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Abstract

Proteins are one of the most important biological macro-molecules and work as parts of
complex networks. The biological properties of a protein molecule depend on its
physical interaction with other molecules, especially proteins, DNA and RNA. Thus, the
intricate details of how proteins bind to them, are crucial for understanding the
mechanism of almost all biological processes. Goal of this thesis was to complete a
high-throughput analysis of how those binding residues affect genetic variants and vice
versa. Toward this end, the first task was the development of a new and comprehensive
system (named ProNA2020) that takes only protein sequence as input to predict binding
of protein to DNA, RNA and other proteins and the corresponding binding residues.
Then it was applied to the analysis of SAVs from 60,706 people. This revealed that
SAVs on those macro-molecular binding residues have more effect on protein function
than SAVs outside of those binding residues. Overall, this novel research about binding
residues might benefit future research in molecular and medical biology (e.g. precision
medicine) both in terms of the methodology and in terms of being used as prediction

method that is available through an online server and through github.
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Zusammenfassung

Proteine Proteine sind eines der wichtigsten biologischen Makromolekile. Fast jeder
Prozess in der Zelle beinhaltet ein oder mehrere Proteine. Anstatt isoliert zu wirken,
arbeiten Proteine als Teile komplexer Netzwerke. Die biologischen Eigenschaften eines
Proteinmolekuls hangen von seiner physikalischen Wechselwirkung mit anderen
Molekulen ab, insbesondere Proteinen, DNA und RNA. Daher sind die komplizierten
Details, wie Proteine an Proteine, DNA und RNA binden, entscheidend fur das
Verstandnis des Mechanismus fast aller biologischen Prozesse. Ziel dieser Arbeit war
es, eine Hochdurchsatzanalyse durchzufuhren, wie diese Bindungsreste genetische
Varianten beeinflussen und umgekehrt. Zu diesem Zweck bestand die erste Aufgabe in
der Entwicklung eines neuen und umfassenden Systems, das nur die Proteinsequenz
als Input verwendet, um die Bindung von Protein an DNA, RNA und andere Proteine
und die entsprechenden Bindungsreste vorherzusagen. Das System kombinierte
homologiebasierte Inferenz mit maschinellem Lernen und deckte sowohl Vorhersagen
pro Protein (Protein bindet / nicht) als auch pro Rest (Bindung wo) ab. Die Vorhersage
des Proteinspiegels beim maschinellen Lernen kombinierte motivbasierte
Profilkernansatze mit wortbasierten (ProtVec) Losungen. Nach der Festlegung der
Methode wurde sie auf die Analyse von SAVs (auch als SAVs bezeichnet: Single Amino
Acid Variants oder Missense SNV) von 60.706 Personen angewendet. Dies zeigte, dass
SAVs auf diesen makromolekularen Bindungsresten einen grof3eren Einfluss auf die
Proteinfunktion haben als SAVs aulierhalb dieser Bindungsreste. Insgesamt konnte
diese neuartige Forschung Uber Bindungsreste der zuklnftigen Forschung in der
Molekular- und Medizinbiologie (z. B. Prazisionsmedizin) sowohl hinsichtlich der
Methodik (bestimmte Kombination von Werkzeugen zu einem Vorhersagesystem) als
auch hinsichtlich der Verwendung als verfugbare Vorhersagemethode zugute kommen

Uber einen Online-Server und Uber Github.
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Chapter 1

1 Introduction

Proteins are polymers comprising 20 chemically and structurally different building
blocks (amino acids) that fold into a highly specific tertiary structure (Reichmann et al.,
2007). It is one of the most important biological macro-molecular. Almost every event
that occurs in the cell involves one or more proteins. More importantly, proteins do not
act in isolation but instead work as part of complex networks. The biological properties
of a protein molecule depend on its physical interaction with other molecules, especially
proteins, DNA and RNA. Thus, the researches focusing on the binding sites and
binding residues of proteins will lead to a better understanding of how proteins function.

And it can further reveal the mechanism of various biological process.

1.1 Interaction between protein and macro-molecules

1.1.1 Protein-protein interaction

Genome sequencing of more than 10,000 plants, animals, and fungi has been done
over the past 60 years (van Straalen and Roelofs, 2006). Scientists thought the

information about an organism’s genome size should be a foundation to understand the



genetic content (complexity) of the organism. However, there is an extraordinary lack of

correspondence between organism complexity and their genome size. For example,

the genome size of Protopterus aethiopicus (marbled lungfish) is over 40 times larger

than that of human. One haploid copy of this fish's genome is composed of 133 billion

base pairs, and one copy of a human haploid genome has only 2.9 billion (Table 1.1).

This finding suggests that genome size is not an indicator of the genomic or biological

complexity of an organism. And it revolutionizes the system biology era, and the

postgenomic events takes extra attention toward explaining the phenotypical

complexity (Keskin et al., 2016).

Table 1.1: Genome Size and Number of Protein-Coding Genes for a Selected

Handful of Species (van Straalen and Roelofs, 2006)

Species and Common Name

Estimated Total
Size of Genome

Estimated Number
of Protein-Encoding

(bp) Genes
Saccharomyces cerevisiae 12 million 6,000
(unicellular budding yeast)
Trichomonas vaginalis 160 million 60,000
Protopterus aethiopicus 133 billion NA
Plasmodium falciparum 23 million 5,000
(unicellular malaria parasite)
Caenorhabditis elegans 95.5 million 18,000
(nematode)
Drosophila melanogaster 170 million 14,000
(fruit fly)
Arabidopsis thaliana 125 million 25,000
(mustard; thale cress)
Oryza sativa (rice) 470 million 51,000
Gallus gallus (chicken) 1 billion 20,000-23,000
Canis familiaris (domestic dog) 2.4 billion 19,000
Mus musculus (laboratory mouse) 2.5 billion 30,000
Homo sapiens (human) 2.9 billion 20,000-25,000




One of the mechanisms amplifying the biological complexity is the communication
between proteins. Instead of acting in isolation, more than 80% of all proteins in the cell
interact with other molecules to become functional (Berggard et al., 2007). Many
cellular processes such as transcription, replication, communication between cells,
signaling transduction and membrane transport are dependent on protein interactions.
Specific protein-protein interactions (PPIls) are essential for maintaining a robust
phenotype (Viswanathan et al., 2019). And studies also find the dysfunction or
malfunction of signaling pathways and alterations in protein interactions is the cause of
diseases, such as neurodegenerative diseases or cancer (del Sol et al., 2010)
(Grechkin et al., 2016).

And, interestingly, 20 natural amino acids are not equally important to obtain tight and
specific protein-protein binding. In one study, Sidhu and co-workers (Fellouse et al.,
2006) obtained an antigen-binding fragment called Fab-YADS2 from a library with
chemical diversity restricted to only four amino acids (Tyr, Ser, Ala and Asp).
Fab-YADS2 can recognize vascular endothelial growth factor (VEGF). Mutagenesis
experiments reveal that the structural paratope is dominated by Tyr side chains, which
represent 11 of the 15 functionally important residues. Isothermal titration calorimetry
and cell-based assays show that restricted chemical diversity does not limit the affinity
or specificity of Fab-YADS2 relative to natural antibodies. Furthermore, the Tyr has
been found to be the most common amino acid in binding sites (Nooren and Thornton,
2003).

There was also a study about the extent of exchangeability of amino acids at the
binding site (Pal et al., 2006). They used the complex between human growth hormone
(hGH) and its receptor (hnGHR) as their experimental platform. The hGH site 1 binding
to the hGHR contained 35 residues distributing across four regions: helices 1 and 4 of
the four-helix bundle (residues 14 -29 and 164 —-183) and two connecting loops
(residues 41— 48 and 60 — 67). With shotgun approach, they introduced any one of the
20 natural amino acids at all 35 interface positions. This was a rather unusual approach,
because mutational analysis was most often restricted to alanine substitution, which
didn’t not provide a comprehensive view of the allowed amino acid space at any
specific position (Reichmann et al., 2007). And their results was rather interesting. They

verified that the interface was highly adaptable to mutations, but the tolerated mutations



were neither chemically nor evolutionarily conserved. Actually, neither chemical nor
evolutionary conservation, which seemed to be very context dependent, was a good
indicator of allowed mutations. Some of the alanine scanning hotspot positions showed
high specificity against substitution, and others did not. However, some highly specific

positions were not hotspots at all.

1.1.2 Protein-DNA interaction

Protein—DNA interactions are widely distributed in all living organisms. Previous studies
have estimated that 2%—-3% of a prokaryotic genome and 6%-7% of a eukaryotic
genome encodes DNA-binding proteins (Luscombe et al., 2000). There are many
different DNA-binding proteins (DBPs) with different domains, which involve in a variety

of important biological processes.

Transcription factors, are proteins that can regulate the transcription of genetic

information from DNA to messenger RNA, by binding to a specific DNA sequence.

DNA polymerases, are enzymes that synthesize DNA molecules from
deoxyribonucleotides, which are essential for DNA replication. These enzymes usually

work in pairs to create two identical DNA strands from a single original DNA molecule.

Nucleases, are enzymes which are essential machinery for many aspects of DNA
repairing in living organisms. Nucleases are capable of cleaving the phosphodiester
bonds between nucleotides of nucleic acids. Defects in certain nucleases can cause

genetic instability or immunodeficiency (Nishino and Morikawa, 2002).

Histones ,which are comprised of lysine and arginine, are very basic proteins found
in eukaryotic cell nuclei. Histones can pack and order the DNA into structural units

called nucleosomes (Redon et al., 2002).

And those binding residues on DNA binding proteins can form different domains to
recognize double- or single-strand DNA, such as: Helix-turn-helix, Zinc finger, Leucine

zipper, Winged helix, and Winged helix-turn-helix.



1.1.3 Protein-RNA interaction

RNA-binding proteins (RBPs) are typically thought as proteins that bind RNA through
one or multiple globular RNA-binding domains (RBDs) and can change the fate or
function of the bound RNAs. RBPs are involved in almost every central process in the

cell and often serve essentially functional roles:

Alternative splicing, is a mechanism by which different forms of mature mRNAs
(messengers RNAs) are generated from the same gene. Actually, alternative splicing is
another mechanism amplifying the genomic/biological complexity besides PPI (Keskin
et al., 2016). More than 90% of all human genes are found to generate alternatively
spliced mRNA isoforms (Wang et al., 2008).

mRNA localization, is a spatial mechanism for regulating gene activity. mRNA
transportation can increase the efficiency and temporal resolution of protein synthesis
in response to cellular cues, and facilitate the formation of protein complexes due to
higher local concentration of the necessary mRNAs (Re et al., 2014).mRNA translation,
can be directly regulated by RBPs. For example, mMRNA-specific RBPs can inhibit the
interaction between the ribosome 43S complex and the mRNA by physical hindrance in

a cap-dependent manner (Muckenthaler et al., 1998).

RNA editing, is a molecular process through which some cells can make changes to
some specific nucleotide sequences within an RNA molecule after transcription. The
most common type of RNA editing is A-to-l editing by double-stranded RNA-specific
adenosine deaminase (ADAR) enzymes which are RBPs binding specific dsRNA

structures (Eisenberg and Levanon, 2018).

1.2 Sequence variants on protein binding residues

A genome is the entire set of genetic material (DNA or RNA) for an organism. For
human genome, 99.5% of all DNA is shared in human population. Genetic variants are
the rest 0.5%, and it’s the differences that make each person’s genome unique (Mayor,
2007). Those 0.5% really matter. The genetic variants are associated with various

phenotypes such as skin color (Sarkar and Nandineni, 2018), vision and health of our



eyes (Singh and Tyagi, 2018) and height (Lango Allen et al., 2010). Single-nucleotide
variants (SNVs) are the vast majority of genetic variants in the human population.
There are about 3—4 million SNVs apparent in a typical comparison of one human
versus the reference, and the dbSNP catalog (build 151) has over 660 million SNVs

from diverse sequencing studies (Lappalainen et al., 2019).

On protein level, SNVs would refer to single amino acid variants (SAVs). Since the
protein-, DNA- and RNA-protein interactions are so important in a large number of
biological processing, the variants or mutations on those binding proteins or residues

will lead to serious consequences.

Recently, to investigate the mechanisms by which cancer mutations peturb
protein-protein interactions, H. Billur Engin et al have analyzed the distribution of
1,297,414 somatic missense mutations from 138 genes using 3D protein structures.
They find an over-representation of missense mutations at PPI interface residues in
both tumor suppressors and oncogenes, which indicates that mutations in cancer tend
to affect the PPlIs.

Ornithine carbamoyltransferase (OCT) catalyzes the conversion of ornithine and
carbamoyl phosphate to citrulline during the second step of the urea cycle. OCT is a
homotrimer with active sites located at each of the protein-protein interfaces. Nearly
300 mutations have been identified in OCT, with the vast majority leading to either
neonatal or late onset OCT deficiency. Over half of the disease mutations (59%) are
linked to changes in protomer stability, and approximately 15% are found to disrupt
substrate binding (Jubb et al., 2017).

Rett syndrome (RTT) is a severe neurological disorder caused by MECP2 gene
mutations. MeCP2 is a protein with high expression level in the brain that participates in
the genetic expression and the regulation of RNA splicing. Molecular dynamics
simulations find that P152R mutation within MeCP2 can influence the protein binding to
DNA. P152R mutation makes MeCP2 Methyl-CpG-binding domain bind more strongly
to DNA, while selectively decreases binding affinity to methylated DNA (Franklin,
2019).

And it is same for protein-RNA interaction. It is known that many diseases are caused
by mutations on RNA binding proteins. Mutations in PRPF31, PRPF8 and HPRP3,



which result in defect of SnRNP assembly, lead to retinitis pigmentosa (Wang and
Cooper, 2007). Mutations in TERC and TERT, which result in defects of RNP
telomerase activity, lead to dyskeratosis congenital (Collins and Mitchell, 2002).
Mutations in UPF3B, which result in defect in nonsense-mediated mRNA decay
surveillance, lead to syndromic mental retardation and nonsyndromic mental

retardation (Tarpey et al., 2007)

Overall, mutation or sequence variants on the protein-, DNA- and RNA-protein binding
proteins or residues will lead to significantly mutated phenotype which could be serious
diseases. So, it is very necessary to do the analysis about the binding residues in
human SAVs, which can benéefit for both biology and medicine research (e.g. precision

medicine). To do so, we firstly need to identify those binding proteins or residues.

1.3 Binding proteins/residues identification

1.3.1 Experimental based binding proteins/residues identification

There are a lot of experimental methods which have been developed to identify those
interactions and the binding proteins. For example, fluorescence resonance energy
transfer (FRET) can identify PPI. In FRET, bait and prey proteins are fused to donor
(don) and acceptor (acc) molecules such as cyan (CFP) and yellow (YFP) variants of
GFP. An interaction between the bait and prey proteins brings the donor and acceptor
into close proximity, and excitation of the donor fluorophore results in non-radiative
energy transfer and acceptor fluorescence emission at a specific wavelength
(Petschnigg et al., 2011).

For protein-nucleotide binding, there are methods such as DNA/RNA pull-down assay
which can detect the protein-DNA/RNA interaction. A pull-down assay using
DNA/RNA-conjugated beads is widely used in various research fields, which is a direct
and versatile tool to study DNA/RNA-protein interaction (Sui et al., 2020). First the



biotinylated-DNA/RNA is incubated with streptavidin, then the recombinant or
cellular-extract proteins can bind to DNA/RNA. After being washed, the beads are
boiled to identify DNA/RNA-bound proteins.

For the residue level identification (binding residues), it needs to determine the 3D
structure of the binding proteins. The wildly used experimental methods are X single
crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) and
cryo-electron microscopy (Cryo-EM). According to the statistics of PDB, about 90%
protein structures are resolved by SC-XRD (Burley et al., 2017). However, there is no

“universal” method since all three of them have their advantages as well as limitations.

The SC-XRD can yield high atomic resolution and is not limited by the molecular weight
of the sample. It is suitable for water-soluble proteins, membrane proteins as well as
macromolecular complexes. However, SC-XRD also has disadvantages such as the
difficulty for crystallization and diffraction. Especially, for membrane proteins, the large

size leads to the poor solubilization of the crystallization (Table 1.2).

NMR can measure the three-dimensional structure of macromolecules in the natural
state directly with a very high resolution. But NMR cannot be applied in analyzing large

biomolecules and it needs relatively large amounts of pure samples (Table 1.2).

Cryo-EM is a much easier method compared with the two methods above. It requires
only a small amount of sample, demands less on sample purity, and does not need to
crystalize protein. But, as a cost, it has high levels of noise and relatively low resolution
(Table 1.2).

So far, it is expensive and time-consuming to identify the binding residues with all
above experimental methods. Especially for high-throughput analysis, it is not possible
to prepare all the samples. Nowadays, fewer than 0.36% of all proteins with known
sequence in UniProt correspond to a known experimental 3D structure in the PDB (Qiu
et al., 2020). Thus, it is necessary to apply in silico method to binding residues

identification.



Table 1.2: The comparison of X-ray crystallography, NMR and Cryo-EM

Methods Advantages Disadvantages Obijects Resolution
X-ray * Well « Difficult for * Crystallizable  High
Crystallography developed crystallization  samples
* High « Difficult for * Soluble
resolution diffraction proteins,
* Broad * Solid membrane
molecular structure proteins,
weight range preferred ribosomes,
« Easy for « Static DNA/RNA and
model building  crystalline protein
state structure complexes
NMR * High * Need for high + MWs below High
resolution sample purity  40-50 kDa
« 3D structure « Difficult for » Water soluble
in solution sample samples
* Good for preparation
dynamic study - Difficult for
computational
simulation
Cryo-EM * Easy sample < Relatively * >150 kDa Relatively
preparation low resolution  + Virions, Low (<3.5
» Structure in * Applicable to membrane A)
native state samples of proteins, large
* Small sample high molecular proteins,
size weights only ribosomes,
* Highly complex
dependenton compounds

EM techniques
* Costly EM
equipment

1.3.2 Computational based binding proteins/residues identification

Basically, all the computational methods can be divided into two categories:

structure-based methods and sequence-based methods.



1.3.2.1 Structure-based predictors

Structure-based predictors use structural features such as solvent-accessible surface
area, crystallographic B-factor and secondary structure. The growing number of
available structural complexes assists the accuracy and availability of structure-based

methods.

IntPred is a state-of-the-art structure-based RNA-binding residues prediction method
(Northey et al., 2018). It uses the structure-based features such as intra-chain
disulphide or hydrogen bonds on the certain residue, secondary structure and planarity
of the residues which are calculated by finding the root mean squared distance of all
atoms of the patch from a plane of best fit. Overall, IntPred achieves a high accuracy
76% with random forest (Northey et al., 2018).

PRISM, a structure-based PPI prediction method, is another example (Baspinar et al.,
2014). PRISM first extracts the surface residues of the target proteins using the
relatively accessible surface area values. And each interface in the template interface
dataset is split into its constituent chains. Then PRISM checks whether complementary
sides of a template interface are structurally similar to any region on the surface of
target structures (Shatsky et al., 2004). Once similarities are detected, the two target
proteins are transformed into the structurally similar template interface constituting a

predicted complex structure (Baspinar et al., 2014).

Though structure-based methods achieve good performance in protein binding, there is
an obvious limitation: they can only be applied to protein, whose 3D structure are
available. And for proteomic and genomic analysis, which is dependent on large
amount of predictions, it is necessary to introduce another kind of method which is

based on the sequence information of proteins rather than structure.
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1.3.2.2 Sequence-based predictors

Sequence-based predictors use only the sequence information of the query proteins as
the input to detect the binding residues. Thus, it can be applied to almost any protein
and very suitable for high-throughput analysis. Interface residues or binding residues
are more conserved than the rest of the protein surface and these conserved positions
can be identified by multiple sequence alignments (MSAs) (Esmaielbeiki et al., 2016).
Thus, in the past decades, evolutionary information has significantly improved the
performance of binding residues prediction (Ofran and Rost, 2003). And now, most of
state-of-the-art methods are based on the combination of the evolutionary information

with other sequence features.

The first method (Res et al., 2005), which uses the combination of evolutionary
information and residue composition, achieves an accuracy of 64%. It increases 6%
compared with the previous sequence-based study (Ofran and Rost, 2003). Since then,
many studies try to combine evolutionary information with different sequence features.
For example, DNA binding residues prediction method DNABR combines evolutionary
information with composition of amino acid and physiochemical properties of amino
acids (Ma et al., 2012). And some studies try to combine residue spatial sequence
profile obtained from the HSSP database with evolutionary information (Wang et al.,
2006).

Some sequence-based methods take advantage of predicted structural information
such as surface accessibility and secondary structure. For example, InteractionSites
improves its accuracy to 68% from a baseline of around 30% (Ofran and Rost, 2007).
These results suggest that inclusion of predicted structural information can improve the

accuracy of binding residue prediction.

For protein level prediction, there are two possible ways to obtain per protein prediction.
The first way is simply to infer from per-residue prediction. Technically, a protein is
defined as a binding protein if there is any residue on the protein which is predicted as
binding residue by per-residue method. The second way is to use protein level specific

methods.

The important and most crucial step during classification of proteins using machine

learning techniques is to transform the variable length of protein sequence to fixed

11



length feature vectors. DNAbinder, which is a DNA binding protein prediction method,
transforms position-specific scoring matrix (PSSM) to PSSM-400 vector. PSSM-400 is
the composition of occurrences of each type of amino acid corresponding to each type
of amino acids in protein sequence, which means for each column there will be 20
values instead of one. Hence, it will be a vector of dimension 20 x 20 for each PSSM
matrix (Kumar et al., 2007).

StackDPPred is also a DNA binding protein prediction method (Mishra et al., 2019). To
encode protein sequence with a fixed dimensional feature vector, they applied various
feature extraction techniques based on the PSSM profile: PSSM-distance
transformation (PSSM-DT), Residue probing transformation (RPT) and Evolutionary
distance transformation (EDT). PSSM-DT results in two kinds of features: PSSM
distance transformation of pairs of same amino acids (PSSM-SDT) and PSSM distance
transformation of pairs of different amino acids (PSSM-DDT) (details can be seen in
(Mishra et al., 2019)). PSSM-SDT calculates the occurrence probabilities for the pairs
of the same amino acids separated by a distance k along the sequence. PSSM-DDT
calculates the occurrence probabilities for pairs of different amino acids separated by a

distance of k along the sequence (Mishra et al., 2019).

L-k

PSSM — SDT(j, k) = Z Py * Piyy /(L —k)

i=1

where, j is one type of the amino acid, L is the length of the protein sequence, P;; is the
PSSM score of amino acid j at position i and P,,y; is the PSSM score of amino acid j at

position i+Kk. Through this approach, 20*K number of PSSM-SDT features are

generated, where K is the maximum range of k (k=1, 2, ..., K).

L-k

PSSM = DDT (i, i k) = )" Byyy # Pragy /(L = K)

i=1
where, i; and i,represent two different types of amino acids.

RPT, proposed by (Jeong et al., 2011),emphasizes domains with similar conservation
rates by grouping domain families based on their conservation score in the PSSM
profile. And the EDT extracts the information of the non-co-occurrence probability for
two amino acids separated by a certain distance in a protein from the PSSM profile
(Mishra et al., 2019).
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So far, there are some methods which can conduct multiple class prediction. And it can
benefit a lot from establishing an all-in-one system. Many methods may not have
constant performance due to the different training data they used. For example, the
cutoff which is used to define binding residue ranges from 3.5A to 6A (Yan et al., 2016).
Some use 3.5A, and the others may use 5A or 6A. It has been found that changing the

cutoff value will change the performance significantly (Yan et al., 2016).

DRNApred is a method which can predict both DNA and RNA binding residues (Yan
and Kurgan, 2017). DRNApred uses a lot of features including a variety of
physicochemical and biochemical properties together with hidden Markov model (HMM)
based evolutionary profile and predictes intrinsic disorder, secondary structure and

solvent accessibility (Yan and Kurgan, 2017).

hybridNAP is the first method which can predict all three classes of binding residues:
protein-protein, protein-DNA and protein-RNA (Zhang et al., 2019). And their results
suggest that development of the new generation of predictors would benefit from using
training data sets that combine all the three protein-, RNA- and DNA-binding proteins
and pursuing combined prediction of protein-, DNA- and RNA-binding residues (Yan et
al., 2016; Zhang et al., 2019).

DisoRDPbind is another method which can predict all three kinds of binding residues
(Peng et al., 2017). DisoRDPbind uses the features such as predicted secondary
structure, intrinsic disorder predicted by IUPred (Dosztanyi, 2018), amino acid
composition and physiochemical properties of amino acids (Peng et al.,, 2017).
However, there is a limitation for DisoRDPbind. Unlike hybridNAP which can provide
general binding residues prediction, DisoRDPbind is designed specifically for the
binding prediction on the disorder region. Thus, it has very bad performance on general
predictions (Qiu et al., 2020).

As there are already many tools which can predict binding protein or residues, the
reasons why it is still necessary to establish the new method in this thesis are as
following: 1) Previous review has already found that most binding prediction methods
are only available through web servers. However, many of them are either no longer
maintained or only transiently online (Yan et al., 2016). Furthermore, it will also
negatively affect consensuses that rely on the web server calculations. Thus,

unsustainable or short maintenance is one of the challenges for bioinformatics.
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PredictProtein server (Yachdav et al., 2014), in which the binding prediction method in
this thesis is available, went online as one of the first Internet servers in molecular
biology in 1992. Now PredictProtein has already served for almost 30 years. 2) Though
methods such as hybridNAP can predict multiple classes of binding residues, so fa,
there is no comprehensive system which integrates both the protein level and the
residue level prediction. However, a protein level prediction can significantly improve
the residue level prediction when the users are not sure whether the input proteins are
binding protein or not, for example, in high-throughput analysis. And again, an
all-in-one system could have a more constant performance than a combination of many
separate ones. 3) Unlike previous studies which heavily depend on evolutionary
information, in this thesis, some new techniques such as neutral language processing

are applied.

1.4 Conclusion

Protein-, DNA-, RNA-protein binding proteins and residues play important role in many
biological processing. And SAVs, the majority of genetic variants, are the genome
differences that make each person’s genome unique, some of which will lead to serious
phenotype such as disease. So it is meaningful to conduct an analysis of those SAVs
occurring on the binding proteins and residues. However, experimental and
structure-based binding proteins/residues identification methods are not suitable for
high-throughput research. Thus, in this thesis, we first develope a sequence-based
Protein-, DNA-, RNA-protein binding proteins and residues prediction method which
outperforms previous methods. And we further apply our method to analyzing SAVs
from 60,706 people.
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Chapter 2

2 Sequence-based Protein-, DNA- and
RNA-binding prediction system

In this section, we will discuss our new sequence-based comprehensive binding
prediction system (ProNA2020). It is a two-level prediction. At first level, the protein
level, it can predict whether the input protein is a binding protein or not. If the input
protein is predicted as a binding protein, then at the second level, the residue level, it

can further predict the binding residues on the input protein.

2.1 Methods

2.1.1 5-fold cross validation

In this thesis, we use a 5-fold cross validation approach (Figure 2.1). Basically, the
training data is divided into 5 parts (the details of data preparation are shown in the
journal article at the end of this section). Every time, three parts serve as training set
which are used to train the model, and one part serves as cross-training set which is
used to select features and optimize the hyperparameters such as number of
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hidden nodes and learning rate, and the rest one part is the test part which is used

to evaluate the final performance of the model.

I train W cross-train test

Split1 Split2 Split3 Split4 Splits
Folc IR I I
Foide [N I I I
Foids I I I
o — 1
T T

Final cross-
training set:

Final testing set: ----

Figure 2.1: Cross-validation procedure. The original non-redundant training data
is split into five splits (Split1-Split5). Three splits are used for training, one for
cross-training, one for testing. This process is repeated five times (5-fold

cross-validation).

2.1.2 Profile kernel

Profile kernel is a kind of kernel function of support vector machine (SVM). An SVM is a
supervised machine learning model that uses classification algorithms for two-group
classification problems. The target of SVM is to find a decision boundary (also known
as the hyperplane), which can separate two groups of samples from one or more
feature vectors. And this hyperplane is a straight line and the distance from it to the
nearest data point on each side (red nodes and blue nodes in Figure 2.2) is maximized

(maximum-margin).
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Figure 2.2 Linear SVM model. Classification between blue and red samples. To

separate two groups of samples, SVM will find a hyperplane with the maximum margin.

Given a labeled training dataset:
(f1;}’1), ) (fn' yn)ffi € Rd and Yi € (_1! +1)

where ¥; is a feature vector representation and y; is the class label (either 1 or -1) of a

training sample i. Any hyperplane can be defined as:
wXT+b=0
where @ is the weight vector, x is the input feature vector, and b is the bias.

For the linearly separable data, there are two parallel hyperplanes (two dashed lines in
Figure 2.2) which can separate the two groups of data, so that the distance between
them is as large as possible. The “margin” is the region bounded by these two parallel
hyperplanes, and the maximum-margin hyperplane is the hyperplane that lies halfway
between them. The above two hyperplanes can be described by:

oxT+b=1

anything on or above this hyperplane belongs to one class (blue nodes). And
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— T

wx" +b=-1
anything on or below this hyperplane belongs to one class (red nodes).

And the @ and b would satisfy the following inequalities for all samples in the training

data:

——T

wx, +b=1ify; =1

——T

wx, +b<1lify,=-1

2

llwll

The distance between these two hyperplanes is . Thus, the objective of SVM is to

maximize the distance between two hyperplanes which means minimizing ||@|| .

The SVM is originally designed for linear classifier. For non-linear problem, there is an
alternative use for SVM called kernel method. A kernel function can make it easier to
calculate the inner product of two feature vectors in higher dimensional space, so as to

transform a non-linear problem to a linear problem (Figure 2.3).

Linear feature selection p— — @ o
in the input space d P
®ie
@ (@]
L & Rt
*/\%,
®e "o ,
@ e ~© '
Ny, :
Select the features that best :
classify the data in the
projected kernel space

Figure 2.3: Introduction of kernel function (Adeli et al., 2017). Classification is
between blue and red sample. It is not possible to find a hyperplane in linear feature

18



space. Then with a suitable kernel function ¢, a hyperplane can be found in higher

dimensional space.

Given K as the kernel function:

K@,y) =< f@).f(y) >

Where x,y are n dimensional inputs. f is a function used to map the input from n
dimensional to m dimensional space. With the kernel functions, it is possible to
compute the scalar product between two sample points in a higher dimensional space

without explicitly mapping the data point into higher dimensional space.

Profile kernel is a kind of kernel function for SVM. The original profile kernel has been
introduced in (Kuang et al., 2005) and, in this thesis, an accelerated version of profile

kernel from our lab is used (Hamp et al., 2013).

Technically, the profile kernel uses probabilistic profiles, such as PSSM matrix
produced by the PSI-BLAST algorithm, to define position-dependent mutation
neighborhoods along protein sequences for inexact matching of k-length

subsequences (“k-mers”) (Kuang et al., 2005).

Input profiles

Amino,d
Pos.vacL’IA C ..Y |A S oo Y
1/0.2 0.1...0.01 1 0.1 01...0.3
186 0.3 0.1 ...0.2 241/0.7 0.2...0.4
P1 P2
/ Sample 3-mer trie traversal
2-mers at node ‘AA’ 3-mer trie (part)
Profile Position Score A/ : \Y
P1 10-11 3.6 oI e TN
P1 4748 26 |€— AA -1-/AIY L
P1 161-162 4.9 AN

P2 22-23 41
P2 230-231 1.5

score<5
3-mers at leaf ‘AAA’ ?

Profile Position Score
P1 10-12 4.9
P1 1012 49 l4—[AAA]

P2 230-232 3.2




Figure 2.4 Introduction of profile kernel (Hamp et al., 2013). This shows how profile
kernel is calculated with two input profiles: P1 and P2. These two profiles are generated
from proteins that are 186 (P1) and 241 residues long (P2; tables on the top). In profile
calculation, it counts the number of conserved multi-mers at each node that fall below
the substitution score threshold 0. Here is an example of 3-mer with a threshold 0=5. At
each node, profile-kernel counts the number of 3-mer motif (such as “AAA”) on the
protein with a score below 5. And technically, using 3-mer means mapping protein onto
a 20*20*20 (8000) dimensional vector.

Here is an example which explains the process of profile kernel calculation (Figure 2.4)
(Hamp et al., 2013). At first, two blast profiles (such as PSSM matrix) are generated
(two tables on the top of Figure 2.4). Then, there are two important parameters in
profile kernel: k-mer and o . k-mer indicates how many consecutive residues are taken
into consideration in profile kernel, and ¢is the threshold for conservation score. Figure
2.4 is an example for 3-mer and ois set to be 5. Instead of using the conservation score
of single residues in original profile, the conservation is now calculated as the sum of
the scores for 3 consecutive residues. Thus, 3-mer means that it maps the profile to a
20"k-dimensional vector of integers. Each dimension represents one combination
of k consecutive residues and a value gives the number of times
this k-mer combination is conserved (conservation score below ¢) in a profile of the

corresponding proteins (Hamp et al., 2013).

2.1.3 Word2Vec

Artificial neural networks (ANN), which are inspired by the biology neural networks, are
widely used in machine learning. The basic component of neural network is neurons
which is also referred to as perceptron. The simplest neural network consists of just one
perceptron, which receives and sums up the input signal and evaluates this sum using
a threshold function (activation function), which produces the output value. The

following formula describes how the input signals are summed up with their weights:
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n

Sum(s) = Z Ij * w;

j=1
And for activation functions, there are a lot of functions available, such as the widely

used sigmoid function which can normalize the input value to be between 0 and 1:

Slngld(S) = m

And a schematic of basic ANN is depicted in Figure 2.5.

Perceptron(neuron)

Activation Function Output

Figure2.5: A schematic of basic ANN component (neuron). The perceptron (neuron)
is represented by rectangle. It receives inputs i from different input perceptrons and

then sums up the signal. The activation function uses the sum as input and calculates

the output of the perceptron.
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The basic version of ANN is able to solve simple linear classification problem. However,
in complicate non-linear classification such as the binding prediction in this thesis,
because of much bigger feature vectors and overlapping data points, it is necessary to
use more complex ANN which contains multiple neurons. In most application, an ANN
consists of three layers (Figure 2.6). The first layer is called input layer which contains
as many nodes as the length of the input feature vector is. There is no calculation at
this layer, and it just passes the information to the second layer which is called hidden
layer. The hidden layer consists of hidden nodes, all of which are perceptrons. The final

layer is the output layer which presents the quantity of output classes.

Input Layer Hidden Layer Output Layer

Figure 2.6: Fully connected feed forward network. There are connections between
every node in input layer and that in hidden layer, and also between the nodes in
hidden layer and that in output layer. This kind of network topology is called a fully

connected feed forward network.

Word2Vec is a group of ANNs, which are used to produce word embeddings. It was
developed by Tomas Mikolov in 2013 at Google (Mikolov et al.,, 2013). Word
embedding, which can represent words by vectors, is one of the most popular

representation of document vocabulary.
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There are two different kinds of ANNs in Word2Vec which are trained for certain tasks:
CBOW and Skip-gram (Figure 2.7). Assuming a window approach with size 5 (2 on
each side), CROW uses the surrounding words to predict the probability for every word
in the vocabulary of being the “central word” in the window approach. However,
Skip-gram type uses the word in the middle to predict the probability for every word in

the vocabulary of being the neighbors in the window approach.

INPUT OUTPUT INPUT OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

I: > |w(t) w(t) —T

SUM
w(t+1) w(t+1)

w(t+2) w(t+2)

CBOW Skip-gram

Figure 2.7: Two different kinds of Word2Vec neural network: CBOW and
Skip-gram. The difference between CBOW and Skip-gram neural network is: the
CBOW model uses the distributed representations of neighbor words to predict the
word in the middle. While the Skip-gram model uses the distributed representation of

the input word to predict the surrounding words.

In the thesis, we used a skip-gram neural network of Word2Vec. To train the Word2Vec
model, the first step is to collect the samples. Here, we assume the source text is “The
quick brown fox jumps over the lazy dog”. Then, a window approach with a certain size

(size=5 in Figure 2.8) goes through the context sentence and picks up the pairs of
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central work and its neighbors in the window (Figure 2.8). The central words will serve

as inputs for the network and the neighbors will be the targets.

Then, we can set the neural network (Figure 2.9). It will have three layers:1) input layer.

The input is the one-hot vector for the input word;2) hidden layer. There is no activation

function on the hidden layer neurons, and, as an example, here we set the number of

hidden nodes to be 4 (Figure 2.9); 3) output layer. It has nine neurons with softmax

activation function which represent the probability distribution of words (Figure 2.9).

The basic idea of skip-gram network is to learn the statistics from the number of times

each sample pair shows up. Thus, the softmax output layer shows which words in the

vocabulary have the higher possibility to be the neighbors of the input word.

Source Text

Training
Samples
(INPUT,TARGET)

fox jumps over the
|brow| fox jumps over the

over  the

The over (the

lazy dog = (the,quick)
(the,brown)
(

lazy dog mp (quick,the)
(quick,brown)
(quick,fox)

lazy dog s (brown,the)
(brown,quick)
(brown,fox)
(brown,jumps)

lazy dog s (fox,quick)
(fox,brown)

(fox,jumps)
(fox,over)

Figure 2.8: Sample preparation of Word2Vec. Assuming the source text is “The

quick brown fox jumps over the lazy dog”, a window approach with size 5 goes through

the sentence and picks up the pairs of samples: central word and its neighbor words.
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Input Layer Hidden Layer Output Layer
(Softmax Layer)

@ P(context="the’)

lg . @ P(context="quick’)

Il/ll* P(context="fox’)

one-hot vector
for context="jumps’ ./

EEEEEREEE

@ P(context="dog’)

Figure 2.9: Architecture for skip-gram model. The output of the neural network is a
softmax layer which shows the the probabilities of each words in the corpus to be the
neighbor words of the input word. And weight matrix of the hidden layer is what we

need for next step of Word2Vec (here we uses 4 neurons as an example).

After training the network, instead of the network itself, what we need is only the weight
matrix in the hidden layer. In this example, since there are 4 neurons in the hidden layer
and 9 words in the vocabulary, it is a 9x4 matrix (Figure 2.10). The final word vector can
be produced through multiplying the one-hot vector for the input word by the weight
matrix (Figure 2.10). And the length of word vector will simply equal to the number of

neurons in the network.
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Hidden Layer
Weight Matrix

4 hidden nerons

one-hot vector word vector
for context="jumps’ for context="jumps’

[000100000] X = [46173]

9 words
|

Figure 2.10: Producing word vector by Word2Vec. Using the hidden layer weight
matrix with 4 hidden nodes from the network in Figure 2.8, Word2Vec is able to

calculate the final representation of the input word.

In our study, the resource contexts are all the protein sequences from UniProt database
(The UniProt, 2017). To train the representations for proteins, we need to break the
protein sequences into sub sequences so that we can define the “biological words”.
N-grams is the widely used technique in bioinformatics to study protein sequences.
Normally, an overlapping window approach is applied in n-gram modeling of protein
research. In this thesis, instead of the window approach, we generate n lists of shifted
non-overlapping words (Figure 2.11 shows an example of 3-grams) (Asgari and Mofrad,
2015). So in Figure 2.11, 3 consecutive residues are considered to be a ‘biological
word’. For a certain protein sequence, all the possible “biological words” and their
neighbors are used to train the word2vec skip-gram neural network which we talk about
above. And parameter n is determined through cross-validation. The final
representation of each protein sequence in our training set is produced by
concatenating the vector representation of every possible “word” (n consecutive

residues) on the protein sequence.
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Orignal sequence

OM@FERTKRSALVRRLWRSRAPG...
Splittings
(1)MFR, TKR,SAL,VRR,LWR,SRA,...
(2)FRT,KRS,ALV,RRL,WRS,RAP, ...
(3)RTK,RSA,LVR,RLW,RSR,APG,...

Figure 2.11: Protein sequence splitting with 3-grams. To prepare the training
sample for the word2vec skip-gram neural network, each protein sequence is
represented as three sequences (1, 2, 3) of 3-grams and 3 consecutive amino acids is

a “biological word”.

2.1.4 ANN for residue level prediction

For residue level prediction, we used ANN with the features from PredictProtein
(Yachdav et al., 2014). The PredictProtein (PP) server is an automatic service that
searches up-to-date public sequence databases, creates alignments, and predicts

aspects of protein structure and function (Yachdav et al., 2014).The features include:

PSSM, which is calculated out of a multiple sequence alignment against big_80
database. Big 80 is a redundancy-reduced (at 80% threshold) database which
concatenates UniProt and PDB together (Burley et al., 2017; The UniProt, 2017).

Predicted secondary structure and solvent accessibility. Secondary structure is
predicted by a system of neural networks with three states helix, strand and loop rating
at an expected average accuracy of 72% (Rost and Sander, 1993). The solvent
accessibility is another important feature for binding residue prediction. Those residues
on the surface of a protein which have better accessibility are more likely to be the
binding residues. And solvent accessibility is predicted by a neural network method
rating at a correlation coefficient (correlation between experimentally observed and

predicted relative solvent accessibility) of 0.54 (Rost and Sander, 1994).
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B-value, which describes the mobility of residues. Functional residues such as binding
residues usually show a larger mobility than non-functional (non-binding) residues. In
PredictProtein, B-value is predicted by PROFbval (Schlessinger et al., 2006).

Other features: protein length, amino acid composition and physical properties of amino

acids. Table 2.1 and Table 2.2 show the details of the features we used.

For the architecture of the neural network, we used a classic three-layer network: one
input layer, one hidden layer and one output layer (Figure 2.12). Specially, there are
two nodes with sigmoid function at the output layer: one for binding prediction and one

for non-binding prediction. So, the raw output score of the neural network will be:
SCOT€rqw = nOdebinding - nOdenon—binding

Besides, a second level filter is applied. Instead of the raw prediction of single residue,

we use a window approach which takes neighbor residues into consideration:

=

w—

2

SCOT€fing = SCOTeray i, (sCOTELG i > 0)

Sl

w1

-2
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Input Layer Hidden Layer Output Layer

binding

non-binding

Figure 2.12: Architecture of ANN used in residue level prediction. It is a three-
layer network. Specially, we set two nodes with sigmoid function at output layer: one for

binding prediction and the other for non-binding prediction.

2.1.5 Performance evaluation

We applied the standard metrics with the acronyms (TP: true positives: observed and
predicted in class C; TN: true negative: observed and predicted in non-C; FP: false
positives: predicted in C, observed in non-C; FN: false negatives: predicted in non-C,
observed in C):

PRE(C)=PrecisionC=TP/(TP+FP)
REC(C)=RecallC=TP/(TP+FN)
Q2=(TP+TN)/(TP+TN+FP+FN)
F1(C)=2*PRE(C)*REC(C)/(PRE(C)+REC(C))

_ TPXTN—FPXFN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

MCC(C)
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Table 2.1: Input features for protein binding per-residue binding predictions

Name Window size Description
(number  of
residues)
pssm 11 evolutionary  Profile: normalized absolute
conservation of aa at specific positions
infPP 11 information per position: information content of
specific position in PSSM and PERC
helix 11 helix predicted
loop 11 loop predicted
strand 11 strand predicted
md_raw 11 raw disorder prediction score
md_minus 11 no disordered region predicted
md_plus 11 intrinsically disordered region predicted
profbval_raw1 11 raw residue flexibility score
profbval_raw2 11 raw residue non flexibility score
b 11 buried predicted
e 11 exposed predicted
[ 11 intermediate predicted
composition 1 relative occurrence of an AA in the entire
sequence
length_category1’ 3 length category 1-60 aa
length_category2 3 length category 61-120 aa
length_category3 3 length category 121-180 aa
length_category4 3 length category 181- aa
chemprop_hbreaker* 3 aa is a helix breaker
chemprop_mass? 3 mass of the amino acid
chemprop_vol? 3 volume of the amino acid (size)
chemprop_cbeta?® 3 aa is a c-beta branching aa
chemprop_charge? 3 charge in 3 states
chemprop_hyd? 3 hydrophobicity of the amino acid
position 3 position of aa in protein sequence

' For the protein with a length smaller than 60, length_category1 is 0.5. Otherwise,

length_category1 is 1.
2 chemprop_mass and chemprop_vol were taken from
http://prowl.rockefeller.edu/aainfo/contents.htm; chemprop_hyd was from Kyte-Doolittle
(e.g. http://en.wikipedia.org/wiki/Hydropathy_index); chemprop_cbeta was according to
http://www.russell.embl-heidelberg.de/aas/cbb.html; chemprop_hbreaker (helix breaker)
was proline; chemprop_charge was according to side chain charge
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Table 2.2 Input features for DNA/RNA binding per-residue binding predictions

Name window Description
Size
pssm 11 evolutionary profile: normalized absolute conservation
of aa at specific positions
infPP 9 information per position: information content of specific
position in PSSM and PERC
relW 5 relative weight: information content of specific positions
on PSSM and PERC
md_raw 11 raw disorder prediction score
md_ri 9 disorder prediction reliability score
profbval_raw1 5 raw residue flexibility score
profbval_raw2 5 raw residue non flexibility score
helix 11 helix predicted
loop 11 loop predicted
strand 7 strand predicted
OtE 9 raw prediction output of Sheet
OtL 9 raw prediction output of Loop
OtH 9 raw prediction output of Helix
ri_sec 11 reliability index of secondary structure prediction,
applies to helix, sheet, loop and OtE, OtH, OtL
b 7 buried predicted
e 7 exposed predicted
i 7 intermediate predicted
Rel_acc 11 predicted relative solvent accessibility in %
Ri_acc 9 reliability index of solvent accessibility prediction:
applies to e,i,b and rel_acc
chemprop_hyd' 7 hydrophobicity of the amino acid
fhemprop_charge 3 charge in 3 states
chemprop_mass' 9 mass of the amino acid
Exposed_composi 1 for each buried, intermediate, exposed the relative
tion3 occurrence is given in 3 categories with each 3 states
buried_compositio 3 for each buried, intermediate, exposed the
n3 relative occurrence is given in 3 categories with
each 3 states
intermediate_com 1 for each buried, intermediate, exposed the
position3 relative occurrence is given in 3 categories with
each 3 states
Helix_composition 1 the relative occurrence of helix is given in 3
2 categories
composition 1 relative occurrence of an AA in the entire
sequence
' chemprop_mass and chemprop_vol were taken from

http://prowl.rockefeller.edu/aainfo/contents.htm; chemprop_hyd was from Kyte-Doolittle

(e.g. http://fen.wikipedia.org/wiki/Hydropathy index); chemprop_cbeta was according to
http://www.russell.embl-heidelberg.de/aas/cbb.html; chemprop_hbreaker (helix breaker)

was proline; chemprop_charge was according to side chain charge
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2.2 Results and discussion

For protein level prediction, we use a combination of two distinct algorithms: 1) the
sequence alignment-based profile-kernel and 2) neutral language based Word2Vec. In
our study, we find that profile-kernel are better at predicting the proteins from large
protein families that have more alignment from blast, while Word2Vec has a higher
performance for the proteins from small families. Thus, the combination can make them

benefit from each other.

After establishing the protein level mode in training data, we compare the performance
of our method with other state of art algorithms. First, our method (ProNA2020)
outperforms all other methods in predicting binding proteins of all three classes:
protein-binding, DNA-binding and RNA binding (Table 2.3).

Besides the specific protein-level methods, residue level prediction method can also be
used in protein level prediction. Basically, we just define the proteins holding at least
one predicted binding residue as the binding proteins. We find residue level methods
tend to predict almost all input proteins as binding proteins (Table 2.3). This makes
them have very high recall, but low precision. These results approve that it is necessary
to develop the specific protein level method since the residue level methods are not

suitable to predict protein level binding.

For residue level prediction, we use the classic ANN with a lot of features from
PreidctProtein server such as predicted secondary structure and solvent accessibility.
We compare our method in two different ways: unknown mode (Table 2.4) and known
mode (Table 2.5). Unknown mode means, for a query protein Q, it is not known
whether it binds DNA/RNA/Protein. And known mode means only binding proteins are
included in the performance comparison. For example, when assessing the
performance of DNA binding residues prediction, we only use DNA binding proteins for
known mode. But, for unknown mode, non-binding proteins are also included together
with the binding proteins. In known mode comparison which is based on only binding
proteins , our method (ProNA2020) has the higher MCC and F1 than others (Table
2.5).However, in high-throughput analysis, the input proteins are not limited to the
binding proteins, and actually most of the inputs will be non-binding proteins. Thus, the

results in unknown mode which mixes the binding and non-binding proteins should be
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more close to the performance in real practice (Table 2.4). In unknown mode
comparison, besides MCC and F1, our method (ProNA2020) also has the highest Q2
accuracy in all three tasks: 8311% for DNA binding residues prediction; 8812% for RNA
binding residues prediction and 75£3% for protein binding residues prediction (Table
2.4). All these results indicate ProNA2020 should so far be the best binding residues
prediction method, especially for high-throughput analysis. And for the availability,
besides the source code on github, ProNA2020 can also be used through
PredictProtein server (Figure 2.13).

Binding Site Prediction for SMAD7_HUMAN

Export~

Visual Help for ProNA2020

What am | seeing Here? This viewer lays out predicted features
this section shows prediction from one method: ProNA2020 (mac

Zoom - Start: 1, End: 38
Export to image

1.2.3.4.5.8.7.8.% 10 1112 13 14 15 15 17 18 19 20 21 22 23 24 25 25 27 28 20 30 31 32 33 34 35 35 37
||||||||||||||||||||||||||||||||||||| o

at correspond to regions within the queried sequence. Mouse over the different col
nolecule binding sites). Refer to the respective help page for more information

N 5 s

ProNA2020 Information

Legend: Protein-Binding - l; RNA-Binding - O; DNA-Binding - B
(Higher scores indicated by increased color saturation and lightness)
Protein Level Binding Prediction: Protein-binding (reliability score: 100; GO:0005515), DNA-binding (reliability score: 58; GO:0003677).
e: it could be possible that the input protein gets a binding prediction in protein level, but ProNA2020 is not able to find the relative binding sites!

Figure 2.13: ProNA2020 on PredictProtein server. The protein level predictions are
given with GO annotations and reliability score. And the predicted binding residues are
assigned with colored rectangle and the color saturation and lightness correspond to
the reliability of the predictions (the higher the saturation, the reliable the prediction).
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Table 2.3: Per-protein performance for independent test set

Method Binding Q2(% PRE( REC( F1(% MCC

) %) %) )
DisoRDPbind(Peng and DNA 5413 47+4 784 59+3 0.17+0.06
Kurgan, 2015)’
DRNApred(Yan and Kurgan, 49+3 44+4 83+4 57+3 0.08+0.06
2017)"
hybridNAP(Zhang et al., 2017)’ 42+3 42+3 100 59+3 0
NucBind(Su et al., 2019)’ 49+3 45+3 99#1 6213 0.211+0.04
DNAbinder(Kumar et al., 2007) 62+3 5344 81+3 6443 0.31+0.06
DNABIND(Szilagyi and 59+3 5014 6115 55+4 0.17+0.06
Skolnick, 2006)
SomeNA(Hénigschmid, 2012)" 4243 42+3 99%1 59+3 0.02+0.06
StackDPPred(Mishra et al., 67+3 5743 90+3 7043 0.42+0.05
2019)
ProNA2020 77¥3 674 7713 763 0.56%0.05
DisoRDPbind(Peng and RNA 3613 22+3 7716 354 0.02+0.06
Kurgan, 2015)’
DRNApred(Yan and Kurgan, 45+3 25+3 60+6 32+3 0.007+0.0
2017)" 6
hybridNAP(Zhang et al., 2017)’ 22+3 22+3 100 363 O
NucBind(Su et al., 2019)’ 34+3 24413 91+4 384 0.11+0.05
RBPPred(Zhang and Liu, 2017) 59+3 2944 61+6 3945 0.1610.07
RNABindRPlus(Walia et al., 25+3 2343 100 37+3 0.10+0.02
2014)"
SomeNA(Hénigschmid, 2012)" 34+3 2443 98+1 384 0.15%0.03
SPOT-RNA(Yang et al., 2014) 793 5415 3316 41+5 0.31:0.06
TriPepSVM(Bressin et al., 77+3 49146 6116 5415 0.4010.06
2019)
ProNA2020 72+3 4315 8215 575 0.44+0.05
DisoRDPbind(Peng and Protein 50+3 91+3 41+3 57+3 0.21+0.05
Kurgan, 2015)’
hybridNAP(Zhang et al., 2017)’ 80x3 80+3 100 89+2 0
BSpre1d(Mukherjee and Zhang, 80x3 80+3 100 89+2 0
2011)
CRF-PPI(WEei et al., 2015)’ 803 80+3 100 892 O
InteractionSites(Ofran and 80x3 80+3 100 89+2 -0.0410.0
Rost, 2007)’ 1
iPPBS-PseAAC(Jia et al., 803 80+3 100 892 O
2016)'
LORIS(Dhole et al., 2014)’ 803 80+3 100 892 O
PPIS (Liu et al., 2016)’ 803 80+3 100 892 O
SPRII:IGS (Gurdeep Singh, 803 80+3 100 892 O
2014)
SSWREF-PPI(Zhi-Sen Wei, 803 80+3 100 892 O
2016)'
ProNA2020 80+3 82+3 96+1 89+2 0.22+0.08

! per-residue methods “mis-used” for per-protein prediction
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Table 2.4: Per-residue performance for independent test set - mode unknown °

o

Method Binding Q2(% PRE( REC( F1(% MCC

) %) %) )
DisoRDPbind(Peng and DNA 753 34+3 132 1943 0.09+0.02
Kurgan, 2015)
DRNApred(Yan and 7412 3614 24+3  28+3 0.13x0.03
Kurgan, 2017)
hybridNAP(Zhang et al., 64+2 2943 45+2  35+2 0.1240.02
2017)
NucBind(Su et al., 2019) 70£3 3449 36+3 3515 0.16x0.07
SomeNA(H6nigschmid, 78t2 5114 39+2  44+2 0.31x0.03
2012)
ProNA2020 831 60%3 593 60+2 0.49%0.02
DisoRDPbind(Peng and RNA 80+2 17+5 1644 15+4 0.05+0.03
Kurgan, 2015)
DRNApred(Yan and 78t5 1915 22+6 2115 0.08+0.06
Kurgan, 2017)
hybridNAP(Zhang et al., 68+3 1813 45%4 26+3 0.1110.02
2017)
NucBind(Su et al., 2019) 67+4 1414 32+4 2016 0.03x0.06
RNABindRPlus(Walia et al., 88+2 5616 37+4 45+4 0.40+0.04
2014)
SomeNA(H6nigschmid, 86+3 4016 16+2 23+2 0.19+0.04
2012)
ProNA2020 88+2 5314 40+4  46*3 0.40%0.03
DisoRDPbind(Peng and Protein 73+3 23+8 31 5¢2  -0.03x0.0
Kurgan, 2015) 3
hybridNAP(Zhang et al., 6712 3543 38+2 37+2 0.1410.02
2017)
BSpred(Mukherjee and 65+1 2243 16%1 1812 -0.0410.0
Zhang, 2011) 2
CRF-PPI(Wei et al., 2015) 56+1 2613 40+1 31+2 0.02+0.01
InteractionSites(Ofran and 73+3 3313 91 14+1 0.05+0.02
Rost, 2007)
iPPBS-PseAAC (Jia et al., 70£3 30+2 15+1 2041 0.04+0.02
2016)
LORIS(Dhole et al., 2014) 56+1 25+3 39+1 31+2 0.001+0.0

07

PPIS (Liu et al., 2016) 55+1 2643 42+1 32+2 0.01+0.01
SPRINGS (Gurdeep Singh, 56+1 25+3 361 32+2 0.004+0.0
2014) 07
SSWREF-PPI(Zhi-Sen Wei, 57+1 2743 42%1 332 0.02+0.01
2016)
ProNA2020 75%3 52+%3 36+3 42%3 0.28+0.03

Mode-unknown: for a query protein Q, it is not known whether it binds DNA/RNA/Protein.

Instead, this binding also has to be predicted.
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Table 2.5: Per-residue performance for independent test set — mode known °
Method Bind Q2(% PRE( REC( F1(%) MccC
ing ) %) %)
DisoRDPbind(Peng and DNA 66+2 36+4 13+3 1943 0.04+0.02
Kurgan, 2015)

DRNApred(Yan and 6612 42+4 24+3 3043 0.10+0.03
Kurgan, 2017)

hybridNAP(Zhang et al., 5712 3614 4612 4041 0.08+0.02
2017)

NucBind(Su et al., 2019) 78%1 86*2 37+3 5242 0.47+0.02
SomeNA(Hb6nigschmid, 71+2 5515 39+2 45+2  0.27++0.04
2012)

ProNA2020 78%1 6512 67+2 6611 0.50+0.02

DisoRDPbind(Peng and RNA 71+3 2714 1615 204 0.04+0.03
Kurgan, 2015)

DRNApred(Yan and 69+3 2943 2416 2615 0.07+0.04
Kurgan, 2017)

hybridNAP(Zhang et al., 60+3 27+3 45+3 3412 0.08+0.03
2017)

NucBind(Su et al., 2019) 81¥1 6718 32+4 43415 0.37+0.05
RNABindRPlus(Walia et al., 78t1 514 50%3 50%3 0.36+0.03
2014)

SomeNA(Hb6nigschmid, 77+2 49+1 1612 2543 0.17+0.06
2012)

ProNA2020 79+2 55+3 45+3 50%2 0.3710.03
DisoRDPbind(Peng Protein 66+1 31+1 341 542 -0.001+0.00
and Kurgan, 2015) 0 8
hybridNAP(Zhang et al., 61+2 41+3 3712 392 0.111£0.02
2017)

BSpred(Mukherjee and 60+1 30+2 16+1 2041 -0.036+0.00
Zhang, 2011) 9
CRF-PPI(Wei et al., 2015) 55+1 3412 4111 38%2 0.03+0.01
InteractionSites(Ofran and 65+2 42+3 91 1541 0.05+0.02
Rost, 2007)

iPPBS-PseAAC (Jia et al., 63+1 3612 15+1 2241 0.027+0.008
2016)

LORIS(Dhole et al., 2014) 54+1 36+2 39+1 36+1 0.005+0.008
PPIS (Liu et al., 2016) 54+2 3413 42%1 38%2 0.02+0.01
SPRINGS (Gurdeep Singh, 54+1 33+2 37+1 35+2 -0.01+0.008
2014)

SSWRF-PPI(Zhi-Sen Wei, 54+1 3413 4111 38%2 0.02+0.01
2016)

ProNA2020 70+2 58+3 3914 4713 0.28+0.03

o

Mode-known: for a query protein Q, it is known that it binds DNA/RNA/Protein. For
instance, when assessing methods for the DNA per-residue prediction, only DNA-binding
proteins are presented.
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2.3 Journal article

Jiajun Qiu(JQ) and Burkhard Rost (BR) conceptualized the work. JQ performed the
whole analysis and model training. Tomas Norambuena and Francisco Melo helped
creating the training data. Michael Bernhofer helped to make the method available
online. Michael Heinzinger and Sofie Kemper provided useful suggestion and idea for
the research. BR provided supervision. BR provided funding. JQ wrote the initial

manuscript draft with BR. All authors reviewed and approved of the final manuscript.
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Abstract

The intricate details of how proteins bind to proteins, DNA, and RNA are crucial for the understanding of
almost all biological processes. Disease-causing sequence variants often affect binding residues. Here, we
described a new, comprehensive system of in silico methods that take only protein sequence as input to
predict binding of protein to DNA, RNA, and other proteins. Firstly, we needed to develop several new
methods to predict whether or not proteins bind (per-protein prediction). Secondly, we developed independent
methods that predict which residues bind (per-residue). Not requiring three-dimensional information, the
system can predict the actual binding residue. The system combined homology-based inference with machine
learning and motif-based profile-kernel approaches with word-based (ProtVec) solutions to machine learning
protein level predictions. This achieved an overall non-exclusive three-state accuracy of 77% + 1% (+one
standard error) corresponding to a 1.8 fold improvement over random (best classification for protein—protein
with F1 =91 + 0.8%). Standard neural networks for per-residue binding residue predictions appeared best for
DNA-binding (Q2 = 81 + 0.9%) followed by RNA-binding (Q2 = 80 + 1%) and worst for protein—protein
binding (Q2 = 69 + 0.8%). The new method, dubbed ProNA2020, is available as code through github (https://
github.com/Rostlab/ProNA2020.git) and through PredictProtein (www.predictprotein.org).

© 2020 Elsevier Ltd. All rights reserved.

Introduction spectroscopy in the Protein Database, PDB [5],
whereas good 3D models of structures are available

Physical interactions between proteins and large  for fewer than 20% of all the residues of all known
DNA, RNA, and proteins crucially determine all proteins [6]. For all of those, binding residues remain
essential biological processes, including mechan-  largely unknown. However, even knowing which
isms relevant for health and disease [1,2]. The residues are involved in binding without knowing the
development of new drugs requires detailed mole- binding pocket or any details of the 3D
cular understanding of the binding residues [3]. structure might already help in designing experi-
Typically, binding residues are only available = ments. Often, it might already help to know that a
through the detailed three-dimensional (3D) struc-  protein binds to DNAIRNA or other proteins. Despite
ture of a protein. UniProt now (Dec. 2019) contains  the pivotal importance of transient physical protein—-
179 million protein sequences [4], of which, fewer  protein interactions (PPIs), some important proteins
than 0.36% contain the experimental protein struc-  appear not to bind in vivo to any other protein [1].
ture data from X-ray crystallography and NMR Possibly 6—8% of all proteins in a eukaryote might

0022-2836/© 2020 Elsevier Ltd. All rights reserved. Journal of Molecular Biology (2020) 432, 2428—2443
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bind RNA (RBPs: RNA-binding proteins) [7]. For
eukaryotes, the fraction of DNA-binding proteins
(DBPs) appears similar to that of RBPs (6—7%) [8];
for prokaryotes, typically 2—3% of a genome
encodes DBPs [8].

Typically, proteins binding other proteins, DNA, or
RNA form the targets of structure-based drug design
[9]. Understanding protein binding residues
becomes a basis for structure-based drug design.
Drug molecules usually affect the interaction
between the target protein and its ligand [10].
However, fewer than 0.36% of all proteins of
known sequence in UniProt correspond to a known
experimental 3D structure in the PDB [4,5]. There-
fore, it is essential to build computational tools to
reliably and rapidly identify protein-, DNA- and RNA-
binding proteins or residues.

Given that structure annotations remain missing
for most proteins (for >120 million in June 2019),
there continues to be a high demand even for low-
resolution predictions of aspects pertaining to
proteins binding protein, DNA, and RNA from
sequence alone. Not surprisingly, many in silico
methods cater to this need and predict binding
proteins (protein binds or not) or binding residues
(which residues bind) from sequence. These include
(sorted by date) methods optimized for per-protein
predictions (protein binds or not) DNABIND [11],
SomeNA [12], and StackDPPred [13] for DNA
binding, and RBPPred [14], SPOT-RNA [15] and
TriPepSVM [16] for RNA binding. Other aspects are
provided by tools optimized for per-residue predic-
tions (predicting which residues bind), including
some that predict binding for DNA and RNA (sorted
by date): DRNApred [17] and NucBind [18], and
others capturing all three targets: hybridNAP [19]
and DisoRDPbind [20]. The later predicts binding in
intrinsically unstructured proteins. However, we are
not aware of any existing method combining
machine learning prediction and homology-based
inference of per-protein and per-residue binding for
the three most important large macromolecules (PPI,
DNA, or RNA) into one comprehensive system.

Here we present a novel sequence-based system
for the comprehensive identification of proteins that
bind to protein, DNA, and RNA and the prediction of
the residues involved in binding. One crucial novelty
of this work is the demonstration that per-protein
predictions are performed only very poorly by
methods optimized on per-residue predictions, i.e.
users need different tools to predict which protein
binds a protein, DNA or RNA (per-protein) and where
it binds (per-residue) if it does. Toward this end, we
also demonstrate how very different machine learn-
ing methods can be combined best and how
predictions without using evolutionary information
may contribute to performance. Another methodolo-
gical novelty was the embedding of natural language
processing (NLP) concepts [21]. Our new system
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has three major advantages over some existing
approaches. Firstly, it combines and assesses per-
protein and per-residue prediction in the same
framework. All prediction methods are grafted into
a common framework although they require very
different individual solutions. Secondly, it combines
homology-based inference with machine learning
(also done by: DisoRDPbind [20]). Thirdly, all the
three major macromolecules (protein, DNA, and
RNA) are integrated into one hierarchical prediction
with sustained performance estimates for the entire
system (also done by hybridNAP [19] and DisoRDP-
bind [20]).

Materials and Methods

Data sets

Reducing sequence redundancy in data sets

For all data sets, UniqueProt reduced redundancy such
that no protein pair in the set had sequence similarity of
HVAL>0 [22] (e.g. corresponding to 20% pairwise
sequence identity for alignments longer than 250 residues)
or PSI-BLAST E-value>10~2 with the minimum alignment
length of 45 residues [22]. Redundancy was reduced to
avoid overestimating performance [23].

Data sets for per-residue information (PPI, DNA, and RNA)

DNA-protein binding data was extracted from the
Protein—DNA Interface Database (PDIdb, version April
2010 [24]). PDIdb contained 992 entries of proteins with
high-resolution 3D structure from the Protein Data Bank
(PDB [5] with 1317 different protein chains binding DNA.
RNA-protein binding data was extracted from the Pro-
tein—RNA Interface Database (PRIDB, version RB1179
[25]). PRIDB contained 1179 non-redundant PDB protein
chains binding RNA. All PDB entries were mapped to
UniProtKB sequences using SIFTS [4,26]. Only 3D
structures from X-ray crystallography with resolutions
<25 A (0.25 nm) were included; DNA or RNA (in the
following NA) interactions were considered only when the
closest pair of atoms (between protein and NA) was within
6A (0.6 nm). Protein-Protein binding data was provided
by Tobias Hamp [27]. Structures were obtained from PDB
(2015) with a resolution of <2.5 A. After removing all
structures from the PPl set mapping to fewer than two
different UniProtkB IDs and the proteins with fewer than
five residues within 6 A (0.6 nm) of any atom of the other
protein, the protein—protein binding data sets contained
3957 PPIs from 2914 unique proteins representing the
species diversity of the PDB. Although reducing redun-
dancy, we maintained alternative binding residues.
Assume, A—B (A binds B), A—B’, and EVAL(B,B')>T,
EVAL(A,B)<T, EVAL(A,B')<T (where T is the threshold for
redundancy reduction; EVAL(A,B) the PSI-BLAST Expec-
tation-value, or E-value, for the alignment between A and
B). We removed B’ from the data set, but kept the labels of
“interacting residues” on A marked by the interaction
A—B'. We deliberately did not consider homo-dimers
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assuming that they bind in a biophysically different manner ing (GO:0003677), and RNA-binding (GO:0003723). All
from the type of transient physical PPIs that the prediction proteins with neither of those three, nor with any indirect
method targeted [28]. All data sets are available through annotations (keywords: DNA, RNA, nucleotide) served as
github (https://github.com/Rostlab/ProNA2020.git); statis- negatives. This procedure was only applied for per-protein
tics are provided in Tables 1 and 2. predictions (e.g. protein binds DNA or not). For all per-
residue predictions (e.g. which residues bind DNA), all
residues NOT annotated to bind in a particular PDB chain

Data sets for per-protein information (e.g. DNA) served as negatives.

Besides the proteins used in per-residue data set,
proteins with the experimental annotations were also

collected in positive data set for per-protein (described in ISR Ca TR T SUmpRany 1§ ey

> methods

the next section). Total numbers of non-redundant

proteins: protein binding/not binding: 524/282, DNA-bind- In order to compare our new method to others, we built
ing/not DNAIRNA-binding: 199/555, RNA-binding/not new sets without sequence redundancy (HVAL < 0 [22]) to
DNAIRNA-binding: 263/555 (Table 2). the proteins used for developing our method. We also

applied another HVAL < 5 filter to rule out possible overlap
between any protein used for testing ProNA2020 compo-
nents and those proteins used to develop the prediction

Due to a variety of reasons, experimentally character- ~ Methods used as input through the PredictProtein [30]
ized negatives are rare. To compensate for that, we used ~ server; this applied in particular to predicted secondary
GO annotations [29] with experimental evidence codes as  Structure and solvent accessibility. The advantage of this
proxies for negatives and those used for homology-based ~ solution was that we could compare tools based on the
inference. We collected proteins with the experimental ~ Same data sets for proteins not similar to those used for
annotations of protein binding (GO:0005515), DNA-bind- ~ development. The problem was that these rigorous

GO annotations for negatives (only per-protein)

Table 1. Non-redundant® cross-validation® set for per-residue predictions.©

No. of binding residues No. of non-binding residues No. of all residues Percentage binding
Protein-binding residues 29,438 78,608 108,046 27.2%
DNA-binding residues 6644 19,227 25,871 25.7%
RNA-binding residues 8588 21,538 30,126 28.5%

2 For all data sets, UniqueProt reduced redundancy such that no protein pair in the set had sequence similarity of HVAL > 0
(corresponding to 20% pairwise sequence identity for alignments longer than 250 residues).

P Cross-validation: We separated the whole development/cross-validation set into five parts. Training used three of five (training set);
one of five (cross-training set) was used to optimize hyper-parameters (incl. different input feature combinations, window sizes,
combinations of methods). For all decisions, optimal was defined as the highest F1 score. The last of the five was used to evaluate the
performance of the final model (testing set). The sets were rotated five times such that each protein in the data set had been used for
testing (and cross-training) exactly once.

¢ Per-residue prediction: prediction of which residue in a protein binds DNAIRNAIprotein (or combinations thereof). All residues NOT
observed to bind were considered NOT binding.

Table 2. Non-redundant® cross-validation” set for per-protein predictions.©

Data set Number of binding proteins
Protein-binding proteins 524
Negative for protein-binding proteins 282
DNA-binding proteins 199
RNA-binding proteins 263
Negative for DNA and RNA-binding proteins 555

Overlap between protein-binding negative and DNA/RNA-binding negative® 108

2 For all data sets, UniqueProt reduced redundancy such that no protein pair in the set had sequence similarity of HVAL > 0
(corresponding to 20% pairwise sequence identity for alignments longer than 250 residues).

b Cross-validation: We separated the whole development/cross-validation set into five parts. Training used three of five (training
set); one of five (cross-training set) was used to optimize hyper-parameters (incl. different input feature combinations, window sizes,
combinations of methods). For all decisions, optimal was defined as the highest F1 score. The last of the five was used to evaluate
the performance of the final model (testing set). The sets were rotated five times such that each protein in the data set had been used
for testing (and cross-training) exactly once.

¢ Per-protein prediction: prediction that a protein binds DNAIRNAIprotein (or combinations thereof) as opposed to where it binds,
i.e. the binding residues. Toward this task, we need to consider a representative data set of proteins NOT binding.

9 When testing the performance of the whole system, the overlap between neither protein-binding nor DNA/RNA-binding served
as the data set for non-binding.
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constraints resulted in relatively small sets. PDB the combination, i.e. not the one performing best in
sequences from 2010 were selected to assess DNA- and comparison to other methods). Overall, different parts
RNA-binding; PDB sequences from 2016 for PPI. All data from the identical data set served as training, cross-
sets were processed (resolution, distance threshold, and training, and testing sets; all were rotated through so that
redundancy reduction) in the same way as the develop- every protein in the redundancy-reduced set was used for
ment data sets (Tables 1 and 2), namely: PDB resolutions testing exactly once and for cross-training exactly once,
<2.5 A; binding residues within 6 A of molecule (statistics implying that the cross-training and testing sets were
in Table 3). PISA server is used to define the biological identical (Fig. S1): five-fold cross-validation was accom-
interface [31]. plished by using three splits of the data for training, one for
cross-training (optimize hyper-parameters, including num-
ber of hidden units in NN, early stop) and one for testing.
Overall, we optimized the parameters (such as the number
. of node, learning rate for NN; k-mer, ¢ for profile-kernel)
Homology-based inference and features for residue-level prediction in the cross-

Homology-based inference refers to the following training set and tested the final performance on the testing

process. Assume that a particular phenotype (e.g. protein set. Thls |mpI|.ed that we actually trained five different
binds DNA) is known for protein X, and that protein U has a mach_lne learning models for each task, and that each
sequence similarity to X exceeding some threshold protein from ‘he.”.‘a'“ development data sel was useq for
(EVAL(U,X)>T), above which the phenotype is typically testlng/cross-tralnlng exactly once. We picked thg optimal
conserved between evolutionarily related proteins. Then hypgr-parameters_wﬂh best g - p_erformance e e
we will infer that U has the same phenotype as X (e.g. U training splits. Thls_ along with av_o!dlng feature-selectl_on
also binds DNA). The alignments for homology-based decreased the likelihood of over-fitting. In fact, the choice
inference were generated by PSI-BLAST using the of input units essentially fol_lowed what had been best for
following standard protocol implemented, e.g. in the €arlier methods developed in our lab.

PredictProtein Server [30]. For each protein, build the

PSI-BLAST profile using an 80% non-redundant database Random prediction

combining UniProt and PDB (two iterations, inclusion

threshold E-value < 107%). These profiles were then All performance values were compared to random
aligned against all proteins with experimental annotation of ~ Predictions. A random prediction was created by choosing
binding (proteins have experimental annotations of protein @ random number between 0 and 1, if >0.5, the residue
binding (GO:0005515), DNA-binding (GO:0003677), and ~ Was predicted as binding. The random per-protein predic-
RNA-binding (GO:0003723))(inclusion E-value < 1073). tions used the same tree-like hierarchical prediction
PSI-BLAST hits to the protein in the test set were excluded ~ System as the machine learning method (Fig. 1).

to avoid over-estimate [32].

Prediction methods

Prediction methods

Cross-training and testing When training the various machine learing models,
All hyper-parameter optimizations were done on the protein binding and nucleotide binding were considere_d as

cross-training sets. This included the choice of alternative ~ Separate tasks solved by two different systems of decision

machine learning methods (e.g. between profile-kernel  trees (Fig. 1, Table S1; each node represented one binary

SVM and ProtVec Local). All results for the final estimates ~ machine learning model typically trained on different data

of performance were compiled either on the test setoron  sets with different inputs and outputs).

the independent test set. No parameter was optimized on

these. For instance, the decision to combine SVM and

ProtVec Local on each node of the per-protein level (1) Per-protein: profile-kernel SVM. Support
prediction rather than to use the single best at each node Vector Machines (SVMs) were implemented
(Fig. 1) appeared optimal for the cross-training set, not for through WEKA [33]. The profile-kernel function

the independent test set (we did provide the estimate for

Table 3. Non-redundant?® independent® test data set.

For per-protein predictions For per-residue predictions

No. of binding proteins No. of non-binding proteins No. of binding residues No. of non-binding residues

Protein-binding 209 52 5174 10,447
DNA-binding 109 152 3645 8345
RNA-binding 57 204 1444 4711

2 For all data sets, UniqueProt reduced redundancy such that no protein pair in the set had sequence similarity of HVAL > 0
(corresponding to 20% pairwise sequence identity for alignments longer than 250 residues). In addition, none of those proteins had
HVAL > 0 to any protein used for development of any of the methods compared.

Independent test set refers to the fact that those experimental measurements have become available AFTER the data sets used for
the development of ProNA2020. Again not only were those proteins new, they also differed significantly in terms of sequence similarity
(HVAL < 0) to any that had been available before.
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input
sequence

(OML decisions by: homology-
Dprofile-kernel SVM baé’é’d

C ProtVec inference
OANN (PSI-BLAST)

Fig. 1. Hierarchical prediction system. The branches
represent the paths for the protein sorting, the nodes mark
particular prediction methods (circles: machine learning
(ML) models, rhombus: homology-based inference. Full
lines mark part of the hierarchy the system will follow
(higher in the image: earlier in the processing hierarchy). In
contrast, dashed lines (from the homology-based infer-
ence) are those that might lead to bypass full lines. (A) Per-
protein: The top silver gray panel is the major novelty of
this contribution, namely the integration of modules
specialized for per-protein level prediction. These are
four ML modules predicting whether a query binds any:
nucleotide (NA), proteins (PROT), DNA, or RNA. The
values above the red/blue ML nodes give the F1 score of
profile-kernel SVMs (red) and ProtVec (blue) based on the
cross-training set (best method in bold numbers). (B) Per-
residue: The lower gold panel marks per-residue predic-
tions that have been integrated into servers before. The
green circles mark three separate prediction methods
predicting which residues bind PROT, DNA, and RNA.
Proteins are filtered through the per-protein prediction on
top and passed only to the module found appropriate by
the previous step. Upon request, the sorting can be
bypassed if users know the binding mode (PROTIDNAI
RNA) of the query protein.

mapped the PSSM profile of each protein
family to a vector indexed by all possible
subsequences of length k from the alphabet
of amino acids. Another parameter ¢ in the
profile-kernel SVM was the threshold to decide
when a particular k-mer was considered to be
conserved in the multiple sequence alignment
(family) or not. So each element in the final
vector represented one particular k-mer and its
score gave the number of occurrences of this k-
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mer that was below a certain user-defined
threshold ¢. The dot product between two k-
mer vectors reflected the similarity of two
protein sequence profiles. The best combina-
tions of profile kernel parameters (k, ) and of
SVMs were found through 5-fold cross-valida-
tion [32—34].

(2) Per-protein: protein vectors (ProtVec). Con-
tinuous vector representation, as a distributed
representation for words, has been recently
established in NLP as an efficient way to
capture semantic/syntactic units [21,35]. The
basic underlying idea is to elucidate the
meaning of a word through its context, i.e.
neighboring words. Words with similar vectors
show multiple degrees of similarity. For
instance,
vector(king) — vector(man) + vector(woman) is
closest to vector(queen) [21,35].

The method ProtVec [21,35] applies this concept of so-
called skip-gram natural language models to protein
sequences. In this way, consecutive amino acids are
grouped into words and the whole protein sequence
becomes a sentence described by an n-dimensional
vector by considering contexts of different size (i.e. word
lengths). These n-dimensional vectors were input into the
downstream machine learning.

We used the Word2Vec [21,35] to re-implement our own
version of ProtVec (referred to as ProtVec Local).
Parameters optimized included the dimensionality of the
feature vectors (size), the maximum distance between
words within a sentence (window), and the minimum
number of the words (min_count). We also tested different
word lengths k of consecutive residues (k-mer, e.g. the
enzyme lactase begins with the 3-mer MEL), and whether
or not to use the feature “phrase”. Using “phrase” implied
to automatically detect common phrases (multiword
expressions) from a stream of sentences. The best
combination was found by five-fold cross-validation
[21,35]. For the subsequent machine learning algorithm,
we compared SVM, Random Forests (RF), and Neural
Networks (NN).

(3) Per-residue: neural networks and smooth-
ing filter. Following earlier publications [2,36],
we applied a two-step process to predict per-
residue binding residues. First level: We
trained standard feed-forward neural networks
with back-propagation and momentum term
using the sliding-window approach as input (for
a window size of w, when predicting for residue
j, all residues from j — INT(w/2) to j + INT(w/2)
were included). All input features were taken
from PredictProtein [30] including, but not
limited to, predicted secondary structure, pre-
dicted relative solvent accessibility, and bio-
physical properties of amino acids. The combi-
nations of features and other hyper-parameters
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(e.g. window sizes and hidden units) were
optimized on the cross-training set using the F1
score (complete list of features: SOM
Tables S2 snd S3). Second level: The final
prediction score for a residue was calculated
by the average of the positive values in the
certain window as follows:

(w—-1)/2
score=

(1)

raw.score;, (raw.score; > 0)
i=—(w—1)/2

gl=

Q2 = (TP +TN)/(TP + TN + FP + FN)

TP x TN — FP x FN
MCC(C) = - -

NPV (C)=TN/(IN+FP); TNR(C)=TN /(IN+FN)
F1(C)=2*PRE(C)*REC(C)/(PRE(C)+REC(C))

(2)

We also provided the confusion matrix containing the
raw values for TP, TN, FP, and FN for the test set of each
of our methods separately. Toward this end, we only
provided results for the cross-validation test set due to the
larger data set size. These raw numbers are particularly
relevant to correct for overall estimates [39]; for that
correction, estimates based on larger data sets appear
most helpful. In addition, we monitored the overall two-
state accuracy (Q,) and the Matthews correlation coeffi-
cient (MCC):

®3)

Reliability index (prediction strength)

The reliability (or strength) of a prediction was described
through a reliability index (RI) ranging from 0 (weak
prediction) to 100 (confident prediction). For per-protein
predictions, the RlIs were computed directly from the
machine learning output. For per-residue predictions, the
RIs were computed from the second-level scores (Eq. (2)).
For homology-based inferences from PSI-BLAST, Rls
were compiled from the percentage pairwise sequence
identity (PIDE). As in our settings PSI-BLAST did not find
any relations at PIDE < 10%, prediction performance did
not change for PIDE < 10 (Fig. S4). Thus, Rls were re-
normalized accordingly [32].

Performance evaluation

Many publications fall short of comprehensively asses-
sing performance through a diversity of measures [37,38].
While we tried to avoid this pitfall, we also tried to confine
additional analyses that only confirmed previous results to
the Supporting Online Material (SOM) wherever possible
to eschew obfuscation.

Proteins might bind more than one target. Thus, we
intrinsically had to assess a multi-class problem. For
several aspects of the evaluation, we simplified by
calculating the per-protein performance for each class,
by only considering that class. With the standard acronyms
(TP: true positives, observed and predicted in class C; TN:
true negatives, observed and predicted in non-C; FP: false
positives: predicted in C, observed in non-C; FN: false
negatives: predicted in non-C, observed in C), we applied
the standard definitions:

PRE(C)

PrecisionC
TP/(TP + FP); REC(C)
RecallC = TP/(TP + FN);
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\/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

The overall non-exclusive three-class accuracy on the
protein level was defined as:

Z |prd; nobsL|
i=1|prd;nobs;|

Accuracy(A

(4)

where prdjlobs; are the numbers of classes pre-
dictedlobserved for protein i. For instance, if protein
A binds DNA and other proteins, and the prediction is
RNA&Protein binding, the Accuracy(A) would be 1/
3; the random prediction would reach A angom = 43 +
1%.

Family size comparison

The number of sequences in each protein family was
obtained from https://pfam.xfam.org/. For a protein with
multiple families, the largest family was assigned.

Error estimates

Error rates for the evaluation measures were estimated
by bootstrapping [40] (without replacement to render more
conservative estimates), i.e. by re-sampling the set of
proteins/residues used for the evaluation 1000 times and
calculating the standard deviation over those 1000
different results. Each of these sample sets contained
50% of the original proteins/residues (picked randomly,
again: without replacement).

Method comparison

We did compare performance with other methods task
by task using the following publicly available methods. For
DNA binding, these were DNAbinder [41], DNABIND [11],
NucBind [18], SomeNa [12], and StackDPPred [13]. For
RNA binding, these were RNABIndRPIus [42], RBPPred
[14], SomeNa [12],SPOT-RNA [15], and TriPepSVM [16].
For protein binding, these were BSpred [43], iPPBS-
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PseAAC [44], InteractionSites [36], LORIS [45], PPIS [46],
and SPRINGS [47]. The following multi-class binding
prediction methods were included: DisoRDPbind [20],
DRNApred [17], hybridNAP [19], and NucBind [18]. One
important novelty of this work is the finding that different
machine-learning methods are needed to predict where a
protein binds (per-residue level), and whether a protein
binds (per-protein level). Toward this end, we can turn a
method optimized for the per-residue level into a per-
protein prediction by simply considering that the method
predicted the protein not to bind if no residue was predicted
as binding (modes of assessment summarized in Table 4).

Results

Tree-like hierarchy for prediction system com-
plicates assessment

We implemented an intuitive tree-like hierarchy for
the entire per-protein prediction system (Fig. 1).
While the system was not optimized for perfor-
mance, at each node in the hierarchy (Fig. 1), we
tried different solutions for the machine learning and
for the combination of machine learning and homol-
ogy-based inference (Methods). Methods were
assessed on their specific tasks and on how they
performed embedded into the hierarchy (Table 4).
For instance, assume the DNA-binding ML module
correctly predicts protein P to bind DNA. Assume
further that the first module nucleotide-binding made
a mistake (Fig. 1: top right circle, Table 4: unknown
binding mode). Then the DNA-binding module would
never be activated, i.e. the system would classify
incorrectly although the isolated module was indeed
correct. Both aspects needed assessment because
users might over-ride some components of the
system. All decisions (hyper-parameter optimiza-
tions) were done on the cross-training set (Methods),
NOT on the test set.

Per-protein: profile-kernel SVM and ProtVec best
together

We created two versions of machine-learning

classifications for each node in our protein level
prediction tree-like hierarchy (Fig. 1, Tables S4 and

Table 4. Summary of three prediction modes.

S5): one used a profile kernel SVM and the other the
skip-gram like ProtVec approach. For each node, the
better solution was identified on the cross-training
set (Fig. 1: values above circles valid for cross-
training). Thus, the performance values were rele-
vant only to set up the final system. For some tasks,
ProtVec performed better (Fig. 1: blue values,
numerically higher for protein binding); however, for
most, the profile kernel SVM did (Fig. 1: red values,
significantly better for DNA- and RNA-binding). The
best result originated from running both methods for
a protein and then choosing the one with the higher
score. Overall, the profile-kernel performed better on
proteins from larger families (Fig. 2, P = 0.05).

Homology-based inference embedded into the
prediction system

Merging machine learning directly with homology-
based inference might improve both [32]. We
measured sequence similarity through PSI-BLAST
at a threshold of T = 10 '°, i.e. the annotation was
inferred for a query protein Q if its sequence
similarity to a protein of known binding K was
below T (PSI-BLAST expectation E-value(Q,K) < 10-
~'5; Fig. S2). For combination, we used homology-
based inference (PSI-BLAST) where available
(below threshold T < 10~'®), and machine learning
prediction, otherwise. This combination outper-
formed the machine learning method, reaching an
overall performance of 77 + 1% (Eq. (4)). For all
three classes, the combined predictions improved
over machine-learning (Fig. S3, Table S6) and sig-
nificantly over random (Fig. 3A, Table S7).

Per-residue predictions

All per-residue prediction methods were standard
two-layer feed-forward neural networks, trained
exclusively on a subset of protein from each class
(e.g. to learn the prediction of DNA-binding residues,
only proteins observed to bind DNA were used).
There are two ways to assess the final system.
Firstly, we measured performance for proteins
known to e.g. bind DNA. Toward this end, each
prediction task was tested separately, e.g. when

Performance measures

Description

Protein sorting mode Accuracy, Q,, PRE, REC,
NPV, TNR, F1, MCC
Q,, PRE, REC, NPV, TNR,

F1, MCC

Residue known binding mode

Residue unknown binding mode Q,, PRE, REC, NPV, TNR,

F1, MCC

Per-protein level prediction

Per-residue level prediction for proteins for which it is known
THAT they bind protein/DNA/RNA for which the residue is
predicted (no sorting needed)

Per-residue level prediction for proteins for which it is NOT
known what they bind and for which the residue is predicted
(mistakes in protein sorting are added to mistakes in per-
residue prediction)
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Fig. 2. Correct predictions exclusive to profile-
kernel SVM vs. ProtVec. Bases for this plot are all
proteins correctly predicted by only one of the two per-
protein prediction algorithms, namely either by the profile-
kernel SVM or by the ProtVec. The y-axis shows the
average number of family members in each of the families.
The horizontal black line gives the average over all
families. Clearly, the profile-kernel SVMs do better for
unusually large families, while the ProtVec tends to win for
unusually small families.

Profile-kernel

testing DNA-binding, all DNA-binding proteins were
assessed with respect to per-residue performance
and all proteins experimentally known to bind DNA
and those known not to bind for per-protein
performance. This constitutes the standard way in
which all other methods have been tested (Fig. 3A,
B, D). The 2nd level filter smoothened spikes (Eq. (1)
averaging over adjacent residues); it increased
precision (Eq. (2)) to PRE(protein) = 46 + 0.3%
(from 35 + 0.2% without filter), to PRE(DNA) = 57 +
0.6% (from 48 + 0.4%), and to PRE(RNA) =54 + 1%
(from 46 + 1%; Tables S8 and S5). DNA residue-
binding reached the highest MCC (0.42 + 0.006),
followed by RNA residue-binding (MCC = 0.36 +
0.006) and protein residue-binding (MCC = 0.25 +

ProNA2019 B
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o
L °§ eg 223 Random
2822°%
P B en
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o

0.003 Fig. 3D, Tables S8 and S5). The MCC
improvement was similar (Eq. (2); Fig. 3B). The
improvement over random was again highest for
DNA-binding (Fig. 3B, Tables S8 and S5).

Secondly, we assessed the entire sorting system,
i.e. per-protein mistakes reduced per-residue per-
formance (Fig. 3C). Overall, DNA-, RNA-binding
reached similar performance; protein-binding was
slightly below (Fig. 3C, Table S9). All per-residue
prediction methods performed better on non-binding
than on binding residues, e.g. reflected by very high
levels of the overall two-state per-residue accuracy
Q> (Eq. (3)) which was dominated by non-binding
(Table 1). The test-set results were Qo 68—70%,
80—82%, and 79—81% for protein, DNA, RNA,
respectively (ranges encapsulated + one standard
error rounded to closest integer; details about error
estimates are provided in Table S9). With respect to
DNA/RNA confusion, 24% of the DNA binding
residues were mis-predicted as RNA binding resi-
dues (Table S10).

The detailed inspection of particular examples for
typical predictions (Fig. 4) suggested that
ProNA2020 identified some core of a binding residue
(yellow in Fig. 4). This was impressive because the
method “sees” only sequence, i.e. has no notion of
“pbinding residue”, instead it only predicts “binding
residues”.

Predictions strength measured by reliability
index (RI) correlated with performance

The confidence of each prediction was measured
through a reliability index (RI) that scaled from —100
(high confidence for non-binding) to 100 (high
confidence for binding). Technically, RI reflected
the strength of a prediction. For homology-based

Protein

without smoothin f Iter
with smoothing filter

Protein

wnthout protem level
W|th protein_level

Fig. 3. Test set performance of ProNA2020. All plots show performance for the test set used to assess our new system.

The first two panels give the MCC (Eq. (2

)) for the per-protein (panel A) and per-residue predictions (panel B). Our new

method, ProNA2020, improved over random (black vs. gray bars) by many standard deviations (+c shown ateach bar). The
second two panels both give per-residue performance. Panel C compares values with or without errors of the protein sorting
system: dark bars: with sorting (i.e. with system errors); gray without sorting (i.e. without system errors). The dark bars
provide estimates for predicting binding residues without any prior knowledge; the gray bars estimate performance for users
who know that their protein was a binding protein and want to find the residues involved in binding. Panel D compares
performance between the raw ML solution (gray bars) and the smoothing filter (dark bars) that improved for all classes.
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Fig. 4. Representative per-residue predictions. We picked three proteins of known 3D structure to visualize correct
and incorrect predictions of binding residues for protein, DNA, and RNA. Coordinates were taken from the PDB [5]. Although
each prediction was an average case for its task (complete distribution of predictions in Fig. S6), all three happened to be
examples of relatively small “chains” (i.e. protein domain-like regions) that almost entirely bind. Yellow marks correctly
predicted residues, blue residues observed in the binding but not predicted (under-predicted false negatives) and magenta
residues predicted but not observed (over-predicted false positives). Panel A shows the protein binding prediction (6HA7
[57],Q2 =71%), panel B gives a DNA binding prediction (6EDWA [58], Q2(this protein) = 78%), and panel C samples an RNA
binding prediction (5XTM [59], Q2(this protein) = 76%). Note that none of the 3D information was used for the prediction.

inference, the Rls were normalized values for
percentage pairwise sequence identities read of
the PSI-BLAST alignments (Fig. S4). For the per-
protein machine learning predictions, the Rls were
taken directly from the ML method output (Method).
For the per-residue level, the Rls were taken from
the smoothened values (Methods). The binding
prediction, higher Rls corresponded to more precise
(high PRE, Eq. (2)) but fewer (lower REC, Eq. (2))
predictions (Fig. 5). For instance, for the per-protein
sorting, the subset of predictions stronger than 0
(RI > 0) reached levels of >60% precision for DNA
and RNA (Fig. 5A: full blue and red lines at x = 0).
This level was reached for about 70% of all
predictions (Fig. 5A: dashed blue and red lines at
x = 0). Prediction strength correlated also with
performance for the per-residue predictions of
binding proteins, e.g. for Rl > 0 about 50% of all
protein—protein binding residues were correctly
predicted (Fig. 5B: full green line), and these
constituted over 40% of all the PP-binding predic-
tions (Fig. 5B: dashed green line). For the prediction
of non-binding, reversely, lower Rls implied better
predictions (Fig. S5).

ProNA2020 performed best in independent
comparison

To compare our new method, ProNA2020, with
others, we added another independent test set
without significant sequence similarity (HVAL<O) to
sets used for development. For the per-protein
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sorting (protein sorting mode, Table 4), ProNA2020
reached the highest F1 score and MCC in protein-
binding, RNA-binding, and DNA-binding prediction
(Fig. 6, Table S11). Values for precision and recall
never are directly comparable because some meth-
ods find different balance points, i.e. perform very
well on one of the two at the price of performing
poorly on another. For instance, hybridNAP reached
a recall of 100% on DNA binding and RNA binding at
the cost of levels of precision below 42% for
DNA and below 22% for RNA. On the other extreme
end, SPOT-RNA reached high precision for RNA
and DisoRDPbind for protein—protein, but both
achieved this at rather low recall (DisoRDPbind
41% for protein—protein, SPOT-RNA 33% for RNA).
DisoRDPbind even achieved a second highest MCC
in protein binding prediction by the high precision
(MCC: 0.21, Fig, 6), because most other methods
predicted all proteins as protein binding (NPV = 0
Table S11). Overall, for per-protein prediction,
ProNA2020 numerically outperformed all state-of-
the-art sequence-based binding protein prediction
methods tested (in terms of F1 and MCC; in terms of
Q2 for RNA binding, SPOT-RNA and TriPepSVM did
better due to under-prediction, Table S11).
Methods developed to predict which residues
bind e.g. DNA (per-residue level) could be employed
to predict which proteins bind DNA (per-protein level).
Our results highlighted the problems originating from
such an approach: for all prediction tasks, all per-
residue methods clearly over-predicted binding on the
per-protein level. This led to very high levels of Recall
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Fig. 5. Reliability index (RI) to focus on best predictions. All machine leaming solutions reflect the strength of a
prediction even for binary classifications (binding/not). These graphs relate prediction strength to performance. The x-axes give
prediction strength as the reliability index (from —100: very non-binding to 100: very binding). The y-axes reflect the percentage
precision (full lines, Eq. (2)) and recall (dashed lines, Eq. (2)) for proteins binding to DNA (red), RNA (blue), and other proteins
(green). The left panel (A) shows the per-protein methods and the right one (B) the per-residue predictions. For all models,
precision is proportional to prediction strengths, i.e. predictions with higher Rl are, on average, better. All plots are cumulative,
e.g. answering the question: if you looked at all per-residue predictions for DNA (panel B red full line) or RNA (panel B blue full
line) with Rl > 50 about 75% of all residues you looked at are expected to be correct predictions. Above that threshold, the
methods have found slightly over 12.5% of all residues observed to bind DNA (B: dashed red) and RNA (B: dashed blue).
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Fig. 6. Per-protein prediction of ProNA2020 in comparison for independent data set. All values are based on three
new independent data sets (protein, DNA, and RNA, Table 1) without significant level of sequence similarity to those
proteins used for development of all methods. The y-axis gives the MCC (Eq. (2)). Error bars define +one standard error.
All numbers were compiled on exactly the same data set. The horizontal black lines mark random predictions. Note that
most data sets were imbalanced, most extreme that for protein—protein binding, as a result all but two methods
(DisoRDPbind and ProNA2020) reached the same MCC (Table S11) by simply always predicting protein—protein binding,
i.e. by never correctly rejecting any protein. Consequently, the MCC (Eq. (2)) was exactly 0 for all methods (Table S11)
other than DisoRDPbind (MCC = 0.21 + 0.05, Table S11) and ProNA2020 (MCC = 0.22 + 0.08, Table S11).

47



2438

Predict protein—protein and protein—nucleotide binding

at low levels of Precision (Table S11) and relatively
low F1 scores. This problem was less severe for the
identification of proteins that bind other proteins: all
methods reached relatively high levels for the
independent test set which contained few non-binding
proteins, i.e. over-prediction of binding was rewarded,
in the most extreme: always predicting binding
resulted in F1 = 89%, Q2 = 80% (Precision = 80%,
Recall = 100%). Consequently, the negative pre-
dictive value (NPV, Eq. (3)) for those methods might
be as low as 0% (on a scale of 0—100, Table S11); the
MCCs were also all 0 (Fig. 6, Table S11).
Comparing the per-residue level performance, we
had to, again, distinguish the two different scenarios.
First, users do not know whether or not their query Q
binds (residue unknown binding mode, Table 4).
Second, they do know that it binds and want to find
out where it binds (residue known binding mode,
Table 4). For the first scenario (unknown binding
mode), no method reached higher F1 or MCC
(Table 5 and Table S11, F1: unknown mode) for
any task than ProNA2020. For per-residue RNA
binding predictions, RNABindRPIus reached a high-
est MCC together with ProNA2020 (MCC = 0.40),
but a slightly lower F1 than ProNA2020 (F1-

ProNA2020 = 46 VS. F1gnagindrpius = 45).

Overall, our new method, ProNA2020, appeared
to be the best among all state-of-the-art per-residue
prediction methods we tested with these new
independent data sets. ProNA2020 clearly signifi-
cantly outperformed other multi-task predictions:
DRNApred, NucBind, hybridNAP, and DisoRDPbind
(Table 5).

For the second scenario (known binding mode,
Table 4), we e.g. only used RNA binding proteins for
the per-residue RNA-binding comparison (Table 5
rightmost column, Table S13). ProNA2020 reached
the highest F1 score and MCC in the DNA and
protein binding per-residue prediction. The higher
values were statistically significant (difference more
than two standard errors, i.e. p < 0.1; Table 5). For
RNA binding, ProNA2020 numerically reached the
top MCC, followed by NucBind and RNABiIndRPIus;
however, those two were within a single standard
error of the top value, i.e. the differences were
statistically not significant (Table 5). Statistically
significantly lower was rank four with the other
multi-task methods, namely hybridNAP with
F1 = 34%, albeit at an MCC of 0.08 (Table 5). For
protein binding, ProNA2020 came consistently on
top highest F1 and MCC (Table S13). Performance
was almost same between overall independent test

Table 5. Overall per-residue performance for independent test set®.

Method Binding Unknown binding mode Known binding mode

F1 MCC F1 MCC
DisoRDPbind [20]° DNA 19+3 0.09 + 0.02 19+3 0.04 + 0.02
DRNApred [17] 28+3 0.13 + 0.03 30+3 0.10 + 0.03
hybridNAP [19]° 35+2 0.12 + 0.02 40 + 1 0.08 + 0.02
NucBind [18]? 35+5 0.16 + 0.07 52 +2 0.47 + 0.02*
SomeNA [12]3 44 + 2 0.31 +0.03 45+ 2 0.27++0.04
ProNA2020° 60 +2 0.49 + 0.02 66 + 1 0.50 + 0.02
DisoRDPbind [20]° RNA 15+4 0.05 + 0.03 20+ 4 0.04 + 0.03
DRNApred [17]? 21+5 0.08 + 0.06 26+5 0.07 + 0.04
hybridNAP [19]° 26 +3 0.11 +0.02 34+2 0.08 + 0.03
NucBind [18]? 20+ 6 0.03 + 0.06 43 + 5* 0.37 + 0.05*
RNABIndRPlus [42] 45 + 4* 0.40 + 0.04* 50 + 3* 0.36 + 0.03*
SomeNA [12]? 2342 0.19 + 0.04 25+ 3 0.17 + 0.06
ProNA2020° 46 + 3 0.40 + 0.03 50 +2 0.37 + 0.03
DisoRDPbind [20]° Protein 5+2 —0.03 + 0.03 5+2 —0.001 + 0.008
hybridNAP [19]° 37 + 2* 0.14 + 0.02 39+2 0.11 + 0.02
BSpred [43] 18 +2 —0.04 + 0.02 20+ 1 —0.036 + 0.009
CRF-PPI [60] 31+2 0.02 + 0.01 38+2 0.03 + 0.01
InteractionSites [36] 14 +1 0.05 + 0.02 15+ 1 0.05 + 0.02
iPPBS-PseAAC [44] 20+ 1 0.04 + 0.02 22 +1 0.027 + 0.008
LORIS [45] 31+2 0.001 + 0.007 36 + 1 0.005 + 0.008
PPIS [46] 32+2 0.01 +0.01 38+2 0.02 + 0.01
SPRINGS [47] 32+2 0.004 + 0.007 3B+2 —0.01 + 0.008
SSWRF-PPI [61] 33+2 0.02 + 0.01 38+2 0.02 + 0.01
ProNA2020° 42 +3 0.28 + 0.03 47 + 3 0.28 + 0.03

@ Methods: superscript numbers give number of tasks for methods that address more than one (maximum is three: DNA, RNA, protein).
Mode-unknown: for a query protein Q it is not known whether it binds DNA/RNA/Protein, instead, this binding has to also be predicted.
Methods incorrectly predicting that Q binds DNA will likely mis-predict more residues than those correctly rejecting such a binding mode.
Thus, values on right are mostly higher than on left. Mode-known: for a query protein Q it is known that it binds DNA/RNA/protein. For
instance, when assessing methods for the DNA per-residue prediction, only DNA-binding proteins are presented. Percentages for F1 and
MCC (Eq. (2)). BOLD values and * marks: the numerically top method in each mode is bolded; methods within two standard errors of the

numerical top (p-value of difference >0.1).
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set and PISA reduced independent test set (biology
interface only) (Table S14).

Predictions different for prokaryotes and eukar-
yotes and similar for unknown data

Separately analyzing the performance for prokar-
yotic and eukaryotic proteins, we first observed that
our training data had more residues annotated as
binding RNA in prokaryotes than in eukaryotes
(5351 vs. 2308, Table S16); the percentage of
RNA-binding residues was also almost twice as
high in prokaryotes than in eukaryotes (38% vs.
20%, Table S16); the corresponding percentages
were slightly higher in prokaryotes than in eukar-
yotes for protein-binding (31% vs. 26%, Table S16)
and this ratio was inversed for DNA-binding (24% vs.
29%, Table S16). Protein- and RNA-binding resi-
dues were predicted substantially better for prokar-
yotes than for eukaryotes (F1(protein) = 48 + 0.4 vs.
45 + 0.4; FI(RNA) = 63 + 0.2 vs. 49 + 0.3;
Table S15). In contrast, DNA-binding residues were
predicted better in eukaryotes (F1(DNA) = 54 + 0.9
vs. 60 + 0.8; Table S15). The differences in the
amount of binding data used for training correlated
but did not explain the differences in performance:
protein: observed ratio binding residue (prokaryote/
eukaryote) = 1.2 vs. performance (F1) of 1.05; DNA:
observed ratio: 0.8, performance 0.9; RNA:
observed ratio 1.9, performance 1.3.

Often experimental data sets are biased and
machine learning methods inherit the training bias.
For instance, all methods predicting the effects of
single amino acid variants (SAVs) upon protein
function perform very similar for the tiny data sets
with experimental annotations, although they per-
form very differently for proteins without annotations
[48]. The independent test sets helped to assess
whether or not methods behave the same way for
annotated proteins used for development and those
not used. Obviously, we cannot “assess” perfor-
mance for proteins without annotations. However,
what we can do is to at least analyze whether the
score distributions from a prediction method look
similar for proteins of known and unknown function.
Toward this end, we applied ProNA2020 to all
human proteins and found the distribution of predic-
tion scores to resemble that for the data sets with
experimental annotations (Fig. S7).

Discussion

New system works overall better than previous
tools

The major objective of this work was the combina-
tion of several prediction tasks into one comprehen-
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sive prediction system for the prediction of
protein—protein, protein—DNA, and protein—RNA
binding. The system included the per-protein level
to automatically handle predictions for entirely
sequenced organisms or metagenomes for which
many proteins remained without annotations for
these binding modes. The system also combined
homology-based inference and machine learning to
help users to the best possible prediction for each
case. Many of these ideas had been realized before,
e.g. the multi-task predictions (for nucleotides:
SomeNA [12], DRNApred [17], and NucBind [18];
for nucleotides and proteins: DisoRDPbind [20] and
hybridNAP [19]), or per-protein and per-residue level
predictions (SomeNA [12]), or the combination of
homology-based and machine learning (DisoRDP-
bind [20]). However, no system had really simulta-
neously addressed all aspects.

All data sets were too small for out-of-the-box
Deep Learning. Word2vec, used so successfully by
Google [33] and others, including for proteins [35,49]
and in ProtVec [21], did provide interesting new
angles (Fig. 1: blue numbers from ProtVec). How-
ever, profile-kernel SVMs tailored to protein predic-
tion [12,27,34] performed better overall (Fig. 1: red
mostly higher than blue numbers). Similar trends
have been observed for other applications in biology
[27,32,50—53]. The profile-kernel SVM mines evolu-
tionary information as contained in multiple
sequence alignments of protein families, while
ProtVec aspires at understanding the protein
sequence in a different way through NLP. It seems
that the machine learning model underlying ProtVec
might be too simplistic to achieve this objective. Less
simplistic models reach further [54,55]. One problem
for profile-kernel SVMs are un-informative (lack of
diversity) and incorrect alignments. In such cases,
ProtVec can perform better.

The ProtVec-like solution performed particularly
well for the top-level protein—protein and pro-
tein—NA (nucleic acid) sorting (Fig. 1). For these, it
outperformed or was on par with the profile-kernel
SVM (Fig. 1: middle top and left top circle).
Conversely, the profile-kernel SVMs clearly per-
formed better for DNA and RNA (Fig. 1: middle
circles on right and in center). One common trend
was that the larger the data set, the relatively better
the ProtVec. The finding that the best combination
used whichever prediction had the highest score
(reliability) suggested that methods had learned
independent aspects.

One task often implicitly left to the user is the
combination of homology-based inference with
machine learning. Building such a combination into
a system can improve and simplify predictions [32].
For ProNA2020, performance also improved through
in-built combination of machine learning with homol-
ogy-based inference (Fig. S3). For example, protein-
binding protein Q9Y3Y4 cannot be predicted by
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machine learning, while Q9Y3Y4 hits another
protein-binding protein Q9TOK5 through homology-
based inference.

The non-redundant independent data set was
composed of proteins for which experimental data
became available after the proteins used for devel-
opment (cross-validation). Thus, this set was com-
pletely “novel” with respect to independently testing
our method. However, several of the other methods
compared had access in their development to some
(older methods) or most (newer methods) of those
proteins, i.e. our independent comparison was
conservative in that it likely under-estimated the
performance of our methods with respect to that of
others. Nevertheless, in this test, no other method
statistically significantly outperformed our method
and no method combined as many crucially relevant
components into a system as ours. Some perfor-
mance measures cannot be directly compared
between methods, e.g. precision and recall: each
method finds a different balance. Is method M1 with
Precision = 60% and Recall = 30% better than M2
with P = 40%, R = 50%? The only way to answer is
through composite scores such as the F1 or MCC.
When scanning such composite scores, our new
method ProNA2020 reached numerically the highest
value for all three per-protein predictions (Table S11,
Fig. 6) and for all per-residue assessments (Table 5).

Another important feature of our prediction system
that is not assessed through the independent test
set is the integration of homology-based inference.
By design, the independent test set could not be
subjected to homology-based inference, i.e. the
method comparison was confined to assessing the
machine learning part of ProNA2020. Other methods
use homology-based inference (e.g. SBI). In fact, for
some or all of the proteins in the independent data
set, those methods might have used SBI instead of
de novo prediction.

Overall, we accomplished our goals: we devel-
oped the most comprehensive and most automated
system for the prediction of binding of proteins to
DNA, RNA, and other proteins. The only limitation of
the system are specific predictions: it cannot predict
which proteins, DNA, or RNA in particular will bind,
only that they will bind and where in the protein that
will happen. In absence of knowing 3D structure, the
system can also not identify entire binding residues:
although when mapping it onto 3D structures
(Fig. 4), we observed that parts of binding residues
non-consecutive in sequence and close in space
had been predicted; however, without the knowledge
of 3D structure, this information would not have been
available. Thus, the prediction of many non-con-
secutive protein binding residues might indicate two
separate binding pockets, or one very large one. The
comprehensive system, ProNA2020, consists of
parts, none of which appeared worse than any
state-of-the-art prediction method, and while the
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system will be available to users as a whole, the
separate components are also available for expert
users through github.

Estimates for sustained performance challen-
ging

When assessing machine learning, proper cross-
validation is essential. This includes to have non-
redundant data sets and to separate all hyper-
parameter optimization and model choice (based on
the cross-training set, Fig. S1) from the performance
estimates for the final method, for which we used two
test sets—the first from our original data set
(Fig. S1) and the other independent test set, which
most likely had not been used for the development of
other methods and clearly not used by us (Methods).
We applied the final test sets only to the system that
was found best using the cross-training set. This
implied that some of the results shown had to be
taken from this “development phase” (Fig. 1,
Fig. S3), while others were taken from the test set
(Fig. 3) or the independent test set (Fig. 6, Table 5).
Only these results reflected the final performance
estimates for the method. Values for cross-training
and testing results might differ more than the
estimates of standard errors suggest; this is just an
aspect of development. In contrast, if values differed
between test and independent test sets, this would
suggest some mistake in performance estimates.
Indeed, all differences (F1) between the indepen-
dent and the cross-validation test set remained
within less than a single standard error (Table 5,
Table S11). Thus, these differences did not chal-
lenge the technical correctness of our estimates.
Consistent performance of ProNA2020 in cross-
validation and the independent test sets suggested
that there was rather limited bias from the develop-
ment set, in particular, in comparison to other
methods, some of which tended to perform below
the levels published when faced with new proteins
between independent test set and publication
(Table 5: rightmost two column, Table S13).

Many of our performance comparisons were
complicated by the small sets of proteins with
experimental annotations that are neither sequence
similar to any protein used by any of the methods
compared, nor sequence similar to each other. This
double constraint has complicated comparisons in
many fields of protein prediction, in particular when
high-resolution data continues to be impossible for
high-throughput experiments. When each novel
structure continues to cost over $100,000 [56],
data sets with “only” 108 novel protein binding
proteins (independent test set, Table 3) carry very
high value. Some methods (alphabetically: NucBind
[18] and RNABIndRPlus [42]) reached a similar
value on the independent data set as published.
Others remained below the expectations. For one of
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those, namely for DisoRDPbind [20], the difference
was easily explained by that it only focused on the
binding residues on the disorder region. Unfortu-
nately, we could not analyze this separately,
because for none of the proteins in our independent
data set did we find experimental annotations about
disorder.

Another particular problem often arising from
proper cross-validation is that some alternative way
of solving a problem might turn out to be best
according to the cross-training set (Fig. 1, e.g.
numbers in blue vs. those in red), but not best for
the test or the independent test set. We encountered
this for the final solution for the protein sorting system:
whichever prediction method (profile-kernel SVM or
ProtVec Local) had the highest score at each node of
the per-protein sorting (Fig. 1) was best for the cross-
training but was not best for the independent test set.
Proper procedure, in cases such as this, is to trust the
procedure and stick with the cross-training results, at
the expense of reducing the values in the direct face-
to-face comparison to other methods.

Conclusion

Each component of ProNA2020 essentially out-
performed the state-of-the-art methods in per-protein
sorting (Table S11, Fig. 6). With respect to most
criteria, ProNA2020 also outperformed most per-
residue prediction methods. When it did not outper-
form, it was on par, or at least not worse by a
statistically significant margin (Table 5, Tables S12
and S13). Our method ProNA2020 is available
through github (below), so that users could combine
different components of our system with their
solutions. One important novelty is the combination
of per-protein sorting and per-residue prediction. We
did not use existing annotations, such as Pfam
domains, or Swiss-Prot annotations explicitly as
input. Therefore, our system is available to be
applied to high-throughput analyses, such as com-
parisons on the level of entire proteomes between
organisms. Toward that end, ProNA2020 is available
through https://github.com/Rostlab/ProNA2020.git
and PredictProtein (http://www.predictprotein.org).
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Chapter 3

3 Effect of Protein-, DNA- and RNA-binding
residues on common and rare sequence

variants in human

3.1 Genetic variants in human

There are no two human holding identical genome. Human genetic variation is the
genetic difference among the population which makes everyone unique. It determines
almost every biological phenotype of human being, such as height, skin color and even
behavior. More importantly, genetic variations are related to most of human diseases.
Thus, researches about genetic variation can not only make us have a better
understanding of ourselves, but also bring benefit to the medicine progress, especially

personalized medicine.

3.2 High-throughput sequencing

Unlike the first reference version of human genome released in 2001 which heavily
depend on Sanger Sequencing (Schlessinger et al., 2006), nowads more and more

genome researches utilize the high-throughput sequencing (HTS) methods, also
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referred to as next-generation sequencing (NGS). Since 2006, a lot of next-generation
sequencing companies and technologies have been created, and the corresponding
field of bioinformatics has exploded as a major scientific and training discipline (Levy
and Myers, 2016). These brought us from the first draft of the human reference genome
to the ability to routinely sequence human genomes at a cost decreasing from billions of

dollars to thousands of dollars (Levy and Myers, 2016).

The first aim of whole gene sequence (WGS), which is one of the most widely
application in NGS, is to create a high-quality map of genome variation. And variant
calling is a key step which lays the foundation for all downstream analyses about
genome interpretation and genetic discovery. So far, there are three general WGS

strategies (Lappalainen et al., 2019) (Figure 3.1):

Short-read WGS, can yield paired-end 150 bp reads with low error rates (0.1%-0.5%)
(Lappalainen et al., 2019). Short-read approaches fall into two major categories:
sequencing by ligation (SBL) and sequencing by synthesis (SBS) (Goodwin et al.,
2016). The most evident difference between SBS and SBL is that SBS uses DNA
polymerase to incorporate complementary nucleotides to the elongating strand, while
SBL uses ligase to seal the junction between the elongating strand and the newly
incorporated complementary oligonucleotides. Due to the fact that DNA polymerase is
an essential enzyme in the cell, SBS is a more natural approach compared with SBL
(Huang et al., 2012).

Long-read WGS, using single molecule technologies, can yield 10—100 kb reads with
high error rates in the range of 10%—-15% (Lappalainen et al., 2019). Genomes are
found highly complex with many long repetitive elements, copy number alterations and
structural variations that are related to evolution, adaptation and disease. These
complex elements are so long that short-read sequencing is insufficient to resolve them.
Long reads WGS, however, can span complex or repetitive regions with a single

continuous read (Goodwin et al., 2016).

Linked-read WGS, using the technology from 10X Genomics, can provide the long
range information missing from standard approaches. By adding a unique barcode to
every short read generated from a longer molecule (e.g.50 kb), we can link the short

reads together (Lappalainen et al., 2019).
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Figure 3.1 shows the approach of genetic variation detection by WGS.

Whole genome sequencing
Experimentally genome

(A) Short-read sequencing
X r

(B) Linked-read sequencing

(C) Long-read sequencing

Align or assemble sequence
Experimentally genome

(A) Align to reference genome

(B) Align to pan-genome
(C) De novo assembly

\ 4

Variants Detection

Figure 3.1: Variant detection approaches with WGS. The experimentally genome
has two heterozygous variants, each of which is located on a different chromosome
(blue and red stars) and one homozygous variant (green stars). Reference alleles are
represented by solid lines and black stars.
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3.3 Types of genetic variation

With the help of the WGS technologies, a large number of genetic variations are
identified. Overall, there are four major kinds of genetic variants: SNV, Small
Insertion/Deletion Variation (indel), Structure Variation (SV) and Tandem Repeat
Variation. SNVs and indels comprise the majority of the genetic variants in the human
genome (Table 3.1) (Lappalainen et al., 2019). On average, the genome of an
individual human has 3-4 million SNVs and 0.4-0.5 million indels when compared with
the reference genome. Structure variation (SV) is a diverse kind of variation that
includes copy number variants (CNVs), rearrangements, and mobile element insertions
(MEls) (Table 3.1). And Tandem Repeat Variation is the variant involving high-copy
repeat (Table 3.1) (Lappalainen et al., 2019).

Table 3.1: Human genetic variants (Lappalainen et al., 2019).

Variant class Sub-class Size Num. /
genome
Single Nucleotide 1bp 3.5x10°
Variation (SNV)
Small Insertion/Deletion 1-49bp 4.5x10°
Variation (indel)
Structural Variation (SV) | copy number variation >50 bp 5,000
insertion 1,500
balanced rearrangement 40
complex genomic >1 mb 0.01
rearrangement
extremely large copy number | >1 mb 0.01
variant
retrogene insertion gene coding 10
length
mobile element insertion 0.3-7 kb 2,000
(MEI)
Tandem Repeat short tandem repeat (STR) 1-6 bp (repeat | 1x10°
Variation unit)
variable number tandem 7-49 bp unknown
repeat (VNTR) (repeat unit)
centromeric & various unknown
heterochromatic repeats

In this thesis, we focus on the SNVs which are the easiest type of variants to be

identified by short-read WGS. There are two sub-types of SVNs in coding regions:
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synonymous or non-synonymous SNVs. Synonymous SNVs change the DNA
sequence, but do not change the encoded amino acids, which is the result of the
redundancy of genetic code (multiple codons code for the same amino acid). Unlike the
synonymous, non-synonymous SNVs are nucleotide variations that alter the amino
acids on the protein sequence, which result in biological changes and are subject to
natural selection. Nonsense variants, which is a special case of non-synonymous,
change a tri-nucleotide encoding for an amino acid to be a STOP-codon which leads to

the premature termination of translation.

3.4 Common and rare variants

So far, the vast amount (99%) of known SAVs are found as rare variants, i.e. they are
observed in fewer than 1% of the population; only about 0.5% of the SAVs are common

variants, i.e. they are observed in over 5% of the population (Mahlich et al., 2017).

According to the evolutionary theory, those disease-causing variants should most likely
be rare variants. Many researches based on WGS have studied properties of rare
variants and their relevance for complex traits and diseases (Bomba et al., 2017). For
example, Styrkarsdottir (Styrkarsdottir et al., 2013) found that gene LGR4 holds a
nonsense variant associated with bone mineral density (BMD). The study has 4931
individuals with BMD and 69,034 individuals as control group. Steinthorsdottir
(Steinthorsdottir et al., 2014) also discovered four rare variants in CCND2, PAM and
PDX1 genes which affect the risk of Type 2 diabetes. Helgason (Helgason et al., 2013)
found C3 gene holds a rare variant associated with age-related macular degeneration
(AMD). Also, rare variants in TREM2 and APP genes were found associated with

Alzheimer’s disease (AD) (Jonsson et al., 2012; Jonsson et al., 2013).

In contrast, very few of common variants have been functionally validated to associate
with diseases. However, model organism researches find common variant contributions
to complex phenotypes (Gibson, 2012). And, in our previous study, we found common
SAVs are predicted with more effects than rare SAVs, which means common SAVs

affect molecular function more than rare SAVs (Mahlich et al., 2017).
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In this thesis, we will focus on the parts of SAVs occurring at protein-protein, -DNA and
—RNA binding interfaces.

3.5 Prediction of functional effects of sequence variants

The early methods for predicting effects of sequence variants utilize position-specific
profiles as well as the the evolutionary conservation, which is the probabilities
specifically for each position in an alignment, such as SIFT and PANTHER-subPSEC.
The hypothesis behind it is that some sites are more conserved than others and do not
change in order to maintain the protein functions. Thus, changes at well-conserved
positions tend to be predicted as deleterious. To predict whether a sequence variant
will affect protein function, SIFT takes both the position where the changes occur and
the type of amino acid change into consideration (Ng and Henikoff, 2003). Given an
input protein sequence, SIFT will construct the MSA through a homology search with
PSI-blast. Based on the amino acid appearing at each position in the alignment, SIFT
calculates the occurrence probability of every amino acid at every position which is
normalized by the frequency of the most common amino acid. If this normalized value is
less than an empirically defined threshold, the variant is predicted to have an effect (Ng
and Henikoff, 2003).

Instead of PSI-blast, PANTHER-subPSEC (Thomas et al., 2003), which is also an early
method, uses hidden Markov models in the construction of alignments. Another
difference between PANTHER-subPSEC and SIFT is how the amino acid probabilities
are used to determine a quantitative variant effect score. SIFT (Ng and Henikoff, 2003)
uses the ratio between probability of the substituted amino acid and that of the most
common amino acid at the position in the MSA. PANTHER-subPSEC (Thomas et al.,
2003) uses the absolute value of the ratio between the probabilities of the wild-type and
substituted variants. PANTHER-subPSEC (Thomas et al., 2003) focuses on the
magnitude of the change, which means a variant could be predicted as effect if it

dramatically decreases or increases the probability compared to the wild type.

PolyPhen (Ramensky et al., 2002) is the first widely used algorithm to combine
sequence conservation information with structural features. In PolyPhen (Ramensky et
al., 2002), TMHMM algorithm (Krogh et al., 2001) is used to predict transmembrane
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regions, and the Coils2 algorithm (Lupas et al., 1991) is applied to predict coiled coll
regions and the SignalP method (Nielsen et al., 1997) is for the prediction of signal
peptide regions of the protein sequences. If the input variant is in a transmembrane
region, PolyPhen uses the PHAT transmembrane-specific matrix score (Ng et al., 2000)
to evaluate possible functional effect of a nsSNP on the transmembrane region. After
these steps, PolyPhen empirically derives rules to predict whether a variant is
damaging (affecting protein function) or neutral (no prototypical effect) (Ramensky et al.,
2002).

Nowadays, machine learning approach is widely applied in variant effect prediction

based on the above conservation concept and structure features.

One typical example is PolyPhen2, which is a successor of PolyPhen (Adzhubei et al.,
2010). PolyPhen-2 uses 11 predictive features such as secondary structure, change in
electrostatic charge, change in accessible surface area propensity and PHAT
transmembrane-specific matrix score which is also used in PolyPhen These features
were selected by an iterative greedy algorithm. (Adzhubei et al., 2010). For the
classification method, PolyPhen2 uses Naive Bayes which is a probability classifier (i.e,
for a mutant allele, it assigns a probability of being damaging or neutral) (Adzhubei et
al., 2010).

PhD-SNP is a method based on SVM (Capriotti et al., 2006). PhD-SNP is a system
consisting of different SVMs with RBF kernel function which classifies mutations into
disease-related and neutral polymorphism. 1) The first SVM is called “SVM-Sequence”
whose input vector consists of 40 values: the first 20 (the 20 residue types) explicitly
define the mutation situation (wild-type or mutation); the last 20 input provide the
mutation sequence environment (the number of the residue type in a window approach)
(Capriotti et al., 2006); 2) The second SVM is called “SVM-Profile” whose two inputs
are based on MSA: one of the input elements is the ratio between the frequencies of
the mutated residues and that of wild-type; the other one is the number of aligned

sequences regarding to the variant (Capriotti et al., 2006).

Comparing to SVM, neural network works are found to have a better performance in the
research of SNAP (Bromberg and Rost, 2007). The features SNAP used include but
are not limited to: PSSM vectors from PSI-BLAST output, bio-chemical properties of the
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mutated residue, the residue type, predicted accessibility and secondary structure and
flexibility (Bromberg and Rost, 2007). Since the immediate local sequence environment
can determine the effect of a variant, SNAP uses a window approach to capture the

sequence environment information (Bromberg and Rost, 2007).

In our thesis, we use SNAP2, the successor of SNAP, to predict the effect of sequence
variants (Hecht et al., 2015). SNAP2 is also a neural network based method like SNAP
but include some new features such as statistical contact potentials, predicted binding
residues, predicted disordered regions, co-evolving positions and residue annotations
from Pfam (Hecht et al., 2015). Figure 3.2 shows an example of the SNAP2 output. The
output scores of SNAP2 range from -100:very neutral to 100:very effective (Hecht et al.,
2015).

SNAP?

Predicting functional effects of sequence variants

! skt & - B ]
i P ok hES ey - o=

-100 neutral 0  effect 100

MGKENCTTVAEFI LLGLSDVPELRVC CLFLLFLLIYGVTLLANLGMI ALI QVSSRLH

<K <KTHOIVTNMTRXCTIOMOOOZN P

Figure 3.2: Example of SNAP2 output. The output scores range from -100
(blue:neutral) to 100 (red:effective). The x-axis shows the residues in the protein
sequence and y-axis represents 20 different variants for each position (black is the

wild-type residue).
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3.5 Results

Overall, we found both common and rare variants are less likely to be on the binding
residues which agrees with the hypothesis that most SAVs are benign. However, we
found that binding SAVs are over-represented for those very effective SAVs

(SNAP2-scores=50) in both common and rare variants.

We further analyzed the distribution of SAVs according to the strength of the effect
prediction (SNAP2-score). The binding SAVs are found to be more effective than
non-binding SAVs. In our previous study (Mahlich et al., 2017), we found common
variants seem to be more effective than rare variants. In this study, we not only
confirmed this phenomenon, but also found common binding variants are the most
effective SAVs. Especially, those SAVs occurring on multiple binding residues (binding
all three classes of macro-molecules: DNA, RNA and protein) are found more effective

than those on single binding residue (only binding DNA or RNA or protein).
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Abstract

Background: Any two unrelated people differ by about 20,000 missense mutations
(also referred to as SAVs: Single Amino acid Variants or missense SNV). Many SAVs have
been predicted to strongly affect molecular protein function. Common SAVs (> 5%

of population) were predicted to have, on average, more effect on molecular protein
function than rare SAVs (< 1% of population). We hypothesized that the prevalence

of effect in common over rare SAVs might partially be caused by common SAVs more
often occurring at interfaces of proteins with other proteins, DNA, or RNA, thereby
creating subgroup-specific phenotypes. We analyzed SAVs from 60,706 people through
the lens of two prediction methods, one (SNAP2) predicting the effects of SAVs on
molecular protein function, the other (ProNA2020) predicting residues in DNA-, RNA-
and protein-binding interfaces.

Results: Three results stood out. Firstly, SAVs predicted to occur at binding inter-
faces were predicted to more likely affect molecular function than those predicted as
not binding (p value <2.2 x 107'%). Secondly, for SAVs predicted to occur at binding
interfaces, common SAVs were predicted more strongly with effect on protein function
than rare SAVs (p value < 2.2 x 107'9). Restriction to SAVs with experimental annota-
tions confirmed all results, although the resulting subsets were too small to establish
statistical significance for any result. Thirdly, the fraction of SAVs predicted at binding
interfaces differed significantly between tissues, e.g. urinary bladder tissue was found
abundant in SAVs predicted at protein-binding interfaces, and reproductive tissues
(ovary, testis, vagina, seminal vesicle and endometrium) in SAVs predicted at DNA-
binding interfaces.

Conclusions: Overall, the results suggested that residues at protein-, DNA-, and RNA-
binding interfaces contributed toward predicting that common SAVs more likely affect
molecular function than rare SAVs.

Keywords: Genome sequence analysis, Single amino acid variants (SAVs), Macro-
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Background

Focus on SAVs, binding proteins/DNA/RNA, and predictions

Single nucleotide variants (SNVs; prior to modern sequencing referred to as SNPs)
constitute the most frequent form of human genetic variation [1]. Non-synonymous or
missense SNVs (also referred to as missense SN'Vs, nsSN'Vs, nsSNPs, or SAAVs) are one
of the best-studied groups of variants in human diseases. These are SNVs altering the
amino acid sequence of the encoded protein, now often termed Single Amino acid Vari-
ant (SAV) or missense variant [2]. The vast amount of known unique SAVs are rare, i.e.
observed in fewer than 1% of the population; only about 0.5% of the unique SAVs are
common, i.e. observed in over 5% of the population [1]. For simplicity, we referred to the
subset of the residues in a protein interface that bind to either DNA, RNA, or other pro-
teins as to ProNA-binding residues.

Experimental ProNA-binding annotations exist for few human proteins (Table 1). For
instance, only about 1% of all SAVs considered in this study had PDB-based annotations
(Method [3]) about ProNA-binding (Table 1). Although this number has increased sub-
stantially since our original analysis [1], 1% was still too small for a representative analy-
sis, in particular given that only 18 residue positions were observed at ProNA-binding

Table 1 Data sets with experimental annotations

Type of annotation Database Common SAVs Rare SAVs
(LDAF > 5%) (LDAV < 1%)

Protein—protein binding

Interface PDB 16 7710

Other PDB 219 56,312
Protein-DNA binding

Interface PDB 0 1182

Other PDB 22 5706
Protein-RNA binding

Interface PDB 2 420

Other PDB 9 2488
SUM ProNA binding

Interface PDB 18 9194

Other PDB 247 62,983
Effect OMIM|HumVar|PMD 149 7198
SUM experimental PDB| OMIM|HumVar|PMD 404 78,993
Variant (SAV) ExAC 34,309 6,639,624

Map of the 6,698,149 SAVs from the EXAC representing ~60 k individuals [5] onto high resolution (< 2.5 A) structures from
the PDB [3] to check how many SAVs are experimentally annotated at binding interfaces (labelled as interface in the 2nd
column: closest residue atom within <6 A to substrate atom), with the three substrates being other proteins, DNA and RNA.
PDB indicated usage of additional experimental data (Methods; all residues NOT explicitly annotated in a particular protein
as binding were considered as “other”; in contrast to the ProNA2020 prediction method, this does not imply non-binding).
The row labelled SUM ProNA binding summed over all annotations in each protein (due to possible double-binding, e.g. to
DNA and RNA, the sum can be smaller than the parts). Overall 9212 SAVs (0.14%; 18+ 9194) had at least one positive ProNA-
binding annotation in the PDB, and for another 63,230 SAVs (0.94%) there was some negative ProNA-binding annotation
(the macro-molecule binding was in that experiment not found to bind at that position; note the total over all positive and
negative ProNA-binding summed to 72,442 SAVs). The last row “Effect annotation” mapped variants from three databases
annotating variant effects, namely OMIM [19], HumVar [20], and PMD [21] onto EXAC SAVs. For instance, 149 common SAVs
and 7198 rare occurred at a residue position with an experimental effect (sum 0.11% of all SAVs). The total over both types of
experimental annotations (binding/effect) provided the upper limit for SAVs with an experimental annotation about either
binding or effect or both, namely 79,397 SAVs (1.2%): 404 of these for common SAVs and 78,993 for rare SAVs (2nd to last
row labelled SUM experimental)
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interfaces with common SAVs (18 of 34,309, i.e. 0.05%).Therefore, results had to be based
on a prediction method, namely ProNA2020, predicting DNA- RNA- and protein—pro-
tein binding interface residues [4]. The same rationale held with respect to the predic-
tion of effects upon molecular protein function (Table 1) [5].

Common SAVs more likely than rare SAVs to affect molecular function

SAVs can impact protein function in many ways. Molecular mechanisms altering func-
tion include direct changes of binding sites [6, 7], or indirect impacts upon protein
stability [7-10]. Genes and their products, the proteins, function as components of com-
plex networks of macromolecules through biochemical or physical interactions [11].
Binding residues are important for disease pathology, e.g. 20% of the mutations on the
surface of known cancer genes affect the protein—protein interaction (PPI) interface, for
both tumor suppressors and oncogenes [12]. For a small subset of SAVs in regions for
which some experimental annotations about protein function exist, it has been shown
that SAVs are less often observed in residues important for function than expected by
chance [7]. Most residues important for function considered in that study [7] related
to the binding of large molecules (DNA, RNA, and protein). This suggested a selection
against observing SAVs in ProNA-binding residues.

Predicting the effect of SAVs on molecular protein function for the ExAC data set of
60,706 exosomes [5], it has been shown that a higher fraction of all common than of all
rare SAVs affect molecular protein function [1]. One possible explanation is that pro-
teins function differently in sub-populations; an example for this are G-coupled recep-
tors (GPCR) [13] (in fact, all proteins with seven transmembrane helices such as GPCRs
stand out in the difference of effect between common and rare SAVs [14]).

Here we hypothesized that the higher fraction of common than rare SAVs with effect
on molecular protein functions might be explained by residues at the interfaces that bind
DNA, RNA, or proteins (collectively referred to as ProNA-binding residues). The ration-
ale is the follow-up assumption that differences in binding might lead to different phe-
notypes in sub-populations, i.e. all those who have the variant have specifically different
binding. We tried to falsify our hypothesis using SAVs with experimental annotations
but had too little data to even distinguish between common and rare SAVs (Table 1).
Therefore, we included all known 6,699,150 SAVs from 60,706 people [5]. For all SAVs
two prediction methods were applied: SNAP2 [15, 16] predicted the effect of each SAV
on molecular protein function, and ProNA2020 [4] predicted whether or not that SAV is
in a ProNA-binding interface.

For each SAV, SNAP2 predicts a score scaled between —100 (strongly predicted as
neutral) and + 100 (strongly predicted as effect). The higher the absolute value of the
score, the more reliable the prediction, i.e. the more likely to be correct. Positive values
also partially correlate with the magnitude of an effect [17, 18], i.e. stronger effects are
predicted more reliably. Typically, we observed differences in the distributions of com-
mon versus rare, binding versus non-binding, and strongly predicted with effect/neutral
(and all combinations of those three alternatives). However, for simplicity, we frequently
shortened the results to statements such as “common binding SAVs were predicted with
higher effect than rare binding SAVs’, to summarize the more technically correct but
more complex observation that “the fraction of all common SAVs observed at residue
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positions that were predicted by ProNA2020 as binding, for which the SNAP2-score
exceeded a certain threshold over all common SAVs was higher than the fraction of all
rare SAVs observed at residue positions that were predicted by ProNA2020 as binding,
for which the SNAP2-score exceeded a certain threshold over all rare SAVs”. Although
such shortcuts were essential for the readability of the manuscript, we tried to remain
more verbose wherever deemed possible.

Results

ProNA-binding ratios similar for residues with and without known SAVs

ProNA2020 predicted residues in the binding interface of the query protein to DNA,
RNA, or other proteins for all 6,698,149 SAVs (Single Amino acid Variants; or mis-
sense SNVs) from 60,706 individuals [5] with SNAP2 predictions available for their
impact upon molecular function [1]. For simplicity, we referred to all those residues as
to ProNA-binding residues. The 6.7 M SAVs hit 5,561,332 different residues in 64,301
human proteins; 75% of the residues in the same proteins were not covered by any
observed SAV. All SAVs observed in fewer than one percent of the 60.7 K people were
considered as rare (< 1%); common SAVs were observed in over five percent of the popu-
lation (>5%); all SAVs in between these two extremes were ignored to avoid problems
with choosing a particular threshold in the distinction of common/rare. Overall, about
22.5+0.1% of the SAVs hit ProNA2020 predicted binding interface residues (+one
standard error; protein-binding: 9.6 +0.1%, DNA-binding: 12.440.1%, RNA-binding:
8.0£0.1%). This low standard error resulted from bootstrapping on a data set with over
one million points suggesting that any sufficiently large subset would give the same
result (at 95% confidence interval: between 22.3% and 22.7%). In the same set of pro-
teins, overall 75% of the residues were not covered by observed SAVs. For these residues
without observed SAVs, the fraction predicted as ProNA-binding was similar, namely
22.6+0.1%.

Mapping ExAC SAVs to proteins of known experimental 3D structure from the PDB
(Table 1) revealed that 72,442 common or rare SAVs could be mapped to structures with
ProNA-binding. Of these, 9212 SAVs had positive evidence for binding, while for 63,230
the particular PDB structure suggested no binding to the molecule (protein, DNA, or
RNA) tested. Since the absence of evidence for binding under particular conditions
(optimal for binding the molecule shown bound in the structure) is not evidence for the
absence of binding to any molecular under any condition, we could only consider the
9212 SAVs as explicit experimental evidence. These constituted 0.14% of all SAVs (0.05%
for common, and 0.14% for rare SAVs). For 7198 (0.11%) SAVs experimental effect anno-
tations were available from OMIM [19], HumVar [20], or PMD [21] (Table 1; common:
0.43%; rare: 0.11%).

SAVs binding residues under-represented

SAVs predicted to be at ProNA-binding interfaces differed from randomly chosen posi-
tions (technically sampled from all residues in the proteins with observed SAVs). Com-
putation of Fisher’s exact test showed that SAVs were observed less than expected at
ProNA2020-predicted binding interface residues (odds ratio=0.98, p value =2.2 x 107'¢,
Additional File 1: Table S2, Supporting Online Material, SOM). This trend was
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Fig. 1 Macro-molecular binding SAVs. All results were based on the ExAC data from 60 k individuals [5];
SNAP2 [15, 16] predicted effects on molecular protein function, and ProNA2020 [4] predicted residues at
ProNA-binding interfaces (binding either other proteins, DNA, or RNA). (a demonstrates the degree to which
SAVs (Single Amino acid Variants) are predicted more or less often than expected by chance (Methods)

in ProNA-binding interfaces by the method ProNA2020 [4]. In particular, common SAVs (observed in > 5%

of population) and rare SAVs (observed in < 1% of population) were significantly under-represented in
ProNA-binding. The lines below and above the bars for the odds ratios marked the 95% confidence intervals
taken from Fisher’s exact test computed on the number of SAVs predicted as binding/non-binding in each
class (common or rare; note the error bar for the rare SAVs is so small that it appears as a single horizontal
line). b Zooms into the subset of all SAVs predicted as ProNA-binding. The y-axis gives the cumulative
percentage of SAVs predicted above a certain SNAP2-score (x-axis) [15, 16] predicted to be in ProNA-binding
interfaces. This score reflects the strength of predicting SAVs to affect molecular protein function (4 100
strongest prediction of effect) or to be neutral (— 100 strongest prediction of neutrality). Random (gray

line) was based on the average over all possible 19-non-native mutations computed in silico (Method).
Computing Kolmogorov-Smirnov p values between all pairs of lines revealed that the differences between
common and all others were extremely significant (common vs. rare: p value < 2.2 x 107'® and common

vs. random: p value < 2.7 x 107'%). The p value between random and rare was not quite significant (p

value <2 x 1072, Additional File 1:Table S1; ¢, d distinguish distributions between SAVs at residue positions
predicted in ProNA-binding interfaces (dubbed binding) and non-binding (dubbed other) for different
SNAP2-score thresholds. While ¢ shows the raw distribution, ¢ highlighted the cumulative distribution (as

in b). The differences between all pairwise curves were statistically significant (Additional File 1: Table S1).
For instance, for very reliable effect predictions with SNAP2-scores > 50 (dashed vertical lines), about 40% of
all common SAVs were predicted to affect molecular function and to be in a residue predicted or observed
(ProNA2020 [4] uses whatever is available, either a homology-based inference from experimental information
or machine learning prediction) to be in an interface binding a large molecule (protein, DNA, or RNA)

underscored by tests distinguishing different types of SAVs (common/rare) and different
binding classes (protein-, DNA-, RNA-binding). Both common and rare SAVs were pre-
dicted less often than expected on ProNA-binding interface residues (Fig. 1a, Additional
File 1: Fig. S1, p value ,,mon="5.5 x 10 '1and p value,,,,=2.2 x 107'% Additional File 1:
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Table S3, note this defined the limit of the calculation using the software environment
R [22]). The same trend held for each of the type of ProNA-binding, namely for protein,
DNA, and RNA binding (Additional File 1: Table S3).

All SAVs existing in the human population might sample almost all human residues.
In particular rare SAVs may ultimately sample all positions comprehensively. If so, rare
SAVs should be observed in ProNA-binding interfaces exactly as expected by chance.
Our results did not contradict this assumption. Although given the data set size, an odds
ratio of 0.98 was distinctly below 1, this might be explained by the fact that not all SAVs
can be observed in healthy individuals. ExXAC sampled only people who survived to the
point of becoming sequenced, i.e. SAVs so deleterious that their cells would not repli-
cate were already selected against. While the direction of this effect (< 1) is evident, its
magnitude cannot be measured by our analysis, i.e. there might be some other effect to
explain the difference between 0.98 and 1. However, the ProNA-binding positions pre-
dicted with the highest SNAP2-scores were clearly avoided by rare SAVs (black curve
for random binding shifted to right of blue curve for rare binding in Fig. 1c and upwards
in Fig. 1d). The fact that common SAVs were substantially less likely to be at ProNA-
binding interfaces than expected by chance (odds ratio 0.92, Fig. 1a) was again extremely
significant, as was the difference between rare and common, the latter appeared selected
for avoiding ProNA-binding.

SAVs with higher effect prediction scores more likely to bind

SNAP2 [15, 16] predicts the impact of SAVs upon molecular protein function. SNAP2-
scores range from+ 100 implying strong predictions of effect on molecular protein
function and correlating with strong effects [17] to SNAP2-scores=—100 implying
strong predictions of neutrality/no effect on molecular protein function. For increasing
SNAP2-scores, the fractions of the residues predicted to be at ProNA-binding interface
increased (Fig. 1b, Additional File 1: Table S1). The curve for rare SAVs remained above
the random background, while that for common SAVs remained below random (Fig. 1b).
For instance, at SNAP2-scores > 50 (highly reliable effect prediction/strong effect), 34%
of the rare SAVs were predicted to be at ProNA-binding interface residues. For these
rare SAVs with strongly predicted effect, all types of ProNA-binding were highly over-
represented with respect to random (Odds ratios clearly above 1 with Fisher’s exact
test p values consistently extremely significant, Additional File 1: Table S4). The situa-
tion was largely inverted for common SAVs: all odds ratios for common SAVs (ProNA,
protein, DNA, and RNA) were statistically significantly below 1 (implying that binding
predictions were under-represented with respect to chance) and 28% of the common
SAVs were predicted at ProNA-binding interface residues for SNAP2-scores > 50 (Addi-
tional File 1: Table S4). These two results indicated that, on the one hand, the SNAP2-
score distributions differed substantially (and statistically significantly, Additional File
1: Table S1) between binding SAVs and non-binding SAVs for both common and rare
SAVs (Fig. 1¢, Additional File 1: Table S1). On the other hand, the difference in the distri-
butions between binding and non-binding was smaller for common than for rare SAVs
(Fig. 1b, rare curve above common curve). Over half of all SAVs predicted with very high
SNAP2-scores (>95) were predicted by ProNA2020 as binding (Fig. 1b: rare SAVs in
blue dominate the count). We also confirmed the above results for the subset of all SAVs
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with very strong ProNA2020 predictions for binding (|ProNA2020-scores|> 50, Addi-
tional File 1: Fig. S1) This finding was consistent with results suggesting cancer SAVs to
frequently hit protein-binding sites leading to loss-of function [12].

ProNA-binding SAVs stronger predicted with effect than non-binding

Next we analyzed the distribution of SAVs according to the strength of the effect predic-
tion (SNAP2-score). Firstly, for residues predicted at ProNA-binding interfaces, the aver-
age over all possible SAVs (representing random; 19-non-native), largely, had the highest
SNAP2-scores (Fig. 1d dark line highest except for SNAP2-scores above 65); the 2nd
highest was the curve for common binding SAVs (Fig. 1d). The difference between the
two curves was statistically highly significant (Kolmogorov—Smirnov p value <2.2 x 1076,
Additional File 1: Table S1). SAVs so deadly that they kill the carrier before birth are a
subset of 19-non-native, but are removed from all EXAC SAVs. Thus, the random curves
including such disruptive SAVs are expected to be shifted to the right for the distribu-
tion (Fig. 1c) and upward for the cumulative distribution (Fig. 1d). Secondly, we con-
firmed earlier findings [1] that common SAVs were predicted to affect molecular protein
function more often than rare SAVs (Fig. 1d: common_binding higher than rare_bind-
ing and common_non-binding higher than rare_non-binding; Kolmogorov—Smirnov p
value<2.2 x 1071 for both common and rare SAVs, Additional File 1: Table S1). Lim-
iting the analysis to residues predicted as ProNA-binding with highest reliability, i.e.
those predicted more strongly (|JProNA2020-scores|> 50), confirmed the same tendency
(Additional File 1: Fig. S1D).

Both for common and rare SAVs, SAVs at binding interfaces were predicted with
stronger effect scores than non-binding SAVs (Fig. 1d: red above magenta and blue above
cyan; Kolmogorov—Smirnov p value<2.2 x 107! for common and rare SAVs, Additional
File 1: Table S1). Although most common SAVs were predicted not at binding interfaces
(Fig. 1d: magenta), the common SAVs predicted as ProNA-binding were predicted with
higher SNAP2-scores than rare SAVs predicted as ProNA-binding (Fig. 1d: red higher
than blue for SNAP2-scores > —25; Kolmogorov—Smirnov p value<2.2 x 107'¢, Addi-
tional File 1: Table S1). Only rare non-binding SAVs were predicted with levels of effect
below that for random SAVs (Fig. 1d, only cyan below green, Additional File 1: Table S1).
The combination of the findings that SAVs were predicted to be under-represented in
binding interface residues (Fig. 1a) and that SAVs at binding interfaces were strongly
predicted to have effect (Fig. 1d) both confirmed one aspect of our initial hypothesis:
SAVs avoid ProNA-binding interface residues and when they hit those, they are likely to
affect molecular protein function.

Common non-binding SAVs were predicted, on average, with higher SNAP2-scores
(more likely as effect) than rare non-binding SAVs (Fig. 1d; statistical significance of
difference: Kolmogorov—Smirnov p value <2.2 x 107'¢, Additional File 1: Table S1) and
common non-binding SAVs reached effect predictions close to random SAVs (Fig. 1d:
gray vs. magenta). Some of those common non-binding SAVs might be crucial for bind-
ing small molecules, i.e. be involved in signaling, or they might be related to protein
stability. In fact, I-Mutant2 [10] predicted the fraction of stability-affecting SAV to be
almost the same between residues predicted by ProNA2020 as binding (84.8%) and non-
binding (84.6%).
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Common SAVs predicted with effect but not predicted at ProNA-binding interfaces
explained why rare SAVs remained below common SAVs for increasing SNAP2-scores
(Fig. 1b: red below blue): rare binding SAVs tended to be predicted with higher SNAP2-
scores than rare non-binding, leading to a big difference in the SNAP2-distributions for
rare SAVs (Fig. 1c: blue and cyan differ; Fig. 1b: cyan highest, Additional File 1: Table S1).
In contrast, common SAVs tend to have stronger effects, binding or not binding, leading
to a small difference in the SNAP2-curves (Fig. 1c: red and magenta similar, Fig. 1b: red
curve lowest—essentially the quotient between red and magenta in Fig. 1c, Additional
File 1: Table S1). The same observation explained the under-representation of binding
SAVs for very strong predictions (SNAP2-scores > 50) reflected by Fisher’s exact tests
(Additional File 1: Table S4).

The trend that the strongest effect predictions were obtained for ProNA-binding resi-
dues, was most pronounced for protein binding (Additional File 1: Fig. S3). Of the SAVs
occurring at multiple macro-molecules binding interfaces, those SAVs at protein, DNA
and RNA binding interfaces, were predicted with the strongest SNAP2-scores (Addi-

tional File 1: Fig. S3, blue line, Kolmogorov—Smirnov p value<2.2 x 10719).

Validation of approach through experimental annotations

Our basic hypothesis was that SAVs at ProNA-binding interfaces more likely affect
molecular protein function than those of non-binding residues. As proof of principle, we
analyzed experimental annotations using proteins for which high-resolution structures
of macro-molecule binding interfaces were available from the PDB [3] and superposed
SAVs affecting molecular function so strongly that they cause disease (OMIM [19]).
First, we mapped the SAVs from ExAC [5] upon proteins with experimentally known 3D
structures [3] and experimentally known ProNA-binding sites. This procedure matched
about 70 K SAVs (~ 1%, Table 1). For those, the fraction of ProNA-binding interface resi-
dues with predicted effect was higher than that for non-binding. Furthermore, higher
fractions of common than of rare SAVs were predicted with effect, and common SAVs at
binding interfaces were predicted, on average, with higher SNAP2-scores (three panels
in the last row of Additional File 1: Fig. S4). The high difference between the SNAP2-
score distributions of rare binding/non-binding SAVs was confirmed for the subset of
SAVs with PDB annotations (first panels in the first and last row of Additional File 1:
Fig. S4). This implied that the 1% of the data with high-resolution 3D information about
ProNA-binding interfaces completely confirmed the trends cast by the ProNA2020 pre-
diction method (Additional File 1: Fig. S4), but they were not statistically significant due
to the small amount of data (Additional File 1: Table S5). For SAVs with experimental
effect annotations (from OMIM, HumVar and PMD), rare binding SAVs were over-
represented, while common binding SAVs were under-represented (Additional File 1:
Table S6) confirming the finding for predictions with SNAP2-scores > 50 (Fig. 1b, Addi-
tional File 1: Fig S2).

Amongst the EXAC SAVs with experimental annotations, only 392 SAVs had experi-
mental annotations for both binding and effect (of about 6.7 m, i.e.<0.006%); none of
those fell into the class common + binding. For rare SAVs, 25.4% were at protein-, 13.3%
RNA-, and 29.8% DNA-binding interfaces. All these fractions exceeded those obtained
for ProNA2020 and SNAP2 (at SNAP-score > 50; three panels in first row of Additional
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Fig. 2 SAVsin ProNA-binding interfaces predicted strongly with effect. The crystal structure of the BRAF
kinase domain in complex with MEK1 (PDB identifier 4MNF [36]) illustrated a typical example for residues
predicted to bind with known and predicted effect. Residues in magenta-colored dots were predicted as
ProNA-binding; residues in gray and black spheres marked effect variants (SAVs/missense SNVs/missense
mutations) annotated by experiments (from either OMIM [21], HumVar [22], or PMD [23]); the gray/black
shading was proportional to the SNAP2-score (prediction of effect), from white (SNAP2-score around 0,

i.e. low likelihood of effect) to black (SNAP2-score > 90, i.e. high likelihood of effect predicted). For this
representative example, 86% of the SAVs predicted strongly to have effect (SNAP2-score > 90) were predicted
on binding residues, i.e. were covered by magenta-colored dots

File 1: Fig S2: protein binding:17%, RNA binding: 12% and DNA binding:17.9%). The
crystal structure of BRAF kinase domain in complex with MEK1 (PDB identifier 4MNF
[23]) gave an example, how to imagine such an over-representation of binding residues
(Fig. 2): almost 86% of the SAVs with very strong effect predictions were observed on
binding interface residues.

Overall, the experimental annotations suggested the same conclusions as the pre-
diction methods SNAP2 (for effect) and ProNA2020 (for binding). However, due to
the small data size, none of those results were statistically significant (Additional File
1: Tables S5, S6), and the distinction between rare and common SAVs could not be
resolved, at all. Although this cannot prove the validity of our approach, even slightly
differing results could have been taken as proof-of-principle given the tiny overlaps
(e.g. fraction of EXAC SAVs with experimental annotations of binding interface and
effect<0.6*107% i.e. fewer than one in ten thousands).

SAVs at binding interfaces differ substantially between tissue types

Suspecting that the type of binding might differ between tissues, we investigated all
proteins expressed differentially according to the Human Protein Atlas (HPA [24]). For
proof-of-principle, we focused on SAVs strongly predicted to affect molecular function
(SNAP2>50). For these, the distribution of SAVs predicted by ProNA2020 at binding
interfaces, differed substantially between common and rare SAVs for all three binding
classes (Fig. 3). For instance, rare SAVs predicted with strong effect occurred more often
at predicted binding interfaces than expected by chance in leukocytes which play an
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diction methods SNAP2 (for effect) and ProNA2020 (for binding). However, due to
the small data size, none of those results were statistically significant (Additional File
1: Tables S5, S6), and the distinction between rare and common SAVs could not be

Page9of 17



Qiu et al. BMC Bioinformatics _##############HHHHHIH

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

Protein

Common

Rare

-03 00 03 -04 00 04 -0.5 00 0.5

Fig. 3 Predicted ProNA-binding interface SAVs differed between human tissues. The sketches capture to
which extent SAVs at residues predicted in the interfaces of protein-binding (left column), DNA-binding
(middle column), or RNA-binding (right column) were over-represented in particular human tissue types
(taken from HPA, the Human Protein Atlas [241). Top row: common SAVs (> 5% of population); bottom
row: rare SAVs (< 1% of population; note non-extremes between 1 and 5% were ignored). The values

in each tissue were calculated as: (PERCys,e-PERCyyerai)/PERC y eran (Methods). Values around 0 (white)
represented observations as expected by chance, values <0 (yellow) indicated under-representation, and
values >0 (red) over-representation. For instance, common SAVs predicted in DNA-binding interfaces were

under-represented in lung tissue, but over-represented in the skin

import role for the immune response. An intact immune response includes contribu-
tions from many subsets of leukocytes [25], e.g. from the B-cells that produce immuno-
globulins (Ig) also known as antibodies. The N-termini (amino termini) of the heavy and
light chains of vary between Ig molecules, this variability is crucial for binding bacterial
and viral pathogens. In other words, we expect to observe many binding SAVs in these
regions to differ in function to adopt to many pathogens, and many of those differences
would be rare as they differ between people.

Common SAVs predicted at DNA binding interfaces were enriched in skin, skeletal
muscle, thyroid gland, leukocytes and testes. On the other hand, rare SAVs predicted at
DNA binding interfaces were over-represented in the tissues of the reproductive system
(ovaries, testes, vagina, seminal vesicle and endometrium). The latter might be explained
by those tissues being more active in gene expression regulation [26, 27]. Common
SAVs predicted at RNA binding interfaces were enriched in leukocytes, vagina, skin,
and adrenal gland, while rare SAVs predicted at RNA binding interfaces were not over-
represented in any tissue. With respect to the respiratory system, we found rare protein
binding SAVs were slightly over-represented in lung.
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Overall, both common and rare effect SAVs predicted at macro-molecular binding inter-
faces were under-represented in most of internal organs such as stomach, colon and lung
but over-represented in skin and leukocytes. Only SAVs at nucleotide binding (DNA or
RNA) interfaces were over-represented in reproductive organs. Protein binding SAVs were
over-represented in urinary bladder and brain.

Discussion

Approach limited by privacy concerns preventing access to individual genomes

Our approach had two major limitations. Due to privacy and data security the ExAC data
does not allow the analysis for an individual. This has two implications: firstly, we cannot
investigate compensatory mutations [28—32], i.e. instances in which two effect SAVs cancel
each other out. Secondly, we cannot analyze anything such as the sum over all SAVs in a
binding site. Given that we needed to base our analysis on sequence-based predictions to
ascertain results of statistical significance and that SNAP2 predictions fail to identify bind-
ing sites and evolutionary couplings [33] for almost 99% of the data, these limitations did
not matter for our findings. However, if we could drop privacy concerns and if we had more
3D structures, it seems almost evident by definition that random changes—as rare SAVs are
expected to be—are less likely to be evolutionarily coupled than common SAVs that have
been selected for in evolution. Thus dropping the limitations would most likely increase
the evidence that some fraction of the difference in effect on molecular protein function
between common and rare SAVs was explained by ProNA-binding.

Conclusion

A higher fraction of common SAVs (single amino acid/missense variants observed
in>5% of the population) has been predicted by the method SNAP2 [16] to affect molec-
ular protein function than that of rare SAVs (<1%) [1]. We hypothesized that this might
be caused by common SAVs affecting interfaces binding other proteins, DNA, or RNA
(dubbed ProNA-binding) in order to change some aspects of molecular protein function
in a sub-population specific manner. Using predictions from the method ProNA2020
that combined machine learning and homology-based inference [4], we tested our
hypothesis. Overall, SAVs were less likely to occur at predicted ProNA-binding interfaces
than expected by chance (Fig. 1a: odds ratios < 1 with statistically extremely significant p
values, Additional File 1: Tables $2—-S4), common even less so than rare SAVs (Fig. 1a,
b). The under-representation of common SAVs in ProNA-binding was even more pro-
nounced for the subset of most reliably predicted binding residues (Additional File 1:
Fig. S1: odds ratio 0.88). At the same time, SAVs predicted to affect molecular function
by SNAP2 often coincided with ProNA-binding. Importantly, common SAVs predicted
at ProNA-binding interfaces were more likely to be predicted with high SNAP2-scores
than other SAVs (Fig. 1d: red curve highest for SNAP2-score>60). In terms of bind-
ing type protein-binding SAVs were predicted with higher SNAP2-scores than nucleo-
tide-binding SAVs, and SAVs predicted at interfaces to more than one type of binding
(protein&DNA | protein&RNA | DNA&RNA | protein&DNA&RNA) were shifted most
toward effect (Additional File 1: Fig. S3, blue line). All results obtained for prediction
methods were essentially confirmed by explicitly using experimental annotations. How-
ever, results based on experimental data remained statistically insignificant, as fewer

m Journal : BMCOne 12859 Dispatch : 7-10-2020 Pages : 17
Article No : 3759 O LE O TYPESET
™ MS Code : @ CpP ¥ DISK

74

Page 11 of 17



Qiu et al. BMC Bioinformatics _###########H#HHHRBHARE_

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

371
372
373
374
375
376
377
378
379
380
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

than 2%o (0.14%) of the ExXAC SAVs had reliable experimental annotations about bind-
ing interfaces (Table 1: 18 +9194); and even fewer had experimental effect annotations
(0.11%) (Table 1: 149 +7198). Finally, we observed that ProNA-binding SAVs occurred
differentially between tissue types (Fig. 3). Rare SAVs were predicted more than expected
in protein-binding residues of urinary bladder tissue, and in nucleotide-binding residues
of the reproductive system (ovary, testis, vagina, seminal vesicle and endometrium).
Overall, the results supported our initial hypothesis that the higher fraction of common
than rare SAVs with effect is partially explained by ProNA-binding (strictly speaking: the
results did not refute the hypothesis). Essentially, the complex finding was that while,
common SAVs were under-represented in ProNA-binding interfaces, common bind-
ing SAVs had the highest odds of affecting function. According to our hypothesis, they
are the primary candidate for explaining different phenotypes in sub-populations. Rare
binding SAVs also had very strong effects, consistent with the interpretation that they
are not selected for in evolution (they are rare) because they disrupt binding. One exam-
ple for the extraordinary importance of common SAVs was the differential expression of
RNA-binding, in particular, in skin tissues (Fig. 3).

Methods

Data variants (SAVs)

SAVs (single amino acid variant; abbreviations found in the literature for the same
include: nsSNV, nsSNP, and SAAV) were collected by the Exome Aggregation Consor-
tium (ExAC) at the Broad Institute from 60,706 exomes [5]. We extracted all SAVs from
ExAC release 0.3.1 that were labelled as ‘missense variant’ and ‘SNV’ in the ‘CSQ’ infor-
mation field. In total, these summed to 10,474,468 SAVs; for 6,699,150 of these results
from both prediction methods, SNAP2 [15, 16] (impact on molecular protein function)
and ProNA2020 (ProNA-binding residues), were available. 34,309 were classified as
common (linkage disequilibrium allele frequency: LDAF >0.05), 25,217 as uncommon
(0.01 <LDAF<0.05), and 6,639,624 as rare (LDAF <0.01).

Experimental annotations

To motivate our analysis based on predictions, we began with a collection of SAVs with
experimental binding annotations based on the PDB [3]. SIFTS [34] was used to map
UniProtKB sequences [35] onto PDB annotations. Binding interface residues were con-
sidered only when the closest pair of atoms between two proteins (or between protein
and DNA/RNA) was within 6 A (0.6 nm; Table 1).

A combination of OMIM, HumVar and PMD provided variant effect annotations. We
extracted 22,858 human disease-associated variants/SAVs in 3537 proteins from OMIM
[19] and HumVar [20], and another 3192 from PMD [21]. We mapped those variants
onto EXAC SAVs. Overall 7347 variants/SAVs were experimentally annotated as effect
(Table 1).

Implicitly, the PDB annotations of ProNA-binding interface residues (all residues
observed in interfaces between the protein analyzed and another protein, DNA, or
RNA) were used to compare trends between ProNA-binding residues experimentally
known and predicted by ProNA2020 [4]. Similarly, experimental annotated SAVs from
OMIM [19], HumVar [20] and PMD [21] served to compare observed SAV effects to
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those predicted by SNAP2 [15, 16]. Results based exclusively on experimental annota-
tions did not provide statistically significant differences due to small counts (~ 1% of the
SAVs had experimental binding annotations—Table 1; 0.3% had effect annotations, and
0.006% had experimental annotations for binding and effect, corresponding to 392 resi-
due positions with observed SAVs). In particular, only ten (10!) common SAVs had anno-
tations for effect and binding/non-binding (Table 1), rendering comparisons between
common and rare SAVs impossible without predictions.

Tissue-enriched variants

Tissue-enriched variants were defined by protein expression data from The Human
Protein Atlas (HPA https://www.proteinatlas.org) [24, 36]. As tissue-enriched variants,
we considered all SAVs with an expression levels>1 (TPM or FPKM) which also were
at least four-fold enriched in a particular tissue compared to the average over all other
tissues. The percentage of ProNA-binding variants in each tissue were normalized as:
(PERC;4sue-PERC,,,a1)) /PERC
example, PERC was the percentage of enriched common SAVs predicted as DNA-
binding in proteins expressed in heart and PERC .., was the percentage of all enriched

overall: FOr common DNA binding variants in heart, for

tissue

common SAVs predicted as DNA-binding (in any of the tissues considered).

Effect predictions (SNAP2

Effect scores for SAVs in all sets were computed using SNAP2 [15, 16]. SNAP2 uses a
protein sequence and a list of SAVs as input to predict the effect of each substitution
on molecular protein function. SNAP2 is based on a standard feed-forward neural net-
work (often referred to as ANN) using as input biophysical amino acid properties, pre-
dicted 1D structure (incl. secondary structure, solvent accessibility from PROF [37] and
ReProf [38], residue flexibility [39]), and—most importantly—evolutionary information
from multiple sequence alignments generated by PSI-BLAST [40]. Cross-validated on
about 100 k experimentally annotated variants, SNAP2 significantly outperformed other
methods, attaining a two-state accuracy (effect/neutral) of 83% [16]. The prediction
scores range from — 100 (strongly predicted as neutral) to+ 100 (strongly predicted as
effect). Generally, the least reliable predictions have SNAP2-scores around 0, while the
most reliable ones have SNAP2-scores closer to |100|, and higher scores correlate with
stronger effects [17]. This implies that the higher the SNAP2-score, the more likely the
SAV with this score is (1) predicted correctly, (2) likely to have a stronger effect than
another correctly predicted effect-SAV with lower score, and (3) more likely to have an
effect than an effect-SAV with lower score. Largely, SNAP2 captures effects upon molec-
ular protein function much better than effects on biological processes, and less likely
over-predicts disease-affecting SAVs than other methods [16, 18, 41], although capturing
OMIM-like variants with high specificity [41, 42]. Assessing the performance of SNAP2
against data from DMS studies (deep mutational scanning), suggests that the method
tends to over-predict effect when assessed using a binary threshold at SNAP2-score >0
as effect prediction [18, 43]. This had been noted earlier [44] and suggested using higher
thresholds (SNAP2-score>20) in order to distinguish effect/neutral. In our analysis,
we have addressed this by mostly consider the entire spectrum of the SNAP2-score, or
using thresholds even higher than this (SNAP2-score > 50) for binary analyses.
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ProNA-binding predictions (ProNA2020

The ProNA2020 [4] method predicted for each SAV whether or not the amino acid
“native” at the corresponding residue position (according to the UniProtKB/Swiss-
Prot sequence [35]) is in a ProNA-binding interface, i.e. binding either to another pro-
tein, DNA, or RNA (or any combination of the three). ProNA2020 is a state-of-the-art
sequence-based prediction method trained on data for binding taken from low- and
high-resolution experiments on the per-protein level (protein binds or not), and from
high-resolution 3D structures on the per-residue level (which residue binds). It uses a
combination of different machine-learning devices and homology-based inference (if
the protein is sequence similar to proteins for which experimental knowledge about
binding is available). The per-residue modules learned to identify all residues in the
query protein close to any atom of another protein, DNA, or RNA (closest atom within
6.5 A=0.6 nm of substrate; note: we referred to all of those as to ProNA-binding resi-
dues). The part of the method based on machine learning cannot identify binding sites,
i.e. it cannot distinguish between two residues predicted to bind that are in the same or
in two different binding sites. Overall, the machine-learning-based part of ProNA2020
reached sustained performance levels of a two-state per-residue accuracy of Q2=281%
for DNA, Q2=280% for RNA, and Q2=69% for protein—protein interactions. In anal-
ogy to SNAP2, ProNA2020 also puts out a score ranging from — 100 (strongly pre-
dicted as non-binding) to + 100 (strongly predicted as binding). The default threshold
for ProNA2020 [35] (ProNA2020 score > 0: binding) stroke a balance between over- or
under-prediction. Consequently, the ratio of false positives/false negatives (number of
residues expected to be incorrectly predicted as binding/number of residues expected
to be incorrectly predicted as non-binding for ProNA2020-score >0). For the three per-
residue prediction tasks, the ratios were: 1.02 for protein-binding (minute over-predic-
tion), 0.99 for DNA-binding (tiny under-prediction), and 0.94 for RNA-binding (slight
under-prediction).

Random background predictions

We experimented with a variety of models for the random background, i.e. for estab-
lishing how much an observation differed from the expected. The problem was that all
models for random sampling maintained bias from the extreme difference in the number
of rare and common SAVs. Ultimately, the only viable solution was to compute all pos-
sible SAVs, i.e. all amino acid variants (all 19 non-native amino acids) at each SAV posi-
tion (dubbed: 19 non-native). These 19 non-native SAVs constituted the background.
Although Deep Mutational Scanning (DMS) experiments test the effect of 19 non-native
SAVs [43], not all these 19 can be accessed by changing a single nucleotide, i.e. by a SNV.

Fisher’s exact test

Fisher’s exact test was applied to the per-residue predictions in the following way. For
instance, for DNA binding: with Ncb as the number of common SAVs predicted to bind
DNA (3731), Ncn that of common SAVs not to bind DNA (30,018), Nrb the number of
rare SAVs predicted to bind DNA (2,776,214), and Nrn that of rare SAVs not to bind
DNA (19,661,312), we obtain:
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Ncb/Ncn

Odd-ratio =
Nrb/Nrn

= 0.88
The resulting p value for Fisher’s exact test was calculated by the standard function
fisher.test in the R package [22].

Error estimates

Error rates for the evaluation measures were estimated by bootstrapping [45] (with-
out replacement to render more conservative estimates), i.e. by re-sampling the set of
residues used for the evaluation 1000 times and calculating the standard deviation over
those 1000 different results. Each of these sample sets contained 50% of the original resi-
dues (picked randomly, again: without replacement).
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Additional file 1. The statistical analysis results for Protein-, DNA- and RNA-binding SAVs respectively and the details
for Fisher's exact tests.

Abbreviations

ExAC: Exome Aggregation Consortium; PPI: Protein-protein interaction: interactions between transiently binding differ-
ent proteins; ProNA-binding residues: Describing all residues that bind proteins, DNA, or RNA; SAVs: Single amino acid
variants (often also referred to as missense/non-synonymous point mutations, or missense/non-synonymous SNVs—
Single Nuclear Variants); LDAF: Allele frequency as inferred from the haplotype estimation.

Acknowledgements
We thank Tim Karl for technical and Inga Weise (both TUM) for administrative assistance. Particular thanks to all who
make databases available and all those who contribute their experimental data to such public resources.

Authors’ contributions

J.Q. designed and performed the analysis, and writing the manuscript; D.N. prepared part of dataset and helped in
manuscript revision; B.R. designed and guided the analysis and revised the manuscript. All authors have read and
approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL. Financial support is from the program of China Scholar-
ships Council (CSC201606230244). This work was supported by a grant from the Alexander von Humboldt foundation
through the German Ministry for Research and Education (BMBF: Bundesministerium fuer Bildung und Forschung), as

well as by the Bavarian Ministry for Education.

Availability of data and materials
We upload our dataset at: https://github.com/Rostlab/ProNA2020/tree/master/DataSet

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None.

Author details

' Department of Informatics, 112-Chair of Bioinformatics and Computational Biology, Technical University of Munich
(TUM), Boltzmannstrasse 3, 85748 Garching, Munich, Germany. 2 TUM Graduate School, Center of Doctoral Studies

in Informatics and Its Applications (CeDoSIA), 85748 Garching, Germany. * Institute of Advanced Study (TUM-IAS),
Lichtenbergstr. 2a, 85748 Garching, Munich, Germany. # Institute for Food and Plant Sciences (WZW) Weihenstephan,
Alte Akademie 8, 85354 Freising, Germany. ° Biobank of Ninth People’s Hospital, Shanghai Ninth People’s Hospital, Shang-
hai Jiao Tong University School of Medicine, Shanghai 200125, China.

Received: 1 May 2020 Accepted: 16 September 2020

w Journal : BMCOne 12859 Dispatch : 7-10-2020 Pages : 17
Article No : 3759 O LE O TYPESET

o MS Code : CP DISK

78

Page 150f 17



Qiu et al. BMC Bioinformatics _##############HHABHAH_

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
5562
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

References

1.

2.

20.

21.

22;

23.

24,

25.
26.

27.

28.

29.

30.
3t

32.

33

Mahlich Y, Reeb J, Hecht M, Schelling M, De Beer TAP, Bromberg Y, Rost B. Common sequence variants affect
molecular function more than rare variants? Sci Rep. 2017;7(1):1608.

Yates CM, Filippis |, Kelley LA, Sternberg MJ. SuSPect: enhanced prediction of single amino acid variant (SAV) pheno-
type using network features. J Mol Biol. 2014;426(14):2692-701.

Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, et al.
RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental
biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47(D1):D464-74.

Qiu J, Bernhofer M, Heinzinger M, Kemper S, Norambuena T, Melo F, Rost B. ProNA2020 predicts protein-DNA,
protein-RNA, and protein-protein binding proteins and residues from sequence. J Mol Biol. 2020,432(7):2428-43.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB,
et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285-91.

Peng Y, Alexov E. Investigating the linkage between disease-causing amino acid variants and their effect on protein
stability and binding. Proteins. 2016;84(2):232-9.

de Beer TA, Laskowski RA, Parks SL, Sipos B, Goldman N, Thornton JM. Amino acid changes in disease-associ-

ated variants differ radically from variants observed in the 1000 genomes project dataset. PLoS Comput Biol.
2013;9(12):21003382.

Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol.
2005;353(2):459-73.

Martelli PL, Fariselli P, Savojardo C, Babbi G, Aggazio F, Casadio R. Large scale analysis of protein stability in OMIM
disease related human protein variants. BMC Genomics. 2016;17(Suppl 2):397.

. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence

or structure. Nucleic Acids Res. 2005;33(Web Server issue):W306-10.

. Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, et al. Edgetic

perturbation models of human inherited disorders. Mol Syst Biol. 2009;5:321.

. Engin HB, Kreisberg JF, Carter H. Structure-based analysis reveals cancer missense mutations target protein interac-

tion interfaces. PLoS ONE. 2016;11(4):e0152929.

. Raimondi F, Betts MJ, Lu Q, Inoue A, Gutkind JS, Russell RB. Genetic variants affecting equivalent protein family posi-

tions reflect human diversity. Sci Rep. 2017;7(1):12771.

. Llorian-Salvador O, Bernhofer M, Mahlich Y, Rost B. An exhaustive analysis of single amino acid variants in helical

transmembrane proteins. In: bioRxiv. bioRxiv; 2019.

. Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res.

2007;35(11):3823-35.

. Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics.

2015;16(Suppl 8):S1.

. Bromberg Y, Rost B. Comprehensive in silico mutagenesis highlights functionally important residues in proteins.

Bioinformatics. 2008;24(ECCB Proceedings):i207-12.

. Reeb J, Wirth T, Rost B. Variant effect predictions capture some aspects of deep mutational scanning experiments.

BMC Bioinform. 2020;21(1):107.

. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in

Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database
issue):D789-798.

Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to sin-

gle point protein mutations with support vector machines and evolutionary information. Bioinformatics.
2006;22(22):2729-34.

Kawabata T, Ota M, Nishikawa K. The protein mutant database. Nucleic Acids Res. 1999;27(1):355-7.

Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing;
2013.

Haling JR, Sudhamsu J, Yen |, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, Masselot A, et al. Struc-
ture of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell.
2014;26(3):402-13.

Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E,
Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):53-23.

Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is
associated with gene expression regulation. Mol Endocrinol. 2014;28(7):1118-35.

Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expres-
sion in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71(1):319-30.

Altschuh D, Lesk AM, Bloomer AC, Klug A. Correlation of co-ordinated amino acid substitutions with function in
viruses related to tobacco mosaic virus. J Mol Biol. 1987;193:693-707.

Pollock DD, Taylor WR. Effectiveness of correlation analysis in identifying protein residues undergoing correlated
evolution. Protein Eng. 1997;10:647-57.

Taylor WR, Hatrick K. Compensating changes in protein multiple sequence alignment. Protein Eng. 1994;7:341-8.
Goebel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins Struct
Funct Genet. 1994;18(4):309-17.

Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence variation. Nat Biotechnol.
2012;30(11):1072-80.

HopfTA, Ingraham JB, Poelwijk FJ, Scharfe CP, Springer M, Sander C, Marks DS. Mutation effects predicted from
sequence co-variation. Nat Biotechnol. 2017;35(2):128-35.

m Journal : BMCOne 12859 Dispatch : 7-10-2020 Pages : 17
Article No : 3759 O LE O TYPESET

MS Code : M CP M DISK

79

Page 16 of 17



Qiu et al. BMC Bioinformatics _######## #######ARA#HH_ Page 17 of 17

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624
625

34. Velankar S, Dana JM, Jacobsen J, Van Ginkel G, Gane PJ, Luo J, Oldfield TJ. O'donovan C, Martin M-J, Kley-
wegt GJ: SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res.
2012;41(D1):D483-9.

35. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I. UniProtKB/
Swiss-Prot, the manually annotated section of the UniProt knowledgebase: how to use the entry view. Methods Mol
Biol. 2016;1374:23-54.

36. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, et al.
Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248-50.

37. Rost B. Protein secondary structure prediction continues to rise. J Struct Biol. 2001;134:204-18.

38. Kloppmann E, Honigschmid P, Reeb J, Rost B. Protein secondary structure prediction in 2018. In: Roberts GCK, Watts
A, editors. Encylopedia of Biophysics. Vienna: European Biophyscial Societies' Association; 2019.

39. Schlessinger A, Yachdav G, Rost B. PROFbval: predict flexible and rigid residues in proteins. Bioinformatics.
2006;22:891-3.

40. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped Blast and PSI-Blast: a new
generation of protein database search programs. Nucleic Acids Res. 1997,25:3389-402.

41. Reeb J, Hecht M, Mahlich Y, Bromberg Y, Rost B. Predicted molecular effects of sequence variants link to system level
of disease. PLoS Comput Biol. 2016;12(8):e1005047. https://doi.org/10.1371/journal.pcbi.1005047.

42. Schaefer C, Bromberg Y, Achten D, Rost B. Disease-related mutations predicted to impact protein function. BMC
Genomics. 2012;13(Suppl 4):S11.

43. Livesey BJ, Marsh JA. Using deep mutational scanning to benchmark variant effect predictors and identify disease
mutations. Mol Syst Biol. 2020;16(7):29380.

44. Bromberg Y, Kahn PC, Rost B. Neutral and weakly nonneutral sequence variants may define individuality. Proc Natl
Acad Sci USA. 2013;110(35):14255-60.

45. Efron B, Tibshirani R. Statistical data analysis in the computer age. Science. 1991;353:390-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC

m Journal : BMCOne 12859 Dispatch : 7-10-2020 Pages : 17
Article No : 3759 O LE O TYPESET
o MS Code : o CP ¥ DISK

80



Chapter 4

4 Conclusion

The interactions between proteins and other large macro-molecules: DNA, RNA, and
proteins participate in all essential biological processes. And mutations or sequence
variants on those binding residues will cause strong phenotype and even serious
diseases. However, experiment-based binding residue identification methods are not
suitable for high-throughput binding site analysis, so it is necessary to establish the

computational based binding prediction methods.

In this thesis, we establish a sequence based comprehensive protein-DNA, -RNA and
-protein binding prediction system: ProNA2020. ProNA2020 is a two-level prediction
system which uses only protein sequence as input. In the first level (protein level), it
predicts whether the input protein is a binding protein or not. And we combine the
alignment based profile kernel with neutral language based ProtVec for protein level
prediction. Profile-kernel has a better performance for the proteins from large families
with more sequence alignments, while ProtVec is much better at proteins from small
families with less sequence alignments. In the second level (residue level), for those
predicted binding proteins, ProNA2020 further decides which residues is bound on the
input protein. ProNA2020 is the first comprehensive system which combines protein
level and residue level prediction, and it outperforms other state-of-the-art methods in

particular tasks during independent test.

Overall, this thesis provides a new comprehensive protein binding prediction system
which makes high-throughput binding sites researches with high accuracy to be

possible. And our analyses on human SAVs indicate those SAVs with functional effects
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are enriched on macro-molecular binding residues. And the SAVs on residues which
bind all three macro-molecules (DNA, RNA and protein) are found to be the most
effective SAVs. Thus, our research about the binding residues can benefit future
biology and medicine research (e.g. precision medicine) in both methodology and

theory way.

82



REFERENCES

Adeli, E., Wu, G., Saghafi, B., An, L., Shi, F., and Shen, D. (2017). Kernel-based Joint
Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson's
Disease. Sci Rep 7, 41069.

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P.,
Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting
damaging missense mutations. Nat Methods 7, 248-249.

Asgari, E., and Mofrad, M.R. (2015). Continuous Distributed Representation of
Biological Sequences for Deep Proteomics and Genomics. PLoS One 10,
e0141287.

Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O., and Gursoy, A. (2014). PRISM: a
web server and repository for prediction of protein-protein interactions and modeling
their 3D complexes. Nucleic Acids Res 42, W285-289.

Berggard, T., Linse, S., and James, P. (2007). Methods for the detection and analysis
of protein-protein interactions. Proteomics 7, 2833-2842.

Bomba, L., Walter, K., and Soranzo, N. (2017). The impact of rare and low-frequency
genetic variants in common disease. Genome Biol 18, 77.

Bressin, A., Schulte-Sasse, R., Figini, D., Urdaneta, E.C., Beckmann, B.M., and
Marsico, A. (2019). TriPepSVM: de novo prediction of RNA-binding proteins based
on short amino acid motifs. Nucleic acids research 47, 4406-4417.

Bromberg, Y., and Rost, B. (2007). SNAP: predict effect of non-synonymous
polymorphisms on function. Nucleic Acids Res 35, 3823-3835.

Burley, S.K., Berman, H.M., Kleywegt, G.J., Markley, J.L., Nakamura, H., and Velankar,
S. (2017). Protein Data Bank (PDB): The Single Global Macromolecular Structure
Archive. Methods Mol Biol 1607, 627-641.

Capriotti, E., Calabrese, R., and Casadio, R. (2006). Predicting the insurgence of
human genetic diseases associated to single point protein mutations with support
vector machines and evolutionary information. Bioinformatics 22, 2729-2734.

Collins, K., and Mitchell, J.R. (2002). Telomerase in the human organism. Oncogene 21,
564-579.

del Sol, A., Balling, R., Hood, L., and Galas, D. (2010). Diseases as network
perturbations. Curr Opin Biotechnol 21, 566-571.

Dhole, K., Singh, G., Pai, P.P., and Mondal, S. (2014). Sequence-based prediction of
protein-protein interaction sites with L1-logreg classifier. Journal of theoretical
biology 348, 47-54.

Dosztanyi, Z. (2018). Prediction of protein disorder based on IUPred. Protein Sci 27,
331-340.

Eisenberg, E., and Levanon, E.Y. (2018). A-to-I RNA editing - immune protector and
transcriptome diversifier. Nat Rev Genet 19, 473-490.

Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J.C., and Deane, C.M. (2016).
Progress and challenges in predicting protein interfaces. Brief Bioinform 17,
117-131.

Fellouse, F.A., Barthelemy, P.A., Kelley, R.F., and Sidhu, S.S. (2006). Tyrosine plays a
dominant functional role in the paratope of a synthetic antibody derived from a four
amino acid code. J Mol Biol 357, 100-114.

Franklin, D. (2019). P152R Mutation Within MeCP2 Can Cause Loss of DNA-Binding
Selectivity. Interdiscip Sci 11, 10-20.

83



Gibson, G. (2012). Rare and common variants: twenty arguments. Nat Rev Genet 13,
135-145.

Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016). Coming of age: ten years
of next-generation sequencing technologies. Nat Rev Genet 17, 333-351.

Grechkin, M., Logsdon, B.A., Gentles, A.J., and Lee, S.I. (2016). Identifying Network
Perturbation in Cancer. PLoS Comput Biol 12, e1004888.

Gurdeep Singh, K.D., Priyadarshini P. Pai and Sukanta Mondal (2014). SPRINGS:
Prediction of Protein-Protein Interaction Sites Using Artificial Neural Networks
Peerd PrePrints.

Hamp, T., Goldberg, T., and Rost, B. (2013). Accelerating the Original Profile Kernel.
PLoS One 8, e68459.

Hecht, M., Bromberg, Y., and Rost, B. (2015). Better prediction of functional effects for
sequence variants. BMC Genomics 16 Suppl 8, S1.

Helgason, H., Sulem, P., Duvvari, M.R., Luo, H., Thorleifsson, G., Stefansson, H.,
Jonsdottir, I., Masson, G., Gudbjartsson, D.F., Walters, G.B., et al. (2013). A rare
nonsynonymous sequence variant in C3 is associated with high risk of age-related
macular degeneration. Nat Genet 45, 1371-1374.

Honigschmid, P. (2012). Improvement of DNA- and RNA- Protein Binding Prediction. In
Informatics (Munich: Technical University Munich).

Huang, Y.F., Chen, S.C., Chiang, Y.S., Chen, T.H., and Chiu, K.P. (2012). Palindromic
sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol 6 Suppl 2,
S10.

Jeong, J.C,, Lin, X., and Chen, X.W. (2011). On position-specific scoring matrix for
protein function prediction. IEEE/ACM Trans Comput Biol Bioinform 8, 308-315.

Jia, J., Liu, Z., Xiao, X., Liu, B., and Chou, K.C. (2016). Identification of protein-protein
binding sites by incorporating the physicochemical properties and stationary wavelet
transforms into pseudo amino acid composition. Journal of biomolecular structure &
dynamics 34, 1946-1961.

Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P.V., Bjornsson, S.,
Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., et al. (2012). A mutation in
APP protects against Alzheimer's disease and age-related cognitive decline. Nature
488, 96-99.

Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, |., Jonsson, P.V., Snaedal, J.,
Bjornsson, S., Huttenlocher, J., Levey, A.l., Lah, J.J., et al. (2013). Variant of TREM2
associated with the risk of Alzheimer's disease. N Engl J Med 368, 107-116.

Jubb, H.C., Pandurangan, A.P., Turner, M.A., Ochoa-Montano, B., Blundell, T.L., and
Ascher, D.B. (2017). Mutations at protein-protein interfaces: Small changes over big
surfaces have large impacts on human health. Prog Biophys Mol Biol 128, 3-13.

Keskin, O., Tuncbag, N., and Gursoy, A. (2016). Predicting Protein-Protein Interactions
from the Molecular to the Proteome Level. Chem Rev 116, 4884-4909.

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting
transmembrane protein topology with a hidden Markov model: application to
complete genomes. J Mol Biol 305, 567-580.

Kuang, R, le, E., Wang, K., Wang, K., Siddiqi, M., Freund, Y., and Leslie, C. (2005).
Profile-based string kernels for remote homology detection and motif extraction. J
Bioinform Comput Biol 3, 527-550.

Kumar, M., Gromiha, M.M., and Raghava, G.P. (2007). Identification of DNA-binding
proteins using support vector machines and evolutionary profiles. BMC
Bioinformatics 8, 463.

84



Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.l., Weedon, M.N., Rivadeneira, F.,
Willer, C.J., Jackson, A.U., Vedantam, S., Raychaudhuri, S., et al. (2010). Hundreds
of variants clustered in genomic loci and biological pathways affect human height.
Nature 467, 832-838.

Lappalainen, T., Scott, A.J., Brandt, M., and Hall, |.M. (2019). Genomic Analysis in the
Age of Human Genome Sequencing. Cell 177, 70-84.

Levy, S.E., and Myers, R.M. (2016). Advancements in Next-Generation Sequencing.
Annu Rev Genomics Hum Genet 17, 95-115.

Liu, G.H., Shen, H.B., and Yu, D.J. (2016). Prediction of Protein-Protein Interaction
Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
The Journal of membrane biology 249, 141-153.

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein
sequences. Science 252, 1162-1164.

Luscombe, N.M., Austin, S.E., Berman, H.M., and Thornton, J.M. (2000). An overview
of the structures of protein-DNA complexes. Genome Biol 1, REVIEWS001.

Ma, X., Guo, J., Liu, H.D., Xie, J.M., and Sun, X. (2012). Sequence-based prediction of
DNA-binding residues in proteins with conservation and correlation information.
IEEE/ACM Trans Comput Biol Bioinform 9, 1766-1775.

Mabhlich, Y., Reeb, J., Hecht, M., Schelling, M., De Beer, T.A.P., Bromberg, Y., and
Rost, B. (2017). Common sequence variants affect molecular function more than
rare variants? Sci Rep 7, 1608.

Mayor, S. (2007). Genome sequence of one individual is published for first time. BMJ
335, 530-531.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.s., and Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. Advances in
Neural Information Processing Systems 26.

Mishra, A., Pokhrel, P., and Hoque, M.T. (2019). StackDPPred: a stacking based
prediction of DNA-binding protein from sequence. Bioinformatics 35, 433-441.

Muckenthaler, M., Gray, N.K., and Hentze, M.W. (1998). IRP-1 binding to ferritin mRNA
prevents the recruitment of the small ribosomal subunit by the cap-binding complex
elF4F. Mol Cell 2, 383-388.

Mukherjee, S., and Zhang, Y. (2011). Protein-protein complex structure predictions by
multimeric threading and template recombination. Structure 19, 955-966.

Ng, P.C., Henikoff, J.G., and Henikoff, S. (2000). PHAT: a transmembrane-specific
substitution matrix. Predicted hydrophobic and transmembrane. Bioinformatics 16,
760-766.

Ng, P.C., and Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect
protein function. Nucleic Acids Res 31, 3812-3814.

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997). Identification of
prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Protein Eng 10, 1-6.

Nishino, T., and Morikawa, K. (2002). Structure and function of nucleases in DNA repair:
shape, grip and blade of the DNA scissors. Oncogene 21, 9022-9032.

Nooren, .M., and Thornton, J.M. (2003). Structural characterisation and functional
significance of transient protein-protein interactions. J Mol Biol 325, 991-1018.

Northey, T.C., Baresic, A., and Martin, A.C.R. (2018). IntPred: a structure-based
predictor of protein-protein interaction sites. Bioinformatics 34, 223-229.

Ofran, Y., and Rost, B. (2003). Predicted protein-protein interaction sites from local
sequence information. FEBS Lett 544, 236-239.

85



Ofran, Y., and Rost, B. (2007). ISIS: interaction sites identified from sequence.
Bioinformatics 23, e13-16.

Pal, G., Kouadio, J.L., Artis, D.R., Kossiakoff, A.A., and Sidhu, S.S. (2006).
Comprehensive and quantitative mapping of energy landscapes for protein-protein
interactions by rapid combinatorial scanning. J Biol Chem 281, 22378-22385.

Peng, Z., and Kurgan, L. (2015). High-throughput prediction of RNA, DNA and protein
binding regions mediated by intrinsic disorder. Nucleic acids research 43, e121.

Peng, Z., Wang, C., Uversky, V.N., and Kurgan, L. (2017). Prediction of Disordered
RNA, DNA, and Protein Binding Regions Using DisoRDPbind. Methods Mol Biol
1484, 187-203.

Petschnigg, J., Snider, J., and Stagljar, I. (2011). Interactive proteomics research
technologies: recent applications and advances. Curr Opin Biotechnol 22, 50-58.
Qiu, J., Bernhofer, M., Heinzinger, M., Kemper, S., Norambuena, T., Melo, F., and Rost,
B. (2020). ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein

binding proteins and residues from sequence. J Mol Biol 432, 2428-2443.

Ramensky, V., Bork, P., and Sunyaev, S. (2002). Human non-synonymous SNPs:
server and survey. Nucleic Acids Res 30, 3894-3900.

Re, A., Joshi, T., Kulberkyte, E., Morris, Q., and Workman, C.T. (2014). RNA-protein
interactions: an overview. Methods Mol Biol 1097, 491-521.

Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W.
(2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12, 162-169.

Reichmann, D., Rahat, O., Cohen, M., Neuvirth, H., and Schreiber, G. (2007). The
molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17,
67-76.

Res, |., Mihalek, |., and Lichtarge, O. (2005). An evolution based classifier for prediction
of protein interfaces without using protein structures. Bioinformatics 21, 2496-2501.

Rost, B., and Sander, C. (1993). Improved prediction of protein secondary structure by
use of sequence profiles and neural networks. Proc Natl Acad Sci U S A 90,
7558-7562.

Rost, B., and Sander, C. (1994). Combining evolutionary information and neural
networks to predict protein secondary structure. Proteins 19, 55-72.

Sarkar, A., and Nandineni, M.R. (2018). Association of common genetic variants with
human skin color variation in Indian populations. Am J Hum Biol 30.

Schlessinger, A., Yachdav, G., and Rost, B. (2006). PROFbval: predict flexible and rigid
residues in proteins. Bioinformatics 22, 891-893.

Shatsky, M., Nussinov, R., and Wolfson, H.J. (2004). A method for simultaneous
alignment of multiple protein structures. Proteins 56, 143-156.

Singh, M., and Tyagi, S.C. (2018). Genes and genetics in eye diseases: a genomic
medicine approach for investigating hereditary and inflammatory ocular disorders.
Int J Ophthalmol 11, 117-134.

Steinthorsdottir, V., Thorleifsson, G., Sulem, P., Helgason, H., Grarup, N., Sigurdsson,
A., Helgadottir, H.T., Johannsdottir, H., Magnusson, O.T., Gudjonsson, S.A., et al.
(2014). Identification of low-frequency and rare sequence variants associated with
elevated or reduced risk of type 2 diabetes. Nat Genet 46, 294-298.

Styrkarsdottir, U., Thorleifsson, G., Sulem, P., Gudbjartsson, D.F., Sigurdsson, A.,
Jonasdottir, A., Jonasdottir, A., Oddsson, A., Helgason, A., Magnusson, O.T., et al.
(2013). Nonsense mutation in the LGR4 gene is associated with several human
diseases and other traits. Nature 497, 517-520.

86



Su, H., Liu, M., Sun, S., Peng, Z., and Yang, J. (2019). Improving the prediction of
protein-nucleic acids binding residues via multiple sequence profiles and the
consensus of complementary methods. Bioinformatics 35, 930-936.

Sui, H., Chen, Q., and Imamichi, T. (2020). A pull-down assay using
DNA/RNA-conjugated beads with a customized competition strategy: An effective
approach to identify DNA/RNA binding proteins. MethodsX 7, 100890.

Szilagyi, A., and Skolnick, J. (2006). Efficient prediction of nucleic acid binding function
from low-resolution protein structures. Journal of molecular biology 358, 922-933.

Tarpey, P.S., Raymond, F.L., Nguyen, L.S., Rodriguez, J., Hackett, A., Vandeleur, L.,
Smith, R., Shoubridge, C., Edkins, S., Stevens, C., et al. (2007). Mutations in UPF3B,
a member of the nonsense-mediated mMRNA decay complex, cause syndromic and
nonsyndromic mental retardation. Nat Genet 39, 1127-1133.

The UniProt, C. (2017). UniProt: the universal protein knowledgebase. Nucleic Acids
Res 45, D158-D169.

Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer,
K., Muruganujan, A., and Narechania, A. (2003). PANTHER: a library of protein
families and subfamilies indexed by function. Genome Res 13, 2129-2141.

van Straalen, N.M., and Roelofs, T.F.M. (2006). An Introduction to Ecological
Genomics (Oxford: Oxford University press).

Viswanathan, R., Fajardo, E., Steinberg, G., Haller, M., and Fiser, A. (2019).
Protein-protein binding supersites. PLoS Comput Biol 15, e1006704.

Walia, R.R., Xue, L.C., Wilkins, K., EI-Manzalawy, Y., Dobbs, D., and Honavar, V.
(2014). RNABIindRPIlus: a predictor that combines machine learning and sequence
homology-based methods to improve the reliability of predicted RNA-binding
residues in proteins. PloS one 9, e97725.

Wang, B., Chen, P., Huang, D.S., Li, J.J., Lok, T.M., and Lyu, M.R. (2006). Predicting
protein interaction sites from residue spatial sequence profile and evolution rate.
FEBS Lett 580, 380-384.

Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human
tissue transcriptomes. Nature 456, 470-476.

Wang, G.S., and Cooper, T.A. (2007). Splicing in disease: disruption of the splicing
code and the decoding machinery. Nat Rev Genet 8, 749-761.

Wei, Z.S., Yang, J.Y., Shen, H.B., and Yu, D.J. (2015). A Cascade Random Forests
Algorithm for Predicting Protein-Protein Interaction Sites. IEEE Trans
Nanobioscience 14, 746-760.

Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T.,
Honigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., et al. (2014).
PredictProtein--an open resource for online prediction of protein structural and
functional features. Nucleic Acids Res 42, W337-343.

Yan, J., Friedrich, S., and Kurgan, L. (2016). A comprehensive comparative review of
sequence-based predictors of DNA- and RNA-binding residues. Brief Bioinform 17,
88-105.

Yan, J., and Kurgan, L. (2017). DRNApred, fast sequence-based method that
accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic
Acids Res 45, e84.

Yang, Y., Zhao, H., Wang, J., and Zhou, Y. (2014). SPOT-Seq-RNA: predicting
protein-RNA complex structure and RNA-binding function by fold recognition and
binding affinity prediction. Methods in molecular biology 1137, 119-130.

87



Zhang, J., Ma, Z., and Kurgan, L. (2017). Comprehensive review and empirical analysis
of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Briefings
in bioinformatics.

Zhang, J., Ma, Z., and Kurgan, L. (2019). Comprehensive review and empirical analysis
of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Brief
Bioinform 20, 1250-1268.

Zhang, X., and Liu, S. (2017). RBPPred: predicting RNA-binding proteins from
sequence using SVM. Bioinformatics 33, 854-862.

Zhi-Sen Wei, K.H., Jing-Yu Yang,Hong-Bin Shen,Dong-Jun Yu (2016). Protein-protein
interaction sites prediction by ensembling SVM and sample-weighted random
forests. Neurocomput 193, 201-212.

88



	---
	Titelblatt_Eidesstattliche-Erklaerung.pdf-1

