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Abstract

Using sparse grids for density estimation can reduce computational expenses in com-
parison to more popular kernel density methods by reducing the amount of examined
points, especially for datasets in higher dimensions. The goal of this thesis is to study
two recently added algorithms for density difference and density ratio estimation in the
SG++ code library for sparse grids. Using a custom pipeline, experiments studying the
behavior and accuracy of the algorithms compare the sparse grid results to the analytical
solution and to additional kernel based density estimation methods. We aim to visualize
and quantify the differences between sparse grid based solutions and other solutions to
demonstrate their accuracy and usability for future use in high-dimensional applications
and time-series segmentation.
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1 Introduction

Density estimation uses a sample of data points and attempts to reconstruct the probab-
ility density function used to create the sample with interpolation techniques. Although
density estimation has some applications, most rely on the comparison of two densit-
ies. For this purpose two types of functions exist, either density difference estimation
functions or density ratio estimation functions.

Because they enable the comparison of densities either as a norm or relatively to
another, they are used in many data processing tasks, such as time series segmentation,
outlier detection and machine learning.

A naive approach is to use two steps, one to estimate the density of each set of samples
and then a second one to calculate their ratio or their difference. This technique has
an substantial loss in accuracy because small errors in the first step will only increase
the errors caused in the second step. For this reason, better algorithms were developed,
which are capable of estimating the ratios and differences in a single step.

They are however limited in the number of dimensions until the number of points
exceeds their computational power. Since most evaluate every point in a grid, they are
subject to the curse of dimensionality. With each dimension, the number of points in a
grid increases exponentially. If a one-dimensional grid has just 10 points, this means
that the same grid in five dimensions will have 105 points and the algorithms need
to evaluate every single one of them. Since some applications (especially data-driven
problems) might require hundreds of dimensions a way of reducing the required amount
of points is necessary. Sparse grids are able to overcome the curse to some extent.

Pflüger [4] has done a lot of groundwork on spatially adaptive sparse grids for
high-dimensional problems and started the code library SG++ specifically for sparse
grid calculations. From there Peterstorfer [3] has added techniques to perform multi-
dimensional density estimation using sparse grids (SGDE). Expanding on the density
estimation techniques, algorithms for density difference and density ratio estimation
using sparse grids were added.

The goal of the thesis is to study both the density difference estimation (SGDDE)
implementation and the density ratio estimation (SGDRE) implementation from SG++.
A pipeline is built to evaluate visually and numerically the effects of the influential para-
meters for both algorithms. The pipeline is then expanded to compare the estimations
to kernel based density estimation methods. The least-squares density difference estimation
algorithm (LSDD) [7] and unconstrained least-squares importance fitting (uLSIF) [2] were
chosen for their direct density-difference and -ratio estimation without separate density
estimation.

1





2 Theory

Before we can start analyzing both functions, it is necessary to understand the theory
behind sparse grids and how density estimation algorithms can achieve accurate results.
Then we will present and examine the code library and the functions which will be
studied in the following chapters.

2.1 Sparse Grids

Sparse grids were originally developed by mathematician Sergey Smolyak for the
solution of partial differential equations, but they have since then been used in numerous
fields of applications. According to sparsegrids.org[6], three practical applications of
sparse grid methods are the estimation of cosmological redshifts which can be used to
calculate the distance of stars to earth, the topology optimization with B-Splines where
the strength and elasticity of materials and objects can be computed and the uncertainty
quantification for carbon capture and storage. The last application aims to estimate the
risk of leaks in locations where underground carbon capture can be performed.

Sparse grids are particularly useful in high-dimensional applications, e.g. interpola-
tion, because of the curse of dimensionality. In mathematics and computer science, the
number of dimensions describes the number of metrics used to describe a datapoint.
Since most applications require multiple metrics, datasets often end up having a lot of
dimensions. When using a full grid to compute a solution, meaning each single point
in the space is calculated, the computational load quickly surpasses even the newest
computers.

With each added dimension, the complexity of a full grid increases exponentially
(O(n2)). If a grid has just 10 points in a single dimension, with 5 dimensions, a full
grid will have 105 points which all have to be evaluated. This exponential increase of
points causes data to become sparse and datasets need to be reduced in size for a timely
computation. This is called the curse of dimensionality. Sparse grids can reduce the
effects of the curse by “requiring significantly fewer grid points than a full grid, while
preserving the asymptotic error decay of full grid interpolation” [4].

We will restrict ourselves to the d-dimensional unit-hypercube Ω = [0, 1]d for simpli-
city in the following explanations. Any rectangular volume can be transformed easily
to the unit-hypercube with rescaling. Sparse grids use hierarchical basis functions to
interpolate the underlying spaces. When considering a one-dimensional function f , its
interpolation is done using the standard hat function,

ϕ(x) = max{1− |x|, 0}

3



2 Theory

Figure 2.1: One-dimensional basis functions ϕl,i and the corresponding grid points xl,i
up to level n = 3 in the hierarchical basis (left) and the common nodal point
basis (right)[4]

.

from which the one-dimensional hat basis function can be derived,

ϕl,i(x) := ϕ(2lx− i)

where l is the level and i (0 < i < 2l) the index of the function [4]. The functions are
centered at the interpolation points of f : xl,i = 2−l · i. We can then obtain a set of
hierarchical subspaces,

Wl := span{ϕl,i(x) : i ∈ Il}, (2.1)

with Il being the hierarchical index sets,

Il := {i ∈N : 1 < i < 2l − 1, i odd} (2.2)

On a full grid, the space of piecewise linear functions Vn is formulated as a sum of Wl
[4],

Vn =
⊕
l≤n

Wl (2.3)

In Figure 2.1 the hierarchical subspaces Wl are displayed up to level l = 3 on the left
side and the corresponding spaces of piecewise linear basis functions Vn on the right
side. The functions in each hierarchical subspace cover the whole domain and have the
same size and shape but do not overlap.

Then the interpolation u(x) ∈ Vn can be written as a finite sum with αl,i as the
(hierarchical) surpluses [4]:

u(x) = ∑
l≤n,i∈Il

αl,i ϕl,i(x) (2.4)

In Figure 2.2 such an interpolation with hierarchical basis functions is constructed. The
border functions are ignored here for simplicity.

To extend the basis functions to d-dimensional applications, the tensor product
approach is used

ϕ~l,~i(~x) :=
d

∏
j=1

ϕlj,ij(xj) (2.5)

4



2.1 Sparse Grids

Figure 2.2: The same one-dimensional piecewise linear interpolation u(x) of f (x) as in
Figure 2.1 (left), but this time using the hierarchical basis functions, and the
corresponding weighted basis functions (right)[4]

.

where ~l and ~i are d-dimensional multi-indices indicate the level and index for each
dimension. In this situation, full grids quickly become inefficient and unusable as they
will have (2n − 1)d grid points.

Therefore sparse grids could be used instead for d-dimensional problems by selecting
only “those subspaces that contribute the most to the overall solution of the full-grid
interpolation” [4]. The sparse grid space is obtained with,

C1
n =

⊕
|~l|1≤n+d−1

W~l . (2.6)

This leaves out the subspaces from the full grid space which contain basis functions of
small support. The resulting sparse grid interpolants u(~x) inV1

n are given by:

u(~x) = ∑
|~l1≤n+d−1,~i∈I~l

α~l,~i ϕ~l,~i(~x). (2.7)

In Figure 2.3 the a grid of level 3 is shown as well as the selection of subspaces for n = 3.

2.1.1 Boundary treatment

The boundaries of sparse grids can be computed in different ways. Until now we
ignored the boundary by assuming that the functions were zero at the boundary. In
order to handle non-zero boundaries, an extra level, l = 0 can be introduced. It has two
(overlapping) functions ϕ0,0 and ϕ0,1 as shown in Figure 2.4 on the left side. By adding
the layer 0, we obtain a modified set of subspaces W̃~l :

V0B(1)
n :=

⊕
|~l|1≤n+d−1

W̃~l . (2.8)

5



2 Theory

Figure 2.3: The two-dimensional subspaces W~l up to l = 3(h3 = 1/8) in each dimension.
The optimal a priori selection of subspaces is shown in black (left) and the
corresponding sparse grid of level n = 3 for the sparse grid space V(1)

3 (right).
For the full grid, the gray subspaces have to be used as well.[4]

.

The effect of this, is that there are twice as many boundary points inner grid points. In
higher dimensions, this means that almost all the points are on boundaries. To mitigate
this effect, level 0 and 1 can be collated to reduce the number of subspaces.

VB(1)
n :=

⊕
|~l|1≤n+d−1

Ŵ~l . (2.9)

Doing so, the same number of points are spent on the grid’s main axis and on the
boundary. The structure is visible on the right in Figure 2.4. Still, this leads to a lot more
points than Vn(1), which is why in applications where the boundary behavior is not
required, it can be advantageous to omit the boundary points. Alternatively, the interior
basis functions can be modified to extrapolate towards the boundaries of the domain.
The basis functions can be modified to extrapolate linearly towards the boundary for
a grid level superior to 1. For a level 1 grid, the best option is to use a constant basis
function. The modified one-dimensional piecewise linear basis functions are shown in
Figure 2.5. The d-dimensional basis functions are obtained via tensor product as before.
Now that the general concept of sparse grids is clear, we still wish to examine how they

can be used to estimate densities.

2.1.2 Sparse Grids based Density Estimation (SGDE)

When a data set S of samples is drawn from an unknown distribution with an unknown
probability density function (pdf) f , density estimation algorithms can be used to
estimate the density function f̂ of f by using the dataset [3]. f̂ can then be used in
data-mining and statistical applications to extract data or trends from the existing
dataset.

According to Peterstorfer [3], a sparse grids based solution is to “employ spline
smoothing to derive a smoother and more generalized estimator f̂ of a highly-overfitted

6



2.1 Sparse Grids

Figure 2.4: One-dimensional hierarchical basis functions ϕl,i with two basis functions
located on level 0 on the boundary (left) and one-dimensional hierarchical
basis functions ϕl,i with level 1 being extended by two extra level 0 basis
functions located on the boundary (left)[4]

.

Figure 2.5: The modified one-dimensional basis functions ϕl,i which are extrapolating
towards the boundary. They are constant on level 1 and “folded up” if
adjacent to the boundary on all other levels [4].

7



2 Theory

initial guess fε” [3]. This boils down to following minimalzation problem:

f̂ = argmin
u∈V

∫
ω
(u(x)− fε(x))2dx + λ‖Lu‖2

L2 (2.10)

where ‖Lu‖2
L2 is a regularization term and λ > 0 the regularization parameter. The

parameter controls the smoothness of the curve versus its fidelity. If a large lambda is
chosen, the curves will be to smooth and not represent the data anymore, but choosing a
very small lambda will cause overfitting, a phenomenon where the estimation is adapted
to the density of points of the initial dataset so closely, that the estimation function f̂
doesn’t represent the pdf f anymore.

Defining Φ = {φ1, ..., φN} as the set of hierarchical basis functions of the adaptive
sparse grid space V(1)

l of level l ∈N, an estimation f̂N ∈ V(1)
l is searched such that

∫
Ω

f̂N(x) · φ(x)dx + λ ·
∫

Ω
L f̂N(x) · Lφ(x)dx =

1
M

M

∑
i=1

φ(xi) (2.11)

holds for all φ ∈ Φ [3]. Since f̂N is a linear combination of basis functions in Φ, this
boils down to solving a system of linear equations

(R + λC)α = b (2.12)

with α the coefficients of the basis functions, Rij = (φi, φj)L2 ,Cij = (Lφi, Lφj)L2 and
bi =

1
M ∑M

j=1 φi(xj). The coefficients α are then used as surpluses in the sparse grid.

The methods we are interested in for the thesis expand on normal density estimation
to estimate the density difference or the density ratio between two given datasets P and
Q. The naive approach would be to use two steps in the algorithms, where the first
step generates density estimations f̂P and f̂Q of each dataset and then calculates their
difference or ratio depending on the application.

However a small error in f̂P or f̂Q will lead to larger errors in the final result, which is
why a single step approach is preferred. The approach is similar in both cases: the goal
is to minimize a cost function consisting of a squared error term and a regularization
term. To find a solution, the equation is turned into a variational problem, which can
then be solved by applying the sparse grid approximation. The final result is a linear
system of equations. The algorithms used in the sg++ library [5] are explained more in
detail in subsection 2.2.2 and subsection 2.2.3.

Now that we understand how sparse grids are built and how they differ from a full
grid, let’s examine the code library implementing the algorithms for sparse grids we
will study.

2.2 The SG++ library

To effectively use sparse grids, a code library called SG++ (also referred to as sgpp) was
started in 2008 by Dirk Pflüger with one of the main publications [4] being released

8



2.2 The SG++ library

two years later. According to the website, “SG++ is a universal open-source toolbox for
spatially adaptive sparse grid methods and the combination technique.” [6]. It provides
both basic building blocks for sparse grid applications and higher level functions for
specific applications. The project has been developed since then by researchers and
students of the University of Stuttgart and the Technical University of Munich, expanding
the capabilities of the library. Since the project is open source, anyone can contribute.

The core components of the library are coded in C++, which might explain its
name. The language was chosen for its execution speed, reliability and compatibility.
Additional matlab, python and java bindings exist for usage of SG++ in these languages.
Since a large part of this thesis focuses on data analysis and visualization with specific
functions of sg++, the python binding is used here. The python binding is called pysgpp.
It provides most of the functionalities present in the library inside python but uses the
C++ implementation in the background for fast execution.

The library is organized in multiple modules implementing different functionalities.
The base module holds all the core functions and is required by all other modules. It is
essential since it holds the sparse grid class required to create, configure and refine the
grids. Additionally it is used to evaluate data points and includes the underlying data
structures.

The other modules are used for specific tasks an applications which build on the base
layer. Some of their applications are solving linear equations, optimizing smooth sparse
grid interpolants or implementing quadrature algorithms.

2.2.1 The datadriven module

Since this thesis focuses on two functions from the datadriven module, it is worth
explaining what this module can do. It regroups all functions related to data mining
and machine learning. According to the its description [5], the module regroups all
“operations depending on datasets”, adds “data mining support” and “specialized
regularization”.

The functions we wish to study are in the datamining submodule. The submodule im-
plements a pipeline “intended for out-of-the-box application of SG++ machine learning
methods” [5]. It allows to users to run different algorithms with a simple configuration
file (see subsection 2.2.4) without the need to understand or see the underlying functions.
Understanding the parameters is nonetheless important as they influence the final result.
The pipeline can be used for a lot of different “datamining tasks such as regression,
density estimation and classification” [6].

Since the configuration file is used for all pipeline applications, the pipeline can
be used without knowing its steps. Understanding how it works is nevertheless still
required to use it effectively. As a first step, a factory object is created with the specific ap-
plication in mind. In our case, this was either the DensityDifferenceEstimationFactory
or the DensityRatioEstimationMinerFactory.

From the factory, a miner is created with the configuration file as input. The miner is
then configured according to the file, with missing variables automatically set to default

9



2 Theory

values. The next step is then to train the miner. It takes the datasets specified in the
configuration file and uses them to train a model. The model also depends on the other
parameters in the configuration file (see subsection 2.2.4).

The training of the model is separated in epochs. During an epoch, both dataset are
used to train the model. In the case of SGDDE, this can happen in multiple steps, called
batches. After each epoch a refinement step can be added. This step selectively adds
grid points where the algorithm believes they are needed. The step can also delete
some of the points it just added in the coarsening phase if it believes that the points do
not improve the result. After a refinement, a new evaluation is needed to recalculate
surpluses of the linear basis functions.

Two epochs without refinement in between do not improve the resulting grid and a
refinement step without reevaluation afterwards is equally useless.

From the model, datapoints can be evaluated and the grid points extracted with their
surpluses. The evaluation pipeline described chapter 3 does these steps automatically
and can then be used to evaluate the result visually or numerically.

2.2.2 Sparse Grids based Density Difference Estimation (SGDDE)

The algorithm for density difference estimation with sparse grids was already imple-
mented and usable before the thesis. By studying it and evaluating the results from
different parameters, dataset sizes and distributions asserts its accuracy and is required
to uncover errors and bugs. The algorithm takes two datasets, P and Q and computes
their density difference p(x)− q(x) where p(x) is the density estimation of P and q(x)
the density estimation of Q.

The algorithm attempts to minimize a cost function,

J(r) =
∫

Ω
{r(x)− [p(x)− q(x)]}2dx + λ

∫
Ω
[r′′(x)]2dx (2.13)

consisting of an error function and a regularization term and where r(x) = ∑N
k=1 αKΦK

The equation can be modified to a variational problem and then be solved as a system
of linear equations:

(R + λC) ·~α = BP − BQ (2.14)

with BP,i =
1

MP
∑MP

j=1 φi(xP,i) and BQ,i =
1

MQ
∑

MQ
j=1 φi(xQ,i). Once the system is solved, the

resulting sparse grid is saved and data points can be evaluated.

2.2.3 Sparse Grids based Density Ratio Estimation (SGDRE)

The algorithm for density ratio estimation with sparse grids was also implemented
before the thesis. Its implementation is not as straightforward, because calculating the
solution takes extra steps. The starting cost function

J(r) =
∫

Ω
[r(x)− p(x)

q(x)
]2q(x)dx + λ

∫
Ω
[r′′(x)]2dx, (2.15)

10



2.2 The SG++ library

is similar to the density difference estimation, except the ratio is calculated instead.
The resulting linear system of equations is

(
1

Mq
BqBT

q + λC)~α =
1

Mp
Bp~e (2.16)

with e = (1, 1, ..., 1)T, (BP)i = Φi(~xPj), j = 1..MP and (BQ)i = Φi( ~xQj), j = 1..MQ Just as
before, the output is a sparse grid but this one estimates the density ratio of P and Q.

2.2.4 Configuration file

Configuration files are the main way of using the pipeline. They are written in JSON
format and should contain all the parameters and variables to compute the expected
solution. If some parameters are not specified default values are selected instead, so that
most of the parameters can be omitted. Since the files cover all types of task and each
task uses different parameters, we will focus on the parameters used in the thesis.

A configuration consist of three main parts:

• The datasource configuration: Inside, the paths to the datasets are specified and
parameters about the datasets can be added to.

• The scorer configuration: It holds the metric that should be used evaluate the
model. We only used the mean squared error scorer type in the thesis.

• The fitter configuration: It specifies what and how the datamining task should be
performed. This configuration influences the grid which is built.

The datasouce configuration mainly contains the filepath to the datasets to use.
Additionally, it is possible to specify the number of batches and the number of epochs
to use during the learning phase of the miner. The batches parameter is used to split
up datasets into smaller parts which are used sequentially. It is incompatible with
SGDRE and thus ignored if the function is selected. The parameter can help when
working with very large datasets but can lead to different results with small datasets.
The epochs parameter specifies how often the miner should learn on the whole datasets.
This parameter is usually used in combination with adaptivity.

“The scorer evaluates the model during training with respect to a metric” [6]. Here
only the used metric can be specified, in both our applications this was the mean squared
error.

The fitter configuration holds all parameters which determine how the sparsegrid
should be constructed and what datamining task should be performed. The task is
specified in type, in our case this was either density difference estimation or density
ratio estimation. The configuration of the grid itself is done in the gridConfig subcon-
figuration. There the level of the grid, the type of grid and the dimensions of the grid
can be set. Adaptivity, meaning refining the grid further in localized zones is also a
subconfiguration, which was left empty when not in use but otherwise the number

11



2 Theory

of refinements and the number of points to add in each refinement can be specified
here. There are a few additional parameters inside which are used to improve and
control the refinements. The regularization subconfiguration is used to control how
much “the learning process is impacted by the regularization lambda”. We only used the
identity matrix regularizations but the lambda value will change often in the evaluation
process. At last, the densityEstimation subconfiguration is set but not modified during
the evaluation process. For our purpose it just specifies that the conjugate gradient
should be used to estimate the density.

2.3 Kernel based methods

At last, we wish to present the kernel based methods used for comparison against the
sparse grid methods. Both use advanced estimation algorithms which allow them to
be fairly accurate. As they use direct estimation techniques, they have an improved
accuracy compared to the naive approaches.

2.3.1 LSDD

This algorithm will be compared to SGDDE. It was developed by Sugiyama [7] and its
implementation was taken from the paper’s code repository for use in the evaluation.

The approach is to fit a density-difference model g(x) to the true density-difference
function f (x) under the squared loss:

argmin
f̂

∫
(g(x)− f (x))2dx (2.17)

Once g(x) is optimized, we obtain the least-squares density-difference estimator f̂ given
as

f̂ (x) =
nP+nQ

∑
l=1

θ̂l exp(−|x− cl |2
2σ2 ) (2.18)

with (c1, ..., cn) := (x1, ...xn) the gaussian kernel centers, θl a factor and σ the standard
deviation.

2.3.2 uLSIF

This algorithm is used to evaluate SGDRE and is compared to it. It was also developed
by Sugiyama [2].

Similarly to the sparse grid method, the approach is to minimze a squared loss
function.

Unfortuately only matlab code existed in the repository of the project, so the matlab
engine for python had to be added to the pipeline. This increases the complexity slows
the pipeline down because datasets and parameters need to be converted before and
after, but is a workable solution.

12



3 The evaluation process

To properly evaluate the accuracy of both the density difference estimation for sparse
grids (SGDDE) and density ratio estimation for sparse grids (SGDRE) implementations,
both methods will first be compared to the analytical solution and then to corresponding
kernel based methods. For SGDDE a least-squares density difference estimation (LSDD)
algorithm is used and for SGDRE an unconstrained least-squares importance fitting
estimation(uLSIF) algorithm is used.

This means that each test will compute and compare two solutions against at least
one sparse grid estimation. Some tests will focus on finding the best parameters for the
sparse grids and may therefore have more than three solutions. To efficiently run these
tests, it is necessary to implement a pipeline. The goal of the pipeline is to simplify and
automate most parts of a test, while staying modular in order to run both the density
difference and the density ratio evaluations separately. Having multiple steps built as
separate functions improves flexibility and simplifies modifications, improvements, bug
tracking and therefor the final evaluation step. This also prevents code duplication, as
most steps are used for both evaluations.

In practice, a first pipeline was written to generate tests, while a second pipeline
uses the tests to analyze and evaluate the new sparse grid methods either visually or
numerically. In the following sections both are described in detail as they impact the
evaluation of both sparse grid based estimations.

The dataset and evaluation pipeline were programmed in python. Although most of
the data handling is done with the numpy module, other modules were used, including
scipy for dataset generation, matplotlib for visualizations and of course pysgpp, the
python version of SG++ for sparse grids. Additionally, the matlab engine for python
was used, to compute the kernel-based method for density ratio estimation.

The code of the pipeline is available here: [8].

3.1 The testset pipeline

The first pipeline is used to create new datasets and configuration files using the
scipy.stats module in python. A group of these form a testset. A basic testset consists of
two datasets (P and Q), an analytical solution in the form of a mesh grid or a function
and lastly a configuration file. Testsets can also include multiple configuration files for
more advanced evaluations and parameter comparisons. The pipeline consists of two
steps, which are described in subsection 3.1.1 and subsection 3.1.2.
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3.1.1 Dataset generators

The structure of the created testsets is dictated by the evaluation procedure. First of all,
DDE and DRE methods require two datasets to compute a solution. The primary dataset
is generally called "P"-dataset and the secondary dataset the "Q"-dataset. To evaluate
the sparse grids based solution, it is necessary to compare its output with the analytical
solution as well as with similar functions, in our case kernel based estimations.

The "P"- and "Q"-datasets are created by two dataset generators. A generator uses
the scipy.stats module from python, because it contains a lot of different probability
distributions and provides both random variate samples (rvs) and probability density
functions (pdf) which are both required to assemble a complete dataset. Some of
the available distributions that were used are beta, normal, multivariate normal and
dirichlet.

The dataset generator takes a distribution, parameters for this distribution and the
number of samples as an input. It is called once for each dataset, such that both datasets
can have different distributions. Nevertheless, both datasets need to have the same
amount of dimensions. A generator will first generate a list of rvs from the given
distribution. Then it will save a corresponding pdf to a json-file. In an optional third
step, a mesh grid of pdf-values is precomputed and saved for one and two-dimensional
datasets, as these will be plotted later on.

Since sparse grids are confined to the n-dimensional hypercube, the rvs list created in
the first step either has to be rescaled or generated such that it fits inside the limited space.
In the end, generating the dataset properly, without rescaling was chosen. This approach
gives greater control over the list and enables us to select parts of a distribution. While
scaling is an option it is not used in the final pipeline because both datasets have to be
examined and scaled by the same amount before executing the evaluation pipeline and
scaled back up afterwards, which makes debugging and comparing results unnecessarily
cumbersome. This is especially true when comparing multiple tests with different scales.
A drawback of drawing and selecting points inside the hypercube and cutting out others,
is that the density values change. The real density, given by a pdf function, are not
constrained to the hypercube. The algorithms estimating the samples will however only
get points inside of the domain and base the density values on that. While the shapes
stay the same, the density values of the analytical solution will not be the same as the
estimations done by the sparse-grid-based- or kernel-based-methods. Depending on the
portion of the distribution outside of the hypercube, the scaling will differ, meaning that
if 99% of a distribution is inside the hypercube, the analytical values and estimations
will be very similar, but the more the distribution is spread out, the more the values will
differ. Since the kernel and sparse grid methods use the same dataset, they will still
be comparable. The same applies to the calculated mse values. They can be compared
between each other, but a high mse value will more likely indicate that a larger portion
of the datasets should be outside the hypercube, rather than a bad estimation. All of
this is only the case for distributions which had to be limited to the hypercube.

To generate the list properly, a redrawing algorithm is used when necessary. It takes
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a rvs function and the required amount of samples as an input and generates a list of
points. For some distributions, like Beta or Dirichlet, redrawing is not necessary since
they are already constrained to the hypercube but Normal and multivariate Normal
distributions do not have such limits. The redrawing algorithm first generates a list of
points of required length with the given rvs function, then eliminates all points which
fall outside of the hypercube. If the list of points is too short, the whole list is redrawn
with 10% more points. The process is repeated until the required length is reached. If
too many points are left, the list is simply trimmed. By redrawing the entire list, a seed
or random state can be used. This allows us to recreate the same dataset over and over
if required.

In general two datasets are created for each test. Sometimes the same pair is used for
multiple tests but mixing datasets from different pairs was avoided for clarity. Pairs can
have different parameters and even distributions but always need the same amount of
dimensions.

3.1.2 Configuration generator

Once new datasets are saved, a configuration file is generated. As seen in subsection 2.2.4,
the SGDDE and SGDRE functions are best executed with a configuration file holding all
the relevant parameters. At first they were created manually but since the parameters
heavily influence the results, advanced tests like lambda- or adaptivity- optimization
became necessary. These tests use multiple similar configuration files so that creating
the files automatically is faster, cleaner and less prone to errors.

The configuration file generator takes the path and name for the P and Q datasets as
main parameters and saves the output in a JSON file. A lot of relevant parameters can
be set and if left out, default parameters are assigned.
The following parameters can be specified:

• fitter type (SGDDE or SGDRE)

• size of a batch

• number of epochs

• grid level

• grid type

• adaptivity configuration (multiple parameters)

• lambda value

If a list of values is specified for a single parameter, the generator automatically creates
the Cartesian product of all possible configurations and saves them individually. Ad-
ditionally, some more parameters can be set, but will not be included in the Cartesian
product:

• scorer metric (default: mse)
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• density estimation type (default: conjugate gradient)

• regularization type (default: identity)

That way, all configuration files can be quickly developed for a pair of datasets. Similarly,
the evaluation pipeline can find and run all automatically created configuration files
which belong together and run them sequentially for advanced tests.

3.2 The evaluation pipeline

The evaluation pipeline takes existing testsets as an input and calculates an analytical
solution and a kernel based solution and at least one sparse grid solution. It can
visualize one and two-dimensional datasets and calculate the mean squared error for
any dimension. Usually, a list or grid of points to extract and evaluate the solution is
given too, but the pipeline can create its own if none is supplied. All solutions of a test
use the same points for an accurate evaluation.

The fitter type parameter in the configuration file decides which solution to calculate.
The function described by the fitter type is run for the sparse grid solution but it also
dictates the analytical and kernel based functions to use.

3.2.1 Sparse Grids density estimation

The first stage of the pipeline computes a solution using sparse grids. It takes all
provided configuration files and computes individual solutions. Each configuration file
is used to build a sparse grid miner, train it and extract the model from it. The model
holds information like the coordinates of the grid points, their values and a function
used to evaluate any point in the hypercube. After training the model, a list of points is
extracted and saved for comparison with the analytical and kernel based solution.

Density Difference Estimation

If the configuration file has "density difference estimation" as fitter type, then this path
of the pipeline is selected. Using the pysgpp module, a miner is built to estimate the
difference in densities of the "P"-dataset and "Q"-dataset: P−Q. For more details on this,
please refer to subsection 2.2.2. The result is a single sparse grid from which evaluated
grid points and possibly a list or grid of points can be extracted and saved for later
stages in the pipeline.

Density Ratio Estimation

This branch of the pipeline is fairly similar to the previous one, with the only major
difference being the function used: P

Q . The result is again a single sparse grid which can
be evaluated in any point of the hypercube. Although divisions by 0 can theoretically
happen in this step, none were encountered due to the way the density estimations are
performed, so no special handling was necessary.
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3.2.2 Probability density function

The next step in the evaluation of sparse grids methods is of course to calculate the
analytical solution. Using probability density functions or precomputed mesh-grids
defined along with the datasets in subsection 3.1.1, the density difference or ratio
is calculated. Since the densities are given, the operation doesn’t require any data
conversion, however divisions by 0 can occur when calculating the ratio and these cases
need to be taken care of. The python numpy module sets a division by 0 to ’nan’ by
default. In visual evaluations this is not a problem, as the plotting function simply
doesn’t display these values. In the numeric evaluation (subsection 3.2.5) ’nan’ values
become a problem and are therefore identified and taken care of.

3.2.3 Kernel Based Density Estimation Methods

The last computation step is used to compare the estimation done by a kernel based
method to the estimation performed by sparse grids in subsection 3.2.1. There are a
multiple different algorithms which can be used, so two newer and accurate algorithms
were selected from research papers [2, 7]. Both papers had implementations of their
algorithms available online which were used during this section of the pipeline.

Both algorithms use the same P and Q datasets as the sparse grid methods. After the
algorithm has generated an estimation, the same evaluation points as for the sparse grid
and analytical solutions are extracted and saved.

Least Squares Density Difference estimation

For a kernel based density difference estimation, the least squares density difference
algorithm (LSDD) described in [7] was chosen. The algorithm is available online [8] and
could be used with small modifications. Parameters for its execution are either specified
manually or automatically set by the pipeline to have a similar accuracy as for the sparse
grid estimation.

Unconstrained Least-Squares Importance Fitting estimation

As kernel based density ratio estimation method, the unconstrained least-squares im-
portance fitting algorithm (uLSIF) described in [2] is used. Since the original code
was written for matlab and not available in python, more extensive changes had to be
done than for LSDD. The pipeline uses the matlab engine for python to run the code
natively. This means that the datasets and evaluation points need to be converted to the
correct matlab format and the output back to a python array. Alternatively, a python
implementation of the algorithm was added but isn’t used in the final version of the
pipeline. Parameters for uLSIF include the number of kernels and folds to use. The
number of kernels is automatically set to the same amount as grid points used in SGDRE
to properly compare the accuracy with the sparse grid counterpart, but can be manually
overridden if needed.
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3.2.4 Visualization and plotting

After all three computational steps, the pipeline can be configured to plot the results or
to calculate mean squared errors. Studying the results visually helps quickly identifying
accurate and inaccurate cases and offers an overview of the datasets. However the
visualization pipeline is limited by the amount of dimensions. The output of a density
estimation has one more dimension than the input dataset. This means that a three-
dimensional dataset will generate a density in the fourth dimension. While plotting
functions which can reduce the dimensionality were used on two-dimensional datasets
effectively, they are ineffective at displaying three- and four-dimensional dataset in a
readable three-dimensional format. Therefore the visual evaluation is only available for
one- and two-dimensional datasets.

Both visualization versions aim to represent the original datasets, the analytical
solution, the kernel based solution and then all the sparse grid based solutions. They
use different plottypes though.

One-dimensional datasets

If the input datasets are one-dimensional, the computed solutions will be two-dimensional
which allows plotting without grouping datapoints to reduce dimensionality. This can
be leveraged to accurately evaluate solutions and was therefore very helpful in the early
stages of evaluation.

The resulting figure consists of at least five plots, more if multiple configuration files
where provided at the start. The first two plots are histograms of the P and Q datasets
to get a sense for the distributions. Next is a two-dimensional plot of the analytical
solution, which shows the exact result the estimations should tend towards. In the case
of a density ratio calculation, a division by 0 could have occurred in subsection 3.2.2. In
this case the line on the plot is simply interrupted where the result has no data. Next is
the kernel based solution and lastly are all the sparse grid solutions in different plots
for convenient evaluation. The plots are labeled and all x-axes start at 0 and end at 1,
such that they can be compared easily.

Two-dimensional datasets

In case the input datasets are two-dimensional, the computed solutions need to be
aggregated in order, because three dimensional plots can not be accurately evaluated
when displayed in two-dimensions. Nevertheless, the visual representation proved
useful for more complex tests than in one dimension and showed how the algorithms
behave with increasing dimensions.

The resulting figure has at least eight plots, as each of the computed solutions now
has two plots. The first two plots are once again histograms of the P and Q datasets,
but this time they use a colorgradient to display the number of points per sector. This
shows that some accuracy is lost, as the colors can’t be accurately matched to values
visually. Next are two plots for the analytical solution, the first is a contourplot which

18



3.2 The evaluation pipeline

can show the general topography of the data and add a few values. The second plot is a
heatmap, to better represent the general shape of the data, but it doesn’t show values, so
that both plots are needed for an accurate evaluation. The kernel based and sparse grid
based results are displayed in the same way. In order to properly compare the results,
all contourplots use the same contourlevels. That way, inaccurate data can be spotted
easily, facilitating the evaluation. The plots are necessarily labeled and use the same
axes as in section 3.2.4.

3.2.5 Numeric Evaluation: Mean Squared Error

As a last step of the pipeline, the mean squared error (mse) and the root mean squared
error of all estimations can be computed. While this method doesn’t have the precision
of a plot and doesn’t reflect localized problems, it can quantify the accuracy of methods
and isn’t affected by higher dimensions.

The points evaluated in this step are independent of the plotpoints. Since the mse
doesn’t need an evenly spaced grid of points, it can be used for other purposes, like
inspecting the accuracy of edges or the center or specific peaks in the distribution. If no
evaluation points are specified, it will generate a grid of 100 points in every direction
automatically. In any case, it will use the same points to evaluate the sparse grid results
and the kernel results and save the final mse and rmse for both.

Since the analytical solution is used to calculate the error, the density ratio calculation
can result in extreme or undefined values. In case the pdf of Q has a 0 value, the
computation will either have infinity as a result if the value of P is not 0 in the same
point or ’nan’ if it is. This is problematic because any calculation containing such a
value is automatically extreme or undefined. To get an accurate mse, the squared error
is replaced by 0 and ignored for these points. This does not impact the accuracy of
the evaluation significantly because the same points are ignored for the sparse grid
estimation and the kernel estimation.
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A thorough study of both functions requires a stepwise approach. Consequently each
algorithm is examined separately but both are subjected to similar tests. The first
tests are in one dimension and allow us to understand how the sparse grid methods
behave and compare to the other solutions by examining them visually. Following
the very basic tests, the dimensionality will increase to at least two dimensions. The
objective in this phase is to evaluate commonly used parameters and their influence
on the results. Additionally, first manual parameter optimizations can be carried out
by roughly estimating the shapes and values. Next, more specific tests are carried out
with "unfriendly" datasets in order to better define weaknesses and strengths of the
functions. Particular cases like the dataset sizes are examined. Lastly, datasets in higher
dimensions are used and analyzed numerically by observing the mse and comparing
the score to the kernel methods. The kernel methods have fewer parameters, but they
can influence results nonetheless. By default 100 kernels and 5 folds are used, but when
tests are run with different values, it will be specified.

The tests are run by a pipeline explained extensively in chapter 3. The code used to
generate and plot the figures is available in [8]. A seed was used during the dataset
generation of each test. By doing this, the code can be rerun and will always produce
the same sets and results. If the seeds are changed or removed, the datasets will be
different and the results they influence will therefore change too.

4.1 Visual Evaluation

4.1.1 Presentation

The first experiments are intentionally basic. They are used to present the pipeline
output and explain which values and behaviors to look out for once complexity increases.
Since the evaluation pipeline generates the same types of plots for DDE and DRE, only
DDE output will be used to present the figure’s structure.

Beta distribution (TestDDE1):

The first experience will be used to present the one dimensional result structure. Its
testset consists of two beta distributions. They are good candidates because they are
continuous and bound in [0− 1]. Both consist of 500 samples in a single dimension,
which is a large number in comparison to most real-world applications. By choosing a
large set, overfitting becomes less likely and the algorithms have better odds of correctly

21



4 Evaluation Results

estimating the density difference. The parameters chosen when creating the datasets
result in slightly off-center peaks for both the P and Q dataset. The sparse grid estimation
is configured with all parameters set to default.

Running TestDDE1 yields 6 plots in a single figure as shown in Figure 4.1. The first
two on the left will always be histograms of the P and Q datasets no matter the test.
They mimic the shape of the distributions and allow the reader to estimate the densities
of the datasets. The plot titles include the names of the datasets. In the second column
on top, the analytical solution is shown. It is the result of the difference of the pdfs
associated with P and Q respectively. Below it is the kernel based solution. In the case
of density difference estimation, this will always be the result of LSDD (subsection 2.3.1)
and when evaluating a density ratio estimation, the result of uLSIF (subsection 2.3.2)
instead. The centerpoint (0.5, 0) in black is added to every plot as it improves the ability
to compare the plots. In the upper right corner of the plot are displayed the mse and
rmse values. They help understand how precise and reliable the estimation is.

They also allow us to compare the estimation numerically with the sparse grid solution,
shown in the last two plots. Advanced tests will have more sparse grid solutions for
different configurations, to the right of the current plots. In case someone would want
to inspect the configuration files, the plottitles correspond to the configuration name.
Each sparse grid plot shows the density difference estimation in blue and the evaluated
grid points in red. Additionally the mse and rmse values are displayed in the upper
right corner. For comfort reasons, the configuration parameters of each sparse grid plot
are displayed in the upper left corner of the corresponding plots.

Examining the upper sparse grid plot, this simple experience already shows some of
the characteristics of sparse grids. For one, the density difference line appears piecewise
linear instead of a smooth curve. This stems from the linear basis functions used to
estimate the density difference at the chosen grid points. In contrast, LSDD uses rounded
kernels, which fit well in this example. The mean squared error is calculated using the
points of P and Q. Here we get very low error values for both the LSDD solution and
the sparse grid solution despite their obvious visual difference. This proves that both a
visual and numeric evaluation are necessary to study the accuracy of the algorithms in
more advanced tests.

Two-dimensional normal distribution (TestDDE2):

As a second experience, two-dimensional normal distributions are examined. P and Q
are created by specifying a mean and a covariance matrix. The scipy function used here
allows an array or a scalar to be specified instead and will transform it by multiplying it
by the identity matrix. This time 1000 samples are used per dataset. Once again, the
sparse grids are configured to use the default values.

TestDDE2 is shown in Figure 4.2. Since two-dimensional datasets output their density
estimations as a third dimension but three dimensional plots decrease readability, plots
which reduce the dimensionality are used. On top of improving readability, they enable
visual comparisons. The two histograms for P and Q on the left side for example, use
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Figure 4.1: TestDDE1 shows basic output of the one dimensional visual pipeline.

colors to indicate the number of points in each bin. All the other representations are
different when compared to one-dimensional figures. Each result now has two plots, the
upper one is a contour plot and the lower one a heatmap. The contourlevels are chosen
before plotting, so that every plot uses the same ones. That way the results can be
compared more accurately with contourplot. To complement the values and thresholds
given by the contourplots, heatmaps display more data and accurately reflect the shape
of results, however, no values can be read from them. Once again, the centerpoint
(0.5, 0.5) is added in black to detect slight differences in the resutls. Thanks to the point,
we can detect a different boundary of the purple oval in the heatmaps of the analytical,
kernel based and sparse grid based results. This time, the entire second column is
dedicated to the analytical solution and the third one to the kernel based method. The
sparse grid results start in column 4 and are added to the left until a total width of 5
plots. If more plots need to be shown, a second row (Each row has 2 levels, on for the
contourplot and the other for the heatmap) is created and the plots added there. Once
again, mse and rmse values are displayed in the upper right corner of the contourplots
and the sparse grid configuration in the upper left corner.

By examining the plots, some characteristics become apparent again just like in the
first test and some appear here for the first time. Despite using less points than the
LSDD algorithm and default parameters, SGDDE seems fairly accurate. Both the shapes
of the peak (zone above 3.00 in contourplot) and the valley (zone below -3.00) follow the
shape of the analytical solution, despite showing artifacts of the linear basis functions.
The sparse grids heatmap reveals a crosslike shape in the valley stemming from linear

23



4 Evaluation Results

functions in two dimensions. The peak zone is also narrower than the analytical solution,
but the length of it appears accurate. In contrast, the LSDD result appears to have a very
slightly larger width but the shape is accurate overall. This discrepancy in precision is
reflected in the mse values as LSDDs value is barely above half of SGDDEs value.

On the contourplot of LSDD a characteristic of kernel algorithm starts to become
visible: Due to the kernel estimation, the shape has some slight waves which will become
more apparent in other experiments later on.

4.2 Density Difference Estimation

We begin with an evaluation of the SGDDE algorithm. An in-depth explanation about
the algorithm can be found in subsection 2.2.2. In this section we examine the algorithms
behavior against different datasets and parameters and compare its accuracy to the
analytical and kernel based solutions with a limited amount of points.

4.2.1 Parameter testing

Since basic tests were run in subsection 4.1.1, those will not be repeated. We can now
dive into the parameters used by the SGDDE algorithm and explore their effect on
results. The goal is creating a ranking of the parameters by influence on the results and
to find a configuration that calculates accurate results in any dimension. Lastly, we will
vary the number of samples in each dataset to determine if there is a minimum amount
of points required for an accurate result. This step could prove useful in case SGDDE is
used for timeseries segmentation or other applications with limited datapoints in the
future.

Influence of parameters

During the course of the evaluation, a combination of 7 parameters where modified most
of the time as described in subsection 3.1.2. Other parameters may change occasionally
for specific tests, but are not analyzed with as much depth and thoroughness. Two
parameters which definitely have a big influence on results are the gridtype and the
gridlevel. The gridtype can either be linear or modlinear in our case and influences the
behavior towards the boundaries. The gridlevel will have an influence on the precision
overall, but in higher dimensions every level generates a lot of new points, increasing
the computing time. It is therefore beneficial to keep a low or moderate level and then
improve accuracy in key zones by using adaptivity parameters.

Gridtype and gridlevel (TestDDE3.1) The next experience will use the same dataset
to compare different combinations of gridlevel and gridtype. For now, we do not use
adaptivity and select a low λ value to reduce smoothing and thus obtain the raw sparse
grid output.
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Figure 4.2: TestDDE2 shows basic functionalities of the two dimensional visual pipeline.
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The result of TestDDE3.1 in Figure 4.3 displays the modlinear estimations in the top
row and the linear estimations in the bottom row. Each column represents a different
gridlevel. Because dataset Ps density increases towards the border and Qs decreases,
the analytical solution diverges from 0 at both ends and oddly resembles the indian
peninsula.

The LSDD and linear SGDDE solutions both tend to return to the origin at the border
regardless of the number of gridpoints. This results in inaccurate estimations at the
border. Returning briefly to textitTestDDE1, the opposite effect is visible: the modlinear
SGDDE solution doesn’t converge as well as the linear at the border when the density
tends toward the origin. This indicates that a linear gridtype should be chosen if the
density difference at the borders tends towards 0 and a modlinear gridtype if not.

The grid level is the other important parameter examined in the experience. The grid
of level 2 was intentionally chosen to show how the solution is constructed step by step
and improves with each level, but is too low for most applications. Interestingly, the
modlinear solution of level 2 has a better mse than the linear solution of level 4, once
again highlighting the importance of choosing the right gridtype.

By observing the modlinear solutions, a clear progression is visible: the second plot
adds details to the first line and the third one adds smaller details to the second one.
However, the third one is noticeably different from the analytical solution and the mse
confirms this, since the solution obtained with gridlevel 3 has a lower value than the
level 4 mse. This phenomenon is called "overfitting". It is the reason why choosing good
parameters is essential.

Lambda (TestDDE3.2) A parameter used to balance overfitting and smoothening is λ.
In Figure 4.3 a very small value was intentionally chosen to see the effects of gridtype
and gridlevel. To improve the estimation a larger value could be chosen. TestDDE3.2 in
Figure 4.4 explores the relation between the gridlevel and lambda. The experiment plots
3 grids of level 3 and 3 of level 4 respectively. Three lambda values were strategically
selected for demonstation purposes and are shown here:

• λ = 1 is too large and thus the data is smoothed too much. The curves for both
gridlevels are way too flat and don’t have enough relief as can be seen in the
respective contourplots.

• λ = 3e−2 is very close to the optimal values for both grids. The data is similar
to the analytical and LSDD solution. Both the heatmaps and contourplots are
very similar to the analytical solution. To improve the result further, a modlinear
gridtype could be used, since the solution shows the yellow peaks close to the
borders but this is not the purpose of the experiment.

• λ = 1e−5 is too small, resulting in a very coarse grid with almost no smoothening.
This is called over-fitting. In practice, the estimation algorithm tries to follow too
closely the density of the random variate sample and will deviate quickly from the
actual solution when the sample has gaps or peaks. The problem becomes worse
with smaller samples, as they can’t fill every gap with points.

26



4.2 Density Difference Estimation

0.
00

0.
25

0
.5

0
0.

75
1
.0

0
0

2
0

4
0

6
0

8
0G

ri
dT

yp
eA

nd
L

ev
el

P
H

is
to

gr
am

0
.0

0
0.

25
0.

5
0

0
.7

5
1.

00

−
2

−
1012

A
na

ly
ti

ca
l

S
ol

ut
io

n

0.
00

0.
25

0.
50

0.
75

1.
00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
2

ty
p
e

:
m
o
d
li
n
ea
r

g
r
id
P
o
in
ts

:
3

m
se

=
0
.4

5
8

r
m
se

=
0
.6

8

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

1

0.
0
0

0.
25

0.
50

0.
75

1.
00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
3

ty
p
e

:
m
o
d
li
n
ea
r

g
r
id
P
o
in
ts

:
7

m
se

=
0
.0

4
6

r
m
se

=
0
.2

1

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

3

0
.0

0
0
.2

5
0
.5

0
0.

75
1.

00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
4

ty
p
e

:
m
o
d
li
n
ea
r

g
r
id
P
o
in
ts

:
1
5

m
se

=
0
.0

5
2

r
m
se

=
0
.2

3

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

5

0.
00

0.
25

0
.5

0
0.

75
1
.0

0
0

2
0

4
0

6
0

8
0G

ri
dT

yp
eA

nd
L

ev
el

Q
H

is
to

gr
am

0
.0

0
0.

25
0.

5
0

0
.7

5
1.

00

−
2

−
1012

m
se

=
0
.1

1
8

r
m
se

=
0
.3

4

L
S

D
D

re
su

lt

0.
00

0.
25

0.
50

0.
75

1.
00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
2

ty
p
e

:
li
n
ea
r

g
r
id
P
o
in
ts

:
3

m
se

=
0
.7

8
2

r
m
se

=
0
.8

8

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

2

0.
0
0

0.
25

0.
50

0.
75

1.
00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
3

ty
p
e

:
li
n
ea
r

g
r
id
P
o
in
ts

:
7

m
se

=
0
.3

1
7

r
m
se

=
0
.5

6

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

4

0
.0

0
0
.2

5
0
.5

0
0.

75
1.

00

−
2

−
1012

λ
=

1
.0

0
e
−

0
6

g
r
id
le
v
el

:
4

ty
p
e

:
li
n
ea
r

g
r
id
P
o
in
ts

:
1
5

m
se

=
0
.2

2
6

r
m
se

=
0
.4

8

au
to

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

6

G
ri

dT
yp

eA
nd

L
ev

el
D

D
E

Figure 4.3: TestDDE3.1 compares linear and modlinear gridtypes as well as different
gridlevels for two beta distributions. The edgebehavior is worth studying
too.
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4 Evaluation Results

The sparse grid mse is actually better than the kernel solution for both gridlevels in
the experience, showing the strength of sparse grid density difference estimation when
using the correct parameters.

Since the mse is calculated every time the SGDDE algorithm is run, we can plot the
mse of the estimation, lambda values and gridlevels. In order to generate Figure 4.5, the
same datasets from TestDDE3.2 were used with 50 different lambda values. The result
shows the evolution of the mse. When the gridlevel increases, the optimal lambda shifts
slightly towards bigger values but the most interesting effect are the changes to the mse
curve. With increasing gridlevel, choosing a small lambda will lead to overfitting slightly
earlier and much faster since the curve is steeper near 0. On the contrary, choosing
a lambda which is slightly too big, results in less estimation losses with increasing
the gridlevel. Figure 4.5 shows that increasing the gridlevel will increase slightly the
estimation quality, but with diminishing returns. A grid of level 4 with a well chosen
lambda value can significantly reduce compute time with larger datasets in higher
dimensions without loosing a lot of precision when compared to estimations with higher
gridlevels. A similar curve with a logarithmic scale instead of a linear one is shown in
Figure 4.11, however it uses another dataset and another algorithm.

This example is in no way a proof or a proper way of optimizing the estimation, but it
visualizes overfitting and highlights the importance of correctly choosing the lambda
value as well as the interaction between gridlevel and lambda.

Adaptivity (TestDDE3.3) The parameters studied in the next experiment are used
to configure the refinement step. After a sparse grid is generated, regardless of the
gridlevel, some points of interest might still be poorly estimated, especially when they
are not in the center of the hypercube. To help estimate densities in these zones, the
SG++ pipeline uses refinements. As explained in subsection 2.2.4, refinements have
multiple parameters which influence the final result. The parameters specify when and
how often the refinement function is called in the creation process of the grid, how many
refinement points are added, how the pipeline should choose points to refine and how
many points should be removed by coarsening the grid.

This experiment focuses on the parameters which influence the sparse grid density
difference estimation the most. Those are the number of refinements and the number
of points to refine in each refinement. To use refinements, the number of epochs is
increased, since the grid needs to be reevaluated after being refined. Thus a refinement
step is calculated between two epochs until the maximum number of refinements is
reached. The result is then used to improve the estimation in the next epoch. At the
end of each refinement, points with a very low influence are removed by the coarsening
function to reduce computation complexity.

The SGDDE algorithm can also use batching to split large datasets into more manage-
able sizes. Since small sample numbers are used in the experiment and to stay consistent
with previous experiments batching will not be used here.

The plots using refinements can be identified by looking at the text information, as
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Figure 4.4: TestDDE3.2 compares different lambda values and shows its effects graphic-
ally and numerically.
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Figure 4.5: The mse and rmse are minimal for λ3 = 2.94e−2, λ4 = 4.04e−2 and λ5 =

5.53e−2 in TestDDE3.2 (linear scale)

the values for the number of refinements ("num.ref.") and the number of points added
in each refinement ("ref.points.") are displayed.

First, the one-dimensional proof of concept in Figure 4.6 illustrates the power of
refinements: It contains SGDDE plots, all of which use the same except for the number
of gridpoints. The first one has a grid of level 3 and the last one a grid of level 4. The
other two plots start at a level 3, but are refined to different degrees. Comparing the
mse values, it becomes apparent, that in this case, a single refinement step with two
refined points can immensely improve the final result. By refining just two points, the
mse value jumped from 2.096 down to 0.309, almost matching the mse of the level 4
grid with less gridpoints. Doing a second refinement step (plot 3) shows the potential of
sparse grid refinement. While the grid has the same amount of points as a regular level
4 sparse grid, its mse is just above a third of it.

Further testing has shown that placing points strategically where sharp slopes occur,
thus refining the grid further than a full grid would in these zones, improves accuracy
of the estimation, but when the estimation doesn’t have strong slopes, the accuracy did
stay level and even decreased slightly in some cases. The accuracy also dropped when
too many points where added

A two-dimensional analysis is made with two multivariate normal distributions
specifically chosen for their steep slopes: Test3.3b. In Figure 4.7, different settings are
compared to grids of level 4 and 5 without refinements. The refinement settings are
chosen so that each sparse grid starts at a level 4 and refines roughly the same amount
of points, but in a different order.

The first plot with refinements will run 10 refinements and in each refinement only
refine 2 points. This means, that this grid can go very deeply into specific zones, but
since no depthlimit was set, this configuration can lead to a single part of the grid being
refined, while the rest is ignored. The last grid using refinements is the contrary, it only
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Figure 4.6: TestDDE3.3a demonstrates how adaptivity can match and surpass increasing
the gridsize in some cases.
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Figure 4.7: TestDDE3.3b compares results using a large number of refinements, with a
low number of points to a low number of refinements with a large number
of points.
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4.2 Density Difference Estimation

uses 2 refinements, but each of them can refine 10 points. In this case, the sparse grid
will be shallower, meaning the sparse grid might not have enough points to estimate
peaks and valleys of the density difference estimation accurately, however the rest of the
hypercube get’s more gridpoints, improving the density difference estimation overall.
In this example, the shallow refinement seems like the best configuration, as its mse is
lower than the other refined grids and also lower than the level 5 sparse grid without
adaptivity.

Choosing the right parameters to configure the refinement step is very important.
Depending on the shapes of the used datasets, a balance has to be found between going
in depth and improving the grid overall. Doing the same analysis on two dirichlet
distributions offered the best mse for a balanced configuration of 5 refinements with 4
points each.

Now that all the useful parameters have been explored and analyzed individually,
they can be used together to create powerful, computationally lightweight estimations.
There are however two aspects we haven’t looked at yet, one being the size of the
samples used in the estimations and the other being higher dimensional datasets.

4.2.2 Varying sample sizes

For the next experiment, the existing pipeline is adjusted to use different datasets in
each step instead of different configuration files. The same configuration parameters
are set and used for each of the tests. The goal is to see if larger or smaller datasets
(from the same distribution) will lead to significantly different results. It is expected
that a very small sample size will have worse results than a large sample, because the
algorithm doesn’t have enough data for an accurate density estimation, but how far can
an estimation improve by adding samples remains to be tested. The experiment will use
the same dataset size for P and Q.

In Figure 4.9 different sizes are represented. The plot is different from the previous
plots, because now the heatmaps are replaced by the LSDD estimations. So for each
dataset size, there is a SGDDE and a LSDD result. This enables us to compare how both
algorithms behave for different dataset sizes and how their accuracy evolves.

The sparse grid is configured with a linear grid of level 3 and a smoothening value of
λ = 1e−2. The size of the datasets is indicated in each graph along the mse and rmse
values. The first dataset has 50 samples of each distribution. This is clearly a very low
number of samples, but it is a good starting point, because some applications like time
series segmentation could use this quantity of samples even in higher dimensions. The
LSDD estimation for this few points is very wavy, a characteristic of kernel methods.
Once the amount of samples increases, more kernels and better estimation help reduce
the waviness as can be seen in the other plots.

When the number of samples in a dataset is low, each sample has more influence over
the final estimation. This would be more visible in the first sparse grid plot if a smaller
lambda and thus less smoothening would have been done. Due to the choice of lambda,
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Figure 4.8: LSDD doesn’t require a large dataset for accurate results but doesn’t improve
with more samples, SGDDE improves until about 100 samples before the
mse flattens off

an accurate estimation is possible with sparse grids for such a low number of points.
Further experiments showed, that a promising shape could be expected once 20 points
were used in each dataset, however the mse was still comparatively very high. With
only 20 points, jumps in density start to become visible and can be identified, but the
grid is not accurate enough to evaluate specific zones or values. With the same amount
of points, the kernel solution is very wavy and can therefor not be used except for jump
detection. Being able to discern at least density jumps with such a small amount of
points could prove useful in a number of applications. Please keep in mind, that in
higher dimensions, more points might be needed to obtain a similar result.

When the number of points in each dataset increases, the proper shape begins to
appear in both the LSDD and SGDDE plots. The curves in LSDD straigthen out and
misplaced isolines are rectified for both algorithms. When examining the mse values, a
clear progression can be seen. Obviously, a low number of points will result in a higher
mse value, but just by looking at the few numbers gathered from the plots, we can
already see a trend for this density difference estimation. The mse appears to quickly
drop at the start until it reaches its asymptotic limit. LSDD appears to be more accurate
than SGDDE with a lower number of points here, but adding more points improves its
score a lot less, such that SGDDE appears to be the better algorithm when having access
to large datasets.

To improve the analysis, Figure 4.9 displays the mse values for a hundred different
dataset sizes for LSDD and for SGDDE with gridsizes 3 and 4. No refinements were
used and lambda was fixed at λ = 1e−3. The figure clearly shows that increasing the
gridlevel when a very small number of points is used will result in a less accurate
estimation, but the difference quickly dissipates once over 200 samples are used in each
dataset. Examing the LSDD estimation’s mse, jumps in the curve are observed with
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4.3 Density Ratio Estimation

small datasets. This is probably caused by the position of points and their influence on
the kernel positions. Once the dataset size is above a hundred, values stabilize and all
three curves converge to very similar values.

As we saw in this analysis, having a small number of samples will have an impact on
the estimations accuracy. Once datasets become large enough however, choosing the
right algorithm and configuring it properly will influence the estimation more than the
number of samples.

4.3 Density Ratio Estimation

The SGDRE is the other algorithm we want to examine. It is arguably the more interesting
and challenging one. The detailed explanation of density ratio estimation, its applications
and how the sparse grid implementation works can be found in subsection 2.2.3. In
this section we want to start with basic experiments and gradually work towards higher
dimensions and using the same parameters as before effectively. The algorithm will once
again be compared against the analytical solution and uLSIF, a kernel based density ratio
estimation algorithm. First the main parameters will be examined, similarly to SGDDE.
Then the experiments will focus on varying the size of samples and high dimensional
datasets.

With SGDRE and other ratio functions, particular care has to be taken when choosing
the Q dataset, as very low densities in it, will lead to high values in the result. In case the
algorithm calculating the mse finds a point where either the analytical or the estimative
solution is exactly 0, the point is ignored in order to preserve an accurate mse value.

4.3.1 Parameter testing

Let’s reexamine some of the parameters we already examined for SGDDE. Although
they haven’t changed, the current algorithm behaves differently and other values might
therefore produce better estimations. Because of the possibility of dividing by 0 or at
least obtaining very high values, it is necessary to find and examine special cases where
a very small parameter modification can lead to significantly different results. In general,
results became inaccurate and in rare cases unusable for analysis when the density of
the Q dataset tends towards 0 and Ps density doesn’t because in these cases the mse will
quickly jump to very high values. Although plotting and an analysis of the results don’t
provide good results, this behavior has advantages in some applications. Time series
segmentation effectively uses these outlier-values to detect a possible segmentation for
example.

Gridtype and gridlevel (TestDRE1.1) Let’s start with one-dimensional data, since
there hasn’t been an introduction to Density ratio estimations yet. TestDRE1 in Fig-
ure 4.10 takes two beta distributions and computes their ratio or ratio estimation. This
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Figure 4.9: In this experiment the same configuration file is used for each plot and the
same distribution is used to create the datasets, but the number of samples
used for each estimation is different
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4.3 Density Ratio Estimation

test consists of 500 samples in P and 600 samples in Q. As before, it displays the ana-
lytical solution and the kernel solution to the right of the dataset histograms and all
computed sparse grid configurations to the right of that. The chosen lambda (λ = 1e−1)
is slightly above the optimal value, such that it doesn’t cause overfitting and such that
the estimation still has a rather accurate result.

Three gridlevels are compared for both the linear and modified linear solutions. While
the analytical solution has a form very close to a parabola with its peak almost perfectly
in the center, both the uLSIF and SGDRE solutions are influenced by the datasets and
all of them show a skew towards the left.

With each gridlevel, the mse is improving, but visually they are very similar. Since
the solution goes to the origin at the borders, the modlinear solution is expected to
have problems, but it improves with each added level. The linear estimations of level 2
and 3 appear extremely similar, hinting at good other parameters. It also suggests the
reliability of SGDRE algorithms since the influence of a single parameter doesn’t change
the result.

The gridlevel 4 solutions have a jagged part at the highest values and are shifted to
the right. This might be caused by overfitting, but changing the lambda value doesn’t
improve the result. Creating larger datasets can mitigate the jaggedness, but it wasn’t
possible to completely remove it. Since those are not the causes, it is likely a result of
the random variate samples and the seeds used to create them. The histograms at least
support the hypotheses, because the P dataset has a drop at about 0.6, where the density
ratio estimation also drops. Changing the seeds will of course significantly alter the
results.

In the development phase of the datasets of TestDRE1.2, an interesting but problematic
discovery concerning the gridlevels was made: when choosing low gridlevels, subtle
details might be lost completely. In Figure 4.13 the correct solution resembles a leaning
vertical bar and uLSIF is able to accurately represent this slope. A sparse grid of level
3 without refinement however, doesn’t have enough points to accurately represent it.
While the contourplot hints at a slight inclination, the heatmap completely ignores the
slope since the bar is completely straight. For comparison, a grid of level 4 was added.
This one is able to capture the slope but nevertheless keeps the characteristic straightness
of sparse grids. What is meant is, instead of having one small bar, the heatmap displays
the slope with 3 smaller vertical bars. This is actually similar to how pixelated images
reduce slopes to steps. Choosing a lambda value close to the optimum can reduce the
effect. If "sloped" data is used, it is therefore recommended to increase the gridlevel or
refine the grid with adaptivity.

Lambda (TestDRE1.2) The next experiment uses a two dimensional test set to examine
if the lambda parameter in SGDRE behave in a similar way as during density difference
estimation. A modlinear grid is used, as the edge of the analytical solution doesn’t
go towards 0 for interesting values. At first glance, Figure 4.12 suggests that lambda
behaves similarly. The sparse grid is once again flat and inaccurate when a large lambda
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Figure 4.10: TestDRE1.1 compares gridtypes and gridlevels for density ratio estimation
algorithms.
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Figure 4.11: The mse are minimal for λ3 = 6.57e−2, λ4 = 6.95e−2 and λ5 = 9.68e−2 in
TestDRE1.2 (logarithmic scale)

value is chosen and gradually improves up to a threshold. After the threshold, the
sparse grid algorithm overfits.

Visually the heatmaps don’t display the overfitting in this instance, but the con-
tourplots do: The limit seems to be around λ = 5.00e−2 and definitely above λ = 1.00e−2

because with the second lambda, the contours start to get very unstable. With even
smaller lambda values, contourlines form around the grid points (especially visible
in the lower right corner of the plots). The mse values confirm the overfitting since
they increase rapidly below the previously mentioned lambda. By plotting the mses
for different lambdas (Figure 4.11) we can in fact determine that the optimal lambda is
around λ = 6.95e−2.

The graph uses a logarithmic scale to better display the evolution of the mse. If a
linear scale was used, the plot would be similar in shape to Figure 4.5. Here we see that
choosing logarithmic steps to optimize lambda is the correct approach, because linear
steps will very quickly lead to overfitting the data. The graph also shows that a similar
and lower mse can actually be achieved with a grid of level 4 than level 5. For higher
dimensional datasets this actually means that a good results can be achieved without
long runtimes.

The curve displayed in Figure 4.11 changes when other distributions, samples or
parameters are used. Running the same test on normal distributions often resulted in
a flat line for very small lambdas and an increase of the mse value once lambda was
larger than a threshold specific to the dataset.

Adaptivity (TestDRE1.3) The last parameters we are looking at, are once again part
of the refinement configuration. All except for the last sparse grid solution start at
a grid level 4 and are subsequently refined using different parameters. The last plot
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Figure 4.12: TestDRE1.2 compares solutions with different lambda values for density
ratio estimation.
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4.3 Density Ratio Estimation

shows a level 5 grid as a comparison. By doing this, the grids obtain more or less the
same number of total gridpoints which enables us to compare the mse values and the
obtained plots.

The results of one of the experiments are visible in Figure 4.15. For the "Q" dataset
a wide and fairly flat dataset was chosen to avoid peaks and undefined values where
its density might tend to 0, for the P dataset a multivariate normal distribution is used.
The analytical solution shows an elliptical peak slightly above the isoline 10. The kernel
method is able to accurately mimic the shape of the result, however its highest isoline in
the contourplot is at a high of 3. This scale problem is the result of eliminating point
which fall outside the hypercube and is explained in detail in subsection 3.1.1. Even with
such differences it is still possible to evaluate the density ratio estimations stemming
from both examined algorithms, as they both use the same datasets. The analytical
solution will only serve to compare the expected shapes as those remain the same.

The experiment compares shallow refinements (low number of refinement steps, high
number of refined points in each step) to deep refinements (high number of refinement
steps, low number of refined points in each step) when using the SGDRE algorithm.
Additionally two regular grids of level 4 and 5 are also shown. Despite its shape being
similar to the analytical solution, the kernel based estimation had a worse mse than any
of the SGDREs in this experiment. This indicates that linear sparse grids can estimate
density ratios accurately despite their shape being coarser than for example smooth
kernel functions.

In this testset, although the differences are marginal, the best mse is not obtained when
using one of the extremes, but rather using a balanced configuration of 6 refinements
with 3 refinement points each. This demonstrates once again how important it is to fit
each grid to its application by optimizing the correct parameters. There is no single best
configuration for every dataset. By choosing parameters for a specific application, the
number of gridpoints can be reduced while still improving the final result compared to
a standard setting. This is especially important for higher dimensional datasets.

4.3.2 Varying sample sizes

We have analyzed most parameters used for density ratio estimation, however we still
need to examine the influence the number of points in a dataset might have on results.
For this purpose, three-dimensional datasets were generated and their mse values
plotted in Figure 4.14.The same configuration was used in combination with SGDRE to
estimate densities on 100 sizes of datasets. Additionally estimations were also generated
with the kernel based method uLSIF.

Since density ratio estimation algorithms can lead to very high values when the
density of "Q" gets close to zero and small datasets are used, a logarithmic y-axis is
used to display the results of the analysis. In this case, the mse values for any of
the algorithms are very high until at least 100 samples, suggesting that density ratio
estimation methods do not handle small datasets as well as density difference estimation
methods. Comparatively, the LSDD algorithm appears to be more accurate with small
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Figure 4.13: Choosing a small gridsize can lead to precision problems.
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Figure 4.14: This experience compares the mse values of uLSIF and SGDRE algorithms
for differently sized datasets

datasets, but its volatility and unpredictability in these ranges might render it unusable
in certain applications.

Until around 300 samples, the sparse grid methods in 3D do not have a very good
accuracy, but both improve it quickly until their accuracy surpasses the uLSIF method.
In this scenario, the grid of level 3 is consistently better than the grid of level 4. During
development, other constellations were observed, for example when the higher level was
more accurate. As described in the precedent section, the accuracy of the estimations
depend heavily on the parameters. Here only one set of parameters is used, except for
the gridlevel, reducing the parameter optimization.

None of the algorithms appear to improve their mse values a lot past 300 or 400
samples, in fact the curves suggest that the mse values either stagnate or surprisingly
even increase slightly for larger datasets. When working with larger datasets, we
once again see that SGDRE achieves a better overall accuracy than its kernel based
counterpart.

Estimating density ratios from small datasets is fairly inaccurate because of the fact
that low densities in the Q-dataset lead to very high values in the final result. The
algorithms therefore require a minimum amount of points to be able to counteract this.
Once there are enough sample points, both the LSDD and SGDRE algorithms have
comparable results.

43



4 Evaluation Results

0
.00

0.2
5

0.50
0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0
A

daptivityT
estP

H
istogram

0
.00

0
.25

0.50
0.75

1.0
0

0.0

0.2

0.4

0.6

0.8

1.0

0.50

0.50

1.00

1.00 2.00 3.00

5.00

1
0

.0
0

A
nalytical

S
olution

0.0
0

0
.25

0.5
0

0.75
1.0

0
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

m
se

=
5
.5

8
2

r
m
se

=
2
.3

6

0.50

1.00

2.00

3.00

uL
S

IF
M

atlab
result

0.0
0

0
.2

5
0
.5

0
0.7

5
1.00

0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
4
9

m
se

=
5
.4

6
7

r
m
se

=
2
.3

4

-0.50

0
.0

0

0
.0

0

0
.0

0

0.00

0.00

0.00

0.00

0
.0

0

0
.0

0

0
.0

0

0.50

0
.5

0

0.50

1.00

1.00 2.00

3.00

auto
2D

A
dapt

D
R

E
1

0.00
0
.25

0.50
0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
3
0

n
u
m
.r
ef
.

:
1
0

r
ef
.p
o
in
ts

:
2

m
se

=
5
.0

6
2

r
m
se

=
2
.2

5

-0.50

0.00 0
.0

0

0
.0

0 0
.0

0

0.00

0.00

0
.0

0

0
.0

0

0.00

0
.0

0

0.50

0.50

0.50

0.50 0.50

1.00

1.00

1.00

1.00

2.00

2.00

2.00

3.00

5.00

auto
2D

A
dapt

D
R

E
2

0
.00

0.2
5

0.50
0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0
A

daptivityT
estQ

H
istogram

0.0
0

0.2
5

0.50
0.75

1
.00

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
nalytical

S
olution

0
.0

0
0
.25

0.5
0

0.7
5

1
.00

0.0

0.2

0.4

0.6

0.8

1.0
uL

S
IF

M
atlab

result

0
.00

0.2
5

0
.5

0
0
.7

5
1.0

0
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

auto
2D

A
dapt

D
R

E
1

0
.00

0
.25

0.50
0.75

1
.00

0.0

0.2

0.4

0.6

0.8

1.0
auto

2D
A

dapt
D

R
E

2

0
.00

0.2
5

0.50
0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
3
9

n
u
m
.r
ef
.

:
6

r
ef
.p
o
in
ts

:
3

m
se

=
5
.0

4
7

r
m
se

=
2
.2

5

-0.50

0
.0

0

0
.0

0 0.00

0
.0

0

0.00

0.00

0.00 0
.0

0 0.00

0
.0

0

0.50

0.50

0
.5

0

0.50

1.00

1.00

1.00

2.00

2.00

2.00

3.00 5
.0

0 5.00

auto
2D

A
dapt

D
R

E
3

0
.00

0
.25

0.50
0.75

1.0
0

0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
5
5

n
u
m
.r
ef
.

:
5

r
ef
.p
o
in
ts

:
4

m
se

=
5
.1

2
2

r
m
se

=
2
.2

6

-0.50

0.00

0.00

0.00

0.00

0.00

0
.0

0

0
.0

0

0
.0

0

0.50

0.50

0.50

0
.5

0

0.50

1.00

1.00

1.00

2.00

2.002.00

2.00

3.00
3.00

3.00

5.00 5.00

auto
2D

A
dapt

D
R

E
4

0.0
0

0
.25

0.5
0

0.75
1.0

0
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

λ
=

1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
1
6

n
u
m
.r
ef
.

:
3

r
ef
.p
o
in
ts

:
6

m
se

=
5
.1

3
5

r
m
se

=
2
.2

7

-0.50

0
.0

0

0
.0

0

0.00
0.00

0
.0

0

0
.0

0 0.00

0.50

0.50

0.50

0.50

1.00

1.00

1.00

2.00

2.00

2.00

3.00

3.00

3.00

5.005
.0

0

auto
2D

A
dapt

D
R

E
5

0.0
0

0
.2

5
0
.5

0
0.7

5
1.00

0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
4

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
1
8

n
u
m
.r
ef
.

:
2

r
ef
.p
o
in
ts

:
1
0

m
se

=
5
.1

1
0

r
m
se

=
2
.2

6

-0.50

0
.0

0

0.00

0.00

0.00

0.00

0
.0

0

0
.0

0 0
.0

0

0.00
0.50

0.50

0
.5

0

0.50

1.00

1.00

1.00

2.00

2.00

3.00

3.00

5.00

5.00

auto
2D

A
dapt

D
R

E
6

0.00
0
.25

0.50
0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0
λ

=
1
.0

0
e−

0
2

g
r
id
lev
el

:
5

ty
p
e

:
m
o
d
lin
ea
r

g
r
id
P
o
in
ts

:
1
2
9

m
se

=
5
.2

8
8

r
m
se

=
2
.3

0

-0.50

-0
.5

0

0.00

0
.0

0
0

.0
0

0.00

0
.0

0

0
.0

0 0
.0

0

0.00
0

.0
00

.0
0

0.00

0.00

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.5

0

0.50

0.50

0.50

0.50

1.00

2.00

3.003.00

3.00

3.00

5.00

auto
2D

A
dapt

D
R

E
7

0.00
0.2

5
0.50

0
.75

1
.00

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

auto
2D

A
dapt

D
R

E
3

0.0
0

0.2
5

0.50
0.75

1
.00

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

auto
2D

A
dapt

D
R

E
4

0
.0

0
0
.25

0.5
0

0.7
5

1
.00

0.0

0.2

0.4

0.6

0.8

1.0
auto

2D
A

dapt
D

R
E

5

0
.00

0.2
5

0
.5

0
0
.7

5
1.0

0
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

auto
2D

A
dapt

D
R

E
6

0
.00

0
.25

0.50
0.75

1
.00

0.0

0.2

0.4

0.6

0.8

1.0
auto

2D
A

dapt
D

R
E

7

2D
A

dapt
D

R
E

Figure 4.15: TestDRE1.3 compares different refinement configurations of SGDRE

44



5 Conclusion

In this thesis, both the sparse grid density difference estimation (SGDDE) and sparse
grid density ratio estimation (SGDRE) were studied. The evaluation pipeline enables
both a visual and numerical evaluation of the functions. Through it, large amounts
of experiments could be run with just a few lines of code. The pipeline allows the

comparison of parameters by running different configurations on the same datasets P
and Q. It was shown that globally, the sparse grid methods had comparable results to
the kernel based methods as long as the core parameters, mainly the grid type, the grid
level and lambda were properly chosen. When they were optimized, they usually had a
better accuracy than the kernel methods. In some cases, especially when the density of
Q was very low, the accuracy of SGDRE varied strongly, because a division by a value
close to 0 tends to infinity.

Using refinements, the grids can get more accurate estimations with fewer points than
an additional level without refinements. It is important to strike the correct balance
between the number of refinements and the number of points to refine during each
refinement. When steep slopes and sudden changes were detected in the datasets, a lot of
refinements with less points were the best suited, when the datasets did not cause spikes,
accuracy could be improved by spreading the points evenly in the unit-hypercube.

By running the same configuration with over 100 datasets of different sizes, it was
shown that the accuracy of estimations when varying the size of the datasets have a lower
limit. This was true for both sparse grid methods and kernel method, as past a number
of samples the estimation did not improve but either stagnated or even decreased slightly.
The kernel methods appear to be slightly more accurate with very small sample sizes,
but often get surpassed by the sparse grid methods when the datasets increase in size.
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