
https://onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A73c59f71-8a4d-411c-aa9a-4202b35271b7&url=https%3A%2F%2Fwww.promega.com%2Fcustom-solutions%2Fcustom-manufacturing%2F%3Futm_source%3Dwiley%26utm_medium%3Depdf_oct1%26utm_campaign%3Dcustom&viewOrigin=offlinePdf


Biotechnology and Bioengineering. 2020;117:2749–2759. wileyonlinelibrary.com/journal/bit | 2749

Received: 15 January 2020 | Revised: 5 May 2020 | Accepted: 5 June 2020

DOI: 10.1002/bit.27454

AR T I C L E

Biomass soft sensor for a Pichia pastoris fed‐batch process
based on phase detection and hybrid modeling

Vincent Brunner | Manuel Siegl | Dominik Geier | Thomas Becker

Chair of Brewing and Beverage Technology,

Technical University of Munich, Freising,

Germany

Correspondence

Dominik Geier, Chair of Brewing and Beverage

Technology, Technical University of Munich,

Weihenstephaner Steig 20, 85354

Freising, Germany.

Email: dominik.geier@tum.de

Funding information

Bundesministerium für Bildung und Forschung,

Grant/Award Number: 031B0475E

Abstract

A common control strategy for the production of recombinant proteins in Pichia pastoris

using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into twomain

phases: biomass generation on glycerol and protein production via methanol induction.

This study reports the establishment of a soft sensor for the prediction of biomass

concentration that adapts automatically to these distinct phases. A hybrid approach

combining mechanistic (carbon balance) and data‐driven modeling (multiple linear re-

gression) is used for this purpose. The model parameters are dynamically adapted ac-

cording to the current process phase using a multilevel phase detection algorithm. This

algorithm is based on the online data of CO2 in the off‐gas (absolute value and first

derivative) and cumulative base feed. The evaluation of the model resulted in a mean

relative prediction error of 5.52% and R² of .96 for the entire process. The resulting

model was implemented as a soft sensor for the online monitoring of the P. pastoris

bioprocess. The soft sensor can be used for quality control and as input to process

control systems, for example, for methanol control.
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1 | INTRODUCTION

The methylotrophic yeast Pichia pastoris (now reclassified as Komaga-

taella phaffii) is frequently used as a host for expressing heterologous

proteins for both basic research and industrial production (Cereghino,

Cereghino, Ilgen, & Cregg, 2002). When the methanol‐inducible alcohol

oxidase 1 (AOX1) promotor is used for controlling protein expression,

the process is typically separated into two main phases with different

objectives. In the first phase, the carbon source—typically glycerol—is

converted to biomass. It aims to produce large amounts of biomass

before methanol induction. This phase is often referred to as the glycerol

or biomass phase and can optionally be extended by a glycerol feed to

accumulate more biomass before methanol induction (Gao et al., 2012;

Jahic, Veide, Charoenrat, Teeri, & Enfors, 2006). The second phase, also

referred to as the induction or methanol phase, starts when methanol is

added to the medium to induce protein expression via the genetically

modified AOX1 promotor. This phase aims to reproducibly generate the

highest product titers.

Besides product titer, biomass concentration can be seen as one of

the most critical quality attributes in upstream bioprocessing due to its

effect on all other quality attributes, which holds true for P. pastoris

bioprocesses in both the glycerol and the methanol phases (J. Harms,

Wang, Kim, Yang, & Rathore, 2008). Several techniques such as turbidi-

metry, infrared or fluorescence spectroscopy, and flow cytometry are

available for monitoring biomass, as reviewed by P. Harms, Kostov, and

Rao (2002), Luttmann et al. (2012), and Schügerl (2001). However, the

use of online measurement systems for monitoring biomass in a technical

context is still often problematic. The reasons for this include lack of

reliability, the considerable dependence on the process and product

matrix (isolated solutions), and high standards of operation and
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maintenance (Kano & Fujiwara, 2012). For these reasons, biomass is in

many cases not measured online at all.

Because the direct measurement of biomass is often not feasible,

soft sensors can be used for predicting it. Soft sensors consist of

computational models or algorithms that allow the prediction of

target values, such as biomass concentration, via continuously mea-

sured secondary variables, such as exhaust gas concentrations, dis-

solved oxygen (DO), and flow rates (Luttmann et al., 2012).

Various modeling techniques have been proposed for developing

soft sensors, the majority of which are based on mechanistic or data‐
driven approaches. An overview of soft sensors and the selection of

appropriate modeling techniques for online bioreactor state estimation

has been presented elsewhere (Zhang, 2009). Mechanistic modeling

approaches include, for example, differential balancing systems, which

describe the material and energy conversions at the cellular level, as

well as mass and energy balances (Jenzsch, Gnoth, Kleinschmidt,

Simutis, & Lübbert, 2007). Data‐driven approaches include, among

others, artificial neural networks (ANN; Gonzaga, Meleiro, Kiang, &

Maciel Filho, 2009) and methods from the field of multivariate statistical

process control (Kadlec, Gabrys, & Strandt, 2009), such as principal

component regression and partial least squares regression. In hybrid

modeling, mechanistic and data‐driven modeling approaches are com-

bined, as reviewed by Kalos, Kordon, Smits, and Werkmeister (2003)

and Solle et al. (2017).

The main challenges in the development of soft sensors are as

follows: control of model complexity (overfitting vs. underfitting) (Kor-

don, Smits, Kalos, & Jordaan, 2003); limited amount of data sets or data

points (Fortuna, Graziani, & Xibilia, 2009); outliers resulting from, for

example, sensor faults (Zhang, 2009); adaption mechanisms for model

maintenance (Bakirov, Gabrys, & Fay, 2017); input variable selection;

reliability of soft sensors; and changes in process characteristics and

operating conditions (Kano & Fujiwara, 2012). In addition, a specific

challenge arises in soft sensor development for P. pastoris bioprocesses

given its distinct process phases, as described previously: The under-

lying principles of prediction models for biomass are related to the

inherent biological relationships between online measured variables and

biomass (Chen, Nguang, Li, & Chen, 2004); thus, the soft sensor needs to

be adaptive to the current process phase to give accurate prediction

results throughout the entire process.

In this study, an adaptive soft sensor for biomass concentration was

developed. The novelty of this study is that the soft sensor changes its

model coefficients regarding the current process phase (batch, transi-

tion, or fed‐batch phase) of the P. pastoris bioprocess. The soft sensor's

underlying prediction model is based on a hybrid of mechanistic and

data‐driven approaches. The mechanistic part comprises mass balancing

of carbon using methanol and CO2 fluxes. The outcome of this me-

chanistic model—the generation rate of total organic carbon inside the

bioreactor—is fed into a data‐driven model that in turn leads to an

online prediction of biomass concentration. The adaptability of the soft

sensor to the distinct process phases is guaranteed by automatic and

reliable detection of glycerol depletion based on online process vari-

ables, namely, CO2 in the off‐gas (absolute value and first derivative)

and cumulative base feed. The soft sensor's model coefficients switch

automatically depending on the current process phase and thus give

accurate biomass predictions throughout the entire process. Finally, the

soft sensor was implemented in a real‐time capable system to enable

online biomass monitoring.

2 | MATERIALS AND METHODS

2.1 | Strain and preculture conditions

The inoculum of a recombinant P. pastoris strain based on type strain

DSMZ 70382 was prepared in three 150ml shake flasks containing

50ml of the mineral medium FM22 with glycerol as the carbon source:

(NH4)2SO4, 5 g · L–1; CaSO4 · 2H2O, 1 g · L–1; K2SO4, 14.3 g · L–1;

KH2PO4, 42.9 g · L–1; MgSO4 · 7H2O, 11.7 g · L–1; glycerol, 40 g · L–1

(Stratton, Chiruvolu, & Meagher, 1998); and trace element stock

solution (PTM4), 2.0ml · L−1 of the culture medium. The PTM4 stock

solution contained CuSO4 · 5H2O, 2 g · L–1; KI, 0.08 g · L–1; MnSO4 ·

H2O, 3 g · L–1; Na2MoO4 · 2H2O, 0.2 g · L–1; H3BO3, 0.02 g · L–1;

CaSO4 · 2H2O, 0.5 g · L–1; CoCl2, 0.5 g · L–1; ZnCl2, 7 g · L–1; FeSO4 ·

H2O, 22 g · L–1; biotin, 0.2 g · L–1; and conc. H2SO4, 1ml. Cells were

grown for 70 hr at 30°C on a shaker at 150min–1.

2.2 | Fed‐batch cultivation in bioreactor

The shake flask culture was used to inoculate the main culture in the

bioreactor Biostat® Cplus (Sartorius AG, Goettingen, Germany) with

working and total volumes of 15 and 42 L, respectively. The main

culture medium was FM22. Pressure, pH, temperature, and dissolved

oxygen were controlled to 500 mbar, 5, 30°C, and 40%, respectively.

NH4OH was used as nitrogen source and to set and maintain a pH of

5. A dissolved oxygen minimum of 40% was controlled by a cascade

control using variable stirrer speed (300–600min−1) and air flow rate

(20–40 L · min−1).

The end of the batch phase, that is, the depletion of glycerol, was

indicated online by a characteristic peak in the off‐gas CO2 con-

centration. The complete depletion of glycerol was verified offline via

HPLC analysis (data not shown). After a short transition phase, which

prevents the potential repression of the AOX1 promotor by glycerol

residues from the preceding batch phase, the culture was induced

with methanol. The methanol feed was supplemented with

12ml · L–1 PTM4 stock solution. Methanol concentration was con-

trolled via a fuzzy logic controller to 4.5 g · L–1. This controller uses

methanol concentration as the main input and the feed rate of me-

thanol as output. The general concept of fuzzy logic controllers is

described, for example, in Birle, Hussein, and Becker (2013).

The off‐gas CO2 concentration was measured with a BlueInOne

Cell sensor (BlueSens gas sensors GmbH, Herten, Germany). Me-

thanol concentration was measured with an inline Alcosens sensor

(Heinrich Frings GmbH & Co. KG, Rheinbach, Germany).
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2.3 | Determination of dry cell weight

Dry cell weight was determined in triplicate by centrifugation of 2ml

cell suspension in previously weighed centrifuge tubes, followed by

discarding the supernatant and drying the cell pellet to a constant

weight at 80°C. Samples for the determination of dry cell weight

were taken using the BaychroMAT® autosampler (Bayer AG, Le-

verkusen, Germany) with a minimum sampling interval of 2 hr.

2.4 | Data management

The digital control unit (DCU) of the Biostat® bioreactor (Sartorius

AG) was used for primary process control (pressure, pH, tempera-

ture, and dissolved oxygen) and signal recording. SIMATIC SIPAT

(Siemens AG, Munich, Germany) was used for data management and

to store the process (online) and laboratory (offline) data in a central

database with a recording interval of 30 s. Offline data preprocessing

and modeling were performed in MATLAB R2019b (The MathWorks,

Inc., Natick, MA); signal processing, real‐time prediction of the target

quantity, biomass concentration, by means of the developed soft

sensor as well as model‐based control via a fuzzy logic controller

were performed in SIMULINK R2019b (The MathWorks, Inc.). An

interface capable of real‐time communication between the DCU, the

data management system (SIMATIC SIPAT), and the online modeling

software (SIMULINK) was realized via a Sartorius OPC DA server

(Sartorius AG).

3 | RESULTS AND DISCUSSION

This study aims to develop a soft sensor for the prediction of biomass

concentration that provides accurate online predictions for a multi-

phase process (batch, transition, and fed‐batch phase) with two dif-

ferent carbon sources (glycerol and methanol). The general concept

of the hybrid‐model‐based soft sensor presented here consists of two

main levels: The first level comprises a phase detection algorithm to

differentiate online among batch, transition, and fed‐batch phase; the

second level consists of a hybrid‐model‐based prediction equation

that automatically adjusts the model parameters based on the cur-

rent process phase (batch, transition, or fed‐batch phase). For the

development of the first and second levels, nine and six data sets,

respectively, were used. Only the latter six data sets had a fed‐batch
phase with control of methanol concentration and therefore can be

compared with each other.

The hybrid model uses a carbon balance as the mechanistic part.

The result of the carbon balance is fed into a data‐driven part to

provide accurate prediction of the biomass concentration. The

information‐bearing model inputs that were used in this study to

predict biomass concentration are cumulative methanol and base

feed as well as concentrations of off‐gas CO2 and methanol.

Figure 1 shows the time course of the relevant model inputs of

the soft sensor for an exemplary process run. This process run is used

as an illustrative example throughout the following sections. In this

case, the batch phase ends at 39.6 hr, followed by a transition phase

that lasts for 6.9 hr, and a fed‐batch phase that starts at 46.5 hr. In

the batch phase, glycerol is metabolized and biomass is generated.

The presence of the transition phase prevents the potential repres-

sion of the AOX1 promotor by glycerol residues from the preceding

batch phase. In the transition phase, no significant increase (due to

the absence of carbon sources) or decrease of biomass concentration

was observable. In the fed‐batch phase, methanol is fed into the

bioreactor via a pump for the first time. Subsequently, methanol

concentration is controlled to a setpoint of 4.5 g · L–1 via a fuzzy logic

controller. This process run shows control errors such as high initial

overshoot and an increasing deviation of the measured methanol

concentration to the setpoint in the subsequent time course. Base

(NH4OH, 5M) is fed into the bioreactor via a pump and is used to

maintain pH at 5.0. The cumulative base feed represents the degree

of metabolic activity, that is, substrate depletion. This variable shows

F IGURE 1 Time course of the relevant model inputs of the soft sensor for an exemplary process run, namely, cumulative feed volume of

methanol, Vmeth, and base, Vbase, as well as concentrations of CO2 in the off‐gas, σCO2, and methanol, cmeth. For this exemplary process, the batch
phase ends at 39.6 hr and the fed‐batch phase starts at 46.5 hr
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high collinearity to the biomass concentration (see later in Figure 6).

In the batch phase, the off‐gas CO2 signal almost continuously in-

creases until the end of this phase. Here, the signal drops abruptly

and, except for minor fluctuations, begins to rise again only upon

methanol induction. After methanol induction, the cells need to adapt

to the metabolization of methanol.

3.1 | Multilevel process phase detection

3.1.1 | General concept of process phase detection

This algorithm step aims to differentiate among the three distinct

process phases, which are listed in Table 1 together with its process

data characteristics regarding process phase detection. The detection

of the end of the batch phase is primarily based on the off‐gas CO2

signal. The metabolization of glycerol together with an increasing cell

concentration leads to an almost continuous increase in CO2 emission

during the batch phase. When glycerol is depleted, the off‐gas CO2

signal drops abruptly, as shown in Figure 1 (here at 39.6 hr). The re-

lationship between the CO2 drop and substrate consumption is shown

and discussed in detail in Munch et al. (2020). This abrupt drop is the

main sign of the end of the batch phase and is hereinafter referred to

as trigger 3. To increase robustness of the phase detection algorithm,

two additional trigger conditions upstream of trigger 3 were im-

plemented, namely the exceeding of absolute values for cumulative

base feed (trigger 1) and off‐gas CO2 concentration (trigger 2).

The output of the algorithm for process phase detection is a binary

value indicating whether the end of the batch phase has been reached

(1 = true) or not (0 = false) together with the corresponding timestamp.

Variable inputs to the algorithm consist of the signals for cumulative

base feed (Vbase) for trigger 1, the absolute off‐gas CO2 concentration

(σCO2) for trigger 2, and the timewise derivative of the off‐gas CO2

concentration ( σ /d dtCO2 ) for trigger 3. Only when triggers 1 and 2 are

initiated, that is, they are “true”, trigger 3 is active and can be initiated.

The end of the batch phase is indicated when all three triggers are “true.”

The process variable Vbase represents the cumulative metabolic

activity regarding the consumption of the carbon source. Because the

batch process starts with a glycerol concentration of 40 g · L–1, the

total volume of base fed into the bioreactor at the end of the batch

phase is restricted to the stoichiometry of glycerol metabolization.

Trigger 1 is therefore initiated when a defined threshold for Vbase is

exceeded. In the transition phase, the variable Vbase remains constant

because cells do not grow. Similar to Vbase, the process variable σCO2 is

strongly related to biomass growth and substrate consumption.

During exponential growth, σCO2 increases almost continuously until

the end of the batch phase. Trigger 2 is therefore initiated when a

defined threshold for σCO2 is exceeded. This trigger is implemented to

guarantee that natural fluctuations in σCO2, which can statistically

occur in biological systems (see Figure 1), and sensor faults impede

the functionality of the process phase detection as little as possible.

Trigger 2 thus slightly increases robustness of the phase detection

algorithm. Figure 2 shows the functioning of trigger 3 in terms of the

time course of σ /d dtCO2 for an exemplary process run. The value of

σ /d dtCO2 falls below the threshold uniquely at the end of the batch

phase (here at 39.6 hr). A median filtering step was implemented

before and after the derivation step to decrease noise of the vari-

ables σCO2 and σ /d dtCO2 , respectively.

3.1.2 | Threshold definition

The thresholds for triggers 1, 2, and 3 were calculated as shown in (1),

where thresholdi is the threshold for the trigger variable used for

process phase detection with σ σ= { / }i V d dt, ,base CO2 CO2 ; meani and stdi

is the arithmetic mean and standard deviation, respectively, of the

variable i at the end of the batch phase. The end of the batch phase was

for this purpose defined as the time at the minimum of σ /d dtCO2 . SF is a

constant safety factor of 3 that is implemented to avoid false positive

detections of the end of the batch phase of the phase detection and

thus to increase the robustness of the multilevel detection algorithm.

= −threshold mean std SF.i i i
(1)

For illustration and comparison of the three triggers, Figure 3

shows the results (mean ± standard deviation) for the trigger vari-

ables normalized to the corresponding threshold. The resulting

threshold values together with the mean and standard deviation are

summarized in Table 2. These threshold values were implemented in

SIMULINK to automatically detect the end of the batch phase and

therefore to select the right model coefficients for the biomass soft

sensor shown in the following.

3.2 | Mass balance for carbon

The underlying principle of the mechanistic modeling part is mass

balancing of carbon. The boundary for the balancing is the bioreactor

system: Carbon is fed into the bioreactor in the form of methanol

(fed‐batch phase) and leaves the boundary in the form of CO2.

TABLE 1 Main characteristics of the three distinct process phases (batch, transition, and fed‐batch phase) regarding process phase detection

Process phase Main process objective Carbon source Main process data characteristic

Batch phase Biomass generation Glycerol Abrupt drop in off‐gas CO2 signal at the end of batch phase

Transition phase Derepression of the AOX1 promotor None No base feed due to absent cell growth

Fed‐batch phase Product formation Methanol Starting with methanol feed
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The remaining carbon is in the form of either glycerol or methanol or

is bound in cells as well as extracellular organic acids and proteins.

The following sections show how the timewise rates of off‐gas CO2

and methanol are calculated. These rates are then balanced to enable

calculation of the formation rate of total organic carbon (TOC) that

remains bound in cells as well as extracellular organic acids and

proteins. To determine the cumulative amount of TOC online, this

rate needs to be multiplied by the total liquid volume and numerically

integrated. This cumulative amount of TOC is used in the subsequent

data‐driven modeling part to predict biomass concentration

(Figure 4).

3.2.1 | Calculation of liquid volume

To calculate the total liquid volume, all feeds and removals (sampling)

need to be considered. The total reactor volume Vtotal is calculated as

in (2), where Vstart is the start volume after inoculation; Vbase, Vmeth, and

Vafoam are the cumulative volumes of base, methanol, and antifoam,

respectively, fed into the bioreactor; Vsamples is the cumulative volume

of samples automatically taken via the BaychroMAT® autosampler:

= + + + −V V V V V V .total start base meth afoam samples
(2)

3.2.2 | Calculation of carbon dioxide emission rate

The calculation of the carbon dioxide emission rate rCO2 in (3) is

adapted from Takors (2013), where Qair is the air flow rate, p is

the pressure, R is the universal gas constant (8.314 × 10−2

L · bar ·mol−1 · K−1), T is the temperature, σCO2 and σO2 are the con-

centrations of carbon dioxide and oxygen, respectively, and the indices α

and ω represent the gas inlet and outlet of the bioreactor, respectively:

σ σ

σ σ
σ σα α

ω ω
ω α⎜ ⎟= ⎛

⎝

− −

− −
− ⎞

⎠
r

Q p
V RT

1

1
.CO2

air

total

O CO2

O2 CO2
CO2 CO2

2 (3)

3.2.3 | Calculation of methanol reaction rate

As described above, errors in the methanol control, such as an initial

overshoot or a deviation of the measured methanol concentration to

the setpoint (Figure 1), can occur. The carbon balance is designed to

compensate for disturbances of methanol control by incorporating

the methanol accumulation rate rmeth,acc . Changes in rmeth,acc result

from the uptake of methanol by cells and methanol feeding (espe-

cially at the feed start when the methanol setpoint is reached for the

first time). rmeth,acc is determined by the timewise derivative of the

F IGURE 2 Timewise derivative of the off‐gas CO2 sensor reading,

σ /d dtCO2 , for an exemplary process run. A median filter (window

size = ten sensor readings) is implemented before and after the
derivation step to handle noisy sensor readings. The characteristic
negative peak (here at 39.6 hr) is the main indicator for the depletion

of the batch phase substrate (glycerol) and thus the end of the batch
phase. This landmark is used to initiate the start of the transition and
fed‐batch phase, respectively

F IGURE 3 Triggers for the multilevel detection of the end of the
batch phase (i.e., depletion of glycerol). Only when defined values for

base, Vbase, and absolute off‐gas CO2 concentration, σCO2, are reached
for the first time, the last trigger—the timewise derivative of the off‐
gas CO2 concentration, σ /d dtCO2 —is active. The three thresholds are

defined based on the calculation of the mean and standard deviation
for each of the three variables at the end of the batch phase as well
as a safety factor. The diagram shows normalized absolute variable
values; error bars correspond to the normalized standard

deviation (n = 9)

TABLE 2 Threshold, mean, and standard deviation for the three
trigger variables Vbase, σCO2, and σ /d dtCO2 at the end of the batch
phase (n = 9)

Trigger
number Variable Mean

Standard
deviation Threshold

1 Vbase 540ml 117ml 188ml

2 σCO2 1.284% 0.177% 0.755%

3 σ /d dtCO2 −0.038% · hr–1 0.007% · hr–1 −0.017% · hr–1
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methanol concentration cmeth that is measured in the bioreactor (in-

line), as follows:

=r
dc

dt
.meth,acc

meth (4)

The methanol reaction rate rmeth describes the net rate at which

methanol accumulates in or is withdrawn from the liquid phase of the

bioreactor and is calculated as follows, where rmeth,in is the feed rate

of methanol into the bioreactor related to the total liquid vo-

lume Vtotal:

= −r r r .meth meth,in meth,acc (5)

3.2.4 | Calculation of formation rate of total organic
carbon

TOC refers to all carbon inside the bioreactor system that is bound in

the substrate (glycerol or methanol) and cells as well as extracellular

organic acids and proteins. The formation rate of TOC, rTOC , is not

directly measured by reference analysis but calculated as follows by

balancing the methanol reaction rate rmeth and the carbon dioxide

emission rate rCO2:

= −r r r .TOC meth CO2 (6)

In the batch phase =r 0meth and no glycerol is fed into the

bioreactor; therefore, the carbon balance in this phase

is = −r rTOC CO2.

3.3 | Development of hybrid‐model‐based soft
sensor

3.3.1 | Combination of mechanistic and data‐driven
parts in a hybrid model

Figure 4 shows the soft sensor algorithm and how process variables

are passed through the mechanistic and data‐driven modeling parts

to finally result in the online prediction of biomass concentration cX .

The output of the mechanistic part (mass balance for carbon), rTOC , is

together with Vbase fed into the data‐driven part. The data‐driven part

comprises a numerical integration step for rTOC to obtain the cumu-

lative amount of total organic carbon, TOC, and a multiple linear

regression (MLR) step. MLR was chosen as regression method be-

cause the prediction model uses only the two inputs TOC and Vbase.

Using TOC only for biomass prediction leads to acceptable pre-

diction results (data not shown). However, the concentrations of

dissolved carbon dioxide (H2CO3) as well as extracellular proteins

(cP) and organic acids, which can in most cases not be measured

online, distort the biomass prediction. The prediction model for

biomass is therefore complemented by adding information about

acids in the medium. The process variable with most information

about acids in the medium is the cumulative base feed, Vbase. Because

cP ≪ cX , the extracellular protein concentration is neglected for

biomass prediction.

TOC is calculated as follows by multiplication with Vtotal and nu-

meric integration from the beginning of the process run (t0) to the

current time (t):

∫=TOC r V dt.
t

t
TOC total

0

(7)

When in sum (up to t) more carbon passed the bioreactor

boundary to the outside than to the inside, TOC has a negative value.

The time course of TOC is together with rmeth and rCO2 illustrated in

Figure 5 for an exemplary process run. In the batch phase (Figure 5a),

the only carbon passing through the bioreactor boundary is CO2.

Therefore, TOC has a negative gradient. In the fed‐batch phase

(Figure 5b), methanol is fed to the bioreactor, resulting in a net po-

sitive gradient for TOC.

The soft sensor uses three distinct sets of model coefficients for

each the batch, transition, and fed‐batch phase. For model calibration

F IGURE 4 Simplified representation of the hybrid‐model‐based
soft sensor for biomass concentration cX . The methanol reaction rate

rmeth and the carbon dioxide emission rate rCO2 are fed to the
mechanistic model; carbon balancing is here used to calculate the

formation rate of total organic carbon, rTOC . The subsequent data‐driven
model uses the numerical integration of rTOC , namely, TOC , together
with the cumulative base feed,Vbase, as inputs to calculate the amount of

biomass X . Finally, X is divided by the total liquid volume inside the
bioreactor, Vtotal, to calculate the biomass concentration cX . Both the
data‐driven and the mechanistic parts can be carried out online
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via MLR in the batch phase, TOC and Vbase are used as inputs and the

biomass amount X (determined offline as dry cell weight) as output.

The prediction equation is formulated as follows, where b0, b1, and b2

are the model coefficients:

= + +X b b TOC b V .0 1 2 base
(8)

In the transition phase, no significant cell growth or decline was

observed, so b0 was set to the value of X at the end of the batch

phase (Xbatchend) and b1 and b2 were set to 0. In the fed‐batch phase, b0

was set to Xbatchend and b1 and b2 were determined analogously to the

methods used in the batch phase.

The regression step in (8) is related to the total liquid volume

inside the bioreactor, Vtotal. To determine the biomass concentration

cX , the biomass amount X is divided by Vtotal, as in the following

equation:

=c
X

V
.X

total

(9)

3.3.2 | Cross‐validation approach for model
calibration and validation

The model was calibrated and validated by a batch‐wise cross‐
validation approach. The six data sets used for developing the bio-

mass soft sensor were iteratively partitioned into two‐thirds of

calibration and one‐third of validation data sets. This resulted in a

total of !/( ! !) =6 2 4 15 different combinations of complementary

subsets for cross‐validation. For each iteration step, R2, root mean

squared error (RMSE), and normalized root mean squared error

(NRMSE) of cross‐validation were calculated separately for the batch

and fed‐batch phase as well as for the entire process (including the

transition phase). R2 is calculated for the four calibration data sets.

The NRMSE in the following equation is the normalized version of

RMSE and is calculated from reference measurements y and predic-

tions ŷ of the two validation data sets. ymax and ymin are the maximum

and minimum values of y , respectively, and m is the number of data

points in y :

∑=
−

( ˆ − )
=

NRMSE
1

y y
1
m

y y .
max min i 1

m
i i

2 (10)

The use of separate subsets for internal and external (holdout)

validation (OECD, 2014) does not appear to be practicable because

F IGURE 5 Illustration of the carbon balance for (a) the batch and (b) fed‐batch phase for an exemplary process run. The carbon dioxide

emission rate, rCO2, and—in the fed‐batch phase, additionally—the methanol reaction rate, rmeth, are used to calculate the formation rate of total
organic carbon, rTOC , as in (6). Multiplication of rTOC with Vtotal and numeric integration as in (7) result in the cumulative amount of total organic
carbon, TOC

F IGURE 6 Online prediction of biomass concentration cX during
batch, transition, and fed‐batch phase for an exemplary process run
using the hybrid‐model‐based soft sensor. Both the batch and the

fed‐batch phase start with a lag phase after which cells grow
exponentially (batch phase) or linearly (fed‐batch phase). The two
dashed, gray lines indicate the switches from batch to transition

phase (39.6 hr) and from transition to fed‐batch phase (46.5 hr),
respectively
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the total number of data sets that are available for model calibration

and validation is too small (n = 6).

3.4 | Online prediction of biomass using the
multilevel phase detection

The multilevel phase detection algorithm resulted in a 100% correct

hit rate for the detection of the end of the batch phase. On average,

the phase end was detected 2.56 measurements (corresponding to

77 s) before the minimum σ /d dtCO2 was reached—which was defined

as the end of the batch phase.

The arithmetic means for R2, RMSE, and NRMSE are calculated

using the abovementioned 15 combinations of n = 6 data sets. The

mean R2 for the batch and fed‐batch phases is .97 and .95, respec-

tively; the mean R2 for the entire process is .96. The mean RMSE for

the batch and fed‐batch phase is 1.14 and 5.05 g · L–1, respectively;

the mean RMSE for the entire process is 3.57 g · L–1, which results in a

mean NRMSE of 5.52%.

Figure 6 shows the results for the online prediction of biomass

concentration based on the hybrid‐model‐based soft sensor. The

figure shows validation data of one iteration of the cross‐validation
for an exemplary process run. The underestimation of the online

prediction at 40–52 hr and after 64 hr is due to an error in biomass

prediction at the end of the batch phase that entails prediction errors

in the transition phase.

The results for the model coefficients b0, b1, and b2 in (8) are

listed in Table 3. As described above, these model coefficients are

used to determine the biomass amount X , which needs to be divided

by Vtotal to calculate the biomass concentration cX . Vtotal varies be-

tween = =V V 10.00 Ltotal start and on average =V 12.56 Ltotal (n = 6) at

the end of the cultivation. In the batch phase, the intercept b0 de-

scribes the initial biomass from inoculation. As mentioned above, b0

was in the transition and fed‐batch phase replaced by Xbatchend, which

has a mean of 253.47 g (n = 6). The model coefficient for TOC, b1, is

negative in the batch phase because here the carbon balance in (6) is

simplified to = −r rTOC CO2 (boundary for the balancing is the bior-

eactor system) and thus TOC in (7) decreases with increasing CO2

emission and biomass, respectively. In the fed‐batch phase, in which

methanol is fed to the bioreactor, TOC correlates positively with X .

The model coefficient for Vbase, b2, is positive for both the batch and

fed‐batch phase. In the fed‐batch phase, b2 is more than 50% higher

than in the batch phase, which means that more than 50% base is

necessary to maintain the pH setpoint on glycerol compared to me-

thanol. The soft sensor's model coefficients switch automatically

depending on the current process phase. The differences in the

model coefficients b1 and b2 between the individual process phases

indicate the necessity for the adaption of model coefficients with

changing process phases.

The accuracy of the estimates of the model coefficients is given

by the corresponding 95% confidence intervals, CI.95 (Table 3). None

of the CI.95 contains the value zero, which is considered to be a

primary indication that the model inputs are to a certain degree

significant to the model output, biomass. The width of CI.95 relative to

the absolute value of the model coefficient is a further indicator for

the quality of the regression and hence for the uncertainty of the soft

sensor model (Fernandes et al., 2012). For b0, the ratio of the width

of CI.95 to the absolute value of the model coefficient is 55%; for b1,

the ratio is 72% and 60% for the batch and fed‐batch phase, re-

spectively; for b2, the ratio is 11% and 9% for the batch and fed‐batch
phase, respectively.

The contribution of the model coefficients b0, b1, and b2 to the

prediction of X is illustrated in Figure 7 for an exemplary process run.

Here, each model coefficient's contribution was determined by dis-

assembling the linear combination in (8) and dividing each model

coefficient's prediction by the total model prediction. As expected,

the contribution of b0 starts with an initial value of 100% at the

process start and decreases relative to the contribution increases of

b1 and b2. Until the end of the batch and fed‐batch phase, the

TABLE 3 Results for model coefficients
b0, b1, and b2 in (8) and the corresponding
95% confidence intervals, CI.95. In the

transition and fed‐batch phase, b0 is set to
the value of X at the end of the batch
phase (Xbatchend)

Process phase ±b CI 95 b0 . , 0 (g) ±b CI 95 b1 . , 1 (g·mol–1) ±b CI 95 b2 . , 2 (g·L–1)

Batch phase 4.60 ± 2.54 –13.69 ± 9.81 701.96 ± 79.62

Transition phase Replaced by Xbatchend 0 0

Fed‐batch phase Replaced by Xbatchend 2.63 ± 1.57 1074.05 ± 94.28

F IGURE 7 Contribution of model coefficients b0, b1, and b2 to the
prediction of biomass amount X during batch, transition, and fed‐
batch phase for an exemplary process run. The two dashed, gray lines
indicate the switches from batch to transition phase (39.6 hr) and
from transition to fed‐batch phase (46.5 hr), respectively. The soft

sensor updates its model coefficients automatically for the three
distinct process phases
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contribution of b0 falls to values of 1.72% and 0.57%, respectively.

Since b0 is in the transition and fed‐batch phase replaced by Xbatchend,

the contributions to Xbatchend (18.99% for b1 and 79.29% for b2) are

used as offset for the contributions of b1 and b2 throughout the latter

process phases. The contribution of b1 initially rises to a maximum of

36.41% approximately at the end of the lag phase and reaches con-

tributions of 18.99% and 18.26%, respectively, at the end of the

batch and fed‐batch phase. The contribution of b2 starts to rise when

base is first fed to the bioreactor (see Figure 1) and reaches values of

79.29% and 81.18%, respectively, at the end of the batch and fed‐
batch phase. It can be concluded from these results that, approxi-

mately after the end of the lag phase, Vbase has a higher impact on

biomass prediction than TOC. This result is consistent with the ap-

parent high collinearity of Vbase (see Figure 1) and cX (see Figure 6).

4 | CONCLUSIONS

As mentioned at the beginning of this paper, several challenges can

arise when attempting to develop soft sensors. One of these is spe-

cific to P. pastoris bioprocesses with distinct process phases such as

batch, transition, and fed‐batch phase. The underlying principles of

prediction models for biomass are related to the inherent biological

relations (Chen et al., 2004), which differ depending on the substrate

used in the specific process phase. The fundamental differences in

the metabolism of different carbon sources have a visible impact on

CO2 emission and the consumption of pH correction agent (see

Figure 1), which are two of the main model inputs used in this study.

For multiphase processes with more than one substrate, this means

that the probability of finding a single model that captures the in-

formation necessary for prediction of biomass is rather low.

This study demonstrates the application of a multilevel phase

detection algorithm to determine the end of the batch phase (gly-

cerol depletion) online. In every tested case, the algorithm provided

the correct end time of the batch phase. The detection of this end

time was used to trigger the transition phase and the subsequent

methanol induction. The knowledge about the significantly reduced

CO2 emission that comes with glycerol depletion was effectively

utilized. Specifically, the stoichiometric restrictions concerning the

cumulative amount of supplied base (trigger 1) and emitted CO2

(trigger 2) were used to increase robustness of the third trigger

(timewise derivative of the off‐gas CO2 signal). The usage of purely

data‐driven approaches for process phase detection (e.g., Abonyi,

Feil, Nemeth, & Arva, 2005; Ye, Wang, & Yang, 2017) did not appear

practicable in this case because only a relatively small number of data

sets (nine) were available for the development of the phase detection

algorithm.

The output of the phase detection algorithm was used to switch

the parameters of the prediction model online. The prediction model

was calibrated offline using a hybrid‐model‐based approach. The

output of the mechanistic part (carbon balance) is fed to the data‐
driven part (MLR) to provide an accurate prediction of the biomass

concentration. The process runs were conducted under the same

operating conditions (initial glycerol concentration, constant set-

points for methanol, pH, dissolved oxygen, temperature, and pres-

sure). However, the process runs and corresponding data sets used in

this study were subject to variance of initial biomass concentration,

which in turn resulted from the variability of the preculture. Further,

errors in the methanol control, such as an initial overshoot or a de-

viation of the measured methanol concentration to the setpoint

(Figure 1), occurred and additionally increased the variance between

the data sets. Despite this variance between the used data sets,

model evaluation results in a mean relative prediction error of 5.52%

and R2 of .96 for the entire process. These two evaluation criteria are

of similar magnitude to those of other biomass soft sensors for P.

pastoris fed‐batch processes (Beiroti, Aghasadeghi, Hosseini, &

Norouzian, 2019; Crowley, Arnold, Wood, Harvey, & McNeil, 2005;

Fazenda et al., 2013; Surribas, Geissler, et al., 2006; Surribas,

Montesinos, & Valero, 2006). In the approach presented here, how-

ever, the soft sensor is adaptable online to the different process

phases, and no cost‐intensive spectroscopic measurement system is

necessary. The robustness of the soft sensor with regard to different

process conditions (e.g., variation of methanol, pH, and temperature

setpoint) was not in the scope of this study. These investigations are

subject of future research.

The main constraint of the presented soft sensor is that the

prediction in the transition and fed‐batch phase is directly dependent

on the prediction result in the batch phase. This is due to the passing

on of the biomass prediction at the end of the batch phase (Xbatchend)

as a start value for the prediction models of the subsequent phases.

The effect of error propagation can be visualized by considering the

slight decrease of R2 and increase of prediction error between batch

and fed‐batch phase. It should further be noted that the carbon

balance in the individual phases depends on constant ratios of bio-

mass formation, CO2 emission, and—in the fed‐batch phase—

methanol metabolization. Longer periods of substrate limitation or

metabolite inhibition would impede an accurate biomass prediction if

these scenarios are not included in the data sets used for model

calibration.

Knowledge‐based relationships were combined with data‐driven
methodology in this study. No general statement can be made here

about whether mechanistic, data‐driven, or hybrid approaches are

superior because the choice is strongly dependent on the available

process knowledge and measurement systems (offline/online) as well

as the number of data sets and data points (Solle et al., 2017).

However, in this study, the usage of a hybrid approach appears to be

suitable because of the benefits from both components of it. This is

due to the availability of the necessary online measurement systems

for capturing the information relevant for modeling biomass (off‐gas
CO2, methanol, cumulative base feed) and, on the other hand, the

relatively small number of data sets (six) for model calibration and

validation.

The transferability of the developed phase‐dependent soft sen-
sor to other fed‐batch cultivations with different P. pastoris strains,

control strategies, media, and process parameters must be in-

vestigated in future research. It is supposed that the presented
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approaches for process phase detection and hybrid‐model‐based
prediction are transferable to any methanol‐induced P. pastoris pro-

cess provided that the carbon source used for initially generating

biomass (glycerol, glucose, etc.) is not co‐fed to methanol.

The developed algorithm for process phase detection and the

prediction model were implemented as a soft sensor for the online

monitoring of biomass. The soft sensor can be used for quality con-

trol and as input to the process control system, for example, for

methanol control.

NOMENCLATURE

b0, b1, b2 model coefficients (g, g · mol–1, g · L–1)

c molar or mass concentration

CI.95 95% confidence interval for model coefficients

(g, g · mol–1, g · L–1)

cmeth methanol concentration (mol · L–1)

cP extracellular protein concentration (g · L–1)

cX biomass concentration (g · L–1)

m number of data points in y (‐)
mean arithmetic mean of trigger variable (L or % or % · hr–1)

n number of data sets (‐)
NRMSE normalized root mean squared error (%)

p pressure (bar)

Qair air flow rate (L · hr–1)

r timewise rate

R universal gas constant (L · bar · mol−1 · K−1)

R2 coefficient of determination (‐)
RMSE root mean squared error (g · L–1)

rCO2 carbon dioxide emission rate (mol · L–1 · hr–1)

rmeth methanol reaction rate (mol · L–1 · hr–1)

rmeth,acc methanol accumulation rate (mol · L–1 · hr–1)

rmeth,in methanol feed rate (mol · L–1 · hr–1)

rTOC formation rate of total organic carbon (mol · L–1 · hr–1)

SF constant safety factor (‐)
std standard deviation of trigger variable (L or % or % · hr–1)

T temperature (K)

t time (hr)

threshold threshold for trigger variable (L or % or % · hr–1)

TOC cumulative amount of total organic carbon (mol)

Vafoam cumulative volume of antifoam (L)

Vbase cumulative volume of base (L)

Vmeth cumulative volume of methanol (L)

Vsamples cumulative volume of samples (L)

Vstart start liquid volume inside bioreactor after inoculation (L)

Vtotal total liquid volume inside bioreactor (L)

X biomass amount (g)

Xbatchend biomass amount at the end of the batch phase (g)

y reference measurement (g · L–1)

ŷ prediction (g · L–1)

ymax/ymin maximum/minimum values of reference measurements

y (g · L–1)

α index for gas inlet of the bioreactor (‐)
σ volume concentration

σCO2 off‐gas CO2 concentration (%)

σ /d dtCO2 timewise derivative of the off‐gas CO2 concentra-

tion (% · hr–1)

σO2 off‐gas O2 concentration (%)

ω index for gas outlet of the bioreactor (‐)
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