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Abstract

Spectral X-ray imaging with energy-resolving photon-counting detectors has gained increasing
interest for medical imaging applications in recent years. By exploiting information about the
energy-dependent attenuation, different materials can be distinguished and information about
the chemical composition of an object is obtained. However, the high noise level of the material
selective images is still a fundamental problem, especially for medical imaging applications where
a low radiation dose is desired. In this work, we investigate how photon-counting detectors can
be used to combine spectral X-ray imaging with the emerging grating-based differential phase-
contrast X-ray imaging technology. In addition to the attenuation, this technique measures
the phase shift that an X-ray wave exhibits when traversing an object. Numerical simulations
of radiography and computed tomography applications demonstrate that the combination of
these two imaging techniques (spectral differential phase-contrast imaging) benefits from the
strengths of the individual methods while the weaknesses are mitigated. Quantitatively accu-
rate material selective images are obtained and the noise level is strongly reduced, compared to
spectral X-ray imaging. Moreover, we develop several processing and image reconstruction tech-
niques for spectral and spectral differential phase-contrast imaging. Our results demonstrate
that the image quality can be strongly improved by accounting for photon-counting detector
imperfections, using statistical noise models and incorporating prior knowledge in a Bayesian
image reconstruction framework. Although many results need be confirmed by additional ex-
periments, we believe that this work shows the potential of spectral differential phase-contrast
imaging with photon-counting detectors in the fields of medical imaging and non-destructive
testing, especially for low-dose applications.



Zusammenfassung

Die spektrale Rontgenbildgebung mit energieauflésenden photonenzéhlenden Detektoren hat
in den letzten Jahren zunehmend an Interesse fiir medizinische Bildgebungsanwendungen ge-
wonnen. Durch die Ausnutzung von Informationen iiber die energieabhéingige Abschwéachung
der einfallenden Rontgenstrahlung konnen verschiedene Materialien unterschieden und Infor-
mationen iiber die chemische Zusammensetzung eines Objekts gewonnen werden. Der hohe
Rauschpegel der materialselektiven Bilder ist jedoch nach wie vor ein grundlegendes Problem,
insbesondere fiir medizinische Bildgebungsanwendungen, bei denen eine niedrige Strahlendosis
erwiinscht ist. In dieser Arbeit untersuchen wir, wie photonenzéhlende Detektoren verwendet
werden konnen, um die spektrale Rontgenbildgebung mit der aufkommenden gitterbasierten
differenziellen Phasenkontrast-Roéntgenbildgebungstechnologie zu kombinieren. Zusétzlich zur
Abschwéchung der Intensitéit misst diese Technik die Phasenverschiebung, die eine Rontgenwelle
beim Durchqueren eines Objekts erfihrt. Numerische Simulationen von Radiographie- und
Computertomographie-Anwendungen zeigen, dass die Kombination dieser beiden Bildgebungs-
technologien (spektrale differenzielle Phasenkontrast-Bildgebung) von den Starken der einzelnen
Methoden profitiert, wahrend die Schwéchen ausgeglichen werden. Es konnen quantitativ genaue
materialselektive Bilder berechnet werden und der Rauschpegel ist im Vergleich zur spektralen
Rontgenbildgebung stark reduziert. Dartiber hinaus entwickeln wir verschiedene Verarbeitungs-
und Bildrekonstruktionstechniken fiir die spektrale und spektrale differenzielle Phasenkontrast-
Bildgebung. Unsere Ergebnisse zeigen, dass die Bildqualitat stark verbessert werden kann, indem
man die Unvollkommenheiten aktueller photonenzéahlender Detektoren berticksichtigt, statist-
ische Rauschmodelle verwendet und Vorwissen in ein bayesschen Bildrekonstruktionsansatz ein-
flielen lésst. Obwohl viele Ergebnisse durch zusétzliche Experimente bestatigt werden miissen,
glauben wir, dass diese Arbeit das Potenzial der spektralen differenziellen Phasenkontrast-
Bildgebung mit photonenzahlenden Detektoren in den Bereichen medizinische Bildgebung und
zerstorungsfreie Priifung zeigt. Dies gilt insbesondere fiir Anwendungen mit niedriger Dosis.
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1 Introduction

With their ability to penetrate matter, X-rays enable the non-invasive acquisition of informa-
tion about the inside of an object. In the past decades, X-ray imaging techniques have been
steadily improved and have become an invaluable tool for clinical diagnosis and non-destructive
testing applications. Compared to the first prototypes, modern X-ray imaging systems offer
improved image quality, contrast and resolution while dramatically reducing the scanning time
and the radiation dose. The development of X-ray computed tomography (CT) in the early
1970s was a particularly important milestone. By obtaining projection measurements at various
angles around an object, CT allows to reconstruct a three-dimensional map of object properties
(such as the attenuation coefficient). Advances in X-ray imaging technology are still driven by
improvements in three different fields that are strongly interlinked:

e data acquisition and processing hardware (e.g. X-ray source, detector, CT gantry and
computer hardware),

e novel imaging methods (e.g. spectral X-ray imaging, phase-contrast X-ray imaging, sparse
sampling CT), and

e data processing algorithms (e.g. statistical iterative reconstruction, deep learning based
image analysis, denoising algorithms).

In the last years, spectral X-ray imaging techniques have gained increasing interest for medical
imaging and non-destructive testing applications. Compared to conventional attenuation imag-
ing, spectral X-ray imaging provides additional information about the composition of an object
by conducting measurements with two or more distinct photon energy spectra. The important
special case of using two different spectra is often called dual energy imaging. By exploiting
information about the energy-dependent attenuation, basis material decomposition algorithms
allow to distinguish between different materials and to obtain information about the chemical
composition of an object. Moreover, image artifacts (referred to as “beam hardening”) related to
the polychromatic X-ray spectrum can be efficiently suppressed. These unique properties have
proven to be beneficial for clinical diagnosis in many different application [1]. The principle and
mathematical concept of dual energy X-ray imaging was already proposed in 1976 by Alvarez
and Macovski [2]. However, dual energy imaging has only gained popularity after more recent
hardware advances (which will be discussed in more detail in section 2.7.1) have made it possible
to use the technique in clinical CT scanners. Material decomposition algorithms typically lead to
a degradation of the signal-to-noise ratio and noise amplification compared to the unprocessed
spectral images [2, 3]. This is still a fundamental problem of spectral CT since it limits the
usability of basis material images. Noise amplification is particularly problematic for low-dose
medical imaging because the increased quantum noise already leads to higher noise levels in the
unprocessed spectral images.

As a result of technological progress, the number of X-ray imaging procedures has increased
steadily, so that they now represent a major source of radiation exposure for the population
[4]. Due to concerns about radiation-induced cancer (especially for CT scans [5, 6]), reducing
the dose delivered to the patient while preserving image quality is an important challenge for
spectral and conventional X-ray imaging techniques. Recent progress in computer hardware
has enabled the application of advanced denoising and reconstruction algorithms that have the
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potential to substantially increase the image quality. In this context, reducing the computa-
tional time by performing calculations in parallel on graphics processing units (GPUs) has been
a key concept. For conventional CT, it has been demonstrated that statistical iterative recon-
struction techniques can significantly reduce the radiation dose compared to analytical image
reconstruction methods [7, 8, 9, 10]. As will be discussed later (see section 2.6.2), one of the
largest advantages of SIR techniques is their flexibility. In contrast to analytical reconstruction
methods, it is possible to incorporate a noise model, a (simplified) simulation of the physical
processes and prior knowledge about the reconstructed images.

Spectral X-ray imaging with photon-counting detectors (PCDs) has gained increasing pop-
ularity in the last years. Originally developed at CERN in the late 1980s for the analysis of
particle collider experiments [11, 12], PCD technology has been transferred to X-ray imaging
applications. In contrast to standard integrating detectors, PCDs directly convert the incident
X-rays to electron-hole pairs in a semiconductor sensor. The generated electrical signals are
analyzed separately for each detector pixel with dedicated fast readout circuits, which allows
individual photons to be counted. These properties of PCDs have proven promising for spectral
X-ray imaging applications. By comparing the generated electrical signal to a set of predefined
thresholds, PCDs are capable of (partially) resolving the x-ray photon energy. This enables the
simultaneous acquisition of several energy selective images that are perfectly registered, both
in the spatial and temporal domain. Other established dual energy imaging techniques (see
section 2.7.1) are difficult to extend to three or more energy resolved measurements. Contrary
to conventional X-ray detectors, electronic readout noise is efficiently suppressed, which is par-
ticularly important for low-dose applications. In addition, PCDs can achieve higher spatial
resolution because they do not require an additional conversion step to visible light photons
in a scintillator. There are several reasons why PCDs are not yet established in clinical X-ray
imaging applications. In addition to high manufacturing costs, current PCD technology suffers
from various performance degrading effects that will be discussed in section 2.4.3. Moreover,
manufacturing imperfections and inhomogeneities of the semiconductor sensor material lead to
spatial variations of the detector response, which degrade the image quality.

Besides spectral imaging, phase-contrast X-ray imaging is another emerging technology that
can provide improved image quality and additional information compared with conventional
X-ray imaging. Among the many phase-contrast imaging methods, grating-based differential
phase-contrast (DPC) imaging is particularly promising for medical imaging and non-destructive
testing applications since it places the lowest demands on spatial and temporal coherence [13].
Because of the low source coherence requirements, DPC imaging can be performed with stan-
dard X-ray tubes. Grating-based differential phase-contrast imaging exploits an entirely differ-
ent contrast generating mechanisms in addition to the conventional attenuation contrast: The
phase-contrast image is obtained by indirectly measuring the (differential) phase shift that an
X-ray wave exhibits when traversing an object [13, 14] with the help of a three-grating interfer-
ometer. This differential phase shift can be directly related to the electron density distribution
of the object. Depending on the imaging parameters, DPC imaging can achieve a highly im-
proved contrast-to-noise ratio (CNR) compared to attenuation-based imaging [15, 16, 17, 18, 19].
This applies particularly to materials with low atomic numbers (e.g. tissues), which have low
absorption contrast. It has been recently demonstrated that - similarly to spectral imaging -
material selective images can in principle be calculated from DPC measurements by using the
attenuation and phase shift information [20, 21]. Moreover, the so-called dark-field signal can
be extracted from the interferometric measurements [22]. It is related to ultra-small angle scat-
tering and provides information about the microstructure of an object far below the detector
resolution. Contrary to ultra high resolution X-ray imaging, dark-field imaging is performed on
large objects, using conventional X-ray tubes and standard detectors with a large field of view.



This unique feature has lead to a variety of promising future medical imaging applications (see
section 2.8.2). However, similarly to conventional attenuation imaging, the polychromatic X-ray
spectrum causes beam hardening artifacts in both the phase and the dark-field channel [23, 24].
Furthermore, the phase shift cannot be unambiguously determined. This phase-wrapping prob-
lem is another important source of artifacts for grating-based phase-contrast imaging [25, 26].

In summary, spectral and grating-based differential phase-contrast (DPC) X-ray imaging are
two emerging technologies with great potential for medical imaging applications. They could
help to reduce the radiation dose and offer valuable additional information (basis material im-
ages, dark-field image) compared with conventional attenuation-based X-ray imaging. Both
X-ray imaging techniques could be further enhanced by combining them with PCD technol-
ogy. In the case of spectral imaging, potential advantages of PCDs compared to standard
dual energy imaging have already been demonstrated in many pre-clinical and clinical stud-
ies [27, 28, 29, 30, 31, 32, 33, 34]. However, both imaging techniques still face experimental
and algorithmic challenges that must be overcome on the way to routine use in clinical and
non-destructive testing applications. In this work, we devise and investigate processing and
reconstruction algorithms for spectral and DPC X-ray imaging with PCDs. Moreover, we
develop a mathematical model and processing algorithms for combining both X-ray imaging
methods. From a hardware perspective, this novel method, which we call spectral differen-
tial phase-contrast (SDPC) imaging, is realized by combining a grating interferometer with an
energy-resolving PCD. These algorithmic developments aim at increasing the diagnostic or in-
formative value of spectral and SDPC imaging, especially for low-dose applications. This is
achieved by reducing the noise level, eliminating image artifacts and increasing the quantitative
accuracy of the obtained images.

Outline The thesis is organized as follows. Chapter 2 discusses the fundamentals of spectral
and DPC X-ray imaging, on which the results of this thesis are based. Besides the fundamentals
of X-ray physics, the working principle of the data acquisition hardware as well as various signal
processing and image reconstruction techniques are explained. We also review the state of the
art and important applications for both X-ray imaging techniques. In chapter 3, we present
the numerical simulation framework for spectral and DPC imaging that was partly developed
in this work and discuss its limitations. Throughout this work, numerical simulations were used
to study the performance and characteristics of the developed reconstruction and denoising al-
gorithms. The first part of the results of this thesis (chapters 4 - 6) focuses on spectral X-ray
imaging. In chapters 5 and 6, we address the challenges of photon-counting detector (PCD)
imperfections and their adverse effect on the image quality by combining material decomposi-
tion algorithms with (semi-) empirical forward models for the measurement process. By tuning
the model parameters with calibration measurements, pixel-to-pixel variations of the detector
response can be taken into account. To suppress noise amplification during material decom-
position, we investigate multi-channel post-processing (chapter 4) and regularization (chapter
5) techniques as well as a novel statistical iterative reconstruction algorithm (chapter 6) that
combines material decomposition and image reconstruction in a single processing step.

In the second part of this thesis, a new way of combining spectral and grating-based DPC imag-
ing is discussed. Numerical simulations of radiography (chapter 7) and CT applications (chapter
9) show that the combination of these two imaging techniques benefits from the strengths of the
individual methods while the weaknesses are mitigated. Chapter 8 analyzes the unique noise
characteristics of spectral spectral differential phase-contrast (SDPC) imaging. Moreover, we
theoretically compare the performance of spectral, DPC and SDPC imaging as a function of the
setup parameters.

As already partly demonstrated in this thesis, most of the processing techniques for spectral
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imaging that were discussed in chapters 4 - 6 can also be transferred to SDPC imaging to
further improve the image quality or reduce the radiation dose. Although many results need be
confirmed by additional numerical simulations and experimental measurements, we believe that
this work shows the potential of SDPC imaging with PCDs for future clinical and non-destructive
testing applications. Our results indicate that by combining SDPC imaging with advanced
processing algorithms and PCD technology, valuable additional information compared to the
individual imaging techniques can be obtained while improving the image quality, especially for
low-dose applications.



2 Fundamentals of spectral and phase-contrast
X-ray imaging

This chapter discusses the theoretical foundation of spectral and differential phase-contrast imag-
ing and thus serves as a basis for the following chapters. We start by explaining the physical
principles behind X-ray imaging, including X-ray generation, wave propagation, interaction of
X-rays with matter and X-ray detection. The second part of this chapter focuses on on two
algorithmic techniques that are particularly relevant for X-ray imaging: statistical signal pro-
cessing and CT reconstruction. Finally, we discuss the basic principles of spectral and differential
phase-contrast imaging and review the state of the art in these two research fields.

2.1 X-ray generation

In this section, we focus on the physics of X-ray generation using conventional X-ray tubes.
In particular, the physical as well as statistical properties that are relevant for spectral and
differential phase-contrast imaging will be discussed. Although other X-ray sources such as
synchrotron radiation ([35], chapters 2.2 - 2.5) or free electron lasers [36] outperform X-ray
tubes in many important aspects (e.g. photon flux, spatial and temporal coherence), almost
all medical imaging as well as most non-destructive testing applications rely on X-ray tubes.
High costs and complexity as well as large space requirements often render synchrotrons and
other high-brilliance X-ray sources impractical for routine applications. The recent development
of compact synchrotron sources [37, 38, 39] could provide an interesting compromise between
high-brilliance X-ray sources and applicability in future medical imaging tasks.

Figure 2.1 depicts a simplified schematic drawing of a rotating anode X-ray tube. The reader is
referred to [40] for a comprehensive treatment of modern X-ray tube technology. Electrons are
emitted from the cathode by heating a filament (typically made of tungsten) to approximately
2000 K [40]. The thermal energy allows the electrons to overcome their binding energy to the
filament. After emission from the filament, the electrons are accelerated towards the anode by
the applied high bias voltage. At the anode, the interaction with the Coulomb fields of the
atoms in the anode material cause a rapid deceleration of the incident electrons. In a classical
electrodynamics picture, the deceleration of the charged electrons generates electromagnetic
radiation (bremsstrahlung). Usually, the deceleration of an electron is a multi-step process and
several photons are emitted during the deceleration process. However, it is also possible that the
whole kinetic energy of an electron is transferred to one photon. The maximum photon energy
is determined by energy conservation and is thus equal to the kinetic energy of the electron.
In summary, due to the multi-step deceleration process, bremsstrahlung produces a continuous
spectrum of photon energies with a maximum energy equal to the electron energy.

The continuous spectrum is superimposed by a line spectrum that is characteristic of the anode
material. These sharp emission lines (width of &~ 40 eV for tungsten [40]) are generated by
collisions of the incident electrons with electrons in the inner shells of the anode atoms. The
electron in the inner shell is kicked out of the atom and the vacant position is filled by an
electron from one of the outer shells. In this process, a photon with characteristic energy
determined by the energy difference between the participating electron shells is emitted. For
most anode materials, only the K, and Kz emission lines are in the diagnostics energy range
(=~ 15—150 keV). They represent transitions from the L- and M-shell to the K-shell, respectively.
A typical X-ray spectrum of a tungsten anode for an acceleration voltage of 120 kVp is shown
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Figure 2.1: Schematic drawing of a rotating anode. Electrons are emitted from an electrically
heated tungsten filament and subsequently accelerated towards the rotating anode by the high
bias voltage (U,). Additional focusing optics shape the electron beam to a small spot on the
anode. The rapid deceleration of the electrons upon impact on the anode causes the emission of
X-rays. To distribute the heat load over a larger area, the anode target is rotated continuously.

in figure 2.2. Although the peaks caused by the characteristic emission lines are far higher than
the smooth bremsstrahlung background, they only contribute about 7% to the total intensity
[40] due to their small width.

The aforementioned mechanisms for generating X-rays by interactions of fast electrons with the
anode material are rather inefficient: Only approximately 1% of the primary electron energy
is converted to X-ray radiation [41]. The vast majority of the kinetic energy is converted to
heat or carried away by scattered electrons. Since the X-ray emission is nearly isotropic, only
about 0.03 % of the primary electron energy is used for X-ray imaging [40]. As there are no
efficient X-ray lenses in the diagnostic energy range, the X-ray beam is delimited by apertures
to extinguish unwanted radiation.

To achieve a sufficiently high photon flux, modern X-ray tubes have an electric input power of
up to approximately 100 kW (for CT applications). This leads to a significant heating problem
in the X-ray tube and consequently, some kind of cooling mechanism has to be implemented.
The most common approach is to use a rotating anode where the material hit by the electron
beam is constantly exchanged by the rotation. In this way, the energy of the electron beam
and therewith the heat load is spread out over a (circular) line instead of a small spot and can
be dissipated more easily. To avoid blurring of the acquired X-ray images, it is desirable that
the X-rays are only emitted from a very small spot on the anode. Additional electron focusing
optics that direct the electron beam onto a small spot on the anode are therefore typically placed
around the filament.

The generation of a photon by an incident electron that interacts with the anode material can be
viewed as a random event with a certain probability p. Under this assumption, the probability
that ¢ photons are emitted in the time interval [0, 7] is given by a binomial distribution:

PQ=a) =} )ra-ne (2.1)

where N is the number of electrons that hit the anode in the time interval [0,7]. One can show
(see reference [41], chapter 2.6.1 for a derivation of this result) that in the limit N — oo, p — 0,
the binomial distribution converges to the Poisson distribution:

P(Q=q)=—¢", X=Np. (2.2)
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Figure 2.2: Simulated X-ray spectrum for a tungsten anode with an acceleration voltage of
120 kVp. The TASMIP algorithm [42] was used to generate the simulated spectrum.

For a typical X-ray tube, approximately 10'® electrons arrive at the anode per millisecond and
the probability that a particular electron generates a photon is small. The statistical distribution
of photons that are emitted in a certain time interval is thus well approximated by a Poisson
distribution.

Some of the aforementioned properties of typical X-ray tubes are particularly relevant for math-
ematically modeling and simulating spectral as well as differential phase-contrast imaging:

e Conventional X-ray sources emit a polychromatic spectrum with a broad range of photon
energies.

e The number of emitted photons in a certain time interval follows a Poisson distribution.

e X-rays are emitted from an extended source spot. Considering the process of photon
generation, the emitted radiation is spatially incoherent. This aspect will be discussed in
more detail in section 2.2.3.

2.2 Free space wave propagation

Since the wavelength of X-rays is typically much smaller than the investigated structures, conven-
tional X-ray imaging is well described by geometrical optics. However, a wave-optical approach
is needed to describe the interference effects that grating-based phase-contrast imaging relies on.
The following sections provide an introduction to this approach, starting with the propagation
of electromagnetic waves in a vacuum. The derivations are mainly based on reference [43], where
additional information can be found. In the absence of matter, the components of the electric
and magnetic field are decoupled in Maxwell’s equations. The electromagnetic disturbance can
thus be described by a single scalar field:

¢(9€,y,27t) = gbw(x)yaz)e_iu)ta (23)

where w = 27 f is the angular frequency of the monochromatic wave. For simplicity, this sec-
tion focuses on monochromatic wave functions, however a generalization to polychromatic wave
functions is easily obtained by spectral decomposition [43]. Starting from Maxwell’s equations,
one can show that the spatial components of the wave function ¢, (z,y, z) obey the Helmholtz

equation:
w 2w
(Vz + kf2)¢w(.’IJ, Y, Z) = 07 k= Z = 77 (24)
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where A is the wavelength and c is the speed of light. Elementary plane waves of the form:
W)z, 2) = ke hths) (25)
are solutions to the Helmholtz equation, provided that:

2 _ 1.2 2 2
K2 = k2 k2 4R (2.6)

Assuming plane waves that are forward propagating with respect to the optical axis z, qﬁSJPW) (x,y,2)
can be rewritten as:

SPW) (. y, 2) = eilharthyy) gizy/RP=RE=K] _ ((PW) (o) ()eiz/R7—RE=F] (2.7)

The second equality in eq. 2.7 means that the value of the propagated wave function over
the plane z = 2y (290 > 0) can be obtained by multiplying @(upw) (z,y,0) with the free-space

; 2_L2__ L2
propagator e*?0 Vv —ki—ky

2.2.1 Angular spectrum propagation

The propagated value of an arbitrary wave function can be calculated by decomposing it into
elementary plane waves using a two-dimensional Fourier representation:

1 . .
Su(@,y,2=0) = 5~ / / bk, by, 2 = 0)e et ha) g dfe, (2.8)
7'('

The value of the wave function at the plane z = z( is calculated by multiplying the plane waves
with the corresponding free space propagator:

1 - . .
(Y5 20) = 5~ / / Goo (i, by, 0) €20V K —RE=HG pilkoathoy) gp. k. (2.9)
™

This equation is known as the angular spectrum representation of the propagated wave field
[43]. In operator notation, eq. 2.9 can be expressed as:

bu(@,y, 20) = FLePVR =Rk F o (2,4,0), (2.10)

i.e. the wave function at z = 2 is calculated by first taking the Fourier transform of the wave
function at z = 0, multiplying it with the free-space propagator and then transforming the result
back to real space.

2.2.2 Fresnel propagation

Fresnel propagation is a useful approximation to angular spectrum propagation for a paraxial
incident wave ¢, (z,y,z = 0). In mathematical terms, the condition of paraxiality is expressed
as:

k| < 2y |ky| < ks (2.11)

for all non-negligible components of ¢, (z,y,z = 0) (compare eq. 2.8). In a geometrical optics
picture, this corresponds to the assumption that all X-rays make small angles with respect to
the optical axis. As will be discussed in section 2.3, this assumption is normally fulfilled for
X-ray imaging because the refraction angles for X-rays are very small. Moreover, the Fresnel
scaling theorem (see section 2.3.3) allows to use the Fresnel approximation in combination with
point sources. Using a binomial approximation for the exponent in eq. 2.10:

k2 + k2
2 _ 12 _J2 g % Y .
vk ky —k; =~k Y (2.12)
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o m—————————————— 1oceRoexp (Be(k2 + kD) pommmmmmmmmmooo .

(R S S multiplication in [ AR i
frequency space

* ,gce“”o exp (ik(m2+y2))
TZ0 2zp

real space Yo (z,y,z2=0) - o | hu(z,y, 2 = 20)

convolution in real space

Figure 2.3: Visualization of two different strategies to calculate the propagated wave function in
Fresnel approximation. The propagated wave field can either be calculated by a convolution in
real space or by transforming into frequency space, multiplying by the Fresnel propagator and
then transforming back into real space.

the propagated wave field is given by:
du(w,y,20) = F'eM e BRI F g, (2,4, 0). (2.13)

According to equation 2.13, the propagated wave field in Fresnel approximation is calculated by
Fourier-transforming the initial wave field, multiplying with the Fresnel propagator eikz0 e i (K+ky)
in frequency space and then transforming back into real space. Note that the phase factor e
can be pulled out of the inverse Fourier transform. Since multiplication in frequency space
corresponds to convolution in real space, ¢, (z,y,29) can also be calculated in real space (see

reference [43] for a derivation of this result):

ikzg

P (T, Y, 20) = bu(,y,2 = 0) x H(x,y, 20), (2.14)
where * denotes a convolution and H (z,y, o) is the real space form of the Fresnel propagator:

H(x,y, ZO) _ ];-—1 (eikzoe%(k%‘rk;)) — Mem(iﬁ) ) (2'15)
QWZO

In summary, the propagated wave function at a plane z = 2y can be calculated from the wave
function at the plane z = 0 either by multiplication with the Fresnel-propagator in frequency
space or by convolution with the real-space form of the Fresnel propagator in real space. Figure
2.3 illustrates the two different ways for calculating the propagated wave function in free space
with the Fresnel approximation. From a numerical perspective, multiplying with the Fresnel
propagator in frequency space is often preferred because the computational complexity of the
convolution is much higher (compared to an element-wise multiplication and two fast Fourier
transforms).

Huygens-Fresnel principle: The convolution formulation of Fresnel propagation (eq. 2.14)
allows an interpretation in terms of the Huygens-Fresnel principle. Suppose there is a point
source in the z=0 plane, i.e. :

(@, y,2 = 0) = ¢{)5(x — 20)5(y — o). (2.16)
The wave field over the plane z = zg is then given by:

1.,1kz0 ; _ _
%(x’yjz_z(])_qjgg)—;/:;exp <zk(($ 20)% + (y yo)2)>_ (2.17)
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Figure 2.4: Illustration of the Huygens-Fresnel principle: Every point on the aperture can be
interpreted as the source of a spherical wave. The propagated wave function is given by the
superposition of these spherical waves. This figure was taken from reference [45].

This corresponds to a spherical wave (in parabolic approximation) emanating from the point
(z0,Y0,0). Moreover, eq. 2.17 represents the impulse response of the linear optical system [44].
Due to the linearity of the convolution in eq. 2.14, the propagated wave function ¢, (x,y, z =
z0) for an arbitrary wave function ¢, (z,y,z = 0) in the z = 0 plane can be interpreted as
a superposition of spherical waves. Figure 2.4 shows an illustration of the Huygens-Fresnel
principle.

Local interference for X-ray imaging The aim of this paragraph is to demonstrate that Fresnel
propagation is essentially a local interference phenomenon within the parameter range that is
typically used for medical X-ray imaging and non-destructive testing. This means that the
majority of the contributions to the value of the propagated wave function ¢, (xo,yo,z0) at a
certain point (zg,yp) come from a small neighborhood around this point at the z = 0 plane
(w(x0 £ Ax,yo £ Ay, z = 0)) [44]. Using the formula for Fresnel propagation in real space (see
eq. 2.14), ¢y, (o, Yo, z0) is given by:
— keikzo

ulannz0) =5 [ [ oulz..0) exp<

212

ik((zo — 2)? + (yo —
220

y)z)) dedy.  (2.18)

Figure 2.5 (a) shows a plot of the real part of the complex exponential term in the integral
of eq. 2.18 as a function of the distance between zy and = (d, = xy — =) for a propagation
distance of zp = 1 m and an X-ray energy of 40 keV (corresponds to k = 2.0 - 10'' m™1!).
These values provide a reasonable order-of magnitude estimate for various medical imaging and
non-destructive testing applications. One can see that the oscillation period p, decreases with
increasing d,. If dy > p., p, can be approximated as

Py = 2;;20 ~3-10" m2dlx' (2.19)
For d, = 100 pm, the oscillation period is already approximately 0.3 um which is much shorter
than the period of any regular structure (e.g. gratings for phase-contrast imaging) that typically
occurs in an X-ray imaging experiment. In this case, ¢, (xo,yo, z0) varies slowly in comparison
to the complex exponential term in eq. 2.18 and the contributions to the integral in eq. 2.18
for |dy| = |ro — x| > 100 pum tend to cancel out because of the rapid oscillations. This is
visualized in figure 2.5 (b) where the intensity of the propagated wave function |¢,, (0, yo, 20)|?
for a homogeneous incident wave (¢, (o, %0,z = 0) = 1) is calculated by only considering a
small neighborhood zyp + Az in the convolution integral of eq. 2.18. For Az > 10 um, the
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Figure 2.5: (a): Plot of the real part of the complex exponential factor in eq. 2.18 as a function
of d; = zg — x for a propagation distance of 29 = 1 m and an X-ray energy of 40 keV. The
frequency of the oscillations increases with increasing distance between xy and x. (b): Intensity
of the propagated wave function as a function of the size of the neighborhood (Ax) around xg
that was considered for the convolution integral in eq. 2.18.

intensity of the propagated wave field starts to oscillate rapidly around the ground-truth value
and the amplitude of the oscillations decreases as Ax is increased. Consequently, the majority
of the contributions to the propagated wave function come from a small area around the point of
interest (xg, yo) in the z = 0 plane. As a rule of thumb, for a sufficiently slowly varying wave field
¢w (0,90, 2 = 0), most contributions come from a square with width 4/Azy centered around
the point of interest (see reference [44], chapter 4.2.2 for more details). This motivates the use
of “ray-based” (forward) models for the measured intensities both in the case of conventional as
well as grating-based phase phase-contrast X-ray imaging (see sections 2.6.2).

2.2.3 Incoherent sources

As discussed in chapter 2.1, generating photons by electron-electron collisions is an independent
stochastic process, i.e. the interaction of an impinging electron with the anode material is nor-
mally independent of other impinging electrons. An X-ray tube thus emits incoherent radiation
from an extended area (the source spot). This effect has to be considered in order to obtain
an accurate physical model of the X-ray imaging process. Towards this end, we consider the
wave field ¢(z,y, z4,t) at a point (x,y, 2z = z4) in the observation plane that is produced by two
monochromatic point sources located at (z1,y1,2z = 0) and (z2,y2,z = 0), respectively. Using
the Huygens-Fresnel principle (eq. 2.17), ¢(z,y, z4,t) can be expressed as:

¢(1‘, Y, Zd,t) = K1¢(x17y1707t) + K2¢('r2a y270at)7 (220)

where K7 and Ky are complex constants. Since the integration time is typically extremely long
compared to the oscillation period 1" = 27 /w, an X-ray detector placed at (x,y, z4) measures
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the time-averaged intensity I(z,vy, zq4) of the wave field:

I(l‘, Y, Zd) = <‘¢(J") Y, zd, )’ > < (17 Y, zd, )¢*(I7 Y, Zd, t)>t
= <’K1¢(5017y17 Oat)’ >t + <’K2¢(x27y27 0 t)‘ >t+
K1K§<¢(x07 Yo, 07 t)¢ (IEQ, Y2, 07 t)>t + Kl K2<¢*(x17 Y1, 07 t)é(x% Y2, 07 t)>t (221)
= |K1|*1(21,y1,0) + |K2|* (22, y2,0) + 2Re [K1 K3 J12] ,
Ji2 = <¢($1, Y1, 07 t)qb*(x% Y2, Oa t)>t
The last line of eq. 2.21 defines the mutual intensity Ji2 [46]. By normalizing with the intensity
of the two point sources, the complex coherence factor ujs is obtained [47]:
J12
[I(21,1,0)1 (22, y2,0)]"/*

U = (222)

The complex coherence factor characterizes the degree of spatial coherence and is directly re-
lated to the visibility of interference phenomena (e.g. interference fringes in Young’s double slit
experiment). Perfect coherence corresponds to uja = 1, whereas incoherent sources are charac-
terized by u12 = 0 because there is no defined phase relationship between the two point sources.
For incoherent sources, the observed intensity thus corresponds to the sum of the intensities
that the two point sources produce individually:

I($7y>zd) - |K1|21(.’E1,y1,0) =+ \K2‘21(3027y270)- (223)

Equation 2.23 can be generalized to a spatially extended source by modeling it with an infinite
number of point sources.

2.3 X-ray interaction with matter

This section discussed the interaction of X-rays with matter. Starting from a wave-optical
approach that considers Maxwell’s equations, the influence of matter on the wave function is
examined and the notion of a complex refractive index is developed. The physical origin of
the different contributions to the refractive index is more conveniently discussed in the particle
picture.

2.3.1 Complex refractive index

Assuming a linear, isotropic and non-magnetic material (which is normally the case for X-ray
imaging applications), a similar equation to the free-space Helmholtz equation (see eq. 2.4) can
be derived [43]:

(V2 + kEPnu(z,y,2)] Yu(z,y,2) =0, (2.24)
where
ol ) = [ A0 (2.25)

is the complex refractive index. The permittivity of the material and the permittivity of free
space are denoted by €, (z,y, z) and €, respectively. The derivation of eq. 2.24 also assumes that
the material properties (i.e. ny(x,y,z) ) vary slowly compared to the wavelength of the X-ray
radiation. Similar to free-space propagation, the more general case of a polychromatic wave
function is obtained by a superposition of the corresponding monochromatic wave functions.
The complex refractive index is often expressed in the form:

N =1 — 6y + Bu, (2.26)



13 2.3 X-ray interaction with matter

where J,, < 1 and 3, < 1 are real, positive numbers. The physical meaning of these two quan-
tities will be discussed in more detail in the following sections. The ‘inhomogeneous’ Helmholtz
equation (eq. 2.24) is difficult to solve exactly. Therefore, various approximations such as the
first Born approximation and the projection approximation have been developed. The latter will
be discussed in more detail because (in combination with Fresnel propagation) it is well suited
for numerical simulations of X-ray imaging.

2.3.2 Projection approximation

As will be discussed in section 2.3.4, the refraction angles for X-rays are usually very small since
the real part of the complex refractive index is close to unity. In this case, the projection approx-
imation provides a useful approximate solution to the ‘inhomogeneous’ Helmholtz equation (eq.
2.24) for X-ray imaging of weakly scattering objects. Form a geometrical optics perspective,
this corresponds to the assumption that the perturbation to the ray paths which would have
existed in the absence of the object are negligible [43]. Therefore, the phase and amplitude shift
of the wave function that is caused by the object can be considered separately from the effect of
free space propagation. This corresponds to reducing the object to a plane (with surface normal
parallel to the propagation direction) that causes the same phase shift and attenuation. One
can show [43] that the influence of the ‘object plane’ on the phase and amplitude of the incident
wave function is approximately given by:

YD (2, y,2 = 0) = exp (—z’k /

2=20

0,9, 2) — 1B, )] dz) By, z=0),  (227)
=0

where @D‘E,d) and @ZJO(JU) are the wave functions downstream and upstream of the object plane,
respectively. The object is assumed to extend from z = 0 to z = z¢ (compare figure 2.6) and
the object plane is located at z = 0. Combining eq. 2.27 with the Fresnel approximation to
free-space propagation (eq. 2.13) yields the wave field at z = 2 calculated under the projection
approximation:

(@, y, 2 = 20) = FleF0e 2 (D F o0 (2,y,0). (2.28)
As long as the propagation distance from the object to the detector is much larger than the
extent of the object in beam direction, the projection approximation provides accurate results
[48, 49]. However, if the extent of the object is comparable to the propagation distance, it is
necessary to switch to a multi-slice approach. For this approach, the object is split into several
adjacent slabs. In a second step, the slabs are approximated by a series of equidistant planes.
The phase and amplitude shift of each plane is applied to the wave function before propagating
it to the next plane. This iterative procedure for obtaining ), (z,y,z = zg) is illustrated in
figure 2.6.
By comparing the wave field obtained with the projection approximation to the results obtained
with the first Born approximation (see reference [43] for a detailed derivation), the refractive
index decrement d,, can be related to the electron density p.(x,y, z) inside the object:

27repe(T, Y, 2) Tepe(T,Y, z)(hc)2
5w(x7yaz) = kz = 27TE2 ’ (229)

where 7. is the classical electron radius, c is the speed of light, h is Planck’s constant and FE is the
photon energy. This comparison allows to establish a connection between the wave picture and
the particle picture. Under the first Born approximation, the phase shift caused by the object
can be identified with coherent Thomson scattering at quasi-free electrons inside the object. In
a classical description of Thomson scattering, the incoming electromagnetic wave sets quasi-free
electrons in oscillations which then radiate spherical waves. Eq. 2.29 is only valid for quasi-free
electrons which means that the binding energy of the electrons is small compared to the photon
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zZ =20 zZ =21 zZ =29

Figure 2.6: Illustration of the multi-slice projection approximation. A plane wave is incident
on an object that is split into three slabs. The key idea of the projection approximation is to
represent the three slabs by three planes (located at zp, z; and z3) with the same phase- and
amplitude shifting properties. Free space propagation (represented by red arrows) is used to
calculate the evolution of the wave field between the planes.

energy. For X-ray energies close to atomic absorption edges (see section 2.3.5), an additional
dispersion correction term is introduced. In the diagnostic energy range, J,, is in the order of
10-S.

2.3.3 Fresnel scaling theorem

The Fresnel scaling theorem relates the diffracted intensity pattern of an object that is produced
by point-source illumination to the intensity pattern that is obtained by plane-wave illumina-
tion. In combination with the projection approximation, this theorem is particularly useful for
numerical simulations of cone-beam geometries with the Fresnel approximation. Directly using
Fresnel propagation (eq. 2.13) for numerical simulations with a point source is difficult because
the Fourier transformed point source is not bandlimited [50]. Based on the convolution formu-
lation of Fresnel propagation, the following relationship between the point source (IU(JP)) and the

plane wave (IU(JOO)) intensity pattern can be derived [43]:

1 d
IU(JP)(:U,y,z:l—i—d):WILgOO) <%,%,Z=l+ﬁ) ; (2.30)

where [ is the distance between the point source and the object, d is the distance between the
object and the detector plane and M = (I4d)/l is the geometric magnification. According to eq.
2.30, the point source intensity pattern at a distance d downstream of the object is calculated
by:
e (i) taking the plane wave intensity pattern at a distance of d/M downstream of the object,
e (ii) magnifying it by a factor of M and

e (iii) dividing the obtained intensities by M?2.

Figure 2.7 illustrates the connection between the plane wave and the point source intensity
patterns.
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Figure 2.7: Tllustration of the Fresnel scaling theorem. The point-source intensity pattern (a) at
a propagation distance d from the object is directly proportional to the magnified plane wave
intensity pattern (b) at the scaled propagation distance d/M = dl/(l + d).

2.3.4 Eikonal equation (geometrical optics)

The eikonal equation establishes a connection between the wave theory and the ray theory
of geometrical optics. The ray picture emerges from the wave theory in the limit of small
wavelengths (compared to the other length scales). Writing ¢, (z,y, z) as

bu(,y,2) = /L (, y, )V @¥:2), (2.31)

the eikonal equation can be derived from the inhomogeneous Helmholtz equation (eq. 2.24, see
reference [43] or [51] for details):

2
Iw )
V(@ y,2)]* = Kno(e,y,2)” + VI((“’)Z) (2.32)
wlT, ya z

In the limit of geometrical optics (A — 0 or equivalently k& — o0), the intensity I,(x,y,z) is
approximately constant over length scales comparable to the wavelength A. In this case, the
second term in eq. 2.32 can be neglected. This corresponds to neglecting diffraction effects and
yields the eikonal equation of geometrical optics:

Wlbw(%y, Z)| = knw(:v,y,z) (2.33)

By defining rays as orthogonal trajectories to the wavefronts, a link between wave optics and
geometrical optics is established. It is also possible to extend the standard theory of geometrical
optics and consider diffraction effects by introducing diffraction rays [52]. Since wavefronts
represent surfaces of constant phase (1, (z, %, z) = const.), the local direction of a ray t(z,y, 2)
is given by the normalized phase gradient:

tx,y, 2) = Vo (x,y, 2) /| Vb (2,5, 2)|. (2.34)

With the eikonal equation of geometrical optics (eq. 2.33), the trajectory of rays through an
inhomogeneous medium can be calculated.

X-ray refraction and the projection approximation The definition of rays as orthogonal trajec-
tories to the wavefronts allows to connect the phenomenon of X-ray refraction to the projection
approximation. More specifically, a relation between the refraction angle o and the gradient of
the projected electron density can be established. Towards this end, we consider the situation
depicted in figure 2.8 where a monochromatic plane wave ¢, (z,y,z) = e*? is incident on a
homogeneous, purely phase shifting prism.
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Figure 2.8: Illustration of the connection between the geometrical refraction angle o and the
projection approximation. Wavefronts are indicated by dashed lines whereas the solid lines
represent rays in the geometrical optics picture.

According to the projection approximation, the wave function immediately downstream of
the prism is given by:

¢w(377 v, Z) _ e—ikféw(z,y,z)dzeikz _ eik(z—dwmm)’ (2'35)
where the slope m = tan § is related to the inclination angle 8 of the prism. Considering the
definition of the ray direction (eq. 2.34), the refraction angle « (see figure 2.8) is calculated as:

a =~ tana = <8x¢w($ U2 > = /(5 x, Y,z —0wm (2.36)

azww (l’ Y,z

Since J,, < 1, the paraxial approximation (o &~ sin«a & tan«) can be used. Typical refraction
angles for X-ray are in the order of 107% rad or less. Contrary to visible light, the real part of
the refractive index is less than unity. X-ray are thus deflected towards regions of lower electron
density. Combining eq. 2.36 with eq. 2.29, the refraction angle can be expressed in terms of the
gradient of the projected electron density:

rdher 0 / pola,y. = (2.37)

2.3.5 X-ray attenuation

Various interaction mechanisms between X-rays and matter cause X-ray attenuation. In the
wave-optical picture, this corresponds to a reduction of the intensity of an X-ray wave when
transversing an object. By taking the squared modulus of the eq. 2.27, the ratio of the intensities
upstream (L,(Ju)) and downstream (Lf,d)) of the object can be calculated with the projection
approximation:

IU(Jd) 2=20
M = exp <—2k/ Bu(z,y, z)dz> . (2.38)
Iu()u)(%y,Z) 2=0
With the definition of the linear attenuation coefficient:
. 2mhe
t = 2kpw or equivalently u(E) = B(E), (2.39)
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a generalized version of the Lambert-Beer law is derived:

ID(B,2,y,z)
1B, 2,y,2) exp (—/M(E,m,y,Z)ds> ; (2.40)

where F is the photon energy. Compared to eq. 2.38, the integral over the z-coordinate has been
generalized by a line integral along the propagation direction of the wave (which corresponds
to the X-ray path in the geometrical optics limit). In the particle picture, X-ray attenuation
is identified with absorption or scattering of X-ray photons, which is a statistical process. The
right-hand side of eq. 2.40 is thus interpreted as the probability that an incident photon is
transmitted through the object. Assuming that N photons with energy E are incident on the
object, the probability that ¢ photons are transmitted follows a Bernoulli distribution [41]:

PQ=q) = <];7>pq(1 —p)M p=exp (— /M(E,x, Y, Z)d8> - (2.41)

Eq. 2.41 is valid for a fixed number of incident photons NN. As illustrated in section 2.1 , N is
Poisson distributed. It can be shown [53] that a Bernoulli process with probability p acting on
a Poisson process with mean A results in a Poisson process with mean Ap. Consequently, the
number of transmitted photons ¢ with a certain energy F is again Poisson distributed:

P(Q=q) = 0 (2.42)

The attenuation coefficient y is related to the interaction cross-section per atom o®(E):
w(E,x,y,2) =" (E)ny(z,y, 2), (2.43)

where n, is the particle density. Instead of the attenuation coefficient i, the mass attenuation
coeflicient is often considered, since it is independent of the particle density:
uE) _ o"(E)

=T (2.44)
a

where p is the density and M, the atomic mass of the element under consideration. The typical
photon energy range for biomedical applications is between 15 — 150 keV. In this energy range,
there are three relevant interaction mechanisms between photons and matter: photoelectric
absorption, Compton scattering and Rayleigh scattering. These three interaction mechanisms
will be discussed in more detail in the following.

Photoelectric absorption Photoelectric absorption is characterized by the interaction of a
bound electron with an incoming X-ray photon. The photon is absorbed and the photon energy
is used to overcome the binding energy of the electron. Any excess energy is converted into
kinetic energy of the expelled electron and the ionized atom. The vacancy created by the
expelled electron is filled by an electron from an outer shell. This recombination process can
lead to the emission of X-rays with characteristic energy (fluorescent lines). Provided that
the photon energy exceeds the binding energy of the K-shell, most photoelectric absorption
events occur with the K-shell electrons of the absorbing atom [54]. A quantum-mechanical
description of photon-atom interactions is necessary to calculate the absorption cross-section for
the photoelectric effect. Using first order perturbation theory, an approximate expression for
the absorption cross-section op), far away from absorption edges can be derived [35]:

opn(Z, E) = Con Z°E~35, (2.45)

where Cpy, is a proportionality constant and Z is the atomic number. To get more accurate
results, various correction factors such as relativistic effects and screening by the atomic electrons
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Figure 2.9: Photoelectric contribution to the mass attenuation coefficient for oxygen, calcium,
iodine and gadolinium as a function of the photon energy. The attenuation data was taken from
the NIST database [57, 58].

need to be considered [55]. The dependencies of the cross-sections on the atomic number and
the photon energy can thus in general not be separated:

opn(Z, E) # ConZE~P. (2.46)

Nevertheless, eq. 2.46 is often used to parameterize the photoelectric absorption cross-section
for light elements (Z < 20). In this case, the absorption edges are located below the energy
range of interest and the exponents o« and 5 vary depending on the specific element or mixture
to be parameterized [56] (o € [4.0,5.0], B € [3.0,3.5]). Figure 2.9 shows the photoelectric
contribution to the mass attenuation coefficient as a function of the photon energy for four
different elements: oxygen (Z = 8), calcium (Z = 20), iodine (Z = 53) and gadolinium (Z = 64).
In this double-logarithmic plot, the graphs for oxygen and calcium closely resemble straight lines,
which confirms that the photoelectric attenuation cross-section follows a power law. Moreover,
as predicted by eq. 2.45, the overall attenuation cross-section increases strongly with increasing
atomic number. For iodine and gadolinium, the binding energy of the K-shell electrons is in
the diagnostic energy range. Once the photon energy increases above the binding energy, the
K-shell electrons contribute to the photoelectric absorption which explains the sharp rise of
the attenuation coefficients for iodine and gadolinium at £ = 33.2 keV and E = 50.2 keV,
respectively. As will be discussed in section 2.7.1, spectral X-ray imaging with contrast agents
relies on the characteristic photoelectric attenuation pattern of heavier elements (such as iodine
and gadolinium) to distinguish between contrast agent and other materials.

Compton scattering In the particle picture, Compton scattering represents a collision of a
photon with a weakly bound orbital electron. The photon is deflected from its original path
and due to the transferred momentum, the collision electron is ejected from the atom. Compton
scattering is an incoherent scattering process because the incident photon loses a significant
fraction of its energy. The energy E’ of the X-ray photon after the collision can be derived from
the conservation of momentum and energy:

E
1—-L£5(1—cosh)’

Mec?

E'(E,0) = (2.47)

where me is the electron mass and 6 is the scattering angle. Based on quantum mechanical
calculations, Klein and Nishina [59] derived an analytical expression for the differential scattering
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cross section (DSCS) per unit solid angle for a free electron:

G R (FEOV(EEN, P ) e

2\ FE E | E(E0)

where r¢ is the classical electron radius. The total scattering cross section per electron is obtained
by integrating over all possible scattering angles [60]:
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(2.49)

Since eq. 2.49 is valid for a single electron, the Compton-scattering contribution ficompton to the
attenuation coefficient is proportional to the electron density n. of the absorber [41]:

HCompton(E) = neo'gN(E)- (250)

Within the Klein-Nishina approximation of scattering on free electrons, ftcompton i thus inde-
pendent of the atomic number of the attenuating material.

For elements with high atomic numbers and lower X-ray energies, electronic binding effects
become more important and the Klein-Nishina approximation becomes increasingly inaccu-
rate. The binding energy can be considered by multiplying the differential Klein-Nishina cross
section with a correction function S(z,Z) that depend on the momentum transfer variable
2(E,0) = £ sin (4) and the atomic number of the atom under consideration [54, 61]:

do?(E, Z,0)  doSN(E,0)
ds N ds

S(z(E,0),2), (2.51)

where do(E, Z,0)/dS) is the Compton DSCS for one atom of the scattering material. Figure
2.10 (a) shows the (average) DSCS per electron for carbon (calculated according to eq. 2.51) as
a function of the scattering angle at a photon energy of 80 keV together with the Klein-Nishina
approximation (eq. 2.48) of the DSCS. Whereas the Klein-Nishina approximation is accurate
for large scattering angles, it overestimates the DSCS in forward direction. This effect becomes
more pronounced for lower energies and heavier elements. In figure 2.10 (b), the total Compton
scattering cross-sections per electron for carbon and iodine are plotted as a function of the
photon energy together with the Klein-Nishina approximation (see eq. 2.49). For carbon and
high photon energies, the Klein-Nishina formula approximates the Compton scattering cross-
section quite accurately. Since the orbital electrons are more tightly bound to the iodine atom,
the approximation of scattering on free electrons breaks down in this case and the Klein-Nishina
formula overestimates the total scattering cross-section.

Photons that are scattered in forward direction can reach the detector and deteriorate the
image quality for both attenuation-based imaging and phase-contrast imaging. Moreover, these
scattered photons are difficult to include in a physical model of the measurement acquisition
process.

Rayleigh scattering Rayleigh scattering is a quasi-elastic interaction process between a photon
and an atom. The photon is scattered on bound atomic electrons and deflected from its original
path. In contrast to Compton scattering, the energy loss of the photon is negligible and no
electrons are ejected from the atom. From the perspective of classical electrodynamics, this
process is characterized by forced oscillations of all atomic electrons with the frequency of the
incident X-ray radiation. Since the X-ray frequency is much larger than the resonant frequency
of the electrons, all electrons radiate in antiphase with the incident radiation [60]. The scattered
contributions from individual electrons are coherent with each other which leads to interference
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Figure 2.10: (a): Differential Compton scattering cross-section per electron as a function of the
scattering angle for a carbon atom and 80 keV photon energy. The Klein-Nishina approximation
to the differential scattering cross section is also shown for comparison. (b): Total Compton
scattering cross-section per electron for carbon and iodine as a function of the photon energy in
comparison with the Klein-Nishina approximation of scattering on free electrons.

effects between the individual scattered waves [60]. Consequently, the DSCS per electron is
non-additive for Rayleigh scattering. It is thus more reasonable to consider the DSCS per atom:

dogy(E,Z,0) _ r?

Te 2 2
0 =5 (14 cos”0)[F(z(E,0),2)]", (2.52)
where F(z, Z) is the so-called atomic form factor for Rayleigh scattering and z(E, 0) = £ sin($)

is the momentum transfer variable. Similarly to Compton scattering, F'(z, Z) can be interpreted
as a multiplicative correction factor to the DSCS for Thomson scattering on free electrons.
Calculations of F(z,Z) are based on the self-consistent Hartree field model [61, 60]. For large
scattering angles, the individual scattering contributions interfere destructively, whereas there
is constructive interference for small scattering angles:

lim F(z,Z) = Z (2.53)
z—0

Consequently, the probability of Rayleigh scattering is strongly increased in forward direction.
This effect can be seen in figure 2.11 (a), where the Rayleigh DSCS for a carbon atom is
plotted for photon energies of 20 keV and 70 keV. With increasing photon energy, the angular
distribution of Rayleigh scattered photons becomes increasingly forward directed. The total
Rayleigh scattering cross-section per atom is obtained by integrating the DSCS (eq. 2.52)
over all angles. Although the exact results depend on the atomic number, the total Rayleigh
scattering cross-section is approximately proportional to:

75

(2.54)
The accuracy of this approximation increases for light elements and high photon energies. The
double-logarithmic plot in figure 2.11 (b) shows the total Rayleigh scattering cross-section per
atom as a function of the photon energy for carbon (Z= 6), calcium (Z=20) and gadolinium
(Z=64). The three graphs deviate slightly from straight lines which corresponds to small inac-
curacies in the proportionality law of eq. 2.54, especially for low energies. As expected from eq.
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Figure 2.11: (a): Rayleigh DSCS for a carbon atom at photon energies of 20 keV and 70 keV.
(b): Total Rayleigh scattering cross section per atom as a function of the photon energy for
carbon, calcium and gadolinium.

2.54, the scattering cross-section per atom rises strongly with increasing atomic number.
Rayleigh scattering is an important source of undesired scattered radiation that reaches the de-
tector because of its characteristic angular distribution that strongly favors scattering in forward
direction.

Attenuation coefficient The total attenuation coefficient p is the sum of the attenuation co-
efficients of the individual interaction mechanisms:

H = Hphotoelectric + HCompton + HRayleigh - (255)

The relative importance of these three interaction mechanisms strongly depends on the photon
energy and the atomic number of the attenuating element. This point is illustrated in figure 2.12,
where the contributions of the three interaction mechanisms to the mass attenuation coeflicient
p/p of carbon, calcium and gadolinium are plotted as a function of the photon energy. In figure
2.12, the Compton scattering contribution to the mass attenuation coefficient varies only slightly
with the atomic number Z of the attenuating element. This observation is made plausible with
the Klein-Nishina approximation, in which ficompton 18 proportional to the electron density and
independent of Z (compare eq. 2.50 and eq. 2.49). As predicted by the corresponding propor-
tionality laws (see eq. 2.54 and eq. 2.46), the mass attenuation coefficients for photoelectric
absorption and Rayleigh scattering increase strongly for heavier elements. In the case of carbon,
Compton scattering is the dominant contribution to the mass attenuation coefficient except
for low photon energies (E < 20 keV), where photoelectric attenuation dominates due to the
quickly increasing absorption probability for lower energies (see eq. 2.46). The most important
contribution to the mass attenuation coefficient of Calcium is photoelectric absorption. How-
ever, for high photon energies, (E > 85 keV), the photoelectric absorption falls below the slowly
varying Compton scattering contribution. In the low energy range, Rayleigh scattering becomes
more important than Compton scattering but both scattering mechanisms remain an order of
magnitude smaller than photoelectric absorption. The mass attenuation coefficient of heavier
elements such as Gadolinium is clearly dominated by photoelectric absorption over the entire
diagnostic energy range.
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Figure 2.12: Contributions of photoelectric absorption, Compton scattering and Rayleigh scat-
tering to the mass attenuation coefficients of carbon, calcium and gadolinium as a function of
the photon energy.

Mixture rule The mixture rule states that the X-ray attenuation of a mixture or compound is
simply given by a weighted sum of the individual elements:

n(E) = ZU?(E)HQ (2.56)

where o(F) is the total attenuation cross-section per atom of element i and nf) is the corre-
sponding particle density. Equation 2.56 can be rewritten in terms of the mass attenuation

coeflicients:
He H
— =) wi (=], (2.57)
=3 (h)

where u. and p. are the attenuation coefficient and the density of the compound, respectively.
The weight fraction of element i is denoted by w;. The mixture rule is valid if the effects of the
chemical or crystalline environment can be neglected [62]. This is typically the case for medical
imaging and non-destructive testing since the X-ray energies are orders of magnitude higher
than chemical binding energies (~ eV). As will be discussed in section 2.7.1, the mixture rule
is an important assumption for spectral X-ray imaging algorithms that represent the energy-
dependent attenuation by two or more basis materials.

2.4 X-ray detection

Modern X-ray detectors feature two essential components: an X-ray sensor that interacts with
the incident photons and converts them into electrical signals and processing electronics that
convert the electric signals into digital images. From a wave-optical point of view, only the
intensity of the incident wave field can be detected. The phase of the wave field is not directly
measurable. In the photon energy range between 15 and 150 keV, the three attenuation mecha-
nisms discussed in section 2.3.5 (photoeffect, Compton and Rayleigh scattering) are relevant for
describing the interactions between the incident photons and the sensor material.

2.4.1 Quantum efficiency and photon statistics

An ideal X-ray detector would convert all photons that interact with the sensor material into
electrical signals. In this case, the detection efficiency is only limited by the quantum efficiency
n(E) of the sensor which represents the interaction probability of an incident photon with the
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sensor material. The interaction probability is equivalent to the probability that the photon is
not transmitted through the sensor:

N(E) =1— e #FM:, (2.58)

where dg is the thickness of the sensor. Following the argumentation in section 2.3.5 (eq. 2.41
and 2.42), the number of X-ray photons with a certain energy E that are transmitted through
the object and subsequently detected is again Poisson distributed:

¢
—e
q!

P(Q=q) = A A= S(E)exp <—/,u(E,J:, Y, z)ds) n(E), (2.59)
where S(E) is the average number of photons emitted from the source in direction of the detector
(pixel). Since the sum of two independent Poisson processes with mean values A; and Ay is a
Poisson process with mean A; + Ao, the total number of detected photons also follows a Poisson
distribution:
)\q
PQi=a)= 2 A= [sE)ew (— JaT z)ds) J(E)dF. (2.60)
q!
Equation 2.60 is only valid for ideal detectors. In a real detector, various undesired effects can
alter the photon statistics and introduce noise correlations between neighboring pixels.

2.4.2 Classification of X-ray detectors

X-ray detectors can be classified by the working principle of the radiation sensor and the pro-
cessing electronics. For both of these essential components of an X-ray detector, there are two
different design principles [63]:

Indirect vs. direct conversion sensors Figure 2.13 illustrates the difference between indirect
and direct conversion sensors. In the case of indirect conversion, an incident X-ray photon is
first converted into visible light photons in a scintillation crystal. Photoelectric absorption and
Compton scattering generate electron-hole pairs in the scintillating material and visible light is
emitted when they recombine [64]. The intensity of the visible light is proportional to the energy
of the incident X-ray photon. Typical scintillator materials include cesium iodine (CsI), cadmium
tungstate (CdWO,) and gadolinium oxysulphide (Gd2O2S) [65, 41]. Since the most commonly
used scintillator materials contain elements with high atomic numbers, indirect conversion sen-
sor normally have a high quantum efficiency. In a second step, the visible light photons generate
electron-hole pairs in a photodiode, which enables the conversion to an electrical signal. Some of
the scintillation light does not reach the photodiode or spreads to neighboring pixel (scintillator
blur). The scintillator blur causes noise correlations between neighboring pixels and limits the
spatial resolution of the imaging system.

In a direct conversion detector, the radiation sensor consists of a layer of semiconductor material
to which a high bias voltage is applied. The most commonly used materials are Si, Ge, GaAs,
CdTe and CdZnTe. Similar to the indirect conversion mechanism, an incident X-ray photon
creates electron-hole pairs inside the sensor material. The generated charges are accelerated
towards readout electrodes by the electric field before they can recombine. The direct conver-
sion mechanism is more efficient because losses in the scintillator material are avoided. To be
more precise, an impinging X-ray photon creates more electron-hole pairs in a direct conver-
sion detector compared to the indirect conversion scheme. Consequently, a direct conversion
sensor can achieve a higher signal-to noise ratio. This is particularly relevant in combination
with energy-integrating readout electronics, which will be discussed in the next paragraph. In
some materials, however, the high bias voltage can generate dark currents [66] (i.e. an electrical
current without X-ray illumination).



2 Fundamentals of spectral and phase-contrast X-ray imaging 24

\
t ? L
@ 0%° ? ?ﬁ *
@ @g o —
indirect conversion direct conversion

Figure 2.13: Working principle of direct and indirect conversion sensors. In the case of indirect
conversion, an incident X-ray photon is first converted into visible light photons in a scintillation
crystal. In a second step, the visible light photons generate electron-hole pairs in the semicon-
ductor layer of a photodiode, which enables the conversion to electrical signals. In a direct
conversion detector, a high bias voltage is applied to the semiconductor sensor. An incident
X-ray photon generates free charges that are accelerated towards the electrodes by the electric
field.

Energy-integrating vs. single pulse processing electronics Energy-integrating detectors use
storage capacitors to integrate the electrical charges from all impinging photons in a certain
time interval. After the integration time has passed, the discharge current of the capacitor is
measured and digitized. Due to the analog integration step, energy-integrating detectors can
measure comparatively high photon fluxes. The measured signal is proportional to the total
photon energy deposited in the sensor. Besides quantum noise (see eq. 2.60), electronic noise,
which is generated by bias currents and thermal noise in the analog parts of the detection elec-
tronics, represents an additional contribution to the total noise level [67].

Single pulse-processing detectors feature dedicated application-specific integrated circuits (ASICs)
that enable an analysis of the individual signal pulses generated by impinging photons. Ideal
single pulse-processing detectors thus count the number of photons that interact with the sen-
sor material in a certain time interval. By only counting signal pulses that exceed a certain
threshold, electronic readout noise can be avoided. This is particularly relevant for ultra low-
dose imaging applications, where the signal level is comparable to the electronic noise level
[68, 69, 70]. In contrast to energy-integrating detectors, the contribution of each photon to the
total signal strength is independent of the photon energy. This can be advantageous for some
X-ray imaging applications because single pulse-processing detectors assign more weight to low
energy photons which typically carry more contrast information [71, 72]. Some ASICs imple-
ment several discriminators (i.e. several signal threshold levels) which allows the acquisition
of energy resolved measurements. The additional energy information enables spectral X-ray
imaging and material differentiation (see section 2.7.1). Moreover, the energy information can
be used to improve the contrast-to-noise ration (CNR) of conventional attenuation images by an
energy-weighted addition [73, 74, 75, 76, 77]. Compared to energy-integrating detectors, single
pulse processing electronics are expensive and difficult to manufacture because of the relatively
complicated processing electronics that are required for each pixel. Moreover, the densely packed
electronics have a high power consumption which can cause heat dissipation problems [78].

Modern detector systems for medical radiography and CT applications mostly rely on indirect
conversion sensors in combination with energy-integrating processing electronics. Driven by
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Figure 2.14: Architecure of a photon-counting detector. The detection system consists of two
main components: A semiconductor sensor and readout ASICs which are connected to the sensor
via micro-bumps. The readout ASICs (see zoom-in) contain components for pulse-processing,
energy discrimination and analog-to-digital conversion. (Reprinted, with permission, from ref-
erence [84].)

recent advances in hybrid photon-counting detector technology [79, 80, 81], the combination of
direct conversion sensors and single pulse processing (or single photon-counting) electronics has
gained increasing popularity over the last years. Although applications in clinical routine are still
rare, many pre-clinical and clinical studies [27, 28, 29, 30, 31, 32, 33, 34] have investigated the
potential benefits of photon-counting detector technology for medical imaging. Since photon-
counting detectors (PCDs) offer many advantages compared to other spectral X-ray imaging
technologies (see section 2.7.1), they will be discussed in more detail in the following.

2.4.3 Photon-counting detectors

The hybrid pixel PCD technology was developed at CERN in the late 1980’s for the analysis
of particle collider experiments [11, 12]. By modifying the readout ASICs, the PCD technology
has been transferred to other imaging applications [79], such as crystallography [82] , adaptive
optics [83] and X-ray imaging.

Figure 2.14 shows the architecture of a PCD. The detection system features two main parts:
A direct conversion semiconductor sensor and an array of readout ASICs (one ASIC for each
detector pixel). These two components are manufactured individually and then connected via a
bump-bonding process. The hybrid architecture allows an individual optimization of the sensor
and readout ASICs. Moreover, due to the modular concept, it is possible to connect different
sensor materials to the same readout ASIC. The signal processing chain of the readout ASICs
consists of a pre-amplifier, a pulse shaper, one or more discriminators and an analog-to-digital
converter. Since the induced charge by a single X-ray photon is very small (~ 10715 C), the
electronic signal is amplified by the pre-amplifier before further processing of the signal pulses.
In the absence of undesired detector effects (see next paragraph), the number of electron-hole
pairs generated in the semiconductor sensor and thus also the pulse height of the amplified
signal is directly proportional to the energy of the impinging X-ray photon. The pulse shaper is
essentially a band-pass filter that improves the signal-to-noise ratio (SNR) of the pulse generated
by the pre-amplifier by amplifying the signal and attenuating electronic noise. The band-pass
filter also changes the shape of the pulse in the temporal domain and is thus referred to as
pulse shaper. The shaped signal is then fed to the discriminators which represent the interface
between the analog and digital part of the signal processing chain. The discriminator detects
a signal if the pulse height exceeds the corresponding pre-specified threshold value. In other
words, each discriminator only detects photons with energies that exceed the energy associated
with the corresponding threshold. Finally, the signal is converted from analog to digital and for
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Figure 2.15: Sensor effects in photon-counting detectors that affect the spectral and/or the
spatial resolution. (A): The incident photon interacts by photoelectric absorption and the entire
charge cloud is detected by the pixel in which the interaction took place. This represents the
ideal scenario with no performance degrading effect. (B): The photon interacts at the boundary
between two adjacent pixels and the charge cloud spreads over two adjacent pixels which leads
to charge-sharing. (C): Rayleigh scattering in the sensor causes the photon to be detected in a
different pixel. (D): Similar to charge-sharing, the photon energy can be distributed to different
pixels by Compton scattering in the sensor material. (E): Pulse pile-up is caused by two photons
hitting the same detector pixel in a time interval that is shorter than the temporal resolution of
the detector. (Reprinted, with permission, from reference [85].)

each signal that exceeds the threshold value, a counter is incremented.

Performance degrading effects in PCDs For an ideal detector with N discriminators it is
possible to detect photons in N sharply defined energy windows (also called energy bins) by
subtracting adjacent counter values. However, as depicted in figure 2.15, several performance
degrading effects influence both the spatial and spectral resolution of a real PCD. Moreover, they
can cause deviations from the idealized assumption of uncorrelated Poisson statistics (compare
eq. 2.60).

Charge-sharing After generation of a charge cloud in the semiconductor material by an incident
photon, the free charge carriers drift to the electrodes. Diffusion effects and the Coulomb force
cause the charge cloud to spread out laterally. If the charges are created near a pixel boundary,
parts of the charge cloud may be detected in several neighboring pixels (see figure 2.15 (B)).
If the charge fractions exceed the discriminator threshold, the detector falsely registers several
photons in adjacent pixels with a fraction of the original photon energy. Charge-sharing thus
causes distortions in the energy response of the PCD and produces a low energy tail in the
observed spectrum [79]. Furthermore, the spatial resolution of the detector is reduced since
the spreading charge cloud effectively acts as a blurring mechanism in the spatial domain.
The impact of the charge-sharing distortions depend on the sensor material, the pixel size, the
thickness of the semiconductor sensor and the bias voltage. Geometrical considerations lead to
the conclusion that the probability of charge sharing decreases with increasing detector pixels
size and decreasing thickness of the semiconductor sensor. The sensor thickness of the PCD thus
defines the tradeoff between quantum efficiency and charge sharing distortions. This tradeoff
can be partially mitigated by using high-Z semiconductor materials that provide high quantum
efficiencies with comparatively thin sensor layers. A higher bias voltage leads to faster drift
times and consequently, the charge cloud has less time to spread out which reduces the amount
of charge sharing. Some PCDs implement an on-chip charge-sharing correction scheme [86, 87].
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The ASICs feature an additional network of charge summing circuits that allows neighboring
pixels to communicate with each other and detect coincident pulses. The detected photon is then
only assigned to the pixel with the highest charge sharing fraction, which represents the location
where the photon most likely hit the sensor. A disadvantages of the additional charge-sharing
correction electronics is the increased processing time which potentially leads to undesired effects
due to pulse pile-up (see next but one paragraph).

Scattering and fluorescent emission X-ray photons can be deflected from their original path by
Rayleigh and Compton scattering interactions with the sensor material which potentially results
in a detection event in a neighboring pixel. Whereas Rayleigh scattering (see figure 2.15 (C))
only degrades the spatial resolution, the effect of Compton scattering is similar to charge-sharing
(see figure 2.15 (D)). A fraction of the photon energy is transferred to the scattered electron
before the scattered photon is detected in a neighboring pixel. Compton scattering thus causes
a relatively homogeneous background in the measured photon energy spectra [63]. As discussed
in section 2.3.5, the relative probability of photoelectric absorption compared to scattering
interactions increases with increasing atomic number of the sensor material. Furthermore, the
increased total absorption probability for high-Z materials leads to a shorter mean free path
length of the scattered photons. Consequently, performance degrading effects due to scattering
interactions can be partly suppressed by using high-Z semiconductor sensors.

Photoelectric absorption as well as Compton scattering processes eject an electron from the
interacting atom. The vacancy is filled by one of the electrons from the outer shells. This
rearrangement can lead to the emission of a characteristic fluorescence photon that might reach
another detector pixel or escape from the sensor. Fluorescent emission thus influences both the
spatial and spectral resolution of the PCD. Despite the larger attenuation coefficient for high-Z
materials, the mean free path length of fluorescence photons increases with the (effective) atomic
number of the sensor material because of the increased energy of the K-alpha emission lines. In
silicon, the mean free path length is only 12 pum, whereas in a CdTe sensor the mean free path
lengths are 110 pm and 58 pm for photons emitted from Cd and Te atoms, respectively [79].

Pulse pile-up Collecting the charges and processing the signal after an x-ray photon has hit
a detector pixel needs a certain amount of time, the so-called deadtime of the detector. Given
the stochastic nature of the photon arrival times, it is possible that the signal pulses of two or
more photons (that interact with the same detector pixel) overlap. The probability for such
a pulse pile-up event depends on the photon flux and the detector deadtime. Moreover, the
detector pixel size plays an important role because it strongly influences the effective photon
flux per detector pixel. For state-of-the-art PCDs, pile-up effects become relevant at a flux of
approximately 10% —10® photon counts per second and square millimeter [78]. Depending on the
time delay between the signal pulses generated by two incident photons, two types of pulse-pile
effects can be differentiated. Peak pile-up occurs if the two pulses strongly overlap, i.e. the
difference in photon arrival time is much smaller than the deadtime. As illustrated in figure
2.16 (a), the individual pulses cannot be resolved and the ASIC only registers one pulse with an
amplitude that is approximately given by the sum of the amplitudes of the individual pulses.
The so-called tail pile-up scenario (see figure 2.16 (b)) is characterized by a larger time delay
between the two pulses. The two pulses can thus be separated, however the tail of the first pulse
overlaps with the peak of the second pulse. In the example of figure 2.16 (b), the second pulse
is falsely registered in the high energy threshold.

In summary, pulse pile-up effects lead to losses in the number of registered photon and distor-
tions of the spectral detector response. In the last years, analytical pulse pile-up model have
been developed [88, 89, 90, 91] that can correct or mitigate the pulse pile-up induced bias. Nev-
ertheless, the spectral distortions as well as the lost photon counts have an adverse effect on the
noise level for spectral X-ray imaging applications.
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Figure 2.16: Illustration of the difference between the peak pile-up effect (a) and the tail pile-up
effect (b) in photon counting detectors. In case of the peak pile-up effect, the two signal pulses
that were generated by two incident photons overlap so closely that the individual pulses cannot
be resolved. Instead of registering two photon counts in the low energy threshold, the readout
ASIC interprets the combined signal as one photon count in the high energy threshold. In the
tail pile-up scenario, the two pulses can be separated, however the tail of the first pulse overlaps
with the peak of the second pulse. Due to this overlap, the second pulse is falsely registered in

the high energy threshold.
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Sensor polarization Crystal defects can temporarily trap electrons and holes that have been
generated by incicident X-ray photons. The trapped charges locally distort the electric field
that is induced by the bias voltage. This results in a decreased charge collection efficiency and
a temporarily and spatially varying spectral response of the PCD. Compared to silicon, this
effect is much more pronounced in high-Z semiconductor sensors (e.g. CdTe) where the defect
concentration and the material quality is much more difficult to control. Polarization effects
can be minimized by using high bias voltages and operating the PCD at low temperatures [79].
Polarization effects an also be mitigated by periodically resetting the bias voltage [92, 93].

Electronic noise Electronic noise arising in the analog processing electronics influences the
signal that is fed to the discriminators and thus degrades the energy resolution of the PCD.
However, contrary to energy-integrating detectors, the threshold-based processing architecture
of PCDs generally prevents that electronic noise influences the total number of registered photon
counts.

Many design choices for PCDs involve a tradeoff between different performance degrading ef-
fects. For example, a smaller pixel size reduces pulse-pile up effects, but increases the amount of
charge-sharing. Compared to silicon, high-Z semiconductor sensor like CdTe increase the quan-
tum efficiency and reduce charge-sharing effects (because the sensor thickness can be smaller).
However, polarization effects and manufacturing imperfections play a larger role since CdTe and
other high-Z semiconductors are much more difficult to process. This can lead to a spatially
varying spectral response as well as temporal drifts. Both effects have to be considered in the
signal processing pipeline to obtain artifact-free images.

2.5 Statistical signal processing

As discussed in the previous sections, X-ray generation, attenuation and detection are stochastic
processes and any radiography or CT measurement is thus contaminated by noise. In order to
obtain high quality X-ray images, the stochastic nature of these processes needs to be taken into
account, in particular for low-dose measurements. This section considers a selection of statistical
signal processing techniques that are particularly relevant for X-ray imaging and will be used
extensively in this thesis: maximum a posteriori estimators, maximum likelihood estimators and
the Cramér-Rao lower bound. We start by explaining some fundamental mathematical concepts
that form the basis for the aforementioned statistical signal processing techniques.

Inverse Problems Inverse problems are characterized by determining system parameters from
a set of observations that were caused by the parameters to be determined. They frequently
occur in physics or related fields and are particularly relevant for X-ray imaging. Many of
the results presented in this work are based on solving inverse problems that occur in spectral
imaging, (spectral) differential phase-contrast imaging and CT reconstruction. Given a set of
parameters, the expected observations can be calculated by constructing a forward model which
is based on the physical laws governing the measurement process. The forward model f is a
function that maps the parameter values to the expected observations:

—

fBRM = RN, #= f(6) (2.61)

This forward problem typically has a unique solution that is comparatively easy to calculate.
The associated inverse problem, however, is typically much more difficult to solve. First of
all, an analytical inversion of the forward model is not possible in most cases. For example,
directly inverting the forward model is impossible if the inverse problem is underdetermined, i.e.
the number of model parameters is larger than the number of observations. In this case, one
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iteratively minimizes the difference between the forward model and the measured data:

—

0 in; G(f(0),7), (2.62)
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where the function G is a similarity measure between the forward model and the measured data.
A common choice is the mean-squared error:

= 1

G(f(0),7) = (& =) - (

8>

— 7). (2.63)

Moreover, inverse problems are often ill-posed or ill-conditioned. An ill-posed problem violates
one of the following three conditions [94]:

e a solution exists
e the solution is unique
e the solution depends continuously on the observed variables.

For an ill-conditioned inverse problem, a small change in the observed data causes a large change
of the calculated model parameters. This means that the solution of the inverse problem is non-
robust because experimental measurements inevitably contain some amount of noise. A common
strategy to stabilize the solution of ill-conditioned or ill-posed inverse problem is the introduction
of additional assumptions about the model parameters via a so-called regularization term R(g)
The corresponding modified optimization problem can be expressed as:

§ = arg ming |G(£(0),%) + AR (é’)} : (2.64)

where A is a regularization parameter that controls the tradeoff between data fidelity and the
assumptions about #. The connection between the regularization term and Bayesian statistics
will be discussed in section 2.5.1.

Estimator An estimator 6 is a rule for calculating unknown parameters 0 based on observed
data Z. It can be viewed as a function that maps the observed data to an estimate of the desired
parameters:

0:RN —RM, 0=0(z), (2.65)
where N is the number of measurements and M is the number of parameters. The restriction to
real coordinate space is sufficient for X-ray imaging applications. In many cases (in particular
for inverse problems), 6(&) can only be implicitly defined. Since the measured data & are random
variables and the estimator is a function of the data, it can also be viewed as a random variable.
A simple X-ray imaging example is the estimation of the line integrals of the linear attenuation
coefficient from intensity measurement. Assuming a monochromatic source, the Lambert-Beer

law can be written as (compare eq. 2.40):

P = bie_li, li = T, Y,z dsi, 2.66
Y HAZ, Y

where y; is the measured intensity for detector pixel ¢, [; = [ p(z,y, z)ds; denotes the line integral
along the path from the source to detector pixel i and b; is the reference intensity measured
without the sample in the beam path. Following the notation of eq. 2.65, 0 = (11, ...,lN)T
Z = (y1,....yn, b1, .by)T and 0 is given by:

)

6:R*N — RN, [,=—In (‘Z) (2.67)
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where N is the number of detector pixel.

There are three commonly used metrics to characterize the performance of an estimator. The
bias of an estimator is the expectation value of the difference between the estimated parameters
6(Z) and the ground truth parameter values 8':

bias (9) B [é(f) - e*gt} —E [é(f)} — ge, (2.68)

With the probability density function (pdf) of the measured data given the ground truth pa-
rameter values p(Z|08'), the expectation value in eq. 2.68 can be calculated explicitly for each
component by:

E [0}} = /p (f]ggt> 0:(Z)dx1, ..., dx . (2.69)

2

The mean-squared error (MSE) and the variance o are defined component-wise as:

MSE();) = E [(é,-(f) - 9?)2]

) (2.70)

o2(0;) = E [(E [92-(:3)} - e,-(f)) } .
Noise-induced bias of an estimator In the case of a nonlinear estimator, i.e. a nonlinear
mapping 0(Z) from the observed data Z to parameter space, noise-induced bias can occur. This
effect occurs even if the estimator is unbiased for noise-free data (i.e. 68 = 0(E [¥]) ) because
taking the expectation value and applying a nonlinear function are not interchangeable:

E [é(f)} £ 6(E 7)) (2.71)

Figure 2.17 illustrates the effect of noise-induced bias for a simple one-dimensional estimation
problem. A well-known X-ray imaging example for noise-induced or statistical bias is the esti-
mation of the line integrals that was discussed in the last paragraph (see eq. 2.66). With the
help of Jensen’s inequality, one can show that the line integrals (and thus the reconstructed
attenuation coefficients in a CT scan) are systematically overestimated for low photon statistics
[53, 95].

2.5.1 Maximum a posteriori and maximum-likelihood estimators

Maximum a posteriori (MAP) estimation is an approach for solving inverse problems that is
based on Bayesian statistics. The idea is to find the parameter values fyap that maximize the
probability of the parameters given the measured data:

5MAP = arg max; P (5! a?) (2.72)

Since P (5 | :E’) cannot be accessed directly for inverse problems, eq. 2.72 is reformulated with
Bayes’s theorem:

gMAP = arg maxy P (§| i:’) = arg max; r (f‘P?f)P <5> = arg max; P (i“'| 5) P (5) , (2.73)

where the last equality holds because P(&) is independent of §. The function § — P (a’:’|§> is
known as likelihood function since it maps a parameter vector to the likelihood of the measured
data given the parameter vector. The forward model allows a direct calculation of the likelihood
function if the statistical distribution of the measured data is known or can be approximated.
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Figure 2.17: Noise-induced bias of a one-dimensional nonlinear estimator. The nonlinear map-
ping function é(x) = 22 skews the Gaussian distribution of the measured data after mapping
to parameter space. In this case, taking the expectation value and applying é() are not inter-
changeable.

A common example is the assumption of independent Gaussian noise. In this case, P (f | 5) is
given by:

LI (3 — 77)2
i=1 \/27m0? 9

where o; is the variance of z;. Contrary to frequentist statistics, Bayesian statistics interprets
probabilities as a degree of belief in an event. The parameters g are thus also treated as random
variables and P(6) represents the prior (i.e. before seeing the data) probability distribution of 6.
Prior knowledge and assumptions about g that are incorporated in P(g) can be used to stabilize
the (possibly ill-conditioned) optimization problem and reduce the variance of the estimator.
However, the incorporation of prior knowledge typically leads to biased estimates. In order to
increase the numerical stability of the optimization problem, one optimizes the logarithm of

the penalized likelihood function P (:E’ | 5) P (5) Since the logarithm is a strictly monotonic

function, this transformation will not change the position of the maximum. By convention, the
negative penalized log-likelihood function is minimized, which is mathematically equivalent to
maximizing the penalized log-likelihood function:

Oriap = arg ming [—L( ) + )\R(H)} , (2.75)

where L() = In (P(f|§)) is the log-likelihood function and AR(f) = —In (P(_’)> is the regu-
larization term. By writing the prior probability of the parameters as:

—

P(f) = e RO, (2.76)

the regularization term that was introduced in the last section to stabilize the solution of inverse
problems (compare eq. 2.64) can be interpreted as prior knowledge about the optimization pa-
rameters within the framework of Bayesian statistics.

In the case of a uniform prior that assigns the same prior probability to all parameter configu-
rations 6, MAP estimation reduces to maximum-likelihood (ML) estimation:

Ay, = arg ming [—L(G)] . (2.77)
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The ML estimator is a common choice for inverse and (other) problems because it can be easily
constructed if a forward model and knowledge about the measurement statistics are available.
It naturally incorporates the measurement statistics by giving more weight to more reliable
measurements. Furthermore, the ML estimator is asymptotically unbiased and asymptotically
achieves the minimum variance for an unbiased estimator (Cramér-Rao lower bound, see next
section) in the limit of low noise levels [96].

2.5.2 The Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is a powerful tool from estimation theory that predicts
a lower bound for the variance of an unbiased estimator. Given a parameter vector 5, it can be
shown that [97, 96]:

c) - F@) ™ =0, (2.78)

— —

i.e. the matrix C(0) — [F(0)]~! is positive semidefinite. Here, C(f) is the covariance matrix of
0:
Cu = B[(6u — B(0.)) (60 — B(0,)]. (2.79)

—

The Fisher information matrix F'(6) is the expectation value of the curvature of the negative
log-likelihood function:

F,,=FE (2.80)

210
80,00, |

From equation 2.78, a lower bound for the variance of the estimated parameters can be deduced:
Cuu = %(0y) > (F Y yu. (2.81)

An unbiased estimator is called efficient if its covariance matrix meets the CRLB:

—

C(0) = F(6). (2.82)

In this work, the CRLB is used to predict the covariance matrices of different estimators for
spectral, differential phase-contrast and spectral differential phase-contrast X-ray imaging. This
allows the optimization of various image acquisition parameters as well as a performance com-
parison between different X-ray imaging methods (see section/chapter 8).

2.6 Reconstruction techniques for Computed Tomography

CT reconstruction is the process of inferring the three-dimensional distribution of object prop-
erties from a set of projection measurements obtained at various angles around the object. In
this section, we will focus on CT reconstruction of the linear attenuation coefficient. The basic
principles of CT reconstruction for attenuation-based X-ray imaging also apply to spectral and
differential phase-contrast X-ray imaging. These imaging techniques enable a three-dimensional
reconstruction of other object properties, such as basis material volume fraction or the electron
density (see section 2.7.1 and 2.8). In the last decades, CT reconstruction was almost exclusively
performed with analytical reconstruction algorithms such as filtered backprojection. Recently,
statistical iterative reconstruction (SIR) algorithms which can be viewed as MAP estimators for
the inverse problem of CT reconstruction have become an active field of research.

2.6.1 Filtered backprojection

Although other methods exist [98, 99], the filtered backprojection (FBP) algorithm is by far the
most common analytical CT reconstruction method. For simplicity, the FBP algorithm will be
derived in two-dimensional parallel beam geometry, similar to the discussion in reference [41]. A
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Figure 2.18: Graphical visualization of the coordinate systems ( (z,y) and (v,&)) as well as
the line of projection £ = x cos(7y) + ysin(y) for the FBP algorithm in parallel beam geometry.
The red line represents all points that are projected onto p,(§), where £ is the distance from
the rotation center and + is the rotation angle. (This figure was inspired by a similar figure in
reference [41].)

generalization to the three-dimensional case with parallel beam geometry is straightforward. By
modifying the basic reconstruction principle for the parallel beam case, the FBP algorithm can
be applied to fan beam [100, 101], cone beam [102, 103] and helical [104, 105, 106] acquisition
geometries.

Mathematically, the measurement acquisition for a CT scan in parallel beam geometry can be
described by a Radon transform. The Radon transform [107] maps a two-dimensional function
g(z,y) to its projections p(7v,&) = py(§). The function g(x,y) represents the property of the
object that is reconstructed (e.g. the attenuation coefficient), v is the projection angle and &
denotes the distance of the ray from the point of origin (see figure 2.18). The Randon transform
is given by:

po(€) = / h / " g, y)8(z cos(y) + ysin(y) — €)dady, (2.83)

where the argument of the d-distribution parameterizes the line of projection (z cos(y)+y sin(y) =
&, see figure 2.18). Inverting the Radon transform and calculating g(x,y) from the sinogram
p(7,€) is based on the Fourier slice theorem, which states: The one-dimensional Fourier trans-
form P, (w) of the projection p,(§) is equivalent to a radial slice of the two-dimensional Fourier
transform G(u,v) of g(z,y) taken at the angle ~:

P, (w) = G(wcos(y),wsin(y)). (2.84)

The Fourier slice theorem and its connection to image reconstruction is illustrated in figure
2.19. We start the derivation of the FBP algorithm by expressing g(z,y) as the inverse Fourier
transform of G(u,v):

g(x, y) —_ % / / G(u, U)eZWi(quryv)dud’U. (2.85)

By performing a coordinate transformation to polar coordinates, the Fourier slice theorem (eq.
2.84) can be combined with the Fourier representation of g(z,y):

1 27 o] . .
g(l" y) = % /O / G(UJ cos Y, w sin ,Y)GQWlw(m cos(y)+y sm(y))wdwd/y

2m o
_ 2i / P«{ (w)eQﬂ'iw(I COS(’Y)+y Sin(V))wdwdfy (286)
™ 0 o0

= 1/7r /00 P, (w)e¥™ 8 |w|dwdry
27 0 —o0o ! 7
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Figure 2.19: Visualization of the Fourier slice theorem and its connection to image reconstruction.
The Fourier slice theorem allows to obtain the two-dimensional Fourier transform G(u,v) of the
image g(x,y) from the projections p, (). (This figure was inspired by a similar figure in reference
[108].)

where the symmetry properties of the Fourier transform and the definition of £ = x cos(vy) +
ysin(-y) have been used to arrive at the last equality (see reference [41] pg. 181 for the derivation).
The inner integral in the last line of eq. 2.86:

h~(§) = /_OO P, (w)e*™ 8 |w| dw (2.87)

can be interpreted as a high-pass filter that is implemented in Fourier space. Since a multiplica-
tion in Fourier space is equivalent to a convolution in real space, the filtered projections h-(§)
could also be obtained by convolving p.(£) with F~1(Jw|). The outer integral in the last line of
eq. 2.86 represents a backprojection of the filtered projections:

1 ™
ooy =5 [ (O (2.85)
T Jo
For each angle v, the backprojection smears the filtered projections h(§) over the image plane
along the ray directions given by £. In summary, the FBP algorithms comprises two major steps:

e 1. high-pass filtering the projections p~(§) by:
a) multiplying with |w| in frequency space
b) convolving with F~1(Jw|) in real space

e 2. backprojecting the filtered projections h.(§)

Equation 2.86 cannot be applied directly to reconstruct attenuation images from a CT scan
since only a discrete sampling of p,(§) (both in the spatial and angular dimension) is measured.
Moreover, g(z,y) has to be discretized in order to perform numerical computations. A discretized
version of the Randon transform (compare eq. 2.83) is given by:

Yi
—In <bl) == ll - ;aijuj, (289)
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where the variables v and £ have been summarized in the sinogram index . The line integrals
l; of the attenuation coefficient are approximated by a forward projection of the image fi. The
elements a;; of the projection matrix a represents the contribution of voxel j to the line integral
for sinogram index ¢ and pu; denotes the attenuation coefficient for voxel j. Calculating the
measured line integrals as l; = y;/b; implies the assumption of a monochromatic X-ray source or
an effective energy which describes the polychromatic source spectrum sufficiently well. In the
discrete case, a sufficient angular sampling is necessary to avoid aliasing artifacts. A common

rule of thumb is [109]:
™
Nproj = §pra (290)
where N0 is the number of angular projections and Ny is the number of pixels in one detector

Tow.

2.6.2 Statistical iterative reconstruction

From a Bayesian perspective, statistical iterative reconstruction (SIR) can be viewed as the task
of finding the image [ that maximizes the probability of the measured data -

fix = arg max; P(fi]y). (2.91)

This optimization problem corresponds to a MAP estimator for the inverse problem of CT
reconstruction. As explained in section 2.5.1, the optimization problem can be reformulated in
terms of the penalized log-likelihood function ¢(fi):

fir = arg min; ¢(fi) = arg min; [—L(j7) + AR(f)] . (2.92)

SIR algorithms offers many advantages compared to analytical CT reconstruction methods.
The possibility to incorporate an accurate noise model is one of the reasons for the improved
image quality of SIR methods compared to FBP reconstruction. Moreover, the MAP estima-
tion framework allows to include prior knowledge in the form of a regularization term, which
suppresses noise and enhances the image quality compared to analytical methods. Analytical
reconstruction methods that rely on the Fourier slice theorem impose severe restrictions on the
acquisition geometry and the physical model of the measurement acquisition. SIR algorithms,
on the contrary, can handle undersampling, missing data and provide the opportunity to include
a sophisticated simulation of the CT physics. Minimizing the penalized log-likelihood function
requires iterative optimization algorithms. The associated high computational complexity leads
to long reconstruction times compared to FBP reconstruction. This is the most important dis-
advantage of SIR, especially for clinical applications. In the last years, the advent of highly
efficient optimization algorithms as well as advances in computer hardware have mitigated this
shortcoming.

SIR is a modular concept with many different components which often can be customized and
optimized independently of each other:

e discretization: To reconstruct the image from the measurements, it is necessary to dis-
cretize the distribution of attenuation values u(x,y, z). There are different choices for this
discretization, leading to different reconstruction results.

e regularization: Physically implausible images are assigned with a low prior probability.
This stabilizes the ill-conditioned problem of CT reconstruction.

e forward model: The forward model is based on a physical simulation of the CT scan
and calculates the expected measurement values based on the current image estimate.
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Figure 2.20: Discrete representation of a two-dimensional continuous function (a) using a pixel
basis (b).

e data model: The log-likelihood of the measurement data given the current image esti-
mate is computed. This computation requires comparing the expected measurements ﬁ
(as determined by the forward model) with the actual measurement data g according a
statistical model of the measurement acquisition process.

e optimization algorithm: Iterative optimization algorithms are necessary to find the
minimum of the penalized log-likelihood function ¢().

The modular design of SIR techniques allows to tailor the CT reconstruction to the requirements
of a specific imaging task by adjusting (some of) the aforementioned components. The flexibility
gained by this approach is one of the great strengths of SIR. In the following, the individual
components of SIR will be explained in more detail.

Discretization The numerical evaluation and minimization of the penalized log-likelihood func-
tion requires a finite paramererization (i of the spatial distribution of attenuation coefficients
wu(x,y,z). A general approach for parameterizing u(z,y, z) is to represent it in terms of a basis
expansion [53]:

N
u(a:,y, Z) = ZMij(ﬁU»% Z)? (293)
=1

where x;(z,y, z) are the basis functions and p; are the coefficients of the basis expansion. The
basis functions should have compact support in order to reduce the computational complexity
of the forward model. [53]. The most common choice of x;(z,y, z), which was also used in this
work, is the so-called voxel basis:

X;j(z,y,2) = rect (m A$j> <y ij> <Z Azj> , (2.94)

where rect(-) is the rectangular function, (xj,y;,z;) is the center of the jth voxel and A is
the pixel size. Figure 2.20 shows the effect of discretizing a two-dimensional function by using
a pixel basis. Spherically symmetric Kaiser-Bessel functions (“blobs”) have been investigated
as an alternative to the voxel basis because of their mathematically appealing properties [110,
111, 112]. Other, less frequently used discretization choices include wavelets [113] and B-splines
[114]. In the following, the voxel basis will be assumed since it is the most common choice and
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was used throughout this work. The fact that the object is discretized into a finite number of
basis functions inherently leads to discrepancies between the measured projection data and the
forward model [115, 116]. The mismatch between the real measurement values and the simulated
projections may cause artifacts such as edge overshoots and aliasing patterns [117]. Choosing a
larger number of basis functions (i.e. smaller voxels) reduces the severity of these artifacts.

Forward model An important part of the forward model is the forward projection, which is a
discretized version of the Radon transform (compare eq. 2.89):

[=aji; =) ayu, (2.95)
J

where the matrix elements a;; represent an approximation of the (average) intersection length
for sinogram index ¢ and voxel j. Even though a is sparse, pre-computing the matrix elements
a and executing a matrix-vector multiplication to calculate the forward projection is unfeasible
because of the large size of a. For typical CT applications, the memory requirements to store a
(in uncompressed form) would be in the exabyte range [118]. Consequently, the matrix elements
a;; have to be computed on the fly. The backprojection, which is the transpose of the forward
projection is needed to calculate the gradient of the penalized log-likelihood function. In may
cases, the gradient g of the penalized log-likelihood function can be expressed as a backprojection
of a gradient g, in projection space:

G=a"Gy; g9; =) aijgp (2.96)
:

Since the gradient is required for efficiently minimizing the penalized log-likelihood function, the
backprojection also plays an important role in SIR frameworks. The forward and backprojection
operations are computationally expensive and thus they are often one of the most important bot-
tlenecks in SIR methods. Various approaches for calculating forward and backprojections with
different tradeoffs between computational complexity and accuracy of the projection operations
have been developed.

We will discuss pixel-driven and ray-driven projectors in more detail because the in-house
tomographic projector [119, 118] that was used in this work relies on these concepts. Both of
these projector types can be used for arbitrary 3D cone-beam geometries. Moreover, they are
particularly suited for highly parallelized implementations on graphics processing units (GPUs)
[119, 118, 120, 121]. The recent progress in GPU technology is one of the driving forces behind
the increasing popularity of SIR techniques for medical imaging and non-destructive testing
[122]. Ray-driven projectors work by tracing rays through the image and calculating the line
integrals as a weighted sum of the image voxels that are close to the corresponding rays [123].
For illustration purposes, figure 2.21 (a) shows the working principle of a ray-driven projector
in 2D parallel beam geometry. For each sinogram index ¢, a ray connects the source and the
center of the corresponding detector pixel. The line integrals are obtained by calculating the
intersection length with each row of voxels and then interpolating the attenuation coeflicient
from the two nearest voxels within that row. This approach is generalized to 3D by calculat-
ing the slab intersection length combined with bi-linear interpolation between the four nearest
voxels within that slab [124, 125]. Ray-driven projectors are typically used for forward projec-
tions because the ray-driven backprojection can introduce Moiré artifacts [126]. Moreover, the
forward projection is easier to parallelize because of the highly non-sequential memory access
of the ray-driven backprojection [123]. Pixel-driven projectors [127, 128] (see figure 2.21 (b))
consider lines that connect the source and the center of each image pixel (or voxel in 3D). The
location where the line intersects with the detector surface determines the relative weight of the
adjacent detector pixels for the subsequent linear interpolation. Since this method introduces
high-frequency artifacts and is difficult to parallelize for the forward projection [123], it is most
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(a) (b) (¢)

Figure 2.21: Working principle of ray-driven (a), pixel-driven (b) and separable footprint projec-
tors (c). Ray-driven projectors interpolate between different voxels in image space whereas pixel-
driven projectors interpolate between adjacent detector pixels. Footprint projectors achieve the
highest accuracy by considering the area of overlap between the image voxels and the detector
pixels.

commonly used for implementing the backprojection. The tomographic projector that was used
in this work thus combines a ray-driven forward projection with a pixel-driven backprojection.
This strategy allows an efficient parallelization and optimization of both operations on GPUs,
however the resulting projector pair is unmatched. Due to the different interpolation strategies,
the backprojection is not consistent with the forward projection. More precisely, the backpro-
jection matrix (which is calculated on the fly) is not the transpose of the forward projection
matrix. The implications of using a unmatched projector pair concerning convergence and im-
age quality are still under investigation [129, 130, 131]. Ray-driven forward- and pixel-driven
backprojectors sacrifice some accuracy for computational efficiency and speed of computation.
More accurate methods such as distance driven [123] or separable footprint [132] (see figure 2.21
(c)) projectors consider the overlap between the image voxels and the detector pixels to cal-
culate approximations of the average intersection lengths. These methods implement matched
forward and backprojector pairs. In the last years, parallelized GPU implementations have re-
duced the computational time for these methods [133, 134, 135, 136]. In its simplest form, the
forward model is given by eq. 2.95. Combining the forward projector with the Lambert-Beer
law provides a simple model for the expected number of photon counts:

Yi = biexp | — Z @iy | 5 (2.97)
J

where g; is the expected number of photon counts for sinogram index i and b; is the correspond-
ing reference intensity (without the sample in the beam path). Directly modeling the expected
intensities avoids the statistical bias that is caused by calculating the measured line integrals
(see section 2.5.1). Within the limits of computational feasibility, the SIR framework can be
combined with more sophisticated forward models that simulate various aspects of the mea-
surement aquisition process. Examples include modeling the polychromatic source spectrum
[137, 138, 139], the effect of scattered radiation reaching the detector [140, 53|, an extended
X-ray source spot [141, 142, 143], detector crosstalk [143, 144, 145] as well as object motion
(146, 147] .

Data model 1In order to calculate the data term —L(ji) of the penalized log-likelihood function
¢(ji), the probability P(yli) = P (gj’|g§'(ﬁ)> of the measured data ¥ given the current image

estimate [ needs to be calculated. Calculating P(y]f{) involves comparing the measured data
to the expected intensities predicted by the forward model i according to a statistical model of
the measured signals. As derived in section 2.4.1, the number of detected X-ray quanta follows
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a Poisson distribution for an ideal detector. Depending on the detector type, the statistical
distribution of the signals measured with a real detector differs from this idealized approximation.
For an energy-integrating detector, the energy-dependent weighting leads to a compound Poisson
process. By including electronic noise of the detector, P(y;|y;) can be expressed as [115, 148|:

P(yi|§;) ~ compound Poisson (§;, ®(E)) + Gaussian (Me, 07) , (2.98)

where ®(E) is the effective photon energy spectrum and M, and o2 denote the mean and
variance of the electronic noise, respectively. Although still an approximation, Whiting et al.
[67] have shown that this statistical model for energy-integrating detectors agrees well with
experimental data. Strictly speaking, this model is only valid for a detector with a small point
spread function since charge-sharing or scintillator blurring effects introduce noise correlations
between neighboring pixels. In practice, the noise model of eq. 2.98 is often simplified to a
Poisson distribution: s

P () = P e, (2.99)

i)

Although the compound Poisson noise model has been used in a SIR framework [149], the
increased computational complexity normally outweighs the incremental benefit of an exact
noise model [124]. Since photon-counting detectors intrinsically suppress electronic noise and
weigh each photon equally, the Poisson model is considered to be a good approximation in this
case [78, 150]. Assuming that all measurements are statistically independent, the likelihood of
the measured data for the Poisson model is expressed as:

H AR (2.100)
i=1

Consequently, the negative log-likelihood is given by:

Zyz ) — yiln(gi(77)), (2.101)

where terms independent of i have been dropped. For a sufficiently large number of photons
(i > 10), the Poisson distribution is well approximated by a Gaussian distribution:

P (il (1) = ——— exp [ - Wi 9 —9i)° (2.102)
il i (/i 707G P\ 2 .

If electronic noise can be neglected, the variance o2();) is equal to the expected photon counts
9;, which in turn are often approximated by the measured photon counts y;:

o?(9i) = §i ~ yi- (2.103)

Another common approach is to consider the statistical distribution of the line integrals I; =
yi/b;. Using error propagation and neglecting the variance of the reference measurements b;,
one can derive P(l;|l;) from eq. 2.102:

o 1 (L — 1)
P (MM#)) = mexp <_W(Zi)>’ (2.104)

where [; = 7i/b;. By propagating the variance through the logarithm, one can show that:
1

2
o lz ~ .

~
~

(2.105)

[ -
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The key idea of the second approximation in eq. 2.105 is to simplify —L(ji) to a quadratic
function which is much easier to minimize:

— L(p) = i w; (li - li>2, (2.106)

=1

where w; is a precomputed weight. The standard choice w; = y; follows from eq. 2.105. Thibault

et al. [151] have proposed the following modified weights which include the electronic noise o2:
2
Yi

;= . 2.107

Wi i 4 O_g ( )

As explained before, working with the line integrals [; instead of the intensities y; leads to
statistical bias for low photon statistics. In the case of photon-counting detectors, zero-count
measurements can provide valuable information [70]. Due to the logarithmic conversion, this
information is difficult to include in line integral based data models.

Regularization In terms of Bayesian statistics, regularization for attenuation-based imaging
can be understood as the process of assigning prior probabilities to different attenuation maps
i1 in order to stabilize the ill-conditioned problem of CT reconstruction. A low prior probability
is assigned to images that fit the measurement data well but are physically implausible. Re-
searchers have developed a plethora of different regularization strategies based on certain prior
assumptions about the images (for a comprehensive overview see reference [152]). Choosing the
right regularizer for a particular imaging task is still an active field of research. This section will
mainly focus on the most commonly used approach that is based on the assumption that the
attenuation map ji is locally smooth, i.e. neighboring voxels tend to have similar values. Noise
suppression is thus achieved by assigning a low prior probability to attenuation maps g with high
local variance. The regularization term for this family of nearest-neighbor based regularizers
can be written in the following general form [53]:

N N

R(T) =Y > wirt(luy — pwl), (2.108)

j=1 k=1

where N is the number of voxels and N, is the number of nearest neighbors that are taken into ac-
count. The potential function 9 (-) penalizes the absolute difference between neighboring voxels
and wjy denotes a weight given to this penalty. In most applications, the weights are simply cho-
sen inversely proportional to the distance between the two voxels under consideration. However,
regularizers that aim at uniform spatial resolution [153, 154] or noise [155, 156] modify the local
(i.e. as a function of the voxel index j) and the directional (i.e. as function of the neighbor index
k) regularization strength. The overall regularization strength (controlled by the regularization
parameter \) determines the tradeoff between noise suppression and regularization-induced bias.
The roughness penalty of nearest-neighbor based regularizers can cause blurring and distortion
of edges and small structures. Over-regularization can thus decrease the spatial resolution and
interfere with the detection of small or low-contrast features.

The choice of the potential function 9 (-) also strongly influences the properties of the recon-
structed image ji. Possibly the most natural choice is a quadratic penalty:

P(A) = A%, (2.109)

where A denotes the difference between two neighboring voxel values. While the quadratic
penalty has good noise suppression properties, it tends to oversmooth boundaries between dif-
ferent materials and small structures. The Huber potential [157] mitigates this effect by linearly
penalizing larger value differences:

A2, if |[A] <y

VA :{ 291 -2, it [A] > 4 (2.110)
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Figure 2.22: Comparison between three commonly used potential functions (quadratic, Huber
and total variation) for nearest-neighbor based regularizers.

Up to the threshold ~, the Huber potential coincides with the quadratic potential but a linear
continuous continuation is used for |A| > ~. If the value of « is chosen correctly, noise is
penalized quadratically while the penalty for edges only increases linearly with the edge height.
Anisotropic total-variation (TV) regularization is another popular regularization strategy [158,
159, 160] that uses a linear penalty function:

B(A) = |A. (2.111)

TV regularizers have good edge preserving properties, however they potentially introduce stair-
case artifacts in low dose CT reconstructions due to the restoration of artifical edges that were
introduced by noise [152, 161]. Figure 2.22 shows a comparison between the convex potential
functions for quadratic, Huber and TV regularizers. Convex potential functions are normally
preferred because they guarantee (in combination with a convex data term) that the optimiza-
tion algorithm converges to a unique global minimum. Additionally, specialized optimization
algorithms that rely on convex optimization theory can be used.

Another important class of regularization strategies is based on compressed sensing theory. Com-
pressed sensing is a signal processing technique that allows to recover signals from undersampled
measurements by assuming sparsity of the signal in a certain domain. TV regularization can
be viewed as a compressed sensing method because the TV regularizer enforces sparsity of the
gradient of the image fi. Dictionary-based regularizers assume that small image patches can
be sparsely represented by a linear combination of so-called dictionary atoms. The dictionary
atoms are learned from high-quality training images and contain typical structures and image
features that frequently occur in these images. In terms of Bayesian statistics, dictionary-based
regularization corresponds to the prior assumption that small patches of the attenuation image
can be sparsely represented in the dictionary basis (which consists of the dictionary atoms).
Dictionary-based image denoising and regularization will be explained in more detail in chapter
4 and 5, respectively.

Besides nearest-neighbor and compressed sensing based regularizers, other regularization tech-
niques have been developed. Example include regularizers based on nonlinear neighborhood
filters [162, 163], prior images [164, 165, 166] (e.g. from an earlier CT scan of the same pa-
tient/object) and wavelets [167].

Optimization algorithm The optimization algorithm is an essential part of SIR techniques since
closed-form solutions for minimizing the penalized log-likelihood function ¢(fi) do not exist in
most cases. A non-iterative approach to minimizing could be based on solving the following
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system of equations:

9¢(fi)

Opu,j

However, even if eq. 2.112 represents a system of linear equations, direct inversion is impractical
because of the large size of the system matrix. Efficient iterative optimization algorithms are
therefore needed to minimize ¢(fi) reliably and quickly. Due to the larger number of optimiza-
tion variables, iterative minimization algorithms for SIR are almost exclusively gradient-based.
Consequently, convergence to a local optimum cannot be ruled out if ¢(ji) has several local
optima. In this case, the initialization of the algorithm (initial guess) decides if the global op-
timum is reached. It is therefore desirable that ¢(ii) is convex, which implies that a unique
minimum exists. In the last decades, a large variety of optimization algorithms with different
characteristics have been developed and used for SIR [53]. The spectrum ranges from general
purpose algorithms for large-scale convex [168] and non-convex [169, 170] optimization problems
to specialized solvers that exploit the specific structure of the penalized log-likelihood function.
The compatibility with different modular components of the SIR framework (e.g. different for-
ward models or regularizers) is the main advantage of general purpose solvers. However, they
typically converge much slower than specialized solvers that have been tailored to a particular
SIR model.
In this section, we will focus on two optimization algorithms that have been used in this work.
The nonlinear conjugate gradient (NLCG) algorithm is a general purpose solver that was used
for SIR of spectral phase-contrast data (see chapter 9) as well as a variety of other MAP esti-
mation problems in projection space. The ordered subsets separable quadratic surrogate (OS-
SQS) algorithm is a highly efficient optimization algorithm that was originally developed for
attenuation-based SIR. In this work, it was adapted to one-step SIR for spectral CT (see chap-
ter 6).

=0 Vj=1,..,N, (2.112)

Nonlinear Conjugated Gradient (NLCG) The NLCG algorithm is based on the conjugate
gradient (CG) method which is used to solve large systems of linear equations:

Az =0b, zbeRY, AecRVN, (2.113)

Solving this system of equations is equivalent to minimizing the following quadratic function of

N variables:

flx) = %$TA$ —blz4¢, ceR. (2.114)
Based on the tutorial by Shewchuk [171], we first introduce the CG method before giving a brief
overview of the modifications that enable the generalization to the NLCG algorithm, which can
be applied to non-quadratic functions. More details about the NLCG algorithm can be found
in the optimization literature [172, 173, 174, 175].
The CG algorithm performs repeated line searches along certain search directions d,) € RN
where the index n represents the n-th iteration of the algorithm. This means that the new guess

T(p41) for the optimization variables lies on the line described by:

T(n+1) = T(n) T+ Ot(n)d(n), Q) € R, (2.115)
where z(,, is the current guess. Minimizing eq. (2.115) with respect to oy, yields:
T
m = W (2.116)
d(n)Ad(n)

where 7,y = =V f(2(n)) = b — Az(y) is the residual. The key difference to the gradient descent
algorithm is the selection of subsequent search directions. Whereas for gradient descent the
search direction coincides with the gradient at the current position:

d(n) = —Vf (.I(n)) s (2.117)
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Figure 2.23: Comparsion between conjugate gradient and gradient descent optimization for a
two-dimensional problem. Whereas the gradient descent algorithm takes several steps along
similar search directions, the conjugate gradrient algorithm converges in two iterations (figure
modified from reference [176] ).

the search directions d are chosen to be conjugate with respect to A for the CG method:
T .

Depending on the shape of f(z), new search directions are often close to previous ones for the
gradient descent algorithm. The CG method avoids this by choosing conjugate search direc-
tions, which greatly accelerates convergence. In contrary to steepest descent, the CG algorithm
theoretically converges in N iterations (with N being the number of optimization variables). An
example of the benefit of conjugate search directions for a two-dimensional optimization problem
is shown in figure 2.23. Conjugate search directions are efficiently constructed by Gram-Schmidt
conjugation:

Initialize: d(g) = r@) = —Vf (x(o)) , then construct recursively:
Blnt1y = ")) (2.119)
(n+1) — ra)r(n) .

d(nt1) = T(n+1) T Bnt1)dm)-

Algorithm 1 presents the complete CG method, which combines Gram-Schmidt conjugation with
a linesearch along the new search direction (compare eq. 2.115 and 2.116).

Initialize d©) = r(®) = —V f(z(g))
for i=0,...,N do

UOUD
Qn) = dlAd(,
T(nt1) = T(n) T n)d(n)
Ttnt1) = =V (T(ng1)) = T(n) — a(n)Ady)
Tl 1y (n+1)
T
)T (n)

dnt1) = T(nt1) T Bn+1)d(n)

Bint1) =

end
Algorithm 1: Outline of the CG method.

A detailed analysis [171] shows that the convergence properties of the CG algorithm are mainly
determined by the eigenvalues of the matrix A. An upper bound for the error after n iterations
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is given by:

flaw) — flen) JrE—1\*"
f(x0) — @) S4(\/%+ 1> ’ (2.120)

where (™) indicates the solution of eq. (2.114) because the algorithm converges after N itera-
tions. The spectral condition number k is defined as the ratio between the largest and smallest
eigenvalue of A: kK = Apax/Amin. From eq. (2.120), it follows that a smaller spectral condition
number leads to faster convergence. One can also show that convergence is accelerated if the
eigenvalues are not evenly distributed between A\, and A\pax but clustered together. Performing
N CG iterations to guarantee convergence is computationally infeasible for large-scale systems.
Moreover, floating point errors prevent an exact convergence for numerical calculations. In
practice, the CG algorithms is thus terminated once the solution is approximated with sufficient
accuracy.

Preconditioning The goal of preconditioning is to induce a coordinate transformation that
decreases the spectral condition number of the matrix A or leads to a better clustering of the
eigenvalues and thus accelerates convergence [177]. Suppose that the system matrix A can
be approximated by a matrix M which is easier to invert than A and M can be written as
M = EE", E ¢ RV*N, The preconditioned CG method (see algorithm 2) essentially minimizes
f(z) after the coordinate transformation:

i (2.121)

By performing a few variable substitutions, the transformation matrix E7 is eliminated entirely
from the algorithm (see reference [171] for the derivation) and the coordinate transform does
not have to be carried out explicitly.

Initialize r(g) = _vf(x(o)),d(o) — Mflr(o)

for i=0,...,N do
_ "M

) = T Ad

L(nt1) = L(n) T An)d(n)
Tnt1) = — V(T (ng1) = Ttn) — ) Ad ()

7"(7;1+1)M71T(n+1)

Plaret) = Ty M)

dins1y = M7 (040) + Bnsnydn)
end

Algorithm 2: Outline of the preconditioned CG
method.

The convergence properties of the preconditioned CG algorithm are determined by the spectral
condition number and the clustering of eigenvalues of the matrix M~'A instead of A. In
general, there is a tradeoff between the computational complexity of determining M ~! and
the convergence acceleration that the preconditioner provides. The ideal preconditioner M =
A would lead to convergence within one iteration, however determining M ™! is as difficult
as solving the original system of equations (or equivalently minimizing f(z)). The diagonal
preconditioner M = diag (Ai1,..., Anyn) scales f(x) along the coordinate axes. It is trivial to

invert: i
-1 _ .
ij = Ajj’ j=1..,N, (2.122)

but large convergence improvements can only be expected if the matrix A is dominated by its
diagonal entries.
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In the general case of non-quadratic functions, a Taylor expansion can be used to calculate a
local quadratic approximation of f(z). This strategy allows to transfer the basic principles of the
CG method to the NLCG algorithm. In the NLCG algorithm, the Hessian matrix H evaluated
at the current guess () plays the role of the matrix A in the CG algorithm:

_ P f(=)
N 8x18x] '
Since the Hessian matrix is a function of the optimization variables x, the meaning of “conjugate
search directions” (compare eq. 2.118) changes from one iteration to the next. The more
f(z) deviates from a quadratic function, the more quickly the search directions lose conjugacy.
Besides a periodic restart, several other empirical modifications of the Gram-Schmidt process for
constructing the search directions (see eq. 2.119) are used in the NLCG algorithm [178, 179, 170].
Furthermore, an exact linesearch (see eq. 2.116) is difficult to perform due to the non-quadratic

nature of f(z). Instead of finding the exact minimum along the current search direction, one
settles for a stepsize a,, that fulfills the Wolfe conditions [180, 181]:

(D f (2 + @) < f (2m) + 10y V(@m) (2.124)
(2): da)Vf (ZC(n) + a(n)d(n)) > Czda)vlf(iv(n))

A common empirical choice for the value of the constants is ¢; = 0.1 and ¢ = 1074 [172]. The
Wolfe conditions ensure that the optimizer makes sufficient progress towards the minimum in
each iteration.

Preconditioning can also be combined with the NLCG algorithm to accelerate convergence. An
important difference to the CG method is that the Hessian H changes during optimization.
Consequently, the preconditioner might become less effective if the curvature of f(x) varies
strongly. In many practical cases, however, the initial guess is already sufficiently close to the
minimum so that the Hessian only varies slightly. In the case of SIR for attenuation-based CT
for example, a sufficient initial guess can often be obtained by FBP reconstruction.

H;j(x) (2.123)

Ordered subset separable quadratic surrogate (OSSQS) The OSSQS algorithm is a spe-
cialized solver for CT reconstruction. It exploits the structure of the penalized log-likelihood
function for standard attenuation-based SIR and is thus less flexible than general purpose solvers.
More specifically, the OSSQS algorithm requires a nearest-neighbor based regularization term
R(ji) with a convex potential function (A) and a log-likelihood function of the form:

— L(fi) = % hi (l@) , (2.125)
=1

i.e. the log-likelihood function is separable with respect to the sinogram indices and for each
sinogram index 4, the log-likelihood can be expressed as a function of the forward model for the
line integrals [;. The standard data models (compare eq. 2.101 and 2.106) fulfill the requirement

of eq. 2.125. For example, in the case of a Gaussian data model, h;(l;) = wl(l; - li)2. The key
idea of the OSSQS algorithm is to replace the penalized log-likelihood function ¢(ii) = —L(fZ) +
AR(ji) at each iteration step by a surrogate function o(jZ; /™) which is easier to minimize. The
vector i denotes the estimate of the attenuation coefficients at the n-th iteration. Minimizing
the surrogate functions monotonically decreases ¢(fi) as long as the following condition for the
surrogate functions are fulfilled [182]:

L oo (ﬂ(”); ﬁ(")) =¢ (ﬁ(”))

9. ¥ (ﬁ(”);ﬁ(”) - (ﬁ(”)) Vji=1,.,N (2.126)
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The OSSQS algorithm replaces the penalized log-likelihood function by a separable surrogate
function at each iteration step. This means that the surrogate function (at each iteration) can
be written as:

N
o (™) =3 filua): (2.127)
=1

If the f; are also quadratic, the minimization step is reduces to finding the minimum of N one-
dimensional quadratic functions, which can be performed analytically and in parallel. Figure
2.24 illustrates the concept of minimizing ¢(ii) by the separable surrogate function principle for
a one-dimensional objective function.

N
=

MORRES o)

Figure 2.24: Illustration of the quadratic surrogate principle in 1D. Starting with an initial guess
M(O), at each iteration step a quadratic surrogate function for the more complicated penalized log-
likelihood function ¢(1) is constructed (at the position of the current guess) and then analytically
minimized.

In order to find a separable surrogate function for ¢(ji), surrogate functions for the likelihood
and the penalty term are constructed separately. In case of the likelihood term, the separable
quadratic surrogate function is constructed in two steps. First, a quadratic (non-separable)
surrogate function for the likelihood term is created. This surrogate function is then replaced by
a second surrogate function which is quadratic and separable. A quadratic surrogate function
for the likelihood term which fulfills the surrogate conditions (eq. 2.126) is given by:

M M
Qi (™) =3 ai (107) = ~L(w) = > hah), (2.128)
=1 =1

with

a (1) = h (i) + ‘Zfl‘ (107 (=107 + S (i) (1~ 1), (2.129)

where lgn

i(n) 7.7(n)

) — > aijug-n) is the estimate of the i-th line integral at the n-th iteration. and cl(il(n))
) of the quadratic function ¢; (li; l;n

is the curvature of the parabola ¢;. The curvature ¢;(l;
should be chosen as small as possible (within the constraints of the third condition in eq. 2.126)
to allow for larger update steps (compare figure 2.24) and thus accelerate convergence of the

algorithm. It can be shown [182] that the optimum curvature is given by:
() fnE)

(i) = (i) o . (2.130)

n)

\)
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However, the optimum curvature is only valid if a non-negativity constraint on ji is enforced.
Finding the second, separable surrogate function Q- (ﬁ; /1’(”)) to the quadratic surrogate function
Q1 (u m ")) is based on rewriting the sum:

N N N
=2 agp =Y ay (Z/ (TRUOEDY airu£")> : (2.131)
pa pa =1

L)

where

D aij=1, Viandaj>0Vi,j. (2.132)

Applying Jensen’s inequality to the convex function g; <Z l( )> yields:

N
aij ) I Y i = ) .
<lzvlz ) Zawa ( i ( ) +l l ) ’ lz ;CLWMT (2 133)

A popular choice for the a;; providing fast convergence is:

O (2.134)

where v; = Z]kV:1 a;i is the forward projection of the image fi = 1. The resulting separable and
quadratic surrogate function is then given by:

Qo (ﬁ; ) %ZN:C;”%(@( u§”))+i§”);Z§”)). (2.135)
i=1j=1 '*

One can verify that Q2 (/l’, [j(”)) is tangent to (1 (,J, /1’(”)) at the current estimate (™. Thus the
conditions of eq. 2.126 hold for Q)9 (/]’; [i(")) with respect to Q1 ([i; ﬁ(”)) and also with respect
to the original likelihood term.

A similar procedure for finding a surrogate function is also applied to the penalty term:

N
D) =Y > wirth(py — k), (2.136)

Jj=1 k‘GNj

where NN; denotes the neighborhood of voxel j. Exploiting the convexity and symmetry of the
potential function v (p; — pg), Jensen’s inequality is used to construct a separable surrogate
function ¢y (f7; ™)) for ¢ (p; — pux) [183]:

1 n n 1 n n
w(uj—uk)=w(2 [2uj—u§) ué)}+2[—2uk+u§)+u;)]>
N - 5(n 1 n 1 n
< Py (s 1) = 3 (2uy " — g ) +3¢ <_2Mk + i+ )) (2.137)
_ 1 (n) _ ,(n (m) _ ()
—571)(2:%‘_'%' — My >+§¢<2Mk_ﬁ‘j — Mg )

Combined with equation 2.136, this leads to a separable surrogate function for the penalty term:

s (™) = i > wpn () (2.138)

j=1 keN;
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The final separable surrogate function for the penalized log-likelihood function is defined as:

@ (,u I ) Q2 ( ) +AS (q “(")> . (2.139)

An update step simply consists of finding the minimum of N functions depending on only one
variable. For quadratic data terms and penalty terms ¢(p; — pr) = (5 — ,uk)2, the minimum
can be found analytically since ¢ (ﬁ; ﬁ(”)) is also quadratic in this case. If the penalty term or
data term is non-quadratic, one can approximately minimize the surrogate functions, e.g. by
applying a Newton-Raphson line search:

% (1) 0 1)
n+1 n @ 5 H @\
Hg +1) _ Hg ) _ ( 8#? o1 . (2.140)

In the following, several techniques that accelerate convergence and reduce the computational
complexity of the separable quadratic surrogate (SQS) algorithm that was derived in the last
paragraph will be presented. Without these acceleration techniques, the SQS algorithm essen-
tially corresponds to diagonally preconditioned gradient descent optimization.

Ordered subsets The idea behind ordered subsets is to use only a subset of the available
projection data in each update step. This saves computational time since the computationally
expensive forward projection and backprojection is only applied to a subset of the data. The
key approximation in this extension to the SQS algorithm is:

w <Z hi(l})> + AR(fI) = dm () = ¢ (Zh > + AR(fD). (2.141)

iESm

Here, the sum over all projections is replaced by the sum over a subset (s,,) of all projections,
scaled by the factor W which corresponds to the number of subsets. The scaling factor W thus
ensures that the effective regularization strength is independent of the number of subsets. One
full iteration is completed by cycling through all subsets and updating the current guess on
the basis of ¢,,(f) instead of ¢(fi). Ideally, one subiteration would take approximately 1/W of
the time of one full iteration but still decrease ¢(fi) almost as much as one full iteration. The
ordered subset extension of the SQS-algorithm is not guaranteed to monotonically decrease ¢ ()
since an approximation (compare eq. 2.141) is involved. It was reported [184] that using too
many subsets results in a limit cycle of the algorithm because the approximation of eq. 2.141
becomes worse with a larger number of subsets, especially close to the minimum of the penalized
log-likelihood function. One possible strategy to overcome this issue might be to decrease the
number of subsets as the optimization progresses towards the minimum of ¢(f).

Precomputed curvature Computing the update (eq. 2.140) involves computing the curvature
of the surrogate function Qo (M ,u(")). In most cases, an initial guess that is sufficiently close
to the optimum of ¢(ji) can be found by analytical reconstruction methods. As a result, the
curvature only changes slighlty during the optimization. Furthermore, monotonicity of the
optimization algorithm cannot be guaranteed anymore with the ordered subsets acceleration.
Consequently, the optimum curvature principle (eq. 2.130) that guarantees a monotonically
decreasing penalized log-likelihood function can be abandoned. Instead of re-computing the
optimum curvature at each iteration, an approximate curvature is precomputed and used for all
subsequent iterations. Sufficiently close to the optimum of ¢(fi) (i.e. I; ~ I;), it can be shown
that the curvature of Qo ([j; ﬁ(”)) is well approximated by [185]:

Qo (i) P
- 9 92 az] Yi

R~ l;). 2.142
T I 0 (2142
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Precomputing the contribution of the data term to the curvature of the surrogate function
©(ii; i) saves computational time since one forward and one backprojection are saved at each
(sub)iteration. A potential downside of this approach is that the approximation of eq. 2.142 is
only valid if a good initial guess can be obtained by analytical reconstruction methods.

Nesterov acceleration The (OS-)SQS algorithm can be combined with momentum techniques
to further accelerate convergence. Momentum techniques use the gradient information from pre-
vious iterations to modify the image update step and give more weight to directions of persistent
reduction in the objective function [186]. In 1983, Y. Nesterov published a momentum technique
[187] that uses the last two descent directions to better inform the current update and provide
a convergence rate of O(1/n?), where n denotes the number of iterations. This technique was
extended in 2005 [188] to use information from all previous descent directions. Nesterov also
proved that the convergence rate of O(1/n?) is optimal for any first order optimization method.
Ordinary gradient descent methods like NLCG or OSSQS only provide a convergence rate of
O(1/n). Combining Nesterov’s momentum technique with OSSQS is particularly appealing be-
cause it could in theory provide a convergence rate of O(1/(nW)?) [189] in early iterations,
where W denotes the number of subsets. However, combining algorithms which cannot guaran-
tee a monotonical descent of the penalized log-likelihood function with Nesterov’s momentum
technique might lead to unstable behaviour. It nevertheless turned out to be successful in prac-
tice [190, 189] . Instabilities of the algorithm were reported if the number of subsets was large
(W > 11 in [190]) and it was observed that the 2005 version of the momentum technique is more
stable for CT reconstruction [189]. Algorithm 3 and algorithm 4 present Nesterov’s momentum
technique (from 1983 and 2005, respectively) in combination with the OSSQS algorithm [189].
In this context, A is the image update:

—1

R Pom (@A) O (5 1)
j(M) - B 2 O
M Hj

, (2.143)

where m denotes the current subset index (see eq. 2.140). The current image estimate is denoted
by [, the quantity ¢ is the cumulative momentum from all image updates and Z is a state
variable that linearly combines the current image estimate with the cumulative momentum. To
differentiate between full iterations (using all angular projections exactly once) and subiterations,
fractional iteration indices are introduced (e.g. A2H3/W) corresponds to the second full iteration

and the third subiteration).

Initialize (0 = (0 = 70 dy =1
Initialize (0 = 7, do = 1 for t=1,2,... do

for t=1,2,... do for m=1,2,...,W do
for m=1,2,..., W do k=tW+m
k:tW;rm dk+1:%(1+ 1+4d§)
_ 1 2 a1
denr =3 (1+ VITIE) ) = () — A ()
/j(%) = 7 %) — A (2’(%)) k1l
. F5) =
A% = 20) _ yrWem g A ()
A(5) 4 g (7(5) _ (%) .
H di 41 (N K ) 5’(%) = [j(%) +
(k1) (k41
end dleldl ( ( % ) _ﬂ( W ))
end end
Algorithm 3: Nesterov’s Momentum end
technique (1983) combined with the OS- Algorithm 4: Nesterov’s Momentum tech-
SQS algorithm. nique (2005) combined with the OSSQS al-

gorithm.
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2.7 Spectral X-ray imaging

Compared to conventional attenuation imaging, spectral X-ray imaging techniques provide addi-
tional information about the composition of an object by conducting measurements with two or
more distinct photon energy spectra. The important special case of using two different spectra
is often called dual energy imaging. Sometimes the term spectral imaging is exclusively used for
imaging systems that acquire measurements with three or more distinct photon energy spectra.
Sampling the energy-dependent attenuation allows to distinguish between different materials and
to obtain information about the chemical composition. Basis material decomposition algorithms
calculate material-specific images which can be used for quantitative imaging, reducing beam
hardening artifacts and improving the contrast-to-noise ratio. This section gives an overview
of different technical realizations of spectral X-ray imaging, basis material decomposition algo-
rithms and their theoretical foundation as well as applications of spectral X-ray imaging in the
fields of clinical diagnosis and non-destructive testing.

2.7.1 Technical realizations

Figure 2.25 shows an overview of the most common approaches for acquiring energy-resolved
X-ray images. Although illustrated for CT, all of these approaches could also be adapted for ra-
diography applications. One can differentiate between spectral imaging techniques that operate
with different source spectra (fast kVp-switching, dual source CT, twin-beam CT) and tech-
niques that use an energy-resolved detection mechanism (dual layer detectors, photon-counting
detectors). Fast kVp-switching techniques [191, 192, 193] (see figure 2.25 (a)) change the X-
ray spectrum by rapidly switching the acceleration voltage of the X-ray tube while roating the
gantry. Dual source systems [194, 195] (figure 2.25 (b)) feature two X-ray tubes and two de-
tectors that are aligned perpendicular to each other. This technique enables the use of different
X-ray filters to increase the spectral separation between the two spectra. Twin-beam CT sys-
tems [196] (figure 2.25 (c) ) rely entirely on two different X-ray filters to split the source spectrum
into two different X-ray spectra, that are incident on the left and right half of the X-ray de-
tector. Dual layer CT scanners [197, 198] and radiography systems [199] (figure 2.25 (d)) use
two scintillation detectors that are stacked on top of each other. The inner layer preferably
detects low energy photons. It transmits a large fraction of the high energy photons, which
subsequently interact with the scintillation layer of the outer detector. The possibility to ac-
quire energy-resolved measurements with PCDs has already been discussed in detail in section
2.4.3. Unlike the other technical realizations, PCD technology enables spectral imaging with
three or more well separated photon energy spectra. Moreover, PCDs provide the possibility to
acquire energy-resolved measurements with perfect spatial and temporal registration. Among
the other systems, only dual layer CT yields well registered spectral projection measurements.
Despite the theoretical advantages of PCDs for spectral imaging, current clinical dual energy
CT systems are exclusively based on one of the other technical approaches. High costs as well
as performance degrading effects of current PCDs (see section 2.4.3) have so far prevented the
application of photon counting spectral CT for routine clinical diagnosis. However, advance-
ments in PCD technology and recent pre-clinical [72, 30, 200, 31, 201, 202] studies indicate that
clinical photon-counting spectral CT scanners will be feasible in the near future.

2.7.2 Basis material approximation

As was discussed in section 2.3.5, the attenuation coefficient depends on the X-ray energy, the
density and the atomic number of the element under investigation. The mixture rule (eq. 2.56
and eq. 2.57) is used to calculate the attenuation of compounds. However, in the diagnostic
energy range and for light elements (Z < 20), the energy-dependent attenuation of any material
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Figure 2.25: Different technical realizations of spectral CT. (a): The fast kVp-switching tech-
nique is based on rapidly changing the acceleration voltage of the X-ray tube during the CT
scan. (b): Dual source systems use two X-ray tubes and two detectors oriented perpendicular
to each other. (c): Twin-beam CT systems use two different X-ray filters to split the source
spectrum into two different X-ray spectra. (d): Dual layer (or photon-counting) CT systems
feature an energy-resolved detection mechanism.

(a

can be approximately parameterized by two basis materials [203]:

2
E E
p(E) _ Zwb o (E) (2.144)
P b1 Pb
or equivalently:
2
p(E) =Y ap mw(E), (2.145)
b=1

where b is the basis material index. By comparing with the mixture rule (eq. 2.57), the coeffi-
cients wp and oy can be interpreted as the basis material weight fractions and volume fractions,
respectively. The basis material approximation of eq. 2.144 and eq. 2.145 is motivated by the
dominance of two attenuation mechanisms in the diagnostic energy range [2]: photoelectric ab-
sorption and Compton scattering. Although the energy dependency of both effects is a function
of the atomic number, the variance is comparatively small for light elements. Consequently,
the energy dependency of the attenuation coefficient can be approximately separated from the
dependency on the atomic number [204, 205]. Figure 2.26 investigates the accuracy of the basis
material approximation in more detail. In this example, the energy-dependent attenuation of
a range of light elements (from Z = 6 to Z = 20) was modeled by using carbon (Z = 6) and
calcium (Z = 20) as basis materials. Figure 2.26 (a) shows the relative error of modeling the
energy-dependent attenuation of aluminum (Z = 13) with the two basis materials. In this case,
the relative error e, was defined as:

_ pal(E) = 3 ap pu(E)
JONIO2) '

For energies above 30 keV, the relative error is below 1%. In most applications, the larger relative
error for lower energies (up to 3%) is less relevant because the X-ray source only emits a small
fraction of the total flux in this energy range. Moreover, most of the low energy photons are
attenuated by the object and thus do not contribute to the measured signal. In figure 2.26 (b),
the root-mean-squared relative error (RMSRE) of approximating the attenuation coefficients
with the two basis materials is plotted as a function of the atomic number. The RMSRE
reaches its maximum for Z = 13 and decreases for elements that are closer to one of the
basis materials. This behavior is reasonable since the energy dependency of the attenuation
mechanisms is effectively interpolated from the two basis materials. This interpolation works

er(E)

(2.146)
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Figure 2.26: Accuracy of the basis material approximation. In this example, the energy-
dependent attenuation of various light elements (Z = 6 — 20) was modeled using carbon (Z = 6)
and calcium (Z = 20) as basis materials. (a): Relative error of modeling the energy-dependent
attenuation of aluminum. (b): Root-mean-squared relative error (RMSRE) of approximating
the attenuation coefficients with the two basis materials as a function of the atomic number.

better for elements with atomic numbers close to Z = 6 (carbon) or Z = 20 (calcium).

The basis material approximation (eq. 2.144 and eq. 2.145) allows to accurately parameterize
pu(E) from a limited number of energy-resolved measurements, to which current spectral X-ray
imaging techniques are restricted. It is particularly well suited for medical imaging applications
because the human body consists almost exclusively of light elements. If heavier elements
(e.g. contrast agents such as iodine or gadolinium) with characteristic absorption edges in the
diagnostic energy range are present, the parameterization can be extended to include their
characteristic energy-dependent attenuation:

2 B
WE) = o m(B)+ Y it il (B), (2.147)
b=1 b=1

where the first term denotes the usual approximation for light elements and the second term
represents the contributions from B elements (or compounds) with absorption edges in the
relevant energy range. In this case, 2 + B spectral measurements need to be conduced to
unambiguously determine the volume fractions of all basis materials with the help of material
decomposition algorithms (see section 2.7.3). In addition to the material-specific information
that material decomposition algorithms provide, accurately parameterizing p(F) from a few
energy-resolved measurements enables the correction of beam hardening artifacts.

Beam hardening Beam hardening is one of the most important causes of image artifacts
in conventional attenuation-based CT. In radiography applications, beam hardening can lead
to incorrect quantitative values but it does not cause visual image artifacts. Beam harden-
ing artifacts arise from a mismatch between the physics of the measurement process and the
mathematical model that is used for image reconstruction. The standard Lambert-Beer model
(yi = b; exp (—l;), compare eq. 2.97) implicitly assumes that the polychromatic X-ray spectrum
can be modeled by an effective energy. A more exact model could be based on a polychromatic
version of the Lambert-Beer law (compare eq. 2.60):

g = / S(E)n(E) exp <_ / M(E,x,y,z)dsi>dE (2.148)
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Figure 2.27: Beam hardening artifacts in projection space. (a): Comparison of normalized X-
ray spectra before and after transmittance through 3 cm of aluminum. (b): Beam hardening
causes a nonlinear relationship between the measured line integrals and the absorber thickness.
The dashed lines represent two linear functions that would be obtained with monochromatic
spectra. The associated energies (which determine the slopes) correspond to the mean energy
of the spectra before and after beam hardening, respectively.

However, u(E) cannot be determined from standard attenuation measurements that only use
a single X-ray spectrum. Many empirical beam hardening correction algorithms assume that
the object predominately consists of one material (which has to be known a-priori) [206, 207,
208, 209, 210, 211]. This allows the application of the polychromatic Lambert-Beer law, but
a complete suppression of beam hardening artifacts is hardly possible if the object consists of
two or more materials with different attenuation properties. As discussed in section 2.3.5, the
attenuation coefficient generally decreases with increasing photon energy. X-rays with lower en-
ergies are thus preferably attenuated and the X-ray spectrum behind an absorber is “hardened”.
As an example, figure 2.27 compares the normalized X-ray spectra before and after passing an
absorber (3 cm of aluminum). The incident spectrum was generated by a tungsten anode op-
erated at an acceleration voltage of 100 kVp. Beam hardening increases the effective energy of
the X-ray spectrum, which causes a decrease of the apparent attenuation coefficient behind an
absorber. It thus leads to a nonlinear relationship between the measured line integrals /; and
the true absorber thickness. This effect is visualized in figure 2.27 (b), where the measured line
integrals [; are plotted as a function of the true absorber thickness.

In a CT scan, beam hardening causes inconsistencies of the measured line integrals for different
angular views. As a consequence, the reconstructed images are corrupted by cupping and streak
artifacts. Figure 2.28 illustrates typical beam hardening artifacts by analyzing a CT recon-
struction of two aluminum spheres. The axial slice in figure 2.28 (a) was reconstructed from a
simulated CT scan with a polychromatic spectrum generated by a tungsten anode operated at
100 kVp. Besides streak artifacts, cupping (i.e. the apparent attenuation coefficient decreases
towards the center of the object) is visible. Figure 2.28 (b) shows a lineplot through the center of
the bottom sphere. The comparison between polychromatic and monochromatic reconstructions
clearly shows the effect of beam hardening induced cupping.

2.7.3 Material decomposition algorithms

Material decomposition algorithms exploit the material-specific characteristics of the energy-
dependent attenuation to calculate basis material images. As mentioned before, the basis mate-
rial approximation plays a key role in accomplishing this task from a limited number of spectral
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Figure 2.28: Illustration of typical beam hardening artifacts using the example of a CT recon-
struction of two aluminum spheres. (a): An axial slice of the reconstructed image shows streak
artifacts and cupping. (b): The lineplot through the center of the bottom sphere analyzes the
effect of cupping artifacts in more detail.

measurements. On the other hand, however, this means that for light elements, the basis ma-
terial images do not necessarily directly provide information about the chemical composition
of an object. They rather represent surrogate materials with the same attenuation properties.
Figure 2.29 exemplarily illustrates a three-material decomposition task (using bone, tissue and
gadolinium contrast agent as basis materials) with an idealized PCD that divides the spectrum
into four non-overlapping energy bins.
The additional information provided by the basis material images has proven to be beneficial
for clinical diagnosis in many different application cases (see reference [1] for a comprehensive
overview). lodine basis material images, which can be calculated from contrast-enhanced spec-
tral CT scans, allow to distinguish between different causes of intracranial hemorrhage [212, 213].
Moreover, iodine images are used for tumor recognition [214] and staging [215] as well as de-
tecting perfusion defects [216]. Bone and calcium basis material images facilitate the evaluation
of bone mineral density [217] and the assessment of atherosclerosis [218], respectively. Other
applications of material decomposition include kidney stone characterization [219], assessment
of pulmonary nodules [220] and virtual non-enhanced imaging [221]. From a mathematical
perspective, basis material decomposition can be viewed as an estimator that maps the energy-
resolved intensity measurements to a set of basis material images. In the case of spectral CT,
the energy-resolved sinogram ¢ is mapped to the basis material volume fractions @ in image
space:

0: RM*S  RN*B @ =4(y), (2.149)

where B is the number of basis materials, N and M are the number of image voxels, and
sinogram entries, respectively and S > B represents the number of spectral measurements. Re-
cently, so-called one-step SIR algorithms have been developed that allow a direct estimation of
@ according to eq. 2.149. These methods and their potential advantages will be discussed in
more detail in chapters 6 and 9. As of yet, one-step SIR algorithms are rarely used in practice.
In order to simplify the estimation problem, material decomposition and image reconstruction
are normally performed in two separate steps. Depending on the order of these two steps, two
classes of spectral CT material decomposition algorithms can be differentiated: Images-based
material decomposition algorithms [222, 223, 224] first reconstruct conventional attenuation im-
ages corresponding to different photon energy spectra before performing material decomposition
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Figure 2.29: Illustration of a three-material decomposition task. Spectral X-ray imaging allows
to differentiate between tissue, bone and gadolinium contrast by exploiting differences in their
energy-dependent attenuation. In this example, energy-resolved measurements were acquired
with an idealized PCD that features four non-overlapping energy bins.

in image space. Projection-based material decomposition algorithms [225, 226, 227, 228] first
calculate the basis material line integrals A in projection space:

0: RM*S » RM*B A =4(7). (2.150)

Projection-based material decomposition can also be used for spectral radiography applications.
Under the assumption of statistically independent measurements for each sinogram index i, the

estimation problem is separable:
(AL, .. ABY =4 ((y}, ...,yf)T) Vi=1,.., M, (2.151)

where A? is the line integral for basis material b and sinogram index i. The basis material
line integrals represent the equivalent pathlenghts through the basis materials that explain the
spectral projection measurements (yil, - yis )T for sinogram index 4. In a second step, the basis
material images are reconstructed from the calculated basis material line integrals. Figure 2.30
summarizes the three aforementioned methods to obtain basis material images.

In contrast to image-based decomposition, projection-based decomposition algorithms require
spatially registered projection measurements and are therefore not compatible with some tech-
nical realizations of spectral CT (e.g. dual source CT). However, they enable an almost perfect
correction of beam hardening artifacts, which is difficult to achieve with image-based methods.
Furthermore, projection-based decomposition algorithms allow to incorporate an accurate sta-
tistical noise model and they form the basis for one-step SIR techniques. In this work, novel
projection-based material decomposition algorithms for PCD-based spectral CT and spectral
radiography applications have been developed. For these reasons, we will focus on projection-
based material decomposition in the following.

Noise amplification Both image-based and projection-based material decomposition algorithms
are affected by noise amplification and a degradation of the signal-to-noise ratio (SNR) com-
pared to the unprocessed spectral images. This is still a fundamental problem of spectral X-ray
imaging techniques since it limits the usability of material selective images. Noise amplification
is particularly problematic for low-dose medical imaging because the increased quantum noise
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Figure 2.30: Overview of different methods for obtaining basis material images in spectral CT.
One-step statistical iterative reconstruction algorithms combine image reconstruction and ma-
terial decomposition in a joint framework. In most cases, however, material decomposition and
image reconstruction are performed separately. Depending on the order of these two steps,
image-based and projection-based material decomposition algorithms can be differentiated.
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already leads to higher noise levels in the unprocessed spectral images. Consequently, advanced
denoising algorithms that are specifically tailored to spectral imaging play an important role
in obtaining high quality basis material images. In addition to image post-processing methods
[229, 230, 231, 232, 233], MAP estimators in the form of regularized material decomposition
[234, 235, 236] as well as image reconstruction algorithms [237, 238] have shown promising re-
sults.

The degradation of the SNR is most easily explained for a simplified image-based material de-
composition task. Suppose that a spectral CT scan with two monochromatic X-ray sources
(operated at energies E; and E}, respectively) has been conducted. In this case, image-based
two-material decomposition reduces to solving the following system of equations for each voxel

]

O w = oju(B) + o3 (Ey)

(2.152)
(IT) M? = Oéjl'ul(Eh) + 04?#2(Eh)7

where 1 (E) and po(E) represent the energy-dependent attenuation coefficients of the two basis
materials. For simplicity, we assume that both basis materials do not have K-edge discontinuities
in the relevant energy range. The reconstructed attenuation coefficients for the low and high
energy image are denoted by ,ué» and ,u;?, respectively. Solving for the volume fractions of the
first basis material ozjl- yields:

. i —uyB (B

o =

T m(B) —m(Bn)B T pa(ER)

with a similar result for the second basis material. The SNR for the basis material image is
given by:

> 1, (2.153)

ps — B
Vo2 ) + 022

SNR (o) = (2.154)
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As can be seen from the numerator in eq. 2.154, the signal decreases whereas the denominator
in eq. 2.154 shows that the noise level of the basis material images increases compared to the
attenuation images (noise amplification), resulting in a degradatio of the SNR. In the more
general case of basis material decomposition with polychromatic spectra, the CRLB (see section
2.5.2) can be used to arrive at a similiar conclusion [227]. The prediction of (co-)variances with
the CRLB will be discussed in chapter 8. A more detailed analysis shows that the noise in the
basis material images is anticorrelated [3, 229, 2]. The degree of anticorrelation and the overall
noise level increase with increasing spectral overlap of the energy-resolved measurements.
Noise amplification is also the reason why a material decomposition into more than two low-Z
materials is unfeasible for almost all practical applications. In theory, based on small differences
in the energy-dependent attenuation, more than two low-Z materials could be differentiated by
conducting three or more spectral measurements [239]. However, as detailed in section 2.7.2,
the energy-dependent attenuation of a third basis material is already closely modeled by the
other two basis materials. This leads to highly increased noise levels (by a factor of ~ 10% — 10%)
[240] if a material decomposition into three or more materials without absorption edges in the
relevant energy range is attempted.

Projection-based material decomposition In the following, we will assume that the spectral
projection measurements have been acquired with a PCD. However, a generalization to other
spectral X-ray imaging methods is straightforward. Projection-based material decomposition
algorithms can be divided into two categories: algorithms based on a physical model of the
measurement acquisition and empirical methods. The former use a polychromatic version of the
Lambert-Beer law to construct a forward model which connects the expected spectral intensity
measurements to the basis material line integrals:

B
i = [ du(Byess (— Soal ub<E>) dF, (2.155)
b=1

where g7 is the expected intensity for detector pixel i and energy bin s of the PCD and y,(E)
represents the energy-dependent attenuation coefficient of the b-th basis material. The effective
spectrum ¢eg (F) includes the source spectrum and detector effects (quantum efficiency, detector
response). Scattered radiation that reaches the detector is not considered in this forward model,
which can lead to biased decomposition results for some applications [241, 242, 243]. Using
the forward model of eq. 2.155, projection-based material decomposition is formulated as the
inverse problem of determining the basis material line integrals from the spectral projection
measurements. This inverse problem is most commonly solved with an ML estimator:

—,

Ay, = arg min ; — L(A) (2.156)

Assuming independent Poisson statistics for the spectral measurements y;, the log-likelihood

—,

function —L(A) is given by:
—LA) =YY §5(4) -yl (@f(ffi)). (2.157)

-,

Due to the separable structure of —L(A), the basis material line integrals can be determined
independently for each detector pixel:

A= (AL AP) = argming Y g3(A) —yiln (gf(/ﬁ-)). (2.158)
S

Accurately determining the effective spectrum (including the source spectrum and the detector
response) is often difficult in practice. This applies in particular to performing spectral X-ray
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Figure 2.31: Possible technical realization of a basis material calibration measurement. The
setup features two calibration phantoms (made of PMMA and PVC), which comprise several
homogeneous blocks of varying thickness. By independently moving the calibration phantoms
in vertical direction, transmission measurements with different basis material line integral com-
binations can be acquired quickly. (Modified, with permission, from reference [85].)

measurements with PCDs because manufacturing imperfections lead to inter-pixel variations in
the detector response. Therefore, the spectral detector response would have to be simulated
or measured individually for each pixel. Furthermore, various effects (e.g. material aging or
thermal drifts) change the system parameters over time. Ignoring inter-pixel variations leads
to an artificial noise pattern in projection images, even if a reference intensity (flatfield) correc-
tion is applied. Due to beam hardening effects combined with spectral distortions of the PCD
response, a simple flatfield correction cannot fully remove these artifacts. Since the artifact
pattern is consistent over different angular views, it causes ring artifacts in the CT reconstruc-
tion. Empirical material decomposition approaches therefore rely on calibration measurements
to circumvent the problem of determining the effective spectrum in experimental measurements.
The calibration measurements typically consist of a set of transmission measurements through
various thicknesses combinations of two or more calibration materials. A possible technical re-
alization for performing these transmission measurements is depicted in figure 2.31. Ideally, the
calibration materials coincide with the basis materials that are used for the subsequent basis
material decomposition. For low-Z materials, one can use eq. 2.145 to perform a basis material
transformation [203] after material decomposition. This means representing p(FE) with a pair of
basis materials that are different from the calibration materials. The calibration measurements
are used to determine a number of fit parameters ¢; of an empirical function that maps the
spectral intensity measurements to the basis material thicknesses:

(Azl’-.-,A,-B)T=9((y},--.,yf)T; 67) (2.159)

By determining the fit parameters ¢ individually for each pixel, inter-pixel variations of the
PCD response can be taken into account. Mapping the spectral measurements to the basis
material thicknesses can either be performed directly, as suggest by eq. 2.159, or indirectly by
combining an empirical forward model:

(3 5)" = £ (4l 4P)": C) (2.160)

with a MAP or ML estimator. The latter approach has the advantage of efficient estimation
(i.e. achieving the CRLB) in cases where the number of spectral measurements exceeds the
number of basis materials (S > B). As could be expected intuitively, increasing the number of
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energy-resolved measurements (while keeping the dose constant) generally decreases the noise
level of the basis material images, although there are diminishing returns [240]. Various empirical
models based on polynomial functions [244, 245, 2, 246], neural networks [247, 248] surrogate
spectra [249, 250] and lookup tables [225, 251] have been proposed.

Virtual monochromatic images After reconstruction of the basis material images, virtual
monochromatic images (VMIs) can be synthesized by applying eq. 2.147 individually to each
voxel. VMIs simulate conventional attenuation images that would have been obtained from a
CT scan with a monochromatic X-ray source. By tuning the virtual X-ray energy, the contrast
and noise properties of the VMIs can be manipulated. Figure 2.32 exemplarily depicts the CNR
and the absolute noise level of the VMIs as a function of the virtual X-ray energy. Although the
exact shape of the graphs depends on the object and the image acquisition parameters [252], the
general trends apply to a wide range of spectral X-ray imaging tasks. In clinical applications,
VMIs synthesized at an X-ray energy between 40 — 70 keV [253] have been used to enhance the
image contrast and reduce the noise level, which facilitates various low-contrast detection tasks
[254, 255, 256]. High energy VMIs (= 120 keV) enable the suppression of beam hardening and
metal artifact. This is relevant for medical imaging [257, 258, 259] as well as non-destructive
testing applications [260]. Using micro-CT for non-destructive testing applications as an ex-
ample, figure 2.33 demonstrates how VMIs can successfully eliminate beam hardening artifacts.

Electron density and effective atomic number images Spectral X-ray imaging can provide
spatially resolved information about the electron density and the effective atomic number of
an object. The basis material volume fractions obtained from material decomposition allow to
approximately calculate the local electron density p?:

B
ph =" alpe(b), (2.161)
b=1

where p.(b) represents the electron density of the b-th basis material and j is the voxel index.
There are several heuristic approaches [261] for calculating the effective atomic number Z7;
within an image voxel. Glasser [262] established an expression that is directly compatible with
basis material decomposition:

(2.162)

where wg and Z, are the weight fraction and the (effective) atomic number of the b-th basis
material, respectively. An important application of effective atomic number (Z-effective) images
is particle beam therapy planning, where they can improve the dose calculation accuracy [263,
264, 265]. Z-effective images are also employed for some specialized tasks in clinical diagnosis
[266].

2.8 Grating-based differential phase-contrast imaging

Contrary to attenuation-based methods, phase-contrast X-ray imaging techniques use the real
part of the complex refractive index (compare eq. 2.26) as contrast generation mechanism. There
are various approaches for translating the phase shift that an X-ray wave exhibits when traversing
an object into a detectable intensity signal [267, 268]. Among these, grating-based differential
phase-contrast (DPC) imaging is particularly promising for medical and non-destructive testing
applications, since it places the lowest demands on spatial and temporal coherence [13]. Because
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Figure 2.32: Contrast-to-noise ratio (CNR) and noise level (noise standard deviation) of virtual
monochromatic images as a function of the (virtual) X-ray energy. In this example, the noise
level reaches a minimum for a photon energy of 62 keV. At this point, the anti-correlated noise
of the basis material images cancels out maximally. Note that the maximum of the CNR curve
does not coincide perfectly with the minimum noise level.
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Figure 2.33: Reduction of beam hardening artifacts by calculating virtual monochromatic images
(VMIs) in the field of non-destructive testing. The comparison between the conventional atten-
uation image (A) and the VMI at 80 keV (B) demonstrates the suppression of streak artifacts.
The lineplots at the bottom show that, in contrast to the conventional image, the VMI is not
affected by cupping artifacts. (Modified from reference [260].)
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Figure 2.34: Setup for DPC imaging with standard X-ray tubes. Compared to conventional
X-ray imaging, an additional Talbot-Lau interferometer comprised of three gratings (GO, G1,
G2) is inserted into the beam path. The GO-G1 and G1-G2 distances are denoted by [ and
d, respectively and r describes the distance between the beam splitter grating (G1) and (the
center of ) the object. In this setup, the object is placed downstream of the G1 grating, however
configurations with the object positioned upstream of the G1 grating are also possible.

of the low source coherence requirements, DPC imaging can be performed with standard X-
ray tubes. Moreover, the so-called dark-field signal can be extracted from the interferometric
measurements [22]. It is related to ultra-small angle scattering and provides information about
the microstructure of an object far below the detector resolution. In this work, a novel model
for combining grating-based DPC imaging with spectral X-ray imaging has been developed. For
this reason, we will focus exclusively on grating-based phase-contrast imaging in the following.

2.8.1 Talbot-Lau interferometer

DPC imaging techniques employ a Talbot-Lau interferometer to extract the differential phase
shift and dark-field signals (in addition to the attenuation information) from so-called stepping
curve measurements. Figure 2.34 depicts a typical DPC imaging setup. A source grating (GO)
is placed right in front of the X-ray source. The Talbot-Lau interferometer also features a
beam-splitter grating (G1) and a detector grating (G2) which is placed just upstream of the
detector. The G1 grating is positioned between the other two gratings. The object can be
either placed downstream or upstream of the G1 grating. For simplicity, we will first consider
a scenario in which a monochromatic plane wave is incident on the G1 grating before turning
to polychromatic, spatially incoherent X-ray sources. This idealized model is applicable to
DPC imaging experiments with synchrotron sources, where the source grating can be omitted
[269, 270, 271].

Talbot effect Grating interferometry relies on the Talbot self-imaging effect which describes the
phenomenon that the image of any periodic structure illuminated by a plane wave is repeated at
regular distances away from the structure. The pattern of the G1 grating will thus be reproduced
at certain discrete distances downstream of the grating, the so-called Talbot distances:

27

dp =
T mAv

m € N, (2.163)
where p; is the period of the G1 grating. The Talbot effect can be derived from Fresnel diffraction
theory (see for example reference [43]). In the appendix (section 11.1.2), we perform a similar
(although less general) derivation by considering a cosine grating upon which an additional
phase ramp is imposed. The significance of the phase ramp will become clear in the next
section, where the influence of a phase shifting object on the Talbot self-images will be discussed.
Although self-images can be generated with arbitrary periodic structures, we will focus on binary,
rectangular gratings in the following. Binary gratings are almost exclusively used in experimental
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Figure 2.35: Simulated intensity distribution behind a 7/2 (left) and 7 (right) phase shifting
grating (see chapter 3 for details about the numerical simulation). The imprinted phase mod-
ulations are converted into a binary intensity patterns at the fractional Talbot distances of

® = m/4 df and di = m/16 d* for the w/2 and 7 phase shifting grating, respectively (m
being an odd integer). Whereas the period of the intensity pattern is preserved for the /2
grating, it is halved compared to the grating period for the m phase shifting grating.

DPC imaging setups because they are easiest to produce in high quality. Depending on the
characteristics of the beam splitter grating, self-images can also be found at certain fractional
Talbot distances dy':

dg”:%dngz—il, m,n €N, (2.164)
where m is the fractional Talbot order an 1/n describes the scaling between the fractional (dff')
and the full (d7') Talbot distances. An important special case that is exploited for grating-based
DPC imaging is the conversion of a pure phase modulation into a detectable intensity modulation
for odd fractional Talbot orders (i.e. m is an odd integer in eq. 2.164). The fractional Talbot
effect thus enables the application of phase shifting G1 gratings with negligible attenuation
that do not reduce the X-ray flux. The shape of the intensity pattern and the location of the
fractional Talbot distances (i.e. the value of n in eq. 2.164) depend on the induced phase shift
and the duty cycle of the G1 grating. Suleski [272] has compiled a comprehensive overview of the
different possibilities to use the fractional Talbot effect with phase shifting binary gratings. The
most commonly used phase shifting gratings have a duty cycle (i.e. ratio of gap width to grating
period) of 0.5 and induce a phase shift of © or 7/2 at the design energy. They are typically
made of low-Z materials like silicon or nickel (to reduce the X-ray attenuation) and the height
of the grating bars is on the order of a few microns. By combining the projection approximation
(eq. 2.27) and the formula for the refractive index decrement (eq. 2.29), it follows that the
induced phase shift is inversely proportional to the photon energy. This proportionality will
become relevant for polychromatic X-ray spectra. Figure 2.35 shows numerical simulations of
the intensity pattern downstream of m and 7/2 phase shifting gratings. As can be seen from
figure 2.35, the fractional Talbot distances for m and /2 phase shifting gratings are located at

¥ = m/16 df and d = m/4 d?, respectively (m € 2 N + 1). Whereas the period of the
intensity pattern is preserved for a /2 grating, it is halved compared to the grating period for
a 7 phase shifting grating.

Analyzer grating Signal processing techniques for DPC imaging extract information about an
object by analyzing the distortions of the Talbot self-image. These distortions can be resolved
directly if the spatial resolution of the detector is comparable to the grating periods. However, in
order to obtain a compact setup and to achieve a sufficiently high sensitivity (see section 2.8.2),
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Figure 2.36: Acquisition of stepping curve measurements (in parallel beam geometry) by scanning
the G2 grating across the detector. For each detector pixel, the measured intensity varies
depending on the relative position of the self-image and the G2 grating. Using the stepping curve
measurements, sample-induced distortions of the self-image can be detected without directly
resolving the self-image pattern (see figure 2.37).

grating periods on the order of 10 um are necessary, which is at least one order of magnitude
below the typical pixel sizes of X-ray detectors used for medical imaging and non-destructive
testing applications. As an example, the first fractional Talbot distance for a 7/2 phase shifting
grating with a period of 10 gym and a design energy of 45 keV is already at d}; = 1.8 m.
Therefore, an additional analyzer grating (G2) is placed right in front of the detector. The
analyzer grating allows to convert distortions of the Talbot self image into detectable intensity
modulations, eliminating the need to directly resolve the self-image pattern. It is an absorption
grating that has the same period as the Talbot self-image. By moving the analyzer grating
in the direction perpendicular to the grating bars, a so-called stepping curve can be recorded.
The process of acquiring stepping curve measurements is illustrated in figure 2.36. Under the
assumption of illuminating the phase shifting grating with a monochromatic plane wave, the
measured intensity is a periodic triangular function of the analyzer grating position [273]. This
result is obtained by convolving the intensity profile of the self-image with the transmission
function of the analyzer grating (both of which are rectangular functions). The stepping curve
measurements sample one period of the triangular function at a few equally spaced analyzer
grating positions. Instead of directly resolving the Talbot self-image, signal extraction can be
performed by analyzing the distortions of the stepping curve that are caused by the object. The
analyzer grating thus effectively decouples the spatial resolution requirements from the grating
periods.

Cone beam geometry The assumption of plane wave illumination (which corresponds to par-
allel beam geometry in the ray picture) is unrealistic for experimental DPC setups that use
conventional X-ray tubes. In this case, a point source is a more appropriate model. However,
in the next section, we will show that the spatial extent of the source spot also needs to be
considered. The Fresnel scaling theorem (see section 2.3.3) allows us to transfer the results that
have been obtained for parallel beam geometry to cone beam geometry !. Compared to parallel
beam geometry, the fractional Talbot distances as well as the self-image in the detector plane
are scaled by the magnification factor Mg = (I +d)/I, where [ is the distance between the point
source and the G1 grating and d is the distance between G1 and G2 (compare figure 2.34).

LStrictly speaking, Fresnel propagation cannot be used for large fan or cone angles, since the paraxial approxima-
tion becomes inaccurate. However, the refraction angles for X-rays are extremely small and wave propagation
effects only have a local influence in the near field (see section 2.2.2). This allows the definition of local optical
axes to which the paraxial approximation is applicable.
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Consequently, the period of the analyzer grating ps also has to be scaled by Mg in order to
match to the period of the self-image:

p2 = Mgp1. (2.165)

In fan- and cone beam geometries, the angle between the X-rays and the grating bars depends
on the location. Outside the central beam, the incident X-rays no longer hit the grating surface
at right angles. To assure that the imprinted phase shift and attenuation patterns are spatially
homogeneous, the gratings have to be bent. For each of the three gratings, the radius of curvature
is equal to the distance between the source and the corresponding grating. This ensures that
the diverging X-rays are always perpendicular to the grating surfaces.

Source grating Conventional X-ray tubes generate an extended, spatially incoherent source
spot. As was discussed in section 2.2.3, the total intensity is the sum of the intensities produced
by individual incoherent (point) sources. In the appendix (section 11.1.1), we combine Fresnel
propagation with the projection approximation to derive the intensity distribution for an ex-
tended, incoherent source. It can be calculated by a convolution of the point source intensity
pattern with a scaled version (scaling factor s = —d/l) of the spatial intensity distribution in
the source plane. For conventional X-ray tubes, the size of the source spot is typically much
larger than the G1 grating period and the Talbot self-image would thus be completely blurred
out. To prevent this, Pfeiffer et al. [13] proposed to place an additional absorption grating
(GO) close to the source. This source grating divides the source spot into an array of mutually
incoherent line sources. By adjusting the period of the source grating (pg) to the period of the

Talbot self-image:

l l

- M. - 2.166
DPo d GP1 dpz, ( )

the intensity patterns produced by the individual line sources add constructively. This effect
was first described for visible light by Lau [274]. The three-grating Talbot-Lau interferometer
thus enables DPC imaging experiments with incoherent sources [13]|, which is a key step to
transferring the technique to medical imaging and non-destructive testing applications.

There are different possibilities to realize a Talbot-Lau interferometer with a given total setup
length. In theory, the G1 grating can be placed anywhere between the other two gratings by
adjusting the grating periods of GO and G2 according to eq. 2.166 and eq. 2.165. Symmetric
(I = d), conventional (I > d) and inverse (I < d) geometry setups have been investigated
(compare figure 2.34 for the definition of [ and d). The three setup geometries have different
advantages and disadvantages concerning technical aspects such as grating fabrication, as well
interferometer sensitivity [275, 276].

With the additional source grating, the measured intensity I(z) as a function of the analyzer
grating position x can be described by a convolution of three rectangular functions. Together
with the aforementioned scaling factor s = —d/I, the effective period of the GO grating also
matches the period of the self-image. By performing the convolutions in Fourier space [276], the
observed intensity I(z) can be written as a cosine series:

I(x)=b |1+ Z Vg COS <27rxq + q¢R> , (2.167)
b2
g=1

where ¢ is a reference phase that depends on the initial positions of the three gratings. The
magnitude of the Fourier coefficients v, decrease rapidly with increasing ¢ [276]. This motivates
the standard stepping curve model, which is obtained by truncating the Fourier series after the
first term:

I(x)=b [1 +V cos <27r;; + ¢R>] , (2.168)
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where b and V describe the average value and the visibility of the stepping curve, respectively.
The visibility of an intensity modulation is generally defined as:

Imax - Imin
Y o= max Tmin 2.169
Irnax + Imin ( )

where I, and I, represent the maximum and the minimum of the intensity modulation,
respectively.

Polychromatic spectrum To simplify the analysis, a monochromatic X-ray source has been
assumed in the previous paragraphs. Since different monochromatic components of a polychro-
matic wave field are mutually incoherent [277], the detected intensity is obtain by a weighted sum
of the individual monochromatic intensities. At the location of the analyzer grating, the pattern
of the G1 grating will only be perfectly reproduced for the design energy of the interferometer.
An analysis of the Fresnel propagator in real space (eq. 2.15 ) shows that (for a fixed wave field
in the source plane) the propagated intensity only depends on the ratio k/zp. Scaling the X-ray
energy by a factor of s is thus equivalent to scaling the propagation distance by 1/s. As can be
seen from figure 2.35, the self-images for different X-ray energies approximately resemble the G1
pattern provided that the difference to the design energy is not too large. However, the phase
shift that is induced by the G1 grating also depends on the X-ray energy (compare eq. 2.29 ).
Nevertheless, the resulting stepping curves for different X-ray energies can still be approximated
by eq. 2.168 provided that the spectral bandwidth is not too large. By adjusting the visibility
parameter V', the imperfect self-images can be taken into account.

Moreover, only ideal absorption gratings (G0, G2) have been considered in the last paragraphs.
Current grating fabrication techniques achieve a maximum aspect ratio of ~ 20. Although
highly attenuating materials (e.g. gold) are used, a fraction of the X-ray photons is transmitted
through the grating bars. This also leads to an energy-dependent reduction of the visibility of
the stepping curve.

2.8.2 Signal extraction

An object that is placed in the beam path distorts the Talbot self-image and thus the measured
stepping curve. By comparing the mean value, the visibility and the phase of the stepping curves
to a reference scan, spatially resolved information about the attenuation, the phase shift and the
dark-field signal caused by the sample is obtained. The influence of the object on the stepping
curve can be expressed as [278]:

I(z) = be™4 [1 + Ve cos (¢ + A¢>)] : (2.170)

where d is the thickness of the sample and the parameter ¢, denotes the reference phase for
stepping position z,, of the analyzer grating:

b = 212 + pp. (2.171)
P2

The most commonly used methods to determine the three signal channels (u, A¢ and €) from
the measurements are Fourier processing [22] and least-squares fitting [279]. In chapter 8, we
will discuss an ML estimator for DPC signal extraction. Similar to conventional attenuation
imaging, the stepping curve model ignores the polychromatic X-ray spectrum and implicitly
assumes that the stepping curve measurements can be described by an effective energy. Figure
2.37 depicts the three physical mechanisms with which an object can influence the stepping
curve. The following paragraphs discuss these effects in more detail.
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Figure 2.37: The three signal channels that can be extracted from grating-based DPC measure-
ments and their influence on the stepping curve. An attenuating object (top row) causes an
overall intensity reduction of the Talbot self-image and thus also the stepping curve. A purely
phase shifting object (center row) refracts the incident X-rays which leads to a lateral displace-
ment of the self-image. Consequently, the measured stepping curve is shifted laterally compared
to the reference measurement. In the bottom row, the incident photons are scattered by a
microstructured object, which leads to local distortions and blurring of the Talbot self-image.
Although small angle scattering preserves the average intensity, the visibility of the stepping
curve is reduced.
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Attenuation X-ray attenuation leads to an overall intensity reduction of the Talbot self-image
and thus also the stepping curve. This effect is modeled by the multiplicative term e~ #¢, which
reflects the Lambert-Beer law. By simply calculating the mean intensity values of the stepping
curves for each pixels, the conventional attenuation image is reproduced. However, compared to
a setup for conventional X-ray imaging, the grating interferometer reduces the X-ray flux and
hardens the source spectrum. Consequently, attenuation images obtained from conventional and
DPC X-ray imaging setups differ slightly although the same contrast generation mechanism is
used.

Phase shift As was discussed in section 2.3.4, an object can cause refraction of the incident
X-rays. The refraction angle is related to the gradient of the projected electron density of the
object (compare eq. 2.37):

re(he)? 0
=— Q;Eg ax/pe(x,y,z)dz. (2.172)

The hybrid model of wave propagation (Talbot effect) and geometrical optics (ray refraction)
immediately explains the phase shift A¢ of the stepping curve that is caused by a constant
gradient of the projected electron density. Refraction leads to a lateral displacement of the
Talbot self-image. In parallel beam geometry and assuming that the object location coincides
with the G1 position, the self-image is displaced by Ax = ad which causes a phase shift of the
stepping curve:

Agp = —277& = —27ria = S, (2.173)
b2 D2

where the angular sensitivity S§ = A¢/a has been introduced. It determines the proportionality
factor between the phase shift A¢ of the stepping curve at a given refraction angle a and
thus has a large influence on the CNR of the reconstructed images. In the appendix (section
11.1.2), we derive the result of eq. 2.173 by combining Fresnel propagation and the projection
approximation, i.e. without the hybrid wave/ray picture. In cone beam geometry, eq. 2.173 has
to be modified. Assuming that the object is placed between G1 and G2, the angular sensitivity
is given by [275]:

S = 8¢ (1 - 2) , (2.174)

where r is the distance between the G1 grating and the object. By combining eq. 2.172 with
eq. 2.174, the phase shift of the stepping curve can be directly related to the gradient of the
projected electron density:

Ag; = ;ed (1-1) (he)® 0 /C pol, y, 2)ds

) d) E? oz
M red r (h0)2 ~(i+1) _ ~(4) e (5(i+1) _ 5(i) e
235(1—&)F(f)6 —pe)E (pe —pe),

where i is the pixel (or sinogram) index, C; is the line that connects the source and detector
pixel i and ¢ = fCi pe(x,y, z)ds is the projected electron density for detector pixel i. In the
second line of eq. 2.175, the gradient of the projected electron density was approximated by a
forward difference: 5

M /.. .
9 _ M s _ 50
e /C pe(w,y, z)ds = — (pe Pe ) (2.176)

where a is the detector pixel size. The object magnification M has to be taken into account
because the projected electron density profile that is measured at the detector plane is magni-
fied by a factor of M compared to the object plane. Equation 2.175 directly connects the phase
shift of the stepping curve to the gradient of the projected electron density. By integrating (or
rather summing) the phase shifts A¢;, the projected electron density profile is obtained. For CT
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applications, the electron density line integrals can then be used to reconstruct a 3D image of
the electron density distribution. With the Hilbert filter, integration and image reconstruction
(FBP) can be performed together in one step [14]. The integration step and the effect of the sen-
sitivity parameter S€ on the noise level of the electron density images will be discussed in chapter
8. Laboratory experiments have demonstrated that the electron density images obtained by DPC
imaging can provide a strongly improved contrast-to-noise ratio compared to attenuation-based
imaging, particularly for low-Z, tissue-like materials [15, 16, 17, 19, 18]. As will be discussed
in chapter 8, the CNR depends strongly on the imaging parameters. Examples of potential
clinical applications include mammography [280, 281, 282], assessment of atherosclerotic plaque
[283, 284], cartilage imaging [285, 286] and histological examinations [287, 288]. Similar to dual
energy techniques, DPC imaging offers two complementary image channels (the attenuation
coefficient and the electron density) that can be used to calculate the effective atomic number
[289, 290, 291] and to obtain basis material images [21, 20].

Dark-field signal Grating-based DPC imaging provides a third contrast channel that is inacces-
sible to spectral or conventional attenuation-based X-ray imaging methods [22]. The dark-field
signal is related to unresolvable microstructures with typical length scales far below the detector
resolution. According to the projection approximation (see section 2.3.2), a microstructured
object induces small local phase shifts to an incident wave function. Using the eikonal equa-
tion of geometrical optics (section 2.3.4), rays can be defined as orthogonal trajectories to the
wavefront. In the geometrical optics picture, local distortions of the wavefront can thus be inter-
preted as ultra-small angle scattering on the microstructures. The small phase variations (or the
scattered X-rays) locally distort the Talbot self-images. The same effect was used to explain the
phase shift of the stepping curve, however the key difference is that a constant phase shift (i.e.
a constant electron density gradient over the length scale of a detector pixel) was assumed for
the differential phase-contrast signal. Under these conditions, X-rays are refracted which causes
a uniform shift of the self-image pattern. In case of the dark-field signal, the distortions of the
wavefront and thus the Talbot self-image vary significantly over small length scales. This leads
to a reduced visibility of the stepping curve. With the help of wave-optical calculations [292, 293]
and small angle neutron scattering theory [294], the visibility reduction can be quantified and
connected to the autocorrelation function of the electron density:

Vs(€) _ [ . o(B)G(€)-1)dz

V(f) — eJpath , (2.177)
where £ is the correlation length, Vi/V is the ratio of the visibilities with and without the
sample in the beam path, o(F) o 1/E? is the macroscopic scattering cross section and G(-) is
the projected normalized autocorrelation function of the scattering length density pg [295, 296]
along the beam direction:

) Sy pa(3)pa (5 + 7)d5
G(IE) —/7(w7070)dz’ V(T_‘) N vapsl(g»)psl(g)dg .

Assuming standard one-dimensional gratings, wavefront fluctuations in the direction parallel to
the grating bars (y-direction) have no influence on the detected intensity for the stepping curve
measurements. Consequently, the grating interferometer is only sensitive to microstructures
in the direction perpendicular to the grating bars (a-direction). The scattering length density
is directly proportional to the electron density far away from the absorption edges (which is
normally the case for medical imaging). If the sample is placed between the phase shifting
grating (G1) and the detector grating (G2), the correlation length ¢ is calculated as:

(2.178)

_ hedsao

E=p 0 (2.179)
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where dg g2 is the distance between the sample and the G2 grating. Neglecting the spatial
extent of the object along the projection direction (i.e., a constant dggo is assumed for the
whole object) and assuming a homogeneous dark-field generating material, eq. 2.177 can be
simplified to:
Vs(E) _ dco(E)G(E)-1)
= e’ , 2.180

where d, represents the pathlength through the microstructured material. Modeling the visibility
reduction by the term e~ in the standard stepping curve model of eq. 2.170 is motivated by
identifying the linear diffusion coefficient € with:

€= U(Eeff)(l - G(Eeff))a (2181)

where F.g is the effective energy of the polychromatic spectrum.

The dark-field signal provides structural information on the micrometer scale without the need
to directly resolve these structures. In contrary to ultra high resolution X-ray imaging, dark-
field imaging can be performed on large objects, using conventional X-ray tubes and standard
detectors with a large field of view. This unique feature has lead to a variety of promising
non-destructive testing and medical imaging applications of X-ray dark-field imaging. In the
field of non-destructive testing, the dark-field signal has been used for studying fiber orientation
[297, 298], revealing small cracks and fractures [299] and investigating water transport processes
in porous materials [300, 301]. Potential clinical applications of X-ray dark-field imaging include
foreign body detection [302], mammography [280, 303] and classification of kidney stones [304].
Many pre-clinical studies have focused on lung imaging since the microstructured air-tissue
interfaces generates a strong dark-field signal. Among other things, dark-field radiography has
the potential to improve the detection of emphysema [305], pulmonary fibrosis [306] and chronic
obstructive pulmonary disease [307].

2.8.3 Image artifacts

In this section, a number of image artifacts that potentially arise in DPC imaging will be
discussed. We will focus on image artifacts that can be removed or mitigated by combining DPC
imaging with spectral imaging (see chapter 7). Most of these artifacts are caused by the fact
that the standard stepping curve model ignores the polychromatic spectrum. However, without
spectral measurements, the energy-dependent attenuation cannot be determined unambiguously
(see section 2.7.2) and thus polychromatic effects cannot be eliminated in most cases.

Phase-wrapping Due to the periodic nature of the gratings in a Talbot-Lau interferometer,
the spatial shift of the self-image and thus the phase shift of the stepping curve cannot be
determined unambiguously. In other words, one can add integer multiples of 27 to the phase
shift A¢ without changing the stepping curve model (see eq. 2.170):

I(xy, Ap) = I(xy, Ad + n27), n € Z. (2.182)

If the object causes a phase shift of more than half the period of the self-image pattern, the
phase will be wrapped back into the interval | — 7, 7] [276]. Consequently, an incorrect projected
electron density gradient will be determined (compare eq. 2.175), which leads to incorrect
values for the projected electron density after the integration step. In the case of a CT scan,
the tomographic inconsistencies subsequently cause strong artifacts in the reconstructed images.
Although phase-unwrapping strategies for DPC imaging based on prior knowledge [26, 308] and
the attenuation image [309, 25] have been published, a complete elimination of phase-wrapping
artifacts for arbitrary objects is difficult.
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Beam hardening As discussed in the previous section, both the phase shift A¢ and the linear
diffusion coefficient ¢ depend on the X-ray energy. Similar to the attenuation coefficient u,
both quantities decrease with increasing X-ray energy. In combination with polychromatic X-
ray spectra, all three DPC imaging channels are thus susceptible to beam hardening artifacts.
Analogous to conventional X-ray imaging (see section 2.7.2), beam hardening artifacts are caused
by the mismatch between the (implicitly) monochromatic stepping curve model and a more
exact, polychromatic model:

I(zy) / S(E)e ME [1+V( Je BN cos (¢U+A¢(E))] dE. (2.183)

Under the assumption that the attenuation coefficient p(E) is known a-priori and spatially uni-
form, Yan et al. [310] have demonstrated that a model similar to eq. 2.183 can be used to correct
beam hardening artifacts in the phase shift channel. In chapter 7, we will discuss how this result
can be translated to a larger class of samples by combining DPC imaging with spectral imaging.
To obtain more insight into beam hardening phenomena for DPC imaging, it is useful to analyze
the DPC signals that are obtained with the standard stepping curve model when the measure-
ments are simulated with the polychromatic model of eq. 2.183. For example, since I = Ipe "¢
(according to standard stepping curve model) the attenuation coefficient u is given by:

1 1
1 2.184
a d n([o) ( 8 )

where I and Iy can be determined by simply averaging the sample and reference stepping curves,
respectively. Describing the measured intensities I and Iy with the polychromatic model leads

to:
S(E)e “(E)ddE

For small sample thicknesses d, one can use a first order Taylor expansion [276, 109] to arrive
at an expression for the effective linear attenuation coefficient p:

/ SN(EYu(E)dE, SN(E) =7 5((5) (2.186)

The effective attenuation coefficient is thus given by a weighted average of the energy dependent
attenuation coefficient y(E). The weights are determined by the normalized spectrum SN(E).
The analysis can be extended to larger thicknesses by considering a Taylor expansion in a small
interval around the mean object thickness d. In this case, the weights are given by the hardened
normalized spectrum SN (E ) J):

N v S(E)exp(—u(E)d)
ST(Ed) = [S(E)exp (—u(E)d ) dE

(2.187)

A mathematical explanation for beam hardening artifacts in the attenuation channels can be
found by considering the effective attenuation coefficient i as a function of the mean object
thickness d. With increasing object thickness, low energies are more and more attenuated and
SN (E, CZ) is thus distorted in favor of higher energies. This means that more weight is given
to higher X-ray energies when calculating i according to eq. 2.186. Since u(FE) decreases with
increasing energy, fi(d) decreases with increasing object thickness.

In analogy to the effective attenuation coefficient, the effective phase shift A¢ and the effective
linear diffusion coefficients € can be derived [276]. For simplicity, we will assume that the
reference phase ¢, is independent of the X-ray energy in the following. With the additional
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assumption of small electron density gradients (and thus phase shifts), the effective phase shift
can be approximated as [276]:

A = / aN(E,d)A¢(E)dE, (2.188)

where aN(E, d) is the normalized amplitude of the stepping curve:

N(E.d) = S(E)exp (—u(E)d)V(E) exp (—e(E)d)
’ [ S(E)exp (—pu(E)d)V (E) exp (—€(E)d)dE

(2.189)

As can be seen from eq. 2.188, both the effective visibility V (E) exp (—¢(E)d) and the effective
spectrum S(E) exp (—p(E)d) influence the normalized amplitude spectrum a™(E,d) which in
turn influences the effective phase shift. With the standard stepping curve model, there are
thus cross-talk effects between the different signals. This means that attenuation or visibility
reduction effects can have an impact on the extracted phase shift. In case of the dark-field
signal, it is easier to first consider the effective visibility V [276]:

V= ‘ / SN(E,d)V (E)e “P)irdE)gp| | (2.190)
The effective linear diffusion coefficient can then be defined as:
_ 1 — =
e=—= In (V /W), (2.191)
where Vj is the effective visibility of the reference stepping curve:
Vo = /SN(E)V(E)dE. (2.192)

The visibility reduction for both the polychromatic and the standard stepping curve model is
described analogously to the intensity reduction (@ and p(E) are replaced by e and €(E) respec-
tively). Consequently, the dark-field signal is susceptible to the same kind of beam hardening
artifacts as the attenuation signal. Moreover, equation 2.190 shows that the dark-field signal
for the standard DPC model is both influenced by changes in the effective spectrum as well as
the phase shift. These cross talk effects can falsely produce a dark-field signal even tough no
microstructure is present. We will discuss these effects (which represent important special cases
of eq. 2.190) in more detail in the following.

Beam hardening induced dark-field Distortions in the effective spectrum induce a dark-field
signal that is not related to small angle scattering [24, 311, 312]. For simplicity, we assume that
the object has no microstructure (e(E) = 0) and induces no phase shift (A¢(E) = 0). In this
case, eq. 2.190 can be simplified to:

V= /SN(E,d)V(E)dE, (2.193)

Le. the effective visibility is calculated as the weighted average of the energy dependent visibility
V(E). Distortions of the normalized spectrum SN(E,d) due to beam hardening change the
weighting function for V(E) and thus cause a dark-field signal. This effect is illustrated in figure
2.38.
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Figure 2.38: Crosstalk between beam hardening in the attenuation channel and the dark-field
signal. The effective visibility V is calculated as the weighted integral of the energy-dependent
visibility V(E) of the interferometer (compare eq. 2.193). Beam hardening in the attenuation
channel distorts the normalized spectrum (and thus the weighting function for V(E)) towards
higher energies, which causes an artificial dark-field signal.
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Figure 2.39: Visualization of the phase shift dispersion effect. In this simplified example, the
source spectrum consists of three monochromatic energies. Since A¢(E) o< 1/E?, a purely phase
shifting sample causes different phase shifts for each of the three energies (compare the graphs
on the left and in the middle). As a consequence, the amplitude of the measured stepping curve
(displayed on the right) is reduced compared to the reference stepping curve.

Phase shift dispersion A large electron density gradient causes cross-talk between the phase
shift and the dark-field signal [311]. Since A¢(FE) oc 1/E?, the phase shift for different X-ray
energies varies strongly for large electron density gradients. The measured stepping curve can
be viewed as the sum of individual monochromatic stepping curves (compare eq. 2.183). Adding
shifted cosine functions reduces the amplitude of the measured stepping curve compared to the
reference stepping curve (where A¢(E) = 0). Figure 2.39 demonstrates this effect for a simplified
X-ray spectrum consisting of three monochromatic energies. The phase shift dispersion effect
can also be deduced from eq. 2.190 by setting u(E) = ¢(E) = 0:

V= ‘ / SN(E)V(E)&M(E)CZE’ < / SN(E)V(E)E = V. (2.194)



3 Numerical simulation framework

Throughout this work, various numerical simulations of spectral- and spectral phase-contrast
X-ray measurements with PCDs have been conducted. Numerical simulations allow to rapidly
generate realistic input data with perfect control and knowledge of the measurement acquisition
process. Moreover, the imaging parameters (such as acceleration voltage, sample properties,
noise level etc.) can be varied quickly, which enables systematic studies of their influence on the
image quality. Numerical simulations thus provide an invaluable tool for investigating the per-
formance and characteristics of the reconstruction and denoising algorithms that were developed
in the course of this work. There is a tradeoff between a fast, simple and traceable simulation
and an accurate model of the measurement acquisition process. Since the main focus of this work
is devising and testing novel algorithms for spectral- and spectral phase-contrast X-ray imaging,
we employed a simulation frameworks that focuses on the most essential physical characteristics
of the measurement process and neglects several effects that are of minor importance for most of
the experimental measurements conduced in this work. However, depending on the application
and the imaging parameters, there can be a significant mismatch between the simulated data
and a real experiment. The potential influence of neglecting different effects will be discussed
more thoroughly in the following sections. We first explain the simulation pipeline for spectral
X-ray imaging before describing the extension to SDPC X-ray imaging.

3.1 Spectral X-ray imaging

Figure 3.1 shows the simulation pipeline for spectral and SDPC X-ray imaging. Most of the
steps for simulating spectral measurements with PCDs are identical to the ones for simulating
SDPC imaging. In our framework, the key difference between numerical simulations of spectral
and SDPC measurements is how the influence of the sample (and the additional interferometer
for SDPC imaging) is calculated. As a first step, the source spectrum S(F) is simulated with
the TASMIP algorithm [42] which interpolates between experimentally measured X-ray spectra.
In the second step, the attenuation of the sample is considered and the transmitted intensity
(as a function of the photon energy) is calculated. This central part of the simulation is based
on the combination of the polychromatic Lambert-Beer law (eq. 2.148) and a forward projector
(see section 2.6.2). For each projected ray (connecting the source spot and detector pixel 7), the
transmitted spectrum Sf(F) is calculated as:

R N
SHE) = S(E)exp | =Y Y ajoju(E) |, (3.1)

r=1j=1

where af and p,(E) represent the volume fraction (in voxel j) and the energy-dependent attenu-
ation of the r—th material, respectively. Prior to the simulation, a discretized 3D representation
of the simulated object containing the volume fractions of all R materials found in the object has
to be defined. The energy-dependent attenuation is interpolated from the NIST database [58].
For compounds, the mixture rule (eq. 2.57) is applied. Using a forward projector implies adopt-
ing the ray picture of geometrical optics. Since spectral X-ray imaging is normally performed
with an extended, incoherent X-ray source, wave propagation effects can be neglected. On the
other hand, the effect of an extended X-ray source is not modeled by the forward projector. An
extended source spot could be included by convolving the simulated projections with a scaled



75 3.1 Spectral X-ray imaging

. energy-dependent intensit
) influence of sample %y P . Y
source spectrum S(E) b——— (and interferometer) | for each detector pixel

(and each stepping position)

photon-counting detector:
detector response R;(E,E’)
quantum efficiency n(E)

i spatially
! varying R;(E, E')
L

expected photon counts
add Poisson noise |+— for each energy bin <«——— bin sensitivity B} (E)
(and each stepping position)

Figure 3.1: Flowchart of the algorithm for numerical simulations of spectral X-ray measurements.

version of the intensity distribution in the source plane (compare section 11.1.1). The experi-
mental measurements in this work were performed with a microfocus X-ray tube. Geometrical
considerations (pixel size, magnification, source spot size) lead to the conclusion that source blur
can be neglected for this particular experimental setup. The simulation model of eq. 3.1 does
not consider scattered radiation (Rayleigh- and Compton scattering) that reaches the detector.
The impact of scattered radiation mainly depends on geometrical parameters, such as the illu-
minated volume, the object size, and the distance between the object and the detector. It has
already been demonstrated that neglecting scattered radiation leads to biased decomposition
results in many applications (e.g. clinical spectral CT) [313, 242]. However, computationally
involved Monte-Carlo simulations have to be performed to obtain accurate scatter estimates
[314, 315]. The experimental measurements in this work were performed with a small field of
view (and thus a small illuminated volume) and a large air gap between the sample and the
detector. Consequently, the impact of scattered X-rays is low, even though no anti-scatter grid
was used. Due to the non-ideal quantum efficiency of the PCD sensor and various performance
degrading effects that were discussed in section 2.4.3, the effective spectrum that is “seen” by
the PCD does not coincide with the transmitted spectrum Sf(E). The effective spectrum ¢$(E)
for pixel ¢ and energy bin s of the PCD is modeled by:

R N
(E) = SEWE)B(E)exp | - SN ayaiu (B) |, (3.2)
r=1 j=1

where 7(E) denotes the quantum efficiency of the sensor material. The bin sensitivity Bf(FE)
describes the probability that an incident photon with energy F is detected in energy bin s of
the PCD. It is calculated according to an empirical PCD response model [316], which considers
several performance degrading effects. We used a python simulation framework developed at our
institute that implements a modified version of the aforementioned empirical response model.
A detailed description of the simulation framework can be found in reference [84]. In order
to calculate the bin sensitivity, Bf(E), the energy response function R;(E, E’) is considered. It
describes the probability that an incident photon with energy E is counted at a (fictive) detector
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threshold which corresponds to the energy E’. The energy response function is given by:

/ E_ B2 E — E')?
R E) = oE) (-G ) +edrew (<550
?E o (3.3)
+ cf(E) exp (—m> +Z(E,E").

The first term in eq. 3.3 represents photoelectric absorption of the incident photon and the
corresponding Gaussian peak is thus centered around the photon energy E. Due to elec-
tronic noise and sensor effects, the peak has a finite width ¢,(E). By analogy, the second
and third term refer to K-escape and fluorescence peaks, respectively. The normalization con-
stants ¢,(E), ce(E),cf(E) control the relative frequency of photoelectric absorption, K-escape
events and fluorescent emission and the term Z(E, E’) describes a slowly varying charge shar-
ing background. For each incident energy E, the response function is normalized such that
J(R(E,E')dE" = 1. The bin sensitivity can be calculated from the response function by inte-
grating between the two thresholds that form the energy bin under consideration:

E(s+1)
B}(E) :/ R,(E,E)dE'. (3.4)
Es

The empirical model considers the degradation of the spectral response through various perfor-
mace degrading effects. This causes an overlap of the effective spectra for different energy bins
which leads to increased noise levels compared to an ideal PCD. However, the spatial effect of
charge sharing and other interactions that can cause noise correlations between different detector
pixels is neglected. The degree of noise correlation depends on the detector pixel size, the thresh-
old setting and the application of a charge-sharing correction scheme. Cascaded system models
and experimental measurements show that (in contrast to scintillation detectors) neighboring
pixels are only weakly correlated for PCDs [317, 318|. The empirical model also neglects pulse
pile-up effects, which become relevant at high flux levels. In our experimental measurements,
the flux of the X-ray sources was orders of magnitudes lower than the X-ray flux of a clinical CT.
In this case, pulse-pile up effects can be safely neglected. To obtain more realistic simulations
for clinical imaging tasks, the simulation framework could be combined with an analytical pulse
pile-up model [319]. Within the simulation framework, a non-homogeneous detector response
can be simulated by either varying the parameters of the energy response R;(F, E’) or slightly
modifying the threshold levels from pixel to pixel. This so-called threshold dispersion leads to
a spatially varying bin sensitivity (compare eq. 3.4). The expected number of photon counts g
for each detector pixel i and energy bin s of the PCD is calculated by integrating the effective
spectrum ¢7(E) (see eq. 3.2) over all energies. Numerically, this is realized by summing over a
discretized effective spectrum:

Q R N
95 =Y S(Egn(E)B; (Eg)exp | =Y > aijalu(Ey) |. (3.5)
q=1

r=1j=1

As discussed in section 2.6.2, the Poisson noise model is a good approximation for PCDs. The
measured number of photon counts y; is thus simulated by drawing a random number from a
Poisson distribution with expectation value ;.

y; = Poisson (7)) . (3.6)

It is often advisable to perform the numerical simulations on finer grids, i.e. decreasing both to
the voxel and the detector pixel spacing compared to the grids that are used for reconstruction.
In a second step, the simulated detector data can be rebinned to the desired pixel size. Having
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Figure 3.2: Illustration of the different algorithmic steps required to simulate grating-based DPC
imaging by combining Fresnel propagation and the (multi-slice) projection approximation.

a perfect match between the simulation and the reconstruction is sometimes referred to as the
“inverse crime” [115]. This type of simulation is generally sufficient for investigating the stability
and other fundamental properties of a reconstruction algorithm, but the performance is likely
overestimated compared to real data, i.e. an upper performance bound is obtained [115, 320].

3.2 Spectral differential phase-contrast X-ray imaging

Due to the three-grating interferometer that is inserted into the setup for SDPC (and DPC)
imaging, wave propagation effects cannot be neglected anymore. In particular, the GO grating
creates an array of thin line sources that interfere constructively. Consequently, in contrast to
spectral imaging, local wave propagation effects in the near field (compare section 2.2.2) are
not blurred out by an extended, incoherent source. This means that a wave-optical approach is
necessary to simulate the influence of the sample and the grating interferometer on the detected
intensity. Towards this end, we combine Fresnel propagation with the (multi-slice) projection
approximation. The simulation framework for SDPC imaging extends an existing software tool
for grating simulations (gXsim) that was developed at our institute. Similarly to spectral imag-
ing, the source spectrum is discretized and the simulation is conducted separately for each energy
(since different monochromatic components of a polychromatic wave field are mutually incoher-
ent). After the transmitted spectrum Sz-t’T(E) for each detector pixel and stepping position 7 has
been obtained, the subsequent simulation steps are analogous to spectral imaging. The output
of the simulation framework for SDPC imaging is the number of photon counts y;* for each
detector pixel, energy bin of the PCD and stepping position of the G2 grating.

For the wave-optical calculations, we assume that the GO grating is placed very close to the
X-ray source, i.e. propagation effect from the source spot to the GO grating can be neglected.
This means that the GO grating can be regarded as an array of mutually incoherent line sources.
As explained in section 2.2.3, the intensity in the detector plane for extended, incoherent sources
can be calculated by first performing wave-optical simulations with a perfect point source and
then convolving the obtained intensity profile with a scaled version of the intensity distribution
in the GO plane. We use the Fourier space version of Fresnel propagation (eq. 2.13) instead of
the real space version (eq. 2.14) because of its much higher computational efficiency. However,
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a point source is difficult to simulate with this approach because its Fourier transform is not
bandlimited, which is incompatible with the discrete and finite-sized grid that is used in all
computer simulations [50]. This problem is circumvented by assuming plane wave illumination
and then converting the simulated wave fields to cone beam geometry by applying the Fresnel
scaling theorem. The simulation grid has to be much finer than the grating periods (2 100 sam-
ples per grating period) in order to model the interferometric effects correctly. Consequently, a
large number of grid points is needed for realistic detector sizes, which makes wave propagation
simulations computationally expensive. Since the X-ray source is incoherent in the direction
parallel to the grating bars, the wavefront can be propagated separately for each detector row.
Splitting up the 2D wavefront into a series of 1D wavefronts and individually propagating them
drastically reduces the memory requirements as well as the computational complexity [321].
Considering the local character of Fresnel propagation in the near field (compare section 2.2.2),
the simulation could be further accelerated by an additional splitting in the direction perpen-
dicular to the grating bars.

Figure 3.2 shows the individual steps to calculate the intensity pattern in the detector plane.
The G1 grating is assumed to be illuminated by a plane wave. In the first step, the projection
approximation is used to determine the wave field immediately downstream of the G1 grating.
Next, we apply the Fresnel scaling theorem (eq. 2.30) to calculate the propagated wave field
at the location of the sample under point source illumination. In the appendix (section 11.1.3),
we derive a slightly modified version of the Fresnel scaling theorem that can be applied to the
wave fields (instead of the intensity distributions). Depending on the geometry and the sample
thickness, the sample is split into one or more slabs. The slabs are subsequently approximated
by a series of equidistant planes that cause the same attenuation and phase shift as the corre-
sponding slabs. The phase shift and attenuation of each plane is applied to the wave function
before using the modified Fresnel scaling theorem to propagate the wave field to the next plane.
In our numerical implementation, the grid spacing for the wave field is increased with increasing
propagation distance to account for the magnification of the wave field (compared to plane wave
illumination) according to the Fresnel scaling theorem. However, the grid spacing for the sam-
ple is independent of the propagation distance. Consequently, the discrete representation of the
sample planes has to be interpolated onto the current wave field grid. After the exit-surface wave
function for the last sample plane has been calculated, the Fresnel scaling theorem is applied
one more time to calculate the intensity distribution of the self-image in the analyzer grating
plane. As mentioned in the beginning of this section, the obtained point source intensity pattern
is then convolved with a scaled version of the intensity distribution in the GO plane to consider
the mutually incoherent line sources. Finally, the intensity immediately downstream of the G2
grating is obtained by multiplying the self-image with the spatial transmission function of the
G2 grating for each stepping position. We calculate the transmitted spectrum Sz-t’r(E) for each
detector pixel by integrating the intensity pattern over the corresponding detector pixel area.
In theory, the dark-field signal could be simulated by considering the microstructure of the object
when applying the multi-slice projection approximation [322]. However, to get accurate results,
the object would have to be divided into a large number of planes (> 100), which strongly in-
creases the computational complexity, especially for large samples. Moreover, the microstructure
of the sample would have to be known with sub-micrometer resolution for a realistic simula-
tion. We therefore use a simpler approach to include the effect of ultra-small angle scattering
on microstructures: The amplitudes of the energy-resolved stepping curves S;T(E) are scaled
by the factor exp (—d.fe(E)), where d. is the pathlength through the microstructured material
and f.(E) describes the visibility reduction per unit length as a function of the photon energy
(which could for example be determined by experimental measurements). This approximation
neglects the position dependency of the dark-field signal via the correlation length. In chapter
7, we will discuss a more exact heuristic approach for simulating the dark-field signal that is
based on eq. 2.177.
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The limitations of the simulation framework as well as the neglected physical effects that were
discussed for spectral imaging (see last section) also apply to SDPC imaging. Additionally, the
simulation framework for SDPC imaging is restricted to samples for which the inhomogeneous
Helmholtz equation (eq. 2.24) can be used. For most medical imaging and non-destructive test-
ing applications cases, the assumption of a linear, isotropic and non-magnetic sample is fulfilled.
The assumption that the complex refractive index varies slowly compared with the wavelength
of the X-ray radiation excludes certain objects (e.g. crystals) from the simulation. Since the de-
flection angles for X-rays are small, the Fresnel approximation to wave propagation is generally
valid.



4 A post-processing algorithm for spectral CT
material selective images using learned
dictionaries

As was discussed in section 2.7.3, material-selective images suffer from noise amplification and a
degradation of the SNR. Combining spectral X-ray imaging with advanced denoising algorithms
is therefore essential in order to enhance the image quality and usability of basis material images
for various tasks such as artifact reduction, quantitative imaging and clinical diagnosis. In this
work, several denoising techniques for spectral X-ray imaging have been explored. Regularized
material decomposition and one-step statistical iterative reconstruction techniques for spectral
CT will be discussed in chapter 5 and 6, respectively. In this chapter, an image post-processing
technique for spectral CT based on learned dictionaries will be presented. Dictionary denoising
is a powerful noise reduction technique which separates image features from noise by modeling
small image patches as a sparse linear combination of dictionary atoms. These dictionary atoms
are learned from training images prior to the denoising process. An important advantage of im-
age post-processing techniques is their flexibility. Since they only require the decomposed basis
material images as input, post-processing techniques can be combined with different technical
realizations of spectral CT and image-based as well as projection-based material decomposition
algorithms. Material selective images typically show strong structural correlations, i.e. edges
and other small structures tend to be aligned in different image channels. We have adapted
the standard dictionary denoising technique to make use of the structural correlation as well
as the anti-correlated noise which is typically present in material selective images. Numerical
simulations and an experimental measurement show that our algorithm achieves improved im-
age quality compared to two other post-processing methods, namely conventional dictionary
denoising and bilateral filtering. Moreover, the novel multi-channel post-processing algorithm
serves as a basis for the development of dictionary-based multi-channel regularization strategies,
which will be discussed in chapter 5.

The text and the figures in this chapter are taken from the following publication of the author:

e Mechlem, Korbinian, et al. “A post-processing algorithm for spectral CT material selective
images using learned dictionaries.” Biomedical Physics & Engineering Express 3.2 (2017):
0250009.

Compared to the original publication, the text has been slightly modified to achieve a better
integration into this doctoral thesis.

4.1 Introduction

The importance of suppressing noise and improving the image quality is reflected by the devel-
opment of several denoising algorithms for material decomposition in spectral CT [230, 223, 229,
231]. Another approach is to incorporate the structural correlations between different spectral
images prior to material decomposition. This can be realized by creating a reference image (e.g.
by summing up all spectral channels) which is then used for noise reduction in the individual
spectral images. Different strategies based on similarity matrices [323], total-variation regu-
larization [324] and the correlation coefficient [325] have been investigated. In the last years,
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dictionary-based denoising has received a lot of attention in the scientific community. The key
idea is to model small image patches as a sparse linear combination of learned dictionary atoms.
Motivated by the success of the method in fields like image/video denoising [326, 327] and mag-
netic resonance imaging [328], this technique has also been applied to CT image reconstruction.
Dictionary-based denoising was used for artifact suppression [329] and few-view [330] as well as
low-dose [331] image reconstruction in conventional CT. The unique capability of learned dic-
tionaries to differentiate between noise and features leads to strong noise suppression. Recently,
a tensor-based dictionary learning approach for spectral CT reconstruction has been proposed
[332]. By generalizing the image patches to tensors which include the spectral dimension, the
structural correlation between spectral images is taken into account. However, the strong noise
correlations makes it difficult to translate this approach directly to material selective images.
In this chapter, we present a new dictionary-based algorithm for denoising material selective
images. It exploits the structural correlation between basis material images as well as the fact
that noise in material selective images is typically highly anti-correlated [229]. Since the al-
gorithm is applied to basis material images as a post-processing step, it is applicable to both
image-based and projection-based material decomposition. We demonstrate, on simulated as
well as real measurement data, that the denoising algorithm leads to strongly improved image
quality. Moreover, our the novel algorithm achieves superior image quality compared to two
other post-processing methods, namely conventional dictionary denoising and bilateral filtering
[333].

4.2 Methods

Our algorithm for denoising of basis material images is a modification of the well established
dictionary denoising process aimed at exploiting the structural correlation between material
selective images as well as the anti-correlated noise. First we describe dictionary denoising,
which was used as a basis for our new algorithm, before explaining the modifications made to
achieve enhanced performance for basis material images.

4.2.1 Dictionary denoising

Dictionary denoising techniques divide the image into small overlapping patches which are pro-
cessed individually. The final denoised image is then compiled from the individually processed
image patches. The degree of overlap of the patches can be described by the sliding distance,
which is defined as the distance (measured by the number of voxels) between the centers of
adjacent image patches. For illustration purposes, figure 4.1 shows the extraction of overlapping
patches (size 3 x 3 pixels) from a 2D-image, using a sliding distance of two pixels. However,
we chose to use 3D cubic patches for our algorithm in order to avoid horizontal streak artifacts
in sagittal or coronal views [334]. The key assumption of dictionary denoising is that natural
image patches have a sparse representation in a suitable basis. This means that they can be
modeled as a linear combination of a small number n of basis functions, with n < N, where N
denotes the number of voxels in an image patch. To ensure an optimum sparse representation,
the basis functions (also called dictionary atoms) are obtained from application-specific training
images by a dictionary learning algorithm. The final dictionary represents an over-complete
basis comprised of K (K > N) dictionary atoms which reflect typical structures occurring in
the training images. In general, learning the dictionary atoms from application-specific training
images allows for a more sparse representation of the image patches compared to using a generic
basis. Contrary to structures and image features, noise cannot be sparsely represented with the
dictionary basis. By modeling the image patches as a linear combination of a few dictionary
atoms, noise is therefore effectively suppressed. Since dictionary denoising operates on image
patches instead of individual voxels and is able to ‘recognize’ image features, the tradeoff be-
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Figure 4.1: Graphical illustration of covering a 2D-image with overlapping patches (size 3 x 3
pixels), using a sliding distance of two pixels.

tween noise and resolution can be partially mitigated. This tradeoff is typical for many denoising
methods which operate on individual voxels (e.g. filtering, nearest-neighbor-based regulariza-
tion). In the following, the mathematical description of dictionary denoising will be introduced.
An image patch of d x d x d voxels can be expressed as a N-dimensional vector z € RN, N = 3.
The dictionary comprised of K atoms is written as a matrix D € RVXX where the columns of
the matrix represent the dictionary atoms. The denoising problem for one patch can then be
formulated as:

ngn | allo st. || z— Da|3< e, (4.1)

where a € R¥ is a vector with few nonzero entries, € > 0 is a small error tolerance and || e || is
the lp-norm. Because solving eq. (4.1) is NP-hard, greedy algorithms are employed to compute
an approximate solution in acceptable time. We chose to use the orthogonal matching pursuit
algorithm [335]. The dictionary atoms were learned from training images before the denoising
process by solving the following optimization problem:

S S
i t. — Doy ||3< S 4.2
%;n as o st Y || @ — Dag |3< Se, (4.2)

s=1

with the help of the fast online learning method [336]. The index s indicates the different
patches which were extracted from the training images. We chose to employ a ”global dictio-
nary” approach. This means that the dictionary is fixed prior to the denoising process and
not dynamically adapted during denoising (”adaptive dictionary”). Using a fixed dictionary
saves computational time and the resulting image quality is comparable to adaptive dictionary
denoising for conventional CT images [331].

4.2.2 Modifications for denoising of basis material images

Although our algorithm theoretically works with more than two basis material images, we will
focus on two-material decomposition in the following. The performance of the algorithm for
three-material decomposition will be investigated in the future. Material decomposition algo-
rithms for spectral CT typically produce two basis material images with highly anti-correlated
noise. Suitable linear combinations of the basis material images yield virtual monochromatic
images which represent the attenuation at a certain reference energy. The associated coefficients
of the linear combination are positive for both basis materials and therefore anti-correlated noise
is decreased. By choosing the reference energy at which the anti-correlated noise maximally can-
cels out, a virtual monochromatic image with substantially improved signal-to-noise ratio (SNR)
compared to the basis material images is obtained. In general, it is much easier to separate im-
age features from noise in this virtual monochromatic image (called minimum noise image in
the following) than performing the same task for the basis material images. Furthermore, the
minimum noise image shares the same structures and edges with the basis material images while



83 4.2 Methods

the voxel values in all three images are different. The image patches x5 can be assumed to be
the sum of their ground truth values (z%) and noise (z7):

Ty =2} + 27, (4.3)

with s being the image patch index. A key assumption for the following steps is that the ground
truth values of the minimum noise image patches and the basis material image patches are
related by linear transformations:

RN it
et =mi + fra’, "
bt _ b b ot (4.4)
x" =m,+ Bax’",

where x?’t, 22" and z°! indicate the ground truth values of the s-th image patch of basis
material image a, b and the minimum noise image, respectively. The fit coefficients for the
linear transformation from the minimum noise image patches to the image patches of basis
material @ and b are denoted by m?, 3% and m?, B, respectively. In the following, the noisy
image patches will be denoted by z¢, xls’ and x?.

The first step of our algorithm is to subtract the mean values m¢ from the minimum noise
image patches z¢ in order to identify edges and structures independent of a constant offset.
From now on, offset-corrected patches will be marked with a tilde (e.g. %2). After the offset
correction, we perform dictionary denoising on the image patches z¢:

Vs: as=min| alost. || 3 — Dal|3<e,
“ (4.5)
J?Z’d = Day,

where z¢ denotes the s-th patch from the minimum noise image and i?’d denotes the correspond-
ing denoised patch. Using the assumption of eq. 4.4, we will compute the denoised basis material
image patches x?’d and xg’d by applying linear transformations to the processed minimum noise
image patches 724, Similarly to the minimum noise image, the mean values m? and mg are sub-
tracted from the image patches 2¢ and % in order to obtain the offset-corrected image patches
% and ig Adopting the same notation as in eq. 4.4 implies that the mean values of the image
patches will be used to approximate the corresponding coefficients of the linear transformations.
The fit coefficients 8¢ and B2 are approximated by projecting the denoised and offset-corrected
patches of the minimum noise image onto the offset-corrected basis material image patches:

(@5, 827
& 13

By = r ={a,b}, (4.6)

where (o) signifies the scalar product. We obtain the final denoised basis material image patches
x?’d and xZ’d by performing the following linear transformations with the denoised and offset-
corrected minimum noise image patches 7o
7d — 7 7d
rg® = mg + BT,

3 (4.7)
i =+

In summary, dictionary denoising is used to identify structures and edges in the minimum
noise image. This process works much more efficiently and reliably on the minimum noise
image compared to the basis material images because of the improved image quality and the
reduced noise level. Exploiting the structural correlations of the basis material images and
the minimum noise image, the denoised basis material images are calculated by applying local
linear transformations to the processed minimum noise image. Figure 4.2 shows a graphical
representation of the aforementioned joint dictionary denoising algorithm and summarizes the
most important steps.
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The size of the image patches plays an important role for the performance of the algorithm. On
the one hand, larger patches lead to better dictionary denoising results and the fit coefficients for
the linear transformations can be determined more reliably. On the other hand, the assumption
of eq. 4.4 might not be fulfilled anymore if the patch size is chosen too large. Furthermore, the
computational complexity increases drastically with increasing patch size. We chose a patch size
of 8 x 8 x 8 voxels for our experiments to balance the aforementioned tradeoffs. Additionally, the
computational complexity of the algorithm can be reduced by increasing the sliding distance d
of the image patches, since the total number of image patches is proportional to 1/dS. However,
we found that the image quality decreases slightly with increasing sliding distance. We chose to
use a sliding distance of two voxels for our experiments.

In order to reduce blocking artifacts [326], which become more prevalent with increasing
sliding distance, we introduce a non-uniform weighting scheme for the contributions of different
image patches to a certain voxel:

P d
Wy
v — M’ wy = e—T§/5’ (4.8)

P
Zp:l Wp

where v? indicates the value of the voxel v after denoising. The summation index p includes
all P image patches which contain the voxel v. The weights w,, decrease exponentially with the
squared distance rg between the voxel v and the center of the image patch p. The quantity vg
denotes the value of voxel v in image patch p after denoising and ¢ is an adjustable parameter.
With this weighting scheme, voxels close to the patch centers are given more weight. This reflects
the idea that structures at the centers of the image patches can be detected more reliably than
structures at the boundaries of the patches. Heuristically, we found that 6 = 8.5 gives the
best results for a patch size of 8 x 8 x 8 voxels and a sliding distance of two voxels. We use
the FORBILD head phantom [337] (size 800 voxels) as training image. The final dictionary
contains 2048 atoms with 512 (=8%) voxels.

4.2.3 Bilateral Filtering

Bilateral filtering is a well known noise reducing and edge preserving post-processing method
in the field of image processing. Similarly to our algorithm, an adapted version of the bilateral
filter is able to exploit structural correlations between several aligned images. We therefore chose
to compare our algorithm to this adapted version of the bilateral filter. Conventional bilateral
filtering is a generalization of Gaussian smoothing and can be written as:

1 (v —0:)2 /252
Vi = N D vif(ryg)e” Vi) 2 (4.9)

' jEN;

where N; is a geometrical neighborhood of pixel v; and f(r;;) is a distance dependent weighting
factor (r;; is the geometrical distance between the voxels v; and v;). The weighting factor
e~ (1=v3)*/20% controls the degree of averaging in dependence of the difference between the voxel
values. The idea is to suppress the averaging process across edges and encourage averaging if
the voxel values are close to each other. To ensure this, the tuning parameter o is normally
chosen to be comparable to the image noise level. A generalization of this idea is to suppress
the averaging process if an edge is detected in either of the two images a and b:

1 —(ai—a:)2/202 —(b;—b:)2 /202
J i

1 —(ai—a;)? /202 — bi—b; 2 /202
bl:ﬁz Zb]f(/rz])e ( 7 ]) /2 ae ( ]) /2 b,
JEN;

(4.10)



85 4.2 Methods

Basis materiala,
Basis materiala denoised

Minimum nmselmage @ I

Cg.ge. T:

Basis material b @ —(? @
-. = ’

G—

Figure 4.2: Graphical representation of the dictionary-based algorithm for denoising of basis
material images, using one image patch as an example. The key steps of the algorithm are: (1)
Extract image patches from the same locations in the basis material images and the minimum
noise image. (2): Subtract the mean values of the image patches. (3): Apply dictionary
denoising to the offset-corrected minimum noise patch. (4): Calculate 5 and 5£ using eq. 4.6.
(5): Linearly transform the processed minimum noise image patch to obtain the corresponding
basis material image patches according to eq. 4.7. (6): The final basis material images are
compiled using all the denoised basis material image patches, compare eq. 4.8.

Basis materialb,
denoised

In order to make bilateral filtering and dictionary denoising more comparable, we used a 3D
version of the adapted bilateral filter with a geometrical neighborhood of the same size as the
dictionary patches (8 x 8 x 8 voxels).

4.2.4 Numerical Simulation

A spectral CT scan of the FORBILD thorax phantom [337] (size 7683 voxels) was simulated.
We assumed acceleration voltages of 100 kVp and 140 kVp for the low and high energy scan,
respectively. In both cases, the spectrum was filtered with 0.2 mm of copper and an ideal
energy-integrating detector with a Csl-based scintillation layer was assumed (1 mm thickness).
After reconstruction of the low and high energy images via filtered backprojection (FBP) an
image-based material decomposition into a bone and soft tissue image was conducted using
direct matrix inversion.

4.2.5 Experimental measurement

A CT scan of a human knee was conducted at an experimental setup. The usage of the knee
specimen for research projects was approved by the institutional review board. The donor had
dedicated its body for educational and research purposes, and provided written informed consent
prior to death, in compliance with local institutional and legislative requirements. The ex-vivo
human knee specimen was fixed in formalin. The tube was operated at an acceleration voltage
of 110 kVp and a CdTe-based photon-counting detector (XC-Flite FX1, XCounter AB, pixel size
200 pm x 200 pm ) with thresholds set to 27 and 52 keV was used. In total, 1201 projections were
taken and the tube loading was 131 mAs. A projection-based material decomposition algorithm
[249] was applied in order to obtain basis material images representing Compton scattering and
photoelectric absorption.
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4.3 Results

To investigate the performance of the new algorithm, we applied it as a post-processing method
to basis material images obtained from projection-based as well as image-based material de-
composition techniques. Furthermore, we compare the performance of our new joint dictionary
denoising algorithm to adapted bilateral filtering as well as conventional dictionary denoising.
Before turning to experimental measurements, we first present the results of a numerical sim-
ulation since this provides the possibility to compare the denoised images with a ground truth
image.

The bottom row of figure 4.3 shows the simulated bone (d) and soft tissue image (e) as well as
the minimum noise image (f). In the top row of figure 4.3 the ground truth values for the bone
(a) and soft tissue image (b) as well as the minimum noise image (c) are displayed. The top row
of figure 4.4 shows the results of applying joint dictionary denoising (a), conventional dictionary
denoising (b) and bilateral filtering (c) to the bone image. Similarly, soft tissue images pro-
cessed with our new algorithm (d), conventional dictionary denoising (e) and bilateral filtering
(f) are displayed in the bottom row of figure 4.4. The tuning parameters of the algorithms (e
for dictionary-based denoising and o for bilateral filtering) were optimized by maximizing the
structural similarity index (SSI), using the ground truth images as references. Since only one
parameter was tuned for all denoising algorithms, this approach is not prone to overfitting. In
table 4.1, the mean squared error (MSE) and SSI compared to the ground truth are given for
various denoising methods.

Figure 4.5 compares the influence of the dictionary patch size and the sliding distance on the
image quality for joint dictionary denoising. The same parameter € as in figure 4.4 (scaled by
the dictionary patch size) was used for all experiments.

Figure 4.6 shows images of a human knee in transverse slice orientation at the level of the patello-
femoral joint. Figures 4.6 (a) and (b) show the basis images representing Compton scattering
and photoelectric absorption, respectively. In figure 4.6 (c), the corresponding minimum noise
image is displayed. Figure 4.7 compares the results of applying different denoising methods (bi-
lateral filtering, conventional and joint dictionary denoising) to the Compton and photo images
displayed in figure 4.6 (a) and (b). Since there was no reference image available, the denoising
parameters were visually tuned to achieve a comparable edge sharpness for all methods. The
following denoising parameters were used: Joint dictionary denoising: € = 0.1807 cm™2, conven-
tional dictionary denoising: €compton = 0.3315 cm ™2, €photo = 2.885 X 1010 keV® / cm?, bilateral
filtering: U%ompton =1.004 x 1072 ecm ™2, Ughoto =8.084 x 107 keV® /em?.

4.4 Discussion

For the numerical simulation, material decomposition via matrix inversion leads to a strong
degradation of the SNR and highly anti-correlated noise in the material selective images. There-
fore, the noise level can be greatly reduced by calculating the virtual monochromatic image at
which the anti-correlated noise cancels out maximally (see figure 4.3 (f)). Joint dictionary de-
noising leads to basis material images with strongly improved image quality compared to the
unprocessed images. The processed images look similar to the ground truth images. The most
apparent differences are slightly blurred edges and the presence of a small amount of low fre-
quency noise in the denoised images. Numerical experiments show that this low frequency noise
is mostly caused by the uncertainties in determining the correct mean values (m¢,m?) of the
image patches. However, since the variation (due to noise) of the mean value of an image patch
is much smaller than the variation of an individual voxel, the noise level is reduced compared to
the unprocessed images. In order to achieve a similar noise reduction with conventional dictio-
nary denoising, spatial resolution and edge sharpness have to be sacrificed (compare the zoomed
region of figure 4.4 (b) and (e)). The loss of edge sharpness only occurs for the lower contrast
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Figure 4.3: Bone (a,d), soft tissue (b,e) and minimum noise (c,f) images for the numerical
simulation. The top row shows the ground truth while the bottom row shows the noisy images
obtained from a simulated low-dose scan of the phantom. The range of the windows is [-0.19
g/em®, 0.58 g/cm?], [0.42 g/cm?®, 1.38 g/cm?] and [0.19 cm™!, 0.33 cm™'] for the bone, soft
tissue and minimum noise images, respectively.

Table 4.1: Mean squared error (MSE) and structural similarity index (SSI) for the bone and
soft tissue image compared to the ground truth for various denoising methods. The MSE was
normalized with respect to the unprocessed basis material images.

No Bilateral Conventional Joint

denoising | filtering | dictionary denoising | dictionary denoising
MSE, bone image 1 0.746 0.337 0.296
MSE, soft tissue image 1 0.414 0.222 0.184
SSI, bone image 0.332 0.888 0.946 0.953
SSI, soft tissue image 0.249 0.807 0.906 0.942
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Figure 4.4: Comparison of different denoising methods for the numerical simulation. The bone

and soft tissue images are shown in the top and bottom row, respectively.

The columns of

the figure represent different denoising methods: Joint dictionary denoising (a,d), conventional
dictionary denoising (b, e) and bilateral filtering (c,f). The range of the windows is [-0.19 g/cm?®,
0.58 g/cm®] and [0.42 g/cm?, 1.38 g/cm®] for the bone and soft tissue images, respectively.
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Figure 4.5: Influence of the dictionary patch size (a) and the sliding distance (b) on the image
quality for joint dictionary denoising. The image quality was measured by calculating the
structural similarity compared to the ground truth.
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Figure 4.6: Unprocessed Compton (a), photo (b) and minimum noise (c) image for the ex-
perimental measurement of a human knee. The range of the windows is [0.0 keV?/cm, 68400
keV?3/cm], [0.035 cm™!, 0.35 cm™!] and [0.09 cm™!, 0.59 em™!] for the photo, Compton and
minimum noise image, respectively.

Figure 4.7: Comparison of bilateral filtering (c,f), joint (a,d) and conventional (b,e) dictionary
denoising for the experimental measurement of a human knee. The top row shows Compton
images whereas the bottom row shows photo images. The range of the windows is [0.0 keV? /cm,
68400 keV?/cm] and [0.035 cm ™!, 0.35 cm™!] for the photo and Compton images, respectively.
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features in the soft tissue region. Conventional dictionary denoising is still able to accurately
distinguish the edges between soft tissue and bone from noise. In the case of bilateral filtering,
reduced edge sharpness in the soft tissue region and an increased noise level compared to con-
ventional dictionary denoising can be observed. The aforementioned qualitative statements are
supported by quantitative image quality measurements. Measured in terms of MSE and SSI, the
images produced by our algorithm are notably closer to the ground truth compared to bilateral
filtering and conventional dictionary denoising.

Depending on the experimental parameters, one could imagine a scenario where structures of
the basis material images cancel (almost) completely in the minimum noise image. In this case,
structures and edges could get lost in the basis material images because they are compiled from
linearly transformed minimum noise image patches. This is a limitation of the joint dictionary
denoising algorithm in its current form. A possible extension of the algorithm could compare
several virtual monochromatic images and locally choose the one with the best SNR. However,
this would require a method to locally estimate the image signal.

As figure 4.5 shows, the image quality for both basis material images becomes worse if the dic-
tionary patch size is reduced. This effect is more pronounced for the soft tissue image. Since
the soft tissue image has a higher noise level, the uncertainties in determining the fit parameters
for the linear transformations (compare eq. 4.4) grow faster with decreasing patch size. The
image quality also deteriorates slightly with increasing sliding distance, especially if the sliding
distance is larger than three voxels. Up to a sliding distance of three voxels, the image quality
is only marginally reduced. It is therefore reasonable to use a sliding distance of two or three
voxels to save computational time.

The goal of the experimental measurement was to demonstrate that our algorithm achieves a
strong improvement in image quality in case of a clinically relevant image with complicated
structures. Compared to the minimum noise image (figure 4.6 (c)), the basis material images
(figure 4.6 (a) and (b)) show a decreased SNR and the noise is anti-correlated. In contrary to
the numerical simulation, where maximizing the SSI leads to a comparable noise level for all
denoising methods, the denoising parameters for the experimental measurements were visually
tuned to achieve comparable edge sharpness for all denoising methods. As can be seen from
figure 4.7 (a) and (d), joint dictionary denoising efficiently removes noise from the basis material
images, while fine structures and features (visible in the minimum noise image) can be clearly
identified. In the unprocessed basis material images, most of these structures vanish in the
noise. Consequently, the image quality of the basis material images can be greatly improved
by applying joint dictionary denoising. Bilateral filtering and conventional dictionary denoising
leads to higher noise levels and some image features are lost (see for example the top-right region
of the images in figure 4.7).

4.5 Conclusion

We have developed a new method for denoising basis material images in spectral CT. As a
post-processing method, it can be used for image-based as well as projection-based material
decomposition techniques. The algorithm is based on the capability of learned dictionaries to
preserve image features while suppressing noise. We have introduced several modifications of
the conventional dictionary denoising algorithm in order to exploit the structural correlations
of basis material images as well as the anti-correlated noise. Dictionary denoising is applied
to the virtual monochromatic image at which the anti-correlated noise maximally cancels out.
Suppressing noise and identifying image features is in general much more efficient and reliable
for this minimum noise image compared to performing the same task directly on the basis
material images. An exception to this occurs if structures cancel out in the minimum noise
image, which is a potential limitation of the algorithm. The denoised basis material images
are subsequently calculated by applying linear transformations [338] to the processed minimum
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noise image patches. We demonstrated that post-processing basis material images with the
proposed algorithm leads to highly improved image quality. Noise is strongly suppressed while
almost no blurring of edges and structures occurs. Furthermore, our joint dictionary denoising
algorithm leads to superior image quality compared to conventional dictionary denoising and
bilateral filtering. Improving the image quality of basis material images is an important goal
because noise amplification on material decomposed images is a fundamental problem of spectral
CT. This applies in particular to medical imaging where the desire for low radiation exposure of
the patient leads to increased noise levels. Our algorithm therefore has the potential to improve
the usability of basis material images for various tasks such as artifact reduction, quantitative
imaging and clinical diagnosis.



5 Spectral angiography material decomposition
using an empirical forward model and a
dictionary-based regularization

In this chapter, we present a novel algorithm for projection-based material decomposition. It
features an empirical polynomial forward model that is tuned by calibration measurements. An
existing direct estimator [244] (compare eq. 2.159) is reformulated as MAP estimator for the
inverse problem of determining the basis material line integrals. The modified estimator has
the advantage of achieving the CRLB (see section 2.5.2) if the number of spectral measure-
ments exceeds the number of basis materials. Moreover, the applied Bayesian approach of MAP
estimation allows to incorporate a noise-suppressing regularization term into the material de-
composition algorithm. In contrast to the post-processing method discussed in the last chapter,
material decomposition and image denoising are performed jointly. We devise an efficient regu-
larization strategy by generalizing the Bayesian formulation of dictionary denoising to simulta-
neously consider several correlated image channels. The commonly used nearest-neighbor-based
regularization strategies, such as the Huber or TV penalty, assume a piece-wise constant image.
In many cases, this assumption is justified for 3D CT images, however, typically it does not
hold for projection images. Furthermore, dictionary-based regularizers mitigate the problem of
regularization crosstalk, which will be discussed in more detail in chapter 6. In many regards,
the novel regularization strategy can be viewed as an advancement of the dictionary-based post-
processing algorithm that was discussed in the previous chapter. The post-processing algorithm
relies on the minimum noise image for identifying edges and structures. This potentially carries
the risk of missing structures in the basis material images that cancel each other in the minimum
noise image. The dictionary-based regularization strategy that will be discussed in this chapter
combines local whitening transformations with the simultaneous orthogonal matching pursuit
(SOMP) algorithm to eliminates this disadvantage. In addition, the local whitening transfor-
mations offer an elegant way of considering a spatially varying noise level in all image channels.
We focused on spectral coronary angiography as a potential clinical application of projection-
based material decomposition with photon counting detectors. Numerical and real experiments
show that spectral angiography with realistic dose levels and gadolinium contrast agent concen-
trations is feasible using the proposed decomposition algorithm and currently available photon-
counting detector technology.

The text and the figures in this chapter are taken from the following publication of the author:

e Mechlem, Korbinian, et al. “Spectral angiography material decomposition using an empir-
ical forward model and a dictionary-based regularization.” IEEE Transactions on Medical
Imaging 37.10 (2018): 2298-23009.

Compared to the original publication, the text has been slightly modified to achieve a better
integration into this doctoral thesis.

We have also investigated an extension of the proposed decomposition algorithm to spectral
CT. With minor modifications, the presented empirical forward model can be incorporated
into a one-step SIR algorithm that performs material decomposition and image reconstruction
simultaneously. In this case, the one-step SIR algorithm was combined with a nearest-neighbor
based regularization term. The key findings coincide with the results that will be presented in
chapter 6, where a different empirical forward model is combined with a one-step SIR algorithm.
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For this reason, extending the empirical decomposition algorithm that was presented in this
chapter to one-step SIR will not be discussed in detail in this work. More information can be
found in the following publication of the author:

e Mechlem, Korbinian, et al. “Statistical iterative reconstruction for spectral CT using
ratios of polynomial functions.” 14th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine (2017).

Generalizing the dictionary-based regularization approach to 3D and combining it with one-
step SIR algorithms would be an interesting future project. Possible advantages compared to
nearest-neighbor based regularizers include improved image quality and reduced regularization
crosstalk.

5.1 Introduction

In the last decades, invasive coronary angiography (ICA) has been the gold standard for the
imaging of coronary arteries and the diagnosis of coronary heart disease. The examination is
usually performed with a C-arm unit, while contrast agent is administered to the coronary ves-
sels by a catheter. Despite the method’s indisputable clinical worth, the overlapping of coronary
vessels and the surrounding soft tissue and bone structures results in reduced image contrast
and poor visibility of smaller vessels. For cardiac [339] imaging, it was demonstrated that this
“anatomical noise” reduces the probability of detecting stenotic lesions. Digital subtraction an-
giography (DSA) aims to overcome the aforementioned limitation by acquiring two projection
images before and after contrast agent injection. The difference image removes the anatomi-
cal background and thus allows for the visualization of the coronary vessels without interfering
anatomical structures. However, motion artifacts are a major problem for DSA. Cardiac and
respiratory movements as well as other involuntary motions can compromise the image quality
of DSA [340]. Furthermore, the chemical composition of coronary artery calcifications cannot be
assessed directly in both ICA and DSA. Driven by recent advances in photon-counting detector
(PCD) technology [79, 80, 81], spectral imaging has obtained increasing attention concerning
its use in medical diagnostics. The ability to (partially) resolve the incident photon energy in
combination with the spatial and temporal registration of the acquired spectral data allows for
projection-based material decomposition. Projection-based material decomposition algorithms
exploit the additional information about the energy-dependent attenuation to generate basis
material images. Using contrast agents with K-edge discontinuities in the relevant energy range,
three and more basis materials can be differentiated [28, 341, 342, 343, 344, 345]. Spectral
coronary angiography could be a promising advancement of ICA, as the ability to differenti-
ate between bone, soft tissue and contrast agent allows for the generation of DSA-like images
without the risk of motion artifacts. Furthermore, it is possible to distinguish between calcified
and non-calcified coronary plaques, as the latter are associated with certain risk factors [346].
However, noise amplification is particularly problematic for multi-material decomposition tasks,
such as the aforementioned decomposition into bone, soft tissue and contrast agent. The reduced
SNR limits the diagnostic value of basis material images, especially for low-dose medical imag-
ing. Although many sophisticated denoising algorithms exploiting the noise-correlation between
material-specific images have been developed for spectral CT [229, 347, 232], there are only a
few publications considering projection data [235, 348, 349].

Another major challenge for material decomposition is constructing an accurate model for the
measured spectral signals as a function of the basis material thicknesses. In this chapter, we
present a new empirical forward model based on rational functions that is tuned by calibration
measurements. Contrary to the existing decomposition algorithm based on rational functions
[244], the proposed algorithm achieves the theoretical optimum for the variance even if the num-
ber of spectral measurements exceeds the number of basis materials. In order to suppress noise
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introduced in the decomposition and improve image quality, we combine a statistical model
of the measurement process with a dictionary-based regularization in a Bayesian framework.
We generalize the dictionary-based regularization approach to simultaneously consider several
structurally correlated basis material images. The performance of the presented decomposi-
tion algorithm and its merit for applications in spectral coronary angiography are evaluated in
computer simulations as well as experimental measurements. In both cases, we investigated a
thorax phantom with coronary vessels filled by a gadolinium contrast agent and added artificial
coronary calcifications.

5.2 Methods

5.2.1 Empirical model for material decomposition

The empirical model for material decomposition is based on a publication by Cardinal and
Fenster [244]. In the context of dual energy CT, they demonstrated that the measured log-
signals are well approximated by polynomial functions of the basis material line integrals:

where A¥ is the basis material path length for basis material k (here k& € (0,1)) and detector
pixel ¢ and the vectors ¢; and ¢, describe a set of fit parameters. The log-signals are defined as:

li=—In(gi/v), U =~In(g/b}). (5-2)

where gf and g)zh denote the expected intensities for the low and high-energy measurement,
respectively. Similarly, bé and b? describe the reference intensities without the sample in the
beam path for the low and high-energy measurement. Quantities with a hat denote an expected
value, whereas the same quantity without a hat represents a measured value. For simplicity, the
reference intensities are assumed to be noise-free, i.e. b = b. The functions P(A?,Ail; @) and

—

P(AY, AL, @,) are given by the ratio of two low-order polynomials:
P(A}, AL @) = N(AY, AL @) /D(AY, A7 @)

N =i+ cnA? + Al + e3(A%)? + e (AD? + 5 A0 AL (5.3)
D(AY, AL E) = 14 gAY + cp Al

with a similar equation for P(A?,All; cp). The fit coefficients ¢ and ¢, depend on the source
spectrum and the detector response. Modeling the log-signals with the aforementioned rational
functions is motivated by comparing their Taylor expansions with the Taylor expansion of the
analytically calculated log signal function [350] (i.e. using the source spectrum and the detector
response). Cardinal and Fenster inverted the relation given in eq. 5.3 to derive a dual energy
material decomposition algorithm:

AV = P i dy), Al = P@L ik dy). (5.4)

)71 ) RS

After determining the parameters dp and d for the rational functions lf’(lﬁ, llh; d}) and Ij’(lé, llh; d_i)
with the help of calibration measurements, the basis material line integrals are obtained by sim-
ply evaluating the calibrated rational functions at the measured low and high-energy log-signals.
This material decomposition approach has many desirable properties such as computational ef-
ficiency, robustness to noise, and high accuracy. Furthermore, a small number of calibration
measurements (9-16) is sufficient to robustly determine the fit coefficients d and the algorithm
has good extrapolation capabilities beyond the calibration range. However, it was shown that a
generalization of this decomposition algorithm to the case of having more spectral measurements

than basis materials leads to excessive noise [225]. The obtained variances are up to two orders
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of magnitude above the Cramer Rao lower bound (CRLB), which describes the theoretical lower
limit for the variance of an unbiased estimator. The increased variance is a large disadvantage
for material decomposition with multi-bin PCDs, which allow for spectral measurements with
more energy bins than basis materials. In general, increasing the number of spectral measure-
ments leads to reduced noise levels for the basis material images, as the additional spectral
information can be exploited by the decomposition algorithm [240]. To overcome this limitation
of the decomposition algorithm, we propose using the non-inverted relationship between the
log-signals (see eq. 5.1) to obtain an empirical forward model for the measured photon counts.
By modeling the statistics of the spectral measurements, the empirical model can be combined
with a maximum-likelihood (ML) estimator that is asymptotically (in the limit of large photon
counts) unbiased and achieves the CRLB. In the following, the proposed modifications will be
explained in more detail. The expected number of photon counts gy for detector pixel i and
spectral measurement index s is given by:

g =bte i 18 = PS(A; @), A= (A9, ..., A" (5.5)

where b denotes the reference intensity for detector pixel ¢ and spectral index s. Compared to
the original model (cf. eq. 5.1), PZS(/TZ, Gis) is a function of n different basis material line integrals,
and the fit parameters ;s are determined individually for each spectral measurement and each
pixel. Because of the manufacturing imperfections of current PCDs, the energy response varies
between different pixels. Thus, a global fit (averaging all pixels) would lead to systematic errors
for the decomposed basis material thicknesses. For a three-material decomposition task, which
is the focus of this paper, P(4;) = P(AY, AL, A2) is given by:

P(A}, A}, A7) = N(A], A], A7) /D(A, AL AD),

3 3
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To simplify the index notation, the indices ¢ and s for the fit coefficients ¢;s have been dropped
in eq. 5.6. The fit parameters ¢;s are determined by a least-squares fit to the calibration mea-
surements:

Cis = arg miniwk <lfk - P (fflk, E;S>)2. (5.7)
k=1

The measured log-signals for calibration measurement %k are denoted by [, and A represents
the corresponding basis material thicknesses. The weights w;, are chosen according to the sta-
tistical uncertainty of the corresponding calibration point. We observed that inconsistencies
in the calibration measurements (e.g. noise in simulations or detector drift in an experimental
measurement) could sometimes lead to outliers for the fit coefficients (e.g. extremely large values
for one fit coefficient). To avoid numerical problems during the subsequent decomposition, the
fit coefficients ¢;s were constrained to predefined, heuristically chosen intervals. We determined

the intervals [c™i", cm2X] (7 being the fit coefficient index and s the spectral measurement index)
min max

rs 1 trs
by first performing an unconstrained fit for all detector pixels and then choosing o™ and ¢l
such that 99% of the unconstrained fit coefficients lie within the interval [¢™" ¢m2X]. Based
on the assumption that the energy-dependent attenuation of all basis materials monotonically
decreases, Cardinal and Fenster showed that all fit coefficients should be positive [350]. As
this assumption is not valid for K-edge materials, we allowed for negative fit coefficients. After
the empirical forward model has been calibrated (cf. eq. 5.5 and eq. 5.7), ML decomposition

of a spectral measurement is performed by finding the set of basis material line integrals A;
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that maximizes the probability of the spectral measurements. Assuming independent Poisson
statistics, this corresponds to minimizing the following negative log-likelihood function for each
pixel:
— — S — —
A; = arg min — Li(4;) =Y 95 (4) — (95 (4:)). (5.8)
s=1

In summary, the modified algorithm models the log-signals as a function of the basis material
thicknesses instead of modeling the basis material thicknesses as a function of the log-signals.
Equation 5.5, allows one to express the expected number of photon counts as a function of the
basis material line integrals. This allows for a statistical treatment of the measured photon
counts y; in terms of a maximum-likelihood estimator. However, the modifications increase the
computational complexity, as an iterative optimization algorithm is needed to find the minimum

—

5.2.2 Regularized material decomposition

Since material decomposition suffers from noise amplification and the degradation of the SNR
compared to the unprocessed images, the direct output of a material decomposition algorithm is
often unsatisfactory in terms of image quality. In order to keep the radiation dose to the patient
as low as possible, it is necessary to combine the material decomposition algorithm with an effi-
cient denoising strategy. For conventional CT, the Bayesian approach of combining a statistical
model of the projection measurements with prior knowledge in the form of a regularization term
has been shown to strongly improve the image quality and reduce the noise levels compared to
analytical reconstruction methods [7]. While this approach has also been successfully adapted
to CT reconstruction of basis material images [351, 352, 353], to the best of our knowledge, the
potential of regularization strategies for material decomposition in the projection domain was
only recently investigated [235]. Most regularization approaches for material decomposition pe-
nalize the difference between neighboring pixels (or voxels) individually for each basis material
image (e.g. using a quadratic or Huber penalty). An entirely different regularization strategy
that has gained increasing interest in the last years is based on a Bayesian formulation of dictio-
nary denoising [331, 354, 355]. This approach assumes that small image patches can be modeled
as a sparse linear combination of dictionary patches. The dictionary patches are pre-trained
on high-quality images and reflect typical structures occurring in these images. Consequently,
noise cannot be sparsely represented in the dictionary basis. It has been demonstrated that a
dictionary-based regularization can outperform total variation (TV) regularization [331, 354].
Moreover, edge-preserving nearest-neighbor-based regularization strategies, such as the Huber
or TV penalty, assume a piece-wise constant image (or equivalently a sparse image gradient). In
many cases, this assumption is justified for 3D CT images, however, typically it does not hold for
projection images. We therefore chose to combine the basis material decomposition algorithm
with a dictionary-based regularization term. We introduce several modifications to the dictio-
nary denoising algorithm in order to tailor it for the simultaneous denoising of several correlated
imaging channels (in this case, basis material images). The following paragraphs explain the
mathematical formulation of dictionary denoising as well as the aforementioned modifications.

Dictionary denoising

Dictionary denoising operates on small overlapping quadratic image patches that are processed
individually. The degree of overlap is described by the sliding distance, which is defined as the
distance between the centers of adjacent image patches. An image patch of v/ N x /N pixels can
be described as a vector # € RV. The dictionary is represented by a matrix D € RY*K whose
columns are the dictionary patches. In general, an over-complete dictionary basis is chosen, i.e.
K >> N because this allows for a more sparse representation of the image patches. The task
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of finding a suitable linear combination of dictionary patches to model an image patch ¥ can be
written as a constrained optimization problem:

ming ||@||o s-t. ||# — Dd|3 <, (5.9)

where @ € RX is a vector containing the coefficients for the linear combination and € > 0 is a
small error tolerance. The [p-norm || @ ||p counts the number of nonzero entries in the vector a.
Equation 5.9 is interpreted as representing an image patch Z as a linear combination of dictio-
nary patches with a maximum error of € using as few dictionary patches as possible. Because
solving this optimization problem is NP-hard, greedy algorithms are employed to compute an
approximate solution in acceptable time. A popular choice is the orthogonal matching pursuit
algorithm (OMP) [335]. With the help of the method of Lagrange multipliers, eq. 5.9 can be
rewritten in an unconstrained form:

ming ||& — Da[3 + v]|d]lo, (5.10)

where v is the Lagrange multiplier. In our implementation, the dictionary D is trained using
the online dictionary learning method [336] and is kept fixed during the optimization (“global
dictionary”). The alternative is to use an adaptive dictionary that is dynamically re-trained on
the current image estimates [331, 355]. Since our goal is to develop a dictionary-based prior in
a Bayesian framework, using an adaptive dictionary would violate the fundamental principle of
a data-independent prior.

Multi-channel generalization

A straightforward generalization of eq. 5.9 to several imaging channels is to apply dictionary
denoising individually to each image. In order to write the resulting optimization problem
compactly, the vectors # and & are generalized to matrices & € RV*C, a € REXC where
C' is the number of channels. The matrices  and a can be written as = (Zo, ..., Z¢) and
a = (dy,...,d¢), i.e. each column of & (or a) contains the image patch (or coefficient vector)
for one specific channel. With these definitions, the unconstrained optimization problem can be
written as:

ming ||z — Da|% + v||a|o, (5.11)

where || ® ||r is the Frobenius norm. Similarly, the lp-‘norm’ is generalized to counting the
number of nonzero elements of the matrix . By treating each image channel independently
from the others, the formulation of the optimization problem in eq. 5.11 does not account for
the strong correlations between the channels. In our case, the basis material images often
share the same edges and structures and thus the image patches for different channels can be
modeled by using the same set of dictionary patches (but different coefficient vectors). To exploit
structural correlations between different channels and perform joint dictionary denoising, the
sparsity assumption is modified. Instead of assuming that the image patches for each channel
can be modeled by a small number of dictionary patches, it is assumed that image patches from
different channels can be modeled by a common small set of dictionary patches. Mathematically,
this assumption is expressed by penalizing the number of nonzero rows of the matrix a instead
of penalizing the number of nonzero elements. The optimization problem is therefore rewritten
as:

ming||z — Dal|% + v||a|row—o0, (5.12)

with the row-Ily norm:
] lrow—0 = |1Bllo, Bi = max; (|exi;|) (5.13)

The new optimization problem (eq. 5.12) can be solved by the simultaneous orthogonal matching
pursuit algorithm (SOMP) [356], which is a modified version of the OMP algorithm. Theoretical
[357] as well as experimental studies [358] show that the SOMP algorithm improves the reliability
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of signal recovery compared to the application of the OMP algorithm separately to each channel.
We used the implementation of the SOMP algorithm in the “SPAMS” software package [359]
for our experiments.

Whitening transformation

The SOMP algorithm works best if the noise is independent and identically distributed for all
channels, since all channels are treated equally in the corresponding optimization problem (see
eq. 5.12). However, basis material decomposition typically leads to noise correlations and differ-
ent noise levels for the basis material images. A well-known example is the highly anti-correlated
noise structure for dual energy basis material decomposition into photo and Compton images.
The implicit assumption of a strong correlation between different channels in the SOMP algo-
rithm can result in correlated noise being modeled by dictionary patches. Separating structures
and noise works best for correlated structures and uncorrelated noise. We therefore apply a basis
transformation to the image patches before applying the SOMP algorithm. In the new basis,
the noise is uncorrelated and has the same magnitude in all channels. Given an estimate of the
covariance between different channels (with covariance matrix R), Alvarez [360] demonstrated
that the corresponding transformation matrix ¢ has the form:

_ [ B Gc 17
Vi Ve

where @1, ..., o and 11, ...,nc are the eigenvectors and eigenvalues of R, respectively.

(5.14)

Penalized log-likelihood function

Having introduced maximum-likelihood basis material decomposition (section 5.2.1) and the
concepts for joint dictionary denoising, we are now in the position to compile the penalized log-
likelihood function for regularized material decomposition. Similar to the single-channel strategy
for conventional CT, we assume that image patches that are poorly modeled by a sparse linear
combination of dictionary patches have a low prior probability. Contrary to maximum-likelihood
decomposition, the optimization problem for regularized decomposition is not separable (with
respect to different pixels) because the dictionary regularization term couples neighboring pixels.
We therefore define the matrix A € RV+*C which holds all basis material images, with N;
representing the total number of pixels in a basis material image. Similar to section 5.2.1, A
represents the different basis material thicknesses for one specific pixel (with index 7). With
these definitions, the penalized log-likelihood function ¢(A) is given by:

p(A,a) =—L(A)+ I\R(A,a)

Ny S
— L(A) = s (A;) — yiin(i; (A;
(A) ;;yz( ) — i In(; (4;)) 5.15)

NP
R(A) = Z H(EqA)‘PqT - DO‘qH%F + v[|ag lrow—o-
q=1

For the regularization term, [V, denotes the number of overlapping image patches that are
extracted for each channel and ¢ is the patch index. The coefficient matrix for the g-th patch
is denoted by oy and & = {a, ..., a4} is the set of all coefficient matrices. Applying the patch
extraction operator F; to A results in a matrix E,A € RN*C je. an image patch with N
pixels is extracted for each channel and written into a matrix. For each patch index ¢, the
transformation matrix ¢, is determined individually, because the noise correlations and noise
levels vary depending on the local basis material thickness combinations. The covariance matrix
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for the i-th pixel R(%) can be estimated by calculating the inverse of the fisher information matrix
I ¢ ROXC:
0L (A;)

A)=-FE
(4 dAX9AY

RO > (I(z-))*l. 700 , (5.16)

aff = Ocﬁ’ af

—

see eq. 5.8 for the definition of £;(A;). Equation 5.16 is known as Cramér-Rao inequality
and defines a lower bound (the Cramér-Rao lower bound, CRLB) for the (co-)variance of an
unbiased estimator. Since the ground truth values for the basis material thicknesses A; are
unknown, we use the result of a maximum-likelihood decomposition ( ffi, compare eq. 5.8) as
an approximation. For each patch index ¢, we calculate the average covariance matrix R, €
RE*C by averaging the covariance matrices of each pixel contained in the image patch. The
transformation matrix ¢, is then calculated from R, as described in section 5.2.2. As suggested
for the single-channel case [331], the penalized log-likelihood function can be minimized by
alternatingly optimizing A and & while keeping the other optimization variable fixed. First, the
basis material images are kept fixed and & is updated:

Np
ming 3 [[(E,A)@,” — Doygl[ + vlletglrow—o (5.17)
q=1

This optimization problem can be solved individually for each patch by the SOMP algorithm.
In a second step, & is kept fixed and the basis material images (represented by A) are optimized:

Np
ming — L(A) + A Z 1(BqA)pg" — Daylfi (5.18)
q=1

If & is kept fixed, this optimization problem is separable with respect to each pixel because L£(A)
is separable and the second term in eq. 5.18 can be rewritten as:

Np Ny
ZH(EqA)SOqT_DO‘qH%“ = Z Z ||‘Pin_ﬁq||gv (5.19)
=1 =1 qeP;

where P; is the set of all patch indices that contain pixel i and gy is the row of (Dey,) that
corresponds to pixel ¢ (written as vector). Minimizing eq. 5.18 thus reduces to solving N} sub-
problems with C' optimization variables.

Compared to ML decomposition, the computational complexity for penalized likelihood (PL)
decomposition is strongly increased. On the workstation used for our experiments (Intel Xeon
processor E5-2690 v4), the ML decomposition for 400 x 400 pixels takes less than one second
and the PL decomposition using a patch size of 10 x 10 = 100 pixels and a sliding distance of 3
pixels takes about 100 seconds (dominated by the computational time for the SOMP algorithm).
With slight losses in image quality, the computational time for the PL decomposition could
be reduced by either increasing the sliding distance or decreasing the patch size, as the total
number of patches is inversely proportional to the squared sliding distance and the computational
complexity of the SOMP algorithm increases at least proportionally to the patch size.

5.2.3 Numerical simulation

We simulated a coronary angiography projection measurement with a PCD (1mm thick cadmium
telluride (CdTe) sensor, 400 x 400 pixels, 5 thresholds per pixel) and a tungsten anode with
aluminum filtration. A segmented coronary artery from a clinical CT scan was placed in the
center of the FORBILD thorax phantom [337]. The artery contained a mixture of gadolinium
(Gd) contrast agent and blood with an effective Gd concentration of 50 mg/ml. Furthermore, two
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Table 5.1: Basis material thicknesses for the simulated calibration measurement.
basis material ‘ thicknesses

pPvC [0.3, 1.0, 1.7] cm
PMMA 9.5, 17.25, 25.0] cm
ad [0.0, 37.97, 75.95] pm

Table 5.2: Acquisition parameters for the numerical simulation.

parameter ‘ kVp ‘ Al filter ‘ threshold positions
optimization range 60-140kVp | 0-5mm 20-138 keV
optimum parameters 140kVp 0.7mm | [20,36,50,66,80] keV

calcifications were placed in the artery. The chemical composition of the calcifications was chosen
according to data published by Schmid [361]. The remaining parts of the digital phantom were
filled with soft tissue and bone. Figure 5.2(a) shows a slice of the modified FORBILD phantom
and an overview of the acquisition geometry. The projection measurement was taken at a 40-
degree angle (40° LAO [362]). This projection angle is often chosen for conventional angiography
because the spine does not block the view of the coronary vessels. A spatially varying detector
response was simulated by incorporating a Gaussian distribution of the pixel-wise thresholds
(0 = 1keV) centered around the corresponding global values. We optimized the acquisition
parameters (filter thickness, acceleration voltage and threshold positions) by minimizing the
noise level in the gadolinium basis material image while keeping the absorbed dose constant.
The noise level was determined by calculating the CRLB (cf. eq. 5.16) for 15cm of soft tissue,
0.5 cm of bone and 12.5 ym of pure gadolinium (equivalent to 2 mm of gadolinium solution with a
concentration of 50 mg/ml) in the beam path. This combination reflects typical path lengths for
the simulated projection measurement. As will be shown later, the proposed ML decomposition
is practically unbiased and achieves the CRLB. Consequently, the CRLB predicts the noise level
in the decomposed basis material images accurately. We calculated the absorbed dose according
to the method presented in [363]. The absorbed dose for the simulated projection of the phantom
was 1 mGy, which corresponds to an air kerma of 2.77 mGy and 1.3-10° photon counts registered
by the detector without the phantom in the beam path (flatfield). The resulting acquisition
parameters can be found in table 5.2 and figure 5.1 shows the corresponding effective spectra
for the five energy bins of the simulated PCD. Prior to the simulated projection measurement
of the phantom, we simulated a calibration measurement by placing homogeneous blocks of
PMMA, PVC and gadolinium with three different thicknesses (cf. table 5.1) in the beam path.
In total, 27 calibration points were acquired by measuring all possible combinations of basis
material thicknesses (using exactly one block of each basis material). The thickness ranges for
the different basis materials were chosen such that they cover the relevant pathlengths in the
projection measurement of the phantom. As there are no dose considerations, the calibration
measurement was simulated with significantly better statistics than the projection measurement
(=~ 100 times more photons) and the exposure time was adjusted to have the same photon
statistics for each calibration point. In addition, a similar “test-calibration” measurement was
simulated to evaluate the bias of the proposed decomposition algorithm. In this case, we used 8
evenly spaced thicknesses for each basis material (resulting in 8 = 512 combinations) and the
thickness ranges were increased by 10 % compared to the original calibration measurement. The
dictionary for regularized material decomposition was trained on the conventional projection
image of the thorax phantom. We used a patch size of 10 x 10 pixels and a sliding distance of 3
pixels. These parameters were chosen heuristically as a compromise between image quality and
computational complexity.
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Figure 5.1: Effective spectra (including quantum efficiency and detector response) for the simu-
lated photon-counting detector.

5.2.4 Experimental measurement

Sample preparation The sample used for the experimental measurement was a semi-anthropomorphic
thorax phantom (QRM-GmbH, Forchheim, Germany). The thorax phantom contains a cylin-
drical notch in the center that was equipped with a water container. To emulate a coronary
angiography scenario as realistically as possible, an ex-vivo porcine heart was put into this water
container. Figure 5.2(b) shows an overview of the sample and the acquisition geometry. Instead
of injecting contrast agent directly into the coronary arteries of the porcine heart, we used ar-
tificial arteries made of polyethylene tubes and fixed them on top of the heart’s biological main
arteries. Thereby, a uniform and stable filling of the artificial vessels was provided during the
measurement. According to the natural size of human coronary arteries [364], the tubes had
an inner diameter of 1 and 3.5 mm, whereby the latter were equipped with artificial coronary
calcifications fixated to the internal wall of the tubes. These calcifications were made of hydrox-
ylapatite powder ( Cas(PO4)3(OH) ), which was alloyed with tissue glue (Histoacryl, B. Braun
Surgical S.A., Rubi, Spain) to solidify the mixture and to resemble the chemical composition
of calcified plaques according to [361]. The prepared tubes were filled with clinical gadolinium
contrast agent (DOTAREM®, Guerbert, Sulzbach, Germany), commonly used in magnetic res-
onance imaging. Approximately 15 ml of the contrast agent were injected in undiluted form,
corresponding to a gadolinium concentration of 78.6 mg/ml.

Experimental setup The experimental measurements were performed on a static setup (see
figure 5.3) consisting of an X-ray tube, a photon-counting detector system and several positioning
devices mounted on an optical table. The statically mounted X-ray source (XWT-160-CT, X-
RayWorX, Garbsen, Germany) is a micro-focus tube with a tungsten reflection target. Data
acquisition was done with the hybrid pixel detector prototype SANTIS 0804 (Dectris AG, Baden,
Switzerland) with a 1 mm thick CdTe sensor and an active area of 515 x 256 pixels. The detector
pixel size is 150 pm and each pixel has four separate energy thresholds. The setup is equipped
with a sample holder movable in x-, y- and z-direction. Between the X-ray tube and the sample
holder, the calibration phantoms are mounted on linear stages. The phantoms consist of an
aluminum frame that can be equipped with cuboid blocks of various thicknesses and materials.

Acquisition parameters Prior to the acquisition of the phantom, we performed calibration
measurements in order to determine the fit parameters of the proposed forward model (cf.
eq. 5.5-5.6) for each detector pixel. For the calibration, a grid of 4x4x4 different thickness
combinations of titanium, POM (polyoxymethylen) and gadolinium contrast agent were used
(cf. table 5.3), resulting in a total of 64 calibration points. The acquisition time was increased
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Figure 5.2: Overview of phantoms and acquisition geometry for the numerical simulation (a) and
the experimental measurement (b). The numerical simulations were performed with a modified
FORBILD thorax phantom [337]. For the experimental measurements, a semi-anthropomorphic
thorax phantom was used. The projection angle for both the numerical simulation and the
experimental measurement was 40° relative to the sagittal plane.

Table 5.3: Basis material thicknesses for the calibration routine in the experimental measure-
ment.

basis material ‘ thicknesses
Ti 0,0.01,0.034, 0.066] cm

[
POM [0,3.0,6.0,12.4] cm
Gd (39.3mg/ml) | [0.0,0.45,0.90, 1.48] cm

for calibration points with higher line integral values to provide a constant photon statistic of
approximately 2.5-10° photons per pixel. Similar to the numerical simulation, the experimental
measurement of the thorax phantom was done at a 40-degree angle (40° LAO [362]). Due to the
limited field of view of the detector system, the sample stage was used to extend the imaged area
to 23x8 cm? by stitching a series of acquisitions with the beam being collimated to the detector
area (16cm?) in order to suppress scattered radiation. Analogous to the numerical simulation, the
acquisition parameters were optimized to yield minimum noise in the decomposed basis material
images. The setup geometry and the optimized acquisition parameters for the measurement are
listed in table 5.4. The radiation dose was assessed by means of the incident air kerma at the
position of the sample. The kerma was measured by a NOMEX® T11049 Multimeter (PTW,
Freiburg, Germany).

Table 5.4: Summary of acquisition and geometry parameters for the experimental measurement.

acceleration voltage 120 kVp | tube current 2.3 mA
aluminum filtration 3.5 mm thresholds 20,48,62, 74 keV
flatfield photon counts 2 - 106 incident air kerma  9.36 mGy
source-detector dist. 1200 mm | source-sample dist. 800 mm

effective pixel size 100 pm field of view 230 x 77 mm
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Figure 5.3: Sketch (left) and picture (right) of the experimental setup used for the experimental
measurements. The source-to-detector and source-to-center distance are denoted by dgp and
dsc, respectively. The calibration phantoms (Ti, POM and Gd) consist of cuboid blocks of
various thicknesses mounted to an aluminum frame and can be moved into the x-ray beam by
linear stages. The x-ray beam is collimated to the active detector area. The sample comprises
a porcine heart that was put into a water container and surrounded by a thorax phantom.

5.3 Results

5.3.1 Numerical simulation

After calibrating the polynomial forward model with the simulated calibration measurement (cf.
eq. 5.7), we performed an ML decomposition of the “test calibration” measurement to evaluate
the bias of the proposed model. Table 5.5 shows the maximum and root-mean squared error
(RMSE) of the decomposed basis material line integrals. More precisely, the mean error of all
detector pixels was calculated and then the maximum error and the RMSE were calculated by
considering the aforementioned mean error for all calibration points. In addition to the de-
composition error for gadolinium, we calculated the decomposition error for gadolinium with
a reduced density of 50 mg/ml (abbreviated Gdsg). This density corresponds to the gadolin-
ium concentration for the simulated contrast agent and thus simplifies a comparison with the
decomposition errors for the other basis materials. The maximum and RMSE decomposition
errors inside the calibration range are in the order of 20 — 120 um. These errors are slightly
larger compared to the results of Cardinal and Fenster [244] for the original rational polyno-
mial model in the dual energy case. However, the proposed model has been tested for a more
complex decomposition task - using 5 energy bins and three basis materials instead of two basis
materials and two spectra in the dual energy case. Outside the calibration range, the maximum
error rises by a factor of ~ 3, which is consistent with the results from [244]. Moreover, we
investigated the variance of the proposed decomposition algorithm. Figure 5.4(a) shows the
variance of the basis material line integrals for one specific decomposition task (12.5 um of Gd,
0.93 cm of PVC and 14.5 cm of PMMA) as a function of the photon statistics, whereas fig. 5.4(b)
shows the systematic bias for the same task. Transformed into a Gd, bone and soft tissue basis,
these thicknesses reflect typical pathlengths for the projection measurement of the phantom.
Furthermore, fig. 5.4(a) shows the theoretical minimum for the variance (CRLB, cf. eq. 5.16).
For this experiment, the threshold dispersion was disabled (for both the calibration and the
decomposition) as it represents an additional contribution to the variance and thus complicates
a comparison with the CRLB.

The proposed algorithm achieves the CRLB over a large range of photon statistics (= 108 —103
flatfield photon counts). Similarly, the bias remains small and constant over this range. For
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Table 5.5: Maximum and root-mean squared (RMSE) errors for the decomposition of the “test-
calibration” measurement. Gdsg corresponds to gadolinium with a reduced density of 50 mg/ml
(compare section 5.3.1). The maximum error was calculated separately inside and outside of

the calibration range.

basis material | max. error [pm] | max. error [pm|] | RMSE [um]
inside cal. range | outside cal. range

Gd 0.266 0.710 0.127

Gdso 42.0 112 20.1

pPVC 71.6 207 33.3

PMMA 123 328 53.9

very high photon counts (> 10%), the algorithm does not achieve the CRLB anymore. This
is because the number of photons of the test measurement exceeds the number of photons for
the calibration measurement. Therefore, the noise of the calibration measurement cannot be
neglected anymore and represents a significant contribution to the experimental variance. In
the case of very low photon counts (< 10?), deviations from the CRLB are also observable. In
this range of photon counts, the decomposition becomes increasingly biased. The reason for this
statistical bias is the propagation of noise through the nonlinear decomposition algorithm [353].
Figure 5.5 shows the basis material images for the simulated projection angiography. We com-
pare the ground truth images with the results from ML decomposition (cf. eq. 5.8) and PL
decomposition using a dictionary prior (cf. eq. 5.15). The stopping parameter for the SOMP
algorithm € (cf. eq. 5.17 and [356] for a detailed explanation of the SOMP algorithm) was cho-
sen heuristically according to visual appearance and the regularization strength A was tuned to
achieve 15 % of the noise level for ML decomposition. The ground truth images were calculated
by performing a basis transformation of the materials in the thorax phantom into equivalent
volume fractions of PVC, PMMA, Gd and then projecting the resulting 3D basis material images
onto the detector. Although one could transform the output of the decomposition algorithms
(equivalent thicknesses of PVC, PMMA and Gd) into a bone, soft tissue and Gd basis, we
chose to work with the calibration material because the energy-dependent attenuation of PVC
and PMMA is already similar to bone and soft tissue, respectively. Furthermore, we rescaled
the gadolinium line integrals to an equivalent gadolinium density of 50 mg/ml (abbreviated by
Gdsp), which corresponds to the gadolinium density of the contrast agent. For comparison,
fig. 5.6(a) shows the conventional projection image, which was generated by calculating the log

signals [; using all energy bins:
5
. = —In (Zs:l yf)
T — 5 .
25:1 bf

The blue arrows in the conventional angiography image (fig. 5.6(a)) show areas where the ribs
overlap with the coronary arteries. In this region, the “anatomical noise” impedes the assessment
of the coronary vessels. In the basis material images (see fig. 5.5), however, contributions from
bone and the contrast agent can be clearly separated. As indicated by the green arrow, calcified
tissue and contrast agent cannot be distinguished reliably in the conventional image. This is
because the energy-dependent attenuation averaged over the effective spectrum is quite similar
for calcified tissue and the mixture of blood and gadolinium contrast agent. However, the
calcifications can be identified as bright spots and vacanies in the PVC and Gd basis material
image, respectively (see bottom left zoom in fig. 5.5). No systematic deviations or artifacts are
observable between the basis material images generated by ML decomposition and the ground
truth. But compared to the conventional image, the noise level of the ML decomposed images
is strongly increased. PL decomposition successfully reduces the noise level compared to ML
decomposition while retaining the anatomical features.

(5.20)
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Figure 5.4: Experimental variance (a) and bias (b) of ML decomposition for a decomposition
task of 12.5 um of Gd, 0.93 cm of PVC and 14.5cm PMMA. The variance and bias are plotted
as a function of the photon statistics in the flatfield, defined as the number of photons registered
by the detector without the basis materials in the beam path. The variance is compared with
the theoretical lower limit for an unbiased estimator (CRLB).

5.3.2 Experimental measurement

The data acquired in the experimental measurement of the thorax phantom (cf. section 5.2.4)
was decomposed into basis material line integrals of gadolinium solution, titanium and POM.
After decomposition into the calibration materials, we performed a basis transformation into
a (pure) gadolinium, soft tissue and calcium basis. Similarly to the numerical simulation, the
obtained gadolinium line integrals were rescaled to equivalent densities of the used contrast agent
(78.6 mg/ml Gd, abbreviated by Gdgp). Figure 5.7 shows the resulting basis material images
for ML and PL decomposition, whereas fig. 5.6(b) shows the conventional image calculated by
eq. (5.20). Similar to the numerical simulation, the stopping parameter € for the SOMP algorithm
was chosen according to visual appearance and the regularization strength A was set to obtain
15 % of the noise level of an ML decomposition of the acquired data. In the conventional image,
the calcifications overlap with the gadolinium filled arteries and the soft tissue background
arising from the porcine heart and the thorax phantom. This makes it difficult to distinguish
between calcifications (cf. fig. 5.6(b) arrow 2), trapped air inclusions (cf. fig. 5.6(b) arrow 1) and
“anatomical noise” caused by the structural features of the porcine heart (cf. fig. 5.6(b) arrow
3). In contrast, these features can be differentiated by combining the information of all three
basis material images. As already demonstrated in the numerical simulation, intensively calcified
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Figure 5.5: Basis material images for the simulated angiography measurement. The first and
second row show the results of a PL and ML decomposition, respectively. The ground truth
images are displayed in the third row. The bottom left zoomed inset shows the calcifications of
the coronary artery. In the case of the Gd image, an additional inset on the top right shows a
magnification of a small coronary vessel.
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Figure 5.6: Conventional image for the simulated (a) and experimental (b) angiography measure-
ment. Equation 5.20 explains the calculation of the conventional images. The colored arrows in
(a) mark areas where the basis material images (see fig. 5.5) offer additional diagnostic infor-
mation. The blue inlay in (b) highlights an air inclusion (1), a calcification (2) and “anatomical
noise” (3).
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Figure 5.7: Basis material images for the experimental measurement calculated with PL (top
row) and ML (bottom row) decomposition. The red inset shows a zoomed view of a calcification
and the blue rectangle highlights a scenario where calcifications, air inclusion and “anatomical
noise” can be distinguished (compare zoomed view in fig. 5.6).

structures and the contrast agent can have similar average attenuation values, which results in
poor detectability of the introduced calcifications in the conventional image. In contrast, the
basis material images provide a clear separation of vessels and the introduced calcifications (cf.
red inlays fig. 5.7).

5.4 Discussion

The proposed polynomial forward model is able to accurately fit the spectral transmission as a
function of the basis material line integrals with a small number of calibration measurements.
In combination with ML estimation, this results in a practical, minimally biased decomposition
algorithm that does not require knowledge about the source spectrum and the detector response.
In real experiments, other effects such as source and detector drifts will most likely dominate
over the bias of the empirical model. Moreover, the proposed estimator is efficient (i.e. achieves
the CRLB) over a large range of photon counts. The range of ultra low photon statistics (< 103
photon counts, which is less than 0.1 % of the dose for the numerical and real experiment),
where deviations from the CRLB and statistical bias are observable, is not relevant for projec-
tion imaging because the image quality would not be satisfactory. An important advantage of
our decomposition method compared to the approach by Cardinal and Fenster is achieving the
CRLB even if the number of thresholds exceeds the number of basis materials. We therefore
investigated two different scenarios (using 4 thresholds for the experiment and 5 thresholds for
the simulation) to demonstrate that the method is not limited to the case in which the number
of thresholds exceeds the number of basis materials by one. Furthermore, an accurate simula-
tion of the experimental measurement was not possible, as the response of the photon counting
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detector prototype was unknown.

We focused on spectral angiography as a promising application of projection-based multi-
material decomposition. We have designed the experiments with clinically realistic conditions,
i.e. using human phantom sizes and realistic amounts and concentrations of the gadolinium
contrast agent as well as reasonable dose levels.

Although clinical angiography is, in general, performed with iodinated contrast agents, the use
of iodine in spectral imaging is disadvantageous, as its K-edge is located at the lower end of the
energy range typically used in clinical applications. The photon spectrum behind the patient
hardly contains energies below the iodine K-edge because the human body absorbs a large frac-
tion of the low energy photons, especially when the X-rays pass through bone or other strongly
absorbing materials. As the energy dependent attenuation of iodine above the K-edge (33keV)
can be accurately reproduced by a suitable linear combination of bone and soft tissue, a three-
material decomposition leads to excessive noise [240]. We have chosen gadolinium as a contrast
agent because of the higher K-edge (50keV) and because it is approved as a contrast agent
for magnetic resonance imaging. Gadolinium-based contrast agents have already been used for
conventional [365, 366] as well as digital subtraction angiography [367, 368] in cases where the
application of iodine-based contrast agents was contraindicated. With the help of a pressure in-
jector [366], a considerable dilution of the contrast agent (reducing the CNR) can be prevented.
Concerning the maximum amount of Gd-contrast agent, a limit of 0.3 — 0.4 mmol gadolinium
per kilogram can be found in the literature [369, 370, 366]. For a patient weighing 75 kg, this
corresponds to a limit of 23 — 30 ml of the contrast agent used in this study. We injected 15 ml of
the contrast agent in the experimental measurement, which is below the recommended limit for
angiography and in line with the recommended dose for magnetic resonance imaging [371]. The
possibility of various side effects [372] is a disadvantage of gadolinium-based contrast agents.
However, the presented algorithm also works with different contrast agents exhibiting the K-
edge in the diagnostic energy range. For example, recent studies have identified tantalum-based
contrast agents (K-edge at 67keV) as a promising candidate for X-ray imaging [373].

The results of numerical and real experiments show that contributions from contrast agent, soft
tissue and calcium can be clearly separated, which provides valuable additional information.
The calcium and soft tissue images allow one to identify plaques and determine their chemical
composition, whereas the “anatomical noise” is removed in the contrast agent image, resulting
in a DSA-like image without the risk of motion artifacts. However, compared to the conventional
images, the ML decomposed basis material images show a strongly increased noise level. Noise
amplification and a degradation of the SNR compared to conventional images are well-known
problems limiting the utility of basis material decomposition for spectral CT or spectral pro-
jection measurements. By combining the decomposition algorithm with an efficient denoising
strategy, the effect of noise amplification can be mitigated, increasing the image quality and thus
the clinical value of the basis material images. In our experiments, the PL decomposition in
combination with a dictionary prior reduced the noise level by a factor of ~ 6.7 while preserving
even small and low contrast structures (cf. zoomed insets in fig. 5.5 and fig. 5.7). In this work,
we chose to use a dictionary-based prior instead of a more common nearest-neighbor-based reg-
ularization strategy because the assumption of a piece-wise constant image is better suited for
CT than for projection imaging. However, regularized material decomposition has recently also
been successfully performed with nearest-neighbor-based priors [235, 374]. A comparison be-
tween different regularization strategies would be interesting, but is considered out of the scope
of this work.

To achieve a comparable image quality to the numerical simulation, the dose level for the experi-
mental measurement was increased considerably (cf. incident air kerma 9.36 mGy vs 2.77 mGy).
However, this increased demand for radiation dose can be explained by taking into account the
different conditions for the experiment. Although the numerical simulation considered charge-
sharing and the resulting overlap of the energy bins as a major cause of amplified noise in
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spectral imaging, the overlap of the energy bins in the experimental measurement was possibly
larger than assumed in the simulation. Apart from that, the higher number of available energy
bins in the simulation (5 vs 4), adversely affects the noise level in the measurement. Lastly,
the experimental outcome might be influenced by imperfections and sensor effects of current
photon-counting detectors. The presented work did not consider scattered radiation and its
influence on the proposed method, as it was neglected in the simulations and suppressed in the
experimental measurements by collimation of the X-ray beam to a small area of 16 cm?. In a
clinical large field of view scenario, scattered radiation would add a non-negligible low-frequency
background to the acquired data resulting in biased basis material images. This low-frequency
bias cannot be removed by the dictionary denoising approach. In this case, the algorithm would
have to be combined with either hardware or software-based scatter suppression strategies.

5.5 Conclusion

We have developed a basis material decomposition algorithm that features two key novelties.
First, an empirical forward model based on rational functions. The model uses a comparatively
small number of fit parameters, which allows for a pixel-wise accurate tuning of the model with
a small number of calibration measurements. By inverting the originally proposed polynomial
functions and combining the resulting forward model with a statistical model of the measure-
ment, the algorithm achieves the CRLB even if the number of acquired energy bins exceeds the
number of basis materials. The second novelty is a joint regularization strategy for projection
images based on a dictionary prior. Compared to single-channel dictionary denoising, the SOMP
algorithm encourages common structures and edges in the reconstructed basis material images.
We demonstrated that this denoising strategy leads to highly improved image quality compared
to maximume-likelihood decomposition. In this work, we focused on spectral angiography as a
potential clinical application of projection-based material decomposition with photon counting
detectors. Numerical and real experiments show that spectral angiography with clinically rele-
vant dose levels and concentrations of gadolinium contrast agent is feasible using the proposed
decomposition algorithm and currently available photon counting detector technology. The abil-
ity to discriminate between calcium-containing structures, soft tissue and contrast agent as well
as the removal of “anatomical noise” are important advantages compared to conventional an-
giography. We therefore believe that spectral angiography can offer additional value for clinical
diagnosis.



6 Joint statistical iterative material image
reconstruction for spectral computed
tomography using a semi-empirical forward
model

One-step SIR algorithms allow to directly estimate the basis material volume fractions from
the spectral projection measurements (compare eq. 2.149). This is accomplished by a forward
model which connects the (expected) spectral projection measurements and the material se-
lective images. It has been demonstrated that performing image reconstruction and material
decomposition jointly leads to superior image quality compared to two-step methods (projection-
based and image-based material decomposition). Furthermore, one-step SIR algorithms enable
new acquisition methods for spectral CT by allowing the reconstruction of basis material images
from sparse spectral measurements [375, 376]. Previous approaches have focused on a physical
forward model (compare eq. 2.155). In this chapter, we present a new algorithm for joint statis-
tical iterative material image reconstruction that relies on a semi-empirical forward model which
is tuned by calibration measurements. This strategy allows to model spatially varying proper-
ties of the imaging system without requiring detailed prior knowledge of the system parameters.
We have developed an efficient optimization algorithm by modifying an existing approach based
on separable surrogate functions [377] (see also section 2.6.2 in the theory part). Our results
demonstrate highly accelerated convergence and reduced reconstruction times. Mory et al. have
later independently confirmed our findings by comparing five optimization algorithms for one-
step spectral CT [378]. In their case study, our algorithm converged one to three orders of
magnitude faster than the other optimization algorithms. Moreover, we demonstrate how joint
SIR techniques can mitigate statistical bias (cf. section 2.5). Although post-processing tech-
niques for two-step material decomposition algorithms can also improve the image quality, they
typically cannot correct systematically biased images. Suppressing statistical bias is particularly
relevant for low-dose quantitative spectral CT. Our findings concerning the benefits of one-step
SIR algorithms as well as some of the methodology devised in this chapter have motivated the
development of a one-step SIR algorithm for spectral phase-contrast CT, which will be discussed
in chapter 9.

The text and the figures in this chapter are taken from the following publication of the author:

e Mechlem, Korbinian, et al. “Joint statistical iterative material image reconstruction for
spectral computed tomography using a semi-empirical forward model.” IEEE Transactions
on Medical Imaging 37.1 (2017): 68-80.

Compared to the original publication, the text has been slightly modified to achieve a better
integration into this doctoral thesis.

6.1 Introduction

Most spectral CT algorithms separate the process of material decomposition and image re-
construction. Material decomposition is either performed in projection space prior to image
reconstruction [225, 226, 227, 228] or an image based decomposition algorithm is applied af-
ter reconstructing the images corresponding to different photon energy spectra [222, 223, 224].
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Separating these steps is suboptimal because the full statistical information contained in the
spectral tomographic measurements cannot be exploited. Statistical iterative reconstruction
(SIR) techniques provide a third, mathematically elegant approach to obtaining material selec-
tive images. By including a statistical model of the projection measurements and incorporating
prior knowledge about the reconstructed images, improved image quality compared to analyti-
cal reconstruction methods has been reported for conventional CT. Consequently, SIR enables
significant dose reductions for conventional clinical CT [7, 8, 9, 10].

By adapting SIR for spectral CT, image reconstruction and material decomposition can be per-
formed jointly. This is accomplished by a forward model which directly connects the (expected)
spectral projection measurements and the material selective images. To obtain this forward
model, detailed knowledge of the different photon energy spectra was assumed in previous work
[352, 379, 380, 381]. However, as discussed in section 2.7.3, accurately determining the effective
spectrum (including the source spectrum and the detector response) is often difficult in practice.
This applies in particular to performing spectral CT measurements with photon counting de-
tectors (PCDs). Many projection-based decomposition algorithms therefore rely on calibration
measurements to circumvent the problem of determining the spectrum in experimental measure-
ments [244, 225].

In this chapter, a new algorithm for statistical iterative material decomposition is presented.
It uses a semi-empirical forward model which is fine-tuned by calibration measurements and
allows to model spatially varying source spectra as well as variations of the detector response.
Moreover, an efficient optimization algorithm based on separable surrogate functions [185] is
employed. This partially negates the major shortcoming of SIR techniques, namely high com-
putational cost and long reconstruction times. Numerical as well as real experiments show that
our new algorithm leads to improved results compared to projection-based material decomposi-
tion by overcoming limits given by the classical separation of decomposition and reconstruction.

6.2 Methods

6.2.1 Spectral estimator

Basis material decomposition relies on expressing the energy-dependent attenuation coefficient
wu(E) of an object as a linear combination of a few so-called basis materials b:

B
w(E) =3 AfhE), (6.1)
b=1

where A? is the line integral of material b and f°(E) describes the energy-dependent attenuation
of basis material b. This approximation is valid because the energy-dependent x-ray attenuation
can be described as a superposition of only a few physical effects (e.g. Compton- and photoelec-
tric effect, K-edges) in the photon energy range typically used for CT. The expected number of
photon counts ¢; registered at detector pixel i after penetrating the object is given by:

o B
ji = / Pefti(E) exp (— ZAi’fb(E)) dE, (6.2)
0 b=1

where E denotes the photon energy and ¢.g ;(E) is an effective x-ray spectrum which includes all
source and detector effects. The quantity Ag’ describes the line integral of basis material b along
the path between the source and detector pixel i. Based on a recently proposed estimator [249]
for projection-based material decomposition, we approximate ¢; as the sum of a small number
(~ 2-4) of exponential functions:

R B
9i (A, .., AP) = Cpi exp (—ZAi?fb(&i)>, (6.3)
r=1 b=1
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with fit parameters C,; and &.;. This can be interpreted as fitting a surrogate spectrum for
deff i(E) in eq. 6.2 which is described as a sum of §-functions. The approximation is motivated
by previous work concerning beam hardening corrections. It was demonstrated and physically
motivated that the thickness-dependent attenuation of a homogeneous material can be modeled
by considering two dominant effective energies [382, 383]. Depending on the degree of beam
hardening, we found that the accuracy can be further improved by adding another energy.
The coefficients C,; and &,; are determined individually for each detector pixel by fitting ¢;
to calibration measurements with known A%. Assuming Poisson statistics for the calibration
measurements, this is done by minimizing the following negative log-likelihood function with
respect to the fit parameters C; = (Coi, ..., Cri)T and E = (Eoiy o Eri)T:

Li(Ci, &) Zyzk Ci.&) — yixln (Qz’k(@,é)) :

yzk C_;ug_; ZCmeXp< ZA fb m>‘

(6.4)

The quantity Afk represents the basis material line integrals for calibration measurement k£ and
y;. denotes the measured photon count for detector pixel ¢ and calibration measurement k.
For PCDs, the statistical distribution of photon counts is usually well described by a Poisson
distribution as long as pulse pile-up effects are moderate [78]. Compared to a discretized version
of eq. 6.2, the number of fit parameters is significantly reduced and is typically smaller than
ten. A low dimensional parameter space allows an efficient and fast pixel-wise minimization of
—Li(@-, cE_';) and stabilizes the ill-conditioned problem of fitting a sum of exponential functions
[384]. This becomes particularly important when the number of calibration points is reduced,
which is desirable from an experimental perspective. We chose to use the Nelder-Mead algorithm
to minimize eq. 6.4. The fit parameters C; were constraint to be positive and the energy
parameters &; were constrained to a predefined interval.

Fitting the parameters @ and é_’; with the help of calibration measurements is repeated for all
effective spectra used for the spectral CT measurement. We therefore introduce the index s to
denote the fit coeflicients C_”f and gf of different spectra. Similarly, the expected and measured
photon counts for different spectra are indicated by §; and y;, respectively.

After the surrogate spectra have been determined, projection-based material decomposition can
be performed by minimizing the negative log-likelihood of the spectral measurements y; with
respect to the basis material line integrals Ai?:

— ( . Zyz_yzln yl
= Z C?; exp (— ZA?f”(E;?») -
r=1 b=1

It is possible to directly decompose into a set of basis materials different from the calibration
materials by replacmg the energy-dependent attenuation functions f°(E). The calibrated pa-
rameters C’S and 55 can still be used.

6.2.2 Penalized likelihood function for SIR

We will restrict ourselves to two basis materials (B = 2) in the following, however a generalization
to more than two basis materials is possible and will be investigated in the future. Let a;’- denote
the contribution of basis material b to image voxel j (j = 1,..., N). The basis material images
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are then compactly written as @&® and @ = (al, ...,a}v,a%, . aN) denotes the vector of all

optimization variables. The detector pixel index ¢ is generalized to a sinogram index, which
includes the different projection angles of a CT measurement. Eq. 6.3 represents a continuous
and differentiable expression for the expected number of photons counts in dependence of the
basis material line integrals and can therefore be interpreted as a semi-empirical forward model
(adjusted with the help of calibration measurements) for SIR. By assuming Poisson statistics
for the spectral CT measurements y;, we derive the following log-likelihood of the measurement
data:

ZZyz—yz

s=1 1=1
2 N
:Zcfi exp —Zfb(é’ﬁi)zaija? )
T b=1 j=1

where Z;VZI aija? represents a forward projection with projection matrix a;;.

Since the problem of CT reconstruction is ill-conditioned, direct minimization of —L(&) leads
to very noisy basis material image estimates. By incorporating prior knowledge about the basis
material images in the form of a regularization term R(&), noise can be efficiently suppressed.
We chose to use the Huber regularization separately for both material images:

2 N
=3 3> Ap(af —a),

A2 -

= flAl <
way={z L mAET

SINEE YN

where Nj is a geometrical neighborhood of voxel j and « is a tuning parameter. The idea is to
penalize small differences between neighboring voxels quadratically, whereas larger differences,
which are more likely to represent image features, are penalized linearly. The parameters A
control the strength of the regularization for the basis material image @°. The final penalized
likelihood function which is minimized during the SIR is given by the sum of the data term

—L(d) and the regularization term R(q):
a°P) = ming 0(@) = ming (—L(@) + R(@)). (6.8)

6.2.3 Optimization algorithm

The optimization algorithm is based on minimizing separable quadratic surrogate functions
©(@; &™) of the penalized log-likelihood function (&) = —L(@) + R(A) at each iteration step
(n). If the following conditions for the surrogate functions are fulfilled, this procedure also
minimizes 0(a) [185]:

(6.9)

a
3. (@ a™) > 0a).

In contrary to the original penalized likelihood function, the surrogate functions can be mini-
mized analytically and in parallel for different voxels (since they are separable). Weidinger et
al. [377] have derived a separable surrogate function for the data term —L(&), assuming that
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the effective spectra of the measurements are known and the same for all detector pixels (i.e.
using the forward model of eq. 6.2 with ¢ef ;(E) = ¢er(E) Vi ). Since the semi-empirical for-
ward model of eq. 6.3 has a similar mathematical form compared to a discretized version of the
spectral forward model given in eq. 6.2, a separable surrogate function for the data term can
be derived by following the approach presented in [377]. In order to simplify the derivation of
the surrogate function, we define the following abbreviations:

S P
E(95) = 0f —yi n(@f), —L(@) = hi()
s=1i=1
N 2
BN = aial f2ES), (@) = 1) (6.10)
Jj=1 b=1

In a first step, the summation over the fit coefficients is moved out of the convex functions
hi(97). Using the definitions of eq. 6.10, the forward model in eq. 6.6 can be rewritten as:

A5 sz s (=) @S (n)
Yi = Zl S"(n) tri(a)ﬁm‘ : (6'11)
Since it holds that:
R s
> =1 (6.12)
r=1 IBT'L
applying Jensen’s inequality to hf(y?) yields the following surrogate function
S P Cs.
_L(@) < ri_ps (ts (*)ﬁﬁ;“”) Or (a a(”)> (6.13)

The next step is to approximate (1 (62; 07(”)) by another surrogate function which is quadratic

with respect to li?. This can be accomplished by a second-order expansion of gm(l;le,l;f) =

hi (tiz (@) Bﬁ;(n)) = h? (exp ( Sr l5b> = (n )> about the current line integrals 152(a%(™):

g ><F1 03) ~ i) = g e )

YT TY T T

2 0’ (n) (151, 152) (lsb . lS{L(”))

Z YIri  \’riotri)
lsb

b=1

st R [ ]

T

lsb:ls?’(n) (614)

b,(n)

where [7,"\"" is an abbreviation for 15¢(a®(™).

n)

To guarantee monotonic convergence of the algorithm, the curvature TTSZ-’( must be chosen such

that gjl(n)(lﬁll,lﬁ?) < q () (151,152). Howevelg, )similar to conventional CT, the curvature can
s,(n

s (n) (lsl l52

~
i T ) q,;

~ y;. With this choice of curvature the monotonicity of the algorithm

be determined such that g,
5,(n)

Following the arguments in [185], a suitable
approximation is Tm.

is compromised. However, it is difficult to find a curvature which satisfies gm( )(l;fll,l;ff) <
q s,(n )(lsl lsQ
i

55, 0°2) [377]. Furthermore, we chose to use a precomputed approximation to reduce the
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computational complexity of the algorithm. Combining eq. 6.13 and eq. 6.14 yields the new
surrogate function Qo (07; 0_2(")):

S

S
@ (@a™) =Y 33 i) (6.15)

Lastly, Q2 (52; 62(”)) is replaced by another surrogate function which is separable with respect to
the image voxels. By rewriting the line integrals [ :

lsb Z aij bf Z wi; )\STb _
N
Z <a’Ljf ) (%‘ _ Oé;)’(n)) + lii’v(”)) 7

(6.16)

with:

Zwm =1, (6.17)

Wi =

Z] 1 aU

Jensen’s inequality can be applied to pull the sum over the image voxels out of the functions
( )(l51 1°2), which yields the final surrogate function Q3 (62; 62(")):

0T

P R

5 > CS (n) 1 2/ 2
ZZZZ% (A ), AR (0F)) - (6.18)

s=1 =1 r=1 j=1

This surrogate function is separable with respect to different voxels, but not separable with

respect to the basis material contributions (a;,af) in a certain voxel.
A separable surrogate function for the regularization term R (62; &(”)) can be computed analo-

gously to conventional CT (see e.g. [185]):

2 N
R (@a") =3 Z A [ (202 — %™ — a2®) 11y (20} o™ a;«mﬂ .
b=1 j=1 ke
(6.19)
The surrogate function for the penalized log-likelihood function (&, &™) is then determined
by the sum of the surrogate functions for the data term Q3 (62; 0_2(”)) and the regularization term
R (62; o‘z’(")). At each iteration step, the surrogate functions are minimized analytically:

a=am)

(H(n)>_1 __ (H<n> n Hg))*j (6.20)
© (o () = (@ (w00 (R0 a)) =70 (a°).

where Hg?, Hgb) and Hé") are the Hessian matrices of (03 (d; 07(")), R (07; d(”)) and ¢(d, 07(”)),
respectively. The last equality in eq. 6.20 holds because the surrogate function ¢ (52; 62(”))
fulfills conditions (1) and (2) of eq. 6.9. Motivated by a similar strategy for conventional CT
(“precomputed curvature [185]”), we precompute the Hessian matrices HS(Dn) based on the initial

basis material image estimates:

HM ~ HY = H,. (6.21)
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Table 6.1: Overview of the ordered subsets separable quadratic surrogate algorithm without
(top) and with Nesterov acceleration (bottom, compare the table in [385]). The subscript Sy,
for the gradient indicates that an approximation of the gradient is calculated based on the
current angular subset.

Ordered subsets algorithm
For n=0,1,...
For m=0,1,...,M-1
k=nM+m
ak+1) — k) _ (Hg,)_l -Vg,.0 (@(k))

Ordered subsets algorithm with Nesterov acceleration
Initialize 20 = 70 = g0 ¢, =1
For n=0,1,...
For m=0,1,...,M-1

k=nM+m

(10T

&) — 20 (H,)1 v, 6 (20)

FHD) — Z0) _ yMemy (3=l g g (D)

D) = GHD) . e (kD) _ k)
leo t

This approach strongly reduces the computational complexity of the algorithm. Exploiting the
separability of ¢ (62; 0_2(")), N 2 x 2 matrices and the corresponding inverse matrices (to pre-
compute (H¢)_1) have to be computed. The approximation in eq. 6.21 is valid if the initial
guess a9 is sufficiently close to the optimum. A suitable initial guess can be found by applying
projection-based material decomposition (compare eq. 6.5) and then reconstructing the basis
material images with filtered backprojection (FBP). Computing the gradient of Q3 (0'2; 62(")) is
typically slower than computing the gradient of R (d’; d'(”)) because it involves computationally
expensive forward- and backprojections. Similar to conventional CT, the computational com-
plexity of one iteration can thus be further reduced by using the ordered subsets principle. The
projection angles are divided into M subsets S, ..., Syr and at each subiteration, an approxima-
tion for the gradient is calculated based on a subset Sy, of the projection angles. At subiteration
m, this corresponds to approximating —L(&) by:

— L@ =3 3 B@ -y m@ @) MY Y @)~y @), (6:22)

and then constructing Qs (07; 62(")). One iteration is completed after cycling through all subsets.
Ideally, the computation of the gradient of the data term is accelerated by a factor of M while
the convergence remains comparable to the original algorithm. Finally, the optimization algo-
rithm can be further accelerated by combining it with Nesterov’s momentum technique [188].
This method accelerates convergence by using previously calculated gradients as momentum
terms. Combining ordered subsets and Nesterov’s momentum technique has led to highly im-
proved convergence for conventional CT [385]. Table 6.1 gives an overview of the ordered subset
algorithm and the modified version which incorporates momentum terms.
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6.2.4 SIR of decomposed line integrals

Statistical iterative basis material image reconstruction can also be realized by separating the
process of material decomposition and image reconstruction. First, a projection based material
decomposition algorithm is applied, yielding basis material line integrals in projection space. In
a second step, a SIR with the decomposed line integrals is performed. This approach is very
flexible because it can be combined with different empirical material decomposition algorithms
without requiring a continuous and differentiable forward model. The most straightforward
approach is to reconstruct the basis material images separately and independently of each other
[238]. In this case, the data term is given by:

Py o
—L) =) (Aﬁ? - Af) : (6.23)

where A? is the basis material line integral determined by projection-based decomposition and
Aé’ represents a forward projection of basis material image @ :

N
A =3 "a;al. (6.24)
j=1

The quantity 03 p is an estimate of the variance of the basis material line integral A? according
to the Cramér-Rao lower bound (CRLB), which describes a theoretical lower bound for the
variance of an unbiased estimator (see [227] for the calculation).

By jointly reconstructing the basis material images, the noise correlations of the decomposed
basis material line integrals are taken into account [386]. Introducing the vectors A; = (A9, Al

and A; = (A%, Al), the data term can be written as:

@) =3 (& - ,51;) Bi(4; - Ki)T, (6.25)

where B; is a 2 X 2 symmetric matrix approximating the inverse covariance matrix of the de-
composed basis material line integrals. We refer the reader to [386] for the derivation of B; and
a more detailed description of the model.

For both joint and separate SIR of decomposed line integrals, we applied the Huber regulariza-
tion penalty individually to each basis material image (compare eq. 6.7).

6.2.5 Numerical simulation

A low-dose spectral CT scan of a phantom consisting of an elliptic cylinder containing soft-
tissue which is filled with several smaller bone cylinders was simulated. We assumed a density
of 0.8 g/cm? for the bone cylinders, corresponding to cancellous bone. Figure 6.1 shows the
corresponding soft tissue and bone basis material images. As can be seen from figure 6.1, we
simulated several low contrast objects in the center of the phantom and in the center of the
bottom-right bone cylinder by varying the soft tissue and bone density, respectively. We as-
sumed a tungsten anode with an acceleration voltage of 120 kVp, a copper filter (thickness
0.2 mm) and a CdTe-based photon-counting detector (size 600 x 100 pixels) with thresholds
set to 25 and 60 keV. Furthermore, pulse pile-up and scattering towards the detector were
not considered. To simulate a spatially varying detector response, the thresholds for each pixel
were drawn from a Gaussian distribution (o = 2 keV) centered around the corresponding mean
values (25 and 60 keV). We simulated 1200 projection measurements equally spaced between
0 and 360°. The tube loading was chosen such that 2 - 10* photons were registered on average
per detector pixel and projection measurement without the phantom in the beam path (flatfield
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(a) (b)

Figure 6.1: Bone (a) and soft tissue (b) basis material image for the cylindrical phantom used
for the numerical simulation. The regions (1), (2) and (3) were used for quantitative evaluations
(see section 6.3).

intensity). Prior to the CT scan, we simulated a calibration measurement by placing homoge-
neous blocks of PMMA and PVC with three different thicknesses (6.4, 35.2,64.0 mm for PVC
and 25.0,140.5,256.0 mm for PMMA ) in the beam path. In total, 9 calibration measurements
were acquired by taking projection measurements of all possible combinations of blocks (using
one block of each basis material). The flatfield intensity was increased to 1-10° photons for the
calibration measurement in order to suppress the effect of fitting errors due to noise in the cali-
bration measurements. In real experiments, the calibration measurement is typically performed
with strongly increased photon statistics compared to the CT scan because there are no dose
considerations and the number of calibration measurements is much lower than the number of
projections in the CT scan. To evaluate the accuracy of the calibrated model, we simulated
a set of test measurements using the same photon statistics. In total, 64 test measurements
were simulated which correspond to varying pathlengths for cortical bone (density 1.92 g/cm?,
0-24 mm) and soft tissue (25 — 370 mm). Figure 6.2 shows an overview of the calibration mea-
surements and the test measurements (converted to corresponding PVC/PMMA thicknesses).
The arrows connecting the test measurements indicate the definition of the measurement index,
which will be used for evaluation purposes.

6.2.6 Experimental measurement

A CT scan of a human knee was conducted with an experimental setup. The usage of the knee
specimen for research projects was approved by the institutional review board. The donor had
dedicated its body for educational and research purposes, and provided written informed consent
prior to death, in compliance with local institutional and legislative requirements. The tube was
operated at an acceleration voltage of 110 kVp and a CdTe-based photon-counting detector with
1536 x 128 pixels (XC-Flite FX1, XCounter AB, pixel size 100 gm x 100 pgm ) and thresholds
set to 27 and 52 keV was used. In total, 1201 projections were taken and the tube loading was
131 mAs. Between the projection measurements, the specimen was randomly shifted by a few
pixels, which is a common micro-CT technique for ring artifact suppression [387]. Before the
CT scan, 9 calibration measurements were acquired by placing homogeneous blocks of PMMA
(thicknesses 2, 32,64 mm) and PVC (thicknesses 1, 16,32 mm) in the beam path, using at most
one block of PVC and PMMA for each calibration measurement.
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Figure 6.2: Overview of (equivalent) PMMA and PVC thicknesses for the simulated calibra-
tion and test measurements. The arrows connecting the test measurement points indicate the

definition of the measurement index which is used for evaluation purposes.
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Figure 6.3: Comparison of the accuracy of the decomposed line integrals for the test measure-
ments described in section 6.2.5. For both the proposed method and the spectrum reconstruction
the same calibration measurement and the same number of fitting parameters (6) was used.

6.3 Results

To determine the accuracy of the projection-based material decomposition approach (compare
eq. 6.5), the test measurements described in section 6.2.5 were decomposed into bone and soft
tissue line integrals. Figure 6.3 shows the deviations from the correct line integrals averaged
over all detector pixels.

We used three exponential terms (i.e. 6 fit parameters) to fit the semi-empirical forward model
according to eq. 6.4 for all detector pixels and both energy bins. In general, the number of
exponential terms used for fitting depends on the desired accuracy and the expected degree of
beam hardening in the measurements (which in turn depends on the shape of the spectrum
and the largest basis material line integrals in the sample). This dependency is illustrated in
figure 6.4 where the average accuracy of the forward model (for the low energy bin) is plotted
in dependence of the test measurement index. The accuracy of the forward model accpyg was
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Figure 6.4: Accuracy of the fitted forward model for the low energy bin using different numbers
of exponential terms. The accuracy was determined by calculating the mean relative difference

between the photon counts predicted by the forward model and the expected photon counts
calculated with eq. 6.2.

calculated as follows: o
acctyq = mean (=0l (6.26)

Ytrue

where g indicates the photon counts predicted by the forward model and @4 represents the
expected counts calculated according to eq. 6.2. The mean is taken over all detector pixels.

The accuracy of the proposed semi-empirical forward model is compared to the method of
‘spectrum reconstruction’, which has already been investigated by different authors [388, 389].
Mathematically, the corresponding forward model looks similar to eq. 6.3 but the spectrum is
divided into uniform energy bins, i.e. the energies &,; have the same predefined values for each
detector pixel and only the coefficients C,; are fitted with the help of calibration measurements.
The same calibration measurement and the same number of fitting parameters (6) were used for
estimating the spectrum. We chose to use the expectation-maximization algorithm for recon-
structing the spectrum because of its robustness and the possibility to incorporate constraints
such as non-negativity of the coefficients [388]. After spectrum estimation, a maximum-likelihood
decomposition algorithm (see eq. 6.5) was applied to the simulated test measurements. Fig-
ure 6.3 compares the resulting average bias of the decomposed line integrals to the bias of the
proposed semi-empirical forward model. The average absolute decomposition error (of all cali-
bration points) was 117 um and 353 pm for the bone and soft tissue line integrals, respectively.
The proposed semi-empirical model reduced the average error to 20 pm and 52 pm for the bone
and soft tissue line integrals, respectively.
Figure 6.5 (a) and (b) show the influence of the photon statistics on the bias and standard
deviation of our projection-based material decomposition approach. To eliminate the effect of
threshold dispersion, a single detector pixel with thresholds set to 25 and 60 keV was used for
this experiment. After fitting the semi-empirical forward model with the help of the simulated
calibration measurement (see section 6.2.5), spectral CT measurements with 10.2 mm of cor-
tical bone and 172.9 mm of soft tissue placed in the beam path were simulated. The flatfield
intensity was varied from 10® to 10* photons and 10° different noise realizations were calculated
for each flatfield intensity. Figure 6.5 (a) shows the mean error of the projection-based material
decomposition, whereas figure 6.5 (b) compares the experimental standard deviation for both
basis materials with the CRLB.
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Figure 6.5: Bias (a) and standard deviation (b) of the projection-based material decomposition
approach in dependence of the photon statistics. For each flatfield intensity, the bias and variance
were computed by decomposing 10° noise realizations of a simulated spectral measurement with
10.2 mm of cortical bone and 172.9 mm of soft tissue placed in the beam path. The Cramér-Rao
lower bound (CRLB) was calculated according to the deviation given in [227].

The left column of figure 6.6 shows the soft tissue (a) and bone image (d) image obtained with
projection-based decomposition followed by a filtered backprojection (FBP) for the simulated
spectral CT scan. Basis material images reconstructed with the SP-SIR,EW algorithm are
displayed in the middle column of figure 6.6. The right column shows the same basis material
images reconstructed with the proposed JI-SIR algorithm. The regularization strengths A\, were
tuned to achieve 20 % of the FBP noise level (in region (3), compare figure 6.1) for both basis
material images and both SIR algorithms. Furthermore, the same ~ parameter for the Huber
regularization was used for both iterative reconstruction methods.

In figure 6.7, the bias of different reconstruction methods is investigated. The images show
the difference between the mean of all 100 horizontal slices of the reconstructed basis material
images and the horizontal slices of the corresponding ground truth images. Since the phantom is
constant in vertical direction, all horizontal ground truth slices are equal. The mean of all slices
was taken to suppress noise which might conceal the systematic bias in the reconstructed images.
The first two columns of figure 6.7 show the bias of projection-based material decomposition
followed by FBP reconstruction. A noise-free spectral CT scan was used for the first column,
whereas the noisy CT scan described in section 6.2.5 was used to generate the difference images
in the second column. The bias of five different statistical iterative reconstruction algorithms was
investigated. Besides the proposed joint reconstruction algorithm which works directly on the
spectral count data (abbreviated by “JI-SIR” in the following), we study the bias of joint (JP-
SIR) and separate SIR (SP-SIR) algorithms working on decomposed basis material line integrals
(compare section 6.2.4). Here we differentiate between two different strategies to determine the
statistical weights for SIR of decomposed line integrals ( 1/0;; for SP-SIR and B; for JP-SIR,
see section 6.2.4). “Estimated weights” (abbreviated EW) refers to approximating the variances
(for SP-SIR) or the covariance matrices (for JP-SIR) with the noisy simulated CT scan, whereas
as noise-free simulation is used to calculate the “true weights” (TW). The third and fourth
column of figure 6.7 show the difference images for SP-SIR, EW and JP-SIR, EW, respectively.
The corresponding difference images using true weights are not shown because it turned out
that they are very similar to the difference images of the noisy FBP reconstructions (second
column). The last column shows the bias of the JI-SIR algorithm. The same -y parameter for the
Huber regularization (see eq. 6.7) was used for all iterative reconstructions. In order to make all
difference images comparable and avoid regularization induced bias, the regularization strengths
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(d) (e) ()

Figure 6.6: Reconstructed basis material images (soft tissue, top row and bone, bottom row)
for the simulated spectral CT scan. The left and middle column show the soft tissue and bone
images obtained with projection-based decomposition followed by FBP (a,d) and separate SIR
(b,e), whereas the right column shows the corresponding basis material images obtained with
the proposed joint SIR algorithm (c,f). For each basis material, the same windows were chosen
for all reconstruction methods.

were tuned to achieve the FBP noise level for all iterative reconstructions. We measured the
noise level by calculating the standard deviation in a homogeneous region of the basis material
images (region 3 in figure 6.1). Table 6.2 presents the average basis material density bias for the
aforementioned reconstruction methods. The densities were determined in two different regions
corresponding to the centers of the bone cylinders and the center of the soft tissue cylinder
(compare regions 1 and 2 in figure 6.1).

In figure 6.8, we compare the convergence of two different versions of the optimization algorithm
presented in section 6.2.3 for the simulated spectral CT scan. The conventional version of the
algorithm does not used ordered subsets and Nesterov acceleration. Furthermore, the Hessian
matrix of the surrogate function ¢ (07; 0_2(”)) is computed at each iteration step. The accelerated
version of the algorithm uses six subsets (each containing 200 angles), Nesterov’s acceleration
technique and the Hessian matrix of ¢ (62; 0_2(”)) is precomputed (compare eq. 6.21). The number
of subsets was chosen such that the computational time for the gradient of the data term and
the regularization term were approximately equal. Both algorithms were initialized with FBP
images and subsequently run for 120 (sub)iterations. The graph shows the normalized [5-distance
to a converged reference (obtained by performing 3000 iterations of the conventional algorithm)
in dependence of the runtime. We calculated the normalized [s-distances for the basis material
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Figure 6.7: Difference of reconstructed basis material images to the ground truth for various
reconstruction methods (zoomed into the center of the phantom). In order to suppress noise, the
images were generated by averaging all reconstructed horizontal slices and then subtracting the
ground truth. Besides projection-based material decomposition followed by FBP, the difference
images for separate and joint SIR of decomposed line integrals using estimated statistical weights
(SP-SIR, EW and JP-SIR, EW, respectively) are shown. The last column displays the bias of
the proposed joint SIR algorithm (JI-SIR).

Table 6.2: Evaluation of the bias of different reconstruction methods for the numerical simulation.
The table shows the difference to the ground truth bone and soft tissue densities for two different
regions corresponding to the bone cylinders (region 1) and an area slightly below the center of
the simulated sample (region 2, see figure 6.1).

density bias bone, tissue, bone, tissue,
[mg/cm?] region 1 | region 1 | region 2 | region 2
FBP, noise-free +0.61 -0.94 +0.09 -0.18
FBP +59.44 | -81.25 19.90 -26.81
SP-SIR, EW -76.17 +84.73 | -6.16 -6.32
SP-SIR, TW +55.31 | -75.71 +17.06 | -25.72
JP-SIR, EW +30.02 | -74.78 +6.85 -16.90
JP-SIR, TW +56.81 | -82.21 +20.32 | -26.83
JI-SIR -0.25 +0.86 +0.23 +0.33
ground truth

density [mg/cm3] | 800 0 0 1060
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Figure 6.8: Convergence of two different version of the optimization algorithm presented in
section 6.2.3. The graph shows the normalized lo-distance to a converged reference in dependence
of the runtime.
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where a; indicates the reference images.

The results for the experimental measurement are shown in figure 6.9. In the left column row
of figure 6.9, photo- (a) and Compton effect (d) basis material images obtained with projection-
based material decomposition followed by FBP are presented. Basis material images recon-
structed with the SP-SIR,EW algorithm are displayed in the middle column (b,e). The right
column of figure 6.9 shows the basis material images reconstructed with our joint SIR algorithm
(c,f). The regularization parameters were tuned according to visual appearance. We used three
exponential terms to fit the semi-empirical forward model for both energy bins with the help of
the calibration measurements.

: (6.27)

6.4 Discussion

Figure 6.3 (a) shows that the proposed projection-based decomposition algorithm is slightly
biased (< 100 pum average error of the decomposed line integrals). This bias results from the
semi-empirical approximation of the true spectral forward model (compare eq. 6.3 and 6.2). The
small number of fit parameters does not allow to fit the spectral forward model perfectly. Com-
parable systematic errors have been reported for other projection-based material decomposition
methods which rely on calibration measurements [244, 225]. In an experimental measurement,
other bias inducing effects (e.g. scattering, detector drifts) will typically dominate over the bias
of the semi-empirical forward model.

A low dimensional representation of the spectral forward model is advantageous because the
number of calibration measurements can be reduced. Furthermore, a small number of fit pa-
rameters minimizes the risk of overfitting due to inconsistencies in the calibration measurements
(e.g. noise). From figure 6.3 and the calculation of the mean absolute errors, it is evident that
the method of spectrum reconstruction (combined with maximum likelihood decomposition)
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(d)

Figure 6.9: Axial slices of the reconstructed basis material images (photoeffect, top row and
Compton effect, bottom row) for the experimental measurement of a human knee. The left
and middle column of figure 6.9 show basis material images obtained with projection-based
material decomposition followed by FBP (a,d) and separate SIR (b,e), respectively. In the right
column, photo- (c¢) and Compton effect (f) basis material images reconstructed with our joint
SIR algorithm are presented. For each basis material, the same windows were chosen for all
reconstruction methods.
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leads to a significantly larger decomposition bias if the same number of fitting parameters and
the same calibration measurements are used. This becomes particularly obvious for the test
measurements with the largest basis material thicknesses and thus the most beam hardening.
In case of the numerical simulation, we found that the best results are obtained if the number of
calibration measurements is slightly larger than the number of fit parameters. Adding more cal-
ibration measurements does not considerably improve the accuracy of the fitted model. Figure
6.4 illustrates the influence of the number of exponential terms on the accuracy of the semi-
empirical forward model. With two exponential functions, the error of the predicted photons
counts can already be reduced below 1 %. Adding another term leads to errors of approxi-
mately 0.02 %, whereas using four exponential terms does not reduce the average absolute error
considerably. A possible reason is overfitting to noise due to the increased number of fitting
parameters. Furthermore, adding more exponential terms leads to diminishing returns in this
case, since the spectral transmission can already be accurately predicted with three exponential
terms.

In conclusion, the proposed semi-empirical forward model approximates the spectral transmis-
sion very accurately while using a small number of fit parameters and calibration measurements.
These properties are desirable from an experimental perspective since they enable an accurate
material decomposition with low experimental overhead.

Although the simulation includes detector imperfections (charge-sharing, electronic noise, escape
and fluorescence peaks) to model a realistic spectral response of the photon-counting detector,
the spatial effect of these imperfections has been neglected. In practice, some of these effects
could lead to an inferior performance of the proposed semi-empirical forward model, since it
only includes photon counts directly related to the path of the primary radiation and neglects
spatial noise correlations. However, most of the aforementioned detector imperfections (e.g.
charge sharing) only distort the expected number of photon counts locally, i.e. affecting a few
neighboring pixels. For the calibration, the distortions average out if the calibration phantom
is homogeneous over the detector area. If the measured object is not homogeneous, effects like
charge sharing or fluorescence peaks should lead to a blurring of the decomposed line integrals.
Furthermore, pulse pile-up and scattering from the sample towards the detector are not included
in the proposed model. If these effects cannot be neglected, the semi-empirical model could be
combined with correction algorithms for pile-up and scattering.

The analysis of the bias and variance of the projection-based material decomposition approach
(figure 6.5) shows that the decomposed line integrals are negligibly biased at high and moderate
photon statistics. However they become considerably biased if the flatfield intensity is decreased
below 10° photon counts. The bone line integrals are more and more overestimated while the
soft tissue line integrals are underestimated. In the case of low photon statistics, this noise-
induced bias is more than two orders of magnitudes larger than the bias of the semi-empirical
forward model. The reason for this statistical bias is the propagation of noise through a nonlin-
ear material decomposition operation (compare also the discussion in section 2.5). In general,
calculating the expectation value and applying a nonlinear function g(-) are not interchangeable:

E(9(X)) # 9(E(X)), (6.28)

where X is a random variable and E(-) denotes the expectation value. Figure 6.5 (a) indicates
that statistical bias might be a major limiting factor for the quantitative accuracy of material
decomposition algorithms in the case of low-dose spectral CT measurements. Biased decompo-
sition results at low photons statistics have also been reported for a polynomial-based material
decomposition methods which does not rely on maximum-likelihood estimation [246]. Figure
6.5 (b) shows that the standard deviation of the decomposed line integrals is essentially equal
to the theoretical optimum (CRLB) for a large range of flatfield intensities. At very low photon
counts (< 10%), the experimental standard deviation lies slightly above the CRLB.

Similar to the projection-based analysis, figure 6.7 and table 6.2 present an evaluation of the
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noise-induced bias for the simulated spectral CT scan. In case of the noise-free FBP, the recon-
structed basis material images only noticeably differ from the ground truth at the edges of the
phantom. These differences can be attributed to the backprojection process. As expected from
the projection-based analysis, the quantitative values in table 6.7 support the hypothesis that
the FBP reconstructions from noise-free data are almost unbiased. The FBP reconstructions
of the simulated low-dose scan overestimate the bone density, while the soft tissue density is
underestimated. This effect is particularly apparent in regions where mostly large basis mate-
rial line integrals contribute to the reconstructed voxel values (i.e. the bone cylinders and the
center of the soft tissue cylinder). Since the corresponding spectral CT measurements have low
photon statistics, the statistical bias is larger. The bias for the SP-SIR, TW and the JP-SIR,
TW algorithm is comparable to the bias of the FBP reconstructions (see table 6.2). This is
reasonable because these reconstruction algorithms work on basis material line integrals with
the same bias. However, the FBP reconstruction uses a uniform weighting scheme while line
integrals are weighted inversely proportional to the variance predicted by the CRLB and the
inverse covariance matrix for the SP-SIR and the JP-SIR algorithm, respectively. Calculating
the statistical weights (which is a nonlinear operation) with noisy projection data results in sys-
tematically biased weights. Consequently, the bias of the weight estimation interacts with the
bias of the projection-based material decomposition for the SP-SIR,EW and the JP-SIR,EW
algorithm. Assuming the same expected intensities, calculating the statistical weights with
noisy data falsely gives more weight to measurements with higher photon counts. In the case of
the SP-SIR,EW algorithm, the bias of the projection-based decomposition is overcompensated,
leading to underestimated bone densities and overestimated soft tissue densities in region (1)
(see figure 6.7). Using correlated statistical weights seems to mitigate this effect, resulting in
reduced bias for the JP-SIR,EW algorithm. Figure 6.7 and table 6.2 show that the bias of the
proposed JI-SIR algorithm is comparable to the bias of the noise-free FBP reconstruction and
is therefore almost two orders of magnitude smaller than the bias of the other reconstruction
algorithms. The reason for this is that, unlike all other methods, material decomposition and
image reconstruction are performed jointly. By combining image reconstruction and material
decomposition, the basis material contributions for a certain voxel are determined by using the
statistical information from all projection measurements involving this voxel. Furthermore, the
regularization term couples neighboring voxels, which effectively increases the number of spectral
projection measurements involved in determining the basis material contributions for a certain
voxel. Projection-based material decomposition methods do not use information from other
projections to calculate the basis material line integrals, which leads to more bias. In a second
step, information from different basis material line integrals is used for image reconstruction,
but the bias introduced in the decomposition step propagates into the basis material images.
In summary, two-step methods which separate the process of material decomposition and image
reconstruction, are susceptible to two different sources of statistical bias (projection-based de-
composition and calculating the statistical weights). Our results show that the proposed joint
statistical iterative reconstruction algorithm improves the quantitative accuracy for low-dose CT
scans by avoiding these sources of statistical bias.

Figures 6.6 and 6.9 compare the image quality of basis material images reconstructed with
projection-based decomposition followed by FBP or SIR (i.e. SP-SIR,EW) and the proposed
joint reconstruction (JI-SIR). In case of the numerical simulation, the low-contrast density vari-
ations of the basis material images can be recovered with the JI-SIR algorithm (see figure 6.6
(c,f)) while they vanish in the noise for the FBP reconstructions. To achieve the same noise
level as the JI-SIR algorithm (20 % of the FBP noise level), the regularization strength has to
be chosen comparatively high for the SP-SIR,EW reconstruction. This leads to artifacts and
blurring of the low contrast insets (see figure 6.6 (b,e)).

Figure 6.9 demonstrates that the joint SIR algorithm achieves highly improved image quality
compared to projection-based material decomposition combined with FBP or SIR in the case
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of a clinically relevant sample. Compared to the FBP reconstructions (see figure 6.9 (a,d)) the
JI-SIR algorithm strongly reduces the noise level in the basis material images while preserving
small structural details (see figure 6.9 (c,f)). Despite increased noise levels compared to the
JI-SIR algorithm, some small structures are lost in the basis material images reconstructed with
the SP-SIR,EW algorithm (see figure 6.9 (b,e)).

The comparison of basis material images reconstructed with projection-based material decom-
position followed by FBP or SIR and the JI-SIR algorithm shows that better tradeoffs between
noise and resolution can be achieved by accounting for the noise correlations between basis
material images with joint statistical iterative reconstruction techniques. Similar findings have
been reported in the reference for the JP-SIR algorithm [386].

A potential problem with applying Huber regularization separately to both images is regulariza-
tion crosstalk. Suppose regularization is applied to basis material image A while no regulariza-
tion is applied to basis material B. If the regularization smooths out edges (or reduces the edge
height) in image A, the corresponding edges will reappear with different amplitude in image B,
which leads to undesired image appearance and regularization induced bias. This effect is caused
by the coupling of the basis material images through the spectral forward model and the data
term. The edges in image B are adjusted in order to optimize the agreement between the mea-
sured data and the spectral forward model, which corresponds to minimizing the log-likelihood
of the data term. Experimentally, we found that the crosstalk effect becomes noticeable if the
strength of the regularization is chosen comparatively high to achieve a strong noise suppression.
Recently, local response prediction techniques have been generalized to spectral CT [390]. This
allows the suppression of crosstalk artifacts by locally tuning the regularization strength for the
basis material images.

A future project will be the combination of joint regularization techniques and the data model
presented in this work. We believe that the regularization crosstalk can be suppressed and the
image quality can be further improved by using a regularization term which encourages the same
structures and edges in the basis material images. This could for example be accomplished by
adapting the dictionary based regularization strategy that was presented in chaper 5 to 3D CT
reconstruction.

The comparison of the conventional and the accelerated optimization algorithm in figure 6.8
shows that the reconstruction time can be strongly reduced by employing the acceleration tech-
niques presented in section 6.2.3. The total runtime for 120 (sub)iterations was 36.2 and 7.5
minutes for the conventional and accelerated solver, respectively. By using ordered subsets and
precomputing the Hessian matrices, the computational time for one subiteration was reduced to
approximately one fifth of the conventional algorithm. The final normalized Ils-distances for the
bone and soft-tissue images were (0.37, 0.17) and (0.049, 0.024) for the conventional and accel-
erated algorithm, respectively. Consequently, the convergence per iteration is highly accelerated
by employing Nesterov’s momentum technique. Reducing the reconstruction time of iterative
algorithms is an important goal for practical applications since long reconstruction times remain
a major challenge of SIR methods.

6.5 Conclusion

We have developed a new statistical iterative basis material image reconstruction algorithm
which is based on a semi-empirical forward model. Since the spectral forward model is adjusted
with the help of calibration measurements, detailed knowledge about the source spectrum and
the detector response is not required. Furthermore, inter-pixel variations of the detector response
can be incorporated, which is crucial for spectral CT in combination with photon counting de-
tectors. The small number of fitting parameters allows to reduce the number of calibration
measurements, which is desirable from an experimental perspective. By employing an efficient
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optimization algorithm based on separable surrogate functions, we were able to reduce the run-
time of the reconstruction algorithm and accelerate convergence. Reducing the computational
cost of SIR techniques is an important goal for practical applications, especially if large datasets
are acquired. The low-dose simulation of a spectral CT scan indicates that statistical bias can
be a major limiting factor for the quantitative accuracy of basis material image reconstruction.
Contrary to reconstruction techniques which separate material decomposition and image recon-
struction, our joint SIR approach shows almost no statistical bias. Moreover, the joint SIR
algorithm leads to improved image quality compared to separate SIR because the of the joint
statistical noise model which includes noise correlations between the basis material images. This
was demonstrated by comparing reconstructed basis material images from a simulated CT scan
and an experimental measurement of a human knee. However, if the regularization strength
is comparatively high, which is particularly relevant for low-dose measurements, regularization
crosstalk might lead to undesired image appearance. Regularizing the basis material images sep-
arately is probably suboptimal in combination with the joint SIR approach, which couples these
images through the spectral forward model. In the future, we plan to combine our algorithm
with joint regularization methods, which encourage common structures in the basis material
images.
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radiography

In this chapter, we investigate the combination of spectral imaging and grating-based DPC imag-
ing in projection space. We propose to combine these two emerging X-ray imaging technologies
by measuring stepping curves in a standard grating-based differential phase contrast setup at
several different effective spectra. Although spectral differential phase-contrast (SDPC) imag-
ing could in theory be realized by all common dual energy techniques (compare section 2.7.1),
PCD technology appear to be the most promising approach. This is because PCDs provide spa-
tially and temporally registered energy-resolved stepping curve measurements, which simplifies
data analysis and processing. As both spectral and DPC imaging methods can determine the
(projected) electron density, we devise a novel material decomposition algorithm that uses the
spectral and the phase contrast information simultaneously. Numerical experiments show that
the combination of these two imaging techniques benefits from the strengths of the individual
methods while the weaknesses are mitigated. Due to the additional phase shift information, the
noise level of the basis material images is strongly reduced. Compared with conventional DPC
imaging, the additional spectral information can eliminate beam hardening as well as phase
wrapping artifacts (see section 2.8.3) and suppresses long-range noise correlations. The noise
characteristics of SDPC imaging (in comparison with spectral and DPC X-ray imaging) are
analyzed in more detail in chapter 8. In chapter 9, we extend the model for projection-based
SDPC imaging to 3D CT reconstruction. Motivated by the results for spectral imaging (see
chapter 6), we investigate the benefits of a one-step SIR algorithm for SDPC CT imaging.

The text and the figures in this chapter are taken from the following publication of the author:

e Mechlem, Korbinian, et al. “Spectral differential phase contrast x-ray radiography.” IEEE
Transactions on Medical Imaging (2019).

Compared to the original publication, the text has been slightly modified to achieve a better
integration into this doctoral thesis.

7.1 Introduction

It has been recently demonstrated that material selective images can in principle be calculated
from DPC measurements by using the attenuation and phase shift information [20, 21]. A
possible advantage of this approach compared with spectral X-ray imaging is the additional in-
formation provided by the dark-field image. Moreover, depending on the setup parameters, DPC
imaging can achieve a highly improved contrast-to-noise ratio (CNR) compared to attenuation-
based imaging [15, 16, 17, 18, 19]. However, partly due to the noise characeristics of DPC imaging
(see chapter 8), it is unclear whether the observed CNR advantage in laboratory experiments
could be tranferred to medical imaging applications [391]. Obtaining quantitaitvely accurate
material selective images is another challenge for DPC imaging. As discussed in section 2.8.3,
the polychromatic X-ray spectrum causes beam hardening artifacts in both the phase and the
dark-field channel [23, 24]. Furthermore, the phase shift cannot be unambiguously determined.
This phase-wrapping problem is another important source of artifacts for grating-based phase-
contrast imaging [25, 26]. Spectral X-ray imaging techniques provide basis material images with
high quantitative accuracy, but noise amplification during material decomposition remains a
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major challenge. The combination of spectral and DPC imaging could therefore mitigate some
of the aforementioned shortcomings of the individual imaging techniques. Several approaches for
combining spectral and differential phase-contrast imaging have already been published. The
combination of these two emerging X-ray imaging technologies can be realized by measuring
stepping curves in a standard grating-based differential phase contrast setup at several different
effective spectra (e.g., by using a photon counting detector). Epple et. al used spectral phase-
contrast measurements to mitigate phase-wrapping artifacts [392, 393]. Moreover, it has been
demonstrated that a weighted addition of phase- [394] or dark-field images [395] extracted from
different energy bins of a photon counting detector can improve the CNR. In this chapter, we
investigate a new algorithm for combining grating-based DPC radiography and spectral radiog-
raphy. We extract two basis material images and a dark-field image by simultaneously using the
spectral and the phase contrast information. The connection between spectral and DPC imag-
ing is established via the projected electron density that can be determined with both imaging
techniques. The fact that both the (energy-dependent) attenuation and the phase shift depend
on the projected electron density has already been used for coded-aperture imaging [396]. Nu-
merical simulations show that the combination of these two imaging techniques benefits from
the strengths of the individual methods while the weaknesses are mitigated. Quantitatively ac-
curate basis material images without beam hardening or phase-wrapping artifacts are obtained.
Furthermore, the additional phase shift information leads to highly reduced basis material image
noise levels compared to conventional spectral X-ray imaging. In this chapter, we concentrate
on human thorax radiography as a potential medical application of spectral differential phase-
contrast (SDPC) radiography. Spectral radiography has two important advantages compared
to conventional radiography for chest imaging: First, the decomposition into basis material im-
ages facilitates the assessment of small lung nodules by eliminating “anatomical noise” (i.e.,
anatomical structures such as the ribs superimposed on the projection image) [397]. Second,
basis material decomposition allows the detection of calcifications within a lung nodule, which
is an important indicator of benignancy [398]. However, due to the reduced signal-to-noise ratio
of the basis material images, quantum noise (instead of “anatomical noise”) is often a major
limiting factor for spectral chest radiography [397]. We demonstrate how the reduced noise
levels and the additional information about the microstructure (dark-field image) provided by
SDPC radiography could be beneficial for clinical diagnosis.

7.2 Methods

7.2.1 Spectral phase-contrast model

We begin by explaining maximum-likelihood projection-based material decomposition for spec-
tral imaging before extending the model to incorporate energy-resolved phase-contrast measure-
ments. Disregarding materials with K-edges in the relevant energy range, the energy-dependent
attenuation of any material is well described by a linear combination of two basis materials:

w(E) = A1f1(E) + A2 fo(E), (7.1)

where A, is the line integral of material o and f,,(E) describes the the energy-dependent atten-
uation of basis material «. This is a consequence of the fact that there are only three interaction
mechanisms (photoeffect, Compton effect and Rayleigh-scattering) in the energy range typically
used for medical imaging (=~ 20 — 140keV) and that the attenuation cross section is dominated
by Compton-scattering and photoelectric absorption. Therefore, we focus on two basis materials
in the following, however a generalization to more basis materials is straightforward. With the
approximation of eq. 7.1, the expected number of photon counts g; for detector pixel 7 and
spectrum s is given by:

b = /0 S(E)R(B)e” 1N (P-4 qE, (7.2)
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where S(E) is the source spectrum and R*(FE) describes the detector response, i.e., the proba-
bility that a photon with energy F is detected by energy bin s of the photon-counting detector.
Maximum-likelihood decomposition is performed by finding the basis material line integrals
A = (AL, ..., AT A, = (AL, ..., AT that maximize the probability of the measured data.
Assuming Poisson statistics, this corresponds to minimizing the following negative log-likelihood

function [399, 352, 236]:
L(A;, Ay) = Z Z U —yiln (97), (7.3)

where y; denotes the measured photon counts for detector pixel 7 and effective spectrum s. This
optimization problem can be solved separately for each detector pixel.

For conventional phase-contrast imaging, a stepping curve is acquired by shifting one of the
gratings. The polychromatic spectrum is neglected and the expected intensity for the stepping
curve measurements is approximated as [278]:

Ji = be M (14 Ve cos (¢ + Agy)) (7.4)

where g and ¢" are the expected number of photons and the reference phase of the stepping
curve (for step r), respectively. The quantities p;, A¢; and ¢; describe the attenuation of the
object, the phase shift of the stepping curve and the visibility reduction (dark-field signal),
respectively. The reference intensity measured with an open beam is given by b and V is the
visibility of the reference stepping curve.

Taking eq. 7.2 and eq. 7.4 into account, we propose the following forward model for spectral
differential phase-contrast (SDPC) measurements:

/ S(E)R*(E)e~Ai1N1(B)=A3f2(B) [1+V(E)e‘dif€(E)cos(¢"(E)+A¢Z-(E)) dE, (7.5)

where ¢;° is the expected number of photon counts for detector pixel i, stepping position r and
energy bin s. Compared to eq. 7.2, we have introduced a third, “dark-field basis material” that
is responsible for the visibility reduction of the stepping curve, i.e., for the dark-field signal.
According to Strobl [294], the visibility reduction is given by:

Vs(©) _ J o (B)CG©)-1)dz 7.6
HGI | i

where V;/V is the ratio of the visibilities with and without the sample in the beam path,
o(E) x % is the macroscopic scattering cross section and G(-) is the autocorrelation function
of the scattering length density [295]. The scattering length density is directly proportional to
the electron density far away from the absorption edges (which is normally the case for medical
imaging). If the sample is placed between the phase shifting grating (G1) and the detector
grating (G2), the correlation length ¢ is calculated as:

he ds,G2

£ = ———, 7.7

E  ps (77)
where h is Planck’s constant, c is the speed of light, dg g2 is the distance between the sample
and the G2 grating and po is the corresponding grating period. Neglecting the spatial extend of
the object along the projection direction (i.e., a constant dg g2 is assumed for the whole object)
and assuming a homogeneous dark-field generating material, eq. 7.6 can be simplified to:

Vs(E) o) (G(B)-1)
V(E) e , (7.8)

where d. represents the pathlength through the microstructured material. Comparing eq. 7.6
with the SDPC forward model (eq. 7.5), fc(E) can be identified with o(E)(1 — G(£)). Writing
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o(E)(G(§) — 1) only as a function of the energy corresponds to neglecting the spatial extend of
the object in the projection direction since a constant dg g2 has to be assumed for the whole
object. With this identification, f.(E) describes the visibility reduction per unit length as a
function of the photon energy.

The phase shift A¢(FE) is proportional to the gradient of the projected electron density pe(z,y)
perpendicular to the grating bars [291, 290]:

0
Agi(E) = %%ﬁe(xhyi)a (7.9)

where ¢ is a proportionality factor depending on natural constants and the interferometer prop-
erties. Assuming that the object is placed between G1 and G2, ¢ is given by [275]:

_ Mrch*dey o ( L s )
P2 de1,62)

q (7.10)

where r. is the classical electron radius. The magnification M has to be taken into account
because the projected electron density profile that is measured at the detector plane is magnified
by a factor of M compared to the sample plane. Similar to the dark-field model, the spatial
extend of the object in beam direction has to be neglected and a fixed mean value for dg g1 is
assumed in the SDPC forward model. It is worthwhile to note that in a possible extension of the
method to 3D statistical iterative CT reconstruction, the position-dependency of the dark-field
and the phase shift along the optical axis could be taken into account [400]. In eq. 7.9, the
spatial coordinates of detector pixel 7 in the detector plane are given by z; and ;. The projected
electron density p° = pe (x4, ;) is obtained by integrating the three-dimensional electron density
distribution pe(z,y, z) along the projection direction:

pelay) = [ ooty 2 (7.11)

The key idea for connecting spectral and phase-contrast X-ray imaging, and for eliminating the
projected electron density as optimization variable, is expressing the projected electron density
as the sum of the projected basis material electron densities:

pe = Ajpe(My) + Appe(Ms), (7.12)

where p.(M;) and p.(Ma) represent the electron densities of the basis materials. Similarly to
the standard spectral imaging approximation of modeling the energy-dependent attenuation of
any material by a linear combination of the basis materials, the approximation of eq. 7.12 works
well in the relevant energy range (20 — 140keV).

In analogy to eq. 7.3, the basis material line integrals can be reconstructed by minimizing the
negative log-likelihood function:

= L(Ay, Ay d) = 303D 01—y (577) (7.13)

In a real experiment, all setup-dependent quantities (S(F), R*(E),V(E),¢"(EF)) can depend
on the spatial position and therefore on the detector pixel index ¢. For simplicity and clarity,
we have suppressed this possible dependency in this section. Figure 7.1 shows an overview of
the workflow for both SDPC imaging and conventional spectral imaging. While SDPC material
decomposition takes energy-resolved stepping curve measurements as an input, standard mate-
rial decomposition takes energy-resolved intensity images as an input. In a setup with a grating
interferometer, the intensity images are generated by summing up all stepping curve measure-
ments. In a non-interferometric setup, the output images of a photon counting detector can
be used directly. Both imaging methods calculate bone and soft tissue basis material images.
SDPC material decomposition generates an additional dark-field image as an output.
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Figure 7.1: Overview of the workflow for spectral phase-contrast material decomposition and
conventional spectral material decomposition. While spectral phase-contrast material decom-
position takes energy-resolved stepping curve measurements as an input, standard material
decomposition uses energy-resolved intensity images as an input. Both methods calculate bone
and soft tissue basis material images. Spectral phase-contrast material decomposition generates
an additional dark-field image as an output.

In contrast to standard spectral imaging, the SDPC optimization problem is not separable with
respect to the detector pixels because the gradient of the electron density couples the pixel values
in the direction perpendicular to the grating bars. The optimization can therefore be performed
separately for each detector row, but not for each detector pixel. Moreover, the cosine term in
the forward model (see eq. 7.5) introduces local optima into the log-likelihood function of eq.
7.13. In the results section, we analyze the occurrence of these local optima in more detail. The
optimization result therefore depends on the initial guess, unless a global optimization strategy
is used. In our implementation, we used a nonlinear conjugate gradient algorithm (NLCG)
to minimize the log-likelihood for SDPC imaging. Like most gradient descent algorithms, the
NLCG algorithms converges to a local optimum. We did not use a global optimization strategy
due to the drastically increased computational cost. We obtained an initial guess for ffo and A,
by smoothing the result of the conventional spectral material decomposition with a Gaussian
filter (¢ = 3 pixels). The visibility extinction coefficients ¢; can be determined for each detector
pixel using the standard signal extraction methods for conventional phase-contrast imaging.
With the help of the approximation:

e ~d f.(Eeg), (7.14)

where Feg is an effective energy as defined in [23], an initial guess for dz can be obtained. The
initial guess for d. is also smoothed with a Gaussian filter. Using this initialization strategy,
the NLCG algorithm converged to the global optimum in our simulation study. To ensure that
Q{S(f_l'l, f_l'g, CZ;) > 0 (otherwise numerical problems can arise during the optimization because of
the logarithm in the log-likelihood function, see eq. 7.13), we constrain the dark-field line inte-
grals d. to a predefined lower bound (in this case —1cm). This prevents the term V (E)e~%/<(E)
in the SDPC forward model (eq. 7.5) from becoming larger than one (averaged over the spec-
trum).

There are different possibilities to calculate the gradient of the projected electron density (com-
pare eq. 7.9) numerically. Using the forward or backward difference directly couples neighboring
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pixels, but it has the disadvantage of introducing a slight systematic inconsistency between the
forward model and the measured phase shift. The measured phase shift in a particular pixel is
determined by the average of the projected electron density gradient in this pixel, but by using
the forward or backward difference, the gradient of the forward model is shifted by :l:% pixels.
Using a central difference approximation eliminates this inconsistency but it has the disadvan-
tage of generating a “checkerboard-like” noise pattern because the electron density gradient only
couples optimization variables that are two pixels apart (e.g., using basis material M; as an ex-

ample, the gradient for pixel ¢ couples Agiﬂ) and Agi_l) . To circumvent these problems, we

minimize —fj(ffl, As, d:) twice, using both the forward and backward difference approximation
and then average the resulting basis material images.

7.2.2 Numerical Experiment

Spectral phase-contrast projection measurements of a human thorax were simulated with the
wave-optical simulation package that was presented in chapter 3. We assumed a tungsten X-
ray source operated at an acceleration voltage of 120kVp and a photon-counting detector with
830 x 2000 pixels (pixel size 300 um), a 2mm thick cadmium telluride (CdTe) sensor and two
thresholds per pixel. The threshold positions (15keV and 63keV) were optimized for spectral
X-ray imaging. The simulated setup features a symmetric grating interferometer with a design
energy of 50keV and a total length of 2.4m. Figure 7.2 (a) shows an overview of the setup
geometry and the grating specifications for the simulated thorax radiography. The GO and
G2 grating are made of gold with a grating bar height of 200 um. The G1 grating is made
of nickel and induces a phase shift of 7/2 for the design energy of 50keV. The patient is
assumed to stand 40 cm away from G1, between G1 and G2. Figure 7.2 (b) shows a plot of the
energy-dependent visibility of the interferometer together with the effective spectra for the low
and high energy bin of the photon counting detector. As pointed out by Kottler et. al [401],
a three-grating interferometer with a 7/2 phase shifting grating exhibits a second visibility
peak at twice the design energy (here 100keV). The second important factor determining the
visibility is the attenuation of the gold gratings. In the range from 60 —80keV, the gold gratings
become increasingly transparent which explains the decreasing visibility in this energy range.
For energies above the K-edge of gold (80.7keV), the attenuation of the gratings, and thus also
the visibility, rises sharply. The reference visibilities in the low and high energy bin were 27.5%
and 14.7%, respectively. The thorax phantom is based on a publicly available CT scan [402] that
was segmented into bone, soft tissue and lung tissue. Two artificial lung nodules (one of them
calcified) were placed in the lung. They were simulated by replacing a spherical region of the lung
tissue (diameter of 8 mm) by tissue and calcified tissue (with a calcium volume fraction of 3.5 %),
respectively. Furthermore, a pneumothorax was simulated by replacing a region of the lung with
air. Due to the large size of the thorax phantom, the projection approximation was used in our
simulation. To analyze the bias and the noise properties of the proposed material decomposition
approach, we conducted an additional simulation of the central detector line. In this simulation,
the thorax phantom was divided into 64 different planes (with surface normal vectors oriented
parallel to the beam direction) and we alternatingly applied the projection approximation before
propagating the wavefront to the location of the next plane. This simulation strategy accounts
for the position-dependent phase shift that is caused by a specific electron density gradient
(compare eq. 7.9 and eq. 7.10).

In theory, it is possible to simulate the visibility reduction by including the microstructure of
the lung in the wave-optical simulation [322]. However, in our case this approach is infeasible
because of the comparatively large size of the thorax phantom. Moreover, 3D images of the
lung with sub-micrometer resolution would be required for a realistic simulation. Therefore, we
simulated the dark-field signal by scaling the amplitudes of the simulated stepping curves by
the factor e~%f<(F) where d, is the pathlength through the lung tissue. At the design energy
of 50 keV, the simulated interferometer has a correlation length of £ = 1.8 um, which is much
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smaller than the typical structure size of the lung (the alveoli have a diameter of ~ 200 pum).
We therefore approximated G(§) by a first order Taylor expansion to obtain an expression for
fe(E) that does not rely on detailed knowledge about the microstructure of the lung:

G(&) = G(0) + G'(0)¢ = 1+ G'(0)¢. (7.15)

1

Combining this approximation with eq. 7.6 and using o(E) o &,

be written as:

the visibility reduction can
where C' is a proportionality constant. Assuming a fixed distance between the object and G2
(ds.G2), eq. 7.16, is simplified to:

(7.16)

28— 7w (7.17)

Neglecting higher order terms of the Taylor expansion in eq. 7.15 might not always be justified.
The most notable counterexample is a (diluted) dispersion of microspheres, for which G (&) can
be approximated by [295]:

G(&) = G (efry me s () (7.18)

where 74 is the radius of the spheres. In this case, G'(0) = 0 and a second-order Taylor ex-
pansion leads to an E~* dependency of the dark-field signal for ¢ < r,. Nevertheless, the £~3
dependency of the dark-field signal that was obtained in eq. 7.17 coincides with preliminary
dark-field measurements of a porcine lung that were conducted at an experimental setup at our
Institute. For more complicated and less symmetric structures than the microspheres, it can be
expected that G'(0) does not vanish.

Equation 7.16 considers the fact that the dark-field signal depends on the position along the
optical axis and was therefore used for the additional simulation of the central detector line,
whereas eq. 7.17 was used for the simulation of the whole image.

For the spectral phase-contrast simulations, a stepping curve with 5 steps homogeneously dis-
tributed between 0 and 27 was measured for each of the two energy bins of the photon counting
detector. We conducted an additional simulation of a conventional spectral measurement in
order to compare the performance of SDPC decomposition to conventional spectral material
decomposition. For this simulation, the three gratings were removed, but otherwise the same
imaging parameters were used. The dose for all simulated measurement was 0.3 mGy (estimated
with the method presented in [363]).

7.3 Results

In order to look at the origin of local optima more closely, we investigate a simplified version of
—l?(le, fYQ, dl) J; is eliminated by assuming that there are no dark-field generating materials
in the object. Moreover, only the basis material line integrals for the central pixel of a detector
row (A§, AS, ¢ being the index of the central pixel) are considered as optimization variables. The
basis material line integrals for all other pixels are kept fixed at their ground truth values (5 cm
of tissue and 0.75 cm of bone). Figures 7.3 (a) and (b) show contour plots of the log-likelihood
function for SDPC and conventional material decomposition, respectively (using bone and soft
tissue as basis materials). To better separate the effects of phase shift and attenuation, we
consider two artificial basis materials M7, M with the following properties:

pe(Mi) =0em™,  fi(E) x &3, (7.19)

pe(MQ) = 1023 Cmiga f2(E) X pe(MQ)fkn(E)a
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Figure 7.2: (a): Overview of the setup geometry and the grating specifications for the numerical
experiment. (b): Energy-dependent visibility of the interferometer together with the effective
spectra for the two bins of the simulated photon-counting detector.

where fin(F) is the Klein-Nishina function [2]. As far as the energy-dependent attenuation
is concerned, M; can be interpreted as photoeffect while My represents Compton-scattering.
However, due to the definition of the electron densities for M7 and Mo, this comparison cannot
be taken literally. Figures 7.3 (¢) and (d) show contour plots of the log-likelihood function
in the photo-Compton basis for SDPC and conventional material decomposition, respectively.
For both the bone-tissue as well as the photo-Compton basis, the log-likelihood function for
conventional material decomposition has one global optimum and the contour lines form ellipses
with an inclination of approximately 45° with respect to the coordinate axes. The shape of
the log-likelihood surface therefore reflects the typical anti-correlated noise of the decomposed
basis material images. The log-likelihood surfaces for SDPC material decomposition have the
same overall shape. However, close to the minimum, the surface shows deviations compared to
conventional material decomposition. In the following, we focus on the photo-Compton basis
because the deviations to conventional decomposition are easier to explain in this basis. The
phase shift term in the forward model for SDPC imaging, which in turn depends on the gradient
of the projected electron density, modifies the log-likelihood functions predominately in the
direction of basis material Ms (i.e., the Compton effect). If the electron density deviates from
its ground truth value, the phase shift predicted by the forward model no longer matches the
physical phase shift. Consequently, the predicted stepping curve §.° deviates from the measured
values y.° and the value of the log-likelihood function increases. For conventional phase-contrast
imaging, the value of the log-likelihood function decreases again once one of the following two
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Figure 7.3: Contour plots of the simplified log-likelihood functions for spectral phase-contrast
material decomposition (a,c) and conventional spectral material decomposition (b,d). The top
row shows the log-likelihood functions in the bone-tissue basis whereas the bottom row shows
the photo-Compton basis.

conditions is met:

gt

A¢. > A(bct +m (7.20)
Ape < A¢S" —,

where A¢, and Ag" are the phase shift predicted by the forward model and the ground truth
phase shift, respectively. Furthermore, if A¢., = Aqb%t +m - 27, m € Z the log-likelihood
function has the same value again. This corresponds to the phase-wrapping problem for conven-
tional phase-contrast imaging. For SDPC imaging, the analysis is complicated by the energy-
dependency of the phase shift A¢(E), however the aforementioned arguments qualitatively ex-
plain the occurrence of the two “barriers” close to the global minimum of the log-likelihood
function and their orientation perpendicular to the Compton effect axis. Moreover, the ap-
pearance of the two local minima can be explained by the analogy to the phase-wrapping
problem. In contrast to conventional phase-contrast imaging, the correct phase shift can be
unambiguously determined by comparing the value of the log-likelihood function at the min-
ima. At the position of the two local minima, the forward model does not correctly predict
the average intensities of the spectral stepping curve measurements, and thus the value of
the log-likelihood function is higher compared to the global minimum. Consequently, SDPC
imaging eliminates phase-wrapping artifacts, provided one can find the global optimum of the
log-likelihood function. However, reliably finding the global optimum of the (non-simplified)
log-likelihood function (compare eq. 7.13) in acceptable computational time remains an open
question. For the simulated setup, the local optima are well separated from the global optimum
(by £5 cm of tissue thickness and + 10 cm of bone thickness). With the simulated dose level of



139 7.3 Results

conv. spectral SDPC conv. spectral

SDPC

tissue

tissue

bone

attenuation dark-field
5

bone

Figure 7.4: Numerical simulation of a human thorax radiography. The left part shows a com-
parison between conventional spectral material decomposition (a),(c) and spectral differential
phase-contrast (SDPC) material decomposition ((b),(d)) for both the tissue and bone images.
The red rectangle in the images highlights the area where the artificial lung nodules are placed.
Moreover, the conventional attenuation image (e) as well as the dark-field image (f) that was
obtained by the proposed SDPC decomposition algorithm are displayed. The red arrows high-
light the location of a simulated pneumothorax. The right part of the figure shows a zoom of
the area where the artificial lung nodules are placed. The zoomed images facilitate a visual
comparison of conventional spectral decomposition ((g),(i)) and SDPC decomposition ((h),(j))
regarding image quality and noise levels.

0.3 mGy, it is thus unlikely that the initial guess obtained from a conventional spectral decom-
position is close to one of the local optima. By smoothing the initial guess (compare Section
7.2.1), we further reduce the probability of convergence to a local optimum. Phase unwrapping
would be more difficult for a more sensitive grating interferometer (because the local optima are
spaced more closely) or reduced photon statistics (because the quality of the initial guess de-
creases). In these cases, regularized material decomposition techniques [235, 236] could possibly
improve the stability of the phase-wrapping correction.

Figure 7.4 shows a comparison of tissue and bone basis material images obtained by con-
ventional material decomposition ((a),(c)) and SDPC decomposition ((b),(d)). The red arrows
highlight the location of the simulated pneumothorax and the red rectangles highlight the area
where the two artificial lung nodules are located. Furthermore, the conventional attenuation
image (e) (calculated by summing up the two spectral measurements) and the dark-field image
calculated by SDPC decomposition (f) are displayed. Compared to the attenuation image, the
soft tissue images facilitate the detection of the lung nodule that is overlayed by a rib. Fur-
thermore, the calcification of the upper nodule can be detected in the bone images. In this
simulation study, the artificial pneumothorax is easily detected in the dark-field image because
the missing lung tissue causes a reduction of the dark-field signal in the corresponding area. In
the conventional attenuation image, the pneumothorax is much harder to spot because of the
low attenuation of the lung and the superimposed soft tissue and bone structures.

The right part of figure 7.4 shows soft tissue ((g),(h)) and bone ((i),(j)) images for both de-
composition methods zoomed into the area where the lung nodules are located (compare red
rectangles in the left part of the figure). The basis material images generated with the proposed
SDPC decomposition algorithm ((h) and (j)) show a reduced noise level as well as a different
noise texture compared to conventional material decomposition ((g) and (i)). The different noise
texture is caused by the phase shift term which couples neighboring pixels in direction perpen-
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dicular to the grating bars. A quantitative noise analysis (compare Table 7.1) in the zoomed
region shows that SDPC imaging reduces the variance by a factor of 2.5 and 1.9 for the tissue
and bone image, respectively. Consequently, the dose delivered to the patient can be reduced
by a factor of 2.5 and 1.9 while maintaining the same noise level for the tissue and bone image,
respectively. The additional phase shift information for SDPC decomposition overcompensates
the reduced photon statistics (because of the G2 attenuation) in comparison to conventional
spectral decomposition. The GO and Gl-grating only influence the flux and not the dose, be-
cause they are placed between the source and the patient, but they cause beam hardening which
decreases the spectral separation between the low and high energy bin.

In order to assess the stability of the SDPC decomposition algorithm, the simulation was re-
peated for 30 different dose levels ranging from 0.003 mGy to 3 mGy. Figure 7.5 exemplarily
shows the variance of the tissue image in the same zoomed region as a function of the dose
level for both decomposition methods. The variance of the bone image follows a similar pattern.
For both decomposition methods, the experimentally obtained variances (dots) are inversely
proportional to the photon statistics (indicated by solid lines) for a large range of dose lev-
els. The SDPC decomposition only exceeds the predicted variances for ultra low dose levels
(< 0.01 mGy). In conclusion, the variance reduction reported in Table 7.1 remains valid over a
large range of dose levels.

We conducted an additional analysis of the variance and bias for conventional and SDPC ma-
terial decomposition by looking at the decomposition results for the central detector line with
30,000 different noise realizations. As mentioned in Section 7.2.2, the position dependency of
the phase shift as well as the visibility reduction was considered in this simulation. Figure
7.6 (a) shows the conventional attenuation image of the simulated thorax radiography. The red
line in figure 7.6 (a) indicates the central detector line for which the analysis was conducted.
Moreover, markers for three different areas ((1), (2) and (3)) are displayed. Figure 7.6 (c) dis-
plays the variance reduction of SDPC imaging in comparison to conventional spectral imaging
for the soft tissue and bone image in dependence of the pixel index. In area (1), where the
open beam hits the detector, SDPC decomposition shows the largest variance reduction (by a
factor of 5.5 for the tissue image and a factor of 3 for the bone image). In area (2), the beam is
strongly attenuated as the projected bone and soft tissue thicknesses are comparatively large.
Beam hardening leads to an increased average energy of the spectrum and thus the phase shifts
become smaller (A¢(F) %) Furthermore, the effective visibility of the stepping curves is
reduced because the gold gratings become increasingly transparent at higher energies and be-
cause the effective energy of the hardened spectrum is shifted away from the design energy of the
interferometer (compare figure 7.2 (b)). These effects explain the smaller advantage of SDPC
imaging compared to conventional spectral imaging in area (2). In the area of the lungs (3),
the attenuation is comparatively weak, but the dark-field signal of the lungs strongly reduces
the effective visibility of the stepping curve. The noise level for SDPC decomposition increases
with decreasing visibility, similar to conventional phase-contrast imaging, where the image noise
is inversely proportional to the effective visibility squared [279]. This explains why the smallest
variance reduction factors occur in the area of the lungs.

Figure 7.6 (b) exemplarily shows the decomposition bias of the soft tissue image, whereas figure
7.6 (d) shows the decomposition bias for the dark-field image. The decomposition bias for the
bone image is anticorrelated to the soft tissue image and smaller in magnitude. The total bias
biotal can be viewed as the sum of three bias contributions:

btotal = bmodel + bproj + bstat- (721)

The first term by,odel is the inherent bias of the SDPC model that remains even when an infinitely
thin object (along the projection direction) is measured. It is determined by performing an
SDPC decomposition from noise-free data simulated with the projection approximation. The
most important cause of this bias is the fact that the material decomposition is performed on a
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Table 7.1: Quantitative noise analysis for spectral differential phase-contrast (SDPC) and con-
ventional spectral imaging (conv. spectral) in the region of the thorax phantom where the
artificial lung nodules are located (compare right part of figure 7.4). Additionally, we evaluate
how much the dose for SDPC imaging can be reduced compared to conventional spectral imaging
while achieving the same noise levels.

Variance [mm?] Dose reduction
conv. spectral ‘ SPDC factor
Tissue image 3.5 1.4 250 %
Bone image 0.40 0.21 190 %

much coarser grid than the simulation. This gives rise to (nonlinear) partial volume effects (for
example, a changing electron density gradient within one pixel cannot be modeled). However,
the magnitude of these effects is comparatively small (maximum bias < 200 gm).

The second term bp,; describes the bias of implicitly using the projection approximation in the
SDPC forward model. Since the position along the optical axis cannot be recovered from a
radiography measurement, the position dependency of the phase shift and visibility reduction
cannot be taken into account. This contribution to the bias could in principle be eliminated in
a possible future extension of the SDPC algorithm to statistical iterative CT reconstruction. It
is determined by calculating the bias of an SDPC decomposition simulated with the multi-step
propagation approach and subtracting byodel. For both the soft tissue and dark-field image, bproj
is approximately an order of magnitude larger than by oqe1- As can be seen from eq. 7.10 and
eq. 7.7, the relative magnitude of by,.; for a small volume element is proportional to the ratio
of the distance to the center of the object (in projection direction) to the distance between the
gratings G1 and G2. For the numerical simulation, the maximum ratio is approximately 10 %.
Nevertheless, the maximum thickness bias of ~ 1 mm (relative error < 1 %) is much smaller
than the aforementioned geometrical considerations suggest. Since bp,.; depends linearly on the
distance to the center of the object, a large part of the bias contributions of volume elements
upstream and downstream of the center of the object cancel out. In case of the soft tissue image,
bproj is correlated to large electron density gradients (e.g., ribs) that occur outside of the center
of the thorax phantom (with respect to the optical axis). For the dark-field image, by is caused
by an asymmetric distribution of lung tissue with respect to the center of the thorax phantom.
The term by, describes a noise-induced contribution to the total bias. This effect has already
been investigated for conventional phase-contrast imaging[403] and spectral imaging [353]. The
statistical bias was determined by subtracting byodel and bproj from the total bias that was
obtained by analyzing the 30,000 different noise realizations. The strong attenuation in area
(2) leads to decreased photons statistics and consequently to an increase of the statistical bias
for both the soft-tissue and the dark-field image. At a dose level of 0.3 mGy the noise-induced
bias is small (< 200 pum), except for three large spikes in the dark-field image. The two spikes
at the edges of the phantom can be correlated with large electron density gradients. As the
visibility in this area is strongly reduced (via phase shift dispersion [311]), the dark-field noise
and thus the statistical bias increases. In the area of the spine, the strong attenuation increases
the dark-field noise level far enough that the constraint of d. > —1 c¢m becomes active, which
explains the large bias spike in the center of the phantom.

7.4 Conclusions

We have developed a novel model that combines energy-resolved and phase-contrast X-ray imag-
ing. The connection between the two modalities is made via the projected electron density, which
can be determined with both methods. In our experiments, the combination of these two imag-
ing techniques shows promising results for medical imaging applications. The simulation of a
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Figure 7.5: Variance of the tissue image for SDPC and spectral decomposition in the zoomed
region of figure 7.4 as a function of the dose level. The experimentally obtained variances are
represented by dots and the solid lines indicate the expected inverse proportionality to the dose
level.
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Figure 7.6: Analysis of variance and bias for SDPC and conventional spectral material decom-
position. (a): Conventional attenuation image with the central detector line marked in red. (b):
Lineplots of the decomposition bias for the tissue image. The decomposition bias is composed
of three terms: The inherent bias of the model (model bias), the noise-induced bias (stat. bias)
and a bias term that is caused by the position dependency of the dark-field signal and the phase
shift (proj. bias) The last term was divided by 5 to fit on the same scale. (c): Variance reduction
factor of SDPC decomposition compared to conventional spectral decomposition as a function
of the detector pixel index. (d): Dark-field decomposition bias for SDPC imaging as a function
of the detector pixel index.
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human thorax radiography demonstrates that quantitatively correct basis material images with
highly reduced noise levels compared to conventional spectral imaging can be obtained under
clinically realistic conditions (e.g., object size, spatial resolution, dose). Compared to spectral
imaging, the additional information on the phase shift determines the projected electron density
more precisely. This additional constraint leads to a strong noise reduction for the basis material
line integrals. Within this proof-of-concept study, we cannot definitely answer the question if
this noise reduction directly relates to improved clinical diagnostics (e.g., for the detection of
lung nodules). An important point to consider in this context is that (unlike spectral imag-
ing) SDPC imaging leads to correlated noise in the direction perpendicular to the grating bars.
The simulations give an upper bound for the noise advantage of SDPC imaging in a real ex-
periment because various unfavourable experimental effects (e.g., imperfect gratings) were not
considered. However, the large dose reduction factors suggest that reduced noise levels could
also be achieved in real experiments. In relation to spectral imaging, the optimization of the
log-likelihood function is complicated by the occurrence of local optima. In our numerical exper-
iments, the convergence to local optima could be avoided by a suitable initial guess. Since this
cannot be guaranteed for arbitrary objects or setup parameters, choosing the right optimization
algorithm for SDPC imaging remains an open question. Another important advantage of the
proposed spectral phase-contrast model is the additional information provided by the dark-field
image. This contrast mechanism gives information about the object’s microstructure that is
inaccessible to conventional spectral imaging. As the dark-field signal decreases when the mi-
crostructure of the lung is destroyed, dark-field X-ray imaging is a promising candidate for the
early detection of lung diseases [404, 306, 405].
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In the last chapter, we have investigated the combination of grating-based DPC radiography and
spectral radiography [406] and have developed a basis material decomposition algorithm that
uses the spectral and the phase contrast information simultaneously. Our numerical experiments
have demonstrated that SDPC radiography yields quantitatively correct basis material images
with strongly reduced noise levels compared to conventional spectral imaging. Analogous to
DPC imaging, we have observed correlated noise patterns for SDPC imaging. Since the phase
shift of the stepping curve is proportional to the gradient of the projected electron density, the
phase shift information couples neighboring pixels in the direction perpendicular to the grating
bars. In the case of DPC imaging, the integration step that is necessary to calculate electron
density images causes long-range noise correlations and excessive low frequency noise. Based
on these noise characteristics, Raupach and Flohr have argued that DPC imaging will produce
inferior image quality compared with standard attenuation-based imaging for clinical CT appli-
cations [391]. However, it could be expected that SDPC imaging produces less low frequency
noise, since it can be viewed as a mixture of spectral and DPC imaging. In the case of spectral
imaging, there are no noise correlations between neighboring pixels, but the overall noise level
is typically relatively high due to noise amplification during material decomposition.

Taking the characteristics of all three aforementioned imaging methods into account, the ques-
tion of the optimal method for a particular imaging task arises. In this chapter, we investigate
one important aspect of this question by conducting an in-depth noise analysis of all three imag-
ing methods. Towards this end, we develop a noise analysis framework based on the Cramér
Rao lower bound (CRLB) [96]. This framework allows the determination of the optimum imag-
ing parameters for all three methods and the prediction of noise correlations and noise power
spectra. Since all three aforementioned imaging methods can determine the projected electron
density (PED), we focus on PED images for our comparison. Although only projection imag-
ing is considered in this work, a generalization to 3D computed tomography is possible. Using
an imaging task that can be viewed as a simplified version of human X-ray radiography, we
demonstrate that the combination of spectral and phase-contrast imaging has the potential to
generate PED images with strongly reduced noise levels compared with the individual methods.
Our theoretical analysis suggests that SDPC imaging outperforms spectral and DPC imaging
for a large range of clinically relevant pixel sizes. Finally, we discuss the noise characteristics of
SDPC imaging in the context of the comparison between attenuation-based imaging and DPC
imaging by Raupach and Flohr [391].

The text and the figures in this chapter are taken from the following publication of the author:

e Mechlem, Korbinian, et al. “A theoretical framework for comparing noise characteris-
tics of spectral, differential phase-contrast and spectral differential phase-contrast X-ray
imaging.” Physics in Medicine & Biology (2020).

Compared to the original publication, the text has been slightly modified to achieve a better
integration into this doctoral thesis.
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8.1 Methods

Before explaining the derivation of the noise analysis framework based on the CRLB, we give a
brief overview of the physical models (forward models) of the measurement acquisition processes
for all three imaging methods under consideration (spectral, SDPC and DPC imaging). Fur-
thermore, we formulate the signal extraction process as a maximum-likelihood (ML) estimation
problem for all three imaging methods. ML estimation has already been used successfully for
projection-based material decomposition in spectral imaging [316, 249]. In this case, the ML
estimator has many desirable properties such as the capability to handle overdetermined systems
(i.e. having more energy bins than basis materials). Moreover, it is unbiased and efficient (i.e.
it achieves the minimum variance for an unbiased estimator) in the limit of low noise levels.
We also successfully applied an ML-based decomposition algorithm to SDPC imaging [406]. In
the case of DPC imaging, Fourier processing [22] is the most commonly used method of signal
extraction due to the comparatively low computational complexity. Using error propagation,
the noise properties of DPC imaging in combination with Fourier processing have already been
investigated for CT reconstruction [18] and in the projection domain [407, 408, 409]. However,
it has been demonstrated that a Fourier-based estimator for DPC imaging is not efficient [410].
For this reason, and to make the signal extraction for all three methods more comparable, we
use an ML estimator for DPC imaging. This estimator is similar to weighted least-squares signal
extraction methods for DPC imaging [411, 412].

In the following, we assume that a photon-counting detector (PCD) is used to acquire energy-
resolved measurements for all three imaging methods. The number of registered photon counts
is therefore modeled by a Poisson distribution. Moreover, we assume that there is no correlation
between the photon counts registered in different detector pixels or energy bins. These assump-
tions are valid for an ideal PCD, but current real PCDs exhibit various undesired sensor effects
(e.g. pulse pile-up, charge sharing) that could cause a violation of these assumptions [413, 91].
In the limit of negligible electronic noise and detector blur, the noise analysis presented in this
work could be extended to other spectral imaging methods, such as dual source CT or kVp-
switching. As will be explained later, the differential phase shift for SDPC and DPC imaging
couples pixels in the direction perpendicular to the orientation of the grating bars. However,
the pixels remain uncoupled in the direction parallel to the grating bars. For simplicity, we will
therefore consider a one-dimensional PCD in the following because each detector row can be
treated separately for all three imaging methods.

8.1.1 Forward models and signal extraction

Basis material decomposition for spectral imaging relies on the assumption that the energy-
dependent attenuation of any material can be modeled by a linear combination of a few basis
materials. Neglecting materials with K-edges in the relevant energy range for medical imaging
(~ 20 — 140 keV), only two basis materials are needed. This is a consequence of the fact
that there are only three interaction mechanisms (photoelectric effect, Compton-scattering and
Rayleigh-scattering) in this energy range. Furthermore, the contribution of Rayleigh-scattering
to the total attenuation cross-section is typically small compared with the other two interaction
mechanisms. For simplicity, we will focus on two basis materials in the following. For spectral
imaging, the expected number of photon counts §; registered in energy bin s and detector pixel
i is thus modeled by [316]:

b = /0 HEYR(E)e~ AN E=ALE)gg, (8.1)

where ¢(€) is the source spectrum and R*(€) describes the detector response, i.e. the prob-
ability that a photon with energy & is detected by energy bin s of the PCD. The functions
fi1(€) and fo(€) represent the energy-dependent attenuation of the two basis materials and the
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corresponding basis material line integrals (for detector pixel i) are denoted by A% and Aj.
Assuming uncorrelated Poisson statistics, the negative log-likelihood function for spectral imag-
ing is given by:

N S
— (AL, A9) =) 0> 95—y (55) (82)
i=1 s=1
where IV and S represent the number of detector pixels and energy bins of the PCD, respectively.
The quantity y; denotes the measured number of photon counts. ML decomposition is performed
by finding the basis material line integrals A = (A%, - A{V ) , Ay = (A%, e Aév ) that minimize
—L(le, ng) This optimization problem can be solved separately for each detector pixel. The
PED (pe) can be calculated by a linear combination of the basis material line integrals:

pl = AlpY (M) + AbpY (Ma), (8.3)

where pY (Mj) and pY (Mz) are the volume electron densities of the two basis materials. The
idea of approximating the electron density of any material by a linear combination of the two
basis materials is conceptually very similar to the standard dual energy assumption of modeling
the energy-dependent attenuation with two basis materials. Consequently, equation 8.3 is also
only valid for the dual energy parameter range (low-Z materials, energy range ~ 20 — 140 keV).
For DPC imaging, the three contrast modalities (attenuation, differential phase shift and dark-
field) are extracted from stepping curve measurements that are generated by shifting one of the
gratings [13, 22]. In contrast to spectral and SDPC imaging, no energy-resolved measurements
are acquired. We therefore assume a PCD with just one threshold for DPC imaging. The
stepping curve is typically modeled by a cosine (or sine) function [22] and beam hardening
effects caused by the polychromatic spectrum are neglected. The expected intensity g for
stepping position 7 and detector pixel ¢ can thus be written as: [278]:

g =be " (1+ Ve “ cos (¢r + Ady)) , (84)

where ¢, and V' are the reference phase (for step r) and the reference visibility of the stepping
curve, respectively. The quantities u;, A¢; and ¢; describe the attenuation of the object, the
phase shift of the stepping curve and the visibility reduction (dark-field signal), respectively.
The reference intensity measured with an open beam is given by the parameter b. The standard
DPC stepping curve model (equation 8.4) implicitly represents the polychromatic spectrum by
an effective X-ray energy. This approximation is reasonably accurate for weakly attenuating
samples that only slightly distort the incident X-ray spectrum. Since enhancing soft tissue
contrast is one of the main application cases for DPC imaging, this assumption is often justified.
The attenuation, differential phase and dark-field images (/i, Agi_;, €) are calculated by minimizing
the negative log-likelihood of the measured data:

—L (ﬁ, Ag, e) Z Zyl —yin(y;), (8.5)

i=1 r=1

where R is the number of stepping positions and y; denotes the number of photon counts mea-
sured for detector pixel ¢ and stepping position . Similarly to spectral imaging, this optimization
problem is separable with respect to the detector pixels. From the differential phase shift, the
gradient of the PED can be calculated:

Ag; =S (pitt = pl), (8.6)

where the sensitivity S represents the conversion factor between a PED difference and the
corresponding phase shift of the stepping curve. The higher the sensitivity, the larger the phase
shift for a given electron density difference between two neighboring pixels. Assuming that the
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sample is placed between the G1 and G2 grating (compare figure 8.1), the sensitivity is given

by [275]:
v red 1\ [ he\?
= (1-= .
- (-8) (&)

where 7, is the classical electron radius, d is the distance between the G1 and G2 grating, [
is the distance between the G1 grating and the object and ps is the period of the G2 grating.
The parameter a represents the effective pixel size (i.e. the detector pixel size divided by the
geometrical magnification of the setup) and Eg is the effective energy of the setup. In analogy
to attenuation-based imaging, it can be defined as [23]:

e _ (L HEORE)e MOV ()€ 2dE =
eff = Jo S HER(E)e OV (E)dE ,

(8.8)

where p(€) and V (€) represent the energy-dependent attenuation of the object and the energy-
dependent visibility of the interferometer, respectively. Assuming a known value of the PED at
the left and right edges of the detector (for simplicity we assume that the open beam hits the
edges of the detector, i.e. p! = pl¥ = 0), the PED for an arbitrary pixel can be calculated by
integration of the differential phase shifts:

i—1
b= A0, (8.9)
q=1
Alternatively, it would be possible to integrate starting from the right side of the detector:
' | V-1
pe=—5 ; Ay (8.10)

However, these integration strategies are suboptimal for our goal of providing an in-depth noise
analysis of all three imaging methods. The summation introduces a strong spatial dependency
of the PED variance, even for a homogeneous sample (i.e. a sample that produces the same
expected stepping curve measurements for each detector pixel). In this case, the variance of the
PED increases linearly from left to right or right to left (if using equation (8.9) or equation (8.10),
respectively). However, error propagation calculations show (see appendix) that the variance
remains constant (even for nonhomogeneous samples) if the electron density is calculated as the
average of both summation strategies:

i—1 N-1
o1
Pe= 35 qZIAqﬁq - ; Agq |- (8.11)

In the appendix, we show that the electron density variance is reduced by a factor of two when
compared to variance obtained using equation (8.9) or (8.10).

SDPC imaging can be viewed as a combination of spectral and DPC imaging. The spectral and
phase contrast information is used simultaneously by acquiring energy-resolved stepping curve
measurements. The expected number of photon counts ;* for detector pixel 4, stepping position
r and energy bin s can be modeled as:

g = / HEYRA(E)eMNEV=A2128) |1 4 v(£)e™ %) cos (,.(E) + Ags(€))| dE,  (8.12)
0

where d’ is the line integral of an artificial dark-field basis material (see [406] for a more de-
tailed explanation) and f¢(€) is the corresponding energy-dependency of the dark-field sig-
nal. Compared to the forward model of DPC imaging (equation 8.4), the polychromatic spec-
trum is taken into account and thus the visibility V (&), reference phase ¢,(£) and the phase
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shift A¢;(€) become energy-dependent. In a real experiment, all setup-dependent quantities
(t(€),R*(E),V(E), dr(E)) can depend on the spatial position and therefore on the detector pixel
index ¢. For simplicity and clarity, we have omitted this possible dependency in this section.
Similarly to DPC imaging, the phase shift depends on the gradient of the PED:

Agi(g) = =4 <1 - fi) (?)2 (Pt = pe) =S(E) (b = o) (8.13)

p2a

where S(€) is the energy-dependent sensitivity of the setup. The key idea behind connecting
spectral and DPC imaging and eliminating the PED as an additional optimization variable is
expressing the PED as the sum of the projected basis material electron densities:

= Alp) (My) + AbpY (My). (8.14)

Two basis materials images (ffl, ffg) and a dark-field (CZ;) image can be reconstructed by mini-
mizing the following negative log-likelihood function:

N

s
— L(Ay, Ay, d) =) >

i=1 s=1r=

R
Ars rsln ATS) (815)
1

As the forward model depends on the basis material thicknesses and their spatial gradients (via
the gradient of the PED), the log-likelihood cannot be optimized separately for each detector
pixel.

8.1.2 Noise analysis with the Cramér Rao lower bound (CRLB)

The CRLB is a powerful tool from estimation theory that predicts a lower bound for the variance
of an unbiased estimator. Given a parameter vector @, it can be shown that [97]:

C(a) - [F@)]'>o, (8.16)

i.e. the matrix C(a@) — [F(@)]~! is positive semidefinite. Here, C(@) is the covariance matrix of

a:

Cuw=E [(au — E(ay))(ay — E(av))] ) (8.17)

where E(-) denotes the expectation value. The Fisher information matrix F'(a) is the expectation
value of the curvature of the negative log-likelihood function:

F,=FE [— a%(a)} . (8.18)

0a,0ay,

From equation 8.16, a lower bound for the variance of the estimated parameters can be deduced:
Cuvw = 02(ay) > (F™ Y yu- (8.19)

Since the ML estimator is unbiased and achieves the CRLB in the limit of low noise levels, the
CRLB can be used to predict the noise levels for all three imaging methods under consideration.
As will be shown later, the CRLB is a good predictor of the noise levels for clinically realistic
photon statistics.

In the case of spectral imaging, the optimization problem is separable with respect to different
pixels. We therefore obtain N 2 x 2 (inverse) Fisher matrices. For simplicity, the dependency
on the pixel index i is suppressed in the following. As derived by Roessel and Herrmann [227],
the Fisher matrix is given by:

S ~ ~
1 0y° 0y°
Z: §° 0A, A, (8.20)
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where u,v € (1,2) are the basis material indices and

oy°
0A,

=— / b HEYRH(E)eMN(E)=A2L(E) 1 (£)dE . (8.21)
0

The elements of the Fisher matrix can be rewritten in a slightly more intuitive form:

S
~S £S £S r£s
Fuvzzy udvo u

s=1

1 0y°

7oA, (8.22)
where f2 is the weighted average attenuation caused by basis material u in energy bin s. The
weights for each energy bin are determined by the effective spectra (including object attenua-
tion). The lower bound for the variances of the basis material line integrals (see equation 8.19)
is then calculated using the analytical inversion formula for 2 x 2 matrices. From the variances
of the basis material thicknesses, the variance of the PED can be calculated by standard error
propagation:

o?(pe) = py (M1)?0% (A1) + ps (Ma)?0”(Az) + 2py (M1)py (Ma)Cov(Ay, Az), (8.23)

where the covariance of the two basis material thicknesses Cov(Aj, As) is estimated by (F~!)s.
Similarly to the derivation for spectral imaging [227], The Fisher matrix for DPC imaging can
be calculated as:

R AT AnT
Fo@=3 ~ 0 G (4 Ap0T (8.24)
uv @ 7T:1@raauaavj a = (K, y€) - .

Explicitly calculating the gradients leads to:

R (4r)° §"Qsin(¢5T) §Q cos(¢5)
F=) —|iQsin(¢) Q2sin?(¢°) Q2 sin(¢°™) cos(oe) | | (8.25)
=19 77 Q cos(¢¢) Q2 sin(¢T) cos(¢ef) Q%cos?(¢c)

where ¢ = ¢, — A¢ is the effective phase and Q = be #Ve™¢ is the expected intensity (be™*)
multiplied by the effective visibility (Ve ¢) of the stepping curve. We are particularly interested
in the lower bound for the variance of the differential phase shift 0?(A¢), as the PED is calculated
by integration of the differential phase shifts (compare equation 8.11). It is given by:

o*(Ag) > (F71),,. (8.26)

For standard phase stepping with R > 3 equidistantly distributed steps, the off-diagonal elements
Fyy, F5, Fi3, F31 vanish [279]. Moreover, numerical evaluations show that Fy3 and F3g are small
compared with the corresponding diagonal entries and vanish in the limit of R — oco. In this
case, a simple interpretation of the lower bound for 02(A¢) is possible:
2 1 — —e\2 -1
o*(A0) = 7 o |Rbe (Ve )?| (8.27)
Fy

i.e. 02(A¢) is inversely proportional to the number of phase steps, the average number of photon
counts per step and the effective visibility squared. The same result was obtained for a least-
squares estimator (instead of an ML estimator) [279]. By applying standard error propagation
techniques to equation 8.11, the variance of the PED can be calculated from the variance of the
differential phase shift:

1 N-1
= Do (Agy). (8.28)
q=1

For SDPC imaging, the optimization problem cannot be solved separately for each detector
pixel. Consequently, there are 3N optimization variables, which we summarize in the vector @ =



8 A theoretical framework for comparing noise characteristics of spectral, differential

. . . . 150
phase-contrast and spectral differential phase-contrast X-ray imaging

(A%, Ly AN AL AN dL déV)T The Fisher matrix has 3N x 3N entries that are calculated
similarly to the other two imaging methods:

T ) ) B 829)
v gl day, Oay '

However, most of the elements of the Fisher matrix are zero because the differential phase shift
only couples neighboring pixels. To write the partial derivatives of the forward model more
compactly, we define the following abbreviations:

0} (E) = HEYR (E)e HNEALE
BL(E) = V(E)e™t<®) cos (6,(€) + Agi(€)) (8.30)
W (E) = V(E)e % sin (¢,(€) + Ay (E))

The non-zero partial derivatives of the forward model (g/®) are given by:

ZA = / T () (14 BE) Sul®) + XN (ENSE)peM)E, we (1,2)
851{:” = - / T aHENIE)SEM)IE, e (1,2) (8.31)
8”1“5
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The Fisher matrix for SDPC imaging must be inverted numerically to calculate the CRLB.

8.1.3 Prediction of covariances and noise power spectra

In this section, we explain our approach for predicting covariances and noise power spectra for all
three imaging methods. Given an estimate of the covariances of the projected electron densities
between different pixels, the noise power spectrum (NPS) can be estimated as:

u=0 v=0

(u+l)

D), (8.32)

where k is the spatial frequency and j is the imaginary unit. In the appendix, we give a
quick derivation of this result. For spectral imaging, the material decomposition is conducted
separately for each pixel. This means that there are no noise correlations between different
pixels:

Cov (o, %) = 0,u # v, Cov (pt, pl') = o2(pt). (8.33)

For DPC imaging, the differential phase shifts are also uncorrelated. The covariance matrix of the
differential phase shifts C2? is thus a diagonal matrix with diagonal elements Cﬁ ¢ = a2(Agy).
However, the integration step that is necessary to obtain the projected electron densities (com-
pare equation 8.11) introduces noise correlations. Using error propagation, the covariance matrix
CPe for the projected electron densities can be calculated from the covariance of the differential
phase shifts:

Cc’ = BC*’BT, (8.34)

where B is the transformation matrix between phase shifts (Agg) and projected electron densities
(5.): ]
= B¢. (8.35)
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The entries of the matrix B can be deduced form equation 8.11. In the case of SDPC imaging,
we use the entries of the inverse Fisher matrix as an estimate for the covariances:

Cov(a®,a’) ~ F!, a= (A}, AN A} . AY d,...d")". (8.36)

Similarly to DPC imaging, the covariance matrix for the projected electron densities is calculated
as:
c’” =BF'BT [, =Ba. (8.37)

The entries of the transformation matrix B can be deduced from equation 8.14.

8.1.4 Numerical simulation

To compare the noise level of the projected electron densities for all three imaging methods and
to test the predictions of the noise analysis framework, we simulated a radiography measurement
of an homogeneous object. The X-ray beam had to penetrate 12 cm of soft tissue and 1 cm of
cortical bone, which corresponds to a PED of 12 cm-3.52-102 cm ™2 +1 cm - 5.95-10%% cm ™3 =
4.82-10%* cm~2. The aforementioned thicknesses could reflect typical path lengths for medical
imaging tasks (e.g. thorax radiography or head CT) . The simulated object had no internal
microstructure, i.e. it did not generate a dark-field signal. We assumed a tungsten X-ray
source and a PCD with a pixel size of 200 pm, a 2 mm thick cadmium telluride sensor and two
thresholds per pixel. As explained in the methods section, only one detector row (containing 400
pixels) was simulated. For DPC and SDPC imaging, a symmetric three-grating interferometer
(operated at the first fractional Talbot order) was inserted into the beam path. The attenuation
gratings (GO and G2) were assumed to be made of gold with a grating height of 200 um. The
G1 grating was assumed to be made of nickel and to induce a phase shift of 7/2 for the design
energy. Although the duty cycle of the gratings influences the noise level [414], it was kept fixed
at its standard value (0.5) in this simulation study in order to reduce the number of possible
acquisition parameter combinations. The total length of the simulated setup was 2.4 m and the
object was placed between G1 and G2 (40 cm away from G1). Figure 8.1 shows an overview
of the setup geometry that was kept fixed for all three imaging methods. All other imaging

d=120 cm
GO 12cmoftissue Gl object G2
1 1 cm of bone I 1
. I \In I I
| | |
source _ ‘ - .
120 cm |=40cm 80 cm detector
GO0: Gold-grating G1: Nickel-grating G2: Gold-grating
Height: 200.0 um Height: variable Height: 200.0 um

Figure 8.1: Overview of the setup geometry that is kept fixed for all three imaging methods.
The three gratings are removed for spectral imaging.

parameters (acceleration voltage, threshold positions and design energy of the interferometer)
were optimized individually for each imaging method (if applicable). For all three imaging
methods, the low threshold of the PCD was kept fixed at 15 keV. The position of the high
threshold was optimized for SDPC and spectral imaging while only one threshold (at 15 keV)
was used for DPC imaging. For DPC and SDPC imaging, the design energy was tuned by
changing the height of the phase shifting grating as well as the grating periods. Changing the
grating periods is necessary to keep the first fractional Talbot distance at the detector position.
Stepping curves (using 5 steps equally distributed between 0 and 27) were simulated with a
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wave-optical simulation package based on Fresnel propagation and the projection approximation
(see chapter 3). For all three imaging methods, the variable setup parameters were optimized
by minimizing the variance of the PED predicted by the CRLB while keeping the dose to the
object constant (1 mGy). The dose was estimated based on an empirical model that was fitted
to Monte-Carlo simulations [363]. Since the GO and G1 gratings are placed between the source
and the object, they only influence the (spectral) photon flux incident on the object. The G2
grating, however, attenuates photons that have (potentially) contributed to the dose delivered
to the object because it is placed between the object and the detector.

8.2 Results

The method for finding the optimum setup parameters is illustrated in figure 8.2 (a) and (b).
Figure 8.2 (a) shows a contour plot of the predicted PED variance for SDPC imaging (at the
optimum threshold position) as a function of the acceleration voltage and the design energy.
As demonstrated in the last section, the PED for the simulated decomposition task is on the
order of 10%* cm™2, while the corresponding standard deviations are approximately two orders
of magnitude lower. This explains the larger numerical values for the PED variances of up to
1046 ¢cm™*. The minimum variance is achieved for an acceleration voltage of 140 kVp and a
design energy of 60 keV. As the acceleration voltage is decreased, the optimum design energy
also decreases. Figure 8.2 (b) shows a similar contour plot for DPC imaging. In comparison
with SDPC imaging, the optimum acceleration voltage is much lower (for this particular decom-
position task). However, similarly to SDPC imaging, the optimum design energy is positively
correlated with the acceleration voltage. This behavior is reasonable because a large part of the
spectrum should be concentrated around the design energy of the interferometer for optimum
performance. Table 8.1 shows the optimum setup parameters as well as the minimum PED
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Figure 8.2: (a): Contour plot of the predicted projected electron density (PED) variance (at the
optimum threshold position) for SDPC imaging as a function of the acceleration voltage and the
design energy. (b): Predicted PED variance for DPC imaging as a function of the acceleration
voltage and the design energy.

variances for all three imaging methods. Interestingly, the optimum setup parameters for SDPC
imaging are very similar to those for spectral imaging, while DPC imaging favors a considerably
lower acceleration voltage (60 kVp) and design energy (44 keV). A possible explanation for
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Table 8.1: Optimum imaging parameters and PED wvariances for spectral, DPC and SDPC
imaging. The optimum parameters were determined by minimizing the PED variance predicted

by the CRLB while keeping the dose to the object constant (1 mGy).

optimization range optimum parameters
spectral DPC SDPC
acceleration voltage [kVp] 40 — 140 140 60 140
high threshold [keV] 15 — 140 63 - 65
design energy [keV] 20 — 70 - 44 60
G2 grating period [pum] 9.22 —17.25 - 11.63 9.96
min. PED variance [cm %] 1.77-10% | 3.82-10% | 3.04 - 10*

these results can be found by looking at figure 8.3, which shows the energy-dependent visibility
as well as the effective spectra for DPC and SDPC imaging with optimum setup parameters.
The effective spectrum includes the source spectrum, the attenuation of the gratings and the
detector response. Kottler et. al [401] demonstrated that a grating interferometer with a 7/2
phase shifting grating (G1) exhibits a second visibility peak at twice the design energy. The
second important factor that influences the visibility is the attenuation of the gold gratings. In
the range from 60 — 80keV, the gold gratings become increasingly transparent, but for energies
above the K-edge of gold (80.7keV), the attenuation of the gratings and thus also the visibility
rises sharply. In the case of DPC imaging, a lower effective energy (see equation 8.8) is preferable
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Figure 8.3: Energy-dependent visibilities and effective spectra for DPC (a) and SDPC (b) imag-
ing using the optimum acquisition parameters given in table 8.1.

because it increases the sensitivity of the setup (compare equation 8.6). In other words, a fixed
gradient of the PED causes a larger phase shift for lower effective energies. Since the spatial
resolution and the setup geometry are fixed for our simulation, the sensitivity can only be tuned
via the design energy and the effective energy. The acceleration voltage (60 kVp) is matched
to the design energy (44 keV) so that a large fraction of the effective spectrum is concentrated
around the visibility peak. Achieving a high visibility is important because for DPC imaging,
the variance of the PED is proportional to the visibility squared (compare equation 8.27). The
comparatively high acceleration voltage (140 kVp) for SDPC imaging leads to a decreased sen-
sitivity compared with DPC imaging. However, this decrease in sensitivity is compensated by
the improved performance of spectral imaging at higher acceleration voltages. Moreover, the
decrease in sensitivity and visibility compared with DPC imaging is less pronounced for the
low energy bin. Due to the higher acceleration voltage, the optimum design energy for SDPC
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imaging is considerably larger (60 keV). Consequently, the visibility peak for low energies is
reduced compared with DPC imaging. On the other hand, the visibility for energies larger than
the K-edge of Gold (80.7keV) is increased.
The predicted PED variances show that for this particular imaging task, SDPC imaging can
achieve considerably lower noise levels compared with spectral and DPC imaging (variance re-
duction by a factor of 5.8 and 12.6. respectively). It is important to note that for DPC imaging,
the variance depends approximately linearly on the number of pixels in one detector row. This
behavior is caused by the integration that is required to convert the differential phase shifts to
a PED profile (see equation 8.11). For SDPC imaging, the PED variance only depends very
weakly on the number of pixels. The reason for this weak dependence will be explained later
when we analyze the noise correlations for all three imaging methods.

We conducted numerical experiments with 100 different dose levels ranging from 0.001 to
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Figure 8.4: Experimentally obtained PED variances (dots) and theoretical predictions (solid
lines) for all three imaging methods as a function of the dose level.

10 mGy in order to test if the ML-based estimators achieves the predicted PED variances. For
these experiments, we reduced the detector size to 100 pixels to reduce the computational time.
For each dose level and imaging method, 10,000 different noise realizations were simulated and
the ML-based estimators (compare equations 8.2,8.5,8.15), were used to calculate the PED.
Figure 8.4 shows the experimentally achieved PED variances (dots) together with the variances
predicted by the CRLB (solid lines) for all three imaging methods. All estimators achieve the
CRLB for a large range of dose levels (= 0.1 — 10 mGy). For lower dose levels, deviations from
the CRLB are observable, especially for DPC and SDPC imaging. In the case of DPC imaging,
a similar dependency of the variance on the dose level (or photon statistics) has been reported
for a Fourier-based estimator [391]. In this simulation, DPC imaging achieves a lower variance
than spectral imaging because of the reduced detector size. However, the main goal of this
simulation was to test the predictions of the noise analysis framework rather than comparing
the performance of the three imaging methods.

It has already been pointed out that the integration step for DPC imaging causes long-range
correlations between the PED values for one detector row. Consequently, the NPS for DPC
imaging is dominated by low frequencies. In the case of spectral imaging, the basis material
line integrals can be determined separately for each detector pixel and thus the PED values
determined by spectral imaging are uncorrelated (at least for an ideal PCD). Therefore, the
noise power should be equally distributed between all frequencies (“white noise”). Since SDPC
imaging is a combination of both aforementioned imaging methods, it could be expected that
the NPS for SDPC imaging is a mixture between the noise power spectra for the other two
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imaging methods. In section 8.1.3, we have presented a framework for predicting the PED
covariances as well as the noise power spectra for all three imaging methods. We conducted
another numerical experiment to verify the predicted covariances and noise power spectra. In
this simulation, the dose was fixed at 1 mGy and the original detector size (400 pixels) was
used. For each of the three imaging methods, 50,000 different noise realizations were simulated
and the PEDs were calculated separately for each noise realization. Figure 8.5 (a) shows the ex-
perimentally calculated normalized covariances (dots) together with the theoretical predictions
(solid lines) for all three imaging methods. More precisely, the covariances between the PED
for the central detector pixel (i.e. pixel index 200) and the PEDs of all other pixels is shown.
In figure 8.5 (b), the experimentally obtained noise power spectra are plotted together with the
theoretical predictions. We used equation 8.42 for the experimental calculation of the NPS.
For both the covariances and the noise power spectra, the theoretical predictions are in good
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Figure 8.5: (a): Experimentally calculated normalized covariances between the central detector
pixel and the other pixels (dots) together with the theoretical predictions (solid lines). (b):
Noise power spectra for all three imaging methods obtained in the numerical experiment (dots)
and the corresponding theoretical predictions (solid lines).

agreement with the experimentally obtained values. As expected, the covariance of the PED
between two different detector pixels is zero for spectral imaging. For DPC imaging, the covari-
ance decreases linearly with the distance from the central detector pixel until it drops to zero at
the edges of the detector (not shown in figure 8.5 (a)). This reflects the well-known long-range
noise correlations introduced by the integration step. In the case of SDPC imaging, however, the
covariance rapidly drops to zero with increasing distance from the central pixel. For the imaging
parameters given in table 8.1, almost no noise correlations are observable if the distance to the
central pixel is larger than approximately 25 pixels. Compared to DPC imaging, the additional
spectral information eliminates long-range noise correlations. On the other hand, it could be
argued that compared with spectral imaging, the additional phase shift term for SDPC imaging
couples the PED values of neighboring pixels and thus introduces local noise correlations. The
covariance graph for SDPC imaging explains the aforementioned weak dependence of the PED
variance on the number of detector pixels. Contrary to DPC imaging, the covariance rapidly
decreases with the distance between two pixels and thus the assumption of fixed, known PED
values at the edges of the detector does not influence the noise level (except for pixels close to
the edges). The different noise correlations for the three imaging methods are also reflected in
the different noise power spectra. As expected, the noise power is independent of the frequency
for spectral imaging, whereas the noise power for DPC imaging increases drastically for lower
spatial frequencies. For high frequencies, the noise power spectrum for SDPC imaging is similar
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to DPC imaging. For low frequencies, however, the noise power does not increase but converges
to a constant value that lies slightly above the noise power graph for spectral imaging. The
higher noise power for SDPC imaging in the low frequency area can be explained by the atten-
uation of the G2-grating, which removes a part of the X-ray beam that has contributed to the
dose delivered to the object.

In our simulation study, we assumed a fixed total length of the setup and a symmetric grating
interferometer that operates in the first fractional Talbot distance. Given these conditions, the
effective pixel size is the most important tuning factor for the sensitivity of a DPC or SDPC
imaging setup (compare equation 8.7 and 8.13). Since the PED variance strongly depends on the
sensitivity, we investigated the theoretically predicted performance of all three imaging methods
as a function of the effective pixel size. For each pixel size, the optimum imaging parameters
were determined with the noise analysis framework presented in the methods section. Figure
8.6 (a) shows the predicted PED variances as a function of the effective pixel size. For visual-
ization purposes, the number of photon counts per pixel (instead of the dose delivered to the
object) was kept constant. This means that the dose delivered to the object was chosen inversely
proportional to the squared effective pixel size (i.e. the effective pixel area). If the dose was
kept constant, the PED variances would have to be multiplied by an additional factor that is
inversely proportional to the effective pixel area for all three imaging methods. Under these
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Figure 8.6: (a): Minimum PED variances for all three imaging methods as a function of the
effective pixel size. For visualization purposes, the number of photon counts per pixel (instead
of the dose delivered to the object) was kept constant.

(b): PED variances with standard resolution and imaging parameters (see table 8.1) as a function
of the visibility. For this experiment, the energy-dependent visibilities (see figure 8.3) were
multiplied by a visibility reduction factor m (0 < m < 1) to simulate a decreased visibility due
to experimental effects.

conditions, the PED variance for spectral imaging is independent of the pixel size. In the case of
DPC imaging, the variance is proportional to the squared effective pixel size, which reflects the
well-known sensitivity-dependent noise level for DPC imaging (compare also equation 8.28). For
large effective pixel sizes (a > 4 mm), the PED variance for SDPC imaging is almost constant
and approximately twice as large as the variance for spectral imaging. It coincides with the PED
variance one would obtain if spectral imaging was performed with the “unnecessary” grating
interferometer inserted into the beam path (see dashed line in figure 8.6 (a)). It follows that
for larger pixel sizes (or low sensitivities), the additional information on the basis material line
integrals provided by the phase shift of the stepping curve can be neglected compared to the
spectral information. Consequently, SDPC imaging reduces to spectral imaging in the limit of
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large effective pixel sizes. For this particular imaging task, SDPC imaging and spectral imaging
have equal PED variances for an effective pixel size of a = 950 um. At this point, the benefit
of the additional phase shift information is counterbalanced by the reduced photon statistics
caused by the attenuation of the G2 grating. For very small pixel sizes (a < 10 pm), the SDPC
variances almost coincide with the DPC variances. In this case, SDPC imaging reduces to DPC
imaging because the spectral information provides little additional value for determining the
PED in comparison to the phase shift of the stepping curve. In the area between these limiting
cases (10 um < a < 950 pm), the SDPC variance lies below both the spectral and the DPC
variance because both the spectral and the phase shift information are relevant for determining
the PED. The largest variance reduction (by a factor of 8.8) compared to both DPC and spectral
imaging is achieved for the point of equal variance of spectral and DPC imaging (a = 90 um). At
this point, the spectral and the phase shift information are of equal importance for determining
the PED.

It is important to note that the predicted PED variance only depends on the geometrical imaging
parameters (pixel size, object position, grating distances, grating periods) via the sensitivity.
Consequently, similar trends for the PED variances could have been observed by varying ge-
ometrical parameters other than the pixel size. However, increasing the sensitivity via these
geometrical parameters also increases the phase shift of the stepping curve that a given sample
causes (via the gradient of the PED). For DPC imaging, this might lead to additional phase
wrapping artifacts. As will be discussed in the next section, phase wrapping artifacts can in
theory be avoided for SDPC imaging.

The number of detector pixels (N = 400) was kept constant in this analysis of the noise char-
acteristics. This means that the field of view decreases with decreasing effective pixel size a. If
the field of view was kept constant, the total number of detector pixels would have to be scaled
by 1/a. As discussed in the results section, increasing the number of detector pixels would have
an adverse effect on the PED variance for DPC imaging, but the influence on SDPC imaging
would be negligible as long as the spectral information prevents long-range noise correlations.
In a real experiment, various undesirable effects (e.g. vibrations, grating imperfections) could
cause a reduced visibility of the stepping curves compared with the simulations. Moreover,
we have assumed that the object does not generate a dark-field signal which would also re-
duce the effective visibility. We therefore investigated the influence of a visibility reduction on
the PED variance for SDPC and DPC imaging. For this study, the imaging parameters were
kept fixed at their optimum values (compare table 8.1). We simulated a visibility reduction
by multiplying the energy-dependent visibilities (compare figure 8.3) with a visibility reduction
parameter m (0 < m < 1). Figure 8.6 (b) shows the predicted PED variances for SDPC and
DPC imaging as a function of the visibility reduction parameter. For comparison, the variances
for spectral imaging with and without the interferometer in the beam path are also plotted as
constant lines. As expected, the variance for DPC imaging rises rapidly with decreasing vis-
ibility (02(pe) o (V€76)72, compare equation 8.27). In the case of SDPC imaging, however,
the variances rises much more slowly with decreasing visibility (approximately proportionally to
(Veff)fl) before it approaches a constant value for low visibilities. This is reasonable because
in the limit of low visibilities, SDPC imaging effectively reduces to spectral imaging (with the
gratings in the beam path). For m = 0.15, the variances for SDPC imaging and spectral imaging
are equal. This means that for this particular reconstruction task, the visibility can be reduced
by a factor of 1/m = 6.7 compared with the idealized simulation before the attenuation of the
G2 grating outweighs the variance reduction achieved by the additional phase shift information.

8.3 Discussion

A quantitative comparison between conventional attenuation imaging and DPC imaging is dif-
ficult because of the different underlying contrast generating mechanisms for these two imaging
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methods. For example, a contrast-to-noise ratio comparison [15, 16] is complicated because the
differences in contrast for the two imaging methods depends on the choice of the investigated
materials. Moreover, depending on the setup parameters, the contrast between different ma-
terials can vanish completely for both imaging methods. For this reason, we concentrated on
electron density images, which can be calculated with all three imaging methods (spectral, DPC
and SDPC imaging) under consideration in this comparison study. Nevertheless, the presented
noise analysis framework can also be used to determine the optimum acquisition parameters
for other imaging tasks, such as dark-field imaging or basis material decomposition. Although
we have focused on projection imaging, the noise analysis framework could be generalized to
computed tomography imaging (e.g. by using error propagation for the filtered backprojection
[415]).

For the investigated imaging task, our analysis predicts highly reduced noise levels for SDPC
imaging in comparison to both DPC imaging and spectral imaging. To achieve a fair compar-
ison, the imaging parameters were optimized individually for each of the three methods. For
a large range of clinically realistic dose levels, the ML-based estimators achieve the predicted
noise levels for all three imaging methods. The validity of the predicted covariances and noise
power spectra was confirmed by additional numerical simulations. Our analysis focused on the
projected electron density, but earlier studies have shown that the noise advantage of SDPC
imaging compared to spectral imaging is also transferred to the basis material images [406].
In our study, DPC imaging only outperforms spectral imaging for comparatively high spatial
resolutions (a < 90 pum), however this conclusion does not apply to SDPC imaging. For a large
range of clinically relevant effective pixel sizes (up to 950 pm), SDPC imaging theoretically out-
performs the other two imaging methods by simultaneously using both the spectral and phase
contrast information. Although we have only considered one imaging scenario in this work, the
general trends should apply to a large range of imaging tasks. Nevertheless, the location of the
break-even points between the three imaging methods will vary depending on the object size
and the chemical composition. In a real experiment, both grating imperfections and ultra-small
angle scattering by the object (i.e. nonzero dark-field signals) could reduce the visibility of the
stepping curves compared to our simulations. The noise reduction for SDPC imaging compared
to spectral imaging will thus be smaller than theoretically predicted. Nonetheless, because of
the large theoretical noise reduction factors, we believe that SDPC imaging can also outperform
the other two imaging methods in real experiments. Moreover, the noise level for SDPC imaging
increases less rapidly with decreasing visibility compared with DPC imaging (see figure 8.6 (b)).
Regardless of the potential for noise reduction, the combination of spectral and phase-contrast
imaging provides additional information that is inaccessible with the individual imaging meth-
ods. Compared with spectral imaging, the dark-field image yields additional information about
the object’s microstructure and, compared with DPC imaging, two basis material images can
be calculated and beam hardening artifacts in all three imaging channels can be corrected.
Raupach and Flohr [416] state that the noise correlations for DPC imaging are disadvantageous
for clinical diagnosis. They argue that the dominance of low frequencies in the NPS is un-
favourable for recognizing structures. Furthermore, because of the low-frequency noise, reducing
the noise level by pixel binning is less effective compared with conventional attenuation-based
imaging. In general, these arguments do not apply to SDPC imaging because of the funda-
mentally different noise correlations compared to DPC imaging. An exception is the limit of
very small pixel sizes (or high sensitivities), where SDPC imaging effectively converges to DPC
imaging. In our study, the influence of the spectral information causes a rapid decrease of the
covariance between two pixels with increasing distance. Consequently, there is no excessive low
frequency noise. Furthermore, Raupach and Flohr [391] argue that - contrary to conventional
attenuation imaging - there is a dose limit for DPC imaging below which no meaningful signals
can be extracted. The interferometric measurement acquisition process only allows unique de-
termination of the phase shift of the stepping curve across a 27 interval. Larger phase shifts are
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wrapped back into this interval. According to Raupach and Flohr, statistical phase wrapping
leads to a loss of the phase shift information for low dose levels. More precisely, the average
extracted phase shift is biased to zero, regardless of the underlying physical phase shift if a
standard averaging procedure is used. As a result of the additional spectral information when
compared to DPC imaging, the calculated phase shift is not restricted to a 27 interval for SDPC
imaging. Qualitatively speaking, the spectral information determines in which 27 interval the
phase shift lies (via the PED profile) and the exact value is fine-tuned by the stepping curve
information. In principle, there is thus no information loss through statistical phase wrapping.
However, it has been shown that the log-likelihood function for SDPC imaging has local optima
that can be explained by an analogy to the phase wrapping problem for DPC imaging [406].
Although we could avoid the convergence to local optima in previous simulation studies by
choosing a suitable initial guess, this strategy is likely to fail at extremely low dose levels. Nev-
ertheless, the convergence to local optima is an optimization problem rather than a fundamental
restriction of SDPC imaging because it could in principle be avoided with a global optimization
strategy (or by incorporating prior information in the form of a regularization term).

8.4 Conclusion

In this work, we have developed a noise analysis framework that allows the calculation of
(co-) variances and noise power spectra for spectral, DPC and SDPC imaging. An impor-
tant practical application of this framework is finding the optimum imaging parameters for all
three methods. Our analysis shows that the combination of spectral and phase-contrast imag-
ing is a promising imaging technique with various advantages compared with the individual
methods. SDPC imaging provides additional information compared with both spectral imaging
(dark-field image) and DPC imaging (basis material images). Moreover, we demonstrated that
SDPC imaging enables a strong noise (or dose) reduction compared with the other two imag-
ing methods for a large range of clinically relevant pixel sizes. Finally, the additional spectral
information compared to DPC imaging eliminates excessive low-frequency noise, which can be
a major drawback of DPC imaging, especially in projection space.

8.5 Appendix

8.5.1 Noise propagation for the integration step in DPC imaging

Applying standard error propagation techniques to equation 8.9, the variance of the PED for a
certain pixel (02(p.)) can be calculated:

2(pk) SQZJ (Agy), (8.38)

where 0%(A¢,) is the variance of the differential phase shift (which can be calculated using the
CRLB). In the special case of a homogeneous sample (i.e. 02(Ag,) = const. = o%(A¢) Vq), the
average variance of the electron density O’avg (pe) can be calculated as:
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The pixels with index 1 and N are excluded from the average variance calculation because it
was assumed that the PED is known with certainty at the edges of the detector. The same
result is obtained if the integration from right to left (equation 8.10) is considered. If the left-
and right-integrated PED profiles are averaged (see equation 8.11), the variance of the PED is
given by:

1 1
o*(0l) = {52 Zo (Agq) + 3 0*(A0) | = 73 3 o%(Ad,). (8.40)

As can be seen from equation 8.40, the variance of the electron density is independent of the de-
tector pixel index. Consequently, the variance is spatially constant, even for a nonhomogeneous
sample. In the special case of a homogeneous sample, Ugvg (pe) is given by:

N-1
;MeaN2Z;f% (V= 1e*(89). (8.41)

Comparing equation (8.40) and (8.39), it follows that (in the case of a homogeneous sample) the
average variance is reduced by a factor of two when averaging left- and right-integrated electron
density profiles.

8.5.2 Calculating the noise power spectrum from the covariances

In this section, we derive how the noise power spectrum (NPS) can be calculated from an
estimate of the covariances (compare equation 8.32). For a homogeneous object, the NPS can
be calculated as [417]:

NPS(k) = E [|F(@o(@)P] pe(w) = pel) = Elpe()), (8.42)

where k is the spatial frequency and pe(z) is the offset-corrected PED as a function of the spatial
coordinate x. In discrete form, the NPS is given by:

2

[ v=1 N-1
NPS(k) = 6_27‘7 q+1 = F e—27rj Q+1 (Z €+27rj— —(u+1)>
L q=0 q=0
(N—1nN-1 g N—1N-1 o
- F Z Z e27J plat) plutD) 2T [péq+1)pgu+1)] .
_q:O u=0 q=0 u=0

(8.43)

Since E [ 5L+t S‘*”} = Cov (p.qurl),p.(guH)), the result of equation 8.32 is obtained.
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The theoretical noise analysis that was conducted in the last chapter has demonstrated that
SDPC radiography potentially enables a strong noise (or dose) reduction for a large range of
clinically relevant parameters. Since image reconstruction via FBP is a linear operation, it
could be expected that the same findings apply to 3D CT reconstruction. In this chapter, we
extend our approach for projection-based SDPC imaging to CT reconstruction. Motivated by
the benefits for spectral imaging (see chapter 6), we focus on the development of a one-step SIR
algorithm for SDPC CT. A major obstacle for the translation of grating-based DPC imaging
to clinical CT applications is the phase stepping procedure. In the case of a conventional FBP
reconstruction, at least three different phase steps (i.e. positions on the stepping curve) would
have to be recorded for each angle by shifting one of the gratings. This procedure is both
time consuming and incompatible with a continuously rotating gantry. Numerical simulations
demonstrate the possibility of eliminating the phase stepping procedure by using the one-step
SIR approach for SDPC imaging (SDPC-SIR). Moreover, our investigations indicate that the
SDPC-SIR algorithm enables CT acquisitions with strongly reduced dose levels compared with
both conventional spectral imaging and SDPC-FBP reconstruction. However, more realistic
numerical simulations as well as experimental measurements will be necessary to confirm these
preliminary findings.

The text in this chapter is partly based on the following publication of the author:

e Mechlem, Korbinian, et al. “Statistical iterative reconstruction for spectral phase con-
trast CT.” 15th International Meeting on Fully Three-Dimensional Image Reconstruction
in Radiology and Nuclear Medicine. Vol. 11072. International Society for Optics and
Photonics, 2019.

0.1 Methods

9.1.1 Forward model and CT reconstruction

The most straightforward approach for extending the projection-based SDPC imaging method
that was presented in chapter 7 to CT reconstruction is depicted in figure 9.1. Each angular
view is processed individually with the proposed projection-based decomposition algorithm and
then the three volumes are reconstructed separately (via FBP or SIR):

i1 = RECO (ffl) . 1fis = RECO (A’l) , &=RECO (J) , (9.1)

where 11, my and € denote the volume fractions for the two attenuation basis materials and the
dark-field basis material, respectively. The quantities A'l, Ay and J; represent the corresponding
basis material sinograms and RECO (-) is an image reconstruction operator. Alternatively,
image reconstruction and material decomposition can be performed jointly in a one-step SIR
framework. This is accomplished by a forward model that directly connects the (expected)
spectral stepping curve measurements and the three basis material volumes. As discussed in
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Figure 9.1: Two-step approach for SDPC CT reconstruction. First, the three basis material
sinograms are calculated by processing each angular view independently with the projection-
based decomposition algorithm that was discussed in chapter 7. In a second step, the three
basis material volumes are reconstructed by applying standard image reconstruction techniques
(FBP, SIR).

chapter 7, the expected number of photon counts g;® for sinogram index 4, stepping position r
and energy bin s of the photon-counting detector can be modeled by:

bt = / S(E)R*(B)e™ 1B AR5 [1 4 v (B)e™ P cos (97(E) + Agi(E))| dE. (9.2)
0

The key modification compared to the projection-based approach is calculating the basis material
line integrals by a forward projection with system matrix a:

Al = Zawml, Zammg, di = Zam , (9.3)

J

where j is the voxel index. The phase shift A¢(FE) is proportional to the gradient of the projected
electron density pe(z,y) perpendicular to the grating bars:

q 0
A¢i(E) = ﬁ&ﬁé(%‘,yi)y (9.4)
where ¢ is a proportionality factor depending on natural constants and the interferometer prop-
erties (compare eq. 7.10). The spatial coordinates for sinogram in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>