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Globally Optimal Vertical Direction Estimation
in Atlanta World

Yinlong Liu, Guang Chen and Alois Knoll

Abstract—In man-made environments, such as indoor and urban scenes, most of the objects and structures are organized in the form
of orthogonal and parallel planes. These planes can be approximated by the Atlanta world assumption, in which the normals of planes
can be represented by the Atlanta frames. Atlanta world assumption, which can be considered as a generalized Manhattan world
assumption, has one vertical frame and multiple horizontal frames. Conventionally, given a set of inputs such as surface normals, the
Atlanta frame estimation problem can be solved in one-time by branch-and-bound (BnB). However, the runtime of the BnB algorithm
will increase greatly when the dimensionality (i.e., the number of horizontal frames) increases. In this paper, we estimate only the
vertical direction instead of all Atlanta frames at once. Accordingly, we propose a vertical direction estimation method by considering
the relationship between the vertical frame and horizontal frames. Concretely, our approach employs a BnB algorithm to search the
vertical direction guaranteeing global optimality without requiring prior knowledge of the number of Atlanta frames. Four novel bounds
by mapping 3D-hemisphere to a 2D region are investigated to guarantee convergence. We verify the validity of the proposed method in
various challenging synthetic and real-world data.

Index Terms—global optimization, branch-and-bound, rotation search, imaging geometry.
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1 INTRODUCTION

IN man-made environments, scenes usually have struc-
tural forms (e.g., the layout of buildings and many indoor

objects such as furniture), which can be represented by a set
of parallel and orthogonal planes [1]. Atlanta world makes
an assumption that the man-made scene can be modeled
by a horizontal plane (e.g., ground plane) and many ver-
tical planes (e.g., buildings and walls), then the normals
of the planes, which are called world frames, can describe
the scenes abstractly. In other words, one vertical frame
and multiple horizontal frames could represent Atlanta
world [2], [3]. Therefore, it is a crucial step to estimate these
vertical and horizontal frame directions in computer vision
applications, which is named Atlanta frame estimation [3],
[4]. More specifically, structural world frame estimation
could be utilized as key modules for various high-level
vision applications such as scene understanding [1], [5] and
SLAM [6], [7].

Mathematically, an orientation in 3D Euclidean space
corresponds to a point in the 3D unit sphere (i.e., S2).
This means that the Atlanta frame estimation which esti-
mates multiple orientations is a multiple-clustering (also
multi-model fitting) problem in S2. There have been lots
of general multiple-clustering algorithms [8], [9], [10] and
some of them have been applied in structural world frame
estimation [11], [12]. However, Atlanta frame estimation
is not exactly the same as the general multiple-clustering
problem. It has some special constraints that all horizontal
frames are in a plane and the vertical frame is parallel to
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the normal of the plane. These special constraints reflect es-
sential properties of the Atlanta world assumption. If these
constraints are omitted, it will not only lead to a significant
decrease in accuracy but also increase the dimensionality of
the problem. Furthermore, most of the multiple-clustering
algorithms cannot guarantee global optimality when there
are lots of outliers in observations [13], [14]. Therefore,
recent developments in structural world frame estimation
highlight the imminent need for robust and globally opti-
mal methods by considering the above special orthogonal
constraints [4], [15].

Recently, Manhattan frame estimation [1], which is a
special case of the Atlanta frame estimation, is solved ef-
ficiently by a branch-and-bound (BnB) method with the
orthogonal constraints [15]. However, when the BnB method
is extended to the Atlanta world [3], [4], two problems
appear,

1) The algorithm requires the number of Atlanta
frames to be specified, which can rarely be known
in advance. Although an automatic method is pro-
posed to estimate the number of horizontal direc-
tions in [4], if it is over- or under-estimated, the
global optimum may not occur in the correct direc-
tion.

2) It will suffer the curse of dimensionality. There
are a considerable number of horizontal directions,
whose relationships are unknown which is different
from Manhattan world assumption. Consequently,
the dimensionality of the problem will increase with
the number of horizontal frames, and thus the run-
time of the BnB algorithm will increase greatly.

In this paper, we focus on estimating the unique vertical
direction instead of all directions in Atlanta world at once.
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There are two advantages in comparison with the one-time
solving all directions methods as follows:

1) More flexible. The vertical direction is unique in At-
lanta frames, and we can estimate the vertical direc-
tion even though we don’t know the total number of
the horizontal directions. Additionally, we can also
estimate the vertical direction from some irregular
Atlanta world scenes (e.g., cylindrical buildings in
Atlanta, whose horizontal directions number→∞).

2) More efficient. Vertical direction estimation is solved
in a closed two dimensional space S2, which is
a low-dimensional problem. In other words, only
estimating vertical direction can significantly avoid
the curse of dimensionality in Atlanta world.

Furthermore, estimating the vertical direction first is
always favorable to following operations in practical ap-
plications (e.g., scene classification [16], parsing indoor
scenes [17] and point set registration [18]). Specially, it is
also helpful for estimating other horizontal Atlanta frames,
because given the vertical direction, all other horizontal
directions will be in a plane, and estimating the other
horizontal directions will be a one-dimensional clustering
problem in angular space [4]. In other words, given the
vertical direction in Atlanta world, it is easy to estimate
other horizontal directions with or without knowing the
number of horizontal frames [4], [19].

1.1 Related Work
There is a large body of literature concerned with structural
world frame estimation [1], [4], [15], [20]. Since it is a
clustering problem in S2 with some orthogonal constraints,
we first review the works that apply the classical clustering
or fitting method. With the definition of Atlanta world,
Expectation Maximization (EM) type algorithms, which are
popular for solving the chicken-and-egg problems [21], are
applied in direction estimation [2]. However, the EM-type
algorithms are local methods and have no guarantee of the
global optimality. Therefore, there is an evident risk of local
minima, and their performances rely heavily on a good
initialization [22]. Besides, the RANdom SAmple Consensus
(RANSAC) [23], [24], [25] based multi-structure estimation
algorithms (e.g., T-linkage [26] and J-linkage [27]) are ap-
plied in structural direction estimation [11], [12]. These
RANSAC-type methods are fast, accurate and have the best
performances in many cases, but the their solution is sub-
optimal due to their obvious heuristic nature [4]. More re-
cently, Straub et al. [1] propose a real-time capable inference
algorithm by considering the orthogonal constraints, which
uses an adaptive Markov-Chain Monte-Carlo sampling al-
gorithm.

To assure global optimality, J. Bazin et al. propose glob-
ally optimal methods [3], [4], [13], [14], [15] by applying
branch-and-bound algorithm to solve a consensus set max-
imization problem. The fundamental theory of these global
methods is rotation search [28], [29]. Specifically, the prob-
lem is solved by combining Interval Analysis theory with
BnB algorithm in [14]. By contrast, the method in [13] is
a natural application of Hartley and Kahl’s rotation search
theory in SO(3) [28]. Furthermore, 2D-EGI (Extended Gaus-
sian Image) and its integral image are applied in [15] to

accelerate the calculation of the bounds in rotation search.
Besides, rotation search theory is also extended to Atlanta
frame estimation in [3], [4].

However, Atlanta world is more complex than Manhat-
tan world geometrically, since it has more than three frames.
Consequently, the globally searching method in [3] requires
the number of horizontal directions to be hand-tuned ac-
cording to the scene, which seems unrealistic in practical ap-
plications. Therefore, an automatic two-stage method (meta-
BnB) is proposed in [4] to estimate the number of directions.
Concretely, it first searches the vertical direction and the
horizontal plane in SO(3), then it estimates the horizontal
directions in one dimensional angle space. It is worth noting
that the meta-BnB is also based on rotation search theory in
SO(3). However, searching vertical directions is inherently
optimized in S2, whose dimensionality is less than that of
SO(3).

Since the rotation search theory is closely related to our
work, we then briefly review the rotation search theory
in computer vision filed. The rotation search theory has
achieved great success in geometric vision problems, for
example, point set registration [30], [31], camera calibra-
tion [32], [33] and relative pose estimation [28], [34]. Because
of the great success of rotation search, there have been
several works focusing on improving the efficiency of the
algorithm [15], [31], [35], [36].

More specifically, most of the rotation search methods
rely on the two following lemmas [28]:

Lemma 1. For ∀x ∈ S2, Ra, Rb ∈ SO(3), then

∠(Rax, Rbx) ≤ d∠(Ra, Rb) (1)

where d∠(Ra, Rb) is the angle lying in the range [0, π] of
the rotation RaR

−1
b and ∠(·, ·) denotes the angular distance

between vectors.

Lemma 2. For ∀Ra, Rb ∈ SO(3), then

d∠(Ra, Rb) ≤ ‖ra − rb‖ (2)

where ra and rb are their corresponding angle-axis repre-
sentations. In Lemma 2, there is a clear indication that the
angle distance of two rotations is less than the Euclidean dis-
tance in their angle-axis representation. These two lemmas
are the basis for the success of the rotation search theory.

Additionally, it is also worth noting that the rotation
search usually means optimization in SO(3), which is
closely related to S3. Precisely, the homomorphism from
a unit quaternion sphere (i.e., S3) to SO(3) is a two-to-
one mapping, and then the searching domain SO(3) may
be expressed as a hemisphere (including equator) of the
unit quaternion sphere [36], [37]. However, the estimation
of directions in three-dimensional Euclidean space (i.e.,
Manhattan or Atlanta frame) is inherently optimized in S2.
Unfortunately, there is still a lack of rigid theories regarding
globally optimal optimization in S2. In order to estimate the
vertical directions in Atlanta world, we originally propose
some new and solid mathematical conclusions about search-
ing in S2.

1.2 Our Contribution
In this paper, to overcome the curse of the dimensionality
and avoid the difficulty of requiring the user to specify the
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number of Atlanta frames, we propose a novel method for
vertical direction estimation in Atlanta world.The contribu-
tions of this work are mainly as follows:

• We propose a global searching method for estimating
vertical direction, which is different from conven-
tional rotation search in SO(3) [4]. Since the domain
of the vertical directions is inherently in S2, then
our searching method is more efficient in vertical
direction estimation.

• Four new different bounds for BnB algorithm are
investigated. In contrast to rotation search theory
in SO(3), more parametrizations for hemisphere are
considered, including exponential mapping, stereo-
graphic projection and sphere coordinate system. To
the best of our knowledge, it is the first to propose
such bounds in S2 to solve structural world frame
estimation problem.

2 METHODS

2.1 Problem Formulation
In this paper, we estimate the vertical direction from the
surface normals in Atlanta world. We denote the input
normal set as N = {nj}Nj=1, where nj ∈ S2 is the j-th
effective unit normal, andN is the number of input normals.
In addition, the unknown-but-sought vertical direction is
denoted as v. It is in a hemisphere (S2	), which is defined as:

S2	 = {x ∈ S2|x3 ≥ 0} (3)

where x = [x1, x2, x3]T is a unit vector in R3. Accordingly,
the angle of vertical direction and one of the surface normals
is lying in range [0, π].

To estimate vertical direction robustly, we then apply
the inlier maximisation approach to formulate the objective
function as

max
v∈S2	

N∑
j=1

1

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(4a)

S‖
+

j = 1
(
∠(v,nj) ≤ τ

)
(4b)

S‖
−

j = 1
(
∠(v,nj) ≥ π − τ

)
(4c)

S⊥j = 1
(
|∠(v,nj)−

π

2
| ≤ τ

)
(4d)

where 1(·) is an indicator function which returns 1 if the
condition is true and 0 otherwise and ∨ is the logical
OR operation. | · | is abs function and 0 < τ < π/2
is the inlier threshold. Eq. (4b), (4c) and (4d) mean that
only the surface normals, which are parallel or perpendic-
ular to vertical direction, are inliers. Additionally, because
nT

j v = cos(∠(v,nj)), and when x ∈ [0, π], cos(x) is
a monotonically decreasing function, then an equivalent
formulation can be given by

max
v∈S2	

N∑
j=1

1

(
Q
‖
j ∨Q

⊥
j

)
(5a)

Q
‖
j = 1

(
|nT

j v| ≥ cos(τ)
)

(5b)

Q⊥j = 1
(
|nT

j v| ≤ sin(τ)
)

(5c)

Since there is no arccos operation to solve angle in the
reformulations, it is more efficient than operating angle
inequations.

In rotation search [4], it finds an optimal rotated motion
R rather than the optimal direction vector v directly. Con-
cretely, given a initial direction vector v0 = [0, 0, 1]T and
because R ∈ SO(3), then v = Rv0 ∈ S2. For estimating
vertical direction, it is sufficient to search the entire rotation
domain and find the optimal R to satisfy that Rv0 is the
optimal vertical direction.

2.2 Branch-and-Bound

Finding the optimal v ∈ S2	 to maximize the cardinality
of the inlier set is by no mean a trivial problem [38], [39].
Additionaly, the outlier observations, which are unavoid-
able in the real applications, increase the hardness of the
estimation problem. Because it is well known that a general
robust estimation with outlier observations is an NP-hard
problem [40].

To obtain the robust optimal vertical direction, we then
use the BnB algorithm. The BnB algorithm is one of the
most commonly used tools for solving NP-hard optimiza-
tion problems, and it is widely applied in many global
optimization problems [41]. Briefly, the BnB algorithm recur-
sively divides the searching space into smaller spaces and
estimates the upper bound and lower bound of the optimum
in each subspace. Then, it removes the sub-spaces which
cannot produce a better solution than the best one found
so far by the algorithm. The above process is repeated until
the best optimum is found within the desired accuracy. The
BnB algorithm for estimating vertical direction globally in
Atlanta world is outlined in Algorithm 1. It is worth noting
that the algorithm only needs the surface normals and the
inlier threshold as the inputs without the prior knowledge
of the number of horizontal frames.

Algorithm 1: Estimating vertical direction globally

Input: surface normal set {nj}Nj=1, inlier threshold τ
Output: optimal vertical direction v∗

1 Initialize the searching domain D, upper bound
U ← N , lower bound L← 0, the best branch B← D
and a queue q ← ∅;

2 while |U − L| ≥ 1 do
3 Divide the best branch B into sub-branches;
4 Add the sub-branches with their bounds into q;
5 Update L← max{Li}, U ← max{Ui} for all

branches in q;
6 Remove the branch that Ui < L in q ;
7 Update the best branch B, which has the

maximum upper bound in q;
8 Remove the best branch from q;
9 end

10 v∗ ← center point in best branch B

The key of the BnB algorithm is estimating the upper and
lower bounds of the optimum in each subspace tightly and
efficiently. In this paper, two general bounds are proposed
as follows:
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Proposition 1 (General bounds-1). Given a branch B, if ∃vc ∈
B, ∀v ∈ B, φj , max∠(v,nj), and φ

j
, min∠(v,nj) then

the upper bound can be:

Us(B) =
N∑
j=1

1

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(6a)

S‖
+

j = 1
(
φ
j
≤ τ

)
(6b)

S‖
−

j = 1
(
φj ≥ π − τ

)
(6c)

S⊥j = 1
(
φ
j
− τ ≤ π

2
≤ φj + τ

)
(6d)

the lower bound can be:

Ls(B) =
N∑
j=1

1

(
S⊥j ∨ S

‖+
j ∨ S

‖−
j

)
(7a)

S‖
+

j = 1
(
∠(vc,nj) ≤ τ

)
(7b)

S‖
−

j = 1
(
∠(vc,nj) ≥ π − τ

)
(7c)

S⊥j = 1
(
|∠(vc,nj)−

π

2
| ≤ τ

)
(7d)

Proof. The rigorous proof can be found in appendix A.

Proposition 2 (General bounds-2). Given a branch B, if ∃vc ∈
B, ∀v ∈ B,∠(v,vc) ≤ max∠(v,vc) , ψ, then the upper
bound can be:

Uq(B) =
N∑
j=1

1

(
Q
‖
j ∨Q

⊥
j

)
(8a)

Q
‖
j = 1

(
|nT

j vc| ≥ cos(bτ + ψc)
)

(8b)

Q
⊥
j = 1

(
|nT

j vc| ≤ sin(bτ + ψc)
)

(8c)

where

bτ + ψc =

{
τ + ψ, τ + ψ < π/2

π/2, τ + ψ ≥ π/2
(9)

the lower bound can be:

Lq(B) =
N∑
j=1

1

(
Q‖

j
∨Q⊥

j

)
(10a)

Q‖
j

= 1
(
|nT

j vc| ≥ cos(τ)
)

(10b)

Q⊥
j

= 1
(
|nT

j vc| ≤ sin(τ)
)

(10c)

Proof. The completed proof can be found in appendix B.

Actually, if they have the same vc in both general
bounds, then Ls = Lq . The main difference between gen-
eral bounds-1 and general bounds-2 is the calculation of
the upper bound. More specifically, given a subspace B,
Us(B) ≤ Uq(B), which means general bounds-1 is tighter
than general bounds-2 (Rigorous mathematical proof can be
found in appendix C). In the next sections, we introduce
how to calculate the upper bound in detail.

2.3 Parametrizing the Searching Domain

Before estimating the bounds in BnB algorithm, we must
first parametrize the searching space. In this section, we
first recall the parametrization of SO(3) in rotation search
theory [4], [28], and introduce three different parametriza-
tions of S2	. Furthermore, we analysis the similarities and
differences of the parametrizations between SO(3) and S2	.

2.3.1 Parametrization of SO(3)

It is well known that rotation space SO(3) can be minimally
parametrized with the angle-axis vector, whose norm is the
angle of rotation and direction is the axis of the rotation.
Therefore, the space of all 3D rotations can be represented
by a solid ball of radius π in R3 [30]. Furthermore, the π-
ball is usually relaxed to a 3D cube for ease of manipulation
in the BnB algorithm. Thus Lemma 1 and 2 can be used to
efficiently estimate the bounds of rotation search theory.

The Lemma 2 may seem like one of the most fundamen-
tal parts in rotation search theory. Let us get down to the de-
tails of Lemma 2, and introduce the quaternion to build the
connection with the parametrization of S2	. Geometrically,
the mapping from quaternions (S3) to rotations (SO(3)) is
a two-to-one mapping. We then denote a hyper-hemisphere
as follows:

S3	 = {q ∈ S3|q1 ≥ 0} (11)

where q = [q1, q2, q3, q4]T is a unit vector in R4. Thus
the “upper” hemisphere S3	 of the unit quaternion sphere
is in one-to-one correspondence with the rotation π-ball,
except at the boundary, where the correspondence is two-
to-one [28]. Therefore a conclusion follows as

Lemma 3. For ∀qa, qb ∈ S3	, then

d∠(Ra, Rb) = 2∠(qa, qb) (12)

where Ra, Rb ∈ SO(3) are corresponding rotations of qa
and qb. This lemma implies that the angle of two rotations
is twice the angle between their corresponding quaternions.

Additionally, a unit quaternion q ∈ S3	 can be repre-
sented by an angle-axis vector r as follows:

qT =
[

cos(
‖r‖
2

), sin(
‖r‖
2

)r̂T
]

(13)

where r̂ = r/‖r‖ is a unit vector representing the axis of the
rotation, and ‖r‖ is the angle of rotation. It is an exponential
mapping from the upper quaternion hemisphere to the
solid π-ball. Therefore, there is an important inequation as
follows:

Lemma 4. For ∀qa, qb ∈ S3	, then

2∠(qa, qb) ≤ ‖ra − rb‖ (14)

where ra and rb are angle-axis representations of qa and
qb. The complete proofs of Lemma 3 and Lemma 4 can be
found in [28] and [37].

According to Eq. (12) and (14), we can easily obtain
Lemma 2. In other words, Lemma 2 is separated into two
parts, and Lemma 4 inspires us to parametrize the S2	 by
exponential mapping.
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Fig. 1. Visualization of exponential mapping. Two points va,vb ∈ S2	 are
corresponding to two points da,db ∈ R2 and ∠(va,vb) ≤ ‖da − db‖.
A divided square-shaped branch, whose center is dexp

c , is relaxed into
a circle in R2. Then the preimage of the circle is relaxed into a spherical
patch, whose center is vexp

c , in S2. ψexp is the radius of the relaxed
circle in 2D plane.

2.3.2 Parametrization of S2	: Exponential Mapping

Geometrically, S2	 is a hemisphere in three-dimensional
Euclidean space, and it is inherently a two-dimensional
closed space. In order to parametrize S2	 minimally, we
are inspired from Lemma 4 and propose an exponential
mapping method to map the hemisphere to a 2D-disk.

Concretely, let v = [v1, v2, v3]T ∈ S2	, then it can be
represented by a corresponding point d ∈ R2 in the disk,

vT =
[

sin(θ)d̂T , cos(θ)
]

(15)

where θ ∈ [0, π/2], d̂ is a unit vector in R2 and d = θd̂. Note
that the domain of θ is corresponding to v3 > 0, and geomet-
rically, θ is the radius of the disk. In BnB algorithm, a square
(side=π) circumscribing the mapped disk area is used as the
vertical direction domain for ease of manipulation.

The mapping v 
 d is similar to the mapping from
S3	 to the 3D solid π-ball. Similarly, the mapping is one-
to-one except the boundary (i.e., the equator) where it is
two-to-one. More specifically, the exponential mapping is
closely related to Lie theory [42], [43]. However, in this
paper we will not rely on any knowledge of the Lie groups
theory without distracting readers’ attention and focus on
the direction estimation problem.

Because of the similarity between Eq. (15) and Eq. (13),
we then propose a similar inequation as follows:

Proposition 3. For ∀va,vb ∈ S2	, then

∠(va,vb) ≤ ‖da − db‖ (16)

where da,db are corresponding points of va,vb in the 2D
disk.

Proof. The complete proof is in the appendix D, and the
visualization can be found in Fig. 1.

The exponential parametrization obtains great success
in SO(3) and builds the foundation of Lemma 2. In this
paper, we extend exponential mapping to S2	 and apply
Proposition 3 as one of the fundamental parts in our globally
optimal vertical estimation method.

Fig. 2. Visualization of stereographic projection. A point v ∈ S2	 is
corresponding to a point k ∈ R2 and the divided square-shaped branch
is relaxed to a circle, which is corresponding to an umbrella-shaped
region in S2	.

2.3.3 Parametrization of S2	: Stereographic Projection
In geometry, the stereographic projection is a particular
mapping that could project a hemisphere to a disk in plane,
which means we can also represent the S2	 minimally by
applying stereographic projection.

The stereographic projection is described in Fig. 2. We
denote a point k = [k1, k2]T ∈ R2 in the equatorial plane
and its corresponding point v = [v1, v2.v3]T ∈ S2	, and if the
projection pole is at [0, 0,−1]T (South Pole)(see [44]), then
we have:

k =
[ v1

1 + v3
,

v2
1 + v3

]T
(17)

v =
[ 2k1

1 + k21 + k22
,

2k2
1 + k21 + k22

,
1− k21 − k22
1 + k21 + k22

]T
(18)

Clearly, we can parametrize S2	 minimally by stereographic
projection. Similarly, a square (side=2) circumscribing the
mapped disk area is used as the vertical direction domain
in the BnB algorithm. It worth noting that the stereographic
projection was also applied to accelerate the calculation in
rotation search [35], which inspires our work.

2.3.4 Parametrization of S2	: Spherical Coordinate System
The S2	 can also be parameterized by spherical coordinate
system (Wikipedia: “spherical coordinate system”). Geomet-
rically, the hemisphere is flattened to a rectangle (see Fig. 3).
In the BnB algorithm, the rectangle region can be set as the
initial searching domain.

For ∀v = [v1, v2.v3]T ∈ S2	 and its corresponding point
h = [h1, h2], the mapping from three-dimensional Cartesian
coordinate system to spherical coordinate system is [45]

h1 = arctan(v2, v1) (19)

h2 = arctan(v3,
√
v21 + v22) (20)

where arctan(·, ·) is the four-quadrant inverse tangent func-
tion1. Conversely [46],

v1 = cos(h2) cos(h1) (21)
v2 = cos(h2) sin(h1) (22)
v3 = sin(h2) (23)

where −π ≤ h1 ≤ π and 0 ≤ h2 ≤ π/2 are azimuth angle
and elevation angle, respectively.

1. https://ww2.mathworks.cn/help/matlab/ref/atan2.html
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Fig. 3. Visualization of spherical coordinate system. The hemisphere is
flattened to a rectangle, which leads to significant distortion, especially
near the Pole.

In summary, the space of SO(3) is parametrized and
relaxed to a 3D cube, thus in BnB algorithm, the cube is
recursively divided into eight sub-cubes. By contrast, the
parametrizations of S2	 are both disks in exponential map-
ping and stereographic projection, after that the disk is re-
laxed to a solid square. In the BnB algorithm, we recursively
subdivide it into four smaller squares and calculate the
estimation of the upper bound and lower bound for the op-
timum in each sub-branch. Lastly, S2	 can be parameterized
by a azimuth-elevation rectangle using spherical coordinate
system. Similarly, in the BnB algorithm, the rectangle is
recursively divided into four smaller rectangles.

For ease of understanding, we call the point in the
solid disk/rectangle image-point, meanwhile we call its cor-
responding point preimage-point in S2.

2.4 Estimating Bounds
In this section, we show how to calculate the bounds with
different parametrizations in detail.

2.4.1 Bounds of Rotation Search
We first recall the bounds applied in rotation search. Ac-
cording to Lemma 1 and Lemma 2,

∠(Rax, Rbx) ≤ d∠(Ra, Rb) = 2∠(qa, qb) ≤ ‖ra−rb‖ (24)

⇒ ∠(Rax, Rbx) ≤ ‖ra − rb‖ (25)

Then, we have the following Lemma.

Lemma 5 (rotation uncertainty angle bound). Given a divided
cube-shaped rotation branch Brot, whose center is crot, half-side
is σrot. For ∀R ∈ Brot,∀v0 ∈ S2,

∠
(
Rv0, Rcv0

)
≤
√

3σrot , ψrot (26)

where Rc is matrix representation of crot. Let initial vertical
direction v0 = [0, 0, 1]T ,Rv0 = vrot andRcv0 , vrot

c . Then,

∠(Rv0, Rcv0) ≤ ψrot ⇒ ∠(vrot,vrot
c ) ≤ ψrot (27)

Observe that it satisfies the conditions of Proposition 2:
vrot 
 v, vrot

c 
 vc, ψrot 
 ψ and B
 {Rv0|R ∈ Brot}.
Then, given a divided cube-shaped rotation branch Brot,

the bounds can be

Urot(Brot) =
N∑
j=1

1
(
Q
‖rot
j ∨Q⊥rotj

)
(28a)

Q
‖rot
j = 1

(
|nT

j v
rot
c | ≥ cos(bτ + ψrotc)

)
(28b)

Q
⊥rot
j = 1

(
|nT

j v
rot
c | ≤ sin(bτ + ψrotc)

)
(28c)

Lrot(Brot) =
N∑
j=1

1
(
(Q‖rot

j
∨Q⊥rot

j

)
(29a)

Q‖rot
j

= 1
(
|nT

j v
rot
c | ≥ cos(τ)

)
(29b)

Q⊥rot
j

= 1
(
|nT

j v
rot
c | ≤ sin(τ)

)
(29c)

Note that the bounds are widely used in many geomet-
rical vision problems [4], [15], which are not our original
contributions. Besides, it is worth noting that there seems a
tighter bound than Eq. (26) in [31], however, to calculate the
bound efficiently, it is based on two unproven assumptions.

2.4.2 Bounds Using Exponential Mapping
According to Proposition 3, we have,

Proposition 4. Given a divided square-shaped branch Bexp in
exponential mapping plane, whose center is dexp

c , and half-side is
σexp. For ∀d ∈ Bexp,

∠(v,vexp
c ) ≤

√
2σexp , ψexp (30)

where vexp
c ,v ∈ S2 are preimage points of dexp

c and d.

Proof. This proposition can be derived as follows:

∠(v,vexp
c ) ≤ ‖d− dexp

c ‖ ≤
√

2σexp (31)

which follows Proposition 3 (see Fig. 1).

Proposition 4 and Lemma 5 have similar formulations.
However, to the best of our knowledge, it is the first time
Proposition 4 has been explicitly introduced to the computer
vision field. Obviously, given divided square-shaped branch
Bexp in exponential mapping plane, according to Proposi-
tion 2, the bounds can be:

Uexp
q (Bexp) =

N∑
j=1

1
(
Q
‖exp
j ∨Q⊥expj

)
(32a)

Q
‖exp
j = 1

(
|nT

j v
exp
c | ≥ cos(bτ + ψexpc)

)
(32b)

Q
⊥exp
j = 1

(
|nT

j v
exp
c | ≤ sin(bτ + ψexpc)

)
(32c)

Lexp
q (Bexp) =

N∑
j=1

1
(
Q‖exp

j
∨Q⊥exp

j

)
(33a)

Q‖exp
j

= 1
(
|nT

j v
exp
c | ≥ cos(τ)

)
(33b)

Q⊥exp
j

= 1
(
|nT

j v
exp
c | ≤ sin(τ)

)
(33c)

2.4.3 Bounds Using Stereographic Projection
Stereographic projection has a crucial property that circles
are projected as circles (circle preserving [35], [47]). We
use this property to calculate the first bound based on
stereographic projection.

Proposition 5. Given a divided square-shaped branch Bste in
stereographic projection plane, and its circumscribed circle is Cste

2D .
The preimage of Cste

2D is Cste in S2, whose radius is σste and the
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Fig. 4. The geometry of a divided square in stereographic projec-
tion plane. A divided branch (k1,k2,k3,k4) is projected to a domain
(v1,v2,v3,v4) in S2. The radius of its circumscribed circle is σste, and
the direction of the center point is vste

c , then ψste = ∠(v1,vste
c ) =

arcsin(σste).

direction of its center point is vste
c ; ∀k ∈ Bste, v is its preimage-

point,
∠(v,vste

c ) ≤ arcsin(σste) , ψste (34)

Proof. Because k ∈ Bste ⊂ Cste
2D , then its preimage-point v ∈

Cste. The angle of v and vste
c must be no greater than the

maximum angle ψste (see Fig. 4).

We then explain how to calculate ψste and vste
c in detail.

Given a divided square-shaped branch Bste in mapped
plane, its four vertexes (k1,k2,k3,k4) must be in the edge of
circumscribed circle (see Fig. 4). Then the preimage-points of
the vertexes (v1,v2,v3,v4) must be in the edge of Cste, and
the edge of Cste is a circle. The direction of the center point
vste
c is perpendicular to the plane crossing the circle. Hence,

vste
c is perpendicular to any vector in the circle-plane, which

means vste
c ⊥ (v1 − v2) and vste

c ⊥ (v1 − v3). Let vcross ,
(v1 − v2) × (v1 − v3). Then, vste

c = vcross/‖vcross‖ and
ψste = ∠(vste

c ,v1) = arcsin(σste).
Intuitively, Proposition 5 shows that a divided square-

shaped branch in the stereographic projection plane is re-
laxed to a circle, meanwhile the corresponding domain in
the 3D sphere is also relaxed to a umbrella-shaped patch
surrounded by a circle, whose radius is σste.

Given a divided square-shaped branch Bste in stereo-
graphic projection plane, according to Proposition 2, the
bounds can be

Uste
q (Bste) =

N∑
j=1

1
(
Q
‖ste
j ∨Q⊥stej

)
(35a)

Q
‖ste
j = 1

(
|nT

j v
ste
c | ≥ cos(bτ + ψstec)

)
(35b)

Q
⊥ste
j = 1

(
|nT

j v
ste
c | ≤ sin(bτ + ψstec)

)
(35c)

Lste
q (Bste) =

N∑
j=1

1
(
Q‖ste

j
∨Q⊥ste

j

)
(36a)

Q‖ste
j

= 1
(
|nT

j v
ste
c | ≥ cos(τ)

)
(36b)

Q⊥ste
j

= 1
(
|nT

j v
ste
c | ≤ sin(τ)

)
(36c)

The bounds (Eq. (35) and Eq. (36)) are called circle-
bounds using stereographic projection as the divided square
is relaxed to its circumscribed circle.

2.4.4 Tighter Bounds Using Stereographic Projection

For the stereographic projection, a tighter bound can be
found without relaxing the divided square, and therefore,
it does not apply the circle-preserving property.

Given a divided square-shaped branch Bste in stereo-
graphic projection plane, the preimage of its center is vste

t .
v ∈ S2 is the preimage-point of k ∈ Bste.

φste
j
, min∠(v,nj) (37)

φ
ste

j , max∠(v,nj) (38)

Considering the Proposition 1, the bounds can be

Uste
s (Bste) =

N∑
j=1

1

(
S‖

+ste
j ∨ S‖

−ste
j ∨ S⊥stej

)
(39a)

S‖
+ste

j = 1

(
φste
j
≤ τ

)
(39b)

S‖
−ste

j = 1

(
φ
ste

j ≥ π − τ
)

(39c)

S⊥stej = 1

(
φste
j
− τ ≤ π

2
≤ φstej + τ

)
(39d)

Lste
s (Bste) =

N∑
j=1

1

(
S‖

+ste
j ∨ S‖

−ste
j ∨ S⊥stej

)
(40a)

S‖
+ste

j = 1

(
φstej ≤ τ

)
(40b)

S‖
−ste

j = 1

(
φstej ≥ π − τ

)
(40c)

S⊥stej = 1

(
|φstej −

π

2
| ≤ τ

)
(40d)

where φstej = ∠(vste
t ,nj).

The detailed implementation for calculating the φste
j

and

φ
ste

j can be found in appendix E. Note that the bounds are
tighter than circle-bounds using stereographic projection.
The reason is simple that a divided square is relaxed to a
circle in the circle-bounds but no relaxation in the tighter
bounds. Additionally, because the bounds are based on the
divided square, then we call the tighter bounds square-
bounds using stereographic projection.

2.4.5 Bounds Using Sphere Coordinate System

In this part, we introduce the upper and lower bounds using
sphere coordinate system according to Proposition 1.

Given a divided rectangle-shaped branch Bscs in
azimuth-elevation rectangle, the preimage of its center is vscs

c .
v ∈ S2 is the preimage-point of h ∈ Bscs.

φscs
j
, min∠(v,nj) (41)

φ
scs

j , max∠(v,nj) (42)

Then, the bounds can be

Uscs
s (Bscs) =

N∑
j=1

1

(
S‖

+scs
j ∨ S‖

−scs
j ∨ S⊥scsj

)
(43a)
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S‖
+scs

j = 1

(
φscs
j
≤ τ

)
(43b)

S‖
−scs

j = 1

(
φ
scs

j ≥ π − τ
)

(43c)

S⊥scsj = 1

(
φscs
j
− τ ≤ π

2
≤ φscsj + τ

)
(43d)

Lscs
s (Bscs) =

N∑
j=1

1

(
S‖

+scs
j ∨ S‖

−scs
j ∨ S⊥scsj

)
(44a)

S‖
+scs

j = 1

(
φscsj ≤ τ

)
(44b)

S‖
−scs

j = 1

(
φscsj ≥ π − τ

)
(44c)

S⊥scsj = 1

(
|φscsj − π

2
| ≤ τ

)
(44d)

where φscsj = ∠(vscs
c ,nj).

The implementation for calculating φscs
j

and φ
scs

j can be
found in appendix F.

2.4.6 Comparison of the Bounds
It is well known that the success of a BnB algorithm is
mainly predicated on the quality of its bounds. To show
the relaxation and the tightness, in this section, we compare
these bounds (Table 1) geometrically.

Bounds of rotation search. The searching domain is
parametrized as a 3D cube. In BnB, for each divided sub-
cube, it is first relaxed to its circumscribed ball and then
relaxed to a region in quaternion sphere (Lemma 2). Lastly,
it is relaxed to a spherical patch in S2 using Lemma 1.

Bounds using exponential mapping(exp bounds). Sim-
ilarly, the searching domain is parametrized as a 2D square.
The divided sub-square is first relaxed to its circumscribed
circle and then relaxed to a spherical patch in S2 (Proposi-
tion 4). Therefore, it has a two-step geometrical relaxation.

Circle-bounds using stereographic projection (ste-
cirlce bounds). The searching domain is parametrized as
a 2D square. The divided sub-square is first relaxed to its
circumscribed circle, which is corresponding to a spherical
patch in S2 (circle preserving). In geometric, it has only one
relaxation processing.

Square-bounds using stereographic projection (ste-
square bounds). The searching domain is the same as that of
the ste-circle bounds, however, the ste-square bounds have
no geometrical relaxations.

Bounds using sphere coordinate system (SCS bounds).
The searching domain is parametrized as a 2D azimuth-
elevation rectangle, which leads to significant distortions.
Nonetheless, they have no geometrical relaxations.

Note that what we say about geometrical relaxation is
only for one specific input. There is a relaxation for the
objective, which relaxes the connections among the inputs.
In other words, for a large branch, it hardly obtains the
upper bound simultaneously for all inputs.

Computational efficiency. The exp-bounds and the ste-
circle bounds are calculated more efficiently than the ste-
square bounds and the scs-bounds. This is because that to
estimate φj and φ

j
, it is needed to calculating the angle

range between the nj and four edges of the branch in the
ste-square bounds and the scs-bounds. However, given a

TABLE 1
Different settings for different bounds in Algorithm 1.

Methods upper lower searching domain

RS Urot Lrot 3D cube (side=2π)
Exp-BnB Uexp

q Lexp
q 2D square (side=π)

Ste-circle-BnB Uste
q Lste

q 2D square (side=2)
Ste-square-BnB Uste

s Lste
s 2D square (side=2)

SCS-BnB Uscs
s Lscs

s 2D rectangle(2π × π/2)

branch B, all {nj}Nj=1 share the same ψ in the exp-bounds
and the ste-circle bounds.

3 EXPERIMENTS

In this section, we verify the validity of the proposed
method on challenging synthetic and real-world data.
Firstly, we compared our proposed methods with RANSAC
and rotation search method to show robustness and ef-
ficiency. Then, full Atlanta frame estimation experiments
were conducted to verify that estimating vertical direction
was helpful to estimating all Atlanta frames. Lastly, we
tested proposed methods in two real-world datasets to
verify the practicality. All methods were implemented2 in
Matlab 2019a and executed on an AMD Ryzen 7 2700X
3.7GHz CPU.

3.1 Experimental Setting

The settings of approaches/pipelines run on experiments
were as follows:

• RANSAC: The number of minimal sample subsets
was 2. It could get three directions from two inlier-
inputs (two inlier directions and its cross product
direction), and one of them might be the vertical
direction. Besides, the confidence level ζ = 0.99 was
used for the stopping criterion [23]. The number of
iterations was typically taken as

Ω =
⌈ log(1− ζ)

log(1− (1− ρ)2)

⌉
(45)

where ρ was the outlier proportion, d·e returned the
nearest integer greater than or equal to the input.

• RS: Algorithm 1 with the rotation search bounds.
Note that the bounds were also used in meta-BnB
in [4]. We did not use the Extended Gaussian Image
(EGI) and its integral image [4], [15], because we
focused on the geometry and the validity of the pro-
posed bounds. There might be more efficient bounds
calculation methods for the proposed bounds but it
is out of the scope of this paper.

• Exp-BnB: Algorithm 1 with the proposed bounds
using exponential mapping.

• Ste-circle-BnB: Algorithm 1 with the proposed
circle-bounds using stereographic projection.

• Ste-square-BnB: Algorithm 1 with the proposed
square-bounds using stereographic projection.

• SCS-BnB: Algorithm 1 with the proposed bounds
using sphere coordinate system.
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Fig. 5. Controlled experiments. The first row shows the vertical direction error ε (◦) in different noise levels. The second row shows the runtime
(second) in different noise levels. The third row shows the iteration count in different noise levels.

In addition, to simulate the corrupted inputs in the
synthetic experiments, noise and outlier were added. For
noise, ej ∈ R3 was the j-th random vector, whose elements
were randomly uniformly distributed in the interval [−1, 1].
The noise was simulated by

nj ←−
nj + κej
‖nj + κej‖

(46)

where κ was the amplitude of noise. For outliers, random
orientations were added into the inputs. The total number
of inputs was denoted N and the number of outlier inputs
was denotedNo, then ρ = No/N was the outlier proportion.

3.2 Synthetic Data Experiments
3.2.1 Synthetic Atlanta World
To simulate synthetic Atlanta world data, a random orien-
tation was generated as the vertical direction (vgt). Except
where otherwise specified, 20% inlier inputs were parallel
to vertical direction, and the other 80% inlier inputs were
randomly generated to be perpendicular to the vertical
direction and thus in the ”horizontal plane”. Note that the
number of the horizontal frames were not specified. The
inlier threshold was τ = arctan(κ) according to the noise
level in all the synthetic experiments. Once the vertical
direction was estimated as v∗, the error was calculated by

ε = arccos(abs(vT
gtv
∗)) (47)

To evaluate the results of the experiment, the vertical er-
ror and runtime were recorded. Additionally, because the

2. https://github.com/Liu-Yinlong/Globally-optimal-vertical-
direction-estimation-in-Atlanta-world

iteration of the BnB algorithm reflected the tightness of
the bounds, the iterations of BnB algorithm with different
bounds were also recorded. Moreover, to reduce the ran-
domness, 500 trials were repeated in each setting.

Controlled experiments. We first tested all the methods
with different outlier ratios ρ = {0.1, · · · , 0.6} and different
noise levels κ = {0.005, 0.010, 0.020}. The number of input
was N = 500. The results are shown in Fig. 5. From the
results, we can draw the following conclusions:

• All the four types of bounds in S2 and the bounds
of rotation search could be nested into the BnB al-
gorithm to estimate the vertical direction globally in
Atlanta world.

• The four bounds in S2 had different efficiency. Nev-
ertheless, the proposed bounds in S2 were more
efficient than the bounds of rotation search.

• Broadly, the exp-BnB and the ste-circle-BnB had sim-
ilar efficiency. The ste-square-BnB and the SCS-BnB
had similar efficiency. More specifically, the first two
were more efficient than the last two.

• Generally, the ste-square-BnB and the SCS-BnB had
fewer iterations than the exp-BnB and the ste-circle-
BnB. It revealed the ste-square bounds and the SCS
bounds were tighter, which was consistent with the
previous theoretical analysis.

There are three main reasons why rotation search is
rather inefficient for vertical direction estimation.

1) Multiple solutions. Since Rv0 = v∗, if the initial
direction v0 and the optimal vertical direction v∗

are fixed, there are numerous solutions for R [48]. In
other words, if Rv0 = v∗ is correct, then RvRv0 =
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Fig. 6. High outlier ratio experiments.The first row shows the vertical direction error ε (◦) in different noise levels. The second row shows the runtime
(second) in different noise levels. The third row shows the iteration count in different noise levels.
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Fig. 7. Large noise experiments. The first row shows the vertical direction error ε (◦) in different noise levels. The second row shows the runtime
(second) in different noise levels. The third row shows the iteration count in different noise levels.
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Fig. 8. Full Atlanta frame estimation experiments. The first row shows the frame error ε (◦) in different noise levels. The second row shows the
runtime (second) in different noise levels. The third row shows the iteration count in different noise levels.

Rvv
∗ = v∗ is also correct, where Rv is a rotation

about axis v∗. Therefore, all RvR are solutions. For
the BnB algorithm, if there are multiple solutions,
there are many branches which are very close to one
of the solutions and their objective value are also
close to the ground truth, then the BnB algorithm
must spend lots of time pruning the branches.

2) Higher dimensionality. Since the vertical direction is
inherently a two dimensional problem, searching in
higher dimension leads to lower efficiency.

3) Conservative bound. Since rotation search bounds
have a three-step geometrical relaxation, the bounds
are relatively conservative.

Furthermore, why exp-BnB and ste-circle-BnB algo-
rithms had more iterations while they still run faster? This
was because on one hand, tighter bounds would remove
more aggressively and yield fewer iterations. However,
on the other hand, using tighter bounds in BnB might
be counter-productive if calculating the bound itself took
significant time.

Challenging experiments. We conducted more exper-
iments on challenging data. In this part, we only tested
the bounds in S2, as the bounds of rotation search were
obviously less efficient. The number of input was fixed
N = 500. First, all methods were tested on different high
outlier ratios ρ = {0.65, · · · , 0.9} and different noise levels
κ = {0.005, 0.010, 0.020}. The results are shown in Fig. 6.
Second, all methods were tested on different large noise
levels κ = {0.050, 0.100, 0.200} and different outlier ratios
ρ = {0.1, · · · , 0.6}. The results are shown in Fig. 7. From the
all the results, we can draw the following conclusions:
• The exp-BnB had the highest efficiency among all

BnB-based methods in such experimental settings.
It is worth noting that in large outlier ratio cases
(ρ ≥ 0.8), the exp-BnB algorithm even had compa-
rable efficiency with RANSAC.

• The ste-square-BnB had the least iterations among all
BnB-based methods, which showed the bounds were
very tight.

Theoretically, both ste-square-bounds and SCS-bounds
have no geometrical relaxations, then why SCS-bounds
needed more iterations than ste-square-bounds in the chal-
lenging experiments? This was due to the large distortion
of the searching domain. For example, the domain near
the optimal direction in S2 might be expanded to a scale-
up region in azimuth-elevation rectangle, therefore, the BnB
algorithm needed more iterations to prune the near-optimal
branches.

3.2.2 Full Atlanta frame estimation
In this part, we verified the performance of our proposed
bounds in full Atlanta frame estimation problem. For the
sake of fairness, the experiments were conducted on syn-
thetic Manhattan world and the rotation search method was
from [13] without EGI-acceleration. Our proposed methods
first estimated the vertical frame direction, and then esti-
mated the horizontal frames by a one-dimension clustering
method, which can be called sequential methods (see ap-
pendix G for more details).

To generate the input normals in Manhattan world, we
randomly selected a point Rgt in SO(3) as the Manhattan
frames. In other words, each column ofRgt was correspond-
ing to a Manhattan frame. The experimental settings were
N = 500, κ = {0.005, 0.010, 0.020} and ρ was from 0.1 to
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Fig. 9. The distribution of error for different methods in NYUv2 data.
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0.6. Once the frame directions had been estimated as R∗, the
estimation error was measured by

εm = mean
(

arccos
(
max(abs(RT

gtR
∗))
))

(48)

where mean(·) was average function; arccos(·) was
element-wise arccosine function; max(·) was column-wise
max function. It computed the average error of the three
frames. Note that the solution of rotation search method
inherently satisfies the SO(3) constraint, while the solutions
of our sequential methods were built without this constraint,
as they were formulated for general Atlanta frame estima-
tion.

The results are in Fig. 8. The accuracy of rotation search
method was slightly better than that of the sequential meth-
ods in large noise level. This was because the rotation search
method considered the three orthogonal constraints. Nev-
ertheless, the runtime of rotation search was much longer
than that of the sequential methods, due to the fact that
the sequential methods had lower dimensionality, tighter
bounds and fewer iterations in the BnB framework.

(a) (b)

Fig. 11. Degenerate case in NYUv2 data. (a) a degenerate scene that
has only two main frames. (b) the point cloud of left scene, which is
viewed from the right side.
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3.3 Real Data Experiments

3.3.1 NYUv2 Data

We tested our method on the NYUv2 Dataset [49], which
contained 1449 RGB images, along with the corresponding
depths, as well as camera information. The data involved a
variety of indoor scenes that were considered to be man-
made structural world. In our experiments, we utilized
the data to estimate the vertical direction of the scenes.
Concretely, we generated the normals from the depth image
by the Matlab built-in function pcnormals and estimated
the vertical direction from the downsampled normal data
(N ≈ 3000) for all scenes. The threshold was set to 2◦ in
all methods. For RANSAC, ρ = {0.65, 0.75, 0.85, 0.95} were
tested since the ground truth of the outlier ratio of each
scene was unknown, and the sample iteration was Ω, which
was determined by ρ (Eq.(45)).

The distribution of error (ε, see Eq.(47)) is shown in
Fig.9. The results revealed that the estimation errors of
the BnB algorithms were all concentrated at 0◦ and 90◦.
Because there were some degenerate scenes in the data
set, which were degenerated into Manhattan assumption, or
even worse, only two main orthogonal frames (Fig.11). Es-
timating vertical direction in such degenerate scenes might
return a frame-direction in horizontal plane. Consequently,
some errors were concentrated at 90◦. Furthermore, when
the outlier proportion ρ was set low, the estimation errors
of RANSAC algorithm were not concentrated. When the
outlier proportion ρ was set high, the errors were also
concentrated. Moreover, to demonstrate the results quan-
titatively, the τ -recall curve was presented in Fig. 10, where
the success case was satisfied ε < τ or ε > 90◦ − τ .

Furthermore, the four bounds in S2 had different effi-
ciency. Specifically, the distribution of iteration and runtime
in NYUv2 data are in Fig. 12. More specifically, the median
runtime and iteration can be found in Table 2. Obviously,
the exp-BnB algorithm was the most efficient. On the other
hand, RANSAC ran very fast when the outlier proportion
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TABLE 2
Median runtime and iteration of different methods in NYUv2 data.

Methods median time(s) median iteration

Exp-BnB 0.134 816
Ste-circle-BnB 0.184 1010
Ste-square-BnB 4.256 478
SCS-BnB 4.500 675
RANSAC(ρ = 0.65) 0.007 36
RANSAC(ρ = 0.75) 0.013 72
RANSAC(ρ = 0.85) 0.038 203
RANSAC(ρ = 0.95) 0.344 1840

ρ was set low, however, it might return incorrect results.
If the outlier proportion ρ was set high (ρ = 0.95), its
runtime was longer than that of the exp-BnB algorithm.
Besides, to compare with rotation search, we directly quote
the results from [15]. With rotation search bounds, it needs
117.06s averagely to estimate Manhattan frames for each
scene without input sampling. However, with an efficient
bounds computation method proposed in [15], it needs only
0.07s on average.

3.3.2 Outdoor Data
In this part, we verified the validity of our methods with
the outdoor scene. The data set [50] was recorded in the old
town of Bremen, Germany (see Fig.(13)). It contained 13 3D
scans, each with up to 22,500,000 points. Estimating the ver-
tical direction first might be useful to register the scenes [18].
For each scene, it was considered as an Atlanta world and
[0, 0,−1]T was set as the ground truth of vertical direction
roughly. We firstly down-sampled the inputs using Matlab
built-in function pcdownsample. More specifically, a box grid
filter, whose input gridStep was 0.25, was used to reduce
the inputs (N ≈ 400, 000). After that their normals were
computed by pcnormals, and lastly the vertical direction was
estimated from the obtained normals. ρ = {0.8, 0.9} were
set in RANSAC and inlier threshold τ = 1◦ for all methods
in this experiments.

The results can be found in Table 3 (see appendix H
for each scene results). Note that the ground truth for
vertical direction was roughly set, and the errors were only
indicating that the vertical direction estimation results were
roughly correct. In this outdoor settings, all bounds in S2
can be nested into the BnB algorithm to globally estimate the
vertical direction. Furthermore, the results showed that exp-
BnB and ste-circle-BnB algorithm had similar performance
and were more efficient. Ste-square-BnB had the least itera-
tions among all the methods, however, it needed more time
to calculate the bounds. Furthermore, SCS-BnB algorithm
needed much more time to estimate the vertical direction
in this experiments. Note that RANSAC could also obtain
similar results in this experimental settings. Besides, rotation
search method could not terminate in 1800s (30min) in each
scene. However, according to the results in [4], with the help
of accelerating method, it takes about 80s to estimate Atlanta
frames in the whole scene.

4 CONCLUSION

In this paper, we propose a novel method for estimating the
vertical direction in Atlanta world. It can get the globally

Fig. 13. The whole scene of the Bremen city data, which are merged
using markers as tie points. [50]

TABLE 3
Vertical direction estimation results in outdoor data.

Methods median time(s) iteration median error(◦)

Exp-BnB 1.378 239 1.167
Ste-circle-BnB 1.182 223 1.141
Ste-square-BnB 88.470 118 1.141
SCS-BnB 153.356 219 1.129
RANSAC(ρ = 0.8) 0.941 113 1.140
RANSAC(ρ = 0.9) 3.792 459 1.173

optimal solution by applying BnB algorithm, without re-
quiring any prior knowledge of the number of frames. Since
estimating vertical direction is inherently a two dimensional
problem, we propose new bounds in S2 for BnB which are
different from the conventional bounds in rotation search.

The experimental results show that all the bounds (in S2
or SO(3)) can be nested inside the BnB algorithm to obtain
the global solution, and the bounds in S2 outperform the
bounds in SO(3), which is the state-of-the-art technique,
for estimating vertical direction globally. Furthermore, these
four bounds in S2 have different performance. Generally,
exp-BnB and ste-circle-BnB have similar performance and
are more efficient. Moreover, although ste-square-BnB and
SCS-BnB have tighter bounds, they are rather inefficient
because of the heavy computational burden. In addition
to the quality of the bounds, appropriate parametrization
of searching domain is also an important factor of the
efficiency of the BnB algorithm. This is why ste-square-BnB
is more efficient than SCS-BnB algorithm.

Lastly, since the ste-square-BnB has the least iterations,
there may be a hope to accelerate the calculation of the ste-
square bounds to obtain a faster BnB algorithm in further
work. In addition, since the ste-square bounds are very tight
in S2 according to the experimental results, similarly, there
may be tighter provable bounds in rotation search (S3) [30],
[31].
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