
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

An Actual Causality Framework for
Accountable Systems

Amjad Ibrahim

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl IV - Software and Systems Engineering

An Actual Causality Framework for
Accountable Systems

Amjad Ibrahim

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Alexander Pretschner

2. Univ.-Prof. Dr. Joseph Halpern,

Cornell University, USA

Die Dissertation wurde am 03.11.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 04.03.2021 angenommen.

Acknowledgments

One day, we‘ll be what we want.
The journey hadn’t yet begun,

the road hadn’t ended.
The wise men hadn’t yet reached

their exile.
The exiled men hadn’t yet attained

their wisdom.

Mural. Unfortunately, It Was Paradise: Selected Poems,
by Mahmoud Darwish et al., University of California Press.

Âd§r� A� ¾A�w§ wknF

Yht�Â�
Cd�� ¯¤ , ��dt�� Â Tl�r�� ¯

�uhat�r� ÂºAmk��� �l"ba§ ��

�hatmk� ÂºA�r��� �ul"ba§ �� Am�

(2000) L§¤C wm�m� T§C�d�

Throughout my life, I always come back to this verse as I close chapters, “did I attain
my wisdom? Was it the journey” I still do not know. However, I know that this particular
adventure was unique; it was very challenging, still rewarding in many ways. It made me
a new person in many aspects, close to what I want to be; more humble, precise, critical,
resilient and persistent.

I owe my resilience and persistence to my late mother; to her, goes my utmost gratitude.
Mom: you once joked, “a doctorate title goes well with your name, Amjad!” I like to think
that this step would make you proud and happy; I did it for you, mom; and my father, who
took part in shaping this thesis through our long conversations on the topic and around it.

My deepest gratitude goes to my supervisor, Prof. Dr. Alexander Pretschner. Alex, it is
not a coincidence that you have been my teacher for very long. From the very first lecture I
attended with you in 2013 until now, I am learning from you. Thank you for preparing me
for this, granting me the chance, challenging me, guiding me, and having my back every
time things did not work as expected. Without all our discussions, I certainly would not
have been writing this part of this thesis.

Prof. Joseph Halpern, this whole thesis is an acknowledgment of the work you have done.
I would also like to express my gratefulness for your insightful comments and support over
the past three years. Thank you very much for your warm hospitality in Ithaca.

Along this journey, I met a diverse and friendly group at the Chair of Software and
Systems Engineering. To all my friends at the chair, thank you for sharing pain, tiredness,
laughs, food, ice cream, beer, and wine with me. I am grateful to the Bachelor and Master’s
students who helped in building parts of this thesis, especially Simon, Tobias, Stavros, and
others. I am also grateful to Severin and Claudius for proofreading parts of this thesis.

Finally, a heartfelt thanks to my dear family in “the lady of earth, the mother of all
beginnings, the mother of all endings,” Palestine; my father, sisters, and little nephews,
you were always a part of this adventure. To my bigger family of friends in Palestine and
Germany and especially those in the intersection of the two circles, thanks for your support.

v

Zusammenfassung

Mit dem stetigen Einzug von digitalen Systemen in alle Facetten des täglichen Lebens
wächst die Notwendigkeit deren Handeln erklärbar zu machen. Da moderne Systeme
Personen schaden, Assets kompromittieren oder über Kreditwürdigkeit entscheiden kön-
nen, müssen sie accountable sein. Accountability eines Systems zu ermöglichen im Sinne
der Entwicklung von forensischen Fähigkeiten, um Unfälle zu erklären und um mögliche
fehlverhaltende Parteien verantwortlich zu machen, ist einer der Säulen dieser Doktorar-
beit. Die drei Konzepte — Accountability, Erklärbarkeit, Verantwortlichkeit — basieren
auf Kausalität; sie benötigen ein passendes Verständnis von Kausalität. Actual Causality,
ein Konstrukt das seine Wurzeln in der Philosophie der Wissenschaft hat, ist formalisiert
in Halpern und Pearls Kausalitätstheorie. Allerdings wurde — soweit uns bekannt — die
Theorie und Operationalisierung der Actual Causality nicht explizit in automatisierter
Form für soziotechnische Zwecke wie Accountability verwendet. Stattdessen wurden sie
nur adaptiert und verwendet im Zusammenhang mit domänenspezifischen Konzepten
wie der Lineage einer Databankanfrage. Dies ist eine Einschränkung, die teilweise auf
die Berechnungskomplexität von Kausalität zurückzuführen ist. Obwohl Actual Causality
in verschiedenen Disziplinen angewandt wird, fehlt trotzdem eine Methodik, um eine
effiziente automatisierte Unterstützung zu entwickeln, welche Accountability moderner
Systeme ermöglicht trotz ihrer Komplexität.

In dieser Dissertation entwickeln wir ein umfassendes Framework, automatisiert durch
eine Toolchain, um das Problem der Operationalisierung von Tatsächlicher Kausalität für
Zwecke der Accountability zu adressieren. Das Framework fokussiert auf die Effizienz
und Skalierbarkeit verschiedener Varianten automatisierter Kausalitätsschlussfolgerungen,
sowie die Effektivität der Schlussfolgerungen durch praktische und domänenspezifische
Ansätze für kausale Modellierung und Kontextualisierung. Da Wiederverwendung geför-
dert wird, werden Schwierigkeiten bei der Einbettung von Kausalitätsschlussfolgerungen
in neue Domänen reduziert. Auf der einen Seite wird eine Reihe an generellen Algorithmen
beigetragen um das Schlussfolgern zu automatisieren, was die Wiederverwendung über
mehrere Domänen ermöglicht, auf der anderen Seite wird die Wiederverwendung von
domänenspezifischen Methodiken und Wissensquellen unterstützt um Modellierung und
Kontextualisierung zu operationalisieren. Das führt dazu, dass der Fokus stärker auf die In-
tegration dieser Lösungen zur Ermöglichung von Accountability in spezifischen Systemen
wechselt, welche auch durch unser Framework adressiert werden, da es zur Lösung von
Accountability-bezogene Probleme für eine diverse Menge von Systemen genutzt werden
kann.

Wir demonstrieren, wie man mit dem Framework als Ganzem interagiert, indem wir uns
auf Fallbeispiele aus dem Bereich der Microservice-basierten Systeme, sowie auf Beispiele
von Flugzeugunglücken, Versagen von cyber-physikalischen Systemen und Systemen der
künstlichen Intelligenz konzentrieren, da wir überzeugt sind, dass diese Systeme reprä-
sentativ für moderne, komplexe Systeme sind. Weiterhin zeigen wir, dass das Framework

vii

generisch genug ist um Accountability und verwandte Konzepte wie Responsibility einzu-
binden und dass es mit Toolunterstützung in verschiedene Domänen eingebunden werden
kann. Des Weiteren präsentieren wir verschiedene Experimente um darzulegen, dass unsere
Ansätze für Kausalitätsschlussfolgerungen effizienter und allgemeingültiger sind als andere
aktuelle Techniken.

viii

Abstract

With the rapid deployment of digital systems into all aspects of daily life, the need to
understand their actions grows. As modern systems might harm people, compromise
assets, or decide loan adequacy, they ought to be accountable. Enabling accountability
of a system in the sense of developing its forensic capabilities to explain mishaps and
possibly hold misbehaving parties responsible for violations, is the pillar of this doctoral
thesis. The three concepts —accountability, explanation, and responsibility— are inherently
causal; they require a notion of causality to enable them. Actual causality, a construct
rooted in the philosophy of science, is well formalized within the Halpern and Pearl theory
of causality. However, to the best of our knowledge, explicit actual causality theories
and operationalizations have not been utilized, in an automated fashion, to enable socio-
technical purposes such as accountability. Instead, they are adapted and used only in
correspondence with domain-specific concepts such as a lineage of a database query. A
restriction that is partially attributed to the computational complexity of causality. While
used across different disciplines, actual causality still lacks a methodology to devise efficient
automated assistance that enables modern systems’ accountability, given their complexity.

In this thesis, we develop a unifying framework, automated by a set of tools, to address
the problem of operationalizing actual causality for purposes related to accountability.
The framework tackles the efficiency, and scalability of different notions of automated
causal reasoning. Also, it considers the effectiveness of this reasoning through practical
domain-specific approaches to causal modeling and contextualization. Thus, the frame-
work diminishes the barrier to embedding causality reasoning in new domains because
it promotes reuse. On the one hand, it contributes a set of general algorithms to automate
reasoning so that it can be reused among different domains. It supports, on the other
hand, the reuse of domain-specific methodologies and knowledge sources to operationalize
modeling and contextualization. As a result, the focus then shifts to how all these solutions
are integrated to serve the goal of enabling accountability in a specific system. To that end,
our framework can be used to solve accountability-based problems for a wide range of
systems.

With case studies from such areas as aircraft accidents, Cyber-physical systems’ faults,
microservice-based systems security attacks, and artificial intelligence systems, which we
deem representative of modern complex systems, we demonstrate the utilization of the
framework as a whole. We show that it is generic enough to accommodate accountability
and related concepts, such as responsibility, and with tool support, it is amenable to be
incorporated into different domains. We present multiple experiments to show that our
approaches to causal reasoning are more efficient and general than the state-of-the-art
techniques.

ix

Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter introduces the topic and the context of this thesis. It discusses problems, gaps,
goals, and contributions of this work.

CHAPTER 2: BACKGROUND

This chapter presents the formal foundations required to understand the concept of actual
causality.

CHAPTER 3: EFFICIENTLY CHECKING ACTUAL CAUSALITY WITH SAT SOLVING

This chapter presents a novel encoding of binary causality checking queries into SAT.
Several other encodings are derived and evaluated as part of the chapter. Parts of this
chapter have previously appeared in the publication [98], co-authored by the author of this
thesis.

CHAPTER 4: ACTUAL CAUSALITY COMPUTATIONS AS OPTIMIZATION PROBLEMS

This chapter presents a formulation of different notions of actual causality computations
over binary models as optimization problems. Parts of this chapter have previously ap-
peared in the publication [97], co-authored by the author of this thesis.

CHAPTER 5: ACTUAL CAUSALITY CHECKING BEYOND BINARY MODELS

This chapter presents a generalization of the concepts in the previous chapters, and proposes
a method to answer checking causal queries of numeric models.

CHAPTER 6: CAUSAL MODEL EXTRACTION FROM ATTACK TREES TO ATTRIBUTE INSIDER

ATTACKS

This chapter tackles issues around causal modeling in the context of malicious insiders.
Parts of this chapter have previously appeared in publications [99, 95], co-authored by the
author of this thesis.

CHAPTER 7: AUTOMATED GENERATION OF ATTACK GRAPHS AND CAUSAL MODELS FOR

MICROSERVICES

This chapter presents an automated approach to generate models of attacks in microservice-
based systems. Parts of this chapter have previously appeared in the publication [94],
co-authored by the author of this thesis.

CHAPTER 8: MODEL-DRIVEN CONTEXTUALIZATION FOR MICROSERVICES

This chapter presents an automated approach to use models of attacks to monitor relevant
events in microservice-based systems.

xi

CHAPTER 9: A FRAMEWORK FOR OPERATIONALIZING ACTUAL CAUSALITY

This chapter presents a unifying framework for operationalizing actual causality. Parts of
this chapter have previously appeared in publication [96], co-authored by the author of this
thesis.

CHAPTER 10: RELATED WORK

This chapter reviews the related work in the fields of accountability, actual causality rea-
soning, and other related fields. Parts of this chapter have been published in the following
publications [167, 98, 97, 96, 94, 95, 99], co-authored by the author of this thesis.

CHAPTER 11: CONCLUSIONS

This chapter concludes the work in the thesis. It summarizes the contributions proposed
throughout the chapters. We state the results of the thesis and the lessons learned during
the development of this work. Afterward, we discuss limitations and avenues for future
work.

APPENDIX A: EVALUATED MODELS

This appendix provides a detailed overview of our evaluated dataset. Parts of this appendix
have previously appeared in publications [98, 96], co-authored by the author of this thesis.

N.B.: Multiple chapters of this dissertation are based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descriptions
above. Due to the obvious content overlapping, quotes from such publications within the respective
chapters are not marked explicitly.

xii

Contents

Acknowledgements v

Zusammenfassung vii

Abstract ix

Outline of the Thesis xi

Contents xiii

I Introduction and Background 1

1 Introduction 3
1.1 Gaps, Problem Statement, and Research Questions 8

1.1.1 Actual Causality Reasoning . 9
1.1.2 Causal Modeling and Contextualization 10

1.2 Goal and Benefits . 11
1.3 Solution . 12
1.4 Contributions . 12
1.5 Summary of Results . 15
1.6 Structure . 15

2 Background 17
2.1 Overview . 17
2.2 Causal Models . 18
2.3 Reasoning about Causality . 20
2.4 Responsibility as an Extension . 23
2.5 Discussion . 23
2.6 Summary . 25

II Computational Aspects of Actual Causality Reasoning 27

3 Efficiently Checking Actual Causality with SAT Solving 29
3.1 Introduction . 29

xiii

Contents

3.2 Brute-Force Based Causality Checking . 30
3.3 SAT Based Causality Checking . 31

3.3.1 Checking AC2 . 32
3.3.2 Checking AC3 . 35
3.3.3 Example . 37
3.3.4 Optimized AC3 Check with SAT . 38

3.4 Graph-Based Optimizations . 40
3.4.1 Reduce Number of Potential Variables for ~W 40
3.4.2 Remove Irrelevant Sub-formulae . 41

3.5 Evaluation . 42
3.5.1 Technical Implementation . 42
3.5.2 Methodology and Evaluated Models 43
3.5.3 Discussion and Results . 43

3.6 Proofs . 47
3.6.1 Negation Lemma . 47
3.6.2 AC2 Encoding Proof . 49
3.6.3 AC3 Encoding Proof . 50
3.6.4 Optimized AC3 Encoding Proof . 52

3.7 Summary . 53

4 Actual Causality Computations as Optimization Problems 55
4.1 Introduction . 55
4.2 Checking and Semi-inference Queries as Optimization Problems 56

4.2.1 The Objective in Causality Checking 56
4.2.2 ILP Formulation . 57
4.2.3 MaxSAT Encoding . 58
4.2.4 Results Interpretation . 59
4.2.5 Example . 59

4.3 Causality Inference with ILP . 60
4.3.1 WhyILP Algorithm . 62
4.3.2 Example . 64

4.4 Evaluation . 65
4.4.1 Evaluating Checking and Semi-Inference 65
4.4.2 Evaluating Inference . 68

4.5 Proofs . 70
4.6 Summary . 72

5 Actual Causality Checking Beyond Binary Models 75
5.1 Introduction . 75
5.2 Approach . 76

5.2.1 Requirements For Causality Checking 76
5.2.2 Building blocks . 77

xiv

Contents

5.2.3 Algorithm . 79
5.2.4 Example . 82

5.3 Evaluation . 86
5.3.1 Model Size . 86
5.3.2 Performance . 87

5.4 Summary . 89

III Domain-specific Causal Modeling and Contextualization 91

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks 93
6.1 Introduction . 93
6.2 Preliminaries . 95

6.2.1 Foundations of Attack Trees . 95
6.2.2 Malicious Insiders Example . 96

6.3 Attack Trees to Causal Models . 97
6.3.1 Suspect Attribution . 98
6.3.2 Attributed Attack Tree Transformation 101
6.3.3 Adding Preemption Relations . 102
6.3.4 Tool Support . 103

6.4 Evaluation . 104
6.4.1 The Efficiency of the Extraction . 105
6.4.2 The Validity of the Approach . 106
6.4.3 The Effectiveness of the Model . 107

6.5 Summary . 108

7 Automated Generation of Attack Graphs and Causal Models for Microservices 109
7.1 Introduction . 109
7.2 Preliminaries . 111
7.3 Approach . 112

7.3.1 Attack Graph Generation for Dockers 112
7.3.2 Extracting Causal Models from Attack Graphs 117

7.4 Evaluation . 118
7.4.1 Experiment Setup . 118
7.4.2 Scalability evaluation . 119
7.4.3 Effectiveness of the Graphs . 121

7.5 Summary . 123

8 Model-driven Contextualization for Microservices 125
8.1 Introduction . 125
8.2 The Approach . 127

8.2.1 Monitoring Configuration . 127

xv

Contents

8.2.2 Monitoring Orchestrator . 128
8.2.3 The overall Architecture . 128

8.3 Evaluation . 130
8.3.1 Effectiveness . 130
8.3.2 Efficiency . 132

8.4 Summary . 133

IV A Framework for Accountable Systems 135

9 A Framework for Operationalizing Actual Causality 137
9.1 Introduction . 137
9.2 A Framework of Actual Causality . 139

9.2.1 Causal Modeling . 139
9.2.2 Contextualization . 141
9.2.3 Causal Reasoning . 142
9.2.4 The Technical Framework of Actual Causality 143

9.3 The Actual Causality Canvas . 144
9.4 Use Cases . 146

9.4.1 Explainable AI . 146
9.4.2 Überlingen mid-air Collision1 . 149
9.4.3 Malicious Insiders2 . 154
9.4.4 Drone Crash Diagnosis . 156

9.5 Evaluation . 158
9.6 Summary . 159

V Related Work and Conclusions 161

10 Related Work 163
10.1 Accountability . 163
10.2 Causality . 164

10.2.1 Actual Causality Reasoning According to HP 164
10.2.2 Non-HP Causality Reasoning . 167

10.3 Causal Models for Accountability . 169
10.3.1 Insider Threat and Threat Models . 169
10.3.2 Safety, Fault Trees, and WBA . 171

10.4 Model-driven Contextualization . 171
10.5 Summary of the Gaps . 172

1A shortened version of this case-study can be found in Appendix A
2This is a shortened version of the example in Chapter 6. The reiteration here is meant to put accountability of

microservices-based system in perspective with other domains.

xvi

Contents

11 Conclusions 173
11.1 Thesis Overview . 173
11.2 Main Results . 174
11.3 Limitations . 176
11.4 Future Work . 176

Bibliography 179

Index 195

List of Figures 195

List of Tables 197

A Evaluated Models 199
A.1 Introduction . 199
A.2 Description of the Evaluated Models . 200

A.2.1 Rock-Throwing . 200
A.2.2 Forest Fire . 200
A.2.3 Prisoners . 201
A.2.4 Assassin . 201
A.2.5 Railroad . 202
A.2.6 Abstract Model 1 & 2 . 203
A.2.7 Leakage in Subsea Production System 204
A.2.8 Überlingen Accident Investigation . 206
A.2.9 Binary Tree . 208
A.2.10 Abstract Model 1 Combined with Binary Tree 208
A.2.11 Steal Master Key . 208

xvii

Part I

Introduction and Background

1

1 Introduction

This chapter introduces the topic and the context of this thesis. It discusses
problems, gaps, goals, and contributions of this work.

Modern digital systems increasingly influence people’s lives. The benefits brought by
information and cyber-physical systems made them almost indispensable, not only to the
industry but to society as well. However, the behavior of such systems at run-time does not
always align with the expectations of all the stakeholders. This broad insight manifests in a
wide spectrum of, almost inevitable, unwanted events ranging from minor software bugs to
fatal accidents of aircraft, or cyber-attacks on critical infrastructures. Generally, we consider
an unwanted event to be any violation of legal, self-imposed, or contractually agreed-on
obligations of a system behavior [13]. As we argue in this introduction, unwanted events
for modern digital systems cannot be entirely excluded by design. Because these systems
are becoming an integral part of our society, we consider it then mandatory to provide
mechanisms that help us to understand what caused these events, both for eliminating the
underlying (technical) problem and for assigning blame.

With the ease of composing technical components, systems nowadays tend not to main-
tain fixed boundaries anymore. Leveraging application programming interfaces (APIs),
a component (or a system) can, in principle, directly interact with other components. The
virtual composition of systems through interfaces plays an instrumental role in the current
technological world. For example, modern cars are an assembly of up to a hundred or more
electronic control units that run and communicate over a controller area network bus [45].
For cyber-physical systems such as drones, manufacturers provide developers with APIs to
build custom applications that run on their drones. In cloud-based information systems,
recent paradigms of complete infrastructure automation are increasingly dominating the
field. As such, emerging cloud systems can automatically onboard or offboard services
on demand and create or remove service replicas based on load. In all such examples,
the interfaces between components that are possibly designed and developed by different
entities are software contracts that govern the interaction. We want to remind that any
interface description provides a behavior abstraction. Regardless of the level of abstraction,
there must be parts of the behavior that are left unspecified when composing a system. The
composition of systems through abstract contracts, in turn, means that the boundary of
such systems usually cannot be specified without leaving open several degrees of freedom
in terms of how to “legally” use the system. This renders the goal of preventing all the
illegal states of a system, at design time, impractical.

3

1 Introduction

The previous remark emphasizes ascribing unwanted behavior of a system to technical
faults —possibly due to interface misuse. Other problems can be attributed to human
interaction with systems. Similar to technical faults, the total elimination of human-related
problems is also infeasible most of the time. Without further complication, the infeasibility
can be a simple consequence of the human role in the system. For example, let us consider
the case of insiders in security-critical systems (e.g., online-banking platform).1 Preventive
measures (e.g., access control), in the context of insiders, have a high likelihood of failing
because insiders ought to possess the necessary privileges to perform their jobs; however,
they can abuse them. The necessity of these privileges for the daily job of the insider
hampers preventing such actions from happening. Especially with security in mind, trade-
offs between qualities of the system (e.g., security vs. functionality) often arise during the
design phase. Consequently, unwanted events at run-time may occur as a side effect of
such inevitable trade-offs.

Arguably, the mere sense of dissatisfaction or distrust in a system is considered an un-
wanted event. The concerned stakeholders may question the output of a system, especially
if it is tasked with making critical decisions or predictions for humans using complex ap-
proaches. Systems with artificial intelligent agents (e.g., machine learning applications) fall
within such category of systems. The regard of whether a customer object to an automated
decision is indeed a violation of obligations is debatable; however, for the scope of this
thesis, we consider it at least an instance of a suspicious event that requires clarification.
Explaining learning systems’ results does not only contribute to raising the trust in such
systems but also a mandatory requirement for law and standard compliance [141, 143]. 2 3

With the above, we briefly discussed different factors that contribute to the inevitable
occurrence of unwanted events. In certain situations, our society deals with a similar result
by promoting accountability.

An Overview of Accountability

Accountability is an interdisciplinary concept that is being studied in philosophy, law,
social science, political science, and computer science [53, 200, 105, 13, 153]. Although it is
related to our work, however, the mission of defining and comparing different notions of
accountability is beyond the focus of this thesis. Nevertheless, as part of our introduction,
we present a rather technical definition of accountability that facilitates enabling systems to
be accountable. We start by considering the definition given by Beckers et al. of account-
ability as “a capability of a socio-technical system to help answer questions regarding the

1According to the Cyber Security Intelligence Index (2016), malicious insiders carried out 60% of all cyberat-
tacks in 2015 [169].

2For instance, the European Union General Data Protection Regulation (GDPR) explicitly mentions account-
ability as a principle relating to processing of personal data (Art. 5), and the right to obtain explanations of
automated processes (Recital 71). See https://gdpr-info.eu/; last accessed July 2020.

3“Be accountable to people" is Google’s fourth AI Principle; See https://ai.google/principles/; last
accessed July 2020.

4

https://gdpr-info.eu/
https://ai.google/principles/

cause of an occurred unwanted event” [13]. From a practical perspective, the notion of
unwanted events differs across systems, domains, applications, and qualities. In the scope
of this thesis, we relate unwanted events to a specific quality attribute of a system, such as
security, safety, accuracy, or functionality compliance. A quality attribute is an interest that
pertains to the system’s development or operation. The ISO/IEC-9126 (Software engineering
— Product quality) and ISO/IEC 25010 (Systems and software Quality Requirements and
Evaluation) standards present structured classifications of these interests to characteristics
and sub-characteristics [55, 56]. For example, according to ISO/IEC-9126, functionality (or
functional suitability in ISO/IEC 25010) is a characteristic that includes functional completeness,
functional correctness, and functional appropriateness [55], and security is another characteristic
with sub-characteristics such as confidentiality and accountability [55, 56].

Refining the definition to include a quality attribute narrows down the spectrum of un-
wanted events to the events specific to some qualities of a system. Further, as we shall see in
this thesis, defining violations based on their relation to a quality attribute enables utilizing
artifacts such as methodologies, models, or tools from the respective attribute’s domain.
According to a specific quality attribute, the benefits obtained by enabling accountability
become clear. For example, accountability for diagnosability mechanism allows developers
to localize faults and fix them in a timely fashion [63]. An accountability mechanism for
performance would aid in locating bottlenecks in system deployment.

To that end, we define accountability as a property of a system that helps to identify the
causes of (unwanted) events related to a quality attribute. The process of enabling accountability
entails developing system’s (forensic) capabilities in identifying miss-behaving parties responsible
for specific violations.

Figure 1.1 depicts a conceptual model of accountability. We consider a system to be a
composition of components with different natures. A non-exhaustive list of component
types includes hardware devices, software artifacts, or trained models. The interaction
among different components realizes the functionality of the system, which is one of its
quality attributes (as defined in ISO/IEC-9126). Although accountability is a quality concern
itself, we consider it as a property of a system that aids it in attributing violations of one
or more of its quality attributes specified by the requirements. The typed arrow (supports)
means that accountability enables the attribution of events related to a quality attribute,
hence supporting the achievement of the attribute.

We call a system accountable that can help answer questions regarding the root cause of
some (usually undesired) event. For that, accountable systems require a technical ability
that we refer to as an accountability mechanism. Many scholars have stressed the role of causal
reasoning in enabling accountability mechanisms [200, 53, 52, 75, 119, 141, 143]. We believe
that an accountability mechanism requires at least two properties: 1) the system must
provide evidence, usually in the form of logs, that helps to understand the reasons of the
unwanted event 2) a mechanism to argue causality. Accordingly, we refine the accountability
entity in Figure 1.2 with the ingredients needed to enable such a capability. An accountability
mechanism is a technical sub-system that enables answering questions regarding a specific
event. The answer is supposed to be the cause of that event. As we see in this thesis, a cause is

5

1 Introduction

System Quality Attributehas

Functionality

Accountability

Requirementfulfills

Component

Hardware Software Model

supports

Figure 1.1: A Conceptual Model of Accountability

typically inferred in reference to a context, a description of the situation that contained both
the event and the cause. In other words, an accountability mechanism acts as a black-box that is
used to record and explain an incident after it happens. This thesis focuses on the causality
reasoning part of accountability mechanisms.

An Overview of Causality

Relating causes and effects to each other is a natural part of human cognition. We use causal
reasoning to explain particular past events, to predict, possibly control, future events, or
to attribute moral responsibility and legal liability [89]. Causality has produced centuries
of interdisciplinary theorization. The first documented theories can be traced to ancient
philosophers such as Plato (Phaedo, 360 BC) and Aristotle (Posterior Analytics), reaching
to current theories by computer scientists such as Pearl [158] and Halpern [75]. Focusing
on a goal-driven categorization of causality, we distinguish two notions: type (general)
causality and actual (token) causality [79, 155]. Type causality is concerned with general
causal relations and aims to forecast the effect of a cause [126]. Reasoning with this notion
aids in expanding predictive fields such as medicine [108] and economy. In contrast, actual
causality theories focus on explaining an observed event, that is, inferring causes from
effects [75]. Thus, such theories are useful in assigning blame, explaining, or preventing
similar events in the future [89]. According to its retrospective attribution, actual causality

6

supports

provides

responds to

relative to

Knowledge

Accountability Quality Concern

Answer Question

Cause

Context

Event

Figure 1.2: A Model of an Accountability Mechanism4

is central for enabling explanation-based socio-technical constructs such as accountability
in cyber-physical systems [106, 95], in information systems [53, 52, 95], explainability in
artificial intelligence [141], and responsibility attribution [33].

Formalizing a precise definition of a cause is challenging for both notions of causality.
Attempts in that direction go back to the eighteenth century when Hume introduced
the idea of counterfactual reasoning as a method for defining a cause [92]. Simply put,
counterfactual reasoning concludes that event A is a cause of event B if B does not occur
if A does not occur. However, this simple reasoning cannot be used with interdependent,
multi-factorial, and complex causes [126]. Recently, in computer science, there have been
some successful and influential efforts, by Joseph Halpern and Judea Pearl, at proposing
a model-based definition of an actual cause while addressing the problematic issues in
philosophy literature [75]. In essence, their definition —the Halpern-Pearl definition of
actual causality (HP in the following)— provides a formal account of when we can call one
or more events a cause of another event in a way that captures the human intuition. There
have been three versions of HP: the original (2001), updated (2005), and modified (2015)
versions, the latter of which we use in this thesis.

A fundamental contribution of HP is that it opens the door for embedding the ability to
reason about actual causality into modern digital systems because of its formal foundation.

4Intuitively, a cause may exist even without specified knowledge; however, in this thesis, we always refer to the
cause in relation to knowledge.

7

1 Introduction

To a large extent, the definition aspires to formalize the human’s intuition about the causes
of effects. Thus, we believe that HP is suitable to explain the causality in accountability
scenarios that include, in addition to technical factors, human interaction. Further, HP
deals with a few challenges that have faced naive counterfactual reasoning approaches such
as cases of preemption, absence of events, bogus prevention, causation by omission and
commission, irrelevance [122, 75]. We discuss the features of HP in more detail in Chapter 2.

HP includes three artifacts: a model [158, 75], a context, and a reasoning mechanism [79, 81,
74]. Briefly, causal modeling refers to abstracting and representing general knowledge (hence
knowledge in Figure 1.2) of cause and effect relations. A causal model describes the different
factors contributing to a phenomenon and the way they influence each other. The structural
equation model is probably the most known structure to express causal knowledge [155].
Context setting, on the other hand, refers to the description of a particular event. It can be
thought of as an instance of the general model, or an assignment of values for events as
depicted in Figure 1.2. Lastly, the definitions contain logical descriptions (formal definitions
and conditions) that can be used to build reasoning mechanisms.

1.1 Gaps, Problem Statement, and Research Questions

Aiming to enable accountability in modern systems, this thesis focuses on actual causality
reasoning. As a technique of knowledge representation and reasoning, actual causality is
well formalized as a result of the HP definition [74]. However, to the best of our knowledge,
explicit actual causality theories such as HP and operationalizations are not utilized, in an
automated fashion, to enable socio-technical purposes such as accountability and expla-
nation. Actual causality reasoning, while used across different disciplines, currently lacks
a systematic methodology and mainly tools to enable accountability in modern systems
(Gap 1, analysis of the related work that identified this gap is presented in Section 10.1 and
Section 10.2.1).

Applications of HP, so far, depend on relations to domain-specific technical artifacts such
as a lineage of a database query [134], or a counter-example of a model checker [123], which
hinders the extension of these applications to the domains we consider for accountability.
We are interested in scenarios and systems with a human or social context. For similar
contexts, Halpern demonstrated the definition using simple philosophical examples [79].
Although insightful, these scenarios do not stress the potential practical problems that
would arise in the technical implementation of the definition, such as scalability, efficiency,
knowledge sources, and logging granularity. Such challenges manifest when inspecting
prior technical implementations of the definition, in which trade-offs, for instance, between
completeness and efficiency, are observed.5 To that end, this research, as a whole, is directed
towards answering the following research question:

5We refer to the comprehensive support of all the concepts around HP without any restrictions (e.g., one-
equation model, singleton causes) as completeness

8

1.1 Gaps, Problem Statement, and Research Questions

RQ1: How can actual causality theories be effectively and efficiently operationalized to enable
accountability in modern systems? (answered in Chapter 9)

In the following, we discuss the different aspects of causality and accountability opera-
tionalization. We elaborate on the problems, gaps, and research questions of each aspect.

1.1.1 Actual Causality Reasoning

Because of its formal foundation, HP enables automated causality reasoning. We distinguish
two notions of reasoning: checking and inference. Checking refers to verifying if a candidate
cause is an actual cause of an effect, i.e., answering the question “is ~X a cause of ϕ?” Inference
involves finding a cause without any candidates, i.e., answering the question “why ϕ?”
Using HP, causality checking is, in general, DP

1 -complete and NP -complete for singleton
(one-event) causes [74]; the difference is due to a minimality requirement in the definition
(details in Chapter 2). Intuitively, inference is at least as hard. This complexity resulted
in multiple restrictions made by researchers and practitioners on the causal model or the
causal query.

The standard restriction among all the utilizations of HP is the usage of binary causal
models, i.e., models that contain Boolean variables only. We discuss this issue again in
Chapter 10. Then, within different domains, further restrictions are assumed on the model.
For instance, in the domain of databases, models contain single equations only based on the
lineage of the query in [134], or no explicit equations in [18, 177]. Similar simplifications are
made for Boolean circuits in [34]. Also, in the context of software and hardware verification,
causal models contain no equations [16]. Similarly, causal queries are restricted. For instance,
while the cause is assumed to be a singleton (one event) in some domains [16, 177], the
effect is restricted to a specific type like monotone queries. Understandably, the mentioned
approaches impose these restrictions on the general theory to deal with the complexity and
because they do not compromise their aim. On the other hand, the general approaches
(without restrictions) reported results that do not scale to large models [89]. Large models
of causal factors are likely to occur especially when generated automatically from other
sources for purposes of accountability and explainability [96, 95, 141]. Further, models of
real-world accidents are sufficiently large to require efficient approaches. For instance, a
model of the 2002 mid-air collision in Germany consists of 95 factors [187] (discussed in
detail in Section 9.4.2), and another model of the 2006 Amazonas collision consists of 137
factors [184]; such models are expected to grow in size with data-driven causal discovery
approaches. To the best of our knowledge, there exist no comprehensive, efficient, and
scalable algorithms for reasoning about actual causality, especially with large causal models
(Gap 2, analysis of the related work that identified this gap is presented in Section 10.2). As
part of operationalizing actual causality, we aspire to answer the following questions.

RQ2: How can actual causality be checked efficiently and effectively in acyclic binary causal models
without any further restrictions on the model or the query? (answered in Chapter 3 and

Chapter 4)

9

1 Introduction

RQ3: How can actual causality be inferred efficiently and effectively in acyclic binary causal models
without any further restrictions on the model or the query? (answered in Chapter 4)

RQ4: To what extent can actual causality be checked or inferred without restricting causal model
languages? (answered in Chapter 5)

1.1.2 Causal Modeling and Contextualization

Causality, based on HP, is model relative. Therefore, the action of creating a causal model is
a crucial step towards an effective causality inference. Halpern and Pearl themselves have
shown several times the difficulties of coming up with a proper model and its considerable
influence on the result of cause evaluation. Having a system-wide comprehensive causal
reasoning ability, i.e., one that explains all the events in a system, is an expensive, possibly
unrealistic, goal to achieve. In this thesis, we assume that for accountability goals, including
only the factors (formalized in models) that lead to unwanted events, is sufficient. Thus,
our approach to causal modeling requires creating models of anticipated problems (e.g.,
security attacks, or safety hazards). This may seem intuitive; however, this is a fundamental
difference between our work and other approaches that require behavioral models (normal
behavior of the world) of the system [66, 64, 123].

To the best of our knowledge, no previous work has proposed practical methods to
create effective HP causal models for accountability purposes (Gap 3, analysis of the related
work that identified this gap is presented in Section 10.3). Since such methods can only be
designed domain specifically, we emphasize reusing the knowledge represented in domain-
specific artifacts and transforming them into causal models that support accountability
analysis. Thus, we study the interaction between causal models and other sources of knowl-
edge. Instances of before-mentioned sources include security threat modeling techniques
such as attack trees [179] and attack graphs [182], hazard modeling techniques such as fault
trees [26] and why-because-graphs [119], and tabular models learned by machine learning
algorithms such as decision trees. As such, we phrase the corresponding research question.

RQ5: How can existing domain-specific models enable practical causal modeling for purposes of
accountability? (answered by examples in Chapter 6 and Chapter 7)

Contextualization refers to the description of the circumstances around a particular event
as an assignment of values to variables. From an operational perspective, context-setting
roughly includes system monitoring and logging. We refer to monitoring as the mechanism
of observing specific events and keeping a record, i.e., a log of these events. Usually,
technical components such as programs or sensors generate log statements that describe the
occurrence of an event at different levels of granularity. Clearly, logging brings an overhead
to systems. The overhead starts at the design time by incurring some development activities
for logging and continues at run-time with more disk operations. Lastly, during the log
analysis phase, we end up with a massive number of events logged [59]. Hence, we need
to think about the logs’ properties– the content, the granularity, the frequency, and the

10

1.2 Goal and Benefits

format– beforehand. To the best of our knowledge, the current state of research lacks
practical, practitioner-friendly, (semi-) automated methodologies to define logging and
monitoring requirements specifically for domains related to accountability (Gap 4, analysis
of the related work that identified this gap is presented in Section 10.4).

RQ6: How can we balance the trade-off between logging exhaustiveness and practical analysis of
logs? (answered by an example in Chapter 8)

1.2 Goal and Benefits

Accountability mechanisms, which employ automated causal reasoning to determine re-
sponsible parties for specific observations, are needed. Thus, the overall goal of this thesis
is to enable accountability in modern systems by constructing such mechanisms. From
our perspective, this entails proposing a general framework to operationalize actual causal-
ity reasoning. We realize our framework with practical, efficient, effective, and sound
algorithms, methodologies, and tools to address problems of causal modeling, contextual-
ization, and reasoning. Figure 1.3 shows a preliminary view of these tasks; throughout the
thesis, we will define each part of this architecture. Consequently, such activities can be
orchestrated by different stakeholders to achieve accountability, and its related concepts
like responsibility [33], explainability [141], and fairness [141].

Causal Modeling Context Setting Causal Reasoning

Figure 1.3: An Abstract Architecture of the Solution; reasoning is dependent on the output
of causal modeling and contextualization.

Although we aim for a general framework of accountability, its benefits are only clear
when considered in a specific domain of applications. For instance, since cyber-physical
systems such as drones or airplanes may harm people when they fail, building such systems
to be accountable is a necessity [95, 120, 104, 167]. In security-critical systems, if preventive
measures fail, especially with attacks from the inside [101], accountability, in the sense
of attack attribution, is potentially a deterrent measure. In the case of a drone crash, it
is imperative to find and address the root cause to prevent future mishaps; in aircraft

11

1 Introduction

accidents, accountability is part of the judicial process to assign liability and responsibility.
In the third domain of applications, systems that are trained to make predictions, deci-
sions, and classifications of humans based on data, often require methods to explain their
results. For example, when a bank uses machine learning to determine a customer’s loan
adequacy, accountability, in the sense of explaining system decisions, contributes to the
trust, transparency, compliance, and debugging of these systems [141].

1.3 Solution

As mentioned above, in this thesis, we propose an approach to enable systems to reason
about the causes of unwanted behavior, thus, be accountable. We realize our aim through
the design, implementation, and evaluation of a chain of methods that tackle three different
problems related to causal modeling, contextualization, and reasoning. In the course of this,
we study different domains of applications where accountability can be partially or fully
utilized. We derive a methodology to enable accountability for purposes of security, safety,
and explainability. Our approach aids in understanding what is attribute specific (e.g.,
security, safety) and what is domain-specific (e.g., insiders in information systems), and
what is general. Abstractly speaking, to achieve this goal, we use two central ideas.

1. Expressing the problem of actual causality reasoning as a combinatorial optimization
problem. Consequently, we employ state-of-the-art techniques to compute causality
and reflect on the properties of the solution from the causality perspective.

2. Studying the correspondence between causal models and domain-specific models to
identify potential sources of knowledge. Then, we propose methods to create and
contextualize causal models either by transformation or automatic generation.

1.4 Contributions

In this thesis, we describe the different ingredients that are required to achieve our aim of
enabling accountability in systems. The focus, however, is put on the technical and practical
utilization of the actual causality foundation as a cornerstone to achieve our goal. To that
end, the contributions of this research are the following:

1. Causal Reasoning. To close Gap 2, we conceptualize a novel robust framework
to reason about actual causality in acyclic models. The framework comprises the
following set of algorithms that we designed, implemented, and evaluated:

• a sound encoding of causality checking queries in binary models using Boolean
satisfiability problem (Chapter 3),

• several sound reformulations of the SAT encoding to deal with limitations of the
original approach, and to support essential concepts from the causality theory
such as the degree of responsibility (Chapter 3),

12

1.4 Contributions

• an approach to formulate causality checking, over binary acyclic models, as
an optimization problem, based on quantifiable notions within counterfactual
computations. We contribute and compare two compact, non-trivial, and sound
integer linear programming (ILP) and Maximum Satisfiability (MaxSAT) encod-
ings to check causality, and better they can determine a minimal cause from a
potentially non-minimal candidate cause (Chapter 4),

• a multi-objective optimization problem formulation of causality inference in
binary models that utilizes the degree of responsibility (Chapter 4), and

• a generalization of the single-objective optimization problem formulation that
eliminates the limitation to binary models to check actual causality in numerical
models (Chapter 5).

2. Causal Modeling and Contextualization. These are two generic problems that can-
not be addressed with general solutions. Hence, in this thesis, we show how to
address them in a domain-specific context. To close Gap 3 and Gap 4, we propose and
evaluate practical, effective, and (semi-)automated methods for causal modeling and
contextualization to support causal reasoning in the domain of microservice-based
information systems. Specifically, we contribute:

• an approach to construct causal models by extracting knowledge from exist-
ing threat models, or automatically generating these models (Chapter 6 and
Chapter 7), and

• a methodology that advocates on the right level of abstraction, granularity, fre-
quency, and specificity of logging for purposes of contextualization (Chapter 8).

3. A Unifying Framework. To fill Gap 1 and generalize the solution of filling Gap 3
and Gap 4, we propose a unifying methodology to operationalize actual causality
activities and demonstrate its accountability purposes (Chapter 9). The methodology
is supported with:

• a general-purpose, interactive platform called the Actual Causality Canvas (short:
Canvas), which supports discovering and updating the system’s knowledge of
causal relations, automates contextualization, and facilitates reasoning, and

• four instantiations of the framework in such areas as aircraft accidents, microser-
vices systems, unmanned aerial vehicles, and artificial intelligence (AI) systems
for purposes of forensic investigation, fault diagnosis, and explainable AI.

Parts of the contributions of this thesis have previously appeared in the following peer-
reviewed publications, co-authored by the author of this thesis (ordered according to their
appearance in the following chapters):

1. Ibrahim, A., Rehwald, S., Pretschner, A. (2019). Efficient Checking of Actual Causality
with SAT Solving. Engineering Secure and Dependable Software Systems, 53, 241.

13

1 Introduction

2. Ibrahim, A., Pretschner, A. (2020) From Checking to Inference: Actual Causality
Computations as Optimization Problems. In Automated Technology for Verification
and Analysis. ATVA 2020. Lecture Notes in Computer Science, vol 12302. Springer,
Cham.

3. Ibrahim, A., Rehwald, S., Scemama, A., Andres, F., Pretschner, A. (2020). Causal
Model Extraction from Attack Trees to Attribute Malicious Insider Attacks. In Interna-
tional Workshop on Graphical Models for Security. GraMSec 2020. Lecture Notes in
Computer Science, vol 12419. Springer, Cham.

4. Ibrahim, A., Kacianka, S., Pretschner, A., Hartsell, C., Karsai, G. (2019, May). Practical
Causal Models for Cyber-physical Systems. In NASA Formal Methods Symposium
(pp. 211-227). Springer, Cham.

5. Ibrahim, A., Bozhinoski, S., Pretschner, A. (2019, April). Attack Graph Generation for
Microservice Architecture. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing (pp. 1235-1242).

6. Ibrahim, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A. (2020). Actual Causality
Canvas: A General Framework for Explanation-based Socio-Technical Constructs. In
Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (pp.
2978 - 2985).

In addition, the author of this thesis has co-authored the following peer-reviewed publi-
cations, which tackle relevant problems related to the topic of this thesis but are not part of
this thesis:

1. Ahmadvand, M., and Ibrahim, A. (2016, September). Requirements reconciliation for
scalable and secure microservice (de) composition. In 2016 IEEE 24th International
Requirements Engineering Conference Workshops (REW) (pp. 68-73). IEEE.

2. Rehwald, S., Ibrahim, A., Beckers, K., Pretschner, A. (2017). Accbench: A framework
for comparing causality algorithms. In Proceedings of Workshop on Causal Reasoning
for Embedded and safety-critical Systems Technologies CREST 2017, Sweden, (pp.
16–30).

3. Kacianka, S., Ibrahim, A., Pretschner, A., Trende, A., Lüdtke, A. (2019). Extending
Causal Models from Machines into Humans. In 4th Workshop on Formal Reasoning
about Causation, Responsibility, and Explanations in Science and Technology.

4. Kacianka, S., Ibrahim, A., Pretschner, A. (2020). Expressing Accountability Patterns
using Structural Causal Models. arXiv preprint arXiv:2005.03294. Under review.

14

1.5 Summary of Results

1.5 Summary of Results

The main results obtained from the research conducted as part of this thesis are:

1. When limiting ourselves to binary causal models, actual causality is checked and
inferred efficiently with large models. As we show in Chapter 3 and Chapter 4,
different flavors of causality computation that cater to different requirements of causal
queries vary in their efficiency.

2. Actual causality queries, especially when presented as optimization problems, can be
answered within seconds even for large models, and they can be tailored to search
for actual causes intelligently. Also, quantifiable notions related to causality are an
essential factor to enable causality inference because they provide a sound foundation
to compare causes.

3. When considering non-binary causal models such as numeric causal models, actual
causality computations are efficient and scale to an acceptable size (around 2000
variables) of causal models.

4. Causal modeling and contextualization are effectively operationalized utilizing domain-
specific artifacts. The domain of micro-service-based systems, for instance, bene-
fits from enabling accountability in the context of insiders. Attack trees, depicting
potential attacks by insiders, are a useful template to create causal models semi-
automatically. The automation considers domain-specific attributes such as collusion
attacks, and preemption. Further, such templates and, in turn, causal models can be
automatically generated. This practical operationalization of modeling enhances con-
textualization as well. In this domain, contextualization is effectively and efficiently
achieved through model-driven methodologies that advocate on the right level of
logging.

5. Given general and efficient reasoning mechanisms and practical modeling and con-
textualization approaches, the operationalization of actual causality theories can be
integrated into modern systems with minimal effort, using our unifying framework.

1.6 Structure

In addition to the introduction given in this chapter, Chapter 2 provides the required details
to understand the theory of actual causality.

Then, in the second part of this thesis, we tackle the computational aspects of actual
causality. Specifically, in Chapter 3, we present a set of SAT-based algorithms to handle
the problem of causality checking. Then, in Chapter 4, we introduce methods to formulate
the causality checks as optimization problems, opening the door to support other notions
of reasoning. Chapter 5 is the last chapter in the second part of this thesis; it presents an

15

1 Introduction

approach that generalizes the ideas from Chapter 3 and Chapter 4 to support non-binary
models.

Causal modeling and contextualization are crucial to enable causality reasoning. Al-
though they are generic problems, they can only be solved domain-specifically. Thus, in the
third part of the thesis, we show how our reasoning technology can be applied leveraging
approaches to automate modeling and contextualization in the domain of microservices.
In Chapter 6, we show how to extract causal models from attack trees to attribute insider
attacks. Then, in Chapter 7, we present an idea of how causal models can be automati-
cally generated from network architectures and other sources. In Chapter 8, we describe
an approach that leverages the models from previous chapters to guide the activities of
monitoring and logging in modern information systems.

In the fourth part of this thesis, we present a generic framework (Chapter 9) that unifies
our contributions to operationalize actual causality reasoning. Lastly, in the fifth part of this
thesis, we overview the related work in Chapter 10, discuss the limitations and conclusions
of the thesis in Chapter 11. We provide additional details related to our experiments in
Appendix A.

16

2 Background

This chapter presents the formal foundations required to understand the concept
of actual causality.

2.1 Overview

The Halpern-Pearl definition of (actual) causality (HP) is a well-known approach based on
counterfactual reasoning and structural equations. Published for the first time in [79, 80]
(original HP definition), the HP definition was updated in [81, 83] (updated HP definition)
and, more recently, again modified in [74] (modified HP definition). We use the modified
HP definition because it is simpler, solves problems described by various other authors,
leads to (more) reasonable results for some causal scenarios, and reduces computational
complexity [74].

The counterfactual view on causality goes to Hume (1748) [92]. Informally, counterfactual
reasoning is thinking of alternative worlds, where (counter to the fact) if the cause is removed,
the effect does not happen. A typical example of counterfactual reasoning is observed
among sports fans [62]. Typically, fans of losing sports teams tend to describe scenarios
where their team loss, would not have occurred had some events changed during the game.
For example, had Roberto Baggio (not) missed the penalty kick, Italy would not have lost the world
cup in 1994. Counterfactual reasoning is simply a but-for test, i.e., “but for the existence of X,
would Y have occurred?" Although the test seems straightforward, answering such queries
about a system is metaphysical; we do not possess the ability to create and manipulate
alternative worlds. Thus, structural-equation models (details in Section 2.2) are introduced
to formalize the knowledge and the counterfactual reasoning.

Counterfactual causality has two notions [75]. The first is general (type) causality, which
is concerned with reasoning about effects of causes. For example, a statement such as fatigue
causes accidents is a type causal statement, which aids scientists in predicting and prevent
future accidents. Type causality, as seen by Halpern [75], is forward-looking since it is
used to predict future effects. The second notion of causality is the actual causality. Actual
causality “is the retrospective causal attribution of specific past events.”1 For example, this
sentence from the press release around the Hudson incident (also known as Miracle on

1Source: a talk by Christopher Hitchcock at Judea Pearl Symposium(2010), https://www.youtube.com/
watch?v=FfPYZM6Avag, last accessed: July 2020

17

https://www.youtube.com/watch?v=FfPYZM6Avag
https://www.youtube.com/watch?v=FfPYZM6Avag

2 Background

the Hudson incident)2 is an actual causation statement “... the ingestion of large birds into
each engine, ... resulted in an almost total loss of thrust in both engines." In contrast to type
causality, such statements are important when aiming to attribute blame to a specific event.

Accountability requires actual causality. Our definition of accountability entails answer-
ing questions regarding unwanted events. Intuitively, this means that we are considering a
specific outcome that has occurred and are trying to find its cause. To deal with problematic
cases and limitations of but-for tests,3 Halpern and Pearl introduced their definition of
actual causality.

In this chapter, a short overview of the latest, modified version of the HP definition of
causality is given [74]. This includes the structure of causal models (Section 2.2), the
language and the definition of actual causality (Section 2.3), and the extension of the
definition to include responsibility (Section 2.4). Finally, a discussion of the advantages
and challenges of HP concludes the chapter (Section 2.5). This chapter can be skipped for a
reader with previous knowledge of HP.

2.2 Causal Models

HP uses variables to describe the world and structural equations to define its mechanics [155].
The variables are split into exogenous and endogenous. The values of the former, called a
context ~u, are governed by factors that are not part of the modeled world (they represent
the environment). The endogenous variables, in contrast, are determined by equations
of exogenous and endogenous variables. In this formulation, we look at causes within a
specified universe of discourse represented by the endogenous variables, while exogenous
variables are not considered to be part of a cause but rather as given information. An
equation represents the semantics of the dependency of the endogenous variable on other
variables.

Consider the following example (adapted with some changes from [155]): We observe
that the grass in our garden is wet and know that there are only two possible causes for
that, namely the sprinkler or rain. We could define the three variables GW for “grass is
wet”, S for “sprinkler was on” and R for “it was raining”. We could then say that GW takes
on value 1 if S or R are 1 (and not 0) and that the values of S and R are defined by two
exogenous variables Sexo and Rexo. That is, we would have three structural equations, each
of which determines the value of one of the variables. To formally define a causal model, we
first need to introduce and define the term signature.

2US Airways Flight 1549 which, in the climbout after takeoff from LaGuardia Airport on January 15, 2009,
struck a flock of Canada geese just northeast of the George Washington Bridge and consequently lost all
engine power. Unable to reach any airport, pilots Chesley Sullenberger and Jeffrey Skiles glided the plane
to a ditching in the Hudson River. All 155 people aboard were rescued.
https://www.ntsb.gov/news/press-releases/Pages/CREW_Actions_and_Safety_
Equipment_Credited_with_Saving_Lives_in_US_Airways_1549_Hudson_River_
Ditching_NTSB_Says.aspx

3A discussion of the limitations of but-for testing can be consulted in [123, 122].

18

https://www.ntsb.gov/news/press-releases/Pages/CREW_Actions_and_Safety_Equipment_Credited_with_Saving_Lives_in_US_Airways_1549_Hudson_River_Ditching_NTSB_Says.aspx
https://www.ntsb.gov/news/press-releases/Pages/CREW_Actions_and_Safety_Equipment_Credited_with_Saving_Lives_in_US_Airways_1549_Hudson_River_Ditching_NTSB_Says.aspx
https://www.ntsb.gov/news/press-releases/Pages/CREW_Actions_and_Safety_Equipment_Credited_with_Saving_Lives_in_US_Airways_1549_Hudson_River_Ditching_NTSB_Says.aspx

2.2 Causal Models

Definition 2.1. Signature [157]: A signature S is a tuple S = (U ,V,R), where

• U is a set of exogenous variables,

• V is a set of endogenous variables and

• R associates with every Y ∈ U ∪ V a nonempty setR(Y) of possible values for Y .

Distinguishing between exogenous and endogenous variables allows focusing on causal
relationships between selected variables. Kuntz et al. describe an example, which illustrates
the usefulness of this distinction [117]. We want to examine the cause of a concrete accident
at a railway crossing. Since we do not want the decision of the train engineer union not to
strike on that day to be considered as a potential cause of the accident, we can model this
decision as an exogenous variable. It is thus assumed as given for the causal analysis and
we can focus on more relevant variables like the fact that the gates did not close in time.
This property should, therefore, be modeled as an endogenous variable. We can now define
causal models.

Definition 2.2. Causal Model [157]: A causal model M is a tuple M = (S,F), where

• S is a signature and

• F associates with each endogenous variable X ∈ V a function
FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y))→ R(X)

The set of functions F in a causal model describes a set of structural equations. Defini-
tion 2.2 makes precise the fact that FX determines the value of X , given the values of all the
other variables. The structural equations formalize inter-dependencies among variables.
In their examples, Halpern and Pearl focus their models to recursive (acyclic) equations.
However, Halpern also provided an extension of the definition that generalizes to cyclic
ones.

Definition 2.3. Acyclic Equations [157]: If FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all y, y′ ∈
R(Y), then we call FX independent of Y and we write X ≺ Y . A causal modelM = (S,F) with
signature S = (U ,V,R) is recursive (acyclic), if there is a total ordering ≺ on the variables in V .

In this thesis, we limit ourselves to acyclic models. If a causal model is acyclic, there is
always a unique solution to the equations given the values of the exogenous variables;4

we refer to the solution as the actual evaluation of the model. The solution is obtained by
solving the equations for the endogenous variables in the order defined by ≺. A causal
model is visualized as causal networks– a graph with the variables U ∪ V as nodes. There is
an edge from a node X to a node Y in the causal network, if FY depends on X in the causal
model, i.e., X appears on the right side of the equation defining FY . For recursive models,
the causal network is a directed, acyclic graph.

4This, however, does not mean that a unique cause necessarily exists. As we shall see in Section 2.3, within a
unique solution, one or multiple causes may satisfy the conditions in Definition 2.4.

19

2 Background

2.3 Reasoning about Causality

In this section, we present the formal language used by Halpern and Pearl ([78], [82]). These
notations are necessary for the definition of an actual cause, which follows in Definition 2.4.

A primitive event is a formula of the form X = x, for X ∈ V and x is its value, e.g., ∈ {0, 1}
for binary models. A sequence of variables X1, ..., Xn is abbreviated as ~X . Analogously,
X1 = x1, ..., Xn = xn is abbreviated ~X = ~x. ϕ is a Boolean combination of such events.
(M,~u) |= X = x if the variable X has value x in the unique solution to the equations in
M given context ~u (values of the exogenous variables). The value of a variable Y can be
overwritten by a value y (known as an intervention) writing Y ← y (analogously ~Y ← ~y
for vectors). Then, a causal formula is of the form [Y1 ← y1, ..., Yk ← yk]ϕ, where Y1, ..., Yk
are distinct variables in V that make ϕ hold when they are set to ~y. We write (M,~u) |= ϕ if
the causal formula ϕ is true in M given context ~u. Lastly, (M,~u) |= [~Y ← ~y]ϕ holds if we
replace the equations for the variables in ~Y by equations of the form Y = y denoted by
(M~Y=~y, ~u) |= ϕ [75]. That is the act of intervention means the replacement of the equation
in the model with an equation that hard-codes the value to a fixed value.

A causal formula ψ can be evaluated to true or false in a causal model M given a context
~u. We write (M,−→u) |= ψ if ψ evaluates to true in the causal model M given context ~u.
This is, the statement (M,~u) |= [~Y ← ~y](X = x) implies that solving the equations in the
submodel M~Y←~y with context ~u yields the value x for variable X .

All three versions of HP ([78], [82], [74]) have the same structure. They consist of three
clauses AC1, AC2, and AC3 (AC stands for actual cause). The AC1 and AC3 rules have
stayed the same throughout the three versions, only AC2 has changed.

Definition 2.4. Actual Cause (latest/modified version [74])
~X = ~x is an actual cause of ϕ in (M,~u) if the following three conditions hold:
AC1. (M,~u) |= (~X = ~x) and (M,~u) |= ϕ.
AC2. There is a set ~W of variables in V and a setting ~x′ of the variables in ~X such that if
(M,~u) |= ~W = ~w, then (M,~u) |= [~X ← ~x′, ~W ← ~w]¬ϕ.
AC3. ~X is minimal, i.e., no subset of ~X satisfies conditions AC1 and AC2.

With AC1, it is ensured that the events ~X = ~x are only considered as a cause of ϕ if both
occurred, i.e., the cause is sufficient for the occurrence of the effect. Formally: ~X = ~x can
only be a cause of ϕ, if ~X = ~x and ϕ are true under (M,~u). For example, the sprinkler can
only be a cause for the grass being wet if the grass is actually wet, and the sprinkler was on.
AC2 checks the counterfactual (necessary) relation between the cause and effect. It holds
if there exists a setting ~x′ for the cause variables ~X different from the actual evaluation ~x
(in binary models such a setting is the negation of the actual setting [98]), and another set
of variables ~W , referred to as a contingency set, that we use to fix variables at their actual
values, such that ϕ does not occur anymore. The contingency set ~W is meant to deal with
issues such as preemption and redundancy. Preemption is a problematic situation where

20

2.3 Reasoning about Causality

multiple possible causes coincide (illustrated by an example below) [126]; thus a naive
counterfactual check cannot determine the cause [123]. AC3 checks that ~X is minimal in
fulfilling the previous conditions (AC1 and AC2). To check a cause, we need to think of
two worlds (variable assignments): the actual world with all the values known to us, and
the counterfactual one in which the cause and effect take on different values. Two factors
further complicate the search for this counterfactual world. First, finding an arbitrary ~W ,
such that AC2 holds which is exponential in the worst case. Second, no (non-empty) subset
of the cause variables is sufficient for constructing such a counterfactual world. The tuple
(~W, ~w, ~x′) is called a witness of ~X = ~x being a cause of ϕ. The role of the contingency set
~W becomes more clear when considering one of Halpern and Pearl’s [79, 81] examples
described in the following: (due to Lewis [126]).

Suzy and Billy both throw a rock on a bottle which shatters if one of them
hits. Furthermore, we know that Suzy’s rock hits the bottle slightly earlier than
Billy’s and both are accurate throwers. In [79, 81, 74], this world is modeled
with the following variables (exogenous variables are excluded). The causal
model is depicted in Figure 2.1.

• ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she
does),

• BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does),

• BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and
1 (it does),

• SH for “Suzy’s rock hits the bottle”, again with values 0 and 1,

• BS for “bottle shatters”, with values 0 (it doesn’t shatter) and 1 (it does),

and equations

• BS is 1 iff one of SH and BH is 1, i.e., BS = SH ∨BH ,

• SH is 1 if ST is 1, i.e., SH = ST ,

• BH = 1 if BT = 1 and SH = 0, i.e., BH = BT ∧ ¬SH .

BT

ST

BH

SH

BS

Each node A represents an endogenous variable; an edge from A to B means that B “depends” on A.

Figure 2.1: Rock-Throwing Example (Source: [79])

21

2 Background

Let us assume that we are given a context ~u that sets ST = 1 and BT = 1. As a result, we
have SH = 1, BH = 0 and BS = 1. We now want to find out whether ST = 1, BT = 1, or
both are a cause for BS = 1. We begin by checking whether ST = 1 is a cause. Obviously,
AC1 is fulfilled as both ST = 1 and BS = 1 actually happened in our example. Since ST
(and all other variables likewise) can only take on two different values, the only possibility
for a setting ~x′ for ST is 0, i.e., Suzy does not throw. A first attempt with ~W = ∅ shows
that AC2 does not hold: If ST = 0, then SH = 0 such that BH changes to 1 as we did not
change BT and ultimately BS is still 1. However, the HP definition allows us to define
~W = {BH}, i.e., we replace the original equation of BH with BH = 0 which was its value
in the original scenario. Now, AC2 holds as BS = 0 and so does AC3 as our cause ST = 1

already consists of a single primitive event only. This example illustrates the use of ~W . In
the original scenario, Billy did not hit the bottle, because Suzy has hit it before. Hence, [74]
argues that it is reasonable to keep some variables at their values of the original context
even though the causal model and its equations alone would define another value. Taking
a look at BT = 1 as cause for BS = 1, we can immediately see that AC1 is fulfilled as well.
Similar to ST , the only possible setting ~x′ for BT is 0. However, this does not affect BS and
it is also not possible to find a ~W such that (M,~u) |= [~X ← ~x′, ~W ← ~w]¬ϕ would hold. That
is, BT = 1 is not a cause. Also, ST = 1∧BT = 1, i.e., the conjunction of both, is not a cause,
since it would not fulfill AC3: There is a subset, namely ST = 1, which is a cause by itself.

In the previous example, we see that due to the fact that Suzy did throw a rock, the latter
action is considered as a cause. However, Halpern points out that also the opposite, i.e.,
that something does not happen, can be considered as cause according to the HP definition
in some scenarios. The following example shows the concept [75]:

Billy, having stayed out in the cold too long throwing rocks, contracts a serious
but nonfatal disease. He is hospitalized and treated on Monday, so he is fine
Tuesday morning.

The story is modeled using variables MT (“Monday treatment”), which is 1/0 if Billy
does/does not get his treatment on Monday, andBMC (“Billy’s medical condition”), which
is 0/1 if Billy did/did not recover on Tuesday morning. Even though the author does not
explicitly specify the equations, we can see that BMC must be defined as BMC = ¬MT ,
i.e., BMC = 1 if MT = 0. In his example, Halpern now assumes a scenario in which Billy
is sick on Monday, but the doctor does not treat him. Hence, MT = 0 and BMC = 1.
Asking whether MT = 0 causes BMC = 1, we can easily see that it fulfills AC1, AC2, and
AC3 and is thus a cause according to the HP definition: AC1 and AC3 trivially hold; for
AC2, we change MT = 0 to MT = 1, i.e., the doctor now does treat Billy, which leads to
BMC = 0, i.e., Billy recovered on Tuesday. This shows that also not doing something or
the non-occurrence of an event can be a cause.5

5These examples are only two out of many others in [74] as well as [79, 80, 81, 83] and [75]. For a thorough
understanding of the HP definition it might therefore be helpful to consider the mentioned papers.

22

2.4 Responsibility as an Extension

2.4 Responsibility as an Extension

As opposed to the all-or-nothing treatment of causality, Chockler and Halpern added ([33],
modified in [75]) a notion of responsibility to a cause. They introduced a metric, degree
of responsibility (dr), that “measures the minimal number of changes needed to make ϕ
counterfactually depend on X .” Their idea is often motivated with an example of 11 voters
that can vote for Suzy or Billy. If Suzy wins 6-5, we can show that each Suzy voter is a
cause of her winning. If Suzy wins 11-0, then each subset of size six of the voters is a cause.
The authors argue that in 11-0 scenario, “a voter feels less responsible” compared to 6-5
situation. Definition 2.5 shows dr [33, 75], which we use for causality inference in our work.

Definition 2.5. (Degree of Responsibility). The degree of responsibility of X = x for ϕ in
(M,~u) according to the modified HP definition denoted dr((M,~u), (X = x), ϕ), is 0 if X = x is
not part of a cause of ϕ in (M,~u) according to the modified HP definition; it is 1/k if there exists
a cause ~X = ~x of ϕ and a witness (~W, ~w, ~x′) to ~X = ~x being a cause of ϕ in (M,~u) such that (a)
X = x is a conjunct of ~X = ~x, (b) | ~W |+ | ~X| = k, and (c) k is minimal, in that there is no cause
~X1 = ~x1 for ϕ and a witness (~W ′, ~w′, ~x′1) to ~X1 = ~x1 being a cause of ϕ in (M,~u) according to the
modified HP definition that includes X = x as a conjunct with | ~W ′|+ | ~X1| < k.

Since in the 11-0 voting scenario each voter is part of a cause ~X = ~x, | ~X| = 6 and we can
show that ~X = ~x is a cause for Suzy winning the vote with ~W = ∅, the responsibility of
each voter is 1/6. Taking the rock-throwing example, the responsibility of ST = 1 is 1/2,
because we had ~W = {BH}, and the responsibility of BT = 1 is 0 because we showed that
Billy’s throw is not a cause according to the HP definition.

2.5 Discussion

HP is probably one of the most referred definitions of causality in computer science research.
Halpern and Pearl’s main contribution is to give a very general and broadly applicable
definition. Gössler and Le Metayer’s trace-based approach [66], is, for example, inherently
well suited for real-time systems, but is not trivially applicable to other types of systems.
Leitner-Fischer and Leue [123] on the other hand gear their work to applicability in the
automotive industry. In contrast to these causality definitions, HP is very open towards
possible fields of application.

One reason for HP’s variability is the simple structure the definition is based upon. Every
world that can be described using random variables for its properties and combining the
variables in structural equations to define the world’s mechanisms, can be modeled with
the definition. To reason over causal relationships in the world, (partial) observability of
the values of the variables is additionally needed.

The HP definition was decisively affected by the problems other approaches encountered.
Therefore, the qualities of the definition manifest particularly in comparison to other

23

2 Background

definitions. The following is a list of problems that HP deals with well according to Halpern
and Pearl [82].

• Distinguishing between exogenous and endogenous variables, at first sight, does not
appear to be revolutionary. However, this distinction enables the choice of what to
count as a possible cause (endogenous) and what not to (exogenous). Hence, it treats
cases of irrelevance. Consequently, it allows us to limit our attribution based on
the goal. If we are looking for legal evidence, then we can include possible human
actors in the set of endogenous variables. If we are looking for an explanation of
an intrusion, then we can include the running services as endogenous variables.
Furthermore, HP correctly classifies the non-occurrence of events as causes. For
example, an administrator “forgetting” to install the latest update of the firmware on
a server can be a cause of an exploit.

• A typical problem of causality definitions, which HP deals with, is preemption. It
resembles the confusing cases where several potential causes exist and coincide, but
one cause preempts the others. The problem for simple counterfactual definitions
is that if the earlier cause A had not been there, cause B would have triggered the
effect anyway (just a bit later). Thus, A is not classified as a cause. HP deals with this
by using

−→
W from Definition 2.4 and auxiliary variables. Accounting for preemption

in accountable systems is beneficial. Consider, for example, security attacks with
different strategies of attacking. For instance, an administrator copying a DB backup
file, although this is a policy violation, is not the actual cause of the data breach that
happened. The copy act was preempted by a privilege abuse of another employee.
Further, differentiating actual causes in cases of preemption is crucial when preventive
measures such as an intrusion detection system (IDS) are deployed. For example, an
IDS may preempt an attack from succeeding although the basic steps of the attack
were carried out.

• Conjunction and Disjunction as causes. HP can consider a combination of events as a
cause. There are attacks that are carried out by multiple steps and hence are modeled
using an AND gate. For example, to read a service’s memory, an attacker accesses the
machine, then attaches a debugger to the running process. On the other hand, there
are attacks that can be carried out using different techniques or by exploiting different
vulnerabilities. For example, to steal the master key from a system, the attacker can
either obtain it decrypted from memory or encrypted from the database (the attacker
then has to decrypt it). A more interesting scenario would be if two agents cooperated
in carrying out an attack, i.e., a collusion attack. Such attacks are a major threat class
of insiders [109].

• There is a number of further problems such as double prevention, bogus prevention,
causation by omission and commission, and trumping preemption. The HP definition
is able to deal with those problems, sometimes with extensions to the definition. An

24

2.6 Summary

example of such extensions is the set of allowable settings for endogenous variables,
presented in [82]. Another important extension is presented by Halpern and Hitch-
cock [77]; they introduce an addition to the HP definition considering normality to
deal with the so-called problem of disagreement.

A challenge of the HP definition is the question of setting up a causal model. Halpern
and Pearl themselves have shown several times the difficulties of coming up with a proper
model and the considerable influence of the model on the result of the evaluation of
causes [82]. Additionally, the size of the models in practice is significantly larger than the
examples given by Halpern and Pearl. This raises the question of how to build big causal
models properly and naturally leads to the question of (semi-) automatic model creation. In
contrast to that, Gössler and Le Metayer’s approach relies on program specifications for
causal reasoning, which is simply closer to software design than the HP definition [66].

Lastly, the main HP challenge arises from the perspective of inferring causality. Apart
from the formal correctness of the definition of causality, practical applicability is an impor-
tant matter. In particular, the automated evaluation of causes for a certain event should be
possible efficiently. Three papers have examined the question of complexity of the different
versions of the HP definition. Eiter and Lukasiewicz [48] analyzed the first version of the
definition [78]. Aleksandrowicz et al. [6] conducted the analysis for the updated version
of the HP definition [82]. Halpern himself also discussed the complexity of his modified
version of the definition when introducing it [74].

Halpern shows that under the modified HP definition, determining causality is in general
(binary and non-binary models), i.e., given ~X = ~x, DP

1 -complete and NP -complete given
a singleton cause X = x. The family of complexity classes DP

k with k = 1, 2, 3, ... was
introduced by [6]. Following them, DP

k is a generalization of DP (= DP
1) introduced

by [152], who show that NP ⊆ DP . Specifically, checking AC1 can be done in polynomial
time (P). However, checking AC2 is NP -complete, and checking AC3 is co−NP -complete.
For binary models, complexity considerations may suggest a reduction to SAT or Integer
Linear Programming [37, 107, 74]. Thus, causality checking using the HP definition is hard.
While this might not be problematic for the rather basic examples in [74, 75] whose major
purpose seems to be to help understanding the HP definition, in industry-relevant causal
models regarding, for instance, aircraft or software systems, manually determining causes
might not be a feasible option anymore.

2.6 Summary

We presented the preliminaries for understanding this thesis. We pointed out the various
aspects and concepts of the theory of actual causality proposed by the modified HP definition
(Definition 2.4) and illustrated them using examples. We saw that it consists of three
conditions AC1, AC2, and AC3, all of which need to be fulfilled such that we call conjunction
of primitive events ~X = ~x a cause for a combination of primitive events ϕ under a context
~u in a causal model M . We discussed the advantages and challenges of the definition.

25

Part II

Computational Aspects of Actual
Causality Reasoning

Causal Modeling Context Setting Causal Reasoning

27

3 Efficiently Checking Actual Causality with
SAT Solving

This chapter presents a novel encoding of binary causality checking queries
into SAT. Several other encodings are derived and evaluated as part of the
chapter. Parts of this chapter have previously appeared in the publication [98],
co-authored by the author of this thesis.1

3.1 Introduction

As we have seen in Chapter 2, HP provides a definition of when we can call one or more
events a cause of another event in a way that captures human intuition. When automated,
this definition can, then, be used to answer causal queries in the postmortem of unwanted
behavior; it is a vital ingredient to enable accountability. Causality checking, using any
version of HP, is computationally hard. Halpern shows that under the modified HP definition,
determining causality, i.e., computing AC1, AC2, and AC3, is in general DP

1 -complete and
NP -complete given a singleton cause [75, 74].2 In Table 3.1, the complexity of each single
condition of the HP definition is detailed. As we can see, AC2 and AC3 are computationally
hard because they are in NP and co-NP , respectively, while AC1 can be computed in
polynomial time.

AC1 AC2 AC3
P NP co-NP

Table 3.1: Complexity of AC1, AC2, and AC3

The computational complexity led to a domain-specific (e.g., database queries, counter-
examples of model checking), adapted (e.g., use lineage of queries, use Kripke structure

1Parts of this chapter are reprinted from Engineering Secure and Dependable Software Systems, 53, Ibrahim
et al., Efficient Checking of Actual Causality with SAT Solving, 241 - 255, (2019), with permission from IOS
Press. The publication is available at IOS Press through http://dx.doi.org/10.3233/978-1-61499-977-5-241

2Recall that the family of complexity classes DP
k with k = 1, 2, 3, ... was introduced by [6], who investigated

the complexity of the original and updated HP definition. Following them, DP
k is a generalization of DP

(= DP
1) proposed by [152], who show that NP ⊆ DP .

29

3 Efficiently Checking Actual Causality with SAT Solving

of programs), or restricted (e.g., monotone queries, singleton causes, single-equation mod-
els) utilization of HP for binary models (details in Chapter 10). Conversely, brute-force
approaches work with small models (less than 30 variables [89]) only. Therefore, to the
best of our knowledge, there exists no comprehensive, efficient, and scalable framework
for modeling and checking actual causality for binary models (i.e., models with binary
variables only). Consequently, no existing algorithm allows applying HP on more complex
examples than the simple cases in the literature.

In this chapter, we conceptualize a novel approach towards checking causality in acyclic
binary models based on the Boolean satisfiability problem (SAT). We intelligently encode
the core of HP as a SAT query that allows us to reuse the optimization power built into
SAT solvers. As a consequence of the rapid development of SAT solvers (1000X+ each
decade), they offer a promising tactic for any solution in formal methods and program
analysis [147]. Leveraging this power in causality establishes a robust framework for
efficiently reasoning about actual causality. Moreover, since the transformation of SAT
to other logic programming paradigms like answer set programming (ASP) or integer
linear programming is almost straightforward, this approach in this chapter establishes
the ground to tackle more causality issues (e.g., causality inference) using combinatorial
solving approaches.

In this chapter, we present our approach towards checking causality in binary models.
We begin by introducing a Brute-Force algorithm. Then, we present a SAT-based approach
to check actual causality over binary models. It includes three SAT-encodings that are
formally proved to reflect HP and two variants for optimization. We also show an empir-
ical evaluation that uses different examples to show the efficiency and scalability of our
approach.

3.2 Brute-Force Based Causality Checking

Both for the sake of comparison and demonstrating the complexity of checking actual
causality, we implemented a brute-force algorithm to check AC2 and AC3 of HP. AC1
verifies if the set of primitive events ~X = ~x and ϕ itself occurred in the evaluation of
M under context ~u. Hence, we only need to compute the values of all variables given
the values of the exogenous variables as defined by ~u and check whether the mentioned
conditions hold. Therefore, we do not explicitly propose an algorithm for AC1.

For AC2, we need to determine a set of variables ~W and a setting ~x′ for ~X such that
(M,~u) |= [~X ← ~x′, ~W ← ~w]¬ϕ given (M,~u) |= ~W = ~w. For Boolean variables, we define
~x′ as the negation of ~x (denoted by ¬~x); this is a result of Lemma 3.2 which we present in
Section 3.3. Then, ~W remains the only variable part of AC2 which requires enumerating all
possible combinations of variables. Before that, we can check whether AC2 already holds
for ~W = ∅. AC3, on the other hand, requires checking that the first two conditions do not
hold for any subset of ~X . Thus, the AC2 enumeration must be performed again, possibly,
for every subset of the ~X .

30

3.3 SAT Based Causality Checking

Algorithm 1 shows the two functions that correspond to the two conditions. The in-
put includes the model M , the context (the set of exogenous variables and their values)
〈U1, . . . , Un〉 = 〈u1, . . . , un〉, the effect as a boolean combination of variables ϕ, the candi-
date cause 〈X1, . . . , X`〉 = 〈x1, . . . , x`〉, and the evaluation of the endogenous variables
〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉. Function FulfillsAC2 starts by checking if ¬ϕ holds for an
empty ~W (Line 2). Otherwise, the function enumerates, in ascending order by size, the
powerset of endogenous variables V ∈M that are not part of ~X (Line 4). If we have found
a ~Wi for which AC2 holds, we return this set (Line 6). Otherwise, after iterating through
the powerset, we return false (Line 10) indicating that AC2 does not hold. If, ~X = ~x is not
a singleton cause and ϕ occurred, we check AC3 using FulfillsAC3. First, we compute the
powerset of ~X = ~x containing all its possible subsets while excluding the empty set and the
original cause. Then, we check if any one of them fulfills AC1 and AC2. Since we made sure
that ϕ actually happened, i.e., (M,~u) |= ϕ, it is sufficient for AC1 to analyze if all elements
of the current subset of the cause actually happened as well, i.e., (M,~u) |= (~Xi = ~xi). In
case we find a subset for which this condition holds, AC3 is violated (Line 16). Otherwise,
we return that AC3 is fulfilled (Line 20).

Since the size of the power set P(S) of a set S of size n is defined by |P(S)| = 2n, the
potential number of iterations for checking AC2, within Algorithm 1, and its execution
time increase exponentially with the number of endogenous variables in causal model M .
Also, if ~X consists of more than one element, the complexity of checking AC3 as proposed
increases exponentially as well because we need to consider each subset of ~X , which results
in checking its power set. Consequently, we think it is reasonable and necessary to search
for a more efficient approach.

3.3 SAT Based Causality Checking

We define the Boolean Satisfiability Problem, which is the first NP -complete problem [61],
as follows.

Definition 3.1. (Boolean Satisfiability Problem)[61, 180]. The Boolean Satisfiability Problem
(SAT) is defined as the question of whether there exists an assignment α (mapping from the variables
to the values 0 and 1) for a Boolean formula F such that Fα = 1. If so, we call F satisfiable,
otherwise unsatisfiable.

There are different variants of SAT, e.g., MaxSAT [128], UniqueSAT [21], or k-SAT [40].
Yet another variant is the so-called All-SAT problem, in which we want to identify not only
one but all satisfying assignments of a formula. We will use this concept in Section 3.3.2. A
possibility of obtaining all satisfying assignments is to iteratively constrain a given formula
with the solutions found so far until no more satisfying assignments can be identified.

In this section, we propose our algorithmic approaches towards the HP definition. To
answer a causal question efficiently, we need to find an intelligent way to search for

31

3 Efficiently Checking Actual Causality with SAT Solving

Algorithm 1 Check whether HP holds (Brute-Force)

Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, candidate cause
〈X1, . . . , X`〉 = 〈x1, . . . , x`〉, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function FULFILLSAC2(M,~u, ϕ, ~X = ~x)
2: if (M,~u) |= [~X ← ¬~x]¬ϕ then return ∅
3: else
4: for all ~Wi ∈ P({V | V ∈ V, V 6∈ ~X})\∅ do
5: if (M,~u) |= [~X ← ¬~x, ~Wi ← ~wi]¬ϕ given (M,~u) |= ~Wi = ~wi then
6: return ~Wi

7: end if
8: end for
9: end if

10: return false
11: end function
12: function FULFILLSAC3(M,~u, ϕ, ~X = ~x)
13: if | ~X| > 1 ∧ (M,~u) |= ϕ then
14: for all ~Xi = ~xi ∈ P(~X = ~x)\(∅ ∪ (~X = ~x)) do
15: if FULFILLSAC2(M,~u, ϕ, ~Xi = ~xi) ∧ (M,~u) |= (~Xi = ~xi) then
16: return false
17: end if
18: end for
19: end if
20: return true
21: end function

a ~W such that AC2 is fulfilled as well as to check whether AC3 holds. Therefore, we
propose an approach that uses SAT-solving. We show how to encode AC2 into a formula
whose (un)satisfiability and thus the (un)fulfillment of AC2 is determined by a SAT-solver.
Similarly, we show how to generate a formula whose satisfying assignments obtained with
a solver indicate if AC3 holds.

3.3.1 Checking AC2

For AC2, such a formula F has to incorporate (1) the negation of the effect ¬ϕ, (2) the
context ~u, (3) a setting, ~x′ for candidate cause, ~X , and (4) all possible variations of ~W , while
still (5) keeping the semantics of the underlying model M . In the following, we describe
the concept and, then, the algorithm that generates such a formula F . Since we check actual
causality in hindsight, we have a situation where ~u and ~v are determined, and we have a
candidate cause ~X ⊆ ~V . Thus, the first two requirements are straightforward. First, the
effect ϕ should not hold anymore, hence, ¬ϕ holds. Second, the context ~u should be set to
its values in the original assignment (the values ~u of ~U).

32

3.3 SAT Based Causality Checking

Since we are treating binary models only, the setting ~x′ (from AC2) can be tailored down
to negating the original value of each cause variable. This is a result of Lemma 3.2, which
utilizes the fact that we are considering binary variables to exclude other possible settings
and define precisely the setting ~x′. The proof of the Lemma, along with the proofs of all
theorems in this chapter, is given in Section 3.6. Thus, to address the third requirement,
according to Lemma 3.2, for ¬ϕ to hold, all the variables of the candidate cause ~X are
negated.

Lemma 3.2. In a binary model, if ~X = ~x is a cause of ϕ, according to Definition 2.4, then every ~x′

in the definition of AC2 always satisfies ∀i.x′i = ¬xi.

To ensure that the semantics of the model are reflected in F (requirement 5), we use
the logical equivalence operator (↔) to express the equations. Particularly, to bind each
endogenous variable Vi to its equation FVi , we use this clause Vi ↔ FVi . This way, we create
a (sub-)formula that evaluates to true if both sides are equivalent in their evaluation. If we
do so for all other variables (that are not affected by requirements 1-3), we ensure that F is
only satisfiable for assignments that respect the semantics of the model.

Further, we need to find a possibility to account for ~W (requirement 4) without having
to iterate over the power-set of all variables. In F , we accomplish this by adding a disjunc-
tion with the positive or negative literal of each variable Vi to the previously described
equivalence-formula, depending on whether the actual evaluation of Vi was 1 or 0, respec-
tively. Then, we can interpret ((Vi ↔ FVi) ∨ (¬)Vi) as “Vi either follows the semantics of
M or takes on its original value represented as a positive or negative literal.” By doing so
for all endogenous variables, we allow for all possible variations of ~W . It is worth noting
that we exclude those variables that are in ~X from obtaining their original value, as we are
already changed their setting to ¬~x and thus keeping a potential cause at its original value
is not reasonable. It might not always make sense to add the original value for all variables.
We leave this as an optimization that we present in Section 3.4.1.

AC2 Algorithm

We formalize the above in Algorithm 2. Similar to Algorithm 1, the evaluation, in the input,
is a list of all the variables in M and their values under ~u. The rest is self-explanatory. We
slightly change the definition of ϕ from a combination of primitive events to a combination
of literals. For instance, instead of writing ϕ = (X1 = 1 ∧ X2 = 0 ∨ X3 = 1), we use
ϕ = (X1 ∧ ¬X2 ∨X3). In other words, we replace each primitive (X = x) ∈ ϕ with X if
x = 1 or ¬X if x = 0 in the original assignment, such that we use ϕ in a formula. The same
logic is achieved using the function f(Y = y) in Line 5 of the algorithm.

Before we construct formula F , we check if ~X = ~x given ~W = ∅ (Line 2) fulfills AC2.
Hence, in this case, we do not need to look for a ~W . Otherwise, we construct F (Line 4)
that is a conjunction of ¬ϕ and the exogenous variables of M as literals depending on ~u.
Note that ϕ does not necessarily consist of a single variable only; it can be any Boolean

33

3 Efficiently Checking Actual Causality with SAT Solving

Algorithm 2 Check whether AC2 holds using SAT

Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, candidate cause
〈X1, . . . , X`〉 = 〈x1, . . . , x`〉, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function FULFILLSAC2(M, ~U = ~u, ϕ, ~X = ~x, ~V = ~v)
2: if (M,~u) |= [~X ← ¬~x]¬ϕ then return ∅
3: else
4: F := ¬ϕ ∧

∧
i=1...n

f(Ui = ui) ∧
∧

i=1...m, 6∃j•Xj=Vi

(
Vi ↔ FVi ∨ f(Vi = vi)

)
↪→ ∧

∧
i=1...`

f(Xi = ¬xi)

5: where f(Y = y) =

{
Y, y = 1

¬Y, y = 0

6: if 〈U1 = u1 . . . Un = un, V1 = v′1 . . . Vm = v′m〉 ∈ SAT(CNF(F)) then
7: ~W := 〈W1, . . . ,Ws〉 s.t. ∀i∀j • (i 6= j ⇒Wi 6= Wj) ∧ (Wi = Vj ⇔ v′j = vj)

8: return ~W
9: else return not satisfiable

10: end if
11: end if
12: end function

formula. For example, if ϕ = (BS = 1 ∧ BH = 0) in the notation as defined by [74], we
would represent it in F as (BS ∧ ¬BH). This consideration is handled by Algorithm 2
without further modification. In addition, we represent each endogenous variable, Vi 6∈ ~X
with a disjunction between its equivalence formula Vi ↔ FVi and its literal representation.
To conclude the formula construction, we add the negation of the candidate cause ~X = ~x, a
consequence of Lemma 3.2. If F , represented in a conjunctive normal form, is satisfiable,
we obtain the satisfying assignment (Line 6) and compute ~W (Line 7) as the set of those
variables whose valuations were not changed in order to ensure ¬ϕ that is finally returned.
The unsatisfiability of F entails that AC2 does not hold. The soundness of the encoding is
stressed in Theorem 3.3.

Theorem 3.3. Formula F constructed within Algorithm 2 is satisfiable iff AC2 holds for a given
M , ~u, a candidate cause ~X , and a combination of events ϕ.

Minimality of ~W

In Algorithm 2, we considered ~W to consist of all the variables whose original evaluation
and satisfying assignments are equal. This is an over-approximation of the ~W set because,
possibly, there are variables that are not affected by changing the values of the cause, and
are yet not required to be fixed in ~W . Despite this consideration, a non-minimal ~W is still
valid, according to HP. Since notions such as the degree of responsibility [33] are quantified

34

3.3 SAT Based Causality Checking

depending on the size of ~W , it is intuitive that a minimal ~W is required for some situations.
Therefore, we briefly discuss two modifications (in Algorithm 2) that yield a minimal ~W .

We need to modify two parts of Algorithm 2. First, we cannot just consider one satisfying
assignment for F . Rather, we need to analyze all the assignments. Determining all the
assignments is an All-SAT problem. Second, we have to analyze each assignment of ~W
further to check if we can find a subset such that F , and thus AC2, still holds. Specifically,
we check if each element in ~W is equal to its original value because it was explicitly set so,
or because it simply evaluated according to its equation. In the latter case, it is not a required
part of ~W . Precisely, in Algorithm 2, everything stays the same until the computation of
F . After that, we check whether F is satisfiable, but now we compute all the assignments.
Subsequently, for each assignment, we compute ~Wi, as explained. Then, we return the
smallest ~Wi at the cost of iterating over all satisfying assignments.

3.3.2 Checking AC3

Our approach for checking AC3 using SAT is similar to the one for AC2. We construct
another formula, G. The difference between G and F is in how the parts of the cause are
represented. In G, we allow each of them to take on its original value or its negation (e.g.,
A ∨ ¬A). Clearly, we could replace that disjunction with true. However, we explicitly do
not perform this simplification such that a satisfying assignment for G, as returned by the
SAT solver, still contains all variables of M .

In general, the idea is as follows. If we find a satisfying assignment for G such that at
least one conjunct of the cause ~X = ~x takes on a value that equals the one computed from
its corresponding equation, then, we know that this particular conjunct is not required to be
part of the cause and there exists a subset of ~X that fulfills AC2 as well. The same applies if
the conjunct is equal to its original value in the satisfying assignment; this would mean that
it is part of a ~W such that ¬ϕ holds. When collecting all those conjuncts, we can construct a
new cause ~X ′ = ~x′ by subtracting them from the original cause and then checking whether
or not it fulfills AC1. If it does, AC3 is violated because we identified a subset ~X ′ of ~X for
which both AC1 and AC2 hold.

AC3 Algorithm

We formalize our approach in Algorithm 3. The input and the function f(Vi = vi) remain
the same as for Algorithm 2; the latter is omitted. In case ~X = ~x is a singleton cause or ϕ
did not occur, AC3 is then fulfilled automatically (Line 2). Otherwise, Line 3 shows how
formula G is constructed. This construction is only different from the construction of F in
Algorithm 2 in how to treat variables ∈ ~X . They are added as a disjunction of their positive
and negative literals. Once G is constructed, we check its satisfiability; if it is not satisfiable,
we return true, i.e., AC3 is fulfilled. For example, this can be the case if the candidate cause
~X did not satisfy AC2. Otherwise, we check all its satisfying assignments. We need to

35

3 Efficiently Checking Actual Causality with SAT Solving

do this, as G might also be satisfiable for the original ~X = ~x so that we cannot say for
sure that any satisfying assignment found, proves that there exists a subset of the cause.
Instead, we need to obtain all of them. Obviously, this is problematic and could decrease
the performance if G is satisfiable for a large number of assignments. Therefore, we present,
in Section 3.3.4, an optimization of the check that eliminates the dependency on ALL-SAT.
However, for now, we compute one assignment and check the count of the conjuncts in the
cause that have different values in ~v′ than their original, and that their formula does not
evaluate to this assignment (Line 5). If the count is less than the size of the cause, then AC3
is violated. Otherwise, we check another assignment. Theorem 3.4 proves the soundness of
Algorithm 3; the proof is in Section 3.6).

Algorithm 3 Check whether AC3 holds using ALL-SAT

Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, candidate cause
〈X1, . . . , X`〉 = 〈x1, . . . , x`〉, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function FULFILLSAC3(M, ~U = ~u, ϕ, ~X = ~x, ~V = ~v)
2: if ` > 1 ∧ (M,~u) |= ϕ then
3: G := ¬ϕ ∧

∧
i=1...n f(Ui = ui) ∧

∧
i=1...m, 6∃j•Xj=Vi

(
Vi ↔ FVi ∨ f(Vi = vi)

)
↪→ ∧

∧
i=1...`Xi ∨ ¬Xi

4: for all 〈~U = ~u, ~V = ~v′〉 ∈ SAT(CNF(G)) do
5: if |

¶
j ∈ {1, .., `}|∃i • Vi = Xj ∧ v′i 6= vi

↪→ ∧v′i 6= [
−→
V 7→ ~v′]FXj

©
| < ` then return false

6: end if
7: end for
8: end if
9: return true

10: end function

Theorem 3.4. Algorithm 3 returns false iff ~X is a non-minimal cause.

Combining AC2 and AC3

While developing Algorithm 2 and Algorithm 3, we discovered that combining both is an
option for optimizing our approach. In particular, we can exploit the relationship between
the satisfying assignment(s) for the formulas F and G, i.e., ~aF ∈ AG. This holds as we allow
the variables ~X of a cause to be both 1 or 0 in G so that we can show that the satisfying
assignment, ~aF for F in Algorithm 2 is an element of the satisfying assignments AG, for G.
Then, instead of computing both F and G, we could compute G, then filter those satisfying
assignments that F would have yielded and use them for checking AC2 while we use all
satisfying assignments of G to check AC3.

36

3.3 SAT Based Causality Checking

3.3.3 Example

Recall the rock-throwing example from Section 2.3. We want to find out whether Suzy throws
,ST = 1 , is a cause of the bottle shattering, BS = 1? Assuming the context ~u sets ST = 1
and BT = 1, the original evaluation of the model is shown in the first row of Table 3.2.
Algorithm 2 generates F shown in Equation 3.1, that is satisfiable for one assignment
(Table 3.2 second row): BS = 0, SH = 0, BH = 0, ST = 0, BT = 1. All the variables,
except BH and BT , change their evaluation. Thus, we conclude that ST = 1 fulfills AC2
with ~W = {BH,BT}. Notice that even though this ~W is not minimal, it is still valid. That
said, we still can calculate a minimal ~W with more processing as described in Section 3.3.1.

Table 3.2: Truth Assignments of Formulae F and G
BS SH BH ST BT

M 1 1 0 1 1
F 0 0 0 0 1
G~a1 0 0 0 0 0
G~a2 0 0 0 0 1

F :=

¬ϕ︷ ︸︸ ︷
¬BS ∧

~u︷ ︸︸ ︷
STexo ∧BTexo ∧ (

equation of BS︷ ︸︸ ︷
(BS ↔ SH ∨BH)∨

orig. BS︷︸︸︷
BS) ∧ (

equation of SH
(SH ↔ ST)︸ ︷︷ ︸∨orig. SH

SH︸︷︷︸)
∧ ((BH ↔ BT ∧ ¬SH)︸ ︷︷ ︸

equation of BH

∨¬BH︸ ︷︷ ︸
orig. BH

) ∧ ¬ST︸︷︷︸
equation of ST

∧((BT ↔ BTexo)︸ ︷︷ ︸
equation of BT

∨ BT︸︷︷︸
orig. BT

)
(3.1)

To illustrate checking AC3, we ask a different question: are ST = 1 ∧ BT = 1 a cause
of BS = 1? Note that AC2 is fulfilled with W = ∅, for this cause. Obviously, if both do
not throw, the bottle does not shatter. Using Algorithm 3, we obtain formula G shown in
Equation 3.2.

G :=

¬ϕ︷ ︸︸ ︷
¬BS ∧

~u︷ ︸︸ ︷
STexo ∧BTexo ∧ (

equation of BS︷ ︸︸ ︷
(BS ↔ SH ∨BH)∨

orig. BS︷︸︸︷
BS) ∧ (

equation of SH︷ ︸︸ ︷
(SH ↔ ST)∨

orig. SH︷︸︸︷
SH)

∧ ((BH ↔ BT ∧ ¬SH)︸ ︷︷ ︸
equation of BH

∨¬BH︸ ︷︷ ︸
orig. BH

) ∧ (ST︸︷︷︸
orig. ST

∨ ¬ST︸︷︷︸
negated orig. ST

) ∧ (BT︸︷︷︸
orig. BT

∨ ¬BT︸ ︷︷ ︸
negated orig. BT

)
(3.2)

As Table 3.2 shows, G is satisfiable with two assignments G~a1 and G~a2 . For ~a1, we can see
that both ST and BT have values different from their original evaluation and that both do
not evaluate according to their equations. Thus, we cannot show that AC3 is violated, yet.
For ~a2, BT = 1, so it is equal to the evaluation of its equation. Consequently, BT is not a
required part of ~X , because ¬ϕ = ¬BS still holds although we did not set BT = 0. So, AC3
is not fulfilled because AC1 and AC2 hold for a subset of the cause.

37

3 Efficiently Checking Actual Causality with SAT Solving

3.3.4 Optimized AC3 Check with SAT

Informally, G encodes the set of satisfying assignments for ¬ϕ with the removal of the
equations for ~X . Thus, it can be used to check AC2 (we have all combinations of ~X),
and to check AC3 by analyzing all of them to find irrelevant causes. To solve ALL-SAT
problems, modern solvers typically add clauses (of size equal to the number of variables)
called blocking clauses, to block already-found solutions [69] and let the solver find a new
solution. This method has benefits, especially for formulas that have a small number of
solutions [190]. However, the two downsides are the potential memory saturation and the
slow-down of the solver [204, 190, 69]. Therefore, the approach in Section 3.3.2 then fails to
scale for larger models, especially when the cardinality of the cause is big. We present an
optimization that eliminates this need. The optimized approach extends G with new clauses
that encode the notions of non-minimality and non-empty causes.

We express non-minimality because it is easier to explain than minimality in this context.
Non-minimality of a cause means that there exists one variable Xi = xi in a satisfying
assignment of G (which includes ¬ϕ, i.e., effect not happening) such that the value of Xi

evaluates according to its equation, or equals its actual value (i.e., the value for which
ϕ evaluates to true) represented as a negative or positive literal. In other words, it is
not necessary to negate the value of Xi to have ¬ϕ occurring. We express this notion of
non-minimality by the sub-formula H shown in Equation 3.3.

H :=
∨

((Xi ↔ FXi) ∨ f(Xi = xi)) (3.3)

The disjunction in H holds if at least one cause variable violates the minimality, as
explained. On the other hand, a non-empty cause means that at least one cause variable Xj

is not determined by its equation or takes on its original value (which led to ϕ holding),
and is negated due to an intervention. We express this notion using the sub-formulas K,
shown in Equation 3.4.

K := ¬(
∧
f(Xi = xi)) ∧ ¬(

∧
Xi ↔ FXi) (3.4)

With the first part of K, we make sure that not all the variables are equal to their original
value (which led to ϕ holding). Similarly, for the second part: Not every variable is allowed
to evaluate according to its equation.

The idea now is to extend G to G′ by adding the notions of non-minimality (H), and non-
empty cause (K), i.e., G∧H ∧K. This way, we ensure that G′ is only satisfiable if there exists
a smaller, and non-empty subset of the cause ~X = ~x that would satisfy AC2. Otherwise, we
know that there exists no strict subset of ~X = ~x for which AC2 holds. Relating to AC3, the
new clauses make the unsatisfiability of G′ an indication that AC3 holds. This reduces the
analysis effort, and eliminate the need to compute all assignments, but introduce additional
overhead and clauses when constructing G′.

38

3.3 SAT Based Causality Checking

Encoding

For the optimized AC3 check we show an encoding rather than an algorithm because,
unlike the previous approaches, no analysis of the satisfying assignment is required. In
Equation 3.5 the encoding of G′ is shown formally. It starts with the negation of the effect
ϕ; then it enumerates the context (values of exogenous variables), i.e., 〈U1, . . . , Un〉 =

〈u1, . . . , un〉. Each variable in ~U is represented with U if u = 1 or ¬U if u = 0 in the context.
This logic is achieved using the function f(Y = y). In the next line, we use the equivalence
operator as explained in Section 3.3.1 to express each variable (〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉)
not in the candidate cause. The remaining of the encoding represents the variables of the
candidate cause 〈X1, . . . , X`〉 = 〈x1, . . . , x`〉. The last two lines are the newly added parts
in G′, which correspond to sub-formulas H , and K explained above.

G′ :=¬ϕ ∧
∧

i=1...n

f(Ui = ui)

∧
∧

i=1...m, 6∃j•(Xj=Vi)

(
Vi ↔ FVi ∨ f(Vi = vi)

)
∧ ¬

∧
i=1...`

(
¬(Xi ↔ FXi) ∧ ¬(f(Xi = xi)

)
∧ ¬

∧
i=1...`

(f(Xi = xi)) ∧ ¬
∧

i=1...`

(Xi ↔ FXi)

(3.5)

To check if ~X is a cause of ϕ, we need to check F and G′ separately or combine them
in one formula (F ∧ ¬G′). The first option allows us to examine each condition (AC2,
AC3) in isolation, while the second would report the overall result. Depending on the
specific situation, the two options can be used. The time for constructing the formulas in
the two options is similar; however, the CNF conversion and solving time may differ. In
our evaluation in Section 3.5, we used the first option because it is comparable to the other
approaches in being able to distinguish the violation of the two conditions. To discuss the
soundness of our encoding, we present Theorem 3.5 (the proof is presented in Section 3.6).

Theorem 3.5. Formula G′ constructed with Equation 3.5 is satisfiable iff AC3 is violated.

Example

Let us consider our approach to check AC3 with the rock-throwing example. Remember that
we want to check whether ST = 1 ∧BT = 1 is a cause for BS = 1 under STexo, BTexo = 1.
Using our encoding (Equation 3.5), we obtain G′ shown in Equation 3.6 for the current

39

3 Efficiently Checking Actual Causality with SAT Solving

example (extended parts highlighted).

G′ =

¬ϕ︷ ︸︸ ︷
¬BS ∧

~u︷ ︸︸ ︷
STexo ∧BTexo ∧

equation of BS︷ ︸︸ ︷
(BS ↔ SH ∨BH) ∧ (

equation of SH︷ ︸︸ ︷
(SH ↔ ST)∨

orig. SH︷︸︸︷
SH) ∧

((BH ↔ BT ∧ ¬SH)︸ ︷︷ ︸
equation of BH

∨¬BH︸ ︷︷ ︸
orig. BH

) ∧

¬((¬(ST ↔ STexo)︸ ︷︷ ︸
negated equ. of ST

∧ ¬ST︸︷︷︸
negated orig. ST

) ∧ (¬(BT ↔ BTexo)︸ ︷︷ ︸
negated equ. of BT

∧ ¬BT︸ ︷︷ ︸
negated orig. BT

))) ∧

¬(ST︸︷︷︸
orig. ST

∧ BT︸︷︷︸
orig. BT

) ∧ ¬((ST ↔ STexo)︸ ︷︷ ︸
equation of ST

∧ (BT ↔ BTexo)︸ ︷︷ ︸
equation of BT

)

(3.6)

G′ is satisfiable for ST = 0, BT = 1, SH = 0, BH = 0, BS = 0, which is exactly what we
wanted to show: BS = 0 even if we only set ST = 0 while BT = 1. Consequently, AC3
does not hold for cause ST = 1 ∧ BT = 1. Note that we can use this result only to check
minimality, and not to determine a minimal cause subset because one assignment is not
sufficient to conclude a minimal subset.

3.4 Graph-Based Optimizations

As mentioned in Chapter 2, causal models are visualized in causal networks. When
considering a causal model as a graph, we can exploit specific graph features (in addition
to our knowledge in HP) to reduce the space of computation. In our SAT approaches, such
reduction may result in smaller encodings of formulae F and G, which does not necessarily
result in faster solving time [46]. We present two optimizations that utilize the reachability
of the variables based on our knowledge of HP to eliminate constraints.

3.4.1 Reduce Number of Potential Variables for ~W

Modern SAT solvers implement different pre-processing techniques to reduce the size of
the SAT formula [46, 85]. These techniques typically aim to eliminate redundant, subsumed,
or tautological clauses that can be determined in polynomial time [85]. According to our
experiments with the solver we used (details in Section 3.5), the elimination that we present
does not fall under these categories; hence, it is not done by the solver. This is justified by
the fact that this optimization stems from our knowledge in HP and its encoding to SAT,
which enables us to know that one constraint can be excluded for some variables.

The contingency set ~W contains the variables that need to be fixed to their original value
so that the effect does not occur. For a specific causal query, there may exist some variables
that can be excluded when considering set ~W as part of AC2. Specifically, if an endogenous
variable Vi is not affected by a cause variable, i.e., on the directed acyclic graph variable, Vi
cannot be reached from any variable in ~X . For instance, in Figure 3.1, ST does not affect the

40

3.4 Graph-Based Optimizations

value BT in the rock-throwing example. Hence, BT will not change its original value no
matter how we change ST . However, BH , for example, is affected by ST as it depends on
SH , which itself depends on ST .

The second class of variables that can be excluded when constructing ~W are those that
do not affect ϕ. That is, there exists no directed path from the variable to any effect variable.
Thus, keeping such a variable at its original value does not change ϕ.

BT

ST

BH

SH

BS

Each node A represents an endogenous variable; an edge from A to B means that B “depends” on A.

Figure 3.1: Rock-Throwing Example (Source: [79])

Identifying the variables in the cases, as mentioned earlier, allows us to exclude them
when constructing our formulae. We construct set T , which would include the endogenous
variables, excluding the cause variables, that could be in the contingency set (~W). Formally:

T = {V | V ∈ V, V 6∈ ~X, V is reached from Xi ∈ ~X, V affects ϕ}

Then, we use T to only add the original value of variables in formulae F and G. For
instance, the encoding of F is adapted, as shown in Equation 3.7. We can then use this
adaption with all our algorithms and encodings. This will reduce the size of the formula in
some situations.

F :=¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m,•Vi∈T

(
Vi ↔ FVi ∨ f(Vi = vi)

)
∧

∧
i=1...m, 6∃j•Xj=Vi∧Tj=Vi

(
Vi ↔ FVi

)
∧
∧

i=1...`

f(Xi = ¬xi)
(3.7)

3.4.2 Remove Irrelevant Sub-formulae

A similar potential optimization is to not only remove the original value of some variables in
formulas F and G but to remove the complete corresponding sub-formula if it is irrelevant
for the current scenario. This is precisely the case with the variables in the second class
of the previous optimization. That is, if ϕ is not affected (reachable) by some endogenous
variables, e.g., because we picked an intermediate variable to be the effect. Set K contains
the variables that, besides the variables in the cause, actually affect ϕ. Formally:

K = {V | V ∈ V, V 6∈ ~X, V affects ϕ}

The reachability between the effect and a variable Vi determines if Vi affects ϕ, and hence its
corresponding sub-formula is added to the F . As such, formula F is adapted in Equation 3.8.

41

3 Efficiently Checking Actual Causality with SAT Solving

F :=¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m,•Vi∈K

(
Vi ↔ FVi ∨ f(Vi = vi)

)
∧
∧

i=1...`

f(Xi = ¬xi)
(3.8)

We think that this optimization may reduce the size of formulae F and G and thus make
the corresponding algorithms more efficient in certain situations. As we will see in our
experiments shown in Section 3.5, at least the SAT solver we are using does benefit from
this optimization in certain situations and therefore does not seem to perform it.

3.5 Evaluation

In this section, we provide details on the implementation of our algorithms and evaluate
their efficiency in answering causal queries.

3.5.1 Technical Implementation

Our implementation is a Java library; it can easily be integrated into other systems. It
supports both the creation of binary causal models as well as solving causality problems. For
the modeling part and the implementation of our SAT-based approach, we take advantage
of the library LogicNG.3 It provides methods for creating and modifying boolean formulas
and allows to analyze those using different SAT solvers. We use the implementation of
MiniSAT solver [47] within LogicNG. For the sake of this evaluation, we will compare the
execution time and memory allocation for the following seven strategies:

• BRUTE_FORCE -a standard brute-force implementation of HP that enumerates the
power-set of the variables.

• SAT - the basic approach that implements (Algorithm 2 and Algorithm 3).

• SATOPT - the optimized check of AC3 (Algorithm 2 and Equation 3.5).

• SATMIN -the minimal ~W extension.

• SATCOM -optimization of the SAT by combining AC2 and AC3.

• SATGR1 - graph-based optimization of the SAT to reduce ~W .

• SATGR2 -second graph-based optimization to remove irrelevant formulae.

3https://github.com/logic-ng/LogicNG

42

https://github.com/logic-ng/LogicNG

3.5 Evaluation

All our measurements were performed on Ubuntu 16.04 LTS machine equipped with
an Intel® Core™ i7-3740QM CPU and 16 GB RAM. For each benchmark, we specified 10
warmup iterations and 30 measurement iterations. Warm-ups are iterations in which we
dry-run our benchmarks before results are collected. This is a recommended practice in Java
benchmarking to avoid accounting for factors like Java Virtual Machine (JVM) warm-up
threads, compiler optimizations, garbage collection, Just In Time (JIT) compilation, class
loading, and initialization, and environmental noise. On the other hand, the measurement
iterations are run after the warm-up iterations, and their results are collected.

3.5.2 Methodology and Evaluated Models

To the best of our knowledge, no previous work has published their causal models. Thus,
we gathered a dataset of 37 models, which included 21 small models (≤ 400 endogenous
variables)–from domains of causality, security, safety, and accident investigation– and
16 larger security models from an industrial partner, in addition to artificially generated
models. The smaller models contained 9 illustrative examples from literature (number
of endogenous variables in brackets) such as Throwing − Rocks(5), Railroad(4) [74], 2
variants of a safety model that describes a leakage in a subsea production system LSP(41)
and LSP2 (41) [30], and an aircraft accident model (Ueberlingen, 2002) Ueb(95) [187], 7
generated binary trees, and a security model obtained from an industrial partner which
depicts how insiders within a company steal a master encryption key SMK . Because it
can be parameterized by the number of employees in a company, we have 14 variants of
SMK , 2 small ones SMK1 (36) and SMK8 (91), and 12 large models of sizes (550− 7150). In
addition, we artificially generated 4 models: 2 binary trees with different heights, denoted
as BT (2047 − 4095), and 2 trees combined with non-tree random models, denoted as
ABT (4103), and ABT2 (8207). We have evidence that such large models are likely to occur
when built automatically from architectures or inferred from other sources [96, 95]. The
description, including the semantics, variables, causal network, and the causal queries, of
each model, is given in Appendix A.4

We formulated a total of 484 checking queries that vary in the context, cause, effect, and
consequently differ in the result of AC1-AC3, the size of ~W , and the size of the minimal
cause. For the smaller models, we specified the queries manually according to their sources
in literature and verified that our results match the sources. For the larger models, we
constructed a total of 224 checking queries. We specified some effects (e.g., root of BT , or
steal passphrase in SMK) and used different contexts, and randomly selected causes (sizes 1,
2, 3, 4, 10, 15, and 50) from the models.

3.5.3 Discussion and Results

We present our results by discussing the general trends that we observed in our experiments.
We use Table 3.3 to show the details of representative cases of these trends, and then we

4the machine-readable models are available at https://git.io/Jf8iH

43

https://git.io/Jf8iH

3 Efficiently Checking Actual Causality with SAT Solving

Result
Execution Time (s)
Memory consumption (GB)

Model |~V | ID | ~X| AC1 AC2 AC3 | ~W | | ~Xmin| Brute_Force SAT SATOPT SATMIN SATCOM SATGR1 SATGR2

Forest Fire 3 3 2 Y Y Y 0 2
≤ 1× 10−7

≤ 1× 10−6
Assassin 3 9 2 Y Y Y 0 2
Prisoners 4 4 3 Y Y N 0 2
Rail Road 4 3 1 Y Y Y 0 1

Rock_throwing 5 12 3 Y Y N 0 1
6× 10−5

1.9× 10−4
7× 10−5

1× 10−4
1× 10−4

2× 10−4
7.1× 10−5

1.3× 10−4
7.2× 10−5

1.3× 10−4
8× 10−5

1.4× 10−4
7.2× 10−5

1.35× 10−4

SMK_3
36 3 3 Y Y Y 4 3

N/A
N/A

0.00089
0.0011

0.00093
0.0011

0.00108
0.0012

0.00073
0.0009

0.00095
0.0011

0.00092
0.0011

24 3 Y Y Y 0 3
N/A
N/A

0.00071
0.0009

0.00073
0.0009

0.00072
0.0009

0.00079
0.0009

0.0007
0.00086

0.00073
0.0009

29 2 Y Y N 0 1
0.000136
0.0002268

0.00072
0.0009

0.00069
0.0009

0.00072
0.00093

0.00072
0.0009

0.0007
0.0008

0.00039
0.0005

LSP 41 3 2 Y Y N 0 1
0.00016
2.524× 10−10

0.0012
0.0014

0.00109
0.0013

0.0023
0.0024

0.0009
0.0011

0.0012
0.0014

0.0012
0.0014

SMK 91 11 3 Y Y Y 0 3
N/A
N/A

0.012
0.008

0.00219
0.0027

0.012
0.008

0.011
0.008

0.00215
0.0024

0.00067
0.00069

Ueberlingen 95 5 4 Y Y N 88 3
N/A
N/A

0.805
0.0018

0.502
0.0032

0.450
0.0032

0.507
0.0032

0.520
0.0032

0.545
0.0032

BT_11 4095 35 4 Y N Y N/A 4
N/A
N/A

6.949
2.0

6.717
2.0

6.618
2.0

2.94
1.1

7.2
2.0

6.95
2.0

ABT 4103

1 1 Y N N 1
N/A
N/A

4.285
1.1

5.46
1.1

4.507
1.055

5.718
1.055

6.24
1.055

6.03
1.06

2 2 Y Y Y 4086 2
N/A
N/A

8.0
2.04

10.5
1.7

23.76
4.76

5.69
1.06

13.2
1.8

11.54
1.8

3 5 Y Y N 4090 2
N/A
N/A

8.331
2.04

12.058
1.80

42.31
7.1982

6.172
1.07

13.712
1.8

11.69
1.8

4 10 Y Y N 4086 2
N/A
N/A

14.37
4.2

12.02
1.80

207.987
13.88

13.312
2.23

19.8
2.97

19.84
2.97

5 11 N Y N 4086 2
N/A
N/A

30.2
5.7

12
1.80

58.14
8.129

30.53
5.03

45.842
5.77

40.734
5.7

6 15 Y Y N 4086 2
N/A
N/A

N/A
N/A

11.55
1.8

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

7 15 N Y N 4080 5
N/A
N/A

6308
13.88

11.03
1.80

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

8 15 N Y N 4080 5
N/A
N/A

6791
13.88

12.04
1.80

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

9 50 Y Y N 4079 5
N/A
N/A

N/A
N/A

10.35
2.04

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

10 50 Y Y N 4068 11
N/A
N/A

N/A
N/A

10.37
2.04

N/A
N/A

N/A
N/A

N/A
N/A

N/A
N/A

ABT2 8207
1 11 Y Y Y 8161 11

N/A
N/A

24.94
4.07

21.04
4.0

25.39
4.077

27.35
4.077

28.26
4.077

25.67
4.077

2 22 Y Y N 8191 11
N/A
N/A

0.93
0.028

0.90
0.028

0.106
0.000003

0.124
0.000001

0.094
0.000003

0.055
0.000003

Table 3.3: Execution Time and Memory Allocation of the Scenarios

show cactus plots of the overall performance. In Table 3.3, the first three columns show
the model name, its size, and the ID of the scenario that differs in the details of the causal
query, i.e., ~X and ϕ. The cardinality of ~X is shown in the fourth column. Next, the results
of AC1-AC3 are displayed. The size of the minimal W set is displayed next. Finally, the
execution time and memory allocation (in the second line of each cell) per strategy are
shown. We write N/A if the computation was not completed in two hours or required
too much memory. As a general remark, it does not matter which strategy is used if AC2
holds for an empty ~W and ~X is a singleton. These cases are explicitly checked in our
implementation before proceeding to the solving. Also, all models from the causality
literature are solved by any approach in milliseconds.

As expected, the Brute-Force approach (BF) works only for very small models (<five
variables), or in situations where only a few iterations are required to check the query. The

44

3.5 Evaluation

former case is evident with the N/A entries in the Brute-Force column. Intuitively, this
is a result of the potential exponential blow-up when searching for ~W . For instance, for
SMK3, the set of all possible ~Wi has a size of up to 235. In the worst case, this number of
iterations is required for finding out that AC2 does not hold. It is possible that this number
of iterations multiplied by the number of subsets of the cause needs to be executed again
to check AC3. This causes BF to be extremely slow. The latter case is demonstrated in
a few exceptions, such as LSP -3 (query ID 3 using model LSP), and SMK3-29, where
we see BF reported some numbers. Accurately, we see these situations when AC2 holds
with a small or empty ~W , and AC3 does not hold. That is, the number of iterations BF
performs is small because the sets, ~Wi are ordered by size. Such examples did not exhibit
the significant problem of BF, i.e., the generation of all possible sets, ~Wi, whose number
increases exponentially.

The SAT, by contrast, always stays below 1.1ms and allocates less than 1.5MB during the
execution for all scenarios of the SMK3. With some variation, SAT handled many queries
on larger models efficiently. For instance, BT11-35, where the underlying causal model
contains 4095 variables, executed in less than 7s. However, the latter scenario is special
because AC2 does not hold. In ABT 1-5, regardless of AC2’s result, SAT still can answer a
query under 30s. Although SAT requires an ALL-SAT procedure, for many of the models
we used, this was not a problem.

That said, our results also showed that computing all satisfying assignments of G is
inefficient when the number of satisfying assignments is large. Although insignificant,
this can be seen even in the small models, e.g., scenario SMK − 11 the execution time
dropped (12ms to 2.2ms) because G here has 17 satisfying assignments. This case shows
the potential slow-down of the SAT approach (even for small models) due to the processing
steps of the assignments. More interestingly, the experiments with bigger models and
bigger cardinalities of causes confirmed the two potential problems with ALL-SAT. The first
is the memory exhaustion [204] of the solver as a result of accumulating the blocking clauses
(see Section 3.1). We saw this behavior in scenarios ABT : 6, 9, 10, where the program ran
out of memory (14GB assigned to the benchmark) before returning an answer (denoted by
N/A in the table). These scenarios were checking a non-minimal cause of size 15 and 50
variables. SATOPT, on the other hand, finished executing the two scenarios in less than 12
seconds, with a memory utilization of around 2GB.

The other problematic behavior with SAT is the significant potential slow-down of the
solver due to the internal unit propagation performance drop as the formula inflates in size
[190, 69]. This is clear in almost all the scenarios, especially with bigger causes. For instance,
we saw SAT taking two to four times as much as the execution time of SATOPT in scenario
ABT : 5. In more extreme cases, we tested non-minimal causes where AC1 does not hold,
and SAT took around 2 hours to finish, whereas in these cases SATOPT took only 12 seconds.

While obtaining a minimal ~W using SATMIN showed a rather small impact relative to
the SAT approach in many scenarios, it showed a significant increase in many other cases.
This impact is dependent on the nature and semantics of the underlying model. In all

45

3 Efficiently Checking Actual Causality with SAT Solving

the cases that SATMIN was feasible (a solution is returned before timeout) SAT is feasible.
However, we also observed cases where SATMIN was not feasible although SAT was feasible,
e.g., ABT -7. In general, we can only observe a major impact if the number of satisfying
assignments or the size of a non-minimal ~W is large. For instance, a significant increase
(up to 15 times) was observed in scenarios ABT2-5 where the size of the non-minimal ~W
was around 4000. This approach is seen as the slowest approach among the benchmarked
methods.

Combining the algorithms for AC2 and AC3 is only beneficial if AC2 and AC3 need to be
explicitly analyzed (AC2 does not hold for an empty W, and the cause is not a singleton).
We have many such scenarios in our examples. In evaluating them, we found out that there
is a positive impact in using this optimization, but it is rather small on average. Larger
differences can be seen, for instance, in BT11-35 and ABT:2-5 where the SAT-based approach
was considerably slower than SATCOM. However, both suffered from the All-SAT procedure
with large cause cardinalities.

The two graph-based optimizations did not show any significant improvement over the
SAT approach. In a small number of examples, they showed an enhancement over SAT. For
instance, in SMK-11, both finished faster. However, in many other cases, they were both
slower than the baseline approach. To analyze these results, we confirmed that the solver
does not perform these optimizations itself; we came to this conclusion by comparing the
number of clauses in the CNF form of the original SAT formula, which was larger than
the number of clauses in the reduced formulae. Usually, these clauses are the result of
the pre-processing that SAT solvers perform before solving. As such, the slowdown of
our algorithms is partially due to the reduction of the formula that we perform. Further,
removing the disjunction (as part of SATGR1) may result in a slightly harder formula because
the solver is forced to satisfy the equivalence part. However, that is a good optimization
when considering the minimality of ~W . Lastly, these optimizations are only relevant in
specific situations. Namely, SATGR1 would only be beneficial if the query contains a large
candidate cause; SATGR2, on the other hand, would be helpful if the effect is not the root of
the model.

As part of our analysis, we found that, for a large class of causal queries, actual causality
can be computed efficiently with any of our SAT-based approaches. Methods that use brute-
force mechanisms do not scale while accounting for AC2 and AC3. Our results showed
that the limit of brute-force is around thirty variables. On the other hand, approaches that
use SAT are especially efficient in checking AC2. As such, the baseline approach SAT is a
good starting point that deals with models of 4000 variables in less than 7 seconds, using a
memory of 2 GB. That said, it also suffers mainly with more complex queries with larger
candidate causes. For that, SATOPT is very efficient; it handles AC3 without requiring the
inefficient procedure of ALL-SAT. As a secondary result, accounting for a minimal ~W , along
with a minimal cause, can be achieved using SATMIN, with a significant slowdown in the
solving time.

To conclude this evaluation, we show, in Figure 3.2 cactus plots of the results of 224

46

3.6 Proofs

0 50 100 150 200 250

Queries

25

50

75

100

125

150

175

200

C
PU

ti
m

e
(s

)

SATOPT

SAT
SATCOM

SATGR2

SATGR1

SATMIN

Brute_Force

(a) Cactus Plot of Execution Time

0 50 100 150 200 250

Queries

20

40

60

80

100

120

M
em

or
y

A
llo

ca
ti

on
(G

B)

SATOPT

SAT
SATCOM

SATGR2

SATGR1

SATMIN

Brute_Force

(b) Cactus Plot of Memory Allocation

Figure 3.2: Cactus plots of Execution Time and Memory Results on the Larger Models. A
point on the x-axis represents a query an approach answered ordered by the
execution time, shown on the y-axis; a point (x, y) on the plot reads as x queries
can be answered in y or less.

queries on larger models (models with more than 400 variables) to compare the different
approaches. The x-axis shows the number of queries an approach answered ordered by the
execution time, which is shown on the y-axis; a point (x, y) on the plot reads as x queries can
be answered in y or less. Figure 3.2a shows the superiority of SATOPT; in total it was able to
answer 209 queries from the set of complex queries, while the other SAT-based approaches
only managed to answer around 180 queries. We conclude that SATOPT outperforms the
other approaches, and is necessary, especially for models larger than 1000 endogenous
variables.

3.6 Proofs

3.6.1 Negation Lemma

Lemma 3.2. In a binary model, if ~X = ~x is a cause of ϕ, according to Definition 2.4, then every ~x′

in the definition of AC2 always satisfies ∀i.x′i = ¬xi.

Proof. We use the following notation:
−→
X (n) stands for a vector of length n, X1, . . . , Xn; and

−→
X (n) = −→x (n) stands for X1 = x1, . . . , Xn = xn. Let

−→
X (n) = −→x (n) be a cause for ϕ in some

model M .

1. AC1 yields
(M,−→u) |= (

−→
X (n) = −→x (n)) ∧ (M,−→u) |= ϕ. (3.9)

47

3 Efficiently Checking Actual Causality with SAT Solving

2. Assume that the lemma does not hold. Then there is some index k such that x′k = xk
and AC2 holds. Because we are free to choose the ordering of the variables, let us set
k = n wlog. We may then rewrite AC2 as follows:

∃
−→
W,−→w ,−→x ′(n) • (M,−→u) |= (

−→
W = −→w) =⇒ (M,−→u) |=î−→

X (n−1) ← −→x ′(n−1), Xn ← xn,
−→
W ← −→w

ó
¬ϕ. (3.10)

3. We will show that equations 3.9 and 3.10 give rise to a smaller cause, namely
−→
X (n−1) =

−→x (n−1), contradicting the minimality requirement AC3. We need to show that the
smaller cause

−→
X (n−1) = −→x (n−1) satisfy AC1 and AC2, as stated by equations 3.11 and

3.12 below. This violates the minimality requirement of AC3 for
−→
X (n) = −→x (n).

(M,−→u) |= (
−→
X (n−1) = −→x (n−1)) ∧ (M,−→u) |= ϕ (3.11)

states AC1 for a candidate “smaller” cause
−→
X (n−1). Similarly,

∃
−→
W ∗,−→w ∗,−→x ′∗(n−1) • (M,−→u) |= (

−→
W ∗ = −→w ∗)

=⇒ (M,−→u) |=
î−→
X (n−1) ← −→x ′∗(n−1),

−→
W ∗ ← −→w ∗

ó
¬ϕ (3.12)

formulates AC2 for this candidate smaller cause
−→
X (n−1).

4. Let Ψ denote the structural equations that defineM . Let Ψ′ be Ψ without the equations
that define the variables

−→
X (n) and

−→
W ; and let Ψ′′ be Ψ without the equations that

define the variables
−→
X (n−1) and

−→
W . Clearly, Ψ′′ =⇒ Ψ′.

We can turn equation 3.9 into a propositional formula, namely

E1 :=
Ä
Ψ ∧
−→
X (n−1) = −→x (n−1) ∧Xn = xn

ä
∧ ϕ. (3.13)

Similarly, equation 3.11 is reformulated as

E2 :=
Ä
Ψ ∧
−→
X (n−1) = −→x (n−1)

ä
∧ ϕ. (3.14)

Because equation 3.10 holds, we fix some
−→
W,−→w ,−→x ′(n) that make it true and rewrite

this equation as

E3 :=
Ä
Ψ′ ∧

−→
X (n−1) = −→x ′(n−1) ∧Xn = xn ∧

−→
W = −→w

ä
=⇒ ¬ϕ. (3.15)

48

3.6 Proofs

Finally, in equation 3.12, we use exactly these values to also fix
−→
W ∗ =

−→
W , −→w ∗ = −→w ,

and −→x ′∗(n−1) = −→x ′(n−1), and reformulate this equation as

E4 :=
Ä
Ψ′′ ∧

−→
X (n−1) = −→x ′(n−1) ∧

−→
W = −→w

ä
=⇒ ¬ϕ. (3.16)

It is then a matter of equivalence transformations to show that

(Ψ′′ =⇒ Ψ′) =⇒
Ä
(E1 ∧ E2) =⇒ (E3 ∧ E4)

ä
(3.17)

is a tautology, which proves the lemma.

3.6.2 AC2 Encoding Proof

Theorem 3.3. Formula F constructed within Algorithm 2 is satisfiable iff AC2 holds for a given
M , ~u, a candidate cause ~X , and a combination of events ϕ.

Proof. The proof consists of two parts.

Part 1. SAT(F) =⇒ AC2, AC2 holds if F is satisfiable

We show this by contradiction. Assume that F is satisfiable and AC2 does not hold.
Based on F ’s truth assignment, ~v′, we cluster the variables into:

F := ¬ϕ ∧
∧

i=1...n f(Ui = ui) ∧
∧

i=1...` f(Xi = ¬xi) ∧
∧

i=1...m, 6∃j•Xj=Vi

(
Vi ↔ FVi ∨ f(Vi = vi)

)
1. ~X : each variable is fixed exactly to the negation of its original value, i.e.,Xi = ¬xi∀Xi ∈ ~X

(recall ~X ⊆ ~V). 2. ~W ∗: variables in this group, if they exist, have equal truth and original
assignments, i.e., 〈W ∗1 , . . . ,W ∗s 〉 s.t. ∀i∀j • (i 6= j ⇒W ∗i 6= W ∗j)∧ (W ∗i = Vj ⇔ v′j = vj) 3. ~Z:
variables in this group evaluate differently from their original evaluation, i.e., 〈Z1, . . . , Zk〉
s.t. ∀i∀j • (i 6= j ⇒ Zi 6= Zj) ∧ (Zi = Vj ⇔ v′j 6= vj) ∧ (∀i 6 ∃j • Zi = Xj).

Using ~W ∗, ~Z, we re-write F as F ′ which is also satisfiable.

F ′ := ¬ϕ ∧
∧

i=1...n f(Ui = ui) ∧
∧

i=1...` f(Xi = ¬xi) ∧
∧

i=1...s f(W ∗i = w∗i) ∧
∧

i=1...k(Zi ↔ FZi)

Recall that M is acyclic; therefore there is a unique solution to the equations. Let Ψ be the
equations in M without the equations that define the variables ~X . Let Ψk be Ψ without the
equations of some variables in a set ~Wk. Since AC2 does not hold, ∀k • ~Wk ⊆ V \X ⇒ (~X =

~¬x ∧ ~Wk = ~wk ∧Ψk ∧ ¬ϕ) evaluates to false. In case ~Wk = ~W ∗, the previous unsatisfiable
formula is equivalent to the satisfiable F ′, implying a contradiction.

49

3 Efficiently Checking Actual Causality with SAT Solving

Part 2. AC2 =⇒ SAT(F); F is satisfiable if AC2 holds

Assume that AC2 holds and F is unsatisfiable. Then ∃ ~W, ~w, ~x′ • (M,~u) |= (~W = ~w) =⇒
(M,~u) |=

î
~X ← ~x′, ~W ← ~w

ó
¬ϕ. By definition [74], (M,~u) |= [Y1 ← y1..Yk ← yk]ϕ is

equivalent to (MY1←y1..Yk←yk , ~u) |= ϕ, i.e., we replace specific equations in M to obtain a
new model M ′ = MY1←y1,...,Yk←yk . So,we replace the equations of the variables in ~X, ~W in
M to obtain a new model, M ′, such that (M ′, ~u) |= ¬ϕ. Equations of ~X, ~W variables are
now of the form Vi = vi, i.e., each variable is equal to a constant value. Note that M ′ is only
different from M in the equations of ~X, ~W . Hence, M ′ is acyclic and has a unique solution
for a given ~U = ~u. We construct a formula, F ′ (shown below), that is a conjunction of the
variables in sets X ′,W ′, U in M ′. Because of their equations, each variable is represented
by a constant, i.e., a positive or a negative literal. Based on the nature of this formula, it is
satisfiable with exactly the same truth assignment as the unique solution of M ′.

F ′ :=
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...s

f(W ′i = w′i) ∧
∧

i=1...`

f(X ′i = x′i)

Now, we add the remaining variables, i.e., ∀i • Vi /∈ (~X ∪ ~W), as formulas using the ↔
operator. The overall formula F ′′, is satisfiable because we have an assignment that makes
each equivalence relation true.

F ′′ := F ′ ∧
∧

i=1...m,6∃j•Xj=Vi,Wj=Vi

(Vi ↔ FVi)

We have (M ′, ~u) |= ¬ϕ, which says that the model evaluates ¬ϕ to true with its unique
solution (same assignment of F ′′). We add another clause to F ′′ which evaluates to true
and keeps the formula satisfiable. That is, F ′′′ := F ′′ ∧ ¬ϕ. Last, we only have to show the
relation between (F from Algorithm 2 and F ′′′). We can rewrite F (shown at the beginning
of the proof) such that we remove all disjuncts of the form (Vi ↔ FVi) for the variables in
~W . Similarly, we remove all disjuncts of the form f(Vi = vi) for all the variables that are not
in ~W . According to our assumption, F is still unsatisfiable, since we removed disjunctions
from the clauses. Then, we reach a contradiction since F is equivalent to F ′′′ which is
satisfiable for the same clauses.

3.6.3 AC3 Encoding Proof

Theorem 3.4. Algorithm 3 returns false iff ~X is a non-minimal cause.

Before presenting the proof, we define the term non-minimal cause.

Definition 3.8. Non-minimal Cause is a candidate cause ~X(n) = ~x(n) that satisfies AC2 yet
contains at least one element Xn that satisfies one of the following conditions

50

3.6 Proofs

• NMC1. AC2 holds for the smaller cause ~X(n−1) regardless of whether Xn ∈ ~W or not,
i.e., (M,~u) |=

î
~X(n−1) ← ~x′(n−1),

~W ← ~w
ó
¬ϕ and (M,~u) |=

î
~X(n−1) ← ~x′(n−1), Xn ←

xn, ~W ← ~w
ó
¬ϕ both hold.

• NMC2. AC2 holds for the smaller cause ~X(n−1) only if Xn 6∈ ~W , i.e., (M,~u) |=
î
~X(n−1) ←

~x′(n−1),
~W ← ~w

ó
¬ϕ

Informally, NMC1 deals with irrelevant variables, i.e., those that do not affect the cause
relation to the effect. NMC2 targets the case of relevant variables that are affected by the
cause but not necessary for it to be a cause.

Theorem 3.4. Algorithm 3 returns false iff ~X is a non-minimal cause.

Proof.

Part 1. If the cause is a non-minimal cause, then Algorithm 3 returns false.
For the algorithm to return false, G must be satisfiable first, and the cardinality check is
passed. So we prove this part by showing that if any of the conditions in Definition 3.8 hold
then G is satisfiable and the check is passed and the algorithm returns false.

1. Recall G := ¬ϕ ∧
∧

i=1...` f(Ui = ui) ∧
∧

i=1...m, 6∃j•Xj=Vi

(
Vi ↔ FVi ∨ f(Vi = vi)

)
∧∧

i=1...`(Xi ∨ ¬Xi). Let us rewrite the formula to abstract the first part as, G :=
Gbase ∧

∧
i=1...n(Xi ∨ ¬Xi).

2. Note how ~X(n) is added to G as (X1 ∨ ¬X1) ∧ (X2 ∨ ¬X2) . . . (Xn ∨ ¬Xn). Re-write
this big conjunction to have its equivalent disjunctive normal form (DNF) i.e., (¬X1 ∧
¬X2 · · · ∧ ¬Xn) ∨ (¬X1 ∧ ¬X2 · · · ∧Xn) · · · ∨ (X1 ∧X2 · · · ∧Xn). Assume wlog that
all the original values of ~X(n) (which lead to ϕ holding true) were true, hence to check
them in AC2 we present them as negative literals like ¬Xi. Looking at the DNF, we
have 2n clauses that list all the possible cases of negating or fixing the elements in
~X . Then, we partition G according to the clauses, i.e, G := G1 ∨ G2 . . . G2n , where
G1 := Gbase∧ (¬X1∧¬X2 · · ·∧¬Xn). In the case of the clause where all variables ~X(n)

are negated, the corresponding G, i.e., G1, is exactly formula F from Algorithm 2.

3. Each Gi, other than G1, fixes some group of elements to their original evaluation (Xi)
and negates some, possibly none (G2n), other elements (¬Xi). Clearly, Gi is an F

formula (from Algorithm 2) for all the negated variables, in a clause, as ~X but with
x special fixed variables that are added to ~W . Hence, a Gi is a check of AC2 for a
specific subset of the causes given that the other part (fixed) of the cause is in ~W .
This is the case of NMC1 in Definition 3.8, i.e, AC2 still holds after transferring some
elements ~X∗ from ~X to ~W . ~X∗ is guaranteed to be expressed in one of the 2n clauses,
and hence, by a specific Gk. According to Theorem 3.3, such a Gk is satisfiable since
AC2 holds. Then, for a non-minimal cause based on NMC1, G is satisfiable since Gk

51

3 Efficiently Checking Actual Causality with SAT Solving

is satisfiable. In this case, we only have to show that it passes the cardinality check in
the algorithm. It is clear that ∀i ∈ ~X∗ v′i = vi since they will be in ~W . This makes the
condition in the algorithm evaluates to true and hence, the algorithm returns false.

4. Similarly, for the second case NMC2, i.e., the non-minimal part should not be in ~W .
AC2 holds for the non-minimal cause, i.e, F and G1 are satisfiable and then G is also
satisfiable. Since the non-minimal parts in this case are not in ~W or ~X , then they
follow their equations in the model, and hence ∃i • v′i = [

−→
V 7→ ~v′]FXi , which results

in false returned by the algorithm.

Part 2. If Algorithm 3 returns false, then the cause is a non-minimal cause

To prove this part, we show that if ~X is a minimal cause, the algorithm does not return false.
The algorithm returns false if G is satisfiable (~X or a subset of it fulfill AC2), and the cause
passes the cardinality check. A minimal cause will have a satisfiable G. For the cardinality
check, by Lemma 3.2, a cause should have all its elements negated. Hence the first conjunct
in line Line 5 of Algorithm 3 will be true for each element. If the second conjunct in the same
line (v′i 6= [

−→
V 7→ ~v′]FXi) evaluates to false for any element then, this is not a minimal cause.

Hence, for a minimal cause the two conjuncts will evaluate to true for all the elements in ~X ,
and then a false is never returned for such a case.

3.6.4 Optimized AC3 Encoding Proof

Theorem 3.5. Formula G′ constructed with Equation 3.5 is satisfiable iff AC3 is violated.

Proof. The proof follows from the fact that to check minimality, it is sufficient to check ~X’s
subsets of cardinality k where k = | ~X| − 1, i.e., the subsets of ~X with one element less. We
denote these subsets by Pk (X). A set ~X of size l has l subsets of size l − 1.

1. Recall that G := ¬ϕ ∧
∧

i=1...` f(Ui = ui) ∧
∧

i=1...m, 6∃j•Xj=Vi
(Vi ↔ FVi ∨ f(Vi =

vi)) ∧
∧

i=1...`(Xi ∨ ¬Xi).

2. G′ := G ∧
∨

i=1...`

(
(Xi ↔ FXi) ∨ (f(Xi = xi)

)
. Let us take the base case: l = 2, then

G′ := G ∧
(
(X1 ↔ FX1) ∨ (f(X1 = x1)

)
∨
(
(X2 ↔ FX2) ∨ (f(X2 = x2)

)
. If we dis-

tribute the conjunction over disjunction, then G′ := G ∧ ((X1 ↔ FX1) ∨ (f(X1 =
x1)) ∨ G ∧ ((X2 ↔ FX2) ∨ (f(X2 = x2)). Call G ∧ ((Xi ↔ FXi) ∨ (f(Xi = xi)), G∗i .
Then G′ = G∗1 ∨G∗2... ∨G∗l . For the base case G′ = G∗1 ∨G∗2

3. AG∗i represents the case where one cause variableXi is removed from the cause set by
adding this clause

(
(Xi ↔ FXi) ∨ (f(Xi = xi)

)
which then makes G∗i only satisfiable

if Xi was not negated, i.e., not part of the cause. G∗i then can be seen as an AC2 check
of a smaller cause (in relation with formula F from [98]). Since G′ is a disjunction
of all G∗i ∈ Pk (X), G′ is an AC2 check of all subsets of ~X with size k. G′ is only

52

3.7 Summary

satisfiable if one or more G∗i clauses are satisfiable. This satisfiability of a G∗i makes
the corresponding Xi an irrelevant cause and hence AC3 is violated.

4. By induction, a cause ~X of size n written (by distributing the conjunction over dis-
junction) as G′ = G∗1 ∨G∗2...G∗n is only satisfiable if AC2 holds for a subset-cause of
size n− 1, and consequently AC3 is violated.

3.7 Summary

It is difficult to devise automated assistance for causality reasoning in modern socio-
technical systems. Causality checking, according to the formal definitions, is compu-
tationally hard. Therefore, efficient approaches that scale to the complexity of such systems
are required. In the course of this, we proposed an intelligent way to utilize SAT solvers
to check actual causality in binary models on a large scale that we believe to be particu-
larly relevant for accountability purposes, specifically when large models are generated
automatically from existing documentation. The baseline of the approach lies in how the
encoding of AC2 is done in a way that allows for an efficient conclusion of ~W . We extended
this baseline to check AC3 and optimized our solution for efficiency.

We formally proved the soundness of our approach and empirically showed that it can
efficiently compute actual causality in large binary models. Even with only 30 variables,
determining causality in a brute force manner is incomputable, whereas our SAT-based
approach returned a result for such cases in 1 ms. In addition, causal models consisting of
more than 4000 endogenous variables were still handled within seconds using the proposed
approach. We have also shown one idea to enhance the quality of the answer, i.e., a minimal
~W , and one idea to enhance the performance, i.e., combining the two algorithms.

53

4 Actual Causality Computations as
Optimization Problems

This chapter presents a formulation of different notions of actual causality
computations over binary models as optimization problems. Parts of this chapter
have previously appeared in the publication [97], co-authored by the author of
this thesis.1

4.1 Introduction

Recall that we distinguish two notions of reasoning: checking and inference. Checking refers to
verifying if a candidate cause is an actual cause of an effect, i.e., answering the question “is
~X a cause of ϕ?” Inference involves finding a cause without any candidates, i.e., answering
the question “why ϕ?” In Chapter 3, we presented different encodings for checking causality
in acyclic models with binary variables based on the Boolean satisfiability problem (SAT). The
first encoding requires solving an ALL-SAT problem to verify minimality, i.e., enumerating
all the satisfying assignments of a formula. To solve an ALL-SAT problem, modern solvers
typically add clauses (of size equal to the number of variables) called blocking clauses, to
prevent already-found solutions and let the solver find a new solution [69]. This method has
benefits, especially for formulas that have a small number of solutions [190]. However, the
two downsides are the potential memory saturation and the slow-down of the solver [204,
190, 69]. In addition to the limitation to checking, the normal SAT approach in Chapter 3
then fails to scale for larger models, especially when the cardinality of the cause is big.

Large models of causal dependencies are likely to occur, especially if generated auto-
matically from other sources [205, 95, 141]. Furthermore, models of real-world accidents
are sufficiently large to require efficient approaches. For example, the model of the 2002
mid-air collision in southern Germany consists of 95 factors [187] (discussed in detail in
Section 9.4.2), 2006 Amazonas collision consists of 137 factors [184]; such models are ex-
pected to grow in size with data-driven causal discovery approaches. Therefore, extending
the approach in Chapter 3, we present a novel approach to formulate actual causality
computations in binary models as optimization problems [25, 130, 128]. We show how

1Parts of this chapter are reprinted by permission from Springer Nature: Lecture Notes in Computer Science,
vol 12302. From Checking to Inference: Actual Causality Computations as Optimization Problems, Ibrahim
A., Pretschner A. (2020).

55

4 Actual Causality Computations as Optimization Problems

to construct quantifiable notions within counterfactual computations, and use them for
checking and inference.

We encode our checking approach as integer linear programs (ILP), or weighted MaxSAT
formulae [128]. Both are well-suited alternatives for Boolean optimization problems. How-
ever, MaxSAT has an inherent advantage with binary propositional constraints [128]. On the
other hand, ILP has an expressive objective language that allows us to tackle the problem
of causality inference as a multi-objective program, and enables the extension to non-binary
models. Accordingly, we contribute an approach with three encodings. The first two cover
causality checking, and better they can determine a minimal HP cause from a potentially
non-minimal candidate cause; we refer to this ability as semi-inference. The third encoding
tackles causality inference. All these encodings benefit from the rapid development in
solving complex and large (tens of thousands of variables and constraints) optimization
problems [142, 110, 10].

We consider the work in this chapter to be the first to provide an efficient solution to the
problem of computing actual causality (checking and inferring), according to HP, for a large
class of models (binary models) without any dependency on domain-specific technologies.

4.2 Checking and Semi-inference Queries as Optimization
Problems

The conclusion of the SAT approaches aid us in determining whether a given ~X = ~x is
a minimal, counter-factual cause of ϕ. If it is not, we cannot use them to find a minimal
cause from within ~X , i.e., semi-inference. We, also, cannot use them to find a cause without
requiring a candidate cause, i.e., inference. To efficiently achieve such abilities, we present a
novel formulation of causal queries as optimization problems. For that, we conceptualize a
technique to check AC2 and AC3 as one problem (AC1 is explicitly checked solely). The
result of solving this problem can then be interpreted to conclude AC2, ~W , AC3, and, better,
what is a minimal subset of the cause if AC3 is violated (semi-inference). To compare the
efficiency, we formulate the problem as an integer program, and a MaxSAT formula. Both
techniques solve the problem based on an objective function— a function whose value is
minimized or maximized among feasible alternatives.

4.2.1 The Objective in Causality Checking

To quantify an objective within a causal check, we introduce an integer variable that we call
the distance variable (formalized in Equation 4.1). The distance is the count of the cause
variables (~X) whose value assigned by the (ILP or MaxSAT) solver (x′i) is different from
their value under the given context (actual evaluation xi that led to ϕ hold true). Similar to
the Hamming distance [84], the distance is a metric to measure the difference between the
cause values when ϕ holds true and when it holds false. In other words, we quantify the
distance between the actual and the counterfactual world. Equation 4.1 shows the distance

56

4.2 Checking and Semi-inference Queries as Optimization Problems

as a sum function of the deltas between variable Xi’s actual (xi) and counterfactual value
(x′i). Since an actual cause is non-empty by definition, the distance is bounded to have a
value greater or equal to 1. Further, the distance is less or equal to the size of ~X (`), i.e.,
1 ≤ distance ≤ `.

distance =
∑̀
i=1

d(i) s.t d(i) =

{
1− x′i, xi = 1

x′i, xi = 0
(4.1)

According to AC3, we define the objective function. Clearly, our objective function is to
minimize the distance between the actual values of the candidate cause and the computed
causes such that the distance is greater than or equal to 1. So, we encode a causality check
as an optimization problem that aims to minimize the number of causes variables while
satisfying the constraints for AC2 (counterfactuality and ~W). Next, we present the specific
ingredients for the ILP formulation, and the MaxSAT encoding; then we discuss how to
interpret the results to infer a minimal cause from a possibly non-minimal cause.

4.2.2 ILP Formulation

ILP is an optimization program with integer variables and linear constraints and objectives.
To formulate such a program, three elements have to be specified: the decision variables,
the constraints, and the objective [25]. Our decision variables are, in addition to the distance
variable, the set of exogenous and endogenous variables from the model, i.e., U ∪ V . Since
we consider binary variables, variables are bound to have values of 0 or 1.

Since ILP and SAT solvers can be used as complementary tools, the translation from SAT
to ILP is standard [130, 129]. Therefore, we reuse formula G from Section 3.3.2 (shown
in Equation 4.2) to create the ILP constraints. However, since we aim to optimize the SAT
answer, we add more constraints. The constraints from G already contain the a.) effect not
holding true, b.) exogenous variables set to their values (the context), c.) each endogenous
variable either follows the model equation or the actual value, i.e., part of the set ~W , d.) each
element in the cause set ~X = ~x is not constrained, i.e., its equation is removed. Transforming
these constraints (on the Conjunctive Normal Form (CNF) level) into linear inequalities
is straightforward; we have clauses that can be reduced to ILP directly. For example, we
express y = x1 ∨ x2 as 1 ≥ 2 ∗ y − x1 − x2 ≥ 0 [25, 130, 129].

G := ¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m,6∃j•Xj=Vi

(
Vi ↔ FVi

∨ f(Vi = vi)
)

(4.2)

In addition to the constraints inherited fromG, we add a special constraint for the distance
variable. Besides setting the bounds of the distance variable, we add a constraint to calculate
it by summing the absolute difference between each actual value in ~x and the corresponding
value in the ILP solution ~x′. Lastly, we define the objective function. It is clear by now that
our objective function is to minimize the distance between the actual values of the candidate

57

4 Actual Causality Computations as Optimization Problems

cause and the computed causes such that the distance is greater than or equal to 1. We solve
a causality check as an optimization problem that aims to minimize the number of causes
variables while satisfying the constraints for AC2 (counter-factuality and ~W).

4.2.3 MaxSAT Encoding

The maximum satisfiability problem (MaxSAT) is an optimization variant of SAT [128]. In
contrast to SAT, which aims to find a satisfying assignment of all the clauses in a formula,
MaxSAT aims to find an assignment that maximizes the number of satisfied clauses. Thus,
MaxSAT allows the potential that some clauses are unsatisfied. In this chapter, we use
partial MaxSAT solving, which allows specific clauses to be unsatisfied, referred to as soft
clauses; contrary to the hard clauses that must be satisfied [128]. A soft clause can be assigned
a weight to represent the cost of not satisfying it. In essence, a weighted partial MaxSAT
problem is a minimization problem that minimizes the cost over all solutions. Unlike ILP,
the objective in MaxSAT is immutable. Thus, we need to construct our formula in a way
that mimics the concept of the distance.

As shown in Equation 4.3, the MaxSAT encoding also uses G (shown in Equation 4.2) as a
base. G embeds all the mandatory parts of any solution. Thus, we use the CNF clauses of G
as hard clauses. On the other hand, we need to append the cause variables (~X) as soft clauses
(underlined in Equation 4.3). Since the solver would minimize the cost of unsatisfying the
(~X) clauses, we represent each cause variable as a literal according to its original value
(when ϕ holds). Because this is already in CNF, it is easier to assign weights. We assign 1 as
a cost for unsatisfying each cause variable’s clause, i.e., when Xi is negated in the (solved)
counterfactual world. Then, the overall cost of unsatisfying the underlined parts of the
formula is the count of the negated causes, i.e., the size of the minimal cause. Essentially,
this concept maps directly to the distance, which the MaxSAT solver will minimize. In
contrast to ILP, we cannot specify a lower bound on the MaxSAT objective. Thus, we need
to express the non-emptiness of a cause, as hard clauses. A non-empty cause means that at
least one cause variable Xj does not take its original value, and does not follow its equation
due to an intervention. The first conjunction (after G) in Equation 4.3 ensures the first
requirement, while the second corresponds to the second case. The first ensures that not all
the variables are equal to their original value. The second ensures that not every variable is
allowed to evaluate according to its equation.

Gmax := G ∧ ¬(
∧

i=1...`

f(Xi = xi)) ∧ ¬(
∧

i=1...`

Xi ↔ FXi
)∧

∧
i=1...`

f(Xi = xi) (4.3)

Clearly, Gmax cannot be satisfied completely. We cannot have a non-empty cause, yet
represent all the cause variables according to their original values (soft clauses). This is
precisely the reason for using this formula with MaxSAT. We want the maximum number
of (soft clauses) literals to be true.

58

4.2 Checking and Semi-inference Queries as Optimization Problems

Algorithm 4 Interpreting the Optimization Problem’s Results

Input: context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, candidate cause 〈X1, . . . , X`〉 =
〈x1, . . . , x`〉, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉, ~C, objective

1: function CHECKCAUSE(~U = ~u, ϕ, ~X = ~x, ~V = ~v, ~C, objective)
2: if 〈U1 = u1 . . . Un = un, V1 = v′1 . . . Vm = v′m〉 = solve(~C, objective) then
3: ~Xmin := 〈X ′1...X ′d〉 s.t. ∀i∀j • (i 6= j ⇒ X ′i 6= X ′j) ∧ (X ′i = Vj ⇔ v′j 6= vj)

4: ~W := 〈W1...Ws〉 s.t. ∀i∀j • (i 6= j ⇒Wi 6= Wj) ∧ (Wi = Vj ⇔ v′j = vj)

5: return ~Xmin, ~W
6: else return infeasible (unsatisfiable)
7: end if
8: end function

4.2.4 Results Interpretation

With the above, we illustrated the formulation of a causal checking problem. We now
discuss how to translate their results to a causal answer once they are solved; Algorithm 4
formalizes this. The evaluation, in the input, is a list of the variables in M and their values
under ~u. Assuming ~C is a representation of the optimization problem that encodes the
causal model M (a set of linear constraints without the objective, or hard/soft clauses),
then in Line 2, we solve this problem and process the results in Lines 3-4. The feasibility
(satisfiability) of the problem implies that either ~X or a non-empty subset of it is a minimal
cause (fulfills AC2 and AC3). If the distance (cost returned by the MaxSAT solver) equals the
size of ~X , then the whole candidate cause is minimal (this step is not explicitly performed
in Algorithm 4 because it can be concluded from the next step). Otherwise, to find a
minimal cause ~Xmin (semi-inference), we choose the parts of ~X that have different values
between the actual and the solved values (Line 3). To determine ~W , in Line 4, we take the
variables whose solved values are the same as the actual evaluation (potentially including
~X variables). Obviously, this is not a minimal ~W , which is not a requirement for checking
HP [98]. If the model is infeasible or unsatisfiable, then HP for the given ~X (checking) and
its subsets (semi-inference) does not hold. Note that an optimization problem can have
more than one optimal solution. This implies that multiple minimal causes are found. We
collect them all, but we present the first one. To pick one of the causes, we need to employ
additional metrics.

4.2.5 Example

To illustrate our approach, we show the ILP and MaxSAT encodings to answer the query is
ST = 1, BT = 1 a cause of BS = 1? Figure 4.1 (left part) shows the generated ILP program
according to our approach, and its solution (right part). On the other hand, the MaxSAT
formula is shown in Equation 4.4.

59

4 Actual Causality Computations as Optimization Problems

min distance

s.t. BS = 0
STexo = 1
BTexo = 1

−SH +BS ≥ 0
−BH +BS ≥ 0
−ST + SH ≥ 0
BT −BH ≥ 0
−SH −BH ≥ −1
ST +BT + d = 2

Vi ∈ [0, 1] ∀ Vi ∈ V, distance ∈ [1, 2]

distance = 1
BS = 0

STexo = 1
BTexo = 1
SH = 0
BH = 0
ST = 0
BT = 1

Figure 4.1: The Program and the Solution of the Example

Gmax =¬BS ∧ STexo ∧BTexo ∧ (BS ↔ SH ∨BH) ∧ ((SH ↔ ST) ∨ SH) ∧
((BH ↔ BT ∧ ¬SH) ∨ ¬BH) ∧ ¬(ST ∧BT) ∧ (ST ∧BT)

(4.4)

Both encodings are solved with a distance(d) (cost) value of 1, which indicates that
ST,BT is not minimal, and a cause of size 1 is (semi)-inferred, namely ST . The optimal
assignment (¬BS, STexo, BTexo,¬SH,¬BH,¬ST,BT) showed that the constraints can be
guaranteed without changing the value of BT , which violates AC3. Although this example
shows the same result of the SAT-based approach, it clearly shows the quality enhancement
of the answer, i.e., finding a specific non-empty, minimal cause rather than only checking
the violation of AC3.

Theorem 4.1 states the soundness of our approach (for proofs see Section 4.5)

Theorem 4.1. The generated optimization problem (ILP program or Gmax) is feasible iff AC3 holds
for ~X or a non-empty subset of ~X .

4.3 Causality Inference with ILP

All the previous approaches utilized the candidate cause ~X to help describe a counterfactual
world that proves ~X is a cause of ϕ. To check AC2 in Section 3.3.1, we negated the
causes in ~X ; on the other hand, to check AC3 in Section 3.3.2, we removed the equations
corresponding to the cause variables. In this section, we present a method, ILPwhy, to
infer causality without requiring ~X . This approach can be utilized to answer questions
of the nature why ϕ? without hypothesizing anything about the cause. This method
leverages a quantifiable metric (degree of responsibility), which can be formulated using
ILP’s expressive objective language; it is not clear to us if and how can this be encoded into

60

4.3 Causality Inference with ILP

MaxSAT. Unlike checking, in inference, we cannot aid the solver in a description of the
counterfactual world (e.g., negating values of ~X). Instead, we describe characteristics of the
actual cause that have caused an effect ϕ.

Describing the characteristics of an actual cause entails translating the conditions of HP
(according to Definition 2.4). However, since the conditions depend on the existence of a
candidate cause ~X , (ILPwhy) formulates the problem differently. We leverage the degree of
responsibility (dr) (Definition 2.5), which was introduced in Section 2.4. While the conditions
are suitable for determining if ~X is a cause, dr judges the “quality" of the cause based on
an aggregation of its characteristics. Because we may find multiple causes for which the
conditions hold, dr is reasonable for comparison. In other words, we instruct the solver to
find a cause with the maximum degree of responsibility. We come back to this goal after we
construct a formula G∗ that is the base of ILPwhy.

Analogous to all the previous formulas, we start our construction with the negated effect
formula (¬ϕ), and inclusion of the context f(Ui = ui). To continue with a why query, we
have two classes of endogenous variables: 1. variables that belong to the effect formula,
and 2. all the other variables. Because the effect variables are not supposed to be part
of the cause, we can represent the first group with the equivalence relation, i.e., Vi ↔ FVi .
The complicated part is the representation of the other variables. Since we are looking
for the cause set, we need to allow each variable to be in one of the three categories: a. a
cause variable, b. a contingency-set variable, c. a normal variable. Recall, in counterfactual
computation, a cause variable does not follow its equation, and differs from its original
value. A contingency-set variable, on the other hand, does not follow its equation while
keeping its original value. A normal variable does follow its equation, regardless of whether
being equal to the original value or not. Thus, we need to allow variables to be classified in
any category in the “best" possible way.

To that end, we represent each (non-effect) variable Vi with a disjunction between the
equivalence holding and not holding, and a disjunction between its original value and its
negation. This is shown in Equation 4.5.Ä(

Vi ↔ FVi

)
∨ ¬

(
Vi ↔ FVi

)ä
∧
Ä
Viorig ∨ ¬Viorig

ä
(4.5)

Clearly, each clause in the previous equation is a tautology. However, this redundancy
facilitates the classification into the three categories; more importantly, we can incentivize
the solver to classify those variables according to specific criteria.

To be able to guide the solver, we add auxiliary boolean variables (indicators) to each
clause (left and right parts of a disjunction). They serve two functions. The first is to indicate
which clauses hold. Since the two parts of the conjunction are not mutually exclusive, i.e., a
variable can follow its equation, yet have its original value, we need two indicators C1C2.
Secondly, similar to the concept of distance from Section 4.2.2, we use the indicators to
describe the criteria of the solution. For each variable Vi, C1

i is appended to the first two
clauses:

Ä(
Vi ↔ FVi

)
∧ C1

i

ä
∨
Ä
¬
(
Vi ↔ FVi

)
∧ ¬C1

i

ä
. Similarly, C2 is appended to the other

clauses. The category of each endogenous variable is determined based on the values of

61

4 Actual Causality Computations as Optimization Problems

C1 and C2. A cause variable would have a C1C2 : 00 (not following the formula nor its
original value); a contingency-set variable has a C1C2 : 01; and a normal variable has a
C1C2 : 10, or 11. The overall formula G∗ is shown in Equation 4.6 (equivalence relations of
effect variables are omitted for readability).

G∗ :=¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m

(Ä(
Vi ↔ FVi

)
∧ C1

i

ä
∨
Ä
¬
(
Vi ↔ FVi

)
∧ ¬C1

i

ä)
∧
(Ä
Vorig ∧ C2

i

ä
∨
Ä
¬Vorig ∧ ¬C2

i

ä) (4.6)

Theorem 4.2. Formula G∗ is satisfiable iff ∃ ~X = ~x such that AC2 holds for ~X

So far, we have shown the construction of the formula and its parts that correspond to
the constraints of the optimization problem. The important step is to define the objective of
this formulation. As mentioned, we want to find an assignment to the constraints shown
in G∗ that corresponds to a cause with a maximum degree of responsibility. Let us recall

the degree of responsibility as given in Definition 2.5 is
1

|X|+ |W |
. Thus, maximizing the

responsibility entails minimizing the sizes of both the cause and the contingency sets, i.e.,
|X|+ |W |.

Since the sizes of the three (cause, contingency, and normal) sets of variables form the
overall model size (excluding the effect variables), then minimizing |X|+ |W | is equivalent
to maximizing the number of normal variables. The sum of values ofC1 variables represents
the number of normal variables; thus, objective1 is to maximize the sum of C1 variables.

The above formulation minimizes ~X , and ~W as a whole, following dr. For our purpose,
we argue it is valid to look for causes with higher responsibility first (fewer variables to
negate or fix) and favor them over smaller causes. For example, if an effect has two actual
causes: one with 2 variables in ~X , 3 in ~W , and the second with 1 variable in ~X , 5 in ~W , we
pick the first. 2 That said, we still want to distinguish between ~X , and ~W in causes with
the same dr. Assume we have two causes: the first with 2 variables in ~X , 3 in ~W , and the
second with 3 in ~X , 2 in ~W . Although both are optimal solutions to objective1, we would
like to pick the one with fewer causes.

Thus, we add objective2 to minimize causes, i.e., the number of variables with C1 and
C2 equal to 0. We use hierarchical objectives in ILP, for which the solver finds the optimal
solution(s) based on the first objective, and then use the second objective to optimize the
solution(s).

4.3.1 WhyILP Algorithm

We have discussed the building blocks of the formulation to infer causality based on
responsibility. We wrap-up the approach with Algorithm 5. It follows a construction similar

2We acknowledge that this an arbitrary choice we made in our implementation; however, the same approach
can be adapted to work with the other option.

62

4.3 Causality Inference with ILP

Algorithm 5 Causality Inference using ILPwhy

Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, evaluation
〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function FINDCAUSE(M, ~U = ~u, ϕ, ~V = ~v)
2: 〈Con1, . . . Conn〉 = convertToILP(CNF(G∗))
3: obj1 = Maximize

∑m
i=1C

1
i s.t. obj1 ≤ |~V |

4: obj2 = Minimize
∑m

i=1(1− C1
i) ∗ (1− C2

i) s.t. |~V | ≥ obj2 ≥ 1
5: if 〈V1 = v′1 . . . Vm = v′m, C

1
1 = c11 . . . C

1
m = c1m, C

2
1 = c21 . . . C

2
m = c2m〉

↪→ = solve(~Con, obj1, obj2) then
6: ~X ′ := 〈X ′1...X ′obj2〉 s.t. ∀i∀j • (i 6= j ⇒ X ′i 6= X ′j) ∧ (X ′i = Vj ⇔ ¬c1j ∧ ¬c2j)
7: ~W := 〈W1...Ws〉 s.t. ∀i∀j • (i 6= j ⇒Wi 6= Wj) ∧ (Wi = Vj ⇔ (¬c1j ∧ c2j))
8: return ~X ′, ~W
9: else return infeasible

10: end if
11: end function

to Algorithm 2; however, without the dependency on a candidate cause set in the input.

The algorithm omits the construction of G∗. The choice to depend on a propositional
formula to express the constraints of the equation seemed natural, given our previous
approaches. To start formulating the query as an integer program, we turn the conjunctive
normal form of G∗ into a set of linear constraints in Line 2. We then complete constructing
the program, in Line 3-Line 4, by adding the objectives. The first objective of the program,
i.e., objective1 concerns maximizing the degree of responsibility which, as discussed earlier,
corresponds to maximize the sum of all the control variables C1. The second objective,
objective2, handles minimizing the size of the cause set.

Lastly, we process the results after solving the program in Line 5-Line 7. To reflect the
assignments returned by the solver to answer a why query, we check the control variables.
Generally, the feasibility of the program means that there is a cause of size at least 1 (exact
size is objective2), which makes ϕ not hold, under the given context, with the maximum
dr for the effect. For the details, we check the indicators of each variable. The cause is
composed of variables that have C1 and C2 equal 0; variables in ~W , have C1 = 0 and
C2 = 1

63

4 Actual Causality Computations as Optimization Problems

4.3.2 Example

To illustrate the approach, using the rock-throwing example, Equation 4.7 shows the
generated program for a why query. The query is why did the bottle shatter BS = 1?

max
C1SUM

min
C3SUM

s.t. BS = 0
STexo = 1 BTexo = 1
−BS + SH +BH ≥ 0 BS − SH ≥ 0
BS −BH ≥ 0 C1SH −AT − SH ≥ −1
C1SH + SH +AT ≥ 1 −SH +AT − C1SH ≥ −1
SH −AT − C1SH ≥ −1 C2SH − SH ≥ 0
SH − C2SH ≥ 0 C1BH −BT + SH −BH ≥ −1
C1BH +BH +BT ≥ 1 C1BH +BH − SH ≥ 0
−BH +BT − C1BH ≥ −1 −BH − SH − C1BH ≥ −2
BH −BT + SH − C1BH ≥ −1 C2BH +BH ≥ 0
−BH − C2BH ≥ −1 C1ST − STexo −AT ≥ −1
C1ST +AT + STexo ≥ 1 −AT + STexo − C1ST ≥ −1
AT − STexo − C1ST ≥ −1 C2ST −AT ≥ 0
AT − C2ST ≥ 0 C1BT −BTexo −BT ≥ −1
C1BT +BT +BTexo ≥ 1 −BT +BTexo − C1BT ≥ −1
BT −BTexo − C1BT ≥ −1 C2BT −BT ≥ 0
BT − C2BT ≥ 0 −C1

BT − C2BT − 2C3BT <= −1
−C1BT − C2BT − 2C3BT ≥ −2 −C1BH − C2BH − 2C3BH <= −1
−C1BH − C2BH − 2C3BH ≥ −2 −C1SH − C2SH − 2C3SH <= −1
−C1SH − C2SH − 2C3SH ≥ −2 −C1ST − C2ST − 2C3ST <= −1
−C1ST − C2ST − 2C3ST ≥ −2 C1BT + C1BH + C1SH + C1ST − C1sum = 0
C1sum + C1_comsum = 4 C3BT + C3BH + C3SH + C3ST − C3sum = 0

(4.7)

The solution of the program is shown in Equation 4.8. From the set of variables not
included in the effect formula, we have two normal variables based on the sum of C1

variables (C1
sum = 2). On the other hand, we have two variables that are part of either

~X , or ~W , shown by the value of the complement of C1
sum. To infer the specific cause and

contingency set variables, we look at the indicator variables. Based on the truth table,
SH = 1 is the actual cause of BS = 1, given that BH = 0. This is the result of having
C1
SH = 0 ∧ C2

SH = 0 as opposed to C1
BH = 0 ∧ C2

BH = 1.

C1sum = 2 C1_comsum = 2 C3sum = 1
STexo = 1 BTexo = 1 BS = 0
SH = 0 C1SH = 0 C2SH = 0 C3SH = 1
BH = 0 C1BH = 0 C2BH = 1 C3BH = 0
ST = 1 C1ST = 1 C2ST = 1 C3ST = 0
BT = 1 C1BT = 1 C2BT = 1 C3BT = 0

(4.8)

The results returned by the approach are correct. SH is an actual cause of BS, according
to HP. Under the given context, the inferred cause has a maximum degree of responsibility

64

4.4 Evaluation

(
1

2
). All the instances of this example referred to ST as the actual cause; however, since the

equation of SH is an identity function (SH = ST), this does not compromise our result.
Arguably, the depth of the cause, the (geodesic) distance between the nodes in the graph,
can be taken into consideration. In this thesis, we do not consider this issue.

4.4 Evaluation

To evaluate their efficiency, we implemented our strategies as an open-source library. We
used state of the art solvers: Gurobi [71] for ILP, and Open-WBO for MaxSAT [131]. In this
section, we evaluate the performance, in terms of execution time and memory allocation, of
the strategies in comparison with previous approaches.

4.4.1 Evaluating Checking and Semi-Inference

Experiment Setup

We used the same data-set we presented in Chapter 3. Recall that it contains 37 models,
which included 21 small models (≤ 400 endogenous variables)–from domains of causality,
security, safety, and accident investigation– and 16 larger security models from an industrial
partner, in addition to artificially generated models. A brief description of the models
is given in Section 3.5.2, and the details of the models and the results can be found in
Appendix A.

We formulated a total of 484 checking queries that vary in the context, cause, effect, and
consequently differ in the result of AC1-AC3, the size of ~W , and the size of the minimal
cause. For the smaller models, we specified the queries manually according to their sources
in literature and verified that our results match the sources. The approaches, including
the previous ALL-SAT approach, answered these queries in under a second. For the larger
models, we constructed a total of 224 checking queries. We specified some effects (e.g.,
root of BT , or steal pass phrase in SMK) and used different contexts, and randomly selected
causes (sizes 1, 2, 3, 4, 10, 15, and 50) from the models.

For these queries, we collected the results for two checking approaches from Chapter 3:
SAT - the original SAT-based (requires ALL-SAT) approach, SAT_OPT - the optimized SAT-
based approach, and the two semi-inference approaches in this chapter: ILP, and MaxSAT.
Although these approaches differ in their abilities, they answer the same queries. Further,
as we define it in this thesis, semi-inference is also a checking procedure by definition. Thus,
we argue that the comparison of these approaches provides useful insights regarding our
encodings, algorithms, and the technologies used to solve them.

We ran each query for 30 warm-ups (dry-runs before collecting results to avoid accounting
for factors like JVM warm-up threads), and 30 measurement iterations on an i7 Ubuntu
machine with 16 GB RAM. We set the cut-off threshold to 2 hours.

65

4 Actual Causality Computations as Optimization Problems

Discussion

We discuss the overall trends of the results; however, since we are interested in notions
of checking, and semi-inference, we also discuss representative scenarios of these trends
from our experiments, shown in Table 4.1. Each scenario is identified by the model name, its
size, and an ID of the scenario; those are shown in the first three columns. From the causal
query perspective, we only show, in the fourth column, the size of the candidate cause | ~X|.
Then, the results of the three conditions are displayed in columns AC1-AC3. The sizes
of | ~W |, and the minimal cause set | ~Xmin| are displayed in the eighth and ninth columns,
respectively. Finally, for each approach the execution time, in seconds (s), and the memory
allocation, in gigabytes (GB), are shown. The last two columns show the performance of
the semi-inference approaches.

Result
Execution Time (s)

Memory consumption (GB)
Model |~V | ID | ~X| AC1 AC2 AC3 | ~W | | ~Xmin| SAT SAT_OPT ILP MAX_SAT

LSP 41 4 4 Y Y N 2 1
0.0017
1.5× 10−9

0.0015
1.5× 10−9

0.0027
0.0009

0.001
1e-9

SMK 91 11 3 Y Y Y 0 3
0.013
0.008

0.0048
0.0027

0.0024
0.0026

0.002
0.002

Ueberlingen 95 5 4 Y Y N 88 3
0.805
0.0018

0.502
0.0032

0.488
0.0040

0.005
0.0021

BT_11 4095 35 4 Y N Y N/A 4
7.37
2.03

7.50
2.03

3.24
1.05

0.22
0.07

ABT 4103

4 2 Y Y Y 4086 2
8.40
2.04

8.99
2.03

4.54
1.05

1.5
0.082

5 5 Y Y N 4090 2
9.41
2.04

8.14
2.03

3.88
1.05

1.4
0.09

6 10 Y Y N 4086 2
16.77
4.2

8.03
1.80

5.11
1.05

1.32
0.082

7 11 N Y N 4086 2
26.29
4.18

8.07
1.80

5.26
1.05

1.35
0.082

8 15 Y Y N 4086 2
N/A
N/A

8.10
1.81

5.108
1.05

1.37
0.082

9 15 N Y N 4080 5
7190
9.5

7.87
1.80

5.05
1.05

1.333
0.09

10 15 N Y N 4080 5
7101
9.5

8.23
1.80

5.17
1.05

1.35
0.09

11 50 Y Y N 4079 5
N/A
N/A

8.6
2.04

4.80
1.05

1.44
0.082

12 50 Y Y N 4068 11
N/A
N/A

8.63
2.04

5.13
1.05

1.35
0.11

ABT2 8207
1 11 Y Y Y 8161 11

N/A
N/A

18.96
4.0

22.8
4.0

5.67
0.22

2 22 Y Y N 8191 11
N/A
N/A

19.25
4.0

24.8
4.0

6.67
0.16

Table 4.1: Checking and Semi-inference Evaluation Scenarios.

For the smaller models, all the approaches performed efficiently. As shown in the first
three rows of Table 4.1, the whole process of encoding, solving, and processing the results

66

4.4 Evaluation

in less than a second, and the memory consumption was under 10MB; hence, we exclude
them from further discussion. The cases we discuss next are results of the bigger models,
with which we tried to evaluate the different factors influencing the three approaches.
Specifically, we show cases with candidate causes of 50 variables cardinality. In addition to
specific scenarios in the table, we use cactus plots to compare the overall performance of
the approaches. A point on the x-axis represents a query an approach answered ordered
by the execution time, which is shown on the y-axis; a point (x, y) on the plot reads as x
queries can be answered in y or less.

As expected, the experiments confirmed the problems seen in Chapter 3 with the SAT
encoding— significant solver slow-down and memory exhaustion—[204]. Thus, as shown
in Figure 4.2a, SAT only answered 187 of the 224 checking queries; for the remaining
either it ran out of memory or took more than 2 hours. For instance, queries on SMK (6600)
checking causes of sizes 2, 3, 4 were not answered because the program ran out of memory.
With almost all answered queries, SAT took at least two to four times as much as ILP, and up
to twenty times as much as MaxSAT. In extreme cases, SAT took around 113 minutes to finish,
whereas others stayed under 5s for the same cases. On the other hand, SAT_OPT performed
better than SAT but worse than the semi-inference approaches. SAT_OPT answered 209
queries but was always slower than both ILP and MaxSAT.

Memory allocation of the two checking approaches, shown in Figure 4.2b, showed less
difference with ILP and sometimes better allocation. Although it is not surprising that an
ALL-SAT encoding performs poorly in some situations, the key result is that both ILP and
MaxSAT provide more informative answers to a query while performing better than the
checking approaches.

0 50 100 150 200 250

Queries

25

50

75

100

125

150

175

200

C
PU

ti
m

e
(s

)

MAXSAT
ILP
SAT_OPT
SAT

(a) Cactus Plot of Execution Time

0 50 100 150 200 250

Queries

2

5

7

10

12

15

17

20

M
em

or
y

A
llo

ca
ti

on
(G

B)

MaxSAT
ILP
SAT_OPT
SAT

(b) Cactus Plot of Memory Allocation

Figure 4.2: Execution Time and Memory Results on the Larger Models. A point on the
x-axis represents a query an approach answered ordered by the execution time,
shown on the y-axis; a point (x, y) on the plot reads as x queries can be answered
in y or less.

According to our dataset, both ILP and MaxSAT, answered all (224) queries in less than
70− 100 seconds. Especially for semi-inference, cases of non-minimal causes, and a minimal
cause can be found, they are effective. For instance, with queries using ABT (4103), we

67

4 Actual Causality Computations as Optimization Problems

found causes of size 2, 5, and 11 out of candidate causes of sizes 5, 10, 15, and 50. All these
queries were answered in around 5s using ILP, and 2s using MaxSAT. For larger and more
complex models e.g., SMK (7150), answering similar queries jumped to 98s with ILP and
71s MaxSAT.

As shown in Figure 4.2a and Figure 4.2b, MaxSAT outperformed ILP in execution time
and memory; a scatter plot to compare them is shown in Figure 4.3. Clearly, the proposi-
tional nature of the problem gives an advantage to MaxSAT. Especially for easier queries, as
shown in Figure 4.3 bottom left, MaxSAT is much faster because no linear transformation
step is needed before solving, which explains why the gap between the two decreases
among the larger queries. Further, we used Open-WBO solver —a solver that uses cores
to initiate a set of (UN)SAT instances [131]— which performs better, especially when the
number of hard clauses is high [11]. That said, in addition to the empirical comparison, we
used ILP for binary counterfactual computations to incorporate quantifiable notions, to
infer causality. This was achieved using multi-objective ILP in ILPwhy.

100 101 102 103 104

MaxSAT

100

101

102

103

104

I
L
P

1000 sec. timeout

10
00

se
c.

ti
m

eo
ut

Figure 4.3: Log-log Scatter Plot of ILP vs MaxSAT

4.4.2 Evaluating Inference

Using the same models, we evaluate our inference approach ILPwhy presented in Section 4.3.
We can reuse the checking queries for inference; the difference, however, is that we omitted
to pick cause sets for the causal queries. Instead, we used the approach to answer why
questions regarding the causal models under different contexts and different effects. As
such, we created 180 inference queries including 67 queries of large models. We show
some cases in Table 4.2, obtained from our experiments. We indicate the model and the
number of its endogenous variables in the first two columns. We show the identifier of the
causal query in the third column. In the query part of the table, we only show an identifier

68

4.4 Evaluation

of the context used and the effect formula. Regardless of the exact interpretation of the
context and the effect, they emphasize the fact that a model may perform differently based
on these factors. Lastly, in the last two columns, we show the performance of each case in
terms of execution time in seconds and memory consumption in GB.

Performance
Model |~V | ID Execution Time (s) Memory consumption (GB)
LSP 41 3 0.017 0.0041
SMK 91 11 0.062 0.017
BT_9 1023 0.67 0.73
BT_10 2047 2.04 3.00
BT_11 4095 8.5 11.8

ABT 4103
1 8.3 7.8
2 6.8 7.8
3 10.05 7.8

ABT2 8207
1 58.2 13.88
2 63.3 13.88

Table 4.2: The Performance of a Representative Set of Scenarios for Causality Inference

Although we have fewer inference queries (67) and the approaches are different, for
comparison, we also plot the checking approaches with ILPwhy in Figure 4.4. ILPwhy
answered 63 out of 67 queries. In comparison, it was, as expected, slower than the checking
approaches. Still, it scaled to large and complex queries. For instance, with basic tree
models of 4000 variables (BT11 , ABT), it took 8s and scaled to 8000 variable ABT2 within
63s.

0 50 100 150 200 250

Queries

200

400

600

800

1000

1200

1400

C
PU

ti
m

e
(s

)

MAXSAT
ILP
SAT_OPT
SAT
WHY

Figure 4.4: Cactus Plot including ILPwhy Execution Time and Memory Results on the Larger
Models.

However, it slowed down with larger models with complex semantics, i.e., SMK different

69

4 Actual Causality Computations as Optimization Problems

variants. For instance, SMK (5500) took 280s, while SMK (6600) jumped to 1400s. The
slowdown is related to the memory allocation because the program, finally, ran out of
memory with queries on SMK (7150). Given sufficient memory, we think ILPwhy computes
inference for even larger models.

In summary, we argue that the three approaches efficiently automates actual causality
reasoning over binary models. Our MaxSAT encoding performs well for purposes of
causality checking and semi-inference. Although slower, ILPwhy is also efficient and scalable
for purposes of inference. That said, we, of course, acknowledge that our results are bound
to the data-set that we gathered and used.

4.5 Proofs

In this section, we present proof sketches of the theorems in this chapter.

Theorem 4.1. The generated optimization problem (ILP program or Gmax) is feasible iff AC3 holds
for ~X or a non-empty subset of ~X .

Proof. The proof follows from the remark that G, which both formulations are based on,
is a generalization of F and is satisfiable if the context ~U makes ϕ evaluate to its negation,
given that the semantics of the model is expressed using the constraints added, and the
cause set, ~X , is not constrained to have other values (~x′). We show this in the following:

1. Recall G := ¬ϕ ∧
∧

i=1...` f(Ui = ui) ∧
∧

i=1...m, 6∃j•Xj=Vi
(Vi ↔ FVi ∨ f(Vi = vi)) ∧∧

i=1...`(Xi ∨ ¬Xi). Rewrite the formula to abstract the first part as, G := Gbase ∧∧
i=1...n(Xi ∨ ¬Xi).

2. Note how ~X(n) is added toG as (X1∨¬X1)∧ (X2∨¬X2) . . . (Xn∨¬Xn). Re-write this
big conjunction to its equivalent disjunctive normal form (DNF) i.e., (¬X1 ∧¬X2 · · · ∧
¬Xn)∨ (¬X1 ∧¬X2 · · · ∧Xn) · · · ∨ (X1 ∧X2 · · · ∧Xn). Assume wlog that all the actual
values of ~X(n) were true, hence to check them in AC2 we need to have their values
negated, i.e., ¬Xi. Looking at the DNF, we have 2n clauses that list all the possible
cases of negating or fixing the elements in ~X . Then, we partition G according to the
clauses, i.e, G := G1 ∨G2 . . . G2n , where G1 := Gbase ∧ (¬X1 ∧ ¬X2 · · · ∧ ¬Xn). G1, is
formula F for ~X , which according to Theorem 3.3 is satisfiable iff AC2 holds for ~X . G
holds if any Gi hold.

3. Generally Gi, fixes some (possibly none) elements to their original evaluation (Xi)
and negates some, possibly none (G2n), other elements (¬Xi). Gi is an F formula
(from Algorithm 2) for the negated variables, in a clause, as ~X but with some special
fixed variables that are added to ~W . Based on Theorem 3.3 Gi is satisfiable iff AC2 for
a the subset of the causes given that the other part (fixed) of the cause is in ~W , holds.
Thus G is satisfiable if AC2 holds for any subset of it.

70

4.5 Proofs

4. The transformation from G to an ILP program P is proved to be correct [129]. This
means that satisfiability of G entails feasibility of P . P is then feasible if AC2 holds
for the A.) whole ~X , B.) parts of ~X , or C.) an empty set of causes. Adding the distance
constraint to P results in a new program P ′. Recall that the distance will be the count
of variables ∈ ~X that have a value ~x′ in the solution of P ′. The distance should be
greater than 0, i.e., case C is treated. By its nature, the ILP solver will pick the solution
set that makes the distance the least. Hence, if ~X is minimal in fulfilling AC2 it will
be picked, i.e., case A. Similarly case B is treated.

5. Similarly, since G forms the hard clauses of the MaxSAT Gmax, then Gmax is satisfiable
if G is satisfiable. Gmax is then satisfiable if AC2 holds for the A.) whole ~X , B.) parts
of ~X , or C.) an empty set of causes. We get rid of (C) by adding K clause as a hard
clause. As such, Gmax is satisfiable only when for cases A and B.

Theorem 4.2. Formula G∗ is satisfiable iff ∃ ~X = ~x such that AC2 holds for ~X

Proof. The proof follows from the correspondence between formula G∗ and F . The proof
consists of two parts.

Part 1. SAT(G∗) =⇒ ∃ ~X such that AC2 holds for ~X

We show this by contradiction. Assume that G∗ is satisfiable and 6 ∃ ~X such that AC2
holds.

1. G∗ := ¬ϕ∧
∧

i=1...n f(Ui = ui)∧
∧

i=1...m

(Ä(
Vi ↔ FVi

)
∧ C1

i

ä
∨
Ä
¬
(
Vi ↔ FVi

)
∧ ¬C1

i

ä)
∧
Ä(
Vorig ∧ C2

i

)
∨
(
¬Vorig ∧ ¬C2

i

)ä
2. For readability let us call

(
Vi ↔ FVi

)
as ei. Since G∗ is satisfiable, every conjunction

CONi:
Ä(
ei ∧ C1

i

)
∨
(
¬ei ∧ ¬C1

i

)ä
∧
Ä(
Vorig ∧ C2

i

)
∨
(
¬Vorig ∧ ¬C2

i

)ä
holds. It is a

matter of natural deduction to show that when CONi holds with values (C1
i ∨ C2

i)
(01, 10, 11) it implies ei ∨ Vorig, that is proving the following proposition ((ei ∧ C1

i) ∨
(¬ei ∧ ¬C1

i)) ∧ ((Vorig ∧ C2
i) ∨ (¬Vorig ∧ ¬C2

i))) ∧ (C1
i ∨ C2

i) =⇒ ei ∨ Vorig. The only
remaining case of (C1

i C
2
i) is 00. This case, in turn, implies ¬ei ∧ ¬Vorig. That is the

proposition: ((ei∧C1
i)∨(¬ei∧¬C1

i))∧((Vorig∧C2
i)∨(¬Vorig∧¬C2

i))∧(¬C1
i ∧¬C2

i) =⇒
¬ei ∧ ¬Vorig can be proved by deduction. Note that there is no guarantee that the
(C1

i C
2
i) = 00 case always exists (this case is handled by the algorithm).

3. For each variable in M , adding the implications from above to a formula Y = ¬ϕ ∧∧
i=1...n f(Ui = ui) would result in an F formula (from Algorithm 2) for some ~X . Y is

satisfiable which by Theorem 3.3 makes AC2 holds for ~X . This contradicts with the
first assumption.

71

4 Actual Causality Computations as Optimization Problems

Part 2. ∃ ~X such that AC2 holds for ~X =⇒ SAT(G∗)

We show this by contradiction, as well. Assume ∃ ~X such that AC2 holds, and that G∗ is
un-satisfiable. Since AC2 holds then there exists a stisfiable F as constructed in Algorithm 2.
Similar to the first part of the proof, since each variable Vi has a satisfiable conjunction in
F , it implies a conjuntion in G∗ (the inverse of the implications in the first part (without
C1
i , C

2
i)). With that G∗ is satisfiable. This contradiction proves the second part of the

theorem.

4.6 Summary

To conclude this chapter, we briefly summarize the different checking, semi-inference, and
inference approaches. In Table 4.3, we show specific properties of each approach, namely:
encoding a description of the approach, e.g., SAT or UNSAT, size an estimation of the size
of the encoding in terms of the number of variables and clauses3 (constraints) which does
not necessarily reflect the difficulty of a problem, complexity lists the complexity4 of the
encoding but still indicates a comparison aspect, and type which refers to the ability of the
approach, i.e., checking, semi-inference, or inference.

Encoding
Size

Complexity Type
Variables Clauses

SAT 1 SAT, 1 ALL-SAT n, n n, n NP-complete, NP-complete checking
SATOPT 1 SAT, 1 UNSAT (or one combined SAT) n, n n, n+ 3× | ~X| NP-complete, Co-NP checking

ILP 1 program
n binary variables +
1 decimal variable

n− | ~X|+ 1 NP-complete semi-inference

MaxSAT 1 formula n n+ 3× | ~X| ∆P
2 semi-inference

ILPwhy 1 program
4n binary variables +
4 decimal variable

4n+ 4 NP-complete inference

Table 4.3: Summary of the Approaches; n is the number of all variables in a causal model,
and | ~X| is the size of the cause set.

Using SAT, we encode HP in two formulas (for SATOPT , they can be combined into one
formula), the second formula either requires solving ALL-SAT or UN-SAT problems. None
of which is necessarily harder (the question of NP = co-NP is open) than the other, but as
we saw in the evaluation of Chapter 3, ALL-SAT has a severe drawback on the memory
consumption in some situations. That said, we have to note that SATOPT has a larger
encoding (because of the added clauses), which we estimate to be linear in the size of the
cause. Using ILP, we encode the full check of HP into one program that comprises n + 1
variables (one variable more than each SAT formula), where n is the number of exogenous

3The number of clauses shown here does not resemble the CNF form since it is not easy to generalize such
number. However, we think showing the number on the level of F or G formulas shown in this thesis is
sufficient for the comparison.

4Obviously, the encoding does not change the complexity of the problem; this column shows the number and
complexity of problems an approach requires

72

4.6 Summary

and endogenous variables in a model. The number of clauses in the case of ILP benefits
from removing variables in ~X . Hence, fewer constraints are added to the ILP (n − | ~X|),
but we finally add one constraint to calculate the distance, as shown in Section 4.2.2. The
type column emphasizes that the ILP result can be exploited for more valuable information,
i.e., inferring a minimal ~X . Similarly, the MaxSAT approach produces only one formula to
compute causality. The formula contains the same number of variables in the model. The
MaxSAT formula includes a clause for each variable in the model and extra clauses that are
linear in the size of the cause set. Solving a weighted MaxSAT problem is ∆P

2 , which is the
class of problems that can be solved by a linear number of calls to a SAT solver. Lastly, the
ILPwhy approach results in one ILP program to present an inference query. Unlike previous
methods, ILPwhy expands the program with three control variables for each endogenous
variable in the model. Also, the sum of these control variables is optimized; thus, we have
four decimal variables in the program. The number of constraints and clauses increases
in this approach, as well. Specifically, for each variable, we have four clauses to represent
the contrarians on them. Finally, the result obtained by this approach is an actual cause,
according to HP, without any hypothesis on ~X .

According to HP, a set of events (~X) cause an effect (ϕ) if (1) both actually happen; (2)
changing some values of ~X while fixing a set ~W of the remaining variables at their original
value leads to ϕ not happening; and (3) ~X is minimal. The complexity of the general
problem has been established elsewhere. We show that when restricting to binary models,
the problem of checking or inferring causality can effectively and efficiently be solved as an
optimization problem. The problem is not trivial because intuitively, we need to enumerate
all sets ~W from condition (2) and need to check minimality for condition (3). We show how
to formulate both properties as an optimization problem instead which immediately gives
rise to using a solver to determine if a cause satisfies all conditions, or find one that does. For
that, we define an objective function that encodes the distance between cause values in the
actual and counterfactual worlds. If we now manage to optimize the problem with a smaller
cause, then we know that it satisfies condition (2) but is not minimal. With an additional
objective to quantify responsibility, we also formulate inference as an optimization problem.
Using models with 8000 variables, which we deem realistic and necessary for automatically
inferred causal models, we show that our approaches answer checking queries in seconds,
and inference queries in minutes. In the next chapter, we extend our work to non-binary
models.

73

5 Actual Causality Checking Beyond Binary
Models

This chapter presents a generalization of the concepts in the previous chapters,
and proposes a method to answer checking causal queries of numeric models.

5.1 Introduction

So far, we have limited ourselves to causal reasoning with binary models. To the best of
our knowledge, binary causal models constitute almost all the models used in the actual
causality literature. For instance, most of the examples used to illustrate the HP definitions
apply binary models. Further, all the applications of HP in the literature are limited to binary
causal models, such as causality in databases [134], and model checking [15]. On the one
hand, this limitation may be attributed to the complexity of actual causality computation,
in which limiting the calculation to binary values gives an advantage. On the other hand,
it could be the case that we limit ourselves to binary models, simply because non-binary
causal models are not emerging from applications. In other words, the domains that use
actual causality so far, seem to require binary models only. Even when non-binary variables,
with a finite set of values, are used within examples or applications, it is sufficient to binarize
them.

In this chapter, we extend the foundation that we built in Chapter 3 and Chapter 4 to
non-binary models. Specifically, we treat numeric causal models; models that contain
integer or continuous variables, and arithmetic functions. Given the larger search space,
the computation within such models is more complex than the binary models. However,
the approach presented in this chapter demonstrates promising results from the efficiency
perspective. From an application point of view, we think that numeric causal models will
arise in various domains in the near future. One example is explainable artificial intelligence
(xAI) [141, 143]. Statistical models learned by machine learning algorithms, or abstractions
of such models, are increasingly requiring explanation [141, 143]. These models have
various possible representations, such as a set of linear and non-linear equations, decision
trees, or tabular listing of features and attributes. Some of these representations can be easily
binarized and presented in propositional logic, for instance, decision trees. However, in
some cases, we require the numeric nature of the variable when computing a counterfactual
world, and hence binarizing the model is not suitable.

75

5 Actual Causality Checking Beyond Binary Models

In this chapter, we focus on the automated actual causality reasoning with non-binary
causal models. To the best of our knowledge, our proposed solution is the first to offer
automated reasoning for non-binary actual causality. We show how the concepts intro-
duced and evolved in our previous approaches can be generalized and abstracted away
from supporting only binary models. That said, we acknowledge that we only present a
computational approach without thorough real-world applications. As motivated above,
we believe such applications to arise in the future.

5.2 Approach

In this section, we present our non-trivial solution towards checking actual causality (ac-
cording to HP) in non-binary models. In Section 5.2.1, we elicit the requirements of such a
solution and limit the focus to integer models with linear equations. Later, in Section 5.2.2,
we discuss the concepts and the building blocks that are used to realize the requirements.
In Section 5.2.3, we put together an algorithm that achieves our aim; and discuss extensions
to different types like continuous variables or non-linear relations.

5.2.1 Requirements For Causality Checking

Recall that we aim to answer a causal query in the form of Is ~X a cause of ϕ? Using HP, we
achieve this by verifying if a hypothesized cause (set of variables) fulfills the three conditions
(AC1-AC3) from Definition 2.4, given a causal situation (M , ~U).1 Informally speaking, the
conditions (namely, AC2 and AC3) encapsulate the counterfactual reasoning. We need
to think of two worlds (variable assignments): the original world with all the variables
and their values already known to us (specific context and acyclic equations), and the
counterfactual one in which the cause and effect take on different (than original) values.
Two facts further complicate the search for a counterfactual world. First, an arbitrary set
~W of endogenous variables keep their values (disregarding their equations). Second, no

(non-empty) subset of the cause variables is sufficient for constructing such a counterfactual
world. These challenges should be treated while preserving the semantics of the model.

Accordingly, we state the requirements of our algorithm. Computing causality must
ensure: a.) embedding the context of the query, which entails setting the values of the
exogenous variables ~U to their values b.) preserving the semantics of the causal model
(represented by the equations) yet allowing some unknown set of variables to keep their
original values c.) un-conditioning the values of the cause variables by any equations; yet
”urge” a cause variable to retain its original value d.) forcing the effect variables to fulfill the
first part of (b), yet ensuring that their values evaluate differently than the original values.

Similar to our MaxSAT and ILP approaches, we are looking at the problem of computing
actual causality as a search problem. Since ILP solves integer optimization problems,

1The first two paragraphs of Section 5.2.1 give a quick recap of actual causality computation.

76

5.2 Approach

we formulate a causal query as an integer program, solve it using efficient solvers [142],
and interpret the results from the causal perspective. As a direct consequence of using
ILP solvers, we show in Section 5.3 how our approach is both efficient and scalable in
the size of the model and the cause. Although we are focusing on integer variables and
linear equations in this chapter, the approach points and addresses the challenges of actual
causality computation in a general way. As discussed in Section 5.2.3, our approach can be
extended to continuous variables and non-linear equations.

An optimization problem formulated as a linear program contains three ingredients:
variables, constraints, and an objective function. The variables include, in addition to the
endogenous and exogenous variables of the model, a set of auxiliary variables that are
added to realize the requirements formalized earlier in this section. The constraints are
our technique to preserve the semantics of the equations and to force the solver to respect
the counterfactual reasoning. Lastly, the objective function is our way to ensure that a
cause is minimal (according to AC3); or what a minimal cause is in case the hypothesized
cause is not (semi-inference). We elaborate on each ingredient in correspondence to each
requirement in the next section.

5.2.2 Building blocks

Let us now consider each group of variables in a causal query, and see how to represent
it in our program solely. We start with the context variables, i.e., the exogenous variables
~U . Unlike endogenous variables, exogenous variables are constrained with linear equality
to their original value, that is, the context value that led to a certain effect. For example,
Aexo = 20.

For the endogenous variables (~V), we have a more complicated treatment. First, let
us classify these variables into three groups: 1- cause variables ~X , 2- effect variables ~Y ,
3- normal variables which are neither in (1) or (2). We start with the normal variables
(group 3). In a counterfactual world, these variables would either evaluate to new values
according to their equations or would retain their original values (without following their
equation), hence, be a member of the contingency set ~W . Following our binary approach,
we realize this variance of normal variables using a disjunction of the variable equivalence to
its equations, i.e., Vi = Fi (for the defining equation Fi), re-written as EQ1 : Fi − Vi = 0,
and the variable’s equality to its original value i.e., Vi = vi, re-written as EQ2 : Vi − vi = 0.
Since all constraints in a linear program must hold, modeling such disjunctive constraints on
equalities is not straight forward.2 However, we can leverage some techniques proposed
in the literature to achieve our goal at the expense of adding auxiliary binary and integer
variables [19, 196].

Essentially, we transform each equality EQ1 to new EQ1′ by adding a so-called free slack
variable Si, i.e., EQ1′ : Fi − Vi + Si = 0 [17, 71, 19, 196]. Using another new binary variable

2The formulation in binary models is simpler because the linear constraints were created on the CNF level of
the formula

77

5 Actual Causality Checking Beyond Binary Models

(indicator Ni), we constrain Si to the following bounds: −M(1 − Ni) ≤ Si ≤ M(1 − Ni),
where M is a sufficiently large upper bound to the equality.3 Now, the idea is that EQ1′

will always hold; however we are only interested in the case where Si equals 0, i.e., Ni is 1
then EQ1 holds. Suppose we do the same for EQ2 with a new slack variable S∗i , and get
EQ2′ : Vi − vi + S∗i = 0 where −M(1−N∗i) ≤ S∗i ≤M(1−N∗i). We have two constraints
that are always holding; however, we need to connect them disjunctively and make sure
that at least one of the two indicators Ni or N∗i is equal to 1. Keeping in mind that the
indicators are binary, we ensure the disjunction by adding the constraint Ni +N∗i ≥ 1. With
this model, we express each normal variable and establish a way to infer a contingency set.
Table 5.1 shows the truth table of the indicators for one variable, and how to interpret each
case. We can represent the two indicators with one variable. However, we want to keep
the possibility of finding the variables that evaluate according to their equations but still
evaluate to the same values, i.e., the last case in Table 5.1.

Ni N∗i Interpretation
0 0 Program is infeasible
0 1 Variable is in ~W

1 0 Normal variable (6∈ ~W)
1 1 Normal variable (6∈ ~W)

Table 5.1: Disjunctive Constraints Cases

The second group of endogenous variables are cause variables ~X . According to require-
ment (c) from Section 5.2.1, contrary to normal variables, cause variables are not modeled
using their equations. Rather, such variables are allowed to take on any value (x′i) when
the program is solved. However, if a cause variable (Xi) kept its original value (xi), then
it is not a necessary part of the cause set (i.e., minimality is violated). To ensure that our
program is solved in a way that filters out the non-necessary cause variables, we utilize
the objective function. Following our approach in Chapter 4, we count the number of cause
variables that have different values in the solved program than their original values. Recall
that we call this count a distance between the original and the counterfactual world. The
objective of the program is, then, to minimize the distance. An optimal solution of the
program can be interpreted as the counterfactual assignment with the shortest distance, i.e.,
the minimal set of altered causes. Formally, Equation 5.1 models the distance for integers.

distance =
∑̀
i=1

Min(1, Abs(x′i − xi)) (5.1)

xi is the value of the cause variable Xi in the original (actual) world, whereas x′i is the
value of the same variable in the counterfactual world (returned by the solver). We take

3Using M is a known technique in optimization paradigms called the Big-M formulation. It is used in various
cases [19, 196], but may impact the performance; hence, it should be chosen as tight as possible

78

5.2 Approach

the absolute difference of these values for each cause variable (Abs(x′i − xi)); obviously,
the difference is ≥ 0. Regardless of the difference amount, we count it as 1 by using a
minimum function. The minimum function ensures that differences greater than one are
still counted as 1. It is worth noting that the real value of the difference could be of use
in some applications that consider the normality of the counterfactual world [73, 77], for
example. Lastly, Equation 5.1 is integer specific, since it assumes that 1 is the least absolute
difference for a necessary variable. It can be extended to account for continuous values by
considering a realistic minimum of the difference, e.g., 0.1 and amplify it by multiplication
(10×Abs(x′i − xi)). The difference term can be variable-specific in cases of mixed (integer
and continuous) models.

The last group of the endogenous variables is the effect variables. Recall that, according
to Definition 2.4, the effect is a combination of endogenous variables in the form of a
mathematical expression, e.g., Z −K = 1. Based on requirement (d), we model the effect
in two ways. First, we need to make sure that each variable appearing in that expression
evaluates according to its equation. For that, we use the first equality for the normal variables
(EQ1). We do not add the slack variable to the equation because it is not needed. Second,
we have to ensure that the effect is not happening in the counterfactual world, i.e., the
mathematical expression does not hold given the assignments of the solved program. In
our previous example, we need Z −K to not equal 1 re-written as Z −K − 1 6= 0. Not-
equal comparisons are not supported natively in linear programming; hence, we craft the
effect constraint. Essentially, we re-write the linear mathematical expression to be equal
to 0 on the right hand, and then we constrain the absolute value of the left-hand term
(e.g., Abs(Z − K − 1)) to be greater than 0. This way, we ensure that the effect is not
occurring anymore, e.g., the difference between Z and K is not 1. The same applies if we
are considering more simple effect forms such as Z = 5. From a practical perspective, we
observed that another form of effect expressions often arises, especially in the domain of
xAI. This format is referred to as contrastive queries, i.e., why not questions [141, 143]. Our
approach supports contrastive effect expressions such as why Z is not 4? written as Z−4 6= 0.
Such effect expressions are negated and appended as a constraint that looks like Z − 4 = 0.

In this section, we presented a generalization of the binary concepts we contributed
in Chapter 3 and Chapter 4. In the course of that, we classified the variables in a causal
query into three different classes. For each category, we discussed the realization of its
requirements; we identified all the problems that need to be addressed by our program
and showed how to model them in a linear program. Concepts like disjunctive constraints,
distance function, and effect modeling will all be used as building blocks in the algorithm
presented next.

5.2.3 Algorithm

In this section, we formalize our approach in Algorithm 6; the soundness of the algorithm
is a result of our earlier results in Chapter 3 and Chapter 4. It depicts how the constraints
are derived. For readability, we omit the variables declaration inside the linear program.

79

5 Actual Causality Checking Beyond Binary Models

The input to this algorithm is the set of structural equations represented as 〈F 〉, the context
represented as a vector of variables ~U and their values ~u, similarly a hypothesized set of
cause variables ~X and their values. The effect is presented as a mathematical expression ϕ,
and lastly, the set of endogenous variables, and their original evaluation is given as ~V .

As described in Section 5.2.2, the exogenous variables are added as equality constraints
in the loop that starts at Line 2. More importantly, the endogenous variables, excluding
the cause variables, are then added in Line 6 - Line 18. The first part of the loop (Line 8 -
Line 13) adds the disjunctive constraints for the normal variables. Each constraint is defined
and then appended to the list of constraints (cons). Note that we add the slack and indicator
variables with the same naming scheme we presented earlier. That is, Si, and S∗i are the
slack variables corresponding to a variable Vi, while Ni and N∗i are the indicator variables
corresponding to the same variable. Equations of the effect variables are also added within
the for loop but without any auxiliary variables as shown in Line 15. The second part of
treating the effect ϕ is shown in Line 19; for simplicity, we omitted the contrastive format
of the effect. To wrap-up the construction of the program, Line 21, and Line 22 show the
creation of the distance according to Equation 5.1, and the formalization of the objective.

After constructing the linear program, we solve it using off-the-shelf solvers such as
Gurobi [71]. Through Line 23 to Line 25, we interpret the results. Given that AC1 already
holds (can be checked in polynomial time), a feasible program with an optimal solution
means that the hypothesized cause ~X or a non-empty subset of it is an actual cause of ϕ,
according to HP. If the objective value returned by the solver equals the size of the cause
set, then ~X is a minimal cause (both AC2 and AC3 hold). Otherwise, a minimal cause of
size equal to the objective value can be inferred in Line 24 (AC3 is violated). In all cases,
the contingency set ~W is inferred in Line 25. An infeasible program entails that neither the
cause set nor its subsets is an actual cause (AC2 is violated). However, the infeasibility of
the program is constrained to the bounds of the variables that we defined. In other words,
if there exists a solution to the program beyond the defined limits of the variables, then the
program would not be solved. In our implementation, we allow the modeler to configure
the bounds of the variables. The clear trade-off here is between the potential impact on
performance and the effort to run the algorithm potentially a couple of times.

Multiple optimal solutions can be found for the same problem. In our case, this entails
that different subsets of the cause are sufficient to fulfill the HP conditions. Currently, we
do not employ any measure to force the solver to compare these causes; however, as we
saw in Section 4.3, one way to compare causes would be to use the responsibility metric
proposed in [33]. For the current version, our implementation stores all the solutions but
returns only the first one. Lastly, we conclude with a brief discussion on directions to extend
this algorithm. A useful extension of our algorithm would be towards causality inference,
rather than checking. With inference, the hypothesized cause set is not required any more.
Using the same building blocks, the inference can be achieved by extending the disjunctive
constraints with a possibility to allow arbitrary values, and have the solver to minimize
the number of the variables taking on arbitrary values. Another extension we consider

80

5.2 Approach

Algorithm 6 Actual Causality check for Integer Models

Input: equations 〈F 〉, context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, cause 〈X1, . . . , X`〉 =
〈x1, . . . , x`〉, effect expression ϕ, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function CHECKCAUSE(〈F 〉, ~U = ~u, ~X = ~x, ~V = ~v, ϕ)
2: for all Ui ∈ 〈~U〉 do
3: con1← (Ui = ui)
4: cons.add(con1)
5: end for
6: for all Vi ∈ 〈V 〉∧ 6 ∃j •Xj = Vi do
7: if Vi 6∈ ϕ then
8: con1← (FVi − Vi + Si = 0)
9: con2← −M(1−Ni) ≤ Si ≤M(1−Ni)

10: con3← (Vi − vi + S∗i = 0)
11: con4← −M(1−N∗i) ≤ S∗i ≤M(1−N∗i)
12: con5← Ni +N∗i ≥ 1
13: cons.addAll(con1, con2, con3, con4, con5)
14: else
15: con1← (FVi − Vi = 0)
16: cons.addAll(con1)
17: end if
18: end for
19: coneffect ← (Abs(ϕ) ≥ 1)
20: cons.addAll(con_effect)
21: distance =

∑`
i=1Min(1, Abs(Xi − xi))

22: objective = Minimize distance s.t. 1 ≤ distance ≤ `
23: if 〈V1 = v′1 . . . Vm = v′m〉 = solve(objective, ~cons) then
24: ~X ′ := 〈X ′1...X ′d〉 s.t. ∀i∀j • (i 6= j ⇒ X ′i 6= X ′j) ∧ (X ′i = Vj ⇔ v′j 6= vj)

25: ~W := 〈W1...Ws〉 s.t. ∀i∀j • (i 6= j ⇒Wi 6= Wj) ∧ (Wi = Vj ⇔ v′j = vj)

26: return ~X ′, ~W
27: else return infeasible
28: end if
29: end function

useful is the support of non-linear equations. There are established approaches to linearize
such functions using piecewise functions [19]. Piecewise functions can then be expressed as
constraints in the program.

81

5 Actual Causality Checking Beyond Binary Models

5.2.4 Example

In this example, we consider a model trained to predict the price of a house expressed as a
median value of owner-occupied homes in USD 1000’s. The data used to train the model is
known as the Boston Housing Dataset.4 The data included the following features.

• crim - per capita crime rate by town

• zn - proportion of residential land zoned for lots over 25,000 sq.ft

• indus - the proportion of non-retail business acres per town

• chas - Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• nox - nitric oxides concentration (parts per 10 million)

• rm - the average number of rooms per dwelling

• age - the proportion of owner-occupied units built prior to 1940

• dis - weighted distances to five Boston employment centers

• rad - index of accessibility to radial highways

• tax - full-value property-tax rate per USD 10,000

• ptratio- pupil-teacher ratio by town

• b 1000(B − 0.63)2, where B is the proportion of blacks by town

• lstat - the percentage of lower status of the population

• medv - median value of owner-occupied homes in USD 1000’s

Many researchers and practitioners have used this example to teach statistical modeling
approaches.5 We use one resource that used linear regression. Linear regression aims at
using a set of variables to predict the value of another variable. Such approaches depend
mainly on calculating correlation coefficients. Needless to say, correlation is not causation;
however, recall that, in this example, we aim to explain why a model behaves as such rather
than explaining the causal factors around house prices. In other words, we answer causal
queries about the statistical model.

According to the model, the target variable, i.e., the medv, is mainly influenced by the
crim, rm, tax, and lstat. Equation 5.2 shows the formula learned by the model.

medv = −0.071 ∗ crim+ 5.58 ∗ rm− 0.007 ∗ tax− 0.484 ∗ lstat− 3.767 (5.2)
4https://rpubs.com/ezrasote/housepricing
5For instance, http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

82

https://rpubs.com/ezrasote/housepricing
http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

5.2 Approach

We use the above formula as part of a causal model. Each feature value is input to the
model through an exogenous variable, e.g., crimexo is an exogenous variable that sets the
value for crime rate cirm. The set of features are the endogenous variables. Similar to
Equation 5.2, we can use models to learn linear equations for each feature. For example,
a model to predict the crime rate in towns is also shown in this tutorial.6 The crime
rate is estimated using other factors such as percent_m: percentage of males aged 14-24,
mean_education: mean years of schooling, unemploy_m39: unemployment rate of urban
males aged 35-39, inequality: income inequality, prob_prison: probability of imprisonment
Time, and pol_exp: police expenditure.

crime_rate =8.7238 ∗ (percent_m) + 16.7212 ∗ (mean_education) + 7.0635 ∗ (unemploy_m39)

+ 7.0513 ∗ (inequality)− 3863.7869 ∗ (prob_prison) + 6.7957 ∗ (pol_exp)
− 4605.8496

(5.3)

This way, the model can be instantiated with equations, endogenous and exogenous
variables. The context is set using the feature vector of one data point. Typically, the exciting
part with constructing causal queries around data points is the explanation provided by
the counterfactual computation [144, 198]. Computing counterfactuals (counterfactual
worlds), in this context, is beneficial because it seems intuitive to the data subjects [144, 198].
However, picking one useful counterfactual may require additional knowledge that we do
not include in our approach. For the sake of illustrating our approach in action, we discuss
it in this example. Recall that within a counterfactual computation, we describe a setting
(variables and values) that would change the predictor’s output. As such, the explanation
of a prediction made by the model for a new data point will specify the changes (different
values of variables) that produces a different outcome of the model. Such an explanation is
one type of many other ways to provide explanations [141]. Note that our algorithm still
minimizes the number of variables to change the output; however, we also gather the new
values of these variables when solving our programs.

For our example, we consider one case with the following values: crim = 0.006, rm =
6.575, tax = 296, lstat = 4.98. The predicted medv is 32.20. A house owner may ask Why
is the medv of my house equal to 32.202 and not 33.0?7 This translates to a contrastive effect
formula: medv−33.0! = 0; asking contrastive queries (why not y′) makes the solver indicate
those changes in the values that produce y′. In other words, not any change in the input
would cause the effect formula to hold.

All the example variables can change and alter the output; however, they have different
effects according to their correlation coefficients. Some of these variables are insufficient
to result in the required change (relative to their bounds: 0.0 − 100000); for instance, a
checking query of the crim variable solely, e.g., is crim = 0.006 a cause for medv! = 33.0?

6https://rpubs.com/ezrasote/crimerate
7can also be formulated as Which feature values should be changed to increase medv to 33.0?

83

https://rpubs.com/ezrasote/crimerate

5 Actual Causality Checking Beyond Binary Models

is negatively answered.

We constructed different checking queries that included combinations of the four vari-
ables (crim, rm, tax, lstat) as a cause. We observed several counterfactuals reported by the
solver; a change in rm was mainly a part of the setting, along with a change in either tax or
crim. For instance, when solving a checking query (the corresponding program is shown in
Figure 5.1), that includes all the variables (crim, rm, tax, lstat) as a cause, we get back the
minimum number of variables to be changed and their values. The result was a specific
change in the values of rm and tax. Specifically, one of the results of this query allowed us
to state that "If the number of rooms of your house is 6.721 rather than 6.575 and the full-value
property-tax rate is 298.394 rather than 296, you would have a medv of 33." The important factor
here is rm since the increase in tax is only to ensure medv = 33.0 and not 33.01. Other
settings were not beneficial, such as "If the number of rooms of your house is 6.748 rather
than 6.575 and the crime rate is 2.364 rather than 0.6, you would have a medv of 33." While
these settings may seem unrealistic in some cases, e.g., they suggest to increase the crime
rate, they produce a difference in the prediction.

Although some factors cannot be adjusted by the owner, such as the town crime rate,
other factors can be adapted, such as the number of rooms in a house. In this example, we
are not only showing the solutions of some numerical equation, but we are also applying
the counterfactual causality definition on a statistical example.

Unlike previous examples in this thesis, we are not interested in the causes of this example,
but rather in the method of computing causes. The method, as we illustrated, describes
counterfactual explanations of factors. A counterfactual world presents an alternative
setting that results in a different output. In our implementation, we look for a setting
that alters a minimal number of features; we could rather think of the minimal amount
of changed values regardless of how many variables are changed; we could consider a
“realistic” change, i.e., one that changes certain features with certain amounts. Because
of this generality, we think this problem is a causality optimization problem; it searches
for a counterfactual based on an objective. Further, as we have seen in this example, the
solver returns multiple solutions representing different counterfactuals. We tackle this by
minimizing the number of variables to change (as part of HP) and emphasizing contrastive
queries.8 However, both are insufficient. While multiple counterfactuals are useful to
provide several explanations [198, 144], we argue that a refined notion of a counterfactual
in this context benefits this application more. The approach in this chapter is a sound base
to automate the computation of such a notion. This way, the judgment of a counterfactual
will not depend on the size of the cause only, but on the amount of change brought in the
variable values, or the normality of such change [77], which we leave to future work.

8In a counterfactual world, a contrastive query requires the predictor (model output) to evaluate to a specific
value, which reduces the number of possible solutions

84

5.2 Approach

min distance s.t.

1.0× 109IND1_crim+ SLA1_crim <= 1.0× 109

−1.0× 109IND1_crim+ SLA1_crim >= −1.0× 109

1.0× 109IND2_crim+ SLA2_crim <= 1.0× 109

−1.0× 109IND2_crim+ SLA2_crim >= −1.0× 109

IND1_crim+ IND2_crim >= 1
−rm+DEL_rm = −6575
−tax+DEL_tax = −296000
1.0× 109IND1_lstat+ SLA1_lstat <= 1.0× 109

−1.0× 109IND1_lstat+ SLA1_lstat >= −1.0× 109

1.0× 109IND2_lstat+ SLA2_lstat <= 1.0× 109

−1.0× 109IND2_lstat+ SLA2_lstat >= −1.0× 109

IND1_lstat+ IND2_lstat >= 1
−MIN_rm−MIN_tax+ res = 0
lstat_exo = 4980
rm_exo = 6575
crim_exo = 6
tax_exo = 296000
crim+ SLA2_crim = 6
crim_exo− crim+ SLA1_crim = 0
lstat+ SLA2_lstat = 4980
lstat_exo− lstat+ SLA1_lstat = 0
−71crim+ 5580rm− 7tax− 484lstat−medv = 3676
medv − PHI = 3.3× 107

PHI_ABS = 0
Bounds
−1.0× 108 <= lstat_exo <= 1.0× 108

−1.0× 108 <= lstat <= 1.0× 108

−1.0× 108 <= SLA1_lstat <= 1.0× 108

−1.0× 108 <= SLA2_lstat <= 1.0× 108

GeneralConstraints
ABS_rm = ABS(DEL_rm)
MIN_rm = MIN(ABS_rm, 1)
ABS_tax = ABS(DEL_tax)
MIN_tax = MIN(ABS_tax, 1)
PHI_ABS = ABS(PHI)

Figure 5.1: A snippet of the program generated for the example. For readability, the bounds
section is summarized, the variable declaration is omitted, and values are scaled
by a factor of 1000.

85

5 Actual Causality Checking Beyond Binary Models

5.3 Evaluation

As computational complexity is one of the main challenges facing the deployment of causal
reasoning in practice, in this section, we evaluate the performance of our solution. We
start by estimating the size of the linear programming model in Section 5.3.1. We then
benchmark the performance of an implementation of our algorithm in Section 5.3.2.

5.3.1 Model Size

Essentially, our solution constructs a linear program P from a causal model M . Estimating
the size of P (denoted |P |) in relation to |M | is an indicator of the expansion brought by
our approach, and a measure to compare different flavors of the approach. Consequently,
trade-offs between some of the qualities can be thought of in light of the expansion size;
for example, do we need to model indicators of disjunctive constraints using one or two
variables (or more in the case of piecewise functions). That said, we acknowledge what
some researchers have rightfully pointed out that the size of a program is not, necessarily,
an indication of its difficulty [194]. We estimate the number of the program’s variables and
constraints in the following equations.

In Equation 5.4, we show the total number of variables corresponding to a causal check
of the type is ~X an actual cause of ϕ given a model M , and a context ~U . All the endogenous
and exogenous variables in M are represented in the linear program. For each endogenous
variable that is neither in the cause set nor in the effect expression, we add four auxiliary
variables– two slack variables, and two (binary) indicator variables. For each cause variable,
we need three extra variables–one for the value difference, one for the absolute value
calculation, and one for the minimization function. Lastly, three additional variables are
required for the negation of the effect expression and the calculation of the distance.

Number of V ariables = |M |+ 4 ∗ |~V \ (~X ∪ Var(ϕ))|+ 3 ∗ | ~X|+ 3 (5.4)

Similar to the number of variables, we present the number of constraints in Equation 5.5.
We assume here that the model consists of a set of linear equations, i.e., the structural
equation related to a variable can be represented in one linear inequality. If this was not
the case, Equation 5.5 has to be scaled accordingly. To set the context, the program will
include one constraint for each exogenous variable. However, the constraints to govern
the endogenous variables (excluding the cause and effect variables) are expanded in the
magnitude of seven. In other words, we need seven linear inequalities to govern the behavior
of each endogenous variable (/∈ ~Xand /∈ ϕ). Four constraints are required to control the
boundaries of the slack variables, one constraint for the indicator variable, and two to
represent each part of the disjunctive constraints. Similarly, we require three constraints
for each cause variable. Namely, one to calculate the difference in the variable’s value, one
for the absolute value calculation, and one to calculate the minimization of the difference.
For the variables in the effect, i.e., vars ∈ ϕ, we need a linear constraint to represent the

86

5.3 Evaluation

formula of each of them. To negate the effect, we add three constraints. Lastly, we add one
constraint to calculate the distance measure.

Number of Constraints = |~U |+ 7 ∗ |~V \ (~X ∪ Var(ϕ))|+ 3 ∗ | ~X|+ 1 ∗ |ϕ|+ 4 (5.5)

The approximate upper bound of the number of variables required to represent a non-
binary causal query is five times the size of the causal model. The number of constraints
governing these variables is bounded by an upper limit of seven times the number of
model variables.9 Although the expansion in variables and constraints is considerable, the
majority of the auxiliary variables are constrained by simple inequalities. As we have seen
in Section 5.2, those variables control disjunctive constraints, hold the difference between
actual and solved values, and calculate absolute values. Thus, the expansion itself does not
pose a significant challenge to the solvers. Other factors, such as the boundaries of these
variables, or the choice of the Big M values, impact the solver’s performance. In the next
section, we present the results of our experiments regarding the performance.

5.3.2 Performance

Within this experiment, we could not use the same set of models we used with the binary
approaches. To evaluate our approach, we tested Algorithm 6 with 84 models. Gathering a
set of numeric causal models with their equations is challenging. Unlike binary models,
we have not found any causal models that use linear arithmetic equations to describe
the relationship among causal factors. Thus, we reused 4 simple statistical models from
the domain of machine learning. Specifically, we used the Boston housing model BH (13
variables)10, the crime rate prediction model CR (7 variables)11, a combined model of both
BH − CR (20 variables), and diabetes risk model DR 12 (9 variables). All these models are
small; thus, in addition, we randomly generated 80 models consisting of random linear
equations.

The generated models contain between 256 and 2048 endogenous variables. Each ex-
ogenous variable in these models is randomly set to a value between 1 and 10. Each
endogenous variable is either set to a corresponding exogenous variable or described using
a random linear equation. The linear equation of an endogenous variable is a random
weighted combination of its two child variables. The equation contains a randomly picked
operation of addition or subtraction and two random coefficients for the operands. To
control the upper bound value, the coefficients are chosen in the range 1 to 10.

9This is an over-approximation. The number is less then seven times the endogenous variables only, and the
number of exogenous variables added on top.

10https://rpubs.com/ezrasote/housepricing
11https://rpubs.com/ezrasote/crimerate
12https://rstudio-pubs-static.s3.amazonaws.com/346228_a62c6c91d5cf40869cd5aef7206826ae.

html

87

https://rpubs.com/ezrasote/housepricing
https://rpubs.com/ezrasote/crimerate
https://rstudio-pubs-static.s3.amazonaws.com/346228_a62c6c91d5cf40869cd5aef7206826ae.html
https://rstudio-pubs-static.s3.amazonaws.com/346228_a62c6c91d5cf40869cd5aef7206826ae.html

5 Actual Causality Checking Beyond Binary Models

For each generated model, we picked random cause sets of different cardinalities. We
have the following values for the size of the cause 1, 5, 10, 15. We configure two modes
of effect expressions (ϕ): the first is a normal equality effect, i.e., Y = y, and the second
is a contrastive expression of the form Y 6= y. Since the bounds of the variables and the
values of BigM play a significant role in the feasibility of the program, we configured our
benchmark with a list of settings for the lower, upper bound of each variable, and the value
of BigM.

In summary, we automatically generated 20 numerical models of each of the following
sizes: 256, 512, 1024, 2048. For bigger sizes, the experiment always exhausted the memory.
Each model is evaluated with 4 sets of causes, 5 settings of bounds, two forms of effect
expressions, one random context. Resulting in 40 queries for each model (800 queries for
each size).

Results

As we shall see in this section, the time to answer the queries over bigger models varied
considerably according to multiple factors. For models with 256 variables, most of the
queries finished in less than 1 second. If the cause set does not fulfill AC2, the answer was
much faster (less than 0.2 second). However, the performance degraded drastically with
some specific queries (4 out of 800). The execution time of these queries varied between
2.22 seconds and 134.23 seconds. The four queries were contrastive queries. This can be
attributed to the fact that in a counterfactual world, a contrastive effect is constrained to a
specific value, which is apparently harder for a solver than finding any value (other than
x). This is only a logical assumption in justifying this observation because it is not clear
how modern ILP solvers treat equality and inequality constraints. The second commonality
among these four queries is the size of their minimal cause. All of them semi-inferred a
minimal cause of size 2 out of the hypothesized cause. In comparison to all the other queries
which inferred a singleton cause, answering these queries was harder for the solver.

The same patterns were observed when analyzing the results of solving queries with
models of size 512 variables. Queries that did not fulfill AC2 (infeasible ILP programs)
were mostly answered in less than 0.2 seconds. Most of the remaining positive queries
inferred a singleton cause from the hypothesized cause in a period between 0.3 seconds and
1.3 seconds. However, inferring a two-variables cause was more expensive in 10 queries.
The fastest took 2 seconds, and the slowest took 7138 seconds.These queries were a mix of
normal (5) and contrastive queries (5). In extreme cases, we interrupted the experiment
after 24 hours of the solver trying to solve the program. These patterns repeated with 1024
and 2048 variables.

In summary, the results discussed in this chapter show the computational challenges
facing causal reasoning with non-binary models. Our experiments show a limit to models
of size around 2000 numerical variables (no bounds on their values). This limit is only
attributed to our machines’ memory capacity; thus, such a number can be extended with
more memory. However, the execution time of the reasoning varies with numerical models

88

5.4 Summary

than with binary models. We have observed that semi-inference queries are efficiently
answered in less than 2 seconds if the actual cause is a singleton or no minimal cause can be
inferred.

On the other hand, actual causes of more than one variable take more time. The exact
amount of solving time depends on the model and the variables’ bounds. While the results
presented in this evaluation may seem inconclusive, reasoning over non-binary causal
model is effectively automated, and to some extent efficiently computed using the approach
in this chapter.

5.4 Summary

Since ILP can be used in domains other than binary optimization, the extension of the
formulations from Chapter 3 and Chapter 4 to numerical models is natural. This chapter
presents an approach that deals with the issues arising from such an extension. Specifically,
we show a generalization of the distance calculation and a representation of the variables
using concepts such as disjunctive constraints. While the direct applications of this approach
are not clear, we focused on examples from the xAI domain. Thus, we treated the idea of
contrastive query as a key requirement in our implementation and evaluation.

According to the considerable model expansion (as estimated in the evaluation) and the
range of variables’ bounds, the solver’s performance is affected. We have observed a very
efficient performance, regardless of model size, with negative queries (conditions are not
fulfilled) or queries that can be answered with singleton causes. However, the performance
degrades with queries, for which the answers consist of two or more cause variables. The
degradation is more severe when the causal models are larger than 2000 variable. The
judgment on the usefulness of such results is clearly related to the application. We think
such limits may still be useful to explain statistical models, for example.

89

Part III

Domain-specific Causal Modeling
and Contextualization

Causal Modeling Context Setting Causal Reasoning

91

6 Causal Model Extraction from Attack Trees
to Attribute Insider Attacks

In addition to causality reasoning (which we tackled in the previous part),
building valid causal models and contextualizing them is important. Modeling
and contextualization are both generic problems where we cannot expect a
general solution. Therefore, in this part of the thesis, we show by examples
how these tasks can be operationalized in a specific context, i.e., insiders in
microservice-based information systems. We provide two automated methods
for model construction and show how our reasoning technology can be used
with them. Similarly, contextualization, of course, is application-specific, so we
provide one example to show how it can be tackled in practice to support our
reasoning approaches. This chapter tackles issues around causal modeling in the
context of malicious insiders. Parts of this chapter have previously appeared in
publications [99, 95], co-authored by the author of this thesis.1

6.1 Introduction

As you may recall, this thesis builds an architecture to tackle the different aspects of actual
causality reasoning, as shown in Figure 6.1. In this chapter, we focus on causal modeling,
which is a necessary step to enable causality reasoning. While building causal models is
a generic need across many scientific domains [108, 157], solutions in practice are always
context-specific (e.g., [116]). In a specific context, modeling appears possible, even in
an automated way (e.g., [205]). This chapter provides an example of automated causal
modeling; thus, showing the relevance of our earlier approaches to tackle large models.

Security is crucial in systems that deal with sensitive customer assets. Adversaries are
constantly trying to compromise the integrity, confidentiality, or availability of such assets.
These attempts are carried out by insiders or outsiders of the system. In this chapter, we are
chiefly interested in insiders, specifically malicious insiders such as a rogue employee. For
instance, according to the Cyber Security Intelligence Index by IBM X-Force Research [169],
insiders carried out 60% of all attacks in 2015. Insiders can, tamper with records in the

1Parts of this chapter are reprinted by permission from Springer Nature: Lecture Notes in Computer Science,
vol 12419. Causal Model Extraction from Attack Trees to Attribute Malicious Insider Attacks, Ibrahim et al.
(2020).

93

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

Causal Modeling Context Setting Causal Reasoning

Figure 6.1: An Abstract Architecture of the Solution focusing on Causal Modeling.

database, leak or delete documents, which leads to reputation damage, legal costs, and re-
imbursements [101]. Reports show that insiders carry out the most significant, and costly
attacks [169, 101]. Such attacks are likely to succeed, and their impact is significant [176].
In this context, preventive measures have a high likelihood of failing because insiders
ought to have sufficient privileges for their jobs. They may abuse their privileges. The term
“abuse” makes this problem especially hard due to the unpredictable nature of insiders and
the necessity of their privileges. That said, insiders are mostly not malicious. Typically,
there is a trust base between a company and its employees, not to mention the contracts an
employee signs upon starting a job.

We propose addressing the insider threat using a detective approach that helps a company
to attribute malicious acts [200]. Detective approaches, such as accountability, provide a
mechanism to answer questions about security incidents (e.g., “why was the document
leaked?”) and attribute responsible parties a posteriori. Attack attribution is the process
of identifying the perpetrator of a cyber-attack [148]. This mechanism increases forensic
readiness and establishes the basis for taking legal action against an attacker [172, 189, 93].
As such, attribution can be considered in many cases as a deterrent measure [93, 181].

Insider attack attribution does not inherit the challenges facing attribution such as tools
prepositioning [201], and the anonymity of the Internet [93]. Still, to the best of our knowl-
edge, there are no robust approaches to attribute insider attacks. Attack attribution surveys
show that most of the attribution literature focused on the IP level in network attacks, which
is still inconclusive [201, 93, 181]. Instead, we tackle insider’s attacks attribution through
an automated reasoning capability. In this chapter, we address the issue of creating causal
models by relating causal models to domain-specific models such as attack trees [179].

Attack trees (ATs) are appealing to scientists for their formal syntax and semantics [132,
165], to managers for their visual nature, and to engineers for their systematic categorization
of threats [112]. They are used for purposes of risk estimation, cost approximation, and
defense planning. We aim to add forensics analysts to the list of AT beneficiaries and support
causality inference to the list of purposes. However, ATs are not readily sufficient for after-

94

6.2 Preliminaries

the-fact forensic analysis because they do not usually include potential attackers (suspects).
This is what differentiates ATs from causal models (for actual causality reasoning). Thus, we
analyze the implications of adding suspects to ATs. Then, we detail an extraction approach
of causal models from attack trees and show their utilization to infer causality (using our
results from Chapter 3, and Chapter 4). We focus on insiders’ models because while creating
such models, we exploit the unique property of insider threats, i.e., the ability to identify
suspects beforehand. Also, within a company, it is possible to acquire evidence of insiders’
acts, which is not trivial in open contexts. To automate the approach, we contribute (ATCM):
an open-source tool that implements the approach with an evaluation of the efficiency, the
validity of the approach, and the effectiveness of the model.

6.2 Preliminaries

In this section, we review the formalism of attack trees in Section 6.2.1, and we show an
example of insider attacks in Section 6.2.2.

6.2.1 Foundations of Attack Trees

ATs model potential security threats within a system and the steps necessary to perform an
attack [179]. The root node contains the ultimate goal of an attack tree while the sub-nodes
describe activities that are necessary to conduct the respective parent activity/goal. The
relationship between a node and its children can be either OR or AND (represented by a
circular line below the node).

Depending on the required purpose, attack trees have been defined using different se-
mantics such as multi-set semantics [132], linear-logic semantics [91], timed automata [115],
Markov decision process [9], and propositional logic [165]. In this chapter, we aim to reason
about the actual causality relations among binary events, i.e., whether the occurrence or
absence of a specific event was the cause of another event. Hence, we use the equation-
propositional semantics similar to [165]. Such formalism is simple, expressive, and general.
The main difference between our definition and the definition in [165] is that we create a
propositional formula for each node in the tree (excluding the leaves), while the whole tree
is represented with a minimized formula of the root in [165].

For the formal definition, we follow Mauw and Oostdijk’s [132] way of defining an attack
tree. However, we adapt it to use propositional logic semantics. Formally, Definition 6.1
expresses attack trees.

Definition 6.1. Attack Tree [132] is a 4-tuple AT = (N ,→,n0, [[n]]) where

• N is a finite set of attack nodes, and n0 ∈ N is the root node,

• →⊆ N ×N is a finite set of acyclic relations,

• [[n]] is a function that returns a propositional formula for each n ∈ N , the formula represents
the semantical dependency of a node on its children nodes.

95

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

6.2.2 Malicious Insiders Example

Amjad Ibrahim

S.Get(P)

S.DK

Master Key

Stolen

S.Get(K)

B.Get(P)
B.DK

B.Get(K)

Figure 6.2: An Excerpt of the Steal Master Key Causal Model (corresponding attack tree
shown in Figure 6.3).

We introduce a causal model of insider behavior that leads to stealing a master encryption
key in a production environment. This is a simplified real-world example, inspired by
an industrial partner, and resembles the rock-throwing example. An excerpt from the
causal graph is shown in Figure 6.2; as a result of this chapter, we aspire to construct such
models using ATs. Basically, the model represents one strategy to steal the key (MKS)
by obtaining its encrypted version and decrypting it (as opposed to stealing it decrypted,
which is omitted for readability). This attack can be executed by one of two administrators
(assuming no collusion), Suzy (S) or Billy (B). They both have sufficient privileges in the
system; however, we know that S has more expertise in the system and the technology.

The event of S or B decrypting the key is denoted by the variables S.DK,B.DK re-
spectively. For that, each of them needs to read the pass-phrase from a script (Get(P))
and read the key from the database (Get(K)). For now, we assume an arbitrary causal
connection between S.DK and B.DK which is meant to represent a preemption relation,
i.e., a bias to represent S’s stronger abilities; such relations are crucial in causality [96].
In this chapter, we model them using dashed arrows because we think they can be
dynamically altered by a modeler to express different concepts, e.g., S has higher privi-
leges, B has a better history in the company, S came earlier in the morning when the incident
was reported, or a combination of these factors. We have four exogenous variables (omit-
ted from the model) that set the values for Get(P)/Get(K) for both S and B, i.e., U is
{S.Get(P)exo, S.Get(K)exo, B.Get(P)exo, B.Get(K)exo}. The equations of the model follow;
the underlined part of the equations shows the preemption relation.

• S.DK = S.Get(P) ∧ S.Get(K)

• B.DK = B.Get(P) ∧B.Get(K)∧ ¬S.DK

• MKS = S.DK ∨B.DK

96

6.3 Attack Trees to Causal Models

The model is not sufficient for causality inference, we still need to set the context (exoge-
nous variables). This is done through logging and auditing. Assume we have the following
context (1, 1, 1, 1) (S and B both got the pass-phrase and the key) when considering the
ordering of the variables as provided. We use the context and the model to answer causal
queries such as: Q1: is Suzy the cause of stealing the key?, or Q2: what is the actual cause
of exposing the key? Let us answer Q1 by checking if S.Get(K) is a cause of MKS with
W = {B.DK} using the conditions from Definition 2.4. Equation 6.1 shows the crucial
steps (of checking AC2) to conclude that S.Get(K) is the cause. Note that with an empty
set W , AC2 does not hold (case of preemption), but with W={B.DK} (Step 3 Equation 6.1),
the effect does not happen (Step 4) and hence S.Get(K) is a cause.

Step 1 S.Get(K) = 0 Intervening on x
Step 2 S.DK = 1 ∧ 0 = 0 Other variables state
Step 3 B.DK = 0 Cannot change this variable
Step 4 MKS = 0 ∨ 0 = 0 Effect is not happening

(6.1)

Additionally, we can answer Q2 by checking if B.Get(K) is a cause? Following similar
steps, the answer is no, because no matter how W is set, MKS will still be True. These
questions cannot be answered using an attack tree only. Even if we have attributed the
attack tree with the potential suspects, we still cannot infer actual causality directly in cases
of preemption or missing events. In this chapter, we contribute a method that uses attack
trees to construct causal models with suspects and preemption relations; thus, establishing
the ability to use causal reasoning to answer queries in the context of insider attacks.

6.3 Attack Trees to Causal Models

Causality is model-relative; thus, the creation of a model is a crucial requirement for
causality and blame attribution. Although attack trees are widely used to model attacks on
a system, they are not readily sufficient to attribute blame. Mainly because they normally
do not include the attacker; rather, they represent the attack strategies. That said, they are
a promising starting point to creating causal models since they express the dependencies
among attacker acts, and match the properties of a causal model. First, ATs are already a
propositional combination of events with (OR, AND) relations. The ability to formalize ATs
in boolean algebra makes them trivial to be expressed as causal models. Second, HP focuses
on acyclic models; ATs are acyclic. This section proposes an automated methodology for
constructing causal models based on ATs. Our methodology refers to the following activities
that are discussed throughout this section.

1. Suspect Attribution. This Refers to representing potential suspects in the model. In
Section 6.3.1, we transform the original AT T to an attributed AT T ′.

2. Tree to Model transformation (Section 6.3.2). It includes a.) variable selection: listing the
different factors that are considered in the model. They represent the causes, effects,

97

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

and the environment. Each factor is expressed as a variable in the model. b.) variable
classification: classifying what can be considered as a cause (or effect) (endogenous)
and what not (exogenous). c.) semantics expression: representing how the variables
affect each other using propositional logic operators like and, or and negation.

3. Preemption Relations Addition (Section 6.3.3). This Refers to incorporating useful
knowledge about the variables to create preemption relations.

6.3.1 Suspect Attribution

To bring it closer to causal models, we add suspects to ATs. As shown in this section, the
way suspects are added is crucial in determining the scope of the causal queries that can
be answered using the resulting model. To the best of our knowledge, no prior work has
tried to explore approaches to restructure ATs to include roles in an automated manner.
Instances of roles (e.g., data-center admin Suzy) are the potential attackers (suspects) that
have privileges to perform an attack. We refer to the process of adding suspects (roles or
instances of them) to AT as suspect attribution. Within our approach, an attribute can be
both a role or an instance. Attribution at the role level addresses potential scalability issues
that may arise when dealing with a high number of instances (e.g., a company with 200
employees). On the other hand, on the instance level, attribution produces fine-grained
models that can be used to attribute human blame. In the following, although we discuss
instance-based attribution, our approach works similarly with role-based attribution.

Suspect attribution is an automated unfolding (duplicating) task of parts of the tree fol-
lowed by allotting the new parts to a suspect (or a role). To create a new branch for each
suspect, we keep the parent node of the gate, and introduce an intermediate level of attribu-
tion nodes that correspond to insiders. The allotment is represented by renaming the nodes
to include the suspect identifier, e.g., Billy.Read_Pass_Phrase or ADMIN.Read_Pass_Phrase.
Regardless of its location, a subtree containing a node and all its descendants is attributed
according to Definition 6.2.

Definition 6.2. A subtree B = (N ,→,n0, [[n]]) is attributed with suspects {s1, s2, . . . sl} by: 1)
Creating a set (size l) of B duplicates, denoted {B1,B2 . . .Bl}. A duplicate Bi contains the nodes
of B with every node renamed with i suffix. 2) Constructing a new tree AB with root n0 from B,
then adding the disconnected {B1,B2 . . .Bl}, and connecting their root nodes using an OR function
with n0.

According to the structure of a tree, unfolding can be done at different levels. However,
depending on the internal structure, this may produce trees that model different attack
vectors. Consequently, the range of the causal-queries that can be analyzed using the
resulting models depends on the unfolding level. For example, in Figure 6.3, we present the
complete AT of the example in Section 6.2.2, including stealing the key decrypted. Figure 6.3
is modeled using ADTool [111, 60], which denotes an AND relation by the presence of
a horizontal edge touching the input arcs of a node. Let us consider attributing the left

98

6.3 Attack Trees to Causal Models

subtree of Figure 6.3 with two instances of an admin role, i.e., Billy and Suzy. We can do
that at level two (root level is one). The resulting tree is represented in Figure 6.4. It clearly
models the possible ways to steal the master key by either Billy or Suzy. The complete attack
paths in the tree allow expressing the behavior of one suspect performing an attack.

Steal Master Key

Decrypt The Key

Get The Passphrase

From Script From Network

Get The Key

From File From DB

Steal Decrypted

From Key Management Service

Access Attach Debugger

Figure 6.3: Steal Key Attack Tree (drawn using ADTool [111, 60])

Decrypt The Key

S.Decrypt The Key

S.Get The Passphrase

S.From Script S.From Network

S.Get The Key

S.From File S.From DB

B.Decrypt The Key

B.Get The Passphrase

B.From Script B.From Network

B.Get The Key

B.From File B.From DB

Figure 6.4: L-2 Unfolding (drawn using ADTool [111]). As an alternative, role-based attri-
bution will have Admin, and Secretary instead of Suzy and Billy.

Alternatively, we can attribute the suspects at the third level (L-3). Interestingly, the
resulting tree, as seen in Figure 6.5, models more possibilities than the previous case; now,
we can model attack paths with a possibility of collusion between insiders [109]. As a result,
attacks that involve both Suzy and Billy cooperating to steal the master key are now covered
in this tree, and hence, causal-queries to blame them are possible on the resulting model.

Since collusion attacks are plausible among insiders [109], we use the second attribution
(L-3), especially since it also includes the attacks within (L-2) attribution. This comparison
is an instance of the specialization concept proposed by Horne et al. [91].

Actually, the attribution level is not the crucial factor in determining the expressiveness
of the attribution. Somewhat, it depends on the structure and the semantics of the branch
(first-level subtree). Specifically, if we have an AND gate in the branch, the expressiveness
of the model will depend on the attribution level. If we want to include the possibility of
collusion attacks, then the unfolding should happen at a level that is greater than the AND gate
level in a specific tree.

99

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

Decrypt The Key

Get The Passphrase

S.Get The Passphrase

S.From Script S.From Network

B.Get The Passphrase

B.From Script B.From Network

Get The Key

S.Get The Key

S.From File S.From DB

B.Get The Key

B.From File B.From DB

Figure 6.5: L-3 Unfolding (drawn using ADTool [111])

Although, unfolding after the last AND gate allows considering any possibility of collud-
ing attacks, in some cases it may be unnecessary. For example, let us consider the second
branch in Figure 6.3. If we attribute suspects after the fourth level, then we assume that
suspects collude by having one accessing a container and the other attaching a debugger;
this is unlikely to happen. Still, it produces a model that can be used for single-agent queries.
We propose to generate causal models from attributed ATs based on different attribution
levels. The branch structure automatically determines the level (based on the above), or the
modeler can explicitly specify the attribution level.

Semantics of Attribution

Let us start with AND Gates. An AND gate is visualized in the left column of Table 6.1.
The semantics of the node is given by the formula associated with it, i.e., a = b ∧ c. We
discussed how to unfold such a gate, at the first level which does not account for collusion
attacks (middle column), or at the second level (right column).

The semantics of unfolding the (L1) with two suspects (denoted by ′ and ′′) is shown in
the second row (steps 1 − 3) of Table 6.1. The last step shows a disjunctive normal form
(DNF) of the formula. Similarly, the right column shows the formulas and simplification
of unfolding at (L2). Comparing the forms shows that the possible attack scenarios of (L1)
unfolding are included in the (L2) unfolding (this can be seen as a specialization [91] of
attack trees). In other words, the formula (L1) implies (L2), i.e., L1 =⇒ L2 is a tautology.
Thus, causal queries of the single blame can also be answered when unfolding on the second
level.

Unfolding allows us to attribute possible suspects of an attack to the best of the modeler’s
knowledge. Simplifying the unfolded gates into their DNF proves the preservation of the
original gate semantics, i.e., a = b ∧ c. Essentially the occurrence of the two concrete
actions (b, c) combined causes an event (a). This is expressed in each clause of the DNFs.
Informally, a clause is one instance of the original formula. We have to keep in mind, that
this transformation is built on the assumption that the list of suspects is the universe of all
the possible agents that can perform this attack. This assumption allows us to say that the
semantics of the transformed tree (or branch) is now refined to enumerate all the possible
scenarios, each presented as a clause that combines single or multi-suspects. Lastly, the case

100

6.3 Attack Trees to Causal Models

Gate L− 1 L− 2

a

b c

a

a'

b' c'

a''

b'' c''

a

b

b' b''

c

c' c''

Semantics

1.a = a′ ∨ a′′
2.a′ = b′ ∧ c′
3.a′′ = b′′ ∧ c′′
4.a = (b′ ∧ c′) ∨ (b′′ ∧ c′′)

1.a = b ∧ c
2.b′ = b′ ∨ b′′
3.c = c′ ∨ c′′
4.a = (b′ ∨ b′′) ∧ (c′ ∨ c′′)
5.a = (b′ ∧ c′) ∨ (b′ ∧ c′′)
∨(b′′ ∧ c′) ∨ (b′′ ∧ c′′)

Table 6.1: Unfolding AND

of unfolding OR gates is similar and simpler because the complication of the unfolding level
is eliminated. Regardless of the level, an original formula like a = b ∨ c, will be unfolded to
a = b′ ∨ c′ ∨ b′′ ∨ c′′.

6.3.2 Attributed Attack Tree Transformation

Since we are reusing the existing knowledge in the attributed attack trees, the three activities
variable selection, semantics expression, and variable classification are trivial. Basically, we
consider each node as an endogenous variable that defines whether or not an attack step
has been conducted. Since the nodes are connected with different operators, we use them
to construct the equations and therefore express the semantic relationships between the
variables. Before we do the transformation, we need to extend the tree, i.e., duplicate its
leaves.

In attack trees, a leaf node represents an atomic step that is not further refined [179]. When
transferring leaves into endogenous variables of a causal model, they lack corresponding
formulas. Alternatively, we can consider them as exogenous variables that represent the
environment (context), but then they cannot be regarded as potential causes in our reasoning.
Thus, we extend the tree with a duplicate set of leaves. In other words, each leaf on the
tree gets an inbound edge from a new node that has the same name with an _exo suffix.
Tree extension aids us in classifying the variables, and it also maintains the possibility that
any node in the original tree can be considered as a cause. Definition 6.3 is a tree extension
function, where E(T) copies the set of leaves of a tree T .

101

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

Definition 6.3. Extension Rule The relation T (N ,→,n0) ⇒ T ′′(N ′′,→′′,n0) is defined by the
following rule.
– N ′′ : N

⋃
rename(E(T), _exo); where rename(A, suffix) is a function that renames nodes

in set A to with a given suffix.
–→′′ :→

⋃
{m→ m_exo |m ∈ E(T)}

We should note that the same node can occur multiple times in AT. However, in our
causal model, exactly one instance of a variable exists. For the scope of this thesis, we
only allow node re-occurrence among leaves. So far, we discussed the first two automated
steps in our extraction process which are related to the AT. Now, we are ready to create the
model from the extended and attributed AT. We will illustrate that by a formal mapping
that depends on the definitions Definition 6.1 and Definition 2.2.

Definition 6.4. Attack Tree To Causal Model
AT = (N ,→,n0, [[n]]) is mapped to a M = (U ,V,R,F) i.e., AT �M as follows
– U = E(AT), where E(AT) returns the leaf nodes of a tree AT ,
– V = N\E(AT), where \ is the difference between two sets,
–R = {0, 1},
– F associates with each X ∈ V a propositional formula FX = [[X]], which corresponds to the
semantical formula from the AT.

6.3.3 Adding Preemption Relations

So far, we discussed how to map the structure (variable and dependencies), the semantics
(formulas), and their causal importance (endogenous or exogenous). Now, we augment the
model with suspect-related information that is useful to create preemption relations. HP in-
troduces a treatment of preemption cases by relating the involved variables “somehow.” As
we mentioned in Section 6.2.2, preemption relations represent auxiliary connections among
variables that express the same event conducted by a different suspect (e.g., Billy.Get
Key/Suzy.Get Key). They are decisive in models that have potential identical causal rela-
tions, especially, with the symmetrical nature of our models brought by our attribution
approach [75, 96]. They are crucial when multiple coinciding events occurred, leading to
the success of an attack.

Since preemption relations can stem from different facts, it can be hard to model them in
a general way. For example, they represent the level of Suzy’s privileges in a system, Billy’s
criminal record, Suzy’s earlier (than Billy’s) login to the system, or a combination of such
factors. These factors can be static, such as risk estimate or privileges2 (e.g., if a manager
and an employee tried to read the file at the same time then we blame the manager), or
dynamic such as the temporal order of events (if two employees tried to read the file at the
same time then we blame the earlier one).

2A privilege can, of course, be changed; however, by static, we mean that a factor is a general attribute
regardless of the incident details.

102

6.3 Attack Trees to Causal Models

To automate their modeling in the context of insiders, we propose to base the creation
of preemption relations on metrics of insiders’ risk assessment. Specifically, we introduce
the suspiciousness metric (SM), which provides an order relation over the set of suspects
conducting a particular type of attack. In other words, it is a value given to each suspect
that aggregates their ability to perform an event or willingness to commit an attack. The
precise way of calculating SM depends on the context of an incident; hence, we do not
provide one; it can be a simple reflection of privileges in the system; it can be a sum of
weighted factors (privileges and record); it can be a reflection of the temporal order of
events. Since SM values reflect disparity among suspects, they can be global (a value of
the attacker ability for all possible attacks) or local (a value of attacker ability for a specific
attack). This flexibility in deciding how to calculate SM gives the modeler a method to
determine whether to model preemption and how to model it, in a case by case manner.
Yet, the whole concept can be automated.

We introduce preemption relations among attribution variables one level after the attribu-
tion level. At that level, the tree contains variables representing the same event allotted for
different suspects. We connect every two variables with an edge from the more suspicious
suspect (higher SM) to the less suspicious suspect (in case of equal values the edge is not
added). Assume we have three suspects: X1, X2, X3, each performing event Z, and the
order of their ability is X1 > X2 > X3. Then, the following acyclic preemption relations are
added X1.Z 99K X2.Z, X1.Z 99K X3.Z, X2.Z 99K X3.Z to the graph. The semantics of this
arrow is represented by a negation clause added to the less suspicious suspect about the more
suspicious one, i.e., X3.Z = . . . ∧¬X1.Z ∧ ¬X2.Z .3

Definition 6.5. Given a model resulting from Definition 6.4, a preemption relation (99K) is added
between two attribution variables (S1.e, S2.e) of the same event (e) for different suspects, denoted
S1.e 99K S2.e, if SM(S1.e) > SM(S2.e).

6.3.4 Tool Support

We present our tool ATCM (Attack Tree to Causal Model). ATCM is a command-line tool
that implements our approach.4 As the name suggests, ATCM takes an attack tree and
suspects specification as an input and generates a causal model. Attack trees are usually
created using a broad variety of tools. In order to get access to the information stored in
such an AT, the latter needs to be exportable to a format that can be easily accessed and used
by us. Examples of tools fulfilling this requirement are ADTool [111, 60] which provides an
XML-representation of the models created with them. Consequently, we are able to use
those as input for ATCM.

In general, ATCM incorporates a three-step approach: parsing, transformation, and extrac-
tion. First of all, we need to create a machine-readable object, i.e., binary, representation out

3While this expression of preemption relations seems to exclude suspects, it is only crucial in certain situations,
in which the modeler interferes according to blameworthiness factors.

4ATCM is available at: https://github.com/amjadKhalifah/ATCM

103

https://github.com/amjadKhalifah/ATCM

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

of a given XML-File that defines an attack tree (Parsing). For this purpose, we have devel-
oped our own parsing components. However, since this object representation is specifically
tailored to each of the supported file formats, we want to transform the latter into a uniform
tree representation, which comprises both attack and other similar models like fault trees,
while ensuring that no semantic information is lost (Transformation). For this representation,
we are using the Model Exchange Format (MEF) (https://open-psa.github.io/mef/)
in a slightly simplified version.

The advantage of abstracting the specific format like ADT format is that the most essential
functionality of this tool, i.e., the extraction of the causal model, needs to be developed only
once. This reduces its error-proneness and increases maintainability. Once an attack has
been transferred into this uniform representation, the described generation of the causal
model can begin (Extraction). Lastly, we export the results in a human-readable report and
generate a causal graph in the DOT format, which is commonly used for describing graphs
in a textual format and can be rendered into visualization by multiple tools.

6.4 Evaluation

In our evaluation, we analyze the following qualities: the efficiency of the model extraction
procedure, the validity, and the effectiveness of the resulting models. For the first, we discuss
(in Section 6.4.1) the performance cost and the size expansion of the tree in relation to
different factors. In Section 6.4.2, we focus on the quality of the model. Clearly, we do not
aim to discuss the expressiveness of AT since their refinement and granularity are decided
by the modeler. However, we discuss the validity of our models in relation to the input AT.
Lastly, we discuss how to use the causal model in a technical setting to infer causality. We

Class Use Case Nodes # Potential Attackers

HP
HP1 3 2
HP2 2 2

Insider (Industry) Steal Master Key 12 2 or 8

Insider (Literature)
BecomeRootUser1 8 2 or 8
BecomeRootUser2 11 2 or 8

Artificially Generated
Artificial1 255 2 or 8
Artificial2 1017 2 or 8
Artificial3 3057 2 or 8

Table 6.2: Use Cases of the Evaluation

use four classes of use-cases in our experiments. Table 6.2 shows the particular attack trees of
each class, along with the number of nodes in the tree. Each class contains one or more trees
that cover different sources as follows: 1) HP examples: We use two famous examples from
the causality domain, namely: Arsonists and Rock-Throwing [74]. This class is mainly used
for the discussion of the validity. 2) Insiders from industry: This class includes a real-world

104

https://open-psa.github.io/mef/

6.4 Evaluation

attack tree that comes from an industrial partner. It represents insider’s strategies to steal a
master key from a deployment of an enterprise solution. 3) Insiders from Literature: This
class includes two attack trees borrowed from [193]. They represent privilege escalation.
The first uses windows command line and scheduler, and the other uses Metasploit and
Internet Explorer. 4) Artificially generated trees: This class contains three trees that we
generated automatically. They do not hold any semantic value. The aim of using them
is to analyze the efficiency of extraction. In our experiments, we will vary the number of
suspects and test our model extraction for 2, or 8 suspects.

6.4.1 The Efficiency of the Extraction

Depending on the size, the structure of the AT, the attribution level l of each branch, and the
number of suspects s, the size of the resulting model will vary. Since we are attributing
branches at different levels, the size of the resulting model is the sum of attributed branch-
sizes plus one. This is expressed as ((

∑n
i=1 |bli(s)|) + 1), where n is the number of branches,

and |bli|(s) is the size (number of nodes) of branch i attributed at level l with s suspects. We
express the attributed branch size |bli|(s) as a function of suspects and its original size.

Definition 6.6. Attributed Branch Size |bli|(s)

|bli(s)| = (s · (|bi| − |bi|l>L>1 + |bi|Leafs) + |bi|l>L>1)

- |bi|, |bi|Leafs are the sizes of the original branch bi and the number of its leaves,
- |bi|l>L>1, |bi|l>L>1 are the size of the exclusive and inclusive subtree between the branch root and
attribution level. Inclusion refers to counting the root and the leaves or excluding them.

We see that our approach increases the tree size. Especially with very large trees, forensic
analysts are not supposed to inspect their models manually. Rather, they can use the
algorithms from (Chapter 3 and Chapter 4) to analyze binary causal models. Thus, analysts
focus on managing their ATs and formulating their causal queries. In fact, this is an example
of an automated generation of causal models, which makes it necessary to have analysis
engines like those from Chapter 3 and Chapter 4. Next, we evaluate the efficiency of the
extraction process.

2 Suspects 8 Suspects
Top Middle Leafs Top Middle Leafs

AT n l b n exec(s) n exec(s) n exec(s) n exec(s) n exec(s) n exec(s)
SMK 12 5 2 37 0.0002 36 0.0002 36 0.0003 139 0.0004 126 0.0004 108 0.0004

Be.Root1 8 4 1 24 0.0002 25 0.0002 23 0.0002 90 0.0004 91 0.0004 71 0.0004
Be.Root2 11 4 1 32 0.0002 35 0.0002 32 0.0003 122 0.0006 125 0.0006 98 0.0006

T1 255 8 2 767 0.0069 767 0.0117 767 0.0512 3059 0.0283 2879 0.0460 2303 0.1925
T2 1017 8 8 3065 0.0354 3065 0.1133 3065 0.7473 12233 0.1380 11513 0.4610 9209 2.99
T3 3057 8 16 6129 0.0939 6129 0.4084 6129 2.94 24465 0.3700 23025 1.65 18417 11.97

Table 6.3: Efficiency Evaluation of the Model Creation.

105

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

Table 6.3 shows the execution time exec(s) in seconds and the model size n of six ATs.
Their properties are shown as n: number of nodes, l: depth of the tree, and b: number of
branches. We have attributed the trees with 2 and 8 suspects. We attributed each tree at
root-level, middle-level, and leaf-level. We created benchmarks, based on Java Microbenchmark
Harness to measure the execution time. The benchmarks measure the time from parsing
an AT until the creation of the corresponding causal model. The values shown in Table 6.3
have been obtained by running 10 warm-up and 20 measurement iterations on a Windows
10 machine equipped with 8GB of RAM and a quad-core Intel® i7 processor.

For the small use cases (SMK, Be.Root1, and Be.Root2) the execution time is small (below
0.7ms). The interesting part is with the artificial trees, where we see a clear proportional
increase of execution time with the deeper attribution levels. This is due to our recursive
algorithm. Model size, on the other hand, is of less importance in that context, we can see
that a 23025 node model took 1.7 sec to be extracted (L-4), while a 9209 node model took
2.9 secs (L-8). Nevertheless, these values do not exhibit a bottleneck. Hence, based on this
empirical evaluation, our approach should be efficient enough for any reasonable-sized AT.

6.4.2 The Validity of the Approach

There are no properties that discuss the validity of a causal model. Rather, scientists have
dealt with the modeling activity by example. We use a similar approach. We apply our
approach to problematic examples in the literature [75] and compare the results. Our goal
is to check if we were able to automate the method of creating causal models by splitting
the general knowledge from the agents (suspects). Although those examples are not really
security attacks, we are modeling them as such.5 To that end, we followed the following
process. First, represent the abstract causal knowledge as a tree (Table 6.4 middle column).
Second, configure the actors in the scenarios, e.g., Billy and Suzy. Third, generate the model
(Table 6.4 right column) and compare the generated model with the model presented in the
papers.

For readability, we only present two examples (Arsonists, Rock Throwing); both are
explained in Appendix A. We can see that the two versions of the models are very similar,
but as Table 6.4 shows they vary a bit. The variation is an auxiliary variable that is added,
in our model, at the suspect attribution level, i.e., ML, and H . The variation is negligible
because it does not affect the semantics from a causal perspective, because those extra
variables are identity (FB = ML, BS = H). We can add an optimization step to our
approach to removing one of the identical nodes (FB and ML) or (BS and H), we end
up with an identical HP model. Furthermore, our models can be proved easily to be a
conservative extension ([75]) of the model from HP.

5Arsonists and Rock-Throwing are typical examples in the causality literature. We may consider setting a
forest on fire as an attack on the forest, with lighting matches being a possible step of an attack. We may
also consider shattering a bottle an attack on the bottle, with throwing a stone being a possible step of an
attack. The point here is to show that our mechanism produces valid results also for well-known examples.

106

6.4 Evaluation

Example HP Model Attack Tree Our Model

Arsonists

A1ML_exo

A1ML

A2ML_exo

A2ML

FB

FB

ML

A1ML

ML

A2ML

FB

A2ML_exo A1ML_exo

Rock-Throwing

BT_exo

BT

BS

ST_exo

ST

SH

BH
BS

H

T

BT_exo

BT

BS

H

ST_exo

ST

SH

BH

Table 6.4: Models From HP Examples

6.4.3 The Effectiveness of the Model

To evaluate the effectiveness of our models, we show how they are used in a production
environment. We experimented with a technical setting of the example from Section 6.2.2.
First, we created the corresponding model using ATCM. Second, we set the context for two
concrete scenarios: Sce-1, in which Suzy stole the key with the existence of preemption, and
Sce-2, in which Billy did. Third, using our reasoning engine from Chapter 3 and Chapter 4,
we reason about causality. We tested the models in an environment that contains a set of
micro-services and third-party software that are deployed as docker containers.

To set the context, we utilized monitoring tools namely, auditD to monitor file accesses,
and Couchbase audit to monitor queries. These tools generate logs that we used to
set the exogenous variables. For our initial prototype, the context was set manually.
For example, a sentence from auditD like ... "MESSAGE" : "PATH name=̈.../ script.txt

107

6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks

"..auid= 1001 uid= 1001.. is translated into S.From_Script_exo= 1 (Suzy’s id=1001). U =
{S_Scriptexo, S_DBexo, S_Fileexo, S_NWexo, ..Billy’s variables}. Accordingly, we have two
contexts, namely Sce-1 {1, 1, 1, 1, 1, 1, 1, 1} and Sce-2 {0, 0, 0, 0, 1, 1, 1, 1}when we consider
the ordering of the variables. Regarding the preemption relationships, U1 preempts
U2 . . . U8, U2 preempts U3 and so on.

Using the approaches from Chapter 3 and Chapter 4, we analyzed the two contexts using
the steal master key 8-suspects model with 91 endogenous and 48 exogenous variables. We
used the two queries from Section 6.2.2: Q1: is Suzy the cause of stealing the key? Q2: Is Billy’s
decryption of the key or Suzy’s the actual cause of stealing it?.

Sce-1 represented the situation of having multiple tentative suspects. The results matched
our ground truth, i.e., Suzy was concluded to be responsible for the incident. Although this
may seem intuitive, it was only enabled by the fact that we made our knowledge explicit
using a causal model. The analysis of Q1 took 3.07ms and consumed 3.2MB of memory. For
Sce-2, it was easier to conclude that Billy is the reason for stealing the key since the context
was clearer (Suzy and other suspects did not log into the system). The analysis of the model
for Q2 took 2.78ms and consumed 3.2MB of memory.

6.5 Summary

Building causal models is an essential step towards enabling causality reasoning in modern
systems. Automating these models’ construction in certain domains makes it even easier
to operationalize causality reasoning. In this chapter, we showed one example of this
automation in the context of insiders.

Preventive security measures have a high likelihood of failing with insiders because
they ought to have sufficient privileges to perform their jobs. Instead, we propose to treat
the insider threat by holding them accountable in case of violations. For that, we need to
create causal models that support reasoning about the causality of a violation. Current
security models (e.g., attack trees) do not allow that. However, they are a useful source
for creating causal models. To that end, we presented a methodology that extracts HP
causal models from attack trees. However, we identified suspect attribution as a crucial step
in the conversion. Thus, we introduced a method to add suspects to AT considering the
possibility of them colluding. Also, we focused on creating models that include preemption
relations. This work leverages our earlier results in Chapter 3 and Chapter 4 to enable
forensic analysis of insider accidents. Although it is hard to evaluate models reasonably, we
showed that our approach is efficient in extracting valid and useful models.

108

7 Automated Generation of Attack Graphs
and Causal Models for Microservices

In this chapter, we keep our focus on the general problem of causal modeling
in the domain of microservices. We provide another domain-specific solution
of causal modeling through the automated generation of attack graphs. Attack
graphs are another type of threat models that can be used for causal reasoning.
They represent technical low-level attack steps bound to hosts in computer
networks. They can be automatically generated from network configuration and
the publicly available information about vulnerabilities. This chapter presents an
approach to generating graphs for microservices automatically and then discuss
their transformation to causal models. Microservices, which are technologically
heterogeneous, dominate service systems. However, the automation of their
infrastructure, depending on third-party software, increases the security risks
they face. Attack graphs and causal models help practitioners analyze, attribute,
and prevent plausible attack paths in their microservice-based networks. Parts of
this chapter have previously appeared in the publication [94], co-authored by the
author of this thesis.1

7.1 Introduction

According to our solution (an abstract version of which is shown in Figure 7.1), construct-
ing a causal model remains a necessary step to enable causality analysis. As previously
illustrated (in Chapter 6), we are only able to tackle this general requirement in specific
domains. This chapter presents an example of generating causal models in the domain of
microservices.

Microservices, a recent approach to managing the complexity of modern applications,
have been increasingly adopted in real-world systems. This is indicated by the number of
companies that use microservice-based architecture [1]. Microservice-based systems are
found in various domains, such as video streaming, social networks, logistics, the Internet
of Things [28], smart cities [114], and security-critical systems [54]. Such architectures follow

1Parts of this chapter are reprinted by permission from Association for Computing Machinery: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. Attack Graph Generation for Microservice
Architecture, Ibrahim et al. (20019).

109

7 Automated Generation of Attack Graphs and Causal Models for Microservices

Causal Modeling Context Setting Causal Reasoning

Figure 7.1: An Abstract Architecture of the Solution focusing on Causal Modeling.

the fundamental principle of Unix, i.e., systems are decomposed into small programs, each
performing a single cohesive task [202]. These programs work together via universal inter-
faces, where each program is a microservice that is designed, developed, tested, deployed,
and scaled independently [58]. Smaller decoupled services have a positive impact on some
system qualities, such as scalability, fault isolation, and technology heterogeneity [146];
however, other qualities, such as security, can be affected negatively [4].

The utilization of microservices has popularized the concepts of container-based deployment,
where new small services are shipped and deployed in containers [102]. As a result,
such systems are deployed as networks of communicating microservices. Due to their
lightweight and operating-system level virtualization [23], containerization frameworks,
such as Docker [29], have become a high-performance alternative to hypervisors [113]. That
said, significant concerns have been raised about containers security [4]. These concerns are
motivated by the increasing number of communication endpoints among microservices, the
potentially increasing number of vulnerabilities emerging from open-source tools and third-
party frameworks distributed by Docker hub [183, 70], and weaker isolation (compared to
hypervisor-based virtualization) between hosts and containers because all containers share
the same kernel [23, 27]. In this chapter, we tackle the problem of forensically analyzing
plausible attacks on container networks using attack graphs [112].

In computer networks, attack graphs are the dominant model used to inspect the security
aspects of a network. An attack graph depicts the actions an attacker may use to reach their
goal, e.g., gaining the privileges of a specific host [182, 150]. Typically, experts (e.g., red
teams) construct attack graphs manually; however, this manual process is time-consuming,
error-prone, and does not address the complexity of modern infrastructures. Previous
studies have dealt with attack graph generation for computer networks [100, 182, 150].

Following an idea similar to what we did with attack trees, this chapter aims to show
that sources of causal models can be automatically generated and transformed into causal
models. Unlike the static nature of our approach in Chapter 6, in this chapter, we can
continuously create causal models. As part of the continuous process of building, shipping,

110

7.2 Preliminaries

and deploying systems, we trigger the construction of causal models. Since causal models,
like any other model, are incomplete by nature, the ability to accommodate for their change
is extremely important. Also, attack graphs can be used with insiders as well as outsiders.
In this chapter, we propose attack graphs as a source for causal models in continuous
delivery systems. We present an approach based on methods from computer networks to
automatically generate them for container-based microservice architectures. The proposed
approach is implemented in a tool.2 We provide an empirical evaluation of the efficiency of
the proposed approach relative to generating attack graphs for real-world systems.

7.2 Preliminaries

As real-world software increases in size, there is an increasing need to decompose it into an
organized structure to promote scalability, reusability, and readability. A software appli-
cation with modules that cannot be executed independently is referred to as a monolith.
Monolithic systems are characterized by tight coupling, vertical scaling and strong depen-
dence [58]. The Service Oriented Architecture (SOA) addresses these issues by restructuring
its elements into components that provide services to be used by other entities [154]. In a
typical SOA, services are monolithic, which gives rise to the concept of microservices as a
more fine-grained decoupling methodology [4]. The term microservices was first introduced
in 2011 as a common term to describe the work of multiple researchers [58]. In the microser-
vices paradigm, services are split into task-oriented units. According to Dragoni et al., a
microservice is a cohesive, independent process interacting via messages. Microservices
promise to have cheaper scaling, resilience, organizational alignment, and composabil-
ity [146]. On the other hand, they add additional complexity and have a wider attack
surface as the need for many services to communicate with each other, and third-party
software increases. Container technology has emerged in cloud computing to provide a
lightweight virtualization mechanism. Container technology enables microservices to be
packaged and orchestrated through the Cloud [151]. Docker is one of the most popular
containerization frameworks. In Docker, a distinction is made between the terms image,
container, and service. An image is an executable package that includes everything required
to run an application, a container is a runtime instance of an image, and a service represents
a container in production. A service only runs a single image, however, it codifies the way
that image runs, what ports it should use, and how many replicas of the container should
run so the service has the capacity it requires [139]. We construct attack graphs by statically
analyzing the topology of the containers; therefore, we treat these terms equally.

A vulnerability is a system weakness that can be exploited by a malicious actor with the
help of an appropriate suite of tools. Many vulnerabilities are publicly known, tracked in the
so-called Common Vulnerabilities and Exposures (CVE) list, and stored in databases, such as
the National Vulnerability Database (NVD). CVE3 is a list of publicly known cybersecurity

2Accessible at https://github.com/tum-i22/attack-graph-generator
3https://cve.mitre.org/

111

https://github.com/tum-i22/attack-graph-generator
https://cve.mitre.org/

7 Automated Generation of Attack Graphs and Causal Models for Microservices

vulnerabilities where each entry contains an identification number, a description, and at least
one public reference. This enables the automation of vulnerability management, security
measurement, and compliance [22]. Vulnerability scanners attempt to detect weaknesses
in a software by scanning a single host for the existence of known CVEs [51]. However,
more sophisticated approaches are required because many attacks are network-based and
performed in multiple steps throughout a network.

Attack graphs [182] are a popular way to examine network security weaknesses. They
facilitate analysing a given system and detecting its vulnerable components. The definition
of an attack graph may vary, however, it is essentially a directed graph comprising nodes
and edges with various representations. For instance, Ingols et al. made a distinction
between full, predictive, and multiple-prerequisite (MP) attack graphs [100]. A full graph is
a directed acyclic graph comprising nodes that represent hosts and edges that represent
vulnerability instances. Predictive attack graphs use the same representation, with the
only difference lying in the constraint of when the edges are added to the attack graph.
Note that predictive graphs are generally smaller than full graphs. An MP is an attack
graph with contentless edges, state nodes, vulnerability instance nodes, and prerequisite
nodes [100]. For the scope of this thesis, we define an attack graph as a directed acyclic
graph with a set of nodes and edges similar to the full graph representation proposed by
Ingols et al. [100]. A node represents the state of a host with its current privilege, and an
edge represents a successful transition between two such hosts. We consider an edge as
a successful vulnerability exploitation initiated from a host with a required privilege to
another or the same host with a newly gained privilege.

7.3 Approach

In Section 7.3.1, we present the general concept behind attack graph generation, and the
technical process to achieve it in microservice-based systems. Then, in Section 7.3.2, we
discuss how to turn these graphs into causal models.

7.3.1 Attack Graph Generation for Dockers

Privileges play a central role in the generation of attack graphs. Normally, privileges are
modeled as a hierarchy that varies in the access level (User, Admin), and access scope (virtual
machine VOS, host machine OS). The privileges used in this chapter are None, VOS(User),
VOS(Admin), OS(User), and OS(Admin). VOS means that the privilege is exclusive to a
virtual machine while not affecting the host machine. However in our case, unlike hosts
in a network, these privileges refer to images and not virtual machines. The OS keyword
means that a user who has this privilege can control the host machine. Since VOSs are
isolated from host machines and their exploitation does not imply the exploitation of the
host machine, they are at the lower level of the hierarchy [5]. None means that no privilege
is obtained, User means that only a subset of user level privileges is granted, and Admin

112

7.3 Approach

grants control over the whole system.
As mentioned, nodes and edges are the basic building blocks of an attack graph. A node

represents a combination of a compromised Docker image and a certain privilege gained by
the attacker after exploiting a vulnerability. A directed edge between two nodes represents an
attack step from one node to another (adjacent exploitable image with the gained privileges).
Each edge is typed with the (CVE) that could be exploited in the end node.

For attackers to exploit a given vulnerability, they must have certain preconditions, i.e., the
minimum privileges required to exploit [5]. Once an attacker meets these preconditions and
exploits the vulnerability, s/he gains the privilege of the end node as a postcondition, and a
directed edge is added between the two nodes. Both the preconditions and postconditions in
this study are transformed from precondition and postcondition rules manually selected and
evaluated by experts [5]. The precondition and postcondition rules use the fields defined
by the NVD, as well as an occurrence of specific keywords from CVE descriptions [22].

Example

(a) (b)

Figure 7.2: Reduced Netflix OSS example: (a) Topology Graph (b) Resulting Attack Graph

Here, we present a small example to demonstrate how attack graph generation works
in practice. The example is taken from the Netflix OSS GitHub repository. The Netflix
OSS example is a Spring Cloud-based microservice architecture that uses the following
microservices: Service Discovery (Eureka), Circuit Breaker (Hystrix), Intelligent Routing

113

7 Automated Generation of Attack Graphs and Causal Models for Microservices

(Zuul), and Client Side Load Balancing (Ribbon). Figure 7.2a shows a subset of the example
topology, where each node denotes a container and each edge is a connection between
two containers if one calls the other. The topology comprises an "Outside" node and a
"Docker daemon" node, as well as Zuul, Eureka, and other nodes. According to Netflix,
Zuul is an edge service that provides dynamic routing, monitoring, resilience, and security
functionalities. Eureka is a Representational State Transfer (REST) based service primarily
used in the cloud for locating services for load balancing and fail-over of middle-tier servers.
Figure 7.2b shows a part of the corresponding attack graph, where a node is a pair of the
image and its privilege, while an edge represents an atomic attack. Parts of both graphs
have been omitted intentionally for simplicity. An example path an attacker would take
could be to first attack the Zuul container by exploiting the CVE-2016-10249 vulnerability
by crafting an image file, which triggers a heap-based buffer overflow4 and gains the USER
privilege. With this USER privilege, an attacker can exploit the CVE-2015-7554 vulnerability
on the same container via crafted field data in an extension tag in a TIFF image5 to gain the
ADMIN privilege. Once the ADMIN privilege has been obtained on the Zuul container, the
attacker can attack the Eureka container by exploiting CVE-2017-7600 via another crafted
image6 and gain the ADMIN privilege. Note that this is not the only path the attacker can
take to obtain ADMIN privileges on the Eureka container. Another path would be to exploit
the CVE-2018-1124 vulnerability by creating entries in the file system (procfs) by starting
processes, which could result in crashes or arbitrary code execution.7 This vulnerability can
be exploited by having only the USER privilege on Zuul to gain the ADMIN privileges of
the Eureka container directly. Our attack graph generator shows both paths because it is of
interest to identify all possible routes through which a container can be compromised.

The Attack Graph Generator System

Figure 7.3 shows an overview of our attack graph generator, where the rectangles denote
the main system components, the arrows indicate the flow of the system, and the files
are intermediate products. The proposed attack graph generator comprises three primary
components, i.e., the Topology Parser, the Vulnerability Parser, and the Attack Graph Generator.
The Topology Parser reads the static underlying topology of the system and converts it
to a format required by the Attack Graph Generator. The Vulnerability Parser scans the
vulnerabilities for each image, and the Attack Graph Generator generates the attack graph
from the topology and vulnerabilities files. In the following, we first examine the system
requirements and then describe each component in greater detail.

The proposed generator is developed and tested for Docker 17.12.1-ce and Docker Com-
pose 1.19.0 [139]. Docker Compose8 is a tool for defining the orchestration of multi-container

4https://nvd.nist.gov/vuln/detail/CVE-2016-10249
5https://nvd.nist.gov/vuln/detail/CVE-2015-7554
6https://nvd.nist.gov/vuln/detail/CVE-2017-7600
7https://nvd.nist.gov/vuln/detail/CVE-2018-1124
8https://docs.docker.com/compose/

114

https://nvd.nist.gov/vuln/detail/CVE-2016-10249
https://nvd.nist.gov/vuln/detail/CVE-2015-7554
https://nvd.nist.gov/vuln/detail/CVE-2017-7600
https://nvd.nist.gov/vuln/detail/CVE-2018-1124
https://docs.docker.com/compose/

7.3 Approach

Figure 7.3: Attack Graph Generator

applications. Docker Compose provides a static configuration file that specifies the system
containers, networks, and ports. Note that Clair and ClairCtl 9 were used for vulnerability
scanning. The generator was written in Python 3.6. Although we used specific versions
of these tools, the pipe and filter structure of the generator can be easily extended to other
versions of Docker-Compose, vulnerability scanners, and microservice architectures.

Topology Parser. To generate an attack graph for a given system, we must arrange its
components and connections as a system topology. We used Docker Compose to extract the
static topology. The static topology refers to the structure of the images (not the run-time
containers or instances).10 Docker Compose provides a file (docker-compose.yml) that is
used to describe the orchestration of the services. For an application to be useful in most
cases, it communicates with the outside world, i.e., it has endpoints that can be used by an
outer network. In Docker, this is typically accomplished by publishing ports. This is the
case for both computer networks and microservice architectures.

Another consideration is privileged access.11 In order to function properly, some containers
obtain certain privileges that grant them control over the Docker daemon. For example,
a user may want to run hardware (e.g., a webcam) or applications that demand higher
privilege levels from Docker. In Docker, this is typically achieved either by mounting the
Docker socket or specifying the "privileged" keyword in the docker-compose.yml file. Here,
an attacker with access to these containers also has access to the Docker daemon. Once the
attacker has access to the Docker daemon, he has potential access to the entire microservice
system because each container is controlled and hosted by the daemon.

9https://github.com/coreos/clair
10In principle, this work can be extended to support dynamic topology. We argue that from a forensic

attribution perspective, we are interested in which image is involved in compromising an asset, regardless
of the run-time instance. That said, there may be examples where attributing run-time instances is required.

11http://obrown.io/2016/02/15/privileged-containers.html

115

https://github.com/coreos/clair
http://obrown.io/2016/02/15/privileged-containers.html

7 Automated Generation of Attack Graphs and Causal Models for Microservices

Vulnerability Parser. In the preprocessing step, we use Clair to generate the vulnerabili-
ties for a given image. Clair is a vulnerability scanner that inspects a Docker image and
generates its vulnerabilities by providing a CVE-ID, a description and an attack vector for
each vulnerability. An attack vector is an entity that describes which conditions and effects
are connected to the given vulnerability. We collect the fields in the attack vector as defined
by the NVD [22]:

• Access Vector (Local, Adjacent Network, Network)

• Access Complexity (Low, Medium, High)

• Authentication (None, Single, Multiple)

• Confidentiality Impact (None, Partial, Complete)

• Integrity Impact (None, Partial, Complete)

• Availability Impact (None, Partial, Complete)

Since Clair does not provide a command-line interface to analyze a Docker image, we
use Clairctl to analyze a complete Docker image.

Attack Graph Generator. After the topology is extracted and the vulnerabilities for each
container are generated, we proceed to attack graph generation. Here, we first preprocess
the vulnerabilities and convert them to sets of preconditions and postconditions. To achieve
this, we match the previously acquired attack vectors from the vulnerability database
and keywords of the descriptions of each vulnerability to generate attack rules. When a
subset of attack vector fields and description keywords matches a given rule, we use the
precondition or postcondition of that rule. An example precondition attack rule would
be for a vulnerability to have "gain root," "gain unrestricted, root shell access" or "obtain
root" in its description and the impacts from the NVD attack vector [22] to be "COMPLETE"
to obtain the OS(ADMIN) precondition [5]. If more than one rule matches, we take the
rule with the highest privilege level for preconditions and the lowest privilege level for
postconditions. If no rule matches, we take None as the precondition and ADMIN(OS) as
the postcondition. This results in a list of container vulnerabilities with their preconditions
and postconditions.

Breadth-first Search (BFS). After preprocessing, the vulnerabilities are parsed and their
preconditions and postconditions are extracted. Together with the topology, they are fed
into a BFS algorithm. BFS, a popular search algorithm, is utilized to traverse the topology
graph by looking at the neighbors of a given node before diving deeper into the graph.
The pseudocode for our modified BFS algorithm is shown in [94]; it requires a topology, a
dictionary of the exploitable vulnerabilities, and a list of nodes with privileged access as
input. The output comprises nodes and edges that form the attack graph. Informally, the
procedure to generate a graph as follows: First, the algorithm initializes the nodes, edges,

116

7.3 Approach

queue, and passed nodes. Then, it generates the attacker node as the node where the attack
begins. The attacker node is a combination of the image name ("outside") and the privilege
level (ADMIN). Then, in a loop, the algorithm iterates through each node, checks the given
node’s neighbors, and adds the edges if the conditions are satisfied. If a neighbor was not
passed, then it is added to the queue. The algorithm terminates when the queue is empty.

The used BFS algorithm is characterized by the following properties. 1.) Completeness:
BFS is complete, i.e., if there is a solution, BFS will find it regardless of the graph type.
2.) Termination: This follows from the monotonicity property. Monotonicity is ensured
if it is assumed that an attacker will never need to relinquish a state [100, 150, 8]. In this
implementation, each edge is traversed only once, which ensures that monotonicity is
preserved. 3.) Complexity: The algorithm’s complexity is O(|N | + |E|), where |N | is the
number of nodes and |E| is the number of edges in the attack graph.

7.3.2 Extracting Causal Models from Attack Graphs

The ultimate goal of this work is to automatically generate causal models. For this purpose,
we transform the resulting attack graphs to causal models. Attack graphs are already
directed acyclic graphs like causal networks. However, since the edges are typed with a
CVE, we need to consider this when creating the set of equations. We present a semi-formal
mapping that we implemented within our tool. Each node nh,p and each edge e in the
input attack graph is turned into an endogenous variable in the causal model; recall that n
is a combination of a host (h) and the privilege of the attacker (p). The graph leaves, i.e.,
nodes without any inbound edges are represented by an exogenous variable in addition to
their endogenous variable. Similar to the graph leaves, each edge e is represented with an
endogenous variable that is set by an exogenous variable; it represents exploiting a specific
CVE. Multiple instances of the same CVE are represented with the same variable. Now the
equation for each leaf node is a simple identity function, i.e., n = nexo; the same applies for
each edge. For non-leaf nodes, we need first to consider each inbound edge. The semantics
of each edge e connecting a source node nsh,p to destination node ndh,p is the propositional
clause (e ∧ nsh,p). That is, to get to the destination node, an attacker has to exploit a CVE
(represented by e) after she already gained access to the source node nsh,p. Generally, the
equation of a non-leaf node endogenous variable is the disjunction of all the edge clauses,

i.e., nh,p =
k∨

i=1
(ei ∧ n

sj
h,p), where node n has k inbound edges from adjacent nodes. Note

that a more expressive semantics is possible. For instance, the relations among privileges
on the same host (e.g., nhost2,admin and nhost2,user) can be expressed with entails relation.
However, the purpose of this chapter is to show that causal models can be automatically
generated from network topology; thus, we do not discuss the models’ expressiveness in
the forthcoming sections.

117

7 Automated Generation of Attack Graphs and Causal Models for Microservices

7.4 Evaluation

In contrast to previous experiments, where only the models were required, we need real-
world technical setups to evaluate our approach in this chapter. We demonstrate the
use-cases used in our evaluation in Section 7.4.1. Our experiments focus on assessing
the scalability and practicality of the generation process. In Section 7.4.2, we discuss
the scalability of the proposed system with different numbers of containers and varying
degrees of connectivity. Finally, in Section 7.4.3, we discuss the effectiveness of the models
for causality reasoning.

7.4.1 Experiment Setup

Name Description Technology Stack No. Con-
tainers

No. Vulnerabilities Source

Netflix OSS Combination of con-
tainers provided by
Netflix.

Spring Cloud, Net-
flix Ribbon, Spring
Cloud Netflix, Net-
flix’s Eureka

10 4111 https://github.
com/Oreste-Luci/
netflix-oss-example

Atsea Sample Shop App An example online
store application.

Spring Boot, React,
NGINX, PostgreSQL

4 120 https://github.
com/dockersamples/
atsea-sample-shop-app

JavaEE demo An application for
browsing movies
along with other
related functions.

Java EE application,
React, Tomcat EE

2 149 https://github.
com/dockersamples/
javaee-demo

PHPMailer and Samba An artificial example
created from two
separate containers.
We use an aug-
mented version for
the scalability tests.

PHPMailer(email
creation and trans-
fer class for PHP),
Samba(SMB/CIFS
networking proto-
col)

2 548 https://github.
com/opsxcq/
exploit-CVE-2016-10033
https://github.
com/opsxcq/
exploit-CVE-2017-7494

Table 7.1: Microservice Architecture Use-cases

Microservice architectures use different technologies, different numbers of containers,
various degrees of connectivity, and may contain different vulnerabilities. Therefore, it
is critically important to demonstrate that an attack graph generator works efficiently in
such scalable scenarios. Here, we tested the proposed system on real and own GitHub
examples as shown in Table 7.1. We collected publicly available examples to facilitate
potential future comparison characterized by different system properties (e.g., topologies,
technologies and vulnerabilities) and different usage domains. We also observed the fact
that an overwhelming majority of publicly-available examples are meant to teach the
technology, hence, are composed of a small number of containers. The resulting list of
examples contains NetflixOSS, Atsea Sample Shop App, JavaEE demo, and our own application
PHPMailer and Samba.

We ran the attack graph generator and manually verified the resulting attack graphs for
the small examples based on domain knowledge under the assumption that the output from
Clair, the NVD attack vectors [22], and the preconditions and postconditions from Aksu et

118

https://github.com/Oreste-Luci/netflix-oss-example
https://github.com/Oreste-Luci/netflix-oss-example
https://github.com/Oreste-Luci/netflix-oss-example
https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/atsea-sample-shop-app
https://github.com/dockersamples/javaee-demo
https://github.com/dockersamples/javaee-demo
https://github.com/dockersamples/javaee-demo
https://github.com/opsxcq/exploit-CVE-2016-10033
https://github.com/opsxcq/exploit-CVE-2016-10033
https://github.com/opsxcq/exploit-CVE-2016-10033
https://github.com/opsxcq/exploit-CVE-2017-7494
https://github.com/opsxcq/exploit-CVE-2017-7494
https://github.com/opsxcq/exploit-CVE-2017-7494

7.4 Evaluation

al. [5] are correct.12 After running the proposed attack graph generator, the attack graphs for
the Atsea Sample Shop App and JavaEE demo were small as expected, containing only a
few nodes and edges. The structure of the NetflixOSS13 attack graph demonstrated a nearly
linear structure in which each node was connected to a small number of other nodes to form
a chain of attacks. This linearity is due to the fact that each container is connected to only
a few other containers to reduce unnecessary communication and increase encapsulation.
Therefore, based on this degree of connectivity, an attacker needs to perform multiple
intermediate steps to reach the target container. Note that all examples terminated, there
were no directed edges from containers with higher privileges to lower privileges, and no
duplication of nodes. In addition, the run time of the proposed system with each example
was short (less than one second).

7.4.2 Scalability evaluation

Extensive studies of attack graph generators scalability are rare in the literature. Many
parameters contribute to the complexity of comprehensive analyses. Parameters that
typically vary in this sort of evaluation include the number of nodes, their connectivity
and the number of vulnerabilities per container. Even though the definitions of an attack
graph differ, we hope to achieve a comprehensive comparison with current methods. We
compared the proposed system to existing work in computer networks by assuming each
container as a host machine and any physical connection between two machines as a
connection between two containers. In the following, we examine three existing methods
and their scalability evaluation results, then we present our results.

Sheyner et al. [182] tested their system (NuSMV) using both small and extended examples.
In their approach, they use model checkers with a goal (property) of not compromising a
specific asset. Model checkers use computational logic to determine if a model is correct
in preserving the property; otherwise, it returns a counterexample. A collection of all the
counterexamples forms their attack graph. The attack graph in their larger example has 5948
nodes and 68364 edges. The time required for NuSMV to execute this configuration was
two hours. Ingols et al. [100] tested their system on a network of 250 hosts. They continued
the study on a simulated network with 50000 hosts in under four minutes. Although
their method yields better performance than NuSMV, their evaluation was based on a MP
graph, which differs from our target graph. Ou et al. [150] provided a study, wherein they
tested their system (MulVAL) using more examples. They state that the asymptotic CPU
time was between O(n2) and O(n3), where n is the number of nodes (hosts). With 1000
fully-connected nodes, their system required more than 1000 seconds to execute.

We used Samba [3] and Phpmailer [2] containers in our scalability experiments. We
extended this example and artificially created fully-connected topologies of 20, 50, 100, 500,

12The resulting graphs can be inspected at https://github.com/tum-i4/attack-graph-generator/
blob/master/System/examples/output_samples/; we omitted to add them for readability reasons.

13https://github.com/tum-i4/attack-graph-generator/blob/master/System/examples/
output_samples/netflix-oss-example/attack_graph.dot.pdf

119

https://github.com/tum-i4/attack-graph-generator/blob/master/System/examples/output_samples/
https://github.com/tum-i4/attack-graph-generator/blob/master/System/examples/output_samples/
https://github.com/tum-i4/attack-graph-generator/blob/master/System/examples/output_samples/netflix-oss-example/attack_graph.dot.pdf
https://github.com/tum-i4/attack-graph-generator/blob/master/System/examples/output_samples/netflix-oss-example/attack_graph.dot.pdf

7 Automated Generation of Attack Graphs and Causal Models for Microservices

and 1000 Samba containers to test the scalability of the proposed system. As reported by
Clair, the Phpmailer container has 181 vulnerabilities and the Samba container has 367
vulnerabilities. In our tests, we measured the total execution time and partial times for
topology parsing, vulnerability preprocessing, and graph generation. The topology parsing
time is the time required to generate the graph topology, the vulnerability preprocessing
time is the time required to convert vulnerabilities into sets of preconditions and postcon-
ditions, and the graph generation time is the time required for the algorithm to traverse
the topology and generate the attack graph after the previous steps are complete. The total
time does not include the Clair vulnerability analysis, because this evaluation is beyond the
scope of this analysis. All experiments were performed on an Intel(R) Core(TM) i5-7200U
CPU (2.50GHz) with 8 GB of RAM running Ubuntu 16.04.3 LTS, and were executed five
times for each example and their final time was averaged.

Table 7.2 shows the experimental results of the time needed for generating the graphs. In
each experiment, the number of Phpmailer containers was constant. In contrast, the number
of Samba containers increased in a fully-connected manner, where a node of each container
was connected to all other containers. In addition, there were also two additional artificial
containers, i.e., "outside," which represents the environment from where the attacker can
attack, and the "docker host," i.e., the Docker daemon where containers are hosted. Thus,
the total number of nodes in the topology graph is the sum of "outside," "docker host," the
number of Phpmailer containers, and the number of Samba containers. The number of
edges in the topology graph is a combination of one edge ("outside"-"Phpmailer"), n edges
("docker host" to all containers) and n*(n+1)/2 edges between the Phpmailer and Samba
containers. For example_20 has 23 containers, and 253 edges in this topology graph.

Statistics example_20 example_50 example_100 example_500 example_1000
No. of Phpmailer containers 1 1 1 1 1

No. of Samba containers 20 50 100 500 1000
No. of nodes in topology 23 53 103 503 1003
No. of edges in topology 253 1378 5253 126253 502503

No. nodes in attack graph 43 103 203 1003 2003
No. edges in attack graph 863 5153 20303 501503 2003003

Topology parsing time 0.03 0.06 0.1 0.7 2.4
Vulnerability preprocessing time 0.5 0.9 1.7 6.9 15.0

BFS time 0.3 1.6 6.6 165.4 767.5
Graph Generation time (total) 0.8 2.6 8.3 173.07 784.9

Table 7.2: Scalability Results with Graph Characteristics and Generation Time (s)

For smaller configurations, the longest step was the preprocessing step. However, this
time increased linearly because the container files are analyzed only once by Clair. Thus,
the impact of the preprocessing decreases as the size of the example increases because of
the increase in the Breadth First Search (BFS) time (graph generation). For example_500, we
note a sharp increase in execution time (165 seconds) compared to the previous example
(i.e., example_100), where the attack graph was generated in 6.5 seconds. In comparison,
the total time of the attack graph generation procedure for 1000 fully-connected hosts

120

7.4 Evaluation

(784 seconds) is better than the results of Ou et al. [150], i.e., 1000 seconds. In Sheyners’s
extended example (four hosts, eight atomic attacks and multiple vulnerabilities), the attack
graph took two hours to create. In contrast, even for a greater number of hosts (1000),
our proposed attack graph procedure demonstrates faster attack graph generation time.
However, the proposed system performs worse than the generator proposed by Ingols et
al., but that is attributed to the usage of the MP attack graph, which differs from our graph.

In summary, we found that the proposed algorithm generates attack graphs efficiently and
handles a system with 1000 containers in 13 minutes. Considering the strongly-connected
system employed in the experiment and the high number of vulnerabilities in this system,
we consider that the results demonstrate that the proposed system is a practical solution
that can be used as part of the continuous delivery processes of real-world systems.

7.4.3 Effectiveness of the Graphs

In this section, similar to the previous chapter, we evaluate the usefulness of the generated
models for causality analysis of attacks. By their nature, the generated models in this chapter
are technical (low-level) models useful to explain attacks on microservices. The explanation
aids investigators in understanding how the attack was carried out, potentially, with
additional knowledge attribute it to an insider or an outsider. We present two experiments,
one where we actually implemented the attack, and the causal model is small. The second
example is one of the huge generated graphs from Section 7.4.2.

To utilize one of the generated models, we set-up an environment to experiment with
the model from our earlier example (Section 7.3.1). The example corresponds to an open-
source repository (Netflix OSS GitHub repository); part of the resulting attack graph is
shown in Figure 7.2b. According to our conversion concept in Section 7.3.2, we gen-
erated a causal model that contained 8 endogenous variables {zuul_admin, zuul_user,
eureka_admin, cve_249, cve_117, cve_600, cve_124, cve_554}, and 6 exogenous variables is
{outexo, cve_249exo, cve_117exo, cve_600exo, cve_124exo, cve_554exo}. The equations (with-
out the identity functions) follow.

• zuul_admin = (outexo ∧ cve_117) ∨ (zuul_user ∧ cve_554)

• zuul_user = (outexo ∧ cve_249)

• eureka_admin = (zuul_admin ∧ cve_600) ∨ (zuul_user ∧ cve_124)

Assuming the system’s top-level asset is the eureka_admin node, we ran the example
with the specific versions of the services (contain the corresponding vulnerabilities). We
could only exploit two vulnerabilities based on the information available online, namely
CVE-2017-9117 and CVE-2017-7600. We enabled logging in the corresponding libraries
to ensure that we can see traces of these exploits. We performed the steps to exploit the
vulnerabilities as specified in their NVD entries.14

14e.g., https://www.cvedetails.com/cve/CVE-2017-9117/

121

https://www.cvedetails.com/cve/CVE-2017-9117/

7 Automated Generation of Attack Graphs and Causal Models for Microservices

Setting this experiment’s context was hard because the properties (exploits) are not easy
to detect. However, for the two mentioned vulnerabilities, we could find corresponding
logging entries that probably indicate their exploit. For CVE-2017-9117, seeing this sentence
was our indication 15870==ERROR: AddressSanitizer(bmp2tiff): overflow on address...; similarly,
for CVE-2017-7600, observing (file2strvec) outside the range of representable values of type
unsigned char in the log was our indication. For the other vulnerabilities, we also set similar
rules for context setting.

We performed the steps that aimed to get to an admin privilege on the eureka docker
container. After considerable effort with trials, we were able to exploit the vulnerabilities.15

We collected the following context {outexo = true, cve_249exo = false, cve_117exo = true,
cve_600exo = true, cve_124exo = false, cve_554exo = false}.

The goal of this experiment is to explain how an attacker acquired admin rights on a criti-
cal machine. In other words, from the perspective of our model, we want to know which vul-
nerabilities were the cause of eureka_admin = true?16 We used the semi-inference approach
with this query with ~X= {cve_117, cve_600}. The answer was a minimal actual cause ~X=
{cve_117}, and a contingency set ~W= {cve_554 = false, cve_124 = false, cve_600 = true}.

The benefits brought by this analysis are 1- the ability to detect the attack. We were not
logging information on the eureka docker image to determine that an attacker acquired
rights there. This differs from, e.g., bottle shattering in the rock-throwing example. In
principle, this may seem like a contradiction with AC1; it is not; under the context above,
our model evaluates to eureka_admin = true. 2- We were able to attribute the attack to
an exploit, which may be attributed to a human (responsible developer) or not. 3: Using
a similar approach, a system admin can always assume fictional contexts and assess their
systems’ security. This is extremely useful because those models are generated as part of
continuous integration systems, leveraging new knowledge experts are gathering online.

Additionally, we used larger instances of the attack graphs to perform causality analysis.
Due to the difficulty in setting up the respective infrastructure and actually perform the
attack, we simulated attack scenarios. We used the example from the scalability experiments
(Section 7.4.2). We created attack graphs for the two largest architectures from above. The
smaller one contained around 1000 nodes and 500000 edges in the attack graph; the larger
example had 2000 nodes and about two million edges. According to our design (see
Section 7.4.2), the attack graph is strongly connected. Hence, the resulting equations of
the endogenous variables comprise many clauses (edges in the graph). As such, the larger
model was problematic when constructing the formulae within our algorithms. This is due
to the memory consumption when converting the formulae into their conjunctive normal
form (CNF). We fixed that during the creation of the model by converting each variable’s
function into its CNF, which makes it easier when solving the SAT formula.17

15We anticipate that for practitioners this step should not be that difficult.
16We were interested in exploits as causes because they entail malicious human acts. That said, it is possible

that in other contexts, investigators are interested in which machines caused the attack or a combination of
machines and vulnerabilities.

17The test cases in the referenced class reproduce the experiment: https://git.io/JTStq

122

https://git.io/JTStq

7.5 Summary

Since we are interested in finding out which vulnerabilities cause the attack, we used
semi-inference algorithms. We constructed several queries of fictional scenarios presented
by different contexts. For instance, is ~X= {cve_086, cve_462, cve_166, cve_522} a cause of
sambaA400? (Admin rights on samba container number 400) Given a context where all of
them were exploited. Similar to the previous query, we changed the cause, the effect, and
the context to analyze several scenarios. The queries were all answered for both models.
The answers always found a minimal cause (minimal set of exploited vulnerabilities) that
caused the compromise, i.e., acquiring admin rights on a specific container. The contingency
set returned for all the queries contained many vulnerabilities that were not exploited and
should be fixed to prove the cause.

Each query on the smaller model took around 3 minutes to answer. Simpler versions (less
connectivity) of the model required less time; the CNF conversion within the algorithm
took most of the answering time. On the other hand, queries on the larger model (with 2M
edges) required up to 37 minutes to answer (most of the time for the CNF conversion with
memory swaps). We consider the models in this experiment to be examples of real-world
approaches to create huge and complex causal models. Although the experiments created
models with millions of edges, our reasoning technology provided answers to those within
minutes.

7.5 Summary

Causal models are an essential element in the process of enabling causal reasoning in
modern systems. Thus, constructing causal models remain a general requirement that can
only be tackled in specific domains. In this chapter, we presented an example of how to
fulfill this requirement. Specifically, we proposed an automated attack graph generation
approach for microservice-based architectures, which serves as a causal knowledge source
for accountability. Since their manual construction is an error-prone, resource-consuming
activity, automating their generation provides a basis for a continuous construction of
effective causal models. The construction of these models can then utilize the reasoning
engines contributed earlier in this thesis.

123

8 Model-driven Contextualization for
Microservices

In addition to causal modeling and reasoning, contextualization is the third
general concept in this thesis. It refers to the task of monitoring and logging
the events related to an accountability incident. Contextualization, however,
is a domain- or even application-specific concept. In this chapter, we keep our
focus on microservice-based systems, and we provide one example to show how
contextualization can be tackled in practice to support our reasoning approaches.
Specifically, we address monitoring and logging granularity by leveraging threat
models that we discussed in the previous chapters. We provide a dynamic
and centralized automated solution that reduces the log sizes to the necessary
information for causality reasoning.

8.1 Introduction

In the introduction to this thesis, we stated that accountable systems require evidence
to answer causal questions. The evidence is used to set the context for a causal query.
In Chapter 3 - Chapter 5, we always assumed a given context; in Chapter 6 - Chapter 7,
we showed specific logs statements to indicate the context. In this chapter, we focus on
context-setting or contextualization (as shown in Figure 8.1), which, in systems, refers to
monitoring and logging activities during the run-time of a system. While this is a generic
requirement for our purpose, automated technical solutions are only relevant in specific
contexts like the one we show in this chapter.

Monitoring security-related events is an integral part of the management of security
incidents. The term forensic readiness is of importance in this field. Forensic readiness is
a pre-incident approach aiming to maximize the environment’s ability to collect credible
digital evidence while minimizing the cost of forensics in an incident response [189]. Be-
cause microservices architecture, and its automation, produces very dynamic and complex
environments, their readiness is crucial. As we saw in Chapter 6 and Chapter 7, the security
of microservices is mainly complicated by third-party tools used in operations, and the
need for sufficient privileges by insiders [50] [44].

Third-party tools are mainly used to automate the development and deployment cycle
of modern systems. Many of them are vulnerable; researchers showed that in the Docker

125

8 Model-driven Contextualization for Microservices

Causal Modeling Context Setting Causal Reasoning

Figure 8.1: An Abstract Architecture of the Solution focusing on Contextualization.

Hub, the standard repository registry for docker images, 40% of the images have severe
vulnerabilities, and more than 30% of the official repositories contain vulnerable images [70].
Further, as part of DevOps practices, developers are also responsible for deploying and
maintaining their code [68]. Thus, systems are more vulnerable to malicious insiders who
can take advantage of their advanced rights (e.g., access to a privileged container), or even
without them, to exploit the system vulnerabilities.

Although there are many monitoring tools available, they are quite different. They are
built for various purposes and configured in different ways. For example, the Linux Audit
monitoring tool,1 which is used to monitor file changes and system calls, is configured using
configuration files. In contrast, the MariaDB Audit monitoring tool2 is configured using
structured Query Language (SQL) statements. Further, the granularity and requirements
for logging are, in most cases, not clear; with such dynamic environments, logging and
monitoring may become expensive. Without a systematic way of defining the logging
granularity, log files can become very large, then more resources are required to analyze
the log entries for monitoring. On the other hand, reducing the logging level may result in
losing our ability to set the context due to incomplete logs, for instance.

Given models of insiders (as proposed in Chapter 6), or vulnerabilities (as proposed in
Chapter 7), in this chapter, we derive monitoring rules in a specific domain, i.e., microservice-
based systems, from the models. The benefits of this approach are three-fold. First, it
increases the level of forensic readiness, which decreases the response time and the cost of
forensics in case of an incident. Second, it proposes a way to address the question of logging
granularity in a specific domain. Third, following the modern development practices, it
automates the process of identifying, configuring, and deploying monitored properties.
To the best of our knowledge, we are the first to suggest a methodology to determine the
monitoring and logging granularity in microservices based on threat models. We evaluate
the idea using a known open-source ecosystem.

1https://linux.die.net/man/8/auditd
2https://mariadb.com/kb/en/library/mariadb-audit-plugin/

126

https://linux.die.net/man/8/auditd
https://mariadb.com/kb/en/library/mariadb-audit-plugin/

8.2 The Approach

8.2 The Approach

The goal of our approach is to reduce the logging activities to the minimum that can ensure
forensic readiness in case a security incident occurs. For that, we propose to annotate
the nodes in our gathered models with monitoring configurations (Section 8.2.1) and
automatically deploy these configurations (Section 8.2.2, and Section 8.2.3). Different threat
models are introduced in the literature varying in levels of formalism, semantics, syntax,
components, and purposes [112]. In addition to attack trees and attack graphs, we surveyed
the most known models in the literature to choose one that facilitates adding configuration
data to the nodes.

The model that turned out to be relevant for our purpose is the attack-countermeasure tree.
In 2010, Roy et al. proposed Attack Countermeasure Trees (ACT), to address several limitations
raised by previous approaches towards applying defense mechanisms on classical Attack
trees (AT) [173, 174].3 In the ACT, a node represents an attack event, which can be countered
by one or more detection and/or mitigation events (nodes). A pair of detection and
mitigation (or only detection) against an attack constitutes a countermeasure. The formal
foundation of ACTs facilitates our approach of leveraging and transforming different
sources of causal models to enable accountability. Within this formalism, countermeasures
distinguish detection and mitigation events instead of defense actions. We will restrict two
aspects of ACTs. According to our contextualization strategy, we consider the leaves of the
models to be the exogenous variables, i.e., the most essential actions to monitor and set. As
such, the countermeasure nodes are only added to leaf nodes. Second, a countermeasure, in
our notion, is a detection mechanism expressed as a monitoring configuration only. Thus,
we do not use the mitigation nodes in our trees. We refer to this restricted version of ACTs
as Attack-monitoring Trees AMT.

8.2.1 Monitoring Configuration

A plethora of tools are used in modern systems, each with its own ability to monitor
and log events. The tools use different ways to configure their monitoring activities such
as properties files, SQL queries, command lines, scripts, or API calls. The configuration
typically refers to a set of rules. Each rule specifies what exactly to be monitored, e.g., read
operation of customers.pdf, the location of storing the corresponding log statement, and other
properties such as the format of the statement. To handle this diversity, we designed a
configuration engine, which is responsible for generating valid monitoring rules as well as
providing instructions on how to publish these configurations on a target (docker) container.
To accomplish these goals, the engine keeps track of the available monitoring tools in a
system, and how to form valid monitoring rules for each. For example, in any system, the
engine would be aware of the Linux Audit monitoring tool parameters (key-value pairs)

3According to Roy et al. [173], previous approaches such as defense-trees (DT) [20] had limitations to the
locations of defense nodes, and Attack-response Trees (ART) [207] suffered from state-space explosion issues

127

8 Model-driven Contextualization for Microservices

and the respective validation rules, which are necessary to form a valid file watch or system
call monitoring rule.

Since we aim to centralize the generation of valid monitoring and logging rules, each tool
has to provide its language specification to the engine. Thus, the configuration engine uses
a plugin architecture. All of the plugins follow a clearly defined interface and implement
the complete language specification and configuration logic for a specific monitoring tool.
By default, the engine supports the Linux Audit monitoring tool to enable the generation
of monitoring configuration for file changes, and system calls, as well as, a database
monitoring tool (MariaDB Audit). The engine, then, acts like a plugin manager, which,
upon request, delegates the responsibility to the respective monitoring tool plugin.

8.2.2 Monitoring Orchestrator

As mentioned in Chapter 7, microservice-based systems ship, deploy and scale their differ-
ent components as (docker) containers. The containers are orchestrated using container-
management software such as the Docker Swarm platform4, or Kubernetes. A swarm
consists of a cluster of hosts with their docker engines setup in swarm mode. To deploy
an image on a swarm, we create a docker service that defines the number of containers
(i.e., replicas), which shall be spawned in the cluster for the given image. To securely apply
configurations on docker containers, swarm uses docker secrets, blobs of sensitive data,
which are securely stored in the Docker swarm database. To comply with the standard
tools, we build a monitoring orchestrator on top of swarm. The monitoring orchestrator
is responsible for orchestrating the monitoring and logging configuration on a cluster of
docker services. In other words, the orchestrator deploys valid monitoring rules on the
running dockers securely.

To achieve this goal, the orchestrator keeps track of the list of docker containers and their
monitoring abilities. When instructed to deploy valid rules for a specific tool in a particular
container, the orchestrator verifies service-to-tool compatibility and securely applies the
monitoring configuration.

8.2.3 The overall Architecture

Having introduced the conceptual aspects related to AMT, and the technical aspects of
monitoring configuration and orchestration, we present the architecture of our solution. Let
us iterate the main functions of the solution. The first function is to manage the creation,
update, and storage of attack monitoring trees. The second function is to enable the process of
generating and validating the configuration of monitoring rules for different tools. The third
function is to orchestrate the deployment of monitoring configuration into running services.
The fourth function is to manage the whole life-cycle of collecting, securing, and storing the
generated log statements to use in causality analysis operations (Chapter 3-Chapter 5).

4https://docs.docker.com/engine/swarm/

128

https://docs.docker.com/engine/swarm/

8.2 The Approach

To that end, we built a model-driven system aiming to orchestrate the monitoring con-
figuration of containerized microservices running on a cluster of hosts. The system, itself,
is composed of containerized microservices communicating over the network. Figure 8.2
shows a high-level overview of the architecture, which contains model manager, the configu-
ration engine, the monitoring orchestrator, and the log manager. These components realize the
functions that we enumerated earlier in this section. In the following, we explain the steps
of orchestrating monitoring rules.

Figure 8.2: System Architecture; graphic source [118]

The model manager provides a workbench for the user to create AMTs, and form valid
monitoring rules for each. This is achieved by (1) fetching the monitoring rules’ specification
(i.e., the language definition) from the configuration engine and (2) the available monitoring
tools from the monitoring orchestrator. When the user defines a monitoring rule, the model
manager (3) forwards them to the monitoring orchestrator. The orchestrator then (4) requests
the monitoring and (5) logging configuration from the configuration engine, and (6) applies
them on the System Under monitoring and (7) the log manager respectively. The applied
monitoring configuration on the System Under Test (8) generates log events based on the
user-defined monitoring rules, and the log events are collected by the log manager.

129

8 Model-driven Contextualization for Microservices

8.3 Evaluation

We evaluated the solution using a known open-source microservices ecosystem: the Pet-
Clinic Project,5 which is used in microservices’ research [133, 192, 191]. It is a reference
implementation of microservices architecture, aiming to demonstrate the common abilities
of Spring. The system is composed of eight microservices and a database implementing a
clinic for pets with the following functionality.

1. Register, view, and update the information of veterinarians, pets, and pet owners

2. View, and add information of a pet’s visitation history

We conducted a threat analysis step to identify the valuable assets and the ways a
malicious insider could compromise them. The assets are the credit card information of
our PetClinic customers, the medical history of the pets, and the clinic’s employee data.
Accordingly, we built the following four respective AMT models in the model manager 1)
Steal Customers Credit Card 2) Modify Pets Medical Record 3) Delete Veterinarians data
4) Compromise System’s Availability. Finally, we executed the attack steps which were
necessary to compromise the respective asset according to the AMTs. In the following, we
only focus on the first attack scenario; Figure 8.3 shows an excerpt of it. Similar to our
example in Chapter 6, a malicious insider can steal the customers’ credit card either by
reading the data from the database or by accessing the application logs of the customer
microservice. To read the data from the database, the attacker can either execute a remote
database query to select the credit card information residing on the owners table or via the
container of the database. In the latter case, the attacker searches for the container id, use
it to enter the container, and finally read the necessary information by connecting to the
database and executing the respective ’select’ statement. This evaluation focuses on the
contextualization part, the causal analysis of this case-study is similar to Section 6.4.3.

For such attacks, we are interested in evaluating the effectiveness and efficiency of
model-driven monitoring for forensics. Effectiveness, essentially means that the monitoring
system can log all monitored steps based. That is, if the system contains a model of an attack
scenario, and this attack is performed according to the model’s steps, then our monitoring
system collected logs for it. A system would be 100% effective if at least one evidence is
generated for each attack action. Of course, we are assuming a secure setup of the system.
The efficiency, on the other hand, entails that the system is logging the required steps only,
i.e., what is necessary for setting the context.

8.3.1 Effectiveness

For our example attack, we configured the leaf nodes with monitoring rules. The first rule
concerned the attacker’s ability to list the running containers. We used the model manager
with the Linux Audit plugin to define a rule that monitors the actions of listing docker

5https://projects.spring.io/spring-petclinic/

130

https://projects.spring.io/spring-petclinic/

8.3 Evaluation

Figure 8.3: Steal customers’ Credit Cards Tree; graphic source [118]

containers; Figure 8.4 shows the rule. Technically, to monitor actions of root and non-root
users trying to list docker containers, we monitor the EXECVE6 system calls (upon system
call exit) of the docker executable (i.e., /usr/bin/docker) with the command line arguments
’container ls’. If we aspire to exclude root users from monitoring, we can add a filter, euid
!= 0. The generated log statements are annotated with ’find_container’ tag.

Figure 8.4: An example of Linux Audit Rule; graphic source [118]

Similarly, we used MariaDB Audit monitoring plugin to configure rules for the database.
Specifically, the rule monitors queries reading the owners table issued from within the

6https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
security_guide/sec-audit_record_types

131

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-audit_record_types
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-audit_record_types

8 Model-driven Contextualization for Microservices

container. After applying the monitoring rules, we attacked as modeled. In the beginning,
the attacker is listing the docker containers and uses a pipe to filter the database container.
On the next step, she uses the container id and enters the container. Then she executes
a command to use the ’petclinic’ database and finally executes an SQL select statement
on the owners table to read the credit card information accompanied by the first name
and last name of our customer (i.e., the cardholder). When inspecting the log, we verified
the existence of the evidence generated for the attack actions. Each step triggered one
monitoring rule, and for each rule, exactly one piece of evidence is displayed. As we have
at least one audit entry for each of the attack actions, by our definition, the effectiveness
is 100%. This is the expected result considering our assumption that the model contains
all the possible attack steps. As we saw in Chapter 7, these models can be continuously
generated and updated. Also, this result shows the success of our approach in automating
the mentoring using threat models as an input.

8.3.2 Efficiency

In this experiment, we assess the efficiency of our solution in comparison with a "monitor-
everything" approach. Our notion of efficiency concerns the number of log entries that are
sufficient to set the context of a causal query regarding a known attack according to our
reasoning solutions. We conducted experiments in two settings. The first corresponds to
our effectiveness experiments, in which we assume optimal usage of our approach; the
second setting assumes a regular operation of the system that is configured to monitor and
log all the events in the system. Both methods will capture the attacks; however, we aspire
to show the impact of using a systematic methodology to advocate the logging granularity.
We can configure the second system to log nothing, but this leads to incomplete logs.

As discussed, we defined two Linux Audit monitoring rules for our first setting: One
to audit the listing of docker containers and one to audit the action of entering a docker
container. For each rule, the Linux Audit generated 6 log entries instead of 1 that we desire.
However, from the Linux Audit perspective, those 6 entries are part of one event. As part
of our solution, We aggregate all such entries into one actual evidence. Similarly, using
the MariaDB monitoring tool, we defined monitoring rules to monitor connections to the
database from within the container and execution of ’select’ statement on the owners table.
We have one log entry for the connect action and 5 log entries for the query action. We
aggregate those entries using logging configuration, which collects only the events that
match the user-defined monitoring rules. Using model-driven monitoring, we fix the set
of interesting events to log; then, using logging rules, we instruct our system to aggregate
those events to reduce their verbosity.

In the second setting, we are monitoring everything. For that, we configured the Linux
Audit to audit all system calls and file changes as well as MariaDB to audit all possible
operations, issued by any user, on the database. Then we conducted the same experiment
to steal the customer credit card. We made sure not to carry out any other operations. We
have no guarantee that the generated log is only related to the events of the attack.

132

8.4 Summary

Approach LINUX AUDIT MARIADB AUDIT TOTAL
Monitor Everything 21910 445 22355
Model-driven Approach 12 6 18

Table 8.1: Numbers of Log Entries using the Two Settings

In Table 8.1, we see the number of log entries of Linux Audit and MariaDB Audit for the
system, which monitors all actions (second row), while in the last row we see the respective
numbers when our monitoring solution is used. In the first setting, the Linux log contained
12 entries while the MariaDB log contained 6 entries. This is a significant reduction in
comparison to the 21910 Linux entries, and 445 DB entries when monitoring everything.

In summary, it is effective to leverage our causal models (attack trees or attack graphs)
to advocate monitoring a system automatically. Then, the resulting logs are sufficient to
contextualize the causal queries (e.g., Section 6.4.3 and Section 7.4.3). We can also achieve
this by monitoring everything in the system, but this is more expensive than our solution,
as we saw in this section. That said, when monitoring everything, we can catch unknown
attacks, but this comes with a trade-off with the cost of the forensic investigation. Unknown
attacks are a challenge for the presented solution. However, as we have in this chapter and
Chapter 6, we are mainly concerned with insiders’ attacks. With such attacks, we usually
know their patterns but cannot deploy preventive countermeasures. Further, we think
security modeling and monitoring are learning processes; the more we know our systems,
the better policies we can establish and continuously improve our models. Within such a
continuous learning process, our model-driven monitoring system can also be combined
with other approaches. The right candidate for that would be our work in Chapter 7 i.e., a
method to generate models, and another to deploy monitoring rules based on new models.

8.4 Summary

Logging and monitoring are crucial to contextualize causality reasoning engines (con-
tributed in Chapter 3-Chapter 5) in modern system. Such concepts differ among domains,
technologies, and applications. Thus, we focus on the domain of microservices to present
an automated solution to tackle contextualization challenges. Microservice-based systems
are utilizing very dynamic and complex environments. Among other threats, malicious
insiders can take advantage of their advanced rights to exploit such systems’ vulnerabilities.
We treat the issue of logging granularity in the presence of many diverse monitoring tools.
To that end, we presented an approach to determine the logging granularity automatically,
driven by models of incidents. With this approach, we could orchestrate the monitoring of
containerized microservices using a monitoring system that extends the latest ecosystems
in the domain. Given a complete model, our monitoring system was effective in contextu-
alizing models of known attacks. It also demonstrated a significant reduction in logging
resources than typical monitoring approaches.

133

Part IV

A Framework for Accountable
Systems

135

9 A Framework for Operationalizing Actual
Causality

This chapter presents a unifying framework for operationalizing actual causality.
Parts of this chapter have previously appeared in publication [96], co-authored
by the author of this thesis.1 The rapid deployment of digital systems into all
aspects of daily life requires embedding social constructs into the digital world.
Because of the complexity of these systems, there is a need for technical support to
understand their actions. Social concepts, such as explainability, accountability,
and responsibility, rely on a notion of actual causality. Encapsulated in the
Halpern and Pearl’s (HP) definition, actual causality conveniently integrates
into the socio-technical world if operationalized in concrete applications. To the
best of our knowledge, theories of actual causality such as the HP definition are
either applied in correspondence with domain-specific concepts (e.g., a lineage of
a database query) or demonstrated using straightforward philosophical examples.
On the other hand, there is a lack of explicit automated actual causality theories
and operationalizations to help understanding the actions of systems. Therefore,
this chapter integrates the different contributions of this thesis into a unifying
framework to address the problem of operationalizing actual causality for different
domains and purposes. We apply this framework in such areas as aircraft
accidents, unmanned aerial vehicles, and artificial intelligence (AI) systems for
purposes of forensic investigation, fault diagnosis, and explainable AI. We show
that with minimal effort, using our general-purpose interactive platform, actual
causality reasoning can be integrated into these domains.

9.1 Introduction

We consider enabling accountability in modern digital systems to be indispensable. Thus,
developing systems’ (forensic) capabilities in identifying causal factors (possibly misbehav-
ing parties) responsible for violations is the pillar of our work. We invested the second part

1Parts of this chapter are reprinted from Frontiers in Artificial Intelligence and Applications, 325, Ibrahim
et al., Actual Causality Canvas: A General Framework for Explanation-Based Socio-Technical Constructs,
2978 - 2985, (2020), with permission from IOS Press. The publication is available at IOS Press through
http://dx.doi.org/10.3233/FAIA200472

137

9 A Framework for Operationalizing Actual Causality

of the thesis to build general causal reasoning approaches. Then, we focused on the other
requirements of causality that can be only solved domain specifically; we showed examples
in the context of the insider threat within microservice-based information systems in Chap-
ter 6, Chapter 7, and Chapter 8. Accountability is also necessary for cyber-physical systems
such as drones or airplanes [95, 120, 104, 167]. A related notion to accountability is the
explainability in systems with AI components (e.g., machine learning applications). Since
such systems are tasked with making daily decisions or predictions for humans, interest
in explaining their results is growing [141, 143]. Similar to accountability, explainability is
inherently causal. For all such applications, this chapter generalizes the ideas presented
throughout this thesis to expand on how to operationalize actual causality.

Actual causality is well formalized by Halpern and Pearl’s (HP) definition of actual
causality [74], efficiently checked using the approaches in Chapter 3 - Chapter 5, practi-
cally supported by technical domain-specific models and tools as we saw in Chapter 6 -
Chapter 8, and thus suitable for the socio-technical world. However, to the best of our
knowledge, explicit actual causality theories and operationalizations have not been utilized,
in an automated fashion, to enable socio-technical purposes such as accountability and
explanation. Although HP describes a cause in a way that matches human thinking, it
was either applied in relation to domain-specific technical artifacts (e.g., a lineage of a
query [134], counter-example of a model checker [123]) or demonstrated using simple
philosophical examples [79]. In this chapter, we aim to answer the question How can actual
causality theories be operationalized for different domains? This would entail establishing a
general framework and automating the parts that can be automated. Actual causality
reasoning, while used across different disciplines, currently lacks a clear methodology and
especially tools to build, transfer, and reason over causal models. To this end, based on
the concepts presented earlier in this thesis, we propose a unifying methodology to enable
automated causality reasoning and demonstrate its utilization for forensic investigation,
fault diagnosis, and explainable AI (xAI).

We argue that a semi-automated framework of actual causality serves as a starting point
to achieve the goal of enabling complex interdisciplinary concepts such as accountability.
A unifying framework diminishes the barrier to embedding causality reasoning in new
domains because it allows reuse. As we shall see in this chapter, the framework consists of
tasks that interweave social and technical boundaries. Some of these tasks reuse domain-
specific methodologies and knowledge sources. Also, the framework automates solely
technical tasks (e.g., reasoning) so that can be reused among different domains. Consequently,
attention shifts to how such technical tasks serve goals such as enabling accountability. To
this end, this chapter contributes the following a) a generalized unifying framework to
operationalize causal reasoning; b) a general-purpose, open-source, interactive platform
called the Actual Causality Canvas (short: Canvas), 2 which aggregates all the tools contributed
in this thesis; and c) three new use-cases that instantiate the framework in different domains.

2https://github.com/tum-i22/causal-canvas

138

https://github.com/tum-i22/causal-canvas

9.2 A Framework of Actual Causality

Causal Modeling Context Setting Causal Reasoning

1

2

3

4

5

Figure 9.1: A Process View of the Framework

9.2 A Framework of Actual Causality

In this section, we consider the methodological aspects of the theory of actual causality.
Later, we see how Canvas automates each aspect. Throughout the chapters of this thesis, we
identified the three main decoupled activities of actual causality—modeling, contextualization,
and reasoning. Figure 9.1 shows a process perspective of these components. The solid arrows
(1 and 2) are inherited from the theory itself, i.e., we need a model and a context to reason
about a cause. However, we also argue that interconnecting these components (dashed
arrows 3, 4, and 5) may address some of their challenges. In the following, we focus on the
key tasks and questions of each phase; this also serves as a requirement elicitation step for
Canvas.

9.2.1 Causal Modeling

Causal modeling makes our understanding of causal factors explicit. Most probably, as
with any modeling process, the resulting model is incomplete, hence, “there is no right
model [75].” Halpern and Pearl themselves have shown several times the difficulties
of coming up with a proper model and its considerable influence on the result of cause
evaluation [81]. However, a causal model is nothing but the modeler’s assumption of how
factors relate and influence each other, thus necessitating the ability to incrementally edit
the models. Causal modeling platforms and processes must allow for the potential change
in them. As such, we designed Canvas as an interactive learning system where modelers
refine their causal model (according to Definition 2.2), hence dashed arrow 3 in Figure 9.1.

Since causal models are flexible (from the rock-throwing example [126] to the model
checkers’ results [123]) and intuitive, many approaches exist for model discovery. Model
discovery refers to the act of creating causal models from some source of knowledge. For
type causality in domains other than we consider, Pearl examines this topic in [157]. Un-
derstandably, model discovery by transformation is domain-specific and purpose-specific.

139

9 A Framework for Operationalizing Actual Causality

In a specific area, we need to identify existing models matching the properties of a causal
one. For this thesis, such models have to be acyclic, causal, and either binary or numeric.
Further, the purpose of the models must be mapped to actual causality reasoning. For
instance, the domain of system security has about 30 different graphical threat models [112],
many of which already express (type) cause-effect relations but are not directly adequate
for actual causality reasoning (e.g., against insiders) as we showed in Chapter 6. A formal
model-transformation function can be plugged into the process to create the causal model
from other sources, considering the differences. Among the best-known threat models are
attack trees, which we used as sources in Chapter 6, and attack graphs which we generated
in Chapter 7. Usually, attack trees are constructed by security experts to assess the risk
on a system. The ability to automatically generate attack graphs from other sources even
eliminates the manual process. For accountability purposes, we can re-use and combine
such knowledge to reason about attacks that have already occurred. The same applies, for
instance, to hazard models such as fault trees and their automated generation [205]. In
Section 9.4, we see additional sources of causal models facilitated by how Canvas supports
their transformation.

Regardless of whether the model is created manually, transformed from other sources,
or automatically generated, we emphasize that it should be augmented with preemption
relations. As we have seen in Chapter 2 and Section 6.3.3, preemption should be expressed
in the model when possible (the connection between Suzy’s and Billy’s hits); especially in
symmetrical models such as the ones transformed from attack trees (Chapter 6) or fault
trees [95, 205]. This reflects a discrepancy among coinciding disjunctive events in confusing
situations. We think that preemption relations can stem from different requirements or
facts, hence hard to model. They can reflect dynamic temporal order of events as was the
case in the rock-throwing example; they can be functional; for instance, a command by
a drone remote-controller takes priority over an auto-pilot command; they can also be
contractual; for example, a sensor manufacturer is obliged to notify a drone admin about a
patched software library. These relations are crucial to conclude a cause in certain situations.
However, we think that they have not been sufficiently highlighted in the literature. Hence,
they are explicitly noted as part of our approach.

As part of this thesis, we contributed the following open-source tools in the domain of
causal modeling.

• ATCM: a command-line tool that transforms attack or fault trees to causal models
according to the approach in Chapter 6.

• Attack Graph Generator: a command-line tool that generates attack graphs for con-
tainerized microservices, and transforms them to causal models according to the
approach in Chapter 7.

To conclude, the questions to be answered as part of this task in a particular domain are
the following: Q1: Which transferable sources (models or data) of causal knowledge exist? Q2:

140

9.2 A Framework of Actual Causality

What is the formal mapping between the source and destination syntax and semantics? Q3: How
can preemption relations be identified and expressed?

9.2.2 Contextualization

Context setting is the act of describing an event’s circumstances as an assignment of values
to exogenous variables. For example, based on the black-box recordings of aircraft that
collided near Ueberlingen [185], the investigators knew that the ground air traffic controller
(ATC) had alerted the first aircraft’s crew of traffic but on a wrong direction. In the accident’s
causal model, such information would set the value of a variable such as Air traffic control
correctly alerts the crew to false. In a digital forensic investigation of cyber-attacks (similar to
the one presented in Chapter 6), experts try to retrieve trustworthy log files from different
systems to set the context. The logged events aid in understanding the occurrences. For
example, a log statement like .."MACHINE-ID" : "8a7","CMDLINE" : "gdb –nx –batch -ex
attach.." is interpreted as an admin with a specific ID has attached a debugger to a running
process; this sets the model variable admin attached a debugger to true. These examples are
meant to show that context setting varies among domains; however, there are established
methods to help in this task. With diverse sources, from recordings, and eyewitness reports
to systems’ logs, we see two primary methodological patterns to context setting.

The first pattern is considered in scenarios where a line of “trust” exists between an
agent, such as a system-admin, and a system like a company, or a citizen and traffic
police. In such situations, we have an intuition about typical misbehavior; for example, an
admin leaks sensitive data, or a driver goes over the speed limit. Our knowledge of such
behavior can be presented as causal models that guide our monitoring effort (hence dashed
arrow 5 in Figure 9.1). We presented a domain-specific technical example of this approach
(have a model, monitor it) in Chapter 8, where we used attack trees to guide our logging
requirements in microservices. Such methods address the principal challenge of logging
and auditing capabilities, i.e., the granularity of logging or monitoring. It is expensive to
log everything, and if we log less, logs can be incomplete. Further, in a specific context such
as insiders, these approaches can be deterrent.

Things are not that simple, however. It is not safe to assume that we always have an
intuition about the typical structures of unwanted behavior (“unknown unknowns”). In the
second pattern, domain-specific systematic processes normally start by analyzing sources
of truth and narrowing the events. Then, they structure the information so that it can be
transformed into a causal model that embeds the context, hence arrow 4 in Figure 9.1. An
example of this method, in the domain of accidents’ investigation, is the why-because-
analysis (WBA), which is introduced in Section 9.4.2 [119, 120]. This pattern does not
address the granularity of monitoring since it only deals with after-the-fact sources. In
addition, it faces the inherent problem of possibly ending-up with incomplete logs which is
tackled in HP with the concept of probabilistic contexts [75].

The two patterns are not mutually exclusive; we can leverage both for the same system.
For example, known typical malicious insider (security) attacks are modeled and monitored,

141

9 A Framework for Operationalizing Actual Causality

while unknown external attacks are investigated and modeled. As we will see in the case of
xAI, context setting can be neither and is as simple as field assignment.

Regardless of the pattern, Canvas enables contextualization in a general way (Section 9.3).
Other systems can read available causal models and set their contexts directly through the
file system or an interface call. As such, a wrapper component is built into these systems
to relate values to variables. One example of how to achieve this is our contribution to
microservice-based systems (Chapter 8).

9.2.3 Causal Reasoning

Recall that reasoning includes both checking and inference. Causal checking involves
verifying if a hypothesized cause is an actual cause of an effect. Inference, on the other
hand, means finding a cause with no hypothesis. Both notions must be available as part of
actual causality operations. Checking is already beyond NP [6], and intuitively, inference is
at least as hard. The complexity results have limited the application of the actual causality
theory; however, because of our approaches in Chapter 3-Chapter 5, efficient methods to
check and infer causality are available for different types of models.

In the domains we consider, causal reasoning is mainly motivated by a goal of liability
attribution [89], future prevention [178], or explanation [141]. Regardless of the target,
causal reasoning answers a causal query, which consists of a context, a hypothesized cause
(in the case of checking), and an effect. Since causal reasoning is automated in Canvas, the
crucial question is What is the query for each goal?

For liability attribution purposes, we are interested in hypothesized causes that include
humans. For example, is admin “Bob” the cause of stealing the document? For such purposes,
we focus on the responsibility (Chapter 2) of the cause in the case of multiple causes.
Additionally, we tend to consider negligence or failure to do an expected job as a potential
cause in such situations. For example, is the Air Traffic Controller’s failure to use a cell phone
the cause of the collision?

Future prevention requires identifying all sufficient causes regardless of counterfactuality
or minimality [126, 120] and putting countermeasures in place.3 To this end, a causal query
would collect all causes by trying different hypotheses regardless of their responsibility.

According to a recent survey by Miller [141], humans seek contrastive explanations. In
other words, people would not phrase their causal queries as Why did event P happen? but
rather as Why did P happen instead of Q? [141]. Miller also concludes that explanations are
selected and social. We think a contrastive query can be constructed by phrasing the effect
ϕ in a way that expresses this distinction. For example, ϕ will be a formula like ¬Q.

As part of this research, we contributed the following open-source tools in the domain of
causal reasoning.

• AccBench: a Java library that implements non-HP causality algorithms, namely two

3Sometimes prevention is too expensive; sometimes it cannot be done, as shown by the example of malicious
insiders in Chapter 6.

142

9.2 A Framework of Actual Causality

causality algorithms (based on [67] and [65]) and one policy compliance algorithm
(based on [140]). The details of this work are not included in the thesis but can be
inspected in [167].

• HP2SAT: a Java library that can model and solve binary causality checking questions
using SAT solving as presented in Chapter 3.

• HP2Opt: a Java Library that can model and solve binary causality inference questions
using optimization solving as presented in Chapter 4.

• HP-NUM: a Java library that can model and solve linear numeric causality checking
questions using ILP as presented in Chapter 5.

To conclude, query formulation is a crucial part of this phase. We use the same language
to formalize a causal query for different purposes. However, we adapt to the goal and
include responsibility, collect all causes, or phrase the effect in contrast to reality.

9.2.4 The Technical Framework of Actual Causality

Before presenting Canvas, which condenses the concepts in this thesis into an interactive
tool, we summarize the toolchain behind it. Figure 9.2 shows a diagram of the different tools
(in the dashed box), and technologies stack (in the lower part) used in this thesis to support
and evaluate the contributed ideas. A significant emphasis is put on the computational
aspects of actual causality reasoning. This can be seen in the dark boxes in Figure 9.2. In the
upper part of the diagram, we list the elements of the actual causality solver that include
the different encoding and formulations of the problem. Namely, as part of this thesis,
we propose a SAT-based, Brute-Force based, MaxSAT-based encoding of the problem of
actual causality checking in binary models. Moreover, we have ILP formulations for actual
causality checking and inference in binary models, as well as numeric models. All these
formulations are standardized to support the interactive formation of causal queries. For
reproducibility, the solver is equipped with an automated benchmarking ability. A default
data-set (detailed in Appendix A) can be benchmarked with different parameters against all
the approaches in the solver. The data-set can be extended with new causal models easily.
Similarly, controlled experiments using different settings can be constructed leveraging the
benchmarking parameters. The lower part (solid border) of Figure 9.2 shows the stack of
technologies and tools that the solver is built on. We use a set of efficient and robust solvers
as default tools; however, since we use the standard format for each respective paradigm
(e.g., ILP), the default tools can be replaced with more recent solvers.

The second part of Figure 9.2 summarizes the concepts for causal modeling and con-
textualization. For modeling, we utilized domain-specific models such as attack trees (as
modeled by ADTool [111]) and graphs for (semi-)automated causal model generation. We
extended the tool support for fault trees as well (as modeled by EMFTA). Further, our
modeling capabilities include the ability to import models from other domains such as

143

9 A Framework for Operationalizing Actual Causality

Attack/Fault Trees
Transformation

Causal Modeling

UI Commands with regex

Contextualization

Normal/Contrastive
Query Builder

Results History

Model-driven
Monitoring and

Logging

Attack Graph
Generation

WBG, xAI model
Transformation

Actual Causality Solver

SAT-based Causality
Checking

Brute-Force Causality
Checking

ILP-based Causality
Checking

MaxSat-based
Causality Checking

ILP-based Causality
Inference

Numeric Causality
Checking

Context-driven
modeling

Interactive Model
Editing

Benchmarking
Infrastructure

JMH

MinSat Gurobi
Open-
WBO

Java

LogicNG Mxparser

ADTool

EMFTA

Elk StackNVD/CVE
Docker/
Swarm

GoLang

Electron.jsAngular.js
Linux-
Audit

Figure 9.2: The Technical Framework of Actual Causality. The dashed box shows the
toolchain we built, using existing tools and technologies shown in the diagram’s
bottom part.

machine learning models and graphs of accidents’ investigations. These models will be
shown as part of the use-cases in Section 9.4.

On the other hand, we contributed one tool to support the activities of contextualization.
Although the concept of model-driven monitoring is general, the tool itself is specific to
the domain of microservice-based systems. As such, the tool extends the state-of-the-art
ecosystem in that domain (represented by the light gray boxes). Also, we explained the
other type of contextualization, which is the context-driven modeling in Section 9.2.2.
Without any specific tool support, an example of this type is given in Section 9.4.

9.3 The Actual Causality Canvas

Recall that we are interested in solving problems fixated around causality, such as finding
out why a drone crashed or explaining a classifier result. Instantiating the three activities—
model, context, and reasoning— we can solve such problems. We have seen that each

144

9.3 The Actual Causality Canvas

Import sources:
 Attack Tree (ADTool)
 Attack Graph (DOT)
 Fault Tree
 Causal Model (causalmodel)

Model Rendering/
analysis

Equation
Creation/Editing

Causal Modeling

UI Commands
with regex

Context Setting

Query Builder

Causal Reasoning

Results History

Automated

Export:
 Causal Model (causalmodel)
 Graphs (DOT, SVG)

A
ct

u
a

l
C

a
u

sa
li

ty
 C

a
n

va
s

 Graphical
Editor

 Import/
export

 Formula
Builder

 Multi-tabs

Cross-Functional

Figure 9.3: The Components of the Actual Causality Canvas

phase has its own challenges, methodological decisions, and tools. However, we believe
that a unified platform with a plug-in architecture that enables each phase is crucial for
deploying more causality socio-technical applications. Such a platform must be general
enough to accommodate different practices, models, and queries. Thus, we present Canvas,
an extensible, open-source, interactive platform that automates the abovementioned tasks
and activities. It is in part a modeling tool that supports typical modeling activities and
provides methods to transfer domain-specific models to causal ones. Also, Canvas allows an
analyst to perform an interactive causal analysis of a particular event. Obviously, graphical
editors are common in many domains; however, Canvas’s contribution lies in encapsulating
the crucial tasks needed to specifically answer causal queries that are similar to the queries
posted by humans. Figure 9.3 shows the main components of Canvas; the right-hand side
shows the standard features for the three steps.

The generality of the modeling mode in Canvas stems from building it on the basis of
Definition 2.2 (extension .causalmodel). We used a machine- and human-readable format
(JSON) for this purpose; the newly created causal models are written and saved using
this format. Canvas already transforms sources such as an attack tree modeled using
ADTool [111], or a fault tree modeled using EMFTA tool [43], or any graph formatted using
DOT. Intuitively, Canvas can also read already transformed or created causal models. The

145

9 A Framework for Operationalizing Actual Causality

import functionality is implemented using a plugin-based architecture, keeping the door
open for an easy extension to include new sources of knowledge. Alternatively, wrappers
can be written to generate a (.causalmodel) file directly from other sources. Besides model
transformation, Canvas renders the models using different layout algorithms like d3 and
dagre. A set of visual and textual tools to create nodes, edges, and formulas from scratch are
implemented. Furthermore, since human readability is a crucial aspect, Canvas is equipped
with features that enable the user to grasp larger models by focusing on parts of the graph.

Context setting is enabled with a specific field in the (.causalmodel) format. Program-
matically, the context can then be set by writing the values into the respective field in
the file. Alternatively, Canvas provides a command input function that allows the user to
set the values of the exogenous variables (context). This is implemented using a practical
filter-and-set functionality that uses regular expressions to select the variables. Lastly, users
can also edit their contexts as part of their query set-up.

For the reasoning mode (Figure 9.4), Canvas is an interface of the technical framework’s
solver. This tool offers different solvers for actual causality that differ in technology (SAT,
ILP, MaxSAT) and accounting for responsibility with a minimal ~W and either check or infer
causality. The back-end is embedded with Canvas bundle, and it promptly answers queries
(less than 6 s for models of 8000 nodes). The reasoning mode is activated using a specific
button that displays a special screen for the query construction. The different elements of
the query (context, cause, and effect) are easily manipulated on this screen. Once a query
is ready, a request to the solver is sent, and the result is then shown back to the user. The
result details whether each condition from Definition 2.4 is fulfilled or not, along with a
~W . To realize the requirement of interactivity, Canvas tracks all causal queries in the same
session; the user can navigate back and forth within them. This way, users can adapt their
queries and play with different assumptions, contexts, and effects.

9.4 Use Cases

In this section, we show how the framework to operationalize actual causality is instantiated
in xAI, accident investigation, and drone crash diagnosis. For each use case, we detail the
modeling process, the context setting, and the reasoning aspect.

9.4.1 Explainable AI

Explanation and interpretability in AI (xAI) and machine learning are attracting attention
because they are necessary for regulation compliance, system improvements, and trust
enhancement [143]. The work on xAI focuses on model-based approaches that approximate
the true criteria of classifiers as gradient-based (binarized like in [170]) or decision tree-based
models [143]. Recent articles by Miller [141] and Mittelstadt et al. [143] suggest that existing
approaches have not yet been built on relevant definitions from philosophy, social science,
and cognitive science. Instead, they provide “general scientific explanations” The authors

146

9.4 Use Cases

Figure 9.4: The Reasoning Mode in Canvas:
1- Context, 2- Hypothesized Cause, 3- Effect Formula, 4- Solving Strategy, 5- Query

Request, 6- Query Result, and 7- Model

argue that humans would seek an “everyday contrastive, social explanation” that explains
”why particular facts occurred” [141, 143]. Following Miller, we see HP as an enabler of
such explanations. We understand that there is more to xAI than what we are suggesting
here; however, we only show how explicit representations from the literature (like the one
in our example) can be incorporated into Canvas, knowing that this is incomplete. We
discuss the three requirements: a representation of the classifier’s behavior, i.e., a causal
model; the exact information about the classified point, i.e., the context; and the reasoning
machinery. We show one simple transformation to causal models and straightforward
query construction.

Causal Model

To illustrate this approach, we use an example provided by Miller [141] and highlighted
again in [143]. The example (displayed in Table 9.1) considers the features and parameters
learned by an algorithm to classify types of arthropods. Some features express binary facts
such as whether an arthropod has a stinger or not while others are integer-based, e.g., the
number of legs. We use a binary representation of the integer values. Although there may
be other elegant ways to handle decimal features, we believe that a binary model captures
what we want to explain. For instance, the fact that an arthropod has eight legs makes the

147

9 A Framework for Operationalizing Actual Causality

Table 9.1: A Lay Model for Classifying Arthropods [141]

Type No. Legs Stinger No.Eyes Compound Eyes Wings

Spider 8 7 8 7 0
Beetle 6 7 2 3 2

Bee 6 3 5 3 4
Fly 6 7 5 3 4

algorithm classify it as a spider; the number eight is not needed in an arithmetic way.
Depending on the algorithm, different representations of the learned models exist. We

use the one presented in the example: a tabular set of features and the values corresponding
to one class. Each class and each binary feature is presented by an endogenous variable. To
accommodate for its values, a nonbinary feature variable is presented by a set of bits. For
example, the “number of wings” (N.W) feature has the values 0, 2, or 4, and then it will
be represented with two bit-variables, N.W1, N.W0. The different values of the two bits
correspond to an index of the real values, i.e., 00 means 0, 01 means 2, and 10 means 4.
We are not transforming the decimal values in the table into their binary representation
but rather assigning them a binary value of some number of bits. The number depends
on the count of distinct values presented. In the example, N.W has three values, and
hence, we use two bits. This way, we use fewer variables. There are more rigorous ways to
express non-propositional relations in boolean logic such as the Ackermann reduction, this
approach can be seen as one-case of this reduction. We also express each feature (or feature
bit) with an exogenous variable.

In addition to the variables, we create the propositional equations from the table. For
instance, a spider is an arthropod with 8 legs, and not a stinger, 8 eyes, no compound
eyes, and no wings. Then, each class variable is a conjunction of the features’ values,
e.g., spider = (no.wings = 0) ∧ (!stinger). Note that (no.wings = 0) is presented as
explained above. We create a causal structure (shown in Figure 9.5) of the factors leading
to classifying an arthropod. Lastly, although not part of the example, the variance of the
features’ importance (e.g., weights) is a candidate for a preemption relation. Using Canvas,
we manually created the model; this could be automated with the import functionality.

Context Setting and Causal Reasoning

We can now provide explanations for specific classifications. The specific case (e.g., an image
J of an arthropod) is seen as a vector of features. This is precisely the context of a causal
query. Formally, the context is an assignment of exogenous variables; we can easily see
that it maps to the values of the features we consider. For example, image J contains 8 legs,
no stinger, 8 eyes, no compound eyes, and no wings. What remains is the phrasing of the
causal query. Miller [141] argues that the human perception of an explanation often refers

148

9.4 Use Cases

Figure 9.5: The Causal Graph of a Classifier. The context shows a specific feature vector.

to a contrastive question, i.e., why P rather than Q (e.g., J labeled as a spider rather than
a beetle). We think such a question can be formulated by focusing on what is the effect ϕ.
The most basic contrastive question can then be seen as (¬Q), e.g., ¬beetle. The result of the
causal query can then be considered a contrastive explanation. For example, the answer to
the question Why is image J labeled as a spider rather than a beetle? [141] is the list of causes (as
seen in Figure 9.5): the compound eyes, N.W , number of eyes, and number of legs.

Obviously, the decision-tree nature of the example simplifies the AI part; there is tremen-
dous work on the area of summarizing sophisticated AI models such as neural networks
to similar models [170, 141]. However, with this example, our goal is to show the ability
to incorporate ideas from the literature of approximating classifier behaviors into simpler
models and augment it with contrastive reasoning capabilities. Note that if we want to
consider image recognition as part of the explainable system, we then have also to create a
causal model for it or expand the model in Figure 9.5 to describe its behavior.

9.4.2 Überlingen mid-air Collision4

On the night of the first of July 2002, two aircraft collided near the German town of
Überlingen.5 The collision happened between a Tupolev Tu154M passenger jet (Bashkirian
Airlines Flight 2937 from Moscow to Barcelona), and a Boeing 757-200 cargo jet (DHL Flight
611 from Bergamo to Brussels). A total of 71 passengers and crew members died in the
accident [149]. The context of the collision comprised many confusing factors. We will
summarize some of them; the complete list (sources: [149, 185], and [186] (German)) is
shown in Table 9.2. The area of the accident is under the control of Zurich Air Traffic

4A shortened version of this case-study can be found in Appendix A
5https://en.wikipedia.org/wiki/2002_Uberlingen_mid-air_collision

149

https://en.wikipedia.org/wiki/2002_ Uberlingen_mid-air_collision

9 A Framework for Operationalizing Actual Causality

Controller (ATC), who is in charge of keeping the routes clear. An ATC is equipped with a
radar and a short term collision avoidance system (STCA), that alerts visually and aurally
about 2-3 mins before a collision [178]. Also, both aircraft were equipped with traffic alert
and collision avoidance systems (TCAS). TCAS warns the crew in aircraft in under 50
seconds before a collision, with a complementing resolution advisory commands (RA) to
either climb or descends [178, 185]. According to the regulations, the ATC is responsible for
keeping aircraft separated; TCAS is an additional system, and the regulations on whether
to follow its advisory or not were not standardized yet in 2002.

On the accident day, a maintenance operation at Zurich ATC office deactivated STCA,
ran the radar in degraded mode, and caused the telephone system (used to communicate
with nearby airports and other ATCs) to run in fallback mode. Given the low density of
flights at night, these limitations were approved by the managers. The ATC at Karlsruhe
(Germany) was also monitoring the path of the collision with a fully operational radar. Due
to the problem with the telephone system, ATC at Karlsruhe could not communicate with
Zurich [178]. Additionally, ATC at Zurich spent around 5 minutes guiding an unexpected
late flight to Friedrichshafen airport (Germany). The ATC was working alone that night
because the operating company tolerated the case of taking long breaks at night [149].

Still, a collision can be avoided with all these systems installed. The ATC noticed the
potential collision on the radar and instructed the Tu154M to descend flight level at 21:34:49;
the Tu154M descends (21:34:56) exactly when TCAS generates an RA to the Tu154M to
climb and to the B757 to descend. Then, the B757 descends (21:34:58) also, and the Tu154M
crew discusses the contradictory commands (ATC to descend and TCAS to climb). The
confusion is complicated by the fact that the Russian and the European procedures are not
standardized in such a situation. Nineteen seconds before the collision, the ATC repeats
descent advisory to the Tu154M, and wrongly advises the crew of traffic at “2 o’clock" while
the DHL is at 10 o’clock. It is not clear whether the wrong location would have changed
anything or not. The aircraft collided at 21:35:32. The original story has more factors that
we omitted for simplicity.

With all these human, technical, and organizational factors, it is hard to draw conclusions.
The official investigation by the German Federal Bureau of Aircraft Accident Investigation
(BFU) was issued 2 years after the accident [149]. It concluded that both, the ATC (late
intervention) and the TU154M crew (followed the ATC instruction contrary to the TCAS
RA), made a series of mistakes that are considered as immediate causes, but the primary
systematic cause is the negligence by the Air Traffic Control company of Switzerland. This
was explained by the poor management of the maintenance event, along with the tolerance
of allowing only one controller at night [149, 185]. They also pointed out the ambiguity in
the handling TCAS commands, as a systematic cause. In 2005, researchers conducted a
Why-Because-Analysis of the accident and presented a model that contained 95 factors [187]
which we used in our work.6 They reported an effort of 240 hours to design that model.

6https://rvs-bi.de/research/WBA/

150

https://rvs-bi.de/research/WBA/

9.4 Use Cases

Causal Model and Context Setting

The why-because-analysis (WBA) process is a systematic procedure to organize facts related
to an accident [119, 120, 178]. The process results in a graphical understanding, called
Why-Because-Graph WBG, of all the related facts and their causal relations. We can use
WBG with some adaptions as a causal model (we discuss the differences in Chapter 10). The
complete causal model is shown in Figure 9.6, and the description of each node in Table 9.2.
In the following, we use ei to refer to the event with ID=(i) in the table. We consider each
node in the WBG to be an endogenous variable. For each leaf in the graph, we create an
exogenous variable that sets its value. The WBG embeds the context because it is created
based on facts, thus the exogenous variables are always true [119]. To come up with the
equations that describe each variable, we manually inspected each one to decide on its
equation. Omissions are explicitly modeled in a WBG, and then we can directly use them
with negation in the equation. For example, event e14, Air traffic controller not responding to
B757 radio message, is an omission event according to its description.

In disjunctive equations (events that disjunctively depended on other events), preemption
relations are crucial to infer actual causality [95]. These relations are especially important
in contexts where events coincide. Some preemption relations express temporal order of
events, but others may reflect a discrepancy of the causal importance among events. For
example, in the rock-throwing example, the fact that Suzy threw the rock slightly earlier
is modeled using a preemption relation. We use the same concept to edit the WBG to
add preemption relations among the events leading to e6: Conflict resolution failed. This
discrepancy merely reflects the fact that keeping the routes clear for aircraft is the mission
of the ATC [149]. Accordingly, the TCAS is a last resort that should resolve last-minute
situations, and hence, causally, a failure by the ATC preempts a failure by the TCAS.

Understandably, a large part of the WBG focused on the factors of the late intervention
of the ATC (e49). Five direct factors coincided and led to the state of late intervention,
namely: e52 Control strips do not warn of crossing routes on the radar, e53 No visual warning from
STCA, e55 21:35:00 Acoustic STCA signal was not detected in control room, e56 Heavy load on
the ATC, and e62 Crossing routes. Each factor can be thought of as a sufficient cause of e49;
however, when thinking of actual causes, people tend to consider exceptional events to be
the probable causes [75]. Then, we argue that the exceptional heavy load on the ATC (due
to another late landing in a nearby airport, and the faulty phone system) is more influential
than the normal technical problems with STCA system (e52, e53, and e55). Also, having a
potential route crossing (e68 B757 3 minutes past expected time, e69 Tu154 2 minutes ahead
of expected time) is plausible in aviation. Accordingly, we added preemption relations
among these events.

Our sole aim from these steps is to show that a causal modeling methodology, like WBA,
quickly yields comparatively large models. In some cases, the steps above seem biased or
forced, but they explicitly represent the investigators’ knowledge as documented in their
report [149].

151

9 A Framework for Operationalizing Actual Causality

ID Description ID Description
(2) Crash B757 (63) optical STCA not active
(4) B757 vertical tail destroyed (64) no correlation of flight plan data and radar data
(1) Crash Tu154M (70) MV9800 computer is not available
(3) Fuselage Tu154 severed (79) Radar system in fallback mode
(5) Collision (91) System work in the ADAPT system
(6) Conflict resolution failed (41) ATC must restore separation
(13) Conflict resolution by air traffic controllers failed (44) The role of the air traffic controller to ensure separation
(7) Resolution of conflict by crews failed (35) TCAS training DHL
(8) Conflict resolution by TCAS failed (22) B757 TCAS RA only reports 23 sec after RA
(12) Tu154 controls against TCAS RA (31) Only one radio channel for Tu154 and B757
(29) B757 complies with TCAS RA (57) Radio messages from AeroLloyd 1135 to ACC Zurich
(11) TCAS does not reverse RA (75) Land approach from AeroLloyd 1135 to Friedrichshafen
(18) Avoidance of unnecessary RAs (71) Technical limitations of the workstation in relation to

radio
(14) ATC not responding to B757 radio message (77) Handover procedure to Friedrichshafen telephone based
(21) ATC not responding to B757 maneuver (76) Pilot does not successfully use any of three telephone

systems
(19) Avoidance maneuver of the Tu by sinking (61) Requirements for warning of crossing routes not met
(20) Evasive maneuver of the B757 by sink (87) Night staffing
(30) Radar system does not display transponder S information (85) Assumption: attempt to retrieve timetable
(33) PIC encourages PF to descend (101) ATC approves deviation from course
(32) TCAS Tu154: climb (37) TCAS detects danger of collision
(62) crossing routes (45) Criteria for TCAS RA fulfilled
(69) Tu154 2 minutes ahead of expected time (control strip) (43) Aircraft below staggering
(68) B757 3 minutes past expected time (control strip) (46) Further approximation of aircraft
(84) delayed departure (47) B757 follows original flight path
(78) Deviation from planned exchange rate (48) Tu154 maintains rough flight direction
(38) Training PIC BTC (50) approx. 21:35 Tu154 starts right turn
(36) Decision-making of the PIC (51) approx. 21:33 Tu154 changes course to left
(34) TCAS B757: descending (59) Assumption: Crew mainly concerned with conflict situa-

tion
(72) Understaffing in the ACC, only one instead of 4 con-

trollers
(58) Autopilot switched off

(80) Rest of the second controller (60) unknown cause
(81) 2 controllers in control room instead of 4 during day shift (10) Visual identification of conflict traffic does not solve con-

flict
(94) Sectorisation work (16) B757 does not understand the conflict traffic message.
(92) Replacement telephone had to be switched (15) contradictory conflict information in the Tu154
(93) Changeover to telephone system (17) B757 does not recognize flight maneuvers of conflict traf-

fic
(82) Replacement telephone of ATC not in working order (27) Perceived size of conflict traffic
(89) faulty switching of the replacement telephone (26) Night flight affects visibility and accuracy
(83) no release of the service telephone after conversion (25) B757 visually identifies conflict traffic at 2am
(73) ATC had a System manager at their disposal as an assis-

tant
(23) Tu154 visually identifies conflict traffic at 10am

(74) ATC was not aware that he had an assistant at his dis-
posal.

(24) ATC: "rapidly sink to FL350, conflict traffic 2 o’clock."

(86) Common practice in ACC Zurich (88) Usually low traffic during the night
(49) ATC detects crossing routes too late (42) Misinterpretation of the radar image by air traffic con-

trollers
(56) Heavy load on the air traffic controller (95) Bypass system cannot be used
(53) No visual warning from implement (96) Mobile phone not used
(55) acoustic STCA signal was not detected in control room (99) Telephone Switch-02 is not used
(52) Control strips do not warn of crossing routes (100) Telephone Switch-02 not operational
(66) ATC does not request support from System manager (98) Emergency manual lists 3 telephone systems available
(65) ATC checks at two workplaces (97) ATC not aware of mobile phone availability
(67) Transfer of landing approach from AeroLloyd 1135 to Friedrichshafen not successful

Table 9.2: Accident’s Facts; Originally in German [187]; ordered as they appear in Figure 9.6

152

9.4 Use Cases

e2 e1

e4 e3

e5

e6

e8

e7

e11

e18

e13 e12

e29

e20e22

e21

e30

e19e14e10

e17 e15

e25

e16

e26e27 e23 e24

e33

e31

e32

e36e38

e35 e34

e37

e45

e46

e47e48

e50

e51e59e58

e60

e41

e44

e42 e43

e49

e52

e57

e53e55

e56

e62

e66e65

e64 e63

e67

e61

e74e73e71e72

e70

e75 e76 e77

e69e68

e78

e84e101 e85

e96e95

e98 e97e82

e80e81

e86e88 e87

e89 e99

e79

e92 e100 e83

e93e91

e94

e18_exo

e30_ex0

e35_ex0

e38_ex0 e36_exoe27_exo e26_exo e25_exo e23_exo

e44_exo

e47_exo

e59_exoe58_exo

e60_exoe69_exo

e77_exoe75_exoe71_exo e73_exo e74_exo

e87_exoe88_exo e86_exo

e94_exo

e98_exo e97_exo

e84_exoe101_exo e85_exo

e31_exo

e55_exo

Figure 9.6: Causal Network of the Überlingen accident [187]; events are described in Ta-
ble 9.2

153

9 A Framework for Operationalizing Actual Causality

Causal Reasoning

With the knowledge of causal factors made explicit using a model, we now can use the
actual causality definition to check for cause(s). It is worth noting that, at least according
to HP, multiple causes of an effect are possible [75]. Other concepts can then be used
to compare such causes, such as responsibility [33] and normality [77]. As a first causal
check, we used a simple causal model that expresses all the relations as disjunctions, i.e.,
assumes that any factor is enough to cause the other side of the connection. Especially in
confusing situations (in which events have coincided), such a model is not conclusive or
over-determined. This check replaces the manual verification step of the Why-Because
analysis [120], in which the model is checked against a sufficiency test to verify that the
effect eventually happens, given that all the root causes (graphs leaves) occurred. We
performed this check: Q1: Is ~X a cause of e5 (collision)? where ~X is the set of 31 leaf events.
The check passed the three HP conditions. This check shows that HP can be a part of WBA.

The interesting checks were performed on the edited model (with preemption and logical
combination). The first check was the same as Q1 (the effect is the collision, and the cause
is a set of 31 root causes). The result was a violation of AC3, i.e., the cause is not minimal.
A minimal cause of 14 variables was returned by our solver. These are the details that
resulted in the late intervention of ATC. This actual cause conforms with the immediate
cause reported by the BFU [149]. However, this check is fine-grained. For example, one
of the root causes in the check is e85 attempt to retrieve the timetable, which is assumed to
have delayed the take-off of the DHL flight. Thus, we checked the actual causality to find a
minimal cause on a coarse-level. The question this time is Q2: Is {e13, e70, e74} a cause of e5
(collision)?; the set of causes are chosen arbitrarily to represent different levels of granularity
about the ATC where e13 Conflict resolution by ATC failed, e70 MV9800 computer is not available,
e74 ATC was not aware that he had an assistant at his disposal. The result was that this is not
a minimal cause and the minimal one was only e13. Thus, at a coarse level, we conclude
the failure of the ATC as an actual cause; this can be further explained into detailed events
as we saw in Q1. Note that we omitted the ~W set for simplicity’s sake in this description.
Similarly, we conducted checks focusing on an intermediate event e49: Air traffic controller
detects crossing routes too late, as an effect. On the fine-grained level, we found an actual cause
comprised of 11 leaf events (root causes) that conformed with the BFU systematic causes of
the accident. For example e86: the common practice in ACC Zurich and e77: Telephone-based
handover procedure to Friedrichshafen. On a higher level, we found an actual cause of three
events (e65, e66, e67); they mainly lead to the load on the ATC.

9.4.3 Malicious Insiders7

From a different domain, we consider an example of malicious insiders. Insiders are
among potential attackers of information systems, although they are mostly not malicious.

7This is a shortened version of the example in Chapter 6. The reiteration here is meant to put accountability of
microservices-based system in perspective with other domains.

154

9.4 Use Cases

However, reports [169] show that their attacks are the most significant and lengthy to detect.
The problem is that preventive measures have a high likelihood of failing because insiders
ought to have sufficient privileges for their jobs. Thus, accountability in the sense of attack
attribution is potentially a deterrent measure. In this use-case, we consider an example
from an industrial partner in the domain of micro-services.

Causal Model

Attack trees [179] and attack graphs [182] are widely used to model attacks on a system;
they are a promising starting point to create causal models. Mainly because they are an
acyclic propositional combination of attack strategies. Typically, they do not include the
attacker, but since we are considering insiders, we can add them to the models. We use the
formal transformation of attack trees to causal models presented in Chapter 6, in which each
node in the attack tree is transformed into an endogenous variable, and each leaf node is set
by a new exogenous variable. This feature is automated in Canvas with an import option.
We provide a method to augment the model with preemption relations among insiders. The
relations are based on a suspiciousness metric (SM) that is related to the modeler’s judgment
of the case.

Figure 9.7: The Insider Model in Canvas

We used a model by importing the corresponding attack tree (provided as part of an

155

9 A Framework for Operationalizing Actual Causality

analysis step in a company). The model describes an insider behavior that leads to stealing
a master encryption key in a production environment. An excerpt of the model is shown in
Figure 9.7; it highlights one variable S_Decrypt and its equation. The figure represents
one way to expose a master key by obtaining its encrypted version. This strategy can be
executed by one of two insiders Suzy (S) or Billy (B).

Context Setting and Reasoning

We tested one scenario, in which Suzy stole the key. We simulated the attacks in a micro-
services environment. To set the context, we utilized monitoring tools like auditD to monitor
file accesses, and Couchbase audit to monitor queries. We used the logs to set the exogenous
variables. For example, a sentence from auditD like ... "MESSAGE" : "PATH name=̈.../
script.txt "..auid= 1001 uid= 1001.. is translated into S.From_Script
_exo= 1 (Suzy’s id=1001). As a query we checked Q1: is Suzy the cause of stealing the key? The
scenario represented a situation with coinciding possible causes. The results matched our
ground truth, i.e., we concluded that Suzy was responsible for the incident.

9.4.4 Drone Crash Diagnosis

Drones, such as quadcopters, recently found widespread use; however, their safety is a
significant concern. In the case of drone failure, it is essential to identify the cause and
prevent it in the future. In this use case, we consider a realistic example where Canvas is
used to model a system from scratch and assist in investigating incidents.

Drones have several physical and software components, including actuators, sensors,
and controllers. The components that interact with the physical world are called actuators,
e.g., the electrical engine. Sensors are devices that measure physical properties; for example,
GPS measures the location and altitude. Finally, software components are virtual units that
organize all hardware components and process the information to keep the drone stable in
flight. For example, the sensor fusion module receives readings from sensors and estimates
an approximate value based on the readings. The course of a flight comprises several
coinciding events related to different components. The diversity of such events and their
causal connection render the diagnosis difficult. As we see in this use case, Canvas is a
practical method, especially when investigation from scratch.

Causal Model

Each node in our model describes an action of a specific component, such as the failure of
the GPS sensor or when the drone was being pushed by the wind. The provided model
is abstract to keep it understandable; each node can be decomposed into more detailed
events. The model is built based on domain knowledge or data-driven approaches. In
previous work, we deduced a fault tree from the drone’s architecture [205]. Here, we use a
similar fault tree while adding preemption relations based on the results from a practical

156

9.4 Use Cases

course we held with computer science students [206]. The students used Canvas to create
their causal models. The preemption rules originate from the nature of the control loop
that is being executed repeatedly during flight. In this sense, the failure of the actuators
preempts that of the controller software, which then preempts the failure of the sensors.
Moreover, among the software components, path tracking failure preempts path planning
failure. After adding these relations to the fault tree (imported to Canvas), we obtain our
model depicted in Figure 9.8.

Figure 9.8: Causal model for Drone Crash

Context Setting and Reasoning

All the nodes in our causal model are events. Simply put, an event describes an action
performed by a specific component. For example, the number of detected satellites by
the GPS sensor dropping below 9 is an indication of a gpsFailed event. For context setting,
first, detection analysis should be run over the data to detect the events that occurred.
If an exogenous event is found in the flight logs, its value is set to true in Canvas. The
endogenous variables, such as sensorsfailed or actuatorsfailed, will be computed based on
their respective equations implied by fault tree semantics. We consider two scenarios based
on real flight logs collected from users of an open-source quadcopter [57].

In the first scenario, we analyze a case of engine failure that resulted in a crash. Engines
have an essential role in keeping the drone in the air, and their failure leads to altitude loss.
If the commanded signal to an engine is set to the maximum value for more than a second,
then we can assume that the engine has failed. We set engine1Failed to true on the basis
of our assumption. Moreover, altitudeLoss can be detected when the altitude drop rate is
more intense than a threshold. This is seen in the mentioned flight log. Other nodes such as

157

9 A Framework for Operationalizing Actual Causality

accelerometerFailed or windPushed are set to false either because they did not occur in that
specific log, or there were no relevant sensors to record them. Now, constructing a query
with a hypothesized cause engine1failed for altitudeLoss returns true. Other hypothesized
causes, such as gpsFailed, result in a negative response in Canvas.

In a second scenario, which was also seen in the real flight logs, both the path tracking
and path planning modules of a drone failed. Our objective was to query which one was the
actual cause. We set the value of these two events to true. Also, the value of altitudeLoss
is set to true since this event occurred according to the log. Although it is not trivial that
pathTrackingFailed is the actual cause, we can easily deduce this using Canvas. This is
because of the preemption relation between the pathPlanningFailed and pathTrackingFailed
nodes. This preemption rule originates from the domain knowledge where path tracking is
closer to the final physical output of the drone than the path planning module in the control
loop.

Although the logs are not labeled, i.e., the causes are not known to us, the added value of
Canvas lies in its ability to import fault trees and compute the causality in large models
where it is nonintuitive for the investigator to deduce causality between events. Moreover,
when several events coincide, Canvas distinguishes between their causal roles using the
embedded preemption relations.

9.5 Evaluation

In addition to utilizing the framework and Canvas in different use cases, we briefly report
our evaluation of Canvas.

Display performance. We tested how Canvas performs when displaying different, ran-
domly generated models. The models vary in size between 10 and 4000 nodes. We tested
critical functions such as the graph layout, graph navigation, and zooming. All tests were
executed on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 2001Mhz, 4-core(s) Processor,
and 16GB RAM. Canvas uses two algorithms to lay out the imported graphs, dagre, and
d3-force. For the quality of rendering, the dagre layout is suitable for smaller causal models
(fewer than 50 nodes). The nodes here are nicely separated with sufficient space. The
d3-force layout is suitable for almost any model size up to 600 nodes. For the rendering
time, the layout methods differ as well. Dagre is usable only for models smaller than 400
nodes, whereas d3-force responds within a reasonable time with models up to 4000 nodes
(taking around 8 s to render). Canvas automatically switches its layout method on the basis
of the model size. The other features perform well with causal models up to around 800
nodes, after which some lag is seen with zooming and navigation. As human cognition is
limited, operators will not grasp large models. Thus, we verified that Canvas facilitates
focusing on parts for models up to 4000 nodes. We manually tested inspecting such models
by highlighting and zooming into their parts. This is an effective feature where the user
highlights a reachable part of the graph based on a filtering function. Of course, we do not
see a point in using a graphical editor with very large models, but the goal is to document

158

9.6 Summary

the performance of Canvas.
Usability. We also conducted a preliminary user study with 10 computer science graduate

students (working in five groups). As part of a practical course, they used Canvas to
develop their custom causal models and queried the actual causes based on real drone crash
data [206]. An overview of the HP definition, illustrated by examples bundled in Canvas,
was sufficient for the students to grasp the concept of causality and use it in their drone
crash scenarios. We collected the students’ feedback through written forms and face-to-face
interviews. The five groups reported an effective usage of Canvas for the task. Some of their
feedback included “powerful utility that is easy to operate” and “a great tool to quickly analyze if
the proposed model is indeed correct.” They stressed its power, especially when dealing with
large models or confusing situations. The students also suggested some enhancements that
we are considering such as an undo feature, a custom highlight of preemption relations,
and a programmable interface that exposes all phases to other systems.

9.6 Summary

This chapter provides a unifying framework that generalizes existing approaches to ac-
countability and explainability, which applies to different contexts. As modern systems
could harm people, damage their assets, or decide their loan adequacy, such systems ought
to be at least explainable. To that end, our framework is intended to solve explanation-based
problems for a wide range of systems in the future. Advancing operationalizations, the
framework is bundled as an interactive platform. We have shown how different knowl-
edge sources can be transformed into structural-equations models and then used for an
automated analysis—using HP actual causality. We conclude that our framework is gener-
alizable enough to accommodate explanation-based socio-technical constructs, and with
tool support, it is amenable to be incorporated into different domains.

159

Part V

Related Work and Conclusion

161

10 Related Work

This chapter reviews the related work in the fields of accountability, actual
causality reasoning, and other related fields. Parts of this chapter have been
published in the following publications [167, 98, 97, 96, 94, 95, 99], co-authored
by the author of this thesis.

10.1 Accountability

The term accountability has been described in different ways, especially in the domain of
data usage (for instance, [145, 24, 200]). Kacianka et al. provide an overview of the literature
on accountability [105, 103]. In computer science, the term accountability was popularized
by Weitzner et al. [200]; the authors proposed that accountability is ensuring appropriate
usage of information by providing the ability to determine how it has been used. This
approach is an alternative to restricting access to information. Following Weitzner et al., the
research community focused on accountability as a privacy mechanism or as a property of
cryptographic protocols. With the rise of cloud computing, privacy concerns were naturally
applied to the cloud, and accountability was seen as a way to ensure data security, e.g.,
by Pearson et al. [159]. As we described in the introduction of this thesis, we consider
accountability as a valuable property of a system in general and not only limited to the usage
of information. We refer to the definition used in [13]. The authors think of accountability as
a capability of socio-technical systems to answer questions regarding the cause of occurred
unwanted behavior. We see accountability as a mechanism that aids in understanding and
enhancing systems’ operations.

We see a lack of technical tools and practical methodologies to enable accountability. In
a mapping study, Kacianka et al. surveyed accountability implementations [103]. They
found that none of the surveyed papers have evaluated their tools for performance. This is
important because a key factor that could limit the adoption of accountability mechanisms,
in addition to the lack of established methodologies, is performance efficiency. The reason
is that the origin of unwanted events is typically tracked using logging and analysis of
“interesting” system events. Depending on the complexity of the analysis algorithm and
the size of the logs, accountability implementations could be costly in terms of computation.
Another gap they report on is the missing link between the high-level unwanted events
that take place in an environment (e.g., personal and medical data is leaked in a Healthcare
domain application) and the low-level unwanted events that are logged in the running

163

10 Related Work

technical systems (e.g., system calls reading from confidential files and writing to a socket
in a network connection).

Gap 1 In summary, we see a gap in the literature around accountability regarding the lack of
methodologies and tools to enable accountability in digital systems.

10.2 Causality

In general, we distinguish two notions of causality, namely type causality and actual causal-
ity [75]. Type causality describes general causal relationships, whereas actual causality
examines causal relationships among specific observed events. To get a general overview
of the literature on causality, this section briefly reviews essential literature in this field.

Scholars have been struggling with formulating a definition of causality since Hume’s
proposal [92] in the 18th century. With his formulation, Hume set the foundation of a coun-
terfactual approach to causality. Hume’s notion of counterfactuals leads to the counterfactual
definition of causality, which can be formulated the following way: A is a cause of B, if, if A
had not happened, B would not have happened either [74]. Another important proponent
of counterfactuals was David Lewis [127], who extended the notion by the possible-world
semantic using intensional logic. Lewis also assumed the transitivity of causal relationships.
However, the approach has appeared to have many problems with famous examples (some
given by Wright [203]). There has been other criticism of a mere counterfactual definition,
like Dawid [41] and Collins et al. [35].

A number of actual causality definitions were formulated to cope with the cases that
challenged Lewis’s definition [127]. Those included: the causal beam definition by Judea
Pearl [156], Hall’s H-account [72] and Hitchcock’s definition of actual causality [86]. All three
definitions are based on the idea of counterfactuals but add further mechanisms dealing
with problematic cases.

The aforementioned definitions influenced the definition that we use in this thesis, i.e.,
The Halpern-Pearl Definition of (Actual) Causality. The first version of HP was published in
2001 [78]. It was updated due to a problem with the first version in 2005 [82]. Additionally,
the second part of the 2005 paper introduces explanations as a principle for causal reasoning
with uncertain or unknown information [83]. In 2015, the HP definition was modified by
Halpern again, yielding a shorter formulation dealing better with some special cases [74].
The HP definition has been taken up in a number of computer science publications (e.g.,
[117, 123, 15]). A mental model of the relationships between the literature around HP is
depicted in Figure 10.1, which serves as a reference guide.

10.2.1 Actual Causality Reasoning According to HP

A central goal of this thesis is to advance the utilization of actual causality definitions to
enable accountability for different system qualities. As such, in this section, we discuss all

164

10.2 Causality

Counterfactuals
Hume, Lewis

Halpern and Pearl
Definition of

Causality
Halpern, Pearl

Application
Halpern

Complexity Model discovery

Criticism of Counterfactuals
Wright, Dawid, Collins

[Model Checking]

Counterexamples
Beer et al.,
Ball et al.,

Fault Trees
Kuntz et al.,
Leitner-Fischer
and Leue

Trace-based
framework
Gössler and Le
Metayer

Real-time
systems
Gössler et al.

Other definitions of causality
Pearl (causal beam),
Hall (H-account),
Hitchcock

Complexity of HP
definition
Aleksandrowicz et al.,
Eiter and Lukasiewicz

Modelling and model
discovery
Pearl,
Cooper,
Chen and Pearl

Figure 10.1: Overview of literature on (actual) causality and their relationship

the references to HP in the literature. An abstract overview of some of these references is
presented in Halpern’s book [75] (chapter 8). We, on the other hand, present a thorough
summary of each field, focusing on the computational adaptations made in each field. We
use the modified HP definition because it solves problems described with the previous
versions, and reduces the computational complexity [74]. To the best of our knowledge,
no previous work has tackled the technical implementation of the (modified) version of HP.
Conversely, the first two versions were used in different applications. Although they use
different versions, we still consider them related. As we shall see, these applications used
the definition as a refinement of other technologies.

First, in the domain of databases [134, 136, 18, 177], a simplified HP (the updated version)
was used to refine provenance information and explain database conjunctive query results.
This line of work shows how causality can be applied to explain why a database query
answer does or does not contain certain results [135]. For that, the authors introduce a
definition of functional causes based on the updated HP definition [81, 83]. This work
was extended in [134, 136] when the authors generalized their definition to answer what
caused the specific output of a query in a database; and showed the complexity results [136].
In [138], the authors bring their previous work together and explain how causality may
support data provenance. In [137], the authors refine their concept of causality in databases
to a new approach, which they call view-conditioned causality. This concept has already
been mentioned in [134] as well.

In summary, the work in database causality is fully tailored towards database queries
and thus a particular application of the HP definition. All the proposed approaches depend
heavily on the correspondence between causes and domain-specific concepts like lineage,
database repairs, and denial constraints. In contrast to our work, they do not directly

165

10 Related Work

implement and apply the definition, but also simplify it. The simplification in this line of
work is the limitation to a single-equation causal model based on the lineage of the query
in [134], or no explicit equations but rather the authors infer a cause from the computation
of a database repair in [18, 177]. Also, they eliminate the treatment of preemption using
contingency sets. Similar simplification has also been made for Boolean circuits [34].

Second, in the context of model verification, a concept that enhances a counterexample
returned by a model checker with a causal explanation based on a version of the updated
HP is proposed in [16]. However, they are adapting the definition such that dependencies
between variables are not considered. Thus, their domain-specific simplification comes
from the fact that no dependencies between variables, and hence no equations, are required.
Moreover, they used the definition of singleton causes. Their approach is integrated into a
tool called RuleBase PE, a formal verification platform by IBM.

Similarly, some researchers proposed to generate fault trees out of probabilistic counterex-
amples determined by a model checker using causality analysis [117]. Thus, they modify
the updated HP definition to consider the ordering of events. This work was extended
in [124] to provide formal proofs and refined the definitions such that their approach can be
integrated into model checkers and applied on transition systems representing concurrent
systems. The integration into model checkers as compared to the analysis done in [117]
leads to a performance improvement regarding runtime as well as memory consumption.
An implementation of this approach is made in the SpinCause tool [125]. The authors of [14]
further extend this line of work. The authors implemented different flavors of causality
checking (based on the updated HP) using Bounded Model Checking to debug models
of safety-critical systems. However, in contrast to our work, they employed SAT solving
indirectly in the course of model checking.

All the aforementioned HP applications use acyclic binary models; they depend on
older versions; augment their domain-specific technologies with causality such as Kripke
structures, lineage formula, or counterexamples. These applications, to our knowledge,
adapted the theory to a domain-specific context, with simplifications and restrictions on the
definition. For instance, they relax the definition of counterfactuality by either removing the
mechanics of the model, i.e., no-equations model, one-equation model, or by considering
singletons only, i.e., the cause is one tuple. Thus, the complexity of the causality definition
is relaxed, either because AC2 is more straightforward (no ~W) or AC3 is not needed.
Therefore, in contrast to our approach, these applications can not be used outside their
respective domains due to the restrictions or dependency on other concepts. Obviously,
that is sufficient for the particular use-case, but we argue that a general approach towards
actual causality may enable new socio-technical applications; such an approach is lacking
in the literature. In contrast, the approaches presented in this thesis are general causality
reasoning algorithms. Hence, in the evaluation, we use examples from different domains
of philosophy, security, safety, accident investigation, and explainable AI. We provide
methods that support the effective usage of the formal definition without compromising the
generality of the theory. We employ optimization problem solving, which was not utilized

166

10.2 Causality

before in this context. Alternatively, previous work used SAT indirectly [14], or answer set
programming [18]. To prove the complexity classes, Halpern [74] used the relation between
the conditions and the SAT problem. However, the actual encoding in SAT with a size that
is linear to the number of variables is still missing. We close this gap in Chapter 3. Lastly, to
the best of our knowledge, no previous work tried to address actual causality in non-binary
models. As part of this thesis, we propose a method to formulate a causal query in numeric
models as an optimization problem.

Similar to our aim, [89] Hopkins (in 2002) evaluated search-based strategies for determin-
ing causality according to the original HP definition. Hopkins proposed ways to explore
and prune the search space for computing ~W, ~Z that were required for that version, and
considered properties of the causal model that makes it more efficient for computation. The
results presented are of models that consist of less than 30 variables; in contrast, we show
SAT-based strategies that compute causality for models of thousands of variables.

10.2.2 Non-HP Causality Reasoning

Gössler and Le Metayer [66], propose a general framework for causality analysis of system
failures based on observed traces and behavioral models. The authors differentiate their
approach from HP in two ways. The first difference is their utilization of traces as first-class
citizens in their approach, whereas HP requires mapping the abstract notion of events to
properties. The second difference is regarding (utilizing) the temporal ordering, which is
not explicitly regarded in HP. Their work resulted in some publications on causality in
real-time systems([64],[199]). While we think this is an interesting approach, we still think
that coming-up with fully specified behavioral models of the systems is a daunting task
(especially in domains other than real-time systems). In contrast to this approach, we aspire
to generalize causality into more domains once we have it as a technical component.

In recent work, LeBlanc et al. have a similar aim to ours in advancing efficient actual
causation applications [121]. The authors criticize the counterfactual criterion of a cause.
They argue that a causality approach should distinguish the laws of a situation’s state and
the events that cause the states to change. That work is similar to approaches such as [12]
in which languages like situation calculus or action and change languages are proposed
to compute actual causality. While a comparison of causality definitions is beyond the
scope of this thesis, we think that one comprehensive general definition of causality is an
ambitious goal. Thus, we believe that our approach facilitates such comparison by efficiently
computing causality according to the HP definition. Further, Mark Hopkins [90, 88] studies
the shortcomings of the structural equations models. Specifically, he emphasizes the
expressiveness of this language and how useful it would be to use situation calculus.
Although this is interesting research, we are focusing on structural equations.

Fault tree analysis (FTA) is an established design-time method to analyze the risks
related to the safety and reliability of a system [175]. Similar to HP, FTA is a model-based
activity. It comprises a model, i.e., a fault tree, and quantitative and qualitative analysis
tools. The primary qualitative approach to analyze a fault tree is the computation of

167

10 Related Work

minimal cut sets MCSs; a cut set (CS) is a set of events that, taken together, lead to the
top-level event. These sets provide insights about system vulnerabilities. In [175], the
authors surveyed 150 papers on FTA; they classified the approaches to determine MCS
to either use Boolean manipulation, Binary decision diagrams, or other methods. From a
goal perspective, these methods are similar to the actual causality computations; however,
the conceptual difference is the definition of a cause. While a cause typically covers two
notions: sufficiency and necessity, a CS in a tree presents a sufficient cause only. The
occurrence of the events in a CS leads to the occurrence of the top-level event (formally
~X s.t. (M,~u) |= [~X ← ~x]ϕ). This roughly corresponds to AC1 in the definition, while
the minimality of the cut set corresponds to AC3. The difference lies in the necessity of
the cause (AC2), i.e., the counterfactual relation in which the non-occurrence of the cause
leads to the non-occurrence of the effect. An MCS computation does not include this step,
which is the core of actual causality computation. Cut sets are all the enumerations that
make the effect true. Some of these enumerations will be an HP cause and others will not
depending on necessity. If an HP cause in a fault-tree causal model exists it will be one of the
minimal cut sets. Not all the minimal cut sets are HP causes, e.g., cases of overdetermination
(conjunctions).

Furthermore, FTA does not reason about an arbitrary combination of events as an effect
and does not account for the absence of events as a cause. That said, for tree-based models,
FTA and actual causality can complement each other; e.g., the list of MCSs can be used as a
set of hypothesized causes for inference, or causal analysis and model checking can be used
to construct the fault tree, like in [117].

Additionally, model-based diagnosis (MBD) aims to detect faulty components to explain
anomalies between observed and correct system behavior [168, 42]. MBD uses a model
that describes a system as a set of logical expressions over a set of components. MBD is
similar to actual causality in requiring a set of observations that correspond to the context
~U ; using logical inference, MBD outputs a set of hypotheses for how the system differs from
its model, i.e., diagnoses. While MBD can be considered as an approach to infer causality, it
does not embed counter-factuality of the cause in its reasoning. Note that although MBD
uses a notion of intervention (setting some components to abnormal, and the rest to normal),
this is not counterfactual reasoning. Instead, it is a sufficiency check since MBD uses a
behavioral model, i.e., a representation of the correct behavior of the system. As with FTA,
diagnoses are a set of sufficient causes, but not all are actual causes according to HP.

The Why-Because-Analysis (WBA) method, through the WBG graph, aims to highlight,
potentially missed, factors in classical investigations, and aspire to come up with counter-
measures to prevent future accidents [119, 120, 178]. To that end, WBA concludes a list of
factors that are necessary and sufficient to cause the effect. Although very relevant, the result
of this process is different from an actual, minimal, counterfactual cause concluded by HP.
First, WBA is an accident-investigation methodology via manually checking counter-factual
relation (AC2 without considering ~W) between each pair of factors in one accident. Thus,
the result is a concrete causal model that embeds the context and may not generalize to the

168

10.3 Causal Models for Accountability

same events in a different accident. Second, WBA accounts for sufficient (AC1 in HP), but
not necessary causes, which resembles the preemption situations in HP [178]. This is justi-
fied by the fact that WBA aims to enhance safety by putting countermeasures, and hence
for such cases, WBA either merges the two confusing causes (if they were similar factors)
or creates two different WBGs (in the case of dissimilar factors). Third, each connection in
the graph implies a necessary causal factor (NCF) relation, i.e., counter-factually related. In
HP causal models, on the other hand, an edge between two factors means a causal relation
(not exclusively NCF) exists between the factors. This relation is explained by the equations
in the model. Fourth, WBA starts by stating a top-node (mishap) which represents the
accident (singleton) event under-investigation. On the other hand, the effect in HP is any
single or combination of primitive events.

Gap 2 Based on the above, we argue that the literature around actual causality reasoning lacks
comprehensive (no restrictions on the model, the cause, or the query), general (no domain-specific
artifacts in computation), scalable (performs well with large causal models) algorithms for reasoning
about actual causality.

10.3 Causal Models for Accountability

As we stated earlier, causal modeling refers to the act of creating causal models (Section 2.2),
possibly, from other sources of knowledge. Gregory Cooper published an article on causal
discovery using Bayesian networks [38]. Further literature examining model discovery is
discussed by Chen and Pearl [31]. These approaches are mainly data-driven methods to
discover (type) causal relations. To the best of our knowledge, no previous work has tried
to address HP causal modeling in security or safety, specifically, by transforming other
models (e.g., attack trees) to causal models. In this section, we discuss sources and domains
of causal modeling related to this thesis.

10.3.1 Insider Threat and Threat Models

To the best of our knowledge, no previous work has tried to generate HP models for mali-
cious insiders. However, the thorough work on attack and defense modeling is interesting.
Kordy et al. [112] surveyed the DAG-based models. Their main classification of the mod-
els is either tree or Bayesian network (BN) based. Although a BN is similar to a causal
model, there are two differences in utilizing them in security. First, BNs are used for the
probabilistic inference of an attack likelihood and prediction. However, we aim to use the
causal models for inferring actual causality. Second, a causal model contains a semantic
perspective represented by the structural equations, while BN only contains a dependency
relation supported by the conditional probability table. In this direction, we see the work
by Qin et al. [163] which indeed converts attack trees to BN to correlate alerts to predict
attacks. Similarly, Althebyan and Panda [7] present a BN model to evaluate and analyze a

169

10 Related Work

system after an insider attack. Both their evaluation and analysis do not include attributing
the attacker. Poolsapassit and Ray [161, 164] use AT in a similar way. They do not convert it
to other models but rather combine it with the insider’s intent to predict malicious activity.
In [161], they use AT to investigate logs. These two papers are related to our goal but differ
in the approach of converting AT to causal models annotated with possible suspects. Most
of the work reporting on insiders [176, 160] aims to detect the attacks at run-time [109].
Although our work can be combined with such approaches, this is fundamentally different
since we consider postmortem attribution. Chinchani et al. [32] proposed a modeling
language for insiders. This is interesting, however, we used AT for reasons of industry
utilization and tool support [111].

Previous studies have examined attack graph generation, primarily relative to computer
networks [100, 182, 171, 150], where multiple machines are connected to each other and
the Internet. One early study of attack graph generation was conducted by Sheyner et al.
using model checkers with a goal property [182]. Model checkers use computational logic
to determine if a model is correct; otherwise, if the model is incorrect, the model checkers
provide a counterexample. A collection of these counterexamples forms an attack graph.
However, model checkers have a computational disadvantage. Amman et al. extended
this work with some simplifications and more efficient storage [171]. Ou et al. used a
logical attack graph [150] and Ingols et al. [100] used BFS algorithm to tackle the scalability
issue. Ingols et al. discussed the redundancy of full and predictive graphs and modeled
an attack graph as a multi-purpose graph with contentless edges and three node types.
They used BFS technique to generate the attack graph. This approach provides faster
results compared to using model checkers. We have extended the work of Ingols [100]
and Aksu [5] in conjunction with the Clair OS to generate attack graphs for microservice
architectures. Despite their increasing popularity, containers and microservice architectures
have demonstrated serious security risks, primarily due to their connectivity requirements
and a lesser degree of encapsulation [36, 44]. To the best of our knowledge, no previous
study has been conducted targeting attack graph generation for micro-services. More
importantly, no previous study tried to generate causal models from attack graphs.

For attack attribution, researchers [181, 93] have identified three techniques: digital
forensics, malware based analysis, and indirect attribution techniques that use statistical
models to identify attackers. Most of these techniques target outsider attackers. Unlike
our approach, digital forensics tools mainly face the challenge of scalability with the size
of logs [181], whereas we can elicit the requirements of logging from our modes. That
is, we only monitor the properties that set our context. Malware based analysis targets a
different attack vector than us. Indirect attribution techniques are interesting since they use
a statistical model. However, they require massive amounts of data. In contrast, we make
use of explicit knowledge represented in attack trees.

170

10.4 Model-driven Contextualization

10.3.2 Safety, Fault Trees, and WBA

In the domain of accidents (aircraft, railways) investigation, the WBA tools and method-
ologies are relevant to our work [119, 120, 178]. The (WBA) Software Toolkit provides
functionalities that support an incident investigation, especially in modeling and structur-
ing the occurred factors. Our approach, on the other hand, differentiates the modeling and
the context, since it is plausible to use models of re-occurring behavior among incidents.
Thus, WBA embeds the context in the model and hence does not support this within its
toolkit. Also, since WBA aims at listing all the sufficient causal factors of the accident,
the toolkit does not provide an actual causality reasoning capability. Similarly, threat and
hazard modeling tools, such as ADT for attack trees [111] and EMFTA for fault trees [43],
provide model editors and analysis tools for the user. However, explicit context setting and
causality reasoning are not part of the editors. Also, the ability to import other sources of
knowledge and transform them into causal models is not supported in all these tools.

A significant body of work is published around xAI; for an overview about post-hoc
human explanations see [143, 141]. In our use-case, we did not propose a complete solution
like the local explanation in [170]. However, our goal is to emphasize the connection
between our approach and xAI. Still, significant work is needed in the domain of modeling
for xAI, possibly using our framework.

Gap 3 With the various instances of domain-specific sources for causal modeling, the literature
lacks practical and (semi-)automated approaches to construct causal models relevant to specific
domains.

10.4 Model-driven Contextualization

Most of the papers around forensic readiness tackle the issue of policy organization and
did not focus on automated procedures like our approach [189, 197, 49, 172]. The number
of logs that have to be analyzed after a security incident motivated Poolsapassit et al. to
use Augmented Attack trees and known attack signatures to filter the generated logs for
malicious actions [162]. We also use threat models, but to control and automate the logging
process rather than filtering the logs produced as part of a forensic investigation process.

Security of microservices has become a popular research area in the past few years on
account of the increased interest in security-related issues of the architecture itself and the
DevOps practices. In response to the arisen security challenges, researchers studied the
runtime monitoring of microservices. Sun et al. [188] proposed in 2015 a security-as-a-
service solution for cloud-based microservices. More precisely, in their work, they introduce
a cloud-based network security framework to enable the administrators to monitor the
network traffic of the communicating microservices. However, their research does not
take into account one of the most prominent practices in microservices and DevOps, the
containerization, and does not consider the forensic investigation of successful attacks.

171

10 Related Work

Torkura et al. [192] proposed a methodology to integrate continuous security assessment in
microservices by introducing a Security Gateway to enforce security policies. Their solution
uses the Health Endpoint Monitoring Pattern [87] and acts as a security scanner to identify
vulnerabilities in the microservices. Compared to our work, the proposed monitoring
system focuses only on the application layer and neither takes into account infrastructure
attacks nor deals with computer forensics.

Gap 4 The literature lacks domain-specific solutions to tackle the problem of logging granularity
and contextualization of causal reasoning in modern systems.

10.5 Summary of the Gaps

We summarize all the gaps identified in this chapter in the following list. Each gap is
thoroughly explained in its corresponding section above.

Gap 1. Accountability literature lacks a clear methodology and tools to enable accountability
in digital systems.

Gap 2. The literature around actual causality reasoning lacks comprehensive (no restrictions
on the model, the cause, or the query), general (no domain-specific artifacts in compu-
tation), scalable (performs well with large causal models) algorithms for reasoning
about actual causality.

Gap 3. With the various instances of domain-specific sources for causal modeling, the litera-
ture lacks practical and automated approaches to create causal models.

Gap 4. In various relevant domains, the literature lacks domain-specific solutions to tackle the
problem of logging granularity and contextualization of causal reasoning in modern
systems.

172

11 Conclusions

This chapter concludes the work in the thesis. It summarizes the contributions
proposed throughout the chapters. We state the results of the thesis and the
lessons learned during the development of this work. Afterward, we discuss
limitations and avenues for future work.

11.1 Thesis Overview

This doctoral thesis presents a unifying framework to operationalize the concept of actual
causality in modern systems. A concept that we deem crucial for enabling these systems’
abilities to explain mishaps, attribute responsibility, and be accountable. In the first part, we
discussed the factors that contribute to the inevitability of the system’s mishaps, hence the
need to design them to be accountable. We presented a general model of the mechanisms
that we aspire to add to systems to achieve our goal. The pillar of these mechanisms was
an operational ability to reason about the actual causality of events. We discussed the
theory of actual causality in Chapter 2, showing its amenability to automated reasoning.
However, we also illustrated the practical and computational difficulties that are potentially,
preventing its adoption for purposes related to accountability.

The second and core part of the thesis tackled the computational aspects of actual causality.
We started, in Chapter 3, with a basic brute-force approach to illustrate the hardness of the
problem of causality checking, i.e., deciding if a candidate cause is an actual cause of some
observed effect. Then, limiting ourselves to binary models, we presented a sound method
to encode both counterfactuality, and minimality conditions, given a candidate cause, as
propositional formulae. This, in turn, allows us to use off-the-shelf SAT solvers to answer
actual causality queries. Further, we presented multiple extensions to the approach that
dealt with additional requirements such as degree of responsibility or aimed to optimize
the performance. Even with tiny models (30 variables), checking causality in a brute force
manner is incomputable, whereas the SAT-based approach scaled to large models (4000
variables) within seconds. This result seems relevant when causal models are generated
from other artifacts, as done several times in this thesis.

To support other notions of reasoning, we showed, in Chapter 4, how the problem of
checking, semi-inference, and inference could effectively and efficiently be solved as an
optimization problem. Keeping our restriction to binary models, we presented quantifi-
able notions of causal inference within counterfactual computations and showed how to

173

11 Conclusions

encode them within an optimization problem. We contributed a MaxSAT formulation
that outperforms all other approaches in answering causality checking queries and an ILP
formulation that eliminates the need for a candidate cause in the query. Using models with
8000 variables, which we deem realistic and necessary for automatically inferred causal
models, we show that our approaches answer checking queries in seconds, and inference
queries in minutes.

We concluded the part on computational aspects of actual causality by eliminating the
restriction to binary models. In Chapter 5, we presented a novel reasoning method given
numerical causal models. The method presented a generalization of the concepts used in
the previous techniques and showed how to use them in the context of numerical variables
and equations. We discussed the impact of this generalization on the efficiency of answering
actual causality queries.

After establishing a sound foundation for causality reasoning in the second part of the
thesis, in its third, we focused on practical methods of causal modeling and contextualiza-
tion in one domain of applications, i.e., microservice-based information systems. Although
both, modeling and contextualization, are generic requirements for our solution, addressing
them cannot be done in general; thus, we showed examples of how can domain-specific
modeling and contextualization work in practice. We started, in Chapter 6, by capturing
the interaction between domain-specific artifacts such as attack trees and causal models.
For purposes of accountability, especially in the context of insiders, we showed that such
models are beneficial, and we considered attack trees as one source to construct them. We
proceeded then to explore methods to generate these artifacts automatically in Chapter 7.
Specifically, we presented a mechanism to generate attack graphs on a continuous base,
which can then be transformed into causal models. The semi-automated construction
of causal models from attack trees and the automated construction from attack graphs
illustrate practical causal modeling methodologies. We concluded this part of the thesis by
presenting an architecture, in Chapter 8, that uses the models to guide the contextualization
of insiders’ actions and determines the logging granularity, as one instance of the general
problem of contextualization.

In the fourth part of the thesis, we presented a general framework that consists of
reasoning, modeling, and contextualization abilities. We showed how these abilities are
effective in enabling accountability or explainability of a system. We discussed different
possible patterns of modeling, contextualization, and reasoning that can be orchestrated
within the framework. We illustrated these patterns using case studies in domains of
explainable AI, aircraft, drones, and information systems forensics.

11.2 Main Results

Despite the computational complexity of the theory, actual causality for binary models,
according to HP, is efficiently and effectively checked with SAT solving. Our encodings
verify whether a candidate cause is an actual cause of an event (or a combination of

174

11.2 Main Results

events), for a large class of models, within seconds. We used a dataset that we deem
representative of our target systems. However, the performance is impacted when tackling
the minimality. Both minimalities of the contingency set (~W) for responsibility computation
or the minimality condition of the cause requires a longer time to calculate.

Actual causality is efficiently inferred when formulated as an optimization problem.
Keeping the limitation to binary models, our formulation of checking queries as optimiza-
tion problems, answers such queries almost instantly. Also, it introduces the ability to
semi-infer actual causality. Especially using MaxSAT, the efficiency of obtaining answers
is remarkable. Furthermore, the inference of actual causality is efficiently computed as a
multi-objective integer linear program. We show to a large scale that queries are answered
in a timely fashion given sufficient memory resources.

The efficient checking of actual causality as an optimization problem is generalizable
to non-binary models. The same concepts of quantifiable counterfactual computations of
binary models are also applicable to numerical models—however, the solution does not
scale to the size that the binary approaches reach.

Causal modeling and contextualization can be operationalized utilizing domain-specific
artifacts. The domain of micro-service-based systems, for instance, requires enabling ac-
countability in the context of insiders. Attack trees, depicting potential attacks by insiders,
are useful templates to extract causal models semi-automatically. The extraction considers
domain-specific attributes such as collusion attacks and preemption scenarios. Similarly,
fault trees, depicting typical failures of safety-critical systems, are another source for creat-
ing causal models. Further, such templates and causal models, in turn, can be generated
automatically leveraging the network topology. This domain-specific operationalization of
modeling enhances contextualization as well. In this domain, contextualization is effectively
and efficiently achieved through model-driven methodologies that advocate the right level
of logging.

Different, yet related, patterns of operationalizing actual causality are observed within
modern systems. Our unifying framework showed multiple ways to orchestrate mod-
eling, contextualization, and reasoning. For instance, similar to the case of insiders in
information systems, fault trees of UAVs also operationalize modeling and guide contex-
tualization for causality and accountability. In contrast, the context collected from logs
and reports of aircraft accidents drives the construction of why-because-graphs. More
straightforward than the two cases, the model and the context are both available in the
domain of explainable AI. The reasoning for all the aforementioned is effective because it
caters to the specific requirements (e.g., responsible insiders, contrastive queries, or set of
sufficient causes) of each field.

175

11 Conclusions

11.3 Limitations

• Causal Models Types: The types of the variables and their relations in a causal model
impact the efficiency of the computation algorithms.

– In this thesis, we limited our focus to acyclic models. This limitation follows
the literature and most of Halpern’s examples. Although all the models that we
found are indeed acyclic, the theory of actual causality supports cyclic models.
All the algorithms in this thesis can, in principle, be adapted to support cyclic
models according to the treatment proposed by Halpern (see Chapter 6 [75]).

– At the beginning of this thesis, we restricted our focus to binary models. A
restriction that is deemed reasonable in the literature due to the scarcity of non-
binary models. However, we also illustrated an extension to numerical models,
which we expect will be of relevance to explainable AI purposes in the future.
In this thesis, we only consider binary models with propositional formulae or
numerical models with linear equations.

– All the queries in this thesis assume a deterministic model and context. Although
the need for probabilistic models may arise in practice, our tools do not support
probabilities out of the box. Since HP treats probabilistic models by pulling
probability out of the model, we do not consider it a severe limitation.

– Our utilization of the notion of responsibility is based on the definition given by
Chockler and Halpern in [33]. While there are other notions in the literature, we
use it due to its compatibility with the deterministic models we use.

• Model Incompleteness: HP is a model relative theory, which is further complicated
by the fact that causal models are necessarily incomplete. In this thesis, we do not
assess the quality of the causal model itself; instead, we transform existing knowledge
captured in other models and argue about the validity of the transformation. Further,
the tools contributed within this thesis support various ways to allow the change in
the models, for instance, the continuous modeling for microservices, or the interactive
modeling platform within Canvas.

• External Validity: The results of the empirical evaluation are bound to our dataset.
While we remain positive this dataset is realistic and representative of complex cases,
the results may not generalize to other models with different structures. Also, with
the continuous development of SAT, MaxSAT, ILP solvers, the reported results may
differ with newer versions or recent new solvers. Most probably, the differences will
be an enhancement of our reported results.

11.4 Future Work

In this section, we mention several aspects that we consider important for future work.

176

11.4 Future Work

The substantial influence of the model on the inferred causality requires quality control
on the modeling part. A potential future research direction is to explore the qualities of
a causal model for accountability (what constitutes a valid model for an accountable system?).
Automated construction of such models for accountability is another useful follow-up of
this thesis. Possibly, this automation may use the reasoning machinery provided in this
thesis to construct valuable causal models.

Also, the impact of the model’s structure on the efficiency of the computation is another
direction for further research. A thorough characterization of causal model classes that
affect the efficiency of the proposed approach is a useful follow-up. This might be helpful
in understanding and possibly predicting the required time of computing the satisfiability
of different formulas generated by our algorithms.

The core part of this thesis focused on reasoning. We think this part can be extended in
several ways. One way is to develop all the algorithms to treat non-deterministic causal
models and contexts. While reasoning under uncertainty is tackled in the HP definitions,
and hence, supported by the algorithms, still, potential computational problems may arise.

A sophisticated selection of the counterfactual world is another direction for future work.
The solid foundation of our computations is a description of the counterfactual world; the
more quantifiable aspects (e.g., minimality, degree of responsibility) we incorporated in the
description, the better abilities (e.g., inference) of reasoning we got. Applying additional
restrictions (e.g., normality) may result in picking “better” counterfactual worlds, and
hence, better answers to causal queries.

A recent topic of interest in the research community is explainable AI. Extending our
framework with a formal account of explanation in AI grounded on the definitions of actual
causality is a potential contribution. Further, we consider the construction of structural
equation models based on machine-learned models, an interesting research area. We see
our established framework as an enabler of such research, especially with the support of
numerical models.

177

Bibliography

[1] Microservice architecture. https://microservices.io/articles/
whoisusingmicroservices.html, 2018. Retrieved September 4 2018.

[2] Phpmailer 5.2.18 remote code execution. https://github.com/opsxcq/
exploit-CVE-2016-10033, 2018. Retrieved September 4 2018.

[3] Sambacry rce exploit for samba 4.5.9. https://github.com/opsxcq/
exploit-CVE-2017-7494, 2018. Retrieved September 4 2018.

[4] Mohsen Ahmadvand and Amjad Ibrahim. Requirements reconciliation for scalable
and secure microservice (de) composition. In Requirements Engineering Conference
Workshops (REW), IEEE International, pages 68–73. IEEE, 2016.

[5] M Ugur Aksu, Kemal Bicakci, M Hadi Dilek, A Murat Ozbayoglu, et al. Automated
generation of attack graphs using nvd. In Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy, pages 135–142. ACM, 2018.

[6] Gadi Aleksandrowicz, Hana Chockler, Joseph Y. Halpern, and Alexander Ivrii. The
computational complexity of structure-based causality. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

[7] Qutaibah Althebyan and Brajendra Panda. A knowledge-based bayesian model
for analyzing a system after an insider attack. In Proceedings of The Ifip Tc 11 23 rd
International Information Security Conference, pages 557–571. Springer, 2008.

[8] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based
network vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 217–224. ACM, 2002.

[9] Zaruhi Aslanyan and Flemming Nielson. Model checking exact cost for attack
scenarios. In International Conference on Principles of Security and Trust. Springer, 2017.

[10] Fahiem Bacchus, Matti Järvisalo, Ruben Martins, et al. Maxsat evaluation 2018, 2018.

[11] Fahiem Bacchus and Nina Narodytska. Cores in core based maxsat algorithms: An
analysis. In International Conference on Theory and Applications of Satisfiability Testing,
pages 7–15. Springer, 2014.

179

https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html
https://github.com/opsxcq/exploit-CVE-2016-10033
https://github.com/opsxcq/exploit-CVE-2016-10033
https://github.com/opsxcq/exploit-CVE-2017-7494
https://github.com/opsxcq/exploit-CVE-2017-7494

Bibliography

[12] Vitaliy Batusov and Mikhail Soutchanski. Situation calculus semantics for actual
causality. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[13] Kristian Beckers, Jörg Landthaler, Florian Matthes, Alexander Pretschner, and Bern-
hard Waltl. Data accountability in socio-technical systems. In International Workshop
on Business Process Modeling, Development and Support, pages 335–348. Springer, 2016.

[14] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan
Leue. Symbolic causality checking using bounded model checking. In Model Checking
Software - 22nd International Symposium, SPIN, 2015.

[15] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler.
Explaining Counterexamples Using Causality, pages 94–108. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[16] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler.
Explaining counterexamples using causality. Formal Methods in System Design, 40(1):20–
40, 2012.

[17] Pietro Belotti, Leo Liberti, Andrea Lodi, Giacomo Nannicini, and Andrea Tramontani.
Disjunctive inequalities: applications and extensions. Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[18] Leopoldo Bertossi. Characterizing and computing causes for query answers in
databases from database repairs and repair programs. In International Symposium on
Foundations of Information and Knowledge Systems, pages 55–76. Springer, 2018.

[19] Johannes Bisschop. AIMMS optimization modeling. Lulu. com, 2006.

[20] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense trees for economic
evaluation of security investments. In Availability, Reliability and Security, 2006. ARES
2006. The First International Conference on, pages 8–pp. IEEE, 2006.

[21] Andreas Blass and Yuri Gurevich. On the unique satisfiability problem. Information
and Control, 55(1-3):80–88, 1982.

[22] Harold Booth, Doug Rike, and Gregory A Witte. The national vulnerability database
(nvd): Overview, 2013.

[23] James Bottomley. What is All the Container Hype?, 2014.

[24] Mark Bovens. Two concepts of accountability: Accountability as a virtue and as a
mechanism. West European Politics, 33(5):946–967, 2010.

[25] Gerald G Brown and Robert F Dell. Formulating integer linear programs: A rogues’
gallery. INFORMS Transactions on Education, 7(2):153–159, 2007.

180

Bibliography

[26] Glenn Bruns and Stuart Anderson. Validating safety models with fault trees. In
SAFECOMP’93, pages 21–30. Springer, 1993.

[27] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

[28] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices approach for
the internet of things. In Emerging Technologies and Factory Automation (ETFA), 2016
IEEE 21st International Conference on, pages 1–6. IEEE, 2016.

[29] Tomas Cerny, Michael J Donahoo, and Michal Trnka. Contextual understanding
of microservice architecture: current and future directions. ACM SIGAPP Applied
Computing Review, 17(4):29–45, 2018.

[30] A. S. Cheliyan and S. K. Bhattacharyya. Fuzzy fault tree analysis of oil and gas
leakage in subsea production systems. Journal of Ocean Engineering and Science, 2018.

[31] Bryant Chen and Judea Pearl. Graphical tools for linear structural equation modeling.
Technical report, DTIC Document, 2014.

[32] Ramkumar Chinchani, Anusha Iyer, Hung Q Ngo, and Shambhu Upadhyaya. To-
wards a theory of insider threat assessment. In Dependable Systems and Networks, 2005.
DSN 2005. Proceedings. International Conference on, pages 108–117. IEEE, 2005.

[33] Hana Chockler and Joseph Y Halpern. Responsibility and blame: A structural-model
approach. Journal of Artificial Intelligence Research, pages 93–115, 2004.

[34] Hana Chockler, Joseph Y Halpern, and Orna Kupferman. What causes a system to
satisfy a specification? ACM Transactions on Computational Logic (TOCL), 9(3):20, 2008.

[35] John David Collins, Edward J. Hall, and Laurie A. Paul, editors. Causation and counter-
factuals. Representation and mind. MIT Press, Cambridge, Mass, 2004. Elektronische
Ressource.

[36] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to docker: A
security perspective. IEEE Cloud Computing, 3(5):54–62, 2016.

[37] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, pages 151–158, 1971.

[38] Gregory Cooper. An overview of the representation and discovery of causal rela-
tionships using bayesian networks. Computation, causation, and discovery, pages 4–62,
1999.

[39] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company,
2001.

181

Bibliography

[40] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of
Satisfiability, volume 185, pages 403–424. IOS Press, 2009.

[41] A. P. Dawid. Causal inference without counterfactuals. Journal of the American
Statistical Association, 95(450):407–424, jun 2000.

[42] Johan De Kleer and James Kurien. Fundamentals of model-based diagnosis. IFAC
Proceedings Volumes, 36(5):25–36, 2003.

[43] Julien Delange. Emfta: an open source tool for fault tree analysis.

[44] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. In Present and Ulterior Software Engineering, pages 195–216.
Springer, 2017.

[45] Christof Ebert and Capers Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42–52, 2009.

[46] Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Appli-
cations of Satisfiability Testing, pages 61–75, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[47] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference., pages 502–518, 2003.

[48] Thomas Eiter and Thomas Lukasiewicz. Complexity results for structure-based
causality. Artificial Intelligence, 142(1):53–89, 2002.

[49] Barbara Endicott-Popovsky, Deborah A Frincke, and Carol A Taylor. A theoretical
framework for organizational network forensic readiness. JCP, 2(3):1–11, 2007.

[50] Christian Esposito, Aniello Castiglione, and Kim-Kwang Raymond Choo. Challenges
in delivering software in the cloud as microservices. IEEE Cloud Computing, 3(5):10–14,
2016.

[51] Daniel Farmer and Eugene H Spafford. The cops security checker system, 1990.

[52] Joan Feigenbaum, James A. Hendler, Aaron D. Jaggard, Daniel J. Weitzner, and
Rebecca N. Wright. Accountability and deterrence in online life. In Web Science 2011,
WebSci ’11, Koblenz, Germany - June 15 - 17, 2011, pages 7:1–7:7, 2011.

[53] Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. Towards a formal model
of accountability. In 2011 New Security Paradigms Workshop, NSPW ’11, pages 45–56,
2011.

182

Bibliography

[54] Christof Fetzer. Building critical applications using microservices. IEEE Security &
Privacy, (6):86–89, 2016.

[55] International Organization for Standardization and International Electrotechnical
Commission. Software Engineering-Product Quality, volume 9126. ISO/IEC, 2001.

[56] International Organization for Standardization and International Electrotechnical
Commission. Systems and software engineering — Systems and software Quality Require-
ments and Evaluation (SQuaRE) — System and software quality models, volume 25010.
ISO/IEC, 2011.

[57] ArduPilot Discuss Forums. Ardupilot discourse.

[58] Martin Fowler. Microservices resource guide, 2015.

[59] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei
Zhang, and Tao Xie. Where do developers log? an empirical study on logging
practices in industry. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 24–33. ACM, 2014.

[60] Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis, Sjouke Mauw, and
Rolando Trujillo-Rasua. Attack trees for practical security assessment: Ranking of
attack scenarios with adtool 2.0. In Quantitative Evaluation of Systems - 13th International
Conference, QEST 2016, Quebec City, QC, Canada, August 23-25, 2016, Proceedings, pages
159–162, 2016.

[61] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[62] Tobias Gerstenberg. Making a difference: Responsibility, causality and counterfactuals.
PhD thesis, University College London (University of London), 2013.

[63] Mojdeh Golagha. A Framework for Failure Diagnosis. PhD thesis, Technische Universität
München, 2020.

[64] Gregor Gössler and Lăcrămioara Aştefănoaei. Blaming in component-based real-
time systems. In Proceedings of the 14th International Conference on Embedded Software -
EMSOFT 14. ACM Press, 2014.

[65] Gregor Gößler and Lacramioara Astefanoaei. Blaming in component-based real-time
systems. In 2014 International Conference on Embedded Software, EMSOFT 2014, New
Delhi, India, October 12-17, 2014, pages 7:1–7:10, 2014.

[66] Gregor Gössler and Daniel Le Métayer. A general trace-based framework of logical
causality. In International Workshop on Formal Aspects of Component Software, pages
157–173. Springer, 2013.

183

Bibliography

[67] Gregor Gößler and Daniel Le Métayer. A general trace-based framework of logical
causality. In Formal Aspects of Component Software - 10th International Symposium, FACS
2013, Nanchang, China, October 27-29, 2013, Revised Selected Papers, pages 157–173,
2013.

[68] Jim Gray. A conversation with werner vogels. ACM Queue, 4(4):14–22, 2006.

[69] Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory efficient all-solutions SAT
solver and its application for reachability analysis. In Formal Methods in Computer-
Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November
15-17, 2004, Proceedings, pages 275–289, 2004.

[70] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner. Over 30% of official images
in docker hub contain high priority security vulnerabilities. In Technical Report.
BanyanOps, 2015.

[71] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[72] N. Hall. Structural equations and causation. Philosophical Studies, 132(1):109–136,
2007.

[73] Joseph Y Halpern. Defaults and normality in causal structures. In Proceedings of the
Eleventh International Conference on Principles of Knowledge Representation and Reasoning,
pages 198–208. AAAI Press, 2008.

[74] Joseph Y. Halpern. A modification of the Halpern-Pearl definition of causality. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI, pages 3022–3033, 2015.

[75] Joseph Y. Halpern. Actual causality. The MIT Press, Cambridge, Massachussetts, 2016.

[76] Joseph Y. Halpern and Christopher Hitchcock. Actual causation and the art of
modeling. In Causality, Probability, and Heuristics: A Tribute to Judea Pearl, pages
383–406. London: College Publications, 2010.

[77] Joseph Y Halpern and Christopher Hitchcock. Graded causation and defaults. The
British Journal for the Philosophy of Science, 66(2):413–457, 2014.

[78] Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural model
approach – part i: Causes. 2001.

[79] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach - part I: causes. In UAI ’01: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, University of Washington, Seattle, Washington, USA, August 2-5,
2001, pages 194–202, 2001.

184

Bibliography

[80] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach - part II: explanations. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10,
2001, pages 27–34, 2001.

[81] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach. part i: Causes. The British Journal for the Philosophy of Science, 56(4):843–887,
2005.

[82] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach, part i: Causes. 2005.

[83] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model ap-
proach. part ii: Explanations. The British Journal for the Philosophy of Science, 56(4):889–
911, 2005.

[84] Richard W Hamming. Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147–160, 1950.

[85] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.
Clause elimination for sat and qsat. Journal of Artificial Intelligence Research, 53:127–168,
2015.

[86] Christopher Hitchcock. The intransitivity of causation revealed in equations and
graphs. The Journal of Philosophy, 98(6):273–299, 2001.

[87] Alex Homer, John Sharp, Larry Brader, Masashi Narumoto, and Trent Swanson.
Cloud design patterns: Prescriptive architecture guidance for cloud applications. Microsoft
patterns & practices, 2014.

[88] Mark Hopkins. The actual cause: From intuition to automation. PhD thesis, University
of California, Los Angeles.

[89] Mark Hopkins. Strategies for determining causes of events. In AAAI/IAAI, 2002.

[90] Mark Hopkins and Judea Pearl. Clarifying the usage of structural models for com-
monsense causal reasoning. 2003.

[91] Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for specialising attack trees
based on linear logic. Fundamenta Informaticae, 153(1-2):57–86, 2017.

[92] David Hume. An equiry concerning human understanding. History of Economic
Thought Books, 1748.

[93] Jeffrey Hunker, Bob Hutchinson, and Jonathan Margulies. Role and challenges for
sufficient cyber-attack attribution. Institute for Information Infrastructure Protection,
2008.

185

Bibliography

[94] Amjad Ibrahim, Stevica Bozhinoski, and Alexander Pretschner. Attack graph genera-
tion for microservice architecture. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pages 1235–1242. ACM, 2019.

[95] Amjad Ibrahim, Severin Kacianka, Alexander Pretschner, Charles Hartsell, and Gabor
Karsai. Practical causal models for cyber-physical systems. In Julia M. Badger and
Kristin Yvonne Rozier, editors, NASA Formal Methods, pages 211–227, Cham, 2019.
Springer International Publishing.

[96] Amjad Ibrahim, Tobias Klesel, Ehsan Zibaei, Severin Kacianka, and Alexander
Pretschner. Actual causality canvas: A general framework for explanation-based
socio-technical constructs. In ECAI 2020, the 24th European Conference on Artificial
Intelligence, Frontiers in Artificial Intelligence and Applications, pages 2978 – 2985.
IOS Press, 2020.

[97] Amjad Ibrahim and Alexander Pretschner. From checking to inference: Actual
causality computations as optimization problems. In Dang Van Hung and Oleg
Sokolsky, editors, Automated Technology for Verification and Analysis, pages 343–359,
Cham, 2020. Springer International Publishing.

[98] Amjad Ibrahim, Simon Rehwald, and Alexander Pretschner. Efficient checking of
actual causality with sat solving. Engineering Secure and Dependable Software Systems,
53:241, 2019.

[99] Amjad Ibrahim, Simon Rehwald, Antoine Scemama, Florian Andres, and Alexander
Pretschner. Causal model extraction from attack trees to attribute malicious insider at-
tacks. In Graphical Models for Security, pages 3–23, Cham, 2020. Springer International
Publishing.

[100] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph genera-
tion for network defense. In Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 121–130. IEEE, 2006.

[101] Ponemon Institute. 2015 cost of cyber crime study: Global.

[102] David Jaramillo, Duy V Nguyen, and Robert Smart. Leveraging microservices archi-
tecture by using docker technology. In SoutheastCon, 2016, pages 1–5. IEEE, 2016.

[103] Severin Kacianka, Kristian Beckers, Florian Kelbert, and Prachi Kumari. How account-
ability is implemented and understood in research tools. In International Conference on
Product-Focused Software Process Improvement, pages 199–218. Springer, 2017.

[104] Severin Kacianka, Amjad Ibrahim, Alexander Pretschner, Alexander Trende, and
Andreas Lüdtke. Extending causal models from machines into humans. In 4th
Workshop on Formal Reasoning about Causation, Responsibility, & Explanations in Science
& Technology, 2019.

186

Bibliography

[105] Severin Kacianka, Florian Kelbert, and Alexander Pretschner. Towards a unified
model of accountability infrastructures. 2016.

[106] Severin Kacianka, Florian Kelbert, and Alexander Pretschner. Towards a unified
model of accountability infrastructures. In Proceedings of CREST@ETAPS 2016,, pages
40–54, 2016.

[107] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[108] Samantha Kleinberg and George Hripcsak. A review of causal inference for biomedi-
cal informatics. Journal of Biomedical Informatics, 44(6):1102–1112, 2011.

[109] Li Ling Ko, Dinil Mon Divakaran, Yung Siang Liau, and Vrizlynn LL Thing. Insider
threat detection and its future directions. International Journal of Security and Networks,
12(3), 2017.

[110] Thorsten Koch, Alexander Martin, and Marc E Pfetsch. Progress in academic com-
putational integer programming. In Facets of Combinatorial Optimization. Springer,
2013.

[111] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. Adtool: security
analysis with attack–defense trees. In International conference on quantitative evaluation
of systems, pages 173–176. Springer, 2013.

[112] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. Dag-based
attack and defense modeling: Don’t miss the forest for the attack trees. Computer
science review, 13:1–38, 2014.

[113] Nane Kratzke. About microservices, containers and their underestimated impact on
network performance. arXiv preprint arXiv:1710.04049, 2017.

[114] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. Designing a smart city internet
of things platform with microservice architecture. In Future Internet of Things and
Cloud (FiCloud), 2015 3rd International Conference on, pages 25–30. IEEE, 2015.

[115] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative attack tree analysis
via priced timed automata. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 156–171. Springer, 2015.

[116] Robert Künnemann, Ilkan Esiyok, and Michael Backes. Automated verification of
accountability in security protocols. CoRR, abs/1805.10891, 2018.

[117] Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From probabilistic coun-
terexamples via causality to fault trees. In Computer Safety, Reliability, and Security
- 30th International Conference, SAFECOMP 2011, Naples, Italy, September 19-22, 2011.
Proceedings, pages 71–84, 2011.

187

Bibliography

[118] Stavros Kyriakopoulos. Model-driven monitoring orchestration for microservices,
2019.

[119] Peter Ladkin and Karsten Loer. Why-because analysis: Formal reasoning about inci-
dents. Bielefeld, Germany, Document RVS-Bk-98-01, Technischen Fakultat der Universitat
Bielefeld, Germany, 1998.

[120] Peter B Ladkin. Causal reasoning about aircraft accidents. In International Conference
on Computer Safety, Reliability, and Security, pages 344–360. Springer, 2000.

[121] Emily LeBlanc, Marcello Balduccini, and Joost Vennekens. Explaining actual causation
via reasoning about actions and change. In European Conference on Logics in Artificial
Intelligence, pages 231–246. Springer, 2019.

[122] Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and Systems. PhD
thesis, University of Konstanz, Germany, 2015.

[123] Florian Leitner-Fischer and Stefan Leue. Causality Checking for Complex System Models,
pages 248–267. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[124] Florian Leitner-Fischer and Stefan Leue. Probabilistic fault tree synthesis using
causality computation. IJCCBS, 4(2):119–143, 2013.

[125] Florian Leitner-Fischer and Stefan Leue. Spincause: a tool for causality checking. In
2014 International Symposium on Model Checking of Software, SPIN 2014, Proceedings,
San Jose, CA, USA, July 21-23, 2014, pages 117–120, 2014.

[126] David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973.

[127] David Lewis. Counterfactuals and comparative possibility. Journal of Philosophical
Logic, 2(4):418–446, 1973.

[128] Chu Min Li and Felip Manya. Maxsat, hard and soft constraints. Handbook of
satisfiability, 185:613–631, 2009.

[129] Ruiming Li, Dian Zhou, and Donglei Du. Satisfiability and integer programming as
complementary tools. In Proceedings of the 2004 Asia and South Pacific design automation
conference, pages 879–882. IEEE Press, 2004.

[130] Algirdas Antano Maknickas. Linear programming formulation of boolean satisfia-
bility problem. In Transactions on Engineering Technologies, pages 305–321. Springer,
2014.

[131] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-wbo: A modular maxsat
solver. In International Conference on Theory and Applications of Satisfiability Testing,
pages 438–445. Springer, 2014.

188

Bibliography

[132] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In Information
Security and Cryptology - ICISC 2005, 8th International Conference, Seoul, Korea, December
1-2, 2005, Revised Selected Papers, pages 186–198, 2005.

[133] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microservices from
monolithic software architectures. In 2017 IEEE International Conference on Web Services
(ICWS), pages 524–531. IEEE, 2017.

[134] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph Koch, Kather-
ine F. Moore, and Dan Suciu. Causality in databases. IEEE Data Eng. Bull., 33(3):59–67,
2010.

[135] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
Why so? or why no? functional causality for explaining query answers. CoRR,
abs/0912.5340, 2009.

[136] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. The
complexity of causality and responsibility for query answers and non-answers.
PVLDB, 4(1):34–45, 2010.

[137] Alexandra Meliou, Wolfgang Gatterbauer, Suman Nath, and Dan Suciu. Tracing
data errors with view-conditioned causality. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 505–516, 2011.

[138] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Bringing provenance to
its full potential using causal reasoning. In 3rd Workshop on the Theory and Practice of
Provenance, TaPP’11, Heraklion, Crete, Greece, June 20-21, 2011, 2011.

[139] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239):2, 2014.

[140] U. S. Mian, J. I. den Hartog, S. Etalle, and N. Zannone. Auditing with incomplete logs.
In Proceedings of the 3rd Workshop on Hot Issues in Security Principles and Trust 2015,
London, UK, pages 1–23, Eindhoven, April 2015. Technische Universiteit Eindhoven.

[141] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 2018.

[142] Hans D Mittelmann and P Spellucci. Decision tree for optimization software, 2005.

[143] Brent Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explanations in
ai. In Proceedings of the conference on fairness, accountability, and transparency, pages
279–288. ACM, 2019.

[144] Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.
github.io/interpretable-ml-book/.

189

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Bibliography

[145] Richard Mulgan. ‘accountability’: An ever-expanding concept? Public Administration,
78(3):555–573, 2000.

[146] Sam Newman. Building microservices: designing fine-grained systems. " O’Reilly Media,
Inc.", 2015.

[147] Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent
Simon. Impact of community structure on sat solver performance. In International
Conference on Theory and Applications of Satisfiability Testing, pages 252–268. Springer,
2014.

[148] Andrew Nicholson, Helge Janicke, and Tim Watson. An initial investigation into
attribution in scada systems. In ICS-CSR, 2013.

[149] German Federal Bureau of Aircraft Accident Investigation. Investigation report
ax001-1-2/02, 2004.

[150] Xinming Ou, Wayne F Boyer, and Miles A McQueen. A scalable approach to at-
tack graph generation. In Proceedings of the 13th ACM conference on Computer and
communications security, pages 336–345. ACM, 2006.

[151] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. In
CLOSER (1), pages 137–146, 2016.

[152] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets (and
some facets of complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984.

[153] Nick Papanikolaou and Siani Pearson. A cross-disciplinary review of the concept of
accountability a survey of the literature. 2013.

[154] Mike P Papazoglou. Service-oriented computing: Concepts, characteristics and
directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on, pages 3–12. IEEE, 2003.

[155] Judea Pearl. Causation, action and counterfactuals. In Proceedings of the Sixth Con-
ference on Theoretical Aspects of Rationality and Knowledge, De Zeeuwse Stromen, The
Netherlands, March 17-20 1996, pages 51–73, 1996.

[156] Judea Pearl. On the definition of actual cause, 1998.

[157] Judea Pearl. Causality: models, reasoning and inference, volume 29. Springer, 2000.

[158] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect.
Basic Books, 2018.

190

Bibliography

[159] Siani Pearson and Andrew Charlesworth. Accountability as a way forward for
privacy protection in the cloud. In Martin Gilje Jaatun, Gansen Zhao, and Chunming
Rong, editors, Cloud Computing, pages 131–144, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[160] AH Phyo and SM Furnell. A detection-oriented classification of insider it misuse. In
Third Security Conference, 2004.

[161] Nayot Poolsapassit and Indrajit Ray. Investigating computer attacks using attack
trees. Advances in digital forensics III, pages 331–343, 2007.

[162] Nayot Poolsapassit and Indrajit Ray. Investigating computer attacks using attack
trees. In IFIP International Conference on Digital Forensics, pages 331–343. Springer,
2007.

[163] Xinzhou Qin and Wenke Lee. Attack plan recognition and prediction using causal
networks. In Computer Security Applications Conference, 2004. 20th Annual, pages
370–379. IEEE, 2004.

[164] Indrajit Ray and Nayot Poolsapassit. Using attack trees to identify malicious attacks
from authorized insiders. In ESORICS, volume 3679, pages 231–246. Springer, 2005.

[165] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pěchouček, Martin Grill, Jan
Stiborek, Karel Bartoš, and Thomas Engel. Runtime monitoring and dynamic re-
configuration for intrusion detection systems. In International Workshop on Recent
Advances in Intrusion Detection, pages 61–80. Springer, 2009.

[166] Simon Rehwald. A technical framework for actual causality inference, 2018.

[167] Simon Rehwald, Amjad Ibrahim, Kristian Beckers, and Alexander Pretschner. Ac-
cbench: A framework for comparing causality algorithms. In CREST@ETAPS 2017,
Uppsala, Sweden, 29th April 2017., pages 16–30, 2017.

[168] Raymond Reiter. A theory of diagnosis from first principles. Artificial intelligence,
32(1):57–95, 1987.

[169] IBM® X-Force® Research. 2016 cyber security intelligence index.

[170] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144. ACM,
2016.

[171] Ronald W Ritchey and Paul Ammann. Using model checking to analyze network vul-
nerabilities. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on, pages 156–165. IEEE, 2000.

191

Bibliography

[172] Robert Rowlingson. A ten step process for forensic readiness. International Journal of
Digital Evidence, 2(3):1–28, 2004.

[173] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Act: Attack countermeasure
trees for information assurance analysis. In INFOCOM IEEE Conference on Computer
Communications Workshops, 2010, pages 1–2. IEEE, 2010.

[174] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Cyber security analysis using
attack countermeasure trees. In Proceedings of the Sixth Annual Workshop on Cyber
Security and Information Intelligence Research, page 28. ACM, 2010.

[175] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the state-of-the-
art in modeling, analysis and tools. Computer science review, 15:29–62, 2015.

[176] Malek Ben Salem, Shlomo Hershkop, and Salvatore J Stolfo. A survey of insider
attack detection research. In Insider Attack and Cyber Security, pages 69–90. Springer,
2008.

[177] Babak Salimi and Leopoldo Bertossi. From causes for database queries to repairs and
model-based diagnosis and back. 2014.

[178] Dipl-Inform Jan Sanders. Introduction to why-because analysis. Dipl.-Inform, February,
2012.

[179] Bruce Schneier. Attack Trees - Modeling security threats. Dr. Dobb’s Journal, December
1999.

[180] Uwe Schöning and Jacobo Torán. The satisfiability problem : algorithms and analyses.
Mathematik für Anwendungen ; 3. Lehmanns Media, Berlin, 2013. English translation
of a slightly extended version; Erscheint: Juli 2013.

[181] Jawwad A Shamsi, Sherali Zeadally, Fareha Sheikh, and Angelyn Flowers. Attribution
in cyberspace: techniques and legal implications. Security and Communication Networks,
9(15), 2016.

[182] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing.
Automated generation and analysis of attack graphs. In Proceedings-IEEE Symposium
on Security and Privacy, page 273. IEEE, 2002.

[183] Rui Shu, Xiaohui Gu, and William Enck. A study of security vulnerabilities on docker
hub. In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 269–280. ACM, 2017.

[184] Jörn Stuphor. Amazonas midair collision - wba of public information.

[185] Jörn Stuphor. Handout of the 2002 ueberlingen mid-air.

192

Bibliography

[186] Jörn Stuphor. Kausale untersuchung der kollision zweier verkehrsflugzeuge über
dem bodensee, 1. juli 2002.

[187] Jörn Stuphor. The wbg of 2002 ueberlingen mid-air.

[188] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), pages 50–57. IEEE, 2015.

[189] John Tan. Forensic readiness. Cambridge, MA:@ Stake, pages 1–23, 2001.

[190] Takahisa Toda and Takehide Soh. Implementing efficient all solutions sat solvers.
Journal of Experimental Algorithmics (JEA), 21:1–12, 2016.

[191] Kennedy A Torkura, Muhammad IH Sukmana, and Anne VDM Kayem. A cyber risk
based moving target defense mechanism for microservice architectures. In 2018 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustain-
able Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages
932–939. IEEE, 2018.

[192] Kennedy A Torkura, Muhammad IH Sukmana, and Christoph Meinel. Integrating
continuous security assessments in microservices and cloud native applications. In
Proceedings of the10th International Conference on Utility and Cloud Computing, pages
171–180. ACM, 2017.

[193] Manghui Tu, Dianxiang Xu, Eugene Butler, and Amanda Schwartz. Forensic evi-
dence identification and modeling for attacks against a simulated online business
information system. Journal of Digital Forensics, Security and Law, 7(4):4, 2012.

[194] Tony J Van Roy and Laurence A Wolsey. Solving mixed integer programming prob-
lems using automatic reformulation. Operations Research, 35(1):45–57, 1987.

[195] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault tree handbook, 1981.

[196] Juan Pablo Vielma. Mixed integer linear programming formulation techniques. Siam
Review, 57(1):3–57, 2015.

[197] Sebastiaan Von Solms, Cecil Louwrens, Colette Reekie, and Talania Grobler. A control
framework for digital forensics. In Advances in Digital Forensics II, pages 343–355.
Springer, 2006.

[198] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations
without opening the black box: Automated decisions and the gdpr. Harv. JL & Tech.,
31:841, 2017.

193

Bibliography

[199] Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gössler, Oleg Sokolsky, and
Insup Lee. A Causality Analysis Framework for Component-Based Real-Time Systems,
pages 285–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[200] Daniel J Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James
Hendler, and Gerald Jay Sussman. Information accountability. Communications
of the ACM, 51(6):82–87, 2008.

[201] David A Wheeler and Gregory N Larsen. Techniques for cyber attack attribution.
Technical report, INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA VA, 2003.

[202] Eberhard Wolff. Microservices: flexible software architecture. Addison-Wesley Profes-
sional, 2016.

[203] Richard W Wright. Causation, responsibility, risk, probability, naked statistics, and
proof: Pruning the bramble bush by clarifying the concepts. Iowa Law Review, 73:1001,
1988.

[204] Weinan Zhao and Weimin Wu. ASIG: an all-solution SAT solver for CNF formu-
las. In 11th International Conference on Computer-Aided Design and Computer Graphics,
CAD/Graphics 2009, Huangshan, China, August 19-21, 2009, pages 508–513, 2009.

[205] Ehsan Zibaei, Sebastian Banescu, and Alexander Pretschner. Diagnosis of safety inci-
dents for cyber-physical systems: A uav example. In 2018 3rd International Conference
on System Reliability and Safety (ICSRS), pages 120–129. IEEE, 2018.

[206] Ehsan Zibaei and Alexander Pretschner. Automated diagnosis
of drone crashes. https://www22.in.tum.de/en/teaching/
automated-diagnosis-drone/. Accessed: 2019-11-25.

[207] Saman A Zonouz, Himanshu Khurana, William H Sanders, and Timothy M Yard-
ley. Rre: A game-theoretic intrusion response and recovery engine. In IEEE/IFIP
International Conference on Dependable Systems Networks, pages 439–448. IEEE, 2009.

194

https://www22.in.tum.de/en/teaching/automated-diagnosis-drone/
https://www22.in.tum.de/en/teaching/automated-diagnosis-drone/

List of Figures

1.1 A Conceptual Model of Accountability . 6
1.2 A Model of an Accountability Mechanism1 7
1.3 Abstract Architecture of the Solution . 11

2.1 Rock-Throwing Example . 21

3.1 Rock-Throwing Example . 41
3.2 Cactus Plots of Execution Time and Memory Results on the Larger Models . 47

4.1 The Program and the Solution of the Example 60
4.2 Execution Time and Memory Results on the Larger Models 67
4.3 Log-log Scatter Plot of ILP vs MaxSAT . 68
4.4 Cactus Plot including ILPwhy Execution Time and Memory Results on the

Larger Models. 69

5.1 A snippet of the ILP program generated for the example 85

6.1 An Abstract Architecture of the Solution focusing on Causal Modeling. . . . 94
6.2 An Excerpt of the Steal Master Key Causal Model 96
6.3 Steal Key Attack Tree (drawn using ADTool [111, 60]) 99
6.4 L-2 Unfolding . 99
6.5 L-3 Unfolding . 100

7.1 An Abstract Architecture of the Solution focusing on Causal Modeling. . . . 110
7.2 Attack Graph Generation Example . 113
7.3 Attack Graph Generator . 115

8.1 An Abstract Architecture of the Solution focusing on Contextualization. . . 126
8.2 System Architecture . 129
8.3 Steal customers’ Credit Cards Tree . 131
8.4 An example of Linux Audit Rule . 131

9.1 A Process View of the Framework . 139
9.2 The Technical Framework of Actual Causality 144
9.3 The Components of the Actual Causality Canvas 145
9.4 The Reasoning Mode in Canvas . 147
9.5 The Causal Graph of the Example . 149

195

List of Figures

9.6 Causal Network of the Überlingen accident [187] 153
9.7 The Insider Model in Canvas . 155
9.8 Causal model for Drone Crash . 157

10.1 Overview of literature on (actual) causality and their relationship 165

A.1 Causal Graph of Rock-throwing Example . 200
A.2 Causal Graph of Forest Fire Example . 201
A.3 Causal Graph of Prisoners Example . 201
A.4 Causal Graphs of Assassin Example . 202
A.5 Causal Graph of Railroad Example . 203
A.6 Causal Graphs of Abstract Model 1 & 2 . 204
A.7 Fault Tree for Leakage in Subsea Production System 206
A.8 Causal Graph of one Variant of the Binary Tree Example 208
A.9 Causal Graph of Abstract Causal Model 1 Combined with Binary Tree . . . 209
A.10 Causal Graph of Steal Master Key Example 210
A.11 Steal Master Key Attack Tree . 211

196

List of Tables

3.1 Complexity of AC1, AC2, and AC3 . 29
3.2 Truth Assignments of Formulae F and G . 37
3.3 Execution Time and Memory Allocation of the Scenarios 44

4.1 Checking and Semi-inference Evaluation Scenarios. 66
4.2 The Performance of a Representative Set of Scenarios for Causality Inference 69
4.3 Summary of the Approaches . 72

5.1 Disjunctive Constraints Cases . 78

6.1 Unfolding AND . 101
6.2 Use Cases of the Evaluation . 104
6.3 Efficiency Evaluation of the Model Creation. 105
6.4 Models From HP Examples . 107

7.1 Microservice Architecture Use-cases . 118
7.2 Scalability Results with Graph Characteristics and Generation Time (s) . . . 120

8.1 Numbers of Log Entries using the Two Settings 133

9.1 A Lay Model for Classifying Arthropods [141] 148
9.2 Accident’s Facts; Originally in German [187]; ordered as they appear in

Figure 9.6 . 152

A.1 Evaluated Causal Models . 199
A.2 Minimal Cut Sets of the Fault Tree for Leakage in Subsea Production System 204

197

A Evaluated Models

This appendix provides a detailed overview of our evaluated dataset. Parts of this
appendix have previously appeared in publications [98, 96], co-authored by the
author of this thesis.

A.1 Introduction

In the following, we present and describe the examples which our tool is based on. In
summary we prepared 37 different causal models. On the one hand, we took all those
models from [74] which consist of binary variables only. Since these examples are rather
small and therefore easy to understand, they mainly serve for testing our approaches and
showing that they work as expected. On the other hand, we came up with some examples
on our own, obtained one from an industrial partner and considered other literature. This
leads to the list of causal models shown in Table A.1. In order to give a feeling for their size,
we specified the number of endogenous variables they consist of.

Causal Model Source Number of Endogenous
Variables

Rock-Throwing [81, 74] 5
Forest Fire (conjunctive & disjunctive) [81, 74] 3
Prisoners [81, 74] 4
Assassin (first & second variant) [74] 3
Railroad [74] 4
Abstract Model 1 & 2 own example 8 & 3
Steal Master Key industrial partner 36
Ueberlingen mid-air Collision [187] 95
Leakage in Subsea Production System [30] 41
Leakage in Subsea Production System
with Preemption

based on [30] 41

Binary Tree own example 15 - 4095
Abstract Model 1 Combined with Bi-
nary Tree

own example 4103

Table A.1: Evaluated Causal Models

199

A Evaluated Models

A.2 Description of the Evaluated Models

A.2.1 Rock-Throwing

The first model is the Rock-Throwing example explained in [79, 81, 74]. According to the
authors, we can assume that Suzy and Billy both throw a rock on a bottle which shatters
if one of them hits. Furthermore, we know that Suzy’s rock hits the bottle slightly earlier
than Billy’s and both are accurate throwers. This leads to the endogenous variables ST
(“Suzy throws”), BT (“Billy throws”), SH (“Suzy hits”), BH (“Billy hits”) and BS (“bottle
shatters”). Additionally, since the authors did not explicitly specify the exogenous variables
of this example, we introduce the two exogenous variables STexo and BTexo. In Figure A.1,
we can see the corresponding causal graph and obtain the following equations:

• ST = STexo

• BT = BTexo

• SH = ST ,

• BH = BT ∧ ¬SH .

• BS = SH ∨BH

BT

ST

BH

SH

BS

Figure A.1: Rock-throwing example (Source: [79])

A.2.2 Forest Fire

Another one of Halpern and Pearl’s basic examples is a forest fire (FF) that is caused by a
lightning (L) or a dropped match (MD, “match dropped”) (disjunctive scenario) or only if
both occur at the same time (conjunctive scenario). Hence, he actually describes two causal
models with this example. The causal graph, which is the same for both variants is depicted
in Figure A.2 and the corresponding equations are as follows:

• L = Lexo

• MD = MDexo

• FF = L ∨MD (disjunctive scenario) or FF = L ∧MD (conjunctive scenario)

200

A.2 Description of the Evaluated Models

Lexo MDexo

L MD

FF

Figure A.2: Causal Graph of Forest Fire Example (Source: [81])

A.2.3 Prisoners

An additional example found in [81] and [74] is about four prisoners. One of them dies (spec-
ified by variable D) if prisoner A loads prisoner B’s gun which then shoots or if prisoner
C both loads and shoots his gun. The equations in this causal model are straightforward;
Figure A.3 shows the causal graph:

• A = Aexo

• B = Bexo

• C = Cexo

• D = (A ∧B) ∨ C

Aexo Bexo Cexo

A B C

D

Figure A.3: Causal Graph of Prisoners Example (Source: [166])

A.2.4 Assassin

An example very similar to the (disjunctive) forest fire example described previously
is about an assassin putting poison into the coffee of its victim. However, the latter’s
bodyguard has an antidote for the poison which makes the victim survive. In [74], the
author describes two variants of this example. In the first one, the assassin puts the poison
into the coffee independently from what the bodyguard does. In the second variant,
however, the assassin only then puts the poison into the coffee, if the victim’s bodyguard
uses his antidote. As [74] does not explicitly mention the variables within this example,
we use the same ones introduced by [76], who consider this example as well. However,
we specify A as “assassin does put in poison”, and not “assassin does not put in poison”,

201

A Evaluated Models

because this makes it easier to model and understand the second variant of this example.
The other variables are the same as in [76]: B “bodyguard puts in antidote” and V S for
“victim survives”. Adding exogenous variables for A and B, we obtain the following
equations (for both variants):

• B = Bexo

• A = Aexo (first variant); A = Aexo ∧B (second variant)

• V S = ¬A ∨B

The causal graph for the first variant (Figure A.4a) is structurally equal to the one of the
forest fire example (Figure A.2). For the second variant, in which the assassin only then
puts the poison into this victim’s coffee if the bodyguard does so with his antidote, we
additionally have an edge from B to A in the corresponding causal graph (Figure A.4b).

Aexo Bexo

A B

V S

(a) First Variant

Aexo Bexo

A B

V S

(b) Second Variant

Figure A.4: Causal Graphs of Assassin Example (Source: [166])

A.2.5 Railroad

In this example, [74] describes an engineer that operates a switch which makes an approach-
ing train use the right-hand track if flipped and the left-hand track otherwise. Variable F
is 1 if the switch is flipped and 0 if it is not. Two additional variables LB and RB model
whether the left- and right-hand track, respectively, is blocked by either being set to 1
(blocked) or 0 (not blocked). The author specifies that the two tracks finally converge. That
is, the train arrives at its original destination no matter which of the tracks it took provided
the respective track was not blocked. This is captured by variable A, which is 1 if the train
arrives and 0 otherwise. The corresponding equations are as follows:

• F = Fexo

• LB = LBexo

• RB = RBexo

• A = ¬((F ∧RB) ∨ (¬F ∧ LB))

202

A.2 Description of the Evaluated Models

Figure A.5 shows the causal graph. Unfortunately, [74] does not explicitly describe the
equations; in particular not for A. Therefore, we assume that it has to be as denoted above:
For A being 1 the engineer must flip or not flip the switch such that the train takes a non-
blocked track provided that not both tracks are blocked. That is, it must not happen that
the engineer flips the switch if the right-hand track is blocked or she does not flip it if the
left-hand track is blocked.

Note that [74] describes additional variants of the railroad example. However, we do not
consider them here as they are not described with the same degree of detail.

LBexo Fexo RBexo

LB F RB

A

Figure A.5: Causal Graph of Railroad Example (Source: [166])

A.2.6 Abstract Model 1 & 2

For these two models, we keep the example abstract and just provide variables and corre-
sponding equations as well as the corresponding causal graphs (Figure A.6a & Figure A.6a).

Equations of Abstract Model 1:

• A = Aexo

• B = Bexo ∧ ¬A

• C = A ∨B

• D = A

• E = ¬A

• G = ¬C

• H = ¬C ∧ ¬G

• I = C ∨D ∨ E ∨G ∨H

Equations of Abstract Model 2:

• A = Aexo

• B = Bexo

• C = A ∨1 B = (A ∧B) ∨ (¬A ∧ ¬B)

1The operator ∨ is called XNOR and denotes that A ∨B is true if both A and B are 1 or 0. Hence, XNOR is
equivalent to the logical biconditional↔.

203

A Evaluated Models

Aexo Bexo

A B C

D E G H

I

(a) Abstract Model 1

Aexo Bexo

A B

C

(b) Abstract Model 2

Figure A.6: Causal Graphs of Abstract Model 1 & 2 (Source: [166])

A.2.7 Leakage in Subsea Production System

For this example, we use the fault tree [195] proposed by [30], in which the events that can
lead to a leakage in an offshore pipeline system are modeled. We selected this example
for several reasons. Firstly, the fault tree contains a relatively large amount of nodes (41 in
total), i.e., the causal model is larger than some of the previous ones. Secondly, the fault
tree is a real life example with semantics that are not artificially created. Hence, we can
interpret causes and effects more intuitively. Thirdly, [30] did not only create the fault
tree, but additionally compute its minimal cut sets. [195] define the latter as the “smallest
combination of component failures which, if they all occur, will cause the top event to
occur”. As we can see in Figure A.7, the top event of the current fault tree is the “leakage
in an offshore pipeline system”. The minimal cut sets as specified by [30] are shown in
Table A.2. For instance, the two events “overpressure in well” and “failure of control in

MCS Events MCS Events MCS Events
C1 X1, X2 C8 X9, X11 C14 X16, X17

C2 X3, X11 C9 X10, X11 C15 X18, X19

C3 X4, X11 C10 X12, X17 C16 X20, X21

C4 X5, X11 C11 X13, X17 C17 X22, X23

C5 X6, X11 C12 X14, X17 C18 X24, X25

C6 X7, X11 C13 X15, X17 C19 X26

C7 X8, X11

Table A.2: Minimal Cut Sets of the Fault Tree for Leakage in Subsea Production System
(Source: [30])

well” form such a set: If they occur, the top event occurs as well. Although this notion of
causality differs from the counterfactual definition of causality used within this thesis, we
can use those minimal cut sets as reasonable scenarios for the evaluation of this example.
For instance, we expect that “failure of control in well” is a counterfactual cause of the top
event under a context such that “overpressure in well” and “failure of control in well” are
the only basic events, i.e., leaf events, that occur. As they form a minimal cut set, if “failure

204

A.2 Description of the Evaluated Models

of control in well” does not occur anymore, the top event should not happen anymore as
well. More details on the evaluated scenarios will be given below.

For the sake of readability, we denote each event within the fault tree from now on by Xi

where i can be obtained from Figure A.7 (e.g., the top event is abbreviated byX41). Since the
corresponding causal graph would look exactly the same as the fault tree from a structure
perspective, we skip the former here and define the equations only that we obtain when
transforming this example into a causal model:

• for each basic event Xi with i ∈ {1, ..., 26}: Xi = Xexo
i

• X27 = X3 ∨X4

• X28 = X5 ∨X6

• X29 = X7 ∨X8

• X30 = X9 ∨X10

• X31 = X12 ∨X13 ∨X14 ∨X15 ∨X16

• X32 = X18 ∧X19

• X33 = X20 ∧X21

• X34 = X22 ∧X23

• X35 = X24 ∧X25

• X36 = X27 ∨X28 ∨X29 ∨X30

• X37 = X31 ∧X17

• X38 = X1 ∧X2

• X39 = X36 ∧X11

• X40 = X37 ∨X32 ∨X33 ∨X34 ∨X35

• X41 = X38 ∨X39 ∨X40 ∨X26

We additionally created causal model which extends the Leakage example described in
the above by some preemption relations: We say that “Leakage in pipe (X39)” preempts
the events “Leakage in gas or oil well (X38)”, “Leakage in key facilities (X40)” and “Third
Party Damage (X26)”. In other words, X38, X40 and X26 can only occur, if X39 does not.
Obviously, this example is made up. Nevertheless, we think it is reasonable to argue that if
there is a leakage in the pipe of a pipeline system, then it is possibly counter-intuitive, if
other events which might independently lead to the top event, are considered as (parts of

205

A Evaluated Models

A
[40] Leakage in
key facilities

[35] PLEM
Leakage

[24] Defect in
PLEM

[25] Failure of PLEM
Leakage Control

[12] Defect in X-Tree
Well Head Connector

[13] Defect in Pipe
Connector

[14] Defect in Pipe-
Manifold Connector

[15] Defect in Pipe-
PLET Connectors

[16] Defect in Pipe-
PLEM Connector

[37] Connector
Leakage

[31] Defect in
Connector

[17] Failure of Connector
Leakage Control

[32] X-Tree
Leakage

[18] Defect in
X-Tree

[19] Failure of X-Tree
Leakage Control

[33] Manifold
Leakage

[20] Defect in
Manifold

[21] Fa ilure of Manifold

Leakage Control

[34] PLET
Leakage

[22] Defect in
PLET

[23] Failure of PLET
Leakage Control

A
[40] Leakage in
key facilities

[35] PLEM
Leakage

[24] Defect in
PLEM

[25] Failure of PLEM
Leakage Control

[12] Defect in X-Tree
Well Head Connector

[13] Defect in Pipe
Connector

[14] Defect in Pipe-
Manifold Connector

[15] Defect in Pipe-
PLET Connectors

[16] Defect in Pipe-
PLEM Connector

[37] Connector
Leakage

[31] Defect in
Connector

[17] Failure of Connector
Leakage Control

[32] X-Tree
Leakage

[18] Defect in
X-Tree

[19] Failure of X-Tree
Leakage Control

[33] Manifold
Leakage

[20] Defect in
Manifold

[21] Fa ilure of Manifold

Leakage Control

[34] PLET
Leakage

[22] Defect in
PLET

[23] Failure of PLET
Leakage Control

[41] Leakage in offshore
pipeline system

[40] Leakage in
key facilities

[26] Third Party
Damage

A

[28] Defect in
Flowline

[5] Puncture in
flowline

[6] Rupture in
flowline

[27] Defect in
jumper

[3] Jumper
Puncture

[4] Rupture in
jumper

[29] Defect in
pipeline

[7] Puncture in
pipeline

[8] Rupture in
pipeline

[30] Defect in riser

[9] Puncture in
riser

[10] Rupture in
riser

[39] Leakage in
pipe

[36] Defect in pipe
[11] Failure of

leakage control pipe

[38] Leakage in gas
or oil well

[1] Overpressure in
well

[2] Failure of
control well

[41] Leakage in offshore
pipeline system

[40] Leakage in
key facilities

[26] Third Party
Damage

A

[28] Defect in
Flowline

[5] Puncture in
flowline

[6] Rupture in
flowline

[27] Defect in
jumper

[3] Jumper
Puncture

[4] Rupture in
jumper

[29] Defect in
pipeline

[7] Puncture in
pipeline

[8] Rupture in
pipeline

[30] Defect in riser

[9] Puncture in
riser

[10] Rupture in
riser

[39] Leakage in
pipe

[36] Defect in pipe
[11] Failure of

leakage control pipe

[38] Leakage in gas
or oil well

[1] Overpressure in
well

[2] Failure of
control well

Figure A.7: Fault Tree for Leakage in Subsea Production System (Source: [30])

the) cause as well. This is similar to the Rock-Throwing example where we say we want
to be able to call Suzy’s throw alone a cause for the bottle shattering even if Billy would
have actually shattered the bottle when Suzy had not. Finally, we obtain the following new
equations for the events preempted by X39:

• X26 = Xexo
26 ∧ ¬X39

• X38 = X1 ∧X2 ∧ ¬X39

• X40 = (X37 ∨X32 ∨X33 ∨X34 ∨X35) ∧ ¬X39

A.2.8 Überlingen Accident Investigation

On July 1, 2002, two aircraft (Tupolev Tu154M and a Boeing 757-200) collided in mid-air in
southern Germany (Ueberlingen), killing all the people on board [149]. An investigation

206

A.2 Description of the Evaluated Models

by the German Federal Bureau of Aircraft Accident Investigation (BFU) and a WBA by
a research group documented the many interweaving factors surrounding the accident
[149, 185, 178]. Briefly, a series of coinciding events led to the collision, including an
exceptional heavy load on the ground ATC, conflicting advisory commands of the ATC
and the collision avoidance systems (TCAS) to the Tu154M crew, system degradation of the
short term collision avoidance (STCA), and communication issues due to a maintenance
operations at the ATC office.

Causal model and context setting. The WBA is a formal procedure introduced by
Ladkin to investigate accidents and propose countermeasures for future prevention [119,
120, 178]. The result of a WBA is a graph called the why-because-graph (WBG), which
structures causal factors (nodes) and their relations (edges) via analysis of official reports.
The Ueberlingen WBG contained 95 factors (seen in [187]). With some adaptations, we use
WBG as a source for causal models. We transform a node into the WBG to an endogenous
variable in the causal model. Leaf nodes are considered as an exogenous variable and
are always true because the WBA creates them from reports (actually happened). Lastly,
we create the equations for each variable by manual inspection: was is it conjunction or
disjunction of variables that led to it? During this step, we also considered preemption
relations, especially when events coincide. For example, two systems are implemented
to avoid midair collisions—ATC aided with STCA, and additionally, the aircraft’s TCAS.
Accordingly, the TCAS is the last resort that should resolve last-minute issues [149]. Thus, a
failure by the ATC preempts a failure by the TCAS. Another example of preemption relations
was added among the factors that led to the late ATC intervention (denoted as e49 in [187]).
There were five coinciding factors, two of them were e56 Heavy load on the ATC and e62
Crossing routes. Arguably, people tend to consider exceptional events as probable causes
and not as regular events [75]. Thus, we argue that the exceptional heavy load on the ATC
(because of a late landing on a nearby airport and a faulty phone system) preempts other
factors such as e62. According to this argumentation, we added preemption relations among
these events.

Causal reasoning. Since WBA aims to produce a list of countermeasures, we simulated
our first check to automate the manual WBA sufficiency test [120], which checks if the effect
eventually happens given the occurrence of all the root causes. Specifically, we checked Q1 :

Is ~X a cause of the collision? where ~X is the set of 31 leaf events, which passed with an empty
~W . Next, we looked for a minimal cause of the accident. Interactively, we found a minimal
cause of 14 variables, which were mainly the events resulting in the ATC intervention
delay. This cause conforms with the immediate cause reported by the BFU [149]. We
formalized causal queries on a more abstract level of details and found minimal causes
on a coarser level than the 14 events. Although knowledge around this accident already
existed, the advantage of Canvas is that it automates the interactive analysis to investigate
complex situations with large causal graphs. We saw how accountability is enabled by
domain-specific methodologies such as WBA.

207

A Evaluated Models

A.2.9 Binary Tree

This example has the structure of a full binary tree and we specifically created it for
measuring the efficiency of our approach. Such a model and various versions of it that
exhibit a different height can be easily generated by a computer. For the sake of simplicity,
we assume that the equation of each non-leave variable is defined as the disjunction
of its two children. That is, the equation of n1 in Figure A.8 would be given by n1 =
n3 ∨ n4. Analogously for nroot and n2. All other variables, i.e., the leaves, are defined by
an exogenous variable. Since the number of nodes in a full binary tree is n = 2h − 1 with

nexo3 nexo4 nexo5 nexo6

n3 n4 n5 n6

n1 n2

nroot

Figure A.8: Causal Graph of one Variant of the Binary Tree Example (Source: [166])

height h ∈ N2[39], the generation of causal models with a very high number of nodes is
simple, which makes it even more interesting for benchmarking.

A.2.10 Abstract Model 1 Combined with Binary Tree

The problem with a pure Binary Tree as causal model is that the semantics of the latter do
not include preemption. Therefore, we combine two of our previous causal models, the
Abstract Model 1 and a Binary Tree with h = 12. The causal graph in Figure A.9 illustrates
how this combination works. Basically, we replace the equation of A of the Abstract Model
1, i.e., A = Aexo, with A = nroot. That is, we connect A with the root node of the Binary Tree
model; all other semantics of these causal models remain unchanged.

A.2.11 Steal Master Key

The Steal Master Key example comes from an industrial partner and was originally rep-
resented as attack tree [179], which is shown in Figure A.11. Basically, it covers the steps
an insider may perform for stealing a master key within a specific system. In particular,
we assume that there exist three potential persons U1, U2 and U3 who are able to perform
the attack. The corresponding causal graph is depicted in Figure A.10 and the following
equations are part of the causal model:

• FSUi
= FSexo

Ui
(“From Script Ui”)

2A tree consisting of one node only has height 1. In Figure A.8, the binary tree out of which the causal graph
was created has height 3.

208

A.2 Description of the Evaluated Models

nroot Bexo

A B C

D E G H

I

n1 n2

...

n4094n4093

nexo4094nexo4093

Figure A.9: Causal Graph of Abstract Causal Model 1 Combined with Binary Tree (Source:
[166])

• FNUi
= FNexo

Ui
(“From Network Ui”)

• FFUi
= FNexo

Ui
(“From File Ui”)

• FDBUi
= FNexo

Ui
(“From Database Ui”)

• AUi
= Aexo

Ui
(“Access Ui”)

• ADUi
= ADexo

Ui
(“Attach Debugger Ui”)

• GPUi = FSUi ∨ FNUi (“Get the Passphrase Ui”)

• GKUi
= FFUi

∨ FDBUi
(“Get the Key Ui”)

• KMSUi = AUi ∧ADUi (“From Key Management Service Ui”)

• DKU1
= GPU1

∧GKU1
(“Decrypt the Key U1”)

• DKU2 = GPU2 ∧GKU2 ∧ ¬DKU1 (“Decrypt the Key U2”)

•DKU3
= GPU3

∧GKU3
∧ ¬DKU1

∧ ¬DKU2
(“Decrypt the Key U3”)

• SDU1 = KMSU1 (“Steal Decrypted U1”)

• SDU2
= KMSU2

∧ ¬SDU1
(“Steal Decrypted U2”)

• SDU3
= KMSU3

∧ ¬SDU1
∧ ¬SDU2

(“Steal Decrypted U3”)

• DK = DKU1
∨DKU2

∨DKU3
(“Decrypt the Key”)

• SD = SDU1
∨ SDU2

∨ SDU3
(“Steal Decrypted”)

• SMK = DK ∨ SD (“Steal Master Key”)

209

A Evaluated Models

for i ∈ {1, 2, 3}

All variables can obtain Boolean values only that denote whether the respective event
occurred. As we can see, for stealing the master key (SMK), we need to decrypt it (DK)
or steal it in decrypted form (SD). For doing so an attacker Ui needs to either get the
passphrase (GPUi) and the key itself (GKUi) or get the decrypted key from the key man-
agement service (KMSUi). The passphrase can be obtained from a script (FSUi) or from
the network FNUi , while the key may be extracted from a file (FFUi) or a database FDBUi .
For stealing the decrypted key from the key management service, an attacker Ui needs to
have access to it (AUi) and additionally attach a debugger (ADUi). Notice that we implicitly
assume that attackers do not collaborate, i.e., the master key can only be stolen if one
attacker alone performs all steps necessary. Additionally, U1 preempts U2 and U3 and U2

preempts U3. That is, even if U2 or U3 were able to get the key and the passphrase or
were able to obtain the key from the key management service, we say that their attack is
only successful, if U1 did not decrypt the key (DKU1) or steal the decrypted key (SDU1).
Analogously for the preemption of U2 towards U3. Note that these preemption relationships
are not modeled in the original attack tree in Figure A.11.

FSexo
U1

FNexo
U1

FF exo
U1

FDBexo
U1

FSexo
U2

FNexo
U2

FF exo
U2

FDBexo
U2

FSexo
U3

FNexo
U3

FF exo
U3

FDBexo
U3

Aexo
U1

ADexo
U1

Aexo
U2

ADexo
U2

Aexo
U3

ADexo
U3

FSU1
FNU1

FFU1
FDBU1

FSU2
FNU2

FFU2
FDBU2

FSU3
FNU3

FFU3
FDBU3

AU1
ADU1

AU2
ADU2

AU3
ADU3

GPU1
GKU1

GPU2
GKU2

GPU3
GKU3

KMSU1
KMSU2

KMSU3

DKU1 DKU2 DKU3 SDU1 SDU2 SDU3

DK SD

SMK

Figure A.10: Causal Graph of Steal Master Key Example (Source: [166])

In addition to the standard model with three insiders, we created another 13 other variant
of the Steal Master Key model with varying number of users ranging from 50 to 650 (based
on the employees of the partner). The general structure and semantics remain the same,
but we now have models of 11× n endogenous variables (and 10 ∗ n exogenous variables),
where n is the number of employees. Regarding the preemption relationships, U1 now
preempts U2, ..., U8, U2 preempts U3, ..., U8 and so on and so forth.

210

A.2 Description of the Evaluated Models

S
te

al
 M

as
te

r
K

ey

U
1

D
ec

ry
p
t

th
e

K
ey

U
1

G
et

 t
h
e

P
as

sp
h
ra

se
U

1
 G

et
 t

he
 K

ey

U
1

F
ro

m
 S

cr
ip

t
U

1
F

ro
m

 N
et

w
or

k
U

1
F

ro
m

 F
il
e

U
1

F
ro

m
 D

B

U
1

D
ec

ry
p
t

th
e

K
ey

U
1

G
et

 t
h
e

P
as

sp
h
ra

se
U

1
 G

et
 t

he
 K

ey

U
1

F
ro

m
 S

cr
ip

t
U

1
F

ro
m

 N
et

w
or

k
U

1
F

ro
m

 F
il
e

U
1

F
ro

m
 D

B

U
2

D
ec

ry
p
t

th
e

K
ey

U
2

G
et

 t
h
e

P
as

sp
h
ra

se
U

2
G

et
 t

h
e

K
ey

U
2

F
ro

m
 S

cr
ip

t
U

2
F
ro

m
 N

et
w

or
k

U
2

F
ro

m
 F

il
e

U
2

F
ro

m
 D

B

U
2

D
ec

ry
p
t

th
e

K
ey

U
2

G
et

 t
h
e

P
as

sp
h
ra

se
U

2
G

et
 t

h
e

K
ey

U
2

F
ro

m
 S

cr
ip

t
U

2
F
ro

m
 N

et
w

or
k

U
2

F
ro

m
 F

il
e

U
2

F
ro

m
 D

B

D
ec

ry
p
t

th
e

K
ey

U
3
 D

ec
ry

p
t

th
e

K
ey

U
3

G
et

 t
h
e

P
a
ss

p
h
ra

se
U

3
G

et
 t

h
e

K
ey

U
3

F
ro

m
 S

cr
ip

t
U

1
F

ro
m

 N
et

w
or

k
U

3
F
ro

m
 F

il
e

U
3

F
ro

m
 D

B

U
3
 D

ec
ry

p
t

th
e

K
ey

U
3

G
et

 t
h
e

P
a
ss

p
h
ra

se
U

3
G

et
 t

h
e

K
ey

U
3

F
ro

m
 S

cr
ip

t
U

1
F

ro
m

 N
et

w
or

k
U

3
F
ro

m
 F

il
e

U
3

F
ro

m
 D

B

U
1

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
1
 A

cc
es

s
U

1
A

tt
ac

h
D

eb
u
gg

er

U
1
 S

te
al

 D
ec

ry
p
te

d

U
1

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
1
 A

cc
es

s
U

1
A

tt
ac

h
D

eb
u
gg

er

U
1
 S

te
al

 D
ec

ry
p
te

d

U
2

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
2

A
cc

es
s

U
2

A
tt

ac
h

D
eb

u
gg

er

U
2

S
te

al
 D

ec
ry

p
te

d

U
2

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
2

A
cc

es
s

U
2

A
tt

ac
h

D
eb

u
gg

er

U
2

S
te

al
 D

ec
ry

p
te

d

U
3

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
3

A
cc

es
s

U
3

A
tt

ac
h

D
eb

u
gg

er

U
3

S
te

al
 D

ec
ry

p
te

d

U
3

F
ro

m
 K

ey

M
an

ag
em

en
t

S
er

vi
ce

U
3

A
cc

es
s

U
3

A
tt

ac
h

D
eb

u
gg

er

U
3

S
te

al
 D

ec
ry

p
te

d

S
te

al
 D

ec
ry

p
te

d

Figure A.11: Steal Master Key Attack Tree (Source: Industrial Partner); graphic source [166]

211

	Acknowledgements
	Zusammenfassung
	Abstract
	Outline of the Thesis
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Gaps, Problem Statement, and Research Questions
	1.1.1 Actual Causality Reasoning
	1.1.2 Causal Modeling and Contextualization

	1.2 Goal and Benefits
	1.3 Solution
	1.4 Contributions
	1.5 Summary of Results
	1.6 Structure

	2 Background
	2.1 Overview
	2.2 Causal Models
	2.3 Reasoning about Causality
	2.4 Responsibility as an Extension
	2.5 Discussion
	2.6 Summary

	II Computational Aspects of Actual Causality Reasoning
	3 Efficiently Checking Actual Causality with SAT Solving
	3.1 Introduction
	3.2 Brute-Force Based Causality Checking
	3.3 SAT Based Causality Checking
	3.3.1 Checking AC2
	3.3.2 Checking AC3
	3.3.3 Example
	3.3.4 Optimized AC3 Check with SAT

	3.4 Graph-Based Optimizations
	3.4.1 Reduce Number of Potential Variables for W
	3.4.2 Remove Irrelevant Sub-formulae

	3.5 Evaluation
	3.5.1 Technical Implementation
	3.5.2 Methodology and Evaluated Models
	3.5.3 Discussion and Results

	3.6 Proofs
	3.6.1 Negation Lemma
	3.6.2 AC2 Encoding Proof
	3.6.3 AC3 Encoding Proof
	3.6.4 Optimized AC3 Encoding Proof

	3.7 Summary

	4 Actual Causality Computations as Optimization Problems
	4.1 Introduction
	4.2 Checking and Semi-inference Queries as Optimization Problems
	4.2.1 The Objective in Causality Checking
	4.2.2 ILP Formulation
	4.2.3 MaxSAT Encoding
	4.2.4 Results Interpretation
	4.2.5 Example

	4.3 Causality Inference with ILP
	4.3.1 WhyILP Algorithm
	4.3.2 Example

	4.4 Evaluation
	4.4.1 Evaluating Checking and Semi-Inference
	4.4.2 Evaluating Inference

	4.5 Proofs
	4.6 Summary

	5 Actual Causality Checking Beyond Binary Models
	5.1 Introduction
	5.2 Approach
	5.2.1 Requirements For Causality Checking
	5.2.2 Building blocks
	5.2.3 Algorithm
	5.2.4 Example

	5.3 Evaluation
	5.3.1 Model Size
	5.3.2 Performance

	5.4 Summary

	III Domain-specific Causal Modeling and Contextualization
	6 Causal Model Extraction from Attack Trees to Attribute Insider Attacks
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Foundations of Attack Trees
	6.2.2 Malicious Insiders Example

	6.3 Attack Trees to Causal Models
	6.3.1 Suspect Attribution
	6.3.2 Attributed Attack Tree Transformation
	6.3.3 Adding Preemption Relations
	6.3.4 Tool Support

	6.4 Evaluation
	6.4.1 The Efficiency of the Extraction
	6.4.2 The Validity of the Approach
	6.4.3 The Effectiveness of the Model

	6.5 Summary

	7 Automated Generation of Attack Graphs and Causal Models for Microservices
	7.1 Introduction
	7.2 Preliminaries
	7.3 Approach
	7.3.1 Attack Graph Generation for Dockers
	7.3.2 Extracting Causal Models from Attack Graphs

	7.4 Evaluation
	7.4.1 Experiment Setup
	7.4.2 Scalability evaluation
	7.4.3 Effectiveness of the Graphs

	7.5 Summary

	8 Model-driven Contextualization for Microservices
	8.1 Introduction
	8.2 The Approach
	8.2.1 Monitoring Configuration
	8.2.2 Monitoring Orchestrator
	8.2.3 The overall Architecture

	8.3 Evaluation
	8.3.1 Effectiveness
	8.3.2 Efficiency

	8.4 Summary

	IV A Framework for Accountable Systems
	9 A Framework for Operationalizing Actual Causality
	9.1 Introduction
	9.2 A Framework of Actual Causality
	9.2.1 Causal Modeling
	9.2.2 Contextualization
	9.2.3 Causal Reasoning
	9.2.4 The Technical Framework of Actual Causality

	9.3 The Actual Causality Canvas
	9.4 Use Cases
	9.4.1 Explainable AI
	9.4.2 Überlingen mid-air CollisionA shortened version of this case-study can be found in Appendix A
	9.4.3 Malicious InsidersThis is a shortened version of the example in Chapter 6. The reiteration here is meant to put accountability of microservices-based system in perspective with other domains.
	9.4.4 Drone Crash Diagnosis

	9.5 Evaluation
	9.6 Summary

	V Related Work and Conclusions
	10 Related Work
	10.1 Accountability
	10.2 Causality
	10.2.1 Actual Causality Reasoning According to HP
	10.2.2 Non-HP Causality Reasoning

	10.3 Causal Models for Accountability
	10.3.1 Insider Threat and Threat Models
	10.3.2 Safety, Fault Trees, and WBA

	10.4 Model-driven Contextualization
	10.5 Summary of the Gaps

	11 Conclusions
	11.1 Thesis Overview
	11.2 Main Results
	11.3 Limitations
	11.4 Future Work

	Bibliography
	Index
	List of Figures
	List of Tables
	A Evaluated Models
	A.1 Introduction
	A.2 Description of the Evaluated Models
	A.2.1 Rock-Throwing
	A.2.2 Forest Fire
	A.2.3 Prisoners
	A.2.4 Assassin
	A.2.5 Railroad
	A.2.6 Abstract Model 1 & 2
	A.2.7 Leakage in Subsea Production System
	A.2.8 Überlingen Accident Investigation
	A.2.9 Binary Tree
	A.2.10 Abstract Model 1 Combined with Binary Tree
	A.2.11 Steal Master Key

