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Abstract

This dissertation is motivated by the growing demand for the safety of Human-Robot
Collaboration (HRC) applications. Different from the isolation-based safety regulations
for the conventional robot platforms, HRC requires a more flexible and adaptive safety
mechanism to tolerate the threats to the coexistence of humans and robots. For example,
a human-robot collision is not necessarily recognized as dangerous to humans but should
be handled according to its effects. This motivates the studies on collision handling, an
important aspect of safe HRC. In this dissertation, we propose a novel framework for
safe HRC which focuses on implementing a reliable collision handling pipeline. Different
from the conventional work, the proposed framework fills the gap towards robust safe
HRC in uncertain environments, with partial measurement, incomplete signals, hard
constraints, and external disturbances. Firstly, we propose a novel integral sliding mode
observer to precisely estimate the collision forces, for which we eliminate the conventional
restricted assumptions, including the requirement of velocity measurement, the system
continuity, and the boundedness of disturbance derivatives. Secondly, we develop a novel
online collision detection and identification scheme for robot manipulators to rapidly
detect a collision and identify its type with incomplete signals. We use supervised
learning methods to develop a collision classifier and use the Bayesian decision theory
to improve its accuracy for incomplete collision signals. Thirdly, we design a robust
safe controller with adaptive parameters for robot manipulators. The controller ensures
precise tracking of the desired trajectory with external disturbances. It also avoids
collisions by restricting the robot motion within predefined hard safety constraints. The
effectiveness and applicability of the proposed methods have been validated by simulation
and experiments on robot manipulators.

Although intended for robot manipulators, the proposed HRC safety paradigm is
targeted to a step forward towards a generic safe HRC framework for various robot
platforms. Especially, collision handling is required to be accurate, responsive, and re-
liable even in uncertain environments. In theory, this dissertation solves several critical
problems concerned with environmental uncertainties based on rigorous mathematical
paradigms, which is hardly discussed in previous work. In practice, experimental vali-
dations reveal that the proposed methods show great potential to solve important engi-
neering problems. Thus, the work in this dissertation does not only provide a theoretic
framework for reliable HRC in uncertain environments but also shows great potential in
practical applications. Moreover, the proposed safety paradigm provides a new perspec-
tive to view and implement safe HRC by combining various methodologies in different
research fields, including observation theory, machine learning, Bayesian inference, and
control theory.
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Zusammenfassung

Die Motivation dieser Dissertation stellt die wachsende Nachfrage nach Sicherheit in
Mensch-Roboter Kollaboration (MRK) -Anwendungen dar. Im Gegensatz zu den herkö-
mmlichen Sicherheitsbestimmungen für Roboterplattformen, die sich durch strikte Ab-
grenzung vom Menschen auszeichnen, erfordert MRK einen flexibleren und anpassungsfä-
higeren Sicherheitsmechanismus, welcher eine direkte Zusammenarbeit von Menschen
und Robotern erlaubt. Beispielsweise stellt nicht jeder physische Kontakt von Mensch
und Maschine zwangsläufig eine direkte Bedrohung für den Menschen dar, sondern sollte
unter Berücksichtigung seiner Auswirkungen auf den Menschen entsprechend ausgew-
ertet werden, woraus sich die Forschungsfrage der Kollisionsauswertung ergibt. In dieser
Dissertation schlagen wir ein neuartiges Entwicklungsframework für sicheres MRK vor,
das sich auf eine zuverlässige Pipeline für die Kollisionsbehandlung konzentriert und auf
der Zusammenfassung der konventionellen MRK -Paradigmen in verwandten Arbeiten
basiert. Anders als bei herkömmlichen Arbeiten füllt das vorgeschlagene Framework
die Lücke zu robusten sicheren Objekten für unsichere Umgebungen mit Teilmessungen,
unvollständigen Signalen, harten Einschränkungen und externen Störungen. Erstens
schlagen wir eine neuartige Methode zur Schätzung externer Störungen unter Verwen-
dung eines integrierten Sliding-Mode Beobachters vor, um die Kollisionskräfte präzise
abzuschätzen. Wir eliminieren die herkömmlich verwendeten Annahmen, nämlich Gesch-
windigkeitsmessung, Systemkontinuität und Begrenzung der Störungsableitung. Zweit-
ens wird ein neuartiges Online-Schema für Robotermanipulatoren entwickelt, um eine
Kollision schnell zu erkennen und ihren Typ mit unvollständigen Signalen zu iden-
tifizieren. Ein Kollisionsklassifikator wird unter Verwendung von überwachten Lern-
methoden entwickelt. Zudem wird die Bayes’sche Entscheidungstheorie verwendet, um
die Genauigkeit des Kollisionsklassifikators bei unvollständigen Kollisionssignalen zu
verbessern. Drittens entwickeln wir auch eine robuste sichere Regelungsmethode mit
adaptiven Parametern für Robotermanipulatoren. Der Regler gewährleistet eine präzise
Verfolgung der Solltrajektorie bei externen Störungen. Er vermeidet auch Kollisionen,
indem er die Roboterbewegung innerhalb vordefinierter harter Sicherheitsbedingungen
einschränkt. Die Wirksamkeit und Anwendbarkeit der vorgeschlagenen Methoden wur-
den durch Simulationen und Experimente an Robotermanipulatoren validiert.

Obwohl ursprünglich für Robotermanipulatoren gedacht, zielt das vorgeschlagene Sich-
erheitsparadigma MRK auf einen Fortschritt hin zu einem generischen sicheren MRK
-Framework für verschiedene Roboterplattformen mit präziser, reaktionsschneller und
zuverlässiger Kollisionsbehandlung in unsicheren Umgebungen ab. Aus theoretischer
Sicht lösen wir mehrere kritische Probleme mit Umweltunsicherheiten, auf der Grund-
lage strenger mathematischer Paradigmen, was in vorherigen Arbeiten kaum behandelt
wurde. Aus praktischer Sicht bestätigt die gute Leistung der vorgeschlagenen Meth-
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oden, die sich aus Simulations- und Versuchsergebnissen ergibt, die Anwendbarkeit
des vorgeschlagenen Sicherheitsparadigmas in der Praxis. Somit bietet die Arbeit in
dieser Dissertation nicht nur einen theoretischen Rahmen für zuverlässige MRK in un-
sicheren Umgebungen, sondern zeigt auch ein großes Potential in praktischen Anwendun-
gen. Durch die Kombination der Methoden in verschiedenen Forschungsbereichen, ein-
schließlich Beobachtungstheorie, maschinellem Lernen, Bayes’scher Inferenz und Steueru-
ngstheorie, bietet das in dieser Dissertation vorgestellte Sicherheitsparadigma eine neue
Perspektive für die Betrachtung und Implementierung von safe MRK.
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Ȧ Time derivative of matrix A
λiA The i-th eigenvalue of matrix A
λmin(A) The minimal eigenvalue of matrix A
λmax(A) The maximal eigenvalue of matrix A
σ(A) The singular value of matrix
‖A‖ The 2-norm of matrix A
A> Transpose of matrix A
Ai,j The i-th row and j-th column element of matrix A
LA The Cholesky decomposition of matrix A

C Complex numbers

xxiii



Symbols

|C| Amplitude of complex number C
φ(C) Phase angle of complex number C

xxiv



1 Introduction

In recent years, robots are swarming into human society and people’s daily lives, thanks
to the rapid progress in computer science, mechanical manufacturing, and communi-
cation technology. They have been widely applied to various jobs with tedious tasks,
repeated procedures, or hazardous environmental conditions. In the meantime, hu-
manoid robots with service or performance purposes are widely applied in tourist spots,
airports, stations, and even restaurants to serve the visiting people. The advantages
of the robots, including fast speed, high precision, low uncertainty, and long durability,
satisfy the growing demands for precise and standardized services. Different from the
conventional industrial-oriented robot platforms that are isolated from humans, the new
generation of robots are required to share the same workspace with and conduct interac-
tive tasks with humans, which motivates the development of Human-Robot Interaction
(HRI) technology [6]. By interaction, it usually means joint attention, verbal commu-
nication, telepresence, physical contacts, or other sorts of exchanges of information and
energy between robots and humans. Especially, for those scenarios where physical con-
tacts are demanded, physical Human-Robot Interaction (pHRI) concerns [7]. In general,
most of the HRI applications are intended for a cooperative framework under which
robots and humans smoothly transmit forces, signals, and information to accomplish a
joint task, which is interpreted as HRC [8]. For example, on a joint assembly line of a
certain mechanical device, robots and human workers are required to handover uncom-
pleted workpieces to each other by physical contacts and then accomplish the assembly
of the workpieces according to their task scripts. It is known that robots are specifically
designed for precise, fast, and regulated operations, while humans are adept at flexible
and creative skills. Therefore, the major motivation behind HRC is to combine these
advantages to benefit the accomplishment of a comprehensively complicated task that
is not possible to be conducted by a robot alone. This chapter gives an introduction of
the motivation, considered topics, and contributions of this dissertation. Reviews of the
fundamental work on HRI or HRC can be referred to in [6, 8–11].

1.1 Motivation and Overview

In a typical HRC scenario, the robots are usually in proximity to humans or even conduct
physical contact with humans. During such an interactive process, unexpected physical
contacts, or collisions, may potentially cause injuries to human bodies. The occurrence
of collisions increases the threats to the security of the humans in an HRC system. The
desire to defend humans against these threats motivates the investigation of safe HRC.
It should be noted that the conventional safety standards for isolated robots no longer
apply to HRC systems since humans and robots are required to share an overlapped
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workspace. Instead, the safe mechanism for HRC should fully tolerate the coexistence
of humans and the robot when appropriately handling potential threats. To resolve this
issue, various safety frameworks for HRC systems are developed based on the studies in
different research fields.

1.1.1 Objectives

The major objective of safe HRC is to prevent or mitigate the negative influences of
security threats to humans. Initially, HRC safety is mainly concerned with the han-
dling of human-robot collisions, including the detection, identification, recovery, and
avoidance of collisions, which composes a collision-handling pipeline [5]. The solutions
are inherited from the conventional robot platforms with additional safety regulations
on proximity, velocity limits, or responsiveness requirements [12]. Meanwhile, most of
the HRC safety regulations serve as exception monitoring routines intended to properly
handle collisions to reduce physical injuries. Recent work also considers task errors and
psychological influences as threatening factors in HRC. Although the inclusions of safe
HRC are becoming more affluent and comprehensive, a universal safety framework for
a generic HRC scenario still lacks. One of the challenges is that the current safe HRC
frameworks do not ensure robust safety against environmental uncertainties, including
partial measurements, system discontinuities, incomplete signals, and constraint viola-
tion due to external disturbances. Improving the robustness of safe HRC to uncertainties
is the main goal of this dissertation.

1.1.2 Considered Topics

In this dissertation, we are concerned with the handling of human-robot collisions, a
typical type of security threats of HRC. The main task of HRC collision handling is
to prevent potential injuries or damages caused by accidental collisions. The collision
handling mechanism, also known as a collision handling pipeline [5], typically contains
two procedures, namely the pre-collision [13] and the post-collision ones [10]. The de-
velopment of such a pipeline involves various research topics, including collision force
estimation [303,304], collision diagnosis [13,14], collision reaction strategy design [15,16],
and collision avoidance [17–19]. These topics are intended for different components in
the pipeline. In this dissertation, we focus on three essential collision-handling prob-
lems, namely collision force estimation, Collision Detection and Identification (CDI),
and collision avoidance control. The relationship between these topics is illustrated in
Fig. 1.1, where the solid white blocks represent the pre- and post-collision pipelines, the
gray blocks are considered topics in this dissertation, the dashed blocks are topics not
discussed, and the arrows denote the flow of time or information. The details of these
topics are specifically interpreted as follows.

1.1.2.1 Collision Force Estimation

The physical forces between humans and the robot during a collision, known as the
collision forces, indicate the occurrence of a collision and its strength. Although the
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Figure 1.1: The three considered topics investigated in this dissertation.

collision forces can be accurately measured by extrinsic force sensors installed on the
end-effector or joints of the robot, the force sensors with high measurement precision are
usually expensive, and do not apply to robot platforms with low expense and compact
structures in complicated environments. Under this condition, the collision forces can
be estimated using analytical-redundancy-based methods [7, 20], for which the robot
dynamic models are needed. As part of the post-collision handling pipeline, estimation
of collision forces using dynamic models renders an unknown-input observation problem,
for which the estimation precision is the main performance metric. Our studies on this
topic is interpreted in Chapter 3.

1.1.2.2 Collision Detection and Identification

Another important procedure for post-collision handling is to detect the occurrence of
a collision and identify its type, by analyzing the collision force signals. The signals are
estimated forces based on analytical-redundancy, or measured forces using extrinsic force
sensors, depending on specific applications. The results are used to trigger the corre-
sponding recovery routines to reduce the potential influence of collisions. CDI for HRC
requires fast and accurate classification of collision force signals between accidental col-
lisions and intentional contacts. Here, an accidental collision is an unexpected physical
contact that is featured with swift force changes. On the contrary, an intentional contact
is a planned human-robot physical contact that indicates a smooth transmission of forces
and energy. The former is dangerous to humans, while the latter is safe [21]. Therefore,
the CDI process renders a classification problem that can be solved by supervised learn-
ing methods. However, different from the conventional classification problems, CDI for
HRC should be conducted online, during the nominal task executions. This means that
the diagnosis of collisions can only rely on the history signals, while the signals in the
future are unknown for the current moment. The uncertainty of unknown future signals
results in a classification problem with incomplete collision information. This challenge
is overcome in our work presented in Chapter 4.
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1.1.2.3 Collision Avoidance Control

As an important aspect of a pre-collision handling pipeline, collision avoidance is dedi-
cated to achieving safe motion planning or control schemes for robots to prevent colli-
sions with static and dynamic obstacles. In a well-modeled environment, the obstacles
are represented as a set of safety constraints [22] or artificial potential fields [23]. The
workspace confined by the constraints is the safe region for the robot motion, in which
collisions can be avoided. The constraints are referred to as hard, since by no means
the robot is expected to collide with the obstacles. To achieve a collision-free task sce-
nario for HRC, the robot is intended to execute the task script when it is within the
safe region, while adjusting its motion to prevent collisions when the task script vio-
lates the safety constraints. Various safe control methods have been applied to solve
safe control problems for robot systems, including invariant control [24, 25], model pre-
dictive control [26, 27], and the barrier-function-based control [28, 28–30]. However, the
conventional methods do not fully consider the influence of an uncertain environment
containing the unmodeled dynamics and the external disturbances, which may lead to
violation of the safety constraints. To solve this problem, we propose a robust collision
avoidance control method in Chapter 5.

1.1.3 Related Research Fields

Safe HRC is a comprehensive research topic that involves multi-disciplinary concerns.
Therefore, its solutions usually originated from the following various research fields.
Understanding the connection of HRC to these fields benefits the improvement and
generalization of current safe HRC paradigms. Following the interpretation of the related
fields, we also reveal the current gaps between these fields and safe HRC, in preparation
for our contributions in Sec. 1.2.

1.1.3.1 Fault Detection and Isolation

The Fault Detection and Isolation (FDI) theory is the main technology used for mon-
itoring and diagnosis of mechatronic systems. Conventionally, FDI is considered as a
significant capability of an industrial control system, especially those not accessible for
humans, such as space-crafts, underwater vehicles, and remote-control robots. It en-
ables the system to conduct self-diagnosis and self-recovery without the involvement of
manual operations. Once a fault is detected, a fault-tolerant system should be able to
adjust itself according to the type of the fault, and eventually initiate the fault-recovery
routine to maintain the normal functions of the system. A typical FDI solution is usu-
ally analytical-redundancy-based [20], including hardware redundancy [31] and software
redundancy [32]. Early work on FDI of industrial platforms and process control can be
found in [33,34], where essential model-based methods are provided. A recent survey of
FDI methods can be referred to in [35].

The FDI theory relies on reconstruction and analysis of residuals, signals that indicate
the occurrence of faults [36, 37]. A residual signal is usually equal to zero in normal
cases and becomes non-zero values when a certain fault occurs. Given a certain residual
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signal, a decision-making method is applied to detect the occurrence of a fault and
identify its type. Therefore, the methods for FDI can be explicitly transformed to safe
HRC, by recognizing the collision forces between humans and robots as residual signals.
However, different from the ordinary faults in mechatronic systems, collision forces are
usually featured with fast changes and short periods, which are known as instantaneous
anomalies [38]. The online diagnosis of such residual signals is still a challenging work
in FDI.

1.1.3.2 Robotics

The study on safe HRC originates from the desire of a smooth joint-task execution be-
tween humans and robots, where essential robotic concepts and paradigms are adopted.
For example, kinematic and dynamic models of robots are utilized to implement analytical-
redundancy-based FDI methods for HRC systems [39,40]. Besides, the proxemic models
are developed to regulate the distance and relative velocity between humans and mobile
robots [41, 42]. Similarly, legibility [43] and human-likeness [44] are also introduced to
produce human-acceptable motions for robots in safe HRC.

From the perspective of robotics, challenges still exist for a generic safe HRC frame-
work. The main challenge is that most of the current FDI methods for HRC are not
sufficiently robust to the uncertainties in unknown environments. Although various
methods are proposed to model the unknown environments, it is still not possible to
eliminate the modeling uncertainties. If not fully considered, these modeling uncertain-
ties may bring down the performance of HRC systems, or even trigger dangerous events
like collisions. In this dissertation, we are mainly concerned with a novel safety paradigm
for HRC with an enhanced robustness against environmental uncertainties.

1.1.3.3 Control Theory

Most analytical-redundancy-based safe HRC methods are supported by control theory
that provides a rigorous framework for the design of disturbance observers [45–49] and
precise tracking controllers [50–54] for robot systems. The disturbance observer is used
for the generation of residual signals, while the controllers are designed for a reliable task
execution scheme. In this dissertation, we mainly focus on the control and observation
of Euler-Lagrangian systems, i.e., rigid robot manipulators. Different from other types
of nonlinear systems, the Euler-Lagrangian systems own a special passivity property
inherited from the conversation-of-energy feature of mechatronic systems. Such a passive
property is frequently applied to control and observation of robot systems [55]. From the
perspective of control theory, the collision forces are external disturbances fed forward
to the system inputs, and residual generation of robot manipulators can be formulated
as an unknown-input observation problem for Euler-Lagrangian systems.

The main challenge of safe HRC in control theory is that the discontinuity of mecha-
tronic systems, mainly caused by the viscous friction effects, is not reflected by the
conventional continuous system models based on the Lipschitz condition. Thus, the ap-
proximation using continuous models leads to less rigorousness in theory and produces
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filtering effects in practice. This brings down the bandwidth of the closed-loop dynam-
ics. The sliding mode theory, supported by the discontinuous system theory [56], can be
applied to resolve this issue, which is also one of the main methodologies used in this
dissertation.

1.1.3.4 Signal Processing

Apart from residual generation, the diagnosis of residual signals is also an essential
technology of FDI, where the signal processing methods are applied. Firstly, the identi-
fication of the collision types renders an online classification problem between accidental
collisions and intentional contacts. Secondly, to develop an accurate and reliable clas-
sifier, features are generated taking full consideration of the properties of the collision
signal waveform. During the development of the classifier, segmentation is a very impor-
tant concern for online signal processing of the collision residual signals. Different from
the conventional fault residuals considered in most FDI scenarios, collisions only last for
a short period with fast changes, and vanish when the physical interaction is finished,
leading to a narrow waveform with a summit shape. Therefore, to achieve accurate clas-
sification, the signal segments used for online diagnosis should contain sufficient collision
information. The conventional methods usually include the entire collision waveform
in the signal segments, which is an effective manner in offline applications, such as the
post-fault analysis and diagnosis, but does not apply to online scenarios. However, clas-
sification based on complete collision waveform, in an online application, means that an
accurate diagnosis can only be produced when the collision vanishes, which is not prac-
tical for a safe HRC system. In fact, for an HRC system with high safety requirements,
the robot should be able to react to a collision in a very early stage, such that poten-
tial injuries and damages are prevented. Such a gap renders a new challenge that has
not been fully investigated in related work, that is, to achieve the accurate and reliable
classification of collision signals with incomplete waveform. Resolving this issue is one
of the main targets of this dissertation.

1.1.3.5 Psychology and Sociology

Beyond collision handling, recent work also takes psychological and sociological factors
into the consideration of safe HRC, to ensure a comfortable and acceptable interac-
tion environment for humans, which is also known as psychological safety [10]. Pop-
ular psychological safety paradigms for HRC include human trust [57, 58] and social
norms [10, 59], which are extensions of human-human interaction models in psychology
and sociology. The analysis and construction of these models are mainly based on the
validation of hypotheses by user study methods [60]. Besides, mathematical models
with fundamental sociological supports, such as the proxemics model [61] and the vir-
tual force model [62], are also used to depict the kinematic relationship between humans
and robots. Although psychological safety is beyond the scope of this dissertation, a
brief overview benefits the integrity of our proposed safe HRC paradigm. The related
work of the psychological safety of HRC can be referred to in Chapter 2.
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1.2 Contributions

In this dissertation, we investigate the safety solutions for an HRC system with collision
handing as the main concern, including collision force estimation, collision detection and
isolation, and collision avoidance control. Beyond the scope of the conventional methods,
the following questions are considered.

Question 1. How to precisely estimate the collision forces for discontinuous systems
with partial measurement?

Question 2. How to accurately classify accidental collisions from intentional contacts
with incomplete collision waveform?

Question 3. How to avoid constraint violation in a tracking control task with system
uncertainties?

The three questions are corresponding to the three considered topics introduced in Sec
1.1.2. Question 1 is intended to reconstruct the collision forces online without using
extrinsic torque sensors. Online means that the estimation results are only dependent
on the current system state and the essential prior knowledge on the system and the
estimation routine is executed during the task processes. Question 2 is to online detect
the occurrence of a collision and identify its type, either an accidental collision or an
intentional contact, using the measured or estimated collision force signals. Question
3 is dedicated to achieving a robust constraint-violation-free controller for robots to
prevent the occurrence of collisions with static obstacles. Robustness indicates that the
safety constraints are not violated with the existence of system uncertainties.

1.2.1 Challenges

Although the past two decades have witnessed the fast development of HRC technology,
a generic safety framework for HRC systems is still missing. One of the gaps is that the
current safety paradigms do not ensure sufficient safety for HRC in uncertain environ-
ments. The uncertainties include partial state measurement, incomplete sensory signals,
unmodeled dynamics, and external disturbances. A collision handling mechanism fully
considering these uncertainties covers the main scope of this dissertation. In the fol-
lowing, we specifically interpret the challenges from the perspective of each concerning
research topic mentioned in Sec. 1.1.2.

Question 1: Collision Force Estimation

The collision force estimation methods based on analytical-redundancy have been in-
tensively investigated for robot systems, including unknown input-output observer [63],
nonlinear disturbance observer [64, 65], Luenberger observer [45, 46], sliding mode ob-
servers [47–49], [303], high gain observer [66], filter-based observer [67] and general mo-
mentum observers [68]. However, the application of these conventional methods is still
confined in well-modeled environments since they greatly rely on the assumptions of
system continuity, full-state measurement, and bounded disturbance derivatives. These
impractical assumptions render uncertainties to the applications of conventional meth-
ods in practice. Acknowledging these assumptions leads to the filtering effect on the
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estimation results, which brings down the estimation precision. Therefore, an appli-
cable collision force estimator in practice has to be built on the elimination of these
assumptions.

Question 2: Collision Detection and Isolation

CDI of HRC systems is conventionally formulated as a classification problem and solved
by filter-based methods [14, 21] and machine-learning-based methods [69, 70]. Most of
the conventional CDI methods rely on the classification of signal samples with complete
waveform. Thus, they can only provide an accurate CDI result after the entire informa-
tion of the collision is obtained, i.e., when the collision vanishes. These methods usually
lead to impractical results in the context of safe HRC, since a collision or a contact
has already occurred and negative consequences may have already been caused when
the collision vanishes. Therefore, a practically applicable CDI scheme should be able
to accurately identify a collision in its early stage, with incomplete collision waveform,
such that potential human injuries can be prevented or reduced in advance by the suc-
cessive collision-reaction procedures. The main challenge in this issue is the uncertainty
brought up by the unknown future signal in an online application, which we refer to as
the causality issue (See Sec. 4.1). To overcome the challenge, novel methods should be
proposed to bring down the causality uncertainties.

Question 3: Collision Avoidance Control

The safety requirements of HRC systems are typically represented as input- or state-
dependent constraints that regulate the limits of the robot motions. Therefore, the task
execution process of HRC with safety regulations are formulated as a tracking control
problem with constraints. Although plenty of collision-avoidance planning and control
methods based on potential fields [71], invariance control [24,25], Model Predictive Con-
trol (MPC) [27], and Region of Attraction (RoA) [72,73] are proposed in previous work,
the safety constraints may still be violated due to unmodeled dynamics and external
disturbances. Thus, the robustness of constraint compliance to system uncertainties is
still an open problem. Additionally, even for many robust controllers [74,75], the deter-
mination of the parameters is a challenging work. Thererfore, a robust safe controller
with an adaptive parameter tuning mechanism is desired.

1.2.2 Approaches

Currently, there are mainly three methodologies applied to the development of HRC
systems, namely the physical-model-based, the hypothesis-model-based, and the data-
driven-based methods. The physical-model-based methods formulate an HRC task with
safety requirements as a control or planning problem confined by physical models and
input- or state-dependent constraints. Physical models are typically explicit to obtain
and easy to verify, by which the safe solutions can be obtained by solving a mathematical
problem [76]. The hypothesis-model-based methods are usually focusing on verifying or
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testing certain assumed hypotheses concerning supposed safety principles, logic or dis-
tributions, case or user studies [77]. Differently, the data-driven-based methods directly
compose safety schemes by inferring the implicit laws, patterns, and relations from the
collected data [78]. Typically, different safety issues require various methodologies. The
problems in lower-levels of HRC systems, such as disturbance estimation and safety con-
trol, are mostly solved by physical-model-based methods [79,80]. The higher-level issues,
such as the monitoring of task errors, usually rely on data-driven-based methods that en-
able the robots to learn the script from recorded data to allow enhanced adaptability and
generalizability. A typical example is the construction of robot skills using Programming
by Demonstration (PbD) [81, 82]. Hypothesis-model-based methods are mainly applied
to adopt social and psychological models to HRC [83,84]. In this dissertation, our work
is built up in a comprehensive background using both physical-model-based and data-
driven-based methods. We solve the collision force estimation and collision avoidance
control problems with the observation theory and the control theory, respectively, based
on the physical model of Euler-Lagrangian systems. In the meantime, we design the
CDI scheme using supervised learning and the Bayesian decision theory, where the data
of collision signals are utilized.

1.2.2.1 Observation Theory

In this dissertation, we design an integral sliding mode observer to estimate the collision
forces for robot manipulators, where observation theory is applied to Euler-Lagrangian
systems. Compared to the conventional methods, the sliding mode design does not rely
on the Lipschitz continuous assumptions for mechatronic systems, which improves the
theoretical rigorousness of the analytical-redundancy-based methods. The dynamic col-
lapse property of the proposed method allows precise estimation of external disturbance
without the velocity measurement of the system. The high-bandwidth of the discontin-
uous switching mechanism does not require the boundedness of disturbance derivatives.
Besides, compared to the conventional sliding-mode-based methods, the application of
integral sliding mode technology ensures the robustness of the closed-loop dynamics since
the initial instants.

1.2.2.2 Supervised Learning

For the design of the CDI scheme for robot manipulators, we apply supervised learning
methods, including k-Nearest Neighbors (kNN), Feedforward Neural Network (FNN),
Support Vector Machine (SVM), and random forest. To create a representative data
set for the development of classifiers, we conduct collision experiments on a real robot
platform and record the collision force signals. We segment the signals, generate features,
and split them into a training set and a test set. We also determine a feature set
considering both the classification accuracy and the computational load, based on the
analysis of feature importance and mutual dependence. After validating and testing
these models, we select an FNN classifier as our classification model.
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1.2.2.3 Bayesian Decision

Similar to the conventional learning-based methods, the trained collision classifier in Sec.
1.2.2.2 does not ensure accurate classification of signal segments with incomplete collision
waveform. To resolve this issue, we use the Bayesian decision theory to design an online
collision diagnosis module to make the ultimate decision of the classification. Based on
the assumed prior probabilities and the likelihoods obtained from the experiments, we
calculate the posterior probabilities that represent the belief of the CDI diagnosis with a
series of classification results. The posterior probabilities then serve as reliability indexes
of the diagnosis. Thus, a collision type identification result is only reported when the
reliability is high, which improves the classification accuracy for incomplete waveform
compared to a simple classifier. Beyond this, we also propose a fast diagnosis algorithm
without calculating the posteriors, which applies to HRC systems in practice.

1.2.2.4 Control Theory

We propose a super-twisting sliding mode controller with adaptive gains for the tracking
control task of a robot manipulator, to confine the robot motion within a constraint
region to avoid collisions with static objects. When the desired trajectory is safe, the
controller ensures precise tracking of the desired trajectory. Otherwise, when the de-
sired trajectory violates the constraints, the controller produces a modified reference
trajectory to confine the robot motion within the safe region, such that constraint vio-
lation is avoided. Both the precise tracking and safety constraints are robustly satisfied
with the existence of bounded system uncertainties. The adaptive tuning law for the
controller parameters improves the flexibility of the control method with various types
of uncertainties, compared to the conventional methods with manually assigned gains.
The stability of the closed-loop system with adaptive controller gains is proven with a
Lyapunov method.

1.2.3 Main Contribution

The main contribution in this dissertation is to provide a novel solution for safe HRC
in uncertain environments. Specifically, the solution is intended for accurate, fast, and
reliable handling of human-robot collisions, with partial measurement, incomplete col-
lision waveform, system discontinuity, and external disturbances. Different from the
conventional methods, our solution is targeted at improving the robustness of HRC
safety against environmental uncertainties. By comprehensively applying model-based
and learning-based methods, we ensure decent safety performance for HRC systems, in-
cluding precise estimation of collision forces, accurate collision classification, and avoid-
ance of constraint violation with the uncertainties of partial state measurement, system
discontinuity, incomplete waveform, and external disturbances. The gaps between the
desired performance and the uncertainty restrictions, and the corresponding solutions,
are illustrated in Fig. 1.2, where the dotted blocks are considered questions introduced
in Sec 1.2.1, the solid blocks are the desired safety performance and the main challenges,
and the arrows represent the methods filling the gaps. Note that the blocks filled with
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gray are the novel safety metrics and uncertainties that concern this dissertation but are
not considered in the previous work. Experimental validation of the proposed methods
on robot manipulators indicates that our solution applies to practical HRC systems, and
the results reveal decent system performance with environmental uncertainties. Thus,
the proposed solution not only provides a development paradigm for HRC in complicated
environments but also shows its potential towards a generic safe HRC framework for var-
ious mechatronic systems. The specific contributions corresponding to each considered
topic are interpreted as follows.

GapsSafety Performance

Estimation Precision

Classification Accuracy

Reliability

Tracking Precision

Safety Constraints

Adaptiveness

Uncertainties

Partial Measurement

Unboundedness

System Discontinuity

Incomplete Waveform

Bounded Disturbance

Unmodeled Dynamics

Question 1

Question 2

Question 3

Question 1

Question 2

Question 3

Observation theory

Bayesian Decision

Supervised Learning

Control theory

Figure 1.2: The gaps and the corresponding solutions in this dissertation.

Question 1: Collision Force Estimation

For the collision force estimation problem, the uncertainties influencing the estimation
precision include partial measurement (the lack of velocity measurement), the unbound-
edness of disturbance derivatives, and the discontinuities of mechatronic systems. The
proposed integral sliding mode observer provides a novel solution for robust disturbance
estimation against these uncertainties. According to our knowledge, this is also the first
unknown-input observer with the integral sliding mode technology applied.

Question 2: Collision Detection and Isolation

For collision detection and isolation, the main uncertainty is the incomplete collision
waveform in online applications. In this dissertation, we use the supervised learning
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methods to develop a collision signal classifier and design a Bayesian-decision-based di-
agnosis scheme. By achieving this, we improve the classification accuracy of the classifier
with incomplete waveform and provide a belief index to represent the reliability of the
classification result. The experimental results confirm its applicability to practical HRC
systems.

Question 3: Collision Avoidance Control

For collision avoidance control, the main source of uncertainties is the constraint vio-
lation caused by unmodeled dynamics and external disturbances. Our contribution in
this part is to provide a novel robust controller that satisfies precise tracking and safety
constraints against the uncertainties. The application of second-order sliding mode tech-
nology eliminates the chattering phenomenon on the control output. The novel is also
reflected by the adaptive parameter tuning mechanism that ensures the stability of the
closed-loop system.

1.2.4 Potential Applications

The practical applicability of our methods in this dissertation is validated by a series
of simulations and experiments on robot platforms. Therefore, the proposed safe HRC
paradigm is promising to solve the collision handling problem for a wide range of robot
systems in practice, so as to change the manner they behave in industrial manufacturing
and human life. Moreover, by defining a new set of metrics measuring the safety per-
formance of HRC systems (See Fig. 1.2), we provide a novel methodological perspective
to improve the safety of robots with limited hardware resources. Some of the potential
application scenarios of our safe HRC solution are illustrated as Fig. 1.3 and specifically
interpreted as follows.

The first possible application of the proposed safe HRC mechanism is human-robot
joint assembly, where humans and robots are required to accomplish an assembly-task
sharing a common workspace [85]. In such a scenario, accidental collisions between the
robot and the human body are dangerous to humans. The success of a joint assembly task
has to be built on a reliable collision handling mechanism. By setting hard constraints
ot keep the robot from the human-centered area and the boundaries of the workspace,
our proposed safety solution enables the robot to avoid collisions with the human body
and the environment. In case any collision occurs due to unexpected human motions,
the robot can quickly estimate the collision forces and decide whether it is an accidental
collision or an intentional contact. The advantage of our solution is reflected by its
responsiveness and its reliability in uncertain environments, even without velocity and
external torque measurements. Thus, our solution is promising to improve the efficiency
of the joint assembly task and bring down the expenses of the system

Another potential application is the safety monitoring of bionic robots. Bionic robots
mimic the appearance and structures of animals to achieve versatile dynamic properties
in various environments [86]. In general, the bionic robots are designed according to
specific targets and their deployed environments. Their size and weights usually have
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(a) Joint assembly [85]. (b) Bionic robots [86].

(c) Swarm robots [87]. (d) Mining robots [88].

Figure 1.3: Potential applications of the proposed safe HRC paradigm.

strict restrictions. On the one hand, the bionic robots are expected to conduct versatile
interactive tasks in complicated environments. On the other hand, their functionality
is restricted since they can only carry a limited amount of sensory devices. Therefore,
monitoring the safety of bionic robots is a challenging work due to the lack of sufficient
sensory resources. The proposed collision force estimation method offers a torque-sensor-
less solution to detect and identify physical contacts for bionic robots. Therefore, our
solution for safe HRC provides a new perspective for fault diagnosis of bionic robots.

Besides, our solution can be applied to fault detection and recovery for swarm robots.
A swarm robot system is a self re-configurable robot system composed of a group of
autonomous robot modules [87]. The swarm robots connect and disconnect each other
to create different shapes and sizes of the entire system to meet the demands of certain
tasks. The structure and functionality of each robot are usually simple, with compact
structure and limited sensory devices. Similar to the bionic robots, our collision handling
mechanism can be used to detect faulty events for swarm robots, such as the miscon-
nection between the wrong pair of robots. Moreover, our methods can fully consider
the mechanical discontinuity brought up by the composition and decomposition of the
system. The rigid collisions can also be well reconstructed since our methods do not
assume boundedness for the derivatives of the collision forces.
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The last applicable scenario of our methods is the robot systems that work in com-
plicated or hazardous environments, such as the mining robots shown in Fig. 1.3d.
Robot systems easily get broken in a dangerous environment with rigid work surfaces
and complicated surrounding conditions. Fragile and expensive components, such as
the extrinsic sensors and cameras, are typically not installed on these robots to avoid
high expenses caused by frequent consumption. Our methods are promising to provide
a low-expensive and reliable FDI scheme for robot systems under such conditions. The
solution tolerates the substitution of broken components since our methods are robust
to system perturbations. It is also potential to be applied to a wider range of robot
platforms in dangerous environments, with various structures, such as drones, vehicles,
and underwater robots.

1.3 Thesis Outline

In this dissertation, Chapter 2 provides a brief overview of the previous work on safe
HRC to build a connection between our work and the state of the art. Chapter 3 pro-
poses an online collision-force estimator without assumptions on velocity measurement,
system continuity, and boundedness of disturbance derivatives. The online CDI scheme
is presented in Chapter 4, and the robust safe control method is discussed in Chapter 5.
Finally, Chapter 6 concludes this dissertation. Before going into details, the interested
readers are suggested to refer to Appendix A for the essentials of the sliding mode theory
and Appendix B for the background of supervised learning and the Bayesian decision.

Related Work of Safe Human-Robot Interaction (Chapter 2)

HRC safety is a comprehensive topic containing affluent research and engineering is-
sues from various fields, including mechanical design, control theory, signal processing,
computer science, neural science, psychology, sociology, etc. For different topics, various
methodologies are applied to solve problems in different forms. Therefore, the implemen-
tation of an HRC system should follow a well-organized and self-contained paradigm,
such that different methodologies are properly combined. In this chapter, we provide a
brief overview of the current progress of safe HRC paradigms, concerning safety factors,
metrics and measures, design paradigms, and collision handling approaches. Based on
this, we present our safe paradigm with a compact implementation of HRC oriented
to collision handling and safe control. In such a way, we intend to construct a close
connection between our solution and the previous work and outlining the advantages of
our methods.

Online Collision Force Estimation (Chapter 3)

In this chapter, we propose a novel integral sliding mode observer to estimate the col-
lision forces for robot manipulators. This method provides high-bandwidth and pre-
cise estimation results without velocity measurements, continuity assumptions, and the
boundedness of disturbance derivatives. The convergence of the estimation error to zero
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is theoretically in a finite time, which is proved by a direct Lyapunov method utilizing
the passivity property of Euler-Lagrangian systems. An integral sliding mode manifold
is designed to eliminate the reaching phase, such that the robustness of the estimation is
enhanced. The method is applied to a robot manipulator to estimate the joint velocity
and external contact forces in a physical human-robot task. Simulations and experi-
ments reveal that this novel method provides fast, precise, and robust estimation results
and can be used to replace the measurements of an extrinsic force sensor. The successful
application of this observer to a force-sensor-less admittance controller for a manipulator
contributes to the implementation of a sensor-free safety framework for HRC.

The material presented in Chapter 3 has been published in [304].

Online Collision Detection and Identification (Chapter 4)

This chapter is dedicated to developing an online CDI scheme for human-collaborative
robots to detect the ocurrence of a collision and recognize its type. The scheme is com-
posed of a signal classifier and an online diagnosor, which monitors the sensory signals
of the robot system, detects the occurrence of physical human-robot interaction, and
identifies its type within a short period. In the beginning, we conduct an experiment to
construct a data set that contains the segmented physical interaction signals with ground
truth. Then, we develop the signal classifier on the data set with the paradigm of su-
pervised learning. To adopt the classifier to the online application with requirements on
response time, an auxiliary online diagnosor is designed using Bayesian decision theory.
The diagnosor provides not only a collision identification result but also a confidence
index which represents the reliability of the result. Compared to the previous works,
the proposed scheme ensures rapid and accurate CDI even in the early stage of physical
interaction. As a result, safety mechanisms can be triggered before further injuries are
caused, which is quite valuable and important towards safe HRC. In the end, the pro-
posed scheme is validated on a robot manipulator and applied to a demonstration task
with collision reaction strategies. The experimental results confirm the applicability of
the scheme to collaborative robots in practice.

The material presented in Chapter 4 has been published in [305].

Adaptive and Robust Safe Tracking Control (Chapter 5)

In this chapter, we design a novel adaptive second-order sliding mode controller for
Euler-Lagrangian systems with hard safety constraints. Different from the conventional
sliding mode controllers, the proposed method provides adaptive controller parameters,
such that the robustness of the controller is ensured for various disturbances without
bringing up chattering. The controller also guarantees strict compliance with hard state-
dependent inequality constraints. The asymptotic convergence of the tracking errors of
the proposed controller is proven by a direct Lyapunov method. Finally, the proposed
controller is validated by numerical simulation on a three-degree-of-freedom robot plat-
form. The results confirm that the controller ensures strict constraint compliance and
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precise trajectory tracking, which reveals its potential applicability to the safe control
of mechatronic systems.

The material presented in Chapter 5 has been published in [306].

16



2 Related Work

Safety, in the context of HRC, is proposed to provide a well-defined coexistence envi-
ronment for humans and robots in a collaborative task, such that physical injuries to
humans are prevented or mitigated during the task execution process. Compared to the
conventional robot systems, HRC systems need additional safety requirements due to
the uncertainties brought up by the involvement of humans, such as constraints on robot
motions and handling of accidental collisions. In recent years, the study of safe HRC is
becoming a comprehensive field that involves multiple research areas including mechan-
ical design, control theory, computer science, psychology, etc. Nevertheless, safety for
HRC is still discussed in an ambiguous context, and a uniform safety framework still
lacking. The target of this chapter is to provide a brief overview of the recent studies of
safe HRC to build a connection between this dissertation and the related work.

2.1 Overview

The first well-known attempt to regulate robots’ behaviors to protect humans is the
famous Asimov-law published in the short story Runaround by Isaac Asimov, which is
composed of the following three principles [89].
1. A robot may not injure a human being or, through inaction, allow a human being

to come to harm.
2. A robot must obey the orders given it by human beings except where such orders

would conflict with the First Law.
3. A robot must protect its existence as long as such protection does not conflict with

the First or Second Laws.
These laws essentially formulate the basic requirements for the coexistence of robots

and humans and have inspired plenty of successive variations of similar safety laws.
Nevertheless, beyond the fundamental value of the Asimov-law, it is more towards a
descriptive principle proposed at an abstract level. The lack of concrete definitions
makes it hardly possible to be explicitly applied to practical scenarios. For example,
what does it mean by injuries or harms? If the concept protect means an action to
keep humans away from injuries or harms, what is a proper protection and where is the
boundary? What if the protection of someone means harm to the other one? Therefore,
doubts emerge to question the feasibility and applicability of the Asimov-law, due to
the discrepancy of the understanding of these concepts. As a general compliment of this
law, a set of five ethical principles for designers, builders, and users of robots is jointly
published by the Engineering and Physical Sciences Research Council (EPSRC) and the
Arts and Humanities Research Council (AHRC) of Great Britain in 2011, which contains
the following high-level messages [90].
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1. Robots should not be designed solely or primarily to kill or harm humans.
2. Humans, not robots, are responsible agents. Robots are tools designed to achieve

human goals.
3. Robots should be designed in ways that assure their safety and security.
4. Robots are artifacts; they should not be designed to exploit vulnerable users by

evoking an emotional response or dependency. It should always be possible to tell a
robot from a human.
5. It should always be possible to find out who is legally responsible for a robot.
The latest internationally accepted safety standard for human-robot coexistence is [91]

which provides detailed technical specifications for robot platforms with the existence of
humans. Unfortunately, these laws or principles are either too generic or too specific to
provide a systematic paradigm for the design of HRC systems.

For the first decade of the 21st century, safety standards and principles with precise de-
scriptions are proposed based on previous work on the design of human-robot-coexistence
systems, alongside with the rise of the studies on HRC. In [12], several quantitative re-
quirements for human safety are presented based on the following principles.
1. A human-friendly robot must be controlled in such a way that humans and robots

are able to safely share a common workspace.
2. The bandwidth of operations by a human-friendly robot must be restricted to allow

a human operator to fully understand and predict the motion of the robot.
3. The collision of a human-friendly robot with a stationary person must not result

in any serious injury to the person.
These principles are intended for a general class of robot systems including manip-

ulators, mobile robots, humanoid robots, drones, etc. In this work, the significance
of a natural interface, dedicated to implementing a reliable environmental perception,
is emphasized. Especially, specific safety standards are proposed for sensory devices,
which correspond to the smooth understanding requirement that concerns principle 2.
These principles are validated by the experimental design of a HRC platform for a pick-
and-place task. In [3], safety is interpreted as the smooth and successful execution of
nominal tasks without faults or errors. It is also emphasized that physical collisions are
the main threats to human safety due to high energy transference between robots and
humans. Additionally, even potential collisions with large possibilities make humans
feel frightened and do not want to work with the robots, and a reliable fault-handling
mechanism is a critical technology to realize safety for HRC systems. Similar arguments
are also confirmed by [9] which points out that safety means no physical contact with
humans and no threats to humans, for which collisions are the main concerns. A gen-
eral review of HRC applications in various fields is provided by [8], where dangerous
mechanical design is also recognized as a threatening factor of HRC safety, including
frictional noises, imbalance and falling, banning sharp edges or points, and accessible
electric current. In [1], the relationship among safety, coexistence, and collaboration are
interpreted as Fig. 2.1. Safety is the most essential and elementary aspect for all HRC
systems. In this layer, lower level physical faults, such as collisions and actuator errors
are concerned. Coexistence is mainly considered for HRC scenarios with close proxim-
ity between humans and robots. In this layer, the possibility of human coexisting with
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robots is discussed, including the concerns of human acceptance. Finally, collaboration
is the highest requirement for HRC, where humans and robots are required to jointly
accomplish a task. Therefore, higher-level skills, such as coordination and task execution
are demanded. This paradigm points out that the handling of collisions is a necessary
procedure for HRC.

Safety

Coexistence

Collaboration

Figure 2.1: The concept diagram of safe HRC [1].

Summarizing the above mentioned previous work, we find that collision-handling is a
necessary demand for HRC safety, although other factors such as mechanical design and
task errors are also frequently studied. Additionally, more recent work is attempting
to include psychological factors to formulate a more comprehensive HRC safety frame-
work. For example, in [92], the psychological sense of humans is recognized as a safety
factor for HRC, where the system design considering human sense is referred to as psy-
chophysiological feedback. Also, in [10], the safety issues are generally categorized as
two aspects, namely physical safety and psychological safety. Physical safety follows the
conventional physical definitions mentioned above, while psychological safety focuses on
producing legible, human-like and human-friendly robot motions to encourage humans
to cooperate with robots.

2.2 Basic Models

The development of safe HRC systems relies on properly defined safety models. In this
section, we give a brief introduction to the basic safety models applied in related work,
including the main safety concerns and the development paradigms. For various safety
concerns, different approaches are used, which corresponds to different components in
an HRC development paradigm.

2.2.1 Safety Concerns

The HRC safety is categorized as physical safety and psychological safety. Physical safety
is mainly concerned with robotic errors that might lead to robot damages or human
injuries, such as collisions. Psychological safety concerns include handling human errors,
legibility, trust, and social norms, which improve the acceptance of humans towards
robots. These safety concerns are specifically discussed as follows.
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2.2.1.1 Robotic Errors

The main functionality of the HRC safety mechanism is to properly handle robotic
errors. The collision between human and robots is a representative robotic error in the
lower-levels of HRC. Conventionally, errors are defined as deviations of the robot states
to normal conditions. In the context of HRC, the meaning of error is usually twofold.
Firstly, it is referred to as the modeling errors by early studies [93], i.e., the deviations
between the actual and the nominal models of robots and the environment. Secondly, it
is also used to describe the failure of a specific task or a single action [94]. For example,
an error is respectively designated as the wrong dance step decision made by the human
dancer and the robot partner in [95], the failure of an assembly task in [96], the inability
of a robot or equipment to function normally [97], an unsafe behavior in [3], or the break
down of a human-robot conversation [98]. In this dissertation, we refer to error following
the second interpretation, while the first is interpreted as modeling uncertainties.

Synonyms of error, like fault and failure, are also frequently used, among which the
distinguishment is not purposely made by early work [76,99,100]. Recent studies tend to
regulate the use of these terminologies by respectively referring error as the disfunction
in all levels of a robot system, fault as a lower-level error, and failure as a fatal error.
For example, in [101], some error -related concepts are defined as follows.

• Fault : an unpermitted deviation of at least one characteristic property or param-
eter of the system from the acceptable, usual, or standard conditions;

• Failure: a permanent interruption of a system’s ability to perform a required
function under specified operating conditions;

• Malfunction: an intermittent irregularity in the fulfillment of a system’s desired
function;

• Error : a deviation between a measured or computed value (of an output variable)
and the true, specified or theoretically correct value;

• Disturbance: an unknown (and uncontrolled) input acting on a system;

• Perturbation: an input acting on a system, which results in a temporary departure
from the current state.

Similarly, [102] remarks that fault is the subset of error which usually happens in the
lower-levels of HRC and indicates the failure of physical components such as actuators
and sensors. In [94], HRC errors are classified into the following four types according to
the motivation and recoverability of the system.

• Anticipated errors: the deviation of the motion can be tracked back and replanning
is not necessary;

• Exceptional errors: the deviation from the given task is beyond the tolerance and
a replanning mechanism is needed;

• Irrecoverable errors: the robot is not able to recover from the failure, and inference
of humans are necessary;

• Socially recoverable errors: they can be fixed by other cooperating robots instead
of working alone.

In [96], errors are classified into the following four types.
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• Execution error : the abnormal situations caused by components failures on phys-
ical levels;

• Planning error : inaccurate parameter values during task planning, which lies
mostly in a higher level;

• Modeling error : the deviation of nominal models and real features of the objects
in the environment, which is closely connected with the term environmental un-
certainty ;

• Sensing error : the errors caused during the visual sensing processes.

To sum up, an HRC error can be interpreted as the abnormal behaviors of robots and
humans that deviate from the normal task scripts, and it covers from the physical aspects
to task executions. An error handling pipeline can be defined as a mechanism that is
able to detect the occurrence of errors and activate corresponding recovery strategies
timely in order to reduce the loss as much as possible, which contains the following
procedures [103].

• Error detection: the process to recognize the occurrence of an error;

• Error diagnosis: the process to characterize the type of the error that has been
detected;

• Error recovery : the process to recover the system error state to the normal state
so that further damage be avoided;

• Error avoidance: the idea to construct an error-free system utilizing error avoid-
ance methods;

• Error forecasting : the methods used to predict the possibility of the occurrence of
an error in the future.

In this pipeline, error detection, error diagnosis, and error recovery are post-handling
procedures, whilst error avoidance and error forecasting are pre-handling procedures.
A collision, in this sense, can be recognized as a fault, an irrecoverable error, or an
execution error. As a typical type of error, it is usually processed in the similar manner
to an error handling pipeline, which is to be detailedly explained in Sec. 2.3. The
Human Injury Criterion (HIC) index [104] is a frequently used qualitative metrics to
measure the influence of a collision to humans, which are obtained using crash tests [105–
107]. In the higher-levels of HRC, task errors are handled by discrete event system
models [108], multi-variable analysis [109], discontinuous control [110], Hidden Markov
Model (HMM) [111,112], and the Petri-net model [113].

2.2.1.2 Human Errors

Besides robotic errors, human errors are also considered for safe HRC in related work.
A safe robot is expected to be able to tolerate human errors in a collaborative task.
According to the definition given by [114], a human error is any member of a set of human
actions that exceed some limit of acceptability. Based on this, human error models
are constructed in [115], and error-recovery strategies are studied in [116]. Meanwhile,
the work in [117] proposes that human errors can be classified as mistakes or slips
according to the causality contained in human mental models. Specifically, mistakes refer
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to abnormal behaviors that are resulted by the wrong planning in mental models which
are further classified as rule-based mistakes and knowledge-based mistakes, and slips
are produced by the inference of environmental situations where the original intention
consist with the desired objectives. A review of the studies on human errors can be
found in [115].

2.2.1.3 Legibility and Human-Likeness

As a psychological terminology, legibility is conventionally recognized as the synonym
of readability which means that a certain script or pattern is comprehensible and in-
teresting to a human [118]. The application of legibility usually concerns the design
of understandable display or signage [119, 120]. In [43], legibility is introduced in the
study of HRC to produce intent-expressive robot motions. The work confirms that the
terminology legibility and intent-expressive have the same meaning as readability, antic-
ipatory, or understandable in the context of HRC. It also makes clear distinguishment
between legibility and predictability. Specifically, legibility means the quality of being
easy to understand, while predictable stands for the capability of matching with the ex-
pectations. From the motion-observer perspective of HRC, legibility and predictability
are pointing to the opposite directions: the former targets to solving an observer to infer
the actual motion, while the latter is dedicated to adjusting the motion to match the
observations. Such difference is also emphasized in [121]. A recent work [122] also makes
a comprehensive and detailed distinguishment between explicability, legibility, redictabil-
ity, transparency, privacy, and security. The major motivation to introduce legibility to
the development of HRC systems is that human motions are considered as legible, and
humans tend to accept robots with higher legibility. A user study is conducted in [123]
to investigate the influence of legibility on human acceptance. Therefore, the notion
legibility is sometimes also discussed with the concept human-likeness [124–126] or hu-
manization [127]. Approaches to implement legible or human-like robot motions include
Bayesian inference [128], Gaussian Mixture Model (GMM) [129], and optimal planning
based on minimum commanded torque [130] and minimum jerk [131]. Development of
HRC systems to mimic human behaviors can be found in [44,132].

2.2.1.4 Acceptance and Trust

Similar to legibility and predictability, human trust and acceptance are also applied to
the design of safe HRC systems in related work. Differently, the modeling of human
trust and acceptance is mainly based on hypothesis-based case studies [133, 134], while
mathematical models for trust and acceptance are still lacking. The work in [135] pro-
vides a universal model for the investigation of user acceptance. The model is used
to analyze human acceptance towards a robot assistant tour guide [136]. In [137], the
influence of robot motions on human acceptance is investigated. It is also shown in [83]
that the feeling of safety is the primary factor that influences human acceptance towards
the robot partner. The Unified Theory of Acceptance and Use of Technology (UTAUT)
is a popular model for the measurement of human acceptance [135], which has been

22



2.2 Basic Models

used together with a breaching experiment to analyze people’s acceptance towards a
public service robot in [136]. However, it is suggested in [83] that the UTAUT model
is not suitable to all automatic systems, but should be adopted accordingly, especially
for industrial assistant robots. The applications of human acceptance to the design of
robots can be found in [138,139]. Compared to acceptance, trust is a step forward, which
measures how humans psychologically rely on robots during the coexistence. The work
on modeling of trust can be found in [84, 140–142]. Investigations of trust models in
HRC applications can be referred in [57,58].

2.2.1.5 Social Norms

The social norm is a social-psychological terminology that summarizes the conventional
rules and principles that humans follow in social activities. People in society are confined
by the constraints of social norms such that they behave in a predictable, smooth, and
reliable manner [143]. In [144], the social norm is described as a set of non-written social
rules or protocols. From a philosophical point of view, social norms are manners by which
humans reduce or confine the uncertainties in their communications. It is within the
recent decade that social norms are introduced to HRC, such that the robots are more
human-like and trustful in the sense of social communications. In [145], social norm
violations are defined as the deviation from the underlying social scripts of the HRC
tasks and treated as higher-level errors to be distinguished from the lower-level technical
failures. People are usually less willing to interact with a robot that violates basic social
norms, which also confirms the argument of psychological safety in [10]. In [59], social
norms are defined as the way how humans and robots interact with each other. The
social behaviors between human-human and human-robot conversations are compared
in [146]. In addition, social norms are also specified as task accomplishment [147–
149], joint action [150–152], coordination [150, 153, 154], role adaptation [155, 156], and
synchronization [157]. A review of the psychological measurement for HRC systems can
be referred to in [60].

The modeling of social norm is usually challenging since it contains a large number of
connotative rules that are not interpreted. It is also claimed in [158] that social norms
may change to various tasks and scenarios. Most of the modeling studies of social norms
are based on the analysis and processing of social signals or social parameters, includ-
ing grip forces [159, 160], impedance [161], tactile sensory signals [162], emotions [163],
gesture [164], gazing [165] body language [166], temporal and spatial features [167,168],
power and information transference [169], and other nonverbal social signals [170]. It is
also argued in [158] that people who are interacting with the robots tend to reveal more
social signals. A survey of social signal processing can be referred in [171]. Modeling of
social norms using case studies can be found in [172].

Existing mathematical models for social norms include the proxemics model and the
social force models. The proxemics model splits the surrounding area of a human into
several ranges, with different ranges depicting various human acceptance towards the
approaching objects [173]. The closer a robot is to a human, the more sensitive the
human is to the robot motion. Therefore, the proxemics model has been applied to
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HRC to steer the robot to adjust its velocities and accelerations when approaching to a
human [41, 42, 61]. A survey on the proxemics theory can be found in [174]. The social
force model is proposed based on the virtual force model and the molecular thermody-
namic model [62, 175–178], which considers that the distribution of the social signals
and parameters of humans (social distances, velocities, communications, interactions)
are following the similar principles of molecular models. Applications of social norms
to the development of HRC systems include [179, 180]. Similar safety concepts in HRC
also include reliability [181], usefulness [182], human comfort [183], naturalness [184],
friendliness [185], and etc.

2.2.2 Development Paradigms

To develop a safe HRC system, a well-organized paradigm is necessary to allocate the
structure of the system and regulate the interfaces between different components. There-
fore, various HRC safety paradigms are proposed in related work. This section gives a
brief overview of some representative paradigms, based on which we present our collision-
handling paradigm in Sec. 2.4.

Early approaches for the development of safe HRC include risk analysis, disturbance
observation, compliant covering design, and residual signal processing [186], which are in-
herited from the conventional Human-Computer Interaction (HCI) framework. In [187],
it is emphasized that the main difference between HRC and the conventional HCI frame-
work is the physical and dynamical nature of robots. Therefore, in this work, a safety
framework is developed for HRC based on the HCI pipeline with an extension of the
hardware design iterations used to check the dangerous factors in mechanical design. An-
other HRC development pipeline is proposed in [59] which focuses on five safety aspects,
namely form (abstract or anthropomorphic), modality (uni-modal or multi-modal), so-
cial norms (no knowledge of social norms or full knowledge of social norms), autonomous
(no autonomy or fully autonomous), and interactivity (no causal behavior or fully causal
behavior).

In [2], a hierarchical safety paradigm is proposed (See Fig. 2.2), which categorizes
the safety design into tasks in four levels, namely execution level, decision level, and
human-aware motion planning, and symbolic planning. The execution level is designed
to guarantee the nominal functions of the control unit and the command interfaces. The
decision level is composed of task agendas, interaction managers, and a supervision kernel
to monitor the nominal task routines. The planning levels are designed to implement
reliable task executions and legible motions while ensuring the compliance of social norm
constraints.

A parallel-structured safety paradigm is presented in [3] with three separate rou-
tines, namely intrinsic mechanism, safe control techniques and fault handing, which is
shown in Fig. 2.3. The intrinsic mechanism is concerned with the mechanical design
to guarantee enhanced flexibility and compliance compared to the conventional isolated
robots. Relevant work includes the Whole-Arm Manipulation (WAM) or back-drivable
robots [188, 188], soft arms [189, 190], variant-impedance or -stiffness design for actua-
tors [191–193], the Distributed Macro-Mini actuation (DM2) design [194], and wearable
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High-level symbolic planning

Human-aware motion planning

Decisional components

Execution level

Task representations/Social constraints

Social acceptance/Legibility

Agenda/Interaction manager/Supervision kernel

Control/Commands

Figure 2.2: A hierarchical development paradigm [2].

devices for humans [195, 196]. The safe control techniques are targeted to implement
control schemes without violating predefined safety constraints, of which the methods
include invariance control [24, 25], MPC [27], and RoA based control [72, 73]. The fault
handling pipeline provides a reliable routine to handle lower-level errors. Compared
to the hierarchical paradigm in Fig. 2.2, this development structure treats the error
handling pipeline as a separate routine from the nominal task execution. Although the
errors can be handled in a manner that the nominal task is not affected, the flexibility
of the handling is restricted due to lack of coupling.

Intrinsic Mechanism

WAM or Backdrivability

Variable-Impedance

DM2 Actuation

Safe Control Techniques

Invariance Control

MPC

RoA-Based Control

Fault Handling

Physical Faults

Interaction Faults

Development Faults

Figure 2.3: A parallel development paradigm [3].

Another hierarchical safety framework is developed in [4], which is shown in Fig.
2.4. The structure is composed of four essential levels, namely the hardware level, the
software level, the control level and the motion level, with respectively the concerns
of lightweight and compliant mechanical design, variable stiffness actuation, collision
handling and collision avoidance planning. Compared to the hierarchical structure in
Fig. 2.2, the decoupling between different levels are strengthened by regulated interfaces.
Its advantage over the parallel structure in Fig. 2.3 is that error handling is integrated
to the development of nominal tasks, such that the handling procedures can be flexibly
designed with the tasks fully considered. This paradigm has been widely applied to the
development of HRC systems [21,197,198].

Other HRC safety paradigms can also be found in [199, 200] with various considered
safety aspects. The common ground of these safety paradigms is that the design of
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Motion level

Control level

Software level

Hardware level

Collision avoidance

Physical collision detection and reaction

Variable stiffness actuation

Lightweight and compliant robots

Figure 2.4: A hierarchical development paradigm [4].

HRC systems is modulized, and all modules are connected by uniform interfaces, such
that different safety issues can be resolved by their corresponding methodologies without
interfering the performance of the entire system.

2.3 Approaches

Collision handling for HRC is responsible for properly handling and processing human-
robot collisions to protect humans from potential injuries. Therefore, it is a necessary
component to achieve safe HRC. A representative collision handling pipeline is presented
in [5], which is illustrated in Fig. 2.5. A complete collision handling pipeline usually
contains post-handling and pre-handling pipelines, which are detailedly interpreted as
follows.

Pre-collision

Collision Avoidance

Safe Control

Motion Limits

Post-collision

Detection

Isolation/Location

Identification/Classification

Reaction

Figure 2.5: A collision handling pipeline [5].

A typical collision event handling pipeline usually contains two procedures, namely
the pre-collision [13] and the post-collision ones [5, 10]. The development of such a
pipeline involves various topics, including collision avoidance [17–19], collision force esti-
mation [201,303,304], CDI [13, 14] and collision reaction strategy design [15, 16]. These
topics are corresponding to different components in the pipeline.
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2.3.1 Post-Collision Handling

A post-collision-handling procedure conducts collision force reconstruction, collision de-
tection and identification, and collision reaction and recovery after the occurrence of
a collision. The methods applied to reconstructing the collision forces include un-
known input-output observer [63], nonlinear disturbance observer [64, 65], Luenberger
observer [45,46], sliding mode observers [47–49,303], high gain observer [66], filter-based
observer [67], general momentum observers [68], data-driven based methods [202], and
learning-based methods [69, 70, 203–205]. Detection and identification of collisions are
mainly conducted by classification methods [14,21,69,70]. The work in [206] pointed out
a potential direction to utilize both the advantages of model-based and learning-based
methods. Moreover, it is argued in [207] that an important issue for FDI applied to
HRC is the unmodeled uncertainties. Reviews of applications of FDI to HRC systems
can be referred in [103,203].

2.3.2 Pre-Collision Handling

A pre-collision handling procedure is dedicated to generating or modifying the robot mo-
tions to avoid potential human-robot collisions, which is usually solved by safe control
and planning methods with predefined safety conditions. The safe planning methods
with human-awareness include artificial potential field [71] and Rapidly exploring Ran-
dom Tree (RRT) [208]. Approaches are also proposed to consider the prediction of human
motions to generate robot motions with legibility and social requirements [129,209–214].
A survey of human-aware motion planning methods for mobile robots can be referred to
in [215]. Different from the safe planning methods, the safe control methods also consider
the dynamic model of the system, and usually have critical online requirements. Widely
applied safe control methods include the invariance control [24,25], MPC [27], PbD [82],
and RoA based control [72,73]. The current challenge for safe control of HRC is that the
constraint compliance with the existence of the system uncertainties, i.e., the robustness
of the safety controllers, is not fully investigated. Also, self-adaptation schemes for the
controller parameters are desired to improve the flexibility and adaptability of the safe
control methods in various environmental conditions.

2.4 Proposed Safety Framework

In this section, we propose a novel safety paradigm for the development of HRC systems
in uncertain environments, which is illustrated in Fig. 2.6. The proposed paradigm
combines the advantages of the previous frameworks interpreted in Sec. 2.2.2 and con-
tains the consideration of all safety concerns introduced in Sec. 2.2.1. This dissertation
especially focuses on the implemention of a compact HRC system for collision handling,
including collision force estimation, CDI, and collision avoidance control, on robot ma-
nipulators, as shown in Fig. 2.7. The compact implementation is also marked with a
dotted box in Fig. 2.6. The details of the safety paradigm are explained as follows.
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2.4.1 The Proposed Safety Paradigm

Social level

Task level

Motion level

Control level

Physical level

Social norms

Task execution

Safe motion/Collision reaction

Robust controller

Collision force estimation/CDI

Human

Social
primitives

Desired
motion

Reference
trajectory

Commanded torques/
Position measurement

Social signals

Task progress

Safety constraints

Collisions

Collision
diagnosis

Figure 2.6: The proposed hierarchical paradigm.

As shown in Fig. 2.6, the proposed safety paradigm is concerned with the safety
issues in five levels, namely physical level, control level, motion level, task level, and
social level, from bottom to top. The five solid blocks in the middle are executable
modules of the robot system in the corresponding levels. The modules communicate
between different levels using predefined interfaces marked as solid arrows. The robot
system also receives information from the human collaborator, which is represented as
dashed arrows. The modules, interface, and perceived information at different levels are
specifically interpreted as follows.

Physical Level

The physical level of the safety paradigm is responsible for collision force reconstruction
and online CDI. From the functional point of view, it is similar to the fault handling
module in Fig. 2.3 or the control level in Fig. 2.4, and corresponds to the detection
and classification modules in the post-collision handling pipeline in Fig. 2.5. It takes
the commanded torques and the position measurement from the system controller in the
control level, and produces the diagnosis whether a collision occurs and what its type is
to the upper-levels.
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Control Level

The control level is intended for robust tracking of the reference trajectories provided
by the higher motion level, which corresponds to the execution level in Fig. 2.2, the
safe control routine in Fig. 2.4, or the safe control module in the pre-collision handling
pipeline in Fig. 2.5. Its inputs are the reference trajectory and the current system state,
and its output is the commanded torque to the robot joints.

Motion Level

The motion level is designed to generate robot motions to avoid violations of predefined
safety constraints, and take reaction strategies for detected collisions. It is functionally
similar to the collision avoidance module in the pre-collision pipeline and the reaction
module in the post-collision pipeline in Fig. 2.5. It monitors the desired trajectory
provided by the higher task level and produces a modified reference trajectory if the
constraints are violated. It also switches the robot system to the reaction modes if a
collision diagnosis is obtained.

Task Level

The task level monitors the progress of the joint task, and generate the desired trajecto-
ries for the robot system considering the predefined task policies and the social concerns
provided by the higher social level. It corresponds to the task representation module in
Fig. 2.2.

Social Level

The social level provides the social primitives to the robot system according to its built-
in social models and the perceived social signals from humans. It is functionality similar
to the social constraints and social acceptance modules in Fig. 2.2. Note that this level
does not only consider social norms but also other social concerns, such as legibility and
human acceptance.

Compared to the design frameworks mentioned above, our proposed safety paradigm
is built on the analytical redundancy of the robot system, excluding the safety factors on
mechanical design. Nevertheless, the proposed paradigm contains all safety factors listed
in Sec. 2.2.1, including collisions, constraint violations, task errors, and social norms.
By considering the collision handling techniques in a decoupled development structure,
we combine the advantages of the previous paradigms in collision handling. Although it
is still not sufficient to serve as a generic HRC safety framework, it provides a solution
to include a wider range of safety concerns than the previous work.

2.4.2 A Compact Implementation

In this dissertation, we develop a compact implementation of the proposed safe HRC
paradigm in Sec. 2.4.1 mainly focusing on collision handling, as shown in Fig. 2.7. The
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considered partitions of the paradigm, namely the collision force estimator, the CDI
scheme, and the safe control scheme, are marked by dotted boxes in Fig. 2.6, which
involves the modules in the physical-, control-, and motion-levels. The details of the
compact system are interpreted as follows.

Collision
Reaction

Safe Motion
Robust

Controller
Robot

CDI Scheme

Collision Force
Estimator

H
qd,q̇d,q̈d qr,q̇r,q̈r

q,q̇,q̈

+ τd
q

−
τc

τ̂dκ∗, ι

W

Safe control scheme

Figure 2.7: The block diagram of the proposed compact paradigm.

Currently, the compact safety paradigm is designed for robot manipulators with Euler-
Lagrangian dynamics. In Fig. 2.7, the collision force estimator and the CDI scheme
are corresponding to the components in the physical level in Fig. 2.6. τd represents
the collision forces, and τ̂d is the estimation. τc and q are respectively the commanded
torque and the position measurement, and κ∗ and ι are respectively the classification
results and the confidence index of the collision diagnosis. The robust controller forms
the control level, and the safe motion and collision reaction modules belong to the motion
level. qd is the desired trajectory, and qr is the reference trajectory. H represents the
predefined constraints, and W is a reaction mode index to activate the corresponding
reaction strategies. Besides, the modules connected by solid arrows form the inner
control loop, while the dashed arrows go through the outer collision-handling loop. Note
that the activation index W functions through a slow switching, which does not affect
the stability of the system. The collision force estimator is interpreted in Chapter 3, the
CDI, and the collision reaction schemes are presented in Chapter 4, and the safe control
scheme, composed of the safe motion module and the robust controller, is discussed in
Chapter 5.

2.5 Summary

This chapter reviews the related work in HRC on safety concerns. After a long period
of development, HRC safety has been interpreted as the capability of robots to pro-
vide a harmless and comfortable joint work environment for humans. Correspondingly,
the safety factors concerning the development of HRC systems are not only limited to
accidental collisions but also including task errors, human errors, legibility, and psycho-
logical issues (e.g., human-trust and social norms). In the meantime, instead of simple
safety regulation rules, the design paradigm for HRC systems are proposed in previous
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work to include the safety concerns to the design of controllers and monitoring routines.
The conventional HRC paradigms include hierarchical structures, parallel structures,
and event handling pipelines. We propose a novel safe HRC framework by combining
the advantages of the conventional paradigms. The proposed framework contains decou-
pled levels with uniform interfaces between different levels. Collision handling concerns
the development of the physical level, the control level, and the motion level. Based
on this paradigm, we implement a compact HRC system targeted at collision handling
on a robot manipulator. For this implementation, we design a collision force estimator,
an online CDI scheme, and an adaptive robust safe controller which will be specifically
presented in the following chapters.
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The primary issue to consider in our safe HRC paradigm is to obtain the physical-contact
forces during the collision process. When an extrinsic force sensor is not available to pro-
vide precise measurements, the collision forces can still be reconstructed using analytical-
redundancy-based methods. In this chapter, we design an online collision force estimator
for robot manipulators using a novel integral sliding mode state observer, which corre-
sponds to the collision force estimation module in Fig. 2.7. In theory, the observer
ensures finite-time convergence of the state estimation errors to zero, which guarantees
precise external force estimation. Experimental validation also confirms the decent per-
formance and applicability of the method in practice. In general, the collision force
estimation method proposed in this chapter provides a novel and reliable solution for
collision reconstruction with partial state measurement, discontinuous system dynam-
ics, and high-bandwidth disturbances. The main results of this chapter are based on the
work in [304].

3.1 Overview

From a general perspective of FDI, the preliminary work before any pre- or post-
processing of system faults is to obtain the residual signals that depict the extent of
deviation from the nominal system conditions. The specific forms of residual signals
may vary among different types of systems. For collision handling of HRC systems, the
collision forces are usually recognized as residual signals to represent the profiles of col-
lisions [68, 216]. The generation of residual signals with clearly defined system dynamic
models renders an unknown-input observation or disturbance estimation problem.

3.1.1 Related Work

Although extrinsic force sensors provide precise measurement for collision forces [21,192],
they highly restrict the size, expense, and flexibility of robot platforms. The desire of
developing compact and low-expense robot platforms for highly-uncertain environments
motivates our study on analytical-redundancy-based collision force reconstruction meth-
ods. As a popular approach, the disturbance estimation methods based on the observer
theory are frequently used to solve FDI problems [217], especially the collision detection
problem of robotic systems [216,218]. Since no extrinsic force sensors are needed, these
methods are expected to replace real force sensors in HRI tasks to achieve a sensor-less
safety framework, thus bring down the cost of the robot system.

Previous work on disturbance estimation of linear systems and Euler-Lagrangian sys-
tems is vast, such as unknown input-output observer [63], nonlinear disturbance ob-
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server [64, 65, 219], Luenberger observer [45, 46], sliding mode observers [47–49], high
gain observer [66], filter-based observer [67] and general momentum observers [68, 201].
However, several problems or challenges still exist in these methods. First of all, the
Lipschitz condition, which is a basic assumption for some previous methods [66], does
not hold for practical mechatronic systems due to the existence of discontinuous friction.
Second, the assumption that the derivative of the disturbance is equal to zero, which has
been used in previous literature [79,220], is not general enough to cover high-bandwidth
disturbance. Third, since the position is usually the only available measurement in
practice, a disturbance estimation method should not rely on velocity measurements.
Instead, the velocity of the system should be estimated at the same time [221–223]. A
precise velocity estimation is important to reconstruct the disturbance estimation [48].

Among the methods above, sliding mode observers solved these three problems, since
they do not require the Lipschitz condition nor the disturbance derivative assumption,
and they provide robust and exact estimation of the velocity (opposite to asymptotic).
Specifically, during the sliding motion of a sliding mode observer, the state estimation
is invariant from external disturbances (known as invariance), and the convergence of
the estimation error is in a finite time (known as exact observation) [221,222]. Thus the
robust precision of state and disturbance estimation is guaranteed [48]. However, the
invariance does not hold during the reaching phase to the sliding manifold, which means
the traditional sliding mode observers are not always robust. This problem can be solved
by the integral sliding mode which can theoretically eliminate the reaching phase, such
that the invariance holds from the initial time instance and robustness is enhanced [224].
Even though integral sliding mode controllers are widely studied [225, 226], there has
not been related work on the integral sliding mode observer for disturbance estimation
of Euler-Lagrangian systems to our knowledge, whereas this enhanced robustness is
worthwhile to be investigated in the fields of FDI of HRI.

3.1.2 Challenges

For the majority of the current methods, challenges still exist. Firstly, the conventional
work usually constructs a disturbance observer based on the feedback linearization of
continuous Euler-Lagrangian systems with the Lipschitz condition assumed, which does
not coincide with the discontinuous property of mechatronic systems. Secondly, most
of the existing work relies on velocity measurements of the systems which are usually
obtained by difference calculation of position measurements, which naturally brings up
differential noise [227–229]. On the other hand, disturbance estimation without velocity
measurements renders an unknown-input observation problem with partial state mea-
surements, which is typically challenging due to the requirement of an extra internal
state reconstructor to serve as a precise differentiator. Thirdly, the previous methods
mostly recognize the external disturbances as low-bandwidth or slowly changing signals
by assuming a small boundary for the derivatives of the disturbance signals, which,
however, does not apply to collision forces with fast changes and high-bandwidth signal
components. The consequence of such an assumption is the severe filtering effect of the
estimation results, where high-bandwidth signal components of the original disturbance
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are lost in the estimation results, and delays are brought up. These three theoreti-
cal defects generally outline the main drawbacks of the current disturbance estimation
methods in the application to safe HRC, which also forms the gap between the state of
the art of FDI and the requirement of collision force reconstruction for safe HRC.

3.1.3 Contributions

The main contribution of our work in this chapter is to fill the above gap between the
limitations of the current FDI methods and the desire of safe HRC, which is achieved
by proposing a novel integral sliding mode observer to online estimate the external dis-
turbances for Euler-Lagrangian systems. The adopted sliding mode paradigm provides
a feasible unknown-input observation solution for discontinuous mechatronic systems.
The dynamic collapse property of sliding mode produces precise differentiation of sys-
tem state. Besides, the infinite-frequency switching property of sliding mode enables
the capability to recover the high-bandwidth components of the collision force signals.
Moreover, the sliding-mode reaching-phase of the proposed method to the integral slid-
ing manifold is reduced compared to the conventional sliding-mode-based methods, such
that the robustness is enhanced. Through these achievements, we provide a novel colli-
sion force reconstruction solution for robot systems with partial measurement, practical
assumptions, higher performance standards, and severe environments.

3.1.4 Outline of the Chapter

This chapter is organized as follows. Section 3.2 briefly introduces the basic idea of
integral sliding mode control and the disturbance estimation problem. The design of
the integral sliding mode based observer is discussed in section 3.3 along with a finite-
time stability proof. In section 3.4, a simulation is presented to show the feasibility
of the integral sliding mode observer, and experiments are conducted in section 3.5
to demonstrate its performance in practical applications. Finally, section 3.6 makes a
summary of the results in this chapter.

3.2 Problem Formulation

Collision force reconstruction of mechatronic systems formulates a disturbance estima-
tion problem, and shares the same formulation as other popularly investigated prob-
lems, such as online estimation of system actuator faults [79, 230, 231], external dis-
turbances or forces [207, 216], parametric perturbations [232] and unmodeled system
dynamics [233, 234] for Euler-Lagrangian systems [68]. It is known that the analysis
and diagnosis of fault signals or disturbances are critical techniques of FDI technology,
especially for HRC systems [21,106], such that robots and humans are allowed to share
the same workspace and physical injuries are avoided [6, 8, 235]. More generally, distur-
bance estimation is also popularly studied for feed-forward disturbance compensation
control [234, 236], robust control [237, 238] or fault-tolerant control [239, 240] strategies
for various mechatronic systems.
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3.2.1 Disturbance Estimation Problem

Consider an n-Degree-of-Freedom (DoF) Euler-Lagrangian system

M(q)q̈ +C(q, q̇)q̇ +G(q) + F (q̇) = τc + τd(t), (3.1)

where q(t) ∈Rn is the vector of the generalized coordinates, q̇(t) and q̈(t) are respectively
the joint velocities and accelerations, M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, G(q) ∈ Rn
and F (q̇) ∈ Rn are respectively the inertia matrix, Coriolis and centrifugal matrix,
gravitational and frictional vectors. Note that F (q̇) usually has a complicated form and
contains kinematic discontinuities. τc ∈ Rn is the commanded input, and τd(t) is the
external disturbance to the system. In the case of HRI, τd(t) represents the effect of an
external contact force in the joint space of a robot manipulator, which is also referred
as the external torque [241]. In practice, τd can be measured by shaft torque sensors
installed on the robot joints. In our work, the integral sliding mode techniques are
applied to estimate τd without any extrinsic force sensors.

By defining state variables as x1 = q, x2 = q̇, the second order system (3.1) can be
written in state-space form

ẋ1 = x2

ẋ2 = M−1(x1) (τ −C(x1,x2)x2 −G(x1)− F (x2)) + d(x1, t),
(3.2)

where d(x1, t) = M−1(x1)τd(t) is the disturbance of the system to be estimated. Note
that in general, the system position x1 is directly measurable by intrinsic sensors like
encoders whereas the system velocity x2 is not. In practice, x2 is usually obtained by
taking the derivative of x1 and noise is involved. Note that the Lipschitz conditions
can not be addressed for the dynamics (3.2) due to the discontinuity property of F (x2).
Therefore, the target of our work in this chapter is to seek for a solution for the following
problem.

Problem 1. Given Euler-Lagrangian dynamics (3.2), reconstruct estimation d for dis-
turbance d using only position feedback x1, such that zero is a global stability equilibrium
of estimation error d− d̂.

Remark 1. Note that in Problem 1, we do not require zero to be an asymptotic equi-
librium of the estimation error, i.e., d − d̂ does not have to converge to zero, due to
the existence of system uncertainties. Instead, we allow a bounded perturbation of the
estimation error for a given uncertainty set, to which we refer as precise estimation.

3.2.2 Properties and Assumptions

For the Euler-Lagrangian system (3.1), it is well known that the following properties
and assumptions hold.

Property 1. [55]. The inertia matrix M(x1) is positive definite and its eigenvalues
are bounded by m 6 λiM (x1) 6 m, where m ∈ R+, λiM (x1), i = 1, 2, · · · , n, is the i-th
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eigenvalue of the inertia matrix M(x1), and m, m are respectively the minimal and
maximal eigenvalues of M(x1) over all possible configurations x1, i.e.,

m = inf
x1

min
16i6n

λiM (x1), m = sup
x1

max
16i6n

λiM (x1).

Property 2. [55]. The Coriolis and centrifugal matrix C(x1,x2) is bounded by ‖C(x1,x2)‖ 6
c‖x2‖, where c ∈ R+.

Property 3. [55]. The gravity vector is bounded by ‖G(x1)‖ 6 g, where g ∈ R+.

Property 4. [55]. The matrix Ṁ(x1)− 2C(x1,x2) is skew-symmetric, i.e.,

z>
(
Ṁ(x1)− 2C(x1,x2)

)
z = 0, ∀z ∈ Rn,

where Ṁ(x1) = dM(x1)/dt denotes the time derivative of M(x1).

Property 5. [47]. The Coriolis and centrifugal matrix C(x1, ·) satisfies, ∀α,β ∈ Rn,
C(x1,α)β = C(x1,β)α.

Assumption 1. The kinetic energy of the system is bounded, i.e., x>2 M(x1)x2 6 k,
where k ∈ R+.

Assumption 2. The external torque τd(t) is bounded by ‖τd(t)‖ 6 τ , where τ ∈ R+.

Remark 2. Assumptions 1 and 2 are based on the widely accepted assumption that the
kinetic energy and environmental stiffness are finite in practice. Note that we propose
no assumptions on the derivative of τd(t) which allows our work to be applied to a wider
class of systems compared to previous methods in [66, 79, 220]. Considering d(x1, t) =
M−1(x1)τd(t) in (3.2), we know that d(x1, t) is also bounded, i.e.,

‖d(x1, t)‖ 6
τ

m
. (3.3)

Corollary 1. Using Assumption 1, the system velocity x2 is bounded by

‖x2‖ 6

√
k

m
.

Proof. Define LM (x1) as the Cholesky decomposition of M(x1), i.e.,

L>M (x1)LM (x1) = M(x1). (3.4)

Applying Assumption 1 we have

(LM (x1)x2)>LM (x1)x2 = x>2 M(x1)x2 6 k,

which leads to ‖LM (x1)x2‖ 6
√
k. Thus,

‖x2‖ 6
√
k

infx1σ(LM (x1))
=

√
k

m
, (3.5)

where infx1 σ(LM (x1)) =
√
m is the minimal singular value of LM (x1) for all x1.
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3.3 Design of Disturbance Observer

We firstly give the forms of the integral sliding mode state observer and its disturbance
estimator. Then, we analyze the existence of sliding mode and the global stability of the
estimation errors at zero. At the end of this section, we present the chattering reduction
method for the proposed estimator in practical applications and give the derivation
process of the system uncertainty term ηo(x1, x̂2) that concerns Assumption 3.

3.3.1 Observer Formulation

The integral sliding mode state observer for Problem (1) is designed as

˙̂x1 =x̂2 − Γ1(x̂1 − x1) + v1,

˙̂x2 =M̂−1(x1)
(
τc−Ĉ(x1, x̂2)x̂2−Ĝ(x1)−F̂ (x̂2)

)
+ Γ2v1 + v2,

(3.6)

where x̂1, x̂2 are the estimated system states, M̂ , Ĉ, Ĝ, and F̂ are respectively the
identified system parameters, Γ1 ∈ Rn×n and Γ2 ∈ Rn×n are positive definite matrices
to be determined, and v1 and v2 are the observer inputs respectively defined as

v1(t) = −αs
e1(t)

‖e1(t)‖
− (%s + ‖x̂2(t)‖) s(t)

‖s(t)‖
,

v2(t) = εs
v1(t)

‖v1(t)‖
,

(3.7)

where αs, %s, εs ∈ R+ are constants to be determined, e1 denotes the estimation error
defined as e1 = x̂1 − x1, and the switching function s(t) is defined as

s(t) = e1(t) +

∫ t

0

(
αs

e1(τ)

‖e1(τ)‖
+ Γ1e1(τ)

)
dτ − e1(0), (3.8)

where e1(0) = x̂1(0) − x1(0) is the initial value of the estimation error. In this sense,
the nominal control and the discontinuous control terms vn and vs of the observer in
(3.6) are respectively

vn =

[
−Γ1e1

0

]
, vs =

[
v1

Γ2v1 + v2

]
, (3.9)

where vn is the nominal continuous feedback input and vs is the discontinuous input.
The disturbance estimator for Problem 1 is determined as

d̂ = v2eq(t), (3.10)

where v2eq(t) is the equivalent control of observer (3.6) which denotes the continuous
effect of the discontinuously switching control v2 in the Filippov sense..
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For convenience we also define the state estimation error e2 = x̂2−x2, where x̂2 is the
observed velocity. Combining the dynamics of the system (3.2) and the observer (3.6),
we obtain the dynamics of the estimation errors e1 and e2 as

ė1 =− Γ1e1 + e2 + v1

ė2 =−M−1(x1) (C(x1,x2) +C(x1, x̂2)) e2 + Γ2v1 + v2 − d(x1, t)− ηo(x1, x̂2),

(3.11)

where ηo(x1, x̂2) is the system uncertainty caused by an inaccurate system identification,
see Sec. 3.3.5 for details. Note that the solution of e1 and e2 is in the sense of Filippov
but not Lipschitz [221], since (3.11) contains discontinuous inputs.

Assumption 3. The system uncertainty ηo(x1, x̂2) is bounded by

‖ηo(x1, x̂2)‖ 6 η � τ

m
, (3.12)

where ηo ∈ R+, i.e., the system uncertainty is far smaller than the external disturbance
d(x1, t).

Remark 3. If the system uncertainty is far smaller than the system disturbance, then
ηo(x1, x̂2) can be ignored. This can be achieved by precise system identification.

According to the sliding mode equivalent control theory in [48,221], if the disturbance
observer (3.6) is designed in a way that the state estimation errors e1 and e2 in (3.11)
converge to zero equilibrium in finite time, i.e.,

e1 = 0, ė1 = 0, ∀ t > t1, (3.13a)

e2 = 0, ė2 = 0, ∀ t > t2, (3.13b)

where t1, t2 ∈ R+, 0 < t1, t2 < +∞, then it is not difficult to obtain

v2eq(t) = d(x1, t) + ηo(x1, x̂2), (3.14)

by substituting (3.13a) and (3.13b) into (3.11), where v2eq(t). Conditions (3.13a) and
(3.13b) are also referred to as the dynamics collapse or exact convergence [221]. There-
fore, if Assumption 3 holds, the disturbance can be approximately estimated by

It will be discussed in Sec. 3.3.2 and Sec. 3.3.3, that the proposed integral sliding
mode observer ensures the exact convergence of both e1 and e2 in finite time.

Note that v2eq(t) cannot be computed explicitly but can be approximated by extract-
ing the low-frequency component of v2(t) using the following low pass filter, in practical
applications, i.e.,

˙̂d = − 1

τf
d̂+

1

τf
v2. (3.15)

This technique is frequently used in previous work [49, 221], where τf ∈ R+ is the time
scalar of the filter. Due to the approximation in (3.10) and the filtering in (3.15), the
obtained d̂(x1, t) is no longer a precise estimation of the disturbance d(x1, t), and the
larger τf is, the more spectral component is lost. Therefore, a proper τf should be
determined according to the practical requirements to guarantee an acceptable precision
for the estimation result d̂(x1, t).

39



3 Online Collision Force Estimation

3.3.2 Existence of the Sliding Mode Condition

In this section, we investigate the sliding mode condition of the sliding manifold. It will
be shown in Sec 3.3.3, that this is a sufficient condition for the finite-time stability of
the closed-loop system as in (3.11) at the zero equilibrium.

Theorem 1. If the sliding manifold in (3.6) is designed as (3.8) and the parameter %s
in (3.7) is selected such that

%s >
√
k/m+ %0, (3.16)

where %0 ∈ R+, and m, k are respectively defined in Property 1 and Assumption 1, then
the following sliding mode condition holds,

s(t) = 0, ṡ(t) = 0, ∀ t > 0. (3.17)

Proof. By defining a Lyapunov function

Vs(t) =
1

2
s(t)>s(t) (3.18)

and calculating the derivative of s(t) from (3.8)

ṡ(t) = ė1(t) + αs
e1(t)

‖e1(t)‖
+ Γ1e1(t), (3.19)

we obtain the derivative of Vs(t) as

V̇s = s>ṡ = s>
(
ė1 + αs

e1

‖e1‖
+ Γ1e1

)
.

For ė1 from (3.11) and v1 from (3.7), it follows that

V̇s = s>
(
e2 − (%s + ‖x̂2‖)

s

‖s‖

)
= s>e2 − (%s + ‖x̂2‖) ‖s‖

6 ‖s‖‖e2‖ − (%s + ‖x̂2‖) ‖s‖
. (3.20)

Since we have
‖e2‖ = ‖x̂2 − x2‖ 6 ‖x̂2‖+ ‖x2‖ < %s + ‖x2‖, (3.21)

(3.20) leads to

V̇s 6‖s‖‖x̂2‖+ ‖s‖‖x2‖ − %s‖s‖ − ‖x̂2‖‖s‖ = −(%s − ‖x2‖)
√

2Vs.

Considering Corollary 1 and substituting (3.16), we have

V̇s 6 −%0

√
2Vs.

Thus, there exists a semi-positive definite function V ∗s (t) ∈ R, V ∗s (t) ≥ 0, such that Vs
is bounded by

0 6 Vs(t) 6 V ∗s (t), (3.22)
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where

V ∗s (t) =


1

2
(‖s(0)‖ − %0t)

2 , 0 6 t <
1

%s
‖s(0)‖,

0, t >
1

%s
‖s(0)‖.

Using (3.8), we conclude that

V ∗s (0) =
1

2
s>(0)s(0) = 0,

and finally get
Vs(t) = V ∗s (t) = 0, ∀ t > 0. (3.23)

Note that from (3.22) to (3.23), the comparison lemma [242] is applied, and V̇s(t) and
V̇ ∗s (t) are continuous in the Filippov sense. Therefore, referring to (3.18), (3.23) leads to

s(t) = 0, ∀ t > 0, (3.24)

which indicates a sliding mode of the dynamics (3.11) from the initial time instant t = 0
and the collapsed dynamics of s(t) as in (3.17) [221]. Note that ṡ(t) is also continuous
in the sense of Filippov.

Remark 4. By designing the switching function (3.8) in integral form, the reaching
phase is theoretically eliminated and the sliding mode exits for all t > 0. Thus, invari-
ance with respect to the disturbance d(x1, t) holds for all t > 0. Note that due to the
measurement uncertainties, the sliding mode condition does not strictly hold in practice
and the reaching phase is not eliminated but reduced to a minimum compared to the
conventional sliding mode methods.

3.3.3 Stability Analysis

In this section, the finite-time convergence of the estimation errors e1 and e2 in (3.11)
to the zero equilibrium is given by the following theorem based on the sliding mode
condition (3.17) ensured by Theorem 1.

Theorem 2. If the parameters Γ1, Γ2(x̂2), αs and εs in (3.6) and (3.7) are determined
such that

αs>0, εs>ε0 + η +
τ

m
,Γ1>0, Γ2(x̂2)>

c

m
‖x̂2‖In, (3.25)

where ε0 ∈ R+, the boundary scalars m, c, τ , η are respectively defined in Properties 1,
2 and Assumptions 2, 3, and In is the n-dimensional identity matrix, then e1(t) and
e2(t) converge to the zero equilibria as in (3.13a) and (3.13b) respectively in finite time
t1 and t2, where t1, t2 < +∞ are bounded by

t1 <
1

αs
‖e1(0)‖, t2 < t1 +

1

εs
√
m
‖LM (x1(t))e2(t)‖, (3.26)

where m is defined in Property 1, and LM is the Cholesky matrix of M(x1) as in (3.4).
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Proof. We define the following Lyapunov function Ve(t) = V1(t) + V2(t), where

V1(t) =
1

2
e>1 e1, V2(t) =

1

2
e>2 M(x1)e2.

Considering (3.17), by differentiating e1 in (3.11), we obtain

ė1 = −αs
e1

‖e1‖
− Γ1e1, (3.27)

and the derivative of V1 reads

V̇1 = e>1 ė1 = −αs‖e1‖ − e>1 Γ1e1 < −αs
√

2V1. (3.28)

The solution of the inequality (3.28) results in 0 6 V1(t) 6 V ∗1 (t), ∀ t > 0, where

V ∗1 (t) =


1

2
(‖e1(0)‖ − αst)2 , 0 6 t <

1

αs
‖e1(0)‖,

0, t >
1

αs
‖e1(0)‖,

which leads to

V1(t) = 0, t > t1, (3.29)

where t1 is confined by

t1 <
1

αs
‖e1(0)‖ < +∞. (3.30)

Similar to the proof of Theorem 1, it can be concluded from (3.29) that the dynamics of
e1(t) is governed by the algebraic equations (3.13a), which indicates that the estimation
error e1(t) converges to zero in finite time and the dynamics collapse occurs afterwards.
Note that V̇1(t), V̇ ∗1 (t) and ė1(t) are continuous in the sense of Filippov.

Now we consider the convergence of the velocity estimation error e2(t). Substituting
(3.11), the time derivative of V2(t) reads

V̇2 = e>2 M(x1)ė2 +
1

2
e>2 Ṁ(x1)e2

=− e>2 (C(x1,x2) +C(x1, x̂2))e2 + e>2M(x1)Γ2v1

+ e>2 M(x1) (v2 − d− ηo) +
1

2
e>2 Ṁ(x1)e2

=e>2

(
1

2
Ṁ(x1)−C(x1,x2)

)
e2 + e>2M(x1)Γ2v1

+e>2 M(x1) (v2 − d− ηo)−
1

2
e>2 C(x1, x̂2)e2.

(3.31)

According to Property 4, we have

e>2

(
1

2
Ṁ(x1)−C(x1,x2)

)
e2 = 0. (3.32)
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Therefore, substituting (3.7) and (3.32) to (3.31), we obtain

V̇2 =e>2 M(x1)Γ2v1−
1

2
e>2(C(x1, x̂2)+C(x1, x̂2))e2

+ εs
e>2 M(x1)v1

‖v1‖
− e>2 M(x1) (d+ ηo) .

(3.33)

Substituting the collapsed dynamics of e1 in (3.13a) to ė1 in (3.11), we have

0 = v1 + e2, t > t1, (3.34)

which holds in the sense of Filippov. Thus, substituting (3.34) to (3.33) we have

V̇2 =−e>2
(
Γ2M(x1)+

1

2
C>(x1, x̂2)+

1

2
C(x1, x̂2)

)
e2

− εs
e>2 M(x1)e2

‖e2‖
− e>2 M(x1) (d+ ηo) .

(3.35)

Considering the selection of Γ2 and γs in (3.25), we have

Γ2M(x1)+
1

2
C>(x1, x̂2) +

1

2
C(x1, x̂2)

>
c‖x̂2‖
m

M(x1) +
1

2
C>(x1, x̂2) +

1

2
C(x1, x̂2) > 0,

(3.36)

where Property 1 and 2 are applied. Therefore, (3.35) leads to

V̇2 < −εs
e>2 M(x1)e2

‖e2‖
− e>2 M(x1) (d+ ηo) . (3.37)

Substituting (3.4), we have

V̇2<− εs
‖LMe2‖
‖e2‖

e>2 M(x1)e2

‖LMe2‖
−(LMe2)>LM (d+ ηo)

6− εsσmin(LM ) ‖LMe2‖+ ‖LMe2‖‖LM (d+ ηo)‖
6 (−εs + ‖d+ ηo‖) inf σ(LM ) ‖LMe2‖ ,
6 (−εs + dO + hO)

√
m ‖LMe2‖ ,

Considering (3.25), we obtain
V̇2 < −ε0

√
2mV2.

Thus, V2(t) is bounded by 0 6 V2(t) 6 V ∗2 (t), t > t1, where

V ∗2 (t) =
1

2
(‖LMe2(t1)‖+ ε0

√
m (t1 − t))2

for t1 6 t < t1 + 1
ε0
√
m ‖LMe2(t1)‖, and V ∗2 (t) = 0 for t > t1 + 1

ε0
√
m ‖LMe2(t1)‖, which

leads to
V2(t) = 0, t > t2, (3.38)
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where t2 is confined by

t2 < t1 +
1

ε0
√
m
‖LMe2(t1)‖ < +∞.

Therefore, e2(t) achieves dynamics collapse within finite time t2. Note that V̇2(t), V̇ ∗2 (t)
and ė2(t) are also continuous in the sense of Filippov.

Remark 5. In the proof of Theorem 2, it is noticed that the dynamics collapse of e1(t)
is a necessary condition of the finite-time convergence of e2(t). Therefore, the sliding
mode of e2 is achieved only after the convergence of e1. By constructing such successive
sliding modes of s, e1 and e2, the proposed observer (3.6) ensures a theoretically precise
estimation of the disturbance d without the velocity measurement x2.

Different from the conventional integral sliding mode which merely ensures the asymp-
totic convergence of system states, the proposed observer in (3.6) guarantees the finite-
time convergence of both s(t) and the estimation errors e1(t) and e2(t) to zero. Never-
theless, we still name the method as an integral sliding mode observer, since it possesses
the advantage of conventional integral sliding mode, i.e., the sliding mode is achieved
since the initial time instant.

3.3.4 Chattering Reduction and Filtering

Similar to the conventional sliding mode controller, chattering is a major issue for this
integral sliding mode observer. The main reason for chattering is the finite switching
frequency, which is confined by the sampling rate of the system. To reduce the chattering
and obtain a smooth disturbance estimation, the boundary layer method is applied. We
change the unit control switching function in (3.7) into the following modified form

v1 = − αse1

‖e1‖+ δe
− (%s + ‖x̂2(t)‖) s

‖s‖+ δs
,

v2 =
εsv1

‖v1‖+ δu
,

(3.39)

and the sliding manifold s from (3.8) is also modified to

s = e1 +

∫ t

t0

(
αse1

‖e1‖+ δe
+ Γ1e1

)
dτ − e1(0),

where δe, δs, δu ∈ R+ are scalars that determine the width of the boundary layers.
Note that after applying this modification, the finite-time convergence of s(t), e1(t)

and e2(t) do not strictly hold with respect to the equilibria as in (3.17), (3.13a) and
(3.13b), but only with respect to the boundary layers ‖s(t)‖ 6 δs, ‖e1(t)‖ 6 δe and
‖e2(t)‖ 6 δu instead. The consequence is inferior estimation precision and robust-
ness. Therefore, a compromise has to be found between estimation performance and the
chattering level, and the boundary layer parameters δe, δs and δu should be carefully
determined according to the specific requirements of practical applications.
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3.3.5 Derivation of System Uncertainty

This section provides the derivation of the error dynamics (3.11) of the proposed observer
(3.6) and estimate the boundary of the system uncertainty ηo(x1, x̂2) in Assumption 3.
By combining the observer dynamics (3.6) and the original system (3.2), we obtain the
form of ηo(x1, x̂2) as

ė2 =M−1C(x1,x2)x2 − M̂−1Ĉ(x1, x̂2)x̂2 +M−1G− M̂−1Ĝ

+M−1F (x2)− M̂−1F̂ (x̂2)−M−1τc + M̂−1τc − d(x1, t) + Γ2v1 + v2,

=M−1
(
C(x1,x2)x2 − Ĉ(x1, x̂2)x̂2 + G̃+ F̃

)
+
(
M−1−M̂−1

)(
Ĉ(x1, x̂2)x̂2 + Ĝ+ F̂ − τc

)
− d(x1, t) + Γ2v1 + v2,

(3.40)

where C̃(x1, x̂2) = C(x1, x̂2)− Ĉ(x1, x̂2), G̃ = G− Ĝ, F̃ = F (x2)− F̂ (x̂2) are model
deviations, and x1 is omitted in the inertia matrices M and M̂ and the gravity matrices
G and Ĝ. Therefore, (3.40) results in considering that

Ĉ(x1, x̂2)x̂2 −C(x1,x2)x2 = C(x1, x̂2)x̂2

−C(x1,x2)x2 + Ĉ(x1, x̂2)x̂2 −C(x1, x̂2)x̂2

=C(x1, x̂2)x̂2 −C(x1,x2)x2 + C̃(x1, x̂2)x̂2

=C(x1, x̂2)x̂2 −C(x1, x̂2)x2 + C̃(x1, x̂2)x̂2,

+C(x1, x̂2)x2 −C(x1,x2)x2,

(3.41)

and substituting C(x1, x̂2)x2 = C(x1,x2)x̂2, which is supported by Property 5, to
(3.41), we have

Ĉ(x1, x̂2)x̂2 −C(x1,x2)x2

=C(x1, x̂2)x̂2 −C(x1, x̂2)x2 + C̃(x1, x̂2)x̂2,

+C(x1,x2)x̂2 −C(x1,x2)x2

=C(x1, x̂2)e2 + C̃(x1, x̂2)x̂2 +C(x1,x2)e2.

(3.42)

Therefore, substituting (3.42) to (3.40) and compare with (3.11), we figure out the
expression of ηo(x1, x̂2) as

ηo(x1, x̂2) =M−1
(
C̃(x1, x̂2)x̂2 + G̃+ F̃

)
+
(
M̂−1−M−1

)(
Ĉ(x1, x̂2)x̂2+Ĝ+F̂ (x̂2)− τc

)
=M−1

(
C̃(x1, x̂2)x̂2 + G̃+ F̃

)
+
(
M̂−1−M−1

)(
Ĉ(x1, x̂2)x̂2+Ĝ+F̂ (x̂2)− τc

)
(3.43)

Note that the identified parametric matrices M̂ , Ĉ(x1, x̂2), Ĝ(x1) and F̂ (x̂2) do not de-
pend on the modeling deviations. Therefore, (3.43) indicates that the system uncertainty
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ηo(x1, x̂2) is linearly dependent on the deviations C̃(x1, x̂2), G̃ and F̃ . By applying
precise system identification procedures, the uncertainty boundary ‖ηo(x1, x̂2)‖ can be
reduced.

3.4 Simulations

The proposed integral sliding mode observer has been evaluated by a simulation of a
3-DoF robot manipulator described by (3.1). In this simulation, we run the robot with a
given desired trajectory and a PD tracking controller. A predefined disturbance torque
τd is exerted on the joints during the motion of the robot. Meanwhile, the integral sliding
mode observer is implemented to obtain the online estimation τ̂d. Then, the observer is
evaluated based on the comparison between τd and τ̂d. The dynamic parameters of the
simulated manipulator model are shown in Tab. 3.1 and Tab. 3.2, wheremij , i, j = 1, 2, 3
are the corresponding elements in the inertia matrix M(q) and nk, k = 1, 2, 3 are the
elements of the Coriolis and centrifugal vector C(q, q̇)q̇. For brevity, the gravity and
friction terms are omitted to simulate a friction-less robot confined in the horizontal
plane. The values of the parameters are listed in Tab. 3.3 and 3.4, where qi, q̇i ∈ R
respectively denote the angular position and velocity of the i-th joint. The simulation
is implemented using a first-order Euler solver with a sampling rate 1 kHz, and runs for
6 s.

Table 3.1: Elements of the Inertia Matrix

Variable Expression Variable Expression

m11 α1 + 2β1c23 + 2β2c2 + 2β3c3 m22 α2 + β3c3

m12 α2 + β1c23 + β2c2 + 2β3c3 m23 α3 + β3c3

m13 α3 + β1c23 + β3c3 m33 α3

Table 3.2: Elements of Coriolis and centrifugal vector

Variable Expression

n1 γ1s2q̇
2
1 + γ2s23q̇

2
1 + γ3s2(q̇1 + q̇2)2 + γ4s3(q̇1 + q̇2)2

+γ5s23(q̇1 + q̇2 + q̇3)2 + γ6s3(q̇1 + q̇2 + q̇3)2

n2 γ1s2q̇
2
1 + γ2s23q̇

2
1 + γ4s3(q̇1 + q̇2)2

+γ6s3(q̇1 + q̇2 + q̇3)2

n3 γ2s23q̇
2
1 + γ4s3(q̇1 + q̇2)2
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Table 3.3: Trigonometric Functions

Symbol Expression Symbol Expression Symbol Expression

c2 cos(q2) c3 cos(q3) c23 cos(q2 + q3)

s2 sin(q2) s3 sin(q3) s23 sin(q2 + q3)

Table 3.4: System parameters

Param Value Parameter Value Param Value Param Value

α1 1.0425 β1 0.0405 γ1 0.1742 γ4 0.0281

α2 0.4398 β2 0.1742 γ2 0.0405 γ5 −0.0405

α3 0.1788 β3 0.0281 γ3 −0.1742 γ6 −0.0281

In the simulation, a sinusoidal desired trajectory qd(t) ∈ R3 in joint space is defined
as (see Fig. (3.1))

qd(t) =
(

1 + sin
(π

3
t− π

6

))
kpos, 0 6 t 6 6,

where kpos = [ 0.5 0.8 0.2 ]> is the coefficient vector to distribute different amplitudes
to each joint. The manipulator is configured with non-zero initial conditions, i.e. q(0) =
[ 0.25 0.4 0.1 ]> and q̇(0) = [ 0.45 0.73 0.18 ]>. A PD controller is designed for the
robot to track the given trajectory qd(t),

τc = M(q) (q̈d +KDėd +KPed) +C(q, q̇)q̇, (3.44)

where ed = qd−q and ėd = q̇d− q̇ are the tracking errors, KP = 200I3, KD = 36I3 are
the diagonal proportional and derivative gain matrices, and I3 is a 3 × 3 unit diagonal
matrix.

Sinusoidal disturbance torques τd(t) are added to the commanded input τc on the
three joints of the robot in the simulation which are

τd(t) =


0, 0 6 t 6 2.5

sin
(π

2
(t− 0.5)

)
kdst, 0.5 < t 6 2.5,

sin
(π

2
(t− 4)

)
kdst, 4 < t 6 6,

(3.45)

where kdst = [ 15 18 12 ]> is the coefficient vector. Similar disturbances are also used
in related work, such as in [79], since they resembles the waveform of contact forces in
practice.

An integral sliding mode observer in (3.6) is implemented to estimate the disturbance
τ̂d in (3.45). The parameters of the observer are listed in Tab. 3.5. The initial states
of the observer are set to x̂1(0) = 0 and x̂2(0) = 0. The evaluation of the simulation
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Figure 3.1: The desired trajectory of the robot manipulator.

Table 3.5: Observer parameters

Param Value Param Value Param Value Param Value

εs 190 %s 240 δa 0.2 Γ1 112I3

αs 10 δs 0.1 δu 0.3 Γ2 175I3

results are as follows. For brevity, only the results of the first joint are displayed, since
the results on the three joints are similar.

In Fig. 3.2a, the original disturbance τ̂d(t) and its estimation τ̂d(t) are compared.
It is noticed that, even though the non-zero initial conditions are given, the estimation
τ̂d(t) precisely tracks τ̂d(t) after a short transient stage (approx. 0.0625s), even at the
time instants where sharp changes emerge in the disturbance (e.g. 0.5s, 2.5s and 4s).
This confirms the high-bandwidth feature of the integral sliding mode observer. Fig.
(3.2b) shows the comparison between the measured velocity q̇(t) and its estimation ˙̂q(t)
by the observer. Note that the measured velocity comes from the direct derivative of
measured position q(t). Similar to the estimation of the disturbance, ˙̂q(t) converges
to q̇(t) after a short transient stage (also approx 0.0625s). Fig. (3.2c) shows that the
switching function s(t) is kept within the range ‖s(t)‖ < 4× 10−3 despite the non-zero
initial condition e1(0) = [−0.25 −0.4 −0.1]>. This result reveals the effectiveness of
the proposed integral sliding mode observer that the velocity estimation ˙̂q(t) is always
invariant from disturbance d(x1, t). Thus, the enhanced robustness of this novel observer
is confirmed.

3.5 Experiments

In this section, the proposed observer has been applied to a robot platform (see Fig.
3.3) to evaluate its estimation performance in practice. Similar to the simulation, in
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(b) The joint velocity and its estimation on the first joint.
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(c) The switching function of the integral sliding mode observer.

Figure 3.2: The estimation results for the sinusoidal disturbance.

this experiment, the robot is actuated by a PD controller tracking the given desired
trajectory. Different types of disturbance are added to the joint actuators, and the ex-
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perimental performance of the integral sliding mode observer is evaluated by comparing
the predefined disturbance τd and its estimation τ̂d.

The experiment configurations are as follows. The manipulator platform is actuated
by 3 Maxon torque motors on the joints with a turn ratio of 1:100. The actuators are
installed in parallel along the axes, such that the robot moves in the horizontal plane,
and gravity is ignored. The incremental encoders offer the joint position measurement
with a resolution of 2000. The sensors and actuators are connected with the computer
using a PCI communication card. The Maxon driver is used to communicate between
the executable and the robot. The executable of the algorithm is created by MATLAB
2017a in Ubuntu 14.04 LTS, with the first-order Euler solver at the sampling rate of
1 kHz, and runs for 70 s. The dynamic model of the robot is well identified.

Figure 3.3: The robot manipulator platform for the experiment.

3.5.1 Estimation of Predefined Disturbances

In the first experiment, a trajectory tracking task is implemented on the robot platform.
The desired trajectory qd(t) is designed as

qd(t) =

(
1− cos

(
2π

5
t

))
kpos, 5 < t 6 65. (3.46)

which is shown in Fig. (3.4). The PD controller in (3.44) is implemented to track the
given trajectory (3.46).

During the motion of the manipulator, three different kinds of predefined disturbances
d(t) are inserted to the robot joint command inputs to simulate the external force, such
that the comparison can be made between the estimated contact force d̂(t) and the
original disturbance d(t). Respectively, the sinusoidal disturbance (also used in [79]),
the square form disturbance (also used in [49,207,220]) and the triangle form disturbance
(also used in [48]) are used in this experiment, since they all resemble the waveform of
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Figure 3.4: The desired trajectory for the robot manipulator.

contact force in practice which is featured with large amplitudes, short time periods and
summit-shape waveform. The specific formulations are as follows:

Disturbance 1. Sinusoidal waveform

dsin(t)=

{
sin
(π

2
(t− 12.5)

)
kdst, 12.5 < t 6 14.5,

0, else.
(3.47)

Disturbance 2. Square waveform

dsqr(t) =

{
kdst, 12.5 < t 6 14.5,
0, else.

(3.48)

Disturbance 3. Triangle waveform

dtrg(t) =


(t− 12.5)kdst, 12.5 < t 6 13.5,
(−t+ 14.5)kdst, 13.5 < t 6 14.5,
0, else.

(3.49)

An integral sliding mode observer in (3.6) is implemented on the robot platform with
the same parameter selection as in Tab 3.5. The evaluation of the estimation results are
as follows.

Fig. (3.5) shows the estimation results of the first robot joint with the sinusoidal
disturbance from (3.47). Similar to the simulation results, the precise estimation τ̂d(t)
and ˙̂q(t) of the disturbance d(t) and velocity q̇(t) of the system can be respectively seen
in Fig. (3.5a) and Fig. (3.5b). In Fig. (3.5c), it is obvious that the switching function
remains in the region ‖s(t)‖ < 2× 10−4. These results have confirmed the robustness of
the integral sliding mode observer.

The estimation results of the square form disturbance and the triangle form distur-
bance are shown in Fig. (3.6) and Fig. (3.7). Apart from the similar arguments to
the above, Fig. (3.6b) especially shows the precise tracking of joint velocity even with
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(a) The disturbance and its estimation on the first joint.
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(c) The switching function of the observer.

Figure 3.5: The results of observer for sinusoidal disturbance.
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(c) The switching function of the observer.

Figure 3.6: The results of observer for square form disturbance
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(a) The disturbance and its estimation on the first joint.
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(c) The switching function of the observer.

Figure 3.7: The results of observer for triangle form disturbance
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high bandwidth signal perturbations (e.g. in 12.5 s, and 14.5 s) which are caused by the
jumps on the system disturbance. Thus again, the high-bandwidth and robustness of
this observer are confirmed.

3.5.2 Estimation of Contact Force

In this experiment, we investigate the performance of the integral sliding mode observer
which estimates the contact forces between the robot and the environment. To make a
comparison, a JR3 force sensor (see Fig. (3.8a)) is installed to the end-effector of the
manipulator to measure the contact forces, which provides the measurement as a wrench
form in Cartesian space. A plastic attachment is fixed with the JR3 force sensor with a
spherical appendix (see Fig. (3.8b)) to guarantee a firm and steady contact. A sponge
fixed to a stick holder (see Fig. (3.8b)) is used to make contacts with the spherical
appendix instead of human hands. The desired trajectory is given as (3.46) and the PD
controller in (3.44) is used. The configuration of the integral sliding mode observer is
the same as the previous experiment.

(a) (b)

Figure 3.8: The contact devices and the JR3 force sensor

During the motion of the manipulator, several contacts are made to the spherical ap-
pendix on the end-effector using the sponge to simulate the robot-environment contacts
in a robot task. The occurrence time instances of the manual contacts are approximately
37 s, 42 s, 47 s, 52 s, 57 s, and 62 s. At the same time, the contact force is measured and
recorded. Note that the measurement of JR3 is in the form of a wrench Fm ∈ R6 in
the task coordinate, whereas the estimated torque τ̂d is in the joint coordinate. There-
fore, we transform the measured contact wrench into the joint space coordinate by
τm = J>(q)T (q)Fm, where the measured external torque τm denotes the reflection of
Fm in the joint coordinate, J(q) is the Jacobian matrix and T (q) is the coordinate
transformation from the task coordinate to the base coordinate. The comparison be-
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tween the measured external torque τm and the estimated external torque τ̂d is shown
in Fig. (3.9).
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Figure 3.9: The estimated and measured collision torque on the first joint.

The results have shown that the estimation τ̂d by the observer is very close to the
measured external torque τm by JR3 torque sensor. Note that the waveform of the
external torques possess similar features to the predefined disturbances in (3.47), (3.48)
and (3.49). This confirms the estimation precision and bandwidth of the integral sliding
mode observer in practical applications.

3.5.3 Application Example: Sensorless Admittance Control

The precise, high-bandwidth and robust estimation performance of the integral sliding
mode observer confirmed by the above simulation and experiments reveals its potential
application to safe human robot collaborations, which is investigated in this section by
implementing a force-sensor-less admittance controller as an example. An admittance
controller is an important component in the HRI safety framework. By modifying the
reference trajectory according to the external force feedback, the robot can compliantly
react to the interactive forces, such that an admittance featured motion is achieved.
Usually an external force sensor, such as the JR3 torque sensor, is needed to implement
an admittance controller, whereas here we use the estimated external torque τ̂d instead of
the measured torque τm. Thus the admittance controller in this experiment is designed
as follows

τc = M̂(q) (q̈r +KDėr +KPer) + Ĉ(q, q̇)q̇ + F̂ (q̇),

where qr, q̇r and q̈r are respectively the reference position, velocity and acceleration of
the robot in the joint space, er = qr − q is the deviation between the reference position
and the current position, KD andKP are the same as in (3.44). The reference trajectory
qr is defined by

q̇r = q̇d +K−1
d (Kp(qd − qr) + τ̂d) , (3.50)

where Kp = 50I3 and Kd = 50I3 respectively define the stiffness and damp of the
admittance behavior. Note that different from the simulation and the experiments above,
the estimated disturbance τ̂d is applied to the closed-loop control, see (3.50). The motion

56



3.6 Summary

of the robot with this force-sensor-less admittance controller is shown in Fig. (3.10).
Initially, the robot stays in a static position (see Fig. (3.10a)). When an object makes
a contact with the end-effector (see Fig. (3.10b)), an admittance reaction behaviour is
achieved (see Fig. (3.10c)). After the contact vanishes, the robot returns to the original
configuration. Note that due to the approximation from (3.10), the filter (3.15) and
the boundary layer techniques (3.39), τ̂d is not exactly equal to τd. As a result, the
closed-loop stability of the admittance controller does not hold for all possible values of
Kd and Kp as in (3.50). Large values of τ and the boundary layers may lead to small
feasible sets of control parameters Kd and Kp.

(a) (b) (c) (d)

Figure 3.10: The reactive motion of force-sensor-less admittance controller

As shown in the example demonstration above, the force-sensor-less admittance con-
troller reveals an expected compliance behavior when physical contact is exerted on the
end-effector, which justifies the applicability of the integral sliding mode observer to
practical HRC scenarios. Thus, a safe compliance-controller can be designed without
expensive force sensory devices. The disadvantage is, however, the resulting control pre-
cision is inferior to the control schemes using force sensors due to applying the filter and
boundary layer techniques. Therefore, this force-sensor-less application is suitable to
the low-cost robot platforms which do not have strict requirements on the force control
precision.

3.6 Summary

In this chapter, we present a novel collision force estimator and apply it to a robot
manipulator. The usage of a novel integral sliding mode observer for Euler-Lagrangian
systems ensures precise estimation of the collision forces without the conventional as-
sumptions, namely system continuity, velocity measurement, and boundedness of the
disturbance derivative. Results of the simulation and experiments have shown the high
precision, bandwidth, and robustness of this novel method. It is worth mentioning
that our method is effective for various disturbances, including sinusoidal, square, and
triangle disturbances that represent the most collision forces in practice. The experi-
mental comparison with sensory measurements reveals that it is possible to replace a
real force sensor in practice. The implementation of a force-sensor-less admittance con-
troller lights up the ambition to achieve a sensor-free and low-cost safety framework for
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human-friendly collaborative robots. Therefore, our method for collision force estima-
tion of Euler-Lagrangian systems provides a high-performance solution for HRC with
application values. Its practical potential is validated by successful implementation on
real robots, which proposes a positive answer to Question 1 raised in Sec. 1.2. Never-
theless, it should be noted that the experimental results are obtained on a well-identified
robot manipulator platform. The actual estimation precision of the method in practise
may be reduced if unmodeled dynamics exist.
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Once the collision forces are measured or reconstructed, the CDI module in the collision
handling pipeline takes in the force signals and produces a diagnosis result indicating
whether a collision occurs and what type the collision is, as shown in Fig. 2.7. As part
of the post-collision procedure, a CDI scheme is intended to monitor the sensory signals,
detect the occurrence of a physical contact and identify whether it is an accidental
collision or an intentional contact. The results of CDI will be given to the collision
reaction procedure, where the corresponding safe strategy is enabled to avoid further
harms [5]. In this chapter, we present an online CDI scheme using supervised learning
methods and Bayesian decision theory. Different from the conventional methods, the
proposed scheme is able to provide an accurate diagnosis result in the early stage of
a collision, such that severe injuries or damages can be prevented in advance. The
experimental validation confirms the applicability of the proposed scheme in practice.
The results of this chapter are based on the work in [305].

4.1 Overview

The work in this chapter is motivated by the desire of handling different types of physical
contacts that exert various impacts on humans. The intentional contacts desired by the
cooperative tasks, such as the human teaching processes, are usually quite safe. On the
contrary, the accidental collisions, which may lead to unexpected injuries or damages,
are often dangerous to humans. As pointed out by many surveys on the safety of
human-robot collaboration [243, 244], the accidental collisions are inevitable in pHRI
and should be carefully handled. Especially, the reaction strategy for the accidental
collisions should be distinguished from the intentional contacts since they tend to cause
opposite consequences. In this chapter, without causing ambiguity and confusion, we
refer to the dangerous accidental collisions as collisions, the safe intentional contacts as
contacts, and their summary as pHRI.

As claimed in [5], accidental collisions and intentional contacts possess distinguishable
properties, which are reflected in the features of the sensory signals. Considering this, one
can formulate robot CDI as a multi-class classification problem, with collision, contact,
and free respectively denoting the accidental collisions, intentional contacts and the
nominal cases where no pHRI occurs. Then, the main target of CDI becomes to develop
a pHRI signal classifier using a data set that contains the pHRI waveform. In general,
this proposes a classification problem for time series.
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4.1.1 Related Work

Conventionally, CDI for robot systems has been recognized as an engineering-oriented
problem and is mainly solved by simple threshold logic or hypothesis testing based
methods [14, 101], where the filter-based techniques are widely applied [21]. More re-
cent work tends to formulate CDI as a classification problem for segmented time series.
Similar work can be found in relevant fields, such as speech recognition [245], snoring
identification [246], bird sound recognition [247] and fault identification of mechatronic
systems [248–250]. The common ground of these applications is that the segmented
time series, either acoustic signals or sensory streams, are expected to be classified as
a certain type. In [251], the classification of time series is generally investigated by ap-
plying various data sets. In [252], a deep neural network is constructed to detect the
system faulty status. In [253], various classifiers are developed and tested using the
recorded signal samples. Similar work also includes [204, 205], where neural network is
constructed to monitor the grasping slippages and colliding torques, and [69,70], where
SVM classifiers are developed to detect external collisions. Based on the mentioned work,
a mature development framework for time series has been well-formed. However, such
a framework is confronted with challenges when applied to CDI for robot systems with
pHRI tasks, since the prediction results are only available after the collision vanishes or
the entire pHRI waveform is segmented. Therefore, these methods are not suitable for
human-robot collaboration with high requirements on human safety.

As alternatives, the probabilistic series-models, such as the HMM [254] and the Gaus-
sian Mixture Model (GMM) [255] are also applied to CDI by exploiting the dependence
properties of time series. In [256], an HMM is developed to detect exceptional events in
an object-alignment robot task, where the measured torques and their derivatives are
used. The work in [257] also develops an HMM model to realize a fault detection scheme
for a feeding-assistant robot using multi-sensor signals. In [258], probabilistic support
vector machine is used to detect online anomalies. Nevertheless, these series models
require artificially assigned prior knowledge on the distributional dependence of the raw
signals. In most practical scenarios, such knowledge is challenging to acquire, especially
in a complicated environment where the distribution of the disturbance and noise is not
treated as Gaussian.

4.1.2 Challenges

Generally, an important technique in the classification problem for time series is the seg-
mentation of raw signals, since classifiers can not process series with infinite length. In
a conventional paradigm of classifier development, the raw signals are segmented before
predictions are conducted, even for the online applications. In the context of CDI, the
conventional solutions typically design some detection logic, such as a signal threshold,
to approximately mark the starting instant of a pHRI, and segment the online signals
after observing the entire pHRI waveform, before producing a prediction result using a
trained classier. As a result, an accurate prediction result can only be produced when
the pHRI almost vanishes. By almost we mean that the pHRI waveform is contained
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in the signal segments as much as a correct identification result can be produced. Such
a method, however, usually leads to a useless result in the context of safe human-robot
collaboration, since a collision or a contact has already occurred and negative conse-
quences may have already been caused. Intuitively speaking, a prediction result of the
classifier does not really predict the occurrence of a collision. The reason for this issue
is that the signal values in the future are not available for the segment at the current
time, due to the causality of online time-series.

Nevertheless, this is a significant issue for safe human-robot collaboration, since A CDI
scheme that can be practically applied is expected to accurately report the pHRI in its
early stage, definitely before it vanishes, such that potential injuries can be prevented
in advance. Unfortunately, such a valuable topic has attracted very little attention,
probably due to the following two challenges. Firstly, accurate prediction results should
be produced even when the segmented pHRI waveform is incomplete. From a general
perspective, this introduces inconsistency between the distribution of the training data
and that of the predicted samples, if the classifier is developed on the signal segments
with complete pHRI waveform. This indicates that the identification result in the early
stage of a pHRI is very likely to be incorrect. Secondly, an accidental collision is usually
referred to as an instantaneous anomaly [259], which occurs unexpectedly and only lasts
for a short period of time. Thus, it is more difficult to be identified than the other
anomalies that are featured with low bandwidth and steady changes [260, 261]. The
main target of our work is to fill these gaps by proposing a novel online CDI scheme
that ensures both high accuracy and fast response.

4.1.3 Contributions

The main contribution of this work is to develop an online CDI scheme for safe human-
robot collaboration. The major advantage of this novel scheme over the conventional
methods is to produce fast and accurate CDI in the early stage of pHRI. Apart from
the identification result, it also provides a confidence index to indicate how much the
result can be trusted, which benefits the design of a flexible collision handling pipeline
in future work. Moreover, the scheme does not require extra detection logic and any
prior knowledge on the dependence of pHRI signals. Therefore, no heuristic thresholds
or distribution assumptions are needed. Another contribution of this work is to provide
a pHRI data set with manual labels specifically for the CDI usage, which is still lacking
in the literature. Different from most of the previous work where the torque sensors
are installed on the end-effectors, the signal data we used in this work is from the
torque sensors on the robot joints, which can even detect pHRIs on robot links. On the
other hand, the data set contains more interfering signals due to coupled mechanical
vibrations and strong current noise on the sensors, which leads to a larger challenge
to the development of the CDI scheme. From another perspective, however, our work
reflects the complicated conditions in practice, which provides an outcome truly with
application values.
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4.1.4 Outline of the Chapter

The main content of this chapter is organized as follows. Sec. 4.1.1 summarizes the
related work and clarifies the main contributions of this work. Sec. 4.2 introduces the
overall structure of the scheme and the collection process of the pHRI data set. The
development of two important components of the scheme, the signal classifier, and the
online diagnosor, is respectively presented in Sec. 4.3 and Sec. 4.4. In section 4.5, the
proposed CDI scheme is validated on a seven-degree-of-freedom (DoF) KUKA robot.
The decent performance of the CDI scheme revealed by the experimental validation
confirms its applicability in practice. Finally, section 4.6 summarizes this chapter.

4.2 Scheme Overview and Data Acquisition

In this section, we introduce the overall structure of the proposed CDI scheme. To
develop this scheme, we conducted a data collection experiment with manual collisions
and contacts to construct a pHRI data set. The data comes from the segmentation of
the external torques that are measured by shaft-mounted torque sensors installed on the
robot joints.

4.2.1 Scheme Overview

The general structure of the proposed online CDI scheme and the development flowchart
of each component are illustrated in Fig. 4.1, where τd is the measured torque signal,
T is the signal segment, r is the prediction result of the signal classifier, and κ∗, ι are
respectively the ultimate diagnosis result and its confidence index. During an online ex-
ecution, the CDI routine takes the torque signal τ and segment it recurrently. Then, the
features extracted from the signal segment T are given to the classifier which produces
a prediction result r among collision, contact and free. Based on a series of prediction
results, the online diagnosor offers a CDI diagnosis result κ∗ and a confidence index ι.
In this framework, no heuristic threshold values are needed to mark the occurrence time
of the pHRI.

Segmentor

Data collection

Segmentation

Labeling

Signal classifier

Feature extraction

Feature selection

Model validation

Model test

Online diagnosor

Accuracy analysis

Confidence index

Online algorithm

τd T r ι, κ∗

Figure 4.1: Overview of the proposed scheme and its development flowcharts
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4.2.2 Data Collection

To construct the pHRI data set for the development of the signal classifier, we conduct
a collection experiment using a seven DoF KUKA LWR4+ robot manipulator [262],
which is firmly mounted onto a fixed platform. During the experiment, different types of
physical interaction in various strengths and directions is manually exerted on the robot
end-effector by seven subjects hired for this experiment, aiming to include individual
uncertainties in the collected data, so as to ensure the generalization ability of the data
set. In the experiment, accidental collisions are created using a soft hammer with fast
hand speed and tough strength, whilst intentional contacts are made by gloved hands
with compliant forces. A spherical plastic end-effector is specially designed to bear the
contact forces from arbitrary directions.

Note that the pHRI is exerted during the movement of the robot, such that the
measured signals contain drifts and noise caused by the joint motions. It is worth
mentioning that the drifts and noise are also affected by the direction of the joint motion.
Considering this, we apply several different robot trajectories that are assigned with
the same starting position but different ending positions, such that both positive and
negative motion directions are covered for each joint. The trajectories are designed in
the joint space and interpolated by sinusoidal functions to ensure smooth motion. All
these experiment configurations are intended to ensure a representative data distribution,
which is important to ensure a high generalization ability to the classifier.

The motion of the robot is controlled by a trajectory tracking program that implements
a continuous reciprocating motion of the manipulator between the starting position and
each ending position. The program also reads the measured torque signals and records
them as seven-dimensional time-series with a sampling period of 1 ms. During the motion
of the robot, one experimenter exerts an accidental collision or an intentional contact on
the end-effector. At the same time, the other experimenter notes down the occurrence
instant and the type of the pHRI. To obtain a balanced data set between collisions and
contacts, we try to produce an equal amount of samples for these two classes.

4.2.3 Signal Segmentation and Sample Labeling

After collecting the raw pHRI signals, we conduct segmentation to split the signals into
segments with fixed-length. Let us denote the width of the segments as l and the bias
as b, with the unit of ms. By bias we mean the time period between the occurrence
instant of a pHRI and the ending instant of the segment, where we have 0 6 b 6 l. In
general, l determines how much signal information is included in the segments, whilst b
adjusts the proportion of the pHRI waveform in the segment. If the ending instant of
the segment represents the current time, b denotes the period after the occurrence of the
corresponding pHRI. Therefore, the segmentation scheme is well determined by the two
parameters l and b. For the data set, the segment bias is typically set as b = l, since the
torque values before the pHRIs are irrelevant to the classification. The determination
of segment width l is mainly based on the engineering experience. Usually, it should
be large enough to contain sufficient information of the pHRI waveform. On the other
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hand, an overlarge width may involve irrelevant signals and lead to poor generalization
ability.
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Figure 4.2: The waveform of physical contacts on the seven joints.
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Figure 4.3: The spectrum of signal segments.

To determine the value of l, we inspect the waveform of the pHRI signals presented
in Fig. 4.2, where the segmented partitions are marked with colored areas. We notice
that the average width of a contact is approximately 400ms, whilst that of a collision is
less than 200ms. This also applies to most of the recorded pHRI signals. Therefore, we
set the segment width as l = b = 300(ms), as a balanced result. Then, we label the two
types of segment samples respectively as collision (Fig. 4.2a) and contact (Fig. 4.2b).
The segmented parts of the raw signals are marked by colored areas in Fig. 4.2. During
the segmentation, invalid data due to storage damages or unrecognizable pHRI wave-
forms are eliminated. As a result, we obtain 6718 collisions and 7346 contacts, which is
approximate to a balanced radio 1:1. We also create signal segments without any pHRI
waveform and label them as free. However, the number of free samples should not be
equal to the other two classes since the frequency of contact-less cases is usually higher
than pHRI. In practice, both collisions and contacts are positive instances which will call
the corresponding safety mechanism, whilst frees are negative instances which do not
trigger the safety mechanism. Therefore, a reasonable idea would be to keep a balance
between the free samples and the summary of all pHRI samples, i.e., a scale ratio 1:1:2
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4.3 Development of the Signal Classifier

between collision, contact and free. Therefore, we take the free segments respectively in
the front, rear and middle of the pHRI segments in the raw signals, and finally obtain
13633 of them.

Until now, a data set containing the pHRI signal segments is constructed. We ran-
domly shuffle all the samples and split them into a training set and a test set with the
partition ratio 3:1. The training set will be applied to feature engineering and model
selection, whilst the test set will be used to evaluate the trained model.

4.3 Development of the Signal Classifier

In this section, we develop the signal classifier component in the CDI scheme. As ex-
plained in Sec. 4.1.1, we do not consider the probabilistic series-models to avoid prior
knowledge on the distributional dependence of the raw signals. Additionally, although
the end-to-end learning mechanisms, such as the convolutional neural network (CNN)
and recurrent neural network (RNN), have drawn much attention and made great
achievements in image recognition and model-free planning, they still suffer from the
lack of explainability and high dependence on complex manually designed structures.
Therefore, in this work, we develop the signal classifier based on the paradigm of super-
vised learning, by which we assume that the samples in the data set are independent
of each other. In this section, the scikit-learn machine learning tool-kit is used to train
and test the classifier [263].

4.3.1 Feature Extraction

To form a feature set that benefits the signal classification, we consider both the prop-
erties of pHRI signals and the successful experience in previous work [253, 264]. From
Fig. 4.2, we can conclude that the waveform of collisions (Fig. 4.2a) has sharp shapes and
fast amplitude changes, while the waveform of contacts (Fig. 4.2b) changes more gently
and lasts for a longer time. We also investigate the spectrum of the signal segments in
Fig. 4.2 and shown it in Fig. 4.3. Compared to the free sample, the collision and contact
possess more components in all frequency ranges. Especially, the collision shows a large
amplitude in the frequency interval 10 - 20 Hz, whist the contact in 0 - 10 Hz. Therefore,
distinguishable properties between the two classes are found in both time-domain and
frequency-domain. Based on this, we initially extract 18 features in both domains. Most
of these features also have achieved success in previous work [264].

4.3.1.1 Features in the Time Domain

The time domain features are frequently used in the fields like signal processing and
pattern recognition [265, 266]. Since each sample is naturally a segmented time series
T = {τ1, τ2, · · · , τl}, the time-domain features can be represented as the functions of T .
Here, we mainly select features that are concerned with the amplitude changes of the
signals. First of all, the 1st to 4th order statistical moments, namely the mean value T̄ ,
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the variance Var(T ), the skewness Skew(T ) and the kurtosis Kurt(T ) of samples T are
applied to depict the stochastic properties of the signal segment, where

T̄ =
1

l

l∑
i=1

τi, Kurt(T ) =
1

l
Var(T )−2

l∑
i=1

(
τi − T̄

)4 − 3,

Var(T ) =
1

l

l∑
i=1

(
τi − T̄

)2
, Skew(T ) =

1

l
Var(T )−

3
2

l∑
i=1

(
τi − T̄

)3
.

(4.1)

The median value m̃τ , the extreme range Rng(T ) and the extreme deviation Dev(T ) of
T are also used as supplementary, where Rng(T ) = maxi |τi| −mini |τi| and Dev(T ) =
maxi |τi| − T̄ , for 1 6 i 6 l. Additionally, we propose the energy increasing rate EI(T )
as

EI(T ) =
1

2
lg

 n∑
i=[n/2]

τ2
i

/
[n/2]∑
i=1

τ2
i

 (4.2)

to represent the temporal change of signal energy within a segment, where the ratio is
made between the squared signal sums within the two halves of the segment. Here, [·]
rounds a real number to integer.

4.3.1.2 Features in the Frequency Domain

The frequency domain features are commonly applied to depict the spectral profiles of
signals [14,267], which are mostly calculated by fast Fourier transformation (FFT). The
FFT of a signal sequence T includes a sampled frequency sequence F = {f1, f2, · · · , fm}
with the frequency sampling interval fs/m, and the corresponding complex spectrum
sequence C = {C(f1), C(f2), · · · , C(fm)}. The length of the spectrum sequence m is
usually equal to l. The frequency domain features are mainly concerned with the am-
plitudes and phase angles of the signal spectrum in different frequency intervals, such
as the mean frequency f̄ , the fundamental frequency f∗ and their corresponding spec-
tral amplitudes |S(f̄)|, |C(f∗)| and phase angles φ(S(f̄)), φ(C(f∗)), where | · | : C → R
and φ(·) : C → R respectively denote the amplitudes and phase angles. The mean
frequency f̄ is defined as f̄ =

∑m
i=1 fi|C(fi)|/

∑m
i=1 |C(fi)| and the fundamental fre-

quency f∗ is the frequency point such that C(f∗) is the spectrum summit. The crest

factor Fcrest, the average signal energy Erms and the sub-band energy ratio Efcrt are

respectively defined as Fcrest = |C(f∗)|/
√

1
m

∑m
i=1 |C(fi)|2, Erms =

√
1
m

∑m
i=1 |C(fi)|2,

Efcrt = 1
2 lg(

∑fs
fi=fc

|C(fi)|2/
∑fc

fi=0 |C(fi)|2 for band frequencies fc = 10, 20 Hz. These
features are also widely used in [264,265,268] to depict the energy properties of signals.
The crest factor Fcrest, also known as peak-to-average ratio, represents the significance of
the signal peak. The average energy Erms denotes the average signal power level, and the
sub-band energy ratio Efcrt reflect the relative energy proportion on the two sides of the
sub-band frequency fc. Here, we define two sub-band energy indexes. The correspond-
ing sub-band frequencies 10Hz and 20Hz are determined according to the distinguishable
spectral features of collisions and contacts.
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4.3 Development of the Signal Classifier

In summary, we extract the following features X+ = {T̄ , Var(T ), Skew(T ), Kurt(T ),
m̄τ , Rng(T ), Dev(T ), EI(T ), f∗, |C(f∗)|, φ(C(f∗)), f̄ , |S(f̄)|, φ(S(f̄)), Fcrest, Erms,
E10

rt , E20
rt }, where X+ denotes a full feature set. For brevity, we order these features and

number them from #1 to #18. Note that the signals have 7 dimensions corresponding
to the 7 robot joints. Therefore, in total 126 features are generated.

4.3.2 Feature Selection

To select the beneficial features for the classification, we use the Spearman correlation
analysis and the Relieff algorithm to evaluate the 126 features in X+. The former
inspects the dependence between any two features, whilst the latter calculates weights
for the features which are recognized as their importance to the classification. Features
with high dependence on the others or low importance are eliminated after the analysis.
Note that we only use the data in the training set during the entire feature selection
procedure.

4.3.2.1 Dependence Analysis

High dependence among features brings redundancy to the model training, which po-
tentially causes a poor generalization ability to the classifier. Therefore, we analyze the
Spearman correlation between the features to investigate their dependence. The Spear-
man rank correlation analysis is an efficient tool to describe the general monotonic rela-
tionship between two stochastic variables, which applies not only to linear dependence,
but also the nonlinear cases. Given the values of two features X = {X1, X2, · · · , Xm}
and Y = {Y1, Y2, · · · , Ym}, where m is the size of the data set, the Spearman correlation
coefficient ρX,Y is calculated by

ρX,Y =

∑m
i=1 (xi − x̄) (yi − ȳ)√∑m

i=1 (xi − x̄)2∑m
i=1 (yi − ȳ)2

, (4.3)

where x = {x1, x2, · · · , xm} and y = {y1, y2, · · · , ym} are the ranks of features X and Y ,
and ·̄ denotes the mean value [269]. Ranging from -1 to 1, the coefficient ρX,Y depicts
the dependence between X and Y , of which the sign denotes whether the relationship
of the two variables are proportional (when positive) or inversely proportional (when
negative), and the absolute value indicates the extent of dependence. We apply the
Spearman correlation analysis to all 126 features in X+. The results are illustrated
in Fig. 4.4 by colored matrices. Each micro square block represents the correlation
coefficients between the corresponding two features, of which the values are marked by
colors. Dark red indicates highly positive dependence and dark blue means the opposite.

Fig. 4.4a displays the dependence between all 126 features which are grouped by the
joint numbers. Each square block (surrounded by black dashed lines) on the diagonal
represents the self-feature- dependence of each joint, i.e., the dependence between the
features of the same joint. Meanwhile, the blocks off the diagonal indicate the depen-
dence among the features of different joints. It is noticed that the the blocks on the
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Figure 4.4: The Spearman correlation analysis of the features.

diagonal are highly similar to each other, which indicates that the features on all robot
joints possess similar self-dependence properties. Therefore, it is reasonable to only in-
vestigate the analysis result of a single joint and selected or eliminated the features in
batches in the unit of joint.

The correlation analysis of all 18 features on joint # 1, which is corresponding the
block in the down-left corner in Fig. 4.4a, is illustrated in Fig. 4.4b. The results reveal
that features # 1 (T̄ ) and # 5 (m̄τ ) show high dependence, so do features # 2 (Var(T )),
# 6 (Rng(T )), # 7 (Dev(T )) and # 16 (Erms). Therefore, these features are preferably
considered to be eliminated from X+, yet their importance to the classification still needs
to be considered.

4.3.2.2 Importance Analysis

After analyzing the dependence of the features, we apply the Relieff algorithm to the
126 features in X+ to evaluate their importance. As a popular feature engineering tech-
nique used in the previous work [264], it provides a weight for each feature to depict
its importance to the classification, which is independent of the classifier models. The
predecessor of Relieff, known as Relief, is originally proposed in [270] for binary classifi-
cation problems. Its main idea is to recursively and randomly select a sample x from the
data set and find out its closest samples with the same and different labels (respectively
referred as the near-hit z+ and the near-miss z−). For the i-th feature of sample x, xi,
its weight wi is iteratively updated by the following law,

wi = wi −
(
xi − z+

i

)2
+
(
xi − z+

i

)2
,

where z+
i and z−i are the i-th features of z+ and z−. The weight wi depicts the reward

(if wi is positive) or punishment (if wi is negative) of the i-th feature to the classifica-
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tion, and a larger wi indicates higher importance. Relieff is adapted from Relief as the
extension to multi-class problems [271].

On the training set, we calculate the weights, or importance of all 126 features using
Relieff and illustrate the results in Fig. 4.5, grouping them respectively by the feature
number (see Fig. 4.5a) and joint number (see Fig. 4.5b). The results indicate that the
feature importance varies among both features and joints. In Fig. 4.5a, the feature
# 2 (Dev(T )) shows the lowest importance (0.49), followed by # 4 (Kurt(T )), # 5 (m̄τ ),
# 9 (f∗), and # 13 (S|(f̄)|). In Fig. 4.5b, the feature weights on joint # 1, # 2 and # 4
are higher than the other joints.
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Figure 4.5: The weights of the features obtained by Relieff algorithm.

Since the classifier is supposed to function in a online scheme, we are quite con-
cerned with the computational load of the features. Therefore, we tend to form a small
feature set, while maintaining a decent classification accuracy. Considering both high
dependence and low importance, we eliminate features # 2 (Dev(T )), # 4 (Kurt(T ))
and # 5 (m̄τ ). Features # 6 (Rng(T )) and # 16 (Erms) are also eliminated due to their
strong relationship with # 7 (Dev(T )), as well as # 18 (E20

rt ) due to its redundancy to
# 17 (E10

rt ). Additionally, we remove the features of the joints # 3, # 5, # 6 and # 7 due
to their low importance. Therefore, we determine the feature set for the development
of the signal classifier as X ∗ ={T̄ , Skew(T ), Dev(T ), EI(T ), f∗, |C(f∗)|, φ(C(f∗)), f̄ ,
|S(f̄)|, φ(S(f̄)), Fcrest, E

10
rt }1,2,4 which contains 36 features, where the subscript denotes

the joints. To evaluate X ∗, we also define a minimum set X− = {T̄ , Skew(T ), Dev(T ),
EI(T ), f∗, |C(f∗)|, φ(C(f∗)), f̄ , |S(f̄)|, φ(S(f̄)), Fcrest, E

10
rt }1, which only includes 12

feature on joint # 2. We will evaluate the three feature sets X+, X ∗ and X− and select
the best when determining the classifier models. Note that such development procedure
is justified since the entire feature selection process is independent from the classification
models.
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4 Online Collision Detection and Identification

4.3.3 Model Validation

After determining the feature sets X+, X ∗ and X−, we are ready to select the model
for the signal classifier. Since a large number of models are used in the literature for
the classification of time series, enumerating all of them for the best one is a tedious
and unnecessary process. Instead, we assign several popular models with representative
properties as candidates, and validate these candidate models using the training set,
before selecting the best one. In our work, we determine the candidate models based on
three factors, namely the pHRI signal properties, engineering experience in the previous
work and the values of models in practice. Thus, four classifier models, namely a Linear
Discriminant Analysis (LDA) model, kNN model, an SVM model, and a FNN model are
chosen as candidate models, due to their simple structures and successful applications
in the previous work [264]. These four models are featured with various properties and
essentially cover most representative classifier structures. Specifically, the LDA model
is well known for its high efficiency and stable performance, and is able to achieve high
prediction accuracy for the linearly classifiable data sets. The kNN model is supported
by well-developed theoretical foundations and is easy to be extended to a larger scale
database in future work. The SVM model shows the excellent ability of generalization.
The NN model, as a powerful and comprehensive approximator, has strong adaptability
and flexibility for various data sets. In this work, we only consider the NN model with
one hidden layer. Note that simple structures are always preferred in practice since the
reliability of the system tends to decrease when the system becomes more complicated.
To evaluate the four classifier models on the training set with the feature sets X+, X ∗
and X−, we use a ten-fold cross-validation method and calculate the mean values of
the ten validation scores which are briefly referred to as score. We also apply a grid
search method to seek for the best hyper-parameters of the models. The models and the
corresponding grid values of their hyper-parameters are shown in Tab. 4.1.

Table 4.1: Hyper-Parameters for Grid-Searching Validation

Models Hyper-params Grid values

LDA solver ‘svd’, ‘lsqr’, ‘eigen’

kNN

k value 2, 3, · · · , 80

distance metrics
‘canberra’, ‘chebyshev’, ‘euclidean’,

‘manhattan’, ‘minkowski’

SVM
C value 10−3, 10−2.8, · · · , 103

kernel function ‘linear’, ‘rbf’, ‘sigmoid’

FNN
hidden neurons 2, 4, · · · , 100

activation function ‘identity’, ‘logistic’, ‘tanh’, ‘relu’
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The four models and the corresponding hyper-parameter values achieving the best
scores in the validation are listed in Tab. 4.2, where the hyper-parameter values are in
the same order as the hyper-parameters in Tab. 4.1. The validation scores of the models
trained with various feature sets are presented in the score columns, X+, X ∗ and X−,
respectively, which show that all four models achieve satisfactory scores, with the FNN
model showing the highest (96.6%). Thus, we select FNN with 48 hidden-layer neurons,
with ‘logistic’ activation function as the model for the signal classifier of the CDI scheme.
In the meantime, the results also reveal that the scores using X ∗ are close to that using
the full feature set X+ for all models, despite of slight decreases. On the contrary, the
scores of the minimum feature set X− drastically drop compared to X+ X ∗. Therefore,
we determine X ∗ as the feature set to train the FNN model, since it achieves similar
scores to the full feature set X+ with a greatly reduced number of features.

Table 4.2: The Model Configurations with Best Validation Scores

Models Hyper-parameters score(X+) score(X ∗) score(X−)

LDA ‘svd’ 94.8% 92.4% 82.2%

kNN 5, ‘canberra’ 97.5% 96.3% 88.0%

SVM 63.1, ‘linear’ 97.3% 96.0% 86.4%

FNN 48, ‘logistic’ 96.8% 96.6% 89.7%

4.3.4 Model Test

After determining the model for the signal classifier (FNN, 48 hidden-layer neurons,
‘logistic’ activation function), we train the model using all samples in the training set
with the feature set X ∗ and evaluate its prediction accuracy using the test set. The
tested accuracy score, 96.5%, is generally comparable with the score 96.6% in the model
validation in Sec. 4.3.3, which indicates that the signal classifier possesses a satisfactory
ability of generalization. The confusion matrix of the test is presented in Fig. 4.6, where
the prediction accuracy for collisions, contacts and free respectively achieves as high
as 95.6%, 93.7% and 98.4%, showing a decent performance of the classifier. Especially,
the higher accuracy rate of collisions than contacts reveals that the classifier is more
sensitive to accidental collisions, which is reasonable since collisions are more dangerous
to humans than contacts. The high accuracy score for free means that the classifier
hardly produces false-positive results.

4.4 Design of the Online Diagnosor

Although the signal classifier shows high accuracy for samples with complete pHRI
waveform, the same performance is not likely to be ensured in the early stage of a pHRI
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Figure 4.6: The confusion matrix in the test with the trained classifier.

in online applications, since the segmented waveform is incomplete. As discussed in
Sec. 4.1, the main reason is the distribution inconsistency between the training set and
the segmented online signals, such that a single prediction result of the classifier does
not guarantee a reliable CDI before the pHRI vanishes. To resolve this issue, we design
an additional online diagnosor for the CDI scheme to produce online decisions based on
a series of prediction results, which is proven to be more reliable than using a single
result.

4.4.1 Prediction Analysis of Incomplete Waveforms

As the first step of designing the online diagnosor, we investigate the prediction accuracy
of the signal classifier for signal samples with incomplete pHRI waveform. We create
several test sets from the raw signals with various b values which represent the segmented
online signals with different proportion of pHRI waveform, and use them to evaluate the
prediction accuracy of the signal classifier. Note that all the test sets are of the same
size as the one in Sec. 4.3.4. The accuracy scores with different b values are illustrated
in Fig. 4.7.

As a general tendency, the prediction accuracy increases when the segment bias b
becomes larger. An intuitive explanation is that more useful information on the pHRI
waveform naturally leads to higher accuracy scores. Within the interval b 6 50, the
prediction accuracy is lower than 77.3%, which indicates that a prediction result within
50 ms after the pHRI is very likely to be incorrect. In contrast, when b > 200, the
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accuracy is higher than 93.0%, which reveals that an accurate result is only possible
after 200 ms. Apparently, a single prediction result of the signal classifier does not offer
a reliable CDI decision in the early stage of pHRI.
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Figure 4.7: The accuracy scores of the classifier for various bias values.

4.4.2 Diagnosis Using Confidence Indexes

Our solution to this problem is to extend the decision horizon, such that the CDI result
κ∗ is produced based on a series of successive prediction results. Moreover, a quantified
metric is need to depict the reliability of the CDI result. Let us assume that the pHRI
occurs at time t0. At a certain time instant t1 = t0 + b, a segmented torque signal T1

is given to the signal classifier which then reports a prediction r1. The value of the
prediction result r1 can be −1, 0 or 1 which corresponds to collision, contact and free.
Here, r1 is not directly used to make the decision κ∗. Instead, we postpone s sampling
intervals until we obtain s signal segments T1, T2, · · · , Ts and a series of prediction results
R = {r1, r2, · · · , rs}. Here, we refer to R as an observation series with the window size
s. According to the Bayesian decision theory, the posterior probability of the class C
= {−1, 0, 1} based on the observation series R with parameter b reads

p(C|R, b) =
p(C|b)p(R|C, b)

p(R|b)
, (4.4)

where p(C|b) is the prior knowledge of proportions of the data set, p(R|C, b) is the
likelihood of class C and p(R|b) is the evidence that adjusts the weight of the posterior
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probabilities, where p(R|b) =
∑

C p(C|b)p(R|C, b). As mentioned in the beginning of
Sec. 4.3, the signal segments τ1, τ2, · · · , τs are independent from each other, so are the
prediction results r1, r2, · · · , rs. Therefore, the likelihood p(R|C, b) can be calculated by
the following product

p(R|C, b) =

s∏
j=1

p(rj |C, bj), (4.5)

where for each rj , j = 1, 2, · · · , s, p(rj |C, bj) represents the likelihood of a single pre-
diction result rj with given pHRI class C. The parameter bj is the bias of segment τj ,
reflecting a hidden condition that rj is the j-th element of R. The likelihood p(rj |C, bj)
depicts the probability that the classifier predicts a sample labeled C as rj , which de-
pends on the capability of the classifier.

Here, the posterior probability p(C|R, b) serves as a confidence index for decision
C given observation series R. It indicates the belief on the classifier to produce an
accurate diagnosis result within bms after the occurrence of the pHRI. A larger value of
p(C|R, b) corresponds to a more trustful decision C. Therefore, the decision law for the
online diagnosor can be designed as

κ∗ = i, if p(C [i]|R, b) = max
C

p(C|R, b), i = −1, 0, 1, (4.6)

where κ∗ is the diagnosis result (κ∗ = −1 for contacts, κ∗ = 1 for collisions and κ∗ = 0
for free) and C [i] represents the event C = i for brevity. The confidence index for decision
κ∗ is ικ

∗
R = p(κ∗|R, b).

To calculate the posterior probabilities, the likelihoods p(rj |C, bj) for all rj = {−1, 0, 1}
and C = {−1, 0, 1} can be approximated by experimental methods similar to that in
Sec. 4.4.1. The difference is that the calculation of the likelihoods requires the values in
the confusion matrices, rather than the overall accuracy scores. Such approximation is
justified by the large number principle. The observation window size s can be determined
accordingly. A wider window leads to a higher resolution of the confidence index and
provides more flexibility to the collision handling pipeline, which on the other hand,
involves more computational load. Note that the value b, as a parameter to be assigned,
represents a conservative estimation, rather than the true diagnosis delay. A reliable
CDI diagnosis is guaranteed in the early stage of a pHRI, as long as a high confidence
index is obtained for even small values of b. Therefore, in the practical design of the
CDI scheme, b can be heuristically determined as a reference reaction time. By designing
the decision law (4.6) with the confidence index ι, the collision handling pipeline can be
implemented in a more flexible manner.

4.4.3 A Fast Online Diagnosis Algorithm

The decision law in (4.6) requires the calculation of the posterior probabilities for every
observation series R, which is not suitable for online applications due to the large com-
putational load. Here, we propose a fast online diagnosis algorithm (as Algorithm 1)
that only involves simple comparison logic but ensures high reliability. In the algorithm,

74



4.4 Design of the Online Diagnosor

the observation window size is set as s = 5. The main routine of the algorithm is to
compare the observation R with two reference events R4

l and R2
t , where R4

l means that
at least 4 collisions are observed in R, and R2

t represents at least 2 contacts are wit-
nessed. To evaluate the reliability of Algorithm 1, we calculate its posterior probabilities,
p(C [1]|R4

l , b), p(C
[1]|R2

t , b) and p(C [1]|Rf , b) with b = 50, where Rf denotes R4
l ∨R2

t ,
i.e., neither a collision nor a contact occurs. Here, ∨ denotes the union of two events and
(·) represents the compliment of a event. Therefore, the posterior p(C [1]|R4

l , b) repre-
sents the confidence index of Algorithm 1 when making a decision C = 1 given R ∈ R2

l ,
p(C [1]|R4

l , b) is for decision C = −1 with R2
t , and the else is depicted by p(C [0]|Rf , b)

which describes the reliability of the algorithm in free cases.

Algorithm 1 The Fast Online Diagnosor

Input: R = {r1, r2, r3, r4, r5}
Output: κ∗

1: if R ∈ R4
cls then

2: κ∗ = 1;
3: else if R ∈ R2

ctc then
4: κ∗ = −1;
5: else
6: κ∗ = 0;
7: end if

Table 4.3: The confusion matrices of signal classifier with test set b = 50ms (I).

p(r|C) r[1] r[1] p(r|C) r[−1] r[−1]

C [1] 1207 (72.5%) 458 (27.5%) C [−1] 593 (31.9%) 1268 (68.1%)

C [1] 13 (0.25%) 5247 (99.7%) C [−1] 419 (8.27%) 4645 (91.8%)

Table 4.4: The confusion matrices of signal classifier with test set b = 50ms (II).

p(r|C) r[0] r[−1] r[1]

C [0] 3376 (99.4%) 20 (5.89%) 3 (0.09%)

C [0] 1317 (37.4%) 992 (28.2%) 1217 (34.6%)

To calculate the posteriors, we firstly use (4.5) to calculate the following likelihoods,

p(R4
l |Ci, b

[50]
j ) =

∑
R∈R4

l

s∏
j=1

p(rj |Ci, b[50+j]
j ), i = [1], [1],

p(R2
t |Ci, b

[50]
j ) =

∑
R∈R2

t

s∏
j=1

p(rj |Ci, b[50+j]
j ), i = [−1], [−1],
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p(Rf |Ci, b
[50]
j ) =

∑
R∈Rf

s∏
j=1

p(rj |Ci, b[50+j]
j ), i = [0], [0],

where b[50] means b = 50 and C [1] denotes the event that C 6= 1, i.e., C [1] = C [−1] ∨C [0],

while similar is C [−1]. Such a compact form is for the purpose of brevity. We assume that

p(rj |C [1], b
[50+j]
j ) ≈ p(rj |C [1], b

[50]
j ), for all j = 1, 2, · · · , 5, considering a high sampling

rate of the system. Therefore, the likelihoods are calculated by follows,

p(R4
l |Ci) = p(r[1]|Ci)5 + 5p(r[1]|Ci)4p(r[1]|Ci), (4.7a)

p(R2
t |Ci) = 1−p(r[−1]|Ci)5−5p(r[−1]|Ci)4p(r[−1]|Ci), (4.7b)

p(Rf |Ci) = p(r[0]|Ci)5 + 5p(r[0]|Ci)4p(r[1]|Ci)
+10p(r[0]|Ci)3p(r[1]|Ci)2+10p(r[0]|Ci)2p(r[1]|Ci)3

+5p(r[−1]|Ci)×
(
p(r[0]|Ci)4+4p(r[0]|Ci)3p(r[1]|Ci)

+6p(r[0]|Ci)2p(r[1]|Ci)2+4p(r[0]|Ci)p(r[1]|Ci)3
)
,

(4.7c)

respectively for i = [1], [1], i = [−1], [−1] and i = [0], [0], where b[50] and the subscript j

for rj are omitted for brevity. Similar to above, we use r[1] and r[1] to represent r = 1
and r 6= 1. To obtain the values of the single-prediction likelihoods on the right sides of
(4.7), we evaluate the signal classifier using the test set with b = 50 (ms) and calculate
the confusion matrix which is decomposed to three matrices in Tab. 4.3, respectively
for the calculation of (4.7a), (4.7b) and (4.7c). The rows of Tab. 4.3 C [i], i = −1, 0, 1
represent the ground truth, whilst the columns r[i] denote the predicted classes. In
each block, both the number of samples and the accurate scores are presented, which
explicitly corresponds to the values of the likelihoods p(r|C). For example, the value of
p(r[1]|C [1]) is approximated as 0.73 corresponding to the value in C [1], r[1].

Checking the values in Tab. 4.3 and using (4.7), we calculate the values of the likeli-
hoods as

p(R4
l |C [1]) = 0.87, p(R4

l |C [1]) = 9.80× 10−5,

p(R2
t |C [−1]) = 0.51, p(R2

t |C [−1]) = 6.74× 10−2,

p(Rf |C [0]) = 0.99, p(Rf |C [0]) = 0.52,

Here, we set the prior probabilities as p(C [0]) = 0.5, p(C [1]) = p(C [−1]) = 0.25,
according to the proportion of samples in the data set. Therefore, according to the
Bayes law in (4.5), we calculate the confidence indexes for Algorithm 1 as follows,

p(C [1]|R4
l ) =

p(C [1])p(R4
l |C [1])∑[1]

i=[1] p(C
i)p(R4

l |Ci)
,

p(C [−1]|R2
t ) =

p(C [−1])p(R2
t |C [−1])∑[−1]

i=[−1] p(C
i)p(R2

t |Ci)
,
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p(C [0]|Rf ) =
p(C [0])p(Rf |C [0])∑[0]
i=[0] p(C

i)p(Rf |Ci)
,

which leads to p(C [1]|R4
l ) = 0.99, p(C [−1]|R2

t ) = 0.72 and p(C [0]|Rf ) = 0.66.

The results of the posterior probabilities indicate that Algorithm 1 produces high
confidence on its diagnosis for collisions (ι1R = 0.99) and contacts (ι−1

R = 0.72) with
given observation series R. A larger value of p(C [1]|R4

l ) than p(C [−1]|R2
t ) means that the

diagnosor is more sensitive to collisions than contacts. The confidence index ι0R = 0.66
for free reveals that the diagnosor is also trustful for avoiding false detection. Due to the
fact that p(C [1]|R4

l ) = maxC p(C|R4
l ), p(C

[−1]|R2
t ) = maxC p(C|R2

t ) and p(C [0]|Rf ) =
maxC p(C|Rf ), Algorithm 1 is consistent with the decision law in (4.6). Therefore, the
confidence index ι can be explicitly obtained without calculation, which leads to a faster
and easier implementation for online applications.

4.4.4 Comparison with the Single Prediction

To justify the advantage of the online diagnosor using observation series instead of a
single prediction result, we also calculate the confidence indexes for the latter for com-
parison. The confidence index for class Ci, with a single observation ri, is calculated
by

p(Ci|ri) =
p(Ci)p(ri|Ci)∑i
k=i p(C

k)p(rk|Ck)
, i = [−1], [0], [1].

Checking the likelihoods in Tab. 4.3, we obtain p(C [−1]|r[−1]) = 0.57, p(C [0]|r[0]) = 0.75,
p(C [1]|r[1]) = 0.99. The results show that such a scheme ensures a low reliability on
identifying contacts (0.57), i.e., the diagnosor is sensitive to collisions but quite dull to
contacts, which shows a inferior performance than Algorithm 1.

4.5 Experiments

4.5.1 Accuracy Evaluation

In this section, we evaluate the performance of the proposed CDI scheme in terms of
both the identification accuracy and the responsiveness by applying it to an online vali-
dation on the recorded raw signals. These signals contain 242 collisions and 225 contacts
and have never been used during the development of the signal classifier. The torque
signal is sequentially sampled at the rate of 1 kHz and recursively segmented as new
samples for the signal classifier. The online diagnosor is equipped with the fast online
diagnosor in Algorithm 1 to provide online diagnosis. Note that the evaluation method
and metrics in this experiment are different from the model test in Sec. 4.3.4. For the
classifier development, the accuracy scores are calculated based on the number of signal
segments containing the pHRI waveform, while in a human-robot collaboration, a CDI
scheme focuses more on the number of correctly identified collisions or contacts. The
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main difference is that the pHRI, in an online application, usually produces several seg-
ments with various b values, corresponding to the signals segmented in different sampling
instants. Therefore, for the experimental validation, we must clarify that we evaluate
the performance of the CDI scheme with respect to the entire pHRI, rather than its
segments. We recognize that the pHRI is accurately identified, if the scheme proposes a
correct diagnose before it vanishes.

During the experiment, 240 out of 242 collisions and all 225 interactions are correctly
identified, with 2 collisions misclassified as 1 contact and 1 free, achieving an overall
accuracy 99.6%. Some identification instances are shown in Fig. 4.8, which illustrates the
accuracy and responsiveness of the scheme. It is noticed that most of the diagnosis results
are correctly produced in the early stages of the pHRI, which confirms the high accuracy
of the online CDI scheme. The fast response of the scheme is also clearly reflected in
Fig. 4.9 with both instances of a collision and a contact. The two pHRI are all correctly
identified within 20ms after their occurrence, which confirms the responsiveness of the
scheme.

4.5.2 A Simple Collision Reaction Scheme

To demonstrate the applicability of the proposed online CDI scheme in a practical task,
we implement it on the Kuka LWR4+ robot platform (as shown in Fig. 4.10) together
with a collision reaction routine. The script of the task is to implement a cyclic motion
by steering the manipulator to track a desired sinusoidal trajectory qd(t). During this
process, we manually exert a collision or a contact to the robot endeffector. Then, the
CDI scheme monitors the external torques on the robot joints, detects any pHRI and
activate the collision reaction routine which modifies the desired trajectory to enable
the corresponding reaction mode. The reaction strategy is, if a collision is detected
(as Fig. 4.10a), an emergency stop is triggered and the robot holds on the current
position until the safety alarm is deactivated (as Fig. 4.10b). If a contact is detected
(as Fig. 4.10c), the robot enables its gravity compensation mode such that the human
can conduct active guidance on the robot (as Fig. 4.10d). The reaction strategy can be
represented as follows.

qr(t) =


qc, κ∗ = 1,
q(t), κ∗ = −1,
qd(t), κ∗ = 0,

where qr(t) is the modified reference trajectory, qc is the fixed current position which
represents an emergency stop, q(t) is the actual robot state which indicates a gravity
compensation, and qr(t) = qd(t) denotes the nominal task.

During the operation of the robot, the CDI scheme correctly detects and identifies
most of the pHRI and enables the corresponding reaction procedure, although some
week contacts and collisions fail to be detected. When the robot is smoothly moving,
the false diagnosis of collisions and contacts is hardly witnessed. Nevertheless, a false di-
agnosis occurs when the robot motion shows large vibrations due to fierce motion or bad
controller design. Therefore, a smooth functioning condition is still necessary. As for the
responsiveness, the diagnosis delay is basically not obviously perceivable experimenters,
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(a) The CDI diagnosis of collisions. The red solid lines are the raw signals, the black dot
lines are the occurrence instants of the collisions and the grey regions represent the time
intants when collisions are detected and identified.
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(b) The CDI diagnosis of contacts. The red solid lines are the raw signals, the black dot
lines are the occurrence instants of the contacts, and the blue regions represent the time
intants when contacts are detected and identified.

Figure 4.8: The experiment results of the online scheme.
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(a) The CDI diagnosis of a collision. The red solid lines are the raw signals, the black dot
lines are the occurrence instants of the collisions and the grey regions represent the time
intants when collisions are detected and identified.
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(b) The CDI diagnosis of a contact. The red solid lines are the raw signals, the black dot
lines are the occurrence instants of the contacts, and the blue regions represent the time
intants when contacts are detected and identified.

Figure 4.9: The diagnosis results of a collision and a contact.
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(a) A collision is exerted. (b) An emergency stop.

(c) An interaction is exerted. (d) The guidance mode.

Figure 4.10: The application demonstration of the online scheme.

which is acceptable in a typical human-robot collaborative task. Therefore, the demon-
stration confirms the performance of the proposed CDI and indicates its applicability to
human-robot collaboration tasks in practice.

4.6 Summary

In this chapter, we develop a novel online CDI scheme for robot manipulators using su-
pervised learning and the Bayesian decision theory. During the data collection process,
we try to cover various execution conditions of the robot to ensure a representative data
set. After carefully investigating the properties of the pHRI signals, we extract and se-
lect the features by analyzing their dependence and importance. As a result, the signal
classifier presents excellent predictability and generalization ability. Based on this, we
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propose a fast and simply implementable online diagnosor with a quantified confidence
index to depict the reliability of the diagnosis result based on the Bayesian decision the-
ory. Examined by both theoretical analysis and experimental validation, the proposed
CDI scheme shows a promising value to improve the safety of human-robot collaboration
systems. It should be noted that the development of the CDI scheme, including the pro-
cedures of the data collection, feature engineering, and the model training, is conducted
on a specific robot platform. Thus, the applicability of the developed CDI scheme to
different platforms needs further investigations. In general, our work ensures rapid and
accurate detection and identification of accidental collisions in their early stages. As a
result, a collision is predicted before it vanishes, such that further damages or injuries can
be avoided. The common ground of our work and the probabilistic-series-model-based
methods is to make a decision using the observation series. Nevertheless, the proposed
CDI scheme is more suitable to be widely applied in practice since it does not require
prior knowledge of the signal dependence and assumptions on the data distribution.
Therefore, our CDI scheme in this chapter provides a decent solution to Question 2
raised in Sec. 1.2.
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Post-handling of collisions does not guarantee the absolute safety of HRC systems due to
modeling uncertainties and misclassification. Therefore, pre-handling of collisions such
as safe control and planning methods targeted to collision avoidance is necessary for a
collision handling pipeline. In this chapter, we design a trajectory tracking controller
for robot manipulators satisfying strict safety constraints, corresponding to the robust
controller module in Fig. 2.7. These constraints are represented as a set of unilateral
state-dependent inequalities to regulate the feasible configuration space for robot mo-
tions, such that the robot is kept away from static objects in the environment. In this
work, besides confined trajectory tracking errors and avoidance of constraint violations,
we are also concerned with the robustness and adaptiveness of the controller. Envi-
ronmental results indicate that the controller produces decent tracking precision with
bounded disturbances and adaptive controller parameters. The robot motion is strictly
confined within the safe region even the desired trajectory violates the safety constraints.
The proposed method provides a novel solution to safe control of HRC with environmen-
tal uncertainties, flexible control structures, and hard safety requirements. The main
results of this chapter are based on the work in [306].

5.1 Overview

Precise tracking control of mechatronic systems in the free space or with equality con-
straints has been well studied in the past several decades. However, the conventional
formulations are mainly concerned with reducing the tracking errors for desired trajec-
tories. As a result, most of the existing control methods do not ensure safety for the
system when the desired trajectory violates the predefined constraints. For example,
in an HRC task, the robot is required to comply with certain proximity rules or speed
limitations to avoid collisions with humans. When the desired trajectory violates these
requirements, additional methods should be taken to confine the robot within safe con-
ditions. In general, this renders a control problem for Euler-Lagrangian systems with
unilateral state-dependent constraints, which is not fully investigated by previous work.

5.1.1 Related Work

Different from the control problem in free space or equality constraints, control with
unilateral constraints usually corresponds to a state-dependent switching scheme. Fun-
damental work on control of mechatronic systems with unilateral constraints is intro-
duced in [272], where an essential switching control law design framework is constructed
for measure differential equation systems. The work in [273] is among the earliest ones
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to demonstrate the constrained control problems under the framework of positively in-
variant set. This inspires the invariance control based methods [24, 25] which has been
applied to a wide range of systems, such as rollovers [274], legged robot [275], ma-
nipulators [276] and collaborative robots [277]. [274, 277]. Other popular methods for
constrained control include model predictive control [26, 27] and the barrier-function-
based methods [28,28–30]. From the perspective of robot motion planning or navigation,
where system kinematics and a global path are concerned, this problem corresponds to
trajectory modification or replanning [278–283]. For these methods, however, the safety
constraints may be violated when disturbances or unmodeled dynamics exist in the sys-
tem. Therefore, the robustness of the control methods with unilateral constraints is still
a challenging problem.

In this work, we apply the sliding mode control method due to its excellent robustness
for mechatronic systems. The super-twisting algorithm, as a second-order sliding mode
controller, is popular for robot manipulators [74] benefiting the reduced chattering level.
Towards a balance between the robustness and chattering, controllers with adaptive gains
are proposed [284] and [285]. As a result, the robustness of the system is ensured without
manually assigning the controller parameters, which greatly improves the conventional
sliding mode controllers. For the safety of systems, sliding mode controllers with hard
state-dependent constraints are also investigated [286,287]. However, robust controllers
with both adaptive parameters and hard-constraint compliance are still lacking.

5.1.2 Challenges

The major gap between the current control methods and safe control of HRC is the lack
of robustness to system uncertainties and the adaptiveness of controller parameters. The
system uncertainties, such as unmodeled dynamics or external disturbances, may cause
deviations to system states and lead to constraint violations. Therefore, a safe control
method for HRC systems has to ensure that the robot motions are still confined within
the feasible space with the existence of uncertainties. Besides, the determination of con-
troller parameters is usually a challenging and tedious work for practical systems, and an
adaptive parameter tuning law is always preferred to enhance the flexibility of the control
method. Thus, the main challenge in this work is to provide a theoretical framework for
robust safe control of HRC satisfying the following three essential requirements against
system uncertainties: task execution (trajectory tracking precision), safety (violation
avoidance of predefined constraints), and adaptiveness (adaptive parameter tuning).

To overcome this challenge, we apply a second-order sliding mode control method.
In the conventional invariant-set based methods [274, 277], an invariant controller is
designed to confine the system state within inf(S) by triggering a switching-law when
the system attempts to cross the invariant-set boundary ∂S. For sliding-mode-based
control methods, however, switching on the boundary ∂S may break the sliding mode
and affect the robust tracking performance of the controller. Therefore, we propose a
novel sliding-mode based invariant controller by modifying the sliding mode manifold,
such that the safety constraints are satisfied while the robustness is retained. Note that,
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by invariance, we mean the controller ensures S to be a CPI set for the closed-loop
system.

5.1.3 Contributions

The major contribution of our work is to propose a novel adaptive super-twisting-based
sliding mode controller for robot manipulators with hard safety constraints. The sliding
mode mechanism ensures high tracking performance of desired trajectories with bounded
uncertainties. An online trajectory modification scheme confines system states within
the predefined constraint set. An adaptive law is designed to automatically tune the
controller parameters. The global convergence of tracking errors to zero is proven by a
Lyapunov method. In general, our method provides a safe, efficient, robust, and flexible
solution to HRC safe control.

5.1.4 Outline of the Chapter

The chapter is organized as follows. Sec. 5.2 formulates the problem to be investigated.
The adaptive super-twisting-based tracking controller is presented in Sec. 5.3, and im-
proved in Sec. 5.3.2 for the constraint compliance. In Sec. 5.5, the proposed method
is validated by the simulation on a three-Degree-of-freedom (DoF) robot manipulator.
Finally, Sec. 5.6 summarizes our work in this chapter.

5.2 Problem Formulation

The dynamic model of an n-DoF Euler-Lagrangian system is formed as (3.1). The
nominal task of the manipulator is to ensure the precise tracking of a desired trajectory
qd(t), q̇d(t), q̈d(t) ∈ Rn, such that the tracking errors ed(t) = q(t) − qd(t) converge to
zeros. In this chapter, we consider a scenario where the system state is strictly confined
within a feasible set rendered by several unilateral constraints, to avoid potential human-
robot collisions. When the desired trajectory qd(t) is within the feasible set, the nominal
tracking task is accomplished. On the contrary, when qd(t) violates the constraints, a
modified desired trajectory is provided such that the system state is kept within the
constrained set. Note that these requirements should be satisfied with the existence of
external disturbances τd (See Sec. 3.2.1) and the unmodeled dynamics (See Sec. 3.3.5).

5.2.1 Safe Control

To ensure safety, the system is confined by a set of hard kinematic constraints which
are depicted by state-dependent inequalities hi(q, q̇) ≤ 0, i = 1, 2, · · · , p, where hi :
Rn × Rn → R are sufficiently smooth functions and p is the number of the inequality
constraints. The set of the system state in which all the constraints are complied with
is referred to as the admissible set H ⊆ Rn × Rn,

H = {(q, q̇)|hi(q, q̇) ≤ 0, ∀ i = 1, 2, · · · , p} , (5.1)
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and the system state (q, q̇) ∈ H is called an admissible state. Therefore, the system
state (q(t), q̇(t)) should be guaranteed admissible for all t > 0, by which we formulate
the following constrained control problem for system (3.1).

Problem 2. For system (3.1), design a state-feedback controller τc(q, q̇), such that
the following conditions hold for any initial condition (q(0), q̇(0)) ∈ H and bounded
disturbance τd(t).

(a). The system state is confined by (q(t), q̇(t))∈H, ∀ t>0.

(b). The tracking error ed(t) converges to zero, if (a) holds.

5.2.2 Invariant Set

In this work, the invariant-set theory is used to integrate the unilateral constraints to the
sliding mode control framework. Here, we give a brief interpretation of the invariant-set
theory.

Definition 1. (adapted from [273]): The set S ⊆ Rn × Rn is said controlled positively
invariant (CPI) for system (3.1), if there exists a continuous feedback control law u(q, q̇),
such that for any initial condition (q(0), q̇(0)) ∈ S, (q(t), q̇(t)) ∈ S holds for all t > 0.

The CPI-set is an important concept for control problems with state-dependent in-
equality constraints. The admissible-state set in (5.1) is not violated for all t > 0, if
there exists a CPI set S ⊆ H, where (q(0), q̇(0)) ∈ S. Therefore, the target of Problem
1-(a) is to define a subset S of the admissible state set H and seek for a correspond-
ing feedback control law u(q, q̇), such that S is a CPI set. For S, we assume that the
following conditions hold.

Assumption 4. The CPI set S is the convex intersection of r unilateral constraints
represented by the following inequalities,

si(q, q̇) ≤ 0, i = 1, 2, · · · , r, (5.2)

where si: Rn × Rn → R is a continuously differentiable function.

We define ∂S as the boundary of S and int(S) as the interior of S. Under the conditions
in Assumption 4, ∂S is continuous and piece-wisely continuously differentiable. For any
system state (q, q̇) ∈ ∂S, there exists at least one i, 1 ≤ i ≤ r, such that

si(q, q̇) = 0, 1 ≤ i ≤ r. (5.3)

Although the CPI set S can be selected the same as H, the boundary of H is not
necessarily piece-wise continuously differentiable. Therefore, S is usually determined as
a conservative subset of the admissible-state set H.
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5.2.3 Admissible Trajectory

Based on the invariant-set theory, we define the admissible trajectory for the CPI set S
which is the basis of our safe control method.

Definition 2. For a continuous function q(t), if there exist t0 > 0, such that (q(t0), q̇(t0))∈
∂S, and its right-hand derivatives q̇(t+0 ) and q̈(t+0 ) exist, then q(t) is an admissible tra-
jectory, if for all i = 1, 2, · · · , r,

ṡi(t
+
0 ) =

∂si
∂q>

q̇(t+0 ) +
∂si
∂q̇>

q̈(t+0 ) ≤ 0, if si(t0) = 0. (5.4)

The set of all admissible trajectories for t0 is represented as Q0.

Remark 6. An admissible trajectory q(t) moves along the direction to which the func-
tions si(q(t), q̇(t)) decrease for all active constraints, in the right neighborhood of t0,
[t0, t0 + ∆t), where ∆t > R+ is a sufficiently small interval, such that the system shows
a tendency to move into int(S).

From the definition of the sliding mode variable σ(t) in (5.8), we have

σ(t) = (q(t) + cq̇(t))− (qd(t) + cq̇d(t)),

and precise tracking of qd(t) is achieved by forcing σ(t) to zero. Therefore, constraints
(q, q̇) ∈ S are violated if the desired trajectory qd(t) /∈ Q0. This problem can be solved
by seeking for a modified reference trajectory qr(t), such that qr(t) ∈ Q0. The robustness
of the tracking controller ensures q(t) to converge to qr(t) within a finite time and thus
also becomes admissible. Note that such admissible trajectory solutions are not unique,
since (5.4) is confined by inequalities instead of equations. Nevertheless, it is straight-
forward to select a qr(t) that is closest to the original desired trajectory qd(t). Based on
this idea, we formulate a specified equivalent of Problem 2-(a).

Problem 3. For a piece-wise continuously differential function qd(t), if there exists
t0 > 0, such that (qd(t0), q̇d(t0)) ∈ ∂S and qd(t) /∈ Q0, solve the following minimization
problem,

min
t∈[t0,t0+∆t)

‖qr(t)− qd(t)‖, s.t. qr(t0) = qd(t0), (5.5a)

ṡi(t
+
0 ) ≤ 0, if si(t0) = 0, 1 ≤ i ≤ r. (5.5b)

Remark 7. In Problem 3, (5.5a) aims to find the closest solution of an admissible
trajectory qr(t) to the original inadmissible trajectory qd(t). The terminal condition
confines that the system trajectory q(t) is continuous. The constraints in (5.5b) require
that qr(t) is admissible, corresponding to the condition (5.4).

5.3 Adaptive Robust Tracking Control

In this section, we present the super-twisting-based robust tracking controller with adap-
tive gains for Problem 3-(b) without considering the unilateral constraints. The stability
of the tracking error dynamics is proven by a direct Lyapunov method. The integration
of safety concerns will be discussed in Sec. 5.4.
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5.3.1 Robust Controller for Mechatronic Systems

For robust tracking control of system (3.1) with desired trajectory qd(t), we design the
following controller,

τ = M̂(q)(q̈d − cė+ u) + Ĉ(q, q̇)q̇ + Ĝ(q) + F̂ (q̇), (5.6)

where M̂(q), Ĉ(q, q̇), Ĝ(q) and F̂ (q̇) are the identified system parameters, c ∈ R+ is a
convergence coefficient to be determined and u(t) ∈ Rn is a second-order sliding mode
controller in the form of

u(t) = −A|σ(t)|
1
2 sgn(σ(t))− Γ

∫
sgn(σ(t))dt, (5.7)

where A = diag(α1, α2, · · · , αn) and Γ = diag(γ1, γ2, · · · , γn) are gain parameters to be
determined, σ(t) ∈ Rn is the sliding mode variable defined as

σ(t) = ė(t) + ce(t), (5.8)

where e(t) = q(t)−qd(t) is the trajectory tracking error, and sgn(·) is the element-wisely

defined sign function. Note that the operator | · |
1
2 sgn(·) : Rn → Rn is also defined in an

element-wise manner, i.e.,(
|σ|

1
2 sgn(σ)

)
i

= |σi|
1
2 sgn(σi), ∀σ ∈ Rn,

where (·)i denotes the i-th element of a vector. Substituting (5.6) and (5.7) to the system
model (3.1), we obtain

q̈ =M−1M̂(q̈d − cė+ u) +M−1
(
τd−C̃q̇−G̃−F̃

)
, (5.9)

where M̃(q) = M(q)− M̂(q), C̃(q, q̇) = C(q, q̇)− Ĉ(q, q̇), G̃(q) = G(q)− Ĝ(q) and
F̃ (q̇) = F (q̇) − F̂ (q̇) are the unmodeled dynamics. Then, we take the time derivative
of the sliding function σ(t) in (5.8) and obtain

σ̇(t) = u(t)− ηc(t), (5.10)

where ηc = M̂−1(M̃q̈ + C̃q̇ + G̃ + F̃ − τd) is the system uncertainty term including
the unmodeled dynamics and the external disturbances. For the system uncertainties,
we propose the following assumption.

Assumption 5. The time derivative of ηc(t) is bounded, i.e., ‖ηc(t)‖ ≤ η̄c, ∃ η̄c ∈ R+.

Note that the boundedness of the system uncertainties is a basic assumption popularly
used in related works, such as [288,289].
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5.3.2 Adaptive Super-twisting Algorithm

Deriving from (5.10), the dynamics of sliding function σ(t) in each dimension reads
σ̇i(t) = ui(t) − ηi(t), i = 1, 2, · · · , n., where ui and ηi are respectively the i-th element
of u and ηc. Substituting (5.7) to it, we have

σ̇i = −αi|σi|
1
2 sgn(σi)− γi

∫
sgn(σi)dt− ηi. (5.11)

Although the determination of the parameters αi and γi are theoretically provided by the
existing framework [286, 289], selecting a proper integral coefficient γi, is a challenging
work in practical applications. In this chapter, we propose an adaptive tuning law for
γi which is given by the following theorem.

Theorem 3. For the dynamics of σi(t) in (5.11), i = 1, 2, · · · , r, if Assumption 5 is
ensured and αi > 0, then σi(t) asymptotically converges to zero within a finite time
tc <∞, with the following adaptive tuning law,

γ̇i = %i sgn(σi)

∫
sgn(σi)dt, (5.12)

where %i > 2γ̄i − α2
i /2, with γ̄i ∈ R+ being a scalar such that

α3
i

ε(γ̄i) +
√

2ε(γ̄i)2 + 4α2
i

+ η̄c

√
α2
i + 1 =

αi
2
, (5.13)

where ε(γ̄i) is defined as

ε(γ̄i) = 2γ̄i + α2
i − 1. (5.14)

Proof. Let us assume that γ∗i > 0 is an ideal parameter selection of γi, such that the
dynamics of σi(t) in (5.11) is stable if γi = γ∗i . Therefore, the sliding dynamics in (5.11)
can be represented as

σ̇i = −αi|σi|
1
2 sgn(σi)− (γ̃i + γ∗i )

∫
sgn(σi)dt− ηi, (5.15)

where γ̃i = γi − γ∗i denotes the error of the parameter tuning. By defining an auxiliary
variable

εi = −γ∗i
∫

sgn(σi)dt− ηi, (5.16)

we formulate the closed-loop dynamics in (5.15) as follows,

σ̇i = −αi|σi|
1
2 sgn(σi)− γ̃i

∫
sgn(σi)dt+ εi,

ε̇i = −γ∗i sgn(σi)− η̇i.
(5.17)
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Note that similar techniques are also used in [290] and [289]. Let us define zi2 =

|σi|
1
2 sgn(σi), z

i
1 = εi and represent (5.17) as żi1 = 1

2 |σi|
− 1

2 σ̇i, ż
i
2 = ε̇i, which then leads

to

żi1 = |σi|−
1
2

(
−αi

2
|σi|

1
2 sgn(σi)−

γ̃i
2

∫
sgn(σi)dt+

zi2
2

)
,

żi2 = −γ∗i sgn(σi)− η̇i.

Substituting the functions of σi with zi1 and zi2, we obtain

żi1 =−αi
2
|σi|−

1
2 zi1+

1

2
|σi|−

1
2 zi2−

γ̃i
2
|σi|−

1
2

∫
sgn(σi)dt,

żi2 =−γ∗i |σi|−
1
2 zi1 − η̇i,

and further we have
żi = −|σi|−

1
2Λizi − ζi(σi)γ̃i − η̇i, (5.18)

where zi =
[
zi1 zi2

]>
, ζi(σi) = [ ζi(σi) 0 ]>, ηi = [ 0 ηi ]>, Λi =

[
αi
2 −1

2
γ∗i 0

]
, and ζi(σi)

= 1
2 |σi|

− 1
2

∫
sgn(σi)dt. To investigate the stability of zi at the zero equilibrium, we define

the following Lyapunov function

Vi =
1

2
z>i Pizi +

1

2
γ̃2
i , Pi =

[
2γ∗i + 1

2α
2
i −1

2αi
−1

2αi 1

]
(5.19)

where Pi is a positive definite matrix. Taking the derivative of Vi, we have V̇i = ziPiżi+
γ̃iγ̇i. Substituting żi in (5.18) and γ̇i in (5.12) to it, we obtain

V̇i =− 1

2
|σi|−

1
2z>i Qizi − z>i Piη̇i − z>i Piζi(σi)γ̃i + γ̃i%isgn(σi)

∫
sgn(σi)dt

=− 1

2
|σi|−

1
2z>i Qzi − z>i Piη̇i +

αi
2
εiγ̃iζi(σi) +

(
%i − 2γ∗i −

1

2
α2
i

)
γ̃i

× sgn(σi)

∫
sgn(σi)dt,

(5.20)

where

Qi = PiΛi + Λ>i P =
1

2
αi

[
2γ∗i + α2

i −αi
−αi 1

]
.

Therefore, the eigenvalues of Qi, λ1(Qi) and λ2(Qi), satisfy that λ1(Qi) + λ2(Qi) =
αiγ
∗
i + 1

2α
3
i + 1

2αi, λ1(Qi)λ2(Qi) = 1
2α

2
i γ
∗
i , which indicates that Qi is positive definite if

αi, γ
∗
i > 0 holds. Meanwhile, since γ∗i is an ideal parameter selection, (5.16) denotes an

ideal sliding mode and we have εi = 0 in the sense of Filippov. Substituting εi = 0 to
(5.20), we obtain

V̇i ≤ −
1

2
|σi|−

1
2λmin(Qi)‖zi‖2 + ‖zi‖‖Piη̇i‖

+

(
%i − 2γ∗i −

1

2
α2
i

)
γ̃isgn(σi)

∫
sgn(σi)dt,

(5.21)
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where ‖Piη̇i‖ =
∥∥∥[−αi/2 1 ]>η̇i

∥∥∥ ≤ η̄c√α2
i /4 + 1 and λmin(Qi) is the minimal eigenvalue

of Qi,

λmin(Qi) = min(λ1(Qi), λ2(Qi)) =
αi
2

1− α2
i

ε(γ∗i ) +
√

2ε(γ∗i )2 + 4α2
i

 ,

where the scalar function ε(·) is defined as in (5.14). Note that λmin(Qi) is a function of γ∗i
for given αi. Therefore, we represent λmin(Qi) as λ̄(γ∗i ). Considering |σi|

1
2 = |zi1| ≤ ‖zi‖,

we have −|σi|−
1
2 ≤ −‖zi‖−1, which leads (5.21) to

V̇i ≤−
1

2
λ̄(γ∗i )‖zi‖+ ‖zi‖‖Piη̇i‖+

(
%i − 2γ∗i −

1

2
α2
i

)
γ̃i sgn(σi)

∫
sgn(σi)dt

=− 1

2
‖zi‖

(
λ̄(γ∗i )− η̄c

√
α2
i + 4

)
+

(
%i − 2γ∗i −

1

2
α2
i

)
γ̃i sgn(σi)

∫
sgn(σi)dt.

(5.22)

Note that (5.22) also holds in the Filippov sense. From (5.13), it is known that γ̄i satisfies

λ̄(γ̄i)− η̄c
√
α2
i + 4 = 0, and for any γ∗i > γ̄i, we have

λ̄(γ∗i )− η̄c
√
α2
i + 4 > 0. (5.23)

Note that for any %i > 2γ∗i − α2
i /2, there exists γ∗i > γ̄i, such that (5.23) and %i − 2γ∗i −

1
2α

2
i = 0 holds, which leads to

V̇i ≤ −
1

2
‖zi‖

(
λ̄(γ∗i )− η̄c

√
α2
i + 4

)
< 0.

Therefore, zi converges to zero and γi converges to γ∗i asymptotically. It is worth men-
tioning that such an ideal value γ∗i is not unique but belongs to a half-closed set γ∗i > γ̄i.
Therefore, γi will finally reaches an ideal value γ∗i , such that γ̃i = 0 holds. In this sense,
from (5.19), we obtain Vi = z>i Pizi/2, which leads to ‖zi‖ ≥

√
2Vi/λmax(Pi), where

λmax(Pi) is the minimum eigenvalue of Pi. For any positive scalar βi ∈ R+ satisfying

λ̄(γ∗i )− η̄c
√
α2
i + 4 > βi, we have

V̇i ≤ −βi
√
Vi/2λmax(Pi). (5.24)

According to the finite-time convergence property of sliding mode [56], (5.24) indicates
that the convergence of zi is within a finite time

tc =
2

βi

√
λmax(Pi)z>i,0Pizi,0 =

2

β
λmax(Pi)‖zi,0‖,

where zi,0 is the initial value of zi when γi reaches γ∗i . According to the definition of zi,
σi(t) and σ̇i(t) also converge to zeros within finite time tc.
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Remark 8. Theorem 3 indicates that σi(t), σ̇i(t) converge to zero within a finite time
for all i = 1, 2, · · · , n, which ensures that the tracking error e(t) asymptotically con-
verge to zero. Therefore, the controller (5.6) designed for system (3.1) guarantees robust
trajectory tracking for the system uncertainty ηc(t).

It is noticed that the update of γ in (5.12) involves twice-integration which may
produce an over-large control gain γ, which leads chattering to the control input u(t).
To avoid this, we modify the tuning law in (5.12) as follows

γ̇i =

{
%i sgn(σi)

∫
sgn(σi)dt, ‖σ‖ ≥ σ0,

−κγi, ‖σ‖ < σ0,
(5.25)

where κ > 0 is a decaying factor for γi and σ0 > 0 is a boundary layer scalar for σ(t).
Therefore, the self-tuning of γi is only activated when σ(t) exceeds the boundary layer,
and decays when σ(t) is within the boundary layer. As a result, the unlimited growing
of γi is avoided, and σ(t) is confined within the boundary layer, such that the robustness
of the closed-loop system is ensured without bringing up chattering.

5.4 Integration of Unilateral Constraints

In this section, we solve Problem 2-(a) by integrating the unilateral constraints (q(t) q̇(t))∈
H, ∀ t > 0, in the robust tracking controller (5.6). To achieve this, we firstly solve its
equivalent, Problem 3.

5.4.1 Problem Simplification

We take the Taylor expansion of qr(t) and qd(t) in the neighborhood of t0, and (5.5a) is
equivalent to

min
qr∈Q0

lim
∆t→0

∞∑
i=0

(∆t)i

i!

∥∥∥q(i)
r (t+0 )− q(i)

d (t+0 )
∥∥∥ , (5.26)

where (·)(i) is the i-th order derivative of (·). Since the higher-order derivatives of qr(t)
for i > 2 do not show up in the formulation (5.5), they can be neglected. Then, the
formulated problem in (5.5a) is simplified as

min
q
(i)
r (t0)∈Rn

∥∥∥q(i)
r (t0)− q(i)

d (t0)
∥∥∥2
, ∀ i = 0, 1, 2. (5.27)

Here, we formulate (5.27) as a quadratic form. Note that solving Problem 3 only ensures
that the constraints are complied with in the neighborhood [t0, t0 + ∆t). To guarantee
safety in a continuous period of time T � ∆t, Problem 3 should be solved for all
t ∈ (t0, t0 + T ). Therefore, the sliding-mode-based invariance controller is similar to
(5.6), with qd(t) substituted by qr(t), i.e.,

τ = M̂(q)(q̈r − cėd + u) + Ĉ(q, q̇)q̇ + Ĝ(q) + F̂ (q̇) (5.28)
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which ensures asymptotic convergence of the tracking error er(t) = q(t)− qr(t) to zero.
It is worth mentioning that, when a modified reference trajectory qr(t) is solved,

the continuity of qr(t) is always guaranteed by the terminal conditions (5.5b), but not
necessarily for q̇r(t) and q̈r(t), which leads to a new transient stage to the sliding mode.
Nevertheless, since qr(t) lies on ∂S and ∂S is piece-wisely continuously differentiable, a
new sliding mode can still be achieved if the finite convergence time of the sliding mode
is sufficiently small, such that the robust stability of the system is not affected. However,
due to the transient stages, the constraints (q(t), q̇(t)) ∈ S may be violated for a short
period of time. Therefore, a more conservative CPI set S should be determined for the
hard constraint set H to tolerate possible violations.

5.4.2 Control with Linear Holonomic Constraints

Problem 3 formulates a minimization problem (5.27) with constraints (5.5b), which
usually requires numerical methods for solutions. However, analytical solutions can be
obtained for linear holonomic constraints which are frequently used in practice. Consider
system (3.1) with the following position-dependent holonomic constraints,

hi(q) = ω>i q + ω̄i ≤ 0, ∀ 1 ≤ i ≤ r,

where ωi ∈ Rn is the constant coefficient and ω̄i ∈ R is a constant bias. We determine
a CPI set S as follows,

si(q) = ω>i q + ω̄i + δωi ≤ 0, ∀ 1 ≤ i ≤ r, (5.29)

where δωi ≥ 0, i = 1, 2, · · · , r, is the scalar for the tolerance of the constraint violation
due to the transient stages. For given t0 > 0, such that (q(t0), q̇(t0)) ∈ ∂S, there exist
1 ≤ l1 < l2 < · · · < lm ≤ r, such that

ω>i q + ω̄i + δωi = 0, ∀ i = l1, l2, · · · , lm, (5.30)

where m is the number of active constraints. We represent (5.30) as the following matrix
form

s(q) = Ω>q + ω̄ + δω = 0,

where s = [ sl1 sl2 · · · slm ]>, Ω = [ωl1 ωl2 · · · ωlm ], ω̄ = [ ω̄l1 ω̄l2 · · · ω̄lm ]> and δω

=
[
δωl1 δ

ω
l2
· · · δωlm

]>
. Then, the solution to Problem 2 of qr(t) at the neighborhood

[t0, t0 + ∆t) is

qr(t) =

{
Ω1qd(t) + ω̄1, if qd(t) /∈ Q0,
qd(t), if qd(t) ∈ Q0.

(5.31)

where Ω1 = Ilm − Ω
(
Ω>Ω

)−1
Ω>, ω̄ = Ω

(
Ω>Ω

)−1
(ω̄ + δω), and Ilm is the identity

matrix. It is straight forward to verify that, for qr(t),

ṡ(qr(t)) = Ω>q̇r(t) = 0, if qd(t) /∈ Q0, (5.32)

which satisfies the admissible condition (5.5b). Therefore, qr(t) is an admissible trajec-
tory for t0.
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It is worth mentioning that (5.32) indicates qr(t) ⊆ ∂S for qd(t) /∈ Q0, i.e., qr(t) lies on
the boundary of the CPI set S when qd(t) violates the constraints. Additionally, (5.31)
shows that qr(t) ≡ qd(t), if qd(t) ∈ Q0. Therefore, qr(t) is also piece-wise continuously
differentiable, which means that a new sliding mode is achievable after every switching
of (5.31), if the convergence time of the sliding mode is sufficiently small. Thus, both
robustly precise tracking and hard constraint compliance are guaranteed.

5.5 Simulations

In this section, we evaluate the proposed controller by a numerical simulation on a 3-DoF
manipulator in MATLAB 2019a. The detailed model information of the robot can be
referred to Sec. 3.4. The simulation runs from 0s to 70s at a sampling rate 1kHz, and
starts at the zero initial condition q(0) = q̇(0) = 0. The desired trajectory qd(t) for the
system is designed as,

qd(t) =


−2 cos

(
π
8 (t− 3)

)
q0, if 11 < t ≤ 59,

0, if t ≤ 3 or t > 67,(
1− cos

(
π
8 (t− 3)

))
q0, else,

where q0 = [ 1.5 0.6 0.9 ]>. A tracking controller as in (5.6) and (5.7) is implemented
with strict compliance with the following constraints,

− 3 ≤ s(q(t)) ≤ 3, (5.33)

where s(q(t)) = q1(t) + q2(t) + q3(t) is the invariant function, q1(t), q2(t) and q3(t) are
respectively the angular positions of the three joints. We define the CPI set S as

s1(q) = ω>1 q(t)− 3 + δ1 ≤ 0,

s2(q) = ω>2 q(t)− 3 + δ2 ≤ 0,
(5.34)

where ω1 = [ 1 1 1 ]>, ω2 = [−1 − 1 − 1 ]>, and δ1 = δ2 = 0.1 denotes the violation
tolerance. The controller parameters are selected as c = 50, κ = 0.01, αi = 2, %i = 50,
∀ i = 1, 2, 3, σ0 = 0.2. For the CPI set S in (5.34), the admissible trajectory qr(t) is
determined as

qr(t) =


Ω1qd(t) + ω̄1, if ω>1 qd(t) ≥ 2.9,
Ω2qd(t) + ω̄2, if ω>2 qd(t) ≥ 2.9,
qd(t), if qd(t), q̇d(t) ∈ int(S).

where Ω1 = ω1(ω>1 ω1)−1ω>1 +I, Ω2 = ω2(ω>2 ω2)−1ω>2 +I, ω̄1 = −2.9 + ω1(ω>1 ω1)−1,
and ω̄2 = −2.9 + ω2(ω>2 ω2)−1.

The reference trajectory qr(t) on the three robot joints is shown in Fig. 5.1 and is
compared with the original desired trajectory qd(t). It is noticed that qr(t) deviates
from qd(t) when qd(t) violates the constraint (gray area). Fig. 5.2 clearly shows that
the system trajectory q(t) is confined within the constraints (5.33), even though the
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desired trajectory qd(t) exceeds the constraints. The trajectory tracking error er(t)
is illustrated in Fig 5.3, which indicates that the proposed controller provides precise
tracking performance for the reference trajectory qr(t). The value of the adaptive gain γ
of the proposed controller (5.28), shown in Fig. 5.4, reveals the success of the adaptive
parameter tuning law. Therefore, the simulation results confirm that the proposed
controller provides robustly precise tracking of the reference trajectories and complies
with hard safety constraints.

Figure 5.1: The desired trajectory and the modified reference trajectory.

Figure 5.2: The invariance functions.

5.6 Summary

In this chapter, we propose a novel adaptive second-order sliding mode controller for
Euler-Lagrangian systems with inequality constraints. Different from the conventional
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Figure 5.3: The adaptive gains.

Figure 5.4: The tracking error on the three joints.

tracking control methods, the proposed controller ensures both precise trajectory track-
ing and invariance to the safety constraint set. By applying the adaptive tuning law for
the controller gain, manual parameter assignment is avoided and robustness to system
uncertainties is ensured without causing chattering. The convergence of the tracking
error is guaranteed by a rigorous Lyapunov-based stability proof. The simulation vali-
dation indicates that the method has promising potential in the application to safe HRC.
Therefore, the proposed safe control scheme ensures tracking precision, safe constraints,
and adaptiveness for the robot manipulator systems, which provides a novel solution for
Question 3 raised in Sec. 1.2.
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In this dissertation, we provide a novel solution for safe HRC oriented to collision han-
dling in an uncertain environment. In the beginning, we take an overview of the essential
concepts, concerning factors, development paradigms, and approaches for safe HRC in
previous work. Based on this, We propose a five-level safe HRC paradigm that contains
the handling mechanism for a wide range of unsafe factors, including collisions, con-
straint violation, task errors, and social norm violation. We validate the feasibility of
this paradigm through a compact implementation, including a collision force estimator,
an online CDI scheme, and an adaptive robust safe controller which forms a collision
handling pipeline, on robot manipulators. As an attempt to fill the gap between the
state of the art and the desire for a robust safe HRC with uncertainties, our work is
targeted to achieve an accurate, responsive, reliable, and generalizable collision han-
dling mechanism by eliminating conventional assumptions, redefining collision handling
metrics, and improving the robustness and adaptability of the system.

6.1 Conclusions

By proposing novel methods for our safe HRC paradigm based on multi-disciplinary
approaches and validating them in simulations and experiments, we provide reliable and
applicable solutions to the three questions raised in Sec. 1.2. The correspondence be-
tween our solutions and the questions is specifically interpreted as follows.

Solution to question 1: How to precisely estimate the collision forces for
discontinuous systems with partial measurement?

In Chapter 3, we propose a novel disturbance estimation method to solve this ques-
tion. We argue that the estimated collision forces using analytical-redundancy-based
methods can be used to replace the measurements by extrinsic torque sensors in low-
expense robot platforms. We also consider that the conventional assumptions required
by the previous methods, namely system continuity, velocity measurement, and bound-
edness of disturbance derivative, are the main reason to restrict the precision of the
estimation results. By designing a novel integral sliding mode observer, the proposed
collision force estimation method ensures a precise estimation result without the conti-
nuity assumption. The high-gain switching inputs applied in the method releases the
requirement on the disturbance derivative. Through achieving the full-dynamic-collapse
of the estimation errors with a finite convergence time, the system velocity is also pre-
cisely estimated. Thus, velocity measurement is not needed for the proposed collision
force estimator. The experimental results have confirmed the estimation precision of the
proposed method and verified its applicability to replace a torque sensor. It is validated

97



6 Conclusion and Future Work

that the proposed method is effective for various types of disturbances including the si-
nusoidal, the square, and the triangle disturbances. The success of the proposed method
is mainly due to the elimination of conventional assumptions. Note that the fewer as-
sumptions or preconditions are required, the easier the method can be generalized to
other robot platforms. Therefore, the proposed method can be recognized as a step
towards a generic collision force reconstruction framework for various robot platforms.
Moreover, an applicable FDI scheme without using force sensors can be developed based
on the proposed method for robot systems with low expense, compact structure, and
complicated environment, such as those mentioned in Sec. 1.2.4.

Solution to question 2: How to accurately classify accidental collisions from
intentional contacts with incomplete collision waveform?

In Chapter 4, we solve this problem by developing a novel online CDI scheme with
redefined functionalities. Different from the conventional CDI methods that analyze a
collision waveform after it vanishes, the proposed online CDI scheme can accurately de-
tect a collision and identify its type in its early stage, such that the collision reaction
mechanism can be activated to prevent further injuries. The major challenge to achieve
such responsiveness is to ensure high accuracy for signal samples with incomplete col-
lision waveforms. We resolve this issue by inferring the posterior of the decision using
a series of classification results. The posterior serves as a confidence index to indicate
the reliability of the decision. The experimental results show that the proposed scheme
achieves high diagnostic accuracy and short detection time, which confirms the appli-
cation potential of the proposed method in practice. Therefore, our solution to use a
series of classification results to improve the diagnosis accuracy with incomplete colli-
sion waveform is confirmed to be successful. Similar technology can be applied to the
monitoring of a wider class of faults using incomplete environmental knowledge, such as
task error detection or social norm violation in uncertain environments.

Solution to question 3: How to avoid constraint violation in a tracking control
task with system uncertainties?

In Chapter 5, we are concerned with the safety of HRC in an uncertain environment,
for example, with the existence of disturbances or unmodeled system dynamics. The
influence of the environmental uncertainties on system performance is twofold. Firstly,
the system tracking errors may not converge to zero due to unmodeled dynamics. Sec-
ondly, safety constraints may be violated under the effect of disturbances. To resolve
these issues, we design a robust trajectory tracking controller using a second-order slid-
ing mode controller. The controller is able to online modify the desired trajectory when
the predefined safety constraints are violated. It also ensures robust tracking of the mod-
ified reference trajectory to bounded uncertainties. Also, we design an adaptive tuning
law for the control parameters to adapt to the varying uncertainties. Simulation results
confirm the applicability of the proposed control method. The robustness, flexibility,
and adaptability of the controller provide a generic solution for the safe control of robot
systems in uncertain environments.
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In summary, by developing a collision-handling-oriented safety mechanism for robot
manipulators, this dissertation provides a novel perspective to define and implement
safe HRC tolerating environmental uncertainties. The elimination of the conventional
assumptions, the definition of new metrics, and the enhancement of system robustness
solve the critical problems in practice (See Sec. 1.2). The proposed methods indicate
potential applicability to various practical scenarios (See Sec. 1.2.4) and contribute to
a step forward towards a generic safe HRC framework. Nevertheless, there are still
several issues that are not perfectly solved in this dissertation, which will be detailedly
interpreted in Sec 6.2, with an outlook of the possible improvements.

6.2 Improvements and Future Research Directions

While the proposed development paradigm provides a novel perspective to regard and
redefine safe HRC, it also leaves several open problems for potential improvements. Some
of the major concerns are specifically discussed as follows.

Generalization of the Proposed Safety Paradigm

Towards a generic safe HRC framework, the application of the proposed safety paradigm
to various robot platforms has to be considered beyond of this dissertation. The main
challenge is that other types of robots may not have an Euler-Lagrangian physical model
similar to robot manipulators. Therefore, the generalization of the safety paradigms
should seriously consider the applicability of the methods to different robot physical
models. It is worth mentioning that the proposed safety paradigm presents superior
generalizability compared to conventional methods, due to fewer assumptions and en-
hanced robustness to system uncertainties. Improvements include the investigation of
the feasibility to extend the proposed HRC paradigm to different robot platforms, such
as unicycle robots, drones, and multi-agent systems.

Handling of Higher-Level Errors

As mentioned in Sec. 2.2.1, higher-level errors, such as task errors and social norm
violation, are also recognized as unsafe factors for HRC. Thus, possible improvement can
also consider the handling of these higher-level errors using mathematical or psychologic
methodologies. Different from the physical models applied to collision-handling, task and
social models will be considered. The main focus of the improvement is the adaptation
of the approaches and metrics used in the proposed paradigm to the higher-level errors.

Generalization of the Collision Force Estimation Method

The collision force estimation method proposed in this dissertation is designed for rigid
robot manipulators with Euler-Lagrangian system models. To generalize the method to
various robot platforms, such as mobile robots, drones, and flexible robots, the proposed
collision force estimation methods should be adapted to the unicycle model and Elastic
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joint models. The main challenges include the underactuation and compliant dynamics
which raise the difficulty of the design of the disturbance observers. Additional state
estimators may be required to reconstruct the internal dynamics of these systems.

Extension of the Collision Detection and Identification Scheme

In this dissertation, the entire development process of the online CDI scheme, including
data acquisition, signal segmentation, feature extraction and evaluation, and classifier
training and validation, is conducted on one robot manipulator. Thus, the main challenge
to extend the CDI scheme to a generic safe HRC is to ensure similar accuracy and
responsiveness on other robot platforms. Methods like transfer learning and generative
adversarial nets can be used to generate samples for different robot platforms. Another
interesting topic is to compensate for the effects of the varying robot loads, which can be
solved by dynamic model-based disturbance estimation methods, such as the disturbance
estimation method developed in Chapter. 3.

Safe Control for Time-Variant Constraints

The major remaining issue for the proposed safe control method is that time-variant
constraints are not considered. In practice, the motion of humans and dynamic objects
render the modeling of time-variant constraints which increase the difficulty for online
motion generation. Improvement of the work can consider the solution of safe control for
time-variant safety constraints in uncertain environments. Besides, the slight constraint
violation caused by the transient phase of sliding mode will be eliminated by applying the
integral sliding mode methods. In the meantime, the control method can be extended
to a wider range of robot systems, such as under-actuated robots and manipulators with
flexible joints.
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Sliding mode control, also known as variable structure control, has been widely applied
to precise control of mechatronic systems due to its advantage of high robustness to
matched system uncertainties. Based on the discontinuous system theory by Filippov,
sliding mode control decouples the controller design for mechatronic systems into two
separate procedures: definition of a state-dependent sliding mode variable and selection
of a discontinuous switching control law. Therefore, the controller design process is
simplified by reducing the dimensions of the system. The result is that the system state
is steered to a sliding mode manifold on which the system is dominated by an equivalently
desired stable dynamics. The feasibility of such separation is guaranteed by the finite-
time convergence of the system state from an arbitrary initial condition to the sliding
mode manifold. The modal in which the system evolves on the sliding mode manifold
is referred to as sliding mode which does not hold in the conventional Lipschitz sense
but in the Filippov discontinuity sense, based on the assumption of infinite-frequency
discontinuous switching of the control law. In the sliding mode, the system dynamics is
dominated by the sliding mode motion, and the disturbance and unmodeled dynamics
are compensated by the fast switching control law. Therefore, the system dynamics are
not affected by system uncertainties and robustness is ensured, which is referred to as
the invariance property of sliding mode. However, since infinite-frequency switching is
impractical, the switching control law in applications can only be implemented by finite
switching frequencies, which results in chattering phenomenon and potential system
damages. Therefore, a major direction of the research work on sliding mode control lies
in the investigation of chattering reduction or attenuation schemes. In this dissertation,
the sliding mode theory has been applied to the design of the collision-force estimator
and the robust safe controller due to its invariance feature. The following contents give
a brief introduction to the sliding mode control theory, which is sufficient to support the
understanding of the work in this dissertation. Further knowledge of advanced sliding
mode control can be found in the references recommended at the end of each following
section.

A.1 Essentials of Sliding Mode

Consider a Single-Input Single-Output (SISO) nonlinear system ẋ = f(x)+G(x)u with
the following control-affine form

ẋ1 =f1(x1,x2),

ẋ2 = f2(x1,x2) + g(x)u
(A.1)
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where x = [x>1 x2]> ∈ Rn is the system state, x1 ∈ Rn−1, x2 ∈ R are subsystem state
variables, u ∈ R is the control input, f1 : Rn → Rn−1 and f2 : Rn → R are smooth
vector fields, g(x) ∈ R is a non-singular gain matrix, f = [f>1 f2]>, and G = [0> g(x)]>.
The form of the system in (A.1) is also referred to as the regular form. A typical sliding
mode control law for u(x) is given by

u(x) =

{
u+(x), s(x) > 0,
u−(x), s(x) < 0.

(A.2)

where u+, u− : Rn → R are scalar functions of x, and s : Rn → R is the sliding-mode
variable or switching function defined as the following linear form

s(x) = x2 + c>x1,

where c ∈ Rn−1 is a predefined constant vector. The target of the control law u(x)
is to confine the system state to the hyperplane in the state space s(x) = 0, which is
referred to as the sliding mode manifold. In this situation, the algebraic relationship
x2 + c>x1 = 0 holds, and the system dynamics becomes

ẋ1 = f1(x1,−c>x1). (A.3)

Note that the order of this subdynamics is reduced to n− 1, which is referred to as the
partial dynamic collapse. The stability of the full-order system is then determined by
the n − 1 order dynamics (A.3). Therefore, the design of the sliding mode control law
(A.2) is composed of the following two steps. Firstly, define a proper state-dependent
sliding-mode variable s(x) which regulates the desired state dynamics. Secondly, design
a proper switching control law u(x). It is usually assumed that the switching of u(x)
can be infinitely fast.

A.1.1 Filippov Discontinuity and Equivalent Control

Due to the discontinuity brought up by the switching control law (A.2) which lies on
the right-hand side of the nonlinear system (A.1), the rendered closed-loop dynamics of
the system does not formulate an Ordinary Differential Equation (ODE) that holds in
the conventional Lipschitz sense. Therefore, the analysis of the sliding mode solution
follows a different principle, which is usually conducted using the Filippov method or the
equivalent control method.

The Filippov method recognizes that the state derivative ẋ, dominated by the dis-
continuous switching law u(x), as the weighted average of two vector fields f+ =
f(x) +G(x)u+(x) and f− = f(x) +G(x)u−(x), i.e.,

ẋ = µf+ + (1− µ)f− (A.4)

where

µ =
(∇s)>f−

(∇s)>(f− − f+)
, ∇s =

∂s(x)

∂x
.
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It is noted that the equality in (A.4) only holds when the switching between f+ and f−

is infinitely fast such that it is equivalent to a continuous dynamics, which is referred to
as the Filippov sense.

The equivalent control method considers that there exists a continuous control input
ueq(x), where ueq(x) = u(x) holds in the Filippov sense, such that the system dynamics
corresponds to the following sliding mode condition,

s(x) = 0, ṡ(x) = 0, (A.5)

for any initial system state x0 on the sliding mode manifold. Taking the derivative of
s(t) and substituting ueq(x) = u(x) to it, we have

ṡ = ẋ2 + c>f1(x) + f2(x) + g(x)ueq

and the equivalent control can be solved as

ueq = − ẋ2 + c>f1(x) + f2(x)

g(x)
,

Therefore, both the Filippov method and the equivalent control method are trying to
formulate the discontinuous dynamics of the original system to an equivalent continuous
dynamics, such that further analysis of the system can be built on the conventional
Lipschitz continuous sense. It is proven that both methods produce the same closed-
loop solution for the system with a regular form as (A.1) [56].

A.1.2 Robustness and Invariance

Consider that the system is steered by the uncertainty term d((x), t) as

ẋ1 =f1(x1,x2),

ẋ2 = f2(x1,x2) + g(x)u+ d(x, t),
(A.6)

where d(x, t) is bounded by ‖d(x, t)‖ 6 d̄, d̄ ∈ R+. Then, the state derivative in the
Filippov sence becomes

ẋ = µf+ + (1− µ)f− + [0> 1]>d(x, t). (A.7)

Therefore, the state derivative ẋ is influenced by the uncertainty term d(x, t). On the
other hand, the influence of d(x, t) can be reduced or even eliminated by adjusting the
value of µ, which is achieved by setting proper values of u+(x) and u−(x). In this sense,
the derivative of the sliding mode variable becomes

ṡ = ẋ2 + c>f1(x) + f2(x) + g(x)ueq + d(x1, t),

and the equivalent control is

ueq = − ẋ2 + c>f1(x) + f2(x) + d(x1, t)

g(x)
.
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This indicates that the switching control u(x) is able to cover the uncertainty term
d(x, t). As a result, the equivalent dynamics A.3 is not affected by d(x, t). Such a
property is referred to as invariance of sliding mode, which depicts the robustness of
sliding mode controllers to bounded uncertainties. Note that the invariance property
only holds on the assumption of infinitely-fast switching of the control law u(x).

A.1.3 Extension to Multi-Input Multi-Output Systems

The sliding mode control law in (A.2) can be extended to Multi-Input Multi-Output
(MIMO) systems. The regulation form of a MIMO system is formulated as

ẋ1 =f1(x),

ẋ2 =f2(x) +G1(x)u,
(A.8)

where x1 ∈ Rn−m, x2 ∈ Rn are state variables of subsystems, u ∈ Rm is the system
input, f1 : Rn → Rn−m, f2 : Rn → Rm are continuous vector fields, G1(x) ∈ Rm×m is a
non-singular matrix. The vector-form of sliding mode control input u is

ui(x) =

{
u+
i (x), s(x) > 0,
u−i (x), s(x) < 0,

(A.9)

where ui(x) is the i-th element of u(x), u+
i (x), u−i (x) ∈ R are constant scalars for each

i = 1, 2, · · · ,m and the sliding mode variable is defined as

s(x) = x2 + c>x1,

where c ∈ Rn−m is a predefined constant vector. Another form of MIMO sliding mode
control takes the following form,

u(x) = ρ(x, t)
(∇sG(x))>s(x)

‖ (∇sG(x))>s(x)‖
, ∇s =

∂s

∂x
.

Taking the derivative of s(x), we obtain

ṡ(t) = ẋ2 + c>f1(x) + f2(x) +G(x)ueq,

for which the equivalent control ueq(x) can be solved as

ueq = −G−1(x)
(
c>f1(x) + f2(x)

)
.

A.2 Advanced Sliding Mode Control

For arbitrary initial conditions, the system state does not necessarily lie on the sliding
mode manifold. Therefore, a reaching phase is usually inevitable which denotes the
process that the system evolves from the initial state to the sliding mode manifold.
Note that the invariance property does not hold during the reaching phase. Thus, the
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integral sliding mode control method is brought up to eliminate the reaching phase to
ensure robustness throughout, which is briefly introduced in Sec. A.2.1. The readers
can also refer to [224] (Chapter 7) for details. Another critical issue of the essential
sliding mode is the chattering phenomenon on the system state due to the discontinuous
control input with finite sampling frequency. The boundary-layer method and second-
order sliding mode control are two main solutions to attenuate chattering, which are
respectively interpreted in Sec. A.2.2 and Sec. A.2.3.

A.2.1 Integral Sliding Mode Control

This section gives a short introduction of the theory of integral sliding mode. Consider
a multi-input multi-output (MIMO) control affine system

ẋ = f(x) +G(x) (u+ d(x, t)) , (A.10)

where x(t) ∈ Rn is the state vector of the system, f(x) ∈ Rn is a smooth vector
field, G(x) ∈ Rn×m is a m-rank smooth matrix, u(t) = [u1, u2, · · · , um]T is the m-
dimensional input vector, and d(x, t) ∈ Rm is the state and time dependent system
disturbance which is assumed to be bounded by

‖d(x, t)‖ 6 δd, δd ∈ R+.

Note that all norms ‖ · ‖ in this paper denote 2-norms. For system (A.10), an integral
sliding mode controller that guarantees the asymptotic stability of the of the equilibrium
x = 0 is designed as

u(t) = un + us, (A.11)

where un is a controller that stabilizes the nominal system and us is the discontinuous
control input that compensates for the disturbance d (x, t)

us = −Ms
s(x, t)

‖s(x, t)‖
, (A.12)

where Ms ∈ R+ is a properly selected input gain and the switching function, and

s(x, t) = s∗(x) + z(t) (A.13)

is the sum of a conventional sliding manifold s∗(x) ∈ Rn and an additional integral term
z(t) ∈ Rn, where s∗(x) and z(t) respectively satisfy

rank

(
∂s∗(x)

∂x

)
= m

and

ż = −∂s
∗(x)

∂x
(f(x) +G(x)un) , z(0) = −s∗(x(0)) ,
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where x(0) is the initial condition of the system state. Note that the control in (A.12)
is referred to as unit vector control [221] and guarantees the following sliding mode
condition

s(x, t) = 0, ∀ t > 0. (A.14)

As a result, the system state x is confined to the sliding manifold (A.13), and the
equivalent sliding mode dynamics is

ẋ = f(x) +G(x)un

which does not depend on the system disturbance d(x, t), if d(x, t) is matched [291] as
in (A.10). This feature has been called invariance in sliding mode control, since the
system behavior is invariant to d(x, t). Different from the conventional sliding mode
control, integral sliding mode control can theoretically eliminate the reaching phase to
the sliding manifold of the system. As a result, the invariance of integral sliding mode
control holds for all times.

A.2.2 Boundary-Layer Method

The main source of the chattering phenomenon is the discontinuous switching of control
law u(x). In practice, infinitely fast switching is impossible, finite switching frequency
brings latency to the switching and produces chattering. Therefore, an explicit solution
to chattering is to modify the hard discontinuous switching to sort of continuous func-
tions. For example, a continuous adaptation of the discontinuous control law (A.2) can
be formulated as

u(x) = Msat

(
s(x)

ε

)
where sat(·) is the saturation defined as

sat(z) =


1, x > 1,
x, −1 < x 6 1,
−1, x 6 −1,

(A.15)

and ε ∈ R+ is a sufficiently small scalar. The region −ε < s < ε is referred to as the
boundary layer. On the one hand, the control law in (A.15) allows the system state
derivative ẋ to continuously change, which leads to a smooth motion of the sliding
variable s in the boundary layer. On the other hand, the sliding mode variable s is
confined within the boundary layer, but the sliding mode condition (A.5) does not strictly
hold. As a result, the robustness of the closed-loop system is sacrificed for the reduced
chattering. Therefore, the boundary layer should be carefully selected to maintain a
balance between robustness and chattering reduction. Other continuous functions used
for boundary-layer method can also be found in [292,293].
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A.2.3 Second-Order Sliding Mode Control

Another popular method to solve the chattering attenuation problem is the higher-order
sliding mode control. By design a control law such that the discontinuous terms emerge
in higher-order derivatives of the sliding mode variable, the chattering phenomenon can
be eliminated in theory. The most popularly applied higher-order sliding mode control
method in mechatronic systems is the super-twisting algorithm which is a second-order
sliding mode control method. For a SISO control system with the following form

ẋ = f(x) + g(x)u, (A.16)

where x ∈ R is the system state, u ∈ R is the system input, f : R→ R is a smooth vector
field, and g(x) ∈ R is a continuous function. A super-twisting algorithm controller is
formulated as follows [294],

u = −α|σ(τ)|
1
2 sgn(σ(τ))−

∫ t

0
γsgn(σ(τ))dτ,

where σ(t) = ẋ + cx is the higher-order sliding mode variable, and α, γ, c ∈ R+ are
parameters to be determined. substituting the system dynamics (A.16) to σ(t), we
obtain

σ(t) = cx+ f(x) + g(x)− α|σ(τ)|
1
2 sgn(σ(τ)) +

∫ t

0
γsgn(σ(τ))dτ.

It is not difficult to verify that σ(t) does not contain discontinuous terms, which avoids
the occurrence of chattering phenomenon. More details on higher-order sliding mode
controllers can be found in [294–296].
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Supervised learning is a type of machine learning tasks that try to approximate a function
using a provided set of data. The data set is composed of labeled samples with input-
output pairs that reveal the mapping between two variables. The input variable is
typically referred to as a sample, while the output variable is called a label. The process
of using a mathematical model to fit the training data with a tolerable level of errors is
referred to as training, while applying the trained model to decide the label of a given
vector is called prediction. Supervised learning can be used to solve a classification
problem, where the label-space is discrete, or a regression problem, of which the label-
space is continuous. In the following, we provide a brief introduction of the Bayesian
decision theory and some non-parametric classification models that we used to construct
our CDI scheme.

B.1 Bayesian Decision Theory

The Bayesian decision theory is a stochastic method of the decision theory that utilizes
the Bayesian probability to estimate the expected values of all actions according to given
observations. It is also widely applied to classification problems, which is known as the
Naive Bayesian classifier. In this dissertation, we apply the Bayesian decision theory
as an auxiliary scheme to strengthen the reliability of the proposed CDI scheme using
a series of observations. In general, this still renders a classification problem, although
the training process sequentially online proceeds, and its training data is obtained from
an existing classifier. In the following, we give a brief introduction to the basic ideas of
the Bayesian decision theory, part of which is referred to [297], Chapter 3.

Suppose that we are expected to make a decision from r classes, C1, C2, · · · , Cr, based
on m observed results X = {x1, x2, · · · , xm}, where xj ∈ Ω, j = 1, 2, · · · ,m, and Ω is
the observation vector space. Then, the posterior probability p(Ci|X ) for each class Ci,
i = 1, 2, · · · , r, based on the observation series X , is calculated by

p(Ci|X ) =
p(Ci|X )p(Ci)

p(X )
, (B.1)

where p(Ci) is the prior probability for each class Ci that stands for a previous belief
on the class distribution; p(x|Ci) is the class likelihood that represents the conditional
probability of the observation X with given class Ci, and p(X ) is the evidence, the
marginal probability of observation X . The prior p(Ci) is usually manually assigned
according to experience, which indicates a subjective preference or belief. The likelihood
p(X|Ci) serves as the modification of the posterior based on new observations. If the
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observed results are assumed as independent from each other, then the likelihood further
reads

p(X|Ci) =
m∏
j=1

p(xj |Ci), (B.2)

where for every xj ∈ Ω, p(xj |Ci) is a likelihood whose value can be obtained offline using
experimental methods. The marginal p(X ) serves as a normalization factor to ensure
that the posterior p(Ci|X ) is probability, i.e.,

∑r
j=1 p(Ci|X ) = 1. It is calculated by

p(X ) =
m∑
i=1

p(X|Ci)p(Ci).

Therefore, the main idea of Bayesian decision theory revealed by (B.1) is to use the
new observations to modify the prior belief, such that subjective bias can be corrected
by new data. After calculating posterior probabilities p(Ci|X ) for all classes Ci, the
decision is made based on the maximum posterior, i.e.,

C = arg max
i
p(Ci|X ),

where C is the ultimate decision result. Taking the logarithm of the posterior, the
decision mechanism can also be represented as

C = arg max
i

lnp(Ci|X ) = arg max
i

 m∑
j=1

lnp(xj |Ci) + lnp(Ci)

− lnp(X ),

considering the independent property of the observations (B.2). Thus, if the prior dis-
tribution is set as even, i.e., p(C1) = p(C2) = · · · = p(Cn), then the decision is only
dependent on the likelihood correction term

∑m
j=1 lnp(xj |Ci). It indicates that similar

observation results accumulate the likelihood values, and strengthen the preference of
the posterior towards its correlated class, which is exactly the reason why the Bayesian
decision theory is applied in this dissertation.

B.2 Classification Models

For a classification problem, the output of the training process is a discriminant, a
vector function that determines the class of the sample to be tested. The prediction
is conducted usually by explicitly applying the discriminant. A classification model
is referred to as a parametric method if its discriminant depends on a parameterized
probabilistic distribution. The training of parametric models renders an estimation
problem for the distribution parameters, where statistic methods are used. Otherwise,
the classification model is called a non-parametric method, where the discriminant is
obtained by solving an optimization problem. In this section, we present the essentials
of four non-parametric models, namely LDA, kNN, SVM, and FNN that we apply in
Chapter 4. Part of the contents in this section is referred to in [298]
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B.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a popular dimensionality reduction technique
applied to classification problems. LDA attempts to maximize the variance between
different classes while minimizing the variance within each class, such that the optimal
separation between different classes is achieved. Different from the Principal Compo-
nent Analysis method, LDA is a supervised model that fully considers the labels of
different classes. Therefore, LDA can be directly applied to a classification problem as
a supervised learning method. The essential principle of LDA is interpreted as follows.

Given a data set with m samples, D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, for all i =
1, 2, · · · ,m, xi ∈ Rn, yi ∈ {C1, C2, · · · , Cn} is the label of xi. For a two-class problem,
i.e., r = 2, the target of LDA is to seek for a coefficient vector w ∈ Rn, such that the
following index is maximized,

w∗ = arg max
w

w>Sbw

w>Sww
, (B.3)

where w∗ is the optimal projection direction, the within-class scatter Sw and between-
class scatter Sb are defined as

Sw = Σ1 + Σ2, Sb = (µ1 − µ2)(µ1 − µ2)> ,

and for each class Cj , j = 1, 2, the mean value µj and variance Σj are respectively
calculated by

µj =
1

Nj

∑
∀yi=Cj

xi, Σj =
∑
∀yi=Cj

(xi − µj)(xi − µj)> ,

where Nj is the number of samples belonging to class Cj . In LDA, the scatters Sw and
Sb are used for the maximization of separation between different classes. It is known that

the maximum value of the criteria (B.3) is the maximum eigenvalue of S
− 1

2
w SbS

− 1
2

w , and
the corresponding optimal solution w∗ is the eigenvector corresponding to this eigenvalue.
In general, LDA is seeking for an optimal projection direction for the two-class sets. For
a multi-class problem, where r > 2, the optimization criteria is

W ∗ = arg max
W∈Rn×d

∏
diag

W>SbW∏
diag

W>SwW
,

where
∏

diag

(·) denotes the product of the diagonal elements of a matrix, W is the projection

matrix, and d is the dimensionality of the hyperplane to which the samples are projected.
The scatters Sw and Sb are redefined as

Sw =

r∑
j=1

∑
∀yi=Cj

(xi − µj)(xi − µj)> , Sb =

r∑
j=1

Nj (µj − µ)(µj − µ)> ,

where µ is the mean value of all samples.
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After the optimal projection vector w∗ is obtained, transformations can be performed
on the samples, and Euclidean distance can be used to classify the test samples based on
a nearest-distance principle. The applicable solvers for the LDA problem (B.3) include
svd, lsqr, and eigen, which can be referred to in [299].

B.2.2 k-Nearest Neighbor

The k-nearest neighbor method is a classical non-parametric approach for classification
or regression. It is especially suitable for a naive classification problem with little prior
knowledge of the distribution of the data. The main advantage of k-nearest neighbor
is that no training process is required. For the prediction of a test sample, the k-
nearest-neighbor classifier calculates the distance between a test sample and the training
samples. Given a data set with m samples, D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, for
all i = 1, 2, · · · ,m, xi ∈ Rn, yi ∈ {C1, C2, · · · , Cn} is the label of xi. Let x ∈ Rn be a
test sample, the distance between samples x and xi, i = 1, 2, · · · , n, under the Euclidean
metric is

d(x, xi) =

√
‖x− xi‖2.

Therefore, the prediction is made according to the minimum distance principle, i.e., the
label of the test sample follows the majority of its nearest neighbors. In an extreme
scenario, where the 1-nearest neighbor rule is applied, the test sample is labeled with
the class of its nearest training sample.

There are mainly two hyper-parameters that are frequently used to adjust the perfor-
mance of the k-nearest neighbor method. The first is the value of k, namely how many
nearest neighbors should be considered to predict the test sample. A larger value for
k tends to oversimplify the classifier model, while a smaller value may cause the over-
fitting problem. Both cases bring down the prediction accuracy of the k-nearest neighbor
classifier. The second hyper-parameter is the distance metric that can be determined as
Euclidean, Canberra, Chebyshev, Manhattan, and Minkowski. The distance metrics per-
form nonlinear transformations on the samples and should be carefully selected according
to the distributional properties of data.

B.2.3 Support Vector Machine

Support Vector Machine (SVM) is another non-parametric classifier with an excellent
capability of generalization. From a geometric point of view, SVM creates a pair of
hyperplane for each two-class data set. The training process of the classifier tends to
create the widest separation between the hyperplane pair. As a result, SVM is quite
insensitive to the distribution of the data set since its structure only depends on a small
cluster of training samples. Nonlinear kernel functions allow the mapping of samples
into higher-dimensional spaces, such that linearly inseparable problems can be solved.

Given a data set with m samples, D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, for all i =
1, 2, · · · ,m, xi ∈ Rn, yi ∈ {C1, C2, · · · , Cn} is the label of xi. For a two-class prob-
lem which confines the label between 1 and −1, the label of a test sample x ∈ Rn is
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determined by

y =

{
1, g(x) > 0
−1, g(x) < 0,

where g(x) is the discriminant in the following form

g(x) =
m∑
i=1

αiyiK(xi, x) + β,

where αi ∈ R, i = 1, 2, ·,m, for each xi, is a coefficient, β ∈ R is the bias, and K(·, ·) is
the kernel function of two samples. The coefficients α1, α2, · · · , αm are the solution of
the following optimization problem

α∗ = arg min
α

−1

2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi, xj) +

m∑
i=1

αi

 ,

s.t.
m∑
i=1

αiyi = 0, 0 6 αi 6 C,∀i = 1, 2, · · · ,m,

(B.4)

which formulates the training process of a SVM classifier with D, where α∗ is the optimal
solution of (B.4). Depending on the geometric relationship, the coefficients of the training
samples are valued as

αi


= 0, yig(xi) > 1
< C and > 0, yig(xi) = 1
= C, yig(xi) < 1,

where C ∈ R+ is a useful hyper-parameter to punish the misclassified samples. The
sample xi is referred to as a support vector, if it lies on the hyperplane pair |g(x)| = 1,
i.e., yig(xi) = 1. Thus, the geometric properties of the SVM are only dependent on the
distribution of the support vectors that only account for a small proportion of the data
set, which offers SVM a decent ability of generalization. The kernel functions K(·, ·) is
also a manually assigned hyper-parameter to specify the mapping of samples to higher-
dimensional spaces. Popular kernel functions include the linear kernel, the radial basis
function kernel, and the sigmoid kernel which can be referred in [300].

B.2.4 Feedforward Neural Network

The feedforward neural network (FNN) is the simplest neural network structure that has
been widely used for classification problems. An artificial neural network is an operation
model composed of a cluster of self-connected neurons. In an FNN, each neuron contains
a linear structure z = w>x+ b and an activation function y = f(z), where x ∈ Rn is the
input of the neuron, w ∈ Rn is the weight vector, b ∈ R is the bias, z ∈ R is an auxiliary
variable, and y ∈ R is the output of the neuron. The activation function f : R → R
serves as a nonlinear mapping from the linear output z to the class space. The input of
each neuron is connected only with the neuron in its fore-layers and only produces an
output to those in its back-layers. No feedback exists in an FNN.
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In a multi-layer FNN, the neurons between the inputs and outputs are referred to as the
hidden neurons which form the hidden layer. The hidden layer is recognized as a feature
detector to serve as an alternative of feature extraction. Therefore, the hidden layers
usually dominate the performance of the FNN. The number of hidden layers, the number
of neurons in each hidden layer, and the activation functions of each hidden neuron
are useful hyper-parameters to adjust the performance of the classification. Popular
activation functions for FNN include logistic sigmoid function, hyperbolic tan function,
and the rectified linear unit function which can be referred to in [301].

Given a data set with m samples, D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, for all i =
1, 2, · · · ,m, xi ∈ Rn, yi ∈ {C1, C2, · · · , Cn} is the label of xi. The prediction of a test
sample x ∈ Rn is conducted by feeding it to the input of an FNN and calculate the
output using the trained configuration. For a two-class problem, the classification result
is explicitly provided by the output layer of the FNN. Nevertheless, for a multi-class
problem, the result is obtained through the softmax discriminant function. The training
of an FNN with data set D is based on the back propagation technology which iteratively
corrects the weight of each neuron according to the classification error originated from
the output. Note that backpropagation does not certainly ensure the convergence of the
training, nor provides a clearly defined terminating principle. However, some heuristic
principles can be used to guarantee the convergence of the classification error of the
training samples and terminate the training process [302].
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