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Abstract
Quantitative dynamicalmodels facilitate the understanding of biological processes and
the prediction of their dynamics. These models usually comprise unknown parame-
ters, which have to be inferred from experimental data. For quantitative experimental
data, there are several methods and software tools available. However, for qualitative
data the available approaches are limited and computationally demanding. Here, we
consider the optimal scalingmethodwhich has been developed in statistics for categor-
ical data and has been applied to dynamical systems. This approach turns qualitative
variables into quantitative ones, accounting for constraints on their relation. We derive
a reduced formulation for the optimization problem defining the optimal scaling. The
reduced formulation possesses the same optimal points as the established formulation
but requires less degrees of freedom. Parameter estimation for dynamical models of
cellular pathways revealed that the reduced formulation improves the robustness and
convergence of optimizers. This resulted in substantially reduced computation times.
We implemented the proposed approach in the open-source Python Parameter ESti-
mation TOolbox (pyPESTO) to facilitate reuse and extension. The proposed approach
enables efficient parameterization of quantitative dynamical models using qualitative
data.
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1 Introduction

In systems and computational biology, quantitative dynamical models based on ordi-
nary differential equations (ODEs) are widely used to study cellular processes (Klipp
et al. 2005;Aldridge et al. 2006; Schöberl et al. 2009;Bachmann et al. 2011).Unknown
parameters of these ODE models are often inferred from experimental data (Banga
2008; Raue et al. 2013a). This is done by minimizing the distance between measured
data and model simulation, e.g. the mean squared error, the mean absolute error or the
maximum likelihood (Raue et al. 2013a). However, not all experimental techniques
and setups provide quantitative data that allow for a direct comparison of measured
and simulated data (Pargett and Umulis 2013).

In many experimental setups, the measured values only provide information about
the qualitative behaviour, e.g. that some quantity decreases or increases. Frequently
encountered reasons are (1) unknown nonlinear dependencies of the measured signal
on the internal state of the system, e.g. for Förster resonance energy transfer (FRET)
(Birtwistle et al. 2011) and (2) detection thresholds and saturation effects, e.g. for
Western blotting (if not properly designed) (Butler et al. 2019). For these techniques
a specific fold change in the measured signal does not imply the same fold change in
the measured species. Yet, there is a monotonic relation between measured species
and signal, meaning that—if the measurement noise is neglected—the ordering is still
preserved.

The use of qualitative data is not supported by established parameter estimation
toolboxes such as AMIGO (Balsa-Canto and Banga 2011), COPASI (Hoops et al.
2006), Data2Dynamics (Raue et al. 2015), and PESTO (Stapor et al. 2018) (along
with its Python reimplementation pyPESTO (Schälte et al. 2019)). However, two
methods have been proposed which facilitate the use of qualitative data in dynamical
systems: (1) Mitra et al. (2018) used an approach based on the formulation of qualita-
tive data as inequality constraints. The degree to which the inequality constraints were
violated was used as objective function. The parameters were estimated by minimiz-
ing this penalized objective function. This approach was implemented in the toolbox
pyBioNetFit (Mitra et al. 2019), making it generally applicable to other problems and
recently extended using a probabilistic distance measure (Mitra and Hlavacek 2020).
(2) Pargett and Umulis (2013) and Pargett et al. (2014) used the concept of optimal
scaling established in statistics (Shepard 1962). Instead of imposing inequality con-
straints, the optimal scaling method determines the best quantitative representation of
the qualitative data. This quantitative representation is referred to as surrogate data.
The parameters are estimated by splitting the optimization of the parameters in an
outer and an inner problem (Fig. 1a). In the outer problem the model parameters of
the dynamical model are optimized given the parameter-dependent optimal surrogate
data computed in the inner problem by minimizing the difference between surrogate
data and model simulation. In the inner optimization, the optimal surrogate data for a
given model simulation are determined, such that inconsistencies of the model simu-
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lation with the qualitative measurement data are penalized. While the optimal scaling
approach is deeply grounded in statistical theory, it is computationally demanding.

Here, we build upon the optimal scaling method developed by Pargett and Umulis
(2013) and Pargett et al. (2014) for dynamical systems. To accelerate the solution of
the inner optimization, we first propose a reduced formulation which conserves the
optimal points. Next, the reduced formulation is reparameterized to an unconstrained
optimization problem, which can be solved more robustly as we demonstrate on three
application examples. The approach is implemented in the Python Parameter ESti-
mation TOolbox pyPESTO (Schälte et al. 2019) and can be used with the parameter
estimation data format PEtab (Schmiester et al. 2020) making it easily reusable.

2 Methods

2.1 Modeling of biochemical processes

We consider biochemical processes described by ordinary differential equations
(ODEs) of the form:

ẋ(t, θ) = f (x(t, θ), θ), x(t0, θ) = x0(θ), (1)

in which x(t, θ) ∈ R
nx denotes the concentrations of biochemical species at time t and

f : Rnx ×R
nθ �→ R

nx the vector field describing their temporal evolution. The vector
field is assumed to be Lipschitz continuous in x to ensure existence and uniqueness of
the solutions. The vector θ ∈ R

nθ comprises the unknown time-invariant parameters of
the ODE (1). The function x0 : Rnθ �→ R

nx provides the parameter-dependent initial
condition at initial time t0, thereby allowing for steady state constraints (Rosenblatt
et al. 2016; Fiedler et al. 2016).

2.2 Measurement process

We consider quantitative and qualitative measurement data. To allow for partial obser-
vations of the state x(t, θ), we define the observation function h : Rnx × R

nθ �→ R.
The observable y(t, θ) ∈ R is given by

y(t, θ) = h(x(t, θ), θ). (2)

Examples for the observation function are h(x, θ) = x1 (absolute measurements of
state variable x1), h(x, θ) = x1 + x2 (absolute measurements of the sum of state
variables x1 and x2), and h(x, θ) = θ1x1 (relative measurements of state variable x1).
Also saturation effects and more complex dependencies can be considered.

For ease of notation we consider in the main manuscript the case of a single observ-
able and a single time-lapse experiment. The extension to multiple observables and
multiple experiments (e.g. a dose-response curve) is straight forward.
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Quantitative data are noise-corrupted observations of y(t, θ),

ȳi = y(ti , θ) + εi , (3)

with time index i = 1, . . . , N . Here, we assume additive and normally distributed
measurement noise εi ∼ N (0, σ 2

i ) with standard deviation σi . Alternatives are pro-
vided by Laplace and t-distributed measurement noise (Maier et al. 2017).
Qualitative data are information about a readout z(θ, t)which is related to the observ-
able y(θ, t). Yet, the mapping from the observable y(θ, t) to the measured quantity
is not precisely known. For several experimental techniques only monotonicity of the
mapping from z(θ, t) to y(θ, t) can be assumed. This means that an increase of the
readout z(θ, t) implies an increase of the observable y(θ, t), but that y(θ, t) might
increase without changing z(θ, t). This happens for instance if the readout is discrete
or if there is a detection limit or detector saturation.

The measured (qualitative) readouts are potentially noise corrupted

z̄i = z(θ, ti ) + νi (4)

with measurement noise νi and are either indistinguishable, i.e. z̄i ≈ z̄ j , or ordered,
z̄i > z̄ j or z̄i < z̄ j , i �= j .We follow the formulation by (Pargett andUmulis 2013) and
introduce categories Ck , k = 1, . . . , K , which are without loss of generality assumed
to be ordered as C1 ≺ C2 · · · ≺ CK . The categories contain observations, which are
indistinguishable from each other, i.e. z̄i , z̄ j ∈ Ck ⇒ z̄i ≈ z̄ j . Observations from
different categories can be distinguished by the ordering of the categories. The index
of the category to which observation z̃i belongs is denoted by k(i). An illustration of
qualitative data is shown in Fig. 1b.

2.3 Parameter estimation

The unknown parameters θ of theODEmodel (1) have to be inferred from the available
quantitative and qualitative data.

For quantitative data, parameter estimates are usually computed by minimizing the
difference between the data and the model simulation. The difference is commonly
formulated in terms of the negative log-likelihood or the negative log-posterior func-
tions (Raue et al. 2013b). Here, we considered normally distributedmeasurement noise
with known standard deviation. In this case the negative log-likelihood function is a
weighted least squares objective function. The corresponding optimization problem
is

θ̂ = argmin
θ

N∑

i=1

wi (ȳi − y(ti , θ))2, (5)

with quantitative data ȳi , model simulation y(ti , θ) and weights wi = 1/σ 2
i . Multi-

start local optimization has been shown to be a competitive method for solving these
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B

C

Fig. 1 Illustration of the optimal scaling approach. a Individual steps of an optimization run. b Schematic
of surrogate data calculation for a given simulation results y(t, θ) and set of qualitative data (with three
categories). The interval between the optimized lower and upper bounds of the categories are indicated by
grey areas. c Schematic of residuals used in the objective function for the parameter optimization

types of ODE-constrained optimization problems (Raue et al. 2013a; Villaverde et al.
2018).

For qualitative data, parameter estimates can be computed using the optimal scal-
ing approach (Pargett et al. 2014) (Fig. 1a–c). This approach addresses the problem
that the mapping from quantitative simulation to qualitative data is unknown by intro-
ducing quantitative surrogate data ỹi , i = 1, . . . , N . These surrogate data provide
the best agreement with the model simulation within the constraints provided by the
qualitative data (Fig. 1b), i.e. the information about the category of a data point and its
(qualitative) relation to other data points. For a given parameter θ and corresponding
model simulation y(t, θ), the surrogate data are obtained by solving the optimization
problem

(ỹ(θ), l(θ), u(θ)) = argmin ỹ,l,u
N∑
i=1

wi (ỹi − y(ti , θ))2

s.t. lk(i) ≤ ỹi ≤ uk(i), i = 1, . . . , N
uk ≤ lk+1, k = 1, . . . , K − 1.

(6)

The qualitative information is enforced by restricting the surrogate data for observa-
tions in category Ck to the interval [lk, uk], with lower bound lk ∈ R and upper bound
uk ∈ R. To ensure that categories are distinguishable, the upper bound of category Ck
has to be lower than the lower bound of category Ck+1, uk ≤ lk+1. The category for
the i-th observation is encoded in the index mapping k(i). The weights in the objective
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function are set to

wi = 1
1
2

∑N
j=1 |y(t j , θ)| + ∑N

j=2 |y(t j , θ) − y(t j−1, θ)| + γ
with γ = 10−10

(7)

which is similar to the choice by Pargett et al. (2014). This choice of the weight ensures
that the objective function penalizes a violation of the qualitative data independent of
the scale of the simulated data y(t, θ). Without this choice, small simulations could
lead to better objective function values even if they are in less good agreement with
the qualitative measurements. The second summand of w penalizes flat simulations
and γ is chosen such that w is still evaluable for simulations equal to zero.

To estimate the parameters θ , the distance between model simulation and optimal
surrogate data (Fig. 1c) is minimized

θ̂ = argmin
θ

N∑

i=1

wi (ỹi (θ) − y(ti , θ))2. (8)

As the surrogate data possess for all θ the correct qualitative characteristics, the min-
imization of the objective function

∑N
i=1 wi (ỹi (θ) − y(ti , θ))2 yields a sequence of

points which approaches the measured qualitative dynamics. If the model simulations
show the correct qualitative behaviour, the objective function becomes zero.

The surrogate data depend on the parameter-dependent model simulation y(ti , θ).
Therefore, the optimization of the surrogate data is nested in the optimization of the
parameters θ and has to be performed in each optimization step. To accelerate this
process, Pargett et al. (2014) employed that the optimal surrogate data can be computed
from the optimal category bounds u(θ) and l(θ):

(Case 1) If the model simulation y(ti , θ) is smaller than the lower bound lk(i)(θ), the
surrogate data are set to the smallest feasible value tominimize the difference,
i.e. ỹi (θ) = lk(i)(θ).

(Case 2) If the model simulation y(ti , θ) is larger than the upper bound uk(i)(θ), the
surrogate data are set to the largest feasible value to minimize the difference,
i.e. ỹi (θ) = uk(i)(θ).

(Case 3) If the model simulation y(ti , θ) is in the interval [lk(i)(θ), uk(i)(θ)], then the
surrogate data are set to ỹi (θ) = y(ti , θ). In this case the error is zero.

These analytical results provide a construction rule for the surrogate data:

ỹi (θ) =

⎧
⎪⎨

⎪⎩

lk(i)(θ) if y(ti , θ) < lk(i)(θ)

uk(i)(θ) if uk(i)(θ) < y(ti , θ)

y(ti , θ) otherwise.

(9)
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Using this construction rule, the category bounds can be computed using the optimiza-
tion problem:

(l(θ), u(θ)) = argmin
l,u

N∑

i=1

wi

(
max

{
0, lk(i) − y(ti , θ)

}2 + max
{
0, y(ti , θ) − uk(i)

}2)

s.t. lk ≤ uk , k = 1, . . . , K

uk ≤ lk+1, k = 1, . . . , K − 1.

(10)

In the considered objective function, the term max{0, lk(i) − y(ti , θ)}2 vanishes in
Case 2 and 3 while the term max{0, y(ti , θ) − uk(i)}2 vanishes in Case 1 and 3.
Accordingly, the objective function uses the analytical results for the optimal surrogate
data and its minimizer provides the optimal lower and upper bounds for the categories.
Hence, in the optimal scaling approach (Fig. 1a), solving (6) can be replaced by solving
(10) and evaluating the optimal surrogate data using (9).

In the optimization problems (6) and (10), the qualitative data provide only limited
information about the lower bound l1 of category C1 and the upper bound uK of
category CK . The lower bound l1 may be set to any value smaller or equal to the
minimum of y(ti , θ), l1 ≤ mini y(ti , θ), and the upper bound uK may be set to any
value greater or equal to the maximum of y(ti , θ), uK ≥ maxi y(ti , θ).

2.4 Acceleration of surrogate data calculation

The surrogate data calculation proposed by Pargett et al. (2014) reduces the number
of optimization variables from N + 2(K − 1) to 2(K − 1). Yet, the calculation of the
surrogate data is for many application problems still the most time-consuming process
within the parameter estimation. Here, we propose two reformulations to accelerate
the surrogate data calculation.

The first reformulation is based on our empirical observation that the gaps between
lower and upper bounds of adjacent categories are often estimated as small as possible.
Our analysis of the phenomenon revealed:

Lemma 1 The optimization problem (10) possesses an optimal solution (l∗, u∗) with
u∗
k = l∗k+1 for k = 1, . . . , K − 1.

Proof Assume there is an optimal solution (l ′, u′) with a non-zero gap between adja-
cent lower and upper bounds. Without loss of generality, we assume that u′

k′ < l ′k′+1.
For all observations i ∈ {1, . . . , N } with k(i) = k′ it has to hold that y(ti , θ) −

u′
k(i) = y(ti , θ) − u′

k′ < 0. Otherwise, the objective function could be decreased by

setting u′
k(i) = l ′k(i)+1 as the objective function summand max{0, y(ti , θ) − u′

k(i)}2 =
max{0, y(ti , θ) − u′

k′ }2 > max{0, y(ti , θ) − l ′k(i)+1}2 would decrease. This would
imply that (l ′, u′) is not an optimal solution.

As y(ti , θ) − u′
k′ < 0 the corresponding objective function summands are zero,

max{0, y(ti , θ) − u′
k′ }2 = 0. This does not change if u′

k′ is increased to l ′k′+1. ��
This proof also holds for other weighting functions wi (y, l ′, u′) as well as constant

weights wi .
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A D

B

C

Fig. 2 Schematic representation of the reduction of the inner optimization problem. a Example of qualitative
data with two categories and three observations. b and c Simulated data with category bounds shown in
gray for two different category bounds. d Objective function landscape for upper bound of C1 and lower
bound of C2, showing that the objective function decreases (or stays constant), when decreasing the gap
between the two category intervals. By setting l2 = u1 the minimal objective function is achieved

Lemma 1 implies that among the optimal solutions of (10), there is at least one
for which the lower and upper bounds of adjacent categories are identical (see also
Fig. 2). Accordingly, an optimal solution of (10) can be computed by solving a reduced
problem:

Theorem 1 Anoptimal solutionof the optimizationproblem (10) is obtainedby solving

u(θ) = argmin
u

N∑

i=1

wi

(
max

{
0, uk(i)−1 − y(ti , θ)

}2 + max
{
0, y(ti , θ) − uk(i)

}2)

s.t. uk ≤ uk+1, k = 0, . . . , K − 1,

(11)

for u0 = mini y(ti , θ) and uK = maxi y(ti , θ), and setting lk+1(θ) = uk(θ) for
k = 1, . . . , K − 1.

Proof Optimization problem (11) is obtained by substituting lk+1 with uk in opti-
mization problem (10) and removing trivially fulfilled constraints. The reduced
optimization problem obtained by the substitution effectively solves (10) on the sub-
space lk+1 = uk , which contains one of the optimal solutions (Lemma 1). ��

We note that u0 is an auxiliary variable used to simplify the notation, not the bound
of an additional category.
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The reduced optimization problem (11) possesses K − 1 optimization variables.
Hence, the number of optimization variables is reduced by a factor of two compared
to the available formulation (11). This should accelerate the optimization. Yet, as
the objective function is nonlinear and as we have linear inequality constraints, the
availability of optimization methods is limited.

The second reformulation is based on our empirical finding that available solvers for
nonlinear optimization problemswith box constrained optimization variables are often
computationally more efficient than those for general linear inequality constraints. To
this end, we introduce the vector of differences between the upper bounds of adjacent
categories, dk := uk −uk−1. Using this difference, the category bounds can be written
as uk = u0 + ∑k

k′=1 dk . The auxiliary variable u0 can be set to some value lower or
equal to the minimum of y(θ, ti ), e.g. u0 = mini y(θ, ti ). The reformulation of the
reduced optimization problem using the differences yields

d(θ) = argmin
d

N∑

i=1

wi

⎛

⎜⎝max

⎧
⎨

⎩0, u0 +
k(i)−1∑

k′=1

dk′ − y(ti , θ)

⎫
⎬

⎭

2

+max

⎧
⎨

⎩0, y(ti , θ) − u0 −
k(i)∑

k′=1

dk′

⎫
⎬

⎭

2
⎞

⎟⎠

s.t. dk ≥ 0, k = 1, . . . , K − 1.

(12)

This optimization problem contains only positivity constraints for the optimization
variables. Hence, a broader spectrum of nonlinear optimization algorithms can be
employed.

To select appropriate numerical optimization algorithms,we analyzed the properties
of the optimization problems. We found that:

Theorem 2 The optimization problems (10), (11), and (12) are convex.

Proof The objective functions of the respective optimization problems are sums of
convex functions of the lower bounds l, the upper bounds u and/or the differences
d. As the sum of convex functions is itself convex (Boyd and Vandenberghe 2004,
Sect. 3.2), the overall objective function is convex. In combination with linear inequal-
ity constraints, this implies that the optimization problem is convex. ��

Convex optimization problems only possess one optimum. Hence, local optimiza-
tion methods should – in theory – converge to the optimal solution.

2.5 Category and gap sizes

To ensure that qualitatively different readouts are related to non-negligible quantitative
differences, Pargett et al. (2014) enforced aminimal size s ∈ R+ for each category and
a minimal gap g ∈ R+ between categories. Therefore, the constraints were modified,
yielding the optimization problem
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(l(θ), u(θ)) = argmin
l,u

N∑

i=1

wi

(
max

{
0, lk(i) − y(ti , θ)

}2 + max
{
0, y(ti , θ) − uk(i)

}2)

s.t. lk + s ≤ uk , k = 1, . . . , K

uk + g ≤ lk+1, k = 1, . . . , K − 1.

(13)

For this optimization problem it can be shown that the optimal values for lower and
upper bounds are in the interval [mini y(ti , θ)− K (g+ s),maxi y(ti , θ)+ K (g+ s)].
Outside of the interval the objective function is – independent of the specific simulation
results – increasing. Accordingly, one can set l1 = mini y(ti , θ) − K (g + s) and
uK = maxi y(ti , θ) + K (g + s).

For optimization problem (13) it can be shown that there exists an optimal solution
with lk+1 = uk + g. This is a straight extension of Lemma 1 and provides the basis
for reformulation of (13) similar to results presented in Sect. 2.4:

Theorem 3 Anoptimal solutionof the optimizationproblem (13) is obtainedby solving

u(θ) = argmin
u

N∑

i=1

wi

(
max

{
0, uk(i)−1 + g − y(ti , θ)

}2

+max
{
0, y(ti , θ) − uk(i)

}2)

s.t. uk + g + s ≤ uk+1, k = 0, . . . , K − 1,

(14)

for u0 = mini y(ti , θ) − K (g + s) and uK = maxi y(ti , θ) + K (g + s), and setting
lk+1(θ) = uk(θ) + g for k = 1, . . . , K − 1.

The proof of Theorem 3 is analogue to the proof of Theorem 1, which is a special case
of this result for s = g = 0.

The reduced optimization problem (14) can be again reformulated to replace the
linear inequality constraints with positivity constraints. Here, we use the difference
between uk and its minimal value given uk−1 and the required gaps, dk := uk −
(uk−1 + g + s), as new optimization variables. This yields

d(θ) = argmin
d

N∑

i=1

wi

⎛

⎜⎝max

⎧
⎨

⎩0, u0 +
k(i)−1∑

k′=1

(dk′ + g + s) − y(ti , θ)

⎫
⎬

⎭

2

+max

⎧
⎨

⎩0, y(ti , θ) − u0 +
k(i)∑

k′=1

(dk′ + g + s)

⎫
⎬

⎭

2
⎞

⎟⎠

s.t. dk ≥ 0, k = 1, . . . , K − 1,

(15)

with some u0 ≤ mini y(ti , θ) − K (g + s).
The optimization problems (13), (14) and (15) with constraints on category and

gap sizes are also convex. To show this the proof of Theorem 2 can be reused.
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Remark 1 In Sect. 2.3–2.5,weuse the structure of the optimization problems to provide
conservative bounds for u0, uK and l1. In practice, these bounds might be tightened
using additional information, e.g., that the data are non-negative.

3 Application

To evaluate the optimal scaling approach with the reformulated surrogate data calcu-
lation, we implemented the approach and compared accuracy and computation time
to those of available methods.

3.1 Implementation

We implemented the optimal scaling approach for parameter estimation with quali-
tative data in pyPESTO (Schälte et al. 2019). Our implementation allows to choose
between surrogate data calculation using

– the standard optimization problem (13),
– the reduced optimization problem (14), and
– the reparameterized reduced optimization problem (15)

for the calculation of the category bounds.
For the surrogate data calculationweemployed twooptimization algorithms: For the

standard and the reduced optimization problems with linear inequality constraints we
used the Sequential Least Squares Programming (SLSQP) algorithm. For the reparam-
eterized reduced optimization problem with box constraints we used the L-BFGS-B
algorithm. These optimization algorithms are implemented in the Python package
SciPy (Jones et al. 2001). We allowed for a maximum of 2000 iterations and set the
function tolerance to 10−10. For the selection of the minimal gaps between categories
and minimal category sizes we follow the recommendation of Pargett et al. (2014) but
additionally enforce a minimum of ε = 10−16:

s = max

{
maxi y(ti , θ)

2K + 1
, ε

}
and g = max

{
maxi y(ti , θ)

4(K − 1) + 1
, ε

}
. (16)

The minimum value ε facilitates the mitigation of numerical integration errors for the
ODE model. Initial guesses of the bounds are placed between 0 and maxi y(ti , θ)+ s,
and reparameterized to obtain the starting points for the reparameterized reduced
formulation. If the calculation of the category bounds fails, the objective function
value of the outer loop is set to NaN.

For the calculation of the parameters θ using the optimization problem (8),
we employed the Nelder-Mead and Powell algorithm. These gradient-free algo-
rithms are interfaced through pyPESTO and turned out to be more reliable than the
available gradient-based methods. The reason was probably that for the specific prob-
lem structure, finite difference approximations of the gradient were inaccurate and
sensitivity-based gradient calculation is not implemented. As stopping criteria for the
outer optimization, we used an absolute function tolerance of 10−10 and a maximum
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Table 1 Overview over the considered models and their properties, as well as the corresponding datasets

Model RAF inhibition STAT5 dimerization IL13-induced signaling

Number of state variables, nx 5 8 14

Number of parameters, nθ 2 6 18

Number of observables 1 3 8

Number of data points, N 9 48 205

Number of categories, K 2–9 3 × 16 6–38

Reference Mitra et al. (2018) Boehm et al. (2014) Raia et al. (2011)

of 500 number of iterations and function evaluations. The optimization was performed
in log-space.

For the numerical simulation of the ODE models we used the Advanced Multi-
language Interface to CVODES and IDAS (AMICI) (Fröhlich et al. 2017), which
internally exploits the Sundials solver package (Hindmarsh et al. 2005). We set the
absolute tolerance to 10−16 and the relative tolerance to 10−8.

For more details on the implementation we refer to the code, which is provided via
Zenodo: https://doi.org/10.5281/zenodo.3561952.

3.2 Test problems

For the evaluation of the proposed methods, we considered three published mod-
els. These models possess 5 to 14 state variables, 2 to 18 unknown parameters,
and 1 to 8 observables. An overview about the model properties is provided in
Table 1.

The model of RAF inhibition used by Mitra et al. (2018) is used as an illustration
example. It comprises two unknown parameters and we consider 9 simulated data
points, discretized in 2 to 9 categories.

The STAT5 dimerization model by Boehm et al. (2014) is considered as a small
application problem. This model describes the homo- and heterodimerization of the
transcription factor isoforms STAT5A and STAT5B using 6 unknown parameters. It
has 3 observables for each of which 16 quantitative measurements are available. For
the evaluation of the proposed optimal scaling approach we consider as qualitative
data the ordering of the measured values. As the values of different observables is
not necessarily comparable, separate orderings are used for the observables, yielding
3× 16 categories, and the surrogate data calculation is performed separately for each
observable.

The model of IL13-induced signaling by Raia et al. (2011) is considered as a larger
application example. This model describes IL13-induced signaling in Hodgkin and
Primary Mediastinal B-Cell Lymphoma. It comprises 18 unknown parameters and 7
observables, for which 6–38 quantitative measurements are available. As qualitative
data we consider again the ordering of the measured values.

In this study, we considered application examples for which quantitative measure-
ments are available and which are included in a collection of benchmark problems for
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parameter estimation, which facilitates easy reusability (Hass et al. 2019). For more
details on the models we refer to the original publications.

3.3 Convexity, optimality and scalability

To verify the theoretical finding that optimization problems for the calculation of the
category bounds are convex, we performedmulti-start local optimization for themodel
of RAF inhibition (Fig. 3a). The waterfall plot reveals that for this model all starts
converged to the same objective function value (Fig. 3b). This is in line with our our
theoretical findings.

To confirm that the reduced formulations provide optimal surrogate data, we evalu-
ated the objective function using the standard and the reduced optimization problems.
Since this model has only two unknown parameters, we studied the complete objective
function landscape for the dataset with 3 and 9 categories (Fig. 3c, d). The numerical
results confirm that the objective functionvalues obtainedwith the different approaches
are identical.

Despite the convexity of the optimization problems, the computational complexity
substantially increases with the number of categories (Fig. 3e). While the absolute
computation time of reduced and reparameterized reduced formulation is lower than
for the standard formulation, the scaling behaviour is comparable. The computation
time depends linearly on the number of categories.

3.4 Information content

Qualitative data are often assumed to provide a limited amount of information. To
assess this hypothesis, we studied the objective function for the model of RAF inhi-
bition for qualitative data with different numbers of categories (Fig. 3c, d) as well as
quantitative data (Fig. 3f). Interestingly, while the optimal parameter estimate depends
on the number of categories, the objective function landscapes for qualitative and
quantitative data possess similar characteristics. For a sufficiently large number of
categories, the objective function landscapes for the qualitative data closely resembles
the objective function landscape for quantitative data. This implies that qualitative
data can be almost as informative as quantitative data. This is corroborated by the
objective function profiles we computed (Fig. 4), which can be used for uncertainty
analysis (Raue et al. 2009).

3.5 Robustness and efficiency

The reduced formulations for the surrogate data calculation possess only half as many
optimization variables as the standard formulation, and the reparameterized reduced
formulation possesses only positivity constraints. To evaluate the practical impact of
these reformulations, we solved the respective optimization problems for the models
of STAT5 dimerization and IL13-induced signaling. For each model, 150 parameter
vectors were sampled and the corresponding category bounds were computed.
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A B

C

D

E F

Fig. 3 Comparison of standard and reduced formulations for the calculation of the surrogate data for the
model of RAF inhibition. a Illustration of the model. b Waterfall plot of multi-start local optimization
results for surrogate data calculation with 3 categories for the reduced formulation. The objective function
was evaluated at the model parameters K3 = 4000 and K5 = 0.1. c, b Objective function landscape for
qualitative data with (c) 3 categories and (d) 9 categories. e Computation time for the calculation of the
surrogate data (i.e. solving the inner optimization problem). f Objective function landscape for quantitative
data

Although the considered inner optimization problems are convex, the consid-
ered optimization algorithms provided different results for the different formulations
(Fig. 5a). To our surprise, numerical optimization often failed to provide appropriate
category bounds when using the standard formulation (Fig. 5b). For the model of
IL13-induced signaling, only 37% of the optimizations with the standard and 36%
with the reduced formulation were successful. For the remaining ones, the optimizer
failed for different reasons. This problem was not observed for the reparameterized
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A B

Fig. 4 Objective function profiles for the model of RAF inhibition. a and b Profiles for qualitative data with
3, 6 and 9 categories and quantitative data for Parameter K3 (a) and K5 (b)

reduced formulation, probably because the optimization algorithm we can employ for
this problem is more reliable.

For the sampled parameter vectors for which numerical optimization for all formu-
lations was successful, the computation time for the reduced and the reparameterized
reduced formulation is substantially lower than for the standard formulation (Fig. 5c).
We observed median and mean speedups of 11.5 and 18.9 respectively for the model
of STAT dimerization and 4.2 and 7.4 for the model of IL13-induced signaling for the
reparameterized reduced formulation compared to the standard formulation. Hence,
the proposed formulations allow for more robust and more efficient calculation of the
surrogate data.

3.6 Overall performance

The calculation of the category bounds and the surrogate data is only one step in the
parameter estimation loop (Fig. 1). To assess the overall performance of parameter
optimization using standard and reduced formulations, we performed a multi-start
local optimization using gradient-free optimizers Nelder-Mead and Powell.

The results of the multi-start local optimization reveal that standard and reduced
formulations yield similar final objective function values (Fig. 6a). In all cases except
for the model of STAT5 dimerization with Nelder-Mead algorithm, the reparameter-
ized formulation achieved slightly better objective function values. This might be due
to the improved robustness of the evaluation of the inner problem demonstrated in
Sect. 3.5.

As the calculation of the surrogate data requires a substantial amount of the overall
computation time, the improved efficiency of the reduced formulations demonstrated
in Section 3.5 decreases the computation time (Fig. 6b). On average we observe a
5–10-fold reduction of the computation times for a local optimization (Fig. 6c).

To assess the quality of the fits achieved using the optimal scaling approach, we
compared the model simulation with the optimal surrogate data (Fig. 7). The best
found parameters resulted in generally good agreement between surrogate data and
simulation (Fig. 7a and b). For themodel of STAT5 dimerizationwe consistently found
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A B C

Fig. 5 Computation time and robustness of standard and reduced formulations for the calculation of the
surrogate data. a Scatter plot with final objective function values obtained using standard and reparameter-
ized reduced formulation for 150 randomly sampled parameter values. Black dots correspond to starting
points for optimization for which standard and reparameterized reduced formulation was successful, while
red crosses indicate that the corresponding optimization failed. b Percentage of successful calculations of
the surrogate data. c Computation times for solving the inner optimization problem for standard, reduced
and reparameterized reduced formulation. Only computation times for successful evaluations are shown

A B C

Fig. 6 Parameter optimization for the models of STAT5 dimerization and IL13-induced signaling. aWater-
fall plots for different combinations of model, optimization algorithm and formulation of the surrogate
data calculations. The best 50 starts out of total of about 100 runs are shown. b Computation times for the
different combinations. c Speedups achieved using the reduced formulations. Above the dashed line the use
of the reformulation was computationally more efficient and below the use of the standard formulation

for the best 10 fits a good correlation of 0.90 to 0.98 for the different observables
(Fig. 7c). For the model of IL13-induced signaling the correlations observed for the
different starts differ (Fig. 7d), demonstrating that even among the best 10 starts some
did not converge to the same point in parameter space. Yet, for the best fit we observe
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A

B

C

Fig. 7 Model simulation and optimal surrogate data. a, b Simulation and optimal surrogate data for the
model of (a) STAT5 dimerization and (b) IL13-induced signaling. Different colors correspond to different
experimental conditions. Different experimental conditions are indicated in different colors. c,d Spearman’s
rank correlation coefficients betweenmodel simulation and optimal surrogate data for the 10 best starts using
the reparameterized approach for the model of (c) STAT5 dimerization and (d) IL13-induced signaling.
The starts in (c, d) are colored by the final objective function value with dark green being the best value
and dark red the worst out of the 10 considered starts (color figure online)

a good agreement of model simulation and surrogate data, with an average correlation
of 0.85.

4 Discussion

Measurements that provide qualitative information are common in biology. Yet, only
few approaches exist to incorporate qualitative measurements in the development of
dynamic models (Mitra et al. 2018; Pargett et al. 2014) and these approaches are com-
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putationally demanding. Here, we built upon the optimal scaling approach introduced
in Pargett et al. (2014) and show that this approach can be reformulated to a problem
with a reduced number of optimization variables.

We evaluated the proposed reparameterized formulation of the optimal scaling
approach using three application examples and observed a 3- to 10-fold speedup.
The speedup increased with the size of the dataset per observable (Fig. 3e). Even
more important than the speedup could be the finding that proposed optimal scaling
approach is more robust and yields often better final objective function values. These
benefits were independent of the optimization algorithm.

Open questions for the proposed approach include the choice of the weighting
factorswi , the minimal gap between categories g and the minimal size of categories s.
We observed that for the latter two the suggestions found in the literature are often not
ideal. Furthermore, the scaling behaviour of the overall problem formulation should
be evaluated by studying larger published models and datasets (Mitra et al. 2018), and
the benefit of parallelizing the inner optimization (which is easily possible) should be
exploited.

In this study, we only used gradient-free optimization algorithms, although opti-
mization algorithms exploiting gradient information often proved to be more efficient
and reliable (Raue et al. 2013a; Villaverde et al. 2018; Schälte et al. 2018). To fur-
ther improve the parameter estimation, the gradient of the objective function could be
employed, which requires the sensitivity of the parameter-dependent surrogate data.
As the surrogate data are the solution to the optimization problem (6), their sensi-
tivity is the sensitivity of this optimal solution with respect to the parameters θ . The
availability of gradient information would allow for efficient hierarchical optimization
algorithms similar to results for relative quantitative data (Weber et al. 2011; Loos et al.
2018; Schmiester et al. 2019).

As qualitative data provide less information about the dynamical system than
quantitative measurements, identifiability is a key concern. Unfortunately, established
methods and tools for structural identifiability analysis (Chis et al. 2011; Ligon et al.
2018) are not applicable to the problem class. Furthermore, while the optimal scaling
approach can be easily used for profile calculation (Raue et al. 2009) (see our results
for the model of the RAF inhibition), the statistical interpretation of objective func-
tion differences is unclear. The identifiability concerns can further be addressed by
combining qualitative and quantitative measurements as shown in (Mitra et al. 2018).
This can be achieved by calculating the same objective function for quantitative data
that is used for qualitative data and summing up both objective functions. Instead of
optimizing the surrogate data, the quantitative data could directly be used to calculate
the objective function. A first Bayesian formulation has been proposed (Mitra and
Hlavacek 2020), but it remains unclear, which statistical model is best suited for the
use of qualitative data. A proper statistical formulation would also benefit the inte-
gration of qualitative and quantitative data (Mitra et al. 2018), and might improve
parameter identifiability.

We conclude that the ability to use qualitative information is very important, but
that there are many open problems. We provide an improved optimal scaling approach
for dynamical systems and a corresponding open-source implementation. We expect
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that this will contribute to the further development of methods for the analysis of
qualitative data.
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