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Abstract

Global sensitivity analysis is a central part of uncertainty quantification with engineering models. Variance-
based sensitivity measures such as Sobol’ and total-effect indices are amongst the most popular and com-
monly used tools for global sensitivity analysis. Mutiple sampling-based estimators of these measures are
available, but they often come at considerable computational cost due to the large number of required
model evaluations. If the computational model is expensive to evaluate, these approaches are quickly ren-
dered infeasible. An alternative is the use of surrogate models, which reduce the computational cost per
sample significantly. This contribution focuses on a recently introduced latent-variable-based polynomial
chaos expansion (PCE) based on partial least squares (PLS) analysis, which is particularly suitable for
high-dimensional problems. We develop an efficient way of computing variance-based sensitivities with the
PLS-PCE surrogate. By back-transforming the surrogate model from its latent variable space-basis to the
original input variable space-basis, we derive analytical expressions for the sought sensitivities. These ex-
pressions depend on the surrogate model coefficients exclusively. Thus, once the surrogate model is built, the
variance-based sensitivities can be computed at negligible computational cost and no additional sampling is
required. The accuracy of the method is demonstrated with two numerical experiments of an elastic truss
and a thin steel plate.

Keywords: Uncertainty quantification, Global sensitivity analysis, Surrogate modelling, PLS-PCE,
Dimensionality reduction, High dimensions,

1. Introduction

Surrogate models have received much attention due to their potential of alleviating computational cost
significantly in applications requiring elaborate and expensive numerical models, see e.g. [1, 2, 3]. A common
example is the propagation of uncertainties through computationally intensive numerical models. The gen-
eral concept of surrogate modeling techniques is to establish an abstract, parametrized input-output-relation
that has similar properties as the original model. The parameters of the surrogate model are determined
based on a finite set of original model evaluations, to maximize similarity between the surrogate and the
original model according to a suitable criterion. Subsequently, the surrogate model can be used to cheaply
approximate the original model and, in the context of uncertainty quantification, compute statistics of the
output or a quantity of interest derived thereof.

In many scenarios, a statistical characterization of the pure model output is less important than an analysis
of its sensitivity with respect to changes and variability in the model inputs. Surrogate models have also
proven useful in efficiently performing model sensitivity analysis - an otherwise computationally intensive
task. Sensitivity analysis is a collection of measures and tools designed to determine how the random inputs
and/or deterministic model parameters of a model influence its output or a quantity of interest derived from
the output. Amongst these, one can discern local (derivative-based) [4, 5, 6, 7, 8] and global [9, 10, 11, 12, 13]
sensitivity measures. Local sensitivities are suitable to determine the impact an input has on the output in
the vicinity of a nominal value, by virtue of the model structure. However, they neglect the global signifi-
cance of the input. Global sensitivity measures on the other hand take into account the entire input variable
support as well as the variability of the inputs over their support. Regression-based sensitivity measures aim
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at linearly regressing the output on its inputs to identify global sensitivity indices; this approach works well
if the output depends approximately linearly on the inputs [11, 12]. A second category of global sensitivity
measures is referred to as ANOVA (ANalysis Of VAriance) [14]. Generally speaking, these measures aim at
quantifying an input variable’s influence (or that of a combination of inputs) through identifying the frac-
tion of output variance it causes. A recent, third category of global sensitivity measures can be summarized
under the terms ’moment-independent’ or ’distribution-based’ [15, 16, 17, 18, 19, 20]. The underlying idea
is to quantify the sensitivity of the output to a given input through the distance between the output density
conditional on the given input from its unconditional counterpart. Our work focusses on variance-based
sensitivity measures. The most commonly used variance-based measures are the Sobol’ index [21] and the
total-effect index [22], which can be computed using Monte Carlo methods [9, 23, 24, 25, 26], Fourier analysis
[27, 28] or surrogate models as in [29, 30]. The works of [29, 30] have derived variance-based sensitivity
measures directly from the model coefficients of conventional polynomial chaos expansions (PCE) [31] and
polynomial-based low-rank approximations (LRA) [32], respectively.

Along these lines, we derive global, variance-based sensitivity measures for the model output from the
coefficients of basis-adapted PCEs [33]. The basic idea of basis adaptation is to identify a low dimensional
latent variable space and construct a PCE in this space. We focus on a recently introduced approach
for identifying the latent variables and computing the corresponding PCE coefficients termed partial least
squares-driven polynomial chaos expansion (PLS-PCE) [34]. PLS-PCE allows application of PCEs in very
high dimensions. By back-transforming the PCE from the latent variable space to the original input variable
space, we enable estimation of the sensitivity indices as with the standard PCE model [29].

The paper is structured as follows: In Section 2, we review the PLS-PCE surrogate model, its construction
and some important properties. In Section 3, we give a brief introduction to variance-based sensitivity
analysis and its application in the context of polynomial basis surrogate models. In Section 4, we develop
the methodology to compute sensitivities based on the model coefficients. In Section 5, we demonstrate the
new method based on two numerical examples and in Section 6 we provide some concluding remarks.

2. Partial least squares and polynomial chaos expansions

Let X be a random vector on the outcome space Rd with joint cumulative distribution function (CDF)
FX and Y(X) = Y ∈ R. If Y is square-integrable, i.e. EX [Y(X)2] < ∞, it belongs to a Hilbert space H
with inner product of any two functions g, h ∈ H

〈g(X), h(X)〉H = EX [g(X)h(X)] (1)

=

∫
Rd

g(x)h(x)fX(x)dx, (2)

where fX(x) is the joint probability density function (PDF) of X. g and h are orthogonal if

〈g(x), h(x)〉H = EX [g(X)h(X)] = 0. (3)

Note, that if g and h can be written as products of univariate functions gi and hi, i = 1, ..., d, of the
components of X and these components are statistically independent, the following holds:

〈g(x), h(x)〉H =

d∏
i=1

EXi
[gi(Xi)hi(Xi)]. (4)

2.1. Polynomial Chaos Expansion

Given a complete and orthonormal basis of H, {hi(X), i ∈ N}, Y may be expressed as a linear combina-
tion of the basis functions:

Y = Y(X) =

∞∑
i=0

bihi(X). (5)
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Then, since Y ∈ H, the approximation

Ŷn = Ŷ(X) =

n∑
i=0

bihi(X) (6)

asymptotically (n→∞) converges to Y in the mean-square sense. Henceforth, without loss of generality, we
will consider the case FX = Φd, where Φd denotes the d-variate independent standard-normal CDF. If the
joint PDF of X is known, one can express X as a function of standard normal random variables through an
iso-probabilistic transformation [35]. Then, one can construct an orthonormal polynomial basis of H using
products of one-dimensional normalized Hermite polynomials

Ψk(X) =

d∏
i=1

ψki
(Xi) (7)

where {ψi(X), i ∈ N} are the normalized (probabilist) Hermite polynomials and k = (k1, . . . , kd) ∈ Nd. The
PCE of maximum total order p reads

Ŷp =
∑
|k|≤p

bkΨk(X). (8)

The total number of basis functions in the PCE P is given combinatorially in terms of the dimensions d and
the maximum total polynomial order p:

P =

(
d+ p

p

)
. (9)

The coefficients b are computed through a projection of Y onto the space spanned by {Ψk, |k| ≤ p}, where
the projection can be transformed into an equivalent ordinary least squares (OLS) problem [36]. Equation (9)
indicates a fast growth of the associated regression problem with increasing dimension d, rendering PCEs
intractable for high-dimensional problems. Sparse PCE methods have been proposed to relax this constraint
by solving a modified, L1-regularized least-squares problem, which penalizes the number of terms in the
expansion and thus reduces P [37]. This is also known under the term ’compressive sampling/sensing’
[38, 39]. Nevertheless, the computation of a sparse PCE still requires computing the entirety of all possible
basis elements, which can become a second (combinatorial) bottleneck in addition to the solution of the
regression problem.

2.2. Basis adaptation

In order to address this problem, one may rotate the PCE representation onto a new basis defined by
the new variables Z = QTX, where Q ∈ Rd×d and QTQ = I, with I denoting the identity matrix. Then,
an equivalent PCE representation is given by [33]

Ŷ Q
p =

∑
|k|≤p

akΨk(Z) =
∑
|k|≤p

akΨk

(
QTX

)
. (10)

The coordinate transformation allows for the construction of PCEs along important directions of the problem
input space. These directions are defined by linear combinations of the original variable vector X, the
coefficients of which are stored in the rows of Q. Then, by retaining only the m < d most important
directions in Q, one obtains a matrix Qm and the corresponding PCE reads

Ŷ Qm
p =

∑
|k̃|≤p

ak̃Ψk̃

(
QT

mX
)
, (11)

where k̃ ∈ Nm. [33] compute the basis adaptation Qm by evaluating first- or second-order PCE coefficients
only with a sparse-grid numerical quadrature. [40] couple this approach with compressive sensing to si-
multaneously identify Qm and the PCE coefficients in the latent space. In [34], we show that important
directions can be identified efficiently based on a set of original function evaluations via partial least squares
(PLS). The next section summarizes the approach.
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2.3. Partial least squares-based PCE

PLS finds a relationship between variables X and Y based on N observations of both quantities [41,
42, 43]. X ∈ RN×d stores observations from X and Y ∈ RN×1 stores the corresponding responses. PLS
sequentially identifies latent components ti ∈ RN×1 such that they have maximum covariance with Y. After
determining each ti, PLS assumes a linear relationship between ti and Y and evaluates the corresponding
coefficient ai of ti by OLS. After each sequence, the matrices X and Y are deflated by the contribution
of the i-th PLS-component. Components are extracted until a certain error criterion is met, which can be
formulated e.g. through the norm of the residual response vector or via cross-validation.

The nonlinear version of PLS in turn relaxes the assumption of a linear relationship between latent
component and the response. A number of nonlinear PLS algorithms have been proposed [44]. Here
we employ the approach of [45, 46], which introduces an additional loop into the algorithm for running a
Newton-Raphson procedure iterating between the current latent component and the response. In the context
of PCE, the nonlinear relationship between the {ti}i=1,...,m and the response is a one-dimensional Hermite
polynomial expansion [34]. The coefficients of the PLS-driven PCE can be computed simultaneously with
the latent variable structure as a byproduct of the PLS algorithm. Ultimately, the nonlinear PCE-driven

Algorithm 1 PCE-driven PLS algorithm [34]

1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: w0

i = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

i = w0
i

8: repeat
9: Compute score: tqi = Ewq

i

10: Fit a 1D PCE of order q: âq
i ← fit

[
F = (aq

i )Tψq(tqi ) + ε
]

11: Set M̂q
i (t) = (âq

i )Tψq(tqi )(t)

12: Compute the error: F̂ = (âq
i )Tψq(tqi ); e = F − F̂

13: Compute: ∆wq
i = (ATA)−ATe with A = ∇w(âq

i )Tψq(Ew)
14: Set: wq

i ← wq
i + ∆wq

i

15: Normalize: wq
i ← wq

i /‖wq
i ‖

16: until ‖∆wq
i ‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [37]
18: end for
19: Set {qi, âqi

i ,w
qi
i } as the triple {q, âq

i ,w
q
i } with the smallest εqLOO

20: Compute score: tqii = Ewqi
i

21: Compute load: pqii = ETtqii /((tqii )Ttqii )
22: Deflate: E ← E − tqii (pqii )T, F ← F − (âqi

i )Tψqi(t
qi
i )

23: i← i+ 1
24: until change in ‖F‖ is smaller than εy
25: return {qi, âqi

i , t
qi
i ,w

qi
i ,p

qi
i }, i = 1 . . . ,m.

PLS algorithm, which is developed in [34] and summarized in Algorithm 1, identifies m latent components.
For each component, it returns the direction ri and the 1-dimensional PCE along this direction, which is
defined by its polynomial order qi and the coefficient vector ai. The polynomial order is identified with
leave-one-out cross validation. For each (i-th) latent component, the nonlinear PLS iteration is repeated for
different polynomial orders and qi is chosen as the order minimizing the leave-one-out error. The PLS-PCE
reads

Ŷ PLS
m = a0 +

m∑
i=1

(aqi
i )Tψqi

[
(ri)

TX̃
]
, (12)
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where a0 = Ê[Y], ψqi(X) is a vector function assembling the evaluations of the one-dimensional Hermite

polynomials up to order qi and X̃ = X − µX , where µX is the columnwise sample mean of the training
data X . The PLS directions ri can be evaluated in terms of the PLS weights wi and loads pi computed by
Algorithm 1 through the following recursive relation [47]:

r1 = w1

ri = wi − ri−1
(
pTi−1wi

)
.

(13)

LetR = [r1, . . . , rm] ∈ Rd×m be the matrix that collects all PLS directions. The matrixR is not necessarilty
orthogonal, i.e. in general RTR 6= I. However, in [34] it is shown that RTR → I as N → ∞ and hence
Eq. (12) is asymptotically equivalent to a PCE of the form of Eq. (11), where only the main effects in the
latent components are considered.

3. Global sensitivity analysis

3.1. Variance-based sensitivity analysis

The idea behind variance-based sensitivity analysis for model outputs Y is to decompose V[Y ] into partial
variances that are attributable to variable combinations in the input X. If X is jointly uniform on [0, 1] and
its components are independent, this is accomplished by projecting Y onto a unique, orthogonal basis with
respect to the uniform joint density. The representation of Y is then the Sobol’-Hoeffding decomposition
[21], which reads:

f(X) = f0 +

d∑
i=1

fi(Xi) +

d∑
i=1

d∑
j=i+1

fij(Xi, Xj) + · · ·+ f12...d(X). (14)

Each summand in equation (14) represents the influence of a distinct variable subset of X, XA, and due
to the orthogonality property, the partial variance associated with A is given immediately by V[fA]. The
Sobol’ index is then the ratio of the partial variance due to fA and the total variance [21]:

SY,A = V[fA]/V[Y ]. (15)

Alternatively, one can utilize the closed Sobol’ index [48], which is based on the partial variance contributed
by XA and any subset of XA, i.e.,

Sclo
Y,A =

∑
B⊆A

V[fB]/V[Y ]. (16)

While the Sobol’ and closed Sobol’ indices are identical for single variables, i.e., card(A) = 1, the former
represents the net interaction in between all elements of XA and the latter represents the total contribution
of all elements of XA. Finally, the total-effect index ST [22, 48] is based on the partial variance contributed
by all variable combinations containing any element from XA, such that

ST
Y,A =

∑
A∩B6=∅

V[fB]/V[Y ]. (17)

The decomposition of equation (14) is generalizable to arbitrary joint distributions with independent com-
ponents through an iso-probabilistic transformation.

3.2. PCE-based sensitivity analysis

A major benefit of representing a response Y ∈ H as Ŷ with an orthogonal basis ofH lies in the simplicity
of finding statistical properties of Ŷ and thus - if the model accurately represents Y - approximately of Y .
Given the model representation (8) with P terms, e.g. the first two moments can be computed as

E[Ŷ ] = b0, V[Ŷ ] =
∑

0<|k|≤p

b2k. (18)
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Moreover, [29] showed that the indices SŶ ,A and ST
Ŷ ,A of representation (8) can also be found merely by

post-processing its coefficients b. For a given subset of the input variables denoted by the index set A, we
define a boolean index vector IA ∈ {0, 1}d×1 s.t. IAi = 0 if i /∈ A and IAi = 1 if i ∈ A. In the same way,
we define such a boolean vector for the multi-index k s.t. Iki = 0 if ki = 0 and Iki = 1 if ki > 0. Then, the
PCE-based sensitivity indices read

ŜŶ ,A =
1

V[Ŷ ]

∑
IA=Ik,
0<|k|≤p

b2k, Ŝclo
Ŷ ,A =

1

V[Ŷ ]

∑
IA−Ik≥0,
0<|k|≤p

b2k, ŜT
Ŷ ,A =

1

V[Ŷ ]

∑
(IA)TIk 6=0,

0<|k|≤p

b2k. (19)

4. Global sensitivity analysis with PLS-PCE

Here we derive expressions for SŶ and ST
Ŷ

for Ŷ of the form (12). Note, that if the columns of R form

an orthonormal basis, i.e., if RTR = I, the sensitivity indices of any latent variable component Zi = rTi X̃
can be obtained immediately as

SŶ PLS
m ,Zi

= Sclo
Ŷ PLS
m ,Zi

= ST
Ŷ PLS
m ,Zi

=

qi∑
j=1

(aqiij )2

/
m∑
i=1

qi∑
j=1

(aqiij )2. (20)

However, as discussed in Section 2.3, the condition on R only holds asymptotically as N →∞. In practice,
the sensitivity indices associated with the latent variables are of less interest than those of the original
inputs. That is, one is interested in computing sensitivities of Ŷ PLS

m to the original input vector X rather
than Z. For convenience, we restate the format of Ŷ PLS

m :

Ŷ PLS
m = a0 +

m∑
i=1

(aqi
i )Tψqi

[
(ri)

T(X − µX )
]
. (21)

In the following two subsections we derive expressions and state corresponding algorithms for computing
the Sobol’ and total-effect indices of the PLS-PCE model response with respect to X for both large and
small sample sizes.

4.1. Computation in the asymptotic limit N →∞
Asymptotically, i.e. for N →∞, we have

lim
N→∞

µX = 0

and [34] proves that
lim

N→∞
‖ri‖= 1 i = 2, . . . ,m,

while the first PLS-direction ‖r1‖ always has length 1. [49] provides a multinomial theorem for non-
normalized probabilist’s Hermite polynomial of order k, which is restated in the following for the normalized
poylnomials.

Theorem 1. Let j ∈ N0 be the polynomial order of the normalized probabilist’s Hermite polynomial ψj,

d ∈ N and X ∈ Rd×1. Let further k ∈ Nd
0 be an index set and s ∈ Rd×1 such that

∑d
i=1 s

2
i = 1. Then,

ψj(s
TX) =

√
j!
∑
|k|=j

d∏
l=1

skl

l√
kl!
ψkl

(Xl)

=
√
j!
∑
|k|=j

sk1
1 · sk2

2 · ... · skd

d√
k1! · k2! · ... · kd!

Ψk(X). (22)
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Therefore, in the asymptotic limit we can use Eq. (22) to write

Ŷ PLS
m = a0 +

m∑
i=1

∑
|k|≤qi

aqii|k|
√
|k|! r

k1
i1 · rk2

i2 . . . r
kd

id√
k1! · k2! . . . kd!

Ψk(X). (23)

In practice, the sample mean decays towards 0 relatively fast, such that the approximation error introduced
by neglecting the variable centering in equation (23) is typically orders of magnitude smaller than the lead-
ing error introduced by the surrogate model itself. The error due to ‖ri‖6= 1 grows with the number of
included components m (with m = 1, the representation is exact since ‖r1‖= 1 always). Alternatively,
it is possible to derive exact expressions with respect to both non-zero sample mean and non-unit-length
component directions and we will do so in Section 4.2.

Equation (23) is merely a linear combination of m standard PCEs, each representing a latent component in
standard PCE format, so that we can write

Ŷ PLS
m = a0 +

∑
|k|≤qmax

ckΨk(X), (24)

where
qmax = max

i∈{1,...,m}
(qi). (25)

The equivalent PCE coefficients c read

ck =

m∑
i=1

aqii|k|
√
|k|!

d∏
l=1

rkl

il√
kl!
, (26)

where
{
aqii|k| : qi < |k|

}
= 0. Thus, one can apply the standard post-processing defined by equations (19) to

format (24) in order to obtain variance-based sensitivity indices based on [29]. The corresponding subroutine
is referred to as PCE sensitivites.

Algorithm 2 efficiently determines the Sobol’ and total-effect indices of a PLS-PCE model. The algorithm
requires to compute the set of multi-indices k = (k1, ..., kd) ∈ Nd that satisfy |k| ≤ qmax. This multi-index
set is only computed once at the beginning using a routine termed multi index. Various methodologies
such as the ball-box-algorithm [50] have been proposed for computing the set of multi-indices of a PCE.
We observe that the index set k required for the PLS-based sensitivity indices is equivalent to that of a
full PCE formulation of maximum polynomial order qmax. Fortunately, the additional degrees of freedom
emerging from the latent variable formulation (i.e. the ri) lead to significantly smaller required polynomial
degrees in PLS-PCE compared to sparse and classical PCE models. That is, the computational bottleneck
of computing k is not critical in most applications.
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Algorithm 2 PLS-based sensitivities - asymptotic case

1: Input PLS components qi,a
qi , ri ∀ i = 1, ...,m

2: Initialize c = 0
3: qmax = max

i∈{1,...,m}
(qi)

4: Compute PCE multi-index set, e.g.: α← multi index(d, qmax) ∈ NP×d

5: for i← 1,m do
6: j = 1
7: while |αj | ≤ qi do
8: Set current multi-index k← αj ∈ N1×d

9: Compute coefficients ck ← aqii|k|
√
|k|!∏d

l=1
r
kl
il√
kl!

10: Augment: cj ← cj + ck
11: j ← j + 1
12: end while
13: end for
14: Compute sensitivities: S, Sclo, ST ← PCE sensitivities(α, c)
15: Return S, Sclo, ST

4.2. Corrections for small samples sizes

The presented methodology to extract sensitivities from a PLS-PCE model is asymptotically exact.
However, PLS-PCE is a surrogate modeling technique, which is particularly suitable when the number of
samples is small compared to the problem dimension. In this case, the exact sensitivities accounting for
non-zero sample mean µX and non-unit-length PLS-directions ri can still be derived. Rewriting equation
(21), we have

Ŷ PLS
m = a0 +

m∑
i=1

(aqi
i )Tψqi

(
‖ri‖(r̃i)T(X − µX )

)
, (27)

where r̃i = ri/‖ri‖. We can view the argument of each polynomial ψj in Eq. (27) as an affine transformation
of the PLS-component z = r̃Ti X. Then, expressing each ψj(βz+γ) in Eq. (27) in terms of ψj(z), where β =
‖ri‖ and γ = −(ri)

TµX , provides a representation of the PLS-PCE model that can be exactly transformed
in the form of Eq. (23) even for small sample sizes (but in the asymptotic limit as well). We start with the
following well-known product theorem [51, 52]:

ψj(βz) =
√
j!

bj/2c∑
l=0

βj−2l(β2 − 1)l√
(j − 2l)!2ll!

ψj−2l(z). (28)

Moreover, expanding ψj(z + γ) in a Taylor series around z yields

ψj(z + γ) =

j∑
t=0

(
j

t

)√
t!

j!
γj−tψt(z). (29)

Consequently,

ψj

(
‖ri‖(r̃i)T(X − µX )

) (28)
=
√
j!

bj/2c∑
l=0

ζ1(j, l)ψj−2l((r̃i)
T(X − µX ))

(29)
=
√
j!

bj/2c∑
l=0

ζ1(j, l)

j−2l∑
t=0

ζ2(j, l, t)ψt((r̃i)
TX) (30)

(22)
= j!

bj/2c∑
l=0

ζ1(j, l)

j−2l∑
t=0

ζ2(j, l, t)
∑
|k|=t

ζ3(k)Ψk(X),
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where

ζ1(j, l) =
‖ri‖j−2l(‖ri‖2−1)l√

(j − 2l)!2ll!
(31)

ζ2(j, l, t) =

(
j − 2l

t

)√
t!

(j − 2l)!
(−(ri)

TµX )j−2l−t (32)

ζ3(k) =
r̃k1
i1 · r̃k2

2 . . . r̃kd

d√
k1! · k2! . . . kd!

. (33)

In the same way as for the asymptotic formulation, this yields cumulative coefficients for a given multivariate
basis function associated with k. An efficient way to compute the equivalent PCE-coefficients, which ensures
the index set α only has to be computed once, is presented by Algorithm 3.

Algorithm 3 PLS-based sensitivities - non-asymptotic case

1: Input PLS components ai, qi, ri ∀ i = 1, ...,m
2: Initialize c = 0
3: qmax = max

i∈{1,...,m}
(qi)

4: Compute PCE multi-index set, e.g.: α← multi index(d, qmax) ∈ NP×d

5: for i← 1,m do
6: for j ← 0, qi do
7: for l← 0, bj/2c do
8: Compute ζ1(j, l) from equation (31)
9: for t← 0, j − 2l do

10: Compute ζ2(j, l, t) from equation (32)
11: Get the multi-index subset of length t: A = {αp : |αp| = t}
12: for p← 1, len(A) do
13: Get current multi-index k← αp ∈ N1×d

14: Compute ζ3(k) from equation (33)
15: Augment: cp ← cp + j!aqiit ζ1ζ2ζ3
16: p← p+ 1
17: end for
18: end for
19: end for
20: end for
21: end for
22: Compute sensitivities: S, Sclo, ST ← PCE sensitivities(α, c)
23: Return S, Sclo, ST

4.3. A comment on variance-based sensitivity analysis with the standard basis adaptation format

In the previous two subsections, we have derived expressions for the Sobol’ and total-effect index of a
basis-adapted PCE of the format (12), which differs from the standard basis adaptation format (11). While
the former is a summation of m univariate PCEs of m latent variables, the latter represents an m-variate
PCE of the latent variables. In the following we state an expression for the standard basis-adapted PCE
format in terms of Hermite polynomials of the original inputs only. We write k̃ ∈ Nm and k ∈ Nd to express
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multi-indices in the latent and original input spaces, respectively. Then,

Ŷ Qm
p

(11)
=

∑
|k̃|≤p

ak̃Ψk̃

(
QT

mX
)

(22)
=

∑
|k̃|≤p

ak̃

m∏
j=1

∑
|k|=k̃j

√
|k|!

d∏
`=1

Qk`

m,`j√
k`!

ψ` (X`)

=
∑
|k̃|≤p

ak̃

m∏
j=1

∑
|k|=k̃j

ζkΨk (X) , ζk =
√
|k|!

d∏
`=1

Qk`

m,`j√
k`!

. (34)

Back-transforming format (34) to a standard PCE is non-trivial due to the inner summation, which induces
multiple occurences of the k-th multivariate basis polynomial Ψk in the full expansion. Instead of back-
transforming Eq. (34) to a standard PCE, one may plug it directly in the definitions of the variance-based
sensitivity indices in Eqs. (15) & (17) and collect the partial variance contributions associated with any Ψk.
Such an approach is chosen in [30] for deriving variance-based sensitivities of canonical LRAs. We leave this
task for a future work. We remark that for the case where the basis-adapted format of Eq. (11) does not
consider mixed effects, i.e. it is |k̃| = max(k̃i), the coefficients of the equivalent standard PCE representation
will be identical to the ones defined in Eq. (26) with rij set to Qm,ij . In such case, Algorithm 2 is directly
applicable for computing the sensitivity indices.

5. Numerical experiments

In this section, we evaluate the proposed methods with one low-dimensional and one high-dimensional
numerical experiment. We examine the performance of both the asymptotic approximation proposed in
Algorithm 2 and the exact computation performed with Algorithm 3. The results are compared to those
obtained with other surrogate modelling techiques, namely sparse PCE based on least-angle regression [37]
and LRAs in the canonical polyadics format [30]. For all polynomial bases (sparse PCE, LRA, PLS-PCE)
we prescribe a maximum degree of p = 10, for the LRA a maximum rank of R = 10 and for the PLS-PCE
the same maximum number of components, i.e. m = 10. When computing LRAs, we use an adaptive
scheme for the rank selection while considering every polynomial order up to p within the selected ranks
[32]. All experimental designs are generated via latin hypercube sampling. In both examples, we draw 100
random experimental designs to quantify the relative error mean and standard deviation, where the error
for a quantity Q with respect to to its reference solution Qref is defined as their difference:

εQ = Q−Qref .

In our studies, Q refers to the Sobol’ and the Total-effect indices and the respective reference solutions Qref

are obtained with double-loop Monte Carlo and the estimators stated in [23, 26] depending on the example.
The latter estimators are based on drawing a single set of n independent input samples of dimensions d
and splitting them in two equally sized subsets. Permuting columns between the subsets yields a dependent
sample of size n(d + 2)/2 based on which all Sobol’ and total-effect indices can be estimated. We refer to
these as permutation matrix estimators.

5.1. Elastic truss

We consider an elastic truss that consists of 23 rods as depicted in Figure 1 [53]. Horizontal and diagonal
rods have cross-sections A1, A2 and Young’s moduli E1, E2, respectively. The truss sustains 6 vertical
point loads P1 - P6. The input variable definitions are provided in Table (1). We compute Sobol’ and
total-effect indices for the maximum truss deflection umax using Algorithm 2. Reference solutions (direct
Monte Carlo - DMC) are obtained based on n = 106 independent samples (Figure 2) with the permutation
matrix estimators.
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4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 1: 2-D truss example.

Table 1: Input variable definitions of the truss example.

Random Distribution Mean Standard
Variable deviation
A1 [m2] Log-Normal 2 · 10−3 2 · 10−4

A2 [m2] Log-Normal 1 · 10−3 1 · 10−4

E1, E2 [Pa] Log-Normal 2.1 · 1011 2.1 · 1010

P1 - P6 [N ] Gumbel 5.0 · 104 7.5 · 103

Figure 2 indicates good agreement of the PLS-PCE-based sensitivities with the reference solution. Fig-
ure 3 shows that all three surrogate-based sensitivity indices are estimated with similar mean relative error
and convergence rate as N increases. Figure 4 indicates the same for the relative error variance. Figure 5
shows a performance comparison of Algorithms 2 and 3 for the truss. Here, the asymptotic approximation
introduces only negligible error into the sensitivity estimate. For variables of little significance, which yield
small absolute values for the corresponding sensitivity indices (e.g. E2, A2), the surrogate modelling error
is much larger than the error due to the asymptotic approximation of the sensitivity indices so that there is
no visible difference left in the error plots.

Figure 2: Sobol’ (left) and total-effect (right) indices of umax obtained with N = 100.
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Figure 3: Mean relative errors for the two most influential inputs E1 and A1, computed with PCE, LRA and PLS-PCE.
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Figure 4: Relative error standard deviation for the two most influential inputs E1 and A1, computed with sparse PCE, LRA
and PLS-PCE.
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Figure 5: Mean relative errors with 90% CI, computed with asymptotic approximation (Algorithm 2) and exactly (Algorithm
3).
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5.2. Steel plate

For the second example, we consider a modified version of the example given in [54], which consists of
a low-carbon steel plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole of radius 0.02 m
located at the center. The Poisson ratio is set to ν = 0.29 and the density of the plate is ρ = 7850 kg/m3. The
horizontal and vertical displacements are constrained at the left edge. Both the surface load q, which acts on
the right plate side, and the plate’s Young’s modulus E(x, y) are considered uncertain and spatially variable.
Both are described by homogeneous random fields in two and one spatial dimension, respectively. E has
log-normal marginal distribution, mean value µE = 2×105 MPa and standard deviation σE = 3×104 MPa.
The autocorrelation function of the underlying Gaussian field lnE is modeled by the isotropic exponential
model

ρlnE(∆x,∆y) = exp(−
√

∆x2 + ∆y2/lE) (35)

with correlation length lE = 0.08m. The random field lnE is discretized by a Karhunen-Loève-expansion
(KLE), i.e.

E(x, y) = exp

{
µlnE + σlnE

dE∑
i=1

√
λEi ϕ

E
i (x, y)ξEi

}
, (36)

where µlnE and σlnE are the parameters of the log-normal marginal distribution of E, {λqi , ϕE
i } are the

eigenpairs of the correlation kernel (35) and ξE ∈ RdE×1 is a standard-normal random vector. The number
of terms in the expansion dE is chosen such that 90% of the random field variance is represented by the
discretization (36), which yields dE = 169. Selected eigenfunctions of ρlnE are shown in Figure 7. q also has
log-normal marginal distribution with mean value µq = 60 MPa and standard deviation σq = 12 MPa. The
autocorrelation function of the underlying Gaussian field ln q is also modeled by an isotropic exponential
model,

ρln q(∆y) = exp(−|∆y|/lq) (37)

with correlation length lq = 0.02m. The random field ln q is also discretized by a KLE, s.t.

q(y) = exp

µln q + σln q

dq∑
i=1

√
λqiϕ

q
i (y)ξqi

 , (38)

where µln q and σln q are the parameters of the log-normal marginal distribution of q, {λqi , ϕq
i } are the

eigenpairs of the load correlation kernel (37) and ξq ∈ Rdq×1 is a standard-normal random vector constituting
the model input of the plate together with ξE , i.e. X = [ξq, ξE ]T . With the same accuracy criterion on the
represented random field variance as for E (> 90%) , one obtains dq = 32. The first 4 eigenfunctions of ρln q

are shown in Figure 8.
The stress field

σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ,

strain field
ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T

and displacement field
u(x, y) = [ux(x, y), uy(x, y)]T

of the plate are given through elasticity theory, namely the Cauchy-Navier equations [55]. Given the con-
figuration of the plate, the model can be simplified under the plane stress hypothesis, which yields

G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0. (39)

Therein, G(x, y) = E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]T is the vector of body forces
acting on the plate. Eq. (39) is discretized with a finite-element method. That is, the spatial domain of
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Figure 6: FE-mesh of 2D-plate model with uncertain Young’s modulus E subject to random surface load q.
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Figure 6: FE-mesh of 2D-plate model with uncertain Young’s modulus E subject to random surface load q.

the plate is discretized into 282 eight-noded quadrilateral elements, as shown in Figure 6. The scalar model
output is the maximally occurring first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2xy.

The FE-model of the plate with random inputs is illustrated in Figure 6. We compute sensitivity indices
for both the random variables characterizing the uncertainty associated with the single modes of the KL-
decompositions as well as for the two random fields as such. The random field sensitivity analysis can be
understood as interpreting each random field as a single input. Thus the variance decomposition of the
model output with respect to its inputs is computed once with respect to each single random variable input
and once with respect to two subgroups of these random variables each characterizing one of the random
fields in the problem description. Random field-oriented Sobol’ indices are always of closed form (see Equa-
tion (16)) as the classical Sobol’ index would conceal most of the contributed variance. The PLS-PCE-based
sensitivity indices are computed with Algorithm 2 and compared against LRA-based sensitivities and Monte
Carlo reference solutions. The latter (DMC) are obtained with 4 · 106 samples using the double-loop (2 · 103

samples per stage) to compute the random field sensitivities and with n = 2 × 104 independent samples
using the permutation matrix estimators to compute the random variable sensitivities. For this application,
sparse PCE surrogates are difficult to obtain beyond relatively low total polynomial degrees (p ≤ 3) due to
the large input dimension d. PCE-based sensitivity indices are thus not considered in this study.

The random field-oriented sensitivity index means are plotted in Figure 9 and attribute a larger influ-
ence to the random load field q(y) compared to the material parameter field E(x, y). The PLS-PCE-based
indices are consistently closer to the reference than the LRA-based indices while both surrogate-based in-
dices approximate the reference well. According to Figure 10, both surrogate indices converge in standard
deviation with increasing N while the LRA-based mean relative error does not decrease further beyond a
certain sample size. The PLS-PCEs are superior in this respect as the corresponding mean relative error
decreases further as N → 103. The means of the sensitivity indices of the random variables correspond-
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Figure 7: The nine most important eigenfunctions of the exponential, isotropic Young’s modulus correlation kernel ρlnE .
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Figure 8: First four eigenfunctions of exponential load correlation kernel ρln q , ϕq
1(y) - ϕq

4(y).

Figure 9: Closed Sobol’ (left) and total-effect (right) indices for the two random fields q and E obtained with N = 103 .

ing to the KL eigenmodes (the 10 most important ones) are plotted in Figure 11. The random variable
corresponding to the first mode of the load random field is by far the most important input. The next 9
random variable inputs in the ranking all correspond to modes of the material parameter field E(x, y) and
their associated eigenfunctions are plotted in Figure 7. For the largest mode-oriented sensitivity indices, the
PLS-PCE yields slightly better approximations of the reference than the LRA while both approximations
are fairly accurate. Figures 12 & 13 show the convergence study of the mode-oriented Sobol’ and total-
effect indices as N increases. The dominant random variable ξq1 reproduces the convergence behaviour of
the random field-oriented sensitivity study. Namely, the mean relative error of the LRA-based sensitivity
reaches a plateau and increases again after reaching a certain experimental design size (N ≈ 300). The
remainder of the 10 most important inputs (all E-modes) show consistent convergence in the relative error
mean and standard deviation as N increases.

18



Figure 10: Relative error mean and standard deviation for sensitivity estimates of the maximum first main stress to q and E.

Figure 11: Sobol’ (left) and total-effect (right) indices for the ten most important random field modes obtained with N = 103 .
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Figure 12: Relative error mean and standard deviation for the Sobol’ and total-effect indices of the ten (1.-5.) most influential
model inputs computed with LRA and PLS-PCE over varying experimental design size N .
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Figure 13: Relative error mean and standard deviation for the Sobol’ and total-effect indices of the ten (6.-10.) most influential
model inputs computed with LRA and PLS-PCE over varying experimental design size N .
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6. Conclusion

This paper derives analytical expressions for variance-based sensitivity indices of PLS-PCE surrogate
model outputs and formulates two algorithms for their efficient computation. The expressions for the
sensitivities involve only the surrogate model coefficients. Thus, these sensitivities can be computed with
negligible additional computational effort once the surrogate model is identified by a mere post-processing
of the model coefficients. For the first algorithm, a multinomial theorem for Hermite polynomials is applied
to derive expressions for the sensitivity measures based on the model coefficients, which is asymptotically
exact. That is, with the number of samples N →∞, these estimators exactly match the theoretical Sobol’
and total-effect indices of the surrogate model. For the second algorithm, corrected expressions are derived,
which are exact also when N is small. These can be used when the experimental design is small. The
sensitivity estimates obtained with both algorithms are compared to Monte-Carlo-based reference solutions
as well as estimates based on sparse PCEs and LRAs for two different numerical examples: A low-dimensional
(d = 10) truss example as well as a high-dimensional plate example (d = 201). For both examples, the PLS-
PCE-based sensitivity estimates approximate the reference solution well and perform at least as good as the
two alternative surrogate-based estimators. Finally, we comment on the applicability of our approach to
general basis adaptation formats: We recast the standard basis adapted format in terms of the original input
but find that a back-transformation to a standard PCE format based on the stated expression is non-trivial.
Instead, sampling-free variance-based sensitivity indices may be computed for standard basis-adapted PCEs
by analysing the stated expression term by term as done for canonical LRAs in [30]. We leave this to future
research. The presented procedure can be extended to multivariate output in combination with the PLS2
algorithm [56].
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[11] B. Iooss, P. Lemâıtre, A review on global sensitivity analysis methods, in: C. Meloni, G. Dellino (Eds.), Uncertainty
management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer, 2015.

[12] P. Wei, Z. Lu, J. Song, Variable importance analysis: a comprehensive review, Reliability Engineering & System Safety
142 (2015) 399–432.

[13] E. Borgonovo, E. Plischke, Sensitivity analysis: a review of recent advances, European Journal of Operational Research
248 (2016) 869–887.

[14] B. Efron, C. Stein, The jackknife estimate of variance, The Annals of Statistics (1981) 586–596.
[15] E. Borgonovo, A new uncertainty importance measure, Reliability Engineering & System Safety 92 (2007) 771 – 784.
[16] Q. Liu, T. Homma, A new importance measure for sensitivity analysis, Journal of Nuclear Science and Technology 47

(2010) 53–61.

22



[17] L. Li, Z. Lu, J. Feng, B. Wang, Moment-independent importance measure of basic variable and its state dependent
parameter solution, Structural Safety 38 (2012) 40 – 47.

[18] E. Borgonovo, S. Tarantola, E. Plischke, M. Morris, Transformations and invariance in the sensitivity analysis of computer
experiments, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (2014) 925–947.

[19] C. Zhou, Z. Lu, W. Li, Sparse grid integration based solutions for moment-independent importance measures, Probabilistic
Engineering Mechanics 39 (2015) 46–55.

[20] G. Greegar, C. Manohar, Global response sensitivity analysis of uncertain structures, Structural Safety 58 (2016) 94–104.
[21] I. Sobol’, Sensitivity estimates for nonlinear mathematical models, Math. Modeling & Comp. Exp 1 (1993) 407–414.
[22] T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering &

System Safety 52 (1996) 1 – 17.
[23] M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communications 117 (1999) 35 – 43.
[24] I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Mathematics

and computers in simulation 55 (2001) 271–280.
[25] S. Kucherenko, et al., Global sensitivity indices for nonlinear mathematical models, review, Wilmott Mag 1 (2005) 56–61.
[26] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis of model

output. design and estimator for the total sensitivity index, Computer Physics Communications 181 (2010) 259–270.
[27] R. Cukier, C. Fortuin, K. E. Shuler, A. Petschek, J. Schaibly, Study of the sensitivity of coupled reaction systems to

uncertainties in rate coefficients. i theory, The Journal of chemical physics 59 (1973) 3873–3878.
[28] G. Archer, A. Saltelli, I. Sobol, Sensitivity measures, anova-like techniques and the use of bootstrap, Journal of Statistical

Computation and Simulation 58 (1997) 99–120.
[29] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety 93

(2008) 964 – 979.
[30] K. Konakli, B. Sudret, Global sensitivity analysis using low-rank tensor approximations, Reliability Engineering & System

Safety 156 (2016) 64 – 83.
[31] D. Xiu, G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM Journal on

Scientific Computing 24 (2002) 619–644.
[32] M. Chevreuil, R. Lebrun, A. Nouy, P. Rai, A least-squares method for sparse low rank approximation of multivariate

functions, SIAM/ASA Journal on Uncertainty Quantification 3 (2015) 897–921.
[33] R. Tipireddy, R. Ghanem, Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics 259 (2014)

304 – 317.
[34] I. Papaioannou, M. Ehre, D. Straub, PLS-based adaptation for efficient pce representation in high dimensions, Journal

of Computational Physics 387 (2019) 186 – 204.
[35] M. Rosenblatt, Remarks on a multivariate transformation, The annals of mathematical statistics 23 (1952) 470–472.
[36] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive approach by regression, European Journal

of Computational Mechanics 15 (2006) 81–92.
[37] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least-angle regression, Journal of Compu-

tational Physics 230 (2011) 2345 – 2367.
[38] A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational

Physics 230 (2011) 3015–3034.
[39] L. Yan, L. Guo, D. Xiu, Stochastic collocation algorithms using `1−minimization, International Journal for Uncertainty

Quantification 2 (2012) 279–293.
[40] P. Tsilifis, X. Huan, C. Safta, K. Sargsyan, G. Lacaze, J. C. Oefelein, H. N. Najm, R. G. Ghanem, Compressive sensing

adaptation for polynomial chaos expansions, Journal of Computational Physics 380 (2019) 29 – 47.
[41] S. Wold, A. Ruhe, H. Wold, W. Dunn, III, The collinearity problem in linear regression. the partial least squares (PLS)

approach to generalized inverses, SIAM Journal on Scientific and Statistical Computing 5 (1984) 735–743.
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