounts
for a low substrate consumption by non-growing cells for
maintenance purpose, which is a notable advancement
compared to the models based on dormancy where no
substrate is consumed by dormant cells (Jones and
Lennon, 2010; Wang et al., 2014); and (iii) follows an
energy availability-driven approach to consider the
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bidirectional and repeatable transition between ‘growing’
and ‘non-growing’ states.

Population dynamics in chemostats

If total biomass (x) is composed of a growing (Ng) and a
non-growing Nng population as observed in the experi-
ments, the dynamics of subpopulations Ng and Nng can
be described using Eqs 1 and 2, respectively.

dNg

dt
= μg:Ng−D �Ng−K =

μmax �Cs

KS +Cs
�Ng−D �Ng−K, ð1Þ

dNng

dt
= −D:Ng +K, ð2Þ

where K denotes the transition rate from the growing, Ng

to the non-growing state, Nng, μg is the specific growth
rate of growing population, μmax corresponds to maximum
specific growth rate, KS corresponds to Monod affinity
constant and D is the dilution rate.

The transition rate between growing and non-growing
state was expressed in terms of the relative growth rate,
that is, the ratio of specific growth rate, μ to maximum
specific growth rate, μmax, by the following expression
adopted from Konopka (1999).

K = 1−
μg
μmax

� �
�Υ �Ng−

μg
μmax

� �
�δ �Nng, ð3Þ

where Υ represents the first order rate constant for a
transition of growing cells to non-growing cells and δ is
the first-order rate constant for the vice versa case. When

Monod kinetics, that is, μ= μmax:Cs

KS +Cs
is applied to describe

the microbial growth, regulation of growth and hence
transition occurs via substrate availability, which is con-
trolled by D. By considering (μ/μmax), the substrate satu-

ration level which is formulated by Cs
KS +Cs

, composed of

substrate concentration and the Monod affinity constant
serves as a switch function for ‘growing’ to ‘non-growing’
and vice versa. At a high D, Cs � KS and μ ≈ μmax, and
the population will be comprised of only ‘growing’ cells
and when Cs � KS or Cs ≈ KS, the heterogeneity of the
population is established.

A change from continuous feeding to intermittent
feeding results in a potential starvation condition. To
capture this phenomenon, the endogenous decay rates
Kd1 and Kd2 for both Ng and Nng the subpopulation are
introduced, respectively, and Eqs 1 and 2 are modi-
fied as

dNg

dt
= μg �Ng−D �Ng−K−θ Csð Þ �Kd1 �Ng, ð4Þ

dNng

dt
= −D �Nng +K−θ Csð Þ �Kd2 �Nng: ð5Þ

A Dirac-delta step function was used for activation of
Kd based on Cs such that

θ Csð Þ= 1,Cs !0

0,Cs > 0

� �
: ð6Þ

This function ensures that the cell’s maintenance
demand is either taken into account by Kd or by ms (see
below) so that double accounting is avoided.

Dynamic and residual substrate concentration under
heterogeneous adaptation

We observed that the non-growing cells utilize the sub-
strate to require energy for maintaining vital cell functions
and survival. Hence, the maintenance demand of ‘grow-
ing’ and ‘non-growing’ fraction, ms and m0

s , respectively,
are introduced in the residual substrate (Cs) equation,
represented as

dCs

dt
=D � Cs0−Csð Þ−μg �

Ng

YG
−ms �Ng−m0

s �Nng

−
μg
μmax

�δ �Nng �ψ ,
ð7Þ

where YG denotes the (hypothetical) maximum growth
yield, and ψ is specific substrate consumption rate during
a switch from ‘non-growing’ to ‘growing’.

Introducing a growing fraction of biomass, α= Ng

x , Eq. 7
can be reformulated as

Fig 3. Schematic representation of the proposed modelling approach
for the simulation of two subpopulations with different physiological
states. [Color figure can be viewed at wileyonlinelibrary.com]
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dCs

dt
=D � Cs0−Csð Þ−μg:α �

x
YG

−ms �αx−m0
s 1−αð Þx

−
μg
μmax

�δ � 1−αð Þx �ψ :
ð8Þ

At steady state, dCs
dt =0 and if the consumption rate

qs =
D� Cs0−Csð Þ

x is described by a Michaelis–Menten type
expression

qs =
qmax
s �Cs

Ks +Cs
, ð9Þ

where Ks and qmax
s are Monod affinity constant and maxi-

mal substrate consumption rate, the residual substrate
concentration can be given by the following equation:

Cs =
KS � ξ

qmax
s −ξ

, ð10Þ

where

ξ=
α �μg
YG

+ms �α+m0
s � 1−αð Þ+ μg

μmax
�δ � 1−αð Þ �ψ : ð11Þ

In the case of homogenous adaptations in chemostats,
K becomes zero and simultaneously, all the terms asso-
ciated with Nng becomes zero.

Model verification using chemostat experiment data at
different dilution rates

The parameters Υ, δ and ψ could be determined with a
high confidence (coefficient of variation < 5%) by using

the experimental data set at D of 0.023 h−1. The cali-
brated model parameter values are listed in Table 1.
The estimated rate constants (δ and ψ) indicate that
‘growing’ cells employ a fast-switching strategy whereas
‘non-growing’ cells are slow-switching. Subsequently,
the calibrated model (D = 0.023 h−1, Eqs 1, 2 and 7)
was used to simulate Ng, Nng and Cs concentrations at
higher dilution rates up to 0.068 h−1. When compared
with the experimental data, a very good agreement
between experiment and simulation was obtained
(Fig. 4). This indicates that Υ, δ and ψ values in the pre-
sent model framework are insensitive to the change in
D, and the model is well capable of capturing the (sub)
population and substrate dynamics at varying chemostat
conditions.

Effect of parameter uncertainty and global sensitivity
analysis

For the parameter uncertainty analysis on model output,
Cs, Ng and Nng by Markov Chain Monte Carlo (MCMC)
technique, the optimal parameter set (Table 1) was used
as starting position to stay close to the region where the
likelihood is expected to be cantered and a uniform prior
on each parameter in a physically applicable range was
applied. Supporting Information Fig. S1 shows the traces
of MCMC chain analysis through 350,0000 iterations. As
there was no apparent drift observed, MCMC converged,
suggesting that the parameters were identifiable at these
conditions. The projections of the nine-dimensional likeli-
hood into one- and two-dimensional marginal distribu-
tions are shown in Supporting Information Fig. S2. The
two-dimensional projections show very little covariance

Table 1. Values of kinetic parameters used for the simulation of ‘growing’, ‘non-growing’ cells and residual substrate concentration.

Kinetic parameters Units Definition Values

μmax
a h−1 Maximum specific growth rate 0.11 ± 0.02

KS
a μg l−1 Monod affinity constant 237 ± 57

qmax
s

a Gram substrate per gram biomass per hour
(g-S g-X−1 h−1)

Maximum substrate consumption rate 4.08 ± 5.1e-1

ms
a Gram substrate per gram biomass per hour

(g-S g-X−1 h−1)
Maintenance demand for growing fraction 0.22 ± 5.0e-2

m0
s Gram substrate per gram biomass per hour

(g-S g-X−1 h−1)
Maintenance demand for non-growing fraction 0.10 ± 4.0e-3

YG Gram biomass produced per gram substrate
(g-X g-S−1)

Maximum growth yield 0.028 ± 1.0e-3

Υ h−1 Rate constant for transition from growing to non-
growing fraction

0.006 ± 1.0e-5

δ h−1 Rate constant for transition from non-growing to
growing fraction

0.002 ± 1.0e-4

ψ Gram substrate per gram biomass per hour
(g-S g-X−1 h−1)

Substrate consumption rate during a switch from non-
growing to growing

0.028 ± 3.0e-3

Kd1
b h−1 Endogenous metabolism rate for growing fraction 0.006 ± 1.0e-3

Kd2
b h−1 Endogenous metabolism rate for non-growing fraction 0.002 ± 1.0e-3

aFrom Kundu et al. (2019).
bCalculated according to Kd =ms_m0

s �YG.
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among any two parameters, and the marginal distribution
histograms (along the diagonal) are nicely peaked. The
constraints on the parameters are consistent with the
pre-estimated values. Thus, the parameter uncertainty
was negligible in this study, and a minor impact on the
model result is expected.

For the sensitivity analysis (SA), the ranges of all tested
parameters are listed in Supporting Information Table S2.
Variance-based global SA indicates that Cs is most sensi-
tive to the model parameters qmax

s , KS, YG andα
(Fig. 5A). Moreover, α, which is the growing fraction of
biomass, is most influenced by Υ , δ (Fig. 5B and
Supporting Information Fig. S3). This supports earlier
observations that the transition rate between different
phenotypes has an impact on population heterogeneity
(Acar et al., 2008). For example, if the transition between
phenotypic states is much faster than the transition
between the two environmental conditions, a high level of
population heterogeneity is established. Although not at
the same condition of constant low energy flux, Balaban
et al., 2004 measured the transition rate from ‘growing’ to
‘non-growing’ states in batch experiment, which is
10 times higher than our estimated value. Some studies
focused on the response of starvation on metabolic activ-
ity of the population (Albertson et al., 1990; Kjelleberg
et al., 1993; Konopka et al., 1996). A transition rate of
0.2 h−1 was found to fit the observation of Carbon-starved
marine bacteria – Vibrio sp. S14 – when it switches from
active to non-active cells (Kjelleberg et al., 1993;
Konopka, 1999). The time required for inactive cells to
resume growth is dependent on the physiological adapta-
tion of the cells under starvation and can be as long as
200h (Albertson et al., 1990). In case of cells with a near-
zero growth rate, a lag period of 2–7h upon substrate
upshift was observed (Konopka et al., 1996). Hence, the

transition rates vary with organisms and are dependent
upon the physiological state and the previous history of
the cells. This is also reflected in our study, where
A. chlorophenolicus showed a higher population heteroge-
neity at low energy availability than A. aurescens TC1
did (Fig.2).

Simulation results to demonstrate the benefit of two
subpopulations in the environment

Hypothetical scenario 1: Constant low substrate avail-
ability – Heterogenous adaptation allows survival of
active ‘growing’ cells at a minimum substrate concentra-
tion. Growing cells have a relatively high metabolic activ-
ity, and hence, their energy requirement for maintaining
particular subcellular processes such as sustaining the
proton motive force, osmoregulation, protein turnover,
repair and so on known as maintenance energy is much
higher than in ‘non-growing’ cells (Van Bodegom, 2007;
Kempes et al., 2017; Kundu et al., 2019). The mainte-
nance energy of ‘non-growing’ cells is dependent on their
physiological adaptation (Morita, 1997; Lever
et al., 2015). Hence in oligotrophic environments where
the energy availability is extremely low and steady with
time, the ‘growing’ cells continuously strive for energy
sources to maintain their growth and viability, whereas
‘non-growing’ cells are challenged by their slow metabo-
lism to acquire energy. To comprehend the advantage of
a population’s capability of entering in a reversible state
of low activity and a state of ‘non-growing’, the composi-
tion of the population under a steady-state condition of a
chemostat was simulated using Eq. 10 (Fig. 6). Two
kinetic properties of the growing cells, Ks and qmax

s , were
varied considering different substrate-dependent energy
requirement to sustain growth and activity (as revealed

Fig 4. Dynamic total biomass, ‘growing’ (HNA) and ‘non-growing’ (LNA) biomass, and substrate, atrazine concentration in the chemostats under
varying energy flux controlled by dilution rates.
Solid lines depict the model prediction (Eqs 1, 2 and 7), whereas the markers show the experimental data (unfilled markers indicate data points
used for model calibration). Data are from one biological replicate. The data for the second biological replicate is provided in Supporting Informa-
tion (Fig.S5, Data S1).
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by the most influential parameters, see above). The ‘non-
growing’ subpopulation was classified into three catego-
ries based on their physiological state, hence, differing in
maintenance requirement (m0

s ). The simulation results
show that the heterogeneous adaptation, which resulted
in existence of both ‘growing’ and ‘non-growing’ cells
allows maintenance of ‘growing’ cells at a much lower
substrate concentration (Fig. 6). For example, a fraction
of growing cells is maintained at a substrate concentra-
tion as low as 4 μg l−1, while the minimum substrate con-
centration required for maintaining all cells in a highly
active and growing state was in the range of 20–80 μg
l−1. The highest required substrate concentration, 80 μg
l−1 was observed for growing cells of type II which had a
low qmax

s and high Ks. For the growing cells (type III) with
a low Ks and a high qmax

s , a three times higher fraction
(0.6) of the cells were found to be in a ‘growing’ state at
4 μg l−1 than other types of growing cells. Although it
would seem logical for the entire population to enter into
a ‘non-growing’ state or even dormancy under sparse
energy availability, the benefit of maintaining a fraction of
dividing, highly active cell as observed experimentally
seems to stem from the ability of active cells to more rap-
idly respond to even short-term pulses of energy
(Lewis, 2007).

Hypothetical scenario 2: Fluctuations in energy availabil-
ity – Heterogeneous adaptation leads to the higher rich-
ness in the population. To determine whether the
population with the capacity to switch between ‘growing’
and ‘non-growing’ state would manifest a higher persis-
tence through environmental fluctuations in terms of
energy availability, a hypothetical microbial system com-
prised of two populations, was simulated. Both
populations were supposed to be isogenic and to have
similar growth and substrate utilization kinetics
(μmax,Ks andqmax

s Þ . However, the first population was
composed of only ‘growing’ cells with a fast metabolism
and a high maintenance requirement (ms). Whereas, the
second population adapts heterogeneously, that is, differ-
entiates, into ‘growing’ (characterized by the same kinetic
parameters as the first population) and ‘non-growing’
cells with a low maintenance requirement (m0

s ). The
kinetic parameter values assigned to these two
populations are listed in Table 1. The model simulation
tested the competitive success of these two types when
the populations were intermittently fed with substrate
(30mg l−1) pulses of 5 h in 40h intervals. Hence, 5 h of
feeding represented the ‘high energy flux’ condition,
whereas the 35 h of no feeding the ‘starvation phase’.
The composition of the population with the capability of

Fig 5. First order (S1), total order (ST) and second order (S2) Sobol’ indices for all model parameters on residual substrate concentration (A) and
on ‘growing’ cells (B) in a chemostat.
Most influential parameters have a higher variance. The error bar represents the confidence intervals based on 10,000 bootstrap samples.
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heterogenous adaptation under this feeding condition
was simulated using Eqs. 4, 5 and 8.

The simulation results for the intermittent feeding sce-
nario showed that the total biomass was mainly com-
prised of ‘growing’ cells during pulse feeding and ‘non-
growing’ cells dominated during the ‘starvation phase’
(Fig. 7A). After each supply event, the substrate concen-
tration drops to zero, yielding a regular saw-tooth pattern
that followed the substrate supply frequency. The popula-
tion without the ability of heterogeneous adaptation
showed the same saw-tooth pattern, but the total bio-
mass was significantly less compared to that of a popula-
tion with phenotypic differentiation (Fig. 7A). Hence, the
heterogeneous adaptation prevented the significant loss
of biomass and metabolic activity under resource limita-
tion and provided a competitive advantage by the evolu-
tion of fit-for-purpose subpopulations under different
environmental conditions.

In the previous feeding regime, the inflow rate was
constant with intermittent breaks. However, in nature

diurnal inflow rate variation in energy supply is also fre-
quent. Hence, the response of two populations under a
diurnal energy supply variation was induced as a sinu-
soidal variation in the feed flow rate given by the follow-
ing function:

F tð Þ=12+0:6× 12 �sin 2π
24ð Þ t−

π

5

� �� �
: ð12Þ

The abundance of growing cells exhibited regular vari-
ations in both the populations (Fig. 7B). Here, also, the
total biomass of heterogeneous populations was higher
than the population comprising of only ‘growing’ cells. In
effect, the heterogenous adaptation favours maintaining
population size under diurnal fluctuation in energy
availability.

In the environment, in particular in surface or near-
surface habitats, microbial communities face regular and
irregular changes in environmental conditions at a variety
of frequencies (e.g. from diurnal via seasonal to

Fig 6. Prediction of substrate concentration co-existence of two subpopulation to variation in ‘growing’ fraction (α) with μ = 0.023 h−1, and mainte-
nance demand (ms) for different combinations of KS, qmax

s and maintenance demand (m0
s) of the ‘non-growing’ population (Eq. 10).

Growing cell type I, KS = 220 μg l−1, qmax
s = 4 g-S g-X−1 h−1; growing cell type II, KS = 220 μg l−1, qmax

s = 2 g-S g-X−1 h−1; growing cell type III,
KS = 100 μg l−1, qmax

s = 4 g-S g-X−1 h−1; growing cell type IV, KS = 100 μg l−1, qmax
s = 2 g-S g-X−1 h−1. Non-growing cell types I, II and III has (m0

s) of
0.02, 0.08 and 0.12 g-S g-X−1 h−1.
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interannual changes). According to the results presented
in this study, these conditions promote not only the
enduring co-existence of species differing in growth and
non-growth strategies contributing to a high microbial
richness and diversity but also subpopulations exhibiting
variable metabolic activity. Specifically, we would expect
intra-population differentiation among microbial species
in energy-limited habitats such as groundwater or the
deep sea. This study also provides a hint that degrada-
tion of pollutants at low concentrations might be
catalysed by different subpopulations of the same micro-
organisms, and this differentiation into several subpopu-
lations could potentially make active degradation
possible at extremely low concentrations. Further studies
focusing on the mechanism responsible for the switching
phenomenon and the physiological characteristics of the
subpopulations in several species for diverse compounds
will highlight the specific adaptation strategies at the pop-
ulation level in a resource-limited environment and pro-
vide a base for constructing a population balance model
for more complex environmental systems.

Experimental and model analysis procedures

Cultivation media and microbial strains

Arthrobacter aurescens TC1 (Strong et al., 2002) and
A. chlorophenolicus A6 (Westerberg et al., 2000) were

cultivated at 23–28�C in a mineral salt (MS) medium
(Strong et al., 2002). The medium was prepared in
MilliQ® water (Milli-Q® Integral Water Purification Sys-
tem, Millipore, Darmstadt, Germany), with a total organic
carbon concentration of < 10 μg l−1, and pH was adjusted
to 7.2 with sodium hydroxide (1.0 M). After autoclaving at
121∘C for 20 min, the medium was cooled and was sup-
plemented with atrazine (Cfm Oskar Tropitzsch,
Marktredwitz, Germany) as a sole C and N source for
A. aurescens TC1 at 30 mg l−1 final concentration or with
4-chlorophenol (Merck, Darmstadt, Germany) as C
source at 220 mg l−1 final concentration together with
NH4NO3 (0.5 g l−1) as N source for A. chlorophenolicus
A6. Subsequently, filter-sterilized (0.22 μm) FeCl3�6H2O
solution (5.14 mg l−1) was added. To prepare the pre-
cultures for cultivation in bioreactors, A. aurescens TC1
and A. chlorophenolicus A6 were grown on MS media
with excess atrazine and 4-chlorophenol (220 mg l−1),
respectively, in a shaken flask until an optical density
(OD600) of 0.1 was reached.

Batch, fed-batch and continuous cultivations

Experiments were performed in duplicate 3 l bioreactors
(Applikon Biotechnologie B.V., Delft, The Netherlands)
operated in batch, fed-batch, and continuous mode
(chemostat). Bioreactors were equipped with pH, aera-
tion, temperature, level and agitation controls by

Fig 7. Response of a heterogeneous and homogenous population under (A) pulse feeding representing ‘feast and famine’ conditions in the envi-
ronment and (B) sinusoidal feeding strategy representing diurnal energy supply variation in the environment (Eqs 4, 5 and 8).
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myControl® (Applikon Biotechnologie B.V., Delft, The
Netherlands). Cells from pre-cultures [10% (vol/vol)]
were used for inoculation. For bioreactor operation, the
agitation speed was set to 600 rpm, and dissolved oxy-
gen was maintained at 50% of saturation. The pH was
held constant at 7.2, and the temperature was
25∘C. The bioreactors were protected from light. Four
separate runs were performed for A. aurescens TC1.
(i) Chemostat experiment: Two bioreactors were oper-
ated at D [defined as the ratio of the medium flow rate
(ml h−1) and culture volume (l)] of 0.023, 0.032, 0.056
and 0.068 h−1 for A. aurescens TC1. The volume of the
chemostat was maintained at 2000 ml by a level control-
ler. Dilution rates were progressively changed in the two
reactors only after achieving a steady state at a particu-
lar D, meaning that culture parameters such as cell con-
centration and atrazine remained constant (< 5% and
< 10% relative variation respectively) for at least five
reactor volume changes. (ii) Retentostat experiment:
Two bioreactors were freshly started and operated as
retentostat, that is, in biomass retention mode at a dilu-
tion rate of 0.020 h−1. Biomass retention was achieved
by installing an autoclavable polyethersulfone cross-flow
filter with a pore size of 0.22 μm (Flownamics, Madison,
WI) via a head plate port to the bioreactors. An internal
sterile filtration loop was established with a connection
of the level sensor to the myControl® and a peristaltic
pump to allow filtration of effluent during level control
throughout the cultivation. The volume was kept con-
stant at 2000 ml throughout the cultivation. (iii) Fed-
batch experiments: Two bioreactors were operated in
variable volume fed-batch mode with an initial volume of
1000 ml. Immediately after the inoculation, the feeding
started with MS media containing atrazine (conc.
30 mg l−1) at a flow rate of 0.09 mlmin-1. (iv) Batch
experiments: Two bioreactors were operated in batch
mode with a volume of 1000 ml and atrazine conc. of
30 mg l−1.

For 4-chlorophenol degradation with A. chlorophenolicus
A6, the bioreactors were operated at D 0.01, 0.02 and
0.08 h−1 under the same operating conditions, with the
exception that the working volume of the bioreactor was
maintained at 1600 ml.

Cell staining and flow cytometry

For discrimination between growing and non-growing cells,
PKH-67 – a fluorescent, cell membrane-intercalating dye
was used to monitor cell proliferation by flow cytometry
(Wallace et al., 2008) in batch and fed-batch experiments.
A. aurescens TC1 cells were centrifuged for 4 min at
4000 g and 4�C. The cells were washed in ice-cold MS
media before being centrifuged a second time. For
staining, the cells were resuspended in 1 ml diluent buffer

C (Sigma-Aldrich) to reach a final cell density of �2 × 107

cells ml−1. A freshly prepared PKH-67 dye (Sigma-Aldrich)
solution in diluent C (1 ml) was added to the cell suspen-
sion with a final dye concentration of 2 × 10−6 M. After
3 min of incubation with periodic gentle mixing in between,
2 ml of ice-cold MS media containing 1% (wt/vol) bovine
serum albumin (Sigma-Aldrich) was added to stop the
staining reaction. After further centrifugation, the superna-
tant was discarded, and the cells were washed twice
before inoculation to the batch and fed-batch bioreactors.
After 5–10 min of inoculation, the first samples were taken
and used as a t0 reference. Samples were immediately
analysed in a Cytomics FC 500 flow cytometer
(Beckmann Coulter, Krefeld, Germany) equipped with a
laser with two different filters – 488 nm (40 mW) and
638 nm (25 mW). To further distinguish non-growing cells
from dead cells, propidium iodide 10 μl ml−1 (0.5 mM stock
solution, Invitrogen-Thermo Scientific, Waltham, MA) was
used. The samples were incubated for 13 min at 37�C
before adding reference beads (Trucount Tubes, Becton
Dickinson, Franklin Lakes, NJ) for cell quantification
(Bayer et al., 2016). The following parameters were used:
discriminator FL2/1, forward scatter 276V/gain 1.0, side
scatter 327V/gain 5.0, FL1 630/gain 1.0, FL2 (yellow fluo-
rescence) 649V/gain 1.0 and FL3 640V/gain 1.0. A gating
strategy on the green fluorescent channel (FL1) was
employed to distinguish different subpopulations as
described earlier (Prest et al., 2013).

To study the adaptation at the population level under
continuous low energy flux condition, the cells were
harvested from the chemostats at steady state for differ-
ent D. For determination of total cell concentration, cells
were stained with 10 μl mL−1 SYBR Green I (1000×
stock solution, Invitrogen-Thermo Scientific), and incu-
bated for 13 min at 37�C in darkness before adding ref-
erence beads. Green fluorescence was collected in the
Fluorescence Channel 1 (FL1 569 nm), and red fluores-
cence in the Fluorescence Channel 3 (FL3 640 nm),
while forward and side scattered light intensities were
collected as well. All parameters were collected as log-
arithmic signals. Microbial cells were distinguished from
the reference beads using the forward and side scatter,
and from inorganic and organic particles (background
noise) using FL1 and FL3. Previous studies have
shown that the dot plots of green fluorescence (FL1)
against red fluorescence (FL3) are an efficient way to
separate the positive signals from the background noise
(Gasol et al., 1999; Gasol and Del Giorgio, 2000;
Hammes and Egli, 2005, 2010). Hence, an electronic
gate can be defined in the combined dot/density plots
of FL1 against versus FL3 to discriminate the cells effi-
ciently from the background (Supporting Informa-
tion Fig. S4). Subpopulations – HNA and LNA cells –

were analysed in the same run and were distinguished
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using the Side Scatter and Fluorescence Channel
1 (FL1 569 nm). More details on this approach for water
samples are provided by Gasol et al., 1999, Hammes
et al., 2008 and Prest et al., 2013. The proportion of
dead cells was estimated via propidium iodide staining,
as described in previous studies (Ehrl et al., 2019;
Kundu et al., 2019). The flow cytometry machine was
cleaned to remove particulate accumulations before
measuring the samples as per the manufacturer’s
instructions (Beckman Coulter). All the reagents were
filtered (0.22 μm). Instead of phosphate buffer saline,
IsoFlow™ (Beckman Coulter) was used as a sheath
fluid to get a good signal-to-noise ratio. Samples from
each biological replicate were measured twice.

Estimation of subpopulations

The measured fluorescence intensity distributions in
batch and fed-batch experiments represented as the sum
of the two time-dependent distributions Cg(t) and Cng(t) of
the ‘growing’ and ‘non-growing’ subclass of the popula-
tion, respectively.

C tð Þ=Cg tð Þ+Cng tð Þ, ð13Þ

where the areas of the Cg(t) and Cng(t) distributions rep-
resent the total cell counts Ng and Nng, respectively. The
optimum threshold separating the two subclasses of pop-
ulation Cg(t) and Cng(t) was obtained by determining the
minima between the two prominent peaks in the distribu-
tions. ‘peakutils.indexes’ function in Python, which iden-
tifies prominent peaks by taking the first order difference
in a data array was used for this purpose
(Oliphant, 2007; Negri and Vestri, 2017). The two areas
separated by this threshold were obtained by numerical
integration of the respective fraction of data using
trapezoidal rule.
In the case of chemostat experiments, HNA and LNA

subpopulations were analysed by employing a specific
gating strategy by the CXP software. For data visualiza-
tion, list mode data files were imported on Python plat-
form using Cytoflow package. The log-transformed data
were linearized for plotting.

Measurement of atrazine concentration

After filtering the samples, atrazine concentration was mea-
sured using a Prominence HPLC system (Shimadzu Corp.,
Kyoto, Japan) together with a 100 × 4.6 mm Kinetex 5 μm
Biphenyl 100 Å column equipped with a SecurityGuard
ULTRABiphenyl cartridge (both Phenomenex Inc., Torrance,
CA). Peak separation was achieved by 1 ml/min isocratic
flow of 51% 5 mM KH2PO4 buffer pH 7% and 49%methanol
for 9 min. The compounds were detected by ultraviolet

absorbance at 222 nm, and the peaks were quantified using
LabSolutions V 5.71 SP2 (ShimadzuCorp.).

Model implementation, calibration and analysis

The model implementation, fitting parameter estimations,
and model analysis was performed using Python and
employing the built-in functions in scientific libraries
NumPy and SciPy (Oliphant, 2007). Equations were inte-
grated and solved at each time step using the Python
3 package SciPy’s integration function odeint. The
resulting values were added to each respective concen-
tration (biomass, substrate) in the previous time step,
which produced dynamics of subpopulations and residual
substrate over the cultivation time period respective for
each condition. Three kinetic parameters μmax, KS and
qmax
s are taken from our previous study (Kundu

et al., 2019). Endogenous decay (Kd) was estimated as a
product of maintenance demand and maximum growth
yield, that is, Kd = ms_m0

s

� � �YG. The parameters Υ, δ and
ψ were estimated from the experimentally measured Ng

and Nng and the residual atrazine concentration (Cs) data
by minimizing the Root mean squared error (RMSE) as
objective function.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ϑexp−ϑsim
� �2

N
:

s
ð14Þ

The ‘brute force’ optimization method was used to find
the global minimum of the objective function to compute
the objective function at each point of a multidimensional
grid of points using lmfit python package (Newville
et al., 2014). This multidimensional grid contained ranges
of Υ (0.004, 0.01), δ (0.001, 0.008) and ψ (0.01, 0.05)
with linear grid space of 0.001, 0.001 and 0.005, respec-
tively. Thereafter, the result of ‘brute force’ minimization
was fed as initial guess to obtain a more precise (local)
minimum using the downhill simplex algorithm (Nelder
and Mead, 1965). The empirical data of residual atrazine
concentration, total cell counts, and concentration of LNA
and HNA cells from the chemostat cultivation of
A. aurescens TC1 at D of 0.023 h−1 were used to cali-
brate the proposed model (Eqs 1, 2 and 7). Furthermore,
to quantify the parameter uncertainty on model output,
the MCMC technique was applied using emcee, a Python
implementation of MCMC algorithm (Goodman and
Weare, 2010).

Variance-based global sensitivity analysis (SA) is
applied to identify influential model parameters, that is, to
more precisely focus on how the input variability influ-
ences the model output (Sobol’, 1990; Hoeffding, 1992;
Homma and Saltelli, 1996; Saltelli, 2002). In this study,
Sobol’s method (1990) was used to identify the first-order
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indices (the contribution to the output variance by a sin-
gle model input alone) and the second-order indices (the
contribution to the output variance by two model inputs).
The estimation of Sobol’s indices is based on Monte
Carlo simulation (sample size of 10,000) to sample over
the entire parameter space (Sobol’, 1990; Saltelli, 2002).
The sampling technique proposed by Saltelli (2002) for
Sobol’s sensitivity indices was adopted. Sobol’s SA was
performed using functions built-in SALib (Herman and
Usher, 2017) and NumPy Python libraries
(Oliphant, 2007).
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Supporting Information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Data S1. Model analysis
Figure S1. Traces of MCMC chain for each estimated
parameter over 350,0000 iterations for Arthrobacter
aurescens TC1. ln f denotes the logarithm of the substrate
concentration, that is, Cs

Figure S2. Corner plot showing the posterior distribution of
the model parameters through MCMC sampling. The mar-
ginal distribution of the parameters is provided on the diago-
nal along with the median (blue line). The off-diagonal plots
show the joint distribution of each pair of parameters and the
blue lines are the true values used to simulate the data
Figure S3. First order (S1), total order (ST) and second
order (S2) Sobol’ indices for all model parameters on resid-
ual ‘non-growing’ biomass concentration in chemostat. Most
influential parameters have higher variance. The error bar

represents the confidence intervals based on 10,0000 boot-
strap samples
Figure S4. Data collection and gating strategy for flow cyto-
metry analysis. (A) Forward scatter (FS) vs side scatter
(SS) allows to distinguish between stained cells and refer-
ence beads. (B) Selection of bacteria using a fixed gate on
the green (FL3)/red fluorescence (FL1) density plot for exclu-
sion of background. (C) Selection of low and high nucleic
acid content (LNA and HNA) bacteria on the resulting green
fluorescence of selected data (from panel B) vs side scatter.
The data is log-transformed
Figure S5. Dynamic total biomass, ‘growing’ (HNA) and
‘non-growing’ (LNA) biomass; and substrate, atrazine con-
centration in the chemostats under varying energy flux con-
trolled by dilution rates. Solid lines depict the model
prediction (eqs 1, 2 and 7), whereas the markers show the
experimental data (unfilled markers indicate data points used
for model calibration). Data is from one biological replicate
Table S1. Conditions of chemostat cultivations of
Arthrobacter aurescens TC1
Table S2. Range of values of kinetic parameters used in
sensitivity analysis
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