
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Integration and Test of RUST Tool Support
for MPI

Matthias Kübrich

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Integration and Test of RUST Tool Support
for MPI

Integration und Test von RUST Tool
Unterstützung für MPI

Author: Matthias Kübrich
Supervisor: Prof. Dr. Martin Schulz
Advisor: Bengisu Elis
Submission Date: October 15, 2020

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, October 15, 2020 Matthias Kübrich

Acknowledgments

I would like to thank my advisor Bengisu Elis for all the invaluable help and advice
she offered me in writing this thesis, including all the work that led to its completion.

I also would like to thank my supervisor Prof. Dr. Martin Schulz, who was quick
to suggest this work’s very subject, which turned out to be highly interesting and
enjoyable.

Abstract

With increasingly high performance expectations in modern computer platforms, par-
allel computing becomes more and more critical. However, implementing bug-free
programs to compute efficiently in parallel is, in general, significantly more demanding
than implementing their sequential counterpart.

Parallel applications have always been complicated to implement, maintain, or
inspect. The Rust programming language aims to provide static programming with
zero-cost guarantees for memory-safety. This technology, used to create MPI-Tools,
can significantly improve any developers’ workflow creating or maintaining HPC
applications.

This thesis presents the Rust-Library Rmpi, which provides MPI access with memory
safety, a framework implementation for the creation of PMPI -and QMPI-Tools for the
programming language Rust, as well as an extensive performance analysis.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Goal . 3
1.4 Libraries and Compilers used in this Thesis 3

1.4.1 MPI . 3
1.4.2 Rust . 3
1.4.3 QMPI . 3

2 Rmpi 5
2.1 Implementation . 5

2.1.1 MPI-sys . 5
2.1.2 RmpiContext . 6
2.1.3 Communicators . 7
2.1.4 Process . 8
2.1.5 Status: Receiving Data . 8
2.1.6 Request: Safe Asynchronous Communication 9
2.1.7 RmpiResult: Avoiding returns through references 11
2.1.8 Safe Generic Buffer Representation 11
2.1.9 Interface for Internal Tool Usage 17

3 The Rust Tool Layer 18
3.1 The Raw Layer . 18

3.1.1 Unsafe Compromize . 18
3.1.2 The Unsafe Box . 20

3.2 The Layer Trait . 20
3.3 Type Conversion . 21

3.3.1 Usage of Rmpi’s internal Tool Call Support 22
3.3.2 Datatype Matching . 23

v

Contents

3.3.3 Why Layer 1.0 had to be abandoned 23
3.3.4 Using dynamically typed Buffers (Layer 2.0) 25

3.4 Prevention of Infinite Recursions . 27

4 The Tool Creator Macro 29

5 Performance Evaluation 32
5.1 ASC Sequoia AMG 2006 . 32
5.2 High Performance Conjugate Gradient 33
5.3 Co-Design for Molecular Dynamics . 33
5.4 OSU Micro-Benchmarks . 36
5.5 Methodology . 36

5.5.1 Empty Tool . 38
5.6 Single Tool Test . 39
5.7 Tool-Stack Test . 39

5.7.1 Removal of Lone Outlier . 40
5.7.2 Empty Tool Test . 40
5.7.3 Latency Benchmark . 44
5.7.4 Function Call-Counter . 45
5.7.5 Bandwidth Counter . 45

6 Conclusion 52

7 Possible Future Improvements for Rmpi and the MPI-Tool-Layer 53
7.1 The layer parameter next_f is too restricted 53
7.2 Splitting MPI Functions to increase Static Information 55
7.3 Support for sending arbitrary Rust structures over MPI 56
7.4 Layer Chaining . 56

8 Appendix 58
8.1 MPI functions supported by Rmpi and MPI-Tool-Layer 58
8.2 Supported predefined MPI datatypes in Rmpi 60
8.3 Rmpi’s Version of Supported MPI types 60

List of Figures 62

List of Tables 64

Bibliography 65

vi

1 Introduction

1.1 Background

In modern days, parallelization is the ultimate method of accelerating computations.
As good as every general-purpose processor sold today has some form of paralleliza-
tion already included, be it Pipelining, SIMD-Instructions, or Multithreading. But
parallelization is not confined to single processing units. Using the Message Passing
Interface (MPI) enables multiple machines, connected via ethernet, to share the mutual
workload by communicating with each other in synchronous and asynchronous ways.
This technique allows almost unlimited scaling of computing power, as processors can
arbitrarily be added to a system to increase computing power.

While not all problems can be efficiently solved in a parallel manner, hardware im-
provements for sequential execution cannot be expected to solve performance problems
any longer. The so-called death of CPU frequency scaling in 2004, marked by the cancella-
tion of a 4-GHz CPU project by Intel [6], also marked the year in which parallelization
became the way forward in the competition for computation power.

However, what is often forgotten is the increased software complexity, which is
inevitably added with each layer of parallelism. Parallel programming needs to be
carefully approached as not to breach any of its strict rules to avoid possible race-
conditions, undefined behavior, or similar errors, which are often hard to detect.
This problem is mainly present in low-level languages, like C or C++, that have very
permissive memory safety rules. As parallel applications often demand the utilization
of every performance benefit available, those languages are often still chosen despite
the possibly higher development and maintenance costs.

To inspect parallel applications, the MPI library provides an integrated mechanism
called PMPI that enables the possibility of intercepting any MPI function called inside
the application from an external library. Such a library can be called an MPI-Tool, and
it enables inspection, debugging, or even manipulation of an MPI application without
changing said application’s source code in any way.

PMPI was originally only meant to be used only as a profiling interface but has since
encouraged a great variety of tools with varying purposes to be developed, many of
which are open-source and publicly available.[5] This tool variety prompts the need
to combine functionalities by combining multiple tools. The PMPI interface, being

1

1 Introduction

implemented in a simple name-shift fashion, is restricted to using only one single tool
because using more would lead to name collisions.

My supervisor Prof. Dr. Martin Schulz, and advisor Bengisu Elis have contributed to
solving this problem through the respective implementation of PnMPI[9] and QMPI[4],
two libraries that both provide a mechanism to run multiple tools with a single
application in parallel.

1.2 Motivation

Despite all the functionality and abstraction MPI tools provide, be it alone or com-
bined, used for continuous surveillance of massive parallel systems, error recovery,
or outright debugging, there are some mistakes a system cannot recover from at run-
time. Examples are segmentation faults caused by, e.g., reading from buffers using
invalid indices, dereferencing null-pointers, use-after-free operations, and double-free
operations. Many high-level languages offer memory safety mechanisms, but usually,
contrariwise, coupled with garbage collection and a significant decrease in general
performance. A language that aims to solve this conundrum is Go, a fast language
often used in system-level programming that emphasizes memory safety and safe
concurrency by keeping things less convoluted. Go, however, still works with garbage
collection and cannot compete with C in performance. Rust is a language created to
succeed C. It is statically compiled, has static memory management, and can achieve
similar application performance as C. The benefit of Rust is its rich and stringent type
system that can prevent many mistakes already at compile-time without any runtime
overhead through zero-cost abstraction. Rust primarily focuses on safe concurrency and
is therefore perfectly suited for complex and very performance demanding applications.
An example is Mozilla’s experimental browser engine Servo1, which is implemented in
Rust and aims to increase performance by being highly parallel.

Rust can detect all potential undefined behavior by separating code into two cat-
egories: safe-code and unsafe-code, in which safe-code is the default where it is
semantically impossible to reach undefined behavior. At the same time, in unsafe-code,
it’s the developer’s responsibility to provide memory-safety. Through Rust’s strong
compatibility with C, it is possible to provide a safe Rust interface on top of an unsafe
library implementation written in C.

1For more information, see https://github.com/servo/servo

2

https://github.com/servo/servo

1 Introduction

1.3 Goal

This thesis presents the library Rmpi, which provides safe access to MPI using Rust’s
principles on memory-safety and a framework for creating MPI-Tools with Rust, in-
cluding two generic layer interfaces and two macros for creating environment specific
tools for either PMPI or QMPI.

The main goal for the entire presented Framework is, thereby, to provide developers
of MPI-Applications and MPI-Tools all advantages Rust can provide.

It includes specifically:

1. maximizing memory-safety

2. maximizing convenience for developers using the Framework

3. minimizing runtime overhead caused through abstractions by using Rust’s zero-
cost-abstraction mechanisms

1.4 Libraries and Compilers used in this Thesis

1.4.1 MPI

The MPI standard defines the syntax and semantics of essential MPI-functions for the
programming languages C, C++, and Fortran, and there exist various implementations,
many of them well-tested and open-source. However, despite their standard core
definitions, differences can still be found in their respective interfaces, usually in
the number of supported functions or the supported version of the MPI-standard.
Therefore, this thesis focuses only on using MPI through the MPICH library (version
3.3.x), which is both open-source, popular, and free of charge.

1.4.2 Rust

The Rust compiler is being developed at a rapid pace. Every six weeks, a new minor
version is released where backward compatibility generally adheres. Currently, there
are two supported Rust editions: Rust 2015 and Rust 2018, which have incompatible
syntax definitions. This thesis is therefore referring only to the use of Rust 1.46 edition
2018.

1.4.3 QMPI

QMPI does, at the time this paper was written, not have a versioning system. All
references to QMPI will refer to the version described in Elis et al. [5] which has

3

1 Introduction

support for 360 different MPI functions and is compatible with the MPICH version
stated in subsection 1.4.1.

4

2 Rmpi

The primary purpose of Rmpi is to gain access to the MPI C-Interface via Rust. The
popular Rust-MPI library RSMPI1 heavily inspires Rmpi as both have the common goal
of providing a safe way to access MPI. Rmpi’s main difference from RSMPI is that Rmpi
aims to stay as close to the C implementation as possible. In particular, every function
must have exactly one C counterpart, which it calls internally, and every provided
type must be convertible to its C counterpart and vice-versa. (See section 3.3) Rmpi
must also have the ability to be used from both tool environments and application
environments, meaning that in a tool environment, function-calls should not result in
being intercepted as this might result in an interception function intercepting itself,
which would most likely lead to infinite recursions. RSMPI, on the contrary, is only
designed to operate in an application environment, and access to MPI’s C interface
below is limited by the fact that RSMPI’s types can only be converted into their C
counterparts but cannot be reconstructed from them in reverse.

It would be possible to adapt RSMPI by creating a branch of its existing open-source
repository1, but the high complexity of RMPI and some of its implementation details
(e.g., see section 2.1.8) favored a reimplementation.

Rmpi has support for a small subset of essential MPI functions, which is designed to
be extendable. For a list of supported types and functions, see section 8.1 & section 8.3.

2.1 Implementation

2.1.1 MPI-sys

As is common practice when creating a foreign function interface in Rust, Rmpi,
similarly to RSMPI, relies on a module, intended mostly for internal purposes, called
MPI-sys, responsible for converting the MPI C-Header into Rust code at compile-time
and providing the result as a library. Every single function in MPI-sys is marked as
unsafe on principle, which is also common practice, as C functions cannot be checked
by Rust’s semantic rules and cannot, therefore, have any of their guarantees. Of course,
the MPICH implementation has to be considered flawless to be able to use it safely.

1Refers to RSMPI version 0.5.4. For more information, see https://github.com/rsmpi/rsmpi

5

https://github.com/rsmpi/rsmpi

2 Rmpi

However, even with this assumption, no MPI function can truly be considered safe
since they either require MPI being initialized or have raw-pointers as one of their input
arguments, which are expected to point to a valid location. Both of those requirements
remain unchecked at compile-time (and possibly at runtime, depending on the MPI
implementation).

Rmpi’s version of MPI-sys contains all consequential MPI types and functions in
matching memory layout to their C counterpart. This way, MPI-sys can be directly
linked to the MPI library in the system. The distinction to RSMPI’s version of MPI-sys
is that this implementation does not merely declare all PMPI_* functions in the same
manner but aliases them with the name of their respective MPI_* counterparts and
places them into a separate module named pmpi.

As can be seen in Figure 2.1, which describes the exact module layout of MPI-sys,
the pmpi module additionally contains all the items the root module contains as well.
This enables other libraries (most importantly Rmpi itself) the ability to gain a mpi_sys
alias module that can only call non-interceptable MPI-Functions when included the
following way:

use mpi_sys::pmpi as mpi_sys;

The primary purpose of MPI-sys is to provide Rmpi with raw, unrestricted access to
MPI, allowing Rmpi to create a safe interface around it that adheres to Rust’s rules for
memory-safety and enforces MPI’s rules for how to call its library functions. However,
MPI-sys itself is meant to be used Rmpi-internally only in most use-cases.

mpi-sys pmpi

<MPI_Functions>
<MPI_Types>

<MPI_* aliased PMPI_Functions>
<MPI_Types>

Figure 2.1: Layout of MPI-sys.

2.1.2 RmpiContext

The first and simplest rule that has to be respected when using an MPI-runtime is the
necessary initialization and finalization of each process. No MPI function can be used
without calling MPI_Init()2 first. Furthermore, not calling MPI_Finalize() at the end
of a connected process leads to undefined behavior.[8] The MPICH implementation

2Rmpi does not support MPI_Init_thread() and assumes MPICH is implemented with precompiler
variable MPICH_IS_THREADED set.

6

2 Rmpi

constrains this further by stating that, for each process, the same thread must call
MPI_Init() and MPI_Finalize().3

To enforce this constraint in Rust safe code, Rmpi contains a type called RmpiContext,
designed to provide the only safe way of accessing MPI through Rmpi. RmpiContext
should, therefore, only be constructible and usable in circumstances where the use of
MPI functions is allowed and should otherwise only be accessible through unsafe code.

An instance of RmpiContext can be created by calling rmpi::init(), which op-
tionally returns the instance if MPI has not already been initialized (determined by
MPI_Initialized()). This ensures that access to a RmpiContext can only be gained
after MPI has been properly initialized.

To ensure that MPI_Finalize() is called as well at the end of the program, Rmpi-
Context implements Drop, representing a destructor that automatically handles MPIs
finalization when the context instance goes out of scope and is destroyed.

As MPI must only be finalized once, RmpiContext cannot have multiple copies of
itself, leading to multiple destructions and MPI-finalizations. To ensure that there
remains only one instance, RmpiContext purposefully does not implement the Rust
traits Copy or Clone, therefore rendering duplication of the instance impossible in safe
code. For similar reasons, Send is also not implemented, which prevents the instance
from being moved to a different thread than the one it was created, while Sync is still
implemented to allow other threads to access MPI via reference to the RmpiContext.

As RmpiContext has no other purpose than to provide safe MPI access, which is
entirely possible using Rust’s zero-cost abstraction, an instance of RmpiContext contains
no runtime data and should therefore not have any performance disadvantages.

2.1.3 Communicators

The two most essential functions of RmpiContext are comm_world() and comm_self(),
which both provide access to a type representation of an MPI-Communicator for all
processes or only the current process, respectively. The Communicator type’s associated
functions provide high-level access to MPI’s communication functions that affect all
processes inside the communicator. As all of those functions are threadsafe in MPICH,
communicators can be sent between threads, and so can their references. However,
except for MPI_COMM_WORLD and MPI_COMM_SELF, an MPI-Communicator has to be freed
using MPI_Comm_free. Therefore, a communicator has a Drop implementation, which
automatically frees the communicator if necessary. To prevent multiple free calls on the
same communicator, communicators do not implement Copy, as every referenced copy
would otherwise call the free operation. However, communicators can still be cloned

3Defined in MPICH dokumentation: https://www.mpich.org/static/docs/v3.1/www3/MPI_Init.
html

7

https://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html
https://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html

2 Rmpi

through the Clone trait which creates a deep copy of the communicator by internally
using MPI_Comm_dup().

While the communicator construct with its functional constraints is safe in itself, its
safe use is still dependent on MPI’s initialization. To ensure every communicator lives
only as long as MPI is initialized, the Communicator type has a lifetime ’ctx, which
references the lifetime of its corresponding RmpiContext, allowing the Rust compiler to
ensure that no communicator can outlive ’ctx.

2.1.4 Process

One other thing a communicator provides is access to its contained processes through
the Process type. The Process type contains a rank and a reference to a communicator.
The reference to the communicator is, on the one hand, necessary to ensure that the
process instance cannot live longer than the communicator it is contained in, but
also provides the necessary input argument for using MPI’s send, recv -and similar
operations that do not affect all ranks inside the communicator and ensures the correct
associated communicator is used. With those guarantees, the Process type offers a
convenient associated function for communication with significantly less expected
input arguments than their C counterparts as communicator and rank are already
known and do not have to be specified anymore. See Figure 2.2 for an example where
MPI_Send(), which has originally six arguments, is implemented using only two while
still providing the same functionality.

impl<’c> Process<’c> {
fn send<B: BufferRef>(&self, buffer: B, tag: Tag) -> RmpiResult
{ /* Convert types back into C representation

call MPI_Send()
convert return value into RmpiResult */ }

}

Figure 2.2: Rmpi’s function equivalent to MPI_Send()

2.1.5 Status: Receiving Data

The MPI standard defines MPI_Status as a data structure that describes the status
of a received message. It describes the length of the message and if its transfer had
been canceled before its completion. As MPI_Status contains only integer data for

8

2 Rmpi

information purposes, its use is inherently safe and can thereby be safely converted from
and into Rmpi’s wrapper type Status without any runtime cost as their memory layouts
are identical. Status provides the functions get_count() and test_cancelled() to
retrieve both provided informations.

2.1.6 Request: Safe Asynchronous Communication

One of the main benefits of Rust is its ability to detect and prevent situations that might
lead to race-condition at compile time. This is realized by allowing generic lifetime
parameters to be declared on types and functions, using them to declare how long
certain parameters, return types or type components are allowed to live relative to each
other. This feature can also be used to create a safe way of using MPI’s asynchronous
communication functions. The in Rmpi contained type Request aims to represent
the MPI type MPI_Request only in a safe manner. Therefore a Request can only be
generated by the respective asyncronous functions. At this point in time Rmpi only
implements couterparts for MPI_Isend() and MPI_Irecv(), the same technigue can,
however, also be used on MPI’s other asyncronous functions like e.g. MPI_Ireduce().
Request has four associated functions:

• free():

– represents MPI_Request_free()

– frees the MPI_Request but does not cancel the underlying operation

– consumes the Request

– this operation is inherently unsafe

• cancel():

– represents MPI_Cancel()

– cancels the underlying operation

– consumes the Request

• wait():

– represents MPI_Wait()

– waits for the underlying operation to finish

– consumes the Request if it is not persistant

– returns a Status instance if not set to be ignored (see subsection 2.1.5)

• test():

9

2 Rmpi

– represents MPI_Test()

– tests if the underlying operation has finished

– consumes the Request if it is finished and not persistant

– returns a Status instance if not set to be ignored (see subsection 2.1.5) and
the operation has finished

When using asynchronous send or receive operations, the only time where race-
conditions can occur is when accessing the corresponding buffer. When calling
MPI_Isend(), the used buffer must not be changed afterward for as long as it takes for
the asynchronous task to read the buffer. However, as MPI_Isend() explicitly takes a
constant buffer pointer as argument, the buffer can be expected not to change during
the sending process. Therefore read operations can still be safely performed. After
calling MPI_Irecv(), on the other hand, buffers can neither be read nor written to, as
long as the message has not been fully received and stored.

To ensure both conditions, each request has an attached generic lifetime that refers to
the lifetime of the buffer used to create it. Therefore, an immutably borrowed buffer,
used for an asynchronous send operation, can continue to be read, and its reference
be copied, but it cannot be written to. On the other hand, a mutably borrowed buffer
cannot be used at all after an asynchronous receive operation while still being borrowed.
The borrow only ends when the Request is destroyed, which can be done by either
of the four mentioned functions as all of them are capable of consuming the calling
Request instance.

The functions cancel(), wait() and test() are safe because they make sure the
operation is finished before returning, thereby adhering the lifetime restriction. free()
cannot be implemented safely. Because after freeing the request, it cannot be known
when the communication will be completed.

Request Slice: working with arrays of requests

To support operations on multiple requests, MPI defines several functions that operate
on arrays of requests. Such arrays can, besides valid Request instances, also contain
the value MPI_REQUEST_NULL, which marks an empty array field. Rmpi contains the
type RequestSlice to deal with MPI operations on such arrays. RequestSlice is a
unsized type similarly to the Rust built-in type slice and can be built from such a
slice of Request items without any runtime cost. Only after this conversion is it
semantically allowed to store MPI_REQUEST_NULL values. This feature is necessary as
the corresponding MPI calls set awaited requests to null to mark them as removed.

Similarly, as a single Request, the RequestSlice type is constrained by a lifetime that
applies to all its contained request items.

10

2 Rmpi

2.1.7 RmpiResult: Avoiding returns through references

It is common for functions to return data only on certain conditions. The most common
scenario is a function that performs an operation that might fail but, in the case of
failure, should not terminate the program entirely. An efficient way to solve this
problem, which is used multiple times in MPI’s C interface, is to return the value via
pointer, given in one of the function’s arguments. If the return condition is not met,
the pointer address is never written to and remains potentially uninitialized, which, in
turn, forces the developer to make sure that no read operation occurs after the call in
that case in order to avoid undefined behavior.

Rust’s semantic, however, disallows undefined behavior entirely, which makes this
scenario only possible for primitive pre-initializable types like integers or through the
use of unsafe blocks. To avoid this, Rmpi instead uses Rust’s specific enum type, which
can describe so-called tagged-unions. Rust enums combine an enumeration and a
union, allowing the resulting value to, e.g., either contain the successfully constructed
result or the error id. Because the value’s variant type is now always known at runtime
and is recognized by the compiler, an accidental read of an uninitialized value is
impossible.

2.1.8 Safe Generic Buffer Representation

The MPI standard supports sending and receiving elements of different datatypes
through arrays. This feature is very convenient as it allows the developer to avoid think-
ing about byte orders and data serialization and enables MPI to work across different
platforms with potentially different sets of available primitive types by automatically
handling necessary conversions. MPI defines multiple integer identifiers to distinguish
between types common in C and Fortran. Additionally, it is possible to create more
complex types by combining primitive ones into arrays or structures.

To handle buffers with dynamically typed elements, most functions in MPI have three
separate arguments that define one buffer, consisting of one element type identifier,
buffer pointer, and array length. As is often the case in such situations, there are many
possible erroneous ways of using a buffer, leading to possible undefined behavior.
The reason for this is the separation of the buffer into three highly dependent objects,
which are treated as independent objects by the compiler. For example, if the length is
ignored, the buffer might be accessed at an index location outside its boundary, and if
the datatype is ignored, the buffer’s content might be wrongly interpreted.

11

2 Rmpi

Rmpi Buffer 1.0

A safe buffer representation has to be combined to one single type that automatically
checks and prevents incorrect access. Rust already has an unsized type called slice,
which becomes a combination of a pointer and a length through any generic pointer
type referencing it. However, the type of the elements in the slice remains statically
dispatched and cannot be changed at runtime. RSMPI’s solution to this is a trait
interface called Buffer, which represents a generic buffer and is by default either a slice,
a single element, or a dynamic buffer without statically known datatype.4

Abstracting a buffer in such a way is not entirely logical or even useful. The slice,
which cannot be used as any other object without being wrapped inside a pointer due
to its unknown size, is reasonable to have a buffer trait implementation as it could be
used by mutable and immutable references in the same implementation. Nevertheless,
the dynamic buffer type cannot be used in the same manner, as it needs to save the
datatype at runtime. Therefore dynamic pointers are forced to be references themselves,
and any generic implementation provided by the buffer trait would be forced to use
double references for its dynamic buffer implementation.

This fact also implies that a generic buffer cannot be converted into a dynamic buffer
using a generic function without borrowing. It would make it necessary for a caller
that wishes to pass on a dynamic buffer as a generic buffer to create an unnecessary
double reference. (See section 2.1.8) Nonetheless, the first version of Rmpi’s Buffer
trait is very similar to RSMPI’s version (see Figure 2.3), as it was also implemented on
several slice instances containing supported primitive types. The types implementing
the trait had to be convertible from -and into their C representations, which would
later be needed for the tool layer implementation. (See chapter 3) As the datatype itself
is still statically defined in this model, it would be necessary to match a dynamically
available datatype against all in the implementation supported types, which is slightly
inefficient. (All supported datatypes, see) Also, this implementation cannot handle
any user-implemented types that may exist on an application level.

Rmpi Buffer 2.0

To support MPI’s theoretically infinite number of datatypes, it is necessary to be able
to handle datatypes whose properties are only known at runtime. MPI includes the
function MPI_Type_size() to provide this functionality by providing a way to calculate
the byte length of a datatype, which in turn helps to calculate the size of buffers by
using their given array length. Rmpi uses this to implement two type-dynamic buffer
types, see Figure 2.4 for mutable and immutable buffers.

4RSMPI Documentation: http://rsmpi.github.io/rsmpi/mpi/datatype/trait.Buffer.html

12

http://rsmpi.github.io/rsmpi/mpi/datatype/trait.Buffer.html

2 Rmpi

Buffer {
fn item_datatype(&self) -> MPI_Datatype;

fn into_raw(&self) -> (*const c_void, c_int);
fn into_raw_mut(&mut self) -> (*mut c_void, c_int);

unsafe fn from_raw<’b>(buf: *const c_void, count: c_int) -> &’b Self;
unsafe fn from_raw_mut<’b>(buf: *mut c_void, count: c_int)

-> &’b mut Self;

\\ convenience items omitted
}

Figure 2.3: The Buffer interface version 1.0

Immutable dynamic Buffer-Reference

struct TypeDynamicBufferRef<’b> {
/// has to be alligned
/// correctly for datatype
buffer: &’b [u8],
datatype: RawDatatype,

}

Mutable dynamic Buffer-Reference

struct TypeDynamicBufferMut<’b> {
/// has to be alligned
/// correctly for datatype
buffer: &’b mut [u8],
datatype: RawDatatype,

}

Figure 2.4: Dynamic datatype reference types

13

2 Rmpi

As mentioned previously, there are reasons to avoid mixing unsized types and
references as buffer implementations. However, it is not possible to implement a
dynamic buffer as an unsized type without avoiding unnecessary reallocations as this
would force the datatype to be written, in memory, next to the actual buffer data.
Therefore, a switch to a split buffer interface was necessary that only covers buffer
references (see Figure 2.5), and is therefore not implemented directly on slices, but
only on references to slices. This change makes it necessary to distinguish between
immutable buffer references, which MPI uses as send buffers, and mutable buffer
reference, used for receiving data. This distinction is necessary because of Rust’s borrow-
checker, which, e.g., prevents the copying of mutable references but not immutable
ones. To prevent duplicate methods, every BufferMut is also a BufferRef by default. A
smaller part of the original Buffer trait remains for buffer construction purposes but is
only implemented for slice types, while dynamic buffers provide their own method,
which requires the runtime datatype identifier as input.

Passing Buffers to functions using static dispatch

In Rust, there are two ways of passing on generic objects as function arguments:
dynamic dispatch and static dispatch. Using dynamic dispatch means that there will be
only one function symbol in the resulting library, which will receive all the information
it needs at runtime. This fact can significantly reduce the library’s size but has the
disadvantage that the type of the generic argument has to be checked at every function
call so it can be treated accordingly. However, using static dispatch will lead the
compiler to create a function symbol for each possible type that might be used to call
the generic function. However, this separation can be useful for optimization purposes
if the type is statically known outside of the function call. Although it is useless when
calling the function with a dynamically typed object.

At first, as there are potentially infinite possible MPI-Datatypes, dynamic dispatch
might seem reasonable for passing on a buffer function argument. A dynamically
dispatched buffer could be represented as a trait object (e.g., &dyn BufferRef or
&mut dyn BufferMut), which would make it possible to pass on any type that is recog-
nized as a buffer to be passed on behind a dynamic reference, including the dynamic
buffer itself. A trait object would, in this case, partially defeat the purpose of the
dynamic buffer type (see Figure 2.4), which already covers the same functionality in a
more efficient although less convenient manner due to the necessary type construction
that would have to precede the function call. A dynamic buffer would be more efficient
than a trait object due to its representation, which is similar to MPI’s C representation,
and the absent need for a virtual function table5.

5https://doc.rust-lang.org/reference/types/trait-object.html

14

https://doc.rust-lang.org/reference/types/trait-object.html

2 Rmpi

trait BufferRef: Sized {
fn item_datatype(&self) -> MPI_Datatype;
fn as_raw(&self) -> (*const c_void, c_int);
fn kind_ref(&self) -> BufferRefKind;
fn datatype_size(&self) -> RmpiResult<c_int> {

// ...
}
\\ convenience items omitted

}
trait BufferMut: Sized + BufferRef {

fn as_raw_mut(&mut self) -> (*mut c_void, c_int);
fn kind_mut(&mut self) -> BufferMutKind;
\\ convenience items omitted

}

/// Only for buffers with statically known type (slices)
trait Buffer
where for<’b> &’b Self: BufferRef,

for<’b> &’b mut Self: BufferMut,
{

unsafe fn from_raw<’b>(buf: *const c_void, count: c_int) -> &’b Self;
unsafe fn from_raw_mut<’b>(buf: *mut c_void, count: c_int)

-> &’b mut Self;
\\ convenience items omitted

}

impl<’b> TypeDynamicBufferRef<’b> {
pub unsafe fn from_raw_dynamic(

buf: *const c_void, count: c_int, datatype: MPI_Datatype,
) -> Self { /* ... */ }

}
impl<’b> TypeDynamicBufferMut<’b> {

pub unsafe fn from_raw_dynamic(
buf: *mut c_void, count: c_int, datatype: MPI_Datatype

) -> Self { /* ... */ }
}

Figure 2.5: The Buffer interface version 2.0

15

2 Rmpi

Usually, however, the datatype that is sent or received through an MPI function is
known at compile-time, as types usually are in statically typed programming languages.
That is why Rmpi, similarly to RSMPI, supports static type dispatching for buffers,
which, nonetheless, can use the dynamic buffer types as input as they implement the
buffer interface. (e.g. see Figure 2.6 for function signature example)

impl<’c> Process<’c> {
fn isend<’b, B: BufferRef + ’b>(&self, buffer: B, tag: Tag)

-> RmpiResult<Request<’b>>
{ /* Perform the operation using MPI_Isend() internally */ }
fn irecv<’b, B: BufferMut + ’b>(&self, buffer: B, tag: Tag)

-> RmpiResult<Request<’b>>
{ /* Perform the operation using MPI_Irecv() internally */ }

}

Figure 2.6: Function signatures of isend and irecv in Rmpi.

Preventing overlapping buffers

The primary mechanism in Rust that prevents race-conditions is the so-called borrow
checker. The borrow checker makes sure that there is never more than one mutable
reference to any singular value. This rule includes references to slices which are
not allowed to overlap if one of them is mutable. Several communication functions
in MPI support sending through or receiving into multiple buffers simultaneously,
e.g., MPI_Gatherv() or MPI_Scatterv(). This feature is realized by declaring one big
buffer and multiple index displacements contained in said buffer. Doing the same
in Rust would be unsafe as there is no way for the borrow checker to prove that the
displacements are not overlapping as they are only known at runtime. Instead, in Rmpi,
a list of buffers is used to describe the displacements. As buffers are all references to
slices themselves, the borrow checker can now guarantee the prevention of any overlaps
where they are not allowed.

Describing Null Pointer Buffers

In many of MPI’s C function definitions, it is valid to declare a buffer as absent using a
null pointer. In Rust, references generally cannot be null and thereby guarantee always
to reference a valid value. Rmpi, therefore, converts null pointer buffers to buffers with

16

2 Rmpi

non-null pointer value that have size 0. This can be done without allocation as any
pointer is per definition a valid reference if the referenced value is zero-sized as this
fact prevents any actual read or write operations from occurring.

2.1.9 Interface for Internal Tool Usage

For Rmpi to be used in an MPI-Tool environment, it has to be possible to call MPI func-
tions, dependent on the position in the toolchain. As any function pointer, providing a
part of the next tool’s functionalities, is again implemented in C, Rmpi has to be capable
of using an arbitrary set of MPI functions to operate. This is achieved by providing
an additional helper function for every safe wrapper function that performs the actual
operation using a given generic MPI function. An example for the send function can
be seen in Figure 2.7. All of those tool-generic functions are declared as unsafe as the
provided MPI function has to be implemented correctly according to the MPI standard.

impl<’c> Process<’c> {
unsafe fn send_with<F, B>(&self, mpi_send: F, buffer: B, tag: Tag)

-> RmpiResult
where B: BufferRef,

F: FnOnce(*const c_void, c_int, MPI_Datatype,
c_int, c_int, MPI_Comm) -> c_int,

{ /* Convert types back into C representation
call mpi_send()
convert return value into RmpiResult */ }

}

Figure 2.7: Send function similar to Figure 2.2 which uses a provided generic version
of MPI_Send() instead.

17

3 The Rust Tool Layer

To create an MPI-Tool for either PMPI or QMPI always contains the process of redefining
MPI functions, the so-called interceptions, in some way which will then internally call
another function that will lead to the return of its original task before its interception.
Usually, this internal call either leads to the next QMPI function of the next QMPI tool
or the MPI library directly. To support a generic scenario in which an interception
function has to work in both PMPI and QMPI environments, a generic function must
be given as input, representing the next interception.

The mpi-tool-layer library is responsible for creating such a generic environment,
which can later be used for creating a dynamic library that operates as MPI-Tool.

3.1 The Raw Layer

The only way to implement a generic interface in Rust is by implementing a trait on
a type. To create a dynamic library that intercepts MPI functions, we would need
precisely one type with one implementation of said trait. As this type has no other
reason to exist besides providing its associated implementation, it is usually a type
without content as it will never be instantiated. Let us call this type layer, as it represents
one layer of interceptions, independent of context.

The RawMpiInterceptionLayer trait defined in the Rust library mpi-tool-layer is an
interface for creating an interception layer here defined as raw layer. The trait contains
360 different functions that each have one MPI function as their counterpart, and it
defines itself, similarly to MPI-sys, by using the same types that are used in C as input
-and return types, with the only difference being the first argument which describes the
next function call (see Figure 3.1).

3.1.1 Unsafe Compromize

As mentioned in subsection 2.1.1, every MPI function defined in mpi.h has to be
considered unsafe in Rust due to C’s lack of any memory safety guarantees. In other
words: C function calls are often only valid if certain conditions are met, which
can only be confirmed by the developer. Using this logic, every function contained
in the RawMpiInterceptionLayer trait should also be marked as unsafe as they are

18

3 The Rust Tool Layer

unsafe trait RawMpiInterceptionLayer {
fn init<F>(

next_f: UnsafeBox<F>,
argc: *mut c_int, argv: *mut *mut *mut c_char

) -> c_int
where F: FnOnce(*mut c_int, *mut *mut *mut c_char) -> c_int,
{

unsafe { next_f.unwrap()(argc, argv) }
}
fn finalize<F>(next_f: UnsafeBox<F>) -> c_int
where F: FnOnce() -> c_int,
{

unsafe { next_f.unwrap()() }
}

// 358 functions omitted
}

Figure 3.1: Trait defining a raw interception layer.

19

3 The Rust Tool Layer

expected to replace the existing MPI functions. However, as all functions declared in
RawMpiInterceptionLayer are meant to be overwritten by yet unspecified tools, it is
unknown what those functions will do exactly. For example, it would be possible to
write a layer that overwrites every function with an empty function that only returns
MPI_SUCCESS without ever calling next_f. Such a layer would be perfectly safe because
no unsafe operation is ever invoked. On the other hand, any useful tool should always
invoke next_f in order not to break the toolchain and thereby preventing any other
tool from being executed.

The RawMpiInterceptionLayer provides a compromise in this situation. All trait
functions are marked as safe; however, it is unsafe to call the next_f function, which
has to be considered unsafe due to internally calling an MPI function. As this un-
safe operation is expected to occur, the trait function declarations are technically not
implemented correctly as safe functions. To make the tool developer aware of this,
RawMpiInterceptionLayer is unsafe in itself and is, therefore, a correct Rust implemen-
tation.

3.1.2 The Unsafe Box

Rust has no built-in way of marking the call of a statically dispatched closure as un-
safe. Therefore mpi-tool-layer contains a structure called UnsafeBox, which generically
handles this problem. An UnsafeBox is a wrapper around an object that is considered
entirely unsafe to use. Therefore the only way to access the inside of the box, which
can be done by calling a function called unwrap, is marked as unsafe. As a closure
call cannot be unsafe, the effect can be simulated by wrapping it inside an UnsafeBox,
thereby rendering any access needed to call the closure as unsafe.

3.2 The Layer Trait

The raw layer interface has few to none improvements to its C counterpart in being
convenient as it uses the same types and similar method signatures for its interceptions.
To use Rmpi’s functionality inside an MPI-Tool, interceptions need to be provided with
Rmpi’s types as input and be allowed to return RmpiResult instead of integer results.

The MpiInterceptionLayer, also defined inside the mpi-tool-layer library, defines the
safe version of RawMpiInterceptionLayer and enables more convenient high-level ac-
cess to MPI. Instead of using three arguments to describe a buffer, one rmpi::Buffer ar-
gument is given, using static dispatch (see subsection 2.1.8), pairs of MPI-Communicator
and rank are instead passed as one rmpi::Process and every function gains access to
a reference of RmpiContext (see Figure 3.2).

20

3 The Rust Tool Layer

MpiInterceptionLayer only supports a small subset of MPI functions. Which func-
tions are supported is defined in section 8.1.

trait MpiInterceptionLayer: RawMpiInterceptionLayer {
fn init<F>(next_f: F, args: &mut &mut [CStrMutPtr])

-> RmpiResult<Option<RmpiContext>>
where

F: FnOnce(&mut &mut [CStrMutPtr]) -> RmpiResult<Option<RmpiContext>>,
{

next_f(args)
}
fn finalize<F>(next_f: F, rmpi_ctx: RmpiContext) -> RmpiResult
where

F: FnOnce(RmpiContext) -> RmpiResult,
{

next_f(rmpi_ctx)
}

// other functions omitted
}

Figure 3.2: Trait defining a safe interception layer with high-level Rmpi access.

3.3 Type Conversion

As the high-level interception layer is incompatible with either PMPI’s or QMPI’s func-
tion interface, types have to be converted before every interception and reconverted after-
ward to use the next tool in the chain. To achieve this, MpiInterceptionLayer is imple-
mented on top of RawMpiInterceptionLayer, or expressed in Rust semantic, every type
implements RawMpiInterceptionLayer if it also implements MpiInterceptionLayer
(automatically). Let us call this implementation the type conversion layer. Although
Rust does not natively support a class inheritance mechanism as many object-oriented
programming languages do, MpiInterceptionLayer can, in this case, be seen as a sub-
class/subtrait of RawMpiInterceptionLayer which therefore can be used in the same
way for creating MPI-Tool’s as its raw counterpart. This relationship is illustrated in
Figure 4.1.

21

3 The Rust Tool Layer

3.3.1 Usage of Rmpi’s internal Tool Call Support

The type conversion layer uses Rmpi’s internal functionality for relaying high-level
MPI calls to specified low-level implementation versions (tools), which is described in
subsection 2.1.9. The provided *_with() functions in Rmpi are used to generate the
high-level next_f argument for use in MpiInterceptionLayer which is implemented
to reverse all type conversions in order to internally call the appropriate MPI function
in mpi-sys. One possible scenario where two in Rust developed MPI-Tools are chained
using QMPI is presented in Figure 3.3.

tool1:
Macro Generated

Interception
Symbols

tool1:
Automatic

RawMpiInterceptionLayer
Implementation

tool1:
MpiInterceptionLayer

Implementation

init(unsafe next_f, argc, argv)
init(next_f, args)

MPI_Init(argc, argv)

init_with(mpi_init, args)

next_f(args)

RmpiResult<RmpiContext>

RmpiResult<RmpiContext>
c_int

c_int

RmpiResult<RmpiContext>

:Rmpi library :MPI-sys library
tool2:

Macro Generated
Interception

Symbols

tool2:
RawMpiInterceptionLayer

implementation

[calls mpi_init(argc, argv)]
MPI_Init(argc, argv)

c_int

init(unsafe next_f, argc, argv) [calls next_f(argc, argv)]
PMPI_Init(argc, argv)

c_int
c_int

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

Figure 3.3: Sequence Diagram of a Toolstack Scenario with 2 MPI-Tools.
Tool 1 is implemented using MpiInterceptionLayer while Tool 2 is imple-
mented using RawMpiInterceptionLayer.

22

3 The Rust Tool Layer

3.3.2 Datatype Matching

The automatic raw layer implementation is responsible for converting all types into
-and from their Rmpi versions’ while calling the real high-level interception function in
between. However, using static dispatch for buffers prevents any simple conversion,
as a different type of buffer is needed for every single mpi-datatype. This forces the
conversion layer to match the datatype of any possibly given send -and/or receive-
buffers and then decide which instance of the generic function call needs to be used.
(See Figure 3.4)

Rust defines fixed-sized integer and floating-point types (e.g. i8, u32, f64) that
all have matching C type definitions (e.g. int8_t, uint32_t, double) and matching
MPI-Datatype ids (e.g. MPI_INT8_T, MPI_UINT32_T, MPI_DOUBLE) (except i128 and u128).
However, Rust has no independent build-in types that match C’s char, short, int, and
similar types but rather redefines the existing types depending on the compiler’s target
architecture. This constraint has the repercussion that, e.g., a raw buffer with elements
of datatype MPI_CHAR might end up as Rust type [u8] which, when converted backward
would then have the datatype MPI_UINT8_T. In other words, Rust’s c_char definition,
which is meant to represent the char type of the systems current C compiler, is only a
type alias and cannot be distinguished in any way from the actual type it aliases (either
u8 or i8), at least not without defining a wrapper type that would exist solely for this
purpose.

After experimentation, MPICH proved not to check for datatype equality across
ranks and only makes sure the receiving buffer’s length in bytes is not smaller than
the sending buffer’s. The, due to Rust, limited datatype matching does, therefore,
not become a significant problem as long as all ranks run on similar architectures.
See Figure 3.5 for a working MPI example that exploits this implementation detail of
MPICH.

3.3.3 Why Layer 1.0 had to be abandoned

The Layer interface described until now was supposed to be the final solution to
providing generic MPI-Tools. However, it has a serious flaw that can be observed in the
example implementation in Figure 3.6. The layer implementation shown in this figure
is, from a human perspective, valid. Nonetheless, it will not compile due to Rust’s
borrow checker, which cannot prove that the variable buf is still accessible after being
passed on to the function next_f. The usual procedure to solve this nature’s problems
is to let next_f only "borrow" the buffer instead of owning it entirely. This adaption
would lead to the closure type F having a buffer input type that lives shorter than the
type of the variable buf, which would theoretically solve the problem. Unfortunately,

23

3 The Rust Tool Layer

unsafe impl<T> RawMpiInterceptionLayer for T
where T: MpiInterceptionLayer,
{

fn bcast<F>(
next_f: UnsafeBox<F>,
buffer_ptr: *mut c_void, count: c_int, datatype: MPI_Datatype,
root: c_int, comm: MPI_Comm,

) -> c_int
where

F: FnOnce(*mut c_void, c_int, MPI_Datatype, c_int, MPI_Comm) -> c_int
{

if datatype == MPI_UINT8_T {
let buffer = unsafe {

<[u8] as Buffer>::from_raw_mut(buffer_ptr, count)
};
let rmpi_res = <Self as MpiInterceptionLayer>::bcast(

|_rmpi_ctx, buf, root| {
unsafe{root.bcast_with(next_f.unwrap(), buf)}

},
// other arguments (converted)

);
// return rmpi_res (converted back as integer)

} else if datatype == MPI_INT || datatype == MPI_INT32_T {
// (assuming int equals int32_t in C)
let buffer = unsafe{<[i32] as Buffer>::from_raw_mut(buffer_ptr,count)};
// ... (continue as for MPI_UINT8_T)

}
// match other datatypes predefined in MPI
else { /* dynamic buffer fallback */ }

}
// other functions omitted

}

Figure 3.4: Automatic implementation responsible for converting types into their high-
level representation. (This is a simplified version of the original code with
all macros expanded.)

24

3 The Rust Tool Layer

Rank 0

const int arr1[10] = {1,2,3};
MPI_Send(arr1, 3, MPI_INT,

1, 0, MPI_COMM_WORLD);

Rank 1

uint32_t arr2[3];
MPI_Recv(arr2, 3, MPI_INT32_T,

0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

Figure 3.5: Using different datatype definitions for the same type.
This only works if rank 0 uses 32bit-integers.

Rust does not support generic types (in this case F) to be generic themselves. This
limitation makes it impossible to attach a generic lifetime to F thereby offering no way
to derive a new type F’ from F with a shortened lifetime. A simple workaround to this
problem would be introducing a new lifetime by wrapping every buffer in a reference.
In this case:

buf: &’buffer_lifetime mut Buf

However, this declaration would seem redundant as Buf already defines a generic
reference to a buffer.

As there is no way to implement a tool that inspects received data with the current
layer interface, as can be seen in Figure 3.6, subsection 3.3.4 will introduce a changed
interface that solves this problem, among others.

3.3.4 Using dynamically typed Buffers (Layer 2.0)

It turns out that, as useful as static datatype dispatch for buffers may be in the Rmpi
library, it has serious disadvantages when implementing a high-level layer:

1. Every intercepted call needs a datatype matching (see subsection 3.3.2), even if
the tool does not care about the datatype.

2. It cannot be reliably used on a system with differing architectures. (See subsec-
tion 3.3.2)

3. Rust’s borrow checker has not enough information to allow access to buffers after
having been passed on as argument. (See subsection 3.3.3)

Point 1 might have been a minor performance disadvantage, and point 2 could easily
be fixed by only allowing the use of fixed-sized integer types. However, point 3 is a

25

3 The Rust Tool Layer

1 impl MpiInterceptionLayer for MyLayer {
2 fn recv<F, Buf>(
3 next_f: F, rmpi_ctx: &RmpiContext,
4 buf: Buf, src: Process, tag: Tag, status_ignore: bool,
5) -> RmpiResult<Option<Status>>
6 where F: FnOnce(&RmpiContext, Buf, Process, Tag, bool)
7 -> RmpiResult<Option<Status>>,
8 Buf: BufferMut,
9 {

10 let res = next_f(rmpi_ctx, buf, src, tag, status_ignore);
11 println!("first␣byte:␣{}", buf.as_bytes()[0]);
12 res
13 }
14 }
15

Figure 3.6: Implementation example for Layer 1.0 that is not accepted by Rust’s borrow
checker.
After switching line 10 and 11 the code would compile.

26

3 The Rust Tool Layer

serious problem that, without significantly changing the type conversion process, can
only be solved awkwardly.

To fix all three concerns, static typing for MPI-Datatypes needed to be removed
entirely in the layer construct. By using dynamic buffer references as input, there is no
longer any need for datatype matching when converting types as the MPI-Datatype
can just be taken as-is into the dynamic buffer and be possibly inspected later by
the tool implementation. Therefore, e.g., MPI_INT will not be transformed into, e.g.,
MPI_INT32_T and the MPI call will therefore again work on heterogeneous architectures,
although the tool implementation will still not be able to distinguish those types without
falling back to the raw implementation.

Most importantly, the dynamic buffer types have their own respective lifetimes
attached (see Figure 2.5) which solves the problem in Figure 3.6, presented in Figure 3.7.

fn recv<F>(
next_f: F, rmpi_ctx: &RmpiContext, mut buf: TypeDynamicBufferMut,
src: Process, tag: Tag, status_ignore: bool,

) -> RmpiResult<Option<Status>>
where F: FnOnce(&RmpiContext, TypeDynamicBufferMut, Process, Tag, bool)

-> RmpiResult<Option<Status>>,
{

// borrow buf mutably using as_mut()
let res = next_f(rmpi_ctx, buf.as_mut(), src, tag, status_ignore);
// the borrow is over, so buf can be used again
println!("first␣byte:␣{}", buf.as_bytes()[0]);
res

}

Figure 3.7: This implementation compiles using the layer interface 2.0, unlike in Fig-
ure 3.6

3.4 Prevention of Infinite Recursions

When implementing an MPI tool, it will most likely become necessary to call MPI func-
tions from inside interceptions. Calling MPI functions in the same way an application
would, would naturally lead to that call being intercepted. This phenomenon might
not be a problem in many cases but can potentially lead to infinite recursions when

27

3 The Rust Tool Layer

functions are intercepted in an endless cycle.
To conveniently prevent such mistakes, Rmpi contains, similarly to MPI-sys (see sub-

section 2.1.1), a module named pmpi_mode which contains everything the root module
contains, only every call gets redirected towards PMPI_* functions. The mpi-tool-layer
package reexports this module as a fake Rmpi alias module that can only call non-
interceptable MPI calls. In a tool implementation it is expected to be imported the
following way:

use mpi_tool_layer::rmpi;

28

4 The Tool Creator Macro

A generic tool, as described in chapter 3, cannot be used on its own with either the
PMPI or QMPI tool interface. A dynamic library (or possibly static for PMPI) is needed
with certain symbols that provide the required functionality in both cases. Of course,
the most convenient solution would be to provide both tool functionalities in the same
dynamic library. As the current version of QMPI[5] is implemented as a PMPI tool in
itself, it is not possible to link to QMPI from a PMPI-Tool without creating conflicting
symbols. Therefore, any compiled tool can only be either a QMPI-Tool or a PMPI-Tool
but not both at the same time.

The layer interface (see chapter 3) has the purpose of providing a generic way of creat-
ing tools, independent of the context in which they would be used. Therefore the needed
function symbols to create the target tool still have to be implemented. This would
mean in PMPI’s case that all of the 360 supported MPI-functions would be defined,
which would then call the provided layer by using the corresponding PMPI-function
as next function (next_f). Similarly, for QMPI, a list of QMPI-interceptions has to be
defined in which the next function will be determined by QMPI’s QMPI_Table_query
function (see Elis et al. [5]), which will again be used to call the generic layer.

As any layer interface implementation already contains all necessary details for defin-
ing an MPI-Tool, the target adaptation can be performed automatically. My framework
contains the two tool creator macros install_pmpi_layer and install_qmpi_layer
for that very purpose. Both macros automatically create symbols for all possible in-
terceptions that might have been defined in the specified layer, which happen to be
360 functions. (See Figure 4.1) This is possible as any function not defined in a layer
is predefined as an empty interception that only calls the provided next function on
being triggered, which, ultimately, has the same effect as having no interception. This
automation makes it very easy to implement an empty Rust tool, as shown in Figure 4.2.

To understand the usefulness of such a macro one can look at the "very_simple_tool"
example that can be found in the QMPI repository1, and which represents the im-
plementation of an empty QMPI-Tool in C. The difference in effort is obvious as the
very_simple_tool is implemented in a file containing over 3000 lines of code. Of course,
much work can be spared in situations where code repeats itself in recurring patterns,

1https://raw.githubusercontent.com/caps-tum/qmpi/a2c9033f20e7614d3c8b8a0134b9654b4bddd340/
tool_examples/very_simple_tool/very_simple_tool.c

29

https://raw.githubusercontent.com/caps-tum/qmpi/a2c9033f20e7614d3c8b8a0134b9654b4bddd340/tool_examples/very_simple_tool/very_simple_tool.c
https://raw.githubusercontent.com/caps-tum/qmpi/a2c9033f20e7614d3c8b8a0134b9654b4bddd340/tool_examples/very_simple_tool/very_simple_tool.c

4 The Tool Creator Macro

LowLevelLayerType

<<Interface>>
RawMpiInterceptionLayer

+ c_int init(unsafe next_f, ...)
+ c_int finalize(unsafe nexf_f)
+ c_int send(unsafe nexf_f, ...)
+ c_int recv(unsafe nexf_f, ...)
// other functions omitted

<<Interface>>
MpiInterceptionLayer

+ RmpiResult<RmpiContext> init(next_f, ...)
+ RmpiResult finalize(nexf_f, RmpiContext)
+ RmpiResult send(nexf_f, &RmpiContext, ...)
+ RmpiResult recv(nexf_f, &RmpiContext, ...)
// other functions omitted

HignLevelLayerType

Generic MPI-Tool

1

QMPI-Tool PMPI-Tool

QMPI Tool creator

Macro

PMPI Tool creator

Macro

Figure 4.1: Relationships between the layer interface and the resulting MPI-Tools.
Note that Rust is not UML compatible and that this only represents the
functionality of the implementation but not its internal structure. (Interface
types do not exist in Rust)

30

4 The Tool Creator Macro

(a) Empty generic layer

struct MyEmptyLayer;
impl MpiInterceptionLayer for MyEmptyLayer {}

(b) creating tool symbols for PMPI

install_pmpi_layer!(MyEmptyLayer);

(c) creating tool symbols for QMPI

install_qmpi_layer!(MyEmptyLayer);

Figure 4.2: Implementation of an empty MPI-Tool for either QMPI or PMPI

like in this example, by using common techniques like repeatedly copying code snippets
or by creating scripts for assistance in code generation. However, long programming
files also increase the probability of mistakes being introduced while it becomes more
difficult to find said mistakes in a very long file. For very_simple_tool.c this means
that every MPI interception function has to use the correct function-id for calling the
next function, has to use the correct way for QMPI for querying the next function call,
and has to make sure to pass all function arguments to the next function in the correct
order. In contrast, using the tool-creator-macro combined with the layer interface, it
can be guaranteed that the correct next function is called in every interception as only
that function is provided as argument. Also, providing function arguments in the
wrong order is, in most cases, not possible as the next function definition next_f is
statically typed and, therefore, can only be called using the correct types in the correct
positions. Lastly, all details concerning QMPI or PMPI are handled automatically by
the respective macro and can, therefore, not be wrongly implemented in any tool using
that macro (assuming the macro itself is mistake-free).

In conclusion, using a macro, thereby having to worry about such mistakes only
once, can vastly improve code quality for any future tools written in Rust.

31

5 Performance Evaluation

The goal of parallel applications is to gain performance by using multiple processing
units in parallel. Therefore, performance is always a significant concern for such
applications as it can quickly happen that, after evaluation, a parallel application
turns out not to be faster than its sequential counterpart, after all, resulting in many
working hours being wasted. Considering this, it is essential to ensure that the resulting
performance overhead created through the layer interface and Rmpi is low enough not
to affect typical MPI applications significantly.

For evaluation purposes, this chapter uses the four HPC benchmarks ASC Sequoia
AMG 2006 (AMG), High Performance Conjugate Gradient (HPCG), Co-Design for Molec-
ular Dynamics (CoMD) and OSU Micro-Benchmarks (OMB). Different scenarios will
be measured using both PMPI and QMPI. All benchmarks were run on a skylake
machine in the CAPS Cloud provided by the TUM chair of computer architecture &
parallel programming.1 The machines each contain one Intel Xeon Silver 4116 processor,
containing 12 cores and 24 computation threads. Therefore, all following benchmarks
were run on a single skylake node using 24 processes unless otherwise specified.

5.1 ASC Sequoia AMG 2006

AMG is an algebraic multigrid solver capable of solving linear systems on unstructured
grids in parallel. All following AMG benchmarks in this thesis will use the options
-laplace -n 85 85 85 which creates a three-dimensional grid over a unit cube for
solving a 3D-Laplace equation by dividing the data into chunks of equal sizes for
parallelism.[1]

As can be seen in Figure 5.1, a significant amount of time of execution time in AMG
is spent on MPI calls, especially the three blocking collective calls MPI_Allgather(),
MPI_Allreduce() and MPI_Waitall() which take up ca. 1.216 sec. of execution time for
an average runtime of ca. 10.685 sec. (see Table 5.4). The MPI initialization also takes
up a significant amount of computing time. This fact has to do with the small runtime
that resulted from the chosen configuration and, due to being a one-time operation,
can be expected to be less significant for long-running applications.

1Formoreinformation,seehttps://www.in.tum.de/caps/hw/caps-cloud/

32

For more information, see https://www.in.tum.de/caps/hw/caps-cloud/

5 Performance Evaluation

The most often called functions are MPI_Isend() and MPI_Irecv() with 35276 calls
each over all ranks (see Table 5.1). As both functions are non-blocking operations, their
nontheless insignificant performance impact is not surprising.

While AMG does support execution using OpenMP, the feature has been disabled
for all benchmarks as MPI is already configured to occupy all logical processor cores.

5.2 High Performance Conjugate Gradient

HPCG is a solver for the Poisson differential equation using the Conjugate-Gradient
algorithm and a symmetric Gauss-Seidel preconditioner on a 3d regular grid. For dis-
cretization operations, a 3x3x3-stencil is used. For communication, it uses a tiny number
of MPI functions, consisting only of blocking, wait, and allreduce -and non-blocking
receive operations. One MPI_Bcast call per rank is also used for initialization.[3]

For all following benchmarks, HPCG will be configured to use a 48x48x48 cube for
computations. HPCG has, by default, a timed benchmark portion that is configured to
run a fixed amount of time. However, this portion has been deactivated for this thesis
as it would affect the accuracy of measuring the time needed to run from start to finish.

HPCG wasts less time using blocking operations than AMG, as can be seen in
Figure 5.2, but the functions MPI_Send(), MPI_Wait() and MPI_Allreduce() still delay
coputations, on average, for ca. 1.088 sec. for one 11.953 sec. run (see Table 5.4).
Again, MPI_Init() takes up a significant amount of processing time due to the short
runtime duration. The absolute initialization delay, however, remains at roughly the
same duration of ca. 0.8 sec.

MPI calls are made with high frequency. The most often called functions are
MPI_Send(), MPI_Irecv() and MPI_Wait() with 450048 calls each in total.

HPCG is the only benchmark used that is written in C++ instead of C. It, like AMG,
has also support for OpenMP, which is, again, not enabled for benchmarking.

5.3 Co-Design for Molecular Dynamics

CoMD is a reference implementation, developed to represent the typical workload of
a molecular dynamics simulation.[7] In all tests the following options are going to be
used:

-e -i 4 -j 3 -k 2 -x 80 -y 40 -z 40

This will create a 3D 80x40x40-grid split into 4, 3, and 2 parts in x, y, and z directions,
respectively, resulting in 24 sub-grids. One sub-grid is distributed to every rank. The

33

5 Performance Evaluation

Table 5.1: Record of how often MPI functions were called using AMG.
MPI function call count
MPI_Isend 35276
MPI_Irecv 35276
MPI_Allgatherv 168
MPI_Allgather 336
MPI_Allreduce 3744
MPI_Waitall 17208
MPI_Comm_size 21072
MPI_Comm_rank 21288
MPI_Init 24
MPI_Finalize 24

27.0%

73.0%

MPI calls: 3944 us
Computation: 10685 us

(a) Total distribution on rank 0

16.9%

9.4%

32.1%

40.8%

0.8%

MPI_Allgather: 352587 us
MPI_Allreduce: 195227 us
MPI_Waitall: 667806 us
MPI_Init: 848598 us
other MPI calls: 16244 us

(b) MPI calls split, rank average

Figure 5.1: Impact of MPI calls on AMG
results are averaged over 100 iterations

34

5 Performance Evaluation

Table 5.2: Record of how often MPI functions were called using HPCG.
MPI function call count
MPI_Send 450048
MPI_Irecv 450048
MPI_Wait 450048
MPI_Allreduce 13248
MPI_Wtime 86568
MPI_Bcast 24
MPI_Comm_size 42216
MPI_Comm_rank 42240
MPI_Init 24
MPI_Finalize 24

14.8%

85.2%

MPI calls: 2074 us
Computation: 11953 us

(a) Total distribution on rank 0

26.2%
29.0%

43.3%

1.4%

MPI_Allreduce: 506928 us
MPI_Wait: 561267 us
MPI_Init: 837132 us
other MPI calls: 27317 us

(b) MPI calls split, rank average

Figure 5.2: Time consumption split for HPCG

35

5 Performance Evaluation

simulation is set to run for the default value of 100 iterations but is treated as one single
benchmark.[2]

Figure 5.3 shows that this benchmark only uses MPI_Sendrecv(), MPI_Allreduce()
and MPI_Bcast() for communication, which takes up ca. 0.339 sec. from the average
runtime of 11.688 sec (see Table 5.4) which is much less than in either AMG or HPCG.
The total delay duration of MPI_Init() remains ca. 0.8 sec. Its impact relative to all
other MPI operations is, however, higher than for AMG or HPCG.

The most called functions are MPI_Sendrecv() and MPI_Get_count() with 29088 calls
each in total (see Table 5.3).

CoMD also has implementation versions for OpenCL and OpenMP. However, only
the pure MPI version is used for all benchmarks.

5.4 OSU Micro-Benchmarks

OMB is a collection of small benchmarks for MPI, UPC, and OpenSHMEM, which all
cover a single HPC functionality, in MPI’s case often represented by one or two MPI
functions.

The only benchmark used in this collection is the MPI latency benchmark, which
performs a ping-pong test using a message of a specific size to measure how long
the exchange takes. The latency benchmark has been configured to run between two
connected skylake nodes, with each node running on one separate process.

The delay of one ping-pong operation depends, of course, heavily on the message size
being used. However, for small messages (< 210), the difference is bearly measurable.
For increasing message sizes, the delay grows with linear proportions. Figure 5.4 shows
the different delay times for message sizes that are powers of 2 on a logarithmic scale
(which is why the delay time seems to grow exponentially, but it does not).

5.5 Methodology

To measure the overhead of using a Rust Tool compared to using either an MPI-Tool
implemented in C or having direct MPI access, this paper will mimic the evaluation
procedure described in Elis et al. [5]. First, baseline measurements will be created for
the most simple scenarios. Those baselines will then serve as orientation for any of the
following benchmark that, if valid, should always have a longer or equal runtime than
its corresponding baseline.

36

5 Performance Evaluation

Table 5.3: Record of how often MPI functions were called using CoMD.
MPI function call count
MPI_Sendrecv 29088
MPI_Allreduce 624
MPI_Bcast 192
MPI_Comm_size 24
MPI_Comm_rank 48
MPI_Get_count 29088
MPI_Init 24
MPI_Finalize 24

8.6%

91.4%

MPI calls: 1093 us
Computation: 11688 us

(a) Total distribution on rank 0

27.3%
1.2%

71.3%

0.1%

MPI_Sendrecv: 323306 us
MPI_Allreduce: 14562 us
MPI_Init: 843740 us
other MPI calls: 1674 us

(b) MPI calls split, rank average

Figure 5.3: Time consumption split for CoMD

37

5 Performance Evaluation

20 25 210 215 220

0

1,000

2,000

3,000

4,000

5,000

message size

de
la

y
in

m
ic

ro
se

co
nd

s

Figure 5.4: Latency benchmark run between 2 skylake nodes

5.5.1 Empty Tool

To evaluate the overhead caused by the layer interface’s abstractions, it is necessary to
measure the overhead caused by a tool that does nothing else than redirect all MPI
calls without doing anything else. Such a tool can be called an empty tool. Empty Rust
tools are implemented as demonstrated in Figure 4.2. For comparison purposes, the
very simple tool (which is an empty tool written in C) in the QMPI repository will be
used as an empty tool implemented in C.

The drawback of evaluating a "useless" implementation with no real purpose is
that the compiler’s program optimizer would most likely remove those parts of the
implementation that are "useless" too obviously. Avoiding to call the trait functions of
an empty layer implementation would be such an unwanted optimization that could
happen if the layer itself is inlined and then optimized. This would possibly lead to
creating the same dynamic library, independent of which layer interface is used, and
would therefore destroy any differentiation in the resulting measurements. To avoid
such unwanted optimizations, all empty-tool implementations and QMPI itself are
compiled with zero optimization. However, one must note that the obtained results will
only give us an indication of the interface’s complexity and its impact on performance
but does not prove its general performance in real-life scenarios where optimization is
used.

38

5 Performance Evaluation

5.6 Single Tool Test

Similar to the zero-tool test in Elis et al. [5], this test measures the performance difference
of adding one empty Rust tool through the PMPI interface to having direct access to
MPI. For comparison purposes, QMPI, with empty tool-stack, is also measured as it is
also a PMPI-Tool. As the layer interface is only meant as assistance for developers, it is
expected to have a very low performance overhead to counter the benefits it provides.

The measurements in Table 5.4 describe the baseline results for AMG, HPCG and
CoMD. Each benchmark is divided into five instances compiled individually to either
link to MPI directly, one of three empty Rust Tool implementations using different layer
traits internally, or QMPI, which is executed without any inserted tools. In turn, each
benchmark has been modified to provide three measurement values via stdout after
approximately running for 10 seconds. Those values describe first, the entire runtime
of the benchmark, starting from just before MPI_Init() until just after MPI_Finalize(),
while second and third describe the runtime just after MPI_Init() until just before
MPI_Finalize(), the second being the average runtime of all rank while the third
represents the maximum rank runtime.

MPI-Applications are notorious for having varying runtimes, which is caused by
the need for communication between ranks, which, especially for blocking commu-
nications, depends heavily on the state of the underlying scheduler, and that might,
e.g., have temporarily suspended a sending task and thereby unwittingly lengthened
the corresponding receive operation. This can also be observed in Table 5.4, where
the results seem to contradict expectations, e.g., the Rust raw-layer implementation
seems to be faster than direct access to MPI for AMG and HPCG. The benchmarks have
all been run 100 times, with every presented measurement representing the average
runtime. Still, this noise reduction technique is not enough to measure the difference
between single empty tool implementations. The only deduction that can be made out
of Table 5.4 is that any overhead created through the Rust layer interface is insignificant
when using only one single tool.

5.7 Tool-Stack Test

In Elis et al. [5], the Empty Tool Test is used to see the resulting overhead of adding
one additional tool to QMPI in correlation to the number of tools that are already
present. When visualizing the resulting runtime per tool-stack size in a graph, it shows,
on average, a gradual linear increase in runtime per increased number of tools. This
correlation seems to hold even when using different benchmarks, and only the slope
increase changes. Therefore, this test can also be used to accurately compare an empty

39

5 Performance Evaluation

Table 5.4: Tool Baseline benchmark results
every value is the average of 100 iterations

MPI only PMPI Rust
(Raw Layer)

PMPI Rust
(High Level Layer)

QMPI
(Empty Stack)

1.0 2.0
AMG 10.685 s 10.652 s 10.802 s 10.802 s 10.794 s
without init()
rank avg. 9.830 s 9.783 s 9.933 s 9.950 s 9.928 s
rank max. 9.831 s 9.784 s 9.934 s 9.951 s 9.930 s
HPCG 11.953 s 11.931 s 11.948 s 12.092 s 11.949 s
without init()
rank avg. 11.112 s 11.087 s 11.103 s 11.235 s 11.106 s
rank max. 11.114 s 11.090 s 11.105 s 11.238 s 11.109 s
CoMD 11.688 s 11.765 s 11.708 s 11.704 s 11.773 s
without init()
rank avg. 10.840 s 10.917 s 10.857 s 10.847 s 10.924 s
rank max. 10.841 s 10.918 s 10.857 s 10.847 s 10.924 s

Rust Tool (low-level and high-level layer interface) implementation with a counterpart
implementation in C. An inefficient layer implementation, e.g., can be identified by its
steeper increase in runtime per added tool compared to the graph of a more efficient
implementation.

5.7.1 Removal of Lone Outlier

It is natural for timing measurements to have, from time to time, extremely unexpected
results. This can happen through, e.g., unexpected system events, poor process schedul-
ing, or similar. Measurements that are too far away from the measured values next to
them in the graph are therefore not displayed in any of the following plots.

5.7.2 Empty Tool Test

The tool-stack test results using empty tools can be seen in Figure 5.5, Figure 5.6 and
Figure 5.7.

Every benchmark is divided into three measurements. First the overall runtime of
the benchmark starting from just before MPI_Init() until just after MPI_Finalize().
As could be seen in Figure 5.1, Figure 5.2 and Figure 5.1, MPI’s initialization can be
expensive. However, for long-running applications, this is often not relevant. There-

40

5 Performance Evaluation

(a) Measured on only rank 0, including MPI_Init and MPI_Finalize

0 50 100 150 200 250 300

10.8

11

11.2

11.4

11.6

number of tools

de
la

y
in

se
co

nd
s

Empty Rust Layer v1.0
Empty Rust Layer v2.0

Empty Rust (Raw) Layer
Very Simple Tool

(b) Maximum rank runtime without MPI_Init
or MPI_Finalize

0 100 200 300

10

10.2

10.4

10.6

number of tools

de
la

y
in

se
co

nd
s

(c) Average rank runtime without MPI_Init or
MPI_Finalize

0 100 200 300

10

10.2

10.4

10.6

number of tools

Figure 5.5: AMG Toolstack Benchmark
(3 outliers removed)

41

5 Performance Evaluation

(a) Measured on only rank 0, including MPI_Init and MPI_Finalize

0 50 100 150 200 250 300

12

14

16

18

number of tools

de
la

y
in

se
co

nd
s

Empty Rust Layer v1.0
Empty Rust Layer v2.0

Empty Rust (Raw) Layer
Very Simple Tool

(b) Maximum rank runtime without MPI_Init
or MPI_Finalize

0 100 200 300

12

14

16

number of tools

de
la

y
in

se
co

nd
s

(c) Average rank runtime without MPI_Init or
MPI_Finalize

0 100 200 300

12

14

16

number of tools

Figure 5.6: HPCG Toolstack Benchmark

42

5 Performance Evaluation

(a) Measured on only rank 0, including MPI_Init and MPI_Finalize

0 50 100 150 200 250 300
11.5

12

12.5

13

13.5

14

number of tools

de
la

y
in

se
co

nd
s

Empty Rust Layer v1.0
Empty Rust Layer v2.0

Empty Rust (Raw) Layer
Very Simple Tool

(b) Maximum rank runtime without MPI_Init
or MPI_Finalize

0 100 200 300

11

12

13

number of tools

de
la

y
in

se
co

nd
s

(c) Average rank runtime without MPI_Init or
MPI_Finalize

0 100 200 300

11

12

13

number of tools

Figure 5.7: CoMD Toolstack Benchmark
(1 outlier removed)

43

5 Performance Evaluation

fore, each benchmark has a second and third measurement for the timespan starting
immediately after MPI_Init() and ending shortly before MPI_Finalize(). The second
measurement measures the average rank runtime, while the third the maximum rank
runtime.

As it turns out, no distinct differences between those three types of measurements
can be observed for any of the benchmarks. All ranks seem to be enough in sync
that the average and maximum rank runtime turn out to be nearly the same. The
general overhead from calling MPI_Init() and MPI_Finalize() can be observed for
every benchmark but is constant enough as not to affect the observed slope increase
significantly.

The tool implementation with the least overhead is the Rust raw-layer implementation
and the very-simple-tool. The very-simple-tool can be observed to be slightly faster
with HPCG but generally has the same performance as the Rust raw-layer.

Both implemented versions of the empty high-level layer perform noticeably worse
than their raw counterpart. Version 2.0 still proves to be significantly faster than its pre-
decessor, although, the results vary. The most significant improvement can be observed
with CoMD where version 2.0 comes close to a raw-layer implementation’s performance.
The HPCG benchmarks, on the other hand, measures barely any improvements between
the two versions.

The AMG benchmark turns out to be the least sensitive. The difference between the
best and worst runtime is only ca. 0.6 sec. for 300 tools. HPCG, on the other hand, is
very sensitive to tool overhead and measures a runtime difference of ca. 4 sec. when
using 300 tools.

5.7.3 Latency Benchmark

The benchmark results described to this point have all been run on one single processor.
This has the benefit of reducing the noise level to a level where it can be distinguished
from the actual measurement. HPC applications are, however, meant to run on
massively parallel systems that usually consist of a large number of connected nodes.
The diagram in Figure 5.4 describes a benchmark performed across two skylake nodes
connected via ssh tunnel using local ipv4 addresses. To maintain a low noise level, the
OMB latency benchmark, described in section 5.4, is used, which is small and simple
enough to produce accurate results still. The exact measurement is starting just before
the Send operation of rank 0 until just after the echoed message’s receive operation,
again on rank 0.

The tool-stack test is performed in the same way as before but for three different
message sizes (0 bytes, 210 bytes, and 215 bytes).

Similar to the baseline measurements illustrated in Figure 5.4, no differences appear

44

5 Performance Evaluation

in the measurements between message size 0 and 210, independent of layer implemen-
tation. Again, as in the baseline, the increased message size of 215 leads to a generally
increased ping-pong delay time. However, this does not change the gradual increase in
runtime due to increased tool-stack size, again, independent of tool implementation.

The very-simple-tool can, again, be observed to perform slightly better than the Rust
raw-layer implementation. Both high-level layer versions perform, again, significantly
worse. The 2.0 version is, however, significantly more efficient when over 150 empty
tools are used.

5.7.4 Function Call-Counter

While unoptimized, the empty tools accurately show their internal complexity in
benchmarks. They cannot necessarily represent the performance in a real-world scenario
where program optimization is activated. The function call-counter tool represents a
minimal real-world scenario using the low-level layer interface as a backend for the
implementation. The tool works as a set of atomic counters, which count the number
of occurred function calls for each function. When MPI_Finalize() is called, the tool
provides the generated counter data as output (e.g. see Figure 5.9). For comparison
purposes, a C implementation with the same functionality is also provided. As the
program optimizer cannot entirely eliminate the function counter mechanism, both
implementation are being compiled with optimization flag -O3.

Surprisingly, the results in Figure 5.10 and Figure 5.11 indicate that the Rust imple-
mentation is more efficient than the C implementation. Most noticeable is the effect
with HPCG, which has already in previous benchmarks proven to be very sensitive to
small alterations. For AMG and CoMD the difference becomes only clear after adding
more than 100 tools to the stack. Although being quite noisy, the latency benchmark
indicates the same, except for message size 215, which generates too much noise to be
interpreted.

5.7.5 Bandwidth Counter

To create a similar real-world scenario as in subsection 5.7.4, a new tool needs to be
created using the high-level layer (version 2.0). The bandwidth counter also consists
of a set of atomic counters. This time, the functionality of the buffer interface is
used to count the amount of data sent and received in the program across ranks. To
be compatible with CoMD, reduced elements are also counted. All three counter
categories are split into distinguishing between the different integer and floating-point
datatypes the respective programming language supports. An example output can be
seen in Figure 5.12 This time, the Rust and C implementation do not match precisely in

45

5 Performance Evaluation

(a) Message size 0.
Average of 1000 iterations

0 50 100 150 200 250 300
0

20

40

60

80

100

120

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

Empty Rust Layer 1.0
Empty Rust Layer 2.0

Empty Rust (Raw) Layer
Very Sinple Tool

(b) Message size 210.
Average of 1000 iterations

0 100 200 300
0

50

100

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

(c) Message size 215.
Average of 100 iterations

0 100 200 300

100

150

200

number of tools

Figure 5.8: OMB Latency Toolstack Benchmark

46

5 Performance Evaluation

MPI_Barrier: 48
MPI_Comm_rank: 2
MPI_Comm_size: 2
MPI_Finalize: 2
MPI_Init: 2
MPI_Recv: 321180
MPI_Send: 321180
MPI_Wtime: 48

Figure 5.9: Function Counter Tool Output of one OMB Latency Run Using Default
Configuration

functionality because of their different set of provided integer types. The general way
of counting buffer elements remains, however, the same.

The C and Rust bandwidth counter implementations perform similarly. The latency
test, presented in Figure 5.8, barely detects any difference in performance. Only for
message size 210 can the Rust implementation be observed to be slightly slower. Results
are similar for CoMD, as shown in Figure 5.14, which only detects the C implementation
being slightly slower after a tool-stack size of over 200.

47

5 Performance Evaluation

(a) AMG with optimized function counter tool.
(2 outliers removed)

0 50 100 150 200 250 300

10.8

10.9

11

number of tools

de
la

y
in

se
co

nd
s

Rust Implementation
C Implementation

(b) HPCG with optimized function counter
tool.
(1 outlier removed)

0 100 200 300

12

12.5

13

13.5

number of tools

de
la

y
in

se
co

nd
s

(c) CoMD with optimized function counter
tool.

0 100 200 300
11.7

11.8

11.9

12

12.1

number of tools

Figure 5.10: Toolstack Benchmarks with optimized function counter tool.

48

5 Performance Evaluation

(a) Message size 0.
(4 outliers removed)

0 50 100 150 200 250 300
0

10

20

30

40

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

Rust Implementation
C Implementation

(b) Message size 210.
(1 outlier removed)

0 100 200 300

20

30

40

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

(c) Message size 215.

0 100 200 300

80

100

120

140

number of tools

Figure 5.11: OMB Latency Toolstack Benchmark with optimized function counter tool.

8-bit Intergers sent : 17242829080
8-bit Intergers received : 17242829080

Figure 5.12: Bandwidth Counter Tool Output of one OMB Run Using Default Configu-
ration

49

5 Performance Evaluation

(a) Message size 0.

0 50 100 150 200 250 300
10

20

30

40

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

Rust Implementation
C Implementation

(b) Message size 210.

0 100 200 300

20

30

40

50

number of tools

de
la

y
in

m
ic

ro
se

co
nd

s

(c) Message size 215.

0 100 200 300
80

100

120

140

160

number of tools

Figure 5.13: OMB Latency Toolstack Benchmark with optimized send/receive/reduce
counter tool.
All benchmarks consist of 300 datapoints, each one the average of 1000
measurements.

50

5 Performance Evaluation

0 50 100 150 200 250 300
11.7

11.8

11.9

12

12.1

number of tools

de
la

y
in

se
co

nd
s

Rust Inplementation
C Implementation

Figure 5.14: CoMD Toolstack Benchmark with optimized send/recv/reduce counter
tool
(4 outliers removed)

51

6 Conclusion

Rmpi and the layer interface successfully provide a memory-safe way of implementing
MPI-Applications and MPI-Tools. The existing implementations of the function call-
counter and the bandwidth counter prove that useful implementations can be realized,
and Rmpi’s object-oriented approach ensures that it can be done with minimal learning
effort.

chapter 5 shows that significant performance differences can be experienced with only
slightly altered implementations providing the tool-stack contains a large number of
tools. However, it also shows that the differences between Rust and C implementations
remain negligible for a small number of tools.

However, due to MPI’s incredible size and complexity, both Rmpi and the high-
level interception layer both support only a small subset of MPI functions, and much
development and improvement are still possible in this area, and this thesis presented
only a small portion of what could be done with MPI and Rust together.

52

7 Possible Future Improvements for Rmpi
and the MPI-Tool-Layer

Rmpi, in combination with the MPI-Tool-Layer, are both powerful libraries that can
simplify the process of creating MPI-Tools immensely. However, the implementations
are neither complete nor cover MPI’s full functionality, nor are they perfect solutions.
There are multiple possible improvements, most of them only becoming apparent after
actively using the library. The following sections will mention a few problems with the
current implementation and suggest possible solutions.

7.1 The layer parameter next_f is too restricted

Rust’s semantic has the powerful capability of specifying constraints very precisely.
This is when safety is considered, is a very positive thing. However, sometimes this
can lead to definitions being specified as too restricted. An example is the next_f
parameter in the raw -and high-level layer interface, which specifies a generic function
that can strictly be called only once. This makes sense as it is the expected behavior of
an MPI-Tool first to have arbitrary pre interception instructions, then call the next tool’s
function with possibly modified arguments and lastly perform some arbitrary post
interception instructions. It is, of course, still possible to call other MPI functions, but
those are always redirected to their respective PMPI_* function and are not intercepted
by any following tools. It is also possible not to call next_f and thereby breaking the
toolchain.

An entirely impossible scenario is illustrated in Figure 7.1. The illustrated Tool
1 reimplements MPI_Send() and MPI_Recv() by calling their respective asyncronous
counterparts combined with MPI_Wait(). Doing the same thing using the layer interface
would lead to Tool 2 being skipped in the execution process. This could be prevented
by providing, instead of just a single next function, an entire function table for every
interception.

53

7 Possible Future Improvements for Rmpi and the MPI-Tool-Layer

MPI_Send() MPI_Recv() MPI_Isend() MPI_IRecv() MPI_Wait() Tool 1

Tool 2MPI_Send() MPI_Recv() MPI_Isend() MPI_IRecv() MPI_Wait()

MPI
LibraryMPI_Send() MPI_Recv() MPI_Isend() MPI_IRecv() MPI_Wait()

Figure 7.1: Representation of a Toolstack with 2 MPI-Tools. Every arrow represents a
function call.
Tool one could be implemented with QMPI but not with the current imple-
mentation of the MPI-Tool-Layer.

54

7 Possible Future Improvements for Rmpi and the MPI-Tool-Layer

7.2 Splitting MPI Functions to increase Static Information

For some MPI functions, it is not entirely sensible to convert them into one single
Rust equivalent. In Figure 7.2, Rmpi’s MPI_Recv() wrapper implementation can be
seen. Like its C counterpart, it optionally creates a status instance describing the
received message, but only if the status_ignore flag did not request this operation to
be skipped. The Rust compiler will force the developer to check which type of output
has been generated. This can be bothersome as it is most likely known at compile-time
if the status will be needed or not. (e.g. see Figure 7.3)

impl<’c> Process<’c> {
fn recv<B: BufferMut>(

&self, buffer: B, tag: Tag, status_ignore: bool,
) -> RmpiResult<Option<Status>>
{ /* Convert types back into C representation

call MPI_Recv()
convert return value into RmpiResult */ }

}

Figure 7.2: Rmpi’s function equivalent to MPI_Recv()

match process.recv(&mut buffer, 0, false) {
Ok(Some(status)) => { /* message received successfully */ }
Ok(None) => { /* this never happens */ }
Err(error) => { /* message failed to be received, handle error.. */ }

}

Figure 7.3: In this scenario it is known that a status will be generated by recv().
Therefore one of the three match cases is useless, despite being necesary for
compilation.

Splitting recv() into two separate functions, one that creates status instances and one
that does not, would solve that problem in this particular case. This procedure might,
however, when used on multiple different functions, generate a significant amount
of unnecessary complexity in the layer interface, which might lead to performance
disadvantages for MPI-Tools. Such adjustments, therefore, have to be performed with

55

7 Possible Future Improvements for Rmpi and the MPI-Tool-Layer

consideration.

7.3 Support for sending arbitrary Rust structures over MPI

Rust provides a powerful macro system. One aspect of it is the possibility of automatic
implementation using so-called derive attribute-macros. As discussed in section 2.1.8,
static dispatch can be very convenient and efficient. However, Rmpi only supports a
fixed number of datatypes for the use of static dispatch in buffers. Figure 7.4 represents
a potential future use-case of Rmpi where MpiDatatype describes a macro that generates
the appropriate implementation necessary in order to be able to send Color instances
directly through MPI without byte-serialization.

#[derive(MpiDatatype)]
struct Color {

r: u8, g: u8, b: u8
}

Figure 7.4: Theoretical way of automatically generating an implementation on how to
create a matching MPI-Datatype.

7.4 Layer Chaining

As long as MpiInterceptionLayer does not implement all 360 functions supported
in RawMpiInterceptionLayer and the current QMPI version, tools using this layer
will not be able to intercept unsupported functions in any way. A static layer chain
would be a simple solution to this problem, enabling the chaining of multiple layer
implementations inside a single tool. The generic type definition presented in Figure 7.5
could be used to provide an automatic implementation of an MPI-layer that contains
two layers. This way, a high-level layer could be chained with a low-level layer as a
fallback for unsupported functions.

56

7 Possible Future Improvements for Rmpi and the MPI-Tool-Layer

struct LayerChain<Layer1: RawMpiInterceptionLayer,
Layer2: RawMpiInterceptionLayer>;

impl<Layer1, Layer2> RawMpiInterceptionLayer for LayerChain<Layer1, Layer2>
where /* layer constraints */

{ /* layer chain implementation */ }

Figure 7.5: Type Defining a Generically Chained Layer Pair

57

8 Appendix

8.1 MPI functions supported by Rmpi and MPI-Tool-Layer

Note that RawMpiInterceptionLayer supports all 360 MPI-Functions that the current
version of QMPI supports as well.[5]

MPI function Rmpi function (rmpi::Xxx) MpiInterceptionLayer
function

MPI_Init() init() init()
MPI_Initialized() initialized() initialized()
MPI_Finalize() RmpiContext::finalize() finalize()
MPI_Finalized() finalized() finalized()
MPI_Wtime() RmpiContext::wtime() wtime()
MPI_Wtick() RmpiContext::wtick() wtick()
MPI_Barrier() Communicator::barrier() barrier()
MPI_Group_incl() Group::incl() group_incl()
MPI_Group_free() Group::free() group_free()
MPI_Comm_size() Communicator::size() comm_size()
MPI_Comm_rank() Communicator

::current_rank()
comm_rank()

MPI_Comm_create() Communicator
::create_subset()

comm_create()

MPI_Comm_free() Communicator::free() comm_free()
MPI_Abort() Communicator::abort() abort()
MPI_Send() Process::send() send()
MPI_Bsend() Process::bsend() bsend()
MPI_Ssend() Process::ssend() ssend()
MPI_Rsend() Process::rsend() rsend()
MPI_Isend() Process::isend() isend()
MPI_Ibsend() Process::ibsend() ibsend()
MPI_Issend() Process::issend() issend()
MPI_Irsend() Process::irsend() irsend()

58

8 Appendix

MPI_Recv() Process::recv() recv()
MPI_Irecv() Process::irecv() irecv()
MPI_Sendrecv() Process::sendrecv() sendrecv()
MPI_Bcast() Process::bcast() bcast()
MPI_Get_count() Status::get_count() get_count()
MPI_Buffer_attach() buffer_attach() buffer_attach()
MPI_Buffer_detach() buffer_detach() buffer_detach()
MPI_Wait() request::Request::wait() wait()
MPI_Waitany() request::RequestSlice

::waitany()
waitany()

MPI_Waitall() request::RequestSlice
::waitall()

waitall()

MPI_Test() request::Request::test() test()
MPI_Testany() request::RequestSlice

::testany()
testany()

MPI_Testall() request::RequestSlice
::testall()

testall()

MPI_Request_free() request::Request::free() request_free()
MPI_Cancel() request::Request::cancel() cancel()
MPI_Gather() Process::gather() gather()
MPI_Gatherv() Process::gatherv() gatherv()
MPI_Allgather() Communicator::allgather() allgather()
MPI_Allgatherv() Communicator::allgatherv() allgatherv()
MPI_Alltoall() Communicator::alltoall() alltoall()
MPI_Alltoallv() Communicator::alltoallv() alltoallv()
MPI_Reduce() Process::reduce() reduce()
MPI_Allreduce() Communicator::allreduce() allreduce()
MPI_Scan() Communicator::scan() scan()
MPI_Scatter() Process::scatter() scatter()
MPI_Scatterv() Process::scatterv() scatterv()
MPI_Type_size() datatype::RawDatatype

::size()
-

MPI_Type_free() datatype::Datatype::free() -
MPI_Type_dup() datatype::Datatype

::duplicate()
-

MPI_Test_cancelled() Status::test_cancelled() -
MPI_Comm_dup() Communicator::duplicate() -

59

8 Appendix

MPI_Comm_group() Communicator::group() -

8.2 Supported predefined MPI datatypes in Rmpi

Custom MPI-Datatypes can be allocated at runtime, but many primitive C and Fortran
types have predefined definitions. Rmpi only supports a subset of the C definitions
and none of the Fortran ones.

Note that the pointer sized integer types usize and isize also have the same datatype
definition as the matching fixed-sized datatype on the same platform. However, they
never appear in conversions from C buffers in tool environments.

MPI-Datatype Corresponding Rust Type
u8 MPI_UINT8_T
u16 MPI_UINT16_T
u32 MPI_UINT32_T
u64 MPI_UINT64_T
i8 MPI_INT8_T
i16 MPI_INT16_T
i32 MPI_INT32_T
i64 MPI_INT64_T
c_float MPI_FLOAT
c_double MPI_DOUBLE
CppBool MPI_C_BOOL
Complex<c_float> MPI_C_FLOAT_COMPLEX
Complex<c_double> MPI_C_DOUBLE_COMPLEX
LongInt MPI_LONG_INT
DoubleInt MPI_DOUBLE_INT
ShortInt MPI_SHORT_INT
TwoInt MPI_2INT
LongDoubleInt MPI_LONG_DOUBLE_INT

8.3 Rmpi’s Version of Supported MPI types

All important type definitions in Rmpi have one or more counterparts in MPI’s C
definition. All pairs can be converted in both directions. Conversions are usually
performed with associated functions from_raw() and into_raw().

60

8 Appendix

Rmpi Type Corresponding MPI Type(s)
RmpiResult int (function result)
Error int (non MPI_SUCCESS function result)
&[<primitive type>] const void*, int, <datatype statically known>
&mut [<primitive type>] void*, int, <datatype statically known>
TypeDynamicBufferRef const void*, int, MPI_Datatype
TypeDynamicBufferMut void*, int, MPI_Datatype
Communicator MPI_Comm
Process MPI_Comm, int (rank)
RmpiContext — (RmpiContext only defines a semantic constraint)
datatype::Datatype MPI_Datatype
Group MPI_Group
MpiOp MPI_Op
request::Request MPI_Request
&RequestSlice const MPI_Request*, int
&mut RequestSlice MPI_Request*, int
Status MPI_Status
Tag int (send/recv tag)

61

List of Figures

2.1 Layout of MPI-sys. 6
2.2 Rmpi’s function equivalent to MPI_Send() 8
2.3 The Buffer interface version 1.0 . 13
2.4 Dynamic datatype reference types . 13
2.5 The Buffer interface version 2.0 . 15
2.6 Function signatures of isend and irecv in Rmpi. 16
2.7 Send function similar to Figure 2.2 which uses a provided generic version

of MPI_Send() instead. 17

3.1 Trait defining a raw interception layer. 19
3.2 Trait defining a safe interception layer with high-level Rmpi access. . . . 21
3.3 Sequence Diagram of a Toolstack Scenario with 2 MPI-Tools.

Tool 1 is implemented using MpiInterceptionLayer while Tool 2 is
implemented using RawMpiInterceptionLayer. 22

3.4 Automatic implementation responsible for converting types into their
high-level representation. (This is a simplified version of the original
code with all macros expanded.) . 24

3.5 Using different datatype definitions for the same type.
This only works if rank 0 uses 32bit-integers. 25

3.6 Implementation example for Layer 1.0 that is not accepted by Rust’s
borrow checker.
After switching line 10 and 11 the code would compile. 26

3.7 This implementation compiles using the layer interface 2.0, unlike in
Figure 3.6 . 27

4.1 Relationships between the layer interface and the resulting MPI-Tools.
Note that Rust is not UML compatible and that this only represents
the functionality of the implementation but not its internal structure.
(Interface types do not exist in Rust) . 30

4.2 Implementation of an empty MPI-Tool for either QMPI or PMPI 31

5.1 Impact of MPI calls on AMG
results are averaged over 100 iterations 34

62

List of Figures

5.2 Time consumption split for HPCG . 35
5.3 Time consumption split for CoMD . 37
5.4 Latency benchmark run between 2 skylake nodes 38
5.5 AMG Toolstack Benchmark . 41
5.6 HPCG Toolstack Benchmark . 42
5.7 CoMD Toolstack Benchmark . 43
5.8 OMB Latency Toolstack Benchmark . 46
5.9 Function Counter Tool Output of one OMB Latency Run Using Default

Configuration . 47
5.10 Toolstack Benchmarks with optimized function counter tool. 48
5.11 OMB Latency Toolstack Benchmark with optimized function counter tool. 49
5.12 Bandwidth Counter Tool Output of one OMB Run Using Default Con-

figuration . 49
5.13 OMB Latency Toolstack Benchmark with optimized send/receive/reduce

counter tool.
All benchmarks consist of 300 datapoints, each one the average of 1000
measurements. 50

5.14 CoMD Toolstack Benchmark with optimized send/recv/reduce counter
tool
(4 outliers removed) . 51

7.1 Representation of a Toolstack with 2 MPI-Tools. Every arrow represents
a function call.
Tool one could be implemented with QMPI but not with the current
implementation of the MPI-Tool-Layer. 54

7.2 Rmpi’s function equivalent to MPI_Recv() 55
7.3 In this scenario it is known that a status will be generated by recv().

Therefore one of the three match cases is useless, despite being necesary
for compilation. 55

7.4 Theoretical way of automatically generating an implementation on how
to create a matching MPI-Datatype. 56

7.5 Type Defining a Generically Chained Layer Pair 57

63

List of Tables

5.1 Record of how often MPI functions were called using AMG. 34
5.2 Record of how often MPI functions were called using HPCG. 35
5.3 Record of how often MPI functions were called using CoMD. 37
5.4 Tool Baseline benchmark results

every value is the average of 100 iterations 40

64

Bibliography

[1] AMG Summary v1.0. https://asc.llnl.gov/sites/asc/files/2020-09/AMG_
Summary_v1_7.pdf. [Online; accessed 1-October-2020]. Sept. 2020.

[2] CoMD: A Classical Molecular Dynamics Mini-app. http://ecp-copa.github.io/
CoMD/doxygen-mpi/index.html. [Online; accessed 14-October-2020].

[3] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. HPCG Benchmark: a New
Metric for Ranking High Performance Computing Systems. Tech. rep. UT-EECS-15-736.
Knoxville, Tennessee: Electrical Engineering and Computer Sciente Department,
Nov. 2015.

[4] Bengisu Elis. “Design, Implementation and Testing of a new Profiling Interface for
MPI.” MA thesis. Technische Universität München, 2018.

[5] Bengisu Elis et al. “QMPI: A next generation MPI profiling interface for modern
HPC platforms.” In: Parallel Computing 96 (Aug. 2020). doi: 10.1038/nature13570.

[6] Igor Markov. “Limits on fundamental limits to computation.” In: Nature 512 (Aug.
2014), pp. 147–54. doi: 10.1038/nature13570.

[7] Jamaludin Mohd-Yusof, Sriram Swaminarayan, and Timothy C. Germann. Co-
Design for Molecular Dynamics: An Exascale Proxy Application. https://www.lanl.
gov/orgs/adtsc/publications/science_highlights_2013/docs/Pg88_89.pdf.
[Online; accessed 4-October-2020].

[8] MPI: A Message-Passing Interface Standard, Version 3.1. http://www.mpi-forum.org/
docs/mpi-3.1/mpi31-report.pdf. [Online; accessed 21-September-2020]. June
2015.

[9] M. Schulz and B. R. De Supinski. “A Flexible and Dynamic Infrastructure for
MPI Tool Interoperability.” In: 2006 International Conference on Parallel Processing
(ICPP’06). 2006, pp. 193–202.

65

https://asc.llnl.gov/sites/asc/files/2020-09/AMG_Summary_v1_7.pdf
https://asc.llnl.gov/sites/asc/files/2020-09/AMG_Summary_v1_7.pdf
http://ecp-copa.github.io/CoMD/doxygen-mpi/index.html
http://ecp-copa.github.io/CoMD/doxygen-mpi/index.html
https://doi.org/10.1038/nature13570
https://doi.org/10.1038/nature13570
https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2013/docs/Pg88_89.pdf
https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2013/docs/Pg88_89.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Motivation
	Goal
	Libraries and Compilers used in this Thesis
	MPI
	Rust
	QMPI

	Rmpi
	Implementation
	MPI-sys
	RmpiContext
	Communicators
	Process
	Status: Receiving Data
	Request: Safe Asynchronous Communication
	RmpiResult: Avoiding returns through references
	Safe Generic Buffer Representation
	Interface for Internal Tool Usage

	The Rust Tool Layer
	The Raw Layer
	Unsafe Compromize
	The Unsafe Box

	The Layer Trait
	Type Conversion
	Usage of Rmpi's internal Tool Call Support
	Datatype Matching
	Why Layer 1.0 had to be abandoned
	Using dynamically typed Buffers (Layer 2.0)

	Prevention of Infinite Recursions

	The Tool Creator Macro
	Performance Evaluation
	ASC Sequoia AMG 2006
	High Performance Conjugate Gradient
	Co-Design for Molecular Dynamics
	OSU Micro-Benchmarks
	Methodology
	Empty Tool

	Single Tool Test
	Tool-Stack Test
	Removal of Lone Outlier
	Empty Tool Test
	Latency Benchmark
	Function Call-Counter
	Bandwidth Counter

	Conclusion
	Possible Future Improvements for Rmpi and the MPI-Tool-Layer
	The layer parameter |nextf| is too restricted
	Splitting MPI Functions to increase Static Information
	Support for sending arbitrary Rust structures over MPI
	Layer Chaining

	Appendix
	MPI functions supported by Rmpi and MPI-Tool-Layer
	Supported predefined MPI datatypes in Rmpi
	Rmpi's Version of Supported MPI types

	List of Figures
	List of Tables
	Bibliography

