

TLITT Technische Universität München

Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien

Umsetzungen von *Zintl*-Clustern mit Verbindungen der 3. und 4. Hauptgruppe

Christina Fischer

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Vorsitzende(r): Prüfer der Dissertation: Prof. Dr. Shigeyoshi Inoue

- 1. Prof. Dr. Thomas F. Fässler
- 2. Prof. Dr. Tom Nilges

Die Dissertation wurde am 28.09.2020 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 17.11.2020 angenommen.

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitates gekennzeichnet.

Garching, den.....

Mein besonderer Dank gilt meinem Doktorvater

Prof. Dr. Thomas F. Fässler

für die Betreuung dieser Arbeit, die interessante Themenstellung und die Unterstützung während der Durchführung.

Weiterhin danke ich

Ingrid Werner und Dr. Lorenz Schiegerl

für die reibungslose Zusammenarbeit im Rahmen der Betreuung des Massenspektrometers,

Dr. Wilhelm Klein

für die Messung, Lösung und Verfeinerung der

Einkristall-Röntgenstrukturdaten sowie für die stets sehr große Hilfsbereitschaft,

Manuela Donaubauer

für die schnelle Hilfe bei allen organisatorischen Problemen,

Maria Müller

für die Durchführung der EDX-Messungen,

Dr. Herta Slavik und Dr. Sebastian Geier

für die Messung der Raman-Spektren,

Ulrike Amari

für die Durchführung der Elementaranalysen im Mikroanalytischen Labor,

meinen Laborkollegen und dem gesamten Arbeitskreis von Prof. Dr. Thomas F. Fässler

für das angenehme Arbeitsklima und die Unterstützung während meiner Arbeit,

Max Schütz

für die Zusammenarbeit im Bereich der Gallium und Aluminium Chemie,

meinen Forschungspraktikanten und Auszubildenden,

meiner Familie

für die ständige Unterstützung in meinem Studium und während der Promotion.

Mein ganz besonderer Dank gilt **Florian Claus**. Danke für deinen Rückhalt, dein offenes Ohr und deine Hilfe bei Problemen aller Art und dafür, dass du immer an mich glaubst.

Zusammenfassung

Bis heute sind eine Vielzahl von *Zintl*-Anionen mit Verbindungen der Haupt- und Nebengruppen umgesetzt worden. Die dabei erhaltenen funktionalisierten Cluster sind strukturell eindeutig charakterisiert worden.

Die vorliegende Arbeit befasst sich mit Reaktionen von *Zintl*-Ionen der schwereren Tetrelelemente (Gruppe 14) mit niedervalenten Verbindungen der 3. und 4. Hauptgruppe. Die Reaktionen wurden in Ethylendiamin, *N*,*N*-Dimethylformamid, Acetonitril, Tetrahydrofuran, Pyridin, Toluol und Benzol umgesetzt sowie zum Teil mit den Komplexbildnern 18-Krone-6 und 2.2.2-Krypt überschichtet.

Aus einer Reihe von Verbindungen der 3. Hauptgruppe führte die Reaktion von GaCp* (Cp* = 1,2,3,4,5-Pentamethylcyclopentadienyl) zum Erfolg.

Überschichten einer K₄Ge₉/Ethylendiaminlösung mit der Gallium(I)-Verbindung GaCp* und 18-Krone-6 in Toluol führte zu Kristallen der Verbindung **[K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en**. Im Anion [Ge₉Ga-GaGe₉]⁴⁻ werden dabei zwei Ge₉-Cluster über eine [Ga-Ga]-Einheit verknüpft. Die Struktur wurde röntgenographisch sowie mittels ESI-MS charakterisiert.

Die Umsetzung der Zintl-Cluster $[E_9]^{x-}$ (E = Ge, Sn; x = 2, 3, 4) erfolgte mit Verbindungen der Elemente Silicium, Germanium und Zinn. Die Verbindung **[K(2.2.2-Krypt)]Cp** wurde aus einer Reaktionslösung von K₄Sn₉, GeCp₂ und 2.2.2-Krypt in flüssigem Ammoniak erhalten. Dabei kristallisiert ein K⁺-Kation, das von einem 2.2.2-Krypt-Molekül komplexiert wird, mit einem Cyclopentadienylanion. Die Struktur wurde mittels Röntgenbeugung am Einkristall bestägtigt.

Weiterhin erfolgten Umsetzungen funktionalisierter Cluster mit niedervalenten siliciumhaltigen Verbindungen. Aus der Reaktion von SiCl₂·dipp mit K[Ge₉(Si(SiMe₃)₃)₃] in Toluol wurden Kristalle der Verbindung **[K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol** erhalten. Das K⁺-Kation wird dabei durch zwei dipp-Moleküle über ihre Carben-C-Atome komplexiert. Aus der analogen Umsetzung in Acetonitril konnten Kristalle der Verbindung **[dipp-H][Ge₉(Si(SiMe₃)₃]·2acn** isoliert werden. Bei dieser Verbindung wird das Kation von einem Imidazoliumkation, der protonierten Form des dipp-Moleküls, gebildet.

Beide Verbindungen wurden durch Röntgenbeugung am Einkristall, ESI-MS, ¹H-NMR-Spektroskopie, Ramanspektroskopie und DFT-Rechnungen charakterisiert. Zudem wurde im Rahmen des Promotionsprojektes ein Elektronensprayionisation Massenspektrometer (ESI-MS) aufgebaut und etabliert. Bei den Untersuchungen konnten komplette Cluster (E_9/E_{10} ; E = Si, Ge, Sn) sowohl von nackten als auch funktionalisierten Zintl-Clustern der Elemente Silicium, Germanium und Zinn bei Reaktionslösungen und Kristallen anhand ihrer typischen Isotopenverteilung identifiziert werden. Die Messungen wurden bei eigenen Reaktionsansätzen und für die Mitglieder des Lehrstuhls durchgeführt.

Im Rahmen dieser Arbeit erfolgte die Untersuchung der Reaktionsprodukte in Lösung, welche aus den Umsetzungen von K₄Ge₉ mit Et₃SiCl, (*i*Pr)₃SiCl, (*i*Bu)₃SiCl und Ph₃SnCl in Acetonitril oder Tetrahydrofuran resultierten. So konnten durch die massenspektrometrischen Untersuchungen die Signale eindeutig den Verbindungen [**Ge**₉(**Si***R*₃)₃**Ge**₉]⁻ (*R* = Et, *i*Pr, *i*Bu) sowie [**Ge**₉(**SnPh**₃)₃]⁻ zugeordnet werden.

Weitere heterogene Umsetzungen von Ge₉-*Zintl*-Clustern gelangen durch Umsetzung mit GeCp₂ oder SnCp₂. Massenspektrometrische Untersuchungen zeigten im ESI-MS Signale, die auf die Spezien $[Ge_{11}(C_5H_5)_2K]^-$ und $[Ge_{10}(C_5H_5)_3]^-$ hindeuten. Eine Kristallisation entsprechender Verbindungen gelang jedoch nicht.

Weiterhin erfolgten Umsetzungen von K[Ge₉(Si(SiMe₃)₃)₃] mit den zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol, die massenspektrometrisch untersucht wurden. Dabei konnte ein Austausch der Clusteratome von Germanium gegen Zinn anhand typischer Isotopenverteilungen ([Ge₉(Si(SiMe₃)₃)₃]⁻, [Ge₈Sn(Si(SiMe₃)₃)₃]⁻, [Ge₇Sn₂(Si(SiMe₃)₃)₃]⁻, [Ge₆Sn₃(Si(SiMe₃)₃)₃]⁻) beobachtet werden konnte.

Massenspektrometische Untersuchungen von Rb_4Ge_9/en bzw. $Rb_4Ge_9/7$ -amino-1trimethylsilyl-5-aza-hepta-3-en-1-in/en-Lösungen zeigten erstmals Signale, die den protonierten Germaniumclustern [**HGe**₉]⁻, [**H**₂**Ge**₉]⁻ und [**HGe**₁₀]⁻ zugeordnet werden konnten.

Abstract

To date, a variety of *Zintl* anions have been implemented with compounds of the major and minor groups. The resulting functionalized clusters have been structurally clearly characterized. The present work deals with reactions of *Zintl* ions of the heavier tetrel elements (group 14 elements) with low-valent compounds of the 3rd and 4th main group. The reactions were carried out in ethylenediamine, *N*,*N*-dimethylformamide, acetonitrile, tetrahydrofuran, pyridine, toluene and benzene and partially overcoated with the complexing agents 18-crown-6 and 2.2.2-crypt.

From a series of compounds of the 3rd main group, the reaction of GaCp* (Cp* = 1,2,3,4,5pentamethylcyclopentadienyl) led to success.

Overlaying a K₄Ge₉/ethylenediamine solution with the gallium(I) compound GaCp * and 18crown-6 in toluene resulted in crystals of the compound $[K(18-crown-6)]_4[Ge_9Ga-GaGe_9]\cdot4en$. In the anion $[Ge_9Ga-GaGe_9]^{4-}$, two Ge₉ clusters are linked via a [Ga-Ga] unit. The structure has been characterized by X-ray diffraction and ESI-MS.

The implementation of the *Zintl* cluster $[E_9]^{x-}$ (*E* = Ge, Sn; *x* = 2, 3, 4) took place with compounds of the elements silicon, germanium and tin. The compound **[K(2.2.2-crypt)]Cp** was obtained from a reaction solution of K₄Sn₉, GeCp₂ and 2.2.2-crypt in liquid ammonia. A K⁺ cation, which is complexed by a 2.2.2-crypt molecule, crystallizes with a cyclopentadienyl anion. The structure was confirmed by single-crystal X-ray diffraction.

Furthermore, reactions of functionalized clusters with low-valent silicon-containing compounds were carried out. From the reaction of SiCl₂·dipp with K[Ge₉(Si(SiMe₃)₃)₃] in toluene, crystals of [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol were obtained. The K⁺ cation is thereby complexed by two dipp molecules via their carbene C atoms. From the analogous reaction in acetonitrile, crystals of the compound [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn could be isolated. In this compound, the cation is formed by an imidazolium cation, the protonated form of the dipp molecule.

Both compounds were characterized by single-crystal X-ray diffraction, ESI-MS, ¹H-NMR spectroscopy, Raman spectroscopy and DFT calculations.

In addition, an electron spray ionization mass spectrometer (ESI-MS) was set up and established as part of the doctoral project. The investigations identified complete clusters (E_9/E_{10} ; E = Si, Ge, Sn) of both bare and functional *Zintl* clusters of silicon, germanium and tin in reaction solutions and crystals based on their typical isotopic distribution. The measurements were carried out with own reaction approaches and for the members of the group.

As part of this work, an investigation of the products in solution, which resulted from the reactions of K_4Ge_9 with Et_3SiCl , $(iPr)_3SiCl$, $(iBu)_3SiCl$ and Ph_3SnCl in acetonitrile or tetrahydrofuran, was carried out. Signals could be clearly assigned to the compounds $[Ge_9(SiR_3)_3Ge_9]^-$ (R = Et, iPr, iBu) and $[Ge_9(SnPh_3)_3]^-$ by mass spectrometric investigations.

Further heterogeneous reactions of $Ge_9 Zintl$ clusters could be achieved by reaction with $GeCp_2$ or $SnCp_2$. Mass spectrometry studies showed signals in mass spectrum indicating the species $[Ge_{11}(C_5H_5)_2K]^-$ and $[Ge_{10}(C_5H_5)_3]^-$. Crystallization was not successfull.

Furthermore, reactions of $K[Ge_9(Si(SiMe_3)_3)_3]$ with the tin-containing compounds $SnCp_2$ or $Sn[N(SiMe_3)_2]_2$ in toluene or benzene took place, which were investigated by mass spectrometry. An exchange of the cluster atoms of germanium for tin based on typical isotope distributions ($[Ge_9(Si(SiMe_3)_3)_3]^-$, $[Ge_8Sn(Si(SiMe_3)_3)_3]^-$, $[Ge_7Sn_2(Si(SiMe_3)_3)_3]^-$, $[Ge_6Sn_3(Si(SiMe_3)_3)_3]^-$) could be observed.

For the first time, mass spectrometric investigations of Rb_4Ge_9/en or $Rb_4Ge_9/7$ -amino-1-trimethylsilyl-5-aza-hepta-3-en-1-yne/en solutions showed signals that the protonated germanium clusters [HGe₉]⁻, [H₂Ge₉]⁻ and [HGe₁₀]⁻ could be assigned.

Abbildungsverzeichnis

Abbildung 1.1: Beispiele homoatomarer Cluster der Tetrelelemente
Abbildung 1.3: Postuliertes Gleichgewicht von $[E_9]^{x-}$ -Clustern in Lösung. ^[99]
Abbildung 1.5: ${}^{1}_{\infty}$ [Ge ₉] ² -Polymer aus [K(18-Krone-6)] ₂ Ge ₉ ·en. [106]
Abbildung 1.6: $[Ag(Sn_9-Sn_9)]^{5-}$ aus $[K-(2.2.2)Krypt]_5[Ag(Sn_9-Sn_9)] \cdot en \cdot 0.5$ tol. ^[109]
Abbildung 1.7: a) Trimer der Verbindung $[K(18-Krone-6)]_6[Ge_9=Ge_9=Ge_9]\cdot 3en\cdot tol.$ [111] b)
$\mathbf{Abbildung 1 P}^{1} [= Couple Strong dor Varbindung [K(18 Krong G)] (Couple Song dor Varbindung [K(18 Krong$
Abbildung 1.8: [=Geg=]-Strang der Verbindung [K(18-Krone-6)]3[Geg]2-3en
$\begin{array}{l} \text{Abbituing 1.9. With Hauptgruppenetermenter functionaliserte Geg-Cluster. a) [F12B-Geg-Geg-BiPh_2]^{2- [115]}, b) [Ph-Geg-SbPh_2]^{2- [99]}, c) [Ph_3Sb-Geg-Geg-SbPh_3]^{4- [99]}, d) [Geg-SnPh_3]^{3- [117]}, e) \\ [[K(2.2.2-Krypt)]_4[RGeg-CH=CH-CH=CH-Ge_gR]](tol)_2 (R=(2Z,4E)-7-amino-5-aza-hepta-2,4-dien-2-vl), [139]$
Abbildung 1.10: a) Trisilylierter Ge_9 -Cluster $[Ge(Si(SiMe_3)_3)_3]^-$, ^[119] b)
[Ge ₉ (Si(SiMe ₃) ₃) ₃ {Sn ⁿ Bu} ₃)], c) [Ge ₉ (Si(SiMe ₃) ₃) ₃ Tl]. ^[121]
Abbildung 1.11: a) [Ge ₉ -In-Ge ₉] ⁵⁻ . ^[123] , b) [Ge ₉ -Sn-Ge ₉] ⁴⁻ . ^[124]
Abbildung 1.12: a) $[Zn(\eta^4-Ge_9)(C_6H_5)]^{3-[126]}$, b) $Cu(\eta^4-Ge_9)(PiPr_3)]^{3-[127]}$, c) $[Pd(\eta^4-Ge_9)(PPh_3)]^{3-[128]}$
$[120], d) [Cu(\eta^+-Ge_9)(\eta^+-Ge_9)]^3 . [120]$
Abbildung 1.13: Polymer $_{x}$ [Hg(Ge ₉)] ² $_{x}$ [^{120]}
Abbildung 1.14: a) $_{\alpha}$ {[$2n[\mu_2(\eta^*;\eta^*Ge_9)$]] $^{2^{-1231}}$, b) [(Ge_9Zn)-Ge_9-(ZnGe_9)] $^{3^{-1231}}$, c) [Ge_9-Zn-Ge_9] $^{4^{-1}}$
$[124^{-1}, d] [(\eta^{-}-Ge_{g})Zn-Zn(Ge_{g}-\eta^{-})]^{\circ}$ $[134^{-1}]$ 16
Abbildung 1.15: Verbruckter Pb ₉ -Cluster $[(\eta^4 - Pb_9)Cd - Cd(Pb_9 - \eta^4)]^{6^*}$. [132]
Abbildung 1.16: a) $[(Ge_9)Au_3(Ge_9)]^{3-[133]}$, b) $[Au_3Ge_{45}]^{9-[134]}$
Abbildung 3.1: $[Ge_9Ga-GaGe_9]^{4-}$ -Einheit $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en (1). Die
Auslenkungsparameter der Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt 30 Abbildung 3.2: Ausschnitt der Struktur [Ge ₉ Ga-GaGe ₉] ⁴⁻ . Die Diagonalen sind schwarz
eingezeichnet. Die Auslenkungsparameter der Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt
(gestrichelte Linien) sind in Å angegeben. Die Auslenkungsparameter der Atome (außer H) sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt. b) Isoliertes [K(18-Krone-6)]-Molekül. Die Wasserstoffatome wurden berechnet
Wasserstoffatome sind nicht dargestellt. b) Doppelte Elementarzelle von [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en (1) entlang der kristallographischen <i>b</i> -Achse betrachtet. Die
Wasserstoffatome sind nicht dargestellt

Abbildung 3.5: $[(\eta^3-\text{Ge}_9)\text{In}(\text{Ge}_9-\eta^3)]^{5-}$. ^[1] Die Auslenkungsparameter der Atome sind mit 50%
Aufenthaltswahrscheinlichkeit gezeigt
Abbildung 3.6: a) $[Ge_9Ga-GaGe_9]^{4-}$ -Einheit in $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en (1), b) $[(\eta^{4-})]_{1}$
Ge_9)Zn-Zn(Ge_9 - η^4)] ⁶⁻ . ^[3] Die Auslenkungsparameter der Atome sind mit 50%
Aufenthaltswahrscheinlichkeit gezeigt
Abbildung 3.7: $[Pb_9Cd-CdGe_9]^{4}$ -Einheit in $[K(2.2.2-Krypt)]_6[Cd_2Pb_{18}]\cdot 2en$. ^[9] Die
Auslenkungsparameter der Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt 40
Abbildung 3.8: Reduktive Eliminierung von Cp*H unter Bildung von Al und H ₂
Abbildung 3.9: a) Elementarzelle der Verbindung [K(2.2.2-Krypt)]Cp (2). Zur besseren
Ubersichtlichkeit sind 2.2.2-Krypt und Cp nur schematisch dargestellt. b) Asymmetrische
Einheit von $K(2,2,2-Krypt)$ (2). Die Auslenkungsparameter sind bis auf die Wassersteffeteme (weiße Kuseln) mit 50% Aufenheltswehrscheinlichkeit gezeichnet
Abbildung 3 10: Anionen von (3) und (4) mit Blick senkrecht auf die dreifache Achse der Geo-
Cluster Die C-und-H Atome sind nicht gezeichnet. Die Auslenkungsparameter sind mit 50%
Aufenthaltswahrscheinlichkeit gezeichnet
Abbildung 3.11: Umgebung des K ⁺ -Kations in [K(dipp) ₂][Ge ₉ (Si(SiMe ₃) ₃) ₃]·tol (3). Die
Auslenkungsparameter sind mit 50% Aufenhaltswahrscheinlichkeit gezeichnet. Die
Wasserstoffatome und die Isopropylgruppen sind nicht dargestellt. Symmetrie Code: (i) 1-x,
1-y, 1-z
Abbildung 3.12: Kristallstruktur von Verbindung [K(dipp) ₂][Ge ₉ (Si(SiMe ₃) ₃) ₃]·tol (3) mit Blick
entlang der kristallographischen <i>a</i> -Achse. Die Wasserstoffatome sind nicht dargestellt. Die
Kationischen Kompiexe und die Anionen bilden parallei zur Kristallographischen <i>d</i> -Achse
Abbildung 3 13: Asymmetrische Einheit von [dinn-H][Geo(Si(SiMe ₂) ₂) ₂]:22cn (4) Die
Auslenkungsparameter sind mit 50% Aufenthaltswahrscheinlichkeit gezeichnet. Die
Wasserstoffatome sind bis auf das des Imidazolrings nicht dargestellt
Abbildung 3.14: Kristallstruktur von Verbindung [dipp-H][Ge9(Si(SiMe3)3)3]·2acn (4) mit Blick
entlang der kristallographischen a-Achse. Die Auslenkungsparameter sind mit 50%
Aufenhaltswahrscheinlichkeit gezeichnet. Die Wasserstoffatome sind nicht dargestellt 56
Abbildung 3.15: a) ¹ H-NMR Spektrum von SiCl ₂ ·dipp in deuteriertem (trockenem) Acetonitril.
Die mit * markierten Signale stammen von dipp-H. b) dipp-H in deuteriertem (trockenem)
Acetonitrii
$[K(dinn)_2][Ge_0(Si(SiMe_2)_2)_2] \cdot to[(3) [K[2,2,2]-Krvnt)][Ge_0[Si(SiMe_2)_2]_2] K_4Ge_2 and Si(SiMe_2)_2C[$
[((a)pp)2][deg(5)(5)(ve3)3)3] to (2), [([2:2:2] (i)pt)][deg[5)(5)(ve3)3]3], (4deg and 5)(5)(ve3)3)6.
Abbildung 3.17: a) ¹ H-NMR Spektrum der Umsetzung K ₄ Ge ₉ mit GeCp ₂ . Die Rektionslösung
wurde trocken gezogen und anschließend wieder in deuteriertem Acetonitril gelöst. b) GeCp2
in deuteriertem Acetonitril. Die mit * markierten Signale stammen vom Restsignal des
deuterierten Acetonitrils. # unbekanntes Signal61
Abbildung 3.18: a) ¹ H-NMR Spektrum der Umsetzung K ₄ Ge ₉ mit SnCp ₂ . Die Rektionslösung
wurde trocken gezogen und anschließend wieder in deuteriertem Acetonitril gelöst. b) SnCp ₂
in deuteriertem Acetonitrii. Die mit * markierten Signale stammen vom Restsignal des
Abbildung 3.19: Elektronenspravionisation Massensnektrometer (ESL-MS) (Gerätetyn: Bruker
Daltronic HCT)
Abbildung 3.20: Spritzenpumpe mit luftdichter Spritze
Abbildung 3.21: a) Spravernadel: b) Glaskapillare

Abbildung 3.22: ESI-MS-Spektrum im negativen Messmodus der Verbindung [K(18-Krone-6)],[Ge,Ga-GaGe,]·4en. a) Isotopenaufspaltung (schwarz) von [Ge,Ga]⁻, b) simuliertes Abbildung 3.23: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [K(18-Abildung 3.24: ESI-MS-Spektrum im positiven Messmodus der Verbindung [K(18-Krone-Abildung 3.25: ESI-MS-Spektrum im negativen Messmodus der Verbindungen $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3 \cdot tol und [dipp-H][Ge_9(Si(SiMe_3)_3)_3] \cdot 2acn. a)$ Isotopenaufspaltung (schwarz) von [Ge₉(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum (rot)......71 Abbildung 3.26: ESI-MS Übersichtsspektrum im negativen Messmodus der Verbindungen positiven Messmodus der Verbindungen Abbildung 3.27: ESI-MS-Spektrum im Abbildung 3.28: ESI-MS-Spektrum im negativen Messmodus der Verbindung. ([Ge₉(SiEt₃)₃]⁻) Abbildung 3.29: ESI-MS-Spektrum im negativen Messmodus der Verbindung. [Ge₉(Si(*i*Pr)₃)₃]⁻, a) Isotopenaufspaltung (schwarz) von [Ge₉(Si(*i*Pr)₃)₃]⁻, b) simuliertes Spektrum (rot)............74 Abbildung 3.30: ESI-MS-Spektrum im negativen Messmodus der Verbindung. [Ge₉(Si(*i*Bu)₃)₃]⁻, Abbildung 3.31: ESI-MS-Spektrum im negativen Messmodus der Verbindung. [Ge₉(SnPh₃)₃]⁻, Abbildung 3.32: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung Abbildung 3.33: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₁₀]⁻, b) simuliertes Spektrum (rot). c) Isotopenaufspaltung (schwarz) von [Ge₁₀Rb]⁻, d) simuliertes Spektrum (rot), e) Isotopenaufspaltung (schwarz) von [Ge₁₀(2.2.2-Krypt)acn⁻, f) simuliertes Spektrum (rot), g) Isotopenaufspaltung (schwarz) von [Ge₁₀Rb(2.2.2-Krypt)]⁻, h) simuliertes Spektrum (rot)......78 Abbildung 3.34: ESI-MS-Spektrum der Reaktionslösungen a) Rb₄Ge₉/en and b) Rb₄Ge₉/7amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in/en. Gemessene Spektren (schwarz) und simulierte Signale (farbig). R = 7-amino-5-aza-hepta-2,4-dien-2-yl = C₆H₁₁N₂. Die **Abbildung 3.35:** $[R-Ge_9]^{3-}$ (R = 7-amino-5-aza-hepta-2,4-dien-2-yl = $C_6H_{11}N_2$); synthetisiert durch Umsetzung von Ge⁴⁻ mit 7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in in Abbildung 3.36: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉, Kalium und SnPh₂Cl₂ in Ethylendiamin.81 Abbildung 3.37: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung Abbildung 3.38: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₉Sn]⁻, b) simuliertes Spektrum.......83 Abbildung 3.39: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ und 2.2.2-Krypt in acn oder py85 Abbildung 3.40: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₉(2.2.2-Krypt)acn]⁻, b) simuliertes Spektrum (rot). c) Isotopenaufspaltung

Abbildung 3.41: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Abbildung 3.42: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₉(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum Abbildung 3.43: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₈Sn₂(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum (rot)......90 Abbildung 3.44: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₇Sn₃(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum (rot)......91 Abbildung 3.45: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₆Sn₄(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum (rot)......92 Abbildung 3.46: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril......94 Abbildung 3.47: ESI-MS Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K_4Ge_9 mit GeCp₂ in Acetonitril. Intensive Signale bei m/z = 923 und m/z = 970 vergrößert Abbildung 3.48: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K_4Ge_9 mit GeCp₂ in Acetonitril.a) Isotopenaufspaltung (schwarz) von $[Ge_{10}(C_5H_5)_3]^-$, b) Abbildung 3.49: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K_4Ge_9 mit GeCp₂ in Acetonitril.a) Isotopenaufspaltung (schwarz) von [Ge₁₁(C₅H₅)₃K]⁻, b) simuliertes Spektrum (rot)......96 Abbildung 3.50: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit SnCp₂ in Acetonitril......97 Abildung 3.51: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K_4Ge_9 mit SnCp₂ in Acetonitril. Signale bei m/z = 866, m/z = 923 und m/z = 968 vergrößert dargestellt......97 Abbildung 4.1: Reaktionspfad zur Darstellung des Anions [Ge_aGa-GaGe_a]⁴⁻ aus K₄Ge₉ mit Abbildung 4.2: Reaktionspfad zur Darstellung der Verbindung [K(2.2.2-Krypt)]Cp aus K₄Sn₉ mit **Abbildung 4.3:** Reaktionspfad zur Darstellung der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol. **Abbildung 4.4:** Reaktionspfad zur Darstellung der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn. **Abbildung.** 5.3: Pulverdiffraktogramm von K_4Ge_9 (schwarz). Das Strichdiffraktogramm der Referenz K₄Ge₉ ist rot dargestellt. Dem berechneten Diffraktogram liegt ein Datensatz eines

Abbildung 5.4 : Pulverdiffraktogramm von K ₄ Sn ₉ (schwarz). Das Strichdiffraktogramm der
Abbildung 6 1: ESI-MS-Übersichtssnektrum im negativen Messmodus: Reaktionslösung der
$[Imsetzung K[Geo(Si(SiMe_1)_2]] mit GeCn* oder InCn* in Toluol Benzol Tetrahydorfuran oder$
Acetonitril
Abbildung 6.2: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung
K[Ge ₉ (Si(SiMe ₃) ₃) ₃] mit GaCp [*] oder InCp [*] in Toluol, Benzol, Tetrahydorfuran oder Acetonitril.
a) Isotopenaufspaltung (schwarz) von K[Ge ₉ (Si(SiMe ₃) ₃] ⁻ b) simuliertes Spektrum (rot)136
Abbildung 6.3: ¹ H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge ₉ (Si(SiMe ₃) ₃) ₃] mit
AICp* in deuteriertem Benzol
Abbildung 6.4: ¹ H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge ₉ (Si(SiMe ₃) ₃) ₃] mit
AlCp*H ₂ in deuteriertem Benzol
Abbildung 6.5: ¹ H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge ₉ (Si(SiMe ₃) ₃) ₃] mit
InCp* in deuteriertem Benzol. # unbekanntes Signal
Abbildung 6.6: ¹ H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge ₉ (Si(SiMe ₃) ₃) ₃] mit
GaCp* in deuteriertem Benzol. # unbekanntes Signal
Abbildung 6.7: a) ¹ H-NMR-Spektrum der Umsetzung K[Ge ₉ (SI(SIMe ₃) ₃) ₃] mit SnCp ₂ . Die
Reaktionslosung wurde trocken gezogen und anschließend wieder in deuteriertem Toluol
des deuterierten Toluels, # unbekanntes Signal
Abbildung 6 8: a) 1 H-NMR-Snektrum der Umsetzung K[Geo(Si(SiMe_)a)a] mit Sn[N(SiMe_)a]a
Die Reaktionslösung wurde trocken gezogen und anschließend wieder in deuteriertem Toluol
gelöst, b) $K[Ge_{3}(SiMe_{3})_{3}]$ in deuteriertem Toluol. Die mit * markierten Signale stammen
vom Restsignal des deuterierten Toluols. # unbekanntes Signal
Abbildung 6.9: ESI-MS-Spektrum im negativen Messmodus der Verbindung [K(18-Krone-
6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en: Isotopenaufspaltung (schwarz) von [Ge ₉ Ga] ⁻ , simuliertes Spektrum
(blaues Strickdiagramm) von [Ge ₁₀] ⁻ 141
Abbildung 6.10: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung
[Ge ₉ (SiEt ₃) ₃] ⁻ 141
Abbildung 6.11: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Ge ₉ (Si(<i>i</i> Pr ₃) ₃] [−]
Abbildung 6.12: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung
[Ge ₉ (Si(<i>i</i> Bu) ₃) ₃] ⁻
Abbildung 6.13: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung
[Ge ₉ (SnPh ₃) ₃] ⁻
Abbildung 6.14: ESI-MS-Übersichtsspektrum der Reaktionslösungen Rb ₄ Ge ₉ /7-amino-1-
trimethylsilyl-5-aza-hepta-3-en-1-in/en143

Tabellenverzeichnis

Tabelle 3.1: Kristallographische Daten und Strukturverfeinerung für die Verbindung (1) 29
Tabelle 3.2: Ausgewählte Bindungslängen [Å] von (1) 31
Tabelle 3.3: Ausgewählte Verbindungen mit Ga-Ga-Bindungen
Tabelle 3.4: Höhen <i>h</i> , Diagonalen <i>d</i> und Diederwinkel α des η^4 -koordinerten Ge ₉ -Clusters der Verbindung. [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en (1)
Tabelle 3.5: Vergleich der Bindungslängen [Å] von $[(\eta^4-Ge_9)Ga-Ga(Ge_9-\eta^4)]^{4-}$ (1) mit $[(\eta^4-Ge_9)Zn-Zn(Ge_9-\eta^4)]^{6-[3]}$ und $[(\eta^3-Ge_9)In(Ge_9-\eta^3)]^{5-}$. ^[1]
Tabelle 3.6: Kristallographische Daten und Strukturverfeinerung für die Verbindung (2) 44Tabelle 3.7: Kristallographische Daten und Strukturverfeinerung für die Verbindungen (3) und(4)
Tabelle 3.8: Ausgewählte Bindungslängen [Å] und Winkel von (3) und (4).
Tabelle 3.9: Ausgewählte interatome Abstände dreifach silylierter Ge9-Cluster (für (3) und (4)),
fettgedruckte Werte in Tab. 1). Alle Werte sind auf die kürzesten betrachteten Ge-Ge-
Abstände (2.603 Å) skaliert 52
Tabelle 5.1: Auflistung aller verwendeten Chemikalien

Inhaltsverzeichnis

1. Einleitung und Kenntnisstand	1
1.1 Einleitung	1
1.2 Räumliche und elektronische Struktur von Zintl-Clustern $[E_n]^{x-}$ (n = 4, 5, 9, 10, 12;	<i>x</i> = 2,
3, 4)	2
1.3 [E ₉] ^x -Cluster in Lösung	5
1.4 Oligomerisierung und Polymerisierung der [Ge ₉] ^{x-} -Cluster	6
1.5 Funktionalisierung von deltaedrischen Zintl-Clustern	10
1.5.1 Funktionalisierung mit Hauptgruppenelementen	10
1.5.2 Funktionalisierung mit Übergangselementen	13
1.6 Literatur zu Kapitel 1	20
2. Motivation und Zielsetzung	26
3. Ergebnisse und Diskussion	27
3.1 Auswahl und Synthesen der Organyle der 3.Hauptgruppe	27
3.2. Umsetzungen mit $[E_9]^{x}$ -Clustern (<i>E</i> = Ge, Sn; <i>x</i> = 2, 3, 4)	27
3.2.1 Umsetzungen mit AlCp* und AlCp*H ₂	27
3.2.2 Umsetzungen mit GaCp*	28
3.2.2.1 Synthese und Charakterisierung von [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4e	n 28
3.2.2.2 Vergleichende Diskussion von [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en mit	[Ge ₉ Zn-
ZnGe ₉] ⁴⁻ und [Ge ₉ InGe ₉] ⁵⁻	37
3.2.3 Umsetzungen mit InCp*	40
3.3 Umsetzungen mit silylierten Clustern	40
3.4. Auswahl und Synthesen der Organyle der 4. Hauptgruppe	41
3.5. Umsetzungen mit $[E_9]^{x}$ -Clustern (<i>E</i> = Ge, Sn; <i>x</i> = 2, 3, 4)	42
3.5.1. Kristallstruktur von [K(2.2.2-Krypt)]Cp	43
3.6. Umsetzungen mit silylierten Clustern	47
3.6.1. Umsetzungen mit zinn- und germaniumhaltigen Verbindungen	47
3.6.2. Umsetzungen mit siliciumhaltigen Verbindungen - Synthese und Charakteris	sierung
von [K(dipp) ₂][Ge ₉ (Si(SiMe ₃) ₃]·tol und [dipp-H][Ge ₉ (Si(SiMe ₃) ₃) ₃]·2acn	48
3.7. Heterogene Umsetzungen von $[Ge_9]^{x}$ -Clustern (x = 2, 3, 4)	61
3.7.1 SnCp ₂ und GeCp ₂	61

3.7.2 <i>R</i> ₃ SiCl (<i>R</i> = Et, <i>i</i> Pr, <i>i</i> Bu) und Ph ₃ SnCl	63
3.8. Massenspektrometrische Untersuchungen	64
3.8.1 Lösung von kristallinem [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en	67
3.8.2 Lösungen von kristallinem [K(dipp) 2][Ge9(Si(SiMe3)3)3]·tol und	
[dipp-H][Ge ₉ (Si(SiMe ₃) ₃) ₃]•2acn	70
3.8.3 Lösungen trisylilierter Cluster [Ge9(Si(R)₃)₃] ⁻ (R = Et, <i>i</i> Pr, <i>i</i> Bu)	72
3.8.4 Lösung des Clusters [Ge₃(SnPh₃)₃] [−]	75
3.8.5 Kristalle der Verbindung [Rb(222-Krypt)] ₂ [Ge ₁₀](en) _{1.5}	77
3.8.5.1 Lösung von kristallinem [Rb(222-Krypt)] ₂ [Ge ₁₀](en) _{1.5}	77
3.8.5.2 Untersuchungen zur Umsetzung Rb ₄ Ge ₉ / 7-amino-1-trimethylsilyl-5-az	a-
hepta-3-en-1-in/en	79
3.8.6 Untersuchung von [(Ge₀)Sn(Ge₀)] ^{4–}	81
3.8.7 Lösungsversuche der Zintl-Phase K ₄ Ge ₉ in Acetonitril und Pyridin	84
3.8.8 Umsetzung der trisylilierten Spezies K[Ge₃(Si(Me₃)₃)₃] mit zinnhaltigen	
Verbindungen	87
3.8.9 Heterogene Umsetzungen von K4Ge9 mit GeCp2 und SnCp2	93
3.8.9.1 Umsetzungen mit GeCp ₂	93
3.8.9.2 Umsetzungen mit SnCp ₂	96
3.9 Literatur zu Kapitel 3	
4. Zusammenfassung	102
5. Experimentalteil	107
5.1 Arbeitsmethoden	107
5.1.1 Arbeiten unter Luft- und Feuchtigkeitsausschluss	107
5.1.2 Trocknung von Lösungsmitteln und Feststoffen	107
5.1.3 Arbeiten mit flüssigem Ammoniak als Lösungsmittel	108
5.1.4 Chemikalien	108
5.2 Methoden zur Charakterisierung	110
5.2.1 Ramanspektrometrie	110
5.2.2 Energiedispersive Röntgenanalyse (EDX)	111
5.2.3 Elektronensprayionisation Massenspektrometrie (ESI-MS)	111
5.2.4 Pulverdiffraktometrie	111
5.2.5 Einkristalldiffraktometrie	112

5.2.6 NMR-Spektroskopie	
5.2.7 Theoretische Rechnungen	113
5.3 Synthesen	
5.3.1 Synthesen der Ausgangsverbindungen	
5.3.1.1 Synthese und Charakterisierung von K ₄ Ge ₉	
5.3.1.2 Synthese und Charakterisierung von K ₄ Sn ₉	
5.4.1.3 Synthese von K[Ge ₉ (Si(SiMe ₃) ₃) ₃]	
5.4.1.4 Synthese von SiCl ₂ ·dipp	
5.4.1.5 Synthese von 1,2,3,4,5-Pentamethylcyclopenta-1,3-dien	
5.4.1.6 Synthese von KCp*	
5.4.1.7 Synthese von GaCp*	
5.4.1.8 Synthese von InCp*	
5.4.1.9 Synthese von NaCp	
5.4.1.10 Synthese von GeCl ₂ ·C ₄ H ₈ O ₂	
5.4.1.11 Synthese von GeCp ₂	
5.4.1.12 Synthese von SnCp ₂	
5.3.2 Synthese neuer Verbindungen	
5.3.2.1 Synthese [K(18-Krone-6)] ₄ [Ge ₉ Ga-GaGe ₉]·4en (1)	
5.3.2.2 Synthese von Synthese von [K(2.2.2-Krypt)]Cp (2)	
5.3.2.3 Synthese von [K(dipp) ₂][Ge ₉ (Si(SiMe ₃) ₃) ₃]·tol (3)	
5.3.2.4 Synthese von [dipp-H[Ge ₉ (Si(SiMe ₃) ₃) ₃]·2acn (4)	
5.3.2.5 Synthese von [Ge ₉ (SiEt₃)₃] ⁻	
5.3.2.6 Synthese von [Ge ₉ (Si(<i>i</i> Pr) ₃) ₃] ⁻	
5.3.2.7 Synthese von [Ge ₉ (Si(<i>i</i> Bu)₃)₃] ⁻	
5.3.2.8 Synthese von [Ge ₉ (SnPh ₃) ₃] ⁻	
5.3.3 Versuchsbeschreibungen weiterer Umsetzungen	
5.4 Literatur zu Kapitel 5	
6. Anhang	135

Abkürzungsverzeichnis

Äq.	Äquivalente
Å	Angström
acn	Acetonitril
18-Krone-6	1,4,7,10,13,16-Hexaoxacyclooctadecan
2.2.2-Krypt	4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosan
A	Alkalimetall, Erdalkalimetall, Lanthanoid
a, b, c	Zellparameter, Längen
0	Grad
°C	Grad Celcius
Bu	Butyl C ₄ H ₉ -
ca.	circa (ungefähr)
Ср	Cyclopentadienyl
Cp*	1,2,3,4,5-Pentamethylcyclopentadienyl
d.h.	das heißt
d	Dublett, Tag
d	Diagonale der Grundfläche im quadratischen Antiprisma des E ₉ -
	Clusters
DCM	Dichlormethan
dipp	1,3-Bis-(2,6-di- <i>iso</i> -propylphenyl)imidazol-2-yliden
dmf	N,N-Dimethylformamid
et al.	et alii (dt.: und andere)
Et	Ethyl C ₂ H ₅ -
Pr	Propyl C ₃ H ₇ -
Ε	Tetrelelement
EDX	engl.: energy dispersive X-ray spectroscopy
	(Energiedispersive Röntgenspektroskopie)
en	Ethylendiamin
g	Gesamtvalenzelektronenzahl
Goof	engl.: Goodness of Fit (Anpassungsgüte)
h	Höhe des trigonalen Prismas des <i>E</i> ₉ -Clusters, Stunde
Hz	Hertz

i	iso
К	Kelvin
L	Ligand
LM	Lösemittel
m	Multiplett
Me	Methyl CH ₃ -
Mes	Mesityl (2,4,6-Trimethylphenyl)
МО	Molekülorbital
NMR	engl.: nuclear magnetic resonance (Kernmagnetische Resonanz)
Ph	Phenyl C ₆ H ₅ -
ру	Pyridin
ppm	engl.: parts per million (Millionstel)
R	Rest
RT	Raumtemperatur (ca. 23 °C)
S	Singulett
5	sec
S.O.F.	Besetzungsfaktor (engl.: site occupancy factor)
sept	Septett
t	Triplett
t	tert
tol	Toluol
thf	Tetrahydrofuran
TMSCI	Trimethylchlorsilan
TMS	Trimethylsilyl
Vol-%	Volumenprozent
X	Halogenid
Ζ	Anzahl an Einheiten in einer Zelle
z. S.	zur Synthese
α	Diederwinkel im E ₉ -Cluster
α, β, γ	Zellparameter Winkel
λ	Wellenlänge
θ	Braggwinkel

1. Einleitung und Kenntnisstand

1.1 Einleitung

Die vierte Hauptgruppe (,,Tetrele") umfasst die Elemente Kohlenstoff, Silicium, Germanium, Zinn und Blei. Mit wachsender Ordnungszahl nimmt der metallische Charakter zu. Während Kohlenstoff ein typisches Nichtmetall ist und vorwiegend kovalente Bindungen ausbildet, wird Silicium als Halbmetall mit typischen Halbleitereigenschaften eingestuft, Blei dagegen, das schwerste Element dieser Gruppe ist ein Metall. Eine Gemeinsamkeit der Elemente Silicium, Germanium, Zinn und Blei besteht jedoch in der Eigenschaft mit elektropositiven Metallen sogenannte *Zintl*-Phasen zu bilden.

1891 beobachtete *A. Joannis* beim Lösen von Zinn und Blei in flüssigem Ammoniak unter Zugabe von Natrium rote bzw. grüne Lösungen. ^[1, 2, 3] Systematische Untersuchungen dieser Lösungen wurden 1917 von *F. H. Smyth* in Form von elektrolytischen Messungen durchgeführt. Er bestimmte das Na:Pb-Verhältnis in ammoniakalischen Metalllösungen auf 1:2.26, was vier Na⁺-Ionen und einem [Pb₉]⁴⁻-Cluster entspricht. ^[4] In den 30er Jahren des 20. Jahrhunderts gelang es *E. Zintl* durch potentiometrische Titration die exakte Zusammensetzung solcher in Lösung existierenden Polyanionen [*E*₉]⁴⁻ (*E* = Sn, Pb) und (*E* = As, Sb) zu bestimmen. ^[5-8] *E. Zintl* zu Ehren werden molekulare Polyanionen heute als *Zintl*-Ionen bezeichnet. Jedoch gelang ihre strukturelle Charakterisierung erst als *D. Kummer und L. Diehl* durch Wechsel des Lösungsmittels von Ammoniak auf Ethylendiamin für die intermetallischen Verbindungen *A*₄*E*₉ (*A* = Alkalimetall; *E* = Ge, Sn, Pb) die Verbindung Na₄Sn₉(en)₇ isolieren konnten. ^[9, 10]

In den 70er Jahren des letzten Jahrhunderts gelang *J. D. Corbett* durch die Verwendung von 2.2.2-Krypt als Komplexbildner für Alkalimetallionen ein Durchbruch in der Isolation und Kristallisation von *Zintl*-Ionen. ^[11-13] Erst viele Jahre später gelang die Kristallisation von *Zintl*-Ionen auch durch Einsatz von vergleichsweise billigen Kronenethern. ^[14] Mit diesen Methoden konnten inzwischen zahlreiche *Zintl*-Ionen isoliert und strukturell charakterisiert werden. ^[15-19]

Heute bezeichnet man als *Zintl*-Phasen intermetallische Verbindungen mit einer stöchiometrisch exakten Zusammensetzung aus elektropositiven kationischen Komponenten (Elemente der ersten und zweiten Hauptgruppe, Lanthanoide) und elektronegativeren anionisch polarisierten Komponenten (Elemente der dritten bis sechsten Hauptgruppe), bei

denen das elektropositive Metallatom formal Elektronen auf den elektronegativeren Partner überträgt. ^[20] Im Hinblick auf ihre elektronische Bindungssituation sind diese Verbindungen damit zwischen Metall- und Ionenbindung einzuordnen. Die eigentliche Trennlinie, die sogenannte Zintl-Linie verläuft im Periodensystem zwischen der dritten und vierten Hauptgruppe. Diese Grenze gilt allerdings nicht streng, was am Beispiel der klassischen Zintl-Phase NaTI deutlich wird. Strukturell lassen sich die Bindungen dieser Strukturen mit dem *Zintl-Klemm-Busmann*-Konzept beschrieben. Dabei wird formal ein vollständiger Elektronenübertrag der Alkali- und Erdalkalimetalle auf den elektronegativeren Partner angenommen. Die Struktur der anionischen Komponente kann mit Hilfe der (8-N)-Regel (N = Zahl der Außenelektronen bzgl. der anionischen Baueinheit) vorausgesagt werden. ^[21-23] So besitzt Tl⁻ in Natriumthallid NaTl dieselbe Valenzelektronenkonfiguration wie Kohlenstoff und bildet demnach eine Diamantstruktur [Tl⁻]_x, in deren Tetraederlücken die Na⁺-Ionen sitzen. ^[24] Die anionischen Strukturen sind variationsreich. So existieren isolierte Pb₄-Tetraeder in NaPb analog den P4-Molekülen, gewellte Schichten in CaSi2 analog zu den gewellten Sechsringschichten in grauem Arsen oder Se2²⁻-Hanteln in Na2Se2 wie in Cl2. ^[25, 26] Daneben existieren auch Zintl-Phasen bei denen eine Zerlegung in Ionen nicht zu ganzzahligen Formalladungen führt. Diese besitzen dann mehrere unterschiedliche anionische Baueinheiten. So liegen in Ca₅Si₃ sowohl isolierte Si⁴⁻-Ionen als auch dimere Si₂⁶⁻-Einheiten vor. [27]

Viele binäre Alkalimetallverbindungen mit Elementen, die direkt an der *Zintl*-Linie liegen, lassen sich auch nach einem erweiterten *Zintl-Klemm*-Konzept, mit den sogenannten *Wade*'schen Regeln, die ursprünglich für Borane entwickelt wurden, beschreiben. ^[28] Eine spezielle Gruppe bilden *Zintl*-Phasen mit molekularen Anionen mit relativ geringer Ladung. Die häufig polyedrisch aufgebauten Cluster sind in aprotischen Lösungsmitteln löslich. ^[29-32]

1.2 Räumliche und elektronische Struktur von *Zintl*-Clustern $[E_n]^{x-1}$ -Clustern (n = 4, 5, 9, 10, 12; x = 2, 3, 4)

Bis heute sind eine Vielzahl von Zintl-Anionen in Lösung strukturell eindeutig charakterisiert worden. ^[29-32] Die polyedrischen Strukturen ligandenfreier Cluster der vierten Hauptgruppe wurden bisher als $[E_4]^{4-}$, $[E_5]^{2-}$, $[E_9]^{x-}$ und $[E_{10}]^{2-}$ (E = Si, Ge, Sn, Pb; x = 2, 3, 4) isoliert und

charakterisiert (Abbildung 1.1). ^[33-94] Die Anionen $[Sn_{12}]^{2-}$ und $[Pb_{12}]^{2-}$ wurden bisher nur in der Gasphase massenspektrometrisch nachgewiesen und mittels Photoelektronenspektroskopie und theroretischen Rechnungen untersucht. ^[95, 96] Eine Isolierung dieser Polyanionen im festen Zustand ist bisher nicht gelungen. Zwölfatomige Cluster der Elemente Silicium und Germanium wurden bisher experimentell nicht nachgewiesen. ^[95, 96] Zwölfatomige Cluster konnten allerdings in Form gefüllter Cluster [$M@E_{12}$]^{x-} (M = Übergangsmetall; E = Ge, Sn, Pb), sogenannter endohedraler Verbindungen synthetisiert werden. ^[140-142]

Die vorliegende Arbeit beschränkt sich auf die Untersuchungen zu *Zintl*-Ionen der Tetrele (Gruppe 14); darum wird in dieser Übersicht hauptsächlich auf $[E_9]^{x-}$ -Clusteranionen eingegangen.

Abbildung 1.1: Beispiele homoatomarer Cluster der Tetrelelemente.

Die deltaedrischen ligandenfreien *Zintl*-Cluster der vierten Hauptgruppe sind Elektronenmangelverbindungen und lassen sich deshalb - in Analogie zu den Boranen - mit den *Wade*'schen Regeln beschreiben. Dabei werden Bindungselektronen der B-H-Einheiten formal durch ein freies Elektronenpaar (2*n*) an jeder Clusterecke ersetzt. Ligandenfreie Tetrelgerüstatome tragen zwei Elektronen zur Gerüstbindung bei, Gerüstatome mit einer *exo*-Bindung drei Elektronen. Dazu wird die Ladung des Clusters addiert. ^[22, 58] Daraus ergeben sich klar definierte Strukturen, abhängig von der Gerüstelektronenzahl:

- closo: (2n+2) Gerüstelektronen: ein geschlossener Deltaeder-Käfig
- nido: (2n+4) Gerüstelektronen: ein Deltaeder, dem eine Kappe fehlt
- arachno: (2n+6) Gerüstelektronen: Deltaeder mit zwei fehlenden Kappen
- hypho: (2n+8) Gerüstelektronen: Deltaeder mit drei fehlenden Kappen

Speziell die neunatomigen $[E_9]^{x-}$ -Clusteranionen (E = Si, Ge, Sn, Pb; x = 2, 3, 4) können in mehreren Strukturen auftreten. $[Ge_9]^{4-}$ -Cluster besitzen 2n+4 = 22 Gerüstelektronen und bilden einen *nido*-Cluster. Betrachtet man $[Ge_9]^{2-}$ ergibt sich mit 2n+2 = 20 Gerüstelektronen ein *closo*-Cluster. Auch funktionalisierte Cluster lassen sich auf diese Weise beschreiben. Demnach hat ein über zwei *exo*-Bindungen funktionalisierter Ge₉-Cluster $[R-Ge_9-R]^{2-}$ 22 Gerüstelektronen und kann als *nido*-Cluster betrachtet werden.

Der *closo*-Cluster entspricht einem dreifach überkappten trigonalen Prisma (Punktgruppe D_{3h}), der *nido*-Cluster einem einfach überkappten quadratischen Antiprisma (Punktgruppe C_{4v}) (Abbildung 1.2). [Ge₉]³⁻-Cluster lassen sich nicht mit Hilfe der *Wade*'schen Regeln beschreiben und lassen sich deshalb keiner eindeutigen Struktur zuordnen. Sie sind paramagnetisch und besitzen 2n+3 = 21 Elektronen für die Gerüstbindung, weshalb ihre Struktur zwischen den beiden Grenzformen mit D_{3h} und C_{4v} liegt. ^[29]

Abbildung 1.2: closo-Cluster [Ge₉]²⁻ (links) und nido-Cluster [Ge₉]⁴⁻ (rechts) mit eingezeichneten Parametern. ^[29]

Energetisch gesehen sind *closo-* und *nido-*Struktur nahezu identisch. *Ab initio* Rechnungen zeigten sehr geringe Energieunterschiede von -3.5 bis +4.7 kJ/mol (für Ge, Sn oder Pb) zwischen D_{3h} - und C_{4v} -Symmetrie. ^[29] Die beobachteten Strukturen liegen meist zwischen den beiden Grenzfälle D_{3h} und C_{4v} , lassen sich aber mit Hilfe charakteristischer Parameter trotz leichter Verzerrungen meistens einer der beiden Formen zuordnen (Abbildung 1.2). ^[29, 60] Dazu betrachtet man folgende Parameter: Die Prismenhöhe *h*, die Kantenlänge *e*, die Diederwinkel α und die Diagonalen *d*.

Bei einem idealen trigonalen Prisma mit D_{3h} -Symmetrie ist das Verhältnis der Prismenhöhe hzur Kantenläge e gleich eins und alle drei Diederwinkel α sind gleich groß. Eine Verzerrung resultiert durch verschiedene Prismenhöhen. Bei einem einfach überkappten quadratischen Antiprisma mit perfekter $C_{4\nu}$ -Symmetrie sollte das Verhältnis der beiden Diagonalen d_1/d_2 der offenen Vierecksfläche gleich eins und der Diederwinkel α gleich null sein (Abbildung 1.2). ^[29]

1.3 [E₉]^{x-}-Cluster in Lösung

Quantenmechanische Rechnungen zeigten, dass die Energieunterschiede der E_9 -Cluster zwischen C_{4v} - und D_{3h} -Symmetrie sehr gering sind. Deshalb wird vermutet, dass diese sich bei Raumtemperatur schnell ineinander umwandeln (siehe Kapitel 2.1). ^[97, 98] A. Ugrinov und S. C. Sevov postulierten deshalb, dass in Ethylendiamin und flüssigem Ammoniak gelöste Zintl-Cluster mit solvatisierten Elektronen im Gleichgewicht vorliegen (Abbildung 1.3). ^[99]

 $[E_9]^{4-}$ $[E_9]^{3-} + e^ [E_9]^{2-} + 2e^-$

Abbildung 1.3: Postuliertes Gleichgewicht von [E9]x-Clustern in Lösung. [99]

So konnte bisher eine Vielzahl dreifach oder vierfach negativ geladener Germaniumcluster aus Lösungen isoliert und kristallisiert werden. Beispielsweise wurden neunatomige Cluster mit dreifach negativer Ladung als $[A(2.2.2-Krypt)]^+$ -Salze (A = Alkalimetall) erhalten. Da diese paramagnetischen Cluster ohne Zugabe eines Oxidationsmittels entstehen, wird davon ausgegangen, dass sowohl solvatisierte Elektronen als auch die Reduktion von Ethylendiamin unter H₂-Bildung eine Rolle spielen. ^[68-70] Die Isolierung der Cluster aus den Lösungen liefert abhängig von der Menge an Komplexierungsreagenz verschieden geladene Cluster. Bei einem Überschuss von 2.2.2-Krypt bildet sich gewöhnlich der paramagnetische Cluster [Ge₉]³⁻, wie beispielsweise bei der Verbindung [K(2.2.2-Krypt)]₃Sn₉·1.5en. ^[100] Ein Mangel an Komplexierungsreagenz führt zur Bildung von Kristallen des vierfach negativ geladenen Clusters wie in der Verbindung [K(2.2.2-Krypt)]₃(KSn₉). ^[81] [Ge₉]²⁻-Cluster wurden unter unterschiedlichen Reaktionsbedingungen als [K(2.2.2-Krypt)]-Salz isoliert. Allerdings sind die Anionen in dieser Kristallstruktur meist stark verzerrt und fehlgeordnet und konnten deshalb nicht verfeinert werden. Das einzige Beispiel eines $[E_9]^{2-}$ -Cluster mit einer gesicherten Ladung konnte für einen [Si₉]²⁻-Cluster in der Verbindung [K(18-Krone-6)]₂Si₉·py erhalten werden. ^[63] [Ge₉]⁴⁻-Ionen Zudem wurden zahlreiche Verbindungen mit in Form von Alkalimetallkronenether kristallisiert. Dabei scheint sowohl die Wahl als auch die Menge des

eingesetzten Komplexierungsreagenz Einfluss auf die bevorzugte Bildung von Ge₉³⁻ oder Ge₉⁴⁻ zu nehmen. ^[71, 72, 74, 99, 101]

In der gemischtvalenten Verbindung $[K^+(2.2.2-Krypt)]_6[Ge_9]^{2-}[Ge_9]^{4-}\cdot 2.5en liegt ein Ge_9-Käfig$ als verzerrtes dreifach überkapptes trigonales Prisma vor. Aus diesem Grund wird für diesenCluster eine Ladung von -2 angenommen. ^[102] Allerdings wurde die Ladungsverteilung nichtdurch magnetische Messungen geprüft und gilt deshalb als nicht gesichert. ^[70]

Daneben konnten aus Lösungen auch zehnatomige Cluster isoliert werden. Aus einer Ethylendiaminlösung von K₄Pb₉ in Gegenwart von 2.2.2-Krypt und Ph₃PAuCl wurde in Übereinstimmung mit den *Wade*'schen Regeln ein Cluster isoliert, der die Form eines zweifach überkappten quadratischen Antiprismas aufweist. ^[91] Durch Umsetzung von Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in in Ethylendiamin konnte mit der Verbindung [Rb(2.2.2-Krypt)]₂[Ge₁₀]·1.5en der erste [Ge₁₀]²⁻-Cluster, der weder gefüllt noch an ein weiters Atom verbunden ist, isoliert werden. Der zehnatomige Cluster lässt sich nach den *Wade*'schen Regeln als D_{4d} -symmetrischer *closo*-[Ge₁₀]²⁻-Cluster mit 22 Gerüstelelektronen beschreiben. ^[94]

Die Chemie der Si₉-Cluster beschränkt sich auf das Lösungsmittel flüssiger Ammoniak, da die entsprechenden Ausgangsverbindungen $A_{12}Si_{17}$ (A = K, Rb) weder in Ethylendiamin noch in N,N-Dimethylformamid löslich sind. So konnten aus den Festkörperverbindungen sowohl neunatomige Siliciumcluster [Si₉]^{x-} (x = 2, 3, 4) ^[62-64] als auch die entsprechenden vieratomigen [Si₄]⁴⁻-Cluster extrahiert werden. ^[143-145]

1.4 Oligomerisierung und Polymerisierung der [Ge₉]^{x-}-Cluster

Sevov et al. gelang es 1999 erstmals eine dimere [Ge₉-Ge₉]⁶⁻-Einheit in Form der Verbindung Cs₄[K(2.2.2-Krypt)]₂[Ge₉-Ge₉]·6en zu kristallisieren (Abbildung 1.4). ^[103] Im Folgenden konnten derartige Dimere auch aus *N*,*N*-Dimethylformamid sowie mit den Komplexbildnern 18-Krone-6 und Benzo-18-Krone-6 isoliert werden. ^[104]

Abbildung 1.4: Kovalent verknüpfte [Ge₉-Ge₉]⁶⁻-Einheit der Verbindung Cs₄[K(2.2.2-Krypt)]₂[Ge₉-Ge₉]·6en. ^[103]

Bei einer Dimerisierung handelt es sich um eine Oxidation der [Ge₉]⁴⁻-Cluster. Ein [Ge₉-Ge₉]⁶⁻ Dimer setzt sich dabei formal aus zwei [Ge₉]³⁻-Clustern zusammen. In [Ge₉-Ge₉]⁶⁻ sind dabei zwei Ge₉-Einheiten an einer Ecke der offenen Vierecksfläche kovalent über eine *exo*-Bindung miteinander verknüpft. Die Anzahl an Gerüstelektronen wird in den beiden Ge₉-Käfigen des Dimers nicht verändert, da sich mit der Ausbildung von *exo*-Bindungen die Ladung des Clusters um eins verringert. Die substituierten Germaniumatome tragen zur *exo*-Bindung jeweils ein Elektron bei, so dass das andere für die Gerüstbindung zur Verfügung steht. Jeder Ge₉-Cluster liegt nach den *Wade*'schen Regeln demnach als einfach überkapptes quadratisches Antiprisma vor. Allerding sind die Cluster im [Ge₉-Ge₉]⁶⁻-Ion meist leicht verzerrt, da die Diagonale der offenen Vierecksfläche sich in Verlängerung der *exo*-Bindung befinden. ^[73, 104, 105]

 $\frac{1}{2}$ [Ge₉]²⁻-Polymere wurden in den Verbindungen [K(18-Krone-6)]₂Ge₉·en, [Rb(2.2.1-Krypt)]₂Ge₉·en und K[K(2.2-Krypt)]Ge₉·3en gefunden. (Abbildung 1.5). ^[106, 107, 108] Darin sind formal [Ge₉]²⁻-Cluster über jeweils zwei *exo*-Bindungen zu unendlich langen $\frac{1}{2}$ [Ge₉]²⁻-Ketten miteinander verbunden. Die *exo*-Bindungen sind ebenso wie im [Ge₉-Ge₉]⁶⁻-Ion in Verlängerung der Flächendiagonale orientiert.

Abbildung 1.5: ¹/_∞ [Ge₉]²⁻-Polymer aus [K(18-Krone-6)]₂Ge₉·en. ^[106]

Oligomere und Polymere der anderen Tetrelelemente sind bisher nicht bekannt. Eine Ausnahme stellt ein Sn₉-Dimer dar, das über ein Silberatom stabilisiert wird (Abbildung 1.6). ^[109]

Abbildung 1.6: [Ag(Sn₉-Sn₉)]⁵⁻ aus [K-(2.2.2)Krypt]₅[Ag(Sn₉-Sn₉)]·en·0.5 tol. ^[109]

Durch eine kontrollierte Oxidation von Ge₉-Clustern konnten auch trimere und tetramere Cluster aus Ethylendiaminlösungen isoliert werden (Abbildung 1.7). Durch Umsetzung von Rb₄Ge₉ mit Triphenylphosphin konnte zum ersten mal die trimere Einheit [Ge₉=Ge₉=Ge₉]⁶⁻ in der Verbindung [Rb(2.2.2-Krypt)]₆[Ge₉=Ge₉=Ge₉]-3en isoliert werden. ^[110] Die Umsetzung von K₄Ge₉ mit Gel₂/K führte ebenfalls zu einer trimeren Einheit in [K(18-Krone-6)]₆[Ge₉=Ge₉=Ge₉]-3en-tol (Abbildung 1.7a). ^[111] Das Tetramer wurde durch Umsetzung von K₄Ge₉ mit Gel₂/K in der Verbindung [K(18-Krone-6)]₈[Ge₉=Ge₉=Ge₉=Ge₉]-8en isoliert (Abbildung 1.7b). ^[112] In der Verbindung [Rb(18-Krone-6)]₈[Ge₉=Ge₉=Ge₉=Ge₉]-xen (*x* = 2, 6) bildete sich die tetramere Einheit sogar ohne Zugabe eines Oxidationsmittels. ^[113] Das Tetramer wurde nur in Anwesenheit von Kronenethern gebildet, da das planare Kronenethermolekül eine Interaktion von Oligomer und Alkalimetall weiterhin erlaubt, während der sterisch anspruchsvollere Kryptand das komplexierte Kation zu sehr abschottet, so dass eine Wechselwirkung mit dem Anion nicht mehr möglich ist.

Abbildung 1.7: a) Trimer der Verbindung [K(18-Krone-6)] $_{6}$ [Ge $_{9}$ =Ge $_{9}$ =Ge $_{9}$]·3en·tol. ^[111] b) Tetramer der Verbindung [K(18-Krone-6)] $_{8}$ [Ge $_{9}$ =Ge $_{9$

Die *exo*-Bindungen in den bekannten Dimeren und Polymeren lassen sich als Zwei-Zentren-Zwei-Elektronen-Bindungen beschreiben. In den Trimeren und Tetrameren sind die *exo*-Bindungen dagegen länger als in den literaturbekannten Ge₉-Dimeren (2.477 Å), da ihre Bindungsordnung kleiner als eins ist. Diese vergleichsweise langen *exo*-Bindungen zwischen den Clustern können nicht mehr als Zwei-Zentren-Zwei-Elektronen-Bindungen betrachtet werden. Sie sind Teil eines delokalisierten Elektronensystems, das sich über das gesamte Anion erstreckt. Diese Bindungssituation spiegelt sich auch in der elektronischen Gesamtladung von -6 im Trimer bzw. -8 im Tetramer wider. Die experimentellen Ergebnisse wurden durch quantenchemische Rechnungen bestätigt. ^[110, 112] Da die Verknüpfung über die Höhe der dreieckigen Prismengrundfläche erfolgt sind diese dadurch gestreckt und die Ge₉-Cluster haben die Form von verzerrten dreifach überkappten trigonalen Prismen. ^[110-113]

In späteren Umsetzungen wurden dimere und polymere Ge₉-Einheiten auch ohne Zugabe zusätzlicher Oxidationsmittel erhalten.^[99]

Neben trimeren und tetrameren Einheiten konnte bisher auch ein unendlich langer Strang isoliert werden. Die Umsetzung von K₄Ge₉ mit Gel₂ und 18-Krone-6 lieferte in einem Fall Kristalle der Verbindung [K(18-Krone-6)]₃[Ge₉]₂·3en. ^[114] Die Ge₉-Ionen sind dabei zu eindimensionalen $\frac{1}{\infty}$ [=Ge₉=]-Strängen verknüpft, wobei die Ge₉-Cluster über jeweils zwei benachbarte Atome der dreieckigen Prismengrundfläche der Cluster über *exo*-Bindungen miteinander verbunden sind (Abbildung 1.8). Die Ge₉-Cluster sind annähernd *D*_{3h}-symmetrisch und lassen sich somit als dreifach überkapptes trigonales Prisma beschreiben.

Abbildung 1.8: $\frac{1}{2}$ [=Ge₉=]-Strang der Verbindung [K(18-Krone-6)]₃[Ge₉]₂·3en. ^[114]

Die durchschnittlichen Bindungslängen innerhalb der Cluster liegen in der Größenordnung wie in den bisher bekannten trimeren $[Ge_9=Ge_9=Ge_9]^{6-}$ und tetrameren $[Ge_9=Ge_9=Ge_9=Ge_9]^{8-}$ Einheiten. ^[110 -113] Die Längen der *exo*-Bindungen sind deutlich länger als die Zwei-Zentren-Zwei-Elektronen-Bindungen zwischen den Ge_9-Clustern, die in der dimeren Einheit $[Ge_9-Ge_9]^{6-}$ ^[103] und den $\frac{1}{\alpha}$ $[Ge_9]^{2-}$ -Polymeren ^[106] gefunden wurden. Dies deutet auf eine Bindungsordnung kleiner eins hin. ^[110] 2006 wurden von *R. Hoffmann et al.* theoretische Studien zu analogen Ge_9-Polymeren durchgeführt. ^[76] Die Bindungslängen stimmen dabei gut mit den experimentell berechneten überein. Extended-Hückel- und DFT-Rechnungen ergaben jedoch, dass jedem Ge_9-Cluster formal eine Ladung von -2 zugewiesen werden müsste. ^[115] Dies stimmt nicht mit der Ladung von -1.5 pro Cluster für die im Experiment erhaltene Verbindung [K(18-Krone-6)]₃[Ge₉]₂·3en überein. Eine fundierte Erklärung konnte hierfür bisher noch nicht gefunden werden.

1.5 Funktionalisierung von deltaedrischen Zintl-Clustern

1.5.1 Funktionalisierung mit Hauptgruppenelementen

Die Umsetzung von Ge₉-Clustern mit sanften Oxidationsmittel führte zu einer Oligomerisierung der Cluster. Die höheren Homologe der fünften Hauptgruppe Antimon und Bismut sind in der Lage mit Germanium kovalente Bindungen auszubilden. 2002 gelang *Sevov et al.* die Synthese eines zweifach funktionalisierten Ge₉-Clusters [Ph₂Bi-Ge₉-BiPh₂]²⁻ durch Umsetzung von K₄Ge₉ mit BiPh₃ (Abbildung 1.9a). Dies war die erste Verbindung eines *Zintl*-Clusters mit zwei *exo*-gebundenen Hauptgruppenelementfragmenten. ^[116] Mit SbPh₃ bildet sich zudem das Dimer [Ph₃Sb-Ge₉-Ge₉-SbPh₃]⁴⁻ (Abbildung 1.9c) sowie eine durch einen Phenylrest und SbPh₂ funktionalisierte Spezies [Ph-Ge₉-SbPh₂]²⁻ (Abbildung 1.9 b). ^[99] Dies ist zudem die erste Verbindung mit einer direkten Kohlenstoff-Cluster-Bindung. Seitdem konnten zahlreiche weitere durch Hauptgruppenfragmente funktionalisierte *Zintl*-Cluster synthetisiert werden.

Des Weiteren können Germaniumcluster mit Alkinen wie beispielsweise Bis(trimethylsilyl)acetylen (BTMSA) oder Phenylacetylen in Ethylendiamin vinyliert werden. ^[146]

Die Umsetzung von 1,4-Bis(trimethylsilyl)butadien mit K₄Ge₉ in Ethylendiamin lieferte die erste *Zintl*-Triade. Darin sind zwei Ge₉-Cluster über konjugierte Doppelbindungen miteinander verknüpft (Abbildung 1.9e). ^[139]

Durch Umsetzung von R_3ECI (R = Me, Ph; E = Ge, Sn) und – durch Reaktion mit elementarem Kalium erzeugte [R_3E]⁻-Ionen – konnten mit K₄Ge₉ zinn- oder germaniumsubstiuierte Ge₉-Cluster wie beispielsweise [Ge₉-SnPh₃]³⁻, [GePh₃-Ge₉-GePh₃]²⁻ und [SnPh₃-Ge₉-SnPh₃]²⁻ erhalten werden (Abbildung 1.9d). ^[117]

Abbildung 1.9: Mit Hauptgruppenelementen funktionalisierte Ge₉-Cluster. a) $[Ph_2Bi-Ge_9-BiPh_2]^{2-[115]}$, b) $[Ph-Ge_9-SbPh_2]^{2-[99]}$, c) $[Ph_3Sb-Ge_9-Ge_9-SbPh_3]^{4-[99]}$, d) $[Ge_9-SnPh_3]^{3-.[117]}$, e) $\{[K(2.2.2-Krypt)]_4[RGe_9-CH=CH-CH=CH-Ge_9R]\}$ (tol)₂ (R=(2Z,4E)-7-amino-5-aza-hepta-2,4-dien-2-yl). ^[139]

2003 gelang die Darstellung des ersten dreifach funktionalisierten Ge₉-Clusters $[Ge(Si(SiMe_3)_3)_3]^-$ durch Reaktion von GeBr mit Li{Si(SiMe_3)_3} bei tiefer Temperatur.^[118] Sevov et al. gelang 2012 durch Reaktion von K₄Ge₉ mit Tris(trimethylsilyl)silanchlorid ((Me_3Si)_3SiCl) in Acetonitril bei Raumtemperatur die Synthese derselben Verbindung (Abbildung 1.10a). ^[119] Die Germaniumatome bilden im Widerspruch zu den *Wade*'schen Regeln keinen $C_{4\nu}$ -symmetrischen *nido*-Cluster, sondern näherungsweise ein dreifach überkapptes trigonales Prisma mit stark verlängerten Höhen.

Kurze Zeit später wurde auch ein neutraler tetrasubstituierter Cluster $[Ge(Si(SiMe_3)_3{SnPh_3})]$ durch Reaktion des trisilylierten Clusters K $[Ge(Si(SiMe_3)_3)_3]$ mit Ph₃SnCl synthetisiert. ^[120] Im Folgenden gelang die Darstellung weiterer tetrasubstituierter Cluster wie beispielsweise $[Ge_9(Si(SiMe_3)_3)_3{Sn^nBu}_3)]$ und $[Ge_9(Si(SiMe_3)_3)_3TI]$ (Abbildung 1.10b und c) auf ähnlichem synthetischem Weg. ^[121]

Abbildung 1.10: a) Trisilylierter Ge₉-Cluster [Ge(Si(SiMe₃)₃)₃]⁻, ^[119] b) [Ge₉(Si(SiMe₃)₃)₃{SnⁿBu}₃], c) [Ge₉(Si(SiMe₃)₃)₃TI]. ^[121]

Bei silylierten Clustern ist aufgrund der geringen Polarität der Liganden der Vorteil gegenüber den nackten *Zintl*-Clustern, dass sich diese in unpolaren organischen Lösungsmitteln wie etwa Toluol, Acetonitril oder Tetrahydrofuran lösen und deshalb auf eine Verwendung von Ethylendiamin oder *N*,*N*-Dimethylformamid verzichtet werden kann. ^[121]

In weiteren Untersuchungen wurde gezeigt, dass der Silylrest Si(SiR₃)₃ variiert werden kann. Durch die einfache Darstellung gelang die Synthese zahlreicher Cluster mit verschiedenen Silyl-Gruppen-Resten. Zudem wurde eine zweifach silylierte Verbindung [Ge₉(Si(SiMe₃)₃)₂]²⁻ synthetisiert.^[122] Diese Verbindung schuf die Grundlage für die Darstellung zahlreicher gemischt substituierter (inter)metalloider Germanium-Cluster (siehe Kapitel 1.5.2).

Weiterhin gelang die Darstellung ligandenfreier funktionalisierter Cluster. 2012 erhielten *Goicoechea et al.* – durch Umsetzung von K₄Ge₉ mit Triphenylindium – neben den funktionalisierten Clustern $[(Ge_9)_2 ln(C_5H_5)]^{4-}$ und $[Ge_9 {ln(C_5H_5)_3}_2]^{4-}$ einen über ein Indiumatom überbrückten Ge₉-Cluster in Form des Anions $[Ge_9 - ln - Ge_9]^{5-}$. ^[123] ln $[ln(Ge_9)_2]^{5-}$ werden zwei Ge₉-Cluster η^3 - an das Indiumatom koordiniert (Abbildung 11a). Ein weiteres Beispiel stellt die zinnverbrückte $[Ge_9 - Sn - Ge_9]^{4-}$ -Einheit der Verbindung $[K(18-Krone-6)]_4[Ge_9 - Sn - Ge_9] \cdot 4.5en dar. Anders als im vorherigen Beispiel sind die beiden Ge_9-Cluster <math>\eta^3: \eta^4$ an das Zinnatom koordiniert (Abbildung 1.11b).^[124] Beispiele derartig verknüpfter Cluster sind bisher hauptsächlich von Übergangsmetallen bekannt (siehe Kapitel 2.4.2).

Abbildung 1.11: a) [Ge₉-In-Ge₉]⁵⁻. ^[123], b) [Ge₉-Sn-Ge₉]⁴⁻. ^[124]

1.5.2 Funktionalisierung mit Übergangselementen

Metallorganische Verbindungen der Hauptgruppenelemente reagieren mit Ge₉-Clustern unter Bildung kovalenter *exo*-Bindungen. Im Gegensatz dazu findet bei den Umsetzungen mit Übergangsmetallen und -organylen eine Ligandenaustauschreaktion statt. Dabei kommt es zu einem Austausch der Liganden durch das *E*₉-*Zintl*-Ion. Die erste in der Literatur erwähnte Verbindung eines neunatomigen *Zintl*-Clusters mit einem Übergangsmetall wurde 1988 von *B. W. Eichhorn et al.* in Form der Verbindung $[Cr(\eta^4-Sn_9)(CO)_3]^{4-}$ beschrieben. ^[125] Seitdem wurden zahlreiche mit Übergangsmetallen funktionalisierte Ge₉-Cluster, bei denen das *d*-Block Element an die vier Atome der offenen Vierecksfläche eines *E*₉-*nido*-Clusters koordiniert, synthetisiert (Abbildung 1.12). Nach dem Isolobalkonzept sind *M*(CO)₃-Fragmente mit *M* = Cr, Mo und W sowie CuP*R*³⁺- (*R* = *i*Pr, Cy) und auch *MR*⁺-Einheiten (*M* = Zn, Cd und *R* = C₆H₅, *i*Pr, Mes und Sn(Alkyl)₃) Null-Elektronen-Bausteine in deltaedrischen Clustern (Abbildung 1.12a). Daher ändert sich die Elektronenzahl des Clusters bei der Addition des Übergangsmetallfragments nicht. ^[126]

In den Verbindungen $[Cu(\eta^4-Ge_9)(PiPr_3)]^{3-}$ (Abbildung 1.12b) $^{[127]}$ und $[Pd(\eta^4-Ge_9)(PPh_3)]^{3-}$ (Abbildung 1.12c) $^{[128]}$ sind die Übergangsmetalle über die offene Vierecksfläche des Ge₉-Clusters η^4 -koordiniert. Daneben gibt es auch andere Koordinationsmöglichkeiten. In der Verbindung $[Cu(\eta^4-Ge_9)(\eta^{1-}Ge_9)]^{7-}$ (Abbildung 1.12d) $^{[128]}$ ist eine Ge₉-Einheit über eine η^{4-} Koordination an das Cu-Atom gebunden, die andere η^{1-} über ein freies Elektronenpaar des Clusters koordiniert. Dadurch erreicht das Übergangsmetall eine 18-Elektronen-Konfiguration.

Abbildung 1.12: a) $[Zn(\eta^{4}-Ge_{9})(C_{6}H_{5})]^{3-} [126]$, b) $Cu(\eta^{4}-Ge_{9})(PiPr_{3})]^{3-} [127]$, c) $[Pd(\eta^{4}-Ge_{9})(PPh_{3})]^{3-} [128]$, d) $[Cu(\eta^{4}-Ge_{9})(\eta^{1}-Ge_{9})]^{3-} [128]$

ADie Umsetzung von K₄Ge₉ mit elemantarem Quecksiber in Ethlyendiamin führte zu einem linearen Ge₉-Polymer, bei dem die Cluster kovalent über die Quecksilberatome verknüpft sind. (Abbildung 1.13) ^[129]

Abbildung 1.13: Polymer ¹_∞ [Hg(Ge₉)]²⁻. ^[129]

Mittlerweile gelang auch die Synthese der polymeren Zinkverbindungen $\frac{1}{2} \{ [Zn[\mu_2(\eta^3:\eta^3Ge_9)] \}^{2-[130]} \text{ und } \frac{1}{2} \{ [Zn[\mu_2(\eta^4:\eta^1Ge_9)] \}^{2-} (Abbildung 1.14a).^{[131]} \} \}$

Insgesamt wurden in letzter Zeit zahlreiche zinksubstituierte *Zintl*-Cluster synthetisiert. Neben dem oben erwähnten Cluster $[Zn(\eta^4-Ge_9)(C_6H_5)]^{3-}$ [126] sind hierbei besonders die $\eta^3:\eta^3-$ und $\eta^3:\eta^4$ -koordinierten Ge_9-Cluster der Verbindungen K₂[K(2.2.2-Krypt)]₄[Zn(Ge_9)₂]·(NH₃)₂₄ und K₂[K(2.2.2-Krypt)]₄[Zn(Ge_9)₂]·(NH₃)₂₂ zu erwähnen (Abbildung 1.14c) ^[124] sowie die trimere Einheit [(Ge_9Zn)-Ge_9-(ZnGe_9)]⁸⁻ (Abbildung 1.14b). ^[131]

Die Umsetzung von Ge₉-Clustern mit der Zn(I)-Verbindung Zn₂[HC-PPh₂NPh)₂]₂ in flüssigem Ammoniak führte – unter Erhalt der Zn-Zn-Bindung – zur Verbindung K₂[K(2.2.2-Krypt)]₄[(Ge₉)Zn-Zn(Ge₉)](NH₃)₂₆. Das Anion [(η^4 -Ge₉)Zn-Zn(Ge₉- η^4)]⁶⁻ lässt sich aus zwei [Ge₉Zn]³⁻-*closo*-Clustern, die ein ungepaartes Elektron am Zinkatom haben, beschreiben (Abbildung 1.14d). ^[131]

Abbildung 1.14: a) $\frac{1}{2} \{ [Zn[\mu_2(\eta^4:\eta^1Ge_9)] \}^{2-[131]}, b) [(Ge_9Zn)-Ge_9-(ZnGe_9)]^{8-[131]}, c) [Ge_9-Zn-Ge_9]^{4-[124]}, d) [(\eta^4-Ge_9)Zn-Zn(Ge_q-\eta^4)]^{6-.[131]} \}$

Ein weiteres Beispiel eines verbrückten Zintl-Clusters mit einer Metall-Metall-Bindung stellt die Verbindung [K(2.2.2-Krypt)]₆[Cd₂Pb₁₈]·2en dar. ^[132] Durch Umsetzung von K₄Pb₉ mit CdMes₂ und 2.2.2-Krypt in Ethylendiamin wurde das Anion $[(\eta^4-Pb_9)Cd-Cd(Pb_9-\eta^4)]^{6-}$ (Abbildung 1.15) erhalten. Auch dieses Anion wird nach den *Wade*'schen Regeln als zwei zehnatomige Pb₉Cd-*closo*-Cluster betrachtet, die über eine kovalente Zwei-Zentren-Zwei-Elektronenbindung verbunden sind.

Abbildung 1.15: Verbrückter Pb₉-Cluster $[(\eta^4-Pb_9)Cd-Cd(Pb_9-\eta^4)]^{6-}$. ^[132]

Eine lineare Verknüpfung der Cluster zeigt sich in der Verbindung [(Ge₉)Au₃(Ge₉)]⁵⁻ (Abbildung 1.15a). ^[133] Das Element Gold bildet mit Ge₉ aber keinen η^4 -verknüpften Cluster. Dies ist erstaunlich, da [(Ge₉)Au₃(Ge₉)]⁵⁻ durch Umsetzung von K₄Ge₉ mit der Verbindung Au(I)Cl(PPh₃) synthetisiert wurde und das Edukt das zu [*M*(CO)₃] isolobale Fragment [Au(I)(PPh₃)]⁺ enthält. Eine weitere ungewöhnliche Clusterverknüpfung wurde in der Verbindung [Au₃Ge₄₅]⁹⁻ beobachtet. Bei der Umsetzung von K₄Ge₉ mit Ph₃PAuCl konnte eine Oligomerisierung von fünf Ge₉-Einheiten erreicht werden. In der [Au₃Ge₄₅]⁹⁻-Einheit sind vier intakte Ge₉-Cluster über neun weitere Germaniumatome und drei Atome miteinander verknüpft (Abbildung 1.15b). Neben kovalenten Zwei-Zentren-Zwei-Elektronen-Bindungen werden dabei auch delokalisierte Mehrzentrenbindungen gebildet. ^[134]

Abbildung 1.16: a) [(Ge₉)Au₃(Ge₉)]^{5-[133]}, b) [Au₃Ge₄₅]^{9-. [134]}

Wie schon in Kapitel 1.5.1 erwähnt bietet die Synthese und weitere Umsetzung silylierter Ge₉-Cluster ein breites Anwendungsspektrum. Vor allem zu Funktionalisierungen mit Übergangsmetallen erschienen in jüngster Zeit zahlreiche Publikationen. Ähnlich wie die ligandenfreien Ge₉-Cluster konnte auch die silylierte Verbindung [Ge(Si(SiMe₃)₃)₃]⁻ über ein Metallatom verknüpft werden. Neben [M(Ge₉{Si(SiMe₃)₃}₂]⁻ mit M = Au, Cu und Ag (Abbildung 1.16a) ^[135] wurde der neutralen Cluster [M(Ge₉{Si(SiMe₃)₃}₂] (M = Zn, Cd und Hg) durch Umsetzung von [Ge(Si(SiMe₃)₃)₃]⁻ mit den entsprechenden Salzen MCl₂ (M = Zn, Cd und Hg) erhalten. ^[136] Ähnliche Reaktionen mit ZnCp*₂ oder Cu⁺-Phosphinkomplexen lieferten
ebenfalls neutrale Verbindungen in Form von $[Cp*Zn(\eta^3-Ge_9{Si(TMS)_3}_3)]$, $[iPr_3PCu(\eta^3-Ge_9{Si(TMS)_3}_3)]$ oder $[(CuPiPr_3)_4{Ge_9(SiPh_3)_2}_2]$. ^[147]

Bei der Reakton von [Ge(Si(SiMe₃)₃)₃]⁻ mit Cr(CO)₅(coe) (coe = Cycloocten) wurde der Cluster [(CO)₅Cr([(η^{1} -Ge₉{Si(TMS)₃}₃)]⁻ erhalten. Darin bildet ein Ge₉-Käfig eine Zwei-Elektronen- σ -Donorbindung zum Übergangsmetall aus. ^[148] Im Gegensatz dazu führte die Verwendung von M(CO)₃(CH₃CN)₃ (M = Cr, W) bzw. Mo(CO)₃(CH₃CH₂CN)₃ zu den Verbindungen [(CO)₃M(η^{5} -Ge₉{Si(TMS)₃}₃)]⁻ (M = Cr, Mo, W) (Abbildung 1.16b), bei denen das Übergangsmetallatom in den Cluster mit eingebunden wird, wobei sich ein verzerrtes, zweifach überkapptes quadratisches Antiprisma bildet, in dem eine Ecke einer Quadratfläche vom Übergangsmetallatom besetzt wird. ^[149]

Weiterhin wurden durch Umsetzung des silylierten Clusters $[Ge(Si(SiMe_3)_3)_3]^-$ bzw. mit Derivaten davon mit *N*-heterozyklischen Carben-Münzmetallkomplexen *N*HC^{Dipp}*M*Cl (*N*HC^{Dipp} = 1,3-Bis-(2,6-di-*iso*-propylphenyl)imidazolyliden; *M* = Cu, Ag, Au) zahlreiche neue Verbindungen erhalten (Abbildung 1.16d). ^[137] Erwähnenswert sind insbesondere phosphinsubstituierte Derivate, die in jüngster Zeit isoliert werden konnten wie beispielsweise $[Ge_9{Si(TMS)_3}_2)(tBu_2P)]M(NHC^{Mes})$ (*N*HC^{Mes} = 1,3-Bis-(mesityl)imidazolyliden; *M* = Cu, Ag, Au) (Abbildung 1.16e) ^[138], $[(Ge_9{Si(TMS)_3}_2)(tBu_2P)]M(NHC^{Dipp})$ (*M* = Cu, Ag, Au), ^[150] $[Ge_9{P(NiPr_2)_2}_3]Cu(NHC^{Dipp})$ und $[Ge_9{P(NiPr_2)_2}_2(Cr(CO)_5)Cu(NHC^{Dipp})_2]$. ^[151]

Abbildung 1.17: a) $[M(\text{Ge}_{3}(\text{SiMe}_{3})_{3})_{2}]^{-}$ mit M = Au, Cu und Ag ^[135], b) $[\text{Cp}^{*}\text{Zn}(\eta^{3}-\text{Ge}_{9}\{\text{Si}(\text{TMS})_{3}\}_{3})]^{-[147]}$, c) $[(\text{CO})_{3}\text{Mo}(\eta^{5}-\text{Ge}_{9}\{\text{Si}(\text{TMS})_{3}\}_{3})]^{-[149]}$ d) $[\text{Ge}_{9}\{\text{Si}(\text{TMS})_{3}\}_{3}\text{Cu}(\text{NHC}^{\text{Dipp}})]^{[137]}$, e) $[\text{Ge}_{9}\{\text{Si}(\text{TMS})_{3}\}_{2})(t\text{Bu}_{2}\text{P})]\text{Cu}(\text{NHC}^{\text{Mes}})$. ^[138]

1.6 Literatur zu Kapitel 1

- [1] A. Joannis, C. R. Hebd, *Seances Acad. Sci.* **1891**, *113*, 795.
- [2] A. Joannis, C.R. Hebd. Seances Acad. Sci. **1892**, 114, 585.
- [3] A. Joannis, Ann. Chim. Phys. **1906**, 7(8), 5.
- [4] F. H. Smyth, J. Am. Chem. Soc. **1917**, 39, 1299.
- [5] E. Zintl, W. Dullenkopf, Z. Phys. Chem. B **1932**, *16*, 183.
- [6] E. Zintl, J. Goubeau, W. Dullenkopf, Z. Phys. Chem. **1931**, A 154, 1.
- [7] E. Zintl, A. Harder, Z. Phys. Chem. **1931**, A 154, 47.
- [8] E. Zintl, H. Kaiser, Z. Anorg. Allg. Chem. **1933**, 211, 113.
- [9] D. Kummer, L. Diehl, Angew. Chem. Int. Ed. Engl. 1970, 9, 895.
- [10] L. Diehl, K. Khodadedeh, D. Kummer, J. Strähle, *Chem. Ber.* **1976**, *109*, 3404.
- [11] J. D. Corbett, D. G. Adolphson, D. J. Merryman, P. A. Edwards, F. J. Armatis, J. Am. Chem. Soc. 1975, 97, 6267.
- [12] C. H. E. Belin, J. D. Corbett, A. Cisar, J. Am. Chem. Soc. 1977, 99, 7163.
- [13] J. D. Corbett, *Chem. Rev.* **1985**, *85*, 383.
- [14] T. F. Fässler, R. Hoffmann, Angew. Chem. Int. Ed. 1999, 38, 543.
- [15] J. D. Corbett, *Chem. Rev.* **1985**, *85*, 383.
- [16] J. D. Corbett, Struct. Bonding **1997**, 87, 157.
- [17] J. D. Corbett, Angew. Chem. Int. Ed. 2000, 39, 670.
- [18] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 377.
- [19] S. C. Sevov, J. M. Goicoechea, *Organometallics* **2006**, *25*, 5678.
- [20] U. Müller, Anorganische Strukturchemie 6. Auflage, Vieweg+Teubner Verlag, Wiesbaden, 2009.
- [21] H. Schäfer, B. Eisenmann, W. Müller, Angew. Chem. **1973**, 85, 742.
- [22] E. Riedel, *Moderne Anorganische Chemie*, 3. Auflage, Walter de Gruyter-Verlag, Berlin, 2007.
- [23] W. Klemm, E. Busmann, Z. Anorg. Allg. Chem. 1963, 319, 297.
- [24] A. F. Holleman, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 102. Auflage, Walter de Gruyter-Verlag, Berlin, **2007**.
- [25] W. Klemm, H. Sodomann, P. Langmesser, Z. Anorg. Allg. Chem. 1939, 241, 281.
- [26] D. T. Cromer, Acta Cryst. **1959**, *12*, 36.

- [27] E. Riedel, C. Janiak, *Anorganische Chemie*, 8. Auflage, Walter de Gruyter-Verlag, Berlin,2011.
- [28] K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1.
- [29] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 347.
- [30] J. D. Corbett, Chem. Rev. **1985**, 85, 383.
- [31] S. C. Sevov, J. M. Goicoechea, *Organometallics* **2006**, *25*, 5678.
- [32] J. D. Corbett, Structure and Bonding **1997**, 87, 158.
- [33] K. Wiesler, K. Brandl, A. Fleischmann, N. Korber, Z. Anorg. Allg. Chem. 2009, 635, 508.
- [34] V. Quéneau, S. C. Sevov, Angew. Chem., Int. Ed. Engl. 1997, 36, 1754.
- [35] H.-G. von Schnering, M. Baitinger, U. Bolle, W. Carrillo-Cabrera, J. Curda, Y. Grin, F. Heinemann, J. Llanos, K. Peters, A. Schmeding, M. Somer, *Z. Anorg. Allg. Chem.* 1997, 623, 1037.
- [36] C. Hoch, M. Wendorff, C. Röhr, J. Alloys Compd. 2003, 361, 206.
- [37] M. Waibel, F. Kraus, B. Wahl, S. Scharfe, T. F. Fässler, *Angew. Chem. Int. Ed.* 2010, 49, 6611.
- [38] E. Zintl, H. Kaiser, Z. Anorg. Allg. Chem. 1933, 211, 113.
- [39] B. Eisenmann, Angew. Chem., Int. Ed. Engl. **1993**, 32, 1693.
- [40] E. Zintl, W. Dullenkopf, Z. Phys. Chem. B **1932**, 16, 183.
- [41] W. Hönle, H.-G. von Schnering, A. Schmidpeter, G. Burget, *Angew. Chem., Int. Ed. Engl.* 1984, 23, 817.
- [42] H.-G. von Schnering, T. Meyer, W. Hönle, W. Schmettow, U. Hinze, W. Bauhofer, G. Kliche, *Z. Anorg. Allg. Chem.* **1987**, 553, 261.
- [43] F. Kraus, T. Hanauer, N. Korber, Angew. Chem. Int. Ed. 2005, 44, 7200.
- [44] F. Kraus, N. Korber, *Chem. Eur. J.* **2005**, *11*, 5945.
- [45] M. Baudler, H. Ternberger, W. Faber, J. Hahn, Z. Naturforsch. 1979, 34b, 1690.
- [46] M. Baudler, R. Heumüller, Z. Naturforsch. 1984, 39b, 1306.
- [47] M. Baudler, Angew. Chem., Int. Ed. Engl. 1987, 26, 419.
- [48] M. Baudler, R. Heumüller, Z. Anorg. Allg. Chem. **1988**, 559, 49.
- [49] M. Baudler, P. Winzek, Z. Anorg. Allg. Chem. 1999, 625, 417.
- [50] F. Kraus, J. C. Aschenbrenner, N. Korber, *Angew. Chem. Int. Ed.* **2003**, *42*, 4030.
- [51] B. W. Eichhorn, R. C. Haushalter, J. Am. Chem. Soc. **1988**, 110, 8704.

- [52] B. W. Eichhorn, R. C. Haushalter, J. C. Huffman, *Angew. Chem., Int. Ed. Engl.* 1989, 28, 1032.
- [53] A. Nienhaus, R. Hauptmann, T. F. Fässler, *Angew. Chem. Int. Ed.* **2002**, *41*, 3213.
- [54] M. J. Moses, J. C. Fettinger, B. W. Eichhorn, *Science* **2003**, *300*, 778.
- [55] E. N. Esenturk, J. Fettinger, Y.-F. Lam, B. W. Eichhorn, *Angew. Chem. Int. Ed.* 2004, 43, 2132.
- [56] T. F. Fässler, S. D. Hoffmann, Angew. Chem. Int. Ed. 2004, 43, 6242.
- [57] K. Wade, Nucl. Chem. Lett. **1972**, *8*, 559.
- [58] K. Wade, Adv. Inorg. Chem. Radiochem. **1976**, 18, 1.
- [59] J. D. Corbett, Progr. Inorg. Chem. 1976, 21, 129.
- [60] J. Rosdahl, T. F. Fässler, L. Kloo, *Eur. J. Inorg. Chem.* **2005**, 2888.
- [61] R. W. Rudolph, W. L. Wilson, F. Parker, R. C. Taylor, D. C. Young, J. Am. Chem. Soc. 1978, 100, 4629.
- [62] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2004, 126, 6860.
- [63] J. M. Goicoechea, S. C. Sevov, *Inorg. Chem.* **2005**, *44*, 2654.
- [64] S. Joseph, C. Suchentrunk, F. Kraus, N. Korber, Eur. J. Inorg. Chem. 2009, 4641.
- [65] J. Campbell, G. J. Schrobilgen, *Inorg. Chem.* **1997**, *36*, 4078.
- [66] C. Suchentrunk, N. Korber, New J. Chem. 2006, 30, 1737.
- [67] C. H. E. Belin, J. D. Corbett, A. Cisar, J. Am. Chem. Soc. 1977, 99, 7163.
- [68] V. Angilella, C. Belin, J. Chem. Soc., Faraday Trans. **1991**, 87, 203.
- [69] T. F. Fässler, M. Hunziker, Inorg. Chem. 1994, 33, 5380.
- [70] T. F. Fässler, U. Schütz, Inorg. Chem. 1999, 38, 1866.
- [71] M. Somer, W. Carrillo-Cabrera, E. M. Peters, K. Peters, H.-G. von Schnering, Z. Anorg. Allg. Chem. 1998, 624, 1915.
- [72] C. Downie, J.-G. Mao, A. M. Guloy, *Inorg. Chem.* **2001**, *40*, 4721.
- [73] C. Suchentrunk, J. Daniels, M. Somer, W. Carrilo-Cabrera, N. Korber, Z. Naturforsch. B.2005, 60, 277.
- [74] W. Carrillo-Cabrera, U. Aydemir, M. Somer, A. Kircali, T. F. Fässler, S. D. Hoffmann, Z. Anorg. Allg. Chem. 2007, 633, 1575.
- [75] C. Belin, H. Mercier, V. Angilella, *New J. Chem.* **1991**, *15*, 931.
- [76] P. A. Edwards, J. D. Corbett, *Inorg. Chem.* **1977**, *16*, 903.
- [77] S. C. Critchlow, J. D. Corbett, J. Am. Chem. Soc. 1983, 105, 5715.

- [78] T. F. Fässler, M. Hunziker, Z. Anorg. Allg. Chem. 1996, 622, 837.
- [79] T. F. Fässler, R. Hoffmann, Z. Kristallogr. NCS **2000**, 215, 139.
- [80] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Kristallogr. NCS 2005, 220, 49.
- [81] R. Burns, J. D. Corbett, *Inorg. Chem.* **1985**, *24*, 1489.
- [82] N. Korber, A. Fleischmann, J. Chem. Soc., Dalton Trans. 2001, 383.
- [83] R. Hauptmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2002, 628, 1500.
- [84] R. Hauptmann, T. F. Fässler, Z. Kristallogr. NCS 2003, 218, 458.
- [85] R. Hauptmann, T. F. Fässler, Z. Kristallogr. NCS 2003, 218, 455.
- [86] R. Hauptmann, R. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2001, 627, 2220.
- [87] J. D. Corbett, P. A. Edwards, J. Chem. Soc., Chem. Commun. 1975, 984.
- [88] J. Campbell, D. A. Dixon, H. P. A. Mercier, G. J. Schrobilgen, *Inorg. Chem.* 1995, 34, 5798.
- [89] T. F. Fässler, R. Hoffmann, J. Chem. Soc., Dalton Trans. 1999, 3339.
- [90] L. Yong, S. D. Hoffmann, T. F. Fässler, *Inorg. Chim. Acta* **2006**, *359*, 4774.
- [91] A. Spiekermann, S. D. Hoffmann, T. F. Fässler, *Angew. Chem. Int. Ed.* **2006**, *45*, 3459.
- [92] S.-J. Kim, Ph.D. thesis, TU München **2007**.
- [93] C. Hoch, M. Wendorff, C. Rohr, *Acta Crystallogr. C* **2002**, *58*, 145.
- [94] M. M. Bentlohner, C. Fischer, T. F. Fässler Chem. Commun. 2016, 52, 9841.
- [95] L.-F. Cui, X. Huang, L.-M. Wang; D. Zubarev, A. Boldyrev, J. Li, L.-S. Wang, *Journal of the American Chemical Society* **2006**, *128*, 8390.
- [96] L.-F. Cui, X. Huang, L.-M. Wang, J. Li, L.-S. Wang, *Journal of Physical Chemistry A* 2006, 110, 10169.
- [97] J. Rosdahl, T. F. Fässler, L. Kloo, Inorg. Chem. Eur. J. 2005, 14, 2888.
- [98] R. W. Rudolph, W. L. Wilson, R. C. Taylor, J. Am. Chem. Soc. 1981, 103, 2480.
- [99] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2003, 125, 14059.
- [100] J. D. Corbett, J. Am. Chem. Soc., 1983, 105, 5715.
- [101] C. Suchentrunk, J. Daniels, M. Somer, W. Carrilo-Cabrera, N. Korber, Z. Naturforsch. B 2005, 60, 277.
- [102] C. H. E. Belin, J. D. Corbett, A, Cisar, J. Am. Chem. Soc. 1977, 99, 7163.
- [103] L. Xu, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 9245.
- [104] A. Nienhaus, S. D. Hoffmann T. F. Fässler, Z. Anorg. Allg. Chem. 2006, 632, 1752.
- [105] R. Hauptmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2003, 629, 2266.

- [106] C. Downie, Z. Tang, A. M. Guloy, Angew. Chem. Int. Ed. 2000, 39, 338.
- [107] A. Ugrinov, S. C. Sevov, C. R. Chimie **2005**, *8*, 1878.
- [108] C. M. Downie, J.-G. Mao, H. Parmar, A. M. Guloy. *Inorg. Chem.* **2004**, *43*, 1992.
- [109] J.-Q. Wang, B. Wahl, T. F. Fässler, Angew. Chem. Int. Ed. 2010, 49, 6592.
- [110] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 10990.
- [111] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2005, 631, 1149.
- [112] L. Yong, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2004, 630, 1977.
- [113] A. Ugrinov, S. C. Sevov, Inorg. Chem. 2003, 42, 5789.
- [114] C. Fischer, Master's thesis, TU München **2014**.
- [115] P. D. Pancharatna, R. Hoffmann, Inorg. Chim. Acta 2006, 359, 3776.
- [116] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. 2002, 124, 2442.
- [117] A. Ugrinov, S. C. Sevov, Chem. Eur. J. 2004, 10, 3727.
- [118] A. Schnepf, Angew. Chem. Int. Ed. 2003, 42, 2624.
- [119] F. Li, S. C. Sevov, Inorg. Chem. 2012, 51, 2706.
- [120] F. Li, A. Munoz-Castro, S. C. Sevov, Angew. Chem. Int. Ed. 2012, 51, 8581.
- [121] F. Li, S. C. Sevov, J. Am. Chem. Soc. **2014**, 136, 12056.
- [122] O. Kysliak, A. Schnepf, *Dalton Trans.* **2016**, *45*, 2404.
- [123] D. F. Hansen, B. Z. Zhou, J. M. Goicoechea, J. Organomet. Chem. 2012, 721-722, 53.
- [124] M. M. Bentlohner, T. Henneberger, C. Fischer, K. Mayer, L.-A. Jantke, W. Klein, T. F.Fässler, *Chem. Eur. J.* 2016, 22, 13946.
- [125] B. W. Eichhorn, R. C. Haushalter, J. Am. Chem. Soc. 1988, 110, 8704.
- [126] J. M. Goicoechea, S. C. Sevov, Organometallics 2006, 25, 4530.
- [127] J. M Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2006, 128, 4155.
- [128] S. Scharfe, T. F. Fässler, Eur. J. Inorg. Chem. 2010, 1207.
- [129] A. Nienhaus, R. Hauptmann, T. F. Fässler, Angew. Chem. Int. Ed. 2002, 41, 3213.
- [130] C. B. Benda, R. Schäper, S. Schulz, T. F. Fässler, Eur. J. Inorg. Chem. 2013, 5964.
- [131] K. Mayer, L.-A. Jantke, S. Schulz, T. F. Fässler, Angew. Chem. Int. Ed. 2017, 56, 2350.
- [132] B. Zhou, M. S. Denning, T. A. D. Chapman, J. E. McGrady, J. M. Goicoechea, Chem. Commun., 2009, 7221.
- [133] A. Spiekermann, S. D. Hoffmann, T. F. Fässler, I. Krossing, U. Preiss, Angew. Chem. 2007, 119, 1663.

- [134] A. Spiekermann, S. D. Hoffmann, T. F. Fässler, I. Krossing, U. Preiss, Angew. Chem. 2007, 119, 5404.
- [135] C. Schenk, A. Schnepf, Angew. Chem. 2007, 119, 5408.
- [136] C. Schenk, F. Henke, G. Santiso-Quinones, I. Krossing, A. Schnepf, *Dalton Trans.* 2008, 4436.
- [137] F. S. Geitner, T. F. Fässler, Eur. J. Inorg. Chem. 2016, 2688.
- [138] F. S. Geitner, C. Wallach, T. F. Fässler, *Chem. Eur. J.* 24, 2018, 4103.
- [139] M. M. Bentlohner, W. Klein, Z. H. Fard, L.-A. Jantke, T. F. Fässler, Angew. Chem. Int. Ed., 54, 2015, 3748.
- [140] G. Espinoza-Quintero, J. C. A. Duckworth, W. K. Myers, J. E. McGrady, J. M. Goicoechea, J. Am. Chem. Soc. 2014, 126, 1210.
- [141] J.-Q. Wang, S. Stegmaier, B. Wahl, T. F. Fässler, Chem. Eur. J. 2010, 16, 1793.
- [142] E. N. Esenturk, J. Fettinger, B. W. Eichhorn, J. Am. Chem. Soc. 2006, 128, 9178.
- [143] C. Lorenz, S. Gärtner, N. Korber, Z. Anorg. Allg. Chem. 2017, 643, 141.
- [144] C. Lorenz, S. Gärtner, N. Korber, *Crystals* **2018**, *8*, 17.
- [145] C. B. Benda, T. Henneberger, W. Klein, T. F. Fässler, Z. Anorg. Allg. Chem. 2017, 643, 146.
- [146] M. W. Hull, S. C. Sevov, J. Am. Chem. Soc. 2009, 131, 9026.
- [147] K. Mayer, L. J. Schiegerl, T. F. Fässler, Chem. Eur. J. 2016, 22, 18794.
- [148] C. Schenk, A. Schnepf, Chem. Commun. 2009, 3208.
- [149] F. Henke, C. Schenk, A. Schnepf, Dalton Trans. 2011, 40, 6704.
- [150] F. S. Geitner, J. V. Dums, T. F. Fässler, J. Am. Chem. Soc. 2017, 139, 11933.
- [151] F. S. Geitner, W. Klein, T. F. Fässler, Angew. Chem. 2018, 130, 14717.

2. Motivation und Zielsetzung

In den vergangenen Jahrzenten wurde die Reaktivität von *Zintl*-Clustern in Lösung intensiv untersucht. Inzwischen konnten in der Arbeitsgruppe Fässler und in anderen Forschungsgruppen zahlreiche Studien dazu durchgeführt werden. Umsetzungen funktionalisierter Germaniumcluster mit Haupt- und Nebengruppenelementen lassen sich ¹H-NMR-spektroskopisch sehr gut nachverfolgen und lassen so Rückschlüsse auf die Reaktivität zu. Zuverlässige Vorhersagen darüber wie die eine oder andere Verbindung eines Haupt- und Nebengruppenelements mit *E*₉-Clustern reagiert sind dagegen nur schwer möglich. Viele Fragen dazu sind noch immer unbeantwortet und die Chemie der *Zintl*-Cluster in Lösung bleibt weiterhin ein spannendes Forschungsthema.

Ziel dieser Arbeit ist die Umsetzung nackter und funktionalisierter *Zintl*-Cluster mit den Organylen der 3. und 4. Hauptgruppe. Von besonderem Interesse sind dabei Umsetzungen mit Cp- und Cp*-Verbindungen. Diese wurden bisher nur mit Verbindungen der Übergangsmetalle wie ZnCp* durchgeführt.

Dazu sind Umsetzungen in den Lösungsmittel Ethylendiamin, *N*,*N*-Dimethylformamid, Acetonitril, Tetrahydrofuran, Pyridin, Toluol, Benzol sowie flüssigem Ammoniak mit unterschiedlichen Komplexbildnern vorgesehen.

Zudem soll im Rahmen des Promotionsprojektes ein Elektronensprayionisation Massenspektrometer (ESI-MS) am Lehrstuhl aufgebaut werden. Die massenspektrometrischen Untersuchungen sollen weiterhin zur Aufklärung von Reaktionsmechanismen beitragen sowie die Identifikation nackter und funktionalisierter Zintl-Cluster anhand ihrer typischen Isotopenverteilung ermöglichen.

3. Ergebnisse und Diskussion

3.1 Auswahl und Synthesen der Organyle der 3. Hauptgruppe

Goicoechea et al. konnten 2012 über ein Indiumatom überbrückten Geg-Cluster in Form des Anions $[In(Ge_9)_2]^{5-}$ sowie die funktionalisierten Cluster $[(Ge_9)_2In(C_5H_5)]^{4-}$ und $[Ge_9\{In(C_5H_5)_3\}_2]^{4-}$ durch Umsetzung mit Triphenylindium isolieren.^[1] Daneben gelang es Sevov et al. mit der Synthese des Clusters [Ge₉Tl{Si(SiMe₃)₃]^[2] Thallium an einen Zintl-Cluster zu addieren. Weitere funktionalisierte Zintl-Cluster mit Elementen der dritten Hauptgruppe wurden bisher nicht isoliert. Das legt nahe, Umsetzungen mit weiteren Organylen der dritten Hauptgruppe durchzuführen. Insbesondere Cp*-Verbindungen scheinen dafür geeignet. Beispielsweise führten Umsetzungen von ZnCp*2 und Zn2Cp*2 mit Zintl-Clustern zu neuen Verbindungen bei denen die Cp*-Liganden formal durch Ge₉-Cluster substituiert werden. ^[3] So führten Umsetzungen der Ge9⁴⁻-Cluster in Ethylendiamin zu einer polymeren Zinkverbindungen $\{[Zn[\mu_2(n^4:n^1Ge_9)]\}^{2-[8e]}$ sowie in flüssigem Ammoniak zu einer zinkverbrückten Spezies [10] K₂[K(2.2.2-Krypt)]₄[Zn(Ge₉)₂]·(NH₃)_{24.} Ausgehend vom trisilylierten Ge₉-Cluster [Ge(Si(SiMe₃)₃)₃]⁻ lieferte die Umsetzung mit ZnCp^{*}₂ unter Substitution eines Cp^{*}-Liganden die neutrale Verbindung [Cp*Zn(η^3 -Ge₉{Si(TMS)₃})] ^[11] (siehe Kapitel 2.4.2).

3.2 Umsetzungen mit $[E_9]^{x-1}$ -Clustern (E = Ge, Sn; x = 2, 3, 4)

3.2.1 Umsetzungen mit AlCp* und AlCp*H₂

Umsetzungen der *Zintl*-Phase K₄Sn₉ mit AlCp* oder AlCp*H₂ in Ethylendiamin führten zu einer sofortigen Zersetzung der Reaktionslösungen. Durch analoge Umsetzungen mit K₄Ge₉ ergaben sich stabile dunkelrote Lösungen. Diese wurden entweder mit 18-Krone-6 oder 2.2.2-Krytand als Toluollösung überschichtet. Aus den Ansätzen, die mit 2.2.2-Krytandlösungen überschichtet wurden, konnten Kristalle der bekannten Verbindung [K(2.2.2-Krypt)]₂[Ge₉] ^[13] isoliert werden, während aus allen anderen Ansätzen keine Kristalle isoliert werden konnten. Da zwar stabile Reaktionslösungen erhalten wurden, aber vermutet wurde, dass die Verbindungen nicht mit dem *Zintl*-Ion reagiert haben, wurden diese vor dem Überschichten

für 6 h auf 70 °C erhitzt. Jedoch wurden auch hierbei keine anderen Ergebnisse erhalten. (Synthesevorschriften siehe Kapitel 5.3.3).

Alle Reaktionslösungen von K₄Ge₉ mit AlCp* oder AlCp*H₂ in Ethylendiamin blieben über Wochen stabil. ¹H-NMR-spektroskopische Untersuchungen brachten keine neuen Ergebnisse, da die breiten Signale des Ethylendiamins diejenigen von AlCp* oder AlCp*H₂ überlagern.

3.2.2 Umsetzungen mit GaCp*

Wie oben erwähnt konnten bisher nur mit Indium und Thallium funktionialisierte Ge₉-Cluster isoliert werden. Die Umsetzung von K₄Ge₉ mit GaCp* lieferte die neue Verbindung [K(18-Krone-6)]₄[Ge₉Ga-GaGe₀]·4en (**1**).

3.2.2.1 Synthese und Charakterisierung von [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en

Eine Lösung von K₄Ge₉ in Ethylendiamin wurde zwei Stunden bei Raumtemperatur gerührt. Nach Filtration der dunkelgrünen Lösung wurde diese mit einer Lösung von 18-Krone-6 und GaCp* in Toluol überschichtet. Nach sechs Wochen konnten daraus rote nadelförmige Kristalle Verbindung $[K(18-Krone-6)]_{4}[Ge_{q}Ga-GaGe_{q}]\cdot4en$ (1) der isoliert werden (Synthesevorschrift siehe Kapitel 5.3.2.1). Die Kristallstruktur wurde durch Röntgenbeugung an einem Einkristall aufgeklärt. Die Struktur der Verbindung (1) wurde in der triklinen Raumgruppe $P\overline{1}$ mit direkten Methoden gelöst und nach dem *least-squares* Verfahren verfeinert. Die Lagen der Wasserstoffatome wurden geometrisch bestimmt und mit dem Reitermodell verfeinert.^[4] K1, O1, C10, N3, C20, C21, C22, C23, C24 besetzen Split-Positionen und können nur isotrop verfeinert werden. Alle anderen Atome wurden anisotrop verfeinert. Die Kristalle streuen die Röntgenstrahlung nur mäßig. Die schwachen Intensitäten der beobachteten Reflexe lassen die etwas größeren R-Werte erklären.

Die Zusammensetzung wurde mittels EDX bestätigt. Des Weiteren wurde die Verbindung mittels ESI-MS charakterisiert.

Kristallstrukturbeschreibung

Verbindung (1) kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit den Gitterparametern a = 12.1185(8) Å, b = 12.8480(7) Å und c = 17.4132(1) Å. In Tabelle 3.1 sind die kristallographischen Daten der Verbindung (1) zusammengefasst.

Verbindung	(1)
Formel	$C_{56}H_{128}Ge_{18}Ga_2K_4N_8O_{24}$
Kristallsystem	triklin
Raumgruppe	<i>Ρ</i> 1̄ (Nr. 2)
Temperatur	120(2) K
Zellparameter	a = 12.1185(8) Å b = 12.8480(7) Å c = 17.4132(1) Å $\alpha = 82.457(5)^{\circ}$ $\beta = 81.566(5)^{\circ}$ $\gamma = 76.350(4)^{\circ}$ $2502.92(2) \text{ Å}^{3}$
Zenvolumen	2592.95(2) A
Formeleinneiten	2 2 2000 12 \times mol ⁻¹
Nolekulargewicht	2900.12 g mol -
Dichte	1.857 g·cm ³
Wellenlange	Μο-κα
Monochromator	Germanium
Absorptionskoeffizient	5.86 mm ⁻¹
Gemessene Reflexe	32763
Unabhängige Reflexe	9347
R _{int}	0.1546
2ϑ Bereich	3.974° - 51.00°
<i>hkl</i> Bereich	$-14 \le h \le 14$ $-15 \le k \le 15$ $-21 \le l \le 20$
Reflexe > 2σ	3077
Anzahl an Parametern	518
$R_1 (I \ge 2\sigma(I)), R_1 (all)$	0.0680, 0.2397
wR_2 ($l \ge 2\sigma(l)$), wR_2 (all)	0.1349, 0.2193
GooF	0.913
max./min. Restelektronendichte	1.39/ -1.39 e · Å ⁻³

 Tabelle 3.1:
 Kristallographische Daten und Strukturverfeinerung für die Verbindung (1).

Die asymmetrische Einheit von (1) umfasst drei [K(18-Krone-6)]-Einheiten, vier Ethylendiaminmoleküle und einen [Ge_oGa-GaGe_o]⁴⁻-Cluster (Abbildung 3.1).

Abbildung 3.1: $[Ge_9Ga-GaGe_9]^{4-}$ -Einheit $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en (**1**). Die Auslenkungsparameter der Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

Im $[Ge_9Ga-GaGe_9]$ -Anion werden zwei Ge₉-Cluster über eine [Ga-Ga]-Einheit miteinander verknüpt. Die Ge₉-Cluster sind dabei über die offene Vierecksfläche η^4 - an das Galliumatom koordiniert. Die Abstände der koordinierenden Germaniumatome (Ge1, Ge3, Ge3, Ge4) zum Galliumatom betragen dabei durchschnittlich 2.574 Å und sind damit etwas länger als kovalente Ge-Ga-Einfachbindungen (rGe = 1.22 Å, rGa = 1.26 Å). ^[5]

Die Ge-Ge-Abstände innerhalb der Clustereinheit von Verbindung (**1**) liegen allesamt im Bereich zwischen 2.549 Å und 2.912 Å (Tabelle 3.2). Diese Werte liegen in der Größenordnung bekannter Verbindungen mit Ge₉-Clustereinheiten mit 20 bis 22 Gerüstbindungselektronen.^[6] Die längsten Ge-Ge-Kontakte treten entlang den Kanten der galliumüberkappten Quadratflächen auf und betragen gemittelt 2.885 Å. Die germaniumüberkappten Quadrate sind geringfügig kleiner mit Ge-Ge-Abständen von durchschnittlich 2.801 Å.

Die Ga-Ga-Bindung ist mit 2.421 Å kürzer als die Summe der Kovalenzradien (2.48 Å). Dies konnte auch bei einer Reihe literaturbekannter donorstabilisierter Galliumkomplexe (2.390 Å-2.466 Å) festgestellt werden (Tabelle 3.3).^[7]

Atome	Abstand [Å]	Atome	Abstand [Å]
Ga-Ga ⁱ	2.424(5)	Ge3-Ge7	2.536(3)
Ga-Ge1	2.589(4)	Ge3-Ge8	2.548(4)
Ga-Ge2	2.572(3)	Ge4-Ge8	2.549(3)
Ga-Ge3	2.551(4)	Ge4-Ge5	2.551(3)
Ga-Ge4	2.580(3)	Ge5-Ge6	2.785(3)
Ge1-Ge2	2.868(4)	Ge6-Ge7	2.839(4)
Ge2-Ge3	2.912(4)	Ge7-Ge8	2.806(3)
Ge3-Ge4	2.913(3)	Ge8-Ge5	2.776(3)
Ge4-Ge1	e4-Ge1 2.846(3)		3.958(4)
Ge1-Ge3	4.081(4)	Ge6-Ge8	3.966(3)
Ge2-Ge4	4.078(3)	Ge5-Ge9	2.612(3)
Ge1-Ge5	2.561(3)	Ge6-Ge9	2.593(3)
Ge1-Ge6	2.565(3)	Ge7-Ge9	2.556(4)
Ge2-Ge6	2.547(4)	Ge8-Ge9	2.586(3)
Ge2-Ge7	2.547(4)		

 Tabelle 3.2: Ausgewählte Bindungslängen [Å] von (1).

Verbindung	Ga-Ga Bindungslänge [Å]	Quelle
Ga ₂ Cl ₄ (1,4-Dioxan) ₂	2.406(1)	[7b]
[GaCl(acac)]2 [*]	2.396(3)	[7c]
[GaCl(tmhd)]2**	2.391(2)	[7c]
[GaCl ₂ (PEt ₃)] ₂	2.4269(5)	[7h]
$[GaBr_2(PEt_3)]_2$	2.427(1)	[7h]
$[Ga_2Cl_4\{OP(C_2H_6N)_3\}]$	2.392 (1)	[7i]
[Ph ₂ B(CH ₂ PPh ₂) ₂ (Gal)] ₂	2.4666(17)	[7j]
[Li(thf) ₄][Gal ₃ -Gal(P <i>i</i> Pr ₂ CH ₂) ₂ BPh ₂]	2.4521(11)	[7j]
[{GaCl ₂ (IMes)} ₂] ***	2.4243(17)	[7k]

Tabelle 3.3: Ausgewählte Verbindungen mit Ga-Ga-Bindungen.

* acac = Acetylacetonat

** tmhd = 2,2,6,6-Tetramethylheptan-3,5-dion

*** IMes = 1,3-Bis-(2,4,6-trimethylphenyl)imidazol-2-yliden

Das Verhältnis der Diagonalen der offenen Vierecksfläche ergibt sich zu (d_1 (Ge1-Ge3) = 4.080 Å, d_2 (Ge2-Ge4) = 4.007 Å) 1.02 und liegt damit sehr nahen am idealen Wert für einen C_{4v}-symmetrischen *nido*-Cluster. Bei idealer C_{4v}-Symmetrie sollten zudem die beiden Diederwinkel α_1 , α_2 (über den Höhen h_1 und h_2) gleich groß und α_3 gleich null sein (siehe Kapitel 1.2, Abbildung 1.2). Die Winkel im vorliegenden η^4 -koordinerten Ge₉-Cluster kommen dem Idealfall damit recht nahe. Der über die Vierecksfläche koordinierte Cluster lässt sich damit eher einem C_{4v}-symmetrischen *nido*-[Ge₉]⁴⁻-Cluster mit 22 Gerüstbindungselektronen zuordnen (Tabelle 3.4, Abbildung 3.2). Der Cluster [Ge₉Ga-GaGe₉]⁴⁻ in Verbindung (**1**) lässt sich somit aus zwei [Ge₉]⁴⁻-Einheiten, die über einen [Ga₂]⁴⁺-Kern verbrückt sind, beschreiben.

Tabelle 3.4: Höhen *h*, Diagonalen *d* und Diederwinkel α des η^4 -koordinerten Ge₉-Clusters der Verbindung

 $[K(18-Krone-6)]_{4}[Ge_{9}Ga-GaGe_{9}]\cdot 4en (1).$

Cluster	Symmetrie	h^{*_1}	h*2	h* 3ª	<i>h</i> _m [Å]	$h_{ m m}/e_{ m m}$ b	$lpha_{\min}$ [°] ^c	d_{1}/d_{2}^{d}	d _{Ga-Ge} [Å] ^e
Ge ₉	<i>C</i> ₄ <i>v</i>	1	1.09	1.11	3.23	1.23	179.6	1.00	2.57

a) Die Höhen sind auf die kürzeste Höhe skaliert.

b) Verhältnis der mittleren Prismenhöhen und mittleren Kantenlänge der Dreieicksflächen.

c) α_{\min} ist definiert als der dihedrale Winkel der am nächsten bei 180° liegt.

d) d_1 and d_2 sind die Diagonalen der Vierecksfläche die α_{\min} . beinhalten.

e) mittlerer Ga-Ge Abstand

Abbildung 3.2: Ausschnitt der Struktur $[Ge_9Ga-GaGe_9]^4$. Die Diagonalen sind schwarz eingezeichnet. Die Auslenkungsparameter der Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

Man kann das Galliumatom aber auch als Teil eines deltaedrischen "Ge₉Ga"-Clusters betrachten. So lässt sich das Anion $[(\eta^4-Ge_9)Ga-Ga(Ge_9-\eta^4)]^{4-}$ als Dimerisierung von zwei *closo*- $[Ge_9Ga]^{2-}$ -Clustern, die über eine *exo*-Bindung miteinander verknüpft sind beschreiben, wie auch bei Verbindung K₂[K(2.2.2-Krypt)]₄[(Ge₉)Zn-Zn(Ge₉)](NH₃)₂₆ für *closo*-[Ge₉Zn]³⁻ in $[(\eta^4-Ge_9)Zn-Zn(Ge_9-\eta^4)]^{6-}$ [8e] (siehe Kapitel 3.2.2.2).

Die Kaliumatome sind durch die Kronenethermoleküle koordiniert. Das $[Ge_9Ga-GaGe_9]$ -Anion wird über die Dreiecksfläche Ge1-Ge2-Ge6 durch das Kaliumatom K3 koordiniert Die K-Ge-Abstände betragen dabei zwischen 3.9044(24) Å (K3-Ge6) und 4.9092(26) Å (K3-Ge2) (Abbildung 3.3a). Zwei weitere K-Kronenetherkomplexe sind durch die beiden Stickstoffatome der Ethylendiaminmoleküle koordiniert (K3-N4 = 2.8854(17) Å und K2-N3A = 2.8277(19) Å), K2-N3B = 2.9253(20) Å). Somit bilden drei Kaliumatome mit zwei Ethylendiaminmolekülen einen Strang. Ein weiteres Kronenethermolekül liegt in der Kristallpackung isolierter vor, ist aber von beiden Seiten über Ethlyendiaminmoleküle koordiniert (K1-N4 = 3.1756(23) Å).

Abbildung 3.3: a) Anordnung der [K(18-Krone-6)] und der Ethylendiaminmoleküle in der Verbindung [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en (**1**). Die Germanium-Kalium Abstände (gestrichelte Linien) sind in Å angegeben. Die Auslenkungsparameter der Atome (außer H) sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt. b) Isoliertes [K(18-Krone-6)]-Molekül. Die Position der Wasserstoffatome wurden berechnet.

Abbildung 3.4: a) Elementarzelle von $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot 4en$ (**1**). Die Wasserstoffatome sind nicht dargestellt. b) Doppelte Elementarzelle von $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot 4en$ (**1**) entlang der kristallographischen *b*-Achse betrachtet. Die Wasserstoffatome sind nicht dargestellt.

Massenspektrometrie (ESI-MS)

Kristalle der Verbindung $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot4en$ (1) wurden massenspektrometrisch untersucht. Dazu wurden einige Kristalle in Acetonitril aufgelöst. Im negativ geladenen Messmodus konnte ein Signal bei m/z = 724 ([Ge_9Ga]⁻) detektiert werden. Daneben stammt ein Signal von geringer Intensität von [Ge_9(K(18-Krone-6))]⁻ bei m/z = 956. Im positiven Messmodus wurde ein intensives Signal, das von K(18-Krone-6)⁺ stammt bei m/z = 303 detektiert. Signale die auf GaCp* hindeuten waren nicht vorhanden (ausführlichere Details zur massenspektrometrischen Untersuchung siehe Kapitel 3.8.1).

3.2.2.2 Vergleichende Disskussion

Funktionalisierte *Zintl*-Cluster mit Elementen der dritten Hauptgruppe konnten bisher mit den Elementen Thallium, Indium und Gallium isoliert werden.

Reaktionen der Ge₉-Cluster mit Triphenylindium in Ethylendiamin führen zu funktionalisierten Clustern $[(\eta^3-Ge_9)In(Ge_9-\eta^3)]^{5-}$, ^[1] während sich durch Umsetzung mit GaCp* das Anion $[(\eta^4-Ge_9)Ga-Ga(Ge_9-\eta^4)]^{4-}$ bildet. Im $[In(Ge_9)_2]^{5-}$ -Anion werden zwei Ge₉-Cluster über eine Dreiecksfläche an das Indiumatom koordiniert (Abbildung 3.5). Die η^3 -verknüpften Ge₉-Cluster weisen dabei eine nahezu perfekte D_{3d} -Symmetrie auf. Die Ge-Ge-Abstände innerhalb der Cluster sind mit 2.520 bis 3.020 Å im Bereich bekannter Verbindungen mit Ge₉-Clustern. Die Abstände der koordinierenden Germaniumatome zum Indiumatom (2.824 – 3.002 Å) sind dabei deutlich länger als die Summe der Kovalenzradien (2.63 Å). Die Bindungssituation im $[In(Ge_9)_2]^{5-}$ -Anion lässt sich somit als eine Wechselwirkung eines In³⁺-Ions mit zwei [Ge₉]⁴⁻-Clustern beschreiben.

Abbildung 3.5: $[(\eta^3-\text{Ge}_9)\ln(\text{Ge}_9-\eta^3)]^{5-}$ ^[1] Die Auslenkungsparameter der Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt.

Anders verhält es sich bei der Verbindung [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en (1) (Abbildung 3.6a). Hier werden formal zwei Ge₉-Cluster über zwei Galliumatome miteinander verknüpft. Treffender ist allerdings eine Beschreibung von zwei dimerisierten [Ge₉Ga]²⁻-Clustern wobei die Galliumatome nicht isoliert, sondern nach den *Wade*'schen Regeln jeweils als Einheit eines deltaedrischen "Ge₉Ga"-Clusters mit 2n+2 = 22 Gerüstelektronen (n = 10) betrachtet werden. Diese Betrachtungsweise wurde auch bei der von *Mayer et al.* 2017 synthetisierten Verbindung K₂[K(2.2.2-Krypt)]₄[(Ge₉)Zn-Zn(Ge₉)](NH₃)₂₆ herangezogen. Das Anion [(η^4 -Ge₉)Zn-Zn(Ge₉- η^4)]⁶⁻ lässt sich als zwei kovalent verknüpfte zehnatomige [Ge₉Zn]³⁻-*closo*-Cluster (2n+2 = 22 Gerüstelektronen, n = 10), die ein ungepaartes Elektron am Zinkatom haben, beschreiben (Abbildung 3.6b). ^[3] Sowohl bei Verbindung (1) als auch bei der analogen Zinkverbindung liegen die Ge-Ge-Abstände innerhalb der Clustereinheit im Bereich zwischen 2.544 und 2.912 Å und damit ebenfalls in der Größenordnung bekannter Verbindungen mit Ge₉-Clustereinheiten mit 20 bis 22 Gerüstbindungselektronen. ^[6]

Abbildung 3.6: a) $[Ge_9Ga-GaGe_9]^{4-}$ Einheit in $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en (**1**), b) $[(\eta^4-Ge_9)Zn-Zn(Ge_9-\eta^4)]^{6-}$. ^[3] Die Auslenkungsparameter der Atome sind mit 50% Aufenthaltswahrscheinlichkeit gezeigt.

Atome	[(η⁴-Ge9)Ga-Ga(Ge9-η⁴)]⁴-	Atome	[(η⁴-Ge₃)Zn-Zn(Ge₃-η⁴)] ⁶⁻	Atome	[(η³-Ge ₉)In(Ge ₉ -η³)] ⁵⁻
Ge1-Ga	2.591(4)	Ge1-Zn	2.624(1)	Ge1-In	2.824(1)
Ge2-Ga	2.573(4)	Ge2-Zn	2.615(1)	Ge2-In	2.862(1)
Ge3-Ga	2.551(4)	Ge3-Zn	2.667(1)	Ge3-In	3.002(1)
Ge4-Ga	2.581(4)	Ge4-Zn	2.620(1)	Ge1-Ge2	2.725(1)
Ge1-Ge2	2.869(4)	Ge1-Ge2	2.796(1)	Ge1-Ge3	2.727(1)
Ge2-Ge3	2.911(4)	Ge2-Ge3	2.704(1)	Ge1-Ge4	2.528(1)
Ge3-Ge4	2.912(4)	Ge3-Ge4	2.742((1)	Ge1-Ge6	2.520(1)
Ge1-Ge4	2.847(4)	Ge1-Ge4	2.758(1)	Ge1-Ge7	2.951(1)
Ge1-Ge5	2.561(4)	Ge1-Ge5	2.559(1)	Ge2-Ge3	2.745(1)
Ge1-Ge6	2.564(3)	Ge1-Ge8	2.544(1)	Ge2-Ge4	2.532(1)
Ge2-Ge6	2.548(4)	Ge2-Ge5	2.547(1)	Ge2-Ge5	2.524(1)
Ge2-Ge7	2.548(4)	Ge2-Ge6	2.560(1))	Ge2-Ge8	3.020(1)
Ge3-Ge7	2.535(4)	Ge3-Ge6	2.577(1)	Ge3-Ge5	2.554(1)
Ge3-Ge8	2.548(4)	Ge3-Ge7	2.567(1)	Ge3-Ge6	2.559(1)
Ge4-Ge8	2.549(3)	Ge4-Ge7	2.550(1)	Ge3-Ge9	2.874(1)
Ge4-Ge5	2.551(4)	Ge4-Ge8	2.551(1)	Ge4-Ge7	2.598(1)
Ge5-Ge6	2.784(3)	Ge5-Ge6	2.771(1)	Ge4-Ge8	2.618(1)
Ge6-Ge7	2.839(4)	Ge6-Ge7	2.855(1)	Ge5-Ge8	2.620(1)
Ge7-Ge8	2.805(4)	Ge7-Ge8	2.807(1)	Ge5-Ge9	2.594(1)
Ge5-Ge8	2.777(4)	Ge5-Ge8	2.856(1)	Ge6-Ge7	2.618(2)
Ge5-Ge9	2.613(4)	Ge5-Ge9	2.603(1)	Ge6-Ge9	2.591(1)
Ge6-Ge9	2.594(4)	Ge6-Ge9	2.563(1)	Ge7-Ge8	2.602(1)
Ge7-Ge9	2.556(4)	Ge7-Ge9	2.601(1)	Ge7-Ge9	2.657(2)
Ge8-Ge9	2.586(3)	Ge8-Ge9	2.566(1)	Ge8-Ge9	2.617(1)
Ga-Ga	2.421(5)	Zn-Zn	2.420(2)		

Tabelle 3.5: Vergleich der Bindungslängen [Å] von $[(\eta^4-Ge_9)Ga-Ga(Ge_9-\eta^4)]^{4-}$ (**1**) mit $[(\eta^4-Ge_9)Zn-Zn(Ge_9-\eta^4)]^{6-[3]}$ und $[(\eta^3-Ge_9)In(Ge_9-\eta^3)]^{5-}$.^[1]

Ein weiteres Beispiel eines verbrückten *Zintl*-Clusters mit einer Metall-Metall-Bindung stellt die Verbindung [K(2.2.2-Krypt)]₆[Cd₂Pb₁₈]·2en dar. ^[9] Auch das Anion [(η^4 -Pb₉)Cd-Cd(Pb₉- η^4)]⁶⁻ (Abbildung 3.7) wird nach den *Wade'*schen Regeln als zwei zehnatomige Pb₉Cd-*closo*-Cluster (2*n*+2 = 22 Gerüstelektronen, *n* = 10) betrachtet, die über eine kovalente Zwei-Zentren-Zwei-Elektronenbindung verbunden sind. Die Pb-Pb-Bindungen innerhalb der Cluster liegen im Bereich bekannter Pb₉-Cluster. Ebenso lassen sich die Cd-Pb-Abstände (2.996 – 3.113 Å) mit denen bekannter CdPh-funktionalisierter Verbindungen (durchschnittlich 2.968 Å) vergleichen. ^[12] Analog zur Ga-Ga-Bindung in Verbindung (**1**) bzw. Zn-Zn-Bindung in K₂[K(2.2.2Krypt)]₄[(Ge₉)Zn-Zn(Ge₉)](NH₃)₂₆ ^[3] ist auch hier die Cd-Cd-Bindung (2.697 Å) kürzer als die Summe der Kovalenzradien (3.28 Å). ^[9]

Abbildung 3.7: $[Pb_9Cd-CdGe_9]^{4-}$ -Einheit in $[K(2.2.2-Krypt)]_6[Cd_2Pb_{18}]\cdot 2en$. ^[9] Die Auslenkungsparameter der Atome sind mit 50 % Aufenthaltswahrscheinlichkeit gezeigt.

3.2.3 Umsetzungen mit InCp*

Die erfolgreiche Synthese des galliumverbrückten Clusters $[(\eta^4-Ge_9)Ga-Ga(Ge_9-\eta^4)]^{4-}$ (1) sowie die Synthese des über ein Indiumatom überbrückten Ge₉-Clusters $[In(Ge_9)_2]^{5-}$ ^[1] lässt die Existenz eines möglichen indiumverbrückten $[(\eta^4-Ge_9)In-In(Ge_9-\eta^4)]^{4-}$ -Clusters vermuten. So wurden analoge Umsetzungen mit InCp* durchgeführt. Aufgrund der höheren Reaktivität von InCp* im Vergleich zu GaCp*wurden keine stabilen Reaktionslösungen bei der Umsetzung der Ge₉-Cluster mit InCp* in Ethylendiamin oder *N,N*-Dimethylformamid erhalten. Auch bei Umsetzungen in flüssigen Ammoniak entfärbte sich die Reaktionslösung innerhalb weniger Tage (Synthesevorschriften siehe Kapitel 5.3.3).

3.3 Umsetzung mit silylierten Clustern

Umsetzungen des dreifach funktionalisierten Ge₉-Clusters [Ge₉(Si(SiMe₃)₃)₃]⁻ mit AlCp*, AlCp*H₂, GaCp* oder InCp* erfolgten analog der Darstellung der neutralen Verbindung [Cp*Zn(η^3 -Ge₉{Si(TMS)₃})] durch Reaktion von [Ge₉(Si(SiMe₃)₃)₃]⁻ mit ZnCp*₂. ^[14] (Synthesevorschriften siehe Kapitel 5.3.3).

Da bekannt ist, dass die Verbindung AlCp* in gängigen Lösungsmitteln als Hexamer vorliegt und damit womöglich eine Reaktion mit den Ge₉-Clustern erschwert, wurde zudem die Verbindung AlCp*H₂ eingesetzt. Aus dieser wird durch reduktive Eliminierung bei 70 °C in Toluol, Benzol usw. Aluminium freigesetzt, was eine mögliche Reaktion mit den *Zintl*-Clustern erleichtern soll (Abbildung 3.8).^[15]

 $2 \operatorname{AlCp}^*\operatorname{H}_2 \longrightarrow 2 \operatorname{Al} + 2 \operatorname{Cp}^*\operatorname{H} + \operatorname{H}_2$

Abbildung 3.8: Reduktive Eliminierung von Cp*H unter Bildung von Al und H₂.

Alle Reaktionen wurden in verschiedenen stöchiometrischen Verhältnissen, Lösungsmitteln (Toluol, Benzol, Tetrahydrofuran, Acetonitril), Temperaturen (Raumtemperatur, 70 °C) durchgeführt. Die Reaktionslösungen wurden mittels ¹H-NMR-Spektroskopie und ESI-MS untersucht. Alle Umsetzungen bildeten über mehrere Wochen lang optisch stabile Reaktionslösungen. Im Massenspektrum konnte bei den Ansätzen mit GaCp* oder InCp* nur ein intensives Signal bei m/z = 1397 ([Ge₉(Si(SiMe₃)₃)₃]⁻) detektiert werden (siehe Anhang, Kapitel 6, Abbildung 6.1, 6.2). Bei den Ansätzen mit AlCp* oder AlCp*H₂ war im ¹H-NMR-Spektrum dieser Ansätze das Signal des trisylilierten Clusters nicht mehr zu erkennen, was auf eine mögliche Zersetzung hindeutet (siehe Anhang, Kapitel 6, Abbildung 6.3, 6.4). Bei den Umsetzungen mit GaCp*oder InCp* sind die beiden Signale (Cp*, [Ge₉(Si(SiMe₃)₃)₃]⁻) nebeneinander deutlich, aber ohne Verschiebung gegenüber den Edukten erkennbar. Daraus lässt sich schließen, dass keine Reaktion stattgefunden hat (siehe Anhang, Kapitel 6, Abbildung 6.5, 6.6).

3.4 Auswahl und Synthesen der Organyle der 4. Hauptgruppe

2002 gelang *A. Ugrinov et al.* die Synthese eines zweifach funktionalisierten Ge₉-Clusters $[K(2.2.2-Krypt)]_2[Ge_9(BiPh_2)_2]\cdot en$. Dies war die erste Verbindung eines *Zintl*-Clusters mit zwei *exo*-gebundenen Hauptgruppenelementfragmenten. ^[16] Seitdem gelang die Darstellung weiterer zahlreicher durch Hauptgruppenelementfragmente funktionalisierter *Zintl*-Cluster. Durch Umsetzung von *R*₃*E*Cl (*R* = Me, Ph; *E* = Ge, Sn) mit K₄Ge₉ konnten zahlreiche zinn- oder germaniumsubstituierte Ge₉-Clusters wie beispielsweise [Ge₉-SnPh₃]³⁻, [GePh₃-Ge₉-GePh₃]²⁻ und [SnPh₃-Ge₉-SnPh₃]²⁻ erhalten werden. ^[17]

Sevov et al. gelang 2012 durch heterogene Reaktion von K_4Ge_9 mit Tris(trimethylsilyl)silanchlorid ((Me₃Si)₃SiCl) in Acetonitril die Darstellung eines dreifach funktionalisierten Ge₉-Cluster [Ge₉(Si(SiMe₃)₃)₃]⁻. ^[18]

Im Folgenden gelang auch die Darstellung neutraler tetrasubstituierter Cluster wie $[Ge(Si(SiMe_3)_3(SnPh_3))]$ und $[Ge_9(Si(SiMe_3)_3)_3(Sn^nBu_3)]$ $^{[19, 20]}$ durch Reaktion des trisilylierten Clusters K $[Ge(Si(SiMe_3)_3)_3]$ mit Ph₃SnCl bzw. ⁿBuSnCl.

Ein weiteres Beispiel eines mit Hauptgruppenelementen funktionalisierten Clusters stellt der zinnverbrückte Cluster $[Ge_9-Sn-Ge_9]^{4-}$ der Verbindung $[K(18-Krone-6)]_4[Ge_9-Sn-Ge_9]\cdot 4.5$ en dar, der durch Umsetzung von K₄Ge₉ mit Ph₃SnCl/K in Ethylendiamin synthetisiert wurde. ^[21]

Im Folgenden wurden Umsetzungen mit den Organylen GeCp₂ ^[22] und SnCp₂ ^[23] durchgeführt. Ziel dabei ist es die Cp-Liganden formal durch Ge₉-Cluster auszutauschen ^[22, 23] bzw. die neunatomigen Germaniumcluster zu Ge₁₀Cp³⁻ zu erweitern. Weitere stabile Ge(II)- und Sn(II)-Komplexe stellen das Stannylen Sn[N(SiMe₃)₂]₂ ^[24] sowie das Ferrocen-basierte *N*heterocyclische Germylen GeFc[N(SiMe₃)]₂ (Fc = Ferrocenyl) ^[25] dar. Diese besitzen am Germanium- bzw. Zinnatom ein freies Elektronenpaar und ein unbesetztes Orbital und können so im Allgemeinen Reaktionen mit Nukleophilen und Elektrophilen eingehen.

Da Umsetzungen der *Zintl*-Cluster mit Si(IV)-Verbindungen zu einer sofortigen Zersetzung der Cluster führen, ^[26] erfolgen Umsetzungen mit der bei Raumtemperatur stabilen Si(II)-Verbindung SiCl₂·dipp (dipp = 1,3-Bis-(2,6-di-*iso*-propylphenyl)imidazol-2-yliden). ^[27] Das normalerweise instabile Si(II) lässt sich durch den Carbenliganden stabilisieren.

3.5. Umsetzungen mit $[E_9]^{x}$ -Clustern (*E* = Ge, Sn; *x* = 2, 3, 4)

Umsetzungen der *Zintl*-Phase K₄Sn₉ mit Organylen der 4. Hauptgruppe in Ethylendiamin führten zu einer sofortigen Zersetzung der Reaktionslösungen.

Durch Umsetzung von K₄Ge₉ mit SiCl₂·dipp in Ethylendiamin wurden stabile Reaktionslösungen erhalten. Diese wurden entweder mit 18-Krone-6 oder 2.2.2-Krytand in Toluol überschichtet. Aus den Ansätzen, die mit 18-Krone-6 überschichtet wurden, konnten Kristalle der bekannten Verbindung [K(18-Krone-6)]₂Ge₉·en, ^[28] die das $_{\infty}^{1}$ [Ge₉]²⁻-Polymer enthalten, isoliert werden.

Analoge Umsetzungen von K_4Ge_9 mit $GeCp_2$ und $SnCp_2$ sowie $Sn[N(SiMe_3)_2]_2$ und $GeFc[N(SiMe_3)]_2$ in Ethylendiamin zersetzten sich innerhalb weniger Tage.

Stabile Reaktionslösungen wurden mit flüssigem Ammoniak als Lösungsmittel erhalten. Aus Umsetzungen von K₄Ge₉ mit GeCp₂ wurden Kristalle der bekannten Verbindung [K(2.2.2-Krypt)]₃[Ge₉](NH₃)₈ ^[29] (Synthesevorschriften siehe Kapitel 5.3.3) erhalten sowie durch Umsetzung von K₄Sn₉ mit GeCp₂ die neue Verbindung [K(2.2.2-Krypt)]Cp (siehe Kapitel 3.5.1; Synthesevorschrift siehe Kapitel 5.3.2.2).

Ebenfalls stabile Reaktionslösungen konnten durch heterogene Reaktion von K₄Ge₉ mit GeCp₂ oder SnCp₂ in Actetonitril erhalten werden (siehe Kapitel 3.7.1 und 3.8.9).

3.5.1. Kristallstruktur von [K(2.2.2-Krypt)]Cp

Die Kristallstruktur der Verbindung [K(2.2.2-Krypt)]Cp (**2**) wurde durch Röntgenbeugung an einem Einkristall aufgeklärt. Die Struktur wurde mit direkten Methoden gelöst und nach dem *least-squares* Verfahren verfeinert. Die Lagen sämtlicher Wasserstoffatome wurden mittels Differenz-Fourier-Analyse bestimmt und mit isotropen Auslenkungsparametern frei verfeinert.

Die Verbindung [K(2.2.2-Krypt)]Cp (**2**) kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit den Gitterparametern a = 10.9817(6) Å, b = 23.8330(15) Å und c = 9.7379(7) Å. In Tabelle 3.6 sind die kristallographischen Daten der Verbindung (**2**) zusammengefasst.

Verbindung	(2)
Formel	C ₂₃ H ₄₁ KN ₂ O ₆
Kristallsystem	monoklin
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)
Temperatur	120(0) K
Zellparameter	a = 10.9817(6) Å b = 23.8330(15) Å c = 9.7379(7) Å $\beta = 94.705(5)^{\circ}$
Zellvolumen	2540.1(3)A ³
Formeleinheiten	4
Molekulargewicht	480.68 g mol ⁻¹
Dichte	1.257 g·cm ^{−3}
Wellenlänge	Μο-Κα
Monochromator	Germanium
Absorptionskoeffizient	0.248 mm⁻¹
Gemessene Reflexe	32316
Unabhängige Reflexe	6125
Rint	0.0468
2ϑ Bereich	6.08°- 55.99°
<i>hkl</i> Bereich	$-14 \le h \le 14$ $-31 \le k \le 31$ $-8 \le l \le 12$
Reflexe > 2σ	4029
Anzahl an Parametern	453
$R_1 (I \ge 2\sigma(I)), R_1 (all)$	0.0327; 0.0583
$wR_2 (l \ge 2\sigma(l)), wR_2$ (all)	0.0642; 0.0682
GooF	866
max./min. Restelektronendichte	0.217 / -0.239 e · Å ⁻³

Tabelle 3.6: Kristallographische Daten und Strukturverfeinerung für die Verbindung (2).

[K(2.2.2-Krypt)]Cp kristallisiert mit vier Cyclopentadienylringen, vier K⁺-Kationen und vier 2.2.2-Krypt-Molekülen. Jedes Kation wird durch 2.2.2-Krypt eingeschlossen und somit räumlich von Cp⁻ getrennt (Abbildung 3.9 a,b).

Das Cyclopentadienylanion wird durch ein planares Fünfeck aus Kohlenstoffatomen mit C-C-C-Winkel zwischen 107.67(12)° und 108.29(12)° (Summe der Winkel 540.00°) gebildet. Die C- C-Bindungslängen betragen dabei zwischen 1.399(2) Å and 1.402(2) Å. Das K⁺-Kation wird von einem 2.2.2-Krypt-Molekül mit K-O-Abständen zwischen 2.7781(9) Å und 2.9009(9) Å und K-N-Abständen zwischen 2.9675(11) Å und 3.0056(11) Å koordiniert. Die kürzesten intermolekularen Abstände zwischen dem K⁺-Kation und dem Cyclopentadienylanion sind K-H19 (5.38 Å) und K-C19 (6.34 Å). Somit liegen alle Bestandteile der Zelle weitestgehend isoliert vor.

Abbildung 3.9: a) Elementarzelle der Verbindung [K(2.2.2-Krypt)]Cp (**2**). Zur besseren Übersichtlichkeit sind 2.2.2-Krypt und Cp nur schematisch dargestellt. b) Asymmetrische Einheit von K(2.2.2-Krypt)]Cp (**2**). Die Auslenkungsparameter sind bis auf die Wasserstoffatome (weiße Kugeln) mit 50% Aufenhaltswahrscheinlichkeit gezeichnet.

3.6. Umsetzungen mit silylierten Clustern

3.6.1. Umsetzungen mit zinn- und germaniumhaltigen Verbindungen

Umsetzungen der trisylilierten Spezies K[Ge₉(Si(SiMe₃)₃)₃] mit den zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol ergaben stabile Reaktionslösungen (Synthesevorschriften siehe Kapitel 5.3.3). Diese wurden massenspektrometrisch untersucht. Bei allen Reaktionslösungen wurden folgende Signale mit abnehmender Intensität detektiert: 1396 m/z $([Ge_9(Si(SiMe_3)_3)_3]^-),$ 1442 m/z, $([Ge_8Sn(Si(SiMe_3)_3)_3]^-),$ 1488 m/z $([Ge_7Sn_2(Si(SiMe_3)_3)_3]^-)$ und 1534 m/z $([Ge_6Sn_3(Si(SiMe_3)_3)_3]^-)$. Wurde als Lösungmittel Tetrahydrofuran oder Acetonitril verwendet, wurde nur ein Signal bei 1396 m/z ([Ge₉(Si(SiMe₃)₃)₃]⁻) detektiert, ebenso wie bei analogen Umsetzungen von K[Ge₉(Si(SiMe₃)₃)₃] mit GeCp₂ oder GeFc[N(SiMe₃)]₂ (ausführlichere Details zur massenspektrometrischen Untersuchung siehe Kapitel 3.8.8). ¹H-NMR-spektroskopische Untersuchungen brachten keine weiteren Ergebnisse. Bei der Umsetzung von K[Ge₉(Si(SiMe₃)₃)₃] mit SnCp₂ ist das Cp-Signal nach der Umsetzung ganz leicht hochfeldverschoben, das Signal des trisylilierten Clusters unverändert (siehe Anhang, Kapitel 6, Abbildung 6.7). Die analoge Umsetzung mit Sn[N(SiMe₃)₂]₂ zeigt im ¹H-NMR-Spektrum keine Verschiebung gegenüber den Edukten (siehe Anhang, Kapitel 6, Abbildung 6.8).

3.6.2 Umsetzungen mit siliciumhaltigen Verbindungen - Synthese und Charakterisierung von $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ ·tol und $[dipp-H][Ge_9(Si(SiMe_3)_3)_3]$ ·2acn

Durch die Umsetzung von *N*-heterocylischen Carbenkomplexen der Übergangsmetalle Kupfer, Silber und Gold mit dem dreifach silylierten $[Ge_9(Si(SiMe_3)_3)_3]^-$ -Cluster konnten kürzlich die neutralen Verbindungen $[(dipp)M(\eta^3-Ge_9(Si(SiMe_3)_3)_3)]$ (dipp = 1,3-Bis-(2,6-di-*iso*propylphenyl)imidazol-2-yliden; *M* = Cu, Ag, Au) erhalten werden. ^[30] Dabei werden die Übergangsmetalle durch eine Dreiecksfläche des Ge_9-Polyeders koordiniert.

Der Versuch ein Siliciumatom in den Cluster einzuführen oder ein NHC über die Verbindung $SiCl_2$ ·dipp an den Cluster anzubinden führte nicht zu den gewünschten Produkten, sondern lieferte, abhängig vom Lösungsmittel die Verbindungen [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**) und [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**).

Die Umsetzung von zwei Äquivalenten SiCl₂·dipp mit K[Ge₉(Si(SiMe₃)₃)₃] in Toluol bei Raumtemperatur lieferte nach vier Wochen rote blockförmige Kristalle der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**). Aus der analogen Umsetzung in Acetonitril konnten nach drei Tagen rote blockförmige Kristalle der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) isoliert werden (Synthesvorschriften siehe Kapitel 5.3.2.3 und 5.3.2.4.). Die Kristallstrukturen konnten durch Röntgenbeugung an Einkristallen aufgeklärt werden. Die Strukturen der Verbindungen (**3**) und (**4**) wurden monoklin bzw. orthorhombisch in der in Raumgruppe $P2_1/c$ bzw. $P2_12_12_1$ mit direkten Methoden gelöst und nach dem *least-squares* Verfahren verfeinert. Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert.

Die Zusammensetzung wurde mittels EDX bestätigt. Des Weiteren wurden beide Verbindungen mittels ESI-MS, ¹H-NMR-Spektroskopie, Ramanspektroskopie und DFT-Rechnungen charakterisiert.

Kristallstrukturbeschreibung

Verbindung (**3**) kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit den Gitterparametern a = 16.8386(3) Å, b = 24.6597(5) Å und c = 30.2988(6) Å. Verbindung (**4**) kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit den Gitterparametern a = 13.4484(4) Å, b =

_

25.8775(7) Å und c = 26.4390(9) Å. In Tabelle 3.7 sind die kristallographischen Daten der Verbindungen (**3**) und (**4**) zusammengefasst.

Verbindung	(3)	(4)
Formel	$C_{81}H_{153}Ge_9KN_4Si_{12}$	$C_{58}H_{124}Ge_9N_4Si_{12}$
Kristallsystem	monoklin	orthorhombisch
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i> (Nr. 14)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (Nr. 19)
Temperatur	120(2) K	120(2) K
Zellparameter	a = 16.8386(3) Å b = 24.6597(5) Å c = 30.2988(6) Å $\beta = 101.813(2)^{\circ}$	a = 13.4484(4) Å b = 25.8775(7) Å c = 26.4390(9) Å
Zellvolumen	12314.7(4) A ³	9201.1(5) A ³
Formeleinheiten	4	4
Molekulargewicht	2212.55 g mol ⁻¹	1867.99 g mol ⁻¹
Dichte	1.193 g·cm ⁻³	1.348 g·cm ⁻³
Wellenlänge	Μο-Κα	Μο-Κα
Monochromator	Germanium	Germanium
Absorptionskoeffizient	2.348 mm^{-1}	3.085 mm ⁻¹
Gemessene Reflexe	135618	102207
Unabhängige Reflexe	24192	18065
R _{int}	0.1358	0.0614
2ϑ Bereich	5.826° - 52.00°	6.058° - 52.00°
<i>hkl</i> Bereich	–19 ≤ <i>h</i> ≤ 20 –30 ≤ <i>k</i> ≤ 30 –37 ≤ <i>l</i> ≤ 36	$-16 \le h \le 16$ $-31 \le k \le 31$ $-32 \le l \le 32$
Reflexe > 2σ	9495	12527
Anzahl an Parametern	1007	797
$R_1 (I \ge 2\sigma(I)), R_1 (all)$	0.0461, 0.1334	0.0313, 0.0500
$wR_2 (I \ge 2\sigma(I)), wR_2 (all)$	0.0884, 0.1013	0.0521, 0.0545
GooF	0.729	0.829
Flack Parameter	-	0.006(3)
max./min. Restelektronendichte	0.821 / -0.534 e · Å ⁻³	0.931 / -0.417 e · Å ⁻³

 Tabelle 3.7:
 Kristallographische Daten und Strukturverfeinerung für die Verbindungen (3) und (4).

Beide Verbindungen (**3** und **4**) enthalten dasselbe Anion, während die korrespondieren Kationen verschieden sind (Abbildung 3.10).

Abildung 3.10: Anionen von (**3**) und (**4**) mit Blick senkrecht auf die dreizählige Achse der Ge₉-Cluster. Die C- und H-Atome sind nicht gezeichnet. Die Auslenkungsparameter sind mit 50% Aufenthaltswahrscheinlichkeit gezeichnet.

Das [Ge₉(Si(SiMe₃)₃)₃]-Anion besteht aus einem Cluster aus neun Germaniumatomen, die ein verzerrtes dreifach überkapptes trigonales Prisma mit ungefährer *C*_s-Symmetrie bilden. Die Si(SiMe₃)₃ (TMS)-Gruppen sind dabei über die überkappenden Germaniumatome an den Cluster gebunden. In beiden Verbindungen treten die kürzesten Ge-Ge-Abstände zwischen den überkappenden Germaniumatomen und denen der Prismengrundfläche auf (Tabelle 3.8). Sie liegen im Bereich zwischen 2.5132(9) Å – 2.5483(9) Å (**3**) und 2.5154(9) Å – 2.5506(9) Å (**4**). Im Gegensatz dazu unterscheiden sich die Bindungslängen innerhalb der Prismengrundflächen in beiden Verbindungen. Hier weist Verbindung (**3**) neben einer kurzen Ge-Ge-Bindung (2.60 Å) zwei deutlich längere (2.71 und 2.74 Å) auf (Tabelle 3.8). Daneben weichen auch die Höhen des trigonalen Prismas des Clusters deutlich voneinander ab (Tabelle 3.9). Mit 3.0089(8) Å ist eine Kante deutlich kürzer als die beiden anderen (3.5103(9) Å und 3.6282(9) Å). Diese unterschiedlichen Kantenlängen führen zu einer Verzerrung und damit zu einer Abweichung des Clusters von einer perfekten *D*_{3h}-Symmetrie.

Dieselbe Art von Verzerrung, jedoch in geringerer Ausprägung, kann man auch bei Verbindung (4) beobachten. Die Bindungslängen innerhalb der Prismengrundflächen liegen im Bereich zwischen 2.6553(9) Å und 2.6914(9) Å. Auch die Höhen des trigonalen Prismas weichen mit 3.3442(9) Å, 3.3845(9) Å und 3.4951(9) Å nicht so stark voneinander ab wie die in Verbindung (3).

Trotz dieser Unterschiede sind die Anionen beider Verbindungen einfach negativ geladen, wie es für ein formal vierfach negativ geladenes $[Ge_9]^{4-}$ -*Zintl*-Ion mit drei positiv geladenen $[Si(SiMe_3)_3]^+$ -Gruppen zu erwarten ist.

Atome	3	4
Ge1-Ge2	2.7535(8)	2.6789(9)
Ge2-Ge3	2.6031(9)	2.6553(9)
Ge3-Ge1	2.7124(9)	2.6914(9)
Ge7-Ge8	2.7462(8)	2.6659(9)
Ge8-Ge9	2.6040(9)	2.6631(8)
Ge9-Ge7	2.7141(9)	2.6710(9)
Ge1-Ge4	2.5298(9)	2.5270(8)
Ge1-Ge5	2.5360(8)	2.5154(9)
Ge2-Ge5	2.5149(9)	2.5315(9)
Ge2-Ge6	2.5430(9)	2.5434(9)
Ge3-Ge6	2.5445(9)	2.5386(9)
Ge3-Ge4	2.5233(9)	2.5411(9)
Ge4-Ge7	2.5428(9)	2.5506(9)
Ge5-Ge7	2.5267(8)	2.5310(9)
Ge5-Ge8	2.5132(9)	2.5233(8)
Ge6-Ge8	2.5483(9)	2.5459(9)
Ge6-Ge9	2.5401(9)	2.5406(9)
Ge4-Ge9	2.5237(9)	2.5262(8)
Ge1-Ge7	3.0089(8)	3.3442(9)
Ge2-Ge8	3.5103(9)	3.3845(9)
Ge3-Ge9	3.6282(9)	3.4951(9)
Ge4-Si1	2.3728(16)	2.3743(16)
Ge5-Si5	2.3671(18)	2.3683(16)
Ge6-Si9	2.3594(18)	2.3878(16)
N1-C28	1.343(6)	1.343(7)
C28-N2	1.353(6)	1.321(7)
N2-C29	1.379(6)	1.367(7)
C29-C30	1.352(6)	1.325(8)
C30-N1	1.377(6)	1.363(7)
N3-C55	1.326(6)	-
C55-N4	1.354(6)	-
N4-C56	1.377(6)	-
C56-C57	1.337(7)	-
C57-N3	1.365(6)	-
Atome	Winkel	Winkel
N1-C28-N2	106.2(5)°	108.2(5)°
N3-C55-N4	106.6(5)°	-

Tabelle 3.8: Ausgewählte Bindungslängen [Å] und Winkel von (3) und (4).

Vergleicht man die beiden Anionen (**3** und **4**) mit reinen [Ge₉(Si(SiMe₃)₃)₃]⁻-Clustern, d.h. Cluster, die nicht verbrückt sind oder an ein Metall koordinieren mit denen bereits publizierter Verbindungen, kann man eine ähnliche Verzerrung erkennen (Tabelle 3.9). Eine Prismenhöhe ist immer deutlich kürzer als die beiden anderen. Verbindung (**3**) ist hierfür ein extremes Beispiel.

Verbindung	Dreieck I			Dreieck II			Prismenhöhe			Ref.
[K(dipp)₂][Ge₃(Si(SiMe₃)₃)₃] ·tol (3)	1	1.04	1.06	1.00	1.04	1.05	1.16	1.35	1.39	[31]
[dipp-H][Ge₃(Si(SiMe₃)₃)₃] ·2acn (4)	1.02	1.03	1.03	1.02	1.02	1.03	1.28	1.3	1.34	[32]
[Li(thf)₄][Ge₃(hyp)₃]·3thf	1.02	1.03	1.03	1.02	1.03	1.03	1.28	1.32	1,32	[31]
[K(2.2.2)Krypt][Ge ₉ (hyp)₃]	1.01	1.03	1.03	1.01	1.03	1.04	1.21	1.35	1.36	[32]
[K(2.2.2)Krypt][Ge ₉ (hyp)₃]	1.01	1.02	1.03	1.02	1.03	1.04	1.24	1.34	1.34	[32]
K[Ge ₉ (hyp)₃]·4tol	1.02	1.02	1.03	1.02	1.03	1.04	1.27	1.3	1.34	[33]
K[Ge ₉ (hyp)₂(hyp ^{Ph})]·3thf	1.02	1.02	1.03	1.03	1.03	1.03	1.28	1.28	1.35	[33]
K[Ge ₉ (hyp)₃·3thf·Pentan	1.00	1.03	1.03	1.01	1.04	1.05	1.24	1.33	1.35	[33]

Tabelle 3.9: Ausgewählte interatome Abstände dreifach silylierter Ge₉-Cluster (für (**3**) und (**4**)). Alle Werte sind auf die kürzesten betrachteten Ge-Ge-Abstände (2.603 Å) skaliert.

 $hyp = Si(Si(CH_3)_3)_3$

In beiden Verbindungen ist das Imidazoliumion an der Bildung des Kations beteiligt, jedoch auf verschiedene Weise. In der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**) wird das K⁺-Kation durch zwei (kristallographisch unabhängige) dipp-Moleküle über ihre Carben-C-Atome komplexiert (Abbildung 3.12). Die K-C-Abstände betragen dabei 3.184(6) Å und 3.199(6) Å. Die C-K-C-Verbindung ist dabei fast linear (165.7(2)°) Dies ist geringfügig länger als bei bekannten Verbindungen, in denen Abstände unter 2.9 Å und C-K-C Winkel von 180° gefunden wurden. ^[34] Eine Abweichung von einer exakten Linearität und eine Verlängerung der Bindungen ist wahrscheinlich darauf zurückzuführen, dass das Kaliumatom zusätzlich noch an ein negativ polarisiertes C-Atom des Phenylrings bindet (Abbildung 3.11).

Abbildung 3.11: Umgebung des K⁺-Kations in $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ -tol (**3**). Die Auslenkungsparameter sind mit 50% Aufenhaltswahrscheinlichkeit gezeichnet. Die Wasserstoffatome und die Isopropylgruppen sind nicht dargestellt. Symmetrie Code: (i) 1-*x*, 1-*y*, 1-*z*.

Die fehlgeordneten Toluolmoleküle befinden sich in Kanälen, die durch die Kationen und Anionen entlang der kristallographischen *a*-Achse gebildet werden (Abbildung 3.12). Aufgrund der starken Fehlordnung der Toluolmoleküle kann über mögliche π - π -Wechselwirkungen zwischen ihnen und den Phenylresten des Imidazolrings nur spekuliert werden.

Abbildung 3.12: Kristallstruktur von Verbindung $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ -tol (**3**) mit Blick entlang der kristallographischen *a*-Achse. Die Wasserstoffatome sind nicht dargestellt. Die kationischen Komplexe und die Anionen bilden parallel zur kristallographischen *a*-Achse Kanäle in denen sich fehlgeordnete Toluolmoleküle befinden.

Bei der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃·2acn (**4**) wird das Kation von einem Imidazoliumkation, der protonierten Form des dipp-Moleküls gebildet (Abbildung 3.13). Das protonierte Kation lässt sich vom unprotonierten Carbenmolekül über den N-C-N-Winkel und die N-C_{Carben}-Bindungslänge unterscheiden. ^[35] In Übereinstimmung mit der Literatur sind diese N-C-Bindungslängen und N-C-N-Winkel in den neutralen Liganden in Verbindung (**3**) 1.344 Å und 106.4°, während im protonierten Molekül bei Verbindung (**4**) die Bindungslängen

mit 1.332 Å geringfügig kürzer und die N-C-N-Winkel mit 108.2 ° etwas größer sind. Weitere Bindungslängen und Winkel sind in Tabelle 3.8 aufgelistet.

Abbildung 3.13: Asymmetrische Einheit von [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**). Die Auslenkungsparameter sind mit 50% Aufenhaltswahrscheinlichkeit gezeichnet. Die Wasserstoffatome sind bis auf das des Imidazolrings nicht dargestellt.

Abbildung 3.14: Kristallstruktur von Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) mit Blick entlang der kristallographischen *a*-Achse. Die Auslenkungsparameter sind mit 50% Aufenhaltswahrscheinlichkeit gezeichnet. Die Wasserstoffatome sind nicht dargestellt.

Quantenchemische Rechnungen

DFT-Rechnungen wurden von Laura-Alice Jantke durchgeführt und erfolgten mit Hilfe des Programmpaketes Gaussian09. ^[36] Es wurden die Hybridaustauschfunktionale von Perdew, Burke und Ernzerhof (PBE0) ^[37] verwendet und die Basissätze Def2-TZVPP für die Elemente H, C,^[38] Si ^[39] und Ge.^[38]

Quantenchemische Rechnungen (DFT-PBE0/def2-TZVPP/PCM) zeigten, dass Verbindung (4) gegenüber (3) eine um 0.30 eV geringere Gesamtenergie hat. Die HOMO-LUMO-Lücke wird für (3) zu 3.62 eV und für (4) zu 3.72 eV berechnet. Dieser Abstand ist geringer als der der Gesamtenergie, so dass (4) gegenüber (3) geringfügig bevorzugt ist.

Die Untersuchung der Molekülorbitale zeigt, dass die Cluster-Orbitale (1S, 1P, 2S, 1F, 2P) 40 Elektronen haben und damit auf einen *closo*-Cluster mit 22 Gerüstbindungselektronen hinweisen.

Für die Verbindungen (**3**) und (**4**) wurden Einzelpunktberechnungen durchgeführt, die auf den experimentellen Daten (129 Atome) der Verbindungen (**3**) und (**4**) basieren. Die daraus berechnete Modellverbindung [Ge₉(SiH)₃]⁻ (SiH₃-Reste anstatt TMS) hat ebenfalls die Form eines verzerrten dreifach überkappten trigonalen Prismas mit zwei gleich langen Höhen (3.31 Å) und einer etwas längeren (2.75 Å).

Die berechneten Ge-Ge-Bindungen stimmen gut mit den kristallographisch ermittelten überein. Die kürzesten Abstände sind zwischen den überkappenden Atomen und denen der Prismengrundfläche (2.54 - 2.56 Å, siehe Tabelle 3.8). Abstände innerhalb dieser Grundfläche betragen durchschnittlich 2.69 Å. Bindungen zu den überkappenden Atomen sind durchschnittlich 2.55 Å lang und die Prismenhöhen betragen durchschnittlich 3.45 Å. Die HOMO-LUMO-Lücke der Modellverbindung wurde zu 2.90 eV berechnet.

Massenspektrometrie (ESI-MS)

Zudem wurden auch Kristalle der Verbindungen [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**) und [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) massenspektrometrisch untersucht. Dazu wurden einige Kristalle der jeweiligen Verbindung in Tetrahydrofuran aufgelöst. Wie erwartet konnte im negativen Messmodus bei beiden Verbindungen ein intensives Signal bei 1396 m/z ([Ge₉(Si(SiMe₃)₃)₃]⁻) detektiert werden. Im positiven Modus zeigte das Massenspektrum ein Signal bei 389 m/z (dipp-H).

Weiterhin wurden auch die Reaktionslösungen der jeweiligen Kristallisationsansätze mit Tetrahydrofuran oder Acetonitril verdünnt und massenspektrometrisch untersucht.

Auch hier wurden dieselben Signale (neg.: 1396 m/z, pos.: 389 m/z) detektiert. Signale die auf SiCl₂ hindeuten waren nicht vorhanden (ausführlichere Details zur massenspektrometrischen Untersuchung siehe Kapitel 3.8.2).

NMR-Spektroskopie

Die Umsetzung von K[Ge₉(Si(SiMe₃)₃)₃] mit SiCl₂·dipp wurde, unter sonst identischen Reaktionsbedingungen, mit den Lösungsmitteln Tetrahydrofuran, Toluol oder Acetonitril

durchgeführt. Die Umsetzung mit Tetrahydrofuran lieferte keine kristalline Verbindung. Reaktionen in Toluol oder Acetonitril führten überraschenderweise zu unterschiedlichen Reaktionsprodukten, wobei die SiCl₂-Gruppe in keiner der beiden Verbindungen (**3**) und (**4**) vorhanden war. Aus analogen Umsetzungen mit den Verbindungen GeCl₂·dipp und SnCl₂·dipp konnten ebenfalls die Verbindungen (**3**) und (**4**) isoliert werden.

In Lösung liegt neben dem jeweiligen Komplex SiCl₂·dipp, GeCl₂·dipp oder SnCl₂·dipp auch freies dipp vor. ^[40] Mittels ¹H-NMR-Spektroskopie konnte bewiesen werden, dass in Toluol nur der Komplex und das freie Carben vorhanden sind.

Bei der Reaktion in Acetonitril findet neben der Spaltung des Komplexes zudem noch eine Protonierung des dipp zu dipp-H statt. Dies konnte durch ein ¹H-NMR Spektrum von SiCl₂·dipp in deuteriertem (trockenem) Acetonitril bewiesen werden (Abildung 3.15). Neben SiCl₂·dipp und dem freien Carben ist zusätzlich noch dipp-H vorhanden. Inwiefern das SiCl₂ bei der Protonierung des Carbens beteiligt ist bzw. welche Rolle es bei der Kristallisation spielt, konnte nicht geklärt werden. Bei Umsetzungen, in denen von vornherein dipp-H anstatt SiCl₂·dipp verwendet wurde, konnten keine Kristalle der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) isoliert werden.

Abbildung 3.15: a) ¹H-NMR-Spektrum von SiCl₂·dipp in deuteriertem (trockenem) Acetonitril. Die mit * markierten Signale stammen von dipp-H. b) dipp-H in deuteriertem (trockenem) Acetonitril.

Ramanspektroskopie

Die beiden Verbindungen (3) und (4) wurden zudem schwingunsspektroskopisch untersucht. Von Einkristallen beider Verbindungen wurden Ramanspektren aufgenommen (Abbildung 3.16). Die Zuordnung der charakteristischen Banden erfolgte anhand der quantenchemisch berechneten Modellverbindung [Ge₉(SiH)₃]⁻ und durch Vergleich mit der bekannten Verbindung [K[2.2.2]Krypt][Ge₉(Si(SiMe₃)₃)₃]. ^[41] Die Banden bei 685 cm⁻¹ (**3**) und 686 cm⁻¹ (**4**) sind auf asymmetrische Si-C- und Si-C-H-Streckschwingungen zurückzuführen. Die Banden bei 622 cm⁻¹ (3) und 626 cm⁻¹ (4) sind symmetrische Si-C-Streckschwingungen, während diejenigen bei 755 cm⁻¹ (**3**) und 742 cm⁻¹ (**4**) aus asymmetrischen Si-Si-Streckschwingungen resultieren. Die Schwingungsbanden bei 313 cm⁻¹ (3 and 4) lassen auf weitere Si-Si- oder Si-C-Schwingungen schließen, können aber nicht mit absoluter Sicherheit zugeordnet werden. Die intensiven Banden bei 156 cm⁻¹ (3) and 158 cm⁻¹ (4) sind auf Ge-Ge-Clusterschwingungen zurückzuführen.^[42, 43] Sie kommen durch eine Verdrehung der beiden Prismengrundflächen gegeneinander zustande. Die Banden bei 239 cm⁻¹ (3) und 242 cm⁻¹ (4) lassen sich durch eine Auf- und Abschwingung der überkappenden Germaniumatome erklären, welche eine Änderung der Prismenhöhe bewirkt. Sind die überkappenden Germaniumatome funktionalisiert, verschieben sich die Banden zu niedrigeren Wellenzahlen (121 cm⁻¹ (3) und 118 cm⁻¹ (4)).

Abbildung 3.16: Ramanspektrum von $[dipp-H][Ge_9(Si(SiMe_3)_3)_3]\cdot 2acn$ (4), $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]\cdot tol$ (3), $[K[2.2.2]-Krypt)][Ge_9[Si(SiMe_3)_3]_3]$, K_4Ge_9 and $(Me_3Si)_3SiCl$.

3.7 Heterogene Umsetzungen von $[Ge_9]^{x-1}$ -Clustern (x = 2, 3, 4)

3.7.1 SnCp₂ und GeCp₂

Die Zintl-Phase K₄Ge₉ ist nur in wenigen Lösungsmitteln wie Ethylendiamin, *N*,*N*-Dimethylformamid oder flüssigem Ammoniak vollständig löslich. In Acetonitril und Pyridin konnte K₄Ge₉ bisher nur durch Zugabe des Kryptanden 2.2.2-Krypt in Lösung gebracht werden. Vollständig löslich in Acetonitril ist zudem die trisilylierte Spezies, die durch heterogene Umsetzung von K₄Ge₉ und (Me₃Si)₃SiCl synthetisiert werden kann.

K₄Ge₉ wurde analog obiger Reaktion mit GeCp₂ oder SnCp₂ (Verhältnis 1:4) in Acetonitril bei Raumtemperatur umgesetzt. Nach drei Wochen Reaktionszeit wurde die Lösung vom ungelöstem Feststoff (wenig) abfiltriert (Synthesevorschriften siehe Kapitel 5.3.3). Die dunkelroten Reaktionslösungen wurden ¹H-NMR-spektroskopisch und massenspektrometrisch untersucht.

Abbildung 3.17a zeigt das ¹H-NMR-Spektrum der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril. Im Vergleich zur Referenz GeCp₂ (Abbildung 3.17b) ist das Signal leicht tieffeldverschoben (ca. 0.1 ppm).

Abbildung 3.17: a) ¹H-NMR Spektrum der Umsetzung K₄Ge₉ mit GeCp₂. Die Rektionslösung wurde trocken gezogen und anschließend wieder in deuteriertem Acetonitril gelöst. b) GeCp₂ in deuteriertem Acetonitril. Die mit * markierten Signale stammen vom Restsignal des deuterierten Acetonitrils. # unbekanntes Signal.

Dieses Phänomen wird auch bei der analogen Umsetzung von K₄Ge₉ mit SnCp₂ beobachtet (Abbildung 3.18a). Auch hier ist das Signal gegenüber dem der Referenz SnCp₂ (Abbildung 3.18b) geringfügig tieffeldverschoben.

Abbildung 3.18: a) ¹H-NMR Spektrum der Umsetzung K₄Ge₉ mit SnCp₂. Die Reaktionslösung wurde trocken gezogen und anschließend wieder in deuteriertem Acetonitril gelöst. b) SnCp₂ in deuteriertem Acetonitril. Die mit * markierten Signale stammen vom Restsignal des deuterierten Acetonitrils. # unbekanntes Signal.

Im Massenspektrum konnte bei beiden Umsetzungen ein intensives Signal bei m/z = 970 detektiert werden. Dieses könnte auf die Spezies $[Ge_{11}(C_5H_5)_2K]^-$ passen. Die Umsetzung mit GeCp₂ weist zudem noch ein weiteres intensives Signal bei m/z = 923 ($[Ge_{10}(C_5H_5)_3]^-$) auf. Dieses ist auch bei der Umsetzung mit SnCp₂ vorhanden, allerdings sehr schwach. Die schwächeren Signale bei m/z = 733 und m/z = 867 ließen sich durch Vergleich mit simulierten Signalen (Ge_x bzw. Ge_xR; x = 6, 7, 8...; R = organischer Rest, Lösungsmittel...) keiner eindeutigen Spezies zuordnen (ausführlichere Details zur massenspektrometrischen Untersuchung siehe Kapitel 3.8.9).

Aus den Reaktionslösungen der Umsetzungen konnten keine Kristalle isoliert werden. Die ¹H-NMR-spektroskopischen und massenspektrometrischen Untersuchungen reichten für eine genaue Bestimmung der Struktur nicht aus.

3.7.2 *R*₃SiCl (*R* = Et, *i*Pr, *i*Bu) und Ph₃SnCl

Die Synthese der Verbindungen $[Ge_9(SiR_3)_3]^-$ (R = Et, *i*Pr, *i*Bu) und $[Ge_9(SnPh_3)_3]^-$ erfolgte analog den literaturbekannten Verbindungen $[Ge_9(Si(SiMe_3)_3)_3]^-$ ^[18] und $[Ge_9(SiPh_3)_3]^-$.^[41] Durch heterogene Umsetzung von K₄Ge₉ mit Et₃SiCl, (*i*Pr)₃SiCl oder (*i*Bu)₃SiCl in Acetonitril oder Tetrahydrofuran konnten die trisylilierten Cluster $[Ge_9(SiR_3)_3]^-$ (R = Et, *i*Pr, *i*Bu) synthetisiert werden. ^[48] Die Synthese der zinnsubstituierten Verbindung erfolgte durch Umsetzung von K₄Ge₉ mit Ph₃SnCl in Acetonitril (Synthesevorschriften siehe Kapitel 5.3.2.5 – 5.3.2.8).

Bei allen Messungen wurde im Spektrum jeweils nur ein intensives Signal bei m/z = 999 ($[Ge_9(SiEt_3)_3]^-$), m/z = 1126 ($[Ge_9(Si(iPr)_3)_3]^-$), m/z = 1253 ($[Ge_9(Si(iBu)_3)_3]^-$) sowie m/z = 1703 ($[Ge_9(SnPh_3)_3]^-$) detektiert. Die gemessenen Signale stimmen mit den simulierten überein (ausführlichere Details zur massenspektrometrischen Untersuchung siehe Kapitel 3.8.3 und 3.8.4).

3.8. Massenspektrometrische Untersuchungen

Im Rahmen der Dissertation wurde ein Elektronensprayionisation Massenspektrometer (ESI-MS) (Gerätetyp: *Bruker Daltronic* HCT) (Abbildung 3.19) aufgebaut und am Lehrstuhl etabliert. Ziel der Untersuchungen war es, sowohl nackte als auch funktionalisierte *Zintl*-Cluster der Elemente Silicium, Germanium und Zinn im ESI-MS bei Reaktionslösungen und Kristallen anhand ihrer typischen Isotopenverteilung zu identifizieren. Da es sich bei der Elektronenspray-Ionisierung um eine sanfte Methode der Ionenerzeugung handelt, können so auch komplette Cluster (E_9/E_{10} ; E = Si, Ge, Sn) detektiert werden.

Dazu wurden entweder Einkristalle in Tetrahydrofuran oder Acetonitril gelöst oder die entsprechenden Reaktionslösungen (aus Ethylendiamin, *N*,*N*-Dimethylformamid, Acetonitril, Tetrahydrofuran, Toluol oder Benzol) ebenfalls mit Tetrahydrofuran oder Acetonitril auf ca. 10⁻⁴ mmol/mL verdünnt und mit einem Spritzenfilter (Porengröße 0.2 μm) filtriert, um ungelöste Partikel zu entfernen. Die Proben wurden in luftdichte Spritzen (*Hamilton*) gefüllt und über eine Spritzenpumpe (Abbildung 3.20) durch Direktinfusion über eine Sprayernadel (Abbildung 3.21a) eingeführt (Injektionsrate: 240 μL/h).

In der Sprühkammer wird die Probe verdampft und gelangt über die Glaskapillare (Abbildung 3.21b), an deren Spitze eine Spannung angelegt wird, in das Gerät. Die Polarität der an der Kapillare angelegten Spannung bestimmt dabei die Ladung der erzeugten Ionen. Durch eine positive Spannung werden positive geladene Ionen erzeugt, durch eine negative Spannung negativ geladene Ionen.

Die Messungen erfolgten bei einer Trockengastemperatur von 125°C und je nach Probe im negativen oder positiven Modus bei unterschiedlichen Spannungen. Die Auswertung der Daten erfolgte mit dem Programm *Bruker* Compass Data Analysis 4.0 SP 5.

Sprühkammer mit Sprayernadel und Glaskapillare

Abbildung 3.19: Elektronensprayionisation Massenspektrometer (ESI-MS) (Gerätetyp: Bruker Daltronic HCT).

Abbildung 3.20 Spritzenpumpe mit luftdichter Spritze.

Abbildung 3.21: a) Sprayernadel; b) Glaskapillare.

3.8.1 Lösung von kristallinem [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en

Aus einer Lösung von K₄Ge₉ in Ethylendiamin konnten nach Überschichten mit 18-Krone-6 und GaCp^{*} in Toluol nach sechs Wochen Kristalle der Verbindung $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]$ ·4en isoliert werden (siehe auch Kapitel 3.2.2, Synthesevorschrift siehe Kapitel 5.3.2.1). Diese wurden in Acetonitril aufgelöst und massenspektrometrisch untersucht.

Messbedingungen (negativer Modus): Kapillarspannung: 4.5 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im Spektrum konnte ein intensives Signal bei m/z = 724 ([Ge₉Ga]⁻) detektiert werden (Abbildung 3.22). Obwohl der im ESI-MS oft detektierte [Ge₁₀]⁻-Cluster mit m/z = 725 fast die gleiche Masse aufweist, konnte durch Vergleich mit einem simulierten Spektrum anhand eines anderen Isotopenverhältnisses eindeutig ausgeschlossen werden, dass es sich um diesen handelt (siehe Anhang, Kapitel 6, Abbildung 6.9). Daneben stammt ein Signal von geringer Intensität von [Ge₉(K(18-Krone-6))]⁻ bei m/z = 956 (Abbildung 3.23). Die weiteren Signale konnten nicht zugeordnet werden. Anhand der Isotopenaufspaltung konnte aber ausgeschlossen werden, dass diese von Germaniumclustern stammen.

Abildung 3.22: ESI-MS-Spektrum im negativen Messmodus der Verbindung $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en. a) Isotopenaufspaltung (schwarz) von $[Ge_9Ga]^-$, b) simuliertes Spektrum (rot).

Abbildung 3.23: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_3]\cdot 4en. * = Signal nicht zuzuordnen.$

Messbedingungen (positiver Modus): Kapillarspannung: -5.0 kV, Kapillarausgang: 166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im positiven Messmodus wurde ein intensives Signal, das von $[K(18-Krone-6)]^+$ stammt bei m/z = 303 detektiert (Abbildung 3.24). Signale die auf GaCp* hindeuten waren nicht vorhanden.

Abildung 3.24: ESI-MS-Spektrum im positiven Messmodus der Verbindung [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en: [K(18-Krone-6)]⁺.

3.8.2 Lösungen von kristallinem [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol und [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn

Publiziert in: Reaction of SiCl₂·dipp with $K[Ge_9{Si(SiMe_3)_3}_3]$ - Synthesis and Characterization of $[K(dipp)_2][Ge_9{Si(SiMe_3)_3}_3]$ ·tol and $[dipp-H][Ge_9{Si(SiMe_3)_3}_3]$ ·2acn.

Christina Fischer, Wilhelm Klein, Laura-Alice Jantke, Lorenz J. Schiegerl, and Thomas F. Fässler, *Z. Anorg. Allg. Chem.* **2016**, *642*, 1314-1319.

Aus der Umsetzung von SiCl₂·dipp mit K[Ge₉(Si(SiMe₃)₃)₃] in Toluol wurden Kristalle der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃·tol erhalten. Aus der analogen Umsetzung in Acetonitril konnten Kristalle der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn isoliert werden (siehe auch Kapitel 3.6.2, Synthesevorschriften siehe Kapitel 5.3.2.3 und 5.3.2.4). Diese wurden massenspektrometrisch untersucht. Dazu wurden einige Kristalle der jeweiligen Verbindung in Tetrahydrofuran aufgelöst.

Messbedingungen (negativer Modus): Kapillarspannung: 4.5 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Wie erwartet konnte im negativen Messmodus bei beiden Verbindungen als einziges ein intensives Signal bei 1396 m/z ($[Ge_9(Si(SiMe_3)_3)_3]^-$) detektiert werden (Abbildung 3.25, 3.26). Messbedingungen (positiver Modus): Kapillarspannung: -5.0 kV, Kapillarausgang: 166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 µL/h.

Im positiven Modus zeigte das Massenspektrum ein Signal des Imidazoliumsalzes bei 389 m/z (dipp-H) (Abbildung 3.27). Signale die auf SiCl₂ hindeuten waren nicht vorhanden.

Weiterhin wurden auch die Reaktionslösungen der jeweiligen Kristallisationsansätze mit Tetrahydrofuran oder Acetonitril verdünnt und massenspektrometrisch untersucht. Auch hier wurden dieselben Signale (neg.: 1396 m/z, pos.: 389 m/z) detektiert (Abbildung 3.26, 3.27).

Abbildung 3.25: ESI-MS-Spektrum im negativen Messmodus der Verbindungen $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ ·tol und $[dipp-H][Ge_9(Si(SiMe_3)_3)_3]$ ·2acn. a) Isotopenaufspaltung (schwarz) von $[Ge_9(Si(SiMe_3)_3)_3]$ ·b) simuliertes Spektrum (rot).

Abbildung 3.26 ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindungen $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ ·tol und $[dipp-H][Ge_9(Si(SiMe_3)_3)_3]$ ·2acn.

Abbildung 3.27: ESI-MS-Spektrum im positiven Messmodus der Verbindungen $[K(dipp)_2][Ge_9(Si(SiMe_3)_3)_3]$ ·tol und $[dipp-H][Ge_9(Si(SiMe_3)_3)_3]$ ·2acn: dipp-H.

3.8.3 Lösungen trisylilierter Cluster $[Ge_9(Si(R_3)_3]^- (R = Et, iBu, iPr)$

Publiziert in: Functionalization of $[Ge_9]$ with Small Silanes: $[Ge_9(SiR_3)_3]^-$ (R = iBu, iPr, Et) and the Structures of (CuNHCDipp) $[Ge_9{Si(iBu)_3}_3]$, (K-18-Krone-6)Au $[Ge_9{Si(iBu)_3}_3]_2$, and (K-18-Krone-6) $_2[Ge_9{Si(iBu)_3}_2]$.

Lorenz J. Schiegerl, Felix S. Geitner, Christina Fischer, Wilhem Klein und Thomas F. Fässler, Z. Anorg. Allg. Chem. **2016**, 642, 1419-1426.

Durch Umsetzung von K₄Ge₉ mit Et₃SiCl, (*i*Pr)₃SiCl oder (*i*Bu)₃SiCl in Acetonitril oder Tetrahydrofuran konnten die trisylilierten Cluster [Ge₉(SiR₃)₃]⁻ (R = Et, *i*Pr, *i*Bu) synthetisiert werden (siehe auch Kapitel 3.7.2, Synthesevorschriften siehe Kapitel 5.3.2.5, 5.3.2.6 und 5.3.2.7). Die Reaktionslösungen wurden massenspektrometrisch untersucht.

Messbedingungen (negativer Modus): Kapillarspannung: 4.0 kV (R = iBu), 4.5 kV (R = Et, *i*Pr), Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 µL/h.

Bei allen drei Messungen wurde im Spektrum jeweils nur ein intensives Signal bei m/z = 999 ($[Ge_9(SiEt_3)_3]^-$), m/z = 1126 ($[Ge_9(Si(iPr)_3)_3]^-$), m/z = 1253 ($[Ge_9(Si(iBu)_3)_3]^-$), das mit den

simulierten Spektren übereinstimmt, detektiert werden (Abbildung 3.28, 3.29, 3.30, Übersichtsspektren siehe Anhang, Kapitel 6, Abbildung 6.10, 6.11, 6.12).

Abbildung 3.28: ESI-MS-Spektrum im negativen Messmodus der Verbindung. [Ge₉(SiEt₃)₃]⁻. a) Isotopenaufspaltung (schwarz) von [Ge₉(SiEt₃)₃]⁻, b) simuliertes Spektrum (rot).

Abbildung 3.29: ESI-MS-Spektrum im negativen Messmodus der Verbindung. $[Ge_9(Si(iPr)_3)_3]^-$. a) Isotopenaufspaltung (schwarz) von $[Ge_9(Si(iPr)_3)_3]^-$, b) simuliertes Spektrum (rot).

Abbildung 3.30: ESI-MS-Spektrum im negativen Messmodus der Verbindung. $[Ge_9(Si(iBu)_3)_3]^-$. a) Isotopenaufspaltung (schwarz) von $[Ge_9(Si(iBu)_3)_3]^-$, b) simuliertes Spektrum (rot).

3.8.4 Lösung des Clusters [Ge₉(SnPh₃)₃]⁻

Die Synthese des funktionalisierten Clusters $[Ge_9(SnPh_3)_3]^-$ erfolgte analog der trisilylierten Cluster $[Ge_9(SiR_3)_3]^-$ (R = Et, *i*Pr, *i*Bu, Ph) (siehe Kapitel 3.8.3). Anstelle mit einer silylierten Verbindung erfolgte hier die Umsetzung von K₄Ge₉ mit Ph₃SnCl in Acetonitril. Aus der heterogenen Umsetzung wurde eine rötliche Reaktionslösung erhalten, die massenspektrometrisch untersucht wurde (siehe auch Kapitel 3.7.2, Synthesevorschrift siehe Kapitel 5.3.2.8).

Messbedingungen (negativer Modus): Kapillarspannung: 4.0 kV, Kapillarausgang: -170 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Ein einziges intensives Signal bei 1703 m/z bestätigt, durch Vergleich mit dem theroetischen Spektrum, die Synthese von $[Ge_9(SnPh_3)_3]^-$ (Abbildung 3.31, Übersichtsspektrum siehe Anhang, Kapitel 6, Abbildung 6.13).

Abbildung 3.31: ESI-MS-Spektrum im negativen Messmodus der Verbindung. [Ge₉(SnPh₃)₃]⁻. a) Isotopenaufspaltung (schwarz) von [Ge₉(SnPh₃)₃]⁻, b) simuliertes Spektrum (rot).

3.8.5 Kristalle der Verbindung [Rb(222-Krypt)]₂[Ge₁₀](en)_{1.5}

Publiziert in: Synthesis und characterization of pristine *closo*-[Ge₁₀]²⁻. Manuel M. Bentlohner, Christina Fischer und Thomas F. Fässler, *Chem. Commun.* **2016**, *52*, 9841-9843.

3.8.5.1 Lösung von kristallinem [Rb(222-Krypt)]2[Ge10](en)1.5

Die Verbindung $[Rb(222-Krypt)]_2[Ge_{10}](en)_{1.5}$ wurde durch Umsetzung von Rb_4Ge_9 mit 7amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in in Ethylendiamin und anschließendem Überschichten mit 2.2.2-Krypt in Toluol erhalten. ^[44] Die Kristalle wurden mit Toluol gewaschen, anschließend in Acetonitril aufgelöst und massenspektrometrisch untersucht.

Messbedingungen (negativer Modus): Kapillarspannung: 4.5 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im ESI-MS konnten vier Signale bei m/z = 725 ($[Ge_{10}]^{-}$), m/z = 812 ($[Ge_{10}Rb]^{-}$), m/z = 1144 ($[Ge_{9}(2.2.2-Krypt)acn]^{-}$) und m/z = 1188 ($[Ge_{10}Rb(2.2.2-Krypt)]^{-}$) detektiert werden (Abbildung 3.32, 3.33).

Abbildung 3.32: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Rb(222-Krypt)]₂[Ge₁₀](en)_{1.5}.

Abbildung 3.33: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₁₀]⁻, b) simuliertes Spektrum (rot). c) Isotopenaufspaltung (schwarz) von [Ge₁₀Rb]⁻, d) simuliertes Spektrum (rot), e) Isotopenaufspaltung (schwarz) von [Ge₁₀(2.2.2-Krypt)acn]⁻, f) simuliertes Spektrum (rot), g) Isotopenaufspaltung (schwarz) von [Ge₁₀Rb(2.2.2-Krypt)]⁻, h) simuliertes Spektrum (rot).

3.8.5.2 Untersuchungen zur Umsetzung Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in/en

Messbedingungen (negativer Modus): Kapillarspannung: 2.5 kV, Kapillarausgang: -180 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Um zu zeigen, dass die Verbindung [Rb(222-Krypt)]₂[Ge₁₀](en)_{1.5} nur aus einer Reaktionslösung aus Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in/en (b), nicht aber aus einer reinen Rb₄Ge₉/en-Lösung (a) auskristallisiert, wurden für beide Lösungen massenspektrometrische Untersuchungen durchgeführt. Wie Abbildung 3.34 zeigt, sind im Spektrum b) intensive Signale von ([Ge₇*R*)⁻], ([Ge₉*R*)⁻] (*R* = 7-amino-5-aza-hepta-2,4-dien-2-yl = C₆H₁₁N₂) vorhanden (Übersichtsspektrum siehe Anhang, Kapitel 6, Abbildung 6.14). Obwohl sich auch bei einer reinen Rb₄Ge₉/en -Lösung (a) Ge₁₀-Cluster bilden, kristallisieren aus diesen Reaktionslösungen nur Ge₉-Cluster aus. Die Kristallisation letzterer ist offensichtlich der gegenüber Ge₁₀ bevorzugt. Die Kristallisation von [Ge₁₀]²⁻ gelingt offensichtlich nur, wenn die entsprechenden Ge₉-Cluster durch Reaktion von 7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1in zu [*R*Ge₉]⁻, maskiert" sind (Abbildung 3.35). Diese sind in der Reaktionslösung vorhanden, kristallisieren aber unter diesen Bedingungen nicht aus.

Interessanterweise konnten im ESI-MS Spektrum (Abbildung 3.44) Signale detektiert werden, die den protonierten Germaniumcluster [HGe₉]⁻ (m/z = 654), [H₂Ge₉]⁻ (m/z = 655) und [HGe₁₀]⁻ (m/z = 726) zugeordnet werden konnten. Dies ist insofern interessant, da bisher nur protonierte Siliciumcluster [HSi₉]^{3- [45, 47]}, [H₂Si₉]^{2- [46]} sowie gemischte Silicium-/ Germaniumcluster [H₂(Si₉/Ge₉)]^{2- [47]} in Lösung und im Festkörper nachgewiesen werden konnten.

Dies ist somit der erste Nachweis protonierter Germaniumcluster in Lösung. Diese wurden jedoch unabhängig vom eingesetzten Reagenz (7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1in) nachgewiesen. Über den genauen Bildungsmechanismus kann nur spekuliert werden. Möglicherweise bewirkten geringe Spuren an Wasser im Lösungsmittel eine Protonierung.

Abbildung 3.34: ESI-MS-Spektrum der Reaktionslösungen a) Rb₄Ge₉/en and b) Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in/en. Gemessene Spektren (schwarz) und simulierte Signale (farbig). R = 7-amino-5-aza-hepta-2,4-dien-2-yl = C₆H₁₁N₂. Die Reaktionslösungen wurden vor der Messung mit en verdünnt.

Abbildung 3.35: $[R-Ge_9]^{3-}$ (R = 7-amino-5-aza-hepta-2,4-dien-2-yl = C₆H₁₁N₂); synthetisiert durch Umsetzung von Ge₉⁴⁻ mit 7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in in Ethylendiamin.

3.8.6 Untersuchung von [(Ge₉)Sn(Ge₉)]⁴⁻

Publiziert in: On the nature of bridging metal atoms in intermetalloid clusters - syntheses and structure of the metal atom bridged Zintl clusters [(Ge₉)Sn(Ge₉)]^{4–} and [(Ge₉)Zn(Ge₉)]^{6–}

Manuel M. Bentlohner, Thomas Henneberger, Christina Fischer, Kerstin Mayer, Laura-Alice Jantke, Wilhelm Klein und Thomas F. Fässler, *Chem. Eur.J.* **2016**, *22*, 13946-13952.

Aus einer Lösung von K₄Ge₉, Kalium und SnPh₂Cl₂ in Ethylendiamin konnten nach Überschichten mit 18-Krone-6 in Toluol nach zwölf Wochen Kristalle der Verbindung [K(18-Krone-6)]₄[Sn(Ge₉)₂]·4.5en isoliert werden. ^[21] Da alle Kristalle für Einkristallmessungen benötigt wurden, erfolgten die massenspektrometrischen Untersuchungen anhand der Reaktionslösung.

Messbedingungen (negativer Modus): Kapillarspannung: 4.0 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im Spektrum wurden zwei intensive Signale bei m/z = 725 ($[Ge_{10}]^{-}$) und bei m/z = 771 ($[Ge_{9}Sn]^{-}$) detektiert (Abbildung 3.36, 3.37, 3.38). Die Fragmentierung $[Ge_{9}Sn]^{-}$ ist typisch und konnte auch im Fall der Galliumverbindung $[K(18-Krone-6)]_{4}[Ge_{9}Ga-GaGe_{9}]\cdot$ 4en für ($[Ge_{9}Ga]^{-}$) (siehe Kapitel 3.2.2 und 3.8.1) beobachtet werden.

Obwohl [Ge₁₀]⁻ als intensiver Peak im Spektrum erscheint, konnten keine entsprechenden Kristalle aus dieser Reaktionslösung isoliert werden. Möglicherweise entsteht die entsprechende Spezies [Ge₁₀]⁻ erst während der Messung im ESI-Massenspektrometer. Dies sind jedoch nur Vermutungen und können nicht mit Sicherheit geklärt werden.

m/z

Abbildung 3.36: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉, Kalium und SnPh₂Cl₂ in Ethylendiamin.

Abbildung 3.37: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₁₀]⁻, b) simuliertes Spektrum (rot).

Abbildung 3.38: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von [Ge₉Sn]⁻, b) simuliertes Spektrum.

3.8.7 Lösungsversuche der Zintl-Phase K₄Ge₉ in Acetonitril und Pyridin

Es ist bekannt, dass die Zintl-Phase K₄Ge₉ nur in wenigen Lösungsmitteln wie Ethylendiamin, *N*,*N*-Dimethylformamid oder flüssigem Ammoniak vollständig löslich ist. Gibt man zur Zintl-Phase den Kryptanden 2.2.2-Krypt lässt sich das Lösungsmittelspektrum auf Acetonitril und Pyridin erweitern (Synthesevorschriften siehe Kapitel 5.3.3). Umsetzungen mit beiden Lösungsmitteln wurden untersucht.

Messbedingungen (negativer Modus): Kapillarspannung: 4.0 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Mit beiden Lösungsmitteln wurden sofort intensiv kastanienbraune Lösungen erhalten. Diese wurden vor der massenspektrometrischen Untersuchung mit Acetonitril verdünnt. Im Spektrum wurde ein einziges intensives Signal bei m/z = 1071 ([Ge₉(2.2.2-Krypt)acn]⁻) detektiert (Abbildung 3.39a, 3.40a,b). Nach ca. 30 min verfärbte sich die braune Lösung nach leicht grünlich. Im Folgenden zeigte das ESI-MS noch ein zusätzliches schwaches Signal bei m/z = 1144 ([Ge₁₀(2.2.2-Krypt)acn]⁻) (Abbildung 3.39b, 3.40c,d). Nach drei Stunden war die Lösung intensiv tannengrün gefärbt. Das ESI-MS zeigte zwei intensive Signale bei m/z = 1071 ([Ge₉(2.2.2-Krypt)acn]⁻) und m/z = 1144 ([Ge₁₀(2.2.2-Krypt)acn]⁻) (Abbildung 3.39b, 3.40c,d). Nach drei Stunden war die Lösung intensiv tannengrün gefärbt. Das ESI-MS zeigte zwei intensive Signale bei m/z = 1071 ([Ge₉(2.2.2-Krypt)acn]⁻) und m/z = 1144 ([Ge₁₀(2.2.2-Krypt)acn]⁻) (Abbildung 3.39c, 3.40). Weitere Messungen nach sechs bzw. achtzehn Stunden bestätigten dieses Ergebnis. Interessant ist, dass hier eine schrittweise Bildung eines Ge₁₀- aus einem Ge₉-Cluster beobachtet werden konnte. Obwohl Ge₁₀-Cluster schon öfters bei ESI-MS-Messungen detektiert wurden, ging man bisher davon aus, dass diese sich erst während der Messung im Massenspektrometer bildeten.

Abbildung 3.39: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ und 2.2.2-Krypt in acn oder py.

Abbildung 3.40: ESI-MS-Spektrum im negativen Messmodus. a) Isotopenaufspaltung (schwarz) von $[Ge_9(2.2.2-Krypt)acn]^-$, b) simuliertes Spektrum (rot). c) Isotopenaufspaltung (schwarz) von $[Ge_{10}(2.2.2-Krypt)acn]^-$, d) simuliertes Spektrum (rot).

Weiterhin wurde festgestellt, dass bei Zugabe siliciumhaltiger Verbindungen wie SiCl₂-dipp und SiPh₂Cl₂, nicht jedoch mit zinn- und germaniumhaltigen Verbindungen eine sofortige Grünfärbung der Lösung eintritt. Massenspektrometrische Untersuchungen bestätigten das Vorhandensein der Spezies [Ge₉(2.2.2-Krypt)acn]⁻ und [Ge₁₀(2.2.2-Krypt)acn]⁻ (Abbildung 39c). Beide Signale sind immer ungefähr gleich intensiv, unabhängig von der Reaktionsdauer und Menge der Reagenzien (SiCl₂-dipp und SiPh₂Cl₂). Wahrscheinlich beschleunigen diese milden Oxidationsmittel die Bildung eines Ge₁₀-Clusters, sind aber nicht zwingend dafür notwendig, wie man aus den durchgeführten Experimenten vermuten kann. Inwiefern die Anwesenheit des Komplexbildners 2.2.2-Krypt eine Rolle auf die Clustererweiterung spielen kann hier auch nicht belegt werden, da die *Zintl*-Phase K₄Ge₉ ohne diesen weder in Acetonitril noch in Pyridin löslich ist und wiederum gängige Lösungsmittel für Zintl-Phasen für ESI-MS-Messungen ungeeignet sind.

3.8.8 Umsetzung der trisylilierten Spezies K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen

Umsetzungen von K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol wurden massenspektrometrisch untersucht (siehe Kapitel 3.6.1, Synthesevorschriften siehe Kapitel 5.3.3).

Messbedingungen (negativer Modus): Kapillarspannung: 5.0 kV, Kapillarausgang: -166 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Bei allen Reaktionslösungen konnten folgende Signale mit abnehmender Intensität beobachtet werden: 1396 m/z ($[Ge_9(Si(SiMe_3)_3)_3]^-$), 1442 m/z ($[Ge_8Sn(Si(SiMe_3)_3)_3]^-$), 1488 m/z ($[Ge_7Sn_2(Si(SiMe_3)_3)_3]^-$), 1534 m/z ($[Ge_6Sn_3(Si(SiMe_3)_3)_3]^-$) (Abbildung 3.41-3.45). Wurde als Lösungsmittel Acetonitril oder Tetrahydofuran verwendet wurde nur ein Signal bei 1396 m/z ($[Ge_9(Si(SiMe_3)_3)_3]^-$) detektiert.

Dies ist ein Hinweis darauf, dass bei Reaktionslösungen von K[Ge₉(Si(SiMe₃)₃)₃] und zinnhaltigen Reagenzien in Toluol oder Benzol, nicht jedoch in Acetonitril oder Tetrahydofuran, ein Austausch der Clusteratome von Germanium gegen Zinn stattfindet. Möglicherweise koordinieren die Lösungsmittelmoleküle Acetonitril oder Tetrahydofuran die Atome und verhindern so einen Atomaustausch derer.

Auch *Sevov et al.* ^[49] führte ähnliche massenspektrometrische Studien durch, indem er die homoatomaren *Zintl*-Ionen K₄Ge₉ und K₄Sn₉ in unterschiedlichen Lösungsmitteln auflöste. Während in Ethylendiamin oder Pyridin beide Edukte unverändert nebeneinander vorlagen, konnte man beispielsweise bei Verwendung der Lösungsmittel *N*,*N*-Dimethylformamid oder Dimethylsulfoxid einen vollständigen Austausch der Clusteratome beobachten. Dies wurde auf die unterschiedlichen Dieelektrizitätskonstanten zurückgeführt.

Bewiesen werden konnte diese Vermutung jedoch nicht, ebensowenig wie die obige Annahme.

Abbildung 3.41: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung $K[Ge_9(Si(SiMe_3)_3)_3]$ mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe_3)₂]₂ in Toluol oder Benzol.

Abbildung 3.42: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₉(Si(SiMe₃)₃)₃]⁻, b) simuliertes Spektrum (rot).

Abbildung 3.43: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₈Sn₂(Si(SiMe₃)₃]⁻, b) simuliertes Spektrum (rot).

Abbildung 3.44: ESI-MS Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₇Sn₃(Si(SiMe₃)₃]⁻, b) simuliertes Spektrum (rot).

Abbildung 3.45: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol. a) Isotopenaufspaltung (schwarz) von [Ge₆Sn₄(Si(SiMe₃)₃]⁻, b) simuliertes Spektrum (rot).

3.8.9 Heterogene Umsetzungen von K₄Ge₉ mit GeCp₂ und SnCp₂

Wie in Kapitel 3.8.7 beschrieben lässt sich die *Zintl*-Phase K₄Ge₉ in polar aprotischen Lösungsmitteln wie Acetonitril bisher nur durch Zugabe von Kryptanden in Lösung bringen. Umso überraschender war, dass dies auch durch Zugabe der germanium- und zinnhaltigen Verbindungen GeCp₂ und SnCp₂ gelang. Umsetzungen in Pyridin und Tetrahydofuran waren nicht erfolgreich.

3.8.9.1 Umsetzungen mit GeCp2

Aus der heterogenen Umsetzung von K₄Ge₉ mit GeCp₂ in Acetonitril wurde nach drei Wochen Reaktionszeit eine dunkelrote Reaktionslösung erhalten, die massenspektrometrisch untersucht wurde (siehe Kapitel 3.7.1, Synthesevorschrift Kapitel 5.3.3).

Messbedingungen (negativer Modus): Kapillarspannung: 5.0 kV, Kapillarausgang: -146 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im Spektrum erscheinen vor allem zwei intensive Signale bei m/z = 923 und m/z = 970 (Abbildung 3.46, 3.47). Diese könnten auf die Spezies $[Ge_{10}(C_5H_5)_3]^-$ (Abbildung 3.48) und $[Ge_{11}(C_5H_5)_2K]^-$ (Abbildung 3.49) passen.

Daneben sind zwei schwache Signale bei m/z = 733 und m/z = 867 vorhanden (Abbildung 3.46, 3.47). Die Signale sind anhand der Isotopenaufspaltung typisch für Germaniumcluster. Jedoch ließen sich die Peaks durch Vergleich mit simulierten Signalen (Ge_x bzw. Ge_xR; x = 6, 7, 8...; R = organischer Rest, Lösungsmittel...) keiner eindeutigen Spezies zuordnen.

Erwartete Signale bei m/z = 656 ($[Ge_9]^-$) und m/z = 725 ($[Ge_{10}]^-$) wurden nicht detektiert.

Abbildung 3.46: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril.

Abbildung 3.47: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril. Intensive Signale bei m/z = 923 und m/z = 970 vergrößert dargestellt.

Abbildung 3.48: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril. a) Isotopenaufspaltung (schwarz) von $[Ge_{10}(C_5H_5)_3]^-$, b) simuliertes Spektrum (rot).

Abbildung 3.49: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit GeCp₂ in Acetonitril. a) Isotopenaufspaltung (schwarz) von $[Ge_{11}(C_5H_5)_3K]^-$, b) simuliertes Spektrum (rot).

3.8.9.2 Umsetzungen mit SnCp₂

Aus der analogen heterogenen Umsetzung von K_4Ge_9 mit $SnCp_2$ wurde nach zwei Wochen Reaktionszeit ebenfalls eine dunkelrote Reaktionslösung erhalten, die massenspektrometrisch untersucht wurde (siehe Kapitel 3.7.1, Synthesevorschrift Kapitel 5.3.3).

Messbedingungen (negativer Modus): Kapillarspannung: 4.0 kV, Kapillarausgang: -155 V, Trockengastemperatur: 125°C, Injektionsrate: 240 μL/h.

Im Spektrum erscheint auch hier ein intensives Signal bei m/z = 970, daneben ein sehr schwaches Signal bei m/z = 866 (Abbildung 3.50, 3.51). Das Signal bei m/z = 923

 $([Ge_{10}(C_5H_5)_3]^-)$ (Kapitel 3.8.9.1) ist hier sehr schwach, aber dennoch auch vorhanden. Das intensivste Signal bei m/z = 970 lässt sich ebenfalls $[Ge_{11}(C_5H_5)_2K]^-$ (siehe Kapitel 3.8.9.1) zuordnen. Ebenfalls fehlten erwartete Signale bei m/z = 656 ($[Ge_9]^-$) und m/z = 725 ($[Ge_{10}]^-$).

Abbildung 3.50: ESI-MS Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit SnCp₂ in Acetonitril.

Abbildung 3.51: ESI-MS Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K₄Ge₉ mit SnCp₂ in Acetonitril. Signale bei m/z = 866, m/z = 923 und m/z = 968 vergrößert dargestellt.

Insgesamt liegt damit die Vermutung nahe, dass sowohl bei der Umsetzung von K₄Ge₉ mit GeCp₂ als auch mit SnCp₂ eine Clustererweiterung stattgefunden hat. Allerdings lässt sich nicht mit Sicherheit sagen, ob sich die bei beiden Ansätzen detektierte Spezies $[Ge_{11}(C_5H_5)_2K]^-$ während der Umsetzung in Lösung oder erst während der massenspektrometrischen Messung

gebildet hat. Auch die ¹H-NMR-spektroskopische Messung (siehe Kapitel 3.7.1) gibt keinen eindeutigen Hinweis darauf. Hier ist jeweils nur ein einziges leicht tieffeldverschobenes Signal gegenüber dem Edukt vorhanden.

Es konnte festgestellt werden, dass unabhängig vom eingesetzten Edukt (GeCp₂ oder SnCp₂) die Spezies $[Ge_{11}(C_5H_5)_2K]^-$ sowie die Spezies $[Ge_{10}(C_5H_5)_3]^-$ (sehr klein bei Umsetzung mit SnCp₂) im ESI-MS-Spektrum vorhanden ist. Anders als bei der Verbindung $[Cp*Zn(\eta^3-Ge_9{Si(TMS)_3}_3)]^{[50]}$, bei der eine $[Ge(Si(SiMe_3)_3)_3]^-$ -Clustereinheit durch einen Cp*-Liganden in ZnCp*₂ ersetzt wird, kann man im obigen Fall daher nicht von einem Austausch eines Cp-Liganden durch einen Germaniumcluster ausgehen. Über den genauen Reaktionsmechanismus zur Bildung der obigen Spezies kann daher nur spekuliert werden.

3.9 Literatur zu Kapitel 3

- [1] D. F. Hansen, B. Z. Zhou, J. M. Goicoechea, J. Organomet. Chem. 2012, 721-722, 53.
- [2] F. Li, S. C. Sevov, J. Am. Chem. Soc. **2014**, 136, 12056.
- [3] K. Mayer, L.-A. Jantke, S. Schulz, T. F. Fässler, Angew. Chem. Int. Ed. 2017, 56, 2350.
- [4] G. M. Sheldrick, *Handbuch SHELX-97*, Göttingen, **1997**.
- [5] A. F. Holleman, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 102. Auflage, Walter de Gruyter-Verlag, Berlin, **2007**.
- [6] T. F. Fässler, Coord. Chem. Rev. 2001, 215, 377.
- [7] a) K. L. Brown, D.Hall, J. Chem. Soc. Dalton Trans. 1973, 1843; b) T. Duan, H. Schnöckel, Z. Anorg. Allg. Chem. 2004, 630, 2622; c) J. C. Beamish, A. Boardman, R. W. H. Small, I. J.Worrall, Polyhedron 1985, 4, 983; d) M. A. Khan, D. G. Tuck, M. J. Taylor, D. A. Rogers, J. Crystallogr. Spectrosc. Res. 1986, 16, 895; e) A. Y. Pashkov, V. K. Belsky, M. Butychev, T. M. Zvukova, Russ. Chem. Bull. 1996, 45, 1973; f) E. M. Gordon, A. F. Hepp, S. A. Duraj, T. S. Habash, P. E. Fanwick, J. D. Schupp, W. E. Eckles, S. Long, Inorg. Chim. Acta 1997, 257, 247; g) W. Uhl, L. Cuypers, K. Schüler, T. Spies, C. Strohmann, K. Lehmen, Z. Anorg. Allg. Chem. 2000, 626, 1526; h) S. D. Nogai, H. Schmidbaur, Organometallics 2004, 23, 5877; i) C. E. F. Rickard, M. J. Taylor, M. Kilner, Acta Cryst. 1999, C55, 1215; j) B. J. Malbrecht, J. W. Dube, Mathew J. Willans, P. J. Ragogna, Inorg. Chem.2014, 53, 9644; k) G. E. Ball, M. L. Cole, A. I. McKay, DaltonTrans., 2012, 41, 946.
- [8] a) L.Xu, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 9245; b) R. Hauptmann, T. F. Fässler, Z. Anorg. Chem. 2003, 629, 2266; c) A. Niehaus, S. D. Hoffmann, T. F. Fässler, Z. Anorg. Allg. Chem. 2003, 632, 1752; d) J.Q. Wang, B. Wahl, T. F. Fässler, Angew. Chem. Int. Ed. 2010, 122, 6742; e) K. Mayer, L.-A. Jantke, S. Schulz, T. F. Fässler, Angew. Chem. Int. Ed. 2017, 56, 2350.
- [9] B. Zhou, M. S. Denning, T. A. D. Chapman, J. E. McGrady, J. M. Goicoechea, *Chem. Commun.*, 2009, 7221.
- [10] M. M. Bentlohner, T. Henneberger, C. Fischer, K. Mayer, L.-A. Jantke, W. Klein, T. F.
 Fässler, *Chem. Eur. J.* 2016, 22, 13946.
- [11] K. Mayer, L. J. Schiegerl, T. F. Fässler, *Chem. Eur. J.* **2016**, *22*, 18794.
- B. Zhou, M. S. Denning, T. A. D. Chapman, J. M. Goicoechea, *Inorg. Chem.*, 2009, 48, 7221.
- [13] Åkerstedt, S. Ponou, L. Kloo, S. Lidin, *Eur. J. Inorg. Chem.* **2011**, 3999.

- [14] K. Mayer, L. J. Schiegerl, T. F. Fässler, *Chem. Eur. J.* **2016**, *22*, 18794.
- [15] C. Ganesamoorthy, S. Loerke, C. Gemel, P. Jerabek, M. Winter, G. Frenking, R. A. Fischer, *Chem. Commun.* 2013, 49, 2858.
- [16] A. Ugrinov, S. C. Sevov, J. Am. Chem. Soc. **2002**, 124, 2442.
- [17] A. Ugrinov, S. C. Sevov, *Chem. Eur. J.* **2004**, *10*, 3727.
- [18] F. Li, S. C. Sevov, Inorg. Chem. **2012**, *51*, 2706.
- [19] F. Li, A. Munoz-Castro, S. C. Sevov, Angew. Chem. Int. Ed. 2012, 51, 8581.
- [20] F. Li, S. C. Sevov, J. Am. Chem. Soc. 2014, 136, 12056.
- [21] M. M. Bentlohner, T. Henneberger, C. Fischer, K. Mayer, L.-A. Jantke, W. Klein, T. F.Fässler, *Chem. Eur. J.* 2016, 22, 13946.
- [22] S. Matur, H. SheV. Siavakov, U. Werner, *Chem. Mater.* **2004**, *16*, 2449.
- [23] C. Janiak, Z. Anorg. Allg. Chem. **2010**, 636, 2387.
- [24] L. Pu, M. M. Olmstead, P: P. Power, *Organometallics* **1998**, *17*, 5602.
- J. Oetzel, N. Weyer, C. Bruhn, M. Leibold, B. Gerke, R. Pöttgen, M. Maier, R. F. Winter,
 M. C. Holthausen, U, Siemeling, *Chem. Eur.J.* 2017, 23, 1187.
- [26] C. Fischer, Master's thesis, TU München 2014.
- [27] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem. Int. Ed.* **2009**, *121*, 5793.
- [28] C. Downie, Z. Tang, A. M. Guloy, Angew. Chem. Int. Ed. 2000, 39, 338.
- [29] C. Benda, Ph.D. thesis, TU München **2013**.
- [30] F. S. Geitner, T. F. Fässler, *Eur. J. Inorg. Chem.* **2016**, 2688.
- [31] A. Schnepf, Angew. Chem. 2003, 115, 2728.
- [32] F. Li, S. C. Sevov, Inorg. Chem. **2012**, *51*, 2706.
- [33] O. Kysliak, A. Schnepf, Angew. Chem. 2016, 128, 3270.
- [34] M. S. Hill, G. Kociok-Köhn, D. J. MacDougall, *Inorg. Chem.* **2011**, *50*, 5234.
- [35] Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2008, 130, 16069.
- [36] Gaussian09, RevisionB.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V.
Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Wallingford, CT, **2010**.

- [37] a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865; b) C. Adamo, V. Barone, *J. Chem. Phys.* **1999**, *110*, 6158.
- [38] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143.
- [39] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297.
- [40] F. Uhlemann, R. Köppe, A. Schnepf, Z. Anorg. Allg. Chem. 2014, 640, (8-9), 1658.
- [41] L. Schiegerl, Master's thesis, TU München **2016**.
- [42] H. G. von Schnering, M. Baitinger, U. Bolle, W. Carrillo-Cabrera, J. Curda, Y. Grin, F.
 Heinemann, J. Llanos, K. Peters, A. Schmeding, M. Somer *Z. Anorg. Allg. Chem.* 1997, 623, 1037.
- [43] B. H. Boo J. Korean Phys. Soc. **2011**, 59, 3192.
- [44] M. M. Bentlohner, C. Fischer, T. F. Fässler Chem. Commun. 2016, 52, 9841.
- [45] T. Henneberger, W. Klein, T. F. Fässler, Z. Anorg. Allg. Chem. **2018**, 644, 1018.
- [46] L. J. Schiegerl, A. J. Karttunen, J. Tillmann, S. Geier, G. Raudaschl-Sieber, M. Waibel, T.
 F. Fässler, Angew. Chem., Int. Ed. 2018, 57, 12950.
- [47] C. Lorenz, F. Hastreiter, J. Hioe; N. Lokesh, S. Gärtner, N. Korber, R. M. Gschwind, Angew. Chem. 2018, 130, 13138.
- [48] L. J. Schiegerl, F. S. Geitner, C. Fischer, W. Klein, T. F. Fässler, Z. Anorg. Allg. Chem.
 2016, 642, 1419.
- [49] M. M. Gillett-Kunnath, I. Petrov, S. C. Sevov, *Inorg. Chem.* **2010**, *49*, 721.
- [50] K. Mayer, L. J. Schiegerl, T. F. Fässler, *Chem. Eur. J.* **2016**, *22*, 18794.

4. Zusammenfassung

Im Rahmen dieser Arbeit wurden Zintl-Cluster K_4E_9 (E = Ge, Sn) mit Organylen der 3. und 4. Hauptgruppe in Ethylendiamin, N,N-Dimethylformamid, Acetonitril, Tetrahydrofuran, Pyridin Toluol und Benzol umgesetzt sowie zum Teil mit den Komplexbildnern 18-Krone-6 und 2.2.2-Krypt überschichtet.

Die Umsetzung der Zintl-Cluster K_4E_9 (E = Ge, Sn) mit Cp*-Verbindungen der 3. Hauptgruppe (AlCp*, AlCp*H, GaCp* und InCp*) erfolgte in Anlehnung an die Reaktionen der Ge₉-Cluster mit den Cp*-Verbindungen ZnCp*₂ und Zn₂Cp*₂. ^[1, 2]

Überschichten einer K₄Ge₉/Ethylendiaminlösung mit der Gallium(I)-Verbindung GaCp^{*} und 18-Krone-6 in Toluol führte zu Kristallen der Verbindung [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en (1). Im [Ge₉Ga-GaGe₉]-Anion werden dabei zwei Ge₉-Cluster über die offene Vierecksfläche η^4 - über eine [Ga-Ga]-Einheit miteinander verknüpft (Abbildung 4.1). Die Struktur konnte durch Röntgenbeugung am Einkristall sowie ESI-MS-Messungen bestätigt werden.

Abbildung 4.1: Reaktionspfad zur Darstellung des Anions [Ge₉Ga-GaGe₉]⁴⁻ aus K₄Ge₉ mit GaCp* und 18-Krone-6.

Durch analoge Umsetzungen mit den Verbindungen AlCp*, AlCp*H₂ und InCp* konnten nicht die entsprechenden alumiunium- und indiumhaltigen Cluster synthestisiert werden. Während bei Umsetzungen mit AlCp*und AlCp*H₂ keine Reaktion stattfand, zersetzten sich die Lösungen mit InCp* innerhalb kurzer Zeit.

Umsetzungen des silylierten Clusters $K[Ge_9(Si(SiMe_3)_3)_3]$ mit Verbindungen der 3. Hauptgruppe, in Anlehnung an die Synthese der thalliumhaltigen Verbindung $[Ge_9TI{Si(SiMe_3)_3}_3]$ ^[3], brachten nicht die gewünschten Ergebnisse.

Die Umsetzung der Zintl-Cluster K_4E_9 (E = Ge, Sn) und silylierten Cluster K[Ge₉(Si(SiMe₃)₃)₃] erfolgte mit Verbindungen der Elemente Silicium, Germanium und Zinn.

Dabei wurde die neue Verbindung [K(2.2.2-Krypt)]Cp (**2**) (Abbildung 4.2) synthetisiert. Die Cyclopentadienylanionen werden in flüssigem Ammoniak vom Komplex GeCp₂ unter Anwesenheit von K₄Sn₉ und 2.2.2-Krypt gespalten. Dabei kristallisiert ein K⁺-Kation, das von einem 2.2.2-Krypt-Molekül komplexiert wird, mit einem Cyclopentadienylanion. Die Struktur wurde mittels Röntgenbeugung am Einkristall bestägtigt.

Abbildung 4.2: Reaktionspfad zur Darstellung der Verbindung [K(2.2.2-Krypt)]Cp aus K₄Sn₉ mit GeCp₂ und 2.2.2-Krypt.

Durch Umsetzung von SiCl₂·dipp mit K[Ge₉(Si(SiMe₃)₃)₃] in Toluol bei Raumtemperatur wurden Kristalle der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**) erhalten (Abbildung 4.3). Dabei wird das K⁺-Kation durch zwei dipp-Moleküle über ihre Carben-C-Atome komplexiert.

Die Zusammensetzung wurde mittlels Elementaranalyse bestätigt. Des Weiteren wurde die Verbindung mittels Röntgenbeugung am Einkristall, ESI-MS, ¹H-NMR-Spektroskopie, Ramanspektroskopie und DFT-Rechnungen charakterisiert.

¹H-NMR-spektroskopische Untersuchungen zeigten, dass in Lösung neben dem Komplex SiCl₂·dipp auch freies dipp vorliegt. Inwiefern SiCl₂ bei der Kristallisation eine Rolle spielt konnte nicht geklärt werden.

Abbildung 4.3: Reaktionspfad zur Darstellung der Verbindung [K(dipp)₂][Ge₃(Si(SiMe₃)₃)₃]·tol.

Aus der analogen Umsetzung von SiCl₂·dipp mit K[Ge₉(Si(SiMe₃)₃)₃] in Acetonitril konnten Kristalle der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) isoliert werden (Abbildung 4.4).

Dabei wird das Kation von einem Imidazoliumkation, der protonierten Form des dipp-Moleküls, gebildet. Das protonierte Kation konnte vom unprotonierten Carbenmolekül über den N-C-N-Winkel und die N-C_{Carben}-Bindungslänge bestimmt werden.

Die Charakterisierung der Verbindung erfolgte mittlels Elementaranalyse, Röntgenbeugung am Einkristall, ESI-MS, ¹H-NMR-Spektroskopie, Ramanspektroskopie und DFT-Rechnungen. Bei der Reaktion in Acetonitril findet neben der Spaltung des Komplexes zudem noch eine Prontonierung des dipp zu dipp-H statt. Dies konnte ¹H-NMR-spektroskopisch bewiesen werden. Welchen Einfluss SiCl₂ auf die Kristallisation ausübt, konnte auch hier nicht geklärt werden.

Abbildung 4.4: Reaktionspfad zur Darstellung der Verbindung [dipp-H][Ge $_9$ (Si(SiMe $_3$) $_3$) $_3$]·2acn.

Weiterhin wurden durch Umsetzung von K₄Ge₉ mit Et₃SiCl, (*i*Pr)₃SiCl oder (*i*Bu)₃SiCl in Acetonitril oder Tetrahydrofuran die trisilylierten Cluster $[Ge_9(SiR_3)_3]^-$ (R = Et, *i*Pr, *i*Bu) synthetisiert. Die Synthese des funktionalisierten Clusters $[Ge_9(SnPh_3)_3]^-$ erfolgte analog den trisilylierten Clustern. Anstelle mit einer silylierten Verbindung erfolgte hier die Umsetzung von K₄Ge₉ mit Ph₃SnCl. Alle Reaktionslösungen wurden massenspektrometrisch untersucht, wobei sich die entsprechenden Signale eindeutig den jeweiligen Verbindungen zuordnen ließen.

Heterogene Umsetzungen von Ge₉-*Zintl*-Clustern gelangen auch durch Umsetzung mit GeCp₂ oder SnCp₂. ¹H-NMR-spektroskopische Untersuchungen zeigten gegenüber der Referenz ein tieffeldverschobenes Signal. Im ESI-Massenspektrum wurden Signale den Spezien $[Ge_{11}(C_5H_5)_2K]^-$ und $[Ge_{10}(C_5H_5)_3]^-$ zugeordnet. Eine Kristallisation gelang nicht.

Im Rahmen der Promotion wurde ein Elektronensprayionisation Massenspektrometer (ESI-MS) aufgebaut. Da es sich bei der Elektronenspray-Ionisierung um eine sanfte Methode der Ionenerzeugung handelt, konnten so auch komplette Cluster (E_9/E_{10} ; E = Si, Ge, Sn) sowohl von nackten als auch funktionalisierten Zintl-Clustern der Elemente Silicium, Germanium und Zinn bei Reaktionslösungen und Kristallen anhand ihrer typischen Isotopenverteilung identifiziert werden.

So wurden Umsetzungen von K[Ge₉(Si(SiMe₃)₃)₃] mit den zinnhaltigen Verbindungen SnCp₂ oder Sn[N(SiMe₃)₂]₂ in Toluol oder Benzol massenspektrometrisch untersucht, wobei ein Austausch der Clusteratome von Germanium gegen Zinn anhand typischer Isotopenverteilungen ([Ge₉(Si(SiMe₃)₃)₃]⁻, [Ge₈Sn(Si(SiMe₃)₃)₃]⁻, [Ge₇Sn₂(Si(SiMe₃)₃)₃]⁻, [Ge₆Sn₃(Si(SiMe₃)₃)₃]⁻) beobachtet werden konnte.

Weiterhin konnten im ESI-MS Spektrum erstmals protonierte Germaniumcluster $[HGe_9]^-$, $[H_2Ge_9]^-$ und $[HGe_{10}]^-$ aus Reaktionslösungen von Rb₄Ge₉ bzw. Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in in Ethylendiamin nachgewiesen werden.^[4]

Literatur zu Kapitel 4

- [1] K. Mayer, L.-A. Jantke, S. Schulz, T. F. Fässler, *Angew. Chem. Int. Ed.* **2017**, *56*, 2350.
- [2] K. Mayer, L. J. Schiegerl, T. F. Fässler, *Chem. Eur. J.* **2016**, *22*, 18794.
- [3] F. Li, S. C. Sevov, J. Am. Chem. Soc. **2014**, 136, 12056.
- [4] M. M. Bentlohner, C. Fischer, T. F. Fässler *Chem. Commun.* **2016**, *52*, 9841.

5. Experimentalteil

5.1 Arbeitsmethoden

5.1.1 Arbeiten unter Luft- und Feuchtigkeitsausschluss

Die Synthesen und Umsetzungen erfolgten, sofern nicht anders beschrieben, unter Inertgasatmosphäre in sorgfältig unter Vakuum ausgeheizten Glasgeräten (630 °C) mit Hilfe der *Schlenk*-Technik. Die verwendete Öldrehschieberpumpe (*Vacuubrand*, Wertheim; Typ: RZ5) erzeugte ein Vakuum von < 8 x 10⁻⁴ mbar. Als Inertgas wurde Argon 4.8 der Reinheit 99.998 Vol.-% (*Westfalen AG*, Münster) verwendet. Das Argon wurde zur Entfernung von Sauerstoff über einen BTS-Katalysator und zur Entfernung von Wasser über Molekularsieb 3 Å und geträgertes P₂O₅ geleitet.

Die Einwaagen und das Arbeiten mit luft- und feuchtigkeitsempfindlichen Substanzen erfolgte in einem Argon-gefüllten Handschuhkasten (*MBraun Inertgassysteme GmbH*, Garching; Typ: MB 200B; H₂O-Gehalt < 0.1 ppm; O₂-Gehalt < 0.1 ppm).

Reaktionslösungen wurden durch Glaswolle gefüllte und mit Filterpapier bedeckte Einwegkanülen, die mit einem Teflonschlauch verbunden wurden filtriert.

Weitere Glasgeräte wie Schnappdeckelgläser, Spatel, Achat-Mörser und Filterkanülen mit Teflonschlauch wurden vor Einsatz für mindestens drei Stunden im Trockenschrank (120°C) getrocknet.

5.1.2 Trocknung von Lösungsmitteln und Feststoffen

Ethylendiamin und *N*,*N*-Dimethylformamid wurden unter Argonatmosphäre über Calciumhydrid in einer Umlaufdestillationsapparatur getrocknet und die jeweils benötigte Menge unmittelbar vor Verwendung entnommen. Dichlormethan, Pyridin, und Benzol wurden über Calciumhydrid für mindestens fünf Stunden unter Rückfluss erhitzt, destilliert und über Molekularsieb 3 Å aufbewahrt. Deuterierte Lösungsmittel wurden über Molekularsieb 3 Å getrocknet und im Handschukasten aufbewahrt. 18-Krone-6 wurde unter dynamischem Vakuum bei 80 °C sublimiert. 2.2.2-Krypt und KO^tBu wurden für mindestens acht Stunden unter dynamischem Vakuum getrocknet. Toluol, Tetrahydrofuran, *n*-Hexan, Acetonitril und Diethylether wurden aus der Lösungsmitteltrocknungsanlage (*MBraun* *Inertgassysteme GmbH*, Garching; Typ: MB SPS) entnommen und ohne weitere Trocknungsschritte eingesetzt.

5.1.3 Arbeiten mit flüssigem Ammoniak als Lösungsmittel

Ammoniak (*Westfalen AG*, Reinheit: 99.999%) wurde aus der Druckgasflasche bei -70 °C auf Natrium kondensiert (Kühlfalle mit Trockeneis und Isopropanol gekühlt) und dort zur Trocknung gelagert bis es in ein Reaktionsgefäß kondensiert wurde. Reaktionsgefäße mit flüssigem Ammoniak wurden bei –70 °C bzw. –40 °C gelagert.

5.1.4 Chemikalien

Tabelle 5.1 listet alle verwendeten Chemikalien auf.

Chemikalie	Form	Hersteller	Reinheit
AlCp*H ₂	Pulver	AK Fischer	_
AICp*	Pulver	AK Fischer	_
18-Krone-6	Pulver	Alfar Aesar	sublimiert
2.2.2-Krypt	Pulver	Merck	p.a.
2.2-Krypt	Pulver	Merck	z.S.
N,N-Dimethylformamid	Flüssigkeit	VWR	über CaH ₂ getrocknet
Ethylendiamin	Flüssigkeit	Merck	über CaH₂ getrocknet
Toluol	Flüssigkeit	Merck	SPS getrocknet
Kalium	Stangen/Öl	Merck	99%
Zinn	Pulver	Chempur	99.999%
Germanium	Stücke	Chempur	99.9999%
Dioxan	Flüssigkeit	VWR	99.5%
Natrium	Stangen/Öl	Merck	99%

Tabelle 5.1: Auflistung aller verwendeten Chemikalien

Cyclopentadien	Flüssigkeit	Sigma-Aldrich	99.5%
Zinn(II)-chlorid	Pulver	Merck	z.S.
(Me ₃ Si) ₃ SiCl	Pulver	TCI	99%
Iodmethan	Flüssigkeit	Merck	z.S.
Acetonitril	Flüssigkeit	VWR,	SPS getrocknet
Diphenyldichlorsilan	Flüssigkeit	Acros Organics	97%
Dimethyldichlorsilan	Flüssigkeit	Acros Organics	99+%
Triphenylchlorstannan	Pulver	Acros Organics	≥95%
Triisopropylchlorsilan	Flüssigkeit	Sigma-Aldrich	z.S.
Triethylchlorsilan	Flüssigkeit	Merck	z.S.
Triisobutylchlorsilan	Flüssigkeit	Merck	z.S.
Sn[N(SiMe ₃) ₂] ₂	Pulver	Synthese-	_
		praktikum	
GeFc[N(SiMe ₃] ₂	Pulver	AK Siemeling	_
		(Kassel)	
GeCl ₂ ·dipp	Pulver	Laborbestand	_
SnCl₂·dipp	Pulver	Laborbestand	_
lod	Kugeln	VWR	sublimiert
Gallium	Plätzchen	Alfar Aesar	99.99999%
Indium(I)-chlorid	Pulver	Alfar Aesar	99.995%
$Chloroform-d_1$	Flüssigkeit	Deutero	99.5%
DMSO-d ₆	Flüssigkeit	Merck	99.5%
Benzol-d ₆	C_6D_6	Deutero	99.5%
Acetonitril-d ₃	Flüssigkeit	Deutero	99.5%
Tetrahydrofuran-d ₈	Flüssigkeit	Deutero	99.5%
Toluol-d ₈	Flüssigkeit	Deutero	99.5%
LiCp*	Feststoff	Sigma-Aldrich	98%
Tributylzinnhydrid	Flüssigkeit	Sigma-Aldrich	z.S.
Pentamethylcyclopentadien	Flüssigkeit	Merck	z.S.
Kaliumhydrid	Pulver/Öl	Merck	_
Kalium	К	Laborbestand	_
Germanium(IV)-chlorid	GeCl ₄	Alfar Aesar	99.9999%

Tetrahydrofuran	Flüssigkeit	AppliChem	SPS getrocknet
Pyridin	Flüssigkeit	Merck	99.5%
Diethylether	Flüssigkeit	Brenntag	SPS getrocknet
<i>n</i> -Hexan	Flüssigkeit	Brenntag	SPS getrocknet
Trichlorsilan	Flüssigkeit	Sigma-Aldrich	99%
Glyoxal (40%ige Lösung in Wasser)	Flüssigkeit	Merck	z.S.
2,6-Di- <i>iso</i> -propylanilin	Flüssigkeit	Merck	≥92%
Methanol	Flüssigkeit	VWR	≥99.5%
Paraformaldehyd	Feststoff	Merck	z.S.
Trimethylchlorsilan	Flüssigkeit	Merck	z.S.
Ethylacetat	Flüssigkeit	Brenntag	technisch
Methyl- <i>tert</i> -butylether	Flüssigkeit	Merck	z.S.
Phenyltrichlorsilan	Flüssigkeit	Merck	z.S.
Kalium- <i>tert</i> -butanolat	Feststoff	Merck	z.S.
2,3,4,5-tetramethylcylopent-2- en-1-on	Flüssigkeit	Sigma-Aldrich	95%

5.2 Methoden zur Charakterisierung

5.2.1 Ramanspektroskopie

Die Raman-Messungen wurden an einem Ramanspektrometer (Renishaw in Via Raman, 633nm) durchgeführt. Dazu wurden die Proben in einem Handschuhkasten im Achatmörser fein homogenisiert oder Einkristalle in Markröhrchen aus Spezialglas (*WJM-Glas/Müller GmbH*, Berlin, Durchmesser 0,5 mm, Länge 80 mm, Wandstärke 0,01 mm) gefüllt, mit einem heißem Wolframdraht abgeschmolzen und mit Paraffinwachs luftdicht verschlossen.

5.2.2 Energiedispersive Röntgenanalyse (EDX)

Die energiedispersive Röntgenanalyse (EDX-engl.: energy dispersive x-ray analyses) an Einkristallen wurde an einem *Hitachi* TM-1000 durchgeführt. Die Datenauswertung erfolgte mit dem Programm SWIFT-ED-TM (*Oxford Instruments*: INCA System Software).

5.2.3 Elektronensprayionisation Massenspektrometrie (ESI-MS)

Die Massenspektren wurden an einem *Bruker Daltronic* HCT Massenspektrometer aufgenommen. Dazu wurden entweder Einkristalle in Tetrahydrofuran oder Acetonitril gelöst oder Reaktionslösungen auf ca. 10^{-4} mmol/mL verdünnt und mit einem Spritzenfilter (Porengröße 0.2 µm) filtriert, um ungelöste Partikel zu entfernen. Die Proben wurden in luftdichte Spritzen (*Hamilton*) gefüllt und über eine Spritzenpumpe durch Direktinfusion in das Gerät eingeführt (Injektionsrate: 240 µL/h). Um Verunreinigungen des Gerätes zu vermeiden wurden dieses im Anschluss an die Messungen der jeweiligen Probe sofort mit dem entsprechenden Lösungsmittel (Tetrahydrofuran oder Acetonitril) mindestens 20 Minuten nachgespült.

Die Messungen erfolgten bei einer Trockengastemperatur von 125 °C und je nach Probe im negativen oder positiven Modus bei unterschiedlichen Spannungen. Die Massenkalibrierung erfolgte in regelmäßigen Abständen (monatlich) mittels ESI-Tune-Mix-Standard (*Agilent*, Waldbronn).

Die Auswertung der Daten erfolgte mit dem Programm Bruker Compass Data Analysis 4.0 SP 5.

5.2.4 Pulverdiffraktometrie

Die pulverdiffraktometrischen Messungen im Rahmen dieser Arbeit wurden an einem Diffraktometer STADI P (*Stoe*, Darmstadt) in Debye-Scherrer-Geometrie (Cu- $K_{\alpha 1}$ -Strahlung = 1.540560 Å, Ge(111)-Monochromator, Detektor: IP-PSD, 298 K, 2°< 2 ϑ < 88°, 9.0 sec/step, 15 min) durchgeführt. Dazu wurden die Proben im Handschuhkasten fein gemörsert und in Kapillaren (MARK-Kapillaren, *Müller & Müller OHG*; Durchmesser: 0.3 mm; Wandstärke 0.01 mm) gefüllt. Diese wurden zum Ausschluss von Luft und Feuchtigkeit abgeschmolzen und mit Wachs verschlossen. Die Auswertung der gemessenen Diffraktogramme erfolgte mit dem

Programm *WinXPOW* der Firma *STOE Darmstadt GmbH.* ^[1] Vergleichsdiffraktogramme mit bekannten Verbindungen stammen aus Datenbanken. ^[2]

5.2.5 Einkristalldiffraktometrie

Die Probenvorbereitung der gemessenen Einkristalle erfolgte im Handschuhkasten. Dafür wurden die Kristalle aus der Reaktionslösung direkt in Perfluoralkylether (*ABCR GmbH & Co. KG*) gegeben und unter dem Lichtmikroskop gesucht. Geeignete Einkristalle wurden auf eine dünne Glaskapillare aufgebracht und unter Luft- und Feuchtigkeitsausschluss zum Diffraktometer transportiert.

Die Messungen wurden unter Stickstoffkühlung an einem Xcalibur3 (Oxford Diffractions) (Mo- K_{α_1} -Strahlung, λ 0,71073 Å, Graphitmonochromator) = bzw. an einem StadiVari Diffraktometer (Stoe) (Mo- $K_{\alpha 1}$ -Strahlung, λ = 0,71073 Å, Graphitmonochromator) Einkristalldiffraktometer unter Verwendung eines DECTRIS PILATUS 300 K Detektors durchgeführt. Die Strukturlösung und -verfeinerung erfolgte mit dem Programm SHELXTL.^[3, 4] Zur Visualisierung der Strukturen wurde das Programm Diamond^[5] verwendet.

5.2.6 NMR-Spektroskopie

Die Kernresonanzspektren werden auf einem UltraShield 400 Spektrometer (*Bruker Inc.*) mit einem Avance III 400 FT-System (400 MHz, 298(2) K) aufgenommen. Die chemischen Verschiebungen sind in δ -Werten (ppm) angegeben und auf die Restsignale der deuterierten Lösungsmittel kalibriert. Bei der Zuordnung der Signale werden für die Signalmultiplizitäten die folgenden Abkürzungen verwendet: s – Singulett, d – Dublett, t – Triplett, q – Quartett, sept – Septett, m – Multiplett. Die Werte der Kopplungskonstanten *J* sind in Hertz (Hz) angegeben. Die Auswertung der Spektren erfolgte mit dem Programm *MestReNova* (Mestrelab Research). ^[6]

5.2.7 Theoretische Rechnungen

DFT-Rechnungen wurden von Laura-Alice Jantke durchgeführt und erfolgten mit Hilfe des Programmpaketes Gaussian09. ^[7] Es wurden die Hybridaustauschfunktionale von Perdew, Burke und Ernzerhof (PBE0) verwendet und die Basissätze Def2-TZVPP für die Elemente H, C, Si und Ge. ^[8, 9]

5.3 Synthesen

5.3.1 Synthesen der Ausgangsverbindungen

5.3.1.1 Synthese und Charakterisierung von K4Ge9

1.07 g (27.4 mmol) Kalium wurden in einen Reaktionsbehälter aus Edelstahl gefüllt. Dazu wurden 4.03 g (55.5 mmol) zerkleinertes Germanium (Stücke mit 2-3 mmm Kantenlänge) gegeben. Anschließend wurde der Reaktionsbehälter in einen Edelstahlautoklaven gestellt (Abbildung 5.1). Dieser wurde in ein mit Argon gefülltes Korundrohr (Abbildung 5.2) mit aufgesetztem Druckausgleich eingeschlossen. Mit einer Heizrate von 2 K/min wurde das Korundrohr auf 650 °C in einem Rohrofen (HTM Reetz GmbH) erhitzt und für 46 h bei dieser Temperatur belassen. Anschließend wurde mit einer Kühlrate von 1K/min auf Raumtemperatur abgekühlt.

Es wurden 98 Massen-% eines schwarzen Pulvers zurückgewogen. Ein Pulverdiffraktogramm von K₄Ge₉ ist in Abbildung 5.3 dargestellt.

Abbildung 5.1: Edelstahlautoklav.

Abbildung 5.2: Mit Argon gefülltes Korundrohr.

Abbildung. 5.3: Pulverdiffraktogramm von K₄Ge₉ (schwarz). Das Strichdiffraktogramm der Referenz K₄Ge₉ ist rot dargestellt. Dem berechneten Diffraktogram liegt ein Datensatz eines Einkristalls zugrunde. ^[10]

5.3.1.2 Synthese und Charakterisierung von K₄Sn₉

Die Synthese von K₄Sn₉ verläuft analog zur Darstellung von K₄Ge₉. 1.07 g (27.4 mmol) Kalium und 6.59 g (55.5 mmol) Zinn wurden in einen Edelstahlautoklaven abgewogen und in ein Korundrohr gestellt. Mit einer Heizrate von 2 K/min wurde das Korundrohr auf 550 °C in einem Rohrofen erhitzt und für 46 h bei dieser Temperatur belassen. Anschließend wurde mit einer Kühlrate von 1K/min auf Raumtemperatur abgekühlt.

Es wurden 91 Massen-% eines schwarzen Pulvers zurückgewogen. Ein Pulverdiffraktogramm von K₄Sn₉ ist in Abbildung 5.4 dargestellt.

Abbildung 5.4: Pulverdiffraktogramm von K₄Sn₉ (schwarz). Das Strichdiffraktogramm der Referenz K₄Sn₉ ist rot dargestellt.

5.3.1.3 Synthese von K[Ge₉(Si(SiMe₃)₃)₃

Die Synthese der Verbindung $K[Ge_9Si(SiMe_3)_3)]$ erfolgte in Anlehnung an eine Literaturvorschrift.^[13]

Zu einer Lösung von 1.12 g (3.95 mmol, 3.2 Äq.) (Me₃Si)₃SiCl in 15 mL Acetonitril wurden 1.00 g (1.24 mmol, 1.0 Äq.) K₄Ge₉ hinzugefügt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Die rote Lösung wurde filtriert; anschließend wurde das Lösungsmittel im Vakuuum entfernt. K[Ge₉Si(SiMe₃)₃)] wurde als orange-brauner Feststoff (1.6 g, 1.1 mmol, 89% bezogen auf die Einwaage Ge₉) erhalten.

¹**H-NMR** (400 MHz, CD₃CN): δ (ppm) = 0.22 (s, CH_{3 TMS}).

²⁹Si-INEPT (400 MHz, CD₃CN): δ (ppm) = -9.60 (Si _{Si TMS}), -107.98 (Si _{Si Geg}).

5.3.1.4 Synthese von SiCl₂·dipp

Die Synthese der Verbindung SiCl₂·dipp erfolgte nach mehreren Literaturvorschriften. ^[14, 15, 16]

1. Stufe: 1,4-Bis-(2,6-di-iso-propylphenyl)-1,4-diazabutadien

Zu einer Lösung von 36.3 mg (250 mmol, 1.0 Äq.) Glyoxal (40%ige Lösung in Wasser) in 125 mL MeOH wurden unter Rühren 96.4 mg (500 mmol, 2.0 Äq.) 2,6-Di-*iso*-propylanilin und 0.5 mL HOAc in 125 mL MeOH getropft. Nach ca. 5 min fiel ein gelber Feststoff aus. Die Suspension wurde 12 h bei RT gerührt. Anschließend wurde der gelbe Niederschlag abfiltriert und mit MeOH (200 mL) gewaschen. Nach Trocknung im Vakuum wurde 1,4-Bis-(2,6-di-*iso*propylphenyl)-1,4-diazabutadien (72.3 g, 193 mmol, 77%) als gelber Feststoff erhalten. ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm) = 8.15 (s, 2H, NCH), 7.21 (m, 6H, CH(CH₃)₂-C₆H₆), 2.88 (sept, 4H, ³J_{HH} = 4.0 Hz, CH(CH₃)₂), 1.21 (d, 24H, ³J_{HH} = 4.0 Hz, CH(CH₃)₂).

2. Stufe: 1,3-Bis-(2,6-di-iso-propylphenyl)imidazoliumchlorid (dipp-H)

266 mL EtOAc wurden auf 70 °C erhitzt. Nach Zugabe von 11.2 g (29.6 mmol, 1.00 Äq.) 1,4-Bis-(2,6-di-*iso*-propylphenyl)-1,4-diazabutadien und 0.900 g (30.0 mmol, 1.01 Äq.) Paraformaldehyd wurde eine Lösung von 3.8 mL (15.0 mmol, 1.01 Äq.) TMSCl in EtOAc (6 mL) innerhalb ca. 15 min unter Rühren zugetropft. Die Reaktionsmischung färbte sich dabei von gelb nach orange. Diese wurde über Nacht bei RT gerührt. Nach Abkühlen der orangen Suspension auf -40 °C wurde der orange-braune Niederschlag abfiltriert und mit EtOAc und ^tBuOMe (je 3 × 20 mL) gewaschen. Nach Trocknung im Vakuum wurde dipp-H (8.71 g, 18.6 mmol, 69 %) als weißer Feststoff erhalten. ¹**H-NMR** (400 MHz, DMSO-d₆): δ (ppm) = 10.21 (s, 1H, NCHN), 8.57 (s, 2H, NCH=CHN), 7.69 (t, 2H, ${}^{3}J_{HH} = 8.0$ Hz, *p*-ArCH₃), 7.53 (d, 4H, ${}^{3}J_{HH} = 8.0$ Hz, *m*-ArCH₃), 2.37 (sept, 4H, ${}^{3}J_{HH} = 4.0$ Hz, ${}^{3}J_{HH} = 8.0$ Hz, CH(CH₃)₂), 1.26 (d, 12H, ${}^{3}J_{HH} = 8.0$ Hz, CH(CH₃)₂), 1.17 (d, 12H, ${}^{3}J_{HH} = 8.0$ Hz, CH(CH₃)₂).

¹³**C-NMR** (101 MHz, DMSO-d₆): δ (ppm) = 144.79 (NCHN), 146.30 (*arom.*), 139.30 (*arom.*), 131.83 (*arom.*), 130.03 (*arom.*), 126.18 (NCH=CHN), 28.62 (CH(CH₃)₂), 24.08 (CH(CH₃)₂), 23.09 (CH(CH₃)₂).

3. Stufe: 1,3-Bis-(2,6-di-iso-propylphenyl)imidazol-2-yliden (dipp)

8.71 g (18.6 mmol, 1.00 Äq.) dipp-H und 2.55 g (22.7 mmol, 1.20 Äq) KO^tBu wurden in 250 mL thf gelöst. Sofort bildete sich eine orange Suspension. Diese wurde über Nacht bei RT gerührt. Nach Entfernung des Lösungsmittels im Vakuum wurde der hellbraune Niederschlag mit 40 mL Benzol versetzt und über Celite[®] filtriert. Anschließend wurde das Lösungsmittel im Vakuum entfernt und mit kaltem Diethylether (3 × 10 mL) gewaschen. dipp wurde als beiger Feststoff (5.83 g, 15.0 mmol, 81 %) erhalten.

¹**H-NMR** (400 MHz, C₆D₆-d₆): δ(ppm) = 7.30 (pseudo-t, 2H, ${}^{3}J_{HH}$ = 8.0 Hz, *p*-Ar*H*), 7.19 (d, 4H, ${}^{3}J_{HH}$ = 8.0 Hz, *m*-Ar*H*), 6.62 (s, 4H, NC*H*=C*H*N), 2.97 (sept, 4H, ${}^{3}J_{HH}$ = 6.0 Hz, C*H*(CH₃)₂), 1.29 (d, 12H, ${}^{3}J_{HH}$ = 8.0 Hz, CH(CH₃)₂), 1.19 (d, 12H, ${}^{3}J_{HH}$ = 8.0 Hz, CH(CH₃)₂).

¹³**C-NMR** (101 MHz, C₆D₆-d₆): δ(ppm) = 146.30 (*o*-*C*), 139.00 (*i*-*C*), 129.00 (*p*-*C*), 123.71 (*m*-*C*), 121.56 (NCH=CHN), 28.81 (CH(CH₃)₂), 24.83(CH(CH₃)₂), 23.62 (CH(CH₃)₂).

4. Stufe: SiCl₂·dipp (dipp = 1,3-Bis(2,6-di-iso-propylphenyl)imidazol-2-yliden)

5.00 g (12.9 mmol, 2.00 Äq.) dipp wurden in 150 mL thf gelöst. Nach langsamem Zutropfen von 0.651 mL (6.45 mmol, 1.0 Äq.) HSiCl₃ bildete sich eine zitronengelbe Suspension. Diese wurde über Nacht bei RT gerührt. Die Lösung wurde vom ausgefallenen weißen Feststoff (dipp-H) abfiltriert. Dieser wurde verworfen. Das Filtrat wurde weiterverwendet. Nach Entfernung des Lösungsmittels im Vakuum wurde ein gelber Feststoff erhalten. Dieser wurde mit Hexan (3 × 30 mL) gewaschen. SiCl₂·dipp wurde als hellgelber Feststoff (2.08 g, 66%) erhalten.

Elementaranalyse Bestimmte (berechnete) Masse-%:

C 68.99 (66.50), H 8.18 (7.44), N 5.74 (5.93), Si 4.98 (5.76), Cl 13.67 (14.54).

¹**H-NMR** (400 MHz, C₆D₆-d₆): δ(ppm) = 7.05-7.22 (m, 6H,C₆H₃), 6.36 (s, 4H, NCH=CHN), 2.79 (m, 4H, CH(CH₃)₂), 1.43 (d, 12H, ³J_{HH} = 8.0 Hz, CH(CH₃)₂), 1.01 (d, 12H, ³J_{HH} = 8.0 Hz, CH(CH₃)₂). ²⁹Si-INEPT (400 MHz, C₆D₆): δ (ppm) 19.1.

5.3.1.5 Synthese von 1,2,3,4,5-Pentamethylcyclopenta-1,3-dien

Die Synthese der Verbindung 1,2,3,4,5-Pentamethylcyclopenta-1,3-dien erfolgte in Anlehnung an eine Literaturvorschrift. ^[17]

5.62 g (256 mmol, 1.2 Äq.) CH₃Li in Diethylether (1.6 M) wurden auf 0 °C gekühlt. Dazu wurden langsam 20 mL (29.5 g, 213 mmol, 1.0 Äq) 2,3,4,5-Tetramethylcylopent-2-en-1-on getropft. Die Reaktionsmischung wurde für 16 h bei Raumtemperatur gerührt. Anschließend wurden 8.5 ml Methanol und 40 mL Wasser hinzugegeben. Die organische Phase wurde mit einer gesättigten Ammoniumchloridlösung (60 mL) und 6 M HCI-Lösung (5 mL) extrahiert. Die wässrige Phase wurde mit Diethylether (2 × 100 mL) reextrahiert. Die vereinten organischen Phasen wurden über Natriumsulfat getrocknet. Anschließend wurde das Rohprodukt unter vermindertem Druck (20 mbar, 63 °C) destilliert. 1,2,3,4,5-Pentamethylcyclopenta-1,3-dien (17.4 g, 128 mmol, 60 %) wurde als gelbe Flüssigkeit erhalten.

¹**H-NMR** (400 Hz, CDCl₃, 300 K): δ(ppm) = 1.01 (d, 3J^{HH} = 7.8 Hz, 3 H, C-CH3 (1)), 1.77 (s, 6 H, C-CH3 (2)), 1.82 (s, 6 H, C-CH3 (3)), 2.44 – 2.54 (m, 1 H, CH (4))

5.3.1.6 Synthese von KCp*

Die Synthese der Verbindung KCp* erfolgte in Anlehnung an eine Literaturvorschrift. ^[18]

Zu 1.25 g Kaliumhydrid (31.2 mmol, 1.00 Äq.) in 75 mL thf wurden in einem Schlenkkolben 7.50 mL Pentamethylcyclopentadien (46.3 mmol, 6.30 g, 1.48 Äq) langsam zugetropft. Unter Gasentwicklung enstand eine weiße Suspension. Die Reaktionsmischung wurde 24 h bei Raumtemperatur gerührt. Die überstehende Lösung an Pentamethylcyclopentadien wurde über eine Schlenkfritte abfiltriert. Anschließend wurde mit Hexan nachgewaschen (3 x 30 mL) und der entstandene Feststoff im Hochvakuum getrocknet. KCp* wurde als farbloser Feststoff 5.33 g (30.6 mmol, 98 %) erhalten.

¹**H-NMR** (400 MHz, Pyridin- d_5) δ (ppm) = 2.30 (s, 15 H).

¹³**C-NMR** (101 MHz, Pyridin- d_5) δ (ppm) =106.64, 12.65.

5.3.1.7 Synthese von GaCp*

Die Synthese der Verbindung GaCp* erfolgte in Anlehnung an mehrere Literaturvorschriften. ^[19, 20]

 $Ga + 0.5 I_2 \xrightarrow{\text{Benzol}} "Gal" \xrightarrow{\text{KCp}^*} GaCp^*$

7.97 g (11.4 mmol, 2.0 Äq.) Gallium (Kugeln, Durchmesser: 1mm) und 14.8 g (5.70 mmol, 1.0 Äq.) lod wurden in einem Schlenkkolben vorgelegt. Dazu wurden ca. 80 mL Benzol gegegeben. Die lila Suspension wurde für 2 h im Ultraschallbad behandelt. Während dieser Zeit entfärbte sich die lila Lösung, wobei sich ein gelb-grüner Niederschlag von "Gal" bildete. Zu dieser Suspension wurden 21 g (11.4mol, 2.0 Äq.) KCp* gegeben. Die Reaktionsmischung wurde 48 h bei Raumtemperatur gerührt. Dabei verfärbte sich die Benzollösung orange und ein grauer Niederschlag bildete sich. Die Lösung wurde vom ausgefallenen Feststoff abfiltriert und mit 30 mL Hexan nachgewaschen. Nach Entfernung des Lösungsmittels im Vakuum wurde ein orange-gelbes Öl erhalten. Das Rohprodukt wurde im Vakuum überkondensiert und anschließend im dynamischen Vakuum bei 60 °C getrocknet. GaCp* wurde als oranges Öl (8.4 g, 41.0 mmol, 36%)erhalten.

¹**H-NMR** (400 MHz, C_6D_6 -d₆): δ (ppm) = 1.93 (s, 15 H).

5.3.1.8 Synthese von InCp*

Die Synthese der Verbindung InCp* erfolgt in Anlehnung an eine Literaturvorschrift. [21]

InCl
$$\xrightarrow{\text{LiCp}^*}$$
 InCp* InCp*

2.51 g (16.7 mmol, 1.0 Äq.) InCl und 2.28 g (16.7 mmol, 1.0 Äq.) LiCp* wurden in einem Schlenkkolben vorgelegt. Dazu wurden ca. 80 mL Diethylether gegegeben. Die graue Suspension wurde 16 h bei Raumtemperatur gerührt und anschließend über Celite® filtriert. Der Rückstand wurde mit 20 mL Diethylether nachgewaschen. Das gelbe Filtrat wurde im

Vakkuum getrocknet. Das Rohprodukt wurde bei 55 °C im Drehschiebepumpenvakuum sublimiert. InCp* wurde in Form orange-gelber Kristalle erhalten (1.6 g, 6.40 mmol, 38%). ¹**H-NMR** (400 MHz, C₆D₆-d₆): δ (ppm) = 2.05 (s, 15 H).

5.3.1.9 Synthese von NaCp

4.00 g (174 mmol) Natrium wurden in 160 mL frisch über Silikagel filtriertem Dicyclopentadien für 6 h bei 170 °C refluxiert. Dabei bildete sich ein beiger Niederschlag. Der Feststoff wurde über ein Schlenkfritte abfiltiert, mit Hexan (3 × 60.0 mL) nachgewaschen und anschließend im Hochvakuum getrocknet. NaCp wurde als farbloser Feststoff 14.5 g (165 mmol, 95 %) erhalten. ¹**H-NMR** (400 MHz, thf-*d*8) δ (ppm) = 5.62 (s, 5H).

5.3.1.10 Synthese von GeCl₂·C₄H₈O₂

Die Synthese der Verbindung $GeCl_2 \cdot C_4H_8O_2$ erfolgte in Anlehnung an eine Literaturvorschrift. ^[22]

$$GeCl_4 + O \xrightarrow{SnHBu_3} GeCl_2 \cdot C_4H_8O_2$$

In einem Schlenkkolben wurden 13.3 mL (155 mmol) 1,4-Dioxan in 17 mL Diethylether und 33 mL Hexan vorgelegt und auf 0°C gekühlt. Dazu wurden 9.0 mL (78.9 mmol) GeCl₄ zugegeben. Anschließend wurden langsam 21.6 mL SnHBu₃ zugetropft. Dabei fiel ein farbloser Feststoff aus. Zur Vervollständigung der Fällung wurde die Reaktionsmischung noch weitere 3 h gerührt. Anschließend wurde das Lösungsmittel abfiltriert. Der Rückstand wurde mit Hexan (3 × 15 mL) gewaschen und im Vakuum getrocknet. Es wurden 11.6 g (54.2 mmol, 69%) eines farblosen Feststoffes erhalten. Das Produkt wurde bei -30 °C bis zur Weiterverarbeitung aufbewahrt.

Elementaranalyse Bestimmte (berechnete) Masse-%:

C 21.12 (20.74), H 3.69 (3.48), Ge 30.81 (31.36), Cl 29.99 (30.61).

5.3.1.11 Synthese von GeCp₂

Die Synthese der Verbindung GeCp₂ erfolgte in Anlehnung an mehrere Literaturvorschriften. ^[23, 24]

$$\begin{array}{c} & \text{NaCp} \\ \text{THF/Hexan} \\ \hline & \text{GeCl}_2 \cdot \text{C}_4\text{H}_8\text{O}_2 \end{array} \xrightarrow[-NaCl]{} \text{NaCp} \\ \hline & \text{GeCp}_2 \end{array}$$

4.01 g (17.3 mmol, 1.0 Äq.) GeCl₂ und 3.08 g (35.0 mmol, 2.0 Äq.) NaCp wurden in einem Schlenkkolben vorgelegt. Dazu wurden bei -78 °C ca. 50 mL thf gegeben. Die braune Reaktionsmischung wurde 4 h bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt. Das Produkt wurde mit 50 mL Hexan extrahiert und vom ausgefallenen NaCl abfiltriert. Nach Entfernung des Lösungsmittels im Vakuum konnte das Rohprodukt in Form eines hellgelben Feststoffes erhalten werden. Dieser wurde durch Sublimation im Drehschiebepumpenvakuum bei 60 °C gereinigt. GeCp₂ wurde in Form farbloser Kristalle erhalten (1.4 g, 6.91 mmol, 40%).

¹**H-NMR** (400 MHz, C₆D₆-d₆): δ (ppm) = 5.75 (s, 10H)

Elementaranalyse Bestimmte (berechnete) Masse-%:

C 59.22 (59.71), H 5.08 (4.97), Ge 34.53 (35.81).

5.3.1.12 Synthese von SnCp₂

Die Synthese der Verbindung SnCp₂ erfolgt in Anlehnung an eine Literaturvorschriften. ^[25]

SnCl₂
$$\xrightarrow{\text{NaCp}}$$
 SnCp
SnCl₂ $\xrightarrow{\text{THF/Hexan}}$ SnCp₂

4.64 g (24.5 mmol, 1.0 Äq.) SnCl₂ und 4.30 g (48.0 mmol, 2.0 Äq.) NaCp wurden in einem Schlenkkolben vorgelegt. Dazu wurden ca. 70 mL thf gegeben. Die orange-braune Reaktionsmischung wurde 6 h bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt. Das Produkt wurde mit 60 mL Hexan extrahiert und vom ausgefallenen NaCl abfiltriert. Nach Entfernung des Lösungsmittels im Vakuum konnte das Rohprodukt in Form eines orange-gelben Feststoffes erhalten werden. Dieser wurde durch

Sublimation im Drehschiebepumpenvakuum bei 70 °C gereinigt. SnCp₂ wurde in Form hellgelber Kristalle erhalten (1.9 g, 7.64 mmol, 31%).

¹**H-NMR** (400 MHz, C₆D₆-d₆): δ (ppm) = 5.79 (s, 10H).

Elementaranalyse Bestimmte (berechnete) Masse-%:

C 48.29 (48.26), H 4.11 (4.05), Sn 46.20 (47.70).

5.3.2 Synthese neuer Verbindungen

5.3.2.1 Synthese von [K(18-Krone-6)]₄[Ge₉Ga-GaGe₉]·4en (1)

60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die intensiv grüne Lösung filtriert und mit einer klaren hellgelben Lösung von 30.7 mg (0.15 mmol, 2.0 Äq.) GaCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 in 5 mL Toluol überschichtet. Nach vier Wochen wurden ca. 15 rote nadelförmige Kristalle der Verbindung [K(18-Krone-6)]₄[Ge_oGa-GaGe_o]·4en (**1**) erhalten.

ESI-MS (negativer Modus): m/z = 724 ([Ge₉Ga]⁻); m/z = 956 ([Ge₉(K(18-Krone-6))]⁻).

ESI-MS (positiver Modus): m/z = 303 (K(18-Krone-6)⁺).

5.3.2.2 Synthese von [K(2.2.2-Krypt)]Cp (2)

Zu 91.9 mg (0.075 mmol, 1.0 Äq.) K₄Sn₉, 15.2 mg (0.075 mmol, 1.0 Äq.) GeCp₂und 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurden bei -78 °C ca. 2mL flüssiges Ammoniak kondensiert. Die rote Lösung wurden bei -70 °C zur Kristallisation gelagert. Nach elf Monaten wurden ca. 15 rote blockförmige Kristalle der Verbindung [K(2.2.2-Krypt)]Cp **(4)** erhalten.

5.3.2.3 Synthese von [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (3)

Eine Lösung von 107 mg K[Ge₉[Si(SiMe₃)₃]₃] (0.075 mmol, 2.0 eq.) in 1 mL Toluol wurde zu einer Lösung von 73.1 mg (0.15 mmol, 2.0 Äq.) SiCl₂·dipp in 2 mL Toluol getropft. Die rotbraune Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt und dann filtriert.

Die Lösung wurde im Vakuum auf ca. 2 mL eingeengt und bei Raumtemperatur zur Kristallisation gelagert. Nach vier Wochen wurden ca. 30 rote blockförmige Kristalle der Verbindung [K(dipp)₂][Ge₉(Si(SiMe₃)₃)₃]·tol (**3**) erhalten.

ESI-MS (negativer Modus): m/z = 1396 ([Ge₉(Si(SiMe₃)₃)₃]⁻).

ESI-MS (positiver Modus): m/z =389 (dipp-H).

5.3.2.4 Synthese von [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (4)

Eine Lösung von 107 mg K[Ge₉[Si(SiMe₃)₃]₃] (0.075 mmol, 2.0 eq.) in 1 mL Acetonitril wurde zu einer Lösung von 73.1 mg (0.15 mmol, 2.0 Äq.) SiCl₂·dipp in 2 mL Acetonitril getropft. Die rotbraune Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt und dann filtriert. Die Lösung wurde im Vakuum auf ca. 2 mL eingeengt und bei Raumtemperatur zur Kristallisation gelagert. Nach vier Wochen wurden ca. 20 rote blockförmige Kristalle der Verbindung [dipp-H][Ge₉(Si(SiMe₃)₃)₃]·2acn (**4**) erhalten.

ESI-MS (negativer Modus): m/z = 1396 ([Ge₉(Si(SiMe₃)₃)₃]⁻).

ESI-MS (positiver Modus): m/z = 389 (dipp-H).

5.3.2.5 Synthese von [Ge₉(SiEt₃)₃]⁻

Zu einer Lösung von 45.2 mg (0.30 mmol, 4.0 Äq.) Et₃SiCl in 3 mL Acetonitril wurden 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ hinzugefügt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Die braune Lösung wurde filtriert; anschließend wurde das Lösungsmittel im Vakuum entfernt. [Ge₉(SiEt₃)₃]⁻ wurde als brauner Feststoff erhalten. **ESI-MS** (negativer Modus): m/z = 999 ([Ge₉(SiEt₃)₃]⁻).
5.3.2.6 Synthese von [Ge₉(Si(*i*Pr)₃)₃]⁻

Zu einer Lösung von 50.8 mg (0.30 mmol, 4.0 Äq.) (*i*Pr)₃SiCl in 3 mL Acetonitril wurden 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ hinzugefügt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Die braune Lösung wurde filtriert; anschließend wurde das Lösungsmittel im Vakuum entfernt. [Ge₉(Si(*i*Pr)₃)₃]⁻ wurde als brauner Feststoff erhalten. **ESI-MS** (negativer Modus): m/z = 1126 ([Ge₉(Si(*i*Pr)₃)₃]⁻).

5.3.2.7 Synthese von [Ge₉(Si(*i*Bu)₃)₃]⁻

Zu einer Lösung von 70.6 mg (0.30 mmol, 4.0 Äq.) (*i*Bu)₃SiCl in 3 mL Acetonitril wurden 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ hinzugefügt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Die braune Lösung wurde filtriert; anschließend wurde das Lösungsmittel im Vakuum entfernt. [Ge₉(Si(*i*Bu)₃)₃]⁻ wurde als brauner Feststoff erhalten. **ESI-MS** (negativer Modus): m/z = 1253 ([Ge₉(Si(*i*Bu)₃)₃]⁻).

5.3.2.8 Synthese von [Ge₉(SnPh₃)₃]⁻

Zu einer Lösung von 115.6 mg (0.30 mmol, 4.0 Äq.) Ph₃SnCl in 3 mL Acetonitril wurden 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ hinzugefügt. Die Reaktionslösung wurde über Nacht bei Raumtemperatur gerührt. Die braune Lösung wurde filtriert; anschließend wurde das Lösungsmittel im Vakuum entfernt. [Ge₉(SnPh₃)₃]⁻ wurde als brauner Feststoff erhalten. **ESI-MS** (negativer Modus): m/z = 1703 ([Ge₉(SnPh₃)₃]⁻).

5.3.3 Versuchsbeschreibungen weiterer Umsetzungen

Umsetzungen der Zintl-Phase K4Ge9 mit AlCp*/AlCp*H2 in en

a) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die intensiv grüne Lösung filtriert und mit einer Lösung von 24.4 mg/24.6 mg (0.15 mmol, 2.0 Äq.) bzw. 12.1 mg/12.2 mg (0.075 mmol, 1.0 Äq.) AlCp*/AlCp*H₂ und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Alternativ wurden die Lösungen von AlCp* bzw. AlCp*H₂ mit 18-Krone-6 oder 2.2.2-Krypt in Toluol vor dem Überschichten für 6 h auf 70 °C erhitzt. Die Ansätze wurden zur Kristallisation bei Raumtemperatur gelagert.

Aus den Ansätzen, die mit 2.2.2-Krytandlösungen überschichtet wurden, konnten Kristalle der bekannten Verbindung [K(2.2.2-Krypt)]₂[Ge₉] ^[26] isoliert werden.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ und 24.4 mg/24.6 mg (0.15 mmol, 2.0 Äq.) bzw. 12.1 mg/12.2 mg (0.075 mmol, 1.0 Äq.) AlCp*/AlCp*H₂ wurden in 2.5 mL en gelöst und bei Raumtemperatur oder alternativ für 6 h bei 70 °C gerührt. Die braune Lösung wurde anschließend mit 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Ansätze wurden zur Kristallisation bei Raumtemperatur gelagert.

Umsetzungen der Zintl-Phase K₄Sn₉ mit AlCp*/AlCp*H₂ in en

a) 91.9 mg (0.075 mmol, 1.0 Äq.) K_4Sn_9 wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die orange-rote Lösung filtriert und mit einer Lösung von 24.4 mg/24.6 mg (0.15 mmol, 2.0 Äq.) bzw. 12.1 mg/12.2 mg (0.075 mmol, 1.0 Äq.) AlCp*/AlCp*H₂ und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich sofort unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 91.9 mg (0.075 mmol, 1.0 Äq.) K_4Sn_9 und 24.4 mg/24.6 mg (0.15 mmol, 2.0 Äq.) bzw. 12.1 mg/12.2 mg (0.075 mmol, 1.0 Äq.) AlCp*/AlCp*H₂ wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich sofort unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K4Ge9 mit InCp* in en

a) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die intensiv grüne Lösung filtriert und mit einer klaren orangen Lösung von 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich innerhalb 24 Stunden unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ und 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich innerhalb weniger Minuten unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K4Ge9 mit InCp* in dmf

a) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die dunkel grüne Lösung filtriert und mit einer klaren orangen Lösung von 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich innerhalb 24 Stunden unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K_4Ge_9 und 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp^{*} wurden in 2.5 mL dmf gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich innerhalb weniger Minuten unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K₄Sn₉ mit InCp* in en

a) 91.9 mg (0.075 mmol, 1.0 Äq.) K₄Sn₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die orange-rote Lösung filtriert und mit einer klaren orangen Lösung von 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich sofort unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 91.9 mg (0.075 mmol, 1.0 Äq.) K₄Sn₉ und 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich sofort unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K4Sn9 mit InCp* in dmf

a) 91.9 mg (0.075 mmol, 1.0 Äq.) K₄Sn₉ wurden in 2.5 mL dmf gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die rote Lösung filtriert und mit einer klaren orangen Lösung von 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich sofort unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ und 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich sofort unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K4Ge9 mit InCp* in flüssigem Ammoniak

Zu 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉, 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurde bei -78 °C ca. 2mL flüssiges Ammoniak kondensiert. Die roten Lösungen wurden bei -40 °C bzw. -70 °C aufbewahrt. Die Reaktionslösungen entfärbten sich unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K₄Sn₉ mit InCp* in flüssigem Ammoniak

Zu 91.9 mg (0.075 mmol, 1.0 Äq.) K₄Sn₉, 37.6 mg (0.15 mmol, 2.0 Äq.) bzw. 18.8 mg (0.075 mmol, 1.0 Äq.) InCp* und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurde bei -78 °C ca. 2mL flüssiges Ammoniak kondensiert. Die roten Lösungen wurden bei -40 °C bzw. -70 °C aufbewahrt. Die Reaktionslösungen entfärbten sich unter Bildung eines schwarzen Niederschlags.

Umsetzungen des dreifach silylierten Clusters K[Ge₉(Si(SiMe₃)₃)₃] mit ECp* (E= Al, Ga, In)

107.7 mg (0.075 mmol, 1.0 Äq.) K[Ge₉(Si(SiMe₃)₃)₃] wurde mit 0.075mmol (1.0 Äq.) bzw. 0.015 mmol (2.0 Äq.) *E*Cp* (*E*= Al, Ga, In) in 3 mL LM (Toluol, Benzol, Tetrahydrofuran, Acetonitril) gelöst und über Nacht bei Raumtemperatur bzw. 50 °C gerührt. Die Reaktionslösungen wurden filtriert, eingeengt und zur Kristallisation bei -32 °C gelagert.

Umsetzungen des dreifach silylierten Clusters K[Ge₉(Si(SiMe₃)₃)₃] mit AlCp*H₂

107.7 mg (0.075 mmol, 1.0 Äq.) K[Ge₉(Si(SiMe₃)₃)₃] wurde mit 12.3 mg (0.075 mmol, 1.0 Äq.) bzw. 24.6 mg (0.015 mmol, 2.0 Äq.) AlCp*H₂ in 3 mL Toluol oder Benzol gelöst und 3 h bei 70 °C gerührt. Die Reaktionslösungen wurden filtriert, eingeengt und zur Kristallisation bei -32 °C gelagert.

Umsetzungen der Zintl-Phase K₄Sn₉ mit Organylen der 4. Hauptgruppe in en

a) 91.9 mg (0.075 mmol, 1.0 Äq.) K_4Sn_9 wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die orange-rote Lösung filtriert und mit einer klaren orangen Lösung von 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls *X* (*X* = SiCl₂ dipp, GeCp₂, GeFc[N(SiMe₃]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Die Lösungen entfärbten sich sofort unter Abscheidung eines metallisch glänzenden Feststoffes.

b) 91.9 mg (0.075 mmol, 1.0 Äq.) K_4Sn_9 und 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls X (X = SiCl₂ dipp, GeCp₂, GeFc[N(SiMe₃]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Die braune Lösung entfärbte sich sofort unter Bildung eines schwarzen Niederschlags.

Umsetzungen der Zintl-Phase K4Ge9 mit Organylen der 4. Hauptgruppe in en

a) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ wurden in 2.5 mL en gelöst und 2 h bei Raumtemperatur gerührt. Anschließend wurde die orange-rote Lösung filtriert und mit einer klaren orangen Lösung von 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls *X* (*X* = SiCl₂ dipp, GeCp₂, GeFc[N(SiMe₃]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt in 5 mL Toluol überschichtet. Aus den Ansätzen, die mit SiCl₂ dipp umgesetzt und mit 18-Krone-6 überschichtet wurden, konnten Kristalle der bekannten Verbindung [K(18-Krone-6)]₂Ge₉·en, ^[11] die das $\frac{1}{\infty}$ [Ge₉]²⁻-Polymer enthalten, isoliert werden. Die restlichen Lösungen entfärbten sich innerhalb weniger Tage.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K_4Ge_9 und 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls X (X = SiCl₂·dipp, GeCp₂, GeFc[N(SiMe₃]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) wurden in 2.5 mL en gelöst und bei Raumtemperatur gerührt. Ansätze, die mit SiCl₂ dipp umgesetzt wurden bildeten stabile Reaktionslösungen. Die restlichen Lösungen entfärbten sich innerhalb weniger Tage.

Umsetzungen der Zintl-Phase K₄Ge₉ mit Organylen der 4. Hauptgruppe in flüssigem Ammoniak

Zu 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉, 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls *X* (*X* = SiCl₂ dipp, GeCp₂, GeFc[N(SiMe₃]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurde bei -78 °C ca. 2mL flüssiges Ammoniak kondensiert. Die roten Lösungen wurden bei -40 °C bzw. -70 °C aufbewahrt. Aus Umsetzungen mit GeCp₂ sowie Sn[N(SiMe₃)₂]₂ wurden Kristalle der bekannten Verbindung [K(2.2.2-Krypt)]₃[Ge₉](NH₃)₈ ^[12] erhalten.

Umsetzungen der *Zintl*-Phase K₄Sn₉ mit Organylen der 4. Hauptgruppe in flüssigem Ammoniak

Zu 91.9 mg (0.075 mmol, 1.0 Äq.) K_4Sn_9 , 0.15 mmol (2.0 Äq.) bzw. 0.075 mmol (1.0 Äq.) des jeweiligen Organyls *X* (*X* = SiCl₂ dipp, GeCp₂, GeFc[N(SiMe₃)]₂, SnCp₂ oder Sn[N(SiMe₃)₂]₂) und 79.2 mg (0.30 mmol, 4.0 Äq.) 18-Krone-6 oder 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurde bei -78 °C ca. 2mL flüssiges Ammoniak kondensiert. Die roten Lösungen wurden bei -40 °C bzw. -70 °C aufbewahrt.

Umsetzungen des dreifach silylierten Clusters K[Ge₉(Si(SiMe₃)₃)₃] mit zinn- und germaniumhaltigen Verbindungen

107.7 mg (0.075 mmol, 1.0 Äq.) K[Ge₉(Si(SiMe₃)₃)₃] wurde mit 0.075 mmol (1.0 Äq.) bzw. 0.015 mmol (2.0 Äq) des jeweiligen Organyls X ($X = SnCp_2$, $Sn[N(SiMe_3)_2]_2$, GeCp₂ oder GeFc[N(SiMe₃]₂) in 3 mL LM (Toluol, Benzol, Tetrahydrofuran, Acetonitril) gelöst und über Nacht bei Raumtemperatur gerührt. Die Reaktionslösungen wurden filtriert, eingeengt und zur Kristallisation bei -32 °C gelagert.

Für die massenspektrometrischen Untersuchungen wurden die Reaktionslösungen mit Acetonitril verdünnt.

Umsetzungen der Zintl-Phase K4Ge9 mit MCp2 (M = Ge, Sn) in Acetonitril

60.7 mg (0.075 mmol, 1.0 Äq.) K_4Ge_9 und 0.30 mmol (4.0 Äq.) MCp_2 (M = Ge, Sn) wurden in 3 mL Acetonitril drei Wochen bei Raumtemperatur gerührt. Anschließend wurden die roten Lösungen filtriert und für NMR-spektroskopische und massenspektroskopische Untersuchungen verwendet.

Lösungsversuche der Zintl-Phase K4Ge9 in Acetonitril und Pyridin

a) 60.7 mg (0.075 mmol, 1.0 Äq.) K₄Ge₉ und 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurden in 1.5 mL Acetonitril oder Pyridin gelöst und bei Raumtemperatur gerührt. Die braune Reaktionslösung färbte sich innerhalb von drei Stunden grün. Für die massenspektrometrischen Untersuchungen wurden die Reaktionslösungen mit Acetonitril verdünnt.

b) 60.7 mg (0.075 mmol, 1.0 Äq.) K_4Ge_9 und 112.9 mg (0.30 mmol, 4.0 Äq.) 2.2.2-Krypt wurden in 1.5 mL Acetonitril oder Pyridin gelöst und bei Raumtemperatur gerührt. Nach Zugabe von 0.038 mmol – 0.15 mmol (0.5 – 2.0 Äq.) SiCl₂·dipp und SiPh₂Cl₂ färbte sich die braune Reaktionslösung sofort grün. Für die massenspektrometrischen Untersuchungen wurden die Reaktionslösungen mit Acetonitril verdünnt.

5.4 Literatur zu Kapitel 5

- [1] Stoe *WinXPOW*, STOE, Darmstadt, **2003**.
- [2] a) FindIt, ICSC-Inorganic Crystal Structure Database, 2009. b) Pearson's Crystal Data:
 Crystal Structure Database for Inorganic Compounds, Version 1.0, 2008.
- [3] G. M. Sheldrick, SHELXS-97, Göttingen, 1997.
- [4] G. M. Sheldrick, *SHELXL-97*, Göttingen, **1997**.
- [5] K. Brandenburg, *Diamond Version 3.2h*, Crystal Impact GbR, Bonn, **2012.**
- [6] *MestreNova*, Mestrelab Research, Version 7.1.1, **2012**.
- [7] Gaussian09, RevisionB.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Wallingford, CT, **2010**.
- [8] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143.
- [9] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- [10] S.Ponou, T. F. Fässler, *Z.Anorg. Allg. Chemie* **2007**, *633*, 393.
- [11] C. Downie, Z. Tang, A. M. Guloy, Angew. Chem. Int. Ed. 2000, 39, 338.
- [12] C. Benda, Ph.D. thesis, TU München **2013**.
- [13] F. Li, S. C. Sevov, Inorg. Chem. 2012, 51, 2706.
- [14] L. Hintermann, *Beilstein J. Org. Chem.* **2007**, *3*, No. 22.
- [15] A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, *Tetrahedron* 1999, 55, 14523.
- [16] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 121, 5793.
- [17] D. Feitler, G. M. Whitesides, *Inorg. Chem.* **1976**, *15*, 466.

- [18] G. Rabe, H. W. Roesky, D. Stalke, F. Pauer, G. M. Sheldrick, J. Organomet. Chem. 1991, 403, 11.
- [19] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, *Organometallics* **1998**, *17*, 1305.
- [20] P. Jutzi, L. O. Schebaum, J. Organomet. Chem. 2002, 654, 176.
- [21] O. T. Beachley, J. C. Pazik, T. E. Glassman, M. R. Churchill, J. C. Fettinger, R. Blom, Organometallics 1988, 7, 1051.
- [22] T. Fjeldberg, A. Haaland, B. E. R. Schilling, M. F. Lappert, A. J. Thorne, *Dalton Trans.***1986**, 1551.
- [23] S. Mathur, H. Shen, V. Sivakov, U. Werner, Chem. Mater. 2004, 2449.
- [24] M. Grenz, E. Hahn, W. W. du Mont, J. Pickardt, Angew. Chem. 1984, 96, 69.
- [25] C. Janiak, Z. Anorg. Allg. Chem. 2010, 636, 2387.
- [26] Åkerstedt, S. Ponou, L. Kloo, S. Lidin, *Eur. J. Inorg. Chem.* **2011**, 3999.

6. Anhang

Abbildung 6.1: ESI-MS-Übersichtsspektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit GaCp* oder InCp* in Toluol, Benzol, Tetrahydorfuran oder Acetonitril.

Abbildung 6.2: ESI-MS-Spektrum im negativen Messmodus: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit GaCp* oder InCp* in Toluol, Benzol, Tetrahydorfuran oder Acetonitril. a) Isotopenaufspaltung (schwarz) von K[Ge₉(Si(SiMe₃)₃)₃]⁻ b) simuliertes Spektrum (rot).

Abbildung 6.3: 1 H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit AlCp* in deuteriertem Benzol.

Abbildung 6.4: ¹H-NMR-Spektrum: Reaktionslösung der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit AlCp*H₂ in deuteriertem Benzol.

Abbildung 6.6: ¹H-NMR-Spektrum: Reaktionslösung der Umsetzung $K[Ge_9(Si(SiMe_3)_3)_3]$ mit GaCp* in deuteriertem Benzol. # unbekanntes Signal.

Abbildung 6.7: a) ¹H-NMR-Spektrum der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit SnCp₂. Die Reaktionslösung wurde trocken gezogen und anschließend wieder in deuteriertem Toluol gelöst. b) SnCp₂ in deuteriertem Toluol. Die mit * markierten Signale stammen vom Restsignal des deuterierten Toluols. # unbekanntes Signal.

Abbildung 6.8: a) ¹H-NMR-Spektrum der Umsetzung K[Ge₉(Si(SiMe₃)₃)₃] mit Sn[N(SiMe₃)₂]₂. Die Reaktionslösung wurde trocken gezogen und anschließend wieder in deuteriertem Toluol gelöst. b) K[Ge₉(Si(SiMe₃)₃)₃] in deuteriertem Toluol. Die mit * markierten Signale stammen vom Restsignal des deuterierten Toluols. # unbekanntes Signal.

Abbildung 6.9: ESI-MS-Spektrum im negativen Messmodus der Verbindung $[K(18-Krone-6)]_4[Ge_9Ga-GaGe_9]\cdot$ 4en: Isotopenaufspaltung (schwarz) von $[Ge_9Ga]^-$, simuliertes Spektrum (blaues Strickdiagramm) von $[Ge_{10}]^-$.

Abbildung 6.10: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Ge₉(SiEt₃)₃]⁻.

Abbildung 6.11: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Ge₉(Si(*i*Pr₃)₃][−].

Abbildung 6.12: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Ge₉(Si(*i*Bu)₃)₃]⁻.

Abbildung 3.13: ESI-MS-Übersichtsspektrum im negativen Messmodus der Verbindung [Ge₉(SnPh₃)₃]⁻.

Abbildung 3.14: ESI-MS-Übersichtsspektrum der Reaktionslösungen Rb₄Ge₉/7-amino-1-trimethylsilyl-5-aza-hepta-3-en-1-in/en.