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Abstract
We consider the problem of identifying a mixture of Gaussian distributions with the
same unknown covariance matrix by their sequence of moments up to certain order.
Our approach rests on studying themoment varieties obtained by taking special secants
to the Gaussian moment varieties, defined by their natural polynomial parametrization
in terms of the model parameters. When the order of the moments is at most three,
we prove an analogue of the Alexander–Hirschowitz theorem classifying all cases
of homoscedastic Gaussian mixtures that produce defective moment varieties. As a
consequence, identifiability is determined when the number of mixed distributions is
smaller than the dimension of the space. In the two-component setting, we provide
a closed form solution for parameter recovery based on moments up to order four,
while in the one-dimensional case we interpret the rank estimation problem in terms
of secant varieties of rational normal curves.
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1 Introduction

In the context of algebraic statistics [19], moments of probability distributions have
recently been explored from an algebraic and geometric point of view [1,4,11,13].
The key point for this connection is that in many cases the sets of moments define
algebraic varieties, hence called moment varieties. In the case of moments of mixture
distributions, there is a natural correspondence to secant varieties of the moment
varieties. Studying geometric invariants such as their dimension reveals properties
such as model identifiability. One of the main applications for statistical inference is
in the context of the method of moments, which matches the distribution’s moments
to moment estimates obtained from a sample.

Gaussian mixtures are a prominent statistical model with multiple applications (see
[3] and references therein). They are probability distributions on Rn with a density
that is a convex combination of Gaussian densities:

λ1 fN (μ1,Σ1)(x) + · · · + λk fN (μk ,Σk )(x) (1)

where μ1, . . . , μk ∈ Rn are the k means, Σ1, . . . , Σk ∈ Sym2(Rn) are the covariance
matrices, and the 0 ≤ λi ≤ 1 with λ1 + · · · + λk = 1 are the mixture weights.

The starting point is thus the Gaussian moment variety Gn,d , as introduced in [4],
whose points are the vectors of all moments of order at most d of an n-dimensional
Gaussian distribution. The moments corresponding to the mixture density (1) form
the secant variety Seck(Gn,d), and identifiability in this general setting was the focus
of [5].

In this work, we study special families of Gaussian mixtures, called homoscedastic
mixtures, where all the Gaussian components share the same covariance matrix. In
other words, a homoscedastic Gaussian mixture has a density of the form

k∑

i=1

λi fN (μi ,Σ)(x) (2)

where the Gaussian probability densities fN(μi ,Σ)(x) have all different means μi and
same covariance matrix Σ . The moments, up to order d, of homoscedastic Gaussian
mixtures are still polynomials in the parameters (themeans and the covariancematrix),
and form the moment variety SecHk (Gn,d). This is a set of special k-secants inside the
secant variety Seck(Gn,d).

The main question we are concerned with is: when can a general homoscedastic
k-mixture of n-dimensional Gaussians be identified by its moments of order d? More
precisely, denote by ΘH

n,k the parameter space of means, covariances and mixture
weights for homoscedastic mixtures, and the moment map by

Mn,k,d : ΘH
n,k → SecHk (Gn,d). (3)

The mixture parameters of a point on the moment variety SecHk (Gn,d) can be uniquely
recovered if the fiber of the moment map (3) is a singleton up to natural permutations
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of the parameters. If this happens for a general point on the moment variety, we say
that the mixture is rationally identifiable from its moments up to order d. If the fiber of
a general point is finite, we say that we have algebraic identifiability. The parameters
are not identifiable if the general fiber of the moment map has positive dimension.

If the dimension of the parameter space is larger than the dimension of the space of
moments, then one may expect any moment to lie on the moment variety. Clearly, the
fiber of themomentmapmust have positive dimension andwe cannot have identifiabil-
ity.We therefore distinguish the unexpected cases: when the dimension of the moment
variety is less than the dimension of both the parameter space and the moment space,
then we say that the moment variety SecHk (Gn,d) is defective. In particular, defectivity
implies non-identifiability.

We illustrate with an example:

Example 1 Let n = 2, k = 2 and d = 3. That is, we considermoments up to order three
for the homoscedastic mixture of two Gaussians in R2. The Gaussian moment variety
G2,3 is 5-dimensional with 2 parameters for the mean vector and 3 for the symmetric
covariancematrix. The parameters for the homoscedasticmixture are twomeanvectors

μ1 =
(

μ11
μ12

)
and μ2 =

(
μ21
μ22

)
, the common covariance Σ =

(
σ11 σ12
σ12 σ22

)
and the

mixture weight λ of the first component, in total 2 × 2 + 3 + 1 = 8 parameters. On
the other hand, there are 9 bivariate moments up to order 3. Explicitly, the map is:

m10 = λμ11 + (1 − λ)μ21
m01 = λμ12 + (1 − λ)μ22

m20 = λ(μ2
11 + σ11) + (1 − λ)(μ2

21 + σ11)

m02 = λ(μ2
12 + σ22) + (1 − λ)(μ2

22 + σ22)

m11 = λ(μ11μ12 + σ12) + (1 − λ)(μ21μ22 + σ12)

m30 = λ(μ3
11 + 3σ11μ11) + (1 − λ)(μ3

21 + 3σ11μ21)

m03 = λ(μ3
12 + 3σ22μ12) + (1 − λ)(μ3

22 + 3σ22μ22)

m21 = λ(μ2
11μ12 + σ11μ12 + 2σ12μ11) + (1 − λ)(μ2

21μ22 + σ11μ22 + 2σ12μ21)

m12 = λ(μ11μ
2
12 + σ22μ11 + 2σ12μ12) + (1 − λ)(μ21μ

2
22 + σ22μ21 + 2σ12μ22)

Since there are more moments than parameters, one would expect that the mixture
parameters can be recovered. However, the dimension of SecH2 (G2,3) equals 7. This
is one less than the expected dimension of 8. Therefore, it is defective and there is no
algebraic identifiability. This means that the method of moments is doomed to fail in
this setting. However, if one measures moments up to order d = 4, it is possible to
uniquely recover the mixture parameters.

As is often observed [1,4,13], a change of coordinates to cumulants tends to yield
simpler representations and faster computations. This is the case here andhencewealso
study the cumulant varieties of the homoscedastic Gaussian mixtures. For Example 1,
the moment variety in cumulant coordinates is simply the cone over a twisted cubic
curve (see Example 5). This is not a coincidence, as is shown in Sect. 3.

Our main results, Theorems 2 and 3, identify the defective homoscedastic moment
varieties when d = 3 and show that the homoscedastic moment variety is not defective
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when k ≤ n + 1. These are analogues of the Alexander–Hirschowitz theorem on
secant-defective Veronese varieties [2].

This paper is organized as follows: In Sect. 2 we present the connection between
moments and cumulants. The moment varieties corresponding to homoscedastic mix-
tures are defined in Sect. 3. In Sect. 4 we give general algebraic identifiability
considerations and do a careful analysis of the subcases d = 3, k = 2 and n = 1.
Finally, we conclude with a summary of results and list further research directions.

2 Moments and Cumulants

To get started, we make some remarks about moments and cumulants from an alge-
braic perspective. To a sufficiently integrable random variable X on Rn , associate its
moments ma1,...,an [X ] and cumulants κa1,...,an [X ] through the generating functions in
R[[u1, . . . , un]]:

MX (u) =
∑

(a1,...,an)

ma1,...,an [X ]u
a1
1 . . . uann
a1! . . . an !

KX (u) =
∑

(a1,...,an)

κa1,...,an [X ]u
a1
1 . . . uann
a1! . . . an ! .

(4)

The information obtained frommoments is equivalent to that from cumulants, since
they are obtained from one another through the simple transformations

MX (u) = exp(KX (u)), KX (u) = log(MX (u)) (5)

which are well-defined, because the 0-th moment is always one, whereas the 0-th
cumulant is always zero: m0[X ] = 1, κ0[X ] = 0 for every random variable X . In
particular, moments and cumulants take values in the affine hyperplanes AM

n and AK
n

of R[[u1, . . . , un]] defined by

AM
n = {m0 = 1} , AK

n = {κ0 = 0} . (6)

We call these hyperplanes the moment space and the cumulant space.
Taking only moments up to order d, replace the ring R[[u1, . . . , un]] of power series

with the truncated ringR[[u1, . . . , un]]/(u1, . . . , un)d+1, and everything goes through.
In particular, there is an analogous definition of the affine hyperplanes AM

n,d and AK
n,d

which we also call moment space and cumulant space.

Example 2 (Dirac distribution) Let μ = (μ1, . . . , μn) in Rn be a point. The Dirac
distribution δμ with center μ on Rn is given by

∫

Rn
f (x)δμ(x) := f (μ). (7)
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If X is a random variable on Rn with this distribution, its moment-generating function
is

MX (u) = E[eut X ] = eu
tμ =

∑

(a1,...,an)

μ
a1
1 . . . μan

n
ua11 . . . uann
a1! . . . an ! . (8)

The moments of X are monomials evaluated at μ. On the other hand, for the cumulant
generating function

KX (u) = logMX (u) = log eu
tμ = utμ = μ1u1 + · · · + μnun, (9)

the linear cumulants coincidewith the coordinates ofμ, and the higher order cumulants
are all zero.

This has an immediate translation into algebro-geometric terms: the parameter
space for all Dirac distributions is the space Rn , and the image of the moment map of
degree d, M : Rn → AM

n,d is the affine d-th Veronese variety Vn,d ⊆ AM
n,d . On the other

hand, the image of the cumulant map K : Rn → AK
n,d is the linear subspace given by

{κ2 = κ3 = · · · = κd = 0}, where κi is the degree i-part of an element in AK
n,d .

Example 3 (Gaussian distribution) Let μ ∈ Rn be a point, and Σ ∈ Sym2 Rn an
n × n symmetric and positive-definite matrix. The Gaussian distribution on Rn with
mean μ and covariance matrix Σ is given by the density

f(μ,Σ)(x) := 1√
det(2πΣ)

e− 1
2 (x−μ)tΣ−1(x−μ). (10)

If X ∼ N (μ,Σ) is a Gaussian random variable with these parameters, its moment-
generating function and cumulant-generating function are given by

MX (u) = eu
tμ+ 1

2 u
tΣu, KX (u) = utμ + 1

2
utΣu. (11)

The Gaussian moment variety Gn,d ⊆ AM
n,d consists of all Gaussian moments up to

order d. Observe that the corresponding cumulant variety is given simply by the linear
subspace {κ3 = · · · = κd = 0} ⊆ AK

n,d .

While our focus is on Gaussian distributions, our approach applies to general loca-
tion families that admit moment and cumulant varieties. We illustrate this with the
next example.

Example 4 (Laplace distribution) The (symmetric) multivariate Laplace distribution
has a location parameter μ ∈ Rn and a covariance parameter Σ , a positive-definite
n × n matrix. Its density function involves the modified Bessel function of the second
kind (see [12, Chapter 5]), but it can be defined via its simpler moment generating
function:

MX (u) = exp(utμ)

1 − 1
2u

tΣu
, KX (u) = utμ − log

(
1 − 1

2
utΣu

)
(12)
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with radius of convergence such that |utΣu| < 2.
Moments and cumulants up to order d = 3 match with the Gaussian case. Also

note that when Σ = 0, the Dirac moment generating function is recovered. However,
when d ≥ 4, the Laplace cumulants are no longer a linear space in the cumulant space.

The multiplicative structure of the power series ring R[[u1, · · · , un]] makes it par-
ticularly suitable to independence statements with respect to moments. Indeed, if X ,Y
are two independent random variables on Rn , then

MX+Y (u) = E[eut (X+Y )] = E[eut Xeut Y ] = E[ut X ] · E[utY ] = MX (u) · MY (u).

With cumulants it is even simpler: it holds that

KX+Y (u) = log(MX+Y ) = log(MX ) + log(MY ) = KX (u) + KY (u).

The group of affine transformations Aff(Rn) acts naturally on both moments and
cumulants: indeed, for any A ∈ GL(n,R) and b ∈ Rn and a random variable X on
Rn ,

MAX+b(u) = MAX (u) · Mb(u) = E[eut AX ] · E[eut b] = eu
t b · MX (Atu)

and

KAX+b(u) = log(MAX+b(u)) = log(eu
t bMX (Atu)) = utb + KX (Atu).

In particular, note that translations correspond simply to translations in cumulant coor-
dinates, whereas they induce a more complicated expression in moment coordinates.

3 Homoscedastic Secants

When Karl Pearson introduced Gaussian mixtures to model subpopulations of crabs
[18], he also proposed themethod of moments in order to estimate the parameters. The
basic idea is to compute sample moments from observed data, and match them to the
distribution’s moments expressed in terms of the unknown parameters. The method
of moments estimates are the parameters that solve these equations. This is a classical
estimation method in statistics; a good survey is [16], and a recent ‘denoised’ version
for Gaussian mixtures is [21].

The method of moments is very friendly for mixture models because computing
moments of mixture densities is straightforward, since for every measurable function
g : Rn → R

∫

Rn
g(x)

(
k∑

i=1

λi f(μi ,Σi )(x)

)
dx =

k∑

i=1

λi

∫

Rn
g(x) f(μi ,Σi )(x)dx, (13)
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and thus, the moments are just linear combinations of the corresponding Gaussian
moments.

As hinted in the introduction, this discussion can be rephrased in geometric terms:
let Gn,d ⊆ AM

n,d be the Gaussian moment variety on Rn of order d. Then, the moments
of mixtures of Gaussians are linear combinations of points in Gn,d , so that their cor-
responding variety is the k-th secant variety Seck(Gn,d).

The densities of homoscedasticGaussianmixtures,where theGaussian components
share a common covariance matrix, have the form:

λ1 f(μ1,Σ)(x) + · · · + λk f(μk ,Σ)(x) (14)

where the μi ∈ Rn are the mean parameters, the Σ ∈ Sym2 Rn is the common
covariance parameters, and the λi ∈ R with λ1 + · · · + λk = 1 are the mixture
parameters. Thus, the parameter space for homoscedastic mixtures is

ΘH
n,k := (Rn)×k × Rk−1 × Sym2 Rn

= {((μ1, . . . , μk), (λ1, . . . , λk),Σ) | λ1 + · · · + λk = 1}, (15)

and it has dimension

dimΘH
n,k = nk + k − 1 + n(n + 1)

2
= (n + 1)

(
k + n

2

)
− 1. (16)

The moment map for homoscedastic mixtures is then an algebraic map

Mn,k,d : ΘH
n,k → AM

n,d .

Points on the image, the moments of homoscedastic mixtures, are linear combinations
of points in Gn,d ⊆ AM

n,d which share the same covariance matrix.

Definition 1 The homoscedastic k-secant variety, denoted SecHk (Gn,d), is the image
of the moment map Mn,k,d . The fiber dimension ΔH

n,k,d is the general fiber dimension
of the map Mn,k,d ,

ΔH
n,k,d = dimΘH

n,k − dim SecHk (Gn,d). (17)

We say that SecHk (Gn,d) is algebraically identifiable if ΔH
n,k,d = 0.

The feasibility of the method of moments is based on computing points on the
fibers of the moment map Mn,k,d . Algebraic identifiability of SecHk (Gn,d) means that
a general homoscedastic Gaussian mixture in the homoscedastic k-secant variety is
identifiable from itsmoments up to orderd in the sense that onlyfinitelymanyGaussian
mixture distributions share the same moments up to order d, whereas we reserve the
term rationally identifiable if a general fiber consists of a single point, up to label
swapping. In case the general fiber is not finite, then it is positive-dimensional, there
is no identifiability of the parameters from the moments up to order d, and a higher
order is needed for identifiability (cf. Remark 4 and [4, Problem 17]).
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Since the dimension of SecHk (Gn,d) is always bounded by the dimension of the
ambient space AM

n,d , there is a simple estimate for the fiber dimension:

Lemma 1 For all n, d, k it holds that

ΔH
n,k,d ≥ max

{
(n + 1)

(
k + n

2

)
−

(
n + d

d

)
, 0

}
. (18)

Proof The moment space AM
n,d is an affine hyperplane inside the vector space

R[[u1, . . . , un]]/(u1, . . . , un)d+1; hence, it has dimension

dim AM
n,d = dim R[[u1, . . . , un]]/(u1, . . . , un)d+1 − 1 =

(
n + d

d

)
− 1. (19)

Since SecHk (Gn,d) ⊆ AM
n,d , note that

ΔH
n,k,d = dimΘH

n,k − dim SecH (Gn,d) ≥ dimΘH
n,h − dim AM

n,d (20)

which is exactly the inequality in the statement. 	

We expect that in general situations the inequality (18) is in fact an equality. Hence,

define the defect to be

δHn,k,d := ΔH
n,k,d − max

{
(n + 1)

(
k + n

2

)
−

(
n + d

d

)
, 0

}
. (21)

We say that SecHk (Gn,d) is defective if δHn,k,d > 0. As observed earlier, defectivity
implies non-identifiability.

3.1 Cumulant Representation

Let us explore how homoscedastic secants become simpler in cumulant coordinates,
and how this representation can be used to check identifiability.

First, rephrase the situation in terms of random variables: let Z = ZΣ be a
Gaussian random variable with mean 0 and covariance matrix Σ , and let B =
B(μ1,...,μk ),(λ1,...,λk ) an independent random variable with distribution given by a mix-
ture of Dirac distributions:

λ1δμ1(x) + · · · + λkδμk (x). (22)

Then, the random variable Z + B has density given by the homoscedastic mixture
(1). Moreover, if m = μ1λ1 + · · · + μkλk is the mean of B, we write B = A + m,
where A is a centered mixture of Dirac distributions.

One can compute cumulants of this random variable as follows:

KB+Z (u) = KB(u) + KZ (u) = KA(u) + mtu + 1

2
utΣu (23)
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and this suggests to parametrize the homoscedastic secants in cumulant coordinates
as follows:

K : Θ0
n,k × Rn × Sym2 Rn → AK

n,d , (A,m,Σ) �→ KA(u) + mtu + 1

2
utΣu

(24)

where Θ0
n,k parametrizes the centered mixtures of Dirac distributions

Θ0
n,k = {(μ1, . . . , μk), (λ1, . . . , λk) | λ1μ1 + · · · + λkμk = 0, λ1 + · · · + λk = 1}

The cumulant homoscedastic secant variety log(SecHk (Gn,d)) is the image of the map
K . Since in this variety, one can freely translate by the elements in Rn and Sym2(Rn),
the first cumulants and the second cumulants can take any value. The constraints are in
the cumulants of order three and higher.We summarize this discussion in the following
lemma.

Lemma 2 Let AK ,3
n,d be the space of cumulants of order at least three and at most d,

let

φn,k,d : Θ0
n,k → AK ,3

n,d , A �→ KA(u)3 + KA(u)4 + · · · + KA(u)d (25)

be the cumulantmap and let C0
n,k,d denote the closureφn,k,d(Θ

0
n,k). Then, the cumulant

homoscedastic secant variety log(SecHk (Gn,d)) is a cone over C0
n,k,d .

Remark 1 In particular, the equations for the cumulant homoscedastic secant variety
log(SecH (Gn,d)) inside AK

n,d are exactly the same as the equations for C0
n,k,d inside

AK ,3
n,d .

The fiber dimensionΔH
n,k,d can also be computed as the fiber dimension of the map

φn,k,d :

Lemma 3 The fiber dimensionΔH
n,k,d is equal to the fiber dimension of φn,k,d . In other

words

ΔH
n,k,d = dimΘ0

n,k − dimC0
n,k,d = (k − 1)(n + 1) − dimC0

n,k,d . (26)

Proof Thefiber dimension is the difference dimΘH
n,k−dim log(SecHk (Gn,d)).Weknow

that ΘH
n,k

∼= Θ0
n,k × Rn × Sym2 Rn . Moreover, Lemma 2 says that log(SecHk (Gn,d))

is the cone over C0
n,k,d , which is precisely Rn × Sym2 Rn × C0

n,k,d , so that the first

equality follows. For the second equality, the dimension of Θ0
n,k can be computed as

nk + k − 1 − n = (n + 1)(k − 1). 	

Example 5 (n = k = 2 , d = 3) Revisiting Example 1 from the introduction, we con-
cluded that SecH2 (G2,3) ⊂ AM

2,3
∼= A9 is expected to be a hypersurface but it is actually
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of codimension 2. The ideal of SecH2 (G2,3) is Cohen–Macaulay and determinantal
(generated by the maximal minors of a 6 × 5-matrix) as described in [4, Proposition
19]. The homoscedastic cumulant variety log(SecH2 (G2,3)) is defined by the vanishing
of the 2 × 2 minors of

(
k30 k21 k12
k21 k12 k03

)
.

Note that indeed the first- and second-order cumulants k10, k01, k20, k11, k22 do not
appear in the equations above, so that the cumulant variety is the cone over the twisted
cubic curve.

Remark 2 To estimate the mixture parameters from the cumulants, it is enough to
consider the map φn,k,d of Lemma 2. Indeed, suppose that we have a homoscedas-
tic mixture with parameters (((λ1, . . . , λk), (μ1, . . . , μk)),m,Σ) ∈ Θ0

n,k × Rn ×
Sym2 Rn and suppose that its cumulants are known, so that in polynomial form

κ1(u) = mtu

κ2(u) = KA(u)2 + 1

2
utΣu

κ3(u) = KA(u)3

κ4(u) = KA(u)4

...

. (27)

Then, to recover the parameters one can first try to recover the λi and the μi from the
cumulants of order three and higher, and then compute m and Σ from the cumulants
of order one and two.

3.2 Veronese Secants

We briefly observe that we can recast the above discussion in a way that makes appar-
ent the connection tomixtures of Dirac distributions and, hence, to secants of Veronese
varieties. To work with classical secant varieties, this time we work in moment coor-
dinates. Now, every homoscedastic mixture is the distribution of a random variable of
the form Z + B, where B is a mixture of Dirac distributions and Z is a centered Gaus-
sian of covariance Σ , independent from B. Thus, the moment generating function of
this variable is

MZ+B(u) = MZ (u)MB(u) = e
1
2 u

tΣu · MB(u). (28)

Therefore, the role of the covariance parameter is decoupled from the others: In par-
ticular, forΣ = 0, one obtains the moment variety for mixtures of Dirac distributions.
When restricting to moments M(u)d of degree at most d, this is precisely the k-secants
to the Veronese variety Seck(Vn,d). The additive group Sym2 Rn acts on the moment
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space AM
n,d by

Sym2 Rn × AM
n,d → AM

n,d , (Σ, M(u)d) �→ e
1
2 u

tΣu · M(u)d (29)

and so (28) says that SecHk (Gn,d) is the union of all the orbits of the points in Seck(Vn,d)

under this action.
This is useful because we can exploit well-known results on secants of Veronese

varieties to address identifiability. First, let ΔV
n,k,d denote the fiber dimension of the

k-secants to the Veronese variety Seck(Vn,d) ⊆ AM
n,d : by definition, this is

ΔV
n,k,d := nk + k − 1 − dim Seck(Vn,d). (30)

A basic estimate for the dimension of Seck(Vn,d) is given by the dimension of the
ambient space dim AM

n,d = (n+d
d

) − 1, hence

ΔV
n,k,d ≥ max

{
(n + 1)k −

(
n + d

d

)
, 0

}
(31)

so that we can define the defect of the k-secants to the Veronese variety as

δVn,k,d := ΔV
n,k,d − max

{
(n + 1)k −

(
n + d

d

)
, 0

}
. (32)

This number was famously computed by Alexander and Hirschowitz [2], see also [7]:

Theorem 1 (Alexander–Hirschowitz) The defect for the Veronese variety is always
zero, except in the following exceptional cases

d = 2, 2 ≤ k ≤ n ΔV
n,k,2 = k(k − 1)

2
n = 2, d = 4, k = 5 δV2,5,4 = 1

n = 3, d = 4, k = 9 δV3,9,4 = 1

n = 4, d = 3, k = 7 δV4,7,3 = 1

n = 4, d = 4, k = 14 δV4,14,4 = 1 (33)

Moreover, for a general point M(u) ∈ Seck(Vn,d), consider the closed subset of
Sym2 Rn given by

D(M) := {Σ ∈ Sym2 Rn | e 1
2 u

tΣu · M(u) ∈ Seck(Vn,d)}. (34)

We have the following relation between the fiber dimensions (17) and (30):
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Proposition 1 It holds that

ΔH
n,k,d = ΔV

n,k,d + dim D(M) (35)

where M ∈ Seck(Vn,d) is a general point.

Proof By the previous discussion, themomentmap for homoscedasticmixtures factors
as a composition of two surjective maps

ΘH
n,k → Sym2(Rn) × Seck(Vn,d) → SecHk (Gn,d). (36)

Hence, the fiber dimension of the composite map is the sum of the fiber dimensions
of the two factors. For the first one this is ΔV

n,k,d , so it remains to consider the second.

Denote the second factor by ρ : Sym2(Rn) × Seck(Vn,d) → SecHk (Vn,d) and let
(Σo, Mo(u)) ∈ Sym2(Rn) × Seck(Vn,d) be a general point. The fiber is

ρ−1(ρ(Σo, Mo(u))) =
{
(Σ, M(u)) | e 1

2 u
tΣu · M(u) = e

1
2 u

tΣou · Mo(u)
}

= {(Σ, M(u)) | M(u) = e
1
2 u

t (Σo−Σ)u · Mo(u)}
∼={Σ ∈ Sym2(Rn) | e 1

2 u
t (Σo−Σ)u · Mo(u) ∈ Seck(Vn,d)}

= Σo − {Σ ′ ∈ Sym2(Rn) | e 1
2 u

tΣ ′u · Mo(u) ∈ Seck(Vn,d)}
∼=DK (Mo),

concluding the proof. 	

Remark 3 In the range (n + 1)

(
k + n

2

) ≤ (n+d
d

)
where we expect identifiability

for homoscedastic Gaussian mixtures, we see that ΔH
n,k,d = δHn,k,d , and Alexander–

Hirschowitz says that ΔV
n,k,d = δVn,k,d = 0. Hence, Proposition 1 yields

δHn,k,d = dim D(M) (37)

4 Moment Identifiability

Now we start to determine identifiability in various cases. To do so, it is convenient
to change notation slightly. Up to now, we have identified moments and cumulants
with their corresponding generating functions. In the next sections, it is useful to
identify the parameters with polynomials as well. We replace the location parameter
μ = (μ1, . . . , μn)with the corresponding linear polynomial utμ = μ1u1+· · ·+μnun
and we replace the covariance parameter Σ with the quadric 1

2u
tΣu. Of course, the

two representations are equivalent, but the polynomial formalism is better suited to
the cumulant space and the moment space. In particular, the linear polynomials live
in the dual vector space V = Hom(Rn,R), whereas the quadratic polynomials live in
Sym2 V .
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The next inequality reflects the fact that increasing the order of moments (or cumu-
lants) measured results in better identifiability:

Lemma 4 The fiber dimensions of general fibers of Mn,k,d and Mn,k,d+1 satisfy:

ΔH
n,k,d ≥ ΔH

n,k,d+1. (38)

Proof Bydefinition, the fiber dimensionΔH
n,k,d is the dimension of a general nonempty

fiber of the moment map Mn,k,d : ΘH
n,k,d → AM

n,d . However, this map is the composi-

tion of the map Mn,k,d+1 : ΘH
n,k,d → AM

n,d+1 and the projection map AM
n,d+1 → AM

n,d ,
that forgets the moments of order d + 1, so the conclusion follows. 	

Remark 4 Since Gaussian mixtures are identifiable from finitely many moments (see,
e.g., [4]), the sequence

ΔH
n,k,1 ≥ ΔH

n,k,2 ≥ · · · ≥ ΔH
n,k,d ≥ ΔH

n,k,d+1 ≥ · · ·

must stabilize at 0 for some large enough d.

The following observation is less trivial. It allows a reduction to the case n = k−1.

Proposition 2 Suppose that d ≥ 3 and n ≥ k − 1, then

ΔH
n,k,d = ΔH

k−1,k,d . (39)

Proof Use Lemma 3, which says that the fiber dimension ΔH
n,k,d is equal to the fiber

dimension of the map

φn,k,d : Θ0
n,k → AK ,3

n,d . (40)

This dimension can be computed by looking at the differential of the map at a general
point. The parameter space is defined as

Θ0
n,k =

{
((λ1, . . . , λk), (L1, . . . , Lk)) ∈ Rk × V k |

k∑

i=1

λi = 1,
k∑

i=1

λi Li = 0

}
.

Let p = ((λ1, . . . , λk), (L1, . . . , Lk)) ∈ Θ0
n,k be a general point. Then, the tangent

space to Θ0
n,k at the point is given by

TpΘ
0
n,k =

{
((εi )

k
i=1, (Hi )

k
i=1) ∈ Rk × V k |

k∑

i=1

εi = 0,
k∑

i=1

(εi Li + λi Hi ) = 0

}
.

The fiber dimension of φn,k,d coincides with the dimension of the kernel of the
differential dφn,k,d at the general point p. In particular, since the point is general
and n ≥ k − 1, we can suppose that Li = ui for i = 1, . . . , k − 1 and that all the
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λi are nonzero. In particular Lk is a linear combination of u1, . . . , uk−1. Now, we
claim that if ((ε1, . . . , εk), (H1, . . . , Hk)) is in the kernel of dφn,k,d then the only
variables appearing in the Hi are u1, . . . , uk−1. If this is true, then we are done,
because the kernel of dφn,k,d coincides with the kernel of dφk−1,k,d at the point
((λ1, . . . , λk), (L1, . . . , Lk)) ∈ Θ0

k−1,k
To prove the claim, observe that themap is given by the cumulant functionsφn,k,d =

(κ3, κ4, . . . , κd), so the kernel of dφn,k,d equals the intersection of the kernels of the
dκi for i = 3, . . . , d. Therefore, it is enough to prove the analogous claim for the
kernel of the differential dκ3 of κ3. Since the first moment is zero by construction, the
third cumulant coincides with the third moment

κ3 = λ1L
3
1 + · · · + λk L

3
K . (41)

Hence, the differential is the linear map

dκ3,p : TpΘ
0
n,k → AK ,3

n,d , ((ε1, . . . , εk), (H1, . . . , Hk)) �→
k∑

i=1

(3λi Hi + εi Li )L
2
i

and if ((ε1, . . . , εk), (H1, . . . , Hk)) is in the kernel, then it must be that

k∑

i=1

hi L
2
i = 0, where hi = 3λi Hi + εi Li . (42)

Sinceλk �= 0, this is equivalent to
∑k

i=1 hi (λk Li )
2 = 0 and sinceλ1L1+· · ·+λk Lk =

0, we see that

k∑

i=1

hi (λk Li )
2 =

k−1∑

i=1

hi (λk Li )
2 + hk(λk Lk)

2 =
k−1∑

i=1

hi (λk Li )
2 + hk

(
k−1∑

i=1

λi Li

)2

=
k−1∑

i=1

(λ2khi + λ2i hk)L
2
i + 2hk

⎛

⎝
∑

1≤i< j≤k−1

λiλ j Li L j

⎞

⎠ .

By assumption Li = ui for i = 1, . . . , k − 1, so this last expression is equal to zero
if and only if

k−1∑

i=1

(λ2khi + λ2i hk)u
2
i = −2hk

⎛

⎝
∑

1≤i< j≤k−1

λiλ j ui u j

⎞

⎠ . (43)

If this is true, then hk uses only the variables u1, . . . , uk−1. Indeed, if some other
variable, say y, appears in hk , then on the right-hand side there is the monomial yu1u2,
while there is no such a monomial on the left-hand side. Likewise, if the variable y
appears in one of the hi for i = 1, . . . , k − 1: then on the left-hand side there would
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be a monomial of the form yu2i , while there is no such monomial on the right hand
side.

Hence, the hi are polynomials in the u1, . . . , uk , and, by definition of the hi ,
it follows that the same holds for the Hi . This proves the claim and the result
follows. 	


4.1 Moments Up to Order d = 3

When d = 3 we determine the defect δHn,k,3 and the fiber dimensionΔH
n,k,3 of the map

φn,k,3 : Θ0
n,k → AK ,3

n,3

for each n and k, and use Lemma 3. When d = 3, the space AK ,3
n,3 is identified with

the space Sym3 V of homogeneous polynomials of degree three, and as noted in the
proof of Proposition 2, the third cumulants coincide with the third moments, so that:

φn,k,3 : Θ0
n,k → Sym3 V ((L1, . . . , Lk), (λ1, . . . , λk)) �→ λ1L

3
1 + · · · + λk L

3
k .

We compute the closure C0
n,k,3 of the image.

Lemma 5 The set C0
n,k,3 is the Zariski closure of

{H1(u)3 + · · · + Hk(u)3 | H1(u), . . . , Hk(u) ∈ Rn linearly dependent }. (44)

Proof Recall that

Θ0
n,k = {((Li )

k
i=1, (λi )

k
i=1)) ∈ V k × Rk−1|λ1 + · · · + λk = 1, λ1L1 + · · · + λk Lk = 0}.

To compute the Zariski closure, suppose that all the λi are strictly positive, so that in
particular we can write

Lk = −λ1

λk
L1 − · · · − λk−1

λk
Lk−1. (45)

Since cubic roots are well defined over R,

λ1L
3
1 + · · · + λk L

3
k = λ1L

3
1 + · · · + λk−1L

3
k−1 − λk

(
λ1

λk
L1 + · · · + λk−1

λk
Lk−1

)3

= H3
1 + · · · + H3

k−1 + H3
k

where Hi := 3
√

λi Li for i = 1, . . . , k − 1, and Hk := −∑k−1
i=1

(
3√λi
3√λk

)2
Hi , using the

equality 3
√

λk
λi
λk

=
(

3√λi
3√λk

)2
3
√

λi . In particular, this shows immediately that λ1L3
1 +

· · ·+λk L3
k can be written as a sum of cubic powers of linearly dependent linear forms.
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For the converse, let H1, . . . , Hk be linearly dependent linear forms. For the Zariski
closure, it suffices to assume that Hk = −β1H1 − · · · − βk−1Hk−1 for some general
β1, . . . , βk−1 ∈ R strictly positive. So we want to write

βi =
( 3

√
λi

3
√

λk

)2

(46)

for some positive λ1, . . . , λk ∈ R such that λ1 + · · · + λk = 1. Given such λi , the
above computations yields

H3
1 + · · · + H3

k = λ1L
3
1 + · · · + λk L

3
k, (47)

where Li = 1
3√λi

Hi for i = 1, . . . , k − 1 and Lk = −λ1
λk
L1 − · · · − λk−1

λk
Lk−1, so that

λ1L1 + · · · + λk Lk = 0, as wanted.
To conclude, it remains to show that Eq. (46) have a solution: these equations are

equivalent to

(
√

βi )
3 = λi

1 − λ1 − · · · − λk−1
for i = 1, . . . , k − 1. (48)

Observe that the square roots are well defined since βi > 0 for all i = 1, . . . , k − 1.
Moreover, if (λ1, . . . , λk−1) is a solution to (48), then it is easy to see that all the λi
must be strictly positive: indeed, since the βi are positive, λi and 1− λ1 − · · · − λk−1
have the same sign. Thus, if one of the λi is negative, then all the λi are negative, but
then 1 − λ1 − · · · − λk−1 > 0 which is absurd.

Now, setting bi = √
βi

3, rewrite the equations as the linear system

⎛

⎜⎜⎜⎜⎜⎝

1 + b1 b1 b1 . . . b1
b2 1 + b2 b2 . . . b2
b3 b3 1 + b3 . . . b3
...

...
...

. . .
...

bk−1 bk−1 bk−1 . . . 1 + bk−1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

λ1
λ2
λ3
...

λk−1

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

b1
b2
b3
...

bk−1

⎞

⎟⎟⎟⎟⎟⎠
. (49)

Thematrix determinant lemmagives that det(I+b·1T ) = 1+1T b =1+b1+· · ·+bk−1,
which is positive since the βi are positive. This means the system (49) has a unique
solution. 	

Remark 5 The proof of Lemma 5 actually gives more: indeed, it shows that the image
of the positive part

Θ
0,+
n,k = {((L1, . . . , Lk), (λ1, . . . , λk)) ∈ Θ0

n,d | λi > 0 for all i = 1, . . . , k},

which is the one relevant in statistics, coincides with the set of sums {H1(u)3 +
· · · + Hk(u)3}, where the Hi are positively linearly dependent, meaning that there are
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coefficients β1, . . . , βk > 0 such that

β1H1 + · · · + βk Hk = 0. (50)

Remark 6 The set of sums of cubes of k dependent linear forms has a natural interpre-
tation in terms of the projective Veronese variety: indeed consider the third Veronese
embedding of P(V ) = Pn−1:

v3 : P(V ) ↪→ P(Sym3 V ), [L] �→ [L3]. (51)

For each (k − 2)-dimensional linear subspace Π ⊆ Pn−1 let Seck(v3(Π)) ⊆
P(Sym3 V ) be the k-th secant variety of its image v3(Π). Then, by Lemma 5, the
variety C0

n,k,3 is the affine cone over the union of these secants:

C0
n,k,3 = Cone

⎛

⎝
⋃

Π⊆Pn−1

Seck(v3(Π))

⎞

⎠ . (52)

We compute the dimension of this variety, dividing it in the cases k ≤ n + 1 and
k ≥ n + 1:

Proposition 3 (i) If k ≥ n + 1, then

dimC0
n,k,3 = min

{
kn,

(
n + 2

3

)}
(53)

except in the case n = 5, k = 7, where dimC0
5,7,3 = 34.

(ii) If k ≤ n + 1, then

ΔH
n,4,3 = 2, ΔH

n,3,3 = 2, ΔH
n,2,3 = 1. (54)

and when k ≥ 5,

ΔH
n,k,3 = 0. (55)

Proof (i) Since k ≥ n+1, Remark 6 shows that C0
n,k,3 is the cone over the k-th secant

variety Seck(v3(Pn−1)). The dimension of this variety is computed by the Alexander–
Hirschowitz theorem, so that

dimC0
n,k,3 = min

{
kn,

(
n + 2

3

)}
(56)

with the single exception of n = 5, k = 7, where the dimension is one less than the
expected, hence dimC0

5,7,3 = 34.
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(ii) Since k ≤ n + 1, Proposition 2 shows that ΔH
n,k,3 = ΔH

k−1,k,3. Hence, for
k = 2, 3, 4 we see directly from Table 1 that

ΔH
3,4,3 = 2, ΔH

2,3,3 = 2, ΔH
1,2,3 = 1. (57)

For k ≥ 5 instead, we follow the proof of Proposition 2 and show that the differential
of φk−1,k,3 : Θ0

k−1,k,3 → Sym3 V at a general point is injective. For this, consider
the kernel of the differential at a point p = ((λ1, . . . , λk), (L1, . . . , Lk)). It consists
of elements ((ε1, . . . , εk), (H1, . . . , Hk)) ∈ Rk × V k such that ε1 + · · · + εk =
0, ε1L1 + · · · + εk Lk + λ1H1 + · · · + λk Hk = 0 and

k−1∑

i=1

�i L
2
i + 2h

⎛

⎝
∑

1≤i< j≤k−1

λiλ j Li L j

⎞

⎠ = 0, (58)

where �i = λ2k(3λi Hi + εi Li ) + λ2i (3λk Hk + εk Lk) and h = 3λk Hk + εk Lk . Now
choose the specific point p given by λi = 1

k for each i = 1, . . . , k, Li = ui for
i = 1, . . . , k − 1 and Lk = −u1 − · · · − uk−1. Then, the above equation becomes

k−1∑

i=1

�i u
2
i + 2

k2
· h ·

⎛

⎝
∑

1≤i< j≤k−1

uiu j

⎞

⎠ = 0. (59)

Let us write h = h1u1 + · · · + hk−1uk−1. Then, in (59), the coefficient of uaubuc
is 2

k2
(ha + hb + hc) for all 1 ≤ a < b < c ≤ k − 1. Hence

ha + hb + hc = 0, for all 1 ≤ a < b < c ≤ k − 1. (60)

Let 1 ≤ a < b < c < d ≤ k − 1 be any four distinct indices between 1 and k − 1.
Then, the previous equations translate into the linear system

⎛

⎜⎜⎝

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ha
hb
hc
hd

⎞

⎟⎟⎠ = 0. (61)

The matrix appearing in the linear system is invertible, so ha = hb = hc = hd = 0.
Since this holds for an arbitrary choice of four distinct indices, it follows that h = 0.
Now, relation (59) tells us that

∑k−1
i=1 u

2
i �i = 0, but since u21, . . . , u

2
k−1 forma complete

intersection of quadrics, they do not have linear syzygies, which implies that �i = 0
for each i . From the definitions of �i and h, it follows that 3λi Hi + εi Li = 0 for each
i but then the other two relations

∑
i εi = 0 and

∑
i (λi Hi + εi Li ) = 0 imply that

Hi = 0, εi = 0 for all i , which is what was needed. 	

Now we are ready for a complete classification of defectivity when d = 3.
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Table 1 All instances of
defective varieties SecHk (Gn,3)

for n = 1, . . . , 7 with d = 3

n k d par N exp dim δ Δ

1 1 3 2 3 2 2 0 0

1 2 3 4 3 3 3 0 1

2 2 3 8 9 8 7 1 1

2 3 3 11 9 9 9 0 2

3 2 3 13 19 13 12 1 1

3 3 3 17 19 17 15 2 2

3 4 3 21 19 19 19 0 2

4 2 3 19 34 19 18 1 1

4 3 3 24 34 24 22 2 2

4 4 3 29 34 29 27 2 2

4 5 3 34 34 34 34 0 0

5 2 3 26 55 26 25 1 1

5 3 3 32 55 32 30 2 2

5 4 3 38 55 38 36 2 2

5 5 3 44 55 44 44 0 0

5 6 3 50 55 50 50 0 0

5 7 3 56 55 55 54 1 2

6 2 3 34 83 34 33 1 1

6 3 3 41 83 41 39 2 2

6 4 3 48 83 48 46 2 2

6 5 3 55 83 55 55 0 0

6 6 3 62 83 62 62 0 0

6 7 3 69 83 69 69 0 0

6 8 3 76 83 76 75 1 1

6 9 3 83 83 83 81 2 2

7 2 3 43 119 43 42 1 1

7 3 3 51 119 51 49 2 2

7 4 3 59 119 59 57 2 2

7 5 3 67 119 67 67 0 0

7 6 3 75 119 75 75 0 0

7 7 3 83 119 83 83 0 0

7 8 3 91 119 91 91 0 0

7 9 3 99 119 99 98 1 1

7 10 3 107 119 107 105 2 2

7 11 3 115 119 115 112 3 3

7 12 3 123 119 119 119 0 4

The column ‘par’ denotes the number of parameters and ‘exp’ the
expected dimension
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Theorem 2 For d = 3, the defect δHn,k,3 = 0 for any k and n, with the following
exceptions:

– n ≥ k and k = 2, where δHn,2,3 = 1.

– n ≥ k and k = 3, 4, where δHn,k,3 = 2.

– n = 5 and k = 7, where δH5,7,3 = 1.

– n ≥ 4 and n + 1 < k ≤ n2+2n+6
6 where δHn,k,3 = k − n − 1.

– n ≥ 4 and n2+2n+6
6 ≤ k < n2+3n+2

6 where δHn,k,3 = n
(
n2+3n+2

6 − k
)
.

Proof First consider the case when n ≥ k: then Proposition 3 applies. It is straightfor-
ward to check that δHn,k,3 = ΔH

n,k,d , from which the statement of the theorem follows.
For the cases where k ≥ n + 1, start with the exceptional case n = 5, k = 7:

Proposition 3 gives that dim φn,k,3(Θ
0
5,7) = 34, and Lemma 3 yields ΔH

5,7,3 = 2 and

δH5,7,3 = 1.
Now, consider the other cases: Proposition 3 gives that

dim φn,k,3(Θn,k) = min

{
nk,

(
n + 2

3

)}
(62)

and then Lemma 3 shows that

ΔH
n,k,3 = (k − 1)(n + 1) − min

{
nk,

(
n + 2

3

)}

= max

{
k − n − 1, k − n − 1 + n

(
k − n2 + 3n + 2

6

)}

so that

δHn,k,3 = max

{
k − n − 1, k − n − 1 + n

(
k − n2 + 3n + 2

6

)}

− max

{
0, (n + 1)

(
k − n2 + 2n + 6

6

)}
.

Suppose first that n = 1, 2, 3: this implies k ≥ n + 1 ≥ n2+2n+6
6 ≥ n2+3n+2

6 so that

δHn,k,3 = k − n − 1 + n

(
k − n2 + 3n + 2

6

)
− (n + 1)

(
k − n2 + 2n + 6

6

)
= 0.

Now, suppose that n ≥ 4. Then 5 ≤ n + 1 ≤ n2+2n+6
6 ≤ n2+3n+2

6 and there are three

possibilities for k: if k ≥ n2+3n+2
6 , then

δHn,k,3 = k − n − 1 + n

(
k − n2 + 3n + 2

6

)
− (n + 1)

(
k − n2 + 2n + 6

6

)
= 0.
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If instead n2+2n+6
6 ≤ k < n2+3n+2

6 , then

δHn,k,3 = k − n − 1 − (n + 1)

(
k − n2 + 2n + 6

6

)
= n

(
n2 + 3n + 2

6
− k

)
(63)

which is strictly positive. Finally, if n + 1 ≤ k < n2+2n+6
6 , the defect is

δHn,k,3 = k − n − 1, (64)

which is positive if and only if k > n + 1. 	

As a consequence, identifiability can be characterized whenever k ≤ n + 1:

Theorem 3 Suppose k ≤ n + 1. If k ≥ 5 then a general homoscedastic mixture is
algebraically identifiable from moments up to order 3. If instead k = 2, 3, 4, then a
general homoscedastic mixture is algebraically identifiable from the moments up to
order d = 4.

Proof When k ≥ 5 this follows immediately from Theorem 2 and Lemma 4. If instead
k = 2, 3, 4, thanks to Proposition 2, it is enough to set n = k − 1 and check the first d
for which we have identifiability: these are a finite number of cases that can be done
by direct computation (e.g., in Macaulay2 [9]), and we find that such a d is 4. 	


4.2 Mixtures with k = 2 Components

When k = 2 we characterize the rational identifiability as well. Since the case d = 3
is already covered, consider only d ≥ 4.

Theorem 4 Thehomoscedastic secant varietySecH2 (Gn,4) is algebraically identifiable.
If d ≥ 5, the homoscedastic secant variety SecH2 (Gn,d) is also rationally identifiable.

Proof By Lemma 3 and Remark 2, it is enough to consider the parameter space given
by Θ0

n,2 = {((L1, L2), (λ1, λ2)) | λ1 + λ2 = 1, λ1L1 + λ2L2 = 0} and the map

φn,2,d : Θ0
n,2 → C0

n,2,d ⊆ AK ,3
n,d . (65)

In order to compute the general fiber of this map, note that since d ≥ 4, it follows
from Theorem 3 and its proof that the map has finite fibers. Hence, it is enough
to restrict a general fiber to the open subset λ2 �= 0. There we may assume L2 =
−λ1

λ2
L1 = − λ1

1−λ1
L1. We thus compute the fibers of the induced map

Fn,2,d : V × (R \ {1}) → AK ,3
n,d , (L, λ) �→ φn,2,d

(
(λ, 1 − λ),

(
L,− λ

1 − λ
L

))
.

In explicit terms, this map is given by the terms from degree 3 to degree d of the

logarithm log(λeL + (1 − λ)e− λ
λ−1 L). A computation shows that the first terms are:

log(λeL + (1 − λ)e− λ
λ−1 L) = f3(λ)L3 + f4(λ)L4 + f5(λ)L5 + . . .
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f3(λ) = λ(1 − λ)(1 − 2λ)

6(1 − λ)3
, f4(λ) = λ(1 − λ)(1 − 6λ(1 − λ))

24(1 − λ)4
,

f5(λ) = λ(1 − λ)(1 − 2λ)(1 − 12λ(1 − λ))

120(1 − λ)5
. (66)

Now suppose that d = 4, and let L ∈ V and λ ∈ R \ {1} be general elements. In
fact, it is enough to assume L �= 0 and λ �= 0, 1, 1

2 , so that κ3 = f3(λ)L3 �= 0.
In order to compute the fiber of the point (κ3, κ4) = Fn,2,4(L, λ), first observe that
κ3 = f3(λ0)L3

0 = ( 3
√

f3(λ0)L0)
3 and that the polynomial L0 := 3

√
f3(λ)L can be

computed explicitly: from the expression

κ3 = κ300..0u
3
1 + κ030..0u

3
2 + · · · + κ00..03u

3
n + ( terms with mixed monomials )

then one obtains

L0 = 3
√

κ300..0 · u1 + 3
√

κ030..0 · u2 + . . . + 3
√

κ00..03 · un . (67)

In particular, L = f3(λ)− 1
3 L0, so that the equation κ4 = f4(λ)L4 translates into

f4(λ)

f3(λ)
4
3

= κ4
L4
0
. Observe that a := κ4

L4
0
is a constant that can be computed explicitly by

comparing a single nonzero coefficient of L4
0 with the corresponding coefficient of κ4:

for example, if 3
√

κ300..0 �= 0, then

a = κ400..0

( 3
√

κ300..0)4
. (68)

Now, the equation f4(λ)

f3(λ)
4
3

= a is equivalent to f4(λ)3

f3(λ)4
= a3, or more explicitly

3

32
· (1 − 6λ(1 − λ))3

λ(1 − λ)(1 − 4λ(1 − λ))2
= a3. (69)

Note that this expression is invariant under exchangingλwith 1−λ, as is expected from
the symmetry of the situation. Hence, set γ := λ(1 − λ) and rewrite this expression
as

3

32
· (1 − 6γ )3

γ (1 − 4γ )2
= a3. (70)

This is a cubic equation with three possible solutions for γ , which means there is
no rational identifiability. In order to get such, consider also the cumulants κ5 of
order 5: this adds the data κ5 and the condition κ5 = f5(λ)L5. In the above notation
L = f3(λ)− 1

3 L0, so that the conditionκ5 = f5(λ)L5 becomes f5(λ)

f3(λ)
5
3

= κ5
L5
0
.As before,

we see that b := κ5
L5
0
is a constant that can be computed explicitly by comparing a
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single nonzero coefficient of L5
0 with the corresponding coefficient of κ5: for example,

if 3
√

κ300..0 �= 0, then

b = κ500..0

( 3
√

κ300..0)5
. (71)

Now, the equation f5(λ)

f3(λ)
5
3

= a is equivalent to f5(λ)3

f3(λ)5
= b3, or more explicitly, as

above, with the substitution γ = λ(1 − λ),

15

128
· (1 − 6γ )5

γ (1 − γ )3(1 − 12γ )
= b3. (72)

Hence, rational identifiability is obtained if the two Eqs. (70) and (72) have a unique
common solution γ . This means that the map R ��� R2, γ �→ (g(γ ), h(γ )) is gener-
ically injective. This map extends to R → P2 via

[
3

32
(1 − 6γ )3(1 − γ )3(1 − 12γ ),

15

128
(1 − 6γ )5(1 − 4γ )2, γ (1 − 4γ )(1 − γ )3(1 − 12γ )

]
,

i.e., a map defined by polynomials of degree 7. It is generically injective if and only
if the closure of its image is a plane curve of degree 7. This can be verified with
Macaulay2 [9]: the resulting curve is given by the equation

849346560x5y2 − 679477248x4y3 − 29491200x5yz + 2674483200x4y2z − 2439217152x3y3z

+256000x5z2 + 79744000x4yz2 + 2415168000x3y2z2 − 2616192000x2y3z2

+499500000x2y2z3 − 406500000xy3z3 + 474609375y3z4 = 0.

	

Even though there is no rational identifiability above when d = 4, it is worth noting

that in a purely statistical setting, γ can be recovered uniquely, as seen below.

Corollary 1 For k = 2, the statistical mixture parameters can be recovered uniquely
with moments up to order d = 4.

Proof This is equivalent to saying that the Eq. (70) has a unique statistically relevant
solution in γ = λ(1 − λ). Note that since λ ∈ (0, 1) \ { 12 }, we have that γ ∈ (0, 1

4 ).
Consider the real valued function coming from (70):

a(γ ) =
3
√
3(1 − 6γ )

2 3
√
4γ (1 − 4γ )2

. (73)

Its derivative, a′(γ ) = − 1
2 3√36γ (1−4γ )

3
√

4γ (1−4γ )2
, is always negative for 0 < γ < 1

4

so that the function a(γ ) is strictly decreasing and, in particular, injective in this
statistically meaningful interval (Fig. 1).
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Fig. 1 Plot of the real-valued function a(γ ) in (73)

The corresponding inverse is given by the cubic equation in γ

(256a3 + 324)γ 3 − (128a3 + 162)γ 2 + (16a3 + 27)γ − 3

2
= 0. (74)

The discriminant of (74) is Δ = −3072a6(64a3 + 81). It is zero precisely when

a = − 3 3√3
4 , which corresponds to the horizontal asymptote of a. If a < − 3 3√3

4 , there
are 3 real solutions, but one is negative and the other one is larger than 1

4 . The remaining

solution is also the unique real solution when a > − 3 3√3
4 , given explicitly by

γ = 4a3

3η
+ η

3(64a3 + 81)
+ 1

6
, (75)

η = (−4096a9 − 10368a6 − 6561a3 + 9
√
262144a15 + 995328a12 + 1259712a9 + 531441a6)

1
3 .
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This proof gives an explicit algorithm to recover the parameters of a homoscedastic
mixture of two Gaussians from the cumulants up to order four.

Algorithm 1: Recovery of parameters for a homoscedastic mixture of two Gaus-
sians.
Data: Data coming from a homoscedastic mixture of two Gaussian distributions.
Result: The parameters λ1, λ2, μ1, μ2,Σ of the mixture.
begin

Estimate the mean vector κ1;
Estimate the covariance matrix κ2;
Estimate the principal third cumulants κ300..0, κ030..0, . . . , κ00..03;
For one of the principal third cumulant that is nonzero, estimate the
corresponding fourth cumulant: in the following, we assume that κ300..0 �= 0,
so that we estimate κ400..0.;
Compute a = κ400..0

( 3√κ300..0)4
.;

Compute γ as in (75);
Compute the two solutions λ1, λ2 of λ(1 − λ) = γ ;

Compute μ′
1 = f3(λ1)−

1
3 ( 3

√
κ300..0, 3

√
κ030..0, . . . , 3

√
κ00..03) and μ′

2 = λ1
λ2

μ′
1.;

Compute μ1 = μ′
1 + κ1 and μ2 = μ′

2 + κ1;
Compute Σ = 2(κ2 − (λ1μ1 + λ2μ2)

t (λ1μ1 + λ2μ2));
end

Observe that this algorithm needs all the cumulants of order one, all the cumulants
of order two, n cumulants of order three, and one cumulant of order four. Hence, it
needs in total n + n(n+1)

2 + n + 1 cumulants.

Remark 7 We have seen in Remark 6 that SecH2 (Gn,d) in cumulant coordinates is a

cone over C0
n,2,d ⊆ AK ,3

n,d . Up to taking the Zariski closure, the proof of Theorem 4

shows that C0
n,2,d is the image of the map

Fn,2,d : V × R \ {1} → AK ,3
n,d , (L, λ) �→ f3(λ)L3 + f4(λ)L4 + f5(λ)L5 + f6(λ)L6 + . . .

For λ constant we get a projected d-th Veronese variety of V . If instead L
is constant, then we get a rational curve given by a linear combination of
( f3(λ), f4(λ), . . . , fd(λ)).

4.3 The Univariate Case n = 1

We use the standard notation σ 2 for the variance Σ = (σ11) when n = 1.
For n = 1, the moment variety SecHk (G1,d) is never defective. The moment map

M1,k,2k : ΘH
1,k → AM

1,2k

is finite to one. In the statistics literature, it is known that in the case of homoscedastic
secants, one may recover mixture parameters from given moments (i.e., compute the
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fiber of the map above), with an algorithm closely related to the well-known Prony’s
method [20]. This procedure was introduced by Lindsay as an application of moment
matrices [15] and we briefly recall the algorithm here.

First, how does one recover the locationsμi andweights λi of the k components of a
Dirac mixture from 2k−1moments? This is known as the quadrature rule and it works
as follows. Given the moment sequence m = (m1,m2, . . . ,m2k−1) one considers the
polynomial resulting from the following (k + 1) × (k + 1) determinant

Pk(t) = det

⎛

⎜⎜⎜⎝

1 m1 . . . mk−1 1
m1 m2 . . . mk t
...

...
...

mk mk+1 . . . m2k−1 tk

⎞

⎟⎟⎟⎠ . (76)

The k rootsμ1, μ2, . . . , μk of Pk(t) are precisely the sought locations. This follows
since the equations of the secant varieties of the rational normal curve are classically
known to be given by the minors of the moment matrices. For a modern reference see
[14].

Once the locations are known, the weights λi are found by solving the k × k
Vandermonde linear system

⎛

⎜⎜⎜⎝

1 1 . . . 1
μ1 μ2 . . . μk
...

...

μk−1
1 μk−1

2 . . . μk−1
k

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

λ1
λ2
...

λk

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1
m1
...

mk−1

⎞

⎟⎟⎟⎠ . (77)

Back to the Gaussian case, if we knew the value of the common variance σ 2, we can
reduce to the above instance. In terms of the Gaussian moment generating function:

e− 1
2 σ 2u2MX (u) = eμu . (78)

Hence, the Dirac moments m̃ on the right hand side are linear combinations of the
Gaussian moments m. Explicitly, for 1 ≤ j ≤ 2k − 1

m̃ j (σ ) =
� j/2�∑

i=0

j !
(−2)i i !( j − 2i)!m j−2iσ

2i . (79)

Applying the quadrature rule to the vector m̃ = (m̃1, m̃2, . . . , m̃2k−1) would allow us
to obtain the means μ1, μ2, . . . , μk .

However, σ is unknown. To find an estimate for σ we consider the first 2k moments
m = (m1,m2, . . . ,m2k). If m̃ = (m̃1, m̃2, . . . , m̃2k) comes from a mixture of k Dirac
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measures, then

Dk = det

⎛

⎜⎜⎜⎝

1 m̃1 . . . m̃k−1 m̃k

m̃1 m̃2 . . . m̃k m̃k+1
...

...
...

m̃k m̃k+1 . . . m̃2k−1 m̃2k

⎞

⎟⎟⎟⎠ = 0. (80)

One thus treats σ as a variable and substitutes expressions (79) into (80). This results
in a polynomial Dk(σ ) of degree

(k+1
2

)
in σ 2 and the estimator σ̂ 2 is obtained as its

smallest non-negative root [15, Theorem 5B]. So the algebraic degree for estimating
σ 2 is

(k+1
2

)
. With σ 2 specified, one proceeds as above.

More generally, the discussion under (28) shows that the moment variety
SecHk (G1,d) with k ≤ d/2 is a union

SecHk (G1,d) =
⋃

σ

Seck(V
σ
1,d),

where V σ
1,d is the translation of the moment curve V1,d by the variance σ 2 as defined

by the Gaussian moments. The secant variety Seck(V σ
1,d) is defined for each σ by the

(k + 1) × (k + 1) minors of

Mk,d =

⎛

⎜⎜⎜⎝

1 m̃1 . . . m̃d−k−1 m̃d−k

m̃1 m̃2 . . . m̃d−k m̃d−k+1
...

...
...

m̃k m̃k+1 . . . m̃d−1 m̃d

⎞

⎟⎟⎟⎠ . (81)

As soon as the k-th secant variety of a smooth curve is not linear, the curve can be
recovered as the singular locus of highest multiplicity in the secant variety. Therefore,
since curves V σ

1,d are distinct, their k-th secant varieties are distinct as well, as long
as the latter are not linear. In particular, since the variety Seck(V σ

1,d) has dimension

2k−1, it follows that the union SecHk (G1,d) has dimension 2k. Given the momentsmi

up to degree d of a point on a homoscedastic k-secant, the (k + 1)× (k + 1) minors of
Mk,d are polynomials in σ 2 with a zero at the common variance. Given the variance,
the means can be inferred as above.

When d = 2k+1, then the variety SecHk (G1,d) ⊂ AM
1,2k+1 is a hypersurface, defined

by the resultant of (k + 1)-minors of Mk,d , the polynomial obtained by elimination of
σ 2 in the ideal defined by the (k + 1) × (k + 1) minors. Denote this polynomial by
P2k+1. It is a polynomial in m1, . . . ,m2k+1 (or κ3, κ4, . . . , κ2k+1). For example,

P3 = κ3 = 2m3
1 − 3m1m2 + m3,

P5 = 108κ6
3 − 32κ2

3κ3
4 + 36κ3

3κ4κ5 − κ2
4κ2

5 + κ3κ
3
5
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Proposition 4 The polynomial P2k+1 is homogeneous of total degree

(
k + 2

2

)(
k + 1

2

)

in the multigraded weights degmi = deg κi = i .

Proof Let

A = AM
1,2k+1 × A1

where σ is the last coordinate, and consider the projective closure P of A. Then,
the matrix (81) defines a map between vector bundles E and F on A. The vector
bundles E and F and the map extends to P; E extends to a sum of line bundles
Ẽ = OP ⊕ OP(−1) ⊕ . . . ,OP(−k), while F extends to a sum of line bundles F̃ =
OP ⊕ OP(1) ⊕ . . . ,OP(k + 1). By the Thom–Porteous formula, [8, Theorem 14.4],
the degree in P of the rank k locus of the map is given by the Chern class

c2(F̃ − Ẽ) = 2

(
k + 2

2

)(
k + 1

2

)

since the Chern polynomials of Ẽ and F̃ in are

c(Ẽ) = (1 − t)(1 − 2t) . . . (1 − kt)

and

c(F̃) = (1 + t)(1 + 2t) . . . (1 + (k + 1)t).

This rank k locus has codimension 2 and its intersection with A is projected to the
hypersurface defined by P2k+1 in AM

1,2k+1. The coordinate σ appears only in even

degree in the equations defining the rank k locus, so the projection to AM
1,2k+1 is 2 : 1,

so the degree of P2k+1 is half the degree of the rank k locus. 	


Question 1 It would be interesting to understand better the structure of the polynomials
P2k+1, e.g., is there a closed form expression for all k?

If P2k+1 vanishes on a set (m1, . . . ,m2k+1) of moments, and P2l+1 does not vanish
on (m1, . . . ,m2l+1) for any l < k, then the moments lie on a homoscedastic k-secant
but not on any l secant for l < k. Therefore the polynomials P2k+1 may be used to
estimate the number of components in a homoscedastic Gaussian mixture (compare
to the rank test proposed in [15, Section 3.1] for the known variance case).
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5 Conclusion

We have completely classified all defective cases for the moment varieties associated
with homoscedastic Gaussian mixtures whenever k < n + 1, d = 3, k = 2 or
n = 1. The question concerning a complete classification for all n, d, k remains open,
although our computations did not reveal any further defective examples.

Our identifiability results also cover special structures in the covariance matrix, by
Remark 2. For example, a common mixture submodel involves isotropic Gaussians,
which means that the covariance matrix is a scalar multiple of the identity, Σ = σ I .
The k-means algorithm used in clustering can be interpreted as parameter estimation
for a homoscedastic isotropic mixture of Gaussians. In [10], Hsu and Kakade consider
the learning of mixtures of isotropic Gaussians from the moments up to order d = 3
when k ≤ n + 1. They prove identifiability for the homoscedastic isotropic submodel
(see [6, Theorem3.2]), and in order to solve themoment equations, theyfindorthogonal
decompositions of the second and third order moment tensors.

On the other hand, in [17] Lindsay and Basak proposed a ‘fast consistent’ method
of moments for homoscedastic Gaussian mixtures in the multivariate case, based on
a ‘primary axis’ to which the one-dimensional case presented in Sect. 4.3 is applied.
This means that the method uses some moments of order 2k. Knowing that in some
cases there are explicit equations for secant varieties of higher dimensional Veronese
varieties [14], an alternative method with minimal order based on these should be
possible.

Finally, a similar approach can bemade to studymoment varieties of homoscedastic
mixtures of other location families. In the case of Example 4, we saw that Gaussian
moments and Laplacian moments coincide up to d = 3. This means that Theorem 2
applies verbatim to homoscedastic mixtures of Laplace distributions.
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