
Technische Universität München

Fakultät für Informatik
Lehrstuhl für Wissenschaftliches Rechnen

Efficient non-intrusive uncertainty
quantification for large-scale simulation

scenarios

Florian Künzner

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Prof. Dr. Hans-Joachim Bungartz

2. Prof. Dr. Ernst Rank

Die Dissertation wurde am 15.09.2020 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 14.12.2020 angenommen.

Uncertainty is everywhere!

Abstract
In Computational Science & Engineering, the model parameters influence the model character-
istics and therefore the results of the simulation. Often, these parameters are not exactly known
or uncertain, and one computer simulation with specific model parameter values provides only
very few information about the general behaviour of such a modelled process. To deal with that
type of uncertain parameters, the wide field of uncertainty quantification (UQ) comes into play:
Several different methods exist with their own advantages and disadvantages. The generalised
polynomial chaos expansion (gPCE) is a prominent and efficient UQ method that is intensively
used in this thesis. Typically many forward simulations are necessary to quantify the uncertainty
of a process. Compared to a single simulation run with specific, deterministic parameter values,
this increases the computational effort significantly and requires efficient solutions.
In the last years, several software frameworks for uncertainty quantification have been devel-

oped. All have their specific focus and usually concentrate on providing the latest UQ methods.
But the users of the frameworks still need the possibility to rapidly prototype UQ scenarios,
support for parameter studies, scaling options from development to production environments,
knowledge on the total runtime of the UQ analysis, and automatic and efficient utilisation of
the computing systems when quantifying the uncertainty.
This thesis investigates how the uncertainty of a model can be quantified efficiently with the

help of high-performance computing. Selected methods are applied in the context of pedestrian
dynamics simulation scenarios, e.g. the evacuation of a building, and the utilisation of a campus
with several buildings. This includes the choice of a suitable UQ method and its parameters,
the prototyping and development of the simulation on a desktop PC up to the execution of the
simulation on a high-performance computing system, and the computation and visualisation
of the results. With the combination of different existing methods and techniques, as well as
new ideas to reduce the simulation time developed in this thesis, it is now possible to quantify
the uncertainty of a computer simulation even more efficiently: Speed-ups by a factor of two
can be achieved with the developed optimised scheduling strategies using the novel runtime
prediction mechanism. The ideas are not limited to the presented software and applications,
but can directly be extended to other fields and implementations.

Kurzfassung
Im Wissenschaftlichen Rechnen beeinflussen die Parameter eines Modells dessen Charakteristik
und daher auch die Simulationsergebnisse. Häufig sind diese Parameter nicht genau bekannt oder
unsicher und eine Computersimulation mit bestimmten Werten der Modellparameter liefert nur
sehr wenige Informationen über das allgemeine Verhalten eines solchen modellierten Prozesses.
Um mit dieser Art von unsicheren Parametern umzugehen, kommt das weite Feld der Uncer-
tainty Quantification (UQ) ins Spiel: Es gibt mehrere verschiedene Methoden mit ihren eigenen
Vor- und Nachteilen. Die "Generalised Polynomial Chaos Expansion" ist eine prominente und
effiziente UQ-Methode die in dieser Arbeit intensiv genutzt wird. Typischerweise sind viele
Vorwärtssimulationen notwendig um die Unsicherheit eines Prozesses zu quantifizieren. Im Ver-
gleich zu einem einzelnen Simulationslauf mit spezifischen, deterministischen Parameterwerten
erhöht dies den Rechenaufwand erheblich und erfordert effiziente Lösungen.
In den letzten Jahren wurden mehrere Software-Frameworks für Uncertainty Quantification

entwickelt. Alle haben ihren spezifischen Fokus und konzentrieren sich in der Regel auf die Bere-
itstellung der neuesten UQ-Methoden. Die Anwender der Frameworks benötigen jedoch nach
wie vor die Möglichkeit, schnell Prototypen von UQ-Szenarien zu erstellen, Unterstützung für
Parameterstudien, Skalierungsmöglichkeiten von der Entwicklungs- bis zur Produktionsumge-
bung, Kenntnisse über die Gesamtlaufzeit der UQ-Analyse und die automatische und effiziente
Nutzung der Rechensysteme bei der Quantifizierung der Unsicherheit.
In dieser Arbeit wird untersucht, wie die Unsicherheit eines Modells mit Methoden des

Hochleistungsrechnens effizient quantifiziert werden kann. Ausgewählte Methoden werden im
Rahmen von Simulationsszenarien im Bereich der Fußgängerdynamik angewendet, z.B. bei der
Evakuierung eines Gebäudes und der Auslastung eines Campus mit mehreren Gebäuden. Dies
umfasst die Auswahl einer geeigneten UQ-Methode und seiner Parameter, die prototypische
Entwicklung der Simulation auf einem Desktop-PC bis hin zur Ausführung der Simulation auf
einem Hochleistungsrechner sowie die Berechnung und Visualisierung der Ergebnisse. Mit der
in dieser Arbeit entwickelten Kombination verschiedener bestehender Methoden und Techniken
sowie neuen Ideen zur Reduzierung der Simulationszeit ist es nun möglich, die Unsicherheit
einer Computersimulation noch effizienter zu quantifizieren: Mit den entwickelten optimierten
Scheduling-Strategien können mit dem neuartigen Laufzeitvorhersage-Mechanismus Beschleuni-
gungen um den Faktor zwei erreicht werden. Die Ideen sind nicht auf die vorgestellte Software
und Anwendungen beschränkt, sondern können direkt auf andere Bereiche und Implementierun-
gen übertragen werden.

Acknowledgement
My first thank goes to Prof. Dr Hans-Joachim Bungartz for giving me the opportunity to join
the chair as an external researcher. It was very nice to be part of the chair and the excellent
people. I enjoyed having the freedom to decide the research topics and directions by myself. I
would also like to highlight the fast response and helpful feedback whenever I needed something
during the last years. Thank you, Hans, for supervising me.
I do also thank the examination committee: the chairman, Prof. Dr Martin Schulz, and my

second reviewer, Prof. Dr Ernst Rank.
A huge thank goes to Dr Tobias Neckel. You helped me on my first scientific computing

algorithm steps and to get into the broad field of uncertainty quantification. Your excellent
feedback and the valuable discussions helped me so much. It was a pleasure to work with you.
During the years, you are now also a friend, and I enjoyed the private chats with you. Thank
you, Tobi, for your help.
I would like to thank my PhD candidate collogues at the chair of scientific computing at

the technical university of Munich for the fruitful conversations on UQ, mathematics and the
(sometimes) hard life as a computer scientist. I want to highlight namely Ionut-Gabriel Farcas,
Moritz August, Friedrich Menhorn, Michael Obersteiner, and Ivana Jovanovic, because of the
nice discussions, the collaborative work, and the common interests.
Thank you, Prof. Dr Gerta Köster and your team for your interest in applying uncertainty

quantification on pedestrian dynamics: Especially Dr Isabelly von Sivers for the cooperation
with the pedestrian dynamics scenario 1 and 2, and Dr Felix Dietrich (which now joined the
SCCS chair) for the collaboration on the COSM in the pedestrian dynamics scenario 3.
Thank you, Jonathan Feinberg, for developing and maintaining Chaospy. It is fun to work

with it and to collaborate with you.
Maria, my love, thank you for having patience with me during my PhD time. I know, my

time for you was always very limited, and I had to follow a very consequent schedule to get
everything managed: business, private life as a couple, building and renovating our house, our
little Theodor, and the big PhD project.

Contents

1 Opening 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline . 5

2 Introduction to uncertainty quantification: background and toolkits 7
2.1 Phases of non-intrusive forward UQ simulations 8
2.2 Non-intrusive forward UQ methods . 9

2.2.1 Monte Carlo method . 9
2.2.2 Stochastic collocation with the pseudo-spectral approach 10
2.2.3 Point collocation . 14

2.3 Global sensitivity analysis . 15
2.4 Overview of existing toolkits for UQ . 16

2.4.1 List of toolkits . 17
2.4.2 Introduction to Chaospy . 18

2.5 Efficiency aspects . 21

3 Aspects of code development for quantifying the uncertainty in classical simulations 25
3.1 Academic test functions and models . 25
3.2 Selecting a suitable UQ method . 29
3.3 Parameter selection for UQ simulations . 32
3.4 Uncertain parameter modelling . 32
3.5 Interpretation of simulation results . 35

4 Efficient uncertainty propagation on large compute intense systems 43
4.1 Preliminaries . 43
4.2 Computing systems . 44
4.3 Runtime definitions for UQ simulations . 45
4.4 Standard scheduling strategies . 47

4.4.1 Idling: due to non-optimal workload . 48
4.4.2 Static work packages . 49
4.4.3 Static work packages with thread pool on node level 51
4.4.4 Dynamic work packages . 53
4.4.5 Summary of standard scheduling strategies 54

4.5 Runtime as quantity of interest . 55
4.5.1 Runtime prediction of UQ simulations . 55
4.5.2 Determining runtime prediction quality 56
4.5.3 Numerical results of runtime prediction 57

4.6 Optimised scheduling strategies via work reordering 59
4.6.1 Optimised static work packages . 61
4.6.2 Optimised static work packages with thread pool on node level 63
4.6.3 Optimised dynamic work packages . 64
4.6.4 Summary of optimised scheduling strategies 65

I

4.7 Surrogate models . 68
4.7.1 The closed observables surrogate model 69
4.7.2 Uncertainty quantification using the closed observables surrogate model . 70
4.7.3 Determining the quality of a UQ simulation using the COSM 72
4.7.4 Summary of surrogate models . 73

5 The UQEF software framework 75
5.1 Overview and software architecture . 75
5.2 Custom models: embedding model codes . 78
5.3 Custom statistics: computation of model-specific statistics 81
5.4 Parametrisation of a UQ simulation . 84
5.5 Support for different UQ methods . 88
5.6 Scheduling and solver strategies . 90
5.7 Support for parameter studies . 94
5.8 Automatic runtime measurements, predictions, and optimised scheduling 95

6 Case study: Efficient uncertainty quantification in pedestrian dynamics 99
6.1 Vadere: a pedestrian dynamics simulator . 99
6.2 Challenges of quantifying uncertainty using Vadere 101
6.3 Scenario 1: Evacuation of a train station . 102

6.3.1 Helping behaviour and social identity in pedestrian dynamics 103
6.3.2 UQ simulation setup . 103
6.3.3 Numerical results . 106
6.3.4 Summary . 110

6.4 Scenario 2: Evacuation of a building with separated families 111
6.4.1 Family search strategy in pedestrian dynamics 112
6.4.2 UQ simulation setup . 113
6.4.3 Numerical results . 115
6.4.4 Runtime and scheduling behaviour . 119
6.4.5 Summary . 123

6.5 Scenario 3: Utilisation of a campus . 124
6.5.1 TUM campus utilisation . 124
6.5.2 UQ simulation setup . 126
6.5.3 Construction of the COSM . 129
6.5.4 Numerical results . 129
6.5.5 Computational efficiency and error results 135
6.5.6 Summary . 138

7 Case study: Efficient uncertainty quantification in hydrological modelling 141
7.1 LARSIM: a water balance model simulator . 142
7.2 Challenges of quantifying uncertainty with LARSIM 145
7.3 Scenario: Large runoffs due to snow melting . 146

7.3.1 Snow melting and water runoff behaviour 148
7.3.2 UQ simulation setup . 149
7.3.3 Numerical results . 152
7.3.4 Summary . 155

8 Conclusion 157
8.1 Summary . 157
8.2 Outlook . 158

II

A Appendix 161
A.1 Visualisation of common distributions and their quadrature 162
A.2 Chaospy introduction examples . 164

A.2.1 Monte Carlo . 164
A.2.2 Point collocation . 165
A.2.3 Stochastic collocation with the pseudo-spectral approach 166

A.3 Propagation runtimes of scheduling strategies . 167
A.3.1 Propagation runtimes of academic example 1 167
A.3.2 Propagation runtimes of academic example 2 168
A.3.3 Propagation runtimes of pedestrian dynamics scenario 2 169

A.4 Speed-ups of scheduling strategies . 170
A.4.1 Speed-ups of academic example 1 . 170
A.4.2 Speed-ups runtimes of academic example 2 171
A.4.3 Speed-ups runtimes of pedestrian dynamics scenario 2 172

A.5 Case Study: UQ with Vadere scenario 1 and Monte Carlo 173

Bibliography 179

List of Figures 195

List of Tables 205

Listings 209

III

1 Opening
The real world and its behaviour seem to be uncertain for humans. The traditional mathematical
equations and computer models are usually deterministic and cannot handle such uncertainties.
For real-world applications and large-scale application scenarios, the input parameters of the
models are often not exactly known or uncertain, which makes it hard to produce accurate
results. The mathematical equations and computer models could produce much more accurate
results and predictions when they are taking these uncertainties into account.
Since many decades, stochastic and statistical approaches such as classical Monte Carlo meth-

ods [128, 12] or stochastic (partial) differential equations [92, 179] are applied to investigate
random behaviour in real-world applications.
Uncertainty quantification (UQ) also tries to tackle this by applying uncertainty to mathe-

matical equations and models, and use it to simulate and predict the behaviour under the given
uncertainties. Youssef Marzouk and Karen Willcox define UQ in [121] as follows:

“Uncertainty quantification (UQ) involves the quantitative characterization and man-
agement of uncertainty in a broad range of applications. It employs both computa-
tional models and observational data, together with theoretical analysis. UQ encom-
passes many different tasks, including uncertainty propagation, sensitivity analysis,
statistical inference and model calibration, decision making under uncertainty, exper-
imentaldesign, and model validation. UQ therefore draws upon many foundational
ideas and techniques in applied mathematics and statistics (e.g., approximation the-
ory, error estimation, stochastic modeling, and Monte Carlo methods) but focuses
these techniques on complex models (e.g., of physical or sociotechnical systems) that
are primarily accessible through computational simulation. UQ has become an essen-
tial aspect of the development and use of predictive computational simulation tools.”

As stated in the definition above, UQ allows to understand the influence of the uncertainty to
the models’ output and can help to reduce uncertainties. In this thesis, modern, state-of-the-art
UQ methods are applied to large-scale simulation scenarios.

1.1 Motivation
In recent years, the wide field of UQ has been greatly developed by many new mathematical con-
cepts and frameworks. The growing computational power of today’s computers and computing
clusters additionally accelerates the application of UQ.
Xiu introduced in [213] the general polynomial chaos expansion (gPCE) approach, which

reduces the computational effort by keeping an excellent accuracy. Since then, many improve-
ments [210, 200, 201, 69, 211, 34] at moderate cost have been developed and current research
further improve the methods which are nicely covered in [53]. The gPCE approach is a category
with many sub-methods. In this thesis, the stochastic collocation with the pseudo-spectral ap-
proach [210]—which is a very prominent gPCE based method—is intensively used to quantify
the uncertainty of large-scale simulation scenarios efficiently.
The goal of this work is to bring the UQ methodology into new fields with existing large-scale

legacy models without changing the existing model’s equations and software, i.e. applying non-
intrusive UQ methods only. In this thesis, two research fields have been taken into account,
which may greatly benefit from the use of UQ.

1

CHAPTER 1 – OPENING

The first one is the field of pedestrian dynamics, which tries to simulate pedestrians move-
ments and behaviour. Three concrete scenarios are considered: evacuation of a train station,
evacuation of a building with separated families, and utilisation of a campus. The second field
covers hydrological modelling with the scenario of large runoffs due to snow melting.
The research questions for both fields are:
• Which uncertainty exists in the input parameters for the specific scenarios?
• Does the uncertainty in the input parameters have any influence on the results, and is it

possible to improve the prediction quality.
• Which parameters have the most influence on the models’ output under uncertainty?
• What are the challenges when quantifying the uncertainty?
• Can the uncertainty be visualised such that a proper investigation of the influence of the

uncertainties is possible?
Another goal in this work is to perform and develop the UQ simulations efficiently, which

covers: fast prototyping, short simulation time, high utilisation of computational resources, and
the support for a fast interpretation of the results.
Besides the improvements and emerging UQ methods in recent years, many UQ software

toolkits and libraries have been published and are available for academic and commercial use.
Each UQ software toolkit has its advantages and disadvantages and typically focuses on the
implementation of the latest UQ methods of a certain category.
For rapid prototyping, the UQ software toolkits have to have a clear application programming

interface which easily allows to prototype new ideas and to perform parameter studies to find a
proper setup for the UQ simulations.

Definition 1.1. UQ simulation: The term UQ simulation is used for a simulation run to
quantify the uncertainty of a model, which requires to run the model many times, depending on
the chosen UQ method.

Another important software requirement for UQ toolkits is the support for many computing
environments, which allows to run the UQ simulation software on a PC for development pur-
poses and scale up to large compute clusters (like high-performance computing (HPC) systems)
for production runs. On each computing platform, an automatic and efficient utilisation of the
computing resources is desired, to reduce the dependency on platform-specific features. Fur-
thermore, it is also important to estimate how long a UQ simulation will take; this is rarely
tackled in existing software. All these aspects require to choose a proper, lightweight UQ soft-
ware toolkit. In this thesis, Chaospy [43] is chosen as a basis because of its lightweight solution
and its flexibility. Nevertheless, it is still missing some required support to propagate the un-
certainties efficiently: This will be completed and improved in this work to enable an all-in-one
UQ simulation workflow that covers all phases of a UQ simulation on all relevant computing
platforms.
The development aspects which have to be considered when quantifying the uncertainty on

these chosen large-scale simulation scenarios should be analysed and documented. For efficient
propagation, common scheduling techniques that are widely used in computing systems should
be taken into account with an analysis of their idling behaviour when using in non-intrusive
forward UQ simulations.

1.2 Contributions
The four main contributions in this thesis are driven by the idea of

2

1.2 CONTRIBUTIONS

Bring together: Modern non-intrusive UQ methods with large-scale sim-
ulation scenarios and investigate methods to quantify the uncertainty effi-
ciently.

1. The first main contribution is the use of modern, state-of-the-art UQ methods (stochastic
collocation with the pseudo-spectral approach (Section 2.2.2)) to quantify the uncertainty
in the field of pedestrian dynamics (Chapter 6) with the concrete scenarios of evacuation
of a train station (pedestrian dynamics scenario 1: Section 6.3), evacuation of a building
with separated families (pedestrian dynamics scenario 2: Section 6.4), and utilisation of
a campus (pedestrian dynamics scenario 3: Section 6.5). For the UQ simulations, the
already existing pedestrian dynamics simulator Vadere [17, 91] (Section 6.1) is used. The
second field is hydrological modelling (Chapter 7) with the scenario of large runoffs due to
snow melting (hydrological modelling scenario: Section 7.3). To simulate the runoffs, the
existing water balance model simulator LARSIM [105] (Section 7.1) is used.
For both fields, it can be shown that the use of modern UQ methods to quantify the
uncertainty works well and is very important to obtain results with statistical moments
(such as mean or variance) compared to the results of a single run of the simulators, which
gives an impression of the influence of the uncertainty. For each field, an analysis of the
specific challenges when quantifying the uncertainty, as well as detailed information about
the scenario, the UQ simulation setup and the interpretation of the results, is included.
On top of the UQ simulation, a global sensitivity analysis is performed to determine which
of the uncertain input parameters contributes most to the quantity of interest.
Because the quantification of the uncertainties should be efficient, a definition of efficiency
aspects and the resulting requirements of the UQ simulations are included (Section 2.5),
which covers the aspects of development time to solution, simulation time, computational
resources, and interpretation of results with some hints for visualisation techniques for the
quantity of interest. All these aspects are considered in the proposed solutions in this
thesis.

2. This leads to the second main contribution, the investigation of the propagation phase of
a non-intrusive forward UQ simulation. The individual black-box model runs are usually
independent, which allows to embarrassingly parallelise them. By analysing standard
scheduling strategies (Section 4.4), it has been shown that due to idling, some of the
computing resources do not fully participate the whole simulation time, while the others do
intensively work. Because of that and the observation that the runtime of some individual
black-box model runs does significantly vary depending on the values of the uncertain
input parameters, an estimation of the overall runtime for the UQ simulation is very hard
or even impossible. To solve this, the novel idea of using the runtime of a simulator
as the quantity of interest and constructing a runtime estimator (Section 4.5) based on
the general polynomial chaos expansion with the stochastic collocation with the pseudo-
spectral approach is presented. The constructed runtime estimator is used to estimate the
runtime depending on the input parameters. Depending on the predicted runtime, the
individual black-box model runs are reordered by their estimated runtime to optimise the
scheduling with the goal of reducing the idling time.

3. For some scenarios, it is a requirement to obtain the results of a UQ simulation very fast.
This is often somehow problematic with large-scale scenario simulators, because of their
long runtime (minutes to hours for a single black-box model simulation run) combined
with the usually large number of required single black-box model runs for a whole UQ

3

CHAPTER 1 – OPENING

simulation. For that, a data-driven surrogate model (the closed observables surrogate
model (COSM) [28, 27, 24]), is used in a UQ simulation (pedestrian dynamics scenario
3: Section 6.5), which leads to the concept of the closed observables surrogate model in
Section 4.7.1 that allows reducing the runtime for a UQ simulation by some orders of
magnitude. This is the third main contribution.

4. The fourth main contribution is the implemented software “uncertainty quantification
execution framework (UQEF)” (Chapter 5) on top of Chaospy, which includes the runtime
estimation with the standard and the optimised scheduling strategies. UQEF offers the
users predefined interfaces to include their custom models and statistical evaluations of
the quantity of interest. All the propagation and the scheduling is done automatically by
UQEF, which allows the users to seamless develop on a PC and to efficiently execute their
UQ simulations on a computing environment such as HPC systems.

Further contributions are the structured collection and description of various aspects that have
to be considered when implementing UQ simulations (Chapter 3). A highlight is the implemented
SampleDist function which allows to automatically generate a probability distribution based
on a kernel density estimator which can be used to describe an uncertain input parameter
(Section 3.4), and gives the possibility to obtain the probability distribution of the quantity of
interest (Section 3.5).
Table 1.1 gives an overview of the contributions and the used features within the investigated

large-scale simulation scenarios.

St
oc
ha

st
ic

co
llo

ca
tio

n
w
ith

th
e

ps
eu
do

-s
pe

ct
ra
l a

pp
ro
ac
h
(S
ec
tio

n
2.
2.
2)

Se
ns
iti
vi
ty

in
di
ce
s

(S
ec
tio

n
2.
3)

Pa
ra
m
et
er

st
ud

y
(S
ec
tio

n
3.
3)

Q
oI

fu
nc
tio

n
vi
su
al
isa

tio
n

(S
ec
tio

n
3.
5)

A
ll-
in
-o
ne

sim
ul
at
io
n

(S
ec
tio

n
4.
1)

St
an

da
rd

sc
he
du

lin
g
st
ra
te
gi
es

(S
ec
tio

n
4.
4)

O
pt
im

ise
d
sc
he
du

lin
g
st
ra
te
gi
es

(S
ec
tio

n
4.
6)

C
O
SM

(S
ec
tio

n
4.
7)

U
Q
EF

(C
ha

pt
er

5)

Pedestrian dynamics
scenario 1 (Section 6.3)

3 3 3 3 3 3 3

Pedestrian dynamics
scenario 2 (Section 6.4)

3 3 3 3 3 3 3

Pedestrian dynamics
scenario 3 (Section 6.5)

3 3 3 3 3 3

Hydrological modelling
scenario (Section 7.3)

3 3 3 3 3

Table 1.1: List of features and strategies that are investigated in this thesis and are used in
the case study scenarios to efficiently quantify the uncertainty.

4

1.3 OUTLINE

1.3 Outline
The general outline of this thesis is visualised in Figure 1.1. Starting from this opening chapter,
the required background information with a gentle introduction into uncertainty quantification
including the used methods, an overview of the existing UQ software toolkits as well as the
introduction into the used toolkit Chaospy, and the definition of the efficiency aspects is given
in Chapter 2.

1 Opening
2 Introduction to

uncertainty quantification:
background and toolkits

3 Aspects of code
development for

quantifying the uncertainty
in classical simulations

4 Efficient uncertainty
propagation on large

compute intense systems

5 The UQEF software
framework

7 Case study: Efficient
uncertainty quantification in

hydrological modelling

6 Case study: Efficient
uncertainty quantification in

pedestrian dynamics

8 Conclusion

Figure 1.1: Overview about the thesis chapters. The arrows give hints about the possible
reading orders.

Chapter 3 discusses different aspects when developing UQ simulations: The chapter starts
with the introduction of some academic test functions and models that are used to show and
explain various development aspects. It continues by describing how to select a suitable UQ
method and how to select proper parameters for the chosen UQ method. The chapter also
includes a brief survey on the modelling of uncertain parameters and gives an introduction
to the developed SampleDist function, which is based on a kernel density estimator. For the
interpretation of the results, various aspects are discussed, including the use of time series data
for the QoI, the analysis of the uncertain parameters via sensitivity indices, the reconstruction
of the QoI distribution, as well as the QoI function visualisation technique.
Chapter 4 describes the developed ideas to perform the propagation phase on large compute

intense systems efficiently. It contains the analysis of the idling behaviour in the propagation
phase for three standard scheduling strategies. With the novel idea of using the runtime of
a model as the quantity of interest, a runtime predictor is constructed using the stochastic
collocation with the pseudo-spectral approach. By using the runtime predictor to predict the
runtime of each individual black-box model run, the individual runs are reordered with the goal
of minimising the idling, which results in the optimised scheduling strategies. Additionally, the
use of the closed observables to construct a data-driven surrogate model (the so-called COSM)
that can be used to quantify the uncertainty in decision-making problems efficiently is presented.
In Chapter 5, the developed UQEF software framework is described in detail. The framework

is designed to support the defined efficiency aspects as well as the ideas from Chapters 3 and 4.

5

CHAPTER 1 – OPENING

First of all, a general overview of the software architecture with an illustrative source code
example is given; followed by the description of the implementation of custom models and
statistics. Then, it is described how a UQ simulation is parametrised. It also includes the
description of the supported UQ methods, the scheduling and solver strategies, the support for
parameter studies and finally, the automatic runtime measurements and predictions, and the
optimised scheduling strategies.

Chapter 6 contains a case study for the field of pedestrian dynamics. In the beginning, the used
pedestrian dynamics simulator Vadere is introduced with its specific challenges when quantifying
the uncertainties. Then, the three scenarios: evacuation of a train station, evacuation of a
building with separated families, and utilisation of a campus are presented. For each scenario, the
general research question is discussed, followed by the UQ simulation setup, and the numerical
results.
Chapter 7 contains the case study for the hydrological modelling field. It starts with the

description of the used water balance model simulator LARSIM and its specific challenges when
using in UQ simulations. After that, the specific scenario large runoffs due to snow melting is
described with the used UQ simulation setup and the obtained numerical results.
The thesis is concluded in Chapter 8 with a summary and an outlook including a discussion

about the achievements and the results, as well as possible future research topics on how to
further use and improve the developed ideas.

6

2 Introduction to uncertainty quantification:
background and toolkits

Uncertainty quantification (UQ) is a wide field of methods to determine the influence of uncer-
tainties (unknowns) in applications and has become a prominent tool in research for many years.
The information about the uncertain influence helps to understand the behaviour of applications
under these conditions, which can support decision-making processes and help to reduce uncer-
tainties by knowing the problematic uncertain sources. The increasing computational power of
today’s computers combined with new advances in the methods makes UQ even more accessi-
ble for many different applications, in academia as well as in real-world applications. General
introductions for UQ are available by McClarren [123], Smith [178], Sullivan [186], or Iaccarino
[72], for instance.
The uncertainties can be classified into two categories [178]: the aleatoric and the epistemic

uncertainties. Aleatoric uncertainty, which is also known as statistical uncertainty, categorises
the unknowns in the investigated applications that are different each time the experiment is
run. These uncertainties are inherently present. The epistemic or systematic uncertainties
on the other side contain uncertainties which are caused by errors, e.g. due to not exactly
measured values, or some particular data that are not taken into account into the application
(e.g. simplifying model assumptions), but causing effects which seem to vary the results.
Another categorisation of the sources of uncertainties is described in [86] as: parameter un-

certainty, model inadequacy, residual variability, parametric variability, observation error, and
code uncertainty. In this thesis, the uncertainties that are considered as input parameters of
the application’s models are taken into account. These can be caused by the lack of knowledge
about the true values of some input parameters or measurement (observation) errors.
In UQ, forward and inverse problems are distinguished, as illustrated in Figure 2.1.

model

PDF

uncertain
parameters

quantity of
interest

forward UQ

output of
interest

inverse UQ

Figure 2.1: Illustration of forward and inverse uncertainty quantification.

In forward UQ, the impact of the uncertain parameters, which are usually modelled with
known or assumed probability distributions, to some values of interest (VoI) of the resulting
model outputs (also called output of interests (OoI)) are quantified with statistical moments:
with the so-called quantities of interest (QoI). The inverse methods try to find the unknown

7

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

parameter values by using some experimental available measurements of the model outputs. It
is possible to gather the probability distributions for the unknown parameter values during the
simulations. Inverse methods are known to be much more complex than forward UQ and require
therefore much more computational effort.

Has an application to be modified to quantify its uncertainty? This is the difference between
intrusive and non-intrusive UQ methods. In intrusive methods, the models’ equations or the
source code of a model has to be changed to be able to quantify the uncertainties. A prominent
and efficient method for that is stochastic Galerkin [54], because if its proved accuracy. But
changing the model formulation is often very complicated and can take a lot of time. Especially
for large-scale scenarios where huge source code bases exist—which are grown over many years—
changes are not easy. Additionally, some applications are closed source or only commercially
available, whose sources are then not possible to change. The non-intrusive methods for UQ
combine all approaches where the model is used as it is, and mostly considered as a black-box.
No reformulation of the equations and the source code is necessary to quantify the uncertainties.
In this thesis, the focus is on efficient non-intrusive forward uncertainty quantification for

large-scale simulation scenarios. All uncertain input parameters are assumed to be stochastically
independent.
The remainder for this chapter is as follows: Sections 2.1 and 2.2 give an overview and

introduction into the uncertainty quantification methods used in this thesis. To understand
the influence of each uncertain parameter, a short introduction is given to the field of global
sensitivity analysis in Section 2.3. An overview of existing toolkits for UQ is given in Section 2.4,
with an introduction into the Chaospy toolkit, which is extensively used in this thesis. Section 2.5
lists various requirements that are required to quantify the uncertainty efficiently.

2.1 Phases of non-intrusive forward UQ simulations
A non-intrusive forward UQ simulation consists of three major phases, the assimilation, the
propagation, and the certification, which are visualised in Figure 2.2. The phases are explained
in more detail in the following.

model

assimilation (1) propagation (2) certification (3)

PDF

uncertain
parameters

quantity of
interest

Figure 2.2: Illustration of a non-intrusive forward UQ simulation with its three phases: assim-
ilation, propagation, and certification.

Assimilation
The assimilation is the first of the three phases. In this thesis, it is divided into a theoretical and
a practical part. The theoretical part consists of all investigations on the uncertain parameters

8

2.2 NON-INTRUSIVE FORWARD UQ METHODS

and its values. The goal is to find a suitable stochastic representation, mostly a probability
distribution for each uncertain parameter. The choice of the applied UQ method and its general
setup is also mostly part of this early phase. The actual usage of the theoretically gathered
knowledge is included in the practical part. Here, the values for the unknown parameters are—
depending on the UQ method—generated and prepared for the second phase, the propagation.

Propagation
In the propagation phase, the model is called several times with the values representing the
unknown parameters, which are generated in the assimilation phase. This phase is usually very
similar for different non-intrusive forward UQ methods—but the number of required black-box
runs differ significantly on the chosen UQ method. This requires to perform the propagation
efficiently to obtain the results in a reasonable time. After each individual black-box model run,
its values of interest are extracted and somehow stored for the certification phase.

Certification
The certification phase is the last step. Once all black-box model runs have finished in the
previous propagation phase and all outputs of interest are present, the practical part of the
certification can start. The values of interest are statistically evaluated, and the quantities of
interest are determined. This is again very specific to the chosen UQ method. In this thesis,
the practical part also comprises the generation of the resulting numbers, tables, and plots. The
theoretical part of the certification phase is the actual interpretation of the quantities of interest,
for which the numbers, tables, and the plots are useful. This is very application-specific and
usually requires a lot of domain knowledge.

2.2 Non-intrusive forward UQ methods
In uncertainty quantification, there exist several non-intrusive methods for forward problems
(see [178, 186] for an overview). This work uses the classical sampling-based Monte Carlo
method (Section 2.2.1), because of its ease of use for comparison purposes. As a state-of-the-
art method, stochastic collocation with the pseudo-spectral approach (Section 2.2.2) is mainly
used, to benefit of its proven high accuracy and the comparatively less computational effort
for low (1–3) to mid (4–12) dimensional problems. Additionally, the point collocation method
(Section 2.2.3) is considered, because it is a powerful tool that can be used together with Monte
Carlo based samples to generate more QoI information that is not possible with pure Monte
Carlo.

2.2.1 Monte Carlo method
The Monte Carlo method [128] is a well known method in statistics for several decades. With
the increasing computational power of today’s computers, it also becomes usable for small to
mid-sized application scenarios. For a general introduction and the variations of the Monte
Carlo method, the reader is referred to [134, 100].
The basic idea in uncertainty quantification is to model the uncertain input parameters of

a model as random variables ζ. The general form of the expectation value E respectively, the
mean µ is defined as

µ = E[f(x, t, ζ)] =
∫

Ω
f(x, t, ζ)dζ , (2.1)

with f(x, t, ζ) being the model function whose expectation value should be estimated under
uncertainty. ζ is a set of M independent random variables ζ = (ζ1, . . . , ζM). Typically, the

9

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

model function f depends additionally on space x and time t.
To numerically evaluate the integral of Equation (2.1) via the Monte Carlo method,M sample

evaluations of f are performed and equally weighted by dividing the sum byM. This results in

µ ≈ µ̂ = E[f(x, t, ζ)] = 1
M

M∑
i=1

f(x, t, ni) (2.2)

for the numerical estimation of µ. For each independent random variable in ζ, a suitable
probability distribution is applied, and a sample value that follows the distribution is drawn. To
generate sample values that follow a certain probability distribution for an uncertain parameter,
pseudo-random number generators [94] are preferably used. The vector n has a length of M
nodes, and each node ni is a set of values and contains for each uncertain parameter one value
with which f is called. The return value of the model function f is the OoI, and the resulting
µ is a statistical moment that describes the QoI. The variance σ2 or Var is estimated by

σ2 = Var ≈ 1
M− 1

M∑
i=1

[f(x, t, ni)− µ̂]2 , (2.3)

and the standard deviation σ or StdDev by

σ = StdDev =
√
σ2 ≈

√√√√ 1
M− 1

M∑
i=1

[f(x, t, ni)− µ̂]2 . (2.4)

The P th percentile (pP) is defined as P percent of the values are lower or equal of this value.
A prediction interval that represents 80% of the values can be spanned by p90−p10. A prominent
method to determine a percentile is the nearest-rank-method: All values that are collected for
an OoI are stored in ascending order (by their values) in a list withM elements. The index i is
determined with

i =
⌈
P

100 ×M
⌉
, (2.5)

and the value at the position of the index i can than be interpreted as P percent of the values
are lower or equal that value.
The Monte Carlo method is widely used in many different disciplines because it is easy to

understand and to implement. Its convergence rate is relatively independent of the input di-
mension (the number of uncertain parameters M) which makes these methods usable for large
dimensional problems. Due to the independence of the individual samples, each evaluation of
the model f is also independent, which allows evaluating f in an embarrassingly parallel manner.

A drawback of Monte Carlo is its slow convergence rate of O(1√
M) which requires many sample

evaluations; hence, it is often not feasible to use it for large-scale scenarios.
To improve the convergence rate of the classical Monte Carlo, various improvements exist,

e.g. variance-reduction techniques [90], quasi Monte Carlo techniques [12] with a convergence
rate of O(log(M)M√

M), and multi-fidelity [140, 145] and multi-level [55] Monte Carlo techniques.

2.2.2 Stochastic collocation with the pseudo-spectral approach
The stochastic collocation with the pseudo-spectral approach is a very prominent UQ method
since Xiu publishes it in [210]. The method is based on the generalised polynomial chaos
expansion (gPCE) [214], which is a generalisation of the Wiener chaos expansion or Wiener-
chaos introduced by Wiener in [206].

10

2.2 NON-INTRUSIVE FORWARD UQ METHODS

The general form of the generalised polynomial chaos expansion for the solution of U(x, t, ζ)
reads

U(x, t, ζ) =
∞∑
j=0

cj(x, t)︸ ︷︷ ︸
spatio-

temporal

·Φj(ζ) .︸ ︷︷ ︸
random

(2.6)

In gPCE, the coefficients cj with the spatio-temporal part are separated from the random part
with the Φj(ζ) base functions. The base functions Φj(ζ) are orthogonal polynomials that fit
to the probability distributions [213] of the uncertain input parameters in ζ. To numerically
evaluate Equation (2.6), the infinite sum is truncated after N + 1 terms and results in

U(x, t, ζ) ≈ uN (x, t, ζ) :=
N∑
j=0

cj(x, t) · Φj(ζ) (2.7)

for the solution of U(x, t, ζ). The number N of the N + 1 terms of the expansion in the
multivariate case can be determined by

(N + 1) = (M + P)!
M !P ! , (2.8)

with M being the number of independent uncertain parameters, and P is the highest order of
the orthogonal polynomials Φj(ζ).

A scalar product (also called inner product) in the form of

〈Φi(ζ),Φj(ζ)〉 :=
∫

Ω
Φi(ζ)Φj(ζ)W (ζ)dζ = E[Φi(ζ)Φj(ζ)] (2.9)

is defined that represents the expectation value E of the product of two orthogonal polynomials.
W (ζ) is called weighting function that represents the multivariate probability density function
(PDF) of the random variables in ζ. The orthogonal polynomials satisfy

〈Φi(ζ),Φj(ζ)〉 = γjδij , (2.10)

with δij being the Kronecker delta that has the form

δij =
{

0 if i 6= j

1 if i = j ,
(2.11)

where γi is the normalisation factor

γj = 〈Φj(ζ),Φj(ζ)〉 = E[Φ2
j (ζ)] (2.12)

because Φj(ζ) are orthogonal but not necessarily orthonormal.
How the coefficients cj are determined is very specific to the used UQ method. In stochastic

collocation with the pseudo-spectral approach, the coefficients cj are determined by an integral
of the form

cj(x, t) := 1
γj

∫
f(x, t, ζ)Φj(ζ)W (ζ)dζ . (2.13)

The OoI of f is projected into the direction of Φj(ζ) and weighted with W (ζ). The integral is
typically approximated via a quadrature rule. In this thesis, the Gaussian quadrature is used
for that approximation, which reads as follows

cj(x, t) ≈
1
γj

Q∑
i=1

f(x, t, zi)Φj(zi)wi . (2.14)

11

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

It uses Q number of collocation points zi with a corresponding weight wi. The collocation points
zi are the roots of the orthogonal polynomials Φj(ζ), and the weight is determined according
to the probability density functions of the random variables in ζ. The model function f is
exactly evaluated at the collocation points zi, which results—due to the tensor product [194] of
all number of collocation points q for each parameter in the Gaussian quadrature—in Q = qM

evaluations of f . Each zi contains exactly M number of values, for each uncertain parameter
one value.
An important part of the accuracy of this UQ method comes from the proper choice of the basis

functions (orthogonal polynomials) for the gPCE and corresponding probability distributions
for the random variables in ζ. Xiu describes according to the Wiener–Askey scheme in [213]
the correspondence between common probability distributions and orthogonal polynomial basis
functions for the gPCE. Table 2.2 contains an overview of common combinations for continuous
and discrete probability distributions.

Distribution of ζ gPCE basis polynomials Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)
Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, . . . , N}

Negative binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, . . . , N}

Table 2.2: Common combinations of probability distributions and polynomial basis functions
in the general polynomial chaos expansion according to the Wiener–Askey scheme (compare
[213]).

If for a 1D problem an uncertain parameter is Gaussian (normal) ζ ∼ N (0, 1) (µuN = 0 and
σ2 = 1) distributed, and a model f within a continuous space should be evaluated, then the
Hermite basis polynomials are chosen. Typically the probabilistic Hermite polynomials in the
form

Φ0(ζ) = 1, Φ1(ζ) = ζ, Φ2(ζ) = ζ2 − 1, Φ3(ζ) = ζ3 − 3ζ, . . . (2.15)

are used. The weight function W (ζ) is then the probability density function (PDF) for the
N (0, 1) distributed parameter

W (ζ) = 1√
2π
e−ζ

2/2 . (2.16)

Figure 2.3 visualises the resulting values of the PDF on the collocation points zi (Figure 2.3(a))
and the generated weights wi (Figure 2.3(b)) for the combination of the ζ ∼ N (0, 1) random
variable and the orthogonal Hermite polynomials. Some more visualisations can be found in
Appendix A.1.

12

2.2 NON-INTRUSIVE FORWARD UQ METHODS

2 0 2 4 6
node value

0.0

0.2

0.4

0.6

0.8
de

ns
ity

(a) Normal PDF sampled on nodes
Normal - PDF
nodes

2 0 2 4 6
node value

0.00

0.05

0.10

0.15

0.20

0.25

we
ig

ht

(b) Quadrature nodes and weights
weights
nodes

Figure 2.3: Visualisation of the probability density function of a ζ ∼ N (0, 1) distributed random
variable ζ in (a) and the corresponding generated collocation points zi with its weights wi in
(b). For this visualisation, q = 25 collocation points for ζ are used.

The first statistical moment, the mean µuN or the so-called expectation value E, is evaluated
as follows

µ ≈ µuN = E[uN (x, t, ζ)] = E[
N∑
j=0

cjΦj(ζ)] =
(N<∞)

N∑
j=0

cjE[Φj(ζ)]

=
N∑
j=0

cjE[Φj(ζ) · 1] =
N∑
j=0

cjE[Φj(ζ) Φ0(ζ)︸ ︷︷ ︸
=1

]

=
N∑
j=0

cj 〈Φj(ζ),Φ0(ζ)〉︸ ︷︷ ︸
=0, if j 6=0

= c0 〈Φ0(ζ),Φ0(ζ)〉︸ ︷︷ ︸
γ0=1

= c0 · 1 = c0 .

(2.17)

Due to the nature of orthogonal polynomials, Φ0(ζ) is always 1 and 〈Φj(ζ),Φ0(ζ)〉 = 0 if j 6= 0,
the expectation value E is reduced to c0.
The second statistical moment, the variance σ2 or Var can be approximated in the simplified

form of

σ2 ≈ σ2
uN

, Var(uN (x, t, ζ)) = E[(uN (x, t, ζ)− E[uN (x, t, ζ)]︸ ︷︷ ︸
c0=c0Φ0(ζ)

)2]

= E[(
N∑
j=0

cjΦj(ζ)− c0Φ0(ζ))2] = E[(
N∑
j=1

cjΦj(ζ))2]

= 〈
N∑
j=1

cjΦj(ζ),
N∑
k=1

ckΦk(ζ)〉 =
N∑
j=1

cj〈Φj(ζ),
N∑
k=1

ckΦk(ζ)〉

=
N∑
j=1

N∑
k=1

cjck 〈Φj(ζ),Φk(ζ)〉︸ ︷︷ ︸
=0, if j 6=k

=
N∑
j=1

c2
j 〈Φj(ζ),Φj(ζ)〉︸ ︷︷ ︸

=γj

=
N∑
j=1

c2
jγj .

(2.18)

Because it is known from Equation (2.17) that E[uN (x, t, ζ)] = c0 and 〈Φj(ζ),Φk(ζ)〉 = 0 if
j 6= k, the double sum can be reduced to a single sum by only considering the coefficients cj .

13

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

The standard deviation can, again, be determined with

σ =
√
σ2 . (2.19)

According to [210, 212], the convergence of the pseudo-spectral approach for smooth model
functions shows fast convergence rates depending on three error contributions: First, the pro-
jection error of the expansion due to the finite number of terms N for Equation (2.7); Second,
the numerical aliasing error introduced by the integration rule and the used number of colloca-
tion points Q for Equation (2.14); And finally, the error introduced by numerically solving the
model function f at the collocation points zi. Hence, higher N and higher Q usually results in
more accurate results. In Section 3.3, there is a discussion about how to choose Q and N in
such a way that they fit properly together. The method works well for low (1–3) to mid (4-10)
dimensional (number of uncertain parameters M) problems. Higher-dimensional problems be-
come more feasible in combination with sparse grids [58, 46, 45, 208] and adaptive sparse grid
methods [38, 40]. In [200, 201], it is shown that polynomial chaos methods do not work well for
non-smooth models. For that, improvements exist, e.g. in [138].
In traditional publications, usually, the mean µuN and the variance σ2 are of interest. But the

whole gPCE of uN (x, t, ζ) (Equation (2.7)) is also very useful when evaluated: It can be used as
a surrogate which returns the most likely OoI which represents the model function f under the
given uncertain conditions. This feature is intensively used in this thesis to formulate a runtime
surrogate of a model function in Section 4.5.

2.2.3 Point collocation
The point collocation method [69] is also a very prominent and widely used gPCE method in
uncertainty quantification based on Equation (2.6). It consists of sampling the random space
of the random variables ζ, as in the Monte Carlo method to obtain the collocation points zi,
and estimating the coefficients cj with linear regression for Equation (2.7). It is an interpolation
method by using a matrix inversion approach, which uses the orthogonal polynomials Φj(ζ) as
the basis functions, and the solves of uN (x, t, ζ) on the sampled collocation points zi—which are
the OoI values of solving the model function f(x, t, zi) on all zi. As the coefficients cj are not
known, they are determined by solving a linear system of equations of the form

Φ0(z0) Φ1(z0) . . . ΦN (z0)
Φ0(z1) Φ1(z1) . . . ΦN (z1)

...
...

Φ0(zN) Φ1(zN) . . . ΦN (zN)

c0
c1
...
cN

 =

uN (x, t, z0)
uN (x, t, z1)

...
uN (x, t, zN)

 . (2.20)

The gPCE in Equation (2.7) is also truncated after N+1 terms. This means that a minimum of
N + 1 samples (collocation points zi) is required. In [69], it is shown that with an oversampling
of 2 · (N + 1) collocation points zi, the accuracy of the whole gPCE can be improved.

To evaluate the QoI with statistical moments, the same approaches as for the pseudo-spectral
approach for the mean µuN (Equation (2.17)) and the variance σ2

uN
(Equation (2.18)) can be

used. Also, the usage of the whole uN (x, t, ζ) (Equation (2.7)) is possible, which offers a wide
range of applications.
Further improvements can be achieved by using Latin hypercube sampling (LHS) [124] or

Hammersley sampling (HS) [62], which uses a more systematic way of creating the samples and
ensures better coverage of the uncertain space of the random variables (see [69] for more details)
compared to a random sampling of the probability distributions ζ.
Another improvement on the point collocation method exists: Instead of sampling the dis-

tributions to obtain the collocation points zi, the roots of the orthogonal polynomials Φj(ζ)

14

2.3 GLOBAL SENSITIVITY ANALYSIS

are used, similar as in the pseudo-spectral approach in Section 2.2.2. This is known as the
“probabilistic collocation” approach as it is introduced in [34].
Compared to the pseudo-spectral approach in Section 2.2.2, the point collocation has a slower

convergence. However, one advantage is that at the collocation points zi, the estimation may
be more accurate compared to the pseudo-spectral approach. As a drawback, the error can be
quite large between the collocation points. A detailed discussion of this aspect can be found in
[34].

2.3 Global sensitivity analysis
In the context of UQ, global sensitivity analysis is used on top of uncertainty quantification to
determine the relation between parameter input values and the output of interests of a model.
Global sensitivity analysis allows to tackle the following topics:

• Investigate if a model’s output of interest is sensitive to the variation of the values of a
certain input parameter.

• Understand which parameters contribute most to the output of interest of a model.
• Determine the contribution to the variance (importance) in the output of interest for every

single uncertain parameter as well as in combination with the other parameters.
• Identify the parameters that do not contribute much and fix this to deterministic values to

reduce the number of uncertain parameters and therefore, the dimension which is typically
related to the computational costs of a method.

For a general overview of global sensitivity analysis, [157] is recommended. Global sensitivity
analysis is a variance-based method [158]. The results may be expressed as first-order, higher-
order, and total-order sensitivity indices, which describes, respectively, the single contribution,
the contribution of combinations, and the total contribution with its interactions of the param-
eters. All indices represent values between [0, 1], where 0 means there is no contribution to the
variance and values up to 1 means there is some considerable contribution. The indices are
also called Sobol’ indices1 [180] because Sobol generalised the variance-based sensitivity indices
method to a high dimensional expansion of the form

f(x, t, ζ) = f0 +
M∑
i=1

fi(x, t, ζi) +
∑

1≤i<j≤M
fij(x, t, ζi, ζj) + . . .+ f12...M (x, t, ζ) , (2.21)

which requires that the output of interest of a model function f can be additively expressed,
where ζ := {ζ1, ζ2, . . . , ζM}. This implies that the variance Var(f(x, t, ζ)) can also be expressed
with an expansion

Var(f(x, t, ζ)) =
M∑
i=1

Var(fi(x, t, ζi)) +
∑

1≤i<j≤M
Var(fij(x, t, ζi, ζj)) + . . .+ Var(f12...M (x, t, ζ)) .

(2.22)
Var(f(x, t, ζ)) is also called unconditional variance, because it contains the full information on
the variance on the output of interest of f(x, t, ζ).

Consider the conditional variance Var(fi(x, t, ζi)) of ζi given as

Var(fi(x, t, ζi)) = Var(E[f(x, t, ζ)|ζi]) . (2.23)

The first-order sensitivity indices Si can be determined by

Si = Var(E[f(x, t, ζ)|ζi])
Var(f(x, t, ζ)) = Var(fi(x, t, ζi))

Var(f(x, t, ζ)) , (2.24)

1In this thesis, the more general term sensitivity indices is used.

15

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

and Var(f(x, t, ζ)) comprises the unconditional variance estimators for σ2 of Equation (2.3) or
Equation (2.18).
With Var(fij(x, t, ζi, ζj)), the joint effect off (ζi, ζj) on f(x, t, ζ) can be measured

Var(fij(x, t, ζi, ζj)) = Var[E(f(x, t, ζ)|ζi, ζj)]−Var[E(f(x, t, ζ)|ζi)]−Var[f(x, t, ζ)(Y |ζj)]
= Var[E(f(x, t, ζ)|ζi, ζj)]−Var(fi(x, t, ζi))−Var(fj(x, t, ζj)) ,

(2.25)

which leads to the second-order sensitivity indices Sij of the form

Sij = Var[E(f(x, t, ζ)|ζi, ζj)]−Var[E(f(x, t, ζ)|ζi)]−Var[f(x, t, ζ)(Y |ζj)]
Var(f(x, t, ζ))

= Var(fij(x, t, ζi, ζj))
Var(f(x, t, ζ)) .

(2.26)

Higher-order interaction can also be expressed with

Si12...M = Var(f12...M (x, t, ζ))
Var(f(x, t, ζ)) . (2.27)

The total-order indices STi are often of great interest, which allows determining the overall
contribution of a parameter ζi to the output of interest of f(x, t, ζ). This can be written as

STi = E[Var(f(x, t, ζ)|ζ∼i)]
Var(f(x, t, ζ)) = 1− Var(E[f(x, t, ζ)|ζ∼i])

Var(f(x, t, ζ)) , (2.28)

where ζ∼i comprises all contributions except the one of ζi.
The sensitivity indices can be computed with a Monte Carlo based method (see [157] for

details) of evaluating the model function f many times, which is indeed an expensive compu-
tational way, especially for large-scale simulation scenarios. In the case of global sensitivity
analysis combined with uncertainty quantification, the gPCE uN (x, t, ζ) of Equation (2.7) can
be used as a surrogate for f . With that, the same amount of evaluations have to be done—but
once uN (x, t, ζ) is generated, its evaluation is usually much faster than directly evaluating f ,
which makes this computationally feasible. This works with the pseudo-spectral approach in
Section 2.2.2 as well as with the point collocation approach in Section 2.2.3.
Sudret describes in [183] how to use the coefficients cj of Equation (2.14) for a polynomial

chaos expansion to directly compute the sensitivity indices. This makes the computation of
the sensitivity indices even more efficient. In this thesis, the Monte Carlo based version with
the gPCE uN (x, t, ζ) as the surrogate model is used, because this method is implemented in
Chaospy.

2.4 Overview of existing toolkits for UQ
Since the very first start of the research for this thesis in December 2013, the number of toolk-
its for uncertainty quantification that are publicly known and available increased significantly.
Now, about a dozen toolkits that support uncertainty quantification are available, and their
development is spread around the globe. Many different teams, most of them from academia,
develop and use the toolkits for research on the latest UQ methods.
In the beginning, it was not easy to find suitable toolkits for research. Now, there exist so many

toolkits for different programming languages and purposes that it is hard to decide which one to
use. In Section 2.4.1, there is a list (that may not be complete, but the listed toolkits are very

16

2.4 OVERVIEW OF EXISTING TOOLKITS FOR UQ

prominent and where presented on the last SIAM UQ 2018 conference in the “mini-symposium
on software for UQ”2) of UQ toolkits with some properties for a coarse comparison.
In this thesis, the Chaospy toolkit (see Section 2.4.2 for a gentle introduction) is used as a

basis for the quantification of the uncertainties. Chaospy is available since 2014 on GitHub3,
it is actively developed, allows rapid prototyping, is open for changes, and has an easy-to-use
application programming interface (API). That makes it a perfect candidate for efficiently quan-
tifying the uncertainties (see Section 2.5 for efficiency requirements) for large-scale application
scenarios because the time to solution, which also involves the development time is—besides
others—an important factor in this thesis.

2.4.1 List of toolkits
The list in Table 2.3 is sorted in alphabetical order and shows the UQ toolkits with their program-
ming language and language bindings, the license, and the maintaining person or institution.
Since 2017, there is also a list of uncertainty quantification toolkits and related software on
Wikipedia4. At the “mini-symposium on software for UQ” of the SIAM UQ 2018, SG++5 [147],
the sparse grid framework, has also been presented. But because it is not a software especially
designed for uncertainty quantification, it is not listed in Table 2.3, but it should be taken into
account when working with a higher number of uncertain parameters to reduce the number of
required model evaluations using spatially adaptive sparse grids to compute the coefficients cj
of Equation (2.14).

Nr. Toolkit Programming language
language bindings License Maintainer: Person(s)/

Institution Cit.

1 ALSVID-UQ C++, Python Jonas Sukys, Siddhartha
Mishra, SAM, ETH Zurich

[185]

2 Chaospy Python MIT Jonathan Feinberg [43]
3 DAKOTA C++, Matlab, Scilab,

Python
LPGL Sandia National Laboratories [1]

4 EasyVVUQ Python LPGL Robin Richardson, et al.,
Centre for Computational
Science, University College
London

[153]

5 MUQ C++, Python MIT Uncertainty Quantification
Group Massachusetts
Institute of Technology

[136]

6 Mystic Python BSD The UQ Foundation [125]
7 OpenCOSSAN Matlab LGPL v3.0 COSSAN Working Group,

Institute for Risk and
Uncertainty, University of
Liverpool

[137]

8 OpenTurns C++, Python LGPL OpenTurns initiative:
industrial and academic
partners

[6]

Table 2.3: List of known UQ toolkits as presented in the “mini-symposium on software for UQ”
of the last SIAM UQ 2018 conference and some additionally selected ones appeared recently.
The information are lastly updated in May 2020.

2https://www5.in.tum.de/wiki/index.php/SIAMUQ18_-_Slides_Minisymp_Software4UQ
3https://github.com/jonathf/chaospy
4https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
5https://sgpp.sparsegrids.org

17

http://www.sam.math.ethz.ch/alsvid-uq/
https://www.eawag.ch/en/aboutus/portrait/organisation/staff/profile/jonas-sukys/show
https://math.ethz.ch/sam/the-institute/people/siddhartha-mishra.html
https://math.ethz.ch/sam/the-institute/people/siddhartha-mishra.html
https://github.com/jonathf/chaospy
https://github.com/jonathf?tab=overview&org=UCL-CCS
https://dakota.sandia.gov/
https://www.sandia.gov
https://github.com/UCL-CCS/EasyVVUQ
http://ccs.chem.ucl.ac.uk/
http://ccs.chem.ucl.ac.uk/
http://ccs.chem.ucl.ac.uk/
http://muq.mit.edu/
http://uqgroup.mit.edu/
http://uqgroup.mit.edu/
http://uqgroup.mit.edu/
https://github.com/uqfoundation/mystic
http://www.uqfoundation.org
https://cossan.co.uk
http://www.openturns.org
http://openturns.github.io/openturns/latest/about.html
http://openturns.github.io/openturns/latest/about.html
http://openturns.github.io/openturns/latest/about.html
https://www5.in.tum.de/wiki/index.php/SIAMUQ18_-_Slides_Minisymp_Software4UQ
https://github.com/jonathf/chaospy
https://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
https://sgpp.sparsegrids.org

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

Nr. Toolkit Programming language
language bindings License Maintainer: Person(s)/

Institution Cit.

9 Π4U C GPL v2.0 CLT - Chair of
Computational Science, ETH
Zurich

[61]

10 PROMETHEE R Institut de Radioprotection
et de Surete Nucleaire

[73]

11 PSUADE C++ LGPL UQ Method Development
Team, Lawrence Livermore
National Laboratory

[193]

12 QUESO C++ LGPL Oden Institute for
Computational Engineering
and Sciences, The University
of Texas at Austin

[151]

13 SmartUQ Standalone, Python,
Matlab

Proprietary SmartUQ LLC [177]

14 TASMANIAN C++, Python, Matlab,
Fortran

BSD Computational and Applied
Mathematics, Oak Ridge
National Laboratory

[182]

15 Uncertainpy Python GPL v3.0 Simen Tennøe [192]
16 UQ-PyL Python GPL Chen Wang, Qingyun Duan,

Beijing Normal University
[202]

17 UQLab Matlab Academic
and

commercial
license

Chair of Risk, Safety and
Uncertainty Quantification
of ETH Zurich

[120]

18 UQTk C++, Python BSD Sandia National Laboratories [20]
19 Uranie C++, Python LGPL French Alternative Energies

and Atomic Energy
Commission (CEA)

[50]

Table 2.3 List of known UQ toolkits as presented in the “mini-symposium on software for UQ”
of the last SIAM UQ 2018 conference and some additionally selected ones appeared recently.
The information are lastly updated in May 2020.

2.4.2 Introduction to Chaospy
Chaospy is a framework for uncertainty quantification supporting forward propagation of un-
certainty. Any model that is available within Python (Python code or available through Python
bindings), or externally via system calls may be used. Chaospy is written in Python and re-
lies on NumPy6, numpoly7, and SciPy8. Chaospy offers a very intuitive API, fast prototyping,
is open-source, and open for changes and community contributions. Additionally, it is excel-
lently supported by the authors which makes it a good choice for performing UQ simulations in
research.
For the technical part of the assimilation phase (compare Figure 2.2), Chaospy contains many

different configurable probability distributions9 that can be combined into a multivariate distri-
bution.
Chaospy provides functionality for the certification phase (see Figure 2.2) to calculate sta-

tistical moments, perform sensitivity analysis, and even generate the complete gPCE uN (see
6NumPy library: https://numpy.org/
7numpoly library: https://github.com/jonathf/numpoly
8SciPy library: https://www.scipy.org/
9List of supported distributions in Chaospy: https://chaospy.readthedocs.io/en/master/distributions/

collection.html

18

https://www.cse-lab.ethz.ch/research/projects/pi4u/
https://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/PROMETHEE-project-5069.aspx
https://www.irsn.fr/EN/Pages/home.aspx
https://www.irsn.fr/EN/Pages/home.aspx
https://computing.llnl.gov/projects/psuade-uncertainty-quantification
https://computing.llnl.gov/casc
https://computing.llnl.gov/casc
https://computing.llnl.gov/casc
https://github.com/libqueso/queso
https://www.oden.utexas.edu
https://www.oden.utexas.edu
https://www.oden.utexas.edu
https://www.oden.utexas.edu
https://www.smartuq.com/
https://www.smartuq.com/about/#about
https://tasmanian.ornl.gov/index.html
https://csmd.ornl.gov/group/comp-applied-mathematics
https://csmd.ornl.gov/group/comp-applied-mathematics
https://csmd.ornl.gov/group/comp-applied-mathematics
https://github.com/simetenn/uncertainpy
https://expertanalytics.no/about/employees/simen
http://www.uq-pyl.com/
https://www.uqlab.com/
https://sudret.ibk.ethz.ch
https://sudret.ibk.ethz.ch
https://sudret.ibk.ethz.ch
https://github.com/sandialabs/UQTk
https://www.sandia.gov/UQToolkit
https://sourceforge.net/projects/uranie/
http://www.cea.fr/
http://www.cea.fr/
http://www.cea.fr/
https://numpy.org/
https://github.com/jonathf/numpoly
https://www.scipy.org/
https://chaospy.readthedocs.io/en/master/distributions/collection.html
https://chaospy.readthedocs.io/en/master/distributions/collection.html

2.4 OVERVIEW OF EXISTING TOOLKITS FOR UQ

Equation (2.7)). Through Python pickling mechanisms, the data and the objects can be saved,
which is heavily used in Chapter 4 and Chapter 5 to save and load gPCEs.
In the following, a short introduction into Chaospy coding for forward uncertainty quan-

tification with Monte Carlo (Section 2.2.1), point collocation (Section 2.2.3), and stochastic
collocation with the pseudo-spectral approach (Section 2.2.2) is given, concluded by an analysis
of the examples. Listing 2.1 shows the import of the required libraries.

1 import chaospy as cp # import chaospy library
2 import numpy as np # import numpy library

Listing 2.1: Import of Chaospy and NumPy libraries.

A simple model() function with two parameters (p1 and p2) is defined in Listing 2.2 that
simply adds these parameters. The return value of the model() function is the value of interest
(VoI).

1 # model definition: simple example model with 2 parameters
2 def model(p1, p2):
3 return p1+p2 # returns the value of interest (VoI)

Listing 2.2: Definition of a simple example model function.

The next step is to define probability distributions for the independent uncertain parameters
of the model() function: For p1 a uniform distribution with U(−5, 1), and for p2 a normal
(Gaussian) distribution with N(0, 1) is chosen:

1 p1_dist = cp.Uniform(lower=-5, upper=1) # creates a uniform distribution
2 p2_dist = cp.Normal(mu=0, sigma=1) # creates a normal (Gaussian) distribution

Listing 2.3: Example of creating probability distributions with Chaospy using custom pa-
rameter values for the distributions: p1 (p1_dist) is U(−5, 1) and p2 (p2_dist) is N(0, 1)
distributed.

With the join operator, the distributions for p1 (p1_dist) and p2 (p2_dist) are joined into a
multivariate distribution in Listing 2.4:

1 dists = cp.J(p1_dist, p2_dist) # joins the dists to a multivariate dist.

Listing 2.4: Example of creating multivariate distributions with Chaospy: p1 (p1_dist) and
p2 (p2_dist) are joined into a multivariate distribution.

Monte Carlo

All the steps mentioned above are independent of the specific UQ method, which now will be
relevant. For Monte Carlo (Section 2.2.1), the example code is given in Listing 2.5. The Monte
Carlo method relies on sampling the multivariate distribution with a high number, usually
M > 100,000 because of its slow convergence rate. The sample() method in the example
creates 1,000 samples nodes (each node is a set of values for p1 and p2). The propagation is done
in line 5: For each sample node, the model() function is called once. The values of interest are
stored in the solves variable. Determining the statistical moments is then fairly easy because
this can be done with basic statistical methods that are provided through NumPy (lines 8–11).
Lines 14–18 print the resulting QoI values to the console. The full UQ Monte Carlo method
example can be found in Appendix A.2.1.

19

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

1 nodes = dists.sample(1000) # generate samples nodes according to the
2 # multivariate distributions
3
4 # 2. propagation
5 solves = [model(p1, p2) for p1, p2 in nodes.T]
6
7 # 3. certification: determine statistics of QoI
8 E = np.mean(solves) # determine E (mean)
9 Var = np.var(solves) # determine Var (variance)

10 StdDev = np.std(solves) # determine StdDev (standard deviation)
11 P5, P95 = np.percentile(solves, [5, 95]) # determine 5th and 95th percentile
12
13 # print results
14 print("E: {}".format(E))
15 print("Var: {}".format(Var))
16 print("StdDev: {}".format(StdDev))
17 print("P5: {}".format(P5))
18 print("P95: {}".format(P95))

Listing 2.5: Partial example of the Monte Carlo method with Chaospy: Sampling the multivari-
ate distribution (dists), propagating uncertainty through the model() function, calculating
the QoI statistics, and finally printing the results to the console.

Point collocation

The code example for the point collocation is contained in Listing 2.6. Since the point colloca-
tion method also relies on sampling the multivariate distribution and propagate the node values
through the model() function, the code for this is the same as in lines 1–5 of Listing 2.5. The
orthogonal polynomials are numerically generated on line 2, with the order 2 (which is also the
highest order P of the orthogonal polynomial Φj(ζ) of the gPCE (cf. Equation (2.7), Equa-
tion (2.8), and Equation (2.20)). In line 5, the gPCE is created through the regression method,
and the polynomial object is stored in the gPCE variable, which contains all the information
about the coefficients (cj) and the orthogonality. With the help of the Chaospy functions, sta-
tistical moments are determined in lines 7–10 for the QoIs. The full UQ point collocation method
example can be found in Appendix A.2.2.

1 # 3. certification: determine statistics of QoI
2 OP = cp.orth_ttr(2, dists) # creates orthogonal polynomials according the multivariate
3 # distribution using three terms recursion
4
5 gPCE = cp.fit_regression(OP, nodes, solves) # generate gPCE
6
7 E = cp.E(gPCE, dists) # determine E (mean)
8 Var = cp.Var(gPCE, dists) # determine Var (variance)
9 StdDev = cp.Std(gPCE, dists) # determine StdDev (standard deviation)

10 P5, P95 = cp.Perc(gPCE, [5, 95], dists) # determine 5th and 95th percentile

Listing 2.6: Partial example of the point collocation method with Chaospy: Numerical genera-
tion of orthogonal polynomials, fitting the gPCE with regression, and determine the resulting
QoI.

Stochastic collocation with the pseudo-spectral approach

Line 3 of Listing 2.7 generates the collocation nodes and the corresponding weights of order 2
(which is the order q with 2 + 1 = 3 number of collocation points for each uncertain parameter)
with the Gaussian integration10 ("G") scheme (full tensor product). The propagation of the
nodes through the model is the same as in Listing 2.5, only the number and the values of
the nodes is different. The generation of the orthogonal polynomials (line 9) is similar to
10In this thesis, the terms integration and quadrature are used as synonyms.

20

2.5 EFFICIENCY ASPECTS

Listing 2.6. In line 12, the gPCE (Equation (2.7)) is generated via the quadrature rule. To
determine the statistical moments of the QoI, the same code (lines 7–10) as in Listing 2.6 can
be used. The full UQ stochastic collocation with the pseudo-spectral approach example can be
found in Appendix A.2.3.

1 # creates 2+1 nodes per parameter and corresponding weights according to
2 # the multivariate distribution and the Gaussian integration scheme
3 nodes, weights = cp.generate_quadrature(2, dists, rule="G")
4
5 # 2. propagation
6 solves = [model(p1, p2) for p1, p2 in nodes.T]
7
8 # 3. certification: determine statistics of QoI
9 OP = cp.orth_ttr(2, dists) # creates orthogonal polynomials according the multivariate

10 # distribution using three terms recursion
11
12 gPCE = cp.fit_quadrature(OP, nodes, weights, solves) # generate gPCE

Listing 2.7: Partial example of stochastic collocation with the pseudo-spectral approach with
Chaospy: Generation of nodes and weights according to the quadrature rule and finally gen-
erating the gPCE with the chosen quadrature rule.

Analysis of the three Chaospy code examples

The listings above for the three UQ methods show the basic usage of Chaospy. As already
mentioned, the technical phase of the assimilation and the certification is well supported.

But the propagation is very much up to the developer. The propagation is usually done with a
simple loop over all nodes or with the list comprehension feature of Python. This works well for
academic test functions with low computational costs. However, if the model is more complex,
then it results in long runtimes on a single CPU core. This can be improved by using threads on
a single PC, but if the propagation should be run on a cluster, different techniques are required.
How to generally improve the propagation is part of this thesis and is analysed and improved in
more detail in Chapter 4, and implemented in Chapter 5.

Note that there are similarities between the three UQ methods, but they are also considerably
different. If one wants to change the UQ method, the source code has to be changed. This is
addressed in more detail in Section 5.5, where a software solution is proposed, which is designed
to switch between UQ methods with fewer code changes.

2.5 Efficiency aspects
Usually, when talking about efficiency, the understanding is that something is fast, the used
resources are well used, and less material or time is wasted. However, there exists also the term
effectiveness, which is of importance. [74] contains a more fine-grained definition of efficiency vs
effectiveness:
Efficiency:
• No wasting of materials, energy, efforts, money, and time
• Ability to do things right: well, successfully, and without waste
• Optimise doing: achieve goals fast and with less effort
• Minimise required resources: computational resources, human resources, time
Effectiveness:
• Doing the right things
• Getting things done
• Accuracy and completeness
• Using the correct methods

21

CHAPTER 2 – INTRODUCTION TO UNCERTAINTY QUANTIFICATION:
BACKGROUND AND TOOLKITS

This means that the effectiveness—doing the right thing—should be considered before doing
it efficiently (doing it fast). Or in other words, the goal is to maximise efficiency by minimising
the required resources and fully utilise them.

• High utilisation of
acquired resources

• Using as few resources
as possible

• Fast and easy creation of
results: numbers, tables,
and plots

• Fast understanding of
uncertainty on
investigated models

• As short as possible

• Fast propagation

• Accurate results

• Predictable

• Fast prototyping

• Easy development

• Easy to move from a
development PC to a
production environment
(compute cluster)

• Quickly find the right
method with the right
parameters Development:

time to
solution

Simulation
time

Computational
resources

Interpretation
of results

Figure 2.4: Illustration of defined efficiency aspects (containing effectiveness and efficiency) in
UQ simulations.

In uncertainty quantification, many aspects of effectiveness and efficiency have to be con-
sidered. In the context of this thesis, the efficiency aspects (which contain effectiveness and
efficiency) are specified for the following four categories: development: time to solution, simu-
lation time, computational resources, and interpretation of results. Figure 2.4 illustrates these
efficiency aspects.

1. Development: time to solution defines that one wants to prototype and implement the UQ
simulation source codes fast and with minimal (easy) development effort. Additionally, it
should be easy to move with the UQ simulation from a development PC to a production
environment (computer cluster), which usually provides different and much more comput-
ing resources. Finding the right UQ method with the right parameters can also be very
difficult. Therefore, a change between different methods and their parameters should be
easy and with minimal effort.

2. The simulation time should be as short as possible and the propagation therefore very fast
and with accurate numerical results. Because the UQ simulation can take a lot of time,
the runtime should be predictable such that the user knows when the results are available
for further investigations.

3. Whether on the development PC or on the production (compute) system, the computa-
tional resources (CPUs, memory, nodes, . . .) should be highly utilised for the simulation

22

2.5 EFFICIENCY ASPECTS

time. Performing a UQ simulation should require as few resources as possible.

4. For the users of UQ simulations, the interpretation of results should be easy, i.e. visually
seeing the results with numbers, tables, and plots. They should have easy access to this
data and be able to repeat the certification phase without the need to repeat the whole
propagation phase. A further requirement is that the effects of the uncertainty should be
quickly apparent, which means that a broad spectrum of the statistical data of the QoI is
provided.

23

3 Aspects of code development for quantifying
the uncertainty in classical simulations

This chapter gives an overview of selected aspects that have to be considered when developing
uncertainty quantification simulations for classical simulation scenarios. Some of the information
is common knowledge from selected UQ books and research articles, and some information is
gathered as practical experience during the research and development in the context of this
thesis. These development aspects are additionally considered from the efficiency point of view
whose aspects and requirements are defined in Section 2.5.
First, some academic test functions and models are defined in Section 3.1 for presenting and

discussing various aspects. Then, Section 3.2 discusses how to select a suitable UQ method
and how to find a proper setup of the UQ-method-specific parameters in Section 3.3. This is
followed by the uncertain parameter modelling in Section 3.4 and the interpretation of simulation
results in Section 3.5 including the representation of uncertainty, the uncertain model parameter
analysis via sensitivity indices, the reconstruction of the QoI distribution and the model function
via the constructed gPCE.

3.1 Academic test functions and models
Two academic test functions and a simple ordinary differential equation (ODE) are defined and
described in the following sections. These functions and the ODE are used for the discussion of
the selected development aspects. The two academic test functions will be additionally relevant
in Chapter 4.

Example 1: Simple test function
As a simple test function, fex1 is defined as follows

fex1 = 2(e5·|x| + max(y, 0) + 0.2 · |z|) . (3.1)

The function contains three continuous parameters x, y, and z defined on R, which can be
assumed to be uncertain, and different probability distributions can be applied to model the
random variables. The value of interest is the result of the fex1(x, y, z) ∈ R function. fex1
is used in this chapter to discuss and demonstrate various aspects of UQ simulations, and in
Chapter 4 to serve as a test model for the runtime prediction mechanism proposed in Section 4.5,
because it can produce a similar function shape and behaviour of the runtime, but with smaller
values as in the runtime and scheduling behaviour results of scenario 2: evacuation of a building
with separated families in Section 6.4. This makes it a perfect candidate to develop and test
new ideas efficiently.
For the usage of fex1 in this thesis, the parameter support is mostly used in a defined value

range, which is documented in Table 3.1.

25

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

Parameter Minimum Maximum
x 0.1 0.5
y 0.8 1.2
z 1.4 1.8

Table 3.1: Parameters with defined minimum and maximum values for the model function
fex1 (Equation (3.1)).

Figure 3.1 shows the resulting 2D function surface of fex1 for the three combination possibilities
of the x, y, and z parameters. This gives an overview of the function shape and the expected,
resulting values.

X

0.100.150.200.250.300.350.400.450.50

Y

0.80
0.85

0.900.951.001.051.101.151.20

fex1

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

(a) fex1 for x/y variation

X

0.100.150.200.250.300.350.400.450.50

Z

1.40
1.45

1.501.551.601.651.701.751.80

fex1

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

(b) fex1 for x/z variation

Y

0.800.850.900.951.001.051.101.151.20

Z

1.40
1.45

1.501.551.601.651.701.751.80

fex1

11.2

11.4

11.6

11.8

12.0

(c) fex1 for y/z variation

Figure 3.1: Visualisation of the resulting function surface of fex1 (Equation (3.1)) for varying
values of the input parameters: (a) contains the resulting fex1 values for the x/y parameter
variation, (b) for x/z, and (c) for y/z.

Example 2: Function with discontinuity
As a second academic test function, fex2 is defined as

fex2 = e−x
2+2 sign(y) + z . (3.2)

This function is more challenging to use in uncertainty quantification compared to fex1, because
its discontinuity may involve some numerical errors, which makes it a good choice to study
the accuracy of various UQ methods. The function is proposed in [49] with the two parameters
x ∈ R and y ∈ R, to investigate gPCE based methods in combination with sparse grids collocation
schemes. In this thesis, a third parameter z ∈ R is introduced to have a more challenging three-
dimensional uncertain problem. The value of interest is the result of fex2 ∈ R. fex2 is used in
this chapter to discuss and demonstrate various aspects of UQ simulations, and in Chapter 4 to
serve as a test model with a non-smooth behaviour to simulate waiting times for the evaluation
of the runtime prediction quality.
The parameter values for fex2 are mainly used within the minimum and maximum values

defined in Table 3.2.

Parameter Minimum Maximum
x -2.5 2.5
y -2.0 2.0
z 5.0 15.0

Table 3.2: Parameters with defined minimum and maximum values for the model function
fex2 (Equation (3.2)).

26

3.1 ACADEMIC TEST FUNCTIONS AND MODELS

The resulting 2D function shape of fex2 is visible in Figure 3.2. It contains a plot for each of
the three combinations of the x, y, and z parameters. As can be seen in the left (a) and the
right (c) plot of Figure 3.2, the y parameter has a discontinuity at 0, which makes it hard for
polynomials to accurately cover its shape.

X

2 1 0 1 2

Y

2.0
1.5

1.00.50.00.51.01.52.0

fex2

11
12
13
14
15
16
17

(a) fex2 for x/y variation

X

2 1 0 1 2

Z
6

8
10

12
14

fex2

6

8

10

12

14

(b) fex2 for x/z variation

Y

2.01.51.00.50.00.51.01.5 2.0

Z
6

8
10

12
14

fex2

6
8
10
12
14
16
18
20
22

(c) fex2 for y/z variation

Figure 3.2: Visualisation of the resulting function surface of fex2 (Equation (3.2)) for varying
values of the input parameters: (a) contains the resulting fex2 values for the x/y parameter
variation, (b) for x/z, and (c) for y/z.

Example 3: Simple ODE
For an academic example of an ordinary differential equation (ODE), a predator-prey population
problem of the form

Ċ = (−γ + δS)C
Ṡ = (α− βC)S

(3.3)

is chosen. The predators are considered as “coyote” and the prey as “sheep”. It is a dynamical
system with a Lotka-Volterra based model [203], and the following parameters with the used
value range are documented in Table 3.3. The six parameters may be assumed to be uncertain
and allow to study different aspects of UQ methods in the following sections.

Parameter Description Minimum Maximum
C population size coyote 30.0 70.0
γ death rate coyote 0.000,5 0.000,51
δ augmentation 1.5 3.5
S population size sheep 1,500.0 2,500.0
α birth rate sheep 0.005 0.005,09
β voracity coyote 0.000,001,8 0.000,002,0

Table 3.3: Parameters with defined minimum and maximum values for Equation (3.3) as the
model function.

The ODE is considered as an initial value problem and solved numerically using the
scipy.integrate.ode.solve_ivp1 function, which is configured to use a backward differen-
tiation formula (BDF) to solve Equation (3.3) iteratively. The time step size is set to 0.01, and
the simulation stops after 70∗365 = 25,550 time units, which can be interpreted as a simulation
of 70 years. Equation (3.3) is used in this chapter to discuss and demonstrate various aspects of
UQ simulations. Because the ODE is iteratively solved and the population size data of the sheep

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

27

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

and the coyote are available for every time step, this offers additional analysis and visualisation
possibilities for UQ simulations.

Figure 3.3 shows the resulting values of the dynamical system for a fixed set of the parameter
values: The population size of the sheep S are plotted in Figure 3.3(a) and the population size
of the coyote C in Figure 3.3(b). It nicely shows the dynamics of the system and the alternating
growth and shrinkage of both populations.

0 10 20 30 40 50 60 70
time (t) - years

2000

2500

3000

3500

po
pu

la
tio

n
si

ze

(a) Sheep population

0 10 20 30 40 50 60 70
time (t) - years

50

100

150

200

250

po
pu

la
tio

n
si

ze

(b) Coyote population

Figure 3.3: Visualisation of the resulting population sizes of the predator-prey population
problem of Equation (3.3). Figure 3.3(a) shows the population size S of the sheep, and
Figure 3.3(b) the population size C of the coyote. The initial parameters values used for the
simulation are: C = 50, γ = 0.0005, δ = 2.5, S = 2000, α = 0.005, and β = 0.0000019.

A more general overview of the possible results of Equation (3.3) within the defined parameter
value ranges of Table 3.3 is given by the attractors in Figure 3.4. It shows the possible population
values in relation to the two populations of coyote and sheep and gives a first impression of the
impact on the uncertainty of the six parameters. It can be seen that β, S, C, and δ, have a lot
of impact on the population sizes, while γ and α do have little.

2000 2500 3000 3500 4000
Sheep population size

50

100

150

200

250

300

C
oy

ot
e

po
pu

la
tio

n
si

ze

(a) Population attractor ()

1500 2000 2500 3000 3500 4000 4500
Sheep population size

0

100

200

300

400

C
oy

ot
e

po
pu

la
tio

n
si

ze

(b) Population attractor (S)

2000 2500 3000 3500 4000
Sheep population size

50

100

150

200

250

300

C
oy

ot
e

po
pu

la
tio

n
si

ze

(c) Population attractor (C)

2000 2500 3000 3500
Sheep population size

50

100

150

200

250

C
oy

ot
e

po
pu

la
tio

n
si

ze

(d) Population attractor ()

2000 2500 3000 3500
Sheep population size

50

100

150

200

250

C
oy

ot
e

po
pu

la
tio

n
si

ze

(e) Population attractor ()

2000 2500 3000 3500 4000
Sheep population size

100

200

300

400

500

C
oy

ot
e

po
pu

la
tio

n
si

ze

(f) Population attractor ()

Figure 3.4: Visualisation of the attractors for the resulting values of Equation (3.3) in relation
of the coyote C and the sheep S population sizes. For each parameter in Table 3.3, the
attractor is plotted to see the individual impact of the parameter to the resulting population
sizes and the dynamics of the system.

28

3.2 SELECTING A SUITABLE UQ METHOD

3.2 Selecting a suitable UQ method
In the standard literature [123, 178, 186] for UQ, a basic description of the various UQ methods
and its properties is present. But there is no general guideline documented on how to choose a
suitable UQ method for the underlying problem. UQ is a young field that is actively developed
and in the focus of today’s research, which constantly presents many improvements in different
directions and UQ methods. In [53], the authors could not even find a common notation to
define a common thread throughout the different contributions, which shows the diversity and
the huge field of the different UQ methods and possible fields of application.
In this section, also, no general guideline on how to select a proper UQ method for a given

problem is defined to avoid the dilemma mentioned above. Instead, several aspects are discussed
in the following, which play a significant role when choosing a UQ method. Primarily, the
described non-intrusive forward UQ methods in Section 2.2 are used for the discussion with
some citations and side nodes for other methods or appropriate improvements.

Number of uncertain input parameters
The number M of uncertain parameters ζ does play a significant role to apply gPCE based
UQ methods. For the stochastic collocation with the pseudo-spectral approach (Section 2.2.2),
the full tensor grid with Q = qM collocation points is required to solve the coefficients cj
(Equation (2.14)) of the gPCE uN (x, t, ζ) (Equation (2.7)). For the point collocation method
(Section 2.2.3), the number of uncertain parameters influences the N + 1 (Equation (2.8))
number of expansion terms to solve Equation (2.20), which requires ≥ (N+1) model evaluations.
Depending on the runtime of the model, gPCE based methods are feasible for low (1–3) to mid
(4–12) number of uncertain parameters M . In combination with different techniques such as
sparse grids [34], M can be higher but do reach a certain limit.

If a high number of uncertain parameters M is given, then Monte Carlo (Section 2.2.1)
based methods are a good choice, because their convergence does not depend on the number of
uncertain parameters M .

Numerical stability of QoI (smoothness)
To achieve a certain level of accuracy for the QoI, proper settings for the UQ methods have to
be found. This depends strongly on the shape and the smoothness of the model function whose
uncertainty should be quantified. For non-smooth functions, gPCE based methods are not the
first choice because the polynomials cannot cover discontinuities or steep gradients well [66].
With a high number of collocation points per parameter q, the accuracy can be improved, but
not perfectly. Improvements, such as adaptive methods [200, 38, 40] may then be a good choice.
It also depends on the required statistical moments for the QoI. For the mean µ, fewer model

evaluations are usually required for gPCE based methods as well as for Monte Carlo based
methods. For higher statistical moments, such as the variance σ2 or the percentiles, more
information and therefore more model evaluations are required. Here, the Monte Carlo based
methods suffer from the slow convergence rate, and the gPCE based methods have an advantage.

Representation of the QoI
The required representation for the QoI does also play a significant role in the choice of the UQ
method. If only the statistical moments such as the mean µ or the variance σ2 are required,
sampling methods such as Monte Carlo are also suitable. If the whole solution U(x, t, ζ) of the
model function is required, then gPCE based methods can be used, because they can provide
a solution of the model under uncertainty in form of the gPCE expansion, e.g. uN (x, t, ζ) in
Equation (2.7).

29

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

If for a Monte Carlo simulation the propagation through the model has already been per-
formed, then it is possible via the point collocation method Section 2.2.3 to create the gPCE
afterwards, which allows generating the gPCE with a certain accuracy.

Runtime of a model and available computational power
The available computational power does also play a significant role in the choice of the UQ
method when performing the UQ simulations. The limiting factor is usually the runtime of a
single black-box model evaluation for non-intrusive forward UQ problems. Hence, UQ methods
with fewer model evaluations such as the gPCE based methods do have an advantage over the
sampling-based methods.
Because of the long runtimes of the model, it is often required to perform the model evaluations

in parallel on large and distributed computing centres such as HPC systems. The advantage of
the non-intrusive UQ methods is that the parallelisation of the individual black-box model runs
can be embarrassingly parallel. As the analysis in Section 4.4.2 shows, here, a lot of potential
for improvement is available, which is the topic of Section 4.6. Case studies for the improved
scheduling can be found in Chapters 6 and 7 as well as in [103].
If the results for a UQ simulation are required for real-time decision-making, it is often not

feasible to use the model directly for the propagation of the uncertainties. In such cases, it is
possible to use a surrogate model representation with faster evaluations instead, as proposed
in Section 4.7. The surrogate model contains only a subset of the information of the original
model and introduces an additional source of errors. A case study can be found in this thesis in
Section 6.5 and in [28].

Stochastically dependent uncertain input parameters
Usually, stochastically independent random variables are assumed as the uncertain parameters
for UQ problems. The gCPE based methods profit heavily from this assumption in the small
number of required model evaluations compared to sampling-based methods. If stochastic de-
pendent input parameters are given for a UQ problem, Monte Carlo based methods can be used.
In [42], the authors propose a new approach for handling dependent input variables for gPCE
based methods by transforming the input parameters and decorrelating the orthogonal basis,
even for multivariate probability distributions.

When dealing with UQ simulations with a large-scale simulation scenario, it is an advantage
if it is easy to switch between the UQ methods without changing a lot of source code. Es-
pecially if the proper UQ method is not yet known, or a test run with a different UQ method
should be performed for comparison purposes. The UQEF framework does support different UQ
methods (see Section 5.5), and no source code changes are necessary to change the UQ method.
Additionally, its software design allows to develop and integrate new UQ methods easily.
Table 3.4 summarises the discussed aspects and gives a coarse overview of a possible situation

and the aptitude of the discussed UQ methods, which are also available in the UQEF framework.

30

3.2 SELECTING A SUITABLE UQ METHOD

Stochastic
dimensionality

Smoothness
of model QoI represantation Model

runtime
Parameter

dependency UQ method

low/mid high smooth non-smooth statistical
moments

full solution
of U(x, t, ζ) short long independent dependent MC gPCE

x x x x x 1 1
x x x x x 1 1
x x x x x 3 1
x x x x x 3 1
x x x x x 2∗) 1
x x x x x 2∗) 1
x x x x x 3 1
x x x x x 3 1
x x x x x 1 2
x x x x x 1 2
x x x x x 3 2
x x x x x 3 2
x x x x x 2∗) 2
x x x x x 2∗) 2
x x x x x 3 2
x x x x x 3 2

x x x x x 1 3
x x x x x 1 3
x x x x x 3 3
x x x x x 3 3
x x x x x 2∗) 3
x x x x x 2∗) 3
x x x x x 3 3
x x x x x 3 3
x x x x x 1 3
x x x x x 1 3
x x x x x 3 3
x x x x x 3 3
x x x x x 2∗) 3
x x x x x 2∗) 3
x x x x x 3 3
x x x x x 3 3

Table 3.4: Choice of UQ method depending on various aspects. The Monte Carlo based
methods (MC) and the gPCE based methods are categorised with: 1 = good, 2 = possible
with extensions—but somehow limited, 3 = not good. ∗) Denotes Monte Carlo with the
extension of the point collocation method.

31

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

3.3 Parameter selection for UQ simulations
Once a proper UQ method is chosen, e.g. with considering the discussed aspects of Section 3.2
and using Table 3.4, then further method-specific details have to be specified.

For Monte Carlo based methods, the number of samples M that should be used for the
propagation have to be determined. There is no general rule, but usually, a largeM is needed
because of the slow convergence rate, depending on the smoothness of the model function f and
the required statistical moments. In [110, 133], there are methods and hints on how to determine
the number of required samplesM for Monte Carlo based methods.
For the stochastic collocation with the pseudo-spectral approach, the number of N + 1 terms

(Equation (2.8)) of the expansion depending on the number M of uncertain parameters ζ =
(ζ1, . . . , ζM) and the highest order P of the orthogonal polynomials Φj(ζ), as well as the number
of collocation points Q (Equation (2.14)) to compute the coefficients cj in Equation (2.14)
have to be defined. Since the Gaussian quadrature is used in Equation (2.14) with Q = qM

collocation points zi, a polynomial representing the model function f with a degree of up to
2Q+1 can be exactly approximated [212]. Because the polynomial degree of f is often unknown
(or the model does not have a polynomial representation) for large-scale scenarios, it is hard to
determine Q and therefore also the number of collocation points q per uncertain parameter ζ.
In [34], the connection between the highest order P of the orthogonal polynomials and the q
number of collocation points q per uncertain parameter suggests q = 2P + 1, which results in
Q = qM = (2P + 1)M total number of collocation points.
Another way of determining P and q for large-scale simulation scenarios is a parameter study.

The values of P and q are iteratively increased until the mean and the variance are stabilising.
For a scalar QoI this means that the changes of the values (between the increasing steps of P
and q) for the mean µ or the variance σ2 does not exceed a certain threshold. If the QoI is a time
series, then the mean and especially the variance may be oscillating heavily between subsequent
points in time if P and q are not properly set. After enough information are available, and
P and q are high enough and do fit properly together, the values are going to stabilise and
do not oscillate that much. Because the µ can be obtained by only determining c0 according
to Equation (2.17), and for the variance σ2 also the other coefficients cj , j > 1, . . . , N are
required (Equation (2.18)), the variance σ2 is more fragile than the mean µ. The developed
UQEF software framework does support such parameters studies through its outer-loop support.
Details can be found in Section 5.7.
In the context of this work, it is shown that q should always satisfy q ≥ P . For q ≤ 6, good

results have been achieved with q = P , and for q > 6 it showed that P should be fixed at
P = 6 or 7 for M = 1, . . . , 4 number of uncertain parameters. However, this depends very much
on the underlying model function f and is therefore hard to generalise.

3.4 Uncertain parameter modelling
The identification and the modelling of the uncertain parameters of a model is a very important
part of the assimilation phase in UQ. If the distribution of the parameters is well known and
do follow one of the well known probability distributions (e.g. uniform, Gaussian, . . . , c.f.
Table 2.2), then the whole assimilation phase is easy to handle.
For complex, large-scale simulation scenarios, this is often not exactly known [123] and the

uncertain input parameters of the model have to be analysed first, to find proper approaches to
model them as uncertain variables. Here, the whole field of parameter estimation [97, 10] can
be used.
In this thesis, two further possibilities are taken into account: The “interview with domain

experts” and the “automatic measurement-driven distribution generation”, which are briefly

32

3.4 UNCERTAIN PARAMETER MODELLING

described in the following.

Interview with domain experts
For certain fields, such as the field of pedestrian dynamics (Chapter 6), where behavioural pa-
rameters of humans are taken into account, often no or not many experiments can be performed
to quantitatively determine the setup for the uncertain parameters. In such cases, interviews
with domain experts may help to determine valid lower and upper bounds for certain parameters,
or to find valid probability distributions with its specific setup. For the pedestrian dynamics
scenarios in Section 6.3 and Section 6.4, the probability distributions for the uncertain param-
eters have been determined through interviews with psychologists who scientifically investigate
human behaviour in specific situations (e.g. in emergency situations [175, 174, 30, 32, 31]),
which was very helpful to find a proper setup for the UQ simulations.

Automatic measurement-driven distribution generation
Another way—especially in physical systems—to find proper probability distributions is to ob-
serve the possible values for the input parameters. Once, a set of data χ = {χ1, χ2, . . . , χNχ}
with Nχ values could be observed for an uncertain parameter ζ, it can be processed by auto-
matic measurement-driven distribution generation to obtain a probability distribution that can
be used for uncertainty quantification.
For the automatic measurement-driven process, kernel density estimation (KDE) [57] is used.

It estimates the probability density function (PDF) of a random variable based on observed
values χ. In a univariate KDE driven process, the PDF can be approximated as follows

PDFh(x) = 1
Nχ

Nχ∑
i=1

Kh(x− χi) = 1
Nχh

Nχ∑
i=1

K
(x− χi

h

)
(3.4)

using a kernel K and a smoothing operator h, which is also known as the bandwidth. It is
important to choose the bandwidth h properly to obtain good results for the density. Here, the
Scott-Silverman [164, 169] rule of thumb

h = 1.06min
{
σ,

IQR
1.34

}
N−1/5
χ (3.5)

is used, where IQR denotes the interquartile range, which contains 50 percent of the values
around the mean µ. Several types of kernels K exist [57]. In this thesis, a Gaussian kernel in
the following form

K(x) := 1√
2π

exp
(
−1

2x
2
)

(3.6)

is used. In [35], it is shown that the choice of the kernel does not have a strong effect on the
resulting error. Obviously, Gaussian kernels are well suited to estimate Gaussian distributed
data and may not be the best choice, e.g. for uniformly distributed data.
The KDE based constructed PDF of Equation (3.4) is then used in the assimilation phase

of a UQ simulation to generate the nodes ni on which the model function f is sampled in
the propagation phase. It can be used for both, Monte Carlo based UQ simulations as well
as for gPCE based method like the stochastic collocation with the pseudo-spectral approach
(Section 2.2.2) as presented in [35].
In the context of this work, a KDE based distribution called sample_dist with its construction

function SampleDist has been implemented and merged into the Chaospy library. SampleDist
creates an object of the sample_dist distribution which is derived from the Chaospy Dist class

33

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

and is therefore fully integrated into Chaospy with the same functionality as the other pro-
vided probability distributions. It uses the Gaussian kernel (Equation (3.6)) implementation
(gaussian_kde) from the scipy.stats Python package to construct the kernel based on the
given observations χ. The KDE is configured to use the described Scott-Silverman rule of thumb
in Equation (3.5) to determine the bandwidth h automatically.
Listing 3.1 shows an example of how to use the SampleDist function to construct a probability

distribution. For that, some “observed” data (χ) is simulated by drawing them from a N(0, 1)
probability distribution (lines 6–7). In line 10, the probability distribution sample_dist is
created using the SampleDist function. It requires only the observed data observed_samples
to automatically construct the probability distribution. The distribution object sample_dist
can then be used as a regular Chaospy distribution: e.g. for drawing samples as shown in line
11, or to generate nodes and weights to perform a gPCE based UQ simulation as explained in
Listing 2.7.

1 import chaospy as cp
2
3 num_samples = 10000
4
5 # simulate observed values for an uncertain parameter
6 example_dist = cp.Normal(0, 1)
7 observed_samples = example_dist.sample(num_samples)
8
9 # automatic measurement-driven distribution generation with SampleDist

10 sample_dist = cp.SampleDist(observed_samples)
11 generated_samples = sample_dist.sample(num_samples)

Listing 3.1: Example of creating the KDE based sample_dist distribution using the SampleDist
function of the Chaospy library.

Figure 3.5 contains the histogram and the PDF of the observed (given) data compared to
the sampled (generated) data with SampleDist. It can be seen that they qualitatively have a
similar shape. Figure 3.6 further shows the mean µ, the standard deviation σ, as well as the p5
and p95 percentile of both, the observed (given) distribution in Figure 3.6(a) and the sampled
(generated) distribution in Figure 3.6(b). Again, the shape of the values looks qualitatively
similar.

4 2 0 2 4
parameter range

0.0

0.1

0.2

0.3

0.4

de
ns

ity

(a) Given/observed parameter samples

4 2 0 2 4
parameter range

0.0

0.1

0.2

0.3

0.4

de
ns

ity

(b) Generated parameter samples

Figure 3.5: Histogram of the observed (given) data in (a) for a given N(0, 1) distributed
parameter and the sampled (generated) data in (b). For the generation of the data, a sample
size of 10,000 and the SampleDist function based on KDE is used.

34

3.5 INTERPRETATION OF SIMULATION RESULTS

3 2 1 0 1 2 3
parameter range

0.0

0.1

0.2

0.3

0.4
de

ns
ity

(a) Given/observed distribution
PDF

p5
p95

3 2 1 0 1 2 3
parameter range

0.0

0.1

0.2

0.3

0.4

de
ns

ity

(b) Generated distribution
PDF

p5
p95

Figure 3.6: Probability density function and statistical moments (mean µ, standard deviation
σ, and p5 and p95 percentiles) for the observed (generated) probability distribution in (a) for
a given N(0, 1) distributed parameter, and the sampled (generated) probability distribution
in (b). For the generation of the data, a sample size of 10,000 and the SampleDist function
based on KDE is used.

The probability distributions are further analysed using different sample sizes (100, 500, 1,000,
5,000, 10,000, 50,000, and 100,000) and comparing the statistical moments of the observed
(given) distribution to the sampled (generated) distribution. The errors are determined by
taking the absolute values of the differences for each statistical moment: e.g. the error εµ for
the mean µ is determined with εµ = |µobserved − µgenerated|. The results are listed in Table 3.5.
As expected, with an increasing sample size, the errors are going to be smaller. Hence, the more
observed data are available for an uncertain parameter, the better the generated probability
distribution.

Number of samples
100 500 1,000 5,000 10,000 50,000 100,000

εµ 0.131 0.048 0.008 0.009 0.020 0.001 0.002
εσ 0.073 0.038 0.015 0.027 0.019 0.008 0.003
εp5 0.303 0.128 0.063 0.019 0.011 0.011 0.004
εp95 0.239 0.037 0.069 0.035 0.012 0.001 0.012

Table 3.5: Error comparison of measurement-driven generated probability distribution for var-
ious statistical moments compared to the original used N(0, 1) distributed probability distri-
bution for different sample sizes.

The kernel density estimation technique is also available for multivariate random variables, as
described in [165]. In this thesis, only the univariate case is considered, because Chaospy easily
offers to create multivariate probability distributions with its join operator J (c.f. Listing 2.4)
given multiple univariate probability distributions.
The SampleDist functionality is further used in Section 3.5, which offers additional use cases.

3.5 Interpretation of simulation results
In computational science and especially in UQ, it is very important to present the results of
simulations in such a way that the users can easily understand the numbers and use them for
decision-making. A general introduction to the visualisation of data can be found in [13, 89, 207].

35

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

In Section 2.5, the interpretation of the results of a UQ simulation has also been identified
as an important aspect to understand the influence of the uncertainty efficiently. The different
aspects are discussed separately in: representation of uncertainty, uncertain model parameter
analysis via sensitivity indices, reconstruction of the QoI distribution, and reconstruction of the
model function via the constructed gPCE.

Representation of uncertainty
The representation of uncertainty is also an own sub-area of current research [65, 88, 84, 11, 68,
70, 83, 44] in the broad field of UQ.
In many UQ related research articles, often only the resulting mean µ and the variance σ2

of the last time step of the model is calculated. The case studies in Chapters 6 and 7 consider
dynamical models that evolve over time. For these models, representing the QoI with the mean
µ and the variance σ2 or standard deviation σ give useful information—but how the uncertainty
evolves cannot be answered.
In this thesis, it is proposed to consider the OoI for the model time steps from the beginning of

the simulation until the end, and calculating the QoI for every time step. This gives additional
valuable information because it shows how the uncertainty evolves in the model during the
simulation. For that, the OoI has to be extracted for every time step, and the QoI also needs
to be calculated for these time steps. This requires additional computational effort for the
certification phase of a UQ simulation. For the propagation phase, only the extraction of the
VoI for every time step can be interpreted as additional effort, the number of required model
evaluations do not change.
The visualisation of the QoI is very domain-specific, which means that it depends strongly on

the model and its OoI. Often, the QoI values have to be mapped back into the model’s domain
(e.g. into the map) to give useful information. Therefore, it is not possible to define a “standard”
visualisation scheme; every model has to be considered individually.
As an example, Equation (3.3) is used as the model to demonstrate the QoI representation

for every time step. All six parameters of Table 3.3 are considered to be uncertain. The defined
probability distributions are listed in Table 3.6. Due to demonstration purposes, the probability
distributions and their parameters are chosen based on some practical experience and do not
represent a specific scenario, but it is well suited for showing the time stepwise OoI extraction
and QoI representation.

Parameter Description Distribution
C population size coyote N(50, 2)
γ death rate coyote U(0.0005, 0.00051)
δ augmentation N(2.5, 0.1)
S population size sheep N(2000, 10)
α birth rate sheep U(0.00501, 0.00509)
β voracity coyote U(0.0000018, 0.0000020)

Table 3.6: Defined uncertain parameters for the simple ODE Equation (3.3) as the model
function with associated probability distributions.

For the example UQ simulation, stochastic collocation with the pseudo-spectral approach is
chosen. As the highest order of the orthogonal polynomials P = 2 is set, and the number of
collocation points for each parameter is q = 6, which results in Q = 66 = 117,649 number of
total collocation points.
Table 3.7 lists the QoI statistics for the population size of the sheep and the coyote for the

last step of the simulation. With the values of the statistical moments, it can be seen that the

36

3.5 INTERPRETATION OF SIMULATION RESULTS

Sheep Coyote
µ 1,901.4 119.2
σ 65.5 37.7
σ2 4,294.3 1,427.0
p5 1,796.0 58.9
p95 2,007.5 179.3

Table 3.7: QoI statistics of Equation (3.3) for the last time step of the simulation for the
population size of the sheep and the coyote.

uncertain parameters influence the population size. But only looking at QoI of the last time
step, does not give an impression of the model behaviour under the given uncertainty.

With the proposed way of calculating the QoI for every time step and plotting the data prop-
erly, the QoI for the population sizes gives the impression of the uncertain influence: Figure 3.7(a)
shows the mean population size µ(S) with the p5 and p95 percentiles. The corresponding stan-
dard deviation σ is plotted in Figure 3.7(b). It can be seen that the most uncertainty is in

0 10 20 30 40 50 60 70
time (t) - years

2000

2500

3000

3500

4000

po
pu

la
tio

n
si

ze

(a) Statistics of sheep population S

(S) p5(S) p95(S)

0 10 20 30 40 50 60 70
time (t) - years

0

100

200

300
po

pu
la

tio
n

si
ze

(b) (S) of evacuation time

(S)

Figure 3.7: QoI results for the sheep population size S for Equation (3.3) with all six parameters
of Table 3.6 as uncertain input. (a) shows the mean µ(S) and the percentiles (p5(S) and
p95(S)) for each time step; (b) shows the corresponding standard deviation σ(S) for every
time step.

the growth cycles of the sheep, while in the down cycles (shrink of sheep population), the un-
certainty is much smaller. During the time, the standard deviation σ is increasing. The QoI
for the population size of the coyote given in Figure 3.8 shows a similar behaviour, with more
uncertainty in the growth cycle and an increasing standard deviation σ(C) over time.
This example shows that with the generation of the QoI for every time step and a proper

visualisation and representation of the QoI values, it is possible to efficiently understand the
influence of the uncertainty for a model. It allows to gain additional insights, which is not
possible by only considering the QoI of the last time step of a simulation.

Uncertain model parameter analysis via sensitivity indices
After having a first impression of the influence of the uncertainty during the QoI statistics above,
the next question arises: Which parameter has the most influence on the uncertainty, and is the
influence the same for the whole simulation time? To answer that, a global sensitivity analysis
with the gPCE uN (x, t, ζ) of Equation (2.7) as the surrogate has been performed on top of the
UQ analysis as described in Section 2.3.

37

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

0 10 20 30 40 50 60 70
time (t) - years

100

200

300

po
pu

la
tio

n
si

ze
(a) Statistics of coyote population C

(C) p5(C) p95(C)

0 10 20 30 40 50 60 70
time (t) - years

0

20

40

60

po
pu

la
tio

n
si

ze

(b) (C) of evacuation time

(C)

Figure 3.8: QoI results for the sheep population size C for Equation (3.3) with all six parameters
of Table 3.6 as uncertain input. (a) shows the mean µ(C) and the percentiles (p5(C) and
p95(C)) for each time step; (b) shows the corresponding standard deviation σ(S) for every
time step.

Figure 3.9(a) shows the first-order sensitivity indices for the population size of the sheep. It
can be seen that the voracity β of the coyote contributes most to the VoI. The second most
influence have the parameters C (initial population of coyote) and δ (augmentation rate). It
can be seen that in the shrinkage phase of the sheep, β becomes less relevant while C and δ
contribute more to the VoI. In the start of the shrinkage phase of the sheep, S and γ contribute
to the VoI, and α contributes in the growth phase of the sheep. On si_int, it becomes visible
that on the shrinkage phase, there is some interaction between the parameters. The total-order
sensitivity indices in Figure 3.9(b) show that β contributes most, followed by C, δ, and the
others.

0 10 20 30 40 50 60 70
time (t) - years

0.00

0.25

0.50

0.75

1.00

so
bo

l i
nd

ic
es

(a) First order sensitivity indices

si_
si_S

si_C
si_

si_
si_

si_int.

0 10 20 30 40 50 60 70
time (t) - years

0.00

0.25

0.50

0.75

1.00

so
bo

l i
nd

ic
es

(b) Total sensitivity indices

st_
st_S

st_C
st_

st_
st_

Figure 3.9: Sensitivity indices for the population size of the sheep with all of the six uncertain
parameters (Table 3.6) for Equation (3.3). (a) shows the first-order sensitivity indices and (b)
shows the corresponding total-order sensitivity indices.

The sensitivity indices for the population size of the coyote can be found in Figure 3.10. It can
be seen that β has the most influence again, but oscillates much more than for the population
size for the sheep. The parameters C and δ do have a lot of influence in the first cycles but then
do have little until the end of the simulation time. γ, α, do contribute little at the beginning,
but do then contribute more in the shrink and grow cycles. The initial population size S of
the sheep do have less influence on the VoI during the whole simulation time. The interaction

38

3.5 INTERPRETATION OF SIMULATION RESULTS

0 20 40 60
time (t) - years

0.00

0.25

0.50

0.75

1.00
so

bo
l i

nd
ic

es

(a) First order sensitivity indices

si_
si_S

si_C
si_

si_
si_

si_int.

0 10 20 30 40 50 60 70
time (t) - years

0.00

0.25

0.50

0.75

1.00

so
bo

l i
nd

ic
es

(b) Total sensitivity indices

st_
st_S

st_C
st_

st_
st_

Figure 3.10: Sensitivity indices for the population size of the coyote with all of the six uncertain
parameters (Table 3.6) for Equation (3.3). (a) shows the first-order sensitivity indices and (b)
shows the corresponding total-order sensitivity indices.

between the parameters is less in the beginning and do increase over time for some cycles.
If it is of interest which parameters do interact with each other, then the higher-order sen-

sitivity indices of Equation (2.27) can be computed to answer that. The sensitivity indices do
greatly answer the amount of contribution, but they do not give the information why. For this,
the equations of the model have to be analysed.
Here, it is also important to not only calculate the sensitivity indices for the last time step,

because in such dynamical systems as in the Lotka-Volterra based model of Equation (3.3),
additional knowledge about the uncertain parameter behaviour can be obtained by studying the
sensitivity indices for the whole time series. With such a technique, the questions above, which
uncertain parameters contribute most, and does the contribution change during the simulation
time, can be answered.
An additional use case arises with the knowledge of the contribution of the uncertain pa-

rameters: After identifying the most important parameters with a low number of collocation
points q for each parameter, the simulation can be repeated with only these parameters, but
with higher q, to obtain better results with less computational effort, compared to the use of
all uncertain parameters. This technique is stated as stochastic dimensionality reduction (or
two-step strategy) [183], and can also be used in more advanced reduction techniques such as in
an adaptive multi-level UQ as described in [39, 38].

Reconstruction of the QoI distribution
The resulting QoI of a UQ analysis is usually expressed with some statistical moments such as
the mean µ and the variance σ2. This gives already very useful information, especially if the
statistical moments are determined for all time steps of a dynamical model, as already discussed
above. But sometimes, a probability distribution of the OoI should be the result for the QoI.
This construction of the probability distribution as the QoI is discussed in the following for
Monte Carlo based methods as well as for gPCE based methods.
For Monte Carlo based methods, the SampleDist functionality (introduced above), can be

used. All gathered VoIs can be given as observations into SampleDist (cf. Listing 3.1), which
generates a KDE based probability distribution.
For gPCE based methods, it is more complicated because the information is contained in the

coefficients cj in combination with the orthogonal polynomial Φj(ζ). Right now, there is no
method known by the author of constructing the probability distribution directly. Instead, the
constructed uN (x, t, ζ) is used as a surrogate model for a secondary UQ simulation based on

39

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

Monte Carlo samples. For that, the same probability distributions are used as for constructing
uN (x, t, ζ). The results of the secondary Monte Carlo simulation are then the observed VoIs,
which can then be used with a KDE to create a probability distribution.
A function called QoI_Dist is implemented in Chaospy, which takes a gPCE object, a (multi-

variate) distribution object and the number of samples for the secondary Monte Carlo simulation
as input. The result is a probability distribution, more concrete, a sample_dist object. The
function performs an internal Monte Carlo simulation with the given number of samples using
the implemented SampleDist function to construct a KDE based probability distribution object
of the sample_dist class. As part of this work, this implementation is upstreamed into the
Chaospy library.

Listing 3.2 shows a usage example of the QoI_Dist function. It is assumed that the (multivari-
ate) distribution and the gPCE have already been constructed with either the pseudo-spectral
approach (Section 2.2.2) or with point-collocation (Section 2.2.3). Then, in line 4, the QoI_Dist
function is called with the gPCE and the distribution object as well as with the number of
samples for the Monte Carlo simulation, hereM = 10,000. The result is a qoi_dist object of
the sample_dist class, which can then be used as any other Chaospy distribution.

1 #dist = ...
2 #gPCE = cp.fit_quadrature(...)
3
4 qoi_dist = cp.QoI_Dist(gPCE, dist, 10000)

Listing 3.2: Example of creating the QoI distribution based on sample_dist using the QoI_Dist
function of the Chaospy library.

As an example, the QoI_Dist function is used together with the academic test functions
fex1 (Equation (3.1)) and fex2 (Equation (3.2)). The uncertain parameters with their defined
probability distribution are defined in Tables 3.8 and 3.9 for fex1 and fex2, respectively.

Parameter Distribution
x U(0.1, 0.5)
y U(0.8, 1.2)
z U(1.4, 1.8)

Table 3.8: Defined uncertain parameters for
model function fex1 (Equation (3.1)) with as-
sociated probability distributions.

Parameter Distribution
x U(−2.5, 2.5)
y U(−2.0, 2.0)
z U(5.0, 15.0)

Table 3.9: Defined uncertain parameters for
model function fex2 (Equation (3.2)) with as-
sociated probability distributions.

For each academic test function, a UQ simulation using the stochastic collocation with the
pseudo-spectral approach has been performed with q = 6 and P = 2. For the secondary Monte
Carlo simulation, M = 10,000 individual random samples are used. The resulting probabil-
ity distributions with the statistical moments for both academic test functions are visible in
Figure 3.11. Considering the PDF, this gives additional insights about the uncertainty in the
OoI.

40

3.5 INTERPRETATION OF SIMULATION RESULTS

5 10 15 20 25 30
OoI value range

0.00

0.02

0.04

0.06

0.08

0.10

0.12
de

ns
ity

(a) Generated distribution for fex1

PDF

p5
p95

0 5 10 15 20
OoI value range

0.00

0.02

0.04

0.06

0.08

0.10

de
ns

ity

(b) Generated distribution for fex2

PDF

p5
p95

Figure 3.11: Probability density function and statistical moments (mean µ, standard deviation
σ, and p5 and p95 percentiles) for the probability distribution of the QoI. (a) shows the results
for the QoI distribution of fex1 (Equation (3.1)), and (b) of fex2 (Equation (3.2)). For the
generation of the data, the QoI_Dist function is used with a secondary Monte Carlo simulation
usingM = 10,000 samples.

If the VoIs are available for every time step—as for the Lotka-Volterra example (Equa-
tion (3.3))—the QoI distribution can also be generated for every time step. The resulting PDFs
can be plotted in a 3D plot as it is shown in Figure 3.12. With this technique, the dynamic in
the resulting QoI distribution becomes visible.

time (t) - years 0
10

20
30

40
50

60
70

population size
150020002500300035004000

de
ns

ity

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

(a) QoI 3D distribution for S

time (t) - years 0
10

20
30

40
50

60
70

population size
50100150200250300

de
ns

ity

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

(b) QoI 3D distribution for C

Figure 3.12: Visualisation of the PDF for each time step of the population sizes for Equa-
tion (3.3). (a) shows the PDF for the population size S of the sheep, and (b) for the popula-
tion size C of the coyote. For the generation of the data, the QoI_Dist function is used with
a secondary Monte Carlo simulation usingM = 10,000 samples.

Besides the visualisation of the PDF, it is also possible to use the generated QoI distribution
for another UQ simulation as an input for an uncertain parameter. This allows to couple different
systems where the QoI distribution serves as an input for the secondary UQ simulation.

Reconstruction of the model function via the constructed gPCE
For gPCE based methods, the constructed gPCE (Equation (2.7)) can be used as a surrogate
for its original model function f . The resulting values of the gPCE reflect the situation under
the uncertain conditions, and it returns the most likely value for the given uncertain input
parameters. The gPCE can be used to visualise the function shape or can be used as a surrogate

41

CHAPTER 3 – ASPECTS OF CODE DEVELOPMENT FOR QUANTIFYING THE
UNCERTAINTY IN CLASSICAL SIMULATIONS

model for other purposes. Because the gPCE contains already all information in the coefficients
cj and the orthogonal polynomials Φj(ζ), the original model function f does not have to be
queried again. Therefore, the evaluation of the gPCE is computationally cheap.
As an example, the gPCE is used to visualise the function shape of fex1 (Equation (3.1))

and fex2 (Equation (3.2)) under the given uncertain conditions. Figure 3.13 shows the function
shape for the combination of the x, y, and z parameters for fex1. This looks relatively similar
compared to Figure 3.1 because fex1 is a very smooth model function and the resulting QoI
distribution (see Figure 3.11(a)) shows a density over the whole OoI value range.
As a comparison, the gPCE based function shape for fex2 is visualised in Figure 3.14, which

shows a somehow similar shape compared to Figure 3.11(b) but with significant differences. The
discontinuity is visible but stretched and not as clean as in the original fex2 (as expected due to
the polynomial structure). Additionally, at some borders, it produces wiggles with small values
which are not present in fex2.

X

0.100.150.200.250.300.350.400.450.50

Y

0.80
0.85

0.900.951.001.051.101.151.20

fex1

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

(a) fex1 for x/y variation

X

0.100.150.200.250.300.350.400.450.50

Z

1.40
1.45

1.501.551.601.651.701.751.80

fex1

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

(b) fex1 for x/z variation

Y

0.800.850.900.951.001.051.101.151.20

Z

1.40
1.45

1.501.551.601.651.701.751.80

fex1

11.2

11.4

11.6

11.8

12.0

(c) fex1 for y/z variation

Figure 3.13: Visualisation of the resulting gPCE based function surface of fex1 (Equation (3.1))
for varying values of the input parameters: (a) contains the resulting values for the x/y
parameter variation, (b) for x/z, and (c) for y/z.

X

2 1 0 1 2

Y

2.0
1.5

1.00.50.00.51.01.52.0

fex2

6
8
10
12
14
16

(a) fex2 for x/y variation

X

2 1 0 1 2

Z
6

8
10

12
14

fex2

6
8
10
12
14
16
18
20

(b) fex2 for x/z variation

Y

2.01.51.00.50.00.51.01.5 2.0

Z
6

8
10

12
14

fex2

6
8
10
12
14
16
18
20
22

(c) fex2 for y/z variation

Figure 3.14: Visualisation of the resulting gPCE based function surface of fex2 (Equation (3.2))
for varying values of the input parameters: (a) contains the resulting values for the x/y
parameter variation, (b) for x/z, and (c) for y/z.

As a conclusion, the constructed gPCE can be used to visualise the function shape of the
original model f . For smooth models, this works well and may produce similar shapes. For non-
smooth models with discontinuities, the original shape can be seen, but it likely is not shown
exactly and it may contain features (like wiggles) that are not present in the original model.

42

4 Efficient uncertainty propagation on large
compute intense systems

As defined in Section 2.5, this work aims at efficient UQ simulations. The ideas in this chapter
address the efficiency aspects of simulation time and computational resources for UQ simulations.
The simulation time should be as short as possible, and the used computational resources fully
utilised. In this thesis, the models are used as a black-box, and therefore the improvement of
the models is not the subject of this thesis. Usually, the computational resources are limited
and exclusively assigned to a job. Therefore, the workload should be well balanced across the
computational resources, such that all resources participate in the work and as less time as
possible is wasted with idling.
This chapter describes the main contributions to improve the propagation phase of a UQ sim-

ulation. After listing some preliminaries (Section 4.1), runtime definitions (Section 4.3) for UQ
simulations are defined, followed by an analysis of standard scheduling strategies (Section 4.4)
and the problems that can arise when they are used in the propagation phase of UQ simula-
tions. After that, the novel idea of how to use the runtime of the black-box model runs as an
additional quantity of interest (Section 4.5) is explained. With the runtime information, the
standard scheduling strategies are optimised in Section 4.6. If a model is too compute intensely
for repetitive UQ simulations, the use of surrogate models is a good choice, which is described
in Section 4.7.

4.1 Preliminaries
For non-intrusive UQ simulations, a model is used as a black-box, which means that the un-
derlying mathematical model and the sources for the model itself are not modified throughout
the propagation. The non-intrusive UQ methods (Section 2.2) typically require many black-box
runs of the model. The higher the required accuracy of the statistical moments of the QoI, the
more black-box runs have to be invested.
The time for users for the development, for the actual execution of the UQ simulation, and the

possibility to use computing systems is mostly limited. Also, the number of resources is limited,
e.g. the number of computing units, the number of CPUs (cores per CPU), or the amount of
RAM. Users usually want to have an all-in-one solution: from assimilation to propagation to
certification. All this should be done inside one UQ simulation.
Because the black-box model runs are independent, it is possible to “embarrassingly” par-

allelise [126, 131, 67] the individual runs. This implies some computing system, especially for
large-scale simulation scenarios, which is discussed in Section 4.2. One model run may already
require a lot of computational resources and can, therefore, take a lot of time. For a UQ analysis
of such large-scale simulation scenarios, many of this individual black-box runs add up to very
long runtimes.
A crucial part of the propagation is to distribute the work to the individual computing units.

A computing unit (also called worker) can be a CPU core, a group of CPU cores, a complete
computing node, or a group of computing nodes. If a straightforward mapping of the work to
the computing units is used, this may end up in significant performance losses. This can happen
if some computing units get more work then others, which ends up in idling of some computing

43

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

units. Models whose uncertain parameters influence the runtime are a common cause for the
unequal distribution of workload. Moreover, because in UQ simulations, the model is run many
times with different parameter values, this can end in non-predictable runtimes for the whole
UQ simulation.

In this chapter, different standard scheduling strategies and their behaviour are investigated.
After that, the runtime is used as a synthetic QoI1, and with this information, a gPCE with
the runtime information is created. This allows to predict the runtime of a single black-box
run. While the prediction is already useful for users, the idea is to go one step further: The
prediction of the runtime for each black-box run is used to control the scheduling to distribute
the work among the workers equally.

4.2 Computing systems
The development of UQ simulation source codes is typically done on a development system: a
personal computer (PC) in the form of a notebook or a workstation. Nowadays, typically, CPUs
with 2–8 cores and 8–32 GB of RAM are used. Often, different operating systems like Linux,
Windows, or MAC OSX run on development systems. Usually, threading is chosen to parallelise
tasks on these development systems to utilise the resources fully.
Many different types of computing (production) systems exist in the scientific community.

Usually, many computing nodes with a high-speed interconnect (e.g. InfiniBand or Intel Omni-
Path) form a cluster (also called high-performance computing (HPC) system). Such computing
nodes typically have CPUs with 28–64 cores and 32–128 GB of RAM. Often, Linux-based op-
erating systems are used, which limits the direct access to the computing nodes for the users.
Because many users want to use these clusters at the same time, long-term job scheduling sys-
tems such as SLURM [176] control the execution of the users’ jobs. Users cannot start processes
directly. Instead, they have to write a job description with the required compute resources, a
time limit, and the processes to start. The job scheduling systems decides then, which jobs
are started when and which computing nodes are acquired. To utilise the acquired computing
nodes within a job, the message passing interface (MPI) [127] is commonly used, and within a
computing node, threading is used as well.
It is possible to submit each individual black-box model run separately as a long-term schedul-

ing job, but this splits the whole UQ simulation into separate jobs, which results in a considerably
more complicated process of collecting the outputs and performing the certification phase. An-
other problem is that the job description files are not very interchangeable between different job
scheduling systems.
An additional important aspect is to support the transition from a development system to a

computing system. Since different technologies for the parallelisation are used, different schedul-
ing mechanisms are required on the systems. If this transition requires no additional work (except
for a few configuration settings) by the user, then this can significantly reduce the development
time (time to solution).
The simulations in this chapter have been executed on the Linux-Cluster CoolMUC2 [115]

of the Leibniz Supercomputing Centre [114]. All cluster nodes have an Intel Xeon E5-2697
v3 (“Haswell”) CPU with 28 cores and 64 GB of DDR4 RAM. To submit jobs to the cluster,
SLURM [176] is used for long-term scheduling.
In this work, it is assumed that the models run on one CPU core. The developed concepts in

1In [148, 21], there is also a synthetic output of interest used as the QoI of a UQ simulation. The authors used
this information to predict the number of internal iterations of a model. The prediction of the iterations where
used to group the individual runs with a similar number of iterations to a so-called ensemble group to perform
them in parallel. For that, the model source code had to be changed to support parallel C++ based template
operators.

44

4.3 RUNTIME DEFINITIONS FOR UQ SIMULATIONS

this work can be translated into parallelised models, which results in more complicated scenarios,
measurements, and calculations.

4.3 Runtime definitions for UQ simulations
To evaluate and compare the runtime of different scheduling strategies for UQ simulations, it is
necessary to define runtime measurements. All runtime measurements are denoted with the T
symbol, and equivalent predictions or estimations with T. Figure 4.1 gives a first overview of
such possible runtime measurements.

model

assimilation (1) propagation (2) certification (3)

PDF

uncertain
parameters

quantity of
interest

TPropTAss TCert

TUQsim

Figure 4.1: Visualisation of the runtime measurements for UQ simulations. TUQsim represents
the time for a whole UQ simulation. The three different UQ phases are denoted as TAss,
TProp, and TCert.

The time for a complete UQ simulation is given by TUQsim. For each phase of a UQ simulation,
a separate measurement exists with TAss, TProp, and TCert, respectively, for the technical part
of the assimilation, the propagation, and the certification.
The runtime measurement TUQsim is therefore defined as

TUQsim = TAss + TProp + TCert . (4.1)

Different scheduling strategies distribute the workload differently to their computing units.
The nodes ni that are used in the propagation phase are usually grouped, which results in
so-called work packages WPj , j = 1, . . . , J .2 An example illustration for the resulting work
packages from a set of nodes ni is given in Figure 4.2. For each node ni, which contains a
value for every uncertain model parameter, the model is called once in the propagation phase.
A scheduling strategy is responsible for defining work packages and filling them with nodes ni.
Usually, a bidirectional mapping between a work package and a computing unit exists. However,
it is not guaranteed that all work packages contain the same number of nodes ni. It is crucial
that a backward mapping from the local index p = 1, . . . , Pj inside a work package WPj to the
original index i of the nodes ni exists. Some UQ methods use only parts of the value of interest
(VoI) or do some weighting when using the VoI in the certification phase.

2In stochastic collocation with the pseudo-spectral approach, the input nodes ni are called collocation points
zi, i = 1, . . . , Q (cf. Equation (2.14)).

45

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

1 P1p

WP1

...

1 Qi

...

1 Pjp

WPj

1 PJp

WPJ

Figure 4.2: Illustration of resulting work packages, based on a set of nodes ni for the propa-
gation phase.

Table 4.1 contains the complete list of denoted timing measurements and their symbols. The
time for solving the black-box model run with index p inside the work package WPj is denoted
as T pWPj

.

Denotation Meaning
TUQsim Time of the whole UQ simulation
TAss Time of the assimilation phase (only the technical part)
TProp Time of the propagation phase
TCert Time of the certification phase
T̂Prop Theoretical optimal propagation time (no idling, cannot get faster)
TS Maximum time of executions of black-box model runs over all work packages
T iS Time of solving the black-box model run i
TC Maximum total time of communication
T jC Time of communication with work package j
TI Maximum total time of idling over all work packages
T jI Time of idling of each work package
TWPj Time of solving work package j (including idling)
T pWPj

Time of solving black-box model run with index p in work package j

Table 4.1: Definition and description of various time measurements to compare different
scheduling strategies. For the measurements, the T symbol is used, and for the predicted
or estimated equivalent T is used (later in this chapter).

The measurement for solving the whole work package (all Pj black-box model runs) is the
sum of all T pWPj

with

TWPj =
Pj∑
p=0

T pWPj
+ T jI , (4.2)

including the idling time T jI of the corresponding computing unit that works on WPj .
The maximum time for solving all work packages j = 1, . . . , J , the communication of a

computing unit with its master, and the idling of a computing unit is defined as TS , TC , and
TI , respectively:

TS := max
j

(TWPj) (4.3) TC := max
j

(T jC) (4.4) TI := max
j

(T jI) (4.5)

46

4.4 STANDARD SCHEDULING STRATEGIES

In T jC , the time for all communication to distribute and collect the work from or to a computing
unit working on WPj , is contained. In UQ simulations, the amount of data for the nodes and
the resulting VoI values are typically low, thus, the communication part does not take much
time. Usually, TC << TI and TC << TS , and therefore TC is not further investigated and
optimised in this work. Additionally, it is assumed that the model is already optimised and
TS cannot be further optimised when using it as a block-box. The limiting performance factor
within the different scheduling strategies is the idling time T jI of the individual work packages
WPj . Therefore, the idling is further analysed in more detail, which is part of the next section.
The whole runtime for the propagation phase,

TProp = TS + TC , (4.6)

consists of the TS and TC component, where usually TC << TS holds. If and only if all work
packages are equally distributed and contain no idling, then the optimal runtime T̂Prop with a
perfect load-balancing could be achieved:

TProp → T̂Prop ⇐⇒ T jI → 0 ∀j = 1, . . . , J . (4.7)

4.4 Standard scheduling strategies
In this work, three different standard scheduling strategies (see Table 4.2) are used for the
propagation phase in the UQ simulations and are subject of further investigations. For a general
introduction to the scheduling topic, it is referred to [149, 29, 9].

Abbreviation Scheduling strategy Section
SWP Static work packages Section 4.4.2
SWPT Static work packages with thread pool on node level Section 4.4.3
DWP Dynamic work packages Section 4.4.4

Table 4.2: The investigated standard scheduling strategies with their abbreviation.

The problem of idling is defined in Section 4.4.1 before analysing the standard scheduling
strategies in detail with two academic test functions fex1 (Equation (3.1)) and fex2 (Equa-
tion (3.2)) as the model in the UQ simulations. The return values of the functions are
both used as the VoI for the uncertainty quantification and additionally interpreted as the
model’s runtime (in seconds). The model implementations of the functions use this value
to perform a sleep command, before returning the VoI. Therefore, the runtime for Equa-
tion (3.1) is denoted as f̂ex1 = fex1 = 2(e5·|x| + max(y, 0) + 0.2 · |z|) and for Equation (3.2)
as f̂ex2 = fex2 = e−x

2+2 sign(y) + z. This produces model parameter specific (synthetic) runtimes
(waiting times) and is well suited to analyse different scheduling strategies because each model
run can have its runtime. The runtime depends on the values of the function parameters, and
therefore on the model parameter. The scheduling strategies and their optimisations are also
analysed for a large-scale scenario (Section 6.4). The results of the runtime and scheduling
behaviour can be found in Section 6.4.4.
The function f̂ex1 is a) used because an analytical solution exists which gives the opportunity

to determine the accuracy, and b) it is designed to have a similar behaviour as the runtime of
“Scenario 2: Evacuation of a building with separated families” (Section 6.4). All of the three
function parameters are defined to be uncertain, with associated probability distributions listed
in Table 4.3.

47

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

Parameter Distribution
x U(0.1, 0.5)
y U(0.8, 1.2)
z U(1.4, 1.8)

Table 4.3: Defined uncertain parameters for model function f̂ex1 (Equation (3.1)) with asso-
ciated probability distributions.

To have a more challenging and non-smooth setup for the scheduling strategies, f̂ex2 (Equa-
tion (3.2)) is used. It contains a discontinuity (as can be seen in Figure 3.2), which will involve
some numerical problems. f̂ex2 has been proposed in [49] with two uncertain parameters. For
this investigation, a third uncertain parameter is introduced. The three uncertain parameters
and its associated probability distributions are listed in Table 4.4.

Parameter Distribution
x U(−2.5, 2.5)
y U(−2.0, 2.0)
z U(5.0, 15.0)

Table 4.4: Defined uncertain parameters for model function f̂ex2 (Equation (3.2)) with asso-
ciated probability distributions.

For all tests in this chapter, stochastic collocation with the pseudo-spectral approach (Equa-
tion (2.7)) is used, because it is a very prominent UQ method and often chosen in combination
with that low number of uncertain parameters.

Remark: For non-smooth models, the non-intrusive stochastic collocation with the pseudo-
spectral approach (Equation (2.7)) is not the method of choice. Other approaches like Kriging-
based uncertainty quantification method with dynamic adaptive sampling [85], or the non-
smooth polynomial chaos expansion (nsPCE) method [139] exists for such cases. In our case,
the scheduling is one part of a UQ simulation, and there is no strong general correlation between
the VoI and the runtime of a model. Additionally, the behaviour of the runtime is typically not
known in advance. Another argument is that the UQ analysis of a model is usually not executed
for the runtime information itself, it is done to investigate some model VoIs under the uncertain
conditions, and for that, the right UQ method is chosen. Therefore, the UQ method for the
models’ original VoIs is reused for the runtime and scheduling investigations.

4.4.1 Idling: due to non-optimal workload
In this work, a computing unit is defined to be idling if it is not 100% utilised within a considered
time period. While a computing unit or a part of it is idling, then the idling parts are waiting
and are not productive anymore. In Figure 4.3, such a situation is graphically visualised: Two
cluster nodes have been acquired for a job. On node 1, core 2 works the whole time, while the
others have finished their work earlier and idle. The cores on node 2 do also work for some time,
but they finish their work much earlier than the cores 1–N of node 1 and do idle for the rest of
the acquired time.

48

4.4 STANDARD SCHEDULING STRATEGIES

core 1 core 2

…

core N

ti
m
e

id
lin
g

w
o
rk
in
g

node 1

core 1 core 2

…

core N

node 2

Figure 4.3: Visualisation of the idling problem for two computing nodes with their CPU cores.
The filled solid blue areas represents the time a core is working, and the white area represents
the idling time.

Such an idling can happen in the propagation phase of UQ simulations if the uncertain model
parameters influence the runtime of the used model. Especially if these parameters influence
the following parts of a model:

• initial conditions,
• boundary conditions,
• time step sizes, or
• stopping criteria of the simulation.
The idling is problematic and has at least these three consequences:

1. The runtime of the UQ simulations takes longer than expected.
2. The runtime of the whole UQ simulation is not reliably predictable.3

3. When a computing unit or its parts are idling, then these resources are wasted for that time
period. Often, computing units are exclusively assigned to jobs until they have finished.4

How much idling occur depends on the runtime variation of the model and the specific schedul-
ing strategy. In the following sections, the three standard scheduling strategies and their specific
idling behaviour are analysed.

4.4.2 Static work packages
A scheduling strategy that prepares the work packages WPj on a master and distributes the
work to the computing units at the beginning of the propagation phase is called static work
packages (SWP). The results of the work packages WPj are sent back to the master after all
have finished their work (end of the propagation phase). During the propagation phase, no data
are transferred between the master and the worker. The master can also participate in the work
by obtaining its work package.

For the performed UQ simulations on CoolMUC2 [115], such a SWP scheduling situation is vi-
sualised in Figure 4.4. The whole set of collocation points zi is in the initial first come first served

3This is somehow problematic when a UQ simulation is submitted to a job scheduling system. Usually, many
users wants to run jobs. The job scheduling system decides based on different properties which jobs are started
first. Such properties are the number of required resources as well as the specified time limit. If shorter time
limits are used, then the chance is higher that a job is started earlier. If the limit is too short and the job
doesn’t terminate within that limit, the job scheduling system stops (cancel) it usually hard, which typically
has the consequence that the whole job (with a greater time limit) has to be repeated.

4There exist already different approaches to dynamically request and release resources during a job. This is the
field of invasive computing (see [163])–but this is not yet generally available.

49

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

(FCFS) order filled into the work packagesWPj . For each core on each acquired computing node,
one corresponding work package is created, which results in J = #num_cores×#num_nodes
number of work packages. Each work package contains the same number of collocation points,
except if for the last work package Q mod J 6= 0. Another exception is, if Q < J , but this
happens typically only for rather inaccurate computations with a small number of collocation
points per dimension (q). The implementation in the context of this work uses the message
passing interface (MPI) [127] through the mpi4py [19, 113] Python package. On each CPU core,
one MPI process is started. The master MPI process (rank 0) prepares the work packages with
the containing collocation points and the corresponding parameter values for the model runs.
With the MPI scatter() method, the data for the work packages are transferred to the worker
MPI processes. Each MPI process works then individually on its own. After all have finished
their work, the resulting data (VoI) is transferred back to the master via the gather() method.
The master process finishes then the certification phase on its own.

 rank #0: MPI master process
black box model runs: parameters (work packages)

results: used to calculate the coefficients of the PCE

...

...

node #1

core #1
MPI proc.
rank #0

...

...

core #N
MPI proc.
rank #N-1

...

...

...

mpi4py (scatter)

mpi4py (gather)
... ...

... ...

node #2

core #1
MPI proc.
rank #N

...

...

core #N
MPI proc.
rank #...

...

...

...

mpi4py (scatter)

mpi4py (gather)

... ...

... ...

node #N

core #1
MPI proc.
rank #...

...

...

core #N
MPI proc.
rank #R-1

...

...

...

mpi4py (scatter)

mpi4py (gather)

... ...

... ...

WPJWP1 WPj
...

Figure 4.4: Visualisation of a static work packages (SWP) scheduling situation: The set of
collocation points is equally distributed to work packagesWPj , and transferred to MPI worker
processes. For each CPU core on each cluster node, exactly one work package exists. Beside
each core, the utilisation is visualised: blue indicates the working time, and white the idling
time.

Figure 4.5 shows the work-package-specific runtime TWPj with f̂ex1 (Equation (3.1)) and
f̂ex2 (Equation (3.2)) as the model. For these scenarios, the stochastic collocation with the
pseudo-spectral approach with Q = 83 = 512 number of collocation points has been performed
on 4 cluster nodes with 4 × 28 = 112 CPU cores (equals J = 112 work packages). For f̂ex1
(Figure 4.5(a)) the workload is not well balanced, because each work package runtime is different,
and a lot of work packages contain only less work. The workload for f̂ex2 (Figure 4.5(b)) is also
not well balanced because a few work packages contain longer runtimes than most of the others.

50

4.4 STANDARD SCHEDULING STRATEGIES

0 15 30 45 60 75 90 105
worker (WPj)

0

25

50

75

100

125
ru

nt
im

e
(s

)
(a) Work package runtime TWPj for fex1

TWPj

0 15 30 45 60 75 90 105
worker (WPj)

0

20

40

60

80

100

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.5: Visualisation of the runtime TWPj (working time) in seconds to solve each work
packageWPj using SWP scheduling. In (a), the working time for the UQ simulation with f̂ex1
(Equation (3.1)) as the model is shown, and in (b), the runtime with f̂ex2 (Equation (3.2)) as
the model.

Even though all work packages WPj contain the same number of collocation points zi, idling
may occur easily in SWP scheduling. Because each individual black-box model run within the
work package has its specific runtime T pWPj

, the runtime for each TWPj can be different. The
consequence is that some workers finish earlier than others and do than have their particular
idle time T jI . In cases when the black-box model runs with the long runtimes are distributed
over a few work packages, then the workers of the other work packages will idle for a long time.

4.4.3 Static work packages with thread pool on node level
The scheduling strategy that uses static work packages with a thread pool on node level (denoted
by SWPT) is similar to SWP. All work packages WPj are prepared on the master at the
beginning of the propagation phase, and the results are sent back after all have finished. The
difference to SWP is that in SWPT, only one MPI process per computing node is used. Again,
all MPI processes participate in the work, and during the propagation phase, there is no data
transfer.
Figure 4.6 visualises a SWPT scheduling situation. The set of collocation points zi are similar

to SWP in FCFS order filled into the work packages WPj . On each computing node, one
MPI process is started. Hence, there exist as much work packages as computing nodes J =
#num_nodes. For the data transfer between the MPI master (rank 0) and the MPI worker,
scatter() and gather() is used (as in SWP). Within the computing nodes, a thread pool
is instantiated with the Python joblib [47] library. The thread pool uses exactly the same
number of threads as a CPU offers CPU cores. To utilise the CPU cores, the thread pool takes
one collocation point after another and gives this to the next free thread, which performs the
black-box model run on its own. As soon as a thread has finished, it gets the next collocation
point.
In Figure 4.7, the work-package-specific runtime TWPj with f̂ex1 (Equation (3.1)) and f̂ex2

(Equation (3.2)) is plotted. As in the SWP example (Section 4.4.2), the same UQ setup with
Q = 512 number of collocation points is used. Again, 4 cluster nodes with each 28 CPU cores
are used. As Figure 4.7(a) shows for f̂ex1 (Equation (3.1)), the workload between the work
packages is poorly distributed, because WP1, WP2, and WP3 take significantly less time than
WP4. For f̂ex2 (Figure 4.7(b)) the workload seems to be distributed better–but WP2 and WP3
take longer than the others.

51

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

 rank #0: MPI master process

...

...

node #1: MPI Process

mpi4py (scatter)

core #1

core #2

core #N

...

mpi4py (gather)

...

thread
pool
joblib

...

...

...

rank #0
node #2: MPI Process

mpi4py (scatter)

core #1

core #2

core #N

...

mpi4py (gather)

...

thread
pool
joblib

...

...

...

rank #1
node #N: MPI Process

mpi4py (scatter)

core #1

core #2

core #N

...

mpi4py (gather)

...

thread
pool
joblib

...

...

...
rank #N-1

black box model runs: parameters (work packages)

results: used to calculate the coefficients of the PCE

WPJWP1 WPj

Figure 4.6: Visualisation of a static work packages with thread pool on node level (SWPT)
scheduling situation: The set of collocation points is equally distributed to work packages
WPj , and transferred to MPI worker processes. On each cluster node, a thread pool is
instantiated that further distributes the work to the CPU cores. Beside each computing node,
the utilisation is visualised: blue indicates the working time, and white the idling time.

1 2 3 4
worker (WPj)

0

500

1000

1500

2000

2500

3000

ru
nt

im
e

(s
)

(a) Work package runtime TWPj for fex1

TWPj

1 2 3 4
worker (WPj)

0

250

500

750

1000

1250

1500

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.7: Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWPT scheduling. In (a), the working time for the UQ simulation with
f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime with f̂ex2 (Equation (3.2))
as the model.

In SWPT scheduling, idling do also exists strongly. It is usually not that prominent as in
SWP scheduling, because within each computing node the dynamics of the thread pool utilises
the CPU cores as long as there are unprocessed entries in the work package.

52

4.4 STANDARD SCHEDULING STRATEGIES

4.4.4 Dynamic work packages
The idea of having dynamic scheduling over different computing nodes is realised with the
dynamic work packages (DWP) scheduling strategy. Instead of building fixed work packages
WPj at the beginning, they emerge dynamically through the propagation phase: The master
process distributes entry by entry to the next free worker. A worker process waits until it
receives a collocation point, starts the black-box model with the received parameters, and after
the black-box run has finished, the results are sent back to the master process.
A visualisation of such a DWP scheduling is in Figure 4.8. With mpi4py [113], a pool is set

up on MPI level. On each CPU core of each computing node, one MPI process is started. The
MPI process with rank 0 is defined to be the master, and all others are the worker processes.
For that, the MpiCommExecutor class from the mpi4py.futures package is used. Internally, the
MpiCommExecutor class uses the isend() and irecv() MPI methods to transfer data. An MPI
pool is a similar idea to a thread pool–but beyond computing node boundaries. In this setting,
the MPI master process (rank 0) does not participate in the propagation. It only manages the
data transfer from and to the MPI worker processes. The MPI master dynamically distributes
the collocation points in first come first served (FCFS) order.

rank #0: MPI master process

...

...

...

...

...
...

...
...

...
...

MPI pool

mpi4py.
futures

isend/irecv

isend/irecv

isend/irecv

rank #1: MPI process

1 core

rank #2: MPI process

1 core

rank #N: MPI process

1 core
...

black box model runs: parameters (work package)

results: used to calculate the coefficients of the PCE

Figure 4.8: Visualisation of a dynamic work packages (DWP) scheduling situation: The MPI
master process manages the MPI worker processes: it transfers the collocations points entry by
entry to the workers and collects the results. Beside each MPI worker process, the utilisation
is visualised: blue indicates the working time, and white the idling time.

The work-package-specific runtime TWPj for f̂ex1 (Equation (3.1)) and f̂ex2 (Equation (3.2))
is visualised in Figure 4.9. Again, as in the SWP and SWPT example, a UQ setup with Q = 512
number of collocation points is used. J = (#num_cores×#num_nodes)− 1 number of work
packages (one for each MPI worker) exist and are dynamically filled during the propagation.
Figure 4.9(a) shows the dynamically created work packages WPj for f̂ex1 (Figure 4.9(a)) as the
model. It can be seen that the workers tend to fully participate in the work. However, the

53

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

workload is not completely evenly distributed. For f̂ex2 (Figure 4.9(b)), the workload is also not
evenly distributed but it does not spread as much as in the SWP (Figure 4.5(b)) example.

0 15 30 45 60 75 90 105
worker (WPj)

0

20

40

60

80

ru
nt

im
e

(s
)

(a) Work package runtime TWPj for fex1

TWPj

0 15 30 45 60 75 90 105
worker (WPj)

0

20

40

60

80

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.9: Visualisation of the runtime TWPj (working time) in seconds to solve the dynam-
ically emerged work packages WPj using DWP scheduling. In (a), the working time for the
UQ simulation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime with
f̂ex2 (Equation (3.2)) as the model.

The DWP scheduling can reduce the idling through its dynamic emerging of the work packages
WPj . The workload is still not completely evenly distributed but in many cases better than
with SWP and SWPT. Long idling can still arise for some workers when a few black-box model
runs with long runtimes are started at the very end because then the other finished workers will
have to idle for that time.

4.4.5 Summary of standard scheduling strategies
For a detailed analysis of the propagation runtimes TProp for the two examples f̂ex1 (Equa-
tion (3.1)) and f̂ex2 (Equation (3.2)), various simulations have been performed: TProp is mea-
sured for a different number of collocation points q = 4, 5, . . . , 12 and for a different number of
cluster nodes cn = 2, 3, 4, 5. Figure 4.10 contains the corresponding plots. For both examples,
SWP shows the longest propagation runtime, SWPT the second longest, and DWP the shortest.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

200

400

600

800

ru
nt

im
e

(s
)

(a) TProp for fex1 using standard scheduling
SWP
SWPT
DWP

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

100

200

300

400

500

ru
nt

im
e

(s
)

(b) TProp for fex2 using standard scheduling
SWP
SWPT
DWP

Figure 4.10: Measured propagation runtimes TProp in seconds for the three standard scheduling
strategies SWP, SWPT, and DWP: (a) contains the runtimes for f̂ex1 (Equation (3.1)) and
(b) for f̂ex2 (Equation (3.2)). The propagation runtimes TProp are measured for different
q = 4, 5, . . . , 12 and for different number of cluster nodes cn = 2, 3, 4, 5.

54

4.5 RUNTIME AS QUANTITY OF INTEREST

Figure 4.11 contains the corresponding speed-ups5 for the measured propagation runtimes
TProp. The speed-up of SWP to SWPT for f̂ex1 (Figure 4.11(a)) is about 1.0–1.4 (for q ≥ 6),
and for SWP to DWP about 1.6–2.1 (for q ≥ 6). For f̂ex2 (Figure 4.11(b)) the speed-up for
SWP to SWPT is about 1.2–1.6 (for q ≥ 6) and for SWP to DWP about 1.3–1.7 (for q ≥ 6).
The problem of SWP and SWPT is that there is no dynamic update of the workload after some

computing units have finished its initial work package, and the work packages contain the same
number of entries, but not the same amount of work (runtime). The more dynamic scheduling
aspects a scheduling strategy contains, the less work-package-specific idling T jI occurs, and
therefore the propagation runtime TProp is shorter. The presented standard scheduling strategies
still contain some idling, which indicates the potential for further improvements. Another point
that is still missing is the prediction of how much runtime the propagation phase of a UQ
simulation will take, which is part of the next section.

4 5 6 7 8 9 10 11 12
collocation dimension

1.00

1.25

1.50

1.75

2.00

2.25

sp
ee

d-
up

(a) Speed-up SWP to NOT OPT for fex1

SWP to SWPT
SWP to DWP

4 5 6 7 8 9 10 11 12
collocation dimension

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

(b) Speed-up SWP to NOT OPT for fex2

SWP to SWPT
SWP to DWP

Figure 4.11: Speed-up for TProp of SWP compared to SWPT and DWP: (a) contains the speed-
up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2 (Equation (3.2)). Each plot contains 4 speed-up
lines (of identical colour and line style) for SWP to SWPT and DWP that corresponds to the
different number of cluster nodes cn = 2, 3, 4, 5.

4.5 Runtime as quantity of interest
The knowledge about the runtime of a UQ simulation is of value for users, to know when the
results can be expected. Additionally, when they submit jobs to a long-term job scheduling
system, they can determine better time limits for their jobs (not too short to not time out, and
not too long not to have to wait for a long time to get scheduled). It is hard to predict the
runtime of a model when the runtime depends on the input parameters of the model, especially
when these parameters are uncertain and not exactly known, as it is the case for UQ simulations.
To estimate the propagation runtime TProp, a runtime predictor is required, which can estimate
the runtime of the model depending on its input parameter values.

4.5.1 Runtime prediction of UQ simulations
The idea is to measure the runtime T iS of each individual model run within a UQ simulation, as
an additional value of interest (VoI). With this information, a runtime predictor based on the UQ
modelling is created. f(x, t, ζ) from Equation (2.14) is extended with the runtime measurement,
and the additional part comprising the runtime is denoted by f̂(x, t, ζ).

5All speed-ups in this thesis have been rounded down to one digit after the decimal point.

55

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

For stochastic collocation with the pseudo-spectral approach, the runtime predictor rpN is
constructed with

rpN (x, t, ζ) :=
N∑
j=0

ĉj(x, t) · Φj(ζ) , (4.8)

representing the whole gPCE for the runtime of a model. The corresponding coefficients ĉj(x, t)
are determined with

ĉj(x, t) ≈
1
γj

Q∑
i=1

f̂(x, t, zi)Φj(zi)wi , (4.9)

where the runtime component f̂(x, t, zi) is used as the value of interest (VoI).
The runtime specific gPCE—the rpN—strongly depends on the uncertain parameters ζ. When

calling the rpN with specific values for the uncertain parameters, then the most certain runtime
for this input parameter combination is returned. To create and use the rpN , the workflow is
as follows: First, a training phase is required where the runtime of f̂(x, t, zi) is measured as an
additional value of interest for the UQ simulation during the propagation phase. The next step
is to create the runtime predictor rpN with Equation (4.8) in the certification phase and to save
it into a file. From now on, the rpN can be loaded from the file for the next UQ simulations of
the same model. Starting with the technical phase of the assimilation, the collocation points zi
are created as usual. With each collocation point zi, the runtime predictor rpN is called once,
to predict the most certain runtime TiS for each single model run. With this information, each
scheduling strategy can, therefore, predict the runtime TpWPj

of each entry in the work packages,
and therefore the runtime TWPj for each work package. Because it is known that TC << TS ,
the prediction of TProp depending on the scheduling strategy is possible. If TAss and TCert are
also known, the whole UQ simulation time TUQsim can be predicted. As for every other QoI,
it is also possible to create the statistical QoI moments also for the runtime. Therefore, the
mean µrpN (Equation (2.17)), the variance σ2

rpN
(Equation (2.18)), the percentiles, and even a

sensitivity analysis (Section 2.3) is possible, to determine which parameter or its combination
has the most influence on the model’s runtime.
A scheduling strategy can also use the runtime prediction of the individual model runs to

optimise the scheduling, as is demonstrated in Section 4.6.

Remark: It is obvious that a training phase is required to construct a runtime predictor for
stochastic collocation with the pseudo-spectral approach. Usually, a UQ simulation is repeated
multiple times with different values, and therefore there is a possibility to reuse the runtime pre-
dictor. Other approaches with adaptive evaluations like adaptive sparse-grid-based approaches
such as [52] or [38] exist, where the runtime predictor can already be helpful within the first UQ
simulation.

4.5.2 Determining runtime prediction quality
For a detailed analysis of the quality of the constructed runtime predictors rpN , the errors are
determined with the measured runtimes T iS compared to the predicted runtimes TiS of each
individual black-box model run. For the absolute error εri,

εri := |T iS − TiS | , (4.10)

is defined, and for the relative error εri,rel

εri,rel := εri
max(|T iS |, |TiS |)

= |T iS − TiS |
max(|T iS |, |TiS |)

, (4.11)

to determine the runtime prediction error for each individual black-box run.
For the comparison of different runtime predictors rpN , the µ(εr) as the mean error, and the

discrete L2(εr) error norm is defined as:

56

4.5 RUNTIME AS QUANTITY OF INTEREST

µ(εr) := 1
Q

Q∑
i=1

εri (4.12) L2(εr) :=

√√√√ 1
Q

Q∑
i=1

εr2
i (4.13)

4.5.3 Numerical results of runtime prediction
In this section, a scheduling-independent analysis of the numerical results for the runtime pre-
diction is given. Again, the test functions f̂ex1 Equation (3.1) and f̂ex2 (Equation (3.2)) are used
as models. For both models, various UQ simulations have been performed with q = 4, 5, . . . , 12
different numbers of collocation points per parameter and for different numbers of cluster nodes
cn = 2, 3, 4, 5. For each performed UQ simulation, a runtime predictor rpN is created and used
for the numerical analysis in the following.
Figure 4.12(a) shows the real runtime T iS (blue circles) vs the predicted runtime TiS (filled

green dots) for f̂ex1 Equation (3.1). Because the green filled dots are plotted over the blue
circles, and the blue circles are almost hidden, the accuracy of the prediction quality is high.
The prediction quality for f̂ex2 is not as high as for f̂ex1, as can be seen in Figure 4.12(b) (some
blue circles are visible). This can be explained with the discontinuity in function f̂ex2 (and
therefore in the runtime as can be seen in Figure 3.2), because around the discontinuity and on
the edges, the rpN cannot predict the values precisely.

0 100 200 300 400 500
collocation points (zi)

5

10

15

20

25

ru
nt

im
e

(s
)

(a) Real T i
S vs. predicted i

S runtime for fex1

T i
S (real)
i
S (predicted)

0 100 200 300 400 500
collocation points (zi)

5

10

15

20

ru
nt

im
e

(s
)

(b) Real T i
S vs. predicted i

S runtime for fex2

T i
S (real)
i
S (predicted)

Figure 4.12: Real (measured) runtime T iS (blue circles) vs the predicted runtime TiS (filled green
dots) for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations, Q = 83 = 512 collocation
points have been used.

In Figure 4.13(a), the absolute error εri for f̂ex1 is calculated by comparing the predicted
values against the analytical solution of Equation (3.1) for q = 8. The absolute error is with
values of the order 10−5 seconds rather small. For f̂ex2, the absolute error εri values (prediction
compared to Equation (3.2)) ranges from 0.01 to 0.71 seconds, as can be seen in Figure 4.13(b).
The higher absolute error values were already qualitatively assumed in Figure 4.12(b) and are
hereby confirmed quantitatively.
The corresponding relative errors εri,rel for f̂ex1 are plotted in Figure 4.14(a). The values are

small in the order of 10−6. Figure 4.14(b) shows the relative error εri,rel for f̂ex2, whose values
range mainly from 0 to 0.75, only a few reaching up to 1.35.
A broader overview of the absolute error trend for f̂ex1 can be found in Figure 4.15(a). The

mean error µ(εr) as well as the 5th p5(εr) and the 95th p5(εr) percentile for different q =
4, 5, . . . , 12 is plotted. It can be seen that the error is visible for q ≤ 6 because the rpN has too
less information for an accurate prediction. Starting from q ≥ 7, the errors are negligibly small.

57

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

The absolute error statistics for f̂ex2 in Figure 4.15(b) shows a significant error for all tested
q = 4, 5, . . . , 12.

0 100 200 300 400 500
collocation points (zi)

0.0

0.5

1.0

1.5

ab
so

lu
te

 e
rr

or

r i
(s

) (
1e

5)

(a) Absolute error ri for fex1

0 100 200 300 400 500
collocation points (zi)

0.0

0.2

0.4

0.6

ab
so

lu
te

 e
rr

or

r i
(s

)

(b) Absolute error ri for fex2

Figure 4.13: Absolute error εri for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations,
Q = 83 = 512 collocation points have been used.

0 100 200 300 400 500
collocation points (zi)

0.0

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e

er
ro

r
r i,

re
l (

1e
6)

(a) Relative error ri, rel for fex1

0 100 200 300 400 500
collocation points (zi)

0.000

0.025

0.050

0.075

0.100

0.125

re
la

tiv
e

er
ro

r
r i,

re
l

(b) Relative error ri, rel for fex2

Figure 4.14: Relative error εri,rel for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations,
Q = 83 = 512 collocation points have been used.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0.00

0.02

0.04

0.06

0.08

ru
nt

im
e

er
ro

r
(s

)

(a) Statistics of absolute error
(r)

p5(r)
p95(r)

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

1

2

3

ru
nt

im
e

er
ro

r
(s

)

(b) Statistics of absolute error
(r)

p5(r)
p95(r)

Figure 4.15: Absolute error statistics with mean error µ(εr) as well as the 5th p5(εr) and the
95th p5(εr) percentile for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations, different
number of collocation points q = 4, 5, . . . , 12 per parameter have been used.

58

4.6 OPTIMISED SCHEDULING STRATEGIES VIA WORK REORDERING

Figure 4.16(a) shows the L2(εr) error norm for f̂ex1. The decreasing error down to 10−5 for
increasing q is confirmed by the L2(εr) error norm. For f̂ex2, the L2(εr) error norm is also
decreasing for higher q, as can be seen in Figure 4.16(b), but it is still in the order of one.
The numerical results in this section show that the error values for f̂ex1 are rather small

and the runtime predictor rpN seems to work well for the prediction of the runtime TiS for the
individual black-box model runs. As expected, the runtime predictor rpN for f̂ex2 is not that
accurate. However, the relative error values are still < 1%, and the rpN is likely to be of value
for runtime predictions and accurate enough to estimate the whole propagation runtime TProp.
In the next sections, the predictions are used as an input for the scheduling strategies.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

10 5

10 4

10 3

10 2

L2 (
er

) e
rr

or
 n

or
m

(a) Discrete L2 norm of absolute error
L2(r)

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0.6

0.8

1.0

1.2

1.4

L2 (
er

) e
rr

or
 n

or
m

(b) Discrete L2 norm of absolute error
L2(r)

Figure 4.16: Discrete L2(εr) norm of the absolute error for f̂ex1 in (a) and for f̂ex2 in (b). For
the UQ simulations, different number of collocation points q = 4, 5, . . . , 12 per parameter have
been used.

4.6 Optimised scheduling strategies via work reordering
In this section, the idea of the optimised scheduling strategies via work reordering is presented.
During a UQ simulation, a runtime predictor rpN is created (as introduced Section 4.5). For
the next UQ simulations, the runtime predictor rpN is used to predict the runtime TiS for each
black-box model run. This information is further used by the scheduling strategy to optimise
the scheduling by reordering the work and controlling the work package creation (distribution
of work)–but this depends strongly on the specific scheduling strategy. Before diving into the
optimised scheduling strategies, a general overview of how to create and use a runtime predictor
rpN within a UQ simulation using the stochastic collocation with the pseudo-spectral approach
(Section 2.2.2) is given.
Figure 4.17 visualises the sequence of steps within a UQ simulation. The white boxes are

always performed, and the green boxes are the additional steps to create a runtime predictor
rpN . In the propagation phase (2), only the measurement of the runtime T iS for each black-box
run in step 2.3b is additionally required. The certification phase (3) additionally creates the
runtime predictor rpN and the runtime statistics in step 3.1b, and finally save it to a file in 3.2b.
This shows that the creation of the runtime predictor rpN can–with small changes–be directly
integrated into a UQ simulation workflow.
For the usage of the runtime predictor rpN to optimise a scheduling strategy, only the propa-

gation phase (2) has to be extended, as can be seen in Figure 4.18. The activity 2.1 Create work
packages depending on scheduling strategy is extended and split into several parts: 2.1a loads
the runtime predictor rpN from a file. In 2.1b, the runtime predictor rpN is used to predict
the runtime TiS for each single black-box model run, depending on the values of the collocation

59

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

points zi. After that, in 2.1c, the runtime information TiS is used by the scheduling strategy to
reorder the individual black-box model runs. The new order is then used in 2.1d to create the
work packages WPj . It is very important that the collocation points zi are not only reordered–a
backward mapping has to be possible because some UQ methods rely on the correct order of
the collocation points zi and the corresponding results. In this work, lists of the original and
the sorted indices are created, which allows a backward mapping of the results (VoIs) to match
the original order of the collocation points zi. This reordering of the results (VoIs) is performed
in 2.5a.

(3) Certification

(2) Propagation(1) Assimilation

1.1 Generate quadrature (collocation points and weights) 2.1 Create work packages depending on scheduling strategy

2.2 Distribute work (work packages) to worker

2.3a Worker works on work package

2.4 Collect results from woker

2.5 Linearise results to match corresponding initial order of
collocation points

3.1a Create statistics

3.2a Save statistics

3.1b Create runtime statistics

3.2b Save runtime statistics

2.3b Measure and remember the runtime for each individual run

Figure 4.17: Visualisation of the sequence of activities (UML activity diagram) to create the
runtime statistics with a runtime predictor rpN within a UQ simulation that uses a schedul-
ing strategy. The white boxes are always executed, and the green boxes are the additional
activities to determine and save the runtime statistics.

As described in Section 4.4, idling occurs because of the lack of knowledge about the runtime
and the FCFS order when scheduling the work. The authors of [63] also analysed FCFS for
various settings and showed that it could have a varying or poor utilisation. If TI → 0, the order
would be optimal. The three standard scheduling strategies, presented in Section 4.4, are now
extended with the creation and the usage of the runtime prediction to control the scheduling
with the goal of minimising the idling. This results in optimised scheduling strategies listed in
Table 4.5. For comparison, all optimised scheduling strategies are tested with f̂ex1 Equation (3.1)
and f̂ex2 Equation (3.2) as the model-specific runtimes.

Abbreviation Scheduling strategy Basis Section
SWPOPT Optimised static work packages SWP Section 4.6.1
SWPTOPT Optimised static work packages with thread pool SWPT Section 4.6.2
DWPOPT Optimised dynamic work packages DWP Section 4.6.3

Table 4.5: List of optimised scheduling strategies with their abbreviation and their scheduling
strategy basis.

60

4.6 OPTIMISED SCHEDULING STRATEGIES VIA WORK REORDERING

(3) Certification

(2) Propagation(1) Assimilation

1.1 Generate quadrature (collocation points and weights)

2.1d Create work packages depending on scheduling strategy

2.2 Distribute work (work packages) to worker

2.3a Worker works on work package

2.4 Collect results from woker

2.5b Linearise results to match corresponding initial order of
collocation points

3.1 Create statistics

3.2 Save statistics

2.1a Load runtime predictor from file

2.1b Predict runtime for each indivdiuall run with the
data from the collocation points

2.1c Reorder collocation points according to the
scheduling strategy

2.5a Reorder results to match the inital order of the collocation
points before reordering in step 2.1c

Figure 4.18: Visualisation of the sequence of activities (UML activity diagram) to use a runtime
predictor rpN for reordering the work within a UQ simulation. The white boxes are always
executed, and the green boxes are the additional activities to create and use the runtime
information TiS to optimise the scheduling.

4.6.1 Optimised static work packages
For the SWP scheduling, the collocation points zi are taken in their initial FCFS order to create
the work packages WPj . Each work package WPj contains the same number of collocation
points Pj . In the optimised static work packages (SWPOPT) scheduling, the goal is to create
the work packages in such a way that they contain the same work (i.e. the same runtime TWPj)
and not necessarily the same number Pj of collocation points zi anymore. This problem belongs
to the Pm category [149, p. 14] in scheduling theory, where m denotes the same number of
processors or computing units, respectively. An optimal distribution of the work (TI → 0) in
the Pm category is proven to be NP-hard [149, p. 114], unfortunately. The problem of preparing
the work packages is also known as the bin-packing problem: packing different sized volumes
into a finite number of bins. For the scheduling problems in this thesis, this reads: packing
collocation points zi with different runtime TiS into a finite number of work packages. Because
the bin-packing problem is well known, several heuristics exist to tackle the NP-hardness. For
this work, the MULTIFIT heuristic is used, which is described in [14]. MULTIFIT is chosen

61

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

because of its good results for large problems (as it is the case in this work) and its relatively
less computational time [104] compared to other heuristics such as LISTFIT [59] or COMBINE
[109]. Its worst-case factor Rm(MF) is in general estimated with

Rm(MF) ≤ 1.222 . (4.14)

In [14, 102], further investigations and improvements can be found on that. This means that the
optimal propagation time T̂Prop multiplied by Rm(MF) is the longest propagation time TProp
in the worst-case.
The workflow of the MULTIFIT heuristic is as follows: It starts with the unordered list of

collocations points zi. Then, the entries are sorted by their runtime T iS in descending order,
starting with the longest runtime first. Usually, MULTIFIT builds the work packages upon
its procedure, and it is unknown how many work packages (bins) should be used. For the
work packages in this work, the number of work packages J is defined to be a fixed constant for
MULTIFIT, hence it will always generate exactly J work packages. MULTIFIT works iteratively
to find a package size capacity C with k iterations6, to fairly put the same runtime TWPj into all
work packages WPj . For each step in the iteration, the first fit decreasing (FFD) algorithm is
applied. FFD starts with the ordered list of collocation points zi and fills the first work package,
as long as C is not exceeded. After that, it continues by filling the next work package. To also
fill in collocation points zi with small runtimes T iS in already filled work packages, FFD always
starts with the first work package to fill in a collocation point zi. After the k iterations, where
FFD is employed multiple times and the capacity C is iteratively refined, the workload of the
work packages is—with the worst-case factor Rm(MF)—almost equally distributed.

As an example, Figure 4.19 contains nine entries which should be distributed into three work
packages. The first row shows the unordered entries with their relative runtime (broader entries
take more time). After MULTIFIT is executed on the unordered list, three work packages with
similar runtime TWPj , but not with the same number of entries, have been produced. The order
of the entries inside each work package is in descending order regarding there runtime, which
comes from the initial ordering step in combination with the FFD algorithm.

1 92 3 4 5 6 7 8

MULTIFIT

1 923 456 78
WP1 WP2 WP3

Figure 4.19: Example of resulting work packages with the MULTIFIT heuristic. Each rectangle
(entry) represents a work item and its relative width is the length of the runtime. The broader
an entry, the longer its runtime. The first row shows the unordered entries and the second
row the resulting work packages WP1,WP2,WP3.

The resulting work packages for f̂ex1 (Equation (3.1)) using SWPOPT are visualised in Fig-
ure 4.20(a). Compared to the SWP scheduling (Figure 4.5(a)), the measured work package
runtimes TWPj are relatively similar to each other. Also for f̂ex2 (Equation (3.2)), the mea-
sured work package runtimes TWPj are relatively equally distributed, as Figure 4.20(b) shows.
Compared to Figure 4.5(b) with the SWP scheduling, this is a significant improvement.
The SWPOPT scheduling with the MULTIFIT heuristic can produce work packages with a

relatively similar runtime TWPj using the constructed runtime predictor rpN and the MULTIFIT
heuristic. This reduces the idling significantly for the tested model functions.

6The number of iterations k can be specified in the MULTIFIT implementation. In this thesis k = 100 is used.

62

4.6 OPTIMISED SCHEDULING STRATEGIES VIA WORK REORDERING

0 15 30 45 60 75 90 105
worker (WPj)

0

20

40

60
ru

nt
im

e
(s

)

(a) Work package runtime TWPj for fex1

TWPj

0 15 30 45 60 75 90 105
worker (WPj)

0

10

20

30

40

50

60

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.20: Visualisation of the runtime TWPj (working time) in seconds to solve each work
packageWPj using SWPOPT scheduling. In (a), the working time for the UQ simulation with
f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime with f̂ex2 (Equation (3.2))
as the model.

4.6.2 Optimised static work packages with thread pool on node level
The optimised static work packages with thread pool on node level (SWPTOPT) scheduling
strategy is the improved version of SWPT (Section 4.4.3). As for the SWPOPT scheduling
strategy, the goal is to have work packages with an equally distributed workload. The idea for
SWPTOPT is to use the MULTIFIT heuristic, too, combined with its dynamic scheduling on
each computing node.

As an example, Figure 4.21(a) shows the resulting work package runtimes TWPj for f̂ex1
(Equation (3.1)) using SWPTOPT . Now, the work package runtimes TWPj are almost equal.
For f̂ex2 (Equation (3.2)), the work package runtimes TWPj are also very well balanced, as
Figure 4.21(b) shows. Compared to the plots in Figure 4.7 for the SWPT scheduling, this is a
major improvement.

1 2 3 4
worker (WPj)

0

500

1000

1500

ru
nt

im
e

(s
)

(a) Work package runtime TWPj for fex1

TWPj

1 2 3 4
worker (WPj)

0

250

500

750

1000

1250

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.21: Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWPTOPT scheduling. In (a), the working time for the UQ simulation
with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime with f̂ex2 (Equa-
tion (3.2)) as the model.

By using SWPTOPT scheduling, the resulting work packages runtimes TWPj are almost equally
distributed. Due to MULTIFIT which constructs the work packages WPj with almost the same

63

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

workload and the dynamic scheduling on node level, a good load-balancing can be achieved.

4.6.3 Optimised dynamic work packages
With the optimised dynamic work packages DWPOPT scheduling, the DWP standard scheduling
(Section 4.4.4) is improved. DWPOPT starts with the initial (unordered) list of collocation points
zi and sorts the entries according to their predicted runtime TiS . This is known as the longest
processing time first (LPT) order7. This ordered list is then used by the MPI pool that starts
distributing the work with the first entry (that has the longest predicted runtime). The worst-
case factor Rm(LPT) [14] reads as follows

Rm(LPT) = 4
3 −

1
3m , (4.15)

with m representing the individual computing units. In the worst-case, T̂Prop multiplied by
Rm(LPT) has to be assumed for the propagation time TProp.
Figure 4.22 shows an example of the LPT ordering. The first row contains nine entries in their

initial order. The relative width of the rectangles represents their individual runtime (broader
means longer runtime). After the LPT ordering, the order looks like it is illustrated in the
second row: the entries are in descending order.

LPT

1 92 3 4 5 6 7 8

1923 45 678

Figure 4.22: Example of the resulting list of work items with the LPT order. Each rectangle
(entry) represents a work item and its relative width is the length of the runtime. The broader
an entry, the longer its runtime. The first row shows the unordered entries and the second
row the resulting ordered list.

DWPOPT is also evaluated with the two test functions: In Figure 4.23(a), the resulting work
package runtimes TWPj for f̂ex1 (Equation (3.1)) are plotted. DWPOPT can slightly improve
the workload in this example, compared to the DWP scheduling in Figure 4.9(a). For f̂ex2
(Equation (3.2)), Figure 4.23(b) shows the results, which also results in slightly better-balanced
work packages (compared to Figure 4.9(b)).
The optimised dynamic work packages (DWPOPT) scheduling can also improve the dynamical

creation of the work packages to produce a better-balanced workload among the computing
units. The improvement seems to be not as huge as for the other optimised scheduling strategies
(SWPOPT and SWPTOPT). However, due to the dynamic part, the underlying DWP standard
scheduling produces already better-balanced work packages than SWP and SWPT.

7The MULTIFIT heuristic, that is used in SWPOPT and SWPTOPT , also sorts the collocation points zi in
descending order as a first step. Hence, MULTIFIT also uses LPT.

64

4.6 OPTIMISED SCHEDULING STRATEGIES VIA WORK REORDERING

0 15 30 45 60 75 90 105
worker (WPj)

0

20

40

60

ru
nt

im
e

(s
)

(a) Work package runtime TWPj for fex1

TWPj

0 15 30 45 60 75 90 105
worker (WPj)

0

10

20

30

40

50

60

ru
nt

im
e

(s
)

(b) Work package runtime TWPj for fex2

TWPj

Figure 4.23: Visualisation of the runtime TWPj (working time) in seconds to solve the dynam-
ically emerged work packages WPj using DWPOPT scheduling. In (a), the working time for
the UQ simulation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime
with f̂ex2 (Equation (3.2)) as the model.

4.6.4 Summary of optimised scheduling strategies
In this section, the developed scheduling strategies are compared against each other with their
resulting propagation runtimes TProp8 for the UQ simulations with the two test functions f̂ex1
(Equation (3.1)) and f̂ex2 (Equation (3.2)). Various simulations, similar to Section 4.4.5, have
been performed with q = 4, 5, . . . , 12 different number of collocation points per parameter and
a different number of cluster nodes cn = 2, 3, 4, 5.
Figure 4.24(a) contains the propagation runtimes TProp for cn = 2 for f̂ex1 (Equation (3.1))

using all six scheduling strategies. With the SWP scheduling, the TProp is about 839 seconds for
q = 12, followed by SWPT with 622, and DWP with only 440 seconds. All optimised scheduling
strategies have similar propagation runtimes like DWP, ranging from 430–444 seconds. For f̂ex2
(Equation (3.2)), as can be seen in Figure 4.24(b), SWP takes about 536 seconds, and the others
about 344 to 373 seconds, for q = 12.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

200

400

600

800

ru
nt

im
e

(s
)

(a) Runtimes with 2 cluster nodes for fex1
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

100

200

300

400

500

ru
nt

im
e

(s
)

(b) Runtimes with 2 cluster nodes for fex2
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

Figure 4.24: Measured propagation runtimes TProp for two cluster nodes (cn = 2) and a varying
number q = 4, 5, . . . , 12 of collocation points per parameter: (a) is the plot with the three
standard scheduling strategies and their optimised versions for f̂ex1 (Equation (3.1)), and (b)
for f̂ex2 (Equation (3.2)).

8The resulting propagation runtimes TProp are slightly different in certain cases in this thesis, compared to [103],
due to some small measurement errors during the time of writing the article.

65

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

The optimised scheduling strategies with cn = 5 (and also cn = 3, 4, which are not plotted9)
behave qualitatively similar to cn = 2, as can be seen in Figure 4.25(a) for f̂ex1 (Equation (3.1))
and in Figure 4.25(b) for f̂ex2 (Equation (3.2)).

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

100

200

300

ru
nt

im
e

(s
)

(a) Runtimes with 5 cluster nodes for fex1
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

50

100

150

200

ru
nt

im
e

(s
)

(b) Runtimes with 5 cluster nodes for fex2
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

Figure 4.25: Measured propagation runtimes TProp for five cluster nodes (cn = 5) and a varying
number q = 4, 5, . . . , 12 of collocation points per parameter: (a) is the plot with the three
standard scheduling strategies and their optimised versions for f̂ex1 (Equation (3.1)), and (b)
for f̂ex2 (Equation (3.2)).

Table 4.7 lists the propagation runtimes TProp for q = 10, 11, 12 and cn = 2, 5 for the two
example functions. It can be seen that in almost all cases, the optimised scheduling strate-
gies produce smaller propagation runtimes TProp than their corresponding standard scheduling
strategy. The measured TProp values for all performed variations in cn and q are listed in
Appendix A.3.

Scheduling strategies (time in seconds)
f̂ cn q SWP SWPT DWP SWPOPT SWPTOPT DWPOPT

f̂ex1

2
10 485.9 359.8 257.9 248.6 258.3 256.7
11 648.6 479.5 341.4 330.9 332.4 340.5
12 839.2 622.3 440.6 430.0 444.0 439.9

5
10 214.7 202.8 107.4 100.8 113.4 102.2
11 269.3 251.8 138.7 133.3 150.2 135.8
12 351.0 328.0 176.8 172.8 187.0 175.4

f̂ex2

2
10 290.5 202.1 207.9 212.6 198.9 203.3
11 409.6 270.2 271.7 279.0 265.9 266.6
12 536.2 344.1 352.5 373.2 345.4 346.4

5
10 140.8 101.4 88.4 84.6 88.3 81.9
11 172.7 127.3 114.1 116.4 113.3 107.0
12 215.6 171.5 146.1 150.4 143.6 138.9

Table 4.7: List of propagation runtimes TProp (in seconds) for the academic example functions
f̂ex1 (Equation (3.1)) and f̂ex2 (Equation (3.2)) for q = 10, 11, 12 and cn = 2, 5.

A different view for assessing the optimised scheduling strategies is given by the speed-up plots
in Figure 4.26, which compares the SWP scheduling with the optimised scheduling strategies.
The speed-ups for f̂ex1 (Equation (3.1)), as shown in Figure 4.26(a), are as follows (for q ≥ 6):
SWP to SWPOPT is about 1.8–2.2, SWP to SWPTOPT about 1.5–2.0, and SWP to DWPOPT

9All measured propagation runtimes are listed in the appendix in Table A.2 for f̂ex1 and in Table A.4 for f̂ex2.

66

4.6 OPTIMISED SCHEDULING STRATEGIES VIA WORK REORDERING

about 1.8–2.2. For f̂ex2 (Figure 4.26(b)), the speed-ups (for q ≥ 6) for SWP to SWPOPT is
about 1.3–2.1, for SWP to SWPTOPT about 1.2–1.8, and for SWP to DWPOPT 1.3–2.1.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

sp
ee

d-
up

(a) Speed-up SWP to OPT for fex1

SWP to SWPOPT

SWP to SWPTOPT

SWP to DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

sp
ee

d-
up

(b) Speed-up SWP to OPT for fex2

SWP to SWPOPT

SWP to SWPTOPT

SWP to DWPOPT

Figure 4.26: Speed-up for TProp of SWP compared SWPOPT , SWPTOPT , and DWPOPT : (a)
contains the speed-up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2 (Equation (3.2)). Each plot
contains 4 speed-up lines (of identical colour and line style) that corresponds to the different
number of cluster nodes cn = 2, 3, 4, 5.

To compare each standard scheduling strategy with its optimised version, the speed-ups are
plotted in Figure 4.27. For f̂ex1 (Figure 4.27(a)), SWP to SWPOPT is about 1.8–2.2, SWPT
to SWPTOPT about 1.0–1.7, and DWP to DWPOPT about 1.0–1.1. Figure 4.27(b) shows the
speed-ups for f̂ex2: SWP to SWPOPT is about 1.3–2.1, SWPT to SWPTOPT about 1.0–1.1,
and DWP to DWPOPT about 1.0–1.1. The speed-ups for all tested cn and q are listed in
Appendix A.4 for both academic examples.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

sp
ee

d-
up

(a) Speed-up NOT OPT to OPT for fex1
SWP to SWPOPT

SWPT to SWPTOPT

DWP to DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

sp
ee

d-
up

(b) Speed-up NOT OPT to OPT for fex2
SWP to SWPOPT

SWPT to SWPTOPT

DWP to DWPOPT

Figure 4.27: Speed-up for TProp of SWP to SWPOPT , SWPT to SWPTOPT , and DWP
to DWPOPT : (a) contains the speed-up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2 (Equa-
tion (3.2)). Each plot contains 4 speed-up lines (of identical colour and line style) that
corresponds to the different number of cluster nodes cn = 2, 3, 4, 5.

The plots above show impressively that the optimised scheduling strategies can further reduce
the propagation time TProp compared to the SWP scheduling. The comparison of each scheduling
strategy with its optimised version shows that SWP to SWPOPT contains the most potential
for improvement and SWPT to SWPTOPT could also significantly reduce TProp for f̂ex1. While
DWP, with its dynamic scheduling, could already significantly reduce the idling TWPj , DWP to

67

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

DWPOPT shows only little to no further speed-ups. But DWPOPT has the advantage not to
exceed the worst-case boundary Rm(LPT) (Equation (4.15)).
Fortunately, there is only a small overhead for loading and saving a runtime predictor rpN ,

which is about 1.6 milliseconds for all scheduling strategies in both examples. The usage of the
rpN to predict all runs for all collocation points is also cheap and takes between 0.04 (for q = 4)
and 4.76 seconds (for q = 12). With a maximum time of about 0.26 milliseconds to perform
the resorting of the results to match the original order, the overall usage time is possible in
less than 0.1 seconds for q = 4 and less than 5 seconds for q = 12. This makes the usage of
the prediction mechanism almost always possible without noticeable performance losses10 if an
appropriate rpN is available.
The decision of which scheduling strategy should be used depends on the situation and the

available computing system. Table 4.9 lists different situations and recommendations of which
scheduling strategy is suitable under the described conditions. As a simple rule of thumb, DWP
and DWPOPT is a good choice if an (MPI) pool mechanism is available. In cases where no pool
mechanism is available, SWPTOPT and SWPOPT should be used over SWPT and lastly SWP.

Situation Suggested scheduling
Only one production run to quantify the uncer-
tainty is possible

DWP

The runtime prediction has an acceptable or good
quality

DWPOPT , DWP, SWPTOPT , SWPOPT

The runtime prediction has very poor quality DWP
There is no (MPI) pool across computing nodes
available

SWPTOPT , SWPOPT

No information about the runtime of a model is
available

DWP

The model does not vary in runtime with different
input parameters values

DWP, SWPT, SWP

Table 4.9: List of possible situations and their suggested scheduling strategy.

4.7 Surrogate models
Computer simulators for complex, physical systems can result in computationally intensive im-
plementations. The source code of some simulators may not be publicly available (especially
commercial ones) and have therefore to be used as a black box. If additionally the time is lim-
ited, and the usage of the simulator through the original model exceeds the time limits, other
solutions are required. Surrogate models are a good choice for such non-intrusive methods,
where the model is only available as a black box. A surrogate model is a replacement for an
original model whose objective is to behave qualitatively (or even quantitatively) similar—but
usually with less computational effort. Therefore, the accuracy is mostly not as high as for the
original model, but this can be acceptable for certain cases. Otherwise, if running the original
simulator is prohibitive for a large number of parameters, running it for a small number (instead
of the surrogate) will also lead to larger errors.

To construct a surrogate model, a reformulation of the equations from a microscopic model
into a macroscopic model is sometimes possible. This would result in less computational effort
when executing the simulation but requires access to the source code, which is assumed to be
10This means for both examples f̂ex1 (Equation (3.1)) and f̂ex2 (Equation (3.2)), that there is an overhead of less

than < 1% compared to the total propagation time TProp. For the pedestrian dynamics scenario 2 (Section 6.4)
with cn = 5 and q = 12 using DWPOPT scheduling, the overhead is about 0.09%.

68

4.7 SURROGATE MODELS

not available in this thesis. Another feasible approach is to reduce the computational effort of
a model by simplifying the time domain by using larger time steps or shorten the investigated
time period. The same idea can be used for the spatial domain by reducing its resolution.
This leads to the technique of reduced-order models [160, 161, 152], which is a combination of
equation-driven [8] and data-driven [143, 141, 144] approaches.
If the time limit for one simulation run is too small, then it is even more so for many simu-

lations runs as required in forward uncertainty quantification. Therefore, surrogate models are
frequently used in UQ to reduce the computational effort (see [81, 101, 118, 155, 142, 141]). As
shown in Figure 4.28, the surrogate model is used for the propagation of the uncertainty, instead
of the original model.
A review of different surrogate model techniques for UQ can be found in [152] for the context of

the water resources field. The techniques are categorised in (a) response surface surrogates and
(b) low-fidelity physically-based surrogates. Response surface surrogates are called data-driven
because they are constructed by observing the output of the original model. The low-fidelity
physically-based surrogates use a coarser time or spatial grid, a reduced-order setting, or a
different model formulation. A further categorisation can be found in [2], which also ranks
non-intrusive general polynomial chaos expansions as a data-driven surrogate model approach.
However, the gPCE itself as a surrogate model can not deal well with changes in the probability
distributions and its parameter values for the uncertain parameters of the models. If there are
any changes and a certain “accuracy” is required, the whole gPCE has to be recreated. Because
a gPCE usually relies on certain evaluation points (e.g. collocation points zi), it cannot deal
with changes in these points. Therefore, the whole UQ simulation has to be repeated.

model

assimilation (1) propagation (2) certification (3)

PDF

uncertain
parameters

quantity of
interestsurrogate

model

Figure 4.28: Illustration of the forward UQ method with a surrogate model instead of the
original model.

In the next sections, a data-driven surrogate method is described, which is then used in UQ
simulations to quantify the uncertainty efficiently. Examples of this technique in combination
with UQ can be found in [28] and a scenario with detailed error measurements and runtime
comparisons in this thesis in Section 6.5.

4.7.1 The closed observables surrogate model
In this thesis, a dynamic, data-driven surrogate model approach with closed observables (COSM)
is used. The COSM is constructed by observing the values of interest of the original model. A

69

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

surrogate model is called closed on its observables, if it can produce a subsequent value on a given
point, without the need to query the original model. This is achieved through Takens’ delay
embedding theorem [190], which ensures to have a map to future values for each data point.
To reduce the dimension of the embedding space, the COSM uses diffusion maps [15]. This
produces surrogate models with reduced intrinsic states that can be saved with little required
space. An introduction to the COSM can be found in [27, 24], while applications are described
in [25, 28], which shows comparable results for smooth models.

To observe the values of interest from a model and to construct a corresponding surrogate
model, the procedure of [27] is used. Within the surrogate, all information about the VoIs is
“stored”. This has the major advantage that the surrogate model can be used several times
with different probability distributions, without the need for adding further observations of the
original model. The surrogate can completely work on its own once it is generated.

4.7.2 Uncertainty quantification using the closed observables surrogate model
For non-intrusive UQ scenarios, it is feasible to use a closed observables surrogate model for the
forward propagation of uncertainties. Figure 4.29 illustrates the necessary process for that. The
COSM is divided into two phases: the offline and the online phase.
In the offline phase, the original model is sampled several times by specifying appropriate

values for the input parameters and collecting the output values (VoIs). For each uncertain
input parameter P1, P2, . . . , PM of the model, values have to be generated. In this thesis, the
parameter space is sampled with a full grid. It is important to specify the sampling interval and
the rate in such a way that the whole parameter space is covered. For all other input model
parameters that are not defined to be uncertain, the parameters are kept fixed at predefined
values. For each model run, the values of interest V oI1, V oI2, . . . , V oIV are collected for every
timestep of the model. The surrogate model uses the generated input parameter values and the
collected time series of VoIs to construct the closed observables with its intrinsic states and saves
the closed observables into a file. From now on, the original model is not required anymore.
Only if a different parameter space has to be covered, if the number of the parameter changes,
or additional VoIs are required, the original model has to be sampled again.
The propagation of the uncertainties with the COSM can start after the closed observables are

created. In the offline phase, the COSM loads the closed observables from a file into the memory.
Once the data are loaded, the surrogate model is ready to reproduce the VoIs according to some
given input parameter values. The usage of the COSM for the propagation of the uncertainties
using the stochastic collocation with the pseudo-spectral approach11 is then straightforward:
The technical phase of the assimilation is as usual and creates the collocation points zi, where
every zi contains specific values for every input parameter P1, P2, . . . , PM of the surrogate model,
exactly as in the case of the original model. The difference is in the propagation phase, where the
surrogate model is called instead of the original model—but with significantly less computational
effort. For that, Equation (2.7) is rewritten into

U(x, t, ζ) ≈ ũN (x, t, ζ) :=
N∑
j=0

c̃j(x, t) · Φj(ζ) , (4.16)

and the corresponding coefficients c̃j are computed with

c̃j(x, t) ≈
1
γj

Q∑
i=1

s(x, t, zi)Φj(zi)wi , (4.17)

11It is also possible to use the COSM with other non-intrusive UQmethods such as point collocation (Section 2.2.3)
or Monte Carlo (Section 2.2.1).

70

4.7 SURROGATE MODELS

where s(x, t, zi) denotes the surrogate model. After all VoIs are collected, the certification phase
can take place to approximate the coefficients c̃j , construct the gPCE ũN (x, t, ζ), and finally to
calculate the QoIs. It is crucial to evaluate the accuracy of the results, before making decisions
based on the QoI results that are determined with the COSM. How this is done in this thesis is
part of the next section.

original
model

P1

P2

...

PM

VoI1

VoI2

...

VoIV

create
surrogate model
(offline phase)

read VoIs

generate

parameter

values

Surrogate model construction:

sample values

closed
observables

saves data

use
surrogate model

(online phase)

P1

P2

...

PM

VoI1

VoI2

...

VoIV

UQ: stochastic
collocation

read VoIs

generate

collocation

points

UQ with surrogate model:

collocation

points

reads data

calculate

statistics
QoI:

mean,

variance,

...

Figure 4.29: Illustration of the process to create a COSM and to use it in a UQ simulation.
The parameters of the model are denoted with P1, P2, . . . , PM and the values of interest with
V oI1, V oI2, . . . , V oIV , which is the output of the model. The data flow between the steps is
visualised with the arrows.

71

CHAPTER 4 – EFFICIENT UNCERTAINTY PROPAGATION ON LARGE COMPUTE
INTENSE SYSTEMS

4.7.3 Determining the quality of a UQ simulation using the COSM
To assess the quality of a UQ simulation using the COSM, a comparison of the quantities of
interest is proposed. The required process for that is illustrated in Figure 4.30.

In the previous (slow) path, the original model is used for the propagation of the uncer-
tainties and the QoIs with the preferred statistical moments (Section 2.2.2) like the mean µo
(Equation (2.17)) and the variance σ2

o (Equation (2.18)) are determined.
The proposed (fast) path with the COSM is also performed with exactly the same setting for

the uncertain parameters ζ and the resulting collocation points zi. As for the original model,
the VoIs are collected and the counterparts of the preferred statistical moments like the mean
µs and the variance σ2

s are determined.

Proposed path (fast):

Previous path (slow):

original
model

UQ with
original
model

surrogate
model

UQ with
surrogate

model

error
comparison

mean,
variance,
…

mean,
variance,
…

Figure 4.30: Illustration of the proposed error comparison process of the original model (pre-
vious path) with the surrogate model (proposed path) for UQ simulations using the COSM.

Once the QoIs with the statistical moments have been determined for both paths, the quality
can be assessed. Similar to the error measurements defined in Section 4.5.2 to compare the
runtime, here the absolute mean error εsi is defined as

εsi := |µoi − µsi| , (4.18)

to assess the mean µ from the original model µo compared to the mean µs of the surrogate
model. The mean µ is indexed with i because the error is determined for many time steps
i = 1, 2, . . . , τ .

Remark: For this definition, the surrogate model should use the same time steps to generate
the VoIs as the original model. Otherwise, a mapping between different time steps is required,
which can introduce an additional source of error. If required, such a synchronisation approach
of time series data can be found in [106].

For the relative error,
εsi,rel := εsi

max(|µo|)
= |µoi − µsi|max(|µo|)

(4.19)

is used. Note that max(|µo|) is used instead of max(|µoi|). This is more useful for time series
data because a single time step i can have a high relative error, while the whole time series is
well approximated. This also means that the whole time series should be in focus, not a single
point in time. For the comparison, also the mean of the absolute error µ(εs) and the L2(εs)
error norm are useful, defined as,

72

4.7 SURROGATE MODELS

µ(εs) := 1
τ

τ∑
i=1

εsi , (4.20) L2(εs) :=

√√√√1
τ

τ∑
i=1

εs2
i , (4.21)

and their relative counterparts,

µ(εsrel) := 1
τ

τ∑
i=1

εsi,rel , (4.22) L2(εsrel) :=

√√√√1
τ

τ∑
i=1

εs2
i,rel . (4.23)

4.7.4 Summary of surrogate models
With the COSM, there is now a concept available that can be used for real-time decision-making
under uncertainty. Using the COSM in UQ simulations allows to speed up the propagation phase
of two to three orders of magnitude depending on the runtime of the original model, which allows
to obtain the results very fast: e.g. in seconds to minutes compared to hours.
Once the closed observables are constructed by sampling the original model, they can easily

be saved into a file. By loading the closed observables from a file, they can be used in UQ
simulations as a surrogate for the original model. The big advantage is the fast evaluation and
the possibility to use the closed observables even if the probability distribution or its parameters
changes, without the need of recreating the closed observables.
With the defined error measures, it is possible to determine the quality of the COSM to decide

whether the loss of accuracy is still good enough to derive decisions from the results.
The COSM proved its efficiency in [28] and in the case study of Section 6.5.

73

5 The UQEF software framework

During this thesis, the uncertainty quantification execution framework (UQEF) has been devel-
oped for forward uncertainty quantification. The programming language is Python1, and the
offered API for users, therefore, is also in Python. The framework relies on Chaospy but could
be—with some refactorings—opened to other underlying UQ toolboxes. UQEF further has,
among others, dependencies to joblib [47] and mpi4py [113].
UQEF addresses some open points when using Chaospy directly that are outlined in Sec-

tion 2.4.2 and the required efficiency aspects that are defined in Section 2.5. In Chaospy, the
propagation phase is very much up to the developer, and UQEF closes this gap by providing
different scheduling and scalability features. Its focus is on scalability and portability from de-
velopment systems to compute (cluster) systems. For that, it implements the runtime prediction
and automatic scheduling mechanisms described in Chapter 4. This enables the users of UQEF
to apply these features for their own UQ simulations without focusing on the computing system
environment and having strong support for the propagation phase (comp. Figure 2.2) in their
UQ simulations.
UQEF is extensively used in all scenarios of Chapters 6 and 7 of this thesis: It proved its

functionality with the academic test models (Section 3.1), with Vadere (Section 6.1) a pedestrian
dynamics simulator, and with the water balance model simulator LARSIM (Section 7.1).
This chapter gives an overview on the software pieces of UQEF, shows its usage and its

functionality, demonstrates how to do the configuration, and how to extend it with custom
behaviour as well as extend it to other computing systems.

5.1 Overview and software architecture
In this section, a general overview of and a gentle introduction to the UQEF software framework
is given. The following list gives an overview of the UQEF feature categories. Each feature
category is described in detail in a corresponding section.

• Custom models (Section 5.2)
• Custom statistics (Section 5.3)
• Parametrisation of a UQ simulation (Section 5.4)
• Support for different UQ methods (Section 5.5)
• Scheduling and solver strategies (Section 5.6)
• Support for parameter studies (Section 5.7)
• Automatic runtime measurements, predictions, and optimised scheduling (Section 5.8)
UQEF is hierarchically organised as a Python package with separate modules for each dif-

ferent aspect. This object-oriented approach allows the separation of concerns and provides
the opportunity to extend UQEF easily. Figure 5.1 illustrates the architecture of UQEF as a
UML package and class diagram. The classes are explained in detail in the subsequent sections.
UQsim is the main class for the users, which acts as a facade (the facade pattern is described in
[48, p. 185–194]). It uses all other packages and relies on the interfaces and not on the concrete
subclasses. The simulation package contains the Simulation interface, which is the base class
for concrete simulation types, e.g. the Monte Carlo method (McSimulation) or the stochastic

1At the start of this thesis, the Python version was 2. But all sources are now written with Python version 3
and the backward compatibility to Python 2 is not tested anymore.

75

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

uqef

nodes

model

«interface»
Model

schedule

simulation

solver

stat

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver
«functions»
Heuristics

Nodes
«interface»
Simulation

McSimulation

ScSimulation «interface»
Statistics

RuntimeStatistics

UQsim

use

use

use

use

use

Figure 5.1: Illustration of the UQEF architecture: Combined UML package and class diagram
that shows the main structure and elements with the dependencies of the UQEF framework.2

collocation with pseudo-spectral approach (ScSimulation). Inside the nodes package, there is
the Nodes class which is responsible for configuring and generating nodes for the UQ simu-
lation. The Statistics interface is inside the stat package and is derived by concrete statistic
classes. The solver package contains the Solver interface with its concrete implementations:
LinearSolver, ParallelSolver, MpiSolver, and MpiPoolSolver, which controls the scheduling of
the individual model runs. The Solvers use the Model interface from the model package for the
propagation, which is the extension point for users to include their own models. Finally, the
schedule package contains the Heuristics file with functions for common scheduling heuristics
(comp. Section 4.6.1).
Figure 5.2 illustrates a typical program architecture for UQEF simulation codes. Inside a

2For a better overview, the usage arrows from the UQsim class to all other packages (interfaces) where not
drawn. Further, the diagram does not contain the functions and members of the classes, these are in detail
explained in the subsequent sections.

76

5.1 OVERVIEW AND SOFTWARE ARCHITECTURE

uq_simulation.py Python script, there is one instance of a UQsim class. The object of the
Nodes class, which is provided by the UQsim object, contains parameter information for each
uncertain and fixed model parameter. ConcreteModel is a placeholder for a concrete class that
is derived from the Model interface. It contains the actual model source code directly, or the
system calls to perform a single run of the external model. The ConcreteStatistics object is again
a placeholder for a concrete class derived from the Statistics interface. It is the counterpart of
the ConcreteModel class which contains all the source code to evaluate the VoIs statistically and
to generate the resulting numbers for the QoI(s) as well as the generation of tables and plots.

«Python_script»
uq_simulation

«class»
Nodes

+ generateNodes()
+ setDist()

«class»
ConcreteModel

+ simulate()

«class»
ConcreteStatistics

+ calcStatistics()
+ plotResults()
+ printResults()

UQsim use

use

use

Figure 5.2: Illustration (UML class diagram) of a common simulation program architecture
when using the UQEF framework.

Listing 5.1 represents a first, common example of a UQ simulation script (uq_simulation.py)
using UQEF. Lines 1–2 include Chaospy and UQEF. In line 4, an instance (uqef) of the UQsim
class is created. If nothing specific is configured (as in this example), UQsim uses per default
stochastic collocation with the pseudo-spectral approach (see Section 2.2.2) and a TestModel
(which simply adds all parameter values, or it can be interpreted as the identity function in case
of one parameter) with the corresponding TestModelStatistics. Line 8 defines q, the number
of collocation points for each uncertain parameter, and line 9 the order P which specifies the
highest order of the orthogonal polynomials Φj(ζ) of the gPCE Equation (2.7). The distributions
for the uncertain parameters are defined in lines 12–15: first, the names for the parameters
"uncertain_param_1" and "uncertain_param_2" are specified. Then, the distributions are
set, here, a normal (Gaussian) N(0, 1) distribution for "uncertain_param_1", and a uniform
U(−1, 1) distribution for "uncertain_param_2". With line 18, all the objects within the uqef
object are initialised and prepared for the actual UQ simulation (propagation) which is started
in line 21. All the statistical calculations for the QoIs, the printing and plotting, and the saving
of the results is done in lines 24–27. Finally, line 30 gives all the objects the chance to do some
cleanup and tear down, before the uq_simulation.py script ends.

This is already a powerful basis for own UQ simulations with UQEF. In the following sections,
it is explained how to add custom models and corresponding statistical evaluation source codes,
as well as adding advanced configurations and parametrisations, and how to use and configure
the automatic runtime prediction and scheduling features.

77

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

1 import chaospy as cp
2 import uqef
3

4 # instantiate UQsim
5 uqsim = uqef.UQsim()
6

7 # args
8 uqsim.args.sc_q_order = 3 # order (q) number of colloc. points for each param.
9 uqsim.args.sc_p_order = 1 # order (P) highest order of orth. poly. of the gPCE

10

11 # initialise uncertain parameters:
12 if uqsim.is_master():
13 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
14 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(0, 1))
15 uqsim.simulationNodes.setDist("uncertain_param_2", cp.Uniform(-1, 1))
16

17 # setup
18 uqsim.setup()
19

20 # start the simulation
21 uqsim.simulate()
22

23 # statistics:
24 uqsim.calc_statistics()
25 uqsim.print_statistics()
26 uqsim.plot_statistics()
27 uqsim.save_statistics()
28

29 # tear down
30 uqsim.tear_down()

Listing 5.1: First illustrative source code example (uq_simulation.py) that shows the ba-
sic usage of UQEF using the stochastic collocation with the pseudo-spectral approach (see
Section 2.2.2).

5.2 Custom models: embedding model codes
An essential aspect is to use custom models with UQEF. For that, the Model interface exists,
which has to be derived. It is recommended to derive a subclass per model that contains all the
source code to run the model code.

Method signature Abstract Return value
def normaliseParameter(self, parameter): yes List of scalar values
def assertParameter(self, parameter): yes None
def prepare(self): yes None
def run(self, i_s, parameters): yes List of tuple(VoI, runtime)
def timesteps(self): yes List of timesteps

Table 5.2: Functions of the UQEF Model interface class inside the model package.

Table 5.2 lists the main functions of the Model interface with their return values. The
“Abstract”-column indicates that the method is abstract and it has to be overwritten by the
subclasses.
In the following list, the functions of the Model interface are explained:

def normaliseParameter(self, parameter):

78

5.2 CUSTOM MODELS: EMBEDDING MODEL CODES

Can be used to normalise or correct values in parameter. The parameter is a list that
contains a scalar value for each defined parameter in uqsim.simulationNodes (Nodes
class). This function is called from the active Solver (see Section 5.6) before the
assertParameter() function is called.

Remark: The order of the parameter values in parameter corresponds to the order of the
added parameters in the uqsim.simulationNodes object within the UQEF class object
(e.g. lines 13–15 in Listing 5.1).

def assertParameter(self, parameter):

Can be used to assert that the values in parameter are valid for the model. Because the
parameter values are usually sampled from a probability distribution or generated from
the quadrature scheme, it can happen, that non-valid values for the model parameter are
generated, which can be detected here. For a developer, it is recommended to use the
Python assert statement to perform the check, which throws an AssertionError if a non-
valid parameter value is detected. This function is called from the active Solver before the
parameters are distributed to the workers.

def prepare(self):

Can be used for custom actions to prepare the model (e.g. copy files). This function is
called from the active Solver before the run() function is called.

def run(self, i_s, parameters):

Is the actual method that starts the model run and returns the values of interest (VoIs)
for every parameter set in parameters. Usually, parameters contains only one set of
parameter values and in the i_s list the corresponding index. Each parameter set has its
own index to identify a specific model run correctly. Some models, especially surrogate
models like the COSM (see Section 4.7.2), perform better if they are loaded once and
then proceed many runs directly one after another, which is the reason for this chunking
mechanism. The index can also be used for models to create separate, identifiable folders
with all the relevant input and output files for a specific model run. This function is called
from the active Solver.

def timesteps(self):

Returns a list with the timesteps (scalar value) of the model. If only one timestep exists,
a list with one element has to be returned. The return values of the run() function have
to contain at least one value for each timestep.

Listing 5.2 contains a template for a custom model implementation. The functions
normaliseParameter(), assertParameter(), and prepare() are only defined, but do not
contain specific code. In the run() function, there is a loop over all parameters (and the
corresponding indices i_s). Inside the loop, the model source code can be implemented directly,
or an external model can be called via system calls to calculate the VoI. The VoI can be a single
scalar value or a list of values, in the case of multiple VoIs, or one value for each timestep (addi-
tionally, a list of lists or a list of dictionaries is also supported). For the runtime measurements
and optimisations, it is required that for every run, the runtime is determined and added to the
results. timesteps() returns a list with one scalar value which means the CustomModel only
has one timestep.

79

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

1 import uqef
2 import time
3

4

5 class CustomModel(uqef.model.Model):
6 def __init__(self):
7 uqef.model.Model.__init__(self)
8

9 def normaliseParameter(self, parameter):
10 return parameter
11

12 def assertParameter(self, parameter):
13 pass
14

15 def prepare(self):
16 pass
17

18 def run(self, i_s, parameters):
19 results = []
20 for ip, parameter in zip(i_s, parameters):
21 start = time.time()
22

23 # calc value of interest (VoI) with parameter set
24 # or call external model application with parameter values
25 value_of_interest = 0 # retrieve value of interest (VoI) from model
26

27 # measure runtime
28 runtime = time.time() - start
29

30 # collect the output (voi and runtime)
31 results.append((value_of_interest, runtime))
32

33 return results
34

35 def timesteps(self):
36 return [1]

Listing 5.2: Example template for a custom model implementation with UQEF.

To use the CustomModel in own scripts, e.g. as in the UQEF source code example (Listing 5.1),
only small extensions are required. Listing 5.3 shows how to choose the CustomModel (line 2) and
to register it at the uqsim object (line 5). These lines should be added before uqsim.setup()
is called. The uqsim object holds all known models in a dictionary, which is identified by a
model name, here "custom_model". The model dictionary gets a lambda function as its value
because, for each run, a separate object of the model (CustomModel) is created. If required, the
constructor of CustomModel can be used for further initialisation purposes of the model.

1 # choose custom_model
2 uqsim.args.model = "custom_model"
3

4 # register model
5 uqsim.models.update({"custom_model": lambda: CustomModel()})

Listing 5.3: Selection and registration of a custom model (CustomModel) on an object (uqsim)
of a UQsim instance with UQEF.

80

5.3 CUSTOM STATISTICS: COMPUTATION OF MODEL-SPECIFIC STATISTICS

5.3 Custom statistics: computation of model-specific statistics
The Statistics interface is the counterpart to the Model interface. It represents the technical part
of the certification phase, including the evaluation of the QoI as well as the generation of the
coefficients cj for gPCE based methods. A general implementation for the generation of the QoI
statistics is currently not possible, because of the broad spectrum of different types and shapes
of the data of different models. Therefore, the coding of the QoI evaluation, the generation
of the numbers, data tables and the plots is up to the user. But, the Statistics interface is
already provided by UQEF, for a clear structure and to support load/save mechanisms as well
as, e.g. redo plotting without a recalculation of the QoI. For the generation of the QoI, the
whole Chaospy functionality is available as described in Section 2.4.2. In Table 5.4, the main
functions with their return values are listed.3

Method Abstract Return value
def calcStatisticsForMc(...): no None
def calcStatisticsForSc(...): no None
def printResults(...): no A string that represent the results.
def plotResults(...): no None
def plotAnimation(...): no None

Table 5.4: Functions of the UQEF Statistics interface class inside the stat package.3

In the following enumeration, the functions of the Statistics interface are explained:
def calcStatisticsForMc(self, rawSamples, timesteps,

simulationNodes, numEvaluations, order,
regression, solverTimes,
work_package_indexes,
original_runtime_estimator=None):

This function can be overwritten by concrete Statistics classes to support Monte Carlo
statistic calculations. Here, the whole Numpy and the Chaospy functionality for the
certification phase (see Section 2.4.2) can be used. The goal is to calculate the required
QoIs (statistical moments) here because this depends on the UQ method and to store the
data (as members) in the Statistics object in a way, such that it can be used later in the
print and plot functions, which should not depend on a particular UQ method. This offers
code reuse, especially if different UQ methods are used for the same model.
rawSamples is a list and contains all the VoIs that are returned from the Model during the
propagation. The order of the VoIs is already restored and matches the original order of the
generated nodes from the Nodes class. The timesteps list contains all timesteps that the
model used for the propagation. For each timestep, the rawSamples list should contain one
value for each VoI. The parameter simulationNodes contains all generated nodes from the
Nodes class. numEvaluations is a scalar value with the number of evaluations that have
been performed. UQEF supports the common point collocation method (Section 2.2.3),
with the order parameter (P) for the highest order of the orthogonal polynomials Φj(ζ)
of the gPCE. If the regression parameter is True, then point collocation is used instead
of Monte Carlo.4 In solverTimes all runtimes are stored (one value for each performed
single run). Because of the scheduling features of UQEF, work_package_indexes is a list
of lists with the indices that are grouped into work packages. If a runtime predictor is

3Because of the many function parameters these are not shown in Table 5.4.
4Because the common point collocation method (Section 2.2.3) relies on the same idea of sampling the probability
distribution to generate sample points for the propagation as the Monte Carlo method, it is realised with the
regression parameter at this point.

81

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

loaded from the uqsim object, then original_runtime_estimator contains the loaded
gPCE object of the runtime rpN . Further details are documented in Section 5.8. This
function is called from the UQsim class when uqsim.calc_statistics() is called.

def calcStatisticsForSc(self, rawSamples, timesteps,
simulationNodes, order,
regression, solverTimes,
work_package_indexes,
original_runtime_estimator=None):

This function can be overwritten by concrete Statistics classes to support stochastic col-
location statistic calculations. The meaning of the parameters is the same as for the
calcStatisticsForMc() function, except the simulationNodes are generated with a
quadrature rule, and the rawSamples contains only the VoIs that are propagated us-
ing the simulationNodes. If regression == True, then the probabilistic collocation
approach (Section 2.2.3) is used. This function is called from the UQsim class when
uqsim.calc_statistics() is called.

def printResults(self, timestep=-1):

This function can be overwritten by concrete Statistics classes to generate text that rep-
resents the results. For that, the member variables that contain the QoI values that
are created by the calcStatisticsForMc() or the calcStatisticsForSc() function
should be used. The return value is a string with the results, usually in tabular form.
If timestep == -1, then the results for all timesteps should be printed, otherwise only
the results for the specified timestep.

def plotResults(self, timestep=-1, display=False,
fileName="", fileNameIdent="", directory="./",
fileNameIdentIsFullName=False, safe=True):

This function can be overwritten by concrete Statistics classes to generate graphical plots
that represent the results. If timestep == -1, then the results for all timesteps should
be plotted, otherwise only the results for the specified timestep. With display == True,
the plots are directly displayed on the screen, which is useful for the development phase.
The parameters fileName, fileNameIdent, directory, and fileNameIdentIsFullName
contain information about the resulting filenames for the plots. If safe == True, then the
plots are saved permanently into files.
To generate a full path for a plot, the generateFileName() function of the Statistics class
can be used:

1 fileName = self.generateFileName(fileName, fileNameIdent,
2 directory, fileNameIdentIsFullName)
3

4 pngFileName = fileName + ".png" #for a png
5 pdfFileName = fileName + ".pdf" #for a pdf

def plotAnimation(self, timesteps, display=False,
fileName="", fileNameIdent="", directory="./",
fileNameIdentIsFullName=False, safe=True):

This function can be overwritten by concrete Statistics classes to generate animations
(videos) that represents the results. The timesteps parameter is a list with the timestep
values that should be used for creating the animation.

In the following Listing 5.4, an example for a custom statistics object is shown that supports
the stochastic collocation with the pseudo-spectral approach.

82

5.3 CUSTOM STATISTICS: COMPUTATION OF MODEL-SPECIFIC STATISTICS

1 import numpy as np
2 from tabulate import tabulate
3 import matplotlib.pyplot as plotter
4 import chaospy as cp
5 import uqef
6

7

8 class Samples(object):
9 def __init__(self, rawSamples, numTimeSteps):

10 self.voi = []
11

12 for sample in rawSamples:
13 self.voi.append(sample)
14

15 self.voi = np.array(self.voi)
16

17

18 class CustomStatistics(uqef.stat.Statistics):
19 def __init__(self):
20 uqef.stat.Statistics.__init__(self)
21

22 def calcStatisticsForSc(self, rawSamples, timesteps,
23 simulationNodes, order, regression, solverTimes,
24 work_package_indexes, original_runtime_estimator):
25 nodes = simulationNodes.distNodes
26 weights = simulationNodes.weights
27 dist = simulationNodes.joinedDists
28

29 self.timesteps = timesteps
30 self.numTimeSteps = len(self.timesteps)
31

32 # extract VoI samples from rawSamples
33 samples = Samples(rawSamples, self.numTimeSteps)
34

35 OP = cp.orth_ttr(order, dist) # creates orthogonal polynomials
36 if regression is True:
37 # generate gPCE via regression
38 self.gPCE = cp.fit_regression(OP, nodes, samples.voi)
39 else:
40 # generate gPCE via quadrature
41 self.gPCE = cp.fit_quadrature(OP, nodes, weights, samples.voi)
42

43 # extract the statistics
44 self.E_qoi = cp.E(self.gPCE, dist)
45 self.Var_qoi = cp.Var(self.gPCE, dist)
46 self.StdDev_qoi = cp.Std(self.gPCE, dist)
47 self.P10_qoi, self.P90_qoi = cp.Perc(self.gPCE, [10, 90], dist, 10**5)
48 #...

Listing 5.4: Example of a custom statistics implementation using UQEF.

It is used together with the CustomModel (see Listing 5.3). If CustomStatistics also im-
plements calcStatisticsForMc(), then it can be used for Monte Carlo as well as stochastic
collocation UQ simulations. This is very helpful if multiple methods should be evaluated. Lines
1–5 import all required packages. The Samples class (lines 8–15) is a small helper class to
extract the VoI from the rawSamples, which is especially helpful for unifying multiple VoIs or
in the case when not every model run used the same timesteps. calcStatisticsForSc() does
the actual work and uses Samples to access the VoI easily. Lines 36–41 show how to use the
regression parameter to decide which method should be used for the gPCE generation. The
extraction of the QoI statistics on lines 44–47 is done with the generated gPCE. With the saved

83

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

QoI values in the member variables E_qoi, Var_qoi, StdDev_qoi, P10_qoi, and P10_qoi, the
printResults() and plotResults() functions can do their work by using these variables.
Together with the CustomModel from the previous section, the CustomStatistics can be used

in own scripts: Line 8 in Listing 5.5 shows how to register the CustomStatistics at the uqsim
object. Now, a full working example with a custom model and the model-specific statistics
exists.

1 # choose custom_model
2 uqsim.args.model = "custom_model"
3

4 # register model
5 uqsim.models.update({"custom_model": lambda: CustomModel()})
6

7 # register statistics
8 uqsim.statistics.update({"custom_model": lambda: CustomStatistics()})

Listing 5.5: Selection and registration of a custom model (CustomModel) and a corresponding
CustomStatistics on an object (uqsim) of a UQsim instance with UQEF.

5.4 Parametrisation of a UQ simulation
The flexibility and portability of UQEF is due to the possibility to parametrise a uqsim instance
of a UQsim class. The parameters can be set within a simulation script as well as from the
command line as script arguments. It is also allowed to combine both variants: specify some
of the parameters from the command line and some within the simulation script. For this
parametrisation mechanism, the Python argparse5 package is used and the uqsim.args object
gives access to the parsed and set parameter values. In Table 5.5 all available parameters in the
UQsim class are described, with parameter name, data type, and default value.

Parameter Type Default Description
UQsim load/restore
"--uqsim_file" string "uqsim.saved" File where UQsim object is (re)stored
"--uqsim_store_to_file" bool False Enable store UQsim object to file
"--uqsim_restore_from_file" bool False Enable restore UQsim object from file
"--disable_recalc_statistics" bool False Disable the recalculation of statistics
"--disable_statistics" bool False Disable all statistical calculations includ-

ing plots
Model and result directories
"--inputModelDir" string "." Folder for the input files of the model
"--outputModelDir" string "." Folder for the output files of the model
"--outputResultDir" string "." Folder for the statistics results (plots, ta-

bles, . . .)
Model settings
"--model" string "testmodel" Name of the model
"--model_variant" int 1 Variant of the chosen model

Table 5.5: Supported parameters of the UQsim class that are additionally available as com-
mand line arguments to configure the behaviour of a UQ simulation.

5https://docs.python.org/3/library/argparse.html

84

https://docs.python.org/3/library/argparse.html

5.4 PARAMETRISATION OF A UQ SIMULATION

Parameter Type Default Description
UQ method and uncertain parameter settings
"--uncertain" string "all" Uncertain setting: can be evaluated to

choose different probability distributions
and their parameter values

"--uq_method" string "sc" Define the UQ method: "sc" or "mc"
"--regression" bool False Use of regression (point collocation)

method
"--mc_numevaluations" int 27 Number of Monte Carlo evaluations
"--sc_q_order" int 2 Number of collocation points in each di-

rection (q)
"--sc_p_order" int 1 Highest order (P) of orthogonal polynomi-

als Φj(ζ) of the gPCE
"--sc_sparse_quadrature" bool False Enable sparse quadrature
"--sc_quadrature_rule" string "G" Define the quadrature rule (see [80] for de-

tails)
"--config_file" string Config file where the parameter settings

are taken from
Solver settings
"--parallel" bool False Enable parallelisation with threading
"--num_cores" int cpu_count() Number of parallel cores per node
"--mpi" bool Enable MPI
"--mpi_method" string "MpiPoolSolver" Choose MPI solver: "MpiSolver" or

"MpiPoolSolver"
"--mpi_combined_parallel" string False Enable hybrid parallelisation: MPI and

threading
Chunk parameters
"--chunksize" int 1 Number of runs that are chunked into a

group
"--mpi_chunksize" int 1 Number of runs that are sent as a package

via MPI
Runtime analysis and optimisation parameters
"--analyse_runtime" bool False Enable the runtime analysis
"--opt_runtime" bool False Enable the runtime optimisation
"--opt_runtime_gpce_Dir" string "." Define the folder for the runtime data
"--opt_algorithm" string "LPT" Define the opt algorithm: "FCFS", "LPT",

"SPT", or "MULTIFIT"
"--opt_strategy" string "DYNAMIC" Define the opt strat-

egy: "FIXED_ALTERNATE" or
"FIXED_LINEAR DYNAMIC"

Table 5.5 Supported parameters of the UQsim class that are additionally available as command
line arguments to configure the behaviour of a UQ simulation.

Some of the parameters are used to control the usage of different UQ methods (Section 5.6),
to support parameter studies (Section 5.7) and to enable automatic runtime measurements,
predictions, and optimisations (Section 5.8) features, as well as to support the scalability from
development systems to computing systems.
Listing 5.6 shows how to access parameters through the uqsim.args object of UQsim, for the

example of setting the orders for q and P (cf. Listing 5.1 for further explanations).

85

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

1 uqsim.args.sc_q_order = 6 # order (q) number of colloc. points for each param.
2 uqsim.args.sc_p_order = 2 # order (P) highest order of orth. poly. of the gPCE

Listing 5.6: Specify arguments within a Python UQ simulation script, before calling
uqsim.setup().

Listing 5.7 shows how to set the parameters from the command line. The Python interpreter
(python3) is called with the script name (uq_simulation.py) and the arguments (parameters)
for the script. Here, the same values for q and P as in Listing 5.6 have been specified.

Remark: If both variants are used, and the same parameters are used inside the script and as
command line arguments, then the parameters inside the script overwrite the values from the
command line.

1 python3 uq_simulation.py --sc_q_order 6 --sc_p_order 2

Listing 5.7: Start a UQ simulation (uq_simulation.py) and specify some script parameters
from command line.

For each uncertain parameter, the probability distribution with its specific parameters has to
be configured, which is indicated in Listing 5.8 (see the description of Listing 5.1 for further
details).

1 # initialise uncertain parameters:
2 if uqsim.is_master():
3 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
4 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(0, 1))
5 uqsim.simulationNodes.setDist("uncertain_param_2", cp.Uniform(-1, 1))

Listing 5.8: Specify uncertain parameters within a Python UQ simulation script, before calling
uqsim.setup().

It is also possible to specify the uncertain parameters through a config file (config.json).
The config file uses the JSON [82] format and works as shown in Listing 5.9.

1 {
2 "parameters" : [
3 {
4 "name" : "uncertain_param_1",
5 "distribution": "Normal",
6 "mu" : 0,
7 "sigma" : 1
8 },
9 {

10 "name" : "uncertain_param_2",
11 "distribution": "Uniform",
12 "lower" : -1,
13 "upper" : 1
14 }
15]
16 }

Listing 5.9: Example of how to specify uncertain parameters via a config file (config.json)
for UQEF.

By setting the config_file parameter (from command line or within the simulation script),
the loading of the parameters from the specified filename is activated. In line 1 of (Listing 5.10),

86

5.4 PARAMETRISATION OF A UQ SIMULATION

the loading is activated by setting the filename to config.json. The actual loading is done,
when uqsim.setup() is called.

1 uqsim.args.config_file = "config.json"

Listing 5.10: Example of how to activate a config file (config.json) for the uncertain param-
eters with UQEF.

Remark: All Chaospy distributions are supported: The names and parameters are the same
as defined in Chaospy, and determined automatically via Python reflection mechanisms, which
requires that the name of the distributions and the function arguments matches exactly the ones
from Chaospy. The advantage of this mechanism is that automatically all Chaospy distributions
are available (also new ones, without changing UQEF).

If for some parameters that are defined in a Model class, no probability distribution can be
specified, then a fixed scalar value can be set instead. In Listing 5.11 on line 5, 1 is set as a
scalar value for "uncertain_param_2". The Nodes class inserts, thus, this fixed value in every
parameter set when generating the nodes.

Remark: This allows to define many Model parameters without always to define these as un-
certain parameters. This is very useful in cases where only the influence of one parameter after
another should be tested, or in cases where the most important uncertain parameters are iden-
tified through a sensitivity analysis and then with this subset, the UQ simulation is repeated.

1 # initialise uncertain parameters:
2 if uqsim.is_master():
3 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
4 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(0, 1))
5 uqsim.simulationNodes.setValue("uncertain_param_2", 1)

Listing 5.11: Example of how to specify fixed parameter values within a Python UQ simulation
script, before calling uqsim.setup().

It is also possible to define fixed parameters through a config file, as can be seen in Listing 5.12.
For that, "None" is set as the distribution name, and the value is set on the default property.

1 {
2 "parameters" : [
3 {
4 "name" : "uncertain_param_1",
5 "distribution": "Normal",
6 "mu" : 0,
7 "sigma" : 1
8 },
9 {

10 "name" : "uncertain_param_2",
11 "distribution": "None",
12 "default" : 1
13 }
14]
15 }

Listing 5.12: Example of how to specify fixed parameter values through a config file
(config.json) for UQEF.

87

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

5.5 Support for different UQ methods
As described in Section 2.4.2, there are differences between Monte Carlo (Section 2.2.1), point
collocation (Section 2.2.3), and the stochastic collocation (Section 2.2.2) UQ methods in the
technical phases of the assimilation and certification when using Chaospy. The Simulation
interface is an abstraction for concrete UQ simulation methods (see Figure 5.3), e.g. Monte Carlo
(McSimulation) or the stochastic collocation with the pseudo-spectral approach (ScSimulation).
Inside the concrete Simulation classes, the correct functions with their required parameters are
called on the Nodes and Statistics classes. Table 5.7 lists the main functions of the Simulation
interface.

McSimulation

ScSimulation

«interface»
Simulation

Support for stochastic
collocation UQ
simulations

Support for Monte
Carlo UQ simulations

Figure 5.3: Illustration of the supported UQEF simulation methods (UML class diagram).

Method signature Abstract Return value
def getSetup(self): yes A string that describes the

simulation.
def generateSimulationNodes(self, simNodes): yes None
def prepareSolver(self): no None
def calculateStatistics(self, statistics, yes None

simNodes,
runtime_estimator):

Table 5.7: Functions of the UQEF Simulation interface class inside the simulation package.

In the following enumeration, the functions of the Simulation interface are explained:
def getSetup(self):

This function is called from a UQsim object to print the UQ simulation (method) type.
getSetup() returns a string with the UQ simulation (method) and the specific parameter
values.

def generateSimulationNodes(self, simulationNodes):

This function is called from a UQsim object during the setup (setup() function), to
prepare the simulation. Because the generation of the simulation nodes depends on the
UQ method, it is important that every Simulation implementation correctly utilises the
simulationNodes object (Nodes class) with its specifics.

88

5.5 SUPPORT FOR DIFFERENT UQ METHODS

def prepareSolver(self):

This function is called from a UQsim object before the simulation is started. Its default
implementation forwards the call to the prepare() method of the current Solver (see
Solver interface in Section 5.6). A Solver can then do some initialisation before the actual
propagation starts.

def calculateStatistics(self, statistics, simulationNodes,
original_runtime_estimator=None):

This function prepares the raw data (VoI) returned from a Model for the calculation
of the statistics, and calls the correct function (e.g. calculateStatisticsForMc() or
calculateStatisticsForSc()) on the actual statistics object (Statistics class) with
the given simulationNodes (Nodes class) and an original_runtime_estimator (if one is
loaded; see Section 5.8 for more details). The original_runtime_estimator is an object
that represents a runtime predictor rpN (see Equation (4.8)).

Through this interface design, UQEF is open for further UQ methods, just by deriving the
Simulation interface. Furthermore, most of the UQEF classes are decoupled to a large extend,
which improves the separation of concerns (SOC) [71], minimises the code that UQEF users have
to write, and enhances the source code reuse inside UQEF. With this, one Model implementation
(Section 5.2) is sufficient and can be used for different UQ methods without any code changes
on the Model. The UQEF users only have to consider the concrete UQ method when subclassing
the Statistics (Section 5.3) interface.

The UQ method for a simulation script is specified with the uqsim.args.uq_method parame-
ter. For the Monte Carlo method, "mc" is set, as can be seen in line 2 of Listing 5.13. The num-
ber of random samples for the propagation is defined with the uqsim.args.mc_numevaluations
parameter (line 3).

1 # args
2 uqsim.args.uq_method = "mc"
3 uqsim.args.mc_numevaluations = 1e3 # number of individual Monte Carlo samples

Listing 5.13: Example of how to activate the Monte Carlo method (see Section 2.2.1) in UQEF
simulation scripts.

For stochastic collocation with pseudo-spectral approach, "sc" is set on uqsim.args.uq_method
(see Listing 5.14, line 2). As already described on Listing 5.1, the orders q and P have to be
set, as can be seen on lines 3–4.

1 # args
2 uqsim.args.uq_method = "sc"
3 uqsim.args.sc_q_order = 3 # order (q) number of colloc. points for each param.
4 uqsim.args.sc_p_order = 1 # order (P) highest order of orth. poly. of the gPCE

Listing 5.14: Example of how to activate the stochastic collocation with the pseudo-spectral
approach (see Section 2.2.2) in UQEF simulation scripts.

The parameter uqsim.args.sc_quadrature_rule defines the quadrature rule for computing
the coefficients cj (Equation (2.14)). This parameter is directly given to Chaospy; therefore all
quadrature rules from Chaospy6 are supported. The parameter sc_sparse_quadrature enables
sparse quadrature based on the chosen quadrature rule (sc_quadrature_rule). The sparse
quadrature rule feature of Chaospy is used for that.

6List of supported quadrature rules in Chaospy: https://chaospy.readthedocs.io/en/master/quadrature.
html

89

https://chaospy.readthedocs.io/en/master/quadrature.html
https://chaospy.readthedocs.io/en/master/quadrature.html

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

Remark: If the sparse quadrature feature is enabled in Chaospy, it is recommended to use this
only with nestable quadrature rules (such “Leja”, “Gauss-Petterson”, or “Clenshaw-Curtis”).
Otherwise, it ends up with non-optimal or more quadrature nodes as expected.

To enable the point collocation method, set uqsim.args.uq_method = "mc" together with
uqsim.args.regression == True, as it is shown in Listing 5.15. Additionally, the p order (line
4) has to be defined. Implementations of the Statistics interface have to consider the regression
parameter (cf. Section 5.3).

1 # args
2 uqsim.args.uq_method = "mc"
3 uqsim.args.mc_numevaluations = 1e6 # number of individual samples
4 uqsim.args.sc_p_order = 3 # highest order of orth. poly. of the gPCE
5 uqsim.args.regression = True # enables regression method

Listing 5.15: Example of how to activate the point collocation (see Section 2.2.3) method in
UQEF simulation scripts.

For the probabilistic collocation method, set uqsim.args.regression == True when using
uqsim.args.uq_method = "sc" (Listing 5.16).

1 # args
2 uqsim.args.uq_method = "sc"
3 uqsim.args.sc_q_order = 3 # order (q) number of colloc. points for each param.
4 uqsim.args.sc_p_order = 1 # order (P) highest order of orth. poly. of the gPCE
5 uqsim.args.regression = True # enables regression method

Listing 5.16: Example of how to activate the probabilistic collocation (see Section 2.2.3) method
in UQEF simulation scripts.

5.6 Scheduling and solver strategies
To support different scheduling and solver strategies, the Solver interface and its implementa-
tions (Figure 5.4) exist in UQEF. This is the heart of UQEF and enables the scalability features
with the ability to move from a development PC to a production environment (compute cluster)
without any code changes on the Model nor on the Statistics. This can be achieved by specifying
the right UQsim parameters (Section 5.4), to setup an appropriate Solver. A Solver implements
one or more scheduling strategies (see Section 4.4). The LinearSolver has no parallelisation and
runs one model run after another. This can be used, if a single core CPU is used, or to analyse er-
rors and debug UQ simulations. The ParallelSolver is a good choice to speed-up the propagation
on a development PC, by starting multiple model runs in parallel. It uses the Python joblib
[47] package to set up a thread pool, which utilises each core on a CPU with a worker thread.
With the MpiSolver, it is possible to use static work packages (Sections 4.4.2 and 4.4.3) with the
message passing interface (MPI). It can be used on development PCs and large compute systems
to utilise all acquired nodes. The MpiSolver uses the mpi4py [113] Python package to access
the MPI functions. The MpiPoolSolver sets up a worker pool on MPI level (Section 4.4.4). It
uses the mpi4py.futures Python package with the MPICommExecutor to achieve the pooling
functionality across computing nodes.
In Table 5.9, the main functions of the Solver interface are listed. The Solver class design

follows the strategy design pattern ([48, p. 315–324]). New compute environments and schedul-
ing strategies can be implemented by subclassing the Solver interface and implementing these
methods.

90

5.6 SCHEDULING AND SOLVER STRATEGIES

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver

Linear propagation, single
threaded.

Parallel propagation with
threads.

Parallel propagation with
static MPI scheduling

Parallel propagation with
MPI pool.

Figure 5.4: Illustration of the implemented UQEF solvers (UML class diagram).

Method signature Abstract Return value
def getSetup(self): yes A string that de-

scribes the solver.
def init(self): yes None
def tearDown(self): yes None
def prepare(self, parameters): yes None
def solve(self, runtime_estimator=None, chunksize=1, yes None

algorithm=schedule.Algorithm.FCFS,
strategy=schedule.Strategy.FIXED_LINEAR):

Table 5.9: Functions of the UQEF Solver interface class inside the solver package.

In the following list, the functions of the Solver interface are explained:

def getSetup(self):

This function is called from a UQsim object to print the Solver type. getSetup() returns
a string with the concrete Solver and the specific setup details.

def init(self):

This function is called from a UQsim object at the very beginning of the simulate()
function. This gives a Solver the chance to do some solver specific initialisations, e.g.
starting the environment.

def tearDown(self):

This function is called from a UQsim object through its tear_down() function. Solvers
can here shutdown their environment.

def prepare(self, parameters):

91

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

This function is called from the current Simulation object. An implementation of
prepare() should forward this to the Model and save the parameters as a member vari-
able.

def solve(self, runtime_estimator=None, chunksize=1,
algorithm=schedule.Algorithm.FCFS,
strategy=schedule.Strategy.FIXED_LINEAR):

In the solve() function, the whole propagation with the Solver specific scheduling is
realised. A concrete Solver can use the runtime_estimator rpN , if one is given, to pre-
dict the runtime for each parameter set. This information can then be used together
with the algorithm (UQsim parameter: opt_algorithm) and strategy (UQsim param-
eter: opt_strategy) to schedule the individual Model runs. The schedule.Algorithm
enum allows the following values: FCFS (first come, first served), LPT (longest process time
first), SPT (shortest process time first), and MULTIFIT. With the schedule.Strategy
enum, it can be defined, how the parameter sets are arranged into work packages:
FIXED_ALTERNATE takes one parameter set after another and places it into the next work
package; FIXED_LINEAR takes one parameter set after another and places it into the first
work package, after it is full, it proceeds with the next work package; With DYNAMIC, the
work packages evolve automatically during the propagation by giving the next parameter
set to the next free worker.

With the Solver interface and its implementations, UQEF can support different scheduling
strategies, which can be seen in Table 5.11.

Name Threading MPI Scheduling Solver
Single-threaded (linear) propagation FCFS LinearSolver
Thread pool parallelisation X DWP ParallelSolver
Static work packages X SWP MpiSolver
Static work packages with thread pool on
node level

X X SWPT MpiSolver

Dynamic work packages X DWP MpiPoolSolver

Table 5.11: Overview of supported scheduling strategies (usage scenarios) with UQEF.

The following list describes the parameters to use and configure the different standard schedul-
ing strategies:

Single-threaded (linear) propagation
For this scheduling strategy, the LinearSolver is used. There is no parallelisation mechanism
used, that is why it is usable for very fast models, and for debugging purposes to find and fix
source code errors.
Listing 5.17 shows how to use the LinearSolver from command line. Only the script name
uq_simulation.py has to be given to the Python interpreter python3.

1 python3 uq_simulation.py

Listing 5.17: Start a UQ simulation with single-threaded (linear) propagation (LinearSolver)
using UQEF.

Thread pool parallelisation
The thread pool parallelisation is a good choice for development PCs or on cluster systems

92

5.6 SCHEDULING AND SOLVER STRATEGIES

when only one node is used. It uses a thread pool to utilise the CPU cores. This is equivalent
to DWP scheduling.
Listing 5.18 shows how to set the parameters to use thread pool parallelisation and how to
configure the number of threads. By specifying --parallel, the ParallelSolver is used. With
--num_cores, the number of cores (threads) that should be used within the thread pool is
specified. If --num_cores is not set, then UQEF determines automatically how many CPU
cores are available and uses this value.

1 python3 uq_simulation.py --parallel \
2 --num_cores=2

Listing 5.18: Start a UQ simulation with the multithreaded ParallelSolver on two CPU cores
(threads) using UQEF.

Alternatively, also work package configurations with the parameters --opt_strategy and
--opt_algorithm are available if needed (although it is not very common to use this together
with the ParallelSolver).

Static work packages
For the static work packages, the MpiSolver is used. It allows the usage of a whole set of cluster
computing nodes. On each CPU core, one MPI process can be started. With MPI scatter(),
the parameter sets are distributed to the MPI processes, and with MPI gather(), the results
are collected. This is the SWP scheduling, as described in Section 4.4.2.
With --mpi and --mpi_method, as can be seen in Listing 5.19, the SWP scheduling is con-
figured, and the MpiSolver is used. By specifying --opt_strategy and --opt_algorithm, a
fine-grained configuration of how the work packages are prepared can be obtained.

1 mpiexec -n 4 python3 uq_simulation.py \
2 --mpi --mpi_method "MpiSolver" \
3 --opt_strategy "FIXED_LINEAR" --opt_algorithm "FCFS"

Listing 5.19: Start a UQ simulation with MPI and SWP scheduling (MpiSolver) using UQEF.

Static work packages with thread pool on node level
The MpiSolver additionally supports the static work packages with thread pool on node
level (SWPT) scheduling. By setting --mpi_combined_parallel, a thread pool with Python
joblib is started on each MPI process. The --num_cores parameter determines the number
of threads in each thread pool. If --num_cores is not specified, then UQEF automatically
determines the number of cores on the CPU and uses this value.
Listing 5.20 contains an example of how to configure SWPT. In this example, four MPI pro-
cesses are created, and each MPI process uses a thread pool with four threads.

1 mpiexec -n 4 python3 uq_simulation.py \
2 --mpi --mpi_method "MpiSolver" \
3 --mpi_combined_parallel --num_cores=4 \
4 --opt_strategy "FIXED_LINEAR" --opt_algorithm "FCFS"

Listing 5.20: Start a UQ simulation with MPI and SWPT scheduling (MpiSolver) using UQEF.

Dynamic work packages
To use dynamic work packages on a cluster, the MpiPoolSolver is highly recommended.

93

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

Through the MPICommExecutor in the mpi4py package, an MPI pool is started, to distribute
the work across the MPI processes.
As an example, Listing 5.21 enables DWP by setting "MpiPoolSolver" as the --mpi_method.
It starts an MPI pool on the master MPI process (rank 0), and three MPI worker processes.

1 mpiexec -n 4 python3 uq_simulation.py \
2 --mpi --mpi_method "MpiPoolSolver" \
3 --opt_strategy "DYNAMIC" --opt_algorithm "FCFS"

Listing 5.21: Start a UQ simulation with dynamic work packages on MPI (MpiPoolSolver)
using UQEF.

Remark: UQEF is designed to easily switch between these scheduling strategies, without chang-
ing any Model or Statistics source code. Only the parameters, when starting the UQ simulation
script, have to be specified differently. This is very comfortable for the users–but this requires
additional work within UQEF and the UQsim class. Especially if MPI is used, it has to be
considered that the main script is started several times. It is important to know, which code is
executed on the master MPI process (rank 0) or on a worker MPI process, not to do things twice
or to miss some initialisations on the MPI workers. The is_master() function of the UQsim
class is used internally to make such decisions. However, it can also be used in custom scripts
to make such decisions.

5.7 Support for parameter studies
If UQ is considered as a loop around a model, then a parameter study for the UQ method is
an outer-loop around UQ. UQEF, with its UQsim class, also allows such outer-loop scenarios.
Listing 5.22 comprises such an outer-loop example. There are different orders defined for q and
P (line 5). A UQsim object can be instantiated within that loop (line 9), and the orders q and P
are taken from the outer-loop variables (lines 12–13). This works with all described scheduling
and solver strategies (see Section 5.6).

1 import chaospy as cp
2 import uqef
3

4 # q p q p q p q p
5 orders = [(3, 1), (4, 1), (5, 2), (6, 2)]
6

7 for q_order, p_order in orders:
8 # instantiate UQsim
9 uqsim = uqef.UQsim()

10

11 # args
12 uqsim.args.sc_q_order = q_order # number of colloc. points for each param.
13 uqsim.args.sc_p_order = p_order # highest order of orth. poly. of the gPCE
14

15 # initialise uncertain parameters:
16 if uqsim.is_master():
17 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
18 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(0, 1))
19 uqsim.simulationNodes.setDist("uncertain_param_2", cp.Uniform(-1, 1))
20

21 # ... setup, simulate, statistics, tear down

Listing 5.22: Outer-loop support example for UQ method parameter studies using UQEF.

94

5.8 AUTOMATIC RUNTIME MEASUREMENTS, PREDICTIONS, AND OPTIMISED
SCHEDULING

Another outer-loop example, as shown in Listing 5.23, is the variation of the probability
distribution parameters. Often, the influence of different values is under investigation. To this
end, these values are stored in a list (line 5) and used for the outer-loop. The parameter values
are used to initialise the distributions within the loop (lines 18–19).

1 import chaospy as cp
2 import uqef
3

4 # p1_1 p2_1 p1_2 p2_2
5 dist_params = [((0, 1), (-1, 1)), ((5, 2), (-3, 3))]
6

7 for dp1, dp2 in dist_params:
8 # instantiate UQsim
9 uqsim = uqef.UQsim()

10

11 # args
12 uqsim.args.sc_q_order = 3 # number of colloc. points for each param.
13 uqsim.args.sc_p_order = 2 # highest order of orth. poly. of the gPCE
14

15 # initialise uncertain parameters:
16 if uqsim.is_master():
17 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
18 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(*dp1))
19 uqsim.simulationNodes.setDist("uncertain_param_2", cp.Uniform(*dp2))
20

21 # ... setup, simulate, statistics, tear down

Listing 5.23: Outer-loop support example for probability distribution parameter studies using
UQEF.

5.8 Automatic runtime measurements, predictions, and optimised
scheduling

The automatic runtime measurements, predictions, and the optimised scheduling strategies of
Section 4.6 are already fully implemented within the UQEF software framework. A UQEF user
only has to enable some parameters (comp. Section 5.4) to activate them. These features could
be generally implemented and work with any Model implementation, as long as the Models are
implemented correctly. It is a requirement for all Models that the results must, besides the VoI,
additionally contain the runtime measurements for each single model run (see Section 5.2). By
default, the runtime measurements are saved in an object of type SolverTimes, which is part of
the solver package, but the data are not further analysed by default.
When setting the UQsim parameter analyse_runtime = True, then UQEF automatically

uses the RuntimeStatistics class that is already built-in in UQEF, to create a runtime pre-
dictor rpN (see Equation (4.8)) when calc_statistic() is called. This can be seen in the
example of Listing 5.24 on line 8. The created runtime predictor rpN can also be saved into
a file, when save_statistics() (line 30) is called on a UQsim object. The file is saved into a
directory that is specified with the outputResultDir parameter. The filename can be speci-
fied with the uqsim_file parameter (not shown in the example listing, the default filename is
"uqsim.saved"). When the example runs the first time, the runtime predictor rpN is created
and saved into a file, from where it can be loaded again.

95

CHAPTER 5 – THE UQEF SOFTWARE FRAMEWORK

1 import chaospy as cp
2 import uqef
3

4 # instantiate UQsim
5 uqsim = uqef.UQsim()
6

7 # args
8 uqsim.args.analyse_runtime = True # enables creation of rp_N
9 uqsim.args.opt_runtime = True # loads and uses an existing rp_N

10 uqsim.args.opt_runtime_gpce_Dir = "." # directory to load an existing rp_N
11

12 # initialise uncertain parameters:
13 if uqsim.is_master():
14 uqsim.setup_nodes(["uncertain_param_1", "uncertain_param_2"])
15 uqsim.simulationNodes.setDist("uncertain_param_1", cp.Normal(0, 1))
16 uqsim.simulationNodes.setDist("uncertain_param_2", cp.Uniform(-1, 1))
17

18 # setup
19 uqsim.setup()
20

21 # start the simulation
22 uqsim.simulate()
23

24 # statistics:
25 uqsim.calc_statistics()
26 uqsim.print_statistics()
27 uqsim.plot_statistics()
28 uqsim.save_statistics()
29

30 # tear down
31 uqsim.tear_down()

Listing 5.24: Example of how to create, save, and use the runtime prediction rpN to optimise
the scheduling using UQEF.

The creation of the rpN works with any of the standard scheduling strategies (Section 5.6).
But the ability to create the rpN depends on the UQ method: All UQ methods that are based
on gPCE, including the regression methods, can be used. Table 5.12 shows which Simulation
class is suitable for creating an rpN .

McSimulation ScSimulation
Without regression X
With regression X X

Table 5.12: Overview of supported UQ methods to create a runtime predictor rpN with UQEF.

If an existing rpN should be used for optimising the scheduling behaviour, the UQsim pa-
rameter opt_runtime = True has to be used. With the opt_runtime_gpce_Dir parameter, the
directory of the saved rpN file can be specified. Listing 5.24 contains an example of setting these
parameters (lines 9–10). When the example script is started the second time, it can load the rpN
from the file and use it to predict the runtime of each individual model run. Based on the chosen
Solver and scheduling strategy (see Section 5.6), the nodes (parameter sets) for the individual
model runs are sorted and grouped into work packages. All the sorting and grouping into work
packages is done inside the specific Solver implementations because this is very individual for
each scheduling strategy. Additionally, all the resorting of the results after the propagation is
also done by the Solvers. This has the advantage of being very comfortable for the users that
write custom Statistics implementations because they can rely on the correct order of the nodes

96

5.8 AUTOMATIC RUNTIME MEASUREMENTS, PREDICTIONS, AND OPTIMISED
SCHEDULING

(parameter sets) and the corresponding results (rawResults). The optimised scheduling can be
used with any of the provided Solvers in UQEF and is usable with all UQ methods, including
Monte Carlo.

97

6 Case study: Efficient uncertainty
quantification in pedestrian dynamics

In the field of pedestrian dynamics (see [159, 199] for an introduction) it is investigated how
pedestrians behave in different situations. Simulating the behaviour of pedestrians is very chal-
lenging because the motion is two- or even three-dimensional, it can contain counterflows and
interactions in the flow. Additionally, many different environments (e.g. a car, a train, a build-
ing, a city, a hill, . . .) exist where pedestrians reside, and at entrances and exits, jamming or
clogging phenomena can occur. By simulating pedestrian dynamics, a lot of pedestrian proper-
ties such as culture, age, or gender have to be considered. Usually, pedestrians are not alone,
and therefore, families and even small to large groups with and without relations among the
pedestrians must be taken into account. This is useful for various applications, especially in un-
derstanding how and why certain phenomena evolve and to improve safety and security aspects
in buildings, places, or up to very large events.
In this thesis, three different scenarios in the field of pedestrian dynamics have been investi-

gated. For all of the three scenarios, non-intrusive forward UQ simulations have been performed,
which covers the different efficiency aspects that have been developed in this thesis. Table 6.2
lists the three scenarios, and in Table 1.1, the investigated features and techniques that are used
in each scenario can be seen. All simulations for the three scenarios have been performed on the
Linux-Cluster CoolMUC2 of the Leibniz Supercomputing Centre [115] using the already existing
pedestrian dynamics simulator Vadere.

Scenario Description Section
Scenario 1 Evacuation of a train station. Section 6.3
Scenario 2 Evacuation of a building with separated families Section 6.4
Scenario 3 Utilisation of a campus Section 6.5

Table 6.2: Overview of pedestrian dynamics case study scenarios.

Before diving into the three scenarios, the pedestrian dynamics simulator Vadere is explained
in Section 6.1, followed by an explanation of the challenges of quantifying the uncertainty in
pedestrian dynamics in Section 6.2.

6.1 Vadere: a pedestrian dynamics simulator
In this thesis, the microscopic open-source framework Vadere [17, 91] is used as a pedestrian
dynamics simulator. Vadere is actively developed at the Department of Computer Science and
Mathematics at the Munich University of Applied Sciences in the research group of Prof. Dr
Gerta Köster. Through the microscopic approach, each pedestrian is considered individually.
Vadere is written in Java and runs therefore on Windows, Mac OS X, and on Linux. Besides
the graphical user interface of Vadere, a command line interface is also available, which is used
in this thesis to perform the black-box model runs.
The movement (locomotion) of a pedestrian can be modelled in different ways. Vadere sup-

ports already some locomotion models such as the optimal steps model [167, 168, 166, 171], the

99

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

gradient navigation model [26], and the social force model [64, 99]. Additional behavioural mod-
els can be combined with the basic locomotion models. This enables not only to simulate the
dynamics of pedestrians but also cars and granular flow can be introduced into the framework.

Vadere works with the concept of scenarios, which is a description file in the JSON format
containing all required information to perform a single pedestrian dynamics simulation. An
overview of the main input and output files is illustrated in Figure 6.1. A scenario contains
the information about the topography, e.g. the shape of a building, the pedestrians and their
individual behaviour (e.g. speed and position) and the combination of a basic locomotion model
with some additional behavioural models. It is further configured, how many time steps with
the time step length should be performed and which measures (values of interest) should be
taken and how they should be saved into result files. The output files (also JSON or optionally
in CSV format) can be specified to contain the position for every pedestrian at every time step,
which allows a detailed analysis of the trajectories. Another way is to introduce measure zones
that automatically calculate the number of pedestrians within this measure zone and to save
this information for every time step into an output file. This allows determining densities of
pedestrians over some regions.

Vadere

simulator

Scenario file

*.scenario
(JSON)

Result file

*.out
(JSON)

Figure 6.1: Illustration of the main input and output files of the Vadere simulator.

Listing 6.1 shows an example of a Vadere console invocation. vadere-console.jar contains
the actual Vadere console simulator and the evacuation.scenario contains the scenario de-
scription. Depending on the configuration in evacuation.scenario, the output files are written
into the output/ folder of the current working directory.

1 java -Xms256m -Xmx1600m -Xss512m \
2 -jar vadere-console.jar scenario-run -f evacuation.scenario

Listing 6.1: Example of calling the Vadere console simulator with the evacuation.scenario
file and specific memory -Xm* settings for the java runtime environment.

When performing multiple parallel runs of the Vadere console on a computing node, it is im-
portant to specify the available memory boundaries for each java runtime environment (JRE),
because otherwise out-of-memory errors can occur. On the Linux-Cluster CoolMUC2, the mem-
ory settings in Table 6.3 are used to perform parallel Vadere black-box runs. This has proven
to be a good choice to allow full parallelisation on all CPU cores without having out-of-memory
errors.

Parameter Description Memory
-Xms Set initial Java heap size 256 MiB
-Xmx Set maximum Java heap size 1,600 MiB
-Xss Set java thread stack size 512 MiB

Table 6.3: Memory settings for Vadere console runs on the Linux-Cluster CoolMUC2 of the
Leibniz Supercomputing Centre [115].

100

6.2 CHALLENGES OF QUANTIFYING UNCERTAINTY USING VADERE

6.2 Challenges of quantifying uncertainty using Vadere
Because it is already very difficult to perform pedestrian dynamics simulations, it is even more
challenging to quantify the uncertainty of such simulations. The different aspects are in detail
explained in separate paragraphs below: stochastic dimensionality, unknown parameter dis-
tributions, verification and validation problems, long simulation runtimes for large or detailed
scenarios, and real-time decisions. The discussed points consider Vadere as the simulation frame-
work, but most of the points are not limited to Vadere and do also hold for other pedestrian
dynamics simulation frameworks.

Stochastic dimensionality
All the challenges concerning the properties of pedestrians such as culture, age, or gender do
increase the number of parameters for a scenario. Common parameters are the number of pedes-
trians, their goals and behaviour, the movement speed, and the timing settings (e.g. time step
length, total simulation time). Depending on the kind of simulation that has to be performed, a
lot of possible input parameters can be defined as unknowns, and therefore, increase the stochas-
tic dimensionality. Additionally, the basic locomotion models like the OSM do also have various
parameters1 which could also be defined to be uncertain. It is also possible to consider the
topography as uncertain parameters when quantifying the uncertainty.
Here, it is important to define what has to be investigated exactly. Defining as many pa-

rameters equally for all pedestrians and scenarios should be in focus. Otherwise, the simulation
suffers heavily from the curse of dimensionality: When every pedestrian should have specific
uncertain settings, this would end up in M = #num_parameters ×#num_pedestrians ran-
dom variables in ζ. A good choice is to start with as much default parameters as possible and
keep this fixed. Only the essential ones should be defined to be uncertain. A possible list with
such default parameters can be found in [204, 154], which contains mean speeds, mean densities
on different places, or capacities of pedestrian systems for different kind of pedestrians under
different situations.

Unknown parameter distributions
Once it is identified which parameters in a scenario should be modelled as uncertain variables
ζ, the next challenge arises: Which probability distribution with its specific parameter values
can be applied in which context? Again, [204, 154], can help for a starting point, but usually
many interviews with specialists (e.g. psychologists) in the field have to be conducted, as it is
described in [174, 172].

Qualitative and quantitative validation problems
To assess the quality of a pedestrian dynamics simulation, it has to be validated. In [174], there
is a discussion on the validation problematic, and it is distinguished between qualitative and
quantitative validation.
Qualitative validation compares the behaviour of the simulation results with the described

behaviour of certain scientific areas of different researchers. The problem is that people do not
always behave in the same way and act differently in stress situations or among different kind of
groups. In quantitative validation, the produced simulation data are compared with measurable
data from reality. At a first glance, this sounds easy. But performing experiments with pedestri-
ans is not easy, because pedestrians may behave differently in experimental scenarios compared
to reality, and ethical standards play a considerable role and often prohibit such experiments

1An overview of the OSM parameters with suitable default values can be found in [175, 171, 166].

101

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

from gathering data for comparison. For example: How often should a building be evacuated to
get the required data?

The problem is still prominent in UQ simulations for pedestrian dynamics. However, UQ can
help to validate a pedestrian dynamics model by producing many data with the statistical QoI
measures that give more information about the general behaviour of the simulated pedestrians
under uncertainty of the not exactly known parameter values.

Long simulation runtimes for large or detailed scenarios
Using Vadere for pedestrian dynamics simulations, the runtime of a single run depends on many
things, especially the chosen scenario with its topography, the number of pedestrians, and the
simulated timespan have a strong influence. The runtime of a single run can range from a few
seconds up to 10 minutes or even more for larger scenarios. For UQ simulations where many
simulations have to be performed, large computing systems such as HPC systems are required
to get the results in a reasonable time.
Additionally, the runtime can depend on the values of the uncertain parameters, which means

that every single run within the propagation phase of a UQ simulation, can have a significantly
different runtime. This could already be observed in [175, 172] together with Vadere. In [5, 38],
similar variations in the runtime for other UQ simulations could be observed. This is in detail,
investigated in scenario 2 (Section 6.4).

Real-time decisions
In cases where it is required to get the UQ simulation results within seconds to make decisions
in real-time, it is not suitable to use a microscopic simulator such as Vadere, because of the long
simulation runtimes discussed above. In [28], it has been proposed to use the closed observables
surrogate model (COSM) (Section 4.7) for a transport hub scenario to quantify the uncertainty
in real-time. With this technique, it is possible to obtain the QoIs in seconds—but with limited
accuracy. Section 6.5 also uses the COSM, but for a larger scenario, where the utilisation of a
campus is considered, and the runtime advantage is even more visible.

6.3 Scenario 1: Evacuation of a train station
The motivation for this scenario is the emergency of the London bombings on 7th Juli 2005.
In the London underground, three bombs detonated simultaneously at 8:50 AM in different
tube lines. Because of the explosions, the London underground lost electricity, and it was dark
on the trains. The passengers could not know if there will be additional detonations, while
the emergency services could not reach them for some time. More than 700 passengers were
injured, and 52 passengers were killed during the explosions. The passengers started to evacuate
themselves, and the passengers without or with small injuries started to help the badly injured
passengers to evacuate safely.
Exactly this helping behaviour is the subject for this scenario2, which is described in the follow-

ing Section 6.3.1 and further investigated with UQ methods. The corresponding UQ simulation
setup is described in Section 6.3.2, and the numerical results can be found in Section 6.3.3.
Section 6.3.4 summarises the scenario.

2This scenario is the result of a collaborative work with Dr Isabella from Sivers which has been originally
published in [175]. For the writing of this thesis, all the simulations have been repeated with the developed
UQEF containing more numerical results.

102

6.3 SCENARIO 1: EVACUATION OF A TRAIN STATION

6.3.1 Helping behaviour and social identity in pedestrian dynamics
The helping behaviour of passengers in emergencies is investigated through studies with many
interviews by psychologists in [30, 32, 31]. While the passengers in public transportation usually
act independently, it is known that in emergencies they act somehow as a group [111] and help
each other according to the social identity [189] and self-categorisation theory [198].
This social identity and helping behaviour is implemented by the social identity model appli-

cation (SIMA) that is developed in [174] and additionally, in detail described in [175]. SIMA is
a behavioural model implemented in Vadere which can be used with any locomotion model.
In this scenario, the helping behaviour with the social identity is investigated under uncer-

tainty. For that, Vadere is used with the existing SIMA implementation. For a first prototype,
one car out of a whole train with a simplified safe zone is modelled. Figure 6.2 illustrates the
initial scenario configuration. A total of 60 pedestrians (blue and light blue circles) are inside
the car. The grey star indicates the position of the bomb and the 14 pedestrians (light blue
circles) that are near the grey star are likely to be injured. Vadere starts the simulation exactly
after the bomb explosion, and the passengers immediately start to evacuate. Some pedestrians
without or with small injuries start to help the badly injured pedestrians and move together to
the safe zone (yellow striped rectangle), while the remaining not injured pedestrians move alone
to the safe zone.

Figure 6.2: Illustration of one car for scenario 1: evacuation of a train station. Inside the car,
there are 60 pedestrians (blue and light blue circles). The bomb is visualised with the grey
star and the 14 pedestrians (light blue circles) near the grey star are likely to be injured. The
safe zone is indicated with the yellow striped rectangle (source: [175]).

6.3.2 UQ simulation setup
According to [30], not all pedestrians share a social identity which is modelled with the
percsharingSI parameter, and a U(0.6, 1.0) probability distribution is applied. How many pedes-
trians are going to be injured within an emergency is hard to predict. For an evacuation scenario,
usually, only the badly injured pedestrians have to be considered differently. In this work, there-
fore, the percentage of badly injured pedestrians is modelled with the percinjPeds parameter
using a U(0.1, 0.3) probability distribution. The moving speed of that badly injured pedestri-
ans is set to zero, which means they cannot evacuate themself. When a helping pedestrian
assists them, the speed is modelled with a U(0.4, 0.8) probability distribution in the vinj pa-
rameter. The values for the probability distributions in Table 6.5 consider the reported details
in [30, 4, 78, 197, 146] and the generated nodes ni are directly given to the SIMA through a
Vadere scenario file in the UQ propagation phase. The base locomotion model is the OSM, and
exactly the same parameter values that are documented in [175] are used.

103

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

Parameter Description Distribution
percsharingSI Pedestrians sharing a social identity [%] U(0.6, 1.0)
percinjPeds Percentage of injured pedestrians [%] U(0.1, 0.3)
vinj Speed of a helper with an injured pedestrian [m/s] U(0.4, 0.8)

Table 6.5: List of uncertain parameters and their distributions for scenario 1: evacuation of a
train station. The parameters are uniformly distributed between the specified minimum and
maximum values (cf. [175]).

The maximum evacuation time evt until all pedestrians have reached the safe zone is defined
to be the output of interest. For a fine-grained analysis of the evacuation scenario and the SIMA,
additionally, the number of pedestrians np inside the car and the safe zone are of interest.
To quantify the uncertainty, the stochastic collocation with the pseudo-spectral approach

(Section 2.2.2) is used in this scenario. A highest order of P = 7 is used for the orthogonal
polynomials Φj(ζ) of the gPCE (Equation (2.7)), and q = 21 collocation points per dimension
are used, which results in Q = 213 = 9126 collocation points zi. The values for P and q are
determined via parameter studies until the statistical moments have been stabilising. For a
comparison, Monte Carlo simulations with M = 100,000 number of samples have been per-
formed, which enables a coarse validation of the stochastic collocation with the pseudo-spectral
approach.
Figure 6.3 illustrates as a high level view the UQ simulation pipeline for this scenario. Generate

Scenario reads a Master.scenario file and generates a Vadere scenario file for each collocation
point zi with the specific parameter values for each of the three parameters (cf. Table 6.5). The
other (non-uncertain parameter) values are used as they are specified in the Master.scenario.
Propagate performs the actual black-box runs and calls the Vadere console once (similar to
Listing 6.1), for each generated Vadere scenario file. Parse results reads the output files of
each Vadere console run and extract the values of interest. These VoIs are then processed by
Calculate Statistics, which calculates the statistics like the mean µuN (Equation (2.17)) and
visualises them by generating appropriate plots and tables for the interpretation of the results
afterwards.

Vadere

simulator

HelpingExperiment

.scenario
(JSON)

Vadere <<Java>>

UQ <<Python>>

HelpingExperiment

Master.scenario

(JSON)

Generate

Scenario

Parse Results

Calculate

Statistics

Dist:

Nodes,

Weights

Mean

Var

Plots

Result Table

Results.out
(JSON)

Propagate

controls

chaospy

numpy

scipy

joblib

mpi4py

matplotlib

Vadere

Figure 6.3: Illustration of the UQ simulation pipeline for scenario 1: evacuation of a train
station. The pipeline shows the interaction of the UQ parts with the Vadere simulator. The
used software is listed on the right side.

104

6.3 SCENARIO 1: EVACUATION OF A TRAIN STATION

To perform this UQ simulation, UQEF is used. The derived classes for this scenario can be
seen in Figure 6.4. The Vadere console simulator is applied in the TrainEvacuationModel class,
which is derived from the UQEF Model interface (Section 5.2). All the statistical evaluations for
the QoI is implemented in the TrainEvacuationStatistics class, which is derived from the UQEF
Statistics interface (Section 5.3).

nodes

model

«interface»
Model

schedule

simulation

solver

stat

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver
«functions»
Heuristics

Nodes
«interface»
Simulation

McSimulation

ScSimulation «interface»
Statistics

RuntimeStatistics

UQsim

TrainEvacuationStatistics

TrainEvacuationModel

use
use

use

use

use

Figure 6.4: Illustration of derived classes for scenario 1: evacuation of a train station. The light
green rectangles indicate the implemented custom classes for this scenario. See Section 5.1
for a detailed description of the overall UQEF architecture.

The implemented simulation program architecture based on UQEF is visible in Figure 6.5. A
SLURM batch script submits a batch job with the train evacuation Python script to the SLURM
scheduler. UQEF is configured to use DWP scheduling with four cluster nodes. The train evac-
uation Python script instantiates the UQsim class and registers the TrainEvacuationModel as
a custom model, and TrainEvacuationStatistics as a custom statistics object. TrainOutputPro-
cesses acts as a helper class for the TrainEvacuationModel to extract the VoIs from the Vadere
output files. Additionally, all the values for the probability distributions for the uncertain param-
eters according to Table 6.5 are set in the train evacuation Python script. With that, the whole

105

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

software is set up and ready to perform the UQ simulation for this scenario. The corresponding
results are documented in the next section.

«Python_script»
train evacuation

«class»
Nodes

+ generateNodes()
+ setDist()

«class»
TrainEvacuationModel

+ simulate()

«class»
TrainEvacuationStatistics

+ calcStatistics()
+ plotResults()
+ printResults()

UQsim

«SLRUM_batch_scr...
Start_UQ_sim

«class»
TrainOutputProcessoruse

use

use

use

call

Figure 6.5: Illustration of the simulation program architecture for scenario 1: evacuation of a
train station. The light green rectangles indicate the custom implementation parts for this
scenario. The white rectangles indicates the UQEF classes that are instantiated and used
directly, but are not changed.

6.3.3 Numerical results
To analyse the influence of each uncertain parameter without any other influence, three UQ
simulations have been performed where only one parameter was defined to be uncertain, and the
others are kept fixed with predefined values (the average between their minimum and maximum
value which are defined in Table 6.5). The fourth simulation, with all of the three uncertain
parameters, has been additionally performed to analyse the overall uncertainty and possible
interaction between the parameters.

Figure 6.6(a) shows the results when only percsharingSI is defined to be uncertain.

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure 6.6: QoI results for the number of pedestrians np remaining in the car of the train with
pedestrians sharing a social identity (percsharingSI) as the uncertain parameter for scenario
1: evacuation of a train station. (a) shows the mean µ(np) and the percentiles (p5(np) and
p95(np)) for each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step.

106

6.3 SCENARIO 1: EVACUATION OF A TRAIN STATION

As can be seen on the percentiles (p5(np) and p95(np)) and on the variance σ(np) as well as
the standard deviation σ2(np) in Figure 6.6(b), the uncertainty has a strong influence at the
beginning of the simulation and decreases in the end. This seems to be plausible because as fewer
pedestrians share a social identity, the more pedestrians can evacuate themselves quickly. But as
long as enough pedestrians are willing to help the badly injured pedestrians, all pedestrians can
reach the safe zone. In the end, the values for the maximum evacuation time evt varying only a
little bit with a σ(evt) (Equation (2.17)) of 0.9 seconds around the µ(evt) (Equation (2.19)) of
26.9 seconds.
Figure 6.7 contains the results for percentage of injured pedestrians (percinjPeds) as the uncer-

tain parameter. Within the first seconds, the parameter has not much influence on the number
of pedestrian np remaining in the car. This is again because the unharmed pedestrians who
do not share a social identity near the doors evacuate themself quickly without considering the
badly injured pedestrians. But then—which is highly expected—it has a very strong influence.
This is also confirmed by evt with a µ(evt) of 20.7 seconds and a σ(evt) of 4.3 seconds.

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

50

100

150

200

250

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure 6.7: QoI results for the number of pedestrians np remaining in the car of the train
with percentage of injured pedestrians (percinjPeds) as the uncertain parameter for scenario
1: evacuation of a train station. (a) shows the mean µ(np) and the percentiles (p5(np) and
p95(np)) for each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step.

An additional visualisation of the uncertain influence of the percentage of injured pedestrians
(percinjPeds) parameter is visualised in Figure 6.8. Figure 6.8(a) contains a plot of the probability
density function PDF (evt) and the corresponding statistical moments µ(evt), σ(evt), p5(evt),
and p95(evt). For that, the QoI distribution (Section 3.5) is reconstructed by the usage of the
gPCE (Equation (2.7)). It can be seen that there is a shift in the probability on the right side
of the mean µ(evt). In Figure 6.8(b), a 3D plot of the reconstructed distribution for the number
of pedestrians np remaining in the car shows the whole influence and the shape for each time
step in the simulation.

The results for speed of a helper with an injured pedestrian (vinj) as the uncertain parameter
are visualised in Figure 6.9. As the statistics show, at the beginning of the simulation, there is
almost no influence on the number of pedestrians np that have already been evacuated. This is
because a helper needs some time to reach a person and then evacuate with the reduced speed
vinj until the first pair can reach the safe zone. The other non harmed pedestrians near the
doors which do not share a social identity can immediately reach the safe zone. Starting from
about 8 seconds, the vinj is going to influence np, because then the aided evacuation speed is
more significant. The maximum evacuation time evt ranges with a σ(evt) of 2.9 seconds around
the µ(evt) of 21.8 seconds.

107

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

0 10 20 30 40 50
time (t) - seconds

0.0

0.5

1.0

1.5

2.0

de
ns

ity
(a) QoI distribution for evt

PDF(evt)
(evt)
(evt)

p5(evt)
p95(evt)

time (t) - seconds0 10 20 30 40 50

pedestrians (np)

0
10

20
30

40
5060

de
ns

ity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(b) QoI 3D distribution for np

Figure 6.8: QoI distribution reconstruction for percentage of injured pedestrians (percinjPeds)
as the uncertain parameter for scenario 1: evacuation of a train station. (a) contains the plots
of the reconstructed QoI distribution of the maximum evacuation time evt. (b) visualises the
reconstructed QoI 3D distribution of the number of pedestrians np in the car for every time
step in the simulation.

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure 6.9: QoI results for the number of pedestrians np remaining in the car of the train with
speed of a helper with an injured pedestrian (vinj) as the uncertain parameter for scenario
1: evacuation of a train station. (a) shows the mean µ(np) and the percentiles (p5(np) and
p95(np)) for each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step.

To understand the influence on the evacuation scenario with all of the three uncertain param-
eters (Table 6.5) defined to be uncertain, a fourth simulation has been performed, whose results
are visualised in Figure 6.10. Now, the accumulated influence of all parameters is strongly visible
from the very beginning of the simulation. The µ(evt) of 21.1 seconds ranges about σ(evt) 5.6
seconds for the maximum evacuation time evt.
Table 6.7 contains a summary of the maximum evacuation times evt for all performed UQ

simulations. It can be observed that the standard deviation σ(evt) is only a little bit higher
for simulation number four than for the simulations where only one parameter is defined to be
uncertain. Therefore, the uncertainty does not seem to be fully cumulative, which needs to be
further investigated.

108

6.3 SCENARIO 1: EVACUATION OF A TRAIN STATION

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60
pe

de
st

ri
an

s
(n

p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

50

100

150

200

250

300

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure 6.10: QoI results for the number of pedestrians np remaining in the car of the train
with all of the three uncertain parameters (Table 6.5) for scenario 1: evacuation of a train
station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time
step; (b) shows the corresponding standard deviation σ(np) and the variance σ2(np) for every
time step.

QoI: Maximum evacuation time
Nr. Uncertain parameter(s) µ(evt) σ(evt) p5(evt) p95(evt)
1 Pedestrians sharing a social identity (percsharingSI) 20.9 0.5 20.5 21.9
2 Percentage of injured pedestrians (percinjPeds) 20.7 4.3 14.3 27.5
3 Speed of a helper with an injured pedestrian (vinj) 21.8 2.9 18.0 26.7
4 All three parameters 21.1 5.6 12.1 30.8

Table 6.7: QoI results of the maximum evacuation time evt for scenario 1: evacuation of a train
station. The values can be interpreted as seconds and have been rounded down to one digit
after the decimal point (cf. [175]).

Another way of determining the influence of a single parameter is the generation of sensi-
tivity indices, as described in Section 2.3. The first-order sensitivity indices can be seen in
Figure 6.11(a): si_percsharingSI (blue curve) shows no influence at the start but has a very
strong influence starting from about five seconds of the simulation time. As si_percinjPeds
(green curve) shows, the percinjPeds parameter only has a strong influence in the beginning and
then goes nearly down to zero. For vinj it is confirmed by si_vinj (orange curve) that there is
a significant influence in the middle of the simulation time. si_int indicates a strong interac-
tion of the uncertain parameters during the end of the simulation. The total-order sensitivity
indices can be seen in Figure 6.11(b), which shows that the total influence of the uncertain
parameters is in the following order: percinjPeds, vinj , and lastly percsharingSI . Important to
see on st_percsharingSI is that both, the first-order and the total-order sensitivity indices are
containing essential information: If the focus is only on the first-order sensitivity indices, then
one might carelessly drop the uncertain percsharingSI parameter to reduce the dimensionality of
the problem—but then valuable information might get lost.
With the constructed gPCE (Equation (2.7)), it is further possible to investigate the behaviour

of the maximum evacuation time evt by using the gPCE surrogate for it and plot the function
values for varying numbers and different combinations of the uncertain parameters. The result
for that can be seen in Figure 6.12. For all combinations of the three uncertain parameters
(Table 6.5), it is now visible how the underlying function (scenario 1: evacuation of a train
station) of evt behaves for the support of the input parameters.

109

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

0 10 20 30 40 50
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s
(a) First order sensitivity indices

si_percsharingSI

si_vinj

si_percinjPeds

si_int

0 10 20 30 40 50
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(b) Total sensitivity indices

st_percsharingSI

st_vinj

st_percinjPeds

Figure 6.11: Sensitivity indices for the number of pedestrians np remaining in the car of the
train with all of the three uncertain parameters (Table 6.5) for scenario 1: evacuation of a
train station. (a) shows the first-order sensitivity indices and (b) shows the corresponding
total-order sensitivity indices.

percsharingSI

0.600.650.700.750.800.850.900.951.00

v inj

0.40
0.45

0.500.550.600.650.700.750.80

evt

18
20
22
24
26
28

(a) evt for percsharingSI/vinj variation

percsharingSI

0.600.650.700.750.800.850.900.951.00
pe

rc inj
Pe

ds

0.100
0.125

0.1500.1750.2000.2250.2500.2750.300

evt

14
16
18
20
22
24
26
28

(b) evt for percsharingSI/percinjPeds variation

vinj

0.400.450.500.550.600.650.700.750.80
pe

rc inj
Pe

ds

0.100
0.125

0.1500.1750.2000.2250.2500.2750.300

evt

15

20

25

30

35

(c) evt for vinj/percinjPeds variation

Figure 6.12: Visualisation of the generated gPCE (Equation (2.7)) for the maximum evacuation
time evt with all of the three uncertain parameters (Table 6.5) for scenario 1: evacuation of
a train station. (a) contains the resulting evt values for the percsharingSI/vinj parameter
variation, (b) for percsharingSI/percinjPeds, and (c) for vinj/percinjPeds.

For a comparison to the figures above, Appendix A.5 contains plots for a Monte Carlo UQ
simulation with 100,000 samples for the same scenario. The results look qualitatively similar to
the one of the stochastic collocation with the pseudo-spectral approach in this section, which
nicely shows that the choice of a suitable UQ method helps to efficiently quantify the uncertainty
by reducing the number of required black-box model runs significantly.
As can be seen in this analysis of the influence of the uncertainty, it is of great value to not only

focus on the standard statistical moments in UQ. Using the VoI for every time step and trying
to find valuable plots to visualise the statistical moments can help the pedestrian dynamics
application engineers a lot in understanding the scenarios and their algorithms. Especially the
information about the influence of a single parameter, its combination with the others, and the
function reconstruction with the gPCE helps them to interpret the results efficiently.

6.3.4 Summary
In this scenario, the evacuation of a train during an emergency with helping behaviour among the
pedestrians is investigated under uncertainty using the pedestrian dynamics simulator Vadere
and the social identity model application (SIMA). To quantify the uncertainty, the efficient

110

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

stochastic collocation with the pseudo-spectral approach (Section 2.2.2) UQ method is used.
Three parameters are identified to be uncertain (see Table 6.5). When all of the three pa-

rameters are defined to be uncertain at the same time, a strong uncertainty in the maximum
evacuation time evt becomes visible (cf. Table 6.7). This shows the relevance of the use of
UQ methods when investigating such scenarios. The importance of each parameter could be
identified with two different approaches: First, three UQ simulations with only one uncertain
parameter have been performed, while the others are kept fixed at predefined values. Second, a
global sensitivity analysis (Section 2.3) is performed on top of the UQ simulation with all of the
three uncertain parameters, which gives additional information about the importance and the
interaction with the other parameters.
For the analysis of the QoI, the number of persons np remaining in the car of the train are

additionally taken as an OoI and plotted for each time step of the simulation as proposed in
Section 3.5. This gives additional insights about the evacuation behaviour and the expected
evacuation time evt.
For a more detailed analysis of the QoI, the QoI distribution is reconstructed with the im-

plemented SampleDist functionality (Sections 3.4 and 3.5): This is used for the maximum evac-
uation time evt, and the resulting QoI distribution is used to visualise the probability density
function and its statistical moments. Furthermore, this technique is used to reconstruct the QoI
distribution of the number of pedestrians np remaining in the car for each time step of the sim-
ulation. By plotting this within a 3D plot allows to understand the progress of the distribution
during the simulated evacuation. With the technique of the reconstruction of the model function
of the evacuation time evt via the constructed gPCE, the evt is visualised as a 3D plot for each
of the three uncertain parameter value variations. The combination of the different visualisation
techniques allows analysing the influence of the uncertainty on this scenario efficiently.
The simulation codes have been implemented with UQEF (Chapter 5) on a development PC

with a reduced number of collocation points and with a coarse time step for the Vadere scenario
for a fast and rapid development cycle. For the production runs, the Linux-Cluster CoolMUC2
with four cluster nodes is used. Due to the scaling support of UQEF (Section 5.6), only some
parameters have to be changed to run the UQ simulation on the cluster efficiently. No code
changes in the model and statistics implementation are required.
Because this UQ simulation setup was the first with Vadere and stochastic collocation with

the pseudo-spectral approach, an additional Monte Carlo (Section 2.2.1) simulation with 100,000
number of M samples have been performed for comparison reasons. The results of the Monte
Carlo simulation compared to the stochastic collocation with the pseudo-spectral approach with
Q = 9126 number of collocation points zi look qualitatively similar (cf. Section 6.3.3 and Ap-
pendix A.5), and gives more reliability when stochastic collocation with the pseudo-spectral
approach is further used for UQ simulation scenarios with Vadere. Again, only a few parame-
ters need to be changed when starting the simulation to switch to a different UQ method with
UQEF (according to Section 5.5).
In this scenario, the DWP scheduling is used for the production runs on the Linux-Cluster

CoolMUC2, but the scheduling and runtime behaviour is not further analysed. This is the
subject of the next scenario.

6.4 Scenario 2: Evacuation of a building with separated families
The evacuation of buildings, e.g. in emergencies like fire alarms is an event that sporadically
happens. The alarm is a surprising event for most of the pedestrians inside a building. Everyone
knows that now the building should be left as fast as possible to a safe zone. Nevertheless,
separated family members seem not to evacuate individually, they want to evacuate together as
a group [16], especially if small children are among the family members.

111

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

The goal for this scenario3 is to reproduce this group behaviour under uncertain conditions
for separated families in a building when a fire alarm occurs. Additionally, the runtime and
scheduling behaviour is analysed in detail for this scenario, because of the strong variation of
the Vadere simulator runtime depending on the uncertain input parameters. The remainder for
this scenario is as follows: Section 6.4.1 contains the scenario description, Section 6.4.2 the UQ
simulation setup, Section 6.4.3 the numerical results, Section 6.4.4 the results for the runtime
and scheduling behaviour, and Section 6.4.5 a summary of the scenario.

6.4.1 Family search strategy in pedestrian dynamics
In pedestrian dynamics, the group behaviour in evacuation scenarios has been the topic of
active research [75, 3, 130, 196, 191] for many decades. Several models [130, 98, 119] have been
developed to simulate such behaviour. For separated families with small children, the behaviour
seems to be more difficult: Family members return into the danger zone [170, 122] to search for
missing family members. Small children tend to freeze in such emergencies [107, 108], and the
parents try to find them to evacuate together with their children. All this possibly increases the
evacuation time, as indicated in [150].
Exactly this search behaviour is implemented in the family affiliation model (FAM), which is

developed in [172], for the Vadere simulator. FAM is a behavioural model which can be used on
top of a locomotion model. In FAM, adult pedestrians can search for their children. Figure 6.13
illustrates the scenario. It considers a building with one floor, multiple rooms and one combined
entrance and exit. Inside the building, the scenario considers np = 100 pedestrians. Some
are considered to be adults without children (blue circles), some are adults with a child (green
stars), and some are the children (pink triangles). In this scenario, it is assumed that one adult
pedestrian can have only one child, and every child has exactly one adult parent pedestrian.

1

12 2

3

3

4

4
5

5

Figure 6.13: Illustration of the building for scenario 2: evacuation of a building with separated
families. Inside the building, the adult pedestrians without a child are denoted by blue circles,
the adult pedestrians with a child by green stars, and child pedestrians as pink triangles. The
safe zone is indicated with the yellow striped rectangle. In this figure, the total number of
pedestrians are reduced for visualisation purposes compared to the actual scenario setup (cf.
[172, 103]).

3This scenario is the result of a collaborative work with Dr Isabella from Sivers which has been originally
published in [172]. For the writing of this thesis, all the simulations have been repeated with the developed
UQEF containing more numerical results.

112

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

The simulation directly starts at the point when the fire alarm occurs. All adults without
children immediately start to evacuate themself to the safe zone (yellow striped rectangle), while
the children tend to freeze. For that, their speed is set to zero. The adults with children actually
do not know where their child is and start to search for them. Their search strategy is to always
look in the nearest room first (see [173] for a description of how people search) until they have
found it. Once they have found their child, they evacuate together with a reduced speed to the
safe zone.

6.4.2 UQ simulation setup
The FAM has three relevant parameters: percentage of family members (percfam), speed of
parent-pedestrians searching their child-pedestrians (vparent), and speed of the parent-child-pair
(vchild) which are defined to be uncertain. In [172], there is a discussion of the problematic
of finding reasonable examples with corresponding values for uncertain parameters. Here, the
same uniform distributions and parameters settings are used to perform the UQ simulation. The
parameters with their distributions are listed in Table 6.8. This scenario uses OSM as the base
locomotion model. The parameters for the OSM are set as defined in [172].

Parameter Description Distribution
percfam percentage of family members [%] U(0.1, 0.5)
vparent speed of parent-pedestrians searching their child-pedestrians [m/s] U(1.4, 1.8)
vchild speed of the parent-child-pair [m/s] U(0.8, 1.2)

Table 6.8: List of uncertain parameters and their distributions for scenario 2: evacuation of
a building with separated families. The parameters are uniformly distributed between the
specified minimum and maximum values (cf. [172]).

As for scenario 1 (Section 6.3), the maximum evacuation time evt until all pedestrians have left
the building and finally received the safe zone is defined to be the output of interest. The number
of pedestrians np inside the building is taken as a second output of interest for a fine-grained
analysis of the uncertain influence on this scenario.
To quantify the uncertainty, again, the stochastic collocation with the pseudo-spectral ap-

proach (Section 2.2.2) is used in this scenario. A highest order of P = 7 is used for the orthogonal
polynomials Φj(ζ) of the gPCE (Equation (2.7)), and q = 21 collocation points per dimension
are used, which results in Q = 213 = 9126 collocation points zi. The values for P and q are
determined through parameter studies until the statistical moments have been stabilising.
In Figure 6.14, the UQEF architecture with the derived classes for this scenario is visualised.

FamilyEvacuationModel contains all the source code to call the Vadere console and FamilyEvac-
uationStatistics contains the statistical evaluation source code for the quantity of interests.

113

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

nodes

model

«interface»
Model

schedule

simulation

solver

stat

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver
«functions»
Heuristics

Nodes
«interface»
Simulation

McSimulation

ScSimulation «interface»
Statistics

RuntimeStatistics

UQsim

FamilyEvacuationStatistics

FamilyEvacuationModel

use

use

use

use

use

Figure 6.14: Illustration of derived classes for scenario 2: evacuation of a building with sep-
arated families. The light green rectangles indicate the implemented custom classes for this
scenario. See Section 5.1 for a detailed description of the overall UQEF architecture.

Figure 6.15 shows the implemented UQEF simulation program architecture. It is similar to
scenario 1 (Section 6.3)—but with different scenario-specific classes.
For the analysis of the runtime and scheduling behaviour, many additional UQ simulations

have been performed. All standard scheduling strategies SWP (Section 4.4.2), SWPT (Sec-
tion 4.4.3), and DWP (Section 4.4.4) as well as the developed optimised scheduling strategies
SWPOPT (Section 4.6.1), SWPTOPT (Section 4.6.2), and DWPOPT (Section 4.6.3) using the
runtime prediction mechanism (Section 4.5) are considered here. Similar to Chapter 4, the
TProp is measured for a different number of collocation points q = 4, 5, . . . , 12 and for a different
number of cluster nodes cn = 2, 3, 4, 5. The statistical QoI runtime evaluation is performed in
the RuntimeStatistics class (see Figure 6.14) of UQEF, which is generally available and does not
need any changes for the usage in this scenario.

114

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

«Python_script»
family evacuation

«class»
Nodes

+ generateNodes()
+ setDist()

«class»
FamilyEvacuationModel

+ simulate()

«class»
FamilyEvacuationStatistics

+ calcStatistics()
+ plotResults()
+ printResults()

UQsim

«SLRUM_batch_scr...
Start_UQ_sim

«class»
FamilyOutputProcessoruse use

call

use

use

Figure 6.15: Illustration of the simulation program architecture for scenario 2: evacuation of
a building with separated families. The light green rectangles indicate the custom imple-
mentation parts for this scenario. The white rectangles indicates the UQEF classes that are
instantiated and used directly, but are not changed.

6.4.3 Numerical results
To analyse the influence of the uncertainty, several UQ simulations have been performed: First,
three UQ simulations have been realised with only one of the parameters set to be uncertain. The
others are kept fixed with predefined values (the average between their minimum and maximum
value which are defined in Table 6.8). Second, a UQ simulation with all of the three parameters
are defined to be uncertain is executed.

The first uncertain parameter is percentage of family members (percfam). As can be seen
in Figure 6.16, the percentiles (p5(np) and p95(np)), as well as the standard deviation σ(pn)
and the variance σ2(pn) indicates only a small influence of the uncertainty until the first 20–
25 seconds in the number of remaining pedestrians np in the building. This is where the adult
pedestrians without a children move individually to the save zone. Between 25–65 seconds, there
is a significant influence of the uncertainty in the number of pedestrians np in the building. The
more families are in the building, the more likely is it, that a parent pedestrian has to search in
several rooms until its child is found. This is the reason for the strong influence of percfam on
np. The QoI for the maximum evacuation time evt results in a mean µ(evt) of 74.7 seconds and
a standard deviation σ(evt) of 5.8 seconds.

Remark: Note that the percentiles (p5(np) and p95(np)) and the variance σ2(pn) (and the
standard deviation σ(pn)) in Figure 6.16 have their maximum difference to the mean µ(np) on
different points in time, since they contain only a different subset of the overall information of
the resulting quantity of interest distribution. The range between the 5th and 95th percentile
(other than the variance) contain about 90% of the values, whereas the variance σ2(pn) contains
less (this depends on the resulting QoI probability distribution; for a normal distribution, the
variance σ2 indicates that about 68% of the values are inside the interval around the mean µ).

115

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

pe
de

st
ri

an
s

(n
p)

(a) Statistics of evacuation time
(np)

p5(np)
p95(np)

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

(n
p)

,
2 (

np
)

(b) (np) and 2(np) of evacuation time
(np)
2(np)

Figure 6.16: QoI results for the number of pedestrians np remaining in the building with
percentage of family members (percfam) as the uncertain parameter for scenario 2: evacuation
of a building with separated families. (a) shows the mean µ(np) and the percentiles (p5(np)
and p95(np)) for each time step; (b) shows the corresponding standard deviation σ(np) and
the variance σ2(np) for every time step.

The results for the second parameter, the speed of parent-pedestrians searching their child-
pedestrians (vparent), are plotted in Figure 6.17. Until the first 30 seconds, almost no influence
of the uncertainty is visible on the number of pedestrians np inside the building. To the end of
the simulation, the influence is going to be slightly visible. This can be explained with the short
time period where the parent pedestrians search their children. In this scenario, the largest part
is the evacuation time when the parent moves together with its child to the safe zone. This
results in a mean µ(evt) of 68.2 seconds with a small standard deviation σ(evt) of 2.0 seconds
for the maximum evacuation time evt.

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

pe
de

st
ri

an
s

(n
p)

(a) Statistics of evacuation time
(np)

p5(np)
p95(np)

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

(n
p)

,
2 (

np
)

(b) (np) and 2(np) of evacuation time
(np)
2(np)

Figure 6.17: QoI results for the number of pedestrians np remaining in the building with speed
of parent-pedestrians searching their child-pedestrians (vparent) as the uncertain parameter for
scenario 2: evacuation of a building with separated families. (a) shows the mean µ(np) and
the percentiles (p5(np) and p95(np)) for each time step; (b) shows the corresponding standard
deviation σ(np) and the variance σ2(np) for every time step.

Finally, the results for the third uncertain parameter, the speed of the parent-child-pair (vchild)
is visualised in Figure 6.18. Similar to the second uncertain parameter vparent, almost no un-
certainty is visible during the first 30 seconds on the number of pedestrians np remaining in
the building. Then, there is an influence visible until the end of the simulation: The maximum
evacuation evt with a mean µ(evt) of 68.5 seconds ranges with a standard deviation σ(evt) of

116

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100
pe

de
st

ri
an

s
(n

p)

(a) Statistics of evacuation time
(np)

p5(np)
p95(np)

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

(n
p)

,
2 (

np
)

(b) (np) and 2(np) of evacuation time
(np)
2(np)

Figure 6.18: QoI results for the number of pedestrians np remaining in the building with speed
of the parent-child-pair (vchild) as the uncertain parameter for scenario 2: evacuation of a
building with separated families. (a) shows the mean µ(np) and the percentiles (p5(np) and
p95(np)) for each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step.

4.0 seconds.
Figure 6.19 contains the results for the UQ simulation with all three parameters of Table 6.8

being uncertain. The first 10 seconds, no pedestrian is able to reach the safe zone. After that,
the uncertainty is beginning to influence the number of pedestrians np remaining in the building.
At about 25–30 seconds, the uncertainty is going to have a strong impact. This is when the first
parent-child-pairs leave the building and reach the safe zone. The maximum evacuation time
evt results in a µ(evt) of 75.2 seconds that ranges strongly with a σ(evt) of 7.6 seconds.

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

pe
de

st
ri

an
s

(n
p)

(a) Statistics of evacuation time
(np)

p5(np)
p95(np)

0 10 20 30 40 50 60 70 80 90 100
time (t) - seconds

0

20

40

60

80

100

(n
p)

,
2 (

np
)

(b) (np) and 2(np) of evacuation time
(np)
2(np)

Figure 6.19: QoI results for the number of pedestrians np remaining in the building with all
of the three uncertain parameters (Table 6.8) for scenario 2: evacuation of a building with
separated families. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for
each time step; (b) shows the corresponding standard deviation σ(np) and the variance σ2(np)
for every time step.

A summary of the quantity of interest statistics of the maximum evacuation time evt is listed
in Table 6.10. Looking at σ(evt), percfam has the strongest influence on evt, followed by vchild,
and finally by vparent. Considering the percentiles (p5(evt) and p95(evt)), the same order in the
influence as for the standard deviation σ(evt) can be seen.

117

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

QoI: Maximum evacuation time
Nr. Uncertain parameter(s) µ(evt) σ(evt) p5(evt) p95(evt)
1 Percentage of family members (percfam) 74.7 5.8 62.7 80.6
2 Speed of parent-pedestrians searching their child-

pedestrians (vparent)
68.2 2.0 65.1 71.2

3 Speed of the parent-child-pair (vchild) 68.5 4.0 62.7 74.6
4 All three parameters 75.2 7.6 61.9 86.8

Table 6.10: QoI results of the maximum evacuation time evt for scenario 2: evacuation of a
building with separated families. The values can be interpreted as seconds and have been
rounded down to one digit after the decimal point (cf. [175]).

For the distinction of the influence on the uncertainty for the number of pedestrians np
remaining in the building, a global sensitivity analysis (Section 2.3) has been performed. The
first-order sensitivity indices are plotted in Figure 6.20(a). As can be seen on si_percfam,
percfam is the dominating parameter. At about 80 seconds, the other parameters also contribute
to the varying np, where vchild is going to be the dominating parameter. vparent has much less
influence during the whole simulation time than the other two parameters. It can also be
recognised on si_int that there is a significant interaction between the parameters at the very
end. To evaluate the overall contribution of each parameter, the total-order sensitivity indices in
Figure 6.20(b) help. Until the first 75 seconds, a similar behaviour as for the first-order sensitivity
indices can be observed. Then, the picture changes: Besides vchild, vparent also becomes very
important. The reason for that is that the faster a parent pedestrian finds his child, the earlier
they can start evacuating together, and vparent has the most influence for the pedestrians that
have to search in many rooms until they find their child.

0 20 40 60 80 100
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(a) First order sensitivity indices
si_percfam

si_vchild

si_vparent

si_int

0 20 40 60 80 100
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(b) Total sensitivity indices

st_percfam

st_vchild

st_vparent

Figure 6.20: Sensitivity indices for the number of pedestrians np remaining in the building with
all of the three uncertain parameters (Table 6.8) for scenario 2: evacuation of a building with
separated families. (a) shows the first-order sensitivity indices and (b) shows the corresponding
total-order sensitivity indices.

In Figure 6.21, the whole gPCE (Equation (2.7)) function values for the number of pedestrians
np inside the building are plotted for the different combinations of the three uncertain parameters
(Table 6.10). This gives an overview of the shape for the whole support of the three parameters
and further helps to understand the FAM behaviour.

118

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

percfam

0.100.150.200.250.300.350.400.450.50

v ch
ild

0.80
0.85

0.900.951.001.051.101.151.20

pn

54
56
58
60
62
64
66

(a) evt for percfam/vchild variation

percfam

0.100.150.200.250.300.350.400.450.50
v pa

ren
t

1.40
1.45

1.501.551.601.651.701.751.80

pn

54
56
58
60
62
64
66
68

(b) evt for percfam/vparent variation

vchild

0.800.850.900.951.001.051.101.151.20
v pa

ren
t

1.40
1.45

1.501.551.601.651.701.751.80

pn

58.6
58.8
59.0
59.2
59.4
59.6
59.8
60.0

(c) evt for vchild/vparent variation

Figure 6.21: Visualisation (after 24 seconds of the simulation) of the generated gPCE (Equa-
tion (2.7)) for the number of pedestrians np with all of the three uncertain parameters (Ta-
ble 6.8) for scenario 2: evacuation of a building with separated families. (a) contains the
resulting np values for the percfam/vchild parameter variation, (b) for percfam/vparent, and
(c) for vchild/vparent.

Using UQ for such evacuation scenarios makes the uncertainty visible and shows that there
is a strong need to take this into account. This first UQ simulations with the analysed QoI
and the resulting plots can be used as a blueprint for further investigations and more concrete
evacuation scenarios, e.g. when planning new buildings. As for scenario 1 (Section 6.3), it is of
great value to use the VoI for every time step. This allows much more insights to the behaviour
of the model as only looking on the maximum evacuation time evt.

6.4.4 Runtime and scheduling behaviour
The FAM tends to vary a lot in the runtime T iS depending on the values of the three input
parameters. Additionally, after all pedestrians have been evacuated, the simulation is stopped.
This stopping criterion seems to reinforce the variation of the runtime. Therefore, the runtime,
its variation, and a possible optimisation are analysed in detail in this section.
First, the individual black-box model runs and their runtime T iS have been measured, which

is plotted in Figure 6.22(a). As can be seen on the measurements (blue circles), the runtime

0 100 200 300 400 500
collocation points (zi)

200

400

600

800

1000

ru
nt

im
e

(s
)

(a) Real runtime T i
S

T i
S (real)

0 100 200 300 400 500
collocation points (zi)

200

400

600

800

1000

ru
nt

im
e

(s
)

(b) Predicted runtime i
S

T i
S (real)
i
S (predicted)

Figure 6.22: (a) Real (measured) runtime T iS (blue circles) for scenario 2: evacuation of a
building with separated families. (b) contains the corresponding predicted runtime TiS (filled
green dots) compared to the measured runtime T iS (blue circles). For the UQ simulations,
Q = 83 = 512 collocation points have been used.

T iS vary significantly between 64–1035 seconds and is somehow clustered in eight steps. Fig-
ure 6.22(b) shows the predicted runtimes TiS (filled green dots) using the rpN (Equation (4.8)).

119

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

The predicted TiS does not exactly match the real measured runtimes T iS due to some prediction
errors4.
To further understand the prediction quality, the error between the measured T iS and the pre-

dicted runtimes TiS is determined. Figure 6.23(a) shows the absolute error εri (Equation (4.10)),
which ranges mainly between 0–20 seconds and only a few absolute error values reaching up to
about 84 seconds. The absolute errors εri are higher for the longer T iS runtimes. In Fig-
ure 6.23(b), the relative errors εri,rel (Equation (4.11)) are plotted. The values for εri,rel are
mostly below 0.1. For the runs with the smaller runtimes T iS , the relative error εri,rel is higher
and reaches values up to 0.28.

0 100 200 300 400 500
collocation points (zi)

0

20

40

60

80

ab
so

lu
te

 e
rr

or

r i
(s

)

(a) Absolute error ri

0 100 200 300 400 500
collocation points (zi)

0.00

0.05

0.10

0.15

0.20

0.25

re
la

tiv
e

er
ro

r
r i,

re
l

(b) Relative error ri, rel

Figure 6.23: (a) Absolute error εri for scenario 2: evacuation of a building with separated
families. (b) contains the corresponding relative error εri,rel. For the UQ simulations, Q =
83 = 512 collocation points have been used.

For an overview of the error trend with different q = 4, 5, . . . , 12, the statistics of the error
is analysed in Figure 6.24. Because no analytical solution is available for this scenario, the
predictions are compared against the UQ simulation with q = 12. Figure 6.24(a) contains the

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

20

40

60

80

ru
nt

im
e

er
ro

r
(s

)

(a) Statistics of absolute error
(r)

p5(r)
p95(r)

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

10

20

30

40

50

L2 (
er

) e
rr

or
 n

or
m

(b) Discrete L2 norm of absolute error
L2(r)

Figure 6.24: (a) Absolute error statistics with mean error µ(εr) as well as the 5th p5(εr) and
the 95th p5(εr) percentile for scenario 2: evacuation of a building with separated families. (b)
contains the corresponding L2(εr) error norm. For the UQ simulations, different number of
collocation points q = 4, 5, . . . , 12 per parameter have been used.

mean error µ(εr) as well as the 5th p5(εr) and the 95th p5(εr) percentile. For all evaluated
4The stochastic collocation with the pseudo-spectral approach does not use interpolation and can therefore
predict slightly different values at the collocation points zi (cf. Section 2.2.2, Section 2.2.3, and [34]).

120

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

q, the mean error µ(εr) is high with values about 21.2–31.1 seconds. The percentiles (p95(εr)
and p95(εr)) do also indicate a high range in the values. The L2(εr) error norm is plotted in
Figure 6.24(b). The values are also high and ranging about 29.6–50.2 seconds. It can be observed
that with higher q, the L2(εr) is not decreasing, which is usually expected. This behaviour is
assumed due to some intrinsic uncertainty inside the Vadere simulator, which randomly initialises
the starting position of the pedestrians as well as the route planning. This intrinsic uncertainty
is not controlled by one of the three FAM parameters (Table 6.8). It results therefore in slightly
different runtimes T iS in subsequent black-box runs of the Vadere simulator. Additionally, other
influences from the compute cluster and operating system specific properties can play a role
there. These errors do only belong to the prediction of the T iS runtimes and not to the quality
of the UQ analysis in Section 6.4.3.
The shape of the generated runtime predictor rpN (Equation (4.8)) is visualised in Figure 6.25.

This gives a good overview of the resulting runtimes TiS at the support of the input parameters
for the variation of percfam to vchild (Figure 6.25(a)), percfam to vparent (Figure 6.25(b)), and
vchild to vparent (Figure 6.25(c)). This indicates that percfam is the dominating parameter
because it produces the most changes in TiS for its support. vchild does also have some influence
on TiS , whereas vparent seems to have the smallest impact.

percfam

0.100.150.200.250.300.350.400.450.50

v ch
ild

0.80
0.85

0.900.951.001.051.101.151.20

i
S

200

400

600

800

(a) i
S for percfam/vchild variation

percfam

0.100.150.200.250.300.350.400.450.50
v pa

ren
t

1.40
1.45

1.501.551.601.651.701.751.80

i
S

200

400

600

800

(b) i
S for percfam/vparent variation

vchild

0.800.850.900.951.001.051.101.151.20
v pa

ren
t

1.40
1.45

1.501.551.601.651.701.751.80

i
S

420
440
460
480
500
520
540

(c) i
S for vchild/vparent variation

Figure 6.25: Visualisation of the generated runtime predictor rpN (Equation (4.8)) for the
predicted TiS runtime with all of the three uncertain parameters (Table 6.8) for scenario 2:
evacuation of a building with separated families. (a) contains the resulting TiS runtimes for
the percfam/vchild parameter variation, (b) for percfam/vparent, and (c) for vchild/vparent. For
the UQ simulations, Q = 83 = 512 collocation points have been used.

The whole runtime prediction TiS for the parameter support is now visible an can be further
used to control the scheduling. The question is whether a good scheduling can be achieved
despite the large TiS runtime prediction errors that could be seen above? To answer this, the
three standard scheduling strategies (Section 4.4) and their optimised versions (Section 4.6) have
been intensively tested.

The measured propagation runtimes TProp for the six scheduling strategies can be found in
Figure 6.26. As can be seen in Figure 6.26(a) for cn = 2 cluster nodes and q = 12 collocation
points per dimension, SWP takes with 29,060 seconds the longest propagation time TProp, SWPT
with 23,686 seconds the second longest, and the others ranging between 14,619–17,002 seconds.
The results for cn = 5 cluster nodes are visible in Figure 6.26(b). Again, SWP takes with 12,535
seconds longest, followed by SWPT with 11,121 seconds. SWPOPT could compete for q ≤ 11
with the others, but for q = 12 the propagation runtime significantly increases up to 10,246
seconds. DWP, SWPTOPT , and DWPOPT ranging about 5,814–6,391 seconds for q = 12. For a
complete overview, all measured propagation runtimes TProp for all cn = 2, 3, 4, 5 in combination
with all q = 4, 5, . . . , 12 can be found in Table A.6.

121

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

5000

10000

15000

20000

25000

30000

ru
nt

im
e

(s
)

(a) Runtimes with 2 cluster nodes
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0

2000

4000

6000

8000

10000

12000

ru
nt

im
e

(s
)

(b) Runtimes with 5 cluster nodes
SWP
SWPT
DWP
SWPOPT

SWPTOPT

DWPOPT

Figure 6.26: Measured propagation runtimes TProp for scenario 2: evacuation of a building
with separated families for two cluster nodes (cn = 2) in (a) and for cn = 5 in (b) with a
varying number q = 4, 5, . . . , 12 of collocation points per parameter. The UQ simulations have
been performed for the three standard scheduling strategies (Section 4.4) and their optimised
versions (Section 4.6).

The improvements in the propagation time TProp for SWP compared to the optimised schedul-
ing strategies can be seen in Figure 6.27(a). The speed-up is calculated for all cn = 2, 3, 4, 5 and
contains therefore 4 corresponding speed-up lines of identical colour and line style. For q ≥ 6, the
speed-up for SWP to SWPOPT is about 1.2–2.4, SWP to SWPTOPT about 1.7–2.3, and SWP
to DWPOPT about 1.7–2.3. Figure 6.27(b) contains the speed-ups for the standard scheduling
strategy with its optimised version. It shows speed-ups for q ≥ 6 with SWP to SWPOPT of
about 1.2–2.4, for SWPT to SWPTOPT of about 1.4–1.8, and for DWP to DWPOPT only about
1.0 (for q ≥ 8). The speed-ups for all tested cn and q are additionally listed in Appendix A.4.

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.0

1.5

2.0

2.5

3.0

sp
ee

d-
up

(a) Speed-up SWP to OPT
SWP to SWPOPT

SWP to SWPTOPT

SWP to DWPOPT

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

1.0

1.5

2.0

2.5

sp
ee

d-
up

(b) Speed-up NOT OPT to OPT
SWP to SWPOPT

SWPT to SWPTOPT

DWP to DWPOPT

Figure 6.27: Speed-up for TProp for scenario 2: evacuation of a building with separated families.
(a) contains the speed-ups of SWP compared to SWPOPT , SWPTOPT , and DWPOPT . (b)
contains the speed-ups for SWP to SWPOPT , SWPT to SWPTOPT , and DWP to DWPOPT .
Each plot contains 4 speed-up lines (of identical colour and line style) that corresponds to the
different number of cluster nodes cn = 2, 3, 4, 5.

To definitely answer which uncertain parameter has the most influence on the individual
black-box model runtime T iS and therefore on the propagation time TProp, the sensitivity indices
(Section 2.3) have been calculated. As can be seen in Figure 6.28(a) for the first-order sensitivity
indices, percfam is the most important parameter for all tested q. vchild contributes more than
vparent, but both contributions are very small compared to percfam. This was already assumed

122

6.4 SCENARIO 2: EVACUATION OF A BUILDING WITH SEPARATED FAMILIES

in Figure 6.22 and Figure 6.25 because percfam was already identified to be the dominating
factor, but here, the relation and the impact of the parameters is much more visible. It can
also be observed that there is almost no interaction between the parameters which is shown by
si_int. For that reason, the total-order sensitivity indices in Figure 6.28(b) looks almost the
same as the first-order sensitivity indices in Figure 6.28(a).

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(a) First order sensitivity indices

si_percfam

si_vchild

si_vparent

si_int

4 5 6 7 8 9 10 11 12
number of collocation points per parameter (q)

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(b) Total sensitivity indices

si_percfam

si_vchild

si_vparent

Figure 6.28: Sensitivity indices for the individual black-box model run runtimes T iS with all
of the three uncertain parameters (Table 6.8) for scenario 2: evacuation of a building with
separated families. (a) shows the first-order sensitivity indices and (b) shows the corresponding
total-order sensitivity indices.

Despite the large absolute errors εri and relative errors εri,rel in the prediction of TiS , it is
possible to significantly reduce the propagation time TProp with the dynamic and optimised
scheduling strategies using the runtime predictor rpN . SWPTOPT , DWP, and DWPOPT work
best for this scenario. For the scheduling, the prediction errors in the black-box model runs
with the small runtimes TiS are not as essential. It is more important that the individual black-
box model runs with the long runtimes TiS are identified correctly–but not necessarily predicted
exactly! The reason why the scheduling strategies with the higher dynamic component performs
better is most likely due to the large prediction errors in TiS .

6.4.5 Summary
The subject of this scenario was the evacuation of a building with separated families under
uncertain conditions. For the simulation of the scenario, the Vadere simulator with the family
affiliation model (FAM) is used. To quantify the uncertainty, again, stochastic collocation with
the pseudo-spectral approach (Section 2.2.2) is used as the UQ method of choice.
The FAM has three parameters which are defined to be uncertain (Table 6.8), which leads to a

3D UQ problem. The UQ simulation results in a significant variation of the maximum evacuation
time evt (Table 6.10) for the chosen uncertain parameters. This underlines the importance of a)
the usage of the FAM to consider evacuation scenarios with separated families, and b) the use
of UQ methods to quantify the uncertainty to obtain more realistic knowledge about values for
the evacuation time evt.
A global sensitivity analysis (Section 2.3) provides detailed information about the importance

and the interaction of the parameters for each time step of the simulation. Now, the individual
contribution of each of the three uncertain FAM parameters can be determined, which is very
valuable for the modeller of the FAM itself as well as for the users of the FAM.
The reconstruction of the model function (Section 3.5) of the maximum evacuation time evt

using the generated gPCE gives, again, valuable insights of the possible output values with

123

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

different combinations of the uncertain parameter values.
All simulations in the context of this scenario are performed with the UQEF (Chapter 5) on

the Linux-Cluster CoolMUC2. The FAM shows significant differences in the runtime depending
on the input parameter values. A detailed analysis of the runtime variation for the simulation
scenario is performed under the given uncertainties. With the developed runtime prediction
mechanism in Section 4.5, a runtime predictor rpN (Section 4.5) is constructed for the FAM
scenario, and its prediction quality is measured. The rpN can predict the runtime of a single
black-box model run, with relative errors mostly below 0.1.
For the runtime visualisation, the constructed rpN is used to plot the predicted runtimes as

3D plots for the different parameter variations of the three uncertain parameters. This allows
to see the predicted runtime propagation values for many different parameter value variations.
Furthermore, the propagation runtime TProp for the three standard scheduling strategies

(Section 4.4) and the optimised versions (Section 4.6.1) is analysed for different number
q = 4, 5, . . . , 12 of collocation points per parameter and cluster nodes cn = 2, 3, 4, 5. The
scheduling strategy has a huge impact on the propagation runtime TProp. The dynamic and
the optimised versions can reduce the amount of idling and therefore reduce the propagation
runtime TProp depending on the scheduling strategy. In this scenario, the DWP and DWPOPT
scheduling have the fastest propagation time and should be preferred to the others for a fast
and efficient UQ simulation. From the worst scheduling (SWP) to the best scheduling (DWP
or DWPOPT) a speed-up of about 1.7-2.3 is observed.
With a global sensitivity analysis using the constructed rpN , one parameter is identified as the

main cause for the runtime variation, while the others have only little influence. It is now possible
to predict and to automatically optimise the propagation time TProp of the FAM scenario with
the investigated scheduling strategies. All this can be achieved on different computing systems
with a different number of computing nodes because UQEF automatically distributes the work—
depending on the chosen scheduling strategy—among the computing nodes.

6.5 Scenario 3: Utilisation of a campus
In pedestrian dynamics, not only the utilisation of a single building [187, 188, 76] is of interest.
Also, the utilisation of a whole campus, a combination of streets and several connected buildings
can be relevant [22, 18, 33]. On a campus, like a university or a huge company, there is something
like a daily routine of the pedestrians [116]. The pedestrians enter the campus, move between the
buildings, and then leave the campus at the end of the day. Exactly this behaviour is the subject
of this scenario and is further investigated under uncertain conditions, with the combination of
the closed observables surrogate model (COSM) (Section 4.7.1), to efficiently (fast) quantify the
uncertainties.
The details of this scenario5 are described in Section 6.5.1. The setup for the UQ simulation

can be found in Section 6.5.2, the construction of the COSM in Section 6.5.3, and the UQ results
in Section 6.5.4 as well as the computational efficiency and error results in Section 6.5.5. The
scenario is summarised in Section 6.5.6.

6.5.1 TUM campus utilisation
The goal of this scenario is to simulate the utilisation of a campus with several distributed
buildings. The pedestrians follow a daily routine and move between the buildings, while the
utilisation of each building is measured and analysed.

5This scenario is the result of a collaborative work with Dr Felix Dietrich. It is a continuation of the joint
work that has been originally published in [28], where the COSM (Section 4.7.1) is used to support real-time
decision systems in the context of the evacuation of a train station.

124

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

For that, the campus Garching of the Technical University of Munich (TUM) is modelled
partially on a coarse level with a Vadere scenario, which is visualised in the left side of Figure 6.29.
The daily routine of the considered pedestrians is as follows: They arrive at the campus by the
underground and then move directly to the TUM Math & Informatics building (middle part of
Figure 6.29). After working a while, they go to a canteen for lunch. On the campus, there is the
TUM mensa and the IPP canteen, and the pedestrians can choose between both alternatives
(right side of Figure 6.29). After lunch, they move back to work to the TUM Math & Informatics
building. At the end of the working day, they walk to the underground and leave the campus.

Underground
(M1)

TUM Mensa
(M3)

TUM Math &
Informatics
(M2) IPP Canteen

(M4)

Figure 6.29: Illustration of campus for scenario 3: utilisation of a campus. On the left, the
partially modelled TUM campus with the building names is visualised. On the middle, the
pedestrians move from the underground to the TUM Math & Informatics building. The right
visualisation shows the pedestrians in the TUM and IPP canteen.

For the sake of simplicity, the buildings are modelled with one floor, and there are 200 pedes-

125

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

trians in the scenario. The working time at the TUM Math & Informatics building is the same
for all pedestrians, as a simplification. Some of the pedestrians do always go to the TUM mensa,
while the others prefer the IPP canteen. In this setting, the pedestrians do not switch their pref-
erence during a single simulation run. There are several days simulated to see the cycles in the
utilisation of the buildings that the daily routines of the pedestrians produce. The time the
pedestrians work, eat, move, or are not present at the campus (during the night) is shortened
to reduce the computational effort, which means there is no direct mapping between the time
steps in the simulation and a real 24 hour day. After a one day period, the pedestrians arrive
at the underground, and they are not removed from the scenario. Instead, they wait for some
time in the underground and then a new cycle starts where the pedestrians move again to the
TUM Math & Informatics building.

The time step size for the Vadere scenario is set to 0.4 and the finish time to 6,000, which
ensures to produce several cycles. For the basic locomotion model, the OSM with its default
values is used. The preference for a canteen is modelled with two different sources (green
rectangles in Figure 6.29) for the pedestrians, where the cycle with the specific canteen is defined.
Around each target (orange rectangles), measure zones (light red rectangles) are defined, which
counts the number of pedestrians within this measure zone for every time step of the simulation.
Table 6.11 lists the measure zones that are used for the values of interest.

Denotation Measure zone
M1(Underground) Underground
M2(TUM) TUM Math & Informatics building
M3(TUMmensa) TUM mensa building
M4(IPPcanteen) IPP canteen building

Table 6.11: Denotation of the measure zones for scenario 3: TUM campus utilisation.

6.5.2 UQ simulation setup
The scenario is modelled with four uncertain parameters which are listed in Table 6.12. Because
each pedestrian has a different preference on the favourite canteen, this is defined to be uncertain
and modelled with the IPP canteen ratio (ir) parameter. Because the TUM mensa has more
capacity as the IPP canteen, a uniform distribution between 0.1 and 0.3 is assumed, which
means that 70%–90% percent of the pedestrians prefer the TUM mensa and 10%–30% the IPP
canteen. The pedestrians do eat for some time in the canteen—but the exact amount of time
is not known6. This is modelled with two different normally distributed parameters, with irtime
for residence time in the IPP canteen, and trtime for the residence time in the TUM mensa.
The walking speed of pedestrians is modelled with the v parameter, and according to [154], a

Parameter Description Distribution
ir IPP canteen ratio [%] U(0.1, 0.3)
irtime Residence time in IPP canteen [minutes] N(50, 1)
trtime Residence time in TUM mensa [minutes] N(60, 1)
v Walking speed of pedestrians [m/s] U(1.3, 1.8)

Table 6.12: List of uncertain parameters and their distributions for scenario 3: utilisation of a
campus. The parameters ir and v are uniformly distributed between the specified minimum
and maximum values. For the residence times irtime and trtime, normal distributions are used.

6As a simplification, it is not considered that the pedestrians usually walk and eat in small groups and join and
leave the canteen together. This could be modelled in future investigations with the SIMA (that is used in
scenario 1 (Section 6.3)) or with the FAM (that is used in scenario 2 (Section 6.4)), depending on the scenario.

126

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

uniform distribution between 1.3–1.8 [m/s] is assumed.
To analyse the utilisation of the buildings under these uncertain conditions, the four measure

zones M1(Underground), M2(TUM), M3(TUMmensa), and M4(IPPcanteen) that are defined
in Table 6.11 are used for the value of interest. They are the subject of the uncertainty quan-
tification. The measured values are taken for every time step in the simulated scenarios, to
reconstruct a fine-grained utilisation for each building.
The UQ method of choice is the stochastic collocation with the pseudo-spectral approach

(Section 2.2.2). For a detailed analysis, q = 10 number of collocation points per dimension
are used. This results in Q = 104 = 10,000 number of collocation points and, hence, 10,000
number of black-box model runs in the propagation phase. The highest order of the orthogonal
polynomials Φj(ζ) in the gPCE (Equation (2.7)) is set to P = 5 to ensure stable numerical
moments for the QoI. The truncation value is determined via a parameter study.
The scenario-specific classes that are derived from UQEF are visualised in Figure 6.30. The

nodes

model

«interface»
Model

schedule

simulation

solver

stat

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver
«functions»
Heuristics

Nodes
«interface»
Simulation

McSimulation

ScSimulation «interface»
Statistics

RuntimeStatistics

UQsim

CampusUtilisationStatistics

CampusUtilisationModel

CosmCampusUtilisationModel

use
use

use

use

use

Figure 6.30: Illustration of derived classes for scenario 3: utilisation of a campus. The light
green rectangles indicate the implemented custom classes for this scenario. See Section 5.1
for a detailed description of the overall UQEF architecture.

127

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

CampusUtilisationModel class contains all the source code to call the Vadere simulator. Because
the execution of the COSM simulator differs significantly from calling the Vadere simulator, a
separate implementation exists in the CosmCampusUtilisationModel class. Both Model imple-
mentations are implemented in such a way that they return the values of interest in the same
style and order. Therefore, a single CampusUtilisationStatistics class is suitable to calculate the
QoI statistics for both Model implementations.

Figure 6.31 shows the corresponding UQEF simulation program architecture. Both Model
implementations are used in the campus utilisation Python script but registered under different
model names. As explained in Section 5.2 and Section 5.4, it is possible to choose the model
by using the UQsim "--model" command line parameter. The CampusUtilisationStatistics
implementation is registered two times, for each model implementation, respectively. This allows
to reuse the campus utilisation Python script and further reduces the amount of source code for
the scenario.

«Python_script»
campus utilisation

«class»
Nodes

+ generateNodes()
+ setDist()

«class»
CampusUtilisationModel

+ simulate()

«class»
CampusUtilisationStatistics

+ calcStatistics()
+ plotResults()
+ printResults()

UQsim

«SLRUM_batch_scr...
Start_UQ_sim

«class»
CosmCampusUtilisationModel

+ simulate()

use

call

use

use

use

Figure 6.31: Illustration of the simulation program architecture for scenario 3: utilisation of a
campus. The light green rectangles indicate the custom implementation parts for this scenario.
The white rectangles indicates the UQEF classes that are instantiated and used directly, but
are not changed.

The focus on this scenario is the runtime improvement that can be achieved by using the
generated surrogate model (COSM) instead of using the Vadere simulator. Following the advice
in Table 4.9 on how to choose a suitable scheduling strategy, DWP is selected as the scheduling
strategy, because it automatically distributes the workload relatively evenly across the computing
nodes, without the knowledge of the T iS runtime being required.
To assess the quality of the generated COSM when using it to quantify the uncertainty, several

UQ simulations with a varying q = 2, 3, . . . , 10 have been performed. To get the results in a
reasonable time, different cluster nodes cn = 1, 2, 4, 6, 8 are used. Table 6.13 shows for each q
the number of used cluster nodes cn. An important argument for using a surrogate model is to

q 2 3 4 5 6 7 8 9 10
Q 16 81 256 625 1,296 2,401 4,096 6,561 10,000
cn 1 2 2 4 4 4 6 6 8

Table 6.13: List of performed simulations for scenario 3: utilisation of a campus. For each q,
the resulting number of collocation points Q and the used number of cluster nodes cn is listed.

128

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

achieve faster propagation times TProp. Therefore, the propagation runtime TProp is measured
for all performed UQ simulations and the COSM runtimes are compared to the Vadere runtimes.

6.5.3 Construction of the COSM
In the offline phase of the COSM (Section 4.7.2), it is required to sample the original microscopic
model—the Vadere simulator—several times. The sampling is based on a full grid of 5 values
per parameter. This leads to Nir · Nirtime · Ntrtime · Nv = 54 = 625 number of parameter sets
for the sampling of Vadere. Table 6.15 lists the corresponding values for each parameter. An
equidistant sampling between a predefined range is chosen. The range is based on the values of
Table 6.12 for the probability distributions of the parameters.

Parameter Values
ir 0.1 0.15 0.2 0.25 0.3
irtime 40.0 45.0 50.0 55.0 60.0
trtime 50.0 55.0 60.0 65.0 70.0
v 1.3 1.425 1.55 1.675 1.8

Table 6.15: Sampling values for the parameters ir, irtime, trtime, and v to create the COSM.
This results in Nir ·Nirtime ·Ntrtime ·Nv = 54 = 625 number of parameter sets in the full grid
sampling.

The observed values of interest (see Table 6.11) are very noisy, because the four parameters
ir, irtime, trtime, and v significantly influence the individual movements of the pedestrians within
the Vadere simulator, and therefore the utilisation of the buildings. To obtain smoother values
for the construction of the COSM, the following aspects have been considered:

• To simplify the dynamic of the data to that of the slow manifold [87] when setting up
the COSM, the first 8,000 time steps of the simulation runs are not taken into account.
By comparing the UQ results with Vadere to that of the COSM, the same time steps (or
even some of the time steps to match the time series data again) of Vadere also have to
be skipped. This allows a direct comparison of the measure zone data with detailed error
results as described in Section 4.7.3.

• The values of interest do change in a different velocity for the different measure zones,
which has the consequence that the resulting values of the COSM do slightly diverge. To
eliminate this behaviour, the change of the values (the acceleration) is additionally taken
into account as a separate dimension in the input data to generate the closed observables.

• The resulting number of dimensions for the closed observables is 6. With a data file of
about 23.99 MiB, all data for the closed observables are stored on a disk.

• For the interpolation of the sampled input data from Vadere to the output map of the
COSM, the nearest-neighbour interpolation of the
scipy.interpolate.NearestNDInterpolator Python package is used.

6.5.4 Numerical results
This section presents the numerical results of the UQ simulation that is gathered with the
constructed COSM as the surrogate model. For the quantification of the uncertainties, q = 10
number of collocation points have been used for each uncertain parameter. Hence, 104 = 10,000
simulation runs with the COSM have been performed.
To analyse the general utilisation of the four modelled buildings (cf. Table 6.11) in this

scenario, the mean utilisation values µi,M1(Underground), µi,M2(TUM), µi,M3(TUMmensa),

129

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

and µi,M4(IPPcanteen) are plotted in Figure 6.32 for every time step. As can be seen, the daily
cycles are nicely visible for the whole simulated time period: After the arrival in the underground
and the first working time at the TUM Math & Informatics building in the mid-morning, the
pedestrians move to one of both canteens, return to work, and finally move to the underground.
On the light blue area around each line (5th to 95th percentile) the influence of the uncertainty
becomes evident.

0 1000 2000 3000 4000 5000
time (t) - seconds

0

50

100

150

200

pe
de

st
ri

an
s

Statistics of TUM campus utilisation

i, M1(Underground) i, M2(TUM) i, M3(TUMmensa) i, M4(IPPcanteen)

Figure 6.32: QoI results of the mean utilisation for scenario 3: utilisation of a campus. For
each of the four measure zones (see Table 6.11), the mean utilisation for every time step is
plotted. The light blue area around each line is the 90% interval of the values (5th to 95th
percentile).

Figure 6.33 shows the corresponding standard deviations σi,M1(Underground), σi,M2(TUM),
σi,M3(TUMmensa), and σi,M4(IPPcanteen) for each measure zone on each time step. The values
indicate a high standard deviation for each measure zone. Especially in the periods when the
first pedestrians enter and leave the buildings, the deviations are higher. For both canteens, the
standard deviation is also high for the residence time of the pedestrians, because the residence
time is comparably short, and pedestrians constantly enter and leave the buildings.

0 1000 2000 3000 4000 5000
time (t) - seconds

0

10

20

30

pe
de

st
ri

an
s

Standard deviation of TUM campus utilisation

i, M1(Underground) i, M2(TUM) i, M3(TUMmensa) i, M4(IPPcanteen)

Figure 6.33: Standard deviation of the utilisation for scenario 3: utilisation of a campus. For
each of the four measure zones (see Table 6.11), the standard deviation for every time step is
plotted.

With the sensitivity indices, the influence of each parameter on the resulting utilisation can
be determined. Figure 6.34 shows the first-order sensitivity indices for each measure zone for
each time step. As expected, the influence changes heavily over the daily time period. For all
of the four buildings, the utilisation is highly influenced by the speed parameter v.

130

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0
se

ns
iti

vi
ty

 in
di

ce
s

(a) First order sensitivity indices for M1(Underground)

si_ir si_irtime si_trtime si_v si_int.

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(b) First order sensitivity indices for M2(TUM)

si_ir si_irtime si_trtime si_v si_int.

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(c) First order sensitivity indices for M3(TUMmensa)

si_ir si_irtime si_trtime si_v si_int.

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(d) First order sensitivity indices for M4(IPPcanteen)

si_ir si_irtime si_trtime si_v si_int.

Figure 6.34: First-order sensitivity indices for the utilisation of the buildings with all of the
four uncertain parameters (Table 6.12) for scenario 3: utilisation of a campus. (a) contains
the values for M1(Underground), (b) for M2(TUM), (c) for M3(TUMmensa), and (d) for
M4(IPPcanteen).

131

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s
(a) Total sensitivity indices for M1(Underground)

st_ir st_irtime st_trtime st_v

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(b) Total sensitivity indices for M2(TUM)

st_ir st_irtime st_trtime st_v

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(c) Total sensitivity indices for M3(TUMmensa)

st_ir st_irtime st_trtime st_v

0 1000 2000 3000 4000 5000
time (t) - seconds

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 in

di
ce

s

(d) Total sensitivity indices for M4(IPPcanteen)

st_ir st_irtime st_trtime st_v

Figure 6.35: Total-order sensitivity indices for the utilisation of the buildings with all of the
four uncertain parameters (Table 6.12) for scenario 3: utilisation of a campus. (a) contains
the values for M1(Underground), (b) for M2(TUM), (c) for M3(TUMmensa), and (d) for
M4(IPPcanteen).

132

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

In Figure 6.34(a) and Figure 6.34(c), also, a high interaction between the parameters can
be observed. In Figure 6.35, the corresponding total-order sensitivity indices are shown. It
is expected that the individual residence times in the canteen only influence the utilisation of
that canteen. This is true for st_trtime in Figure 6.35(d). But in Figure 6.35(c) there is a
noticeable influence based on st_irtime visible. The behaviour can be caused by small jams and
counterflows when the pedestrians move to a canteen which results in a temporary slow down
of the moving speed on the common path and on the fork to the IPP canteen.
Figure 6.36 gives further possibilities to investigate the general utilisation under the given

uncertain conditions. The relationship of each measure zone to all others is visualised. For that,

0

50

100

150

200

M
1(

U
nd

er
gr

ou
nd

)

0

50

100

150

200

M
2(

TU
M

)

0

50

100

150

M
3(

TU
M

m
en

sa
)

0 100 200
M1(Underground)

0
10
20
30
40
50
60

M
4(

IP
P c

an
te

en
)

0 100 200
M2(TUM)

0 100
M3(TUMmensa)

0 20 40 60
M4(IPPcanteen)

Figure 6.36: Pairwise relationship of the utilisation for the four buildings (Table 6.11) in
scenario 3: utilisation of a campus. The diagonal axis contains the histogram of the utilisation
for each building. The upper right side contains the scatter plot of the utilisation values and
the lower left side the contour plots.

the generated gPCE uN (x, t, ζ) (Equation (2.7)) is sampled on 100 nodes which have been drawn
from the multivariate probability density function of the uncertain parameters from Table 6.12.

133

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

That results in 100 ∗ 6,000 = 600,000 values for each measure zone, including the utilisation
for each time step. There is no information about the simulation time in these plots, only the
utilisation values are considered.
On the diagonal axis, the histogram shows the relative frequency of the utilisation values for

each measure zone. The scale on the y scale does not show the correct values for the histogram—
it is meant for the other diagrams, and the height of the bar only shows the qualitative frequency
for each bar (bucket). For the histogram, the value range of the utilisation is split into equally
sized buckets, here 10. All 600,000 values are placed into one of the buckets, and the number
of values inside each bucket is the height of the bars. For M1(Underground), most of the time
there are almost zero pedestrians in the building; for M2(TUM), it shows two accumulations of
the values for about zero and 200 pedestrians; for M3(TUMmensa) and M4(IPPcanteen), almost
zero pedestrians are in both buildings for most of the simulation time, which is plausible because
the pedestrians do also walk for some time and are not inside of one of the four buildings.
The scatter plots (upper right triangle) inform about the distribution of the values. Depending

on the other measure zone, the values are plotted. The scatter plot is good to see where the
values are, but it does not deliver the information about the frequency (the number of values
on the same position). For this, the contour plot (lower left triangle of plots) are useful. The
contour lines in the contour give the information where most values lie. They are calculated
through a kernel density estimate, and the colour shows the density: black lines show a small
density and blue lines a higher density. Until a certain density, the area is left blank.
For example (as can be seen on column one), if almost no one is in measure zone

M1(Underground), then it is very likely that the pedestrians are not in M3(TUMmensa) and
M4(IPPcanteen), but in M2(TUM). The separated black contour lines, when about 200 pedes-
trians are in M1(Underground), indicates that there are almost no pedestrians in the other
buildings. Column two gives the information, that when about zero or 200 pedestrians are in
M2(TUM), there are mostly no pedestrians in M3(TUMmensa) and M4(IPPcanteen). In the
contour plot of M2(TUM) vs M3(TUMmensa), the single black contour line, which is separated
from the large clustered values, indicates that if about 10–50 pedestrians are in M2(TUM),
110–150 pedestrians are likely in M3(TUMmensa). The scatter plot of M4(IPPcanteen) vs
M3(TUMmensa) (row three, column four) has a strong bellied form of the values which one
might think that a lot of values are in this bellied part. Together with the corresponding con-
tour plot (row four, column three), it can be seen on the contour lines, that most of the values are
about zero, which means that if no one is in M3(TUMmensa), also no one is in M4(IPPcanteen).

The daily utilisation cycles for each measure zone is visible in Figure 6.37. It shows the first
three principle components (obtained by a principal component analysis (PCA) [79] with the
numpy.linalg.svd Python package) of the mean utilisation for each building. The PCA values

M1(Underground) M2(TUM) M3(TUMmensa) M4(IPPcanteen)

Figure 6.37: Visualisation of the first three principal components for the four buildings (Ta-
ble 6.11) in scenario 3: utilisation of a campus. A dark blue colour indicates less or no
pedestrians at this point and a dark red colour a high utilisation for the measure zone.

134

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

have a shape of a loop which is wrapped around two times that do not actually touch each
other; they are a single loop projected into a 3D space like this. The blue colour along the
circles indicates that there are less or no pedestrians in the measure zone. The deep red colour
indicates that there are a lot of pedestrians in the measure zone. The two working periods for
the pedestrians are nicely visible inM2(TUM). InM1(Underground), only one continuous red
area is visible, because the start and the end of the daily cycle lie somewhere in the middle of
the red area.
If this uncertainty analysis is, e.g. used for planning of such a campus, or to estimate the

required staff in the canteen, the mean utilisation may help a lot. Additionally, the 90% con-
fidence interval (5th to 95th percentile) is useful to see the upper and lower boundaries. For
a more detailed planning, it is useful to know the intensity of the influence of the parameters.
This allows to influence such situations actively, e.g. having the required stuff available, routing
of the pedestrians, or reducing the waiting times in the food distribution. Another possibility is
to try to influence the pedestrian’s preference (e.g. with marketing campaigns) on the canteen
and predict than the expected utilisation. Moreover, because for this scenario the COSM is gen-
erated and available as a surrogate, the UQ simulation can be repeated very fast with different
probability distributions (and values for the distributions) to obtain the results in a reasonable
time.

6.5.5 Computational efficiency and error results
This section gives an overview of the computational efficiency of the performed UQ simulations
with the constructed COSM. After that, the quality of the resulting QoI is determined by several
error measurements of the COSM compared to the Vadere simulator.
Figure 6.38(a) contains the measured propagation runtimes TProp for the performed UQ sim-

ulations with the COSM and the Vadere simulator as the model. It can be seen that with
Vadere, the propagation runtime TProp growth heavily with an increasing q. Whereas with the
COSM, the TProp is constantly very small. In Figure 6.38(b), the same values are plotted with
a logarithmic scale: Now it is visible that TProp with the COSM also increases, but it is a factor
of about 102 between the COSM and the Vadere for all performed q. As a reminder, Table 6.13

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

0

5000

10000

15000

20000

ru
nt

im
e

(s
)

(a) Propagation runtimes TProp

Vadere
COSM

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

101

102

103

104

ru
nt

im
e

(s
)

(b) Propagation runtimes TProp

Vadere
COSM

Figure 6.38: Measured propagation runtimes TProp using the COSM and the Vadere simulator
as the model for scenario 3: utilisation of a campus. (a) contains the absolute propagation
runtime TProp with a linear scale and (b) with a logarithmic scale with a varying number
q = 2, 3, . . . , 10 of collocation points per parameter.

contains the number of computing units cn for each performed q. To create the COSM, 54 = 625
black-box runs as denoted in Table 6.15 have been performed, which took about 2852.8 seconds
(cf. the entry for q = 5 in Table 6.16) with dynamic scheduling and cn = 4 cluster nodes.

135

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

Additionally, the creation of the closed observables took about 584 seconds7. In summary, an
initial overhead of about 2852.8 + 584 = 3436, 8 seconds was required to construct the COSM.

The achieved speed-ups are visible in Figure 6.39 and Table 6.16. For all performed UQ simu-
lations, the speed-ups are ≥ 200. For q = 7, a speed-up factor of about 1,000 could be achieved.
This impressively shows the computational efficiency of the COSM in the online phase.

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

200

400

600

800

1000

sp
ee

d-
up

Speed-up Vadere to COSM

Figure 6.39: Speed-up for TProp for scenario 3:
utilisation of a campus. The speed-up is cal-
culated for a varying number q = 2, 3, . . . , 10
of collocation points per parameter.

q Vadere COSM Speed-up
2 517.4 1.9 266.9
3 974.0 4.6 208.1
4 2,389.3 5.6 425.9
5 2,852.8 5.2 546.9
6 5,618.4 6.5 860.8
7 10,455.3 10.4 1,002.9
8 11,594.2 14.9 776.9
9 18,410.1 21.4 859.4
10 21,013.9 29.6 707.9

Table 6.16: List of values for the propagation
runtimes TProp and the achieved speed-ups
for the different q = 2, 3, . . . , 10 of collocation
points per parameter

This speed-up is at the expense of the prediction quality, which is determined in the following.
For q = 10, Figure 6.40 shows the absolute mean error εsi of the utilisation for every time step.
Besides at the very beginning, the values are low and reach up to 11.9 for M1(Underground),
23.5 for M2(TUM), 9.23 for M3(TUMmensa), and 4.0 for M4(IPPcanteen) for singular phases.
The corresponding relative errors εsi,rel in Figure 6.41 show for most time steps small values. For
some points (besides the very first time steps) maximum relative errors εsi,rel of about 6% for
M1(Underground), 11% for M2(TUM), 6% for M3(TUMmensa), and 11% for M4(IPPcanteen)
occur.

0 1000 2000 3000 4000 5000
time (t) - seconds

0

10

20

30

40

50

ab
so

lu
te

 e
rr

or

s i
(p

ed
es

tr
ia

ns
) Absolute mean error si

si, M1(Underground) si, M2(TUM) si, M3(TUMmensa) si, M4(IPPmensa)

Figure 6.40: Absolute mean error εsi for scenario 3: utilisation of a campus. The values are
plotted for all measure zones (Table 6.11) on every time step for q = 10 number of collocation
points per parameter.

7The closed observables are computed by Dr Felix Dietrich, on a Microsoft Surface Pro 4 with a single-threaded
software written in Python.

136

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

0 1000 2000 3000 4000 5000
time (t) - seconds

0.00

0.05

0.10

0.15

0.20

0.25
re

la
tiv

e
er

ro
r

s i
,r

el

Relative mean error si, rel

si, rel, M1(Underground) si, rel, M2(TUM) si, rel, M3(TUMmensa) si, rel, M4(IPPmensa)

Figure 6.41: Relative mean error εsi,rel for scenario 3: utilisation of a campus. The values are
plotted for all measure zones (Table 6.11) on every time step for q = 10 number of collocation
points per parameter.

To assess the errors for the whole time series, the mean absolute error µ(εs) (Equation (4.20))
and L2(εs) error norm (Equation (4.21)), as well as the relative versions µ(εsrel) (Equa-
tion (4.22)), and L2(εsrel) (Equation (4.23)) are calculated and listed in Table 6.17. This shows
for all measure zones a relative mean error µ(εsrel) of ≤ 0.9% and ≤ 1.9% for L2(εsrel), which
indicates a good prediction quality for the whole time series.

M1(Underground) M2(TUM) M3(TUMmensa) M4(IPPcanteen)
µ(εs) 0.785 1.962 0.728 0.244
L2(εs) 1.934 3.844 1.572 0.616
µ(εsrel) 0.004 0.009 0.005 0.006
L2(εsrel) 0.010 0.019 0.010 0.016

Table 6.17: Error statistics µ(εs) (Equation (4.20)), L2(εs) (Equation (4.21)), µ(εsrel) (Equa-
tion (4.22)), and, L2(εsrel) (Equation (4.23)) for the four values of interestM1(Underground),
M2(TUM), M3(TUMmensa), and M4(IPPcanteen).

The errors are also measured for different q = 2, 3 . . . , 10. Figure 6.42(a) contains the absolute
mean error µ(εs) and Figure 6.42(b) the corresponding L2(εs) error norm. The errors are
relatively stable for all q in all measure zones. The relative error measurements in Figure 6.43
also confirms the good prediction quality of the COSM.

As discussed in Section 4.7.3, it is not a good idea to exactly trust a specific utilisation value
at a specific point in time. Because on a specific time step, high absolute εsi and relative εsi,rel
errors can occur. But as long as small absolute µ(εs) and relative µ(εsrel) mean errors for the
whole time series are measured, the predicted values can be used to obtain trends and to use
this for decision-making.
The concept of the COSM in combination with UQ works well and is highly recommended for

UQ simulations that have to be performed repeatedly with different probability distributions
and parameter values for those distributions, where it matters to obtain the results in a very
short time with a certain error tolerance.

137

CHAPTER 6 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
PEDESTRIAN DYNAMICS

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

0.5

1.0

1.5

2.0

2.5

ab
so

lu
te

 m
ea

n
er

ro
r

(
s)

(a) Absolute mean error (s)

(s)M1(Underground)
(s)M2(TUM)

(s)M3(TUMmensa)
(s)M4(IPPmensa)

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

1

2

3

4

ab
so

lu
te

 L
2 (

s)
 e

rr
or

 n
or

m

(b) Absolute L2(s) error norm

L2(s)M1(Underground)
L2(s)M2(TUM)

L2(s)M3(TUMmensa)
L2(s)M4(IPPmensa)

Figure 6.42: Absolute error values for scenario 3: utilisation of a campus. (a) contains the
absolute mean error µ(εs) values and (b) the corresponding L2(εs) error norm for a varying
number q = 2, 3, . . . , 10 of collocation points per parameter.

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

0.004

0.006

0.008

0.010

0.012

re
la

tiv
e

m
ea

n
er

ro
r

(
s r

el
) (a) Relative mean error (srel)

(srel)M1(Underground)
(srel)M2(TUM)

(srel)M3(TUMmensa)
(srel)M4(IPPmensa)

2 3 4 5 6 7 8 9 10
number of collocation points per parameter (q)

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

re
la

tiv
e

L2 (
s r

el
) e

rr
or

 n
or

m

(b) Relative L2(srel) error norm

L2(srel)M1(Underground)
L2(srel)M2(TUM)

L2(srel)M3(TUMmensa)
L2(srel)M4(IPPmensa)

Figure 6.43: Relative error values for scenario 3: utilisation of a campus. (a) contains the
relative mean error µ(εsrel) values and (b) the corresponding L2(εsrel) error norm for a varying
number q = 2, 3, . . . , 10 of collocation points per parameter.

6.5.6 Summary
The utilisation of the TUM campus with a daily routine of the pedestrians is simulated under
uncertain conditions in this scenario. Vadere is chosen as a microscopic simulator, and the
TUM campus is modelled with four buildings (on a coarse level) as a Vadere scenario. Again,
the efficient stochastic collocation with the pseudo-spectral approach (Section 2.2.2) is used as
the UQ method to quantify the uncertainty.

For this scenario, four uncertain parameters (Table 6.12) are identified. The utilisation of
all four modelled buildings is chosen as the OoI. With the UQ simulation, the daily utilisation
cycles of the buildings with the variation in the OoI values caused by the uncertain parameters
(because of the uncertainty) is now visible. The statistical moments of the QoI allow determining
the influence of the uncertainty for all time steps of the simulation. A high standard deviation
is observed for each of the four buildings, which means that there is a high influence of the
uncertainty in the uncertain input parameters on the scenario.
The global sensitivity analysis (Section 2.3) on top of the UQ simulation allows determining

the influence of the different parameters for each time step. In this scenario, the influence of

138

6.5 SCENARIO 3: UTILISATION OF A CAMPUS

the parameters change continuously with the utilisation cycles of the buildings. An additional
finding is that for the different buildings, the importance of the parameters is different.
For a fast quantification of the uncertainty, the closed observables surrogate model (COSM)

is used, and its computational efficiency, as well as the introduced error, compared to the use
of the Vadere as the model is determined. Once, the closed observables are generated and
saved into a file, they can be loaded and used very fast. Speed-ups of two to three orders of
magnitude depending on the number q of collocation points per parameter and the used number
of computing nodes cn are observed when using the COSM to quantify the uncertainty of the
TUM campus utilisation. The relative mean errors of ≤ 0.9% indicate a good prediction quality.
All UQ simulations are based on the UQEF (Chapter 5). Because of the separation of the

model and the statistics code, the calculation of the statistical moment for the QoI only has
to be implemented once and could be used for the simulations with the COSM and be reused
for the comparison runs with Vadere. All production runs are performed on the Linux-Cluster
CoolMUC2 using the DWP scheduling strategy implementation of UQEF.

139

7 Case study: Efficient uncertainty
quantification in hydrological modelling

In the field of hydrological modelling [77, 23], water resources of the real-world are investigated
with water balance models considering, e.g. surface water, soil water, wetland, ground water, or
estuary. The goal is to understand, predict, or to manage the water resources. Especially the
prediction of huge water runoffs in flood events or low water situations in rivers are of interest
of latest research [95, 96, 195, 36].
The purpose of this case study is to show that the UQEF software framework also supports

other research fields and allows to implement new custom models and statistics easily. Beyond
that, through the ongoing Hydro-Bits1 research project, whose goal is to find a modern IT
structure for the water management of Bavaria, there is a strong interest to apply uncertainty
quantification methods in the hydrological modelling field with a great potential of new insights
and improvements.

1

1 Introduction

Water balance models are programs to quantify the spatial and temporal distribution of important
hydrometeorologic data and hydrologic conditions like precipitation, evaporation, seepage, water
storage in the catchment and runoff (SINGH 1995). They combine different water balance compo-
nents (Fig. 1.1).

Fig. 1.1 Water balance components (WOHLRAB et al. 1992, modified)

Water balance models are an extension of conventional precipitation-runoff models (e.g. single
flood models). They allow continuous, process-oriented simulations and forecasts of the entire
runoff process. They include components of water balance, as e.g. groundwater recharge or snow
cover and allow their time-space-dependent description and display.

Water balance models can be used for different purposes as:

- Display of the current system state

E.g. as basis for evaluation of critical situations for water management, description of input
parameters for water quality models and groundwater models.

- Simulation (prognosis/scenarios) of changed system states

E.g. for calculating effects of climate changes or changes in land use on the water balance,
especially flood and low-flow characteristics or groundwater recharge.

rainfall

evapotranspiration

evaporation from ground

surface flow
infiltration

subsurface flow

run off

ground water flow

capillary rise

infiltration

evapotranspiration

Figure 7.1: Illustration of the possible components of a water balance model (source: [117,
209]).

Figure 7.1 visualises the components [117, 209] of a water balance model. All components
like rainfall, evapotranspiration, infiltration, subsurface flow, capillary rise, runoff, and ground

1https://www.lrz.de/forschung/projekte/forschung-e-infra/HydroBITS/

141

https://www.lrz.de/forschung/projekte/forschung-e-infra/HydroBITS/

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

water flow can be taken into account to quantify spatial and temporal distributions of hydrome-
teorological data. Such water balance models allow to (a) display the current state of a system,
(b) calculate forecasts of the water runoff based on the current system states, and (c) to simulate
the water balance with changed system states, e.g. to understand the effect on climate change
or the changes of the surface.

Water balance models deal with two types of input data [117]: system data (like elevation,
land-use, soil parameters) and hydrometeorological time series (like precipitation, air tempera-
ture, air humidity, wind speed, global radiation, water temperature and discharge). The water
balance may be determined by several different and complex hydrological processes, like precip-
itation through rain or snowfall, infiltration into the soil, water storage in the soil, ground water
flow, rivers and lakes, as well as the water withdrawal by plants. Figure 7.2 visualises such a
soil structure with its associated parameters.

Figure 7.2: Illustration of a soil structure with its associated parameters for the use in water
balance models (source: [117]).

With such water balance models, a lot of interesting scenarios with many values of interests,
and, hence, possible uncertain input parameters exists. The influence of snow melting and
subsequent large runoffs is chosen as the scenario, which is further investigated to quantify the
uncertainty on some calibration parameters figuring in model’s mathematical equations, which
are hard to be precisely determined or calibrated and might exhibit a large value of uncertainty.
In this thesis, the water balance model simulator LARSIM is used, which is further described

in Section 7.1, followed by Section 7.2, which lists challenges of quantifying the uncertainty in
LARSIM. The concrete scenario “large runoffs due to snow melting” with its results is described
in Section 7.3.

7.1 LARSIM: a water balance model simulator
The large area runoff simulation model (LARSIM) is a water balance model with many features,
which has been widely used since years in academia and by civil institutions. LARSIM is

142

7.1 LARSIM: A WATER BALANCE MODEL SIMULATOR

developed by the LARSIM development community, which is a consortium of different civil
institutions in Germany. For Bavaria, it is the “Hochwassernachrichtenzentrale (LfU BY)2”. It
is not only used in Germany, but also in France, Luxembourg, Austria, and Switzerland [105].
The most important feature [117] of LARSIM is continuous forecasting of runoff in catchments

and river networks, with the special attention to flood and low flow detection, as well as a
continuous estimation of different parameters such as water temperature, soil water content
and snow cover. Besides the simulations of flood protection planning, it is further used for the
prediction of the water balance caused by land-use changes or climate change.
In LARSIM, the sub-area elements of catchments are connected by flood routing elements like

rivers. The spatial structure can be based on a spatial grid (rasterisation) or real hydrologic
sub-catchments. LARSIM operates on the so-called mesoscale [7] that support cells with an
area ranging from 1 km2 up to several 1,000 km2.
LARSIM supports two usage modes: operational forecast and simulation (prognosis) mode.

Operational mode The operational mode is used to forecast low-flow, continuous daily or hourly
discharge, and flood or water temperature cases. For the operational mode, usually, only
precipitation data are used to perform the forecast.

Simulation mode The simulation mode is used for a prognosis of a more detailed water balance
model to predict the effect on the water balance caused by climate changes or changes
in land usage. Because the simulation mode is more complex, the time series of several
input data [117] like global radiation, duration of sunshine, relative air humidity, dew point
temperature, air pressure, and water temperatures have to be specified.
Before the actual simulation of the water balance starts, a calibration phase prior to the
start of the forecast is performed with measured time series data that are provided by the
user. The duration of the calibration phase prior to forecasting can be set by the user
and is often in the range of two to three days.3 During the calibration phase, the model’s
output is disregarded, however, with the special mechanism of internal state update, it is
ensured that the model is warmed-up and the error in the initial state is minimised.

The hydrological model in LARSIM is separated into several components which are illustrated
in Figure 7.3. The input for the model is the meteorological data. The first layer is the water
storage and transport per land-use in a subbasin (a subbasin is a sub-area of a structural
basin which are geological depressions [132]) which includes snow storage, interception and
evapotranspiration, as well as soil storage. The next layer is the catchment storage layer that
takes lateral water storage and transportation in a subbasin into account. The main parts are
surface runoff storage, interflow storage, and groundwater storage. The third layer is based on
rivers and lakes with flood routing in a river, in- and outflow, and lake retention with reservoir
control. All of this influences the final amount of the simulated runoff from a subbasin. Because
of the structural model of the spatial structure, the runoff of one or more grid elements or
hydrological sub-catchments can be the inflow of another. This depends on the real composition
of the modelled surface with its domes and depressions.
For all that different data that LARSIM deals with, several input and output files and formats

exist. Figure 7.4 gives a simplified overview of the most important input and output files.
A brief description of the most important input and output files is given in the following:

.WHM The .WHM files contain the initial states of the hydrometeorological time series data, in-
cluding the water storage values for each sub-area.

tape10 The tape10 file defines the usage mode of LARSIM and specifies the area and time
period, as well as general parameters for the simulation.

2https://www.hnd.bayern.de
3In this work, the calibration phase is performed for 53 hours.

143

https://www.hnd.bayern.de

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

RUNOFF

Vertical water storage/-transport per land use in the subbasin

SOIL STORAGE

% of water
saturated areas

lateral
drainage

vertical
perkolation

SNOW STORAGE
INTERCEPTION and

EVAPOTRANSPIRATION

CATCHMENT STORAGE

surface runoff
storage

interflow
storage

groundwater
storage

(lateral water storage/-transport in the subbasin)

RIVERS and LAKES

flood routing
in the river

branching out,
flowing into

Lake retention,
reservoir control

(per river section)

Metereological data
precipitation, air temperature, duration of sunshine,

vapour pressure, air pressure, wind velocity

Figure 7.3: Illustration of the layered components in the scheme of the water balance model
LARSIM (modified version of: [117]).

tape12 The tape12 file contains area-dependent values for variables of the individual sub-areas
or elements of the river basin. Additionally, the river basin structure is determined through
this information about the gauge stations defined in tape12.

tape35 The tape35 file contains sub-area specific model parameters, e.g. the calibration values
for the retention size of the direct discharge or the interflow.

lanu.par The lanu.par contains information about land usage, which specifies areas, e.g. as
forest or meadow.

.lila The .lila (Listenformat für LARSIM) file format contains meteorological input and
output data of station or point related time series. The data for these files are gath-
ered through many gauge stations within an area which continuously measure the real
meteorological data.

.kala The .kala (Kartenformat für LARSIM) file format contains the input and output of
area or raster data, e.g. weather forecasts or spatially interpolated measurement data, as

144

7.2 CHALLENGES OF QUANTIFYING UNCERTAINTY WITH LARSIM

LARSIM
simulator

*.lila files
(meteorological data)

ergebnis.lila
(simulation output)

tape12
(geographic data)

tape35
(model parameter)

.WHM file
(inital states)

tape11
(log fi le)

*.lila files
(meteorological data)

tape10
(geographic data)

lanu.par
(land usage)

Figure 7.4: Illustration of the most important input and output files of the LARSIM simulator.

well as results of previous simulations for the same area.

tape11 The tape11 is the default output file for log messages of LARSIM. It contains general
information about the execution of the simulator, the used options and parameters, as well
as error messages in the case of errors during the simulation.

ergebnis.lila The ergebnis.lila contains the resulting time series values including the
runoffs of a water balance model simulation.

7.2 Challenges of quantifying uncertainty with LARSIM
The quantification of uncertainties with LARSIM is challenging because of the complexity of
the water balance model. The aspects are discussed in different sub-topics: high stochastic
dimensionality, unknown probability distribution for parameters, hard to verify the correctness,
long runtimes for large or detailed scenarios, and automatic change of internal equations inside
LARSIM.

High stochastic dimensionality
LARSIM works with many input parameters and assumptions. Additionally, the calibration
phase (for details about the calibration of LARSIM see [60]) before the actual water balance
simulation is also based on many assumptions. These parameters and assumptions are based on
the season and the investigated catchment regions. Because LARSIM supports large catchment
regions, a lot of measurement gauges exist that continuously measure data. Each gauge provides
its own set of values for some regionally based parameters, which highly increases the number
of parameters. For example, the values for the water content soil storage are provided for each
gauge. If this should be considered as independent uncertain parameters, then a probability
distribution for each parameter for all gauges have to be used, which strongly leads to the curse
of dimensionality.

Additionally, LARSIM works with measured weather data in the simulation mode for simu-
lations of the past. To perform forecasts of the water balance, weather forecast data are used,

145

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

which are also only predicted, and usually only have a certain accuracy for a few days into the
future. This introduces an additional source of uncertainty [135] and makes the prediction of
the water balance for LARSIM even harder.

Unknown probability distribution for parameters
For many of the LARSIM parameters, there exist valid minimum and maximum values, which
are specified in the various configuration files. But a probability distribution is not given. As
described above, many values are somehow calibrated by optimisation algorithms and the cali-
bration phase in the simulation mode prior to the actual starting point of the simulation, which
leads to many changes in the values and a probability distribution would, therefore, be a moving
target that cannot be defined explicitly. A possible approach to model the uncertain parameters
is to apply uniform probability distributions with the specified minimum and maximum values
to quantify the uncertainty. Another way is to use automatic measurement-driven distribution
generation (see Section 3.4) for measured real data or measured through the calibration phase,
to generate the probability distributions dynamically.

Hard to verify the correctness
Unfortunately, it is not possible to obtain data for the water balance through experiments for
large areas. However, it is possible to measure—with a certain accuracy—the real hydrom-
eteorological and the runoff data. As already explained, LARSIM calibrates itself with that
measured data to produce values that are close to the measured ones. This only works for the
past and not for the future, which indicates some uncertainty when performing predictions and
highly recommends the use of uncertainty quantification.

Long runtimes for large or detailed scenarios
LARSIM allows simulating the water balance for large areas, many regions, and different time
periods. The more regions and the longer the time period that should be taken into account,
the longer the runtime of a single LARSIM run or the more LARSIM runs are required.

Automatic change of internal equations inside LARSIM
For some parts, e.g. the surface runoff, LARSIM has several equations (cf. [117, p. 21–22]) from
which it selects automatically, based on the values of some input parameters. In UQ, LARSIM is
called several times with different parameter values, which can lead to changes in the internally
used equation in LARSIM and may introduce non-smooth functions values for some values of
interest.

7.3 Scenario: Large runoffs due to snow melting
The understanding and simulation of runoffs is an important part in the field of hydrological
modelling [37, 112, 184, 181]. In Bavaria, the spring 2013 was somehow unusual because of high
temperatures in the beginning, followed by cold temperatures and a strong snowfall, which led
to large runoffs afterwards. After the spring, heavy rainfall led additionally to flooding in June.

The district Regen is chosen as the area under investigation and is visualised in Figure 7.5.
Regen is in the south-east of Bavaria and is close to Czechia. The district has an area of about
975 km2 which is almost fully covered by the Bavarian Forest. The name Regen comes originally
from the river with the same name. The river flows in a wide arc from the east to the west
through the district. In Zwiesel, a small city on the east within the district, two headwater

146

7.3 SCENARIO: LARGE RUNOFFS DUE TO SNOW MELTING

Figure 7.5: Illustration (satellite map) of the district Regen (source: [56]) with the river Regen
of the same name.

streams (small and big Regen) joins to the so-called headwater stream Schwarzer Regen into the
river Regen.

The goal for this scenario4 is to investigate the situation with the strong snowfall for the
region of Regen and quantify the uncertainty for the large runoffs when the snow melts using
LARSIM. Figure 7.6 shows the measured temperatures from 6th of March to 30th of April in
2013 for Zwiesel. The cold period with the low temperatures, which is the 6th coldest March
since 1881 according to [51], is quite clearly visible. During this cold period, a closed snow cover
could be observed for a wide area in Germany, which did not melt for a long time because of
the low temperatures.

Figure 7.6: Illustration of the measured temperatures from 6th March to 30th April in Zwiesel
(district Regen). Every tick on the x axis represents one day. (source: [205])

4This scenario is the result of a collaborative work with Ivana Jovanovic. We both supervised a student, Frank
Schraufstetter, for his bachelor thesis [162] with the goal of implementing a custom Model and Statistics class
to use the LARSIM simulator within an early version of the UQEF framework.

147

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

The regionally based structure for Regen is modelled with rasterisation and a high resolution
for the sub-areas of 1 km2 in size. The simulation of the runoff starts on 1st of March and ends
on 30th April 2013. All the meteorological data including the measured time series weather data
is provided by the Bavarian Environment Agency5.
The snow melting and water runoff behaviour are further explained in Section 7.3.1. In

Section 7.3.2, the UQ simulation setup is documented, and Section 7.3.3 presents the numerical
results for this scenario. Finally, the scenario is summarised in Section 7.3.4.

7.3.1 Snow melting and water runoff behaviour
A flood is caused by precipitation and soil-water contribution and means that there is an ad-
ditional overflow of water from usually dry surfaces. The reason is an overflow of water from a
river, a lake, or an ocean which further flows over their boundaries. Snow may also contribute
significantly to the runoff because the snow cover is accumulated and stored precipitation on the
surface area. Due to rainfall or snowmelt (caused by warm temperatures), the snowpack melts
and is, therefore, an additional source for the runoff which can lead to floods.
LARSIM supports the snowmelt simulation with the complete energy balance based on the

extended method of Knauf [117], which allows to model different conditions in the temperatures
in more detail compared to the method of Knauf [93], with the goal of more realistic runoff
results.
In this thesis, four parameters (Tmit_Sr, Tspann_Sr, Abso, and SRet) out of several that

significantly influence the snow accumulation and snowmelt behaviour are further taken into
account. These parameters are chosen, because they may contain a certain uncertainty which
influences the runoff and could possibly lead to floods.

Tmit_Sr Does it snow, rain, or is it a mixture of snow/rain? Tmit_Sr defines the average limit
for the temperature in [◦C] to decide whether precipitation falls as rain or snow.

Tspann_Sr With the Tspann_Sr parameter, a range around Tmit_Sr is defined that controls
the snow/rain mixture. Equation (7.1) shows the dependency of Tmit_Sr and Tspann_Sr,
which uses TL, the measured air temperature in [◦C] 2 m above ground, to decide if the
precipitation falls as rain, as snow/rain mixture, or as snow.

precipitation =

rain, if TL ≤ Tmit_Sr − Tspann_Sr/2
snow/rain, if Tmit_Sr − Tspann_Sr/2 < TL < Tmit_Sr + Tspann_Sr/2
snow, if TL ≥ Tmit_Sr + Tspann_Sr/2

(7.1)

Abso The Abso parameter controls the absorption rate of the short wave net radiation for the
accumulated snowpack on the surface. The higher the absorption rate, the higher the
potential snowmelt rate and, hence, the possible runoff.

SRet A snowpack is able to store liquid water until a critical value. The maximum retention
rate or liquid water in [%] SRet is used to calculate the snowmelt intensity, which leads to
additional runoff.

These four parameters are sub-area dependent and therefore specified in the tape35 input file,
which contains different values for each sub-area. The district Regen is modelled with 29 sub-
areas, which means there are 29× 4 = 116 values for the four parameters Tmit_Sr, Tspann_Sr,
Abso, and SRet. In Table 7.1, the supported minimum and maximum values in LARSIM are
listed.

5https://www.lfu.bayern.de

148

https://www.lfu.bayern.de

7.3 SCENARIO: LARGE RUNOFFS DUE TO SNOW MELTING

Parameter Description Minimum Maximum
Tmit_Sr Average limit temperature of snow/rain mixture [◦C] −3 2
Tspann_Sr Temperature range around Tmit_Sr [◦C] 2 8
Abso Absorption rate of the short wave net radiation 0.02 0.25
SRet Maximum retention rate of liquid water [%] 5.0 47.0

Table 7.1: List of relevant parameters for scenario: large runoffs due to snow melting. For each
parameter, the supported minimum and maximum values within LARSIM are listed.

7.3.2 UQ simulation setup
To study the behaviour of the water balance model for the district Regen under uncertainty,
an appropriate UQ simulation has been performed. For that, the four parameters of Table 7.1
are assumed to be uncertain. Because no detailed information about their possible probability
distributions with their specific parameters are available, a different approach is pursued.

If for each of the 29 sub-areas within the district Regen an individual probability distribution
would be applied, then this would end up with 29× 4 = 116 different probability distributions.
With the usage of stochastic collocation with the pseudo-spectral approach (Section 2.2.2) that
comprises a full tensor, this would result in Q = q116 collocation points. To avoid this curse of
dimensionality, only one probability distribution is used for each of the four parameters, which
leads to Q = q4. For each individual black-box simulation run of LARSIM in the propagation
phase, the pre-calibrated values within tape35 are taken, and the values from the generated
nodes are added to each sub-area. This allows to consider the individual pre-calibrated values
for each sub-area–but to vary the values as it is needed to quantify the uncertainty.
The distributions with their values are listed in Table 7.2. The values for the distributions

are chosen in such a way that the full range of the allowed minimum and maximum values for
each parameter is used.

Parameter Description Distribution
Tmit_Sr Average limit temperature of snow/rain mixture [◦C] U(−2, 4)
Tspann_Sr Temperature range around Tmit_Sr [◦C] U(−0.08, 0.1)
Abso Absorption rate of the short wave net radiation U(−25, 17)
SRet Maximum retention rate of liquid water [%] U(−2, 3)

Table 7.2: List of uncertain parameters for scenario: large runoffs due to snow melting. The
parameters are uniformly distributed between the specified minimum and maximum values.

The output of interest is the runoff (denoted by Q) inside the defined time range from 1st
March to 30th April 2013. LARSIM is used in the hourly simulation mode, whereas the QoI
and the resulting plots contain the runoff in a daily aggregated form. Because often historical
measurements are also documented with daily runoffs, which allows an easier comparison. The
runoff of the station called MARI is taken. MARI is located directly at the river Regen in Marien-
thal, which is nearby Regensburg. The road distance between the station MARI and the city of
Regen is about 96.4 km, and from the station MARI to the city of Regensburg about 33.8 km. It
is assumed that the uncertainty on the four snow parameters in Table 7.2 lead to a large varying
runoff during the additional snowmelt in the distant station MARI and later also in the city of
Regensburg because the river Regen flows from the higher located district Regen via Marienthal
to the lower located city of Regensburg.
For this scenario, the stochastic collocation with the pseudo-spectral approach is used. To

have a decent coverage of the parameter range, q = 10 number of collocation points for each

149

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

uncertain parameter are used, which leads to Q = 104 = 10,000 collocation points zi. The
highest order of the orthogonal polynomials Φj(ζ) of the gPCE (Equation (2.7)) is set to P = 6.
The source code for the UQ simulation with LARSIM is comprised in mainly two classes, which

are derived from the interfaces provided by UQEF. Figure 7.7 illustrates the additional classes:
The SnowMeltingModel class is derived from the Model interface and contains the source code
for configuring and calling LARSIM. Within the SnowMeltingStatistics class, which is derived
from the Statistics interface, all the code for the certification phase to calculate the statistical
moments for the quantity of interest—the runoff—is implemented.

nodes

model

«interface»
Model

schedule

simulation

solver

stat

«interface»
Solver

LinearSolver

ParallelSolver

MpISolver

MpiPoolSolver
«functions»
Heuristics

Nodes
«interface»
Simulation

McSimulation

ScSimulation «interface»
Statistics

RuntimeStatistics

UQsim

SnowMeltingStatistics

SnowMeltingModel

use

use

use

use

use

Figure 7.7: Illustration of derived classes for scenario: large runoffs due to snow melting.
The light green rectangles indicate the implemented custom classes for this scenario. See
Section 5.1 for a detailed description of the overall UQEF architecture.

The UQ simulation for this scenario is executed on the Linux-Cluster CoolMUC2 of the Leibniz
Supercomputing Centre [115]. The SLURM job is configured to use eight computing nodes. On
each computing node, 20 out of the 28 CPU cores with 55 GB of RAM are used. With the
DWP scheduling strategy (Section 4.4.4) and the MpiPoolSolver one LARSIM run is started in
parallel on each CPU core. Not all CPU cores are used, to not exceed the memory limits. It

150

7.3 SCENARIO: LARGE RUNOFFS DUE TO SNOW MELTING

could be observed that using all 28 CPU cores led to process crashes caused by out-of-memory
errors. With the usage of 20 out of the 28 CPU cores per computing node, the simulations are
much more stable.
Each LARSIM process needs its own directory environment with all data. LARSIM works

with predefined paths and uses the working directory for its operation. Hence, for each LARSIM
black-box run one corresponding directory with all required input and output data has to be
prepared. It is not possible to set the same working directory for two or more parallel running
LARSIM processes because LARSIM also changes some input files, and competing processes
would override, e.g. the ergebnis.lila of each other. UQEF supports this by generating
a unique identifier for each black-box model run, which can be used to generate appropriate
directory names and to identify each black-box model run.

Remark: If for the propagation the ParallelSolver or the MpiSolver of UQEF is used, which
uses threading to utilise all CPU cores, one additional detail has to be considered when
calling the LARSIM simulator: It is very common to change the working directory with
os.chdir(new_working_dir) within Python. However, in common operating systems such
as Windows or Linux, there is only one working directory per process—and not per thread!
Because a process is a managing container for all its threads, it is a mistake to change the
working directory within each thread with os.chdir() before starting the LARSIM simulator
with, e.g. subprocess.run(). This would change the working directory for all threads and led
to undefined behaviour because the parallel running LARSIM simulators may then use the same
working directory and read/overwrite each other’s files. Instead, the working directory change
has to be done in the newly created subprocess just before the LARSIM simulator is started.

«Python_script»
snow melting

«class»
Nodes

+ generateNodes()
+ setDist()

«class»
SnowMeltingModel

+ simulate()

«class»
SnowMeltingStatistics

+ calcStatistics()
+ plotResults()
+ printResults()

UQsim

«SLRUM_batch_scr...
Start_UQ_sim

LarsimResultParser
use

use

use

use

call

Figure 7.8: Illustration of the simulation program architecture for scenario: large runoffs due
to snow melting. The light green rectangles indicate the custom implementation parts for
this scenario. The white rectangles indicates the UQEF classes that are instantiated and used
directly, but are not changed.

In Figure 7.8, the resulting program architecture is illustrated. Similar to the scenarios in
Chapter 6, a SLURM batch script submits a batch job that starts the snow melting Python
script. Inside the snow melting Python script, an instance called uqsim of the UQsim class
is created and the scenario-specific classes SnowMeltingModel and SnowMeltingStatistics are
registered at the uqsim object. The SnowMeltingModel class uses additionally the LarsimRe-
sultParser helper class because the various files of LARSIM do use a custom file format, which

151

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

requires some complex manual parsing of the input and output files because no persistence
layers are available for Python. The probability distributions with their specific values for the
four uncertain snow parameters are read from a JSON configuration file using the config file
parametrisation feature of UQEF.

7.3.3 Numerical results
This section contains the numerical results for the quantification of the uncertainties for the
runoff Q with all the four snow parameters in Table 7.2 as uncertain. All statistical moments for
the runoff Q, which is the quantity of interest, are generated for the station MARI (Marienthal).
Figure 7.9 shows the mean runoff µ(Q) at the station MARI for each day in the investigated

period from 1st March to 30th April 2013. Between this time period, a mean runoff µ(Q) of up
to about 62 [m3/s] is observed, and between 18th April to 22nd April 2013 the runoff reaches
up to 80 [m3/s]. Due to the snowmelt, the runoff may nearly double its value within 2 days. For
Marienthal, the “Gewässerkundlicher Dienst Bayern”6 reports an average runoff over all days
since 1st November 1900 of about 37.3 [m3/s], an average runoff of the highest values of about
304 [m3/s], and a highest measured runoff of about 720 [m3/s]. The observed heavy snowmelt
from 1st March to 30th April 2013 does, under this investigated uncertainty, not reach the
average runoff of the highest values of about 304 [m3/s]. But if snowmelt combined with heavy
precipitation occurs, then the snowmelt may significantly contribute to the overall runoff, and
its uncertainty plays an additional role. The 80% interval by the p10(Q) and p90(Q) percentiles
indicates that there is indeed some uncertainty in the four snow parameters (Table 7.1). The red
line in the plot is the real measured runoff Q. On many days, the real measured runoff Q is not
inside the 80% interval that the percentiles span around the mean runoff µ(Q). This indicates
that LARSIM can, with the specified parameter values, not exactly simulate the real runoff
behaviour under such extreme weather conditions. This shows that there are other, additional
sources of error, such as uncertainty in the provided data or in the assumed model structure,
which obviously introduce some bias in model prediction. Focusing on and quantifying these
uncertainties can be follow-up work.

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

40

60

80

ru
no

ff

 (m
3 /s

)

Statistics of runoff
()

p10()
p90()
measured

Figure 7.9: QoI results of the mean runoff µ(Q) in station MARI (Marienthal) for scenario:
large runoffs due to snow melting. The light blue area around the mean runoff µ(Q) is the
80% interval of the p10(Q) and p90(Q) percentiles. The red line shows the real measured
runoff Q data at station MARI.

The standard deviation σ(Q) of the runoff Q in Figure 7.10 shows that especially in the runoff
peaks, the standard deviation is high. This shows the importance of using techniques such as

6https://www.gkd.bayern.de/de/fluesse/abfluss/passau/marienthal-15207507

152

https://www.gkd.bayern.de/de/fluesse/abfluss/passau/marienthal-15207507

7.3 SCENARIO: LARGE RUNOFFS DUE TO SNOW MELTING

uncertainty quantification because only one LARSIM run would not give an idea about the
entire range that has to be expected.

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

0

2

4

ru
no

ff

 (m
3 /s

)

Standard deviation () of runoff

Figure 7.10: Standard deviation σ(Q) of the runoff Q in station MARI (Marienthal) for sce-
nario: large runoffs due to snow melting.

To evaluate the quality of the UQ simulation, the absolute error ε(Q) (Equation (7.2)) between
the mean runoff µ(Q) and the measured runoff Q is calculated for every day in the investigated
period. The corresponding relative error εrel(Q) is defined in Equation (7.3).

ε(Q) := |µ(Q)−measured Q| (7.2) εrel(Q) := ε(Q)
measured Q (7.3)

Figure 7.11 shows the calculated absolute error ε(Q). On most days, ε(Q) is below 5 [m3/s].
On the days with the large changes in the runoff Q, the error reaches up to about 10 [m3/s] on
15th March 2013, and up to about [m3/s] on 22nd April 2013. The values in Figure 7.12 shows
relative errors εrel(Q) of ≤ 0.1 for most days. On the days with the large changes in the runoff
Q, the relative errors εrel(Q) reaches up to about 0.21.

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

0

5

10

ab
so

lu
te

 e
rr

or

(
)

Absolute error () of runoff

Figure 7.11: Absolute error ε(Q) of the runoff Q in station MARI (Marienthal) for scenario:
large runoffs due to snow melting.

Which of the four snow parameters of Table 7.1 have the most influence on the uncertainty?
Two answer this, the sensitivity indices have been calculated. Figure 7.13 shows the first-order
sensitivity indices. The most contribution comes from SRet and Tmit_Sr, which do change its
influence over the days. On the days with precipitation7, Tmit_Sr becomes more important.

7The precipitation data are not plotted here, but can be directly downloaded from https://www.gkd.bayern.
de/de/meteo/niederschlag/passau/teisnach-5002 provided by the “Gewässerkundlicher Dienst Bayern” for
the station Teisnach which is located in the district Regen.

153

https://www.gkd.bayern.de/de/meteo/niederschlag/passau/teisnach-5002
https://www.gkd.bayern.de/de/meteo/niederschlag/passau/teisnach-5002

CHAPTER 7 – CASE STUDY: EFFICIENT UNCERTAINTY QUANTIFICATION IN
HYDROLOGICAL MODELLING

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e

er
ro

r
re

l(
)

Relative error rel() of runoff

Figure 7.12: Relative error εrel(Q) of the runoff Q in station MARI (Marienthal) for scenario:
large runoffs due to snow melting.

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty
 in

di
ce

s

First order sensitivity indices for runoff

si_Tmit_Sr
si_Tspann_Sr
si_Abso
si_SRet
si_int

Figure 7.13: First-order sensitivity indices of the four snow parameters (Table 7.1) on the
runoff Q in station MARI (Marienthal) for scenario: large runoffs due to snow melting.

20
13

-0
3-

01
20

13
-0

3-
03

20
13

-0
3-

05
20

13
-0

3-
07

20
13

-0
3-

09
20

13
-0

3-
11

20
13

-0
3-

13
20

13
-0

3-
15

20
13

-0
3-

17
20

13
-0

3-
19

20
13

-0
3-

21
20

13
-0

3-
23

20
13

-0
3-

25
20

13
-0

3-
27

20
13

-0
3-

29
20

13
-0

3-
31

20
13

-0
4-

02
20

13
-0

4-
04

20
13

-0
4-

06
20

13
-0

4-
08

20
13

-0
4-

10
20

13
-0

4-
12

20
13

-0
4-

14
20

13
-0

4-
16

20
13

-0
4-

18
20

13
-0

4-
20

20
13

-0
4-

22
20

13
-0

4-
24

20
13

-0
4-

26
20

13
-0

4-
28

date of simulation

0.00

0.25

0.50

0.75

1.00

se
ns

iti
vi

ty
 in

di
ce

s

Total sensitivity indices for runoff

st_Tmit_Sr
st_Tspann_Sr
st_Abso
st_SRet

Figure 7.14: Total-order sensitivity indices of the four snow parameters (Table 7.1) on the
runoff Q in station MARI (Marienthal) for scenario: large runoffs due to snow melting.

Because then it has a direct influence in the form of the precipitation of snow, rain, or a
snow/rain mixture. If the stored liquid water exceeds its critical value, the snow releases water
and SRet has the most influence. The other two parameters do also contribute to the uncertainty
but not that much. In Figure 7.13, siint shows that there is only little interaction between the
parameters. Hence, the total-order sensitivity indices in Figure 7.14 have similar values than

154

7.3 SCENARIO: LARGE RUNOFFS DUE TO SNOW MELTING

the first-order sensitivity indices and do not contain additional information.

7.3.4 Summary
This scenario shows that uncertainty in the snow parameters does have a significant influence on
the overall runoff Q. Hence, uncertainty quantification should be the default when performing
predictions of the runoff Q, especially because with LARSIM it is not possible to predict the
extreme cases exactly, which increases the importance of knowing the intervals instead of a single
LARSIM run. Finally, with the sensitivity indices, the understanding of the behaviour of the
water balance model can be greatly improved.
Future work may also take parts of the measured weather data or weather forecast data (espe-

cially the amount of precipitation and the temperatures) as uncertain parameters to investigate
whether the prediction intervals for such extreme cases can be improved with LARSIM.
With UQEF and the dynamic work package scheduling (Section 4.4.4) using the MpiPool-

Solver, the propagation time TProp was about 6h using four computing nodes on the CoolMUC2.
The development of the sources for this UQ simulation codes and the actual execution of the
simulation on the CoolMUC2 greatly benefited from the UQEF.

155

8 Conclusion

This chapter concludes this thesis: Section 8.1 contains a summary of the contributions with
the obtained results, and Section 8.2 gives an outlook of future work.

8.1 Summary
The contributions in this work have been driven by the idea of quantifying the uncertainty
of large-scale simulation scenarios efficiently: combining fast prototyping, state-of-the-art UQ
methods, and a reusable software solution for a fast and efficient UQ simulation. For that, four
different efficiency aspects have been defined: (a) fast development time to solution, (b) short
simulation time, (c) high utilisation of computational resources, and (d) fast and easy creation
and interpretation of the UQ simulation results.
The four main contributions are (1) employ modern, state-of-the-art UQ methods to quantify

the uncertainty of large-scale simulation scenarios (considering (b) and (d)), (2) investigate and
improve the propagation phase of a UQ simulation with the ability to predict the simulation
time and reducing the idling (considering (b) and (c)), (3) support (real-time) decision-making
problems under uncertainty with the COSM (considering (b)), and finally, (4) the developed
UQEF software framework (considering (a), (b), (c), and (d)).
The first main contribution contains the use of stochastic collocation with the pseudo-spectral

approach in the fields of pedestrian dynamics and hydrological modelling. For the pedestrian
dynamics field using the Vadere simulator, three scenarios of the evacuation of a train station,
evacuation of a building with separated families, and the utilisation of a campus have been in-
vestigated in Chapter 6. It could be shown, that in all scenarios, the use of UQ helped to
understand the scenarios better and to obtain additional insights, which is very useful for the
developers of the models itself as well as for the users, e.g. for the planning of buildings consid-
ering the evacuation, or the utilisation of a large campus. In the field of hydrological modelling
(Chapter 7) with the use of the LARSIM simulator, the scenario of large runoffs due to snow
melting has been considered. It turned out that the uncertainty in the investigated parameters
have a significant influence in the runoff and should be the default when predicting extreme
weather cases. For the investigated scenarios, it could be shown with different visualisation
techniques which parameters contributes most and when to the output of interest, which is very
valuable. Additionally, for each field, the specific challenges are identified and considered in the
scenarios. The identified important development aspects of UQ simulations with concrete hints
to efficiently model uncertain parameters and interpret the UQ simulation results are described
in Chapter 3.
The second main contribution (Chapter 4) concerning the propagation phase of a UQ simu-

lation showed that using three standard scheduling strategies (static work packages, static work
packages with thread pool on node level, and dynamic work packages) idling can occur easily
if the uncertain input parameters influence the model’s runtime. With the novel idea of using
the runtime of a model as a quantify of interest, it turned out that it is possible to create a
runtime predictor that can predict the runtime of a single black-box model run under the given
uncertainty and additionally for the whole propagation phase of a UQ simulation. Using the
runtime prediction information in UQ simulations to reorder the individual black-box model
runs with the goal of minimising the idling, the three standard scheduling strategies could be

157

CHAPTER 8 – CONCLUSION

optimised. Speed-ups of 1.7–2.3 from the worst standard scheduling strategy, the static work
packages, compared to the best-optimised scheduling, the optimised dynamic work packages,
could be achieved for the evacuation of a building with separated families scenario in the pedes-
trian dynamics field.
The third main contribution tackles the need for real-time decision-making. For that, the

concept of the closed observables surrogate model (COSM) has been developed in Chapter 4.
The COSM is used for the scenario utilisation of a campus in the pedestrian dynamics field in
Chapter 6. Using the COSM, speed-ups of up to three orders of magnitude could be achieved
when quantifying the uncertainty compared to the use of the original model (the Vadere simula-
tor), by only introducing absolute mean errors of 1.962 and relative mean errors of 0.009 for the
whole simulation time. One additional advantage in the use of the COSM compared to other
surrogate model techniques is that if a different probability distribution for an input parameter
should be used, the surrogate model can be reused, without the need to sample the original
model again.
The fourth main contribution is the implemented UQEF software framework in Chapter 5 that

considers the defined efficiency aspects. The UQEF is used to implement the UQ simulation
source codes in all scenarios of Chapters 6 and 7. Because UQEF is based on Chaospy, it is still
a lightweight and flexible solution that allows rapid prototyping with all the existing Chaospy
functionality. Because in UQEF, the runtime prediction mechanism and the three scheduling
strategies with their optimised versions are implemented, it closes the missing part of Chaospy
and supports an efficient propagation phase that automatically scales from a development PC
to a compute cluster such as an HPC system.
With the proposed solutions in this thesis, it is now possible for developers using the imple-

mented UQEF software framework, to easily quantify the uncertainty of large-scale simulation
scenarios even more efficiently.

8.2 Outlook
Currently, the UQEF software framework is actively used in the hydrological modelling field in
conjunction with the LARSIM water balance simulator to quantify the uncertainty of various
scenarios. For that, an additional UQ method, the Saltelli method [156], is implemented and
added to the UQEF by Ivana Jovanovic.
The presented runtime prediction and optimised scheduling mechanisms are applicable to

Bayesian inverse problems as well. Like in forward UQ, the main task in Bayesian inversion is to
repeatedly evaluate the forward model for a (potentially large) number of input samples, i.e., in
an outer-loop fashion. When the forward numerical model is solved using iterative algorithms or
when adaptive algorithms are used, the runtime of different simulations might differ significantly.
Thus, standard scheduling strategies might be ineffective, which is undesirable, especially when
the cost of one forward simulation is large. For example, in [41], dimension-adaptive sparse grids
are combined with multilevel decompositions to find non-intrusive surrogates of the posterior
density in Bayesian inverse problems. The algorithm in [41] is sequential, in the sense that
current level computations depend on computations from the previous level, and cannot be
performed ahead of time. Moreover, since multilevel decompositions are employed, at each
level, a different grid resolution is applied to discretise the forward model. Therefore, the
runtime between different levels might differ significantly, which is detrimental when standard
scheduling strategies are used. In addition, when runtimes between different simulations at
the same level vary significantly (for example, when the forward model is characterised by an
algorithm that has to reach an imposed tolerance for convergence), standard scheduling leads
to ineffective use of resources. In the latter situation it might be more appropriate to use the
runtime of each simulation as a cost penalty in adaptive algorithms to ensure that if two or more

158

8.2 OUTLOOK

grid points have similar benefits, the one with the smallest computational cost is added to the
grid.
Another idea is to integrate the spatially adaptive sparse grid combination approach (spars-

eSpACE) [129], developed by Michael Obersteiner, into UQEF. Instead of using the Gauss
quadrature in the stochastic collocation with the pseudo-spectral approach to define the collo-
cation points zi and the corresponding weights wi to actually calculate the coefficients cj , the
spatially adaptive sparse grid combination approach can be used to find proper collocation points
zi and weights wi to perform the integration and to compute the coefficients cj . This would
allow tackling higher-dimensional problems with good accuracy. Because of the adaptivity of
this approach, the grid points are iteratively refined, which gives a further possibility to take
advantage of the runtime prediction mechanism and the optimised scheduling strategies which
could minimise the idling for each iteration step.
The idea of using an additional, synthetic value of interest of a model as the QoI is not

limited to the runtime. Also, other performance measures are possible, like memory usage or
CPU usage, which offers additional use cases in predicting the required resources and improving
the scheduling.
The runtime prediction mechanism in combination with a scheduling strategy may also be

used in an optimisation problem to find a proper setup for a computing environment: For
example, the maximum propagation runtime could be defined as the optimisation criterion, and
the optimisation problem could then try to find a proper scheduling strategy with the required
resources (number of computing nodes) to fulfil the given runtime requirement.

159

A Appendix

161

CHAPTER A – APPENDIX

A.1 Visualisation of common distributions and their quadrature

2 0 2 4 6
node value

0.0

0.2

0.4

0.6

0.8

de
ns

ity

(a) Normal PDF sampled on nodes
Normal - PDF
nodes

2 0 2 4 6
node value

0.00

0.05

0.10

0.15

0.20

0.25

we
ig

ht

(b) Quadrature nodes and weights
weights
nodes

Figure A.1: Visualisation of the probability density function of a ζ ∼ N (0, 1) distributed
random variable ζ in (a) and the corresponding generated collocation points zi with its weights
wi in (b). For this visualisation, q = 25 collocation points for ζ are used.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
node value

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

(a) Uniform PDF sampled on nodes

Uniform - PDF
nodes

0.5 0.6 0.7 0.8 0.9 1.0 1.1
node value

0.00

0.02

0.04

0.06

we
ig

ht

(b) Quadrature nodes and weights

weights
nodes

Figure A.2: Visualisation of the probability density function of a ζ ∼ U(0.6, 1.0) distributed
random variable ζ in (a) and the corresponding generated collocation points zi with its weights
wi in (b). For this visualisation, q = 25 collocation points for ζ are used.

162

A.1 VISUALISATION OF COMMON DISTRIBUTIONS AND THEIR QUADRATURE

0.0 0.2 0.4 0.6 0.8 1.0
node value

0.0

0.5

1.0

1.5

2.0

2.5

3.0
de

ns
ity

(a) Beta PDF sampled on nodes
Beta - PDF
nodes

0.0 0.2 0.4 0.6 0.8 1.0
node value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

we
ig

ht

(b) Quadrature nodes and weights
weights
nodes

Figure A.3: Visualisation of the probability density function of a ζ ∼ B(alpha = 2, beta =
2, lower = 0, upper = 1.0) distributed random variable ζ in (a) and the corresponding gener-
ated collocation points zi with its weights wi in (b). For this visualisation, q = 25 collocation
points for ζ are used.

0 20 40 60 80
node value

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

(a) Gamma PDF sampled on nodes
Gamma - PDF
nodes

0 20 40 60 80
node value

0.00

0.05

0.10

0.15

0.20

0.25

we
ig

ht
(b) Quadrature nodes and weights

weights
nodes

Figure A.4: Visualisation of the probability density function of a ζ ∼ G(sahpe = 1, scale =
1, shift = 0) distributed random variable ζ in (a) and the corresponding generated collocation
points zi with its weights wi in (b). For this visualisation, q = 25 collocation points for ζ are
used.

163

CHAPTER A – APPENDIX

A.2 Chaospy introduction examples
A.2.1 Monte Carlo

1 import chaospy as cp # import chaospy library
2 import numpy as np # import numpy library
3
4 # model definition: simple example model with 2 parameters
5 def model(p1, p2):
6 return p1+p2 # returns the value of interest (VoI)
7
8 # 1. assimilation: determine distributions
9 p1_dist = cp.Uniform(lower=-5, upper=1) # creates a uniform distribution

10 p2_dist = cp.Normal(mu=0, sigma=1) # creates a normal (Gaussian) distribution
11
12 dists = cp.J(p1_dist, p2_dist) # joins the dists to a multivariate dist.
13
14 nodes = dists.sample(1000) # generate samples nodes according to the
15 # multivariate distributions
16
17 # 2. propagation
18 solves = [model(p1, p2) for p1, p2 in nodes.T]
19
20 # 3. certification: determine statistics of QoI
21 E = np.mean(solves) # determine E (mean)
22 Var = np.var(solves) # determine Var (variance)
23 StdDev = np.std(solves) # determine StdDev (standard deviation)
24 P5, P95 = np.percentile(solves, [5, 95]) # determine 5th and 95th percentile
25
26 # print results
27 print("E: {}".format(E))
28 print("Var: {}".format(Var))
29 print("StdDev: {}".format(StdDev))
30 print("P5: {}".format(P5))
31 print("P95: {}".format(P95))

Listing A.1: Full introduction example of the Monte Carlo method with Chaospy, regarding
to Section 2.4.2.

164

A.2 CHAOSPY INTRODUCTION EXAMPLES

A.2.2 Point collocation

1 import chaospy as cp # import chaospy library
2 import numpy as np # import numpy library
3
4 # model definition: simple example model with 2 parameters
5 def model(p1, p2):
6 return p1+p2 # returns the value of interest (VoI)
7
8 # 1. assimilation: determine distributions
9 p1_dist = cp.Uniform(lower=-5, upper=1) # creates a uniform distribution

10 p2_dist = cp.Normal(mu=0, sigma=1) # creates a normal (Gaussian) distribution
11
12 dists = cp.J(p1_dist, p2_dist) # joins the dists to a multivariate dists.
13
14 nodes = dists.sample(1000) # generate samples nodes according to the
15 # multivariate distributions
16
17 # 2. propagation
18 solves = [model(p1, p2) for p1, p2 in nodes.T]
19
20 # 3. certification: determine statistics of QoI
21 OP = cp.orth_ttr(2, dists) # creates orthogonal polynomials according the multivariate
22 # distribution using three terms recursion
23
24 gPCE = cp.fit_regression(OP, nodes, solves) # generate gPCE
25
26 E = cp.E(gPCE, dists) # determine E (mean)
27 Var = cp.Var(gPCE, dists) # determine Var (variance)
28 StdDev = cp.Std(gPCE, dists) # determine StdDev (standard deviation)
29 P5, P95 = cp.Perc(gPCE, [5, 95], dists) # determine 5th and 95th percentile
30
31 # print results
32 print("E: {}".format(E))
33 print("Var: {}".format(Var))
34 print("StdDev: {}".format(StdDev))
35 print("P5: {}".format(P5))
36 print("P95: {}".format(P95))

Listing A.2: Full introduction example of the point collocation method with Chaospy, regarding
to Section 2.4.2.

165

CHAPTER A – APPENDIX

A.2.3 Stochastic collocation with the pseudo-spectral approach

1 import chaospy as cp # import chaospy library
2 import numpy as np # import numpy library
3
4 # model definition: simple example model with 2 parameters
5 def model(p1, p2):
6 return p1+p2 # returns the value of interest (VoI)
7
8 # 1. assimilation: determine distributions
9 p1_dist = cp.Uniform(lower=-5, upper=1) # creates a uniform distribution

10 p2_dist = cp.Normal(mu=0, sigma=1) # creates a normal (Gaussian) distribution
11
12 dists = cp.J(p1_dist, p2_dist) # joins the dists to a multivariate dists.
13
14 # creates 2+1 nodes per parameter and corresponding weights according to
15 # the multivariate distribution and the Gaussian integration scheme
16 nodes, weights = cp.generate_quadrature(2, dists, rule="G")
17
18 # 2. propagation
19 solves = [model(p1, p2) for p1, p2 in nodes.T]
20
21 # 3. certification: determine statistics of QoI
22 OP = cp.orth_ttr(2, dists) # creates orthogonal polynomials according the multivariate
23 # distribution using three terms recursion
24
25 gPCE = cp.fit_quadrature(OP, nodes, weights, solves) # generate gPCE
26
27 E = cp.E(gPCE, dists) # determine E (mean)
28 Var = cp.Var(gPCE, dists) # determine Var (variance)
29 StdDev = cp.Std(gPCE, dists) # determine StdDev (standard deviation)
30 P5, P95 = cp.Perc(gPCE, [5, 95], dists) # determine 5th and 95th percentile
31
32 # print results
33 print("E: {}".format(E))
34 print("Var: {}".format(Var))
35 print("StdDev: {}".format(StdDev))
36 print("P5: {}".format(P5))
37 print("P95: {}".format(P95))

Listing A.3: Full introduction example of the stochastic collocation with the pseudo-spectral
approach with Chaospy, regarding to Section 2.4.2.

166

A.3 PROPAGATION RUNTIMES OF SCHEDULING STRATEGIES

A.3 Propagation runtimes of scheduling strategies
A.3.1 Propagation runtimes of academic example 1

Scheduling strategies (time in seconds)
cn q SWP SWPT DWP SWPOPT SWPTOPT DWPOPT

2 4 48.5 30.1 25.3 27.2 24.3 24.2
5 78.8 48.9 33.4 32.0 42.7 36.5
6 103.3 79.4 55.7 55.5 65.8 57.0
7 187.3 129.4 91.4 86.1 94.0 89.6
8 268.3 191.9 133.2 128.2 136.5 131.7
9 376.9 270.2 189.0 181.7 187.1 187.4

10 485.9 359.8 257.9 248.6 258.3 256.7
11 648.6 479.5 341.4 330.9 332.4 340.5
12 839.2 622.3 440.6 430.0 444.0 439.9

3 4 24.2 24.3 25.7 24.2 24.3 24.2
5 50.5 42.7 26.7 25.2 29.5 25.2
6 77.5 65.9 41.3 38.7 50.4 39.9
7 131.3 106.9 63.4 57.9 69.2 59.3
8 185.5 154.5 90.8 85.7 97.8 87.8
9 240.1 209.9 123.3 122.1 125.7 124.0

10 321.7 278.2 174.1 166.4 177.0 171.4
11 430.6 367.0 228.8 221.5 231.3 227.5
12 566.6 484.8 291.0 287.2 302.0 290.7

4 4 24.3 24.4 25.3 24.5 24.3 24.3
5 50.5 42.7 28.4 25.3 25.3 25.2
6 51.9 50.4 31.1 28.1 50.3 30.3
7 105.1 91.1 48.0 43.7 51.6 47.5
8 132.7 122.1 67.5 64.7 78.0 68.3
9 187.0 170.3 95.4 91.6 104.7 93.6

10 241.5 223.2 131.6 125.6 131.7 128.5
11 323.1 294.6 167.7 166.2 180.3 170.6
12 432.0 393.3 220.1 215.6 232.8 218.8

5 4 24.3 24.3 27.7 24.5 24.3 24.3
5 25.3 25.3 28.3 25.3 25.3 25.2
6 51.9 50.4 27.0 25.9 28.8 25.8
7 78.9 76.6 37.8 36.6 51.5 41.3
8 106.3 101.2 54.6 52.0 67.8 54.3
9 160.4 150.6 78.2 74.6 93.0 74.7

10 214.7 202.8 107.4 100.8 113.4 102.2
11 269.3 251.8 138.7 133.3 150.2 135.8
12 351.0 328.0 176.8 172.8 187.0 175.4

Table A.2: Full list of propagation runtimes TProp (in seconds) for the academic example
function f̂ex1 (Equation (3.1)) regarding to Section 4.6.4 with the six scheduling strategies
and their variations: cn = 2, 3, 4, 5 denotes the number of used cluster nodes (each cluster
node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of collocation points for each
uncertain parameter.

167

CHAPTER A – APPENDIX

A.3.2 Propagation runtimes of academic example 2

Scheduling strategies (time in seconds)
cn q SWP SWPT DWP SWPOPT SWPTOPT DWPOPT

2 4 33.2 20.3 20.7 18.5 17.9 17.9
5 59.4 38.7 35.5 27.6 30.3 31.2
6 68.7 49.6 52.3 44.4 46.6 46.2
7 121.8 79.9 78.9 72.4 75.7 73.4
8 168.8 107.6 110.6 106.8 105.2 104.8
9 252.5 160.4 155.8 155.7 151.3 150.5

10 290.5 202.1 207.9 212.6 198.9 203.3
11 409.6 270.2 271.7 279.0 265.9 266.6
12 536.2 344.1 352.5 373.2 345.4 346.4

3 4 17.9 17.9 19.2 18.5 17.9 17.9
5 42.0 28.7 26.9 22.9 25.6 22.8
6 54.7 40.1 37.8 29.7 36.6 31.7
7 92.7 58.7 55.8 49.5 51.5 49.6
8 116.8 83.4 77.2 70.9 77.4 71.6
9 156.6 118.1 106.8 102.3 102.7 101.1

10 206.6 154.1 141.6 143.5 140.4 135.1
11 284.7 202.2 183.6 190.7 177.6 177.5
12 364.3 263.6 237.1 251.6 229.8 232.3

4 4 17.9 18.1 20.3 18.6 17.9 17.9
5 42.0 27.5 23.2 22.9 21.9 21.9
6 38.3 30.2 30.6 23.1 29.9 27.8
7 80.1 49.0 44.7 37.1 43.2 37.3
8 91.4 61.7 60.6 54.2 56.5 55.1
9 129.1 94.0 82.4 81.5 82.7 75.4

10 152.9 112.1 108.7 105.7 102.1 102.2
11 206.3 150.0 142.4 141.9 138.3 133.7
12 283.7 189.1 180.3 186.0 179.1 173.2

5 4 17.9 18.1 19.8 18.6 17.9 18.1
5 21.9 21.9 23.5 22.9 21.9 21.9
6 38.3 28.7 27.7 21.4 27.3 22.3
7 62.7 43.4 37.6 30.4 37.4 32.3
8 76.3 55.4 50.8 45.1 50.6 44.1
9 116.5 77.2 68.7 64.1 68.0 61.9

10 140.8 101.4 88.4 84.6 88.3 81.9
11 172.7 127.3 114.1 116.4 113.3 107.0
12 215.6 171.5 146.1 150.4 143.6 138.9

Table A.4: Full list of propagation runtimes TProp (in seconds) for the academic example
function f̂ex2 (Equation (3.2)) regarding to Section 4.6.4 with the six scheduling strategies
and their variations: cn = 2, 3, 4, 5 denotes the number of used cluster nodes (each cluster
node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of collocation points for each
uncertain parameter.

168

A.3 PROPAGATION RUNTIMES OF SCHEDULING STRATEGIES

A.3.3 Propagation runtimes of pedestrian dynamics scenario 2

Scheduling strategies (time in seconds)
cn q SWP SWPT DWP SWPOPT SWPTOPT DWPOPT

2 4 1857.0 940.3 930.2 975.9 644.8 939.3
5 2898.2 1716.6 1171.0 1137.9 1234.6 1280.8
6 3884.4 3024.3 1861.2 1892.3 2121.4 1894.1
7 6697.6 4764.2 2987.7 2919.8 3137.8 2980.3
8 9393.9 7186.0 4450.6 4463.0 4793.6 4444.1
9 13020.3 9781.2 6096.4 7112.2 6557.5 6154.9

10 17054.7 13992.0 8602.8 8810.7 9230.7 8578.4
11 22880.5 17999.7 11295.9 12277.3 12082.7 11268.2
12 29060.0 23686.3 14650.3 17002.0 15720.8 14619.2

3 4 971.7 701.0 890.9 987.9 513.2 922.7
5 1974.6 1351.9 1023.6 1050.6 974.5 1034.6
6 3004.1 2314.3 1306.3 1267.0 1419.0 1419.2
7 4626.1 3635.5 1984.4 2052.8 2196.8 1995.2
8 6545.8 5229.4 2957.2 3030.1 3290.3 3018.2
9 8485.7 7618.2 4046.4 4757.5 4379.0 4036.3

10 11384.9 10120.7 5723.0 6196.8 6252.1 5723.8
11 15244.0 13532.6 7508.7 8338.4 8193.9 7504.0
12 19844.6 17672.9 9729.5 13332.5 10559.9 9702.4

4 4 965.8 597.6 967.0 1009.0 472.5 936.6
5 1995.3 1132.3 997.9 1064.3 614.8 1011.0
6 1987.9 1713.6 996.2 1055.1 1123.7 1136.7
7 3796.8 2860.6 1583.3 1525.0 1610.3 1662.5
8 4796.7 4116.4 2260.9 2267.5 2438.2 2226.6
9 6612.2 5809.0 3039.2 3543.7 3364.5 3041.3

10 8864.8 7764.1 4300.4 4653.3 5127.2 4328.7
11 11532.7 10468.7 5636.5 6690.6 6256.4 5664.5
12 15597.1 13932.5 7286.9 11444.6 7998.9 7269.6

5 4 932.8 503.3 960.5 961.4 452.6 962.7
5 976.1 891.1 1025.1 1041.0 585.1 1001.4
6 1989.4 1486.6 1014.8 1093.5 909.8 1009.4
7 2984.2 2268.7 1424.9 1285.7 1400.6 1507.8
8 3904.6 3273.7 1829.0 1860.9 2048.8 1857.6
9 5753.6 4809.6 2452.0 2991.7 2676.4 2484.8

10 7692.8 6631.6 3441.0 3673.3 3775.2 3480.5
11 9609.6 8496.6 4496.2 5532.2 4948.3 4534.9
12 12535.7 11121.6 5839.7 10246.6 6391.9 5814.9

Table A.6: Full list of propagation runtimes TProp (in seconds) for the pedestrian evacuation
scenario 2 in Section 6.4 with the six scheduling strategies and their variations: cn = 2, 3, 4, 5
denotes the number of used cluster nodes (each cluster node has 28 CPU cores), and q =
2, 3, . . . , 12 is the number of collocation points for each uncertain parameter.

169

CHAPTER A – APPENDIX

A.4 Speed-ups of scheduling strategies
A.4.1 Speed-ups of academic example 1

Speed-ups
cn q SWP to

SWPOPT
SWP to

SWPTOPT
SWP to

DWPOPT
SWPT to

SWPTOPT
DWP to

DWPOPT

2 4 1.7 1.9 2.0 1.2 1.0
5 2.4 1.8 2.1 1.1 0.9
6 1.8 1.5 1.8 1.2 0.9
7 2.1 1.9 2.0 1.3 1.0
8 2.0 1.9 2.0 1.4 1.0
9 2.0 2.0 2.0 1.4 1.0

10 1.9 1.8 1.8 1.3 1.0
11 1.9 1.9 1.9 1.4 1.0
12 1.9 1.8 1.9 1.4 1.0

3 4 1.0 1.0 1.0 1.0 1.0
5 2.0 1.7 2.0 1.4 1.0
6 2.0 1.5 1.9 1.3 1.0
7 2.2 1.9 2.2 1.5 1.0
8 2.1 1.9 2.1 1.5 1.0
9 1.9 1.9 1.9 1.6 0.9

10 1.9 1.8 1.8 1.5 1.0
11 1.9 1.8 1.8 1.5 1.0
12 1.9 1.8 1.9 1.6 1.0

4 4 0.9 1.0 1.0 1.0 1.0
5 2.0 1.9 2.0 1.6 1.1
6 1.8 1.0 1.7 1.0 1.0
7 2.4 2.0 2.2 1.7 1.0
8 2.0 1.7 1.9 1.5 0.9
9 2.0 1.7 2.0 1.6 1.0

10 1.9 1.8 1.8 1.6 1.0
11 1.9 1.7 1.8 1.6 0.9
12 2.0 1.8 1.9 1.6 1.0

5 4 0.9 1.0 1.0 1.0 1.1
5 1.0 1.0 1.0 1.0 1.1
6 2.0 1.8 2.0 1.7 1.0
7 2.1 1.5 1.9 1.4 0.9
8 2.0 1.5 1.9 1.4 1.0
9 2.1 1.7 2.1 1.6 1.0

10 2.1 1.8 2.1 1.7 1.0
11 2.0 1.7 1.9 1.6 1.0
12 2.0 1.8 2.0 1.7 1.0

Table A.8: Full list of speed-ups for the academic example function f̂ex1 (Equation (3.1))
regarding to Section 4.6.4 with their variations: cn = 2, 3, 4, 5 denotes the number of used
cluster nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of
collocation points for each uncertain parameter.

170

A.4 SPEED-UPS OF SCHEDULING STRATEGIES

A.4.2 Speed-ups runtimes of academic example 2

Speed-ups
cn q SWP to

SWPOPT
SWP to

SWPTOPT
SWP to

DWPOPT
SWPT to

SWPTOPT
DWP to

DWPOPT

2 4 1.7 1.8 1.8 1.1 1.1
5 2.1 1.9 1.9 1.2 1.1
6 1.5 1.4 1.4 1.0 1.1
7 1.6 1.6 1.6 1.0 1.0
8 1.5 1.6 1.6 1.0 1.0
9 1.6 1.6 1.6 1.0 1.0

10 1.3 1.4 1.4 1.0 1.0
11 1.4 1.5 1.5 1.0 1.0
12 1.4 1.5 1.5 1.0 1.0

3 4 0.9 1.0 1.0 1.0 1.0
5 1.8 1.6 1.8 1.1 1.1
6 1.8 1.5 1.7 1.1 1.1
7 1.8 1.8 1.8 1.1 1.1
8 1.6 1.5 1.6 1.0 1.0
9 1.5 1.5 1.5 1.1 1.0

10 1.4 1.4 1.5 1.1 1.0
11 1.4 1.6 1.6 1.1 1.0
12 1.4 1.5 1.5 1.1 1.0

4 4 0.9 1.0 1.0 1.0 1.1
5 1.8 1.9 1.9 1.2 1.0
6 1.6 1.2 1.3 1.0 1.1
7 2.1 1.8 2.1 1.1 1.2
8 1.6 1.6 1.6 1.0 1.1
9 1.5 1.5 1.7 1.1 1.0

10 1.4 1.5 1.4 1.1 1.0
11 1.4 1.4 1.5 1.0 1.0
12 1.5 1.5 1.6 1.0 1.0

5 4 0.9 1.0 0.9 1.0 1.1
5 0.9 1.0 1.0 1.0 1.0
6 1.7 1.4 1.7 1.0 1.2
7 2.0 1.6 1.9 1.1 1.1
8 1.6 1.5 1.7 1.1 1.1
9 1.8 1.7 1.8 1.1 1.1

10 1.6 1.5 1.7 1.1 1.0
11 1.4 1.5 1.6 1.1 1.0
12 1.4 1.5 1.5 1.1 1.0

Table A.10: Full list of speed-ups for the academic example function f̂ex2 (Equation (3.2))
regarding to Section 4.6.4 with their variations: cn = 2, 3, 4, 5 denotes the number of used
cluster nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of
collocation points for each uncertain parameter.

171

CHAPTER A – APPENDIX

A.4.3 Speed-ups runtimes of pedestrian dynamics scenario 2

Speed-ups
cn q SWP to

SWPOPT
SWP to

SWPTOPT
SWP to

DWPOPT
SWPT to

SWPTOPT
DWP to

DWPOPT

2 4 1.9 2.8 1.9 1.4 0.9
5 2.5 2.3 2.2 1.3 0.9
6 2.0 1.8 2.0 1.4 0.9
7 2.2 2.1 2.2 1.5 1.0
8 2.1 1.9 2.1 1.5 1.0
9 1.8 1.9 2.1 1.4 0.9

10 1.9 1.8 1.9 1.5 1.0
11 1.8 1.8 2.0 1.4 1.0
12 1.7 1.8 1.9 1.5 1.0

3 4 0.9 1.8 1.0 1.3 0.9
5 1.8 2.0 1.9 1.3 0.9
6 2.3 2.1 2.1 1.6 0.9
7 2.2 2.1 2.3 1.6 0.9
8 2.1 1.9 2.1 1.5 0.9
9 1.7 1.9 2.1 1.7 1.0

10 1.8 1.8 1.9 1.6 1.0
11 1.8 1.8 2.0 1.6 1.0
12 1.4 1.8 2.0 1.6 1.0

4 4 0.9 2.0 1.0 1.2 1.0
5 1.8 3.2 1.9 1.8 0.9
6 1.8 1.7 1.7 1.5 0.8
7 2.4 2.3 2.2 1.7 0.9
8 2.1 1.9 2.1 1.6 1.0
9 1.8 1.9 2.1 1.7 1.0

10 1.9 1.7 2.0 1.5 0.9
11 1.7 1.8 2.0 1.6 1.0
12 1.3 1.9 2.1 1.7 1.0

5 4 0.9 2.0 0.9 1.1 1.0
5 0.9 1.6 0.9 1.5 1.0
6 1.8 2.1 1.9 1.6 1.0
7 2.3 2.1 1.9 1.6 0.9
8 2.1 1.9 2.1 1.6 0.9
9 1.9 2.1 2.3 1.8 0.9

10 2.0 2.0 2.2 1.7 0.9
11 1.7 1.9 2.1 1.7 0.9
12 1.2 1.9 2.1 1.7 1.0

Table A.12: Full list of speed-ups for the pedestrian evacuation scenario 2 in Section 6.4 with
their variations: cn = 2, 3, 4, 5 denotes the number of used cluster nodes (each cluster node
has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of collocation points for each uncertain
parameter.

172

A.5 CASE STUDY: UQ WITH VADERE SCENARIO 1 AND MONTE CARLO

A.5 Case Study: UQ with Vadere scenario 1 and Monte Carlo

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure A.5: QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with pedestrians sharing a
social identity (percsharingSI) as the uncertain parameter for scenario 1: evacuation of a train
station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time
step; (b) shows the corresponding standard deviation σ(np) and the variance σ2(np) for every
time step.

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

50

100

150

200

250

300

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure A.6: QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with percentage of injured
pedestrians (percinjPeds) as the uncertain parameter for scenario 1: evacuation of a train
station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time
step; (b) shows the corresponding standard deviation σ(np) and the variance σ2(np) for every
time step.

173

CHAPTER A – APPENDIX

0 10 20 30 40 50
time (t) - seconds

0.00

0.25

0.50

0.75

1.00

1.25

de
ns

ity
(a) QoI distribution for evt

PDF(evt)
(evt)
(evt)

p5(evt)
p95(evt)

time (t) - seconds0 10 20 30 40 50

pedestrians (np)

0
10

20
30

40
5060

de
ns

ity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(b) QoI 3D distribution for np

Figure A.7: QoI distribution reconstruction (for a Monte Carlo UQ simulation with 100,000
performed samples) for percentage of injured pedestrians (percinjPeds) as the uncertain param-
eter for scenario 1: evacuation of a train station. (a) contains the plots of the reconstructed
QoI distribution of the maximum evacuation time evt. (b) visualises the reconstructed QoI 3D
distribution of the number of pedestrians np in the car for every time step in the simulation.

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60

pe
de

st
ri

an
s

(n
p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

20

40

60

80

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure A.8: QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with speed of a helper with
an injured pedestrian (vinj) as the uncertain parameter for scenario 1: evacuation of a train
station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time
step; (b) shows the corresponding standard deviation σ(np) and the variance σ2(np) for every
time step.

174

A.5 CASE STUDY: UQ WITH VADERE SCENARIO 1 AND MONTE CARLO

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

10

20

30

40

50

60
pe

de
st

ri
an

s
(n

p)

(a) Statistics for np
(np)

p5(np)
p95(np)

0 5 10 15 20 25 30 35 40 45 50
time (t) - seconds

0

50

100

150

200

250

300

(n
p)

,
2 (

np
)

(b) (np) and 2(np) for np
(np)
2(np)

Figure A.9: QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with all of the three
uncertain parameters (Table 6.5) for scenario 1: evacuation of a train station. (a) shows
the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time step; (b) shows the
corresponding standard deviation σ(np) and the variance σ2(np) for every time step.

175

A.5 CASE STUDY: UQ WITH VADERE SCENARIO 1 AND MONTE CARLO

177

Bibliography

[1] Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S.,
Geraci, G., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin,
K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Stephens, J.A., Swiler, L.P., Vigil,
D.M., Wildey, T.M., and Winokur, J.G.: Dakota, A Multilevel Parallel Object-Oriented
Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification,
and Sensitivity Analysis: Version 6.11 User’s Manual. Tech. rep., Sandia Technical Report
SAND2014-4633 (July 2014; updated November 2019)

[2] Asher, M.J., Croke, B., Jakeman, A., Peeters, L.: A Review of Surrogate Models and
Their Application to Groundwater Modeling. Water Resources Research Volume 51(8),
5957–5973 (2015). DOI 10.1002/2015WR016967

[3] Aveni, A.F.: The Not-So-Lonely Crowd: Friendship Groups in Collective Behavior. So-
ciometry 40(1), 96–99 (1977). DOI 10.2307/3033551

[4] Baker, W., Barnett, J., Marrion, C., Milke, J., Nelson, H.: World Trade Center Building
Performance Study: Data Collection, Preliminary Observations, and Recommendations,
chap. Chapter 2: WTC1 and WTC2, pp. 2–1 – 2–40. Federal Emergency Management
Agency (2002)

[5] Barnes, M., Abel, I.G., Dorland, W., Görler, T., Hammett, G.W., Jenko, F.: Direct
Multiscale Coupling of a Transport Code to Gyrokinetic Turbulence Codes. Physics
of Plasmas (2010). URL https://aip.scitation.org/doi/abs/10.1063/1.3323082#
Metrics-content

[6] Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.L.: Open TURNS: An industrial software
for uncertainty quantification in simulation. arXiv preprint arXiv:1501.05242 (2015)

[7] Becker, A.: Neue Anforderungen und Lösungen bei der großflächigen hydrologischen Mod-
ellierung. Wasserwirtschaft, Wasertechnik 7, 150–152 (1986)

[8] Benner, P., Gugercin, S., Willcox, K.: A Survey of Projection-Based Model Reduction
Methods for Parametric Dynamical Systems. SIAM Rev. Volume 57, Issue 4, 483–531
(2015). DOI 10.1137/130932715

[9] Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and
Manufacturing Processes. Springer Berlin Heidelberg (2001)

[10] Bock, H., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J.: Model Based
Parameter Estimation: Theory and Applications. Contributions in Mathematical and
Computational Sciences. Springer Berlin Heidelberg (2013)

[11] Brown, R.: Animated Visual Vibrations as an Uncertainty Visualisation Technique. In:
Proceedings of the 2nd International Conference on Computer Graphics and Interactive
Techniques in Australasia and South East Asia, GRAPHITE ’04, p. 84–89. Association for
Computing Machinery, New York, NY, USA (2004). DOI 10.1145/988834.988849. URL
https://doi.org/10.1145/988834.988849

179

https://aip.scitation.org/doi/abs/10.1063/1.3323082#Metrics-content
https://aip.scitation.org/doi/abs/10.1063/1.3323082#Metrics-content
https://doi.org/10.1145/988834.988849

Bibliography

[12] Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49
(1998). DOI 10.1017/S0962492900002804

[13] Chen, C., Härdle, W., Unwin, A.: Handbook of Data Visualization. Springer Handbooks
of Computational Statistics. Springer Berlin Heidelberg (2007)

[14] Coffman, E.G., Garey, M.R., Johnson, D.S.: An Application of Bin-Packing to Multipro-
cessor Scheduling. SIAM Journal on Computing 7(1), 1–17 (1978). DOI 10.1137/0207001.
URL https://epubs.siam.org/doi/abs/10.1137/0207001

[15] Coifman, R.R., Lafon, S.: Diffusion Maps. Appl. Comput. Harmon. Anal. Volume 21(1),
5–30 (2006). DOI 10.1016/j.acha.2006.04.006

[16] Cornwell, B., Harmon, W., Mason, M., Merz, B., Lampe, M.: Panic or Situational Con-
straints? The Case of the M/V Estonia. International journal of mass emergencies and
disasters 19(1), 5–25 (2001)

[17] Crowd simulation team at Munich University of Applied Sciences: openVADERE Simula-
tion Framework. www.vadere.org (2016)

[18] Cui, J., Lin, D.: Utilisation of underground pedestrian systems for urban sustainabil-
ity. Tunnelling and Underground Space Technology 55, 194 – 204 (2016). DOI https:
//doi.org/10.1016/j.tust.2015.11.004. URL http://www.sciencedirect.com/science/
article/pii/S0886779815302662. Urban Underground Space: A Growing Imperative
Perspectives and Current Research in Planning and Design for Underground Space Use

[19] Dalcín, L., Paz, R., Storti, M.: MPI for Python. Journal of Parallel and Distributed
Computing 65(9), 1108 – 1115 (2005). DOI https://doi.org/10.1016/j.jpdc.2005.03.010.
URL http://www.sciencedirect.com/science/article/pii/S0743731505000560

[20] Debusschere, B., Sargsyan, K., Safta, C., Chowdhary, K.: The Uncertainty Quantification
Toolkit (UQTk). In: R. Ghanem, D. Higdon, H. Owhadi (eds.) Handbook of Uncertainty
Quantification, pp. 1807–1827. Springer (2017)

[21] D’Elia, M., Phipps, E., Rushdi, A., Ebeida, M.: Surrogate-based Ensemble Grouping
Strategies for Embedded Sampling-based Uncertainty Quantification. arXiv e-prints (2017)

[22] Denman, S., Fookes, C., Ryan, D., Sridharan, S.: Large scale monitoring of crowds and
building utilisation: A new database and distributed approach. In: 2015 12th IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.
1–6 (2015)

[23] Devia, G.K., Ganasri, B., Dwarakish, G.: A Review on Hydrological Models. Aquatic
Procedia 4, 1001 – 1007 (2015). DOI https://doi.org/10.1016/j.aqpro.2015.02.126. URL
http://www.sciencedirect.com/science/article/pii/S2214241X15001273. INTER-
NATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN EN-
GINEERING (ICWRCOE’15)

[24] Dietrich, F.: Data-Driven Surrogate Models for Dynamical Systems. Dissertation, Tech-
nische Universität München, München (2017)

[25] Dietrich, F., Albrecht, F., Köster, G.: Surrogate Models for Bottleneck Scenarios. In:
Proc. of 8th Int. Conf. on Pedestrian and Evacuation Dynamics (PED2016). Hefei, China
(2016)

180

https://epubs.siam.org/doi/abs/10.1137/0207001
http://www.sciencedirect.com/science/article/pii/S0886779815302662
http://www.sciencedirect.com/science/article/pii/S0886779815302662
http://www.sciencedirect.com/science/article/pii/S0743731505000560
http://www.sciencedirect.com/science/article/pii/S2214241X15001273

Bibliography

[26] Dietrich, F., Köster, G.: Gradient Navigation Model for Pedestrian Dynamics. Phys. Rev.
E Volume 89(6), 062801 (2014). DOI 10.1103/PhysRevE.89.062801

[27] Dietrich, F., Köster, G., Bungartz, H.J.: Numerical Model Construction with Closed
Observables. SIAM J. Appl. Dyn. Syst. Volume 15(4), pp. 2078–2108 (2016). DOI
10.1137/15M1043613

[28] Dietrich, F., Künzner, F., Neckel, T., Köster, G., Bungartz, H.J.: FAST AND FLEX-
IBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURRO-
GATEMODEL. International Journal for Uncertainty Quantification 8(2), 175–192 (2018)

[29] Drozdowski, M.: Scheduling for Parallel Processing. Computer Communications and Net-
works. Springer London (2010)

[30] Drury, J., Cocking, C., Reicher, S.: Everyone for themselves? A comparative study of
crowd solidarity among emergency survivors. British Journal of Social Psychology 28,
487–506 (2009). DOI 10.1348/014466608X357893

[31] Drury, J., Cocking, C., Reicher, S.: The nature of collective resilience: Survivor reactions
to the 2005 London bombings. International Journal of Mass Emergencies and Disasters
27(1), 66–95 (2009)

[32] Drury, J., Cocking, C., Reicher, S., Burton, A., Schofield, D., Hardwick, A., Graham, D.,
Langston, P.: Cooperation versus competition in a mass emergency evacuation: A new
laboratory simulation and a new theoretical model. Behavior Research Methods 41(3),
957–970 (2009). DOI 10.3758/BRM.41.3.957

[33] Du, Y., Mak, C.M.: Improving pedestrian level low wind velocity environment in high-
density cities: A general framework and case study. Sustainable Cities and Soci-
ety 42, 314 – 324 (2018). DOI https://doi.org/10.1016/j.scs.2018.08.001. URL http:
//www.sciencedirect.com/science/article/pii/S2210670718308217

[34] Eldred, M., Burkardt, J.: Comparison of Non-Intrusive Polynomial Chaos and Stochas-
tic Collocation Methods for Uncertainty Quantification. 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace Exposition (2009). DOI
10.2514/6.2009-976. URL https://arc.aiaa.org/doi/abs/10.2514/6.2009-976

[35] Elman, H.C., Miller, C.W.: Stochastic collocation with kernel density estimation. Com-
puter methods in applied mechanics and engineering 245, 36–46 (2012)

[36] Facchi, A., Negri, C., Rienzner, M., Chiaradia, E., Romani, M.: Groundwater Recharge
Through Winter Flooding of Rice Areas. In: A. Coppola, G.C. Di Renzo, G. Al-
tieri, P. D’Antonio (eds.) Innovative Biosystems Engineering for Sustainable Agriculture,
Forestry and Food Production, pp. 79–87. Springer International Publishing, Cham (2020)

[37] Fang, S., Xu, L., Pei, H., Liu, Y., Liu, Z., Zhu, Y., Yan, J., Zhang, H.: An Integrated
Approach to Snowmelt Flood Forecasting in Water Resource Management. IEEE Trans-
actions on Industrial Informatics 10(1), 548–558 (2014)

[38] Farcaş, I.G., Görler, T., Bungartz, H.J., Jenko, F., Neckel, T.: Sensitivity-driven adap-
tive sparse stochastic approximations in plasma microinstability analysis. arXiv e-prints
arXiv:1812.00080 (2018)

[39] Farcaş, I.G., Sârbu, P.C., Bungartz, H.J., Neckel, T., Uekermann, B.: Multilevel Adaptive
Stochastic Collocation with Dimensionality Reduction. In: J. Garcke, D. Pflüger, C.G.

181

http://www.sciencedirect.com/science/article/pii/S2210670718308217
http://www.sciencedirect.com/science/article/pii/S2210670718308217
https://arc.aiaa.org/doi/abs/10.2514/6.2009-976

Bibliography

Webster, G. Zhang (eds.) Sparse Grids and Applications - Miami 2016, pp. 43–68. Springer
International Publishing, Cham (2018)

[40] Farcas, I.G., Uekermann, B., Neckel, T., Bungartz, H.J.: Nonintrusive Uncertainty Anal-
ysis of Fluid-Structure Interaction with Spatially Adaptive Sparse Grids and Polynomial
Chaos Expansion. SIAM J. Scientific Computing 40 (2018)

[41] Farcaş, I.G., Latz, J., Ullmann, E., Neckel, T., Bungartz, H.J.: Multilevel Adaptive
Sparse Leja Approximations for Bayesian Inverse Problems. SIAM Journal on Scien-
tific Computing 42(1), A424–A451 (2020). DOI 10.1137/19M1260293. URL https:
//doi.org/10.1137/19M1260293

[42] Feinberg, J., Eck, V.G., Langtangen, H.P.: MULTIVARIATE POLYNOMIAL CHAOS
EXPANSIONS WITH DEPENDENT VARIABLES. SIAM Journal on Scientific Comput-
ing 40(1), A199 – A223 (2018). URL http://search.ebscohost.com.eaccess.ub.tum.
de/login.aspx?direct=true&db=asn&AN=128496969&site=ehost-live

[43] Feinberg, J., Langtangen, H.P.: Chaospy: An open source tool for designing methods of
uncertainty quantification. Journal of Computational Science Volume 11, Pages 46–57
(2015). DOI 10.1016/j.jocs.2015.08.008

[44] Fernandes, M., Walls, L., Munson, S., Hullman, J., Kay, M.: Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. In: Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI ’18, p. 1–12. Association
for Computing Machinery, New York, NY, USA (2018). DOI 10.1145/3173574.3173718.
URL https://doi.org/10.1145/3173574.3173718

[45] Franzelin, F., Diehl, P., Pflüger, D.: Non-intrusive Uncertainty Quantification with Sparse
Grids for Multivariate Peridynamic Simulations. In: M. Griebel, M.A. Schweitzer (eds.)
Meshfree Methods for Partial Differential Equations VII, pp. 115–143. Springer Interna-
tional Publishing (2015)

[46] Franzelin, F., Pflüger, D.: From Data to Uncertainty: An Efficient Integrated Data-Driven
Sparse Grid Approach to Propagate Uncertainty. In: J. Garcke, D. Pflüger (eds.) Sparse
Grids and Applications - Stuttgart 2014, pp. 29–49. Springer International Publishing
(2016)

[47] Gael Varoquaux: joblib. URL https://github.com/joblib/joblib

[48] Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software., 1 edn. Prentice Hall (1994)

[49] Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes for stochastic
natural convection problems. Journal of Computational Physics 225(1), 652 – 685 (2007).
DOI https://doi.org/10.1016/j.jcp.2006.12.014. URL http://www.sciencedirect.com/
science/article/pii/S0021999106006152

[50] Gaudier, F.: URANIE: The CEA/DEN Uncertainty and Sensitivity platform. Proce-
dia - Social and Behavioral Sciences 2(6), 7660 – 7661 (2010). DOI https://doi.org/
10.1016/j.sbspro.2010.05.166. URL http://www.sciencedirect.com/science/article/
pii/S1877042810013078. Sixth International Conference on Sensitivity Analysis of Model
Output

[51] The weather in Germany in March 2013. URL https://www.dwd.de/EN/press/
press_release/EN/2013/20130409_DeutschlandwetterimMaerz2013_e.pdf?__blob=
publicationFile&v=7

182

https://doi.org/10.1137/19M1260293
https://doi.org/10.1137/19M1260293
http://search.ebscohost.com.eaccess.ub.tum.de/login.aspx?direct=true&db=asn&AN=128496969&site=ehost-live
http://search.ebscohost.com.eaccess.ub.tum.de/login.aspx?direct=true&db=asn&AN=128496969&site=ehost-live
https://doi.org/10.1145/3173574.3173718
https://github.com/joblib/joblib
http://www.sciencedirect.com/science/article/pii/S0021999106006152
http://www.sciencedirect.com/science/article/pii/S0021999106006152
http://www.sciencedirect.com/science/article/pii/S1877042810013078
http://www.sciencedirect.com/science/article/pii/S1877042810013078
https://www.dwd.de/EN/press/press_release/EN/2013/20130409_DeutschlandwetterimMaerz2013_e.pdf?__blob=publicationFile&v=7
https://www.dwd.de/EN/press/press_release/EN/2013/20130409_DeutschlandwetterimMaerz2013_e.pdf?__blob=publicationFile&v=7
https://www.dwd.de/EN/press/press_release/EN/2013/20130409_DeutschlandwetterimMaerz2013_e.pdf?__blob=publicationFile&v=7

Bibliography

[52] Gerstner, T., Griebel, M.: Dimension–Adaptive Tensor–Product Quadrature. Computing
71(1), 65–87 (2003). DOI 10.1007/s00607-003-0015-5. URL https://doi.org/10.1007/
s00607-003-0015-5

[53] Ghanem, R., Higdon, D., Owhadi, H.: Handbook of uncertainty quantification, vol. 6.
Springer (2017)

[54] Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Civil, Me-
chanical and Other Engineering Series. Dover Publications (2003)

[55] Giles, M.B.: Multilevel Monte Carlo methods. Acta Numerica 24, 259–328 (2015). DOI
10.1017/S096249291500001X

[56] Google maps: District Regen. URL https://www.google.com/maps/place/Regen/
@48.9986283,12.9506176,65357m/data=!3m1!1e3!4m5!3m4!1s0x47753c90c2e85ccb:
0x92ce5ca7f8f099f0!8m2!3d48.9771334!4d13.1283578

[57] Gramacki, A.: Nonparametric kernel density estimation and its computational aspects.
Springer (2018)

[58] Griebel, M., Bungartz, H.J.: Sparse Grids. Acta Numerica Volume 13, 147–269 (2004)

[59] Gupta, J.N.D., Ruiz-Torres, A.J.: A LISTFIT heuristic for minimizing makespan on
identical parallel machines. Production Planning & Control 12(1), 28–36 (2001). DOI
10.1080/09537280150203951. URL https://doi.org/10.1080/09537280150203951

[60] Haag, I., Johst, M., Sieber, A., Bremicker, M.: Guideline for the Calibration of LARSIM
Water Balance Models for operational Application in Flood Forecasting. Calibration guide
(2016)

[61] Hadjidoukas, P.E., Angelikopoulos, P., Papadimitriou, C., Koumoutsakos, P.: Π4U : A
high performance computing framework for Bayesian uncertainty quantification of com-
plex models. J. Comput. Phys. 284, 1–21 (2015). DOI https://doi.org/10.1016/j.jcp.
2014.12.006. URL http://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/
hadjidoukas2015b.pdf

[62] Hammersley, J.M.: MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE
PROBLEMS. Annals of the New York Academy of Sciences 86(3), 844–874 (1960). DOI 10.
1111/j.1749-6632.1960.tb42846.x. URL https://nyaspubs.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1749-6632.1960.tb42846.x

[63] Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of Job-
Scheduling Strategies for Grid Computing. In: Grid Computing — GRID 2000, pp.
191–202. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

[64] Helbing, D., Molnár, P.: Social Force Model for pedestrian dynamics. Physical Review E
51(5), 4282–4286 (1995). DOI 10.1103/PhysRevE.51.4282

[65] Hengl, T.: Visualisation of uncertainty using the HSI colour model: computations with
colours pp. 1–12 (2003)

[66] Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Prob-
lems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press (2007)

183

https://doi.org/10.1007/s00607-003-0015-5
https://doi.org/10.1007/s00607-003-0015-5
https://www.google.com/maps/place/Regen/@48.9986283,12.9506176,65357m/data=!3m1!1e3!4m5!3m4!1s0x47753c90c2e85ccb:0x92ce5ca7f8f099f0!8m2!3d48.9771334!4d13.1283578
https://www.google.com/maps/place/Regen/@48.9986283,12.9506176,65357m/data=!3m1!1e3!4m5!3m4!1s0x47753c90c2e85ccb:0x92ce5ca7f8f099f0!8m2!3d48.9771334!4d13.1283578
https://www.google.com/maps/place/Regen/@48.9986283,12.9506176,65357m/data=!3m1!1e3!4m5!3m4!1s0x47753c90c2e85ccb:0x92ce5ca7f8f099f0!8m2!3d48.9771334!4d13.1283578
https://doi.org/10.1080/09537280150203951
http://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/hadjidoukas2015b.pdf
http://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/hadjidoukas2015b.pdf
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1960.tb42846.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1960.tb42846.x

Bibliography

[67] Heuveline, V., Schick, M., Webster, C., Zaspel, P.: Uncertainty Quantification and High
Performance Computing (Dagstuhl Seminar 16372). Dagstuhl Reports 6(9), 59–73 (2017).
DOI 10.4230/DagRep.6.9.59. URL http://drops.dagstuhl.de/opus/volltexte/2017/
6915

[68] Hofman, J.M., Goldstein, D.G., Hullman, J.: How Visualizing Inferential Uncertainty Can
Mislead Readers About Treatment Effects in Scientific Results. In: Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, CHI ’20, p. 1–12. Association
for Computing Machinery, New York, NY, USA (2020). DOI 10.1145/3313831.3376454.
URL https://doi.org/10.1145/3313831.3376454

[69] Hosder, S., Walters, R., Balch, M.: Efficient Sampling for Non-Intrusive Polynomial Chaos
Applications with Multiple Uncertain Input Variables (2007). DOI 10.2514/6.2007-1939.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2007-1939

[70] Hullman, J.: Why Authors Don’t Visualize Uncertainty. IEEE Transactions on Visualiza-
tion and Computer Graphics 26(1), 130–139 (2020)

[71] Hürsch, W.L., Lopes, C.V.: Separation of Concerns. Tech. rep., Northeastern University
Boston (1995)

[72] Iaccarino, G.: Quantification of Uncertainty in Flow Simulations using Probabilistic Meth-
ods. In: VKI Lecture Series, Sept. 8 – 12 (2008)

[73] Institut de Radioprotection et de Surete Nucleaire: The PROMETHEE project. URL
https://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/
PROMETHEE-project-5069.aspx

[74] ISO/TC 159/SC 4: Ergonomics of human-system interaction - Part 11: Usability: Defini-
tions and concepts. Standard ISO 9241-11:2018, International Organization for Standard-
ization, London, UK (2018)

[75] James, J.: The Distribution of Free-Forming Small Group Size. American Sociological
Review 18(5), 569–570 (1953)

[76] Jaros, M., Di Angelo, M., Ferschin, P.: Modeling and simulation of pedestrian behaviour:
As planning support for building design. In: 2016 6th International Conference on Sim-
ulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), pp.
1–8 (2016)

[77] Jayawardena, A.: Environmental and Hydrological Systems Modelling. Taylor & Francis
(2014)

[78] Johnson, C.: Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for
the future development of computer simulations. Cognition, Technology and Work 7(4),
214–240 (2005). URL http://eprints.gla.ac.uk/3456/

[79] Jolliffe, I.T.: Principal component analysis. Springer, New York, NY (2004). DOI 10.
1007/b98835

[80] Jonathan, Feinberg: Chaospy. URL https://github.com/jonathf/chaospy

[81] Jr., R.V.F., Constantine, P., Boslough, M.: Statistical Surrogate Models for Prediction of
High-Consequence Climate Change. Int. J. Uncertainty Quantif. Volume 3(4), 341–355
(2013)

184

http://drops.dagstuhl.de/opus/volltexte/2017/6915
http://drops.dagstuhl.de/opus/volltexte/2017/6915
https://doi.org/10.1145/3313831.3376454
https://arc.aiaa.org/doi/abs/10.2514/6.2007-1939
https://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/PROMETHEE-project-5069.aspx
https://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/PROMETHEE-project-5069.aspx
http://eprints.gla.ac.uk/3456/
https://github.com/jonathf/chaospy

Bibliography

[82] JSON. URL https://www.json.org/

[83] Kale, A., Kay, M., Hullman, J.: Decision-Making Under Uncertainty in Research Syn-
thesis: Designing for the Garden of Forking Paths. In: Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, CHI ’19, p. 1–14. Association for
Computing Machinery, New York, NY, USA (2019). DOI 10.1145/3290605.3300432. URL
https://doi.org/10.1145/3290605.3300432

[84] Kardos, J., Benwell, G., Moore, A.: The Visualisation of Uncertainty for Spatially Ref-
erenced Census Data Using Hierarchical Tessellations. Transactions in GIS 9(1), 19–34
(2005). DOI 10.1111/j.1467-9671.2005.00203.x. URL https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-9671.2005.00203.x

[85] Kawai, S., Shimoyama, K.: Kriging-model-based uncertainty quantification in computa-
tional fluid dynamics. DOI 10.2514/6.2014-2737. URL https://arc.aiaa.org/doi/abs/
10.2514/6.2014-2737

[86] Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 63(3), 425–464 (2001). DOI
10.1111/1467-9868.00294. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.
1111/1467-9868.00294

[87] Kevrekidis, I.G., Samaey, G.: Equation-Free Multiscale Computation: Algorithms and
Applications. Annual Review of Physical Chemistry 60(1), 321–344 (2009). DOI 10.
1146/annurev.physchem.59.032607.093610. URL https://doi.org/10.1146/annurev.
physchem.59.032607.093610. PMID: 19335220

[88] Kinkeldey, C., MacEachren, A.M., Schiewe, J.: How to Assess Visual Communication of
Uncertainty? A Systematic Review of Geospatial Uncertainty Visualisation User Studies.
The Cartographic Journal 51(4), 372–386 (2014). DOI 10.1179/1743277414Y.0000000099.
URL https://doi.org/10.1179/1743277414Y.0000000099

[89] Kirk, A.: Data Visualisation: A Handbook for Data Driven Design. SAGE Publications
(2019)

[90] Kleijnen, J.P.C., Ridder, A.A.N., Rubinstein, R.Y.: Variance Reduction Techniques in
Monte Carlo Methods, pp. 1598–1610. Springer US, Boston, MA (2013). DOI 10.1007/
978-1-4419-1153-7_638. URL https://doi.org/10.1007/978-1-4419-1153-7_638

[91] Kleinmeier, B., Zönnchen, B., Gödel, M., Köster, G.: Vadere: An Open-Source Simulation
Framework to Promote Interdisciplinary Understanding. Collective Dynamics 4, 1–34
(2019). DOI 10.17815/CD.2019.21. URL https://collective-dynamics.eu/index.
php/cod/article/view/A21

[92] Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations.
Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, Berlin, Hei-
delberg (1992). DOI 10.1007/978-3-662-12616-5. URL http://link.springer.com/10.
1007/978-3-662-12616-5

[93] Knauf, D.: Die Berechnung des Abflusses aus einer Schneedecke. Analyse und Berechnung
oberirdischer Abflüsse 46, 97–133 (1980)

[94] Kneusel, R.: Random Numbers and Computers. Springer International Publishing (2018)

185

https://www.json.org/
https://doi.org/10.1145/3290605.3300432
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2005.00203.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2005.00203.x
https://arc.aiaa.org/doi/abs/10.2514/6.2014-2737
https://arc.aiaa.org/doi/abs/10.2514/6.2014-2737
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00294
https://doi.org/10.1146/annurev.physchem.59.032607.093610
https://doi.org/10.1146/annurev.physchem.59.032607.093610
https://doi.org/10.1179/1743277414Y.0000000099
https://doi.org/10.1007/978-1-4419-1153-7_638
https://collective-dynamics.eu/index.php/cod/article/view/A21
https://collective-dynamics.eu/index.php/cod/article/view/A21
http://link.springer.com/10.1007/978-3-662-12616-5
http://link.springer.com/10.1007/978-3-662-12616-5

Bibliography

[95] Knijff, J.M.V.D., Younis, J., Roo, A.P.J.D.: LISFLOOD: a GIS-based distributed model
for river basin scale water balance and flood simulation. International Journal of Geo-
graphical Information Science 24(2), 189–212 (2010). DOI 10.1080/13658810802549154

[96] Knöll, P., Zirlewagen, J., Scheytt, T.: Using radar-based quantitative precipitation data
with coupled soil- and groundwater balance models for stream flow simulation in a
karst area. Journal of Hydrology 586, 124884 (2020). DOI https://doi.org/10.1016/
j.jhydrol.2020.124884. URL http://www.sciencedirect.com/science/article/pii/
S0022169420303449

[97] Koch, K.: Parameter Estimation and Hypothesis Testing in Linear Models. Springer Berlin
Heidelberg (2013)

[98] Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influence of
group formations in a crowd. Contemporary Social Science 6(3), 397–414 (2011). DOI
10.1080/21582041.2011.619867

[99] Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models.
Physical Review E 87(6), 063305 (2013). DOI 10.1103/PhysRevE.87.063305

[100] Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley (2013)

[101] Kubicek, M., Minisci, E., Cisternino, M.: High Dimensional Sensitivity Analysis using
Surrogate Modeling and High Dimensional Model Representation. Int. J. Uncertainty
Quantif. Volume 5(5), 393–414 (2015)

[102] Kunde, M.: A multifit algorithm for uniform multiprocessor scheduling. In: Theoretical
Computer Science, pp. 175–185. Springer Berlin Heidelberg, Berlin, Heidelberg (1982)

[103] Künzner, F., Neckel, T., Bungartz, H.J.: Prediction and reduction of runtime in non-
intrusive forward UQ simulations. Springer Nature Applied Sciences Volume 1, Article
number 1038 (2019). DOI https://doi.org/10.1007/s42452-019-1066-3

[104] Laha, D., Behera, D.K.: A Comprehensive Review and Evaluation of LPT, MULTIFIT,
COMBINE and LISTFIT for Scheduling Identical Parallel Machines. Int. J. Inf. Commun.
Techol. 11(2), 151–165 (2017). DOI 10.1504/IJICT.2017.086246. URL https://doi.org/
10.1504/IJICT.2017.086246

[105] The Water Balance Model LARSIM. URL http://larsim.info

[106] Lautenschlager, F.: Effiziente Speicherung von Zeitreihen mit Betriebsdaten aus
Software-Systemen zur Analyse von Laufzeitanomalien. Dissertation, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Erlangen (2019)

[107] Leach, J.: Why People Freeze in an Emergency: Temporal and Cognitive Constraints
on Survival Responses. Aviation, Space, and Environmental Medicine 75(6), 539–542
(2004). URL http://www.ingentaconnect.com/content/asma/asem/2004/00000075/
00000006/art00011

[108] Leach, J.: Cognitive Paralysis in an Emergency: The Role of the Supervisory Attentional
System. Aviation, Space, and Environmental Medicine 76(2), 13–136 (2005). URL http:
//www.ingentaconnect.com/content/asma/asem/2005/00000076/00000002/art00010

[109] Lee, C.Y., Massey], J.D.: Multiprocessor scheduling: combining LPT and MULTIFIT.
Discrete Applied Mathematics 20(3), 233 – 242 (1988). DOI https://doi.org/10.1016/
0166-218X(88)90079-0. URL http://www.sciencedirect.com/science/article/pii/
0166218X88900790

186

http://www.sciencedirect.com/science/article/pii/S0022169420303449
http://www.sciencedirect.com/science/article/pii/S0022169420303449
https://doi.org/10.1504/IJICT.2017.086246
https://doi.org/10.1504/IJICT.2017.086246
http://larsim.info
http://www.ingentaconnect.com/content/asma/asem/2004/00000075/00000006/art00011
http://www.ingentaconnect.com/content/asma/asem/2004/00000075/00000006/art00011
http://www.ingentaconnect.com/content/asma/asem/2005/00000076/00000002/art00010
http://www.ingentaconnect.com/content/asma/asem/2005/00000076/00000002/art00010
http://www.sciencedirect.com/science/article/pii/0166218X88900790
http://www.sciencedirect.com/science/article/pii/0166218X88900790

Bibliography

[110] Lerche, I., Mudford, B.S.: How many Monte Carlo simulations does one need to do?
Energy exploration & exploitation 23(6), 405–427 (2005)

[111] Levine, M., Prosser, A., Evans, D., Reicher, S.: Identity and emergency intervention: how
social group membership and inclusiveness of group boundaries shape helping behavior.
Personality and social psychology bulletin 31(4), 443–453 (2005)

[112] Li, L., Simonovic, S.P.: System dynamics model for predicting floods from snowmelt in
North American prairie watersheds. Hydrological Processes 16(13), 2645–2666 (2002).
DOI 10.1002/hyp.1064. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
hyp.1064

[113] Lisandro Dalcín: mpi4py. URL https://pypi.org/project/mpi4py

[114] Leibniz Supercomputing Centre. URL https://www.lrz.de

[115] Linux-Cluster of Leibniz Supercomputing Centre. URL https://www.lrz.de/services/
compute/linux-cluster

[116] Lu, Y., Sarkar, C., Ye, Y., Xiao, Y.: Using the Online Walking Journal to explore the re-
lationship between campus environment and walking behaviour. Journal of Transport
& Health 5, 123 – 132 (2017). DOI https://doi.org/10.1016/j.jth.2016.12.006. URL
http://www.sciencedirect.com/science/article/pii/S2214140516302183. Walking
and Walkability: A review of the evidence on health

[117] Ludwig, K., Bremicker, M.: The Water Balance Model LARSIM - Design, Content and Ap-
plications. FREIBURGER SCHRIFTEN ZUR HYDROLOGIE 22 (2006). URL http://
www.larsim.de/fileadmin/files/Dokumentation/FSH-Bd22-Bremicker-Ludwig.pdf

[118] Mai, C.V., Spiridonakos, M.D., Chatzi, E.N., Sudret, B.: Surrogate Modeling for Stochas-
tic Dynamical Systems by Combining Nonlinear Autoregressive with Exogenous Input
Models and Polynomial Chaos Expansions. Int. J. for Uncertainty Quantif. Volume 6(4),
313–339 (2016)

[119] Manenti, L., Manzoni, S., Vizzari, G., Ohtsuka, K., Shimura, K.: An agent-based proxemic
model for pedestrian and group dynamics: motivations and first experiments. In: Pro-
ceedings of the 12th international conference on Multi-Agent-Based Simulation, MABS’11,
pp. 74–89. Springer, Taipei, Taiwan (2012)

[120] Marelli, S., Sudret, B.: UQLab: a framework for uncertainty quantification in MATLAB

[121] Marzouk, Y., Willcox, K.: Uncertainty Quantification. In: N. Higham, M. Dennis,
P. Glendinning, P. Martin, F. Santosa, J. Tanner (eds.) The Princeton Companion to
Applied Mathematics. Princeton University Press (2015)

[122] Mawson, A.R.: Mass Panic and Social Attachment: The Dynamics of Human Behavior.
Ashgate Publishing Limited (2007)

[123] McClarren, R.: Uncertainty Quantification and Predictive Computational Science: A
Foundation for Physical Scientists and Engineers. Springer International Publishing (2018)

[124] McKay, M.D., Beckman, R.J., Conover, W.J.: A Comparison of Three Methods for Se-
lecting Values of Input Variables in the Analysis of Output from a Computer Code. Tech-
nometrics 21(2), 239–245 (1979). URL http://www.jstor.org/stable/1268522

187

https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.1064
https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.1064
https://pypi.org/project/mpi4py
https://www.lrz.de
https://www.lrz.de/services/compute/linux-cluster
https://www.lrz.de/services/compute/linux-cluster
http://www.sciencedirect.com/science/article/pii/S2214140516302183
http://www.larsim.de/fileadmin/files/Dokumentation/FSH-Bd22-Bremicker-Ludwig.pdf
http://www.larsim.de/fileadmin/files/Dokumentation/FSH-Bd22-Bremicker-Ludwig.pdf
http://www.jstor.org/stable/1268522

Bibliography

[125] McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A.: Building a framework
for predictive science. arXiv preprint arXiv:1202.1056 (2012)

[126] Meeds, E., Welling, M.: Optimization Monte Carlo: Efficient and Embarrassingly Parallel
Likelihood-Free Inference. In: NIPS (2015)

[127] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Ver-
sion 3.1. Specification (2015). URL https://www.mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf

[128] Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American Statistical
Association 44(247), 335–341 (1949). URL http://www.jstor.org/stable/2280232

[129] Michael Obersteiner: sparseSpACE - The Sparse Grid Spatially Adaptive Combination
Environment. URL https://github.com/obersteiner/sparseSpACE

[130] Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The Walking Behaviour
of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 5(4), e10047
(2010). DOI 10.1371/journal.pone.0010047

[131] Neiswanger, W., Wang, C., Xing, E.P.: Asymptotically Exact, Embarrassingly Parallel
MCMC. In: UAI (2014)

[132] Neuendorf, K., Mehl, J., Jackson, J.: Glossary of Geology. Glossary of Geology. Springer
Berlin Heidelberg (2011)

[133] Oberle, W.: Monte Carlo simulations: Number of iterations and accuracy. Tech. rep.,
ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD WEAPONS AND
MATERIALS RESEARCH DIRECTORATE (2015)

[134] Owen, A.B.: Monte Carlo theory, methods and examples (2013). URL https://statweb.
stanford.edu/~owen/mc/

[135] Palmer, T.N.: Predicting uncertainty in forecasts of weather and climate. Reports on
Progress in Physics 63(2), 71–116 (2000). DOI 10.1088/0034-4885/63/2/201. URL https:
//doi.org/10.1088/0034-4885/63/2/201

[136] Parno, M., Davis, A., Conrad, P., Marzouk, Y.: MIT uncertainty quantification (MUQ)
library (2014)

[137] Patelli, E.: COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification
and Risk Management, pp. 1–69. Springer International Publishing, Cham (2016). DOI 10.
1007/978-3-319-11259-6_59-1. URL https://doi.org/10.1007/978-3-319-11259-6_
59-1

[138] Paulson, J.A., Martin-Casas, M., Mesbah, A.: Fast uncertainty quantification for dy-
namic flux balance analysis using non-smooth polynomial chaos expansions. PLOS
Computational Biology 15(8), 1–35 (2019). DOI 10.1371/journal.pcbi.1007308. URL
https://doi.org/10.1371/journal.pcbi.1007308

[139] Paulson, J.A., Martin-Casas, M., Mesbah, A.: Fast uncertainty quantification for dy-
namic flux balance analysis using non-smooth polynomial chaos expansions. PLOS
Computational Biology 15(8), 1–35 (2019). DOI 10.1371/journal.pcbi.1007308. URL
https://doi.org/10.1371/journal.pcbi.1007308

188

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.jstor.org/stable/2280232
https://github.com/obersteiner/sparseSpACE
https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/
https://doi.org/10.1088/0034-4885/63/2/201
https://doi.org/10.1088/0034-4885/63/2/201
https://doi.org/10.1007/978-3-319-11259-6_59-1
https://doi.org/10.1007/978-3-319-11259-6_59-1
https://doi.org/10.1371/journal.pcbi.1007308
https://doi.org/10.1371/journal.pcbi.1007308

Bibliography

[140] Peherstorfer, B., Beran, P.S., Willcox, K.E.: Multifidelity Monte Carlo estimation for
large-scale uncertainty propagation. DOI 10.2514/6.2018-1660. URL https://arc.aiaa.
org/doi/abs/10.2514/6.2018-1660

[141] Peherstorfer, B., Gugercin, S., Willcox, K.: Data-Driven Reduced Model Construction
with Time-Domain Loewner Models. SIAM J. Sci. Comput. Volume 39, Issue 5 (2017)

[142] Peherstorfer, B., Kramer, B., Willcox, K.: Combining Multiple Surrogate Models to Ac-
celerate Failure Probability Estimation with Expensive High-Fidelity Models. J. Comput.
Phys. Volume 341, 61–75 (2017)

[143] Peherstorfer, B., Willcox, K.: Dynamic data-driven reduced-order models. Computer
Methods in Applied Mechanics and Engineering 291, 21 – 41 (2015). DOI https:
//doi.org/10.1016/j.cma.2015.03.018. URL http://www.sciencedirect.com/science/
article/pii/S0045782515001280

[144] Peherstorfer, B., Willcox, K.: Dynamic data-driven model reduction: adapting reduced
models from incomplete data. Advanced Modeling and Simulation in Engineering Sci-
ences 3(1), 11 (2016). DOI 10.1186/s40323-016-0064-x. URL https://doi.org/10.1186/
s40323-016-0064-x

[145] Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of Multifidelity Methods in Un-
certainty Propagation, Inference, and Optimization. SIAM Review 60(3), 550 – 591
(2018). DOI https://doi.org/10.1137/16M1082469. URL https://epubs.siam.org/doi/
abs/10.1137/16M1082469

[146] Perry, J.: Gait Analysis: Normal and Pathological Function. SLACK Incorporated (1992)

[147] Pflüger, D.M.: Spatially adaptive sparse grids for high-dimensional problems. Ph.D. thesis,
Technische Universität München (2010)

[148] Phipps, E., D’Elia, M., Edwards, H.C., Hoemmen, M., Hu, J., Rajamanickam, S.:
Embedded ensemble propagation for improving performance, portability, and scalabil-
ity of uncertainty quantification on emerging computational architectures. SIAM Jour-
nal on Scientific Computing 39(2), 162–193 (2017). DOI 10.1137/15M1044679. URL
http://epubs.siam.org/doi/abs/10.1137/15M1044679?journalCode=sjoce3

[149] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer (2016). DOI
10.1007/978-3-319-26580-3

[150] Proulx, G.: Evacuation from a single family house. In: Proceedings of the 4th international
symposium on human behaviour in fire. Robinson College, Cambridge, UK, pp. 255–266
(2009)

[151] Prudencio, E.E., Schulz, K.W.: The parallel C++ statistical library ‘QUESO’: Quantifi-
cation of Uncertainty for Estimation, Simulation and Optimization. In: Euro-Par 2011:
Parallel Processing Workshops, pp. 398–407. Springer (2012). URL http://dx.doi.org/
10.1007/978-3-642-29737-3_44

[152] Razavi, S., Tolson, B.A., Burn, D.H.: Review of Surrogate Modeling in Water Resources.
Water Resources Research Volume 48(7) (2012). DOI 10.1029/2011WR011527

[153] Richardson, R.A., Wright, D.W., Edeling, W., Jancauskas, V., Lakhlili, J., Coveney, P.V.:
EasyVVUQ: A Library for Verification, Validation and Uncertainty Quantification in High
Performance Computing. Journal of Open Research Software 8(1) (2020)

189

https://arc.aiaa.org/doi/abs/10.2514/6.2018-1660
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1660
http://www.sciencedirect.com/science/article/pii/S0045782515001280
http://www.sciencedirect.com/science/article/pii/S0045782515001280
https://doi.org/10.1186/s40323-016-0064-x
https://doi.org/10.1186/s40323-016-0064-x
https://epubs.siam.org/doi/abs/10.1137/16M1082469
https://epubs.siam.org/doi/abs/10.1137/16M1082469
http://epubs.siam.org/doi/abs/10.1137/15M1044679?journalCode=sjoce3
http://dx.doi.org/10.1007/978-3-642-29737-3_44
http://dx.doi.org/10.1007/978-3-642-29737-3_44

Bibliography

[154] RiMEA: Guideline for Microscopic Evacuation Analysis. RiMEA e.V. Version 3.0.0
(2016). URL https://rimeaweb.files.wordpress.com/2016/06/rimea_richtlinie_
3-0-0_-_d-e.pdf

[155] Rushdi, A.A., Swiler, L.P., Phipps, E.T., D’Elia, M., Ebeida, M.S.: VPS: Voronoi Piece-
wise Surrogate Models for High-Dimensional Data Fitting. Int. J. for Uncertainty Quantif.
Volume 7(1), 1–21 (2017)

[156] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance
based sensitivity analysis of model output. Design and estimator for the total sensitiv-
ity index. Computer Physics Communications 181(2), 259 – 270 (2010). DOI https:
//doi.org/10.1016/j.cpc.2009.09.018. URL http://www.sciencedirect.com/science/
article/pii/S0010465509003087

[157] Saltelli, A., Ratto, M., Andres, T.H., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., Tarantola, S.: Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd.
(2008). DOI 10.1002/9780470725184

[158] Saltelli, A., Tarantola, S., Chan, K.: A Quantitative Model-Independent Method for
Global Sensitivity Analysis of Model Output. TechnometricsVolume 41(1), 39–56 (1999).
DOI 10.1080/00401706.1999.10485594

[159] Schadschneider, A., Chraibi, M., Seyfried, A., Tordeux, A., Zhang, J.: Pedestrian Dy-
namics: From Empirical Results to Modeling, pp. 63–102. Springer International Pub-
lishing, Cham (2018). DOI 10.1007/978-3-030-05129-7_4. URL https://doi.org/10.
1007/978-3-030-05129-7_4

[160] Schilders, W.H., van der Vorst, H.A., Rommes, J.: Model Order Reduction: Theory,
Research Aspects and Applications. Springer-Verlag Berlin Heidelberg (2008). DOI
10.1007/978-3-540-78841-6

[161] Schilders, W.H.A., van der Vorst, H.A., Rommes, J.: Model Order Reduction: The-
ory, Research Aspects and Applications. Springer (2008). DOI https://doi.org/10.1007/
978-3-540-78841-6

[162] Schraufstetter, F.: Development of a Prototype to Quantify the Uncertainty of the Water
Balance Model LARSIM. Bachelor thesis, Techinische Universität München (2019)

[163] Schreiber, M., Riesinger, C., Neckel, T., Bungartz, H.J., Breuer, A.: Invasive Compute
Balancing for Applications with Shared and Hybrid Parallelization. International Journal
of Parallel Programming 43(6), 1004–1027 (2015). DOI 10.1007/s10766-014-0336-3. URL
https://doi.org/10.1007/s10766-014-0336-3

[164] Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610 (1979)

[165] Scott, D.W.: Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons (2015)

[166] Seitz, M.J., Dietrich, F., Köster, G.: The effect of stepping on pedestrian trajectories.
Physica A: Statistical Mechanics and its Applications 421, 594–604 (2015). DOI 10.1016/
j.physa.2014.11.064

[167] Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space.
Physical Review E 86(4), 046108 (2012). DOI 10.1103/PhysRevE.86.046108

190

https://rimeaweb.files.wordpress.com/2016/06/rimea_richtlinie_3-0-0_-_d-e.pdf
https://rimeaweb.files.wordpress.com/2016/06/rimea_richtlinie_3-0-0_-_d-e.pdf
http://www.sciencedirect.com/science/article/pii/S0010465509003087
http://www.sciencedirect.com/science/article/pii/S0010465509003087
https://doi.org/10.1007/978-3-030-05129-7_4
https://doi.org/10.1007/978-3-030-05129-7_4
https://doi.org/10.1007/s10766-014-0336-3

Bibliography

[168] Seitz, M.J., Köster, G.: How update schemes influence crowd simulations. Journal of
Statistical Mechanics: Theory and Experiment 2014(7), P07002 (2014). DOI 10.1088/
1742-5468/2014/07/P07002

[169] Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hal-
l/CRC Monographs on Statistics and Applied Probability. Chapman and Hall/CRC (1998)

[170] Sime, J.D.: Affiliative behaviour during escape to building exits. Journal of Environmental
Psychology 3(1), 21–41 (1983). DOI 10.1016/S0272-4944(83)80019-X

[171] von Sivers, I., Köster, G.: Dynamic Stride Length Adaptation According to Utility And
Personal Space. Transportation Research Part B: Methodological 74, 104 – 117 (2015).
DOI 10.1016/j.trb.2015.01.009

[172] von Sivers, I., Künzner, F., Köster, G.: Pedestrian Evacuation Simulation with Separated
Families. In: Proceedings of the 8th International Conference on Pedestrian and Evacu-
ation Dynamics (PED2016) (2016). DOI http://dx.doi.org/10.17815/CD.2016.11. URL
https://collective-dynamics.eu/index.php/cod/article/view/A11

[173] von Sivers, I., Seitz, M.J., Köster, G.: How do people search: a modelling perspec-
tive. In: Parallel Processing and Applied Mathematics, 11th International Conference,
PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected Papers, Part II,
Lecture Notes in Computer Science, vol. 9574, pp. 487–496. Springer (2016). DOI
10.1007/978-3-319-32152-3_45

[174] von Sivers, I., Templeton, A., Köster, G., Drury, J., Philippides, A.: Humans do not
always act selfishly: Social identity and helping in emergency evacuation simulation. In:
The Conference in Pedestrian and Evacuation Dynamics 2014, Transportation Research
Procedia, pp. 585–593. Delft, The Netherlands (2014). DOI 10.1016/j.trpro.2014.09.099

[175] von Sivers, I., Templeton, A., Künzner, F., Köster, G., Drury, J., Philippides, A., Neckel,
T., Bungartz, H.J.: Modelling social identification and helping in evacuation simulation.
Safety Science 89, 288–300 (2016). DOI http://dx.doi.org/10.1016/j.ssci.2016.07.001

[176] SLURM: SLURM. URL https://github.com/SchedMD/slurm

[177] SmartUQ LLC: SmartUQ predictive analytics and uncertainty quantification (UQ) soft-
ware tool. URL https://www.smartuq.com/

[178] Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications.
Computational Science and Engineering. Society for Industrial and Applied Mathematics
(2014)

[179] Sobczyk, K.: Stochastic Differential Equations: With Applications to Physics and Engi-
neering, mathematic edn. Springer Science & Business Media (2013)

[180] Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation 55, Pages 271–280 (2001)

[181] Stahl, K., Weiler, M., Freudiger, D., Kohn, I., Seibert, J., Vis, M., Gerlinger, K., Böhm,
M.: Abflussanteile aus Schnee- und Gletscherschmelze im Rhein und seinen Zuflüssen vor
dem Hintergrund des Klimawandels. Tech. rep., Albert-Ludwigs-Universität Freiburg and
Universität Zürich and HYDRON GmbH Karlsruhe (2017)

[182] Stoyanov, M., Lebrun-Grandie, D., Burkardt, J., Munster, D.: Tasmanian (2013). DOI
10.11578/dc.20171025.on.1087. URL https://github.com/ORNL/Tasmanian

191

https://collective-dynamics.eu/index.php/cod/article/view/A11
https://github.com/SchedMD/slurm
https://www.smartuq.com/
https://github.com/ORNL/Tasmanian

Bibliography

[183] Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliabil-
ity Engineering & System Safety 93(7), 964 – 979 (2008). DOI https://doi.org/10.
1016/j.ress.2007.04.002. URL http://www.sciencedirect.com/science/article/pii/
S0951832007001329. Bayesian Networks in Dependability

[184] Sui, J., Koehler, G.: Rain-on-snow induced flood events in Southern Germany.
Journal of Hydrology 252(1), 205 – 220 (2001). DOI https://doi.org/10.1016/
S0022-1694(01)00460-7. URL http://www.sciencedirect.com/science/article/pii/
S0022169401004607

[185] Šukys, J.: Multi-Level Monte Carlo finite volume methods for nonlinear systems of stochas-
tic conservation laws in multi-dimensions. In: 14th International Conference on Hyperbolic
Problems: Theory, Numerics, Applications (HYP2012). University of Padova (2012)

[186] Sullivan, T.: Introduction to Uncertainty Quantification, 1 edn. Springer International
Publishing (2015). DOI 10.1007/978-3-319-23395-6

[187] Tabak, V.: User simulation of space utilisation : system for office building usage simula-
tion. Ph.D. thesis, Department of the Built Environment (2009). DOI 10.6100/IR640457.
Proefschrift.

[188] Tabak, V., de Vries, B., Dijkstra, J.: Simulation and Validation of Human Movement
in Building Spaces. Environment and Planning B: Planning and Design 37(4), 592–609
(2010). DOI 10.1068/b35127. URL https://doi.org/10.1068/b35127

[189] Tajfel, H., Turner, J.C.: Psychology of Intergroup Relations, chap. An integrative theory
of intergroup conflict, pp. 33–47. Brooks/Cole (1979)

[190] Takens, F.: Detecting strange attractors in turbulence. In: D. Rand, L.S. Young (eds.) Dy-
namical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer Berlin Heidelberg,
Berlin, Heidelberg (1981)

[191] Templeton, A., Drury, J., Philippides, A.: From Mindless Masses to Small Groups: Con-
ceptualizing Collective Behavior in Crowd Modeling. Review of General Psychology 19(3),
215–229 (2015). DOI 10.1037/gpr0000032

[192] Tennøe, S., Halnes, G., Einevoll, G.T.: Uncertainpy: A Python Toolbox for Uncer-
tainty Quantification and Sensitivity Analysis in Computational Neuroscience. Fron-
tiers in Neuroinformatics 12, 49 (2018). DOI 10.3389/fninf.2018.00049. URL https:
//www.frontiersin.org/article/10.3389/fninf.2018.00049

[193] Tong, C.: The psuade software package version 1.0. LLNL code release UCRLCODE-
235523 (2007)

[194] Trefethen, L.N.: Cubature, Approximation, and Isotropy in the Hypercube. SIAM Rev.
Volume 59, Issue 3, 469–491 (2017). DOI 10.1137/16M1066312

[195] Trifonova, T., Trifonov, D., Bukharov, D., Abrakhin, S., Arakelian, M., Arakelian, S.:
Global and Regional Aspects for Genesis of Catastrophic Floods: The Problems of Fore-
casting and Estimation for Mass and Water Balance (Surface Water and Groundwater
Contribution). IntechOpen (2020). DOI 10.5772/intechopen.91623

[196] Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella,
S., Ogden, A., Rika, I., Sheel, A., Taylor, M.E., Wang, X., Zilka, A., Tambe, M.:
ESCAPES: Evacuation Simulation with Children, Authorities, Parents, Emotions, and

192

http://www.sciencedirect.com/science/article/pii/S0951832007001329
http://www.sciencedirect.com/science/article/pii/S0951832007001329
http://www.sciencedirect.com/science/article/pii/S0022169401004607
http://www.sciencedirect.com/science/article/pii/S0022169401004607
https://doi.org/10.1068/b35127
https://www.frontiersin.org/article/10.3389/fninf.2018.00049
https://www.frontiersin.org/article/10.3389/fninf.2018.00049

Bibliography

Social Comparison. In: The 10th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’11, pp. 457 – 464. International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2011). URL
http://dl.acm.org/citation.cfm?id=2031678.2031682

[197] Tucker, P.M., Pfefferbaum, B., North, C.S., Adrian Kent, J., Burgin, C.E., Parker, D.E.,
Hossain, A., Jeon-Slaughter, H., Trautman, R.P.: Physiologic reactivity despite emotional
resilience several years after direct exposure to terrorism. The American journal of psy-
chiatry 164(2), 230–235 (2007)

[198] Turner, J.C., Hogg, M.A., Oakes, P.J., Reicher, S.D., Wetherell, M.S.: Rediscovering the
social group: A self-categorization theory. Basil Blackwell (1987)

[199] Urban Space – AECOM: Modelling Pedestrian Movement and Interactions with Traffic, 1
edn. ICE Publishing (2019)

[200] Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos
method for stochastic differential equations. Journal of Computational Physics 209(2),
617 – 642 (2005). DOI https://doi.org/10.1016/j.jcp.2005.03.023. URL http://www.
sciencedirect.com/science/article/pii/S0021999105001919

[201] Wan, X., Karniadakis, G.E.: Multi-Element Generalized Polynomial Chaos for Arbitrary
Probability Measures. SIAM Journal on Scientific Computing 28(3), 901–928 (2006).
DOI 10.1137/050627630. URL https://doi.org/10.1137/050627630

[202] Wang, C., Duan, Q., Tong, C.H., Di, Z., Gong, W.: A GUI platform for uncertainty
quantification of complex dynamical models. Environmental Modelling & Software 76,
1 – 12 (2016). DOI https://doi.org/10.1016/j.envsoft.2015.11.004. URL http://www.
sciencedirect.com/science/article/pii/S1364815215300955

[203] Wangersky, P.J.: Lotka-Volterra population models. Annual Review of Ecology and Sys-
tematics 9(1), 189–218 (1978)

[204] Weidmann, U.: Transporttechnik der Fussgänger. IVT Schriftenreihe 90 (1992)

[205] Wetterkontor.de: Wetterrückblick Zwiesel (Bayerischer Wald, 612 m). URL
https://www.wetterkontor.de/de/wetter/deutschland/rueckblick.asp?id=217&
datum=30.04.2013&t=8

[206] Wiener, N.: The homogeneous chaos. Amer. J. Math. 60(4), 897–936 (1938). URL
http://www.jstor.org/stable/2371268

[207] Wilke, C.: Fundamentals of Data Visualization: A Primer on Making Informative and
Compelling Figures. O’Reilly Media (2019)

[208] Winokur, J., Kim, D., Bisetti, F., Le Maître, O.P., Knio, O.M.: Sparse Pseudo Spectral
Projection Methods with Directional Adaptation for Uncertainty Quantification. Journal
of Scientific Computing 68(2), 596–623 (2016). DOI 10.1007/s10915-015-0153-x. URL
https://doi.org/10.1007/s10915-015-0153-x

[209] Wohlrab, B.: Landschaftswasserhaushalt: Wasserkreislauf und Gewässer im ländlichen
Raum ; Veränderungen durch Bodennutzung, Wasserbau und Kulturtechnik. Parey (1992)

[210] Xiu, D.: Efficient Collocational Approach for Parametric Uncertainty Analy-
sis. Communications in computational physics 2(2), 293–309 (2007). URL
http://www.researchgate.net/publication/228642363_Efficient_collocational_
approach_for_parametric_uncertainty_analysis/file/79e4150b0eb6ebe412.pdf

193

http://dl.acm.org/citation.cfm?id=2031678.2031682
http://www.sciencedirect.com/science/article/pii/S0021999105001919
http://www.sciencedirect.com/science/article/pii/S0021999105001919
https://doi.org/10.1137/050627630
http://www.sciencedirect.com/science/article/pii/S1364815215300955
http://www.sciencedirect.com/science/article/pii/S1364815215300955
https://www.wetterkontor.de/de/wetter/deutschland/rueckblick.asp?id=217&datum=30.04.2013&t=8
https://www.wetterkontor.de/de/wetter/deutschland/rueckblick.asp?id=217&datum=30.04.2013&t=8
http://www.jstor.org/stable/2371268
https://doi.org/10.1007/s10915-015-0153-x
http://www.researchgate.net/publication/228642363_Efficient_collocational_approach_for_parametric_uncertainty_analysis/file/79e4150b0eb6ebe412.pdf
http://www.researchgate.net/publication/228642363_Efficient_collocational_approach_for_parametric_uncertainty_analysis/file/79e4150b0eb6ebe412.pdf

Bibliography

[211] Xiu, D.: Fast numerical methods for stochastic computations: a review. Communications
in computational physics 5(2), 242–272 (2009)

[212] Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press (2010)

[213] Xiu, D., Karniadakis, G.E.: THE WIENER–ASKEY POLYNOMIAL CHAOS FOR
STOCHASTIC DIFFERENTIAL EQUATIONS. SIAM Journal on Scientific Com-
puting 24(2), 619–644 (2002). URL http://epubs.siam.org/doi/abs/10.1137/
S1064827501387826

[214] Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized
polynomial chaos. Journal of Computational Physics 187(1), 137–167 (2003). URL http:
//linkinghub.elsevier.com/retrieve/pii/S0021999103000925

194

http://epubs.siam.org/doi/abs/10.1137/S1064827501387826
http://epubs.siam.org/doi/abs/10.1137/S1064827501387826
http://linkinghub.elsevier.com/retrieve/pii/S0021999103000925
http://linkinghub.elsevier.com/retrieve/pii/S0021999103000925

List of Figures

1.1 Overview about the thesis chapters. The arrows give hints about the possible
reading orders. 5

2.1 Illustration of forward and inverse uncertainty quantification. 7
2.2 Illustration of a non-intrusive forward UQ simulation with its three phases: as-

similation, propagation, and certification. 8
2.3 Visualisation of the probability density function of a ζ ∼ N (0, 1) distributed

random variable ζ in (a) and the corresponding generated collocation points zi
with its weights wi in (b). For this visualisation, q = 25 collocation points for ζ
are used. 13

2.4 Illustration of defined efficiency aspects (containing effectiveness and efficiency)
in UQ simulations. 22

3.1 Visualisation of the resulting function surface of fex1 (Equation (3.1)) for varying
values of the input parameters: (a) contains the resulting fex1 values for the x/y
parameter variation, (b) for x/z, and (c) for y/z. 26

3.2 Visualisation of the resulting function surface of fex2 (Equation (3.2)) for varying
values of the input parameters: (a) contains the resulting fex2 values for the x/y
parameter variation, (b) for x/z, and (c) for y/z. 27

3.3 Visualisation of the resulting population sizes of the predator-prey population
problem of Equation (3.3). Figure 3.3(a) shows the population size S of the sheep,
and Figure 3.3(b) the population size C of the coyote. The initial parameters
values used for the simulation are: C = 50, γ = 0.0005, δ = 2.5, S = 2000,
α = 0.005, and β = 0.0000019. 28

3.4 Visualisation of the attractors for the resulting values of Equation (3.3) in relation
of the coyote C and the sheep S population sizes. For each parameter in Table 3.3,
the attractor is plotted to see the individual impact of the parameter to the
resulting population sizes and the dynamics of the system. 28

3.5 Histogram of the observed (given) data in (a) for a given N(0, 1) distributed
parameter and the sampled (generated) data in (b). For the generation of the
data, a sample size of 10,000 and the SampleDist function based on KDE is used. 34

3.6 Probability density function and statistical moments (mean µ, standard deviation
σ, and p5 and p95 percentiles) for the observed (generated) probability distribution
in (a) for a given N(0, 1) distributed parameter, and the sampled (generated)
probability distribution in (b). For the generation of the data, a sample size of
10,000 and the SampleDist function based on KDE is used. 35

3.7 QoI results for the sheep population size S for Equation (3.3) with all six parame-
ters of Table 3.6 as uncertain input. (a) shows the mean µ(S) and the percentiles
(p5(S) and p95(S)) for each time step; (b) shows the corresponding standard
deviation σ(S) for every time step. 37

195

List of Figures

3.8 QoI results for the sheep population size C for Equation (3.3) with all six parame-
ters of Table 3.6 as uncertain input. (a) shows the mean µ(C) and the percentiles
(p5(C) and p95(C)) for each time step; (b) shows the corresponding standard
deviation σ(S) for every time step. 38

3.9 Sensitivity indices for the population size of the sheep with all of the six uncertain
parameters (Table 3.6) for Equation (3.3). (a) shows the first-order sensitivity
indices and (b) shows the corresponding total-order sensitivity indices. 38

3.10 Sensitivity indices for the population size of the coyote with all of the six uncertain
parameters (Table 3.6) for Equation (3.3). (a) shows the first-order sensitivity
indices and (b) shows the corresponding total-order sensitivity indices. 39

3.11 Probability density function and statistical moments (mean µ, standard deviation
σ, and p5 and p95 percentiles) for the probability distribution of the QoI. (a)
shows the results for the QoI distribution of fex1 (Equation (3.1)), and (b) of fex2
(Equation (3.2)). For the generation of the data, the QoI_Dist function is used
with a secondary Monte Carlo simulation usingM = 10,000 samples. 41

3.12 Visualisation of the PDF for each time step of the population sizes for Equa-
tion (3.3). (a) shows the PDF for the population size S of the sheep, and (b) for
the population size C of the coyote. For the generation of the data, the QoI_Dist
function is used with a secondary Monte Carlo simulation using M = 10,000
samples. 41

3.13 Visualisation of the resulting gPCE based function surface of fex1 (Equation (3.1))
for varying values of the input parameters: (a) contains the resulting values for
the x/y parameter variation, (b) for x/z, and (c) for y/z. 42

3.14 Visualisation of the resulting gPCE based function surface of fex2 (Equation (3.2))
for varying values of the input parameters: (a) contains the resulting values for
the x/y parameter variation, (b) for x/z, and (c) for y/z. 42

4.1 Visualisation of the runtime measurements for UQ simulations. TUQsim represents
the time for a whole UQ simulation. The three different UQ phases are denoted
as TAss, TProp, and TCert. 45

4.2 Illustration of resulting work packages, based on a set of nodes ni for the propa-
gation phase. 46

4.3 Visualisation of the idling problem for two computing nodes with their CPU cores.
The filled solid blue areas represents the time a core is working, and the white
area represents the idling time. 49

4.4 Visualisation of a static work packages (SWP) scheduling situation: The set of
collocation points is equally distributed to work packages WPj , and transferred
to MPI worker processes. For each CPU core on each cluster node, exactly one
work package exists. Beside each core, the utilisation is visualised: blue indicates
the working time, and white the idling time. 50

4.5 Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWP scheduling. In (a), the working time for the UQ simu-
lation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the runtime
with f̂ex2 (Equation (3.2)) as the model. 51

4.6 Visualisation of a static work packages with thread pool on node level (SWPT)
scheduling situation: The set of collocation points is equally distributed to work
packagesWPj , and transferred to MPI worker processes. On each cluster node, a
thread pool is instantiated that further distributes the work to the CPU cores. Be-
side each computing node, the utilisation is visualised: blue indicates the working
time, and white the idling time. 52

196

List of Figures

4.7 Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWPT scheduling. In (a), the working time for the UQ
simulation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the
runtime with f̂ex2 (Equation (3.2)) as the model. 52

4.8 Visualisation of a dynamic work packages (DWP) scheduling situation: The MPI
master process manages the MPI worker processes: it transfers the collocations
points entry by entry to the workers and collects the results. Beside each MPI
worker process, the utilisation is visualised: blue indicates the working time, and
white the idling time. 53

4.9 Visualisation of the runtime TWPj (working time) in seconds to solve the dynam-
ically emerged work packages WPj using DWP scheduling. In (a), the working
time for the UQ simulation with f̂ex1 (Equation (3.1)) as the model is shown, and
in (b), the runtime with f̂ex2 (Equation (3.2)) as the model. 54

4.10 Measured propagation runtimes TProp in seconds for the three standard schedul-
ing strategies SWP, SWPT, and DWP: (a) contains the runtimes for f̂ex1 (Equa-
tion (3.1)) and (b) for f̂ex2 (Equation (3.2)). The propagation runtimes TProp are
measured for different q = 4, 5, . . . , 12 and for different number of cluster nodes
cn = 2, 3, 4, 5. 54

4.11 Speed-up for TProp of SWP compared to SWPT and DWP: (a) contains the speed-
up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2 (Equation (3.2)). Each plot contains
4 speed-up lines (of identical colour and line style) for SWP to SWPT and DWP
that corresponds to the different number of cluster nodes cn = 2, 3, 4, 5. 55

4.12 Real (measured) runtime T iS (blue circles) vs the predicted runtime TiS (filled green
dots) for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations, Q = 83 = 512
collocation points have been used. 57

4.13 Absolute error εri for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations,
Q = 83 = 512 collocation points have been used. 58

4.14 Relative error εri,rel for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations,
Q = 83 = 512 collocation points have been used. 58

4.15 Absolute error statistics with mean error µ(εr) as well as the 5th p5(εr) and the
95th p5(εr) percentile for f̂ex1 in (a) and for f̂ex2 in (b). For the UQ simulations,
different number of collocation points q = 4, 5, . . . , 12 per parameter have been
used. 58

4.16 Discrete L2(εr) norm of the absolute error for f̂ex1 in (a) and for f̂ex2 in (b). For
the UQ simulations, different number of collocation points q = 4, 5, . . . , 12 per
parameter have been used. 59

4.17 Visualisation of the sequence of activities (UML activity diagram) to create the
runtime statistics with a runtime predictor rpN within a UQ simulation that uses
a scheduling strategy. The white boxes are always executed, and the green boxes
are the additional activities to determine and save the runtime statistics. 60

4.18 Visualisation of the sequence of activities (UML activity diagram) to use a runtime
predictor rpN for reordering the work within a UQ simulation. The white boxes
are always executed, and the green boxes are the additional activities to create
and use the runtime information TiS to optimise the scheduling. 61

4.19 Example of resulting work packages with the MULTIFIT heuristic. Each rect-
angle (entry) represents a work item and its relative width is the length of the
runtime. The broader an entry, the longer its runtime. The first row shows the
unordered entries and the second row the resulting work packagesWP1,WP2,WP3. 62

197

List of Figures

4.20 Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWPOPT scheduling. In (a), the working time for the UQ
simulation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the
runtime with f̂ex2 (Equation (3.2)) as the model. 63

4.21 Visualisation of the runtime TWPj (working time) in seconds to solve each work
package WPj using SWPTOPT scheduling. In (a), the working time for the UQ
simulation with f̂ex1 (Equation (3.1)) as the model is shown, and in (b), the
runtime with f̂ex2 (Equation (3.2)) as the model. 63

4.22 Example of the resulting list of work items with the LPT order. Each rectangle
(entry) represents a work item and its relative width is the length of the runtime.
The broader an entry, the longer its runtime. The first row shows the unordered
entries and the second row the resulting ordered list. 64

4.23 Visualisation of the runtime TWPj (working time) in seconds to solve the dy-
namically emerged work packages WPj using DWPOPT scheduling. In (a), the
working time for the UQ simulation with f̂ex1 (Equation (3.1)) as the model is
shown, and in (b), the runtime with f̂ex2 (Equation (3.2)) as the model. 65

4.24 Measured propagation runtimes TProp for two cluster nodes (cn = 2) and a varying
number q = 4, 5, . . . , 12 of collocation points per parameter: (a) is the plot with
the three standard scheduling strategies and their optimised versions for f̂ex1
(Equation (3.1)), and (b) for f̂ex2 (Equation (3.2)). 65

4.25 Measured propagation runtimes TProp for five cluster nodes (cn = 5) and a varying
number q = 4, 5, . . . , 12 of collocation points per parameter: (a) is the plot with
the three standard scheduling strategies and their optimised versions for f̂ex1
(Equation (3.1)), and (b) for f̂ex2 (Equation (3.2)). 66

4.26 Speed-up for TProp of SWP compared SWPOPT , SWPTOPT , and DWPOPT : (a)
contains the speed-up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2 (Equation (3.2)).
Each plot contains 4 speed-up lines (of identical colour and line style) that corre-
sponds to the different number of cluster nodes cn = 2, 3, 4, 5. 67

4.27 Speed-up for TProp of SWP to SWPOPT , SWPT to SWPTOPT , and DWP to
DWPOPT : (a) contains the speed-up for f̂ex1 (Equation (3.1)) and (b) for f̂ex2
(Equation (3.2)). Each plot contains 4 speed-up lines (of identical colour and line
style) that corresponds to the different number of cluster nodes cn = 2, 3, 4, 5. . . 67

4.28 Illustration of the forward UQ method with a surrogate model instead of the
original model. 69

4.29 Illustration of the process to create a COSM and to use it in a UQ simulation.
The parameters of the model are denoted with P1, P2, . . . , PM and the values of
interest with V oI1, V oI2, . . . , V oIV , which is the output of the model. The data
flow between the steps is visualised with the arrows. 71

4.30 Illustration of the proposed error comparison process of the original model (pre-
vious path) with the surrogate model (proposed path) for UQ simulations using
the COSM. 72

5.1 Caption for LOF . 76
5.2 Illustration (UML class diagram) of a common simulation program architecture

when using the UQEF framework. 77
5.3 Illustration of the supported UQEF simulation methods (UML class diagram). . 88
5.4 Illustration of the implemented UQEF solvers (UML class diagram). 91

6.1 Illustration of the main input and output files of the Vadere simulator. 100

198

List of Figures

6.2 Illustration of one car for scenario 1: evacuation of a train station. Inside the car,
there are 60 pedestrians (blue and light blue circles). The bomb is visualised with
the grey star and the 14 pedestrians (light blue circles) near the grey star are
likely to be injured. The safe zone is indicated with the yellow striped rectangle
(source: [175]). 103

6.3 Illustration of the UQ simulation pipeline for scenario 1: evacuation of a train
station. The pipeline shows the interaction of the UQ parts with the Vadere
simulator. The used software is listed on the right side. 104

6.4 Illustration of derived classes for scenario 1: evacuation of a train station. The
light green rectangles indicate the implemented custom classes for this scenario.
See Section 5.1 for a detailed description of the overall UQEF architecture. . . . 105

6.5 Illustration of the simulation program architecture for scenario 1: evacuation of
a train station. The light green rectangles indicate the custom implementation
parts for this scenario. The white rectangles indicates the UQEF classes that are
instantiated and used directly, but are not changed. 106

6.6 QoI results for the number of pedestrians np remaining in the car of the train with
pedestrians sharing a social identity (percsharingSI) as the uncertain parameter
for scenario 1: evacuation of a train station. (a) shows the mean µ(np) and the
percentiles (p5(np) and p95(np)) for each time step; (b) shows the corresponding
standard deviation σ(np) and the variance σ2(np) for every time step. 106

6.7 QoI results for the number of pedestrians np remaining in the car of the train
with percentage of injured pedestrians (percinjPeds) as the uncertain parameter
for scenario 1: evacuation of a train station. (a) shows the mean µ(np) and the
percentiles (p5(np) and p95(np)) for each time step; (b) shows the corresponding
standard deviation σ(np) and the variance σ2(np) for every time step. 107

6.8 QoI distribution reconstruction for percentage of injured pedestrians (percinjPeds)
as the uncertain parameter for scenario 1: evacuation of a train station. (a) con-
tains the plots of the reconstructed QoI distribution of the maximum evacuation
time evt. (b) visualises the reconstructed QoI 3D distribution of the number of
pedestrians np in the car for every time step in the simulation. 108

6.9 QoI results for the number of pedestrians np remaining in the car of the train
with speed of a helper with an injured pedestrian (vinj) as the uncertain parameter
for scenario 1: evacuation of a train station. (a) shows the mean µ(np) and the
percentiles (p5(np) and p95(np)) for each time step; (b) shows the corresponding
standard deviation σ(np) and the variance σ2(np) for every time step. 108

6.10 QoI results for the number of pedestrians np remaining in the car of the train with
all of the three uncertain parameters (Table 6.5) for scenario 1: evacuation of a
train station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np))
for each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step. 109

6.11 Sensitivity indices for the number of pedestrians np remaining in the car of the
train with all of the three uncertain parameters (Table 6.5) for scenario 1: evacu-
ation of a train station. (a) shows the first-order sensitivity indices and (b) shows
the corresponding total-order sensitivity indices. 110

6.12 Visualisation of the generated gPCE (Equation (2.7)) for the maximum evacua-
tion time evt with all of the three uncertain parameters (Table 6.5) for scenario
1: evacuation of a train station. (a) contains the resulting evt values for the
percsharingSI/vinj parameter variation, (b) for percsharingSI/percinjPeds, and (c)
for vinj/percinjPeds. 110

199

List of Figures

6.13 Illustration of the building for scenario 2: evacuation of a building with separated
families. Inside the building, the adult pedestrians without a child are denoted by
blue circles, the adult pedestrians with a child by green stars, and child pedestrians
as pink triangles. The safe zone is indicated with the yellow striped rectangle. In
this figure, the total number of pedestrians are reduced for visualisation purposes
compared to the actual scenario setup (cf. [172, 103]). 112

6.14 Illustration of derived classes for scenario 2: evacuation of a building with sepa-
rated families. The light green rectangles indicate the implemented custom classes
for this scenario. See Section 5.1 for a detailed description of the overall UQEF
architecture. 114

6.15 Illustration of the simulation program architecture for scenario 2: evacuation of a
building with separated families. The light green rectangles indicate the custom
implementation parts for this scenario. The white rectangles indicates the UQEF
classes that are instantiated and used directly, but are not changed. 115

6.16 QoI results for the number of pedestrians np remaining in the building with per-
centage of family members (percfam) as the uncertain parameter for scenario 2:
evacuation of a building with separated families. (a) shows the mean µ(np) and
the percentiles (p5(np) and p95(np)) for each time step; (b) shows the correspond-
ing standard deviation σ(np) and the variance σ2(np) for every time step. 116

6.17 QoI results for the number of pedestrians np remaining in the building with speed
of parent-pedestrians searching their child-pedestrians (vparent) as the uncertain
parameter for scenario 2: evacuation of a building with separated families. (a)
shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for each time step;
(b) shows the corresponding standard deviation σ(np) and the variance σ2(np)
for every time step. 116

6.18 QoI results for the number of pedestrians np remaining in the building with speed
of the parent-child-pair (vchild) as the uncertain parameter for scenario 2: evac-
uation of a building with separated families. (a) shows the mean µ(np) and the
percentiles (p5(np) and p95(np)) for each time step; (b) shows the corresponding
standard deviation σ(np) and the variance σ2(np) for every time step. 117

6.19 QoI results for the number of pedestrians np remaining in the building with all of
the three uncertain parameters (Table 6.8) for scenario 2: evacuation of a building
with separated families. (a) shows the mean µ(np) and the percentiles (p5(np)
and p95(np)) for each time step; (b) shows the corresponding standard deviation
σ(np) and the variance σ2(np) for every time step. 117

6.20 Sensitivity indices for the number of pedestrians np remaining in the building
with all of the three uncertain parameters (Table 6.8) for scenario 2: evacuation
of a building with separated families. (a) shows the first-order sensitivity indices
and (b) shows the corresponding total-order sensitivity indices. 118

6.21 Visualisation (after 24 seconds of the simulation) of the generated gPCE (Equa-
tion (2.7)) for the number of pedestrians np with all of the three uncertain param-
eters (Table 6.8) for scenario 2: evacuation of a building with separated families.
(a) contains the resulting np values for the percfam/vchild parameter variation,
(b) for percfam/vparent, and (c) for vchild/vparent. 119

6.22 (a) Real (measured) runtime T iS (blue circles) for scenario 2: evacuation of a
building with separated families. (b) contains the corresponding predicted run-
time TiS (filled green dots) compared to the measured runtime T iS (blue circles).
For the UQ simulations, Q = 83 = 512 collocation points have been used. 119

200

List of Figures

6.23 (a) Absolute error εri for scenario 2: evacuation of a building with separated fam-
ilies. (b) contains the corresponding relative error εri,rel. For the UQ simulations,
Q = 83 = 512 collocation points have been used. 120

6.24 (a) Absolute error statistics with mean error µ(εr) as well as the 5th p5(εr) and
the 95th p5(εr) percentile for scenario 2: evacuation of a building with separated
families. (b) contains the corresponding L2(εr) error norm. For the UQ simula-
tions, different number of collocation points q = 4, 5, . . . , 12 per parameter have
been used. 120

6.25 Visualisation of the generated runtime predictor rpN (Equation (4.8)) for the
predicted TiS runtime with all of the three uncertain parameters (Table 6.8)
for scenario 2: evacuation of a building with separated families. (a) contains
the resulting TiS runtimes for the percfam/vchild parameter variation, (b) for
percfam/vparent, and (c) for vchild/vparent. For the UQ simulations, Q = 83 = 512
collocation points have been used. 121

6.26 Measured propagation runtimes TProp for scenario 2: evacuation of a building
with separated families for two cluster nodes (cn = 2) in (a) and for cn = 5 in (b)
with a varying number q = 4, 5, . . . , 12 of collocation points per parameter. The
UQ simulations have been performed for the three standard scheduling strategies
(Section 4.4) and their optimised versions (Section 4.6). 122

6.27 Speed-up for TProp for scenario 2: evacuation of a building with separated fam-
ilies. (a) contains the speed-ups of SWP compared to SWPOPT , SWPTOPT ,
and DWPOPT . (b) contains the speed-ups for SWP to SWPOPT , SWPT to
SWPTOPT , and DWP to DWPOPT . Each plot contains 4 speed-up lines (of iden-
tical colour and line style) that corresponds to the different number of cluster
nodes cn = 2, 3, 4, 5. 122

6.28 Sensitivity indices for the individual black-box model run runtimes T iS with all of
the three uncertain parameters (Table 6.8) for scenario 2: evacuation of a building
with separated families. (a) shows the first-order sensitivity indices and (b) shows
the corresponding total-order sensitivity indices. 123

6.29 Illustration of campus for scenario 3: utilisation of a campus. On the left, the
partially modelled TUM campus with the building names is visualised. On the
middle, the pedestrians move from the underground to the TUM Math & Infor-
matics building. The right visualisation shows the pedestrians in the TUM and
IPP canteen. 125

6.30 Illustration of derived classes for scenario 3: utilisation of a campus. The light
green rectangles indicate the implemented custom classes for this scenario. See
Section 5.1 for a detailed description of the overall UQEF architecture. 127

6.31 Illustration of the simulation program architecture for scenario 3: utilisation of a
campus. The light green rectangles indicate the custom implementation parts for
this scenario. The white rectangles indicates the UQEF classes that are instanti-
ated and used directly, but are not changed. 128

6.32 QoI results of the mean utilisation for scenario 3: utilisation of a campus. For
each of the four measure zones (see Table 6.11), the mean utilisation for every
time step is plotted. The light blue area around each line is the 90% interval of
the values (5th to 95th percentile). 130

6.33 Standard deviation of the utilisation for scenario 3: utilisation of a campus. For
each of the four measure zones (see Table 6.11), the standard deviation for every
time step is plotted. 130

201

List of Figures

6.34 First-order sensitivity indices for the utilisation of the buildings with all of the
four uncertain parameters (Table 6.12) for scenario 3: utilisation of a cam-
pus. (a) contains the values for M1(Underground), (b) for M2(TUM), (c) for
M3(TUMmensa), and (d) for M4(IPPcanteen). 131

6.35 Total-order sensitivity indices for the utilisation of the buildings with all of the
four uncertain parameters (Table 6.12) for scenario 3: utilisation of a cam-
pus. (a) contains the values for M1(Underground), (b) for M2(TUM), (c) for
M3(TUMmensa), and (d) for M4(IPPcanteen). 132

6.36 Pairwise relationship of the utilisation for the four buildings (Table 6.11) in sce-
nario 3: utilisation of a campus. The diagonal axis contains the histogram of the
utilisation for each building. The upper right side contains the scatter plot of the
utilisation values and the lower left side the contour plots. 133

6.37 Visualisation of the first three principal components for the four buildings (Ta-
ble 6.11) in scenario 3: utilisation of a campus. A dark blue colour indicates less
or no pedestrians at this point and a dark red colour a high utilisation for the
measure zone. 134

6.38 Measured propagation runtimes TProp using the COSM and the Vadere simulator
as the model for scenario 3: utilisation of a campus. (a) contains the absolute
propagation runtime TProp with a linear scale and (b) with a logarithmic scale
with a varying number q = 2, 3, . . . , 10 of collocation points per parameter. . . . 135

6.39 Speed-up for TProp for scenario 3: utilisation of a campus. The speed-up is
calculated for a varying number q = 2, 3, . . . , 10 of collocation points per parameter.136

6.40 Absolute mean error εsi for scenario 3: utilisation of a campus. The values are
plotted for all measure zones (Table 6.11) on every time step for q = 10 number
of collocation points per parameter. 136

6.41 Relative mean error εsi,rel for scenario 3: utilisation of a campus. The values are
plotted for all measure zones (Table 6.11) on every time step for q = 10 number
of collocation points per parameter. 137

6.42 Absolute error values for scenario 3: utilisation of a campus. (a) contains the
absolute mean error µ(εs) values and (b) the corresponding L2(εs) error norm for
a varying number q = 2, 3, . . . , 10 of collocation points per parameter. 138

6.43 Relative error values for scenario 3: utilisation of a campus. (a) contains the
relative mean error µ(εsrel) values and (b) the corresponding L2(εsrel) error norm
for a varying number q = 2, 3, . . . , 10 of collocation points per parameter. 138

7.1 Illustration of the possible components of a water balance model (source: [117, 209]).141
7.2 Illustration of a soil structure with its associated parameters for the use in water

balance models (source: [117]). 142
7.3 Illustration of the layered components in the scheme of the water balance model

LARSIM (modified version of: [117]). 144
7.4 Illustration of the most important input and output files of the LARSIM simulator.145
7.5 Illustration (satellite map) of the district Regen (source: [56]) with the river Regen

of the same name. 147
7.6 Illustration of the measured temperatures from 6th March to 30th April in Zwiesel

(district Regen). Every tick on the x axis represents one day. (source: [205]) . . . 147
7.7 Illustration of derived classes for scenario: large runoffs due to snow melting. The

light green rectangles indicate the implemented custom classes for this scenario.
See Section 5.1 for a detailed description of the overall UQEF architecture. . . . 150

202

List of Figures

7.8 Illustration of the simulation program architecture for scenario: large runoffs due
to snow melting. The light green rectangles indicate the custom implementation
parts for this scenario. The white rectangles indicates the UQEF classes that are
instantiated and used directly, but are not changed. 151

7.9 QoI results of the mean runoff µ(Q) in station MARI (Marienthal) for scenario:
large runoffs due to snow melting. The light blue area around the mean runoff
µ(Q) is the 80% interval of the p10(Q) and p90(Q) percentiles. The red line shows
the real measured runoff Q data at station MARI. 152

7.10 Standard deviation σ(Q) of the runoff Q in station MARI (Marienthal) for sce-
nario: large runoffs due to snow melting. 153

7.11 Absolute error ε(Q) of the runoff Q in station MARI (Marienthal) for scenario:
large runoffs due to snow melting. 153

7.12 Relative error εrel(Q) of the runoff Q in station MARI (Marienthal) for scenario:
large runoffs due to snow melting. 154

7.13 First-order sensitivity indices of the four snow parameters (Table 7.1) on the
runoff Q in station MARI (Marienthal) for scenario: large runoffs due to snow
melting. 154

7.14 Total-order sensitivity indices of the four snow parameters (Table 7.1) on the
runoff Q in station MARI (Marienthal) for scenario: large runoffs due to snow
melting. 154

A.1 Visualisation of the probability density function of a ζ ∼ N (0, 1) distributed
random variable ζ in (a) and the corresponding generated collocation points zi
with its weights wi in (b). For this visualisation, q = 25 collocation points for ζ
are used. 162

A.2 Visualisation of the probability density function of a ζ ∼ U(0.6, 1.0) distributed
random variable ζ in (a) and the corresponding generated collocation points zi
with its weights wi in (b). For this visualisation, q = 25 collocation points for ζ
are used. 162

A.3 Visualisation of the probability density function of a ζ ∼ B(alpha = 2, beta =
2, lower = 0, upper = 1.0) distributed random variable ζ in (a) and the cor-
responding generated collocation points zi with its weights wi in (b). For this
visualisation, q = 25 collocation points for ζ are used. 163

A.4 Visualisation of the probability density function of a ζ ∼ G(sahpe = 1, scale =
1, shift = 0) distributed random variable ζ in (a) and the corresponding generated
collocation points zi with its weights wi in (b). For this visualisation, q = 25
collocation points for ζ are used. 163

A.5 QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with pedestrians
sharing a social identity (percsharingSI) as the uncertain parameter for scenario
1: evacuation of a train station. (a) shows the mean µ(np) and the percentiles
(p5(np) and p95(np)) for each time step; (b) shows the corresponding standard
deviation σ(np) and the variance σ2(np) for every time step. 173

A.6 QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples) for
the number of pedestrians np remaining in the car of the train with percentage
of injured pedestrians (percinjPeds) as the uncertain parameter for scenario 1:
evacuation of a train station. (a) shows the mean µ(np) and the percentiles
(p5(np) and p95(np)) for each time step; (b) shows the corresponding standard
deviation σ(np) and the variance σ2(np) for every time step. 173

203

List of Figures

A.7 QoI distribution reconstruction (for a Monte Carlo UQ simulation with 100,000
performed samples) for percentage of injured pedestrians (percinjPeds) as the un-
certain parameter for scenario 1: evacuation of a train station. (a) contains the
plots of the reconstructed QoI distribution of the maximum evacuation time evt.
(b) visualises the reconstructed QoI 3D distribution of the number of pedestrians
np in the car for every time step in the simulation. 174

A.8 QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with speed of
a helper with an injured pedestrian (vinj) as the uncertain parameter for scenario
1: evacuation of a train station. (a) shows the mean µ(np) and the percentiles
(p5(np) and p95(np)) for each time step; (b) shows the corresponding standard
deviation σ(np) and the variance σ2(np) for every time step. 174

A.9 QoI results (for a Monte Carlo UQ simulation with 100,000 performed samples)
for the number of pedestrians np remaining in the car of the train with all of
the three uncertain parameters (Table 6.5) for scenario 1: evacuation of a train
station. (a) shows the mean µ(np) and the percentiles (p5(np) and p95(np)) for
each time step; (b) shows the corresponding standard deviation σ(np) and the
variance σ2(np) for every time step. 175

204

List of Tables

1.1 List of features and strategies that are investigated in this thesis and are used in
the case study scenarios to efficiently quantify the uncertainty. 4

2.2 Common combinations of probability distributions and polynomial basis functions
in the general polynomial chaos expansion according to the Wiener–Askey scheme
(compare [213]). 12

2.3 List of known UQ toolkits as presented in the “mini-symposium on software for
UQ” of the last SIAM UQ 2018 conference and some additionally selected ones
appeared recently. The information are lastly updated in May 2020. 17

3.1 Parameters with defined minimum and maximum values for the model function
fex1 (Equation (3.1)). 26

3.2 Parameters with defined minimum and maximum values for the model function
fex2 (Equation (3.2)). 26

3.3 Parameters with defined minimum and maximum values for Equation (3.3) as the
model function. 27

3.4 Choice of UQ method depending on various aspects. The Monte Carlo based
methods (MC) and the gPCE based methods are categorised with: 1 = good,
2 = possible with extensions—but somehow limited, 3 = not good. ∗) Denotes
Monte Carlo with the extension of the point collocation method. 31

3.5 Error comparison of measurement-driven generated probability distribution for
various statistical moments compared to the original used N(0, 1) distributed
probability distribution for different sample sizes. 35

3.6 Defined uncertain parameters for the simple ODE Equation (3.3) as the model
function with associated probability distributions. 36

3.7 QoI statistics of Equation (3.3) for the last time step of the simulation for the
population size of the sheep and the coyote. 37

3.8 Defined uncertain parameters for model function fex1 (Equation (3.1)) with as-
sociated probability distributions. 40

3.9 Defined uncertain parameters for model function fex2 (Equation (3.2)) with as-
sociated probability distributions. 40

4.1 Definition and description of various time measurements to compare different
scheduling strategies. For the measurements, the T symbol is used, and for the
predicted or estimated equivalent T is used (later in this chapter). 46

4.2 The investigated standard scheduling strategies with their abbreviation. 47
4.3 Defined uncertain parameters for model function f̂ex1 (Equation (3.1)) with as-

sociated probability distributions. 48
4.4 Defined uncertain parameters for model function f̂ex2 (Equation (3.2)) with as-

sociated probability distributions. 48
4.5 List of optimised scheduling strategies with their abbreviation and their schedul-

ing strategy basis. 60

205

List of Tables

4.7 List of propagation runtimes TProp (in seconds) for the academic example func-
tions f̂ex1 (Equation (3.1)) and f̂ex2 (Equation (3.2)) for q = 10, 11, 12 and
cn = 2, 5. 66

4.9 List of possible situations and their suggested scheduling strategy. 68

5.2 Functions of the UQEF Model interface class inside the model package. 78
5.4 Functions of the UQEF Statistics interface class inside the stat package.333 . . . 81
5.5 Supported parameters of the UQsim class that are additionally available as com-

mand line arguments to configure the behaviour of a UQ simulation. 84
5.7 Functions of the UQEF Simulation interface class inside the simulation package. 88
5.9 Functions of the UQEF Solver interface class inside the solver package. 91
5.11 Overview of supported scheduling strategies (usage scenarios) with UQEF. 92
5.12 Overview of supported UQ methods to create a runtime predictor rpN with UQEF. 96

6.2 Overview of pedestrian dynamics case study scenarios. 99
6.3 Memory settings for Vadere console runs on the Linux-Cluster CoolMUC2 of the

Leibniz Supercomputing Centre [115]. 100
6.5 List of uncertain parameters and their distributions for scenario 1: evacuation of

a train station. The parameters are uniformly distributed between the specified
minimum and maximum values (cf. [175]). 104

6.7 QoI results of the maximum evacuation time evt for scenario 1: evacuation of a
train station. The values can be interpreted as seconds and have been rounded
down to one digit after the decimal point (cf. [175]). 109

6.8 List of uncertain parameters and their distributions for scenario 2: evacuation
of a building with separated families. The parameters are uniformly distributed
between the specified minimum and maximum values (cf. [172]). 113

6.10 QoI results of the maximum evacuation time evt for scenario 2: evacuation of a
building with separated families. The values can be interpreted as seconds and
have been rounded down to one digit after the decimal point (cf. [175]). 118

6.11 Denotation of the measure zones for scenario 3: TUM campus utilisation. 126
6.12 List of uncertain parameters and their distributions for scenario 3: utilisation of a

campus. The parameters ir and v are uniformly distributed between the specified
minimum and maximum values. For the residence times irtime and trtime, normal
distributions are used. 126

6.13 List of performed simulations for scenario 3: utilisation of a campus. For each
q, the resulting number of collocation points Q and the used number of cluster
nodes cn is listed. 128

6.15 Sampling values for the parameters ir, irtime, trtime, and v to create the COSM.
This results in Nir ·Nirtime ·Ntrtime ·Nv = 54 = 625 number of parameter sets in
the full grid sampling. 129

6.16 List of values for the propagation runtimes TProp and the achieved speed-ups for
the different q = 2, 3, . . . , 10 of collocation points per parameter 136

6.17 Error statistics µ(εs) (Equation (4.20)), L2(εs) (Equation (4.21)), µ(εsrel) (Equa-
tion (4.22)), and, L2(εsrel) (Equation (4.23)) for the four values of interest
M1(Underground), M2(TUM), M3(TUMmensa), and M4(IPPcanteen). 137

7.1 List of relevant parameters for scenario: large runoffs due to snow melting. For
each parameter, the supported minimum and maximum values within LARSIM
are listed. 149

206

List of Tables

7.2 List of uncertain parameters for scenario: large runoffs due to snow melting.
The parameters are uniformly distributed between the specified minimum and
maximum values. 149

A.2 Full list of propagation runtimes TProp (in seconds) for the academic example
function f̂ex1 (Equation (3.1)) regarding to Section 4.6.4 with the six scheduling
strategies and their variations: cn = 2, 3, 4, 5 denotes the number of used cluster
nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number
of collocation points for each uncertain parameter. 167

A.4 Full list of propagation runtimes TProp (in seconds) for the academic example
function f̂ex2 (Equation (3.2)) regarding to Section 4.6.4 with the six scheduling
strategies and their variations: cn = 2, 3, 4, 5 denotes the number of used cluster
nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number
of collocation points for each uncertain parameter. 168

A.6 Full list of propagation runtimes TProp (in seconds) for the pedestrian evacuation
scenario 2 in Section 6.4 with the six scheduling strategies and their variations:
cn = 2, 3, 4, 5 denotes the number of used cluster nodes (each cluster node has
28 CPU cores), and q = 2, 3, . . . , 12 is the number of collocation points for each
uncertain parameter. 169

A.8 Full list of speed-ups for the academic example function f̂ex1 (Equation (3.1))
regarding to Section 4.6.4 with their variations: cn = 2, 3, 4, 5 denotes the number
of used cluster nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12
is the number of collocation points for each uncertain parameter. 170

A.10 Full list of speed-ups for the academic example function f̂ex2 (Equation (3.2))
regarding to Section 4.6.4 with their variations: cn = 2, 3, 4, 5 denotes the number
of used cluster nodes (each cluster node has 28 CPU cores), and q = 2, 3, . . . , 12
is the number of collocation points for each uncertain parameter. 171

A.12 Full list of speed-ups for the pedestrian evacuation scenario 2 in Section 6.4 with
their variations: cn = 2, 3, 4, 5 denotes the number of used cluster nodes (each
cluster node has 28 CPU cores), and q = 2, 3, . . . , 12 is the number of collocation
points for each uncertain parameter. 172

207

Listings

2.1 Import of Chaospy and NumPy libraries. 19
2.2 Definition of a simple example model function. 19
2.3 Example of creating probability distributions with Chaospy using custom param-

eter values for the distributions: p1 (p1_dist) is U(−5, 1) and p2 (p2_dist) is
N(0, 1) distributed. 19

2.4 Example of creating multivariate distributions with Chaospy: p1 (p1_dist) and
p2 (p2_dist) are joined into a multivariate distribution. 19

2.5 Partial example of the Monte Carlo method with Chaospy: Sampling the multi-
variate distribution (dists), propagating uncertainty through the model() func-
tion, calculating the QoI statistics, and finally printing the results to the console. 20

2.6 Partial example of the point collocation method with Chaospy: Numerical gener-
ation of orthogonal polynomials, fitting the gPCE with regression, and determine
the resulting QoI. 20

2.7 Partial example of stochastic collocation with the pseudo-spectral approach with
Chaospy: Generation of nodes and weights according to the quadrature rule and
finally generating the gPCE with the chosen quadrature rule. 21

3.1 Example of creating the KDE based sample_dist distribution using the Sam-
pleDist function of the Chaospy library. 34

3.2 Example of creating the QoI distribution based on sample_dist using the
QoI_Dist function of the Chaospy library. 40

5.1 First illustrative source code example (uq_simulation.py) that shows the basic
usage of UQEF using the stochastic collocation with the pseudo-spectral approach
(see Section 2.2.2). 78

5.2 Example template for a custom model implementation with UQEF. 80
5.3 Selection and registration of a custom model (CustomModel) on an object (uqsim)

of a UQsim instance with UQEF. 80
5.4 Example of a custom statistics implementation using UQEF. 83
5.5 Selection and registration of a custom model (CustomModel) and a corresponding

CustomStatistics on an object (uqsim) of a UQsim instance with UQEF. 84
5.6 Specify arguments within a Python UQ simulation script, before calling uqsim.setup(). 86
5.7 Start a UQ simulation (uq_simulation.py) and specify some script parameters

from command line. 86
5.8 Specify uncertain parameters within a Python UQ simulation script, before calling

uqsim.setup(). 86
5.9 Example of how to specify uncertain parameters via a config file (config.json)

for UQEF. 86
5.10 Example of how to activate a config file (config.json) for the uncertain param-

eters with UQEF. 87
5.11 Example of how to specify fixed parameter values within a Python UQ simulation

script, before calling uqsim.setup(). 87

209

Listings

5.12 Example of how to specify fixed parameter values through a config file (config.json)
for UQEF. 87

5.13 Example of how to activate the Monte Carlo method (see Section 2.2.1) in UQEF
simulation scripts. 89

5.14 Example of how to activate the stochastic collocation with the pseudo-spectral
approach (see Section 2.2.2) in UQEF simulation scripts. 89

5.15 Example of how to activate the point collocation (see Section 2.2.3) method in
UQEF simulation scripts. 90

5.16 Example of how to activate the probabilistic collocation (see Section 2.2.3) method
in UQEF simulation scripts. 90

5.17 Start a UQ simulation with single-threaded (linear) propagation (LinearSolver)
using UQEF. 92

5.18 Start a UQ simulation with the multithreaded ParallelSolver on two CPU cores
(threads) using UQEF. 93

5.19 Start a UQ simulation with MPI and SWP scheduling (MpiSolver) using UQEF. 93
5.20 Start a UQ simulation with MPI and SWPT scheduling (MpiSolver) using UQEF. 93
5.21 Start a UQ simulation with dynamic work packages on MPI (MpiPoolSolver)

using UQEF. 94
5.22 Outer-loop support example for UQ method parameter studies using UQEF. . . 94
5.23 Outer-loop support example for probability distribution parameter studies using

UQEF. 95
5.24 Example of how to create, save, and use the runtime prediction rpN to optimise

the scheduling using UQEF. 96

6.1 Example of calling the Vadere console simulator with the evacuation.scenario
file and specific memory -Xm* settings for the java runtime environment. 100

A.1 Full introduction example of the Monte Carlo method with Chaospy, regarding
to Section 2.4.2. 164

A.2 Full introduction example of the point collocation method with Chaospy, regard-
ing to Section 2.4.2. 165

A.3 Full introduction example of the stochastic collocation with the pseudo-spectral
approach with Chaospy, regarding to Section 2.4.2. 166

210

	Titlepage
	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	1 Opening
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Introduction to uncertainty quantification: background and toolkits
	2.1 Phases of non-intrusive forward UQ simulations
	2.2 Non-intrusive forward UQ methods
	2.2.1 Monte Carlo method
	2.2.2 Stochastic collocation with the pseudo-spectral approach
	2.2.3 Point collocation

	2.3 Global sensitivity analysis
	2.4 Overview of existing toolkits for UQ
	2.4.1 List of toolkits
	2.4.2 Introduction to Chaospy

	2.5 Efficiency aspects

	3 Aspects of code development for quantifying the uncertainty in classical simulations
	3.1 Academic test functions and models
	3.2 Selecting a suitable UQ method
	3.3 Parameter selection for UQ simulations
	3.4 Uncertain parameter modelling
	3.5 Interpretation of simulation results

	4 Efficient uncertainty propagation on large compute intense systems
	4.1 Preliminaries
	4.2 Computing systems
	4.3 Runtime definitions for UQ simulations
	4.4 Standard scheduling strategies
	4.4.1 Idling: due to non-optimal workload
	4.4.2 Static work packages
	4.4.3 Static work packages with thread pool on node level
	4.4.4 Dynamic work packages
	4.4.5 Summary of standard scheduling strategies

	4.5 Runtime as quantity of interest
	4.5.1 Runtime prediction of UQ simulations
	4.5.2 Determining runtime prediction quality
	4.5.3 Numerical results of runtime prediction

	4.6 Optimised scheduling strategies via work reordering
	4.6.1 Optimised static work packages
	4.6.2 Optimised static work packages with thread pool on node level
	4.6.3 Optimised dynamic work packages
	4.6.4 Summary of optimised scheduling strategies

	4.7 Surrogate models
	4.7.1 The closed observables surrogate model
	4.7.2 Uncertainty quantification using the closed observables surrogate model
	4.7.3 Determining the quality of a UQ simulation using the COSM
	4.7.4 Summary of surrogate models

	5 The UQEF software framework
	5.1 Overview and software architecture
	5.2 Custom models: embedding model codes
	5.3 Custom statistics: computation of model-specific statistics
	5.4 Parametrisation of a UQ simulation
	5.5 Support for different UQ methods
	5.6 Scheduling and solver strategies
	5.7 Support for parameter studies
	5.8 Automatic runtime measurements, predictions, and optimised scheduling

	6 Case study: Efficient uncertainty quantification in pedestrian dynamics
	6.1 Vadere: a pedestrian dynamics simulator
	6.2 Challenges of quantifying uncertainty using Vadere
	6.3 Scenario 1: Evacuation of a train station
	6.3.1 Helping behaviour and social identity in pedestrian dynamics
	6.3.2 UQ simulation setup
	6.3.3 Numerical results
	6.3.4 Summary

	6.4 Scenario 2: Evacuation of a building with separated families
	6.4.1 Family search strategy in pedestrian dynamics
	6.4.2 UQ simulation setup
	6.4.3 Numerical results
	6.4.4 Runtime and scheduling behaviour
	6.4.5 Summary

	6.5 Scenario 3: Utilisation of a campus
	6.5.1 TUM campus utilisation
	6.5.2 UQ simulation setup
	6.5.3 Construction of the COSM
	6.5.4 Numerical results
	6.5.5 Computational efficiency and error results
	6.5.6 Summary

	7 Case study: Efficient uncertainty quantification in hydrological modelling
	7.1 LARSIM: a water balance model simulator
	7.2 Challenges of quantifying uncertainty with LARSIM
	7.3 Scenario: Large runoffs due to snow melting
	7.3.1 Snow melting and water runoff behaviour
	7.3.2 UQ simulation setup
	7.3.3 Numerical results
	7.3.4 Summary

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	A Appendix
	A.1 Visualisation of common distributions and their quadrature
	A.2 Chaospy introduction examples
	A.2.1 Monte Carlo
	A.2.2 Point collocation
	A.2.3 Stochastic collocation with the pseudo-spectral approach

	A.3 Propagation runtimes of scheduling strategies
	A.3.1 Propagation runtimes of academic example 1
	A.3.2 Propagation runtimes of academic example 2
	A.3.3 Propagation runtimes of pedestrian dynamics scenario 2

	A.4 Speed-ups of scheduling strategies
	A.4.1 Speed-ups of academic example 1
	A.4.2 Speed-ups runtimes of academic example 2
	A.4.3 Speed-ups runtimes of pedestrian dynamics scenario 2

	A.5 Case Study: UQ with Vadere scenario 1 and Monte Carlo

	Bibliography
	List of Figures
	List of Tables
	Listings

