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Abstract

From protein interactions to social networks, complex systems of interlinked entities
are endemic in a connected world and graphs are a powerful abstraction for capturing
their structure. Accordingly, we have a rich literature of machine learning techniques for
graph data to solve problems ranging from fraud detection to cancer classification. Since
in reality data is unreliable understanding the robustness of these techniques to noise
and adversaries is critical. The contributions of this thesis deepen our understanding of
robustness for three types of models: unsupervised, generative, and semi-supervised. First,
we derive a noise-resilient variant of the classical spectral embedding, and we introduce
Gaussian embeddings that represent nodes as distributions to capture uncertainty. Then
we study the sensitivity of node embeddings to graph poisoning. Next, we develop a
generative model that explicitly accounts for anomalies and detects clusters obfuscated by
noise. Finally, we derive provable robustness guarantees. We propose the first certificate
w.r.t. structure perturbations for a large class of PageRank-based models, and we derive
a general certificate for discrete data applicable to any graph classifier.
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Zusammenfassung

Von Protein-Interaktionen bis hin zu sozialen Netzerken, komplexe Systeme miteinander
verbundener Einheiten sind allgegenwärtig in einer vernetzten Welt. Graphen können dabei
als wirkmächtige Abstraktion dienen, um deren Strukturen zu erfassen. Dementsprechend
gibt es eine umfassende Literatur zu Techniken im Bereich maschinelles Lernen mit
Graphen, um Probleme wie Betrugserkennung oder Krebsklassifizierung zu lösen. Weil
Daten in der Realität nicht verlässlich sind, ist es grundlegend wichtig, die Belast-
barkeit dieser Techniken gegenüber Störungen und Angreifern zu verstehen. Die vor-
liegende Dissertation vertieft unser Verständnis von Robustheit für drei Modelltypen:
unüberwachtes, generatives, und teilweise überwachtes Lernen. Zuerst wird eine Variante
des klassischen Spektralen Einbettens entwickelt, die resilient ist gegenüber Rauschen
in den Daten. Dabei werden Formen Gauß’scher Einbettung vorgestellt, die Knoten als
Wahrscheinlichkeitsverteilung repräsentieren, um Unsicherheit zu erfassen. Danach wird
die Sensitivität von Knoteneinbettungen gegenüber sogenannter Vergiftungs-Angriffe
(engl. poisoning attacks) hin untersucht. Daraufhin wird ein generatives Modell entwickelt,
das explizit Anomalien berücksichtigt und Cluster entdeckt, die durch Rauschen in den
Daten verborgen sind. Schließlich werden mathematisch beweisbare Robustheitsgarantien
abgeleitet und das erste Zertifikat mit Blick auf Strukturstörungen für eine große Klasse
PageRank-basierter Modelle entwickelt. Zudem wird ein allgemeines Zertifikat für diskrete
Daten abgeleitet, das auf jeden Graph-Klassifikator anwendbar ist.
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1 Introduction

In the early 1900s the German public was fascinated by the extraordinary mathematical
ability of a horse named Clever Hans (der Kluge Hans). Hans was able to perform
arithmetic and other intellectual tasks, and would provide the answer by tapping with his
hoof the correct number of times.1 Upon closer investigation however, it was discovered
that the horse was giving the right answers by observing the minute reactions and the
body language of the people around him. The eponymous Clever Hans effect, which
has been broadly observed from sniffing dogs to reinforcement learning agents, can be
summarized as the problem of learners solving a task by relying on spurious correlations.

With the increasing number of machine learning models deployed in safety-critical
environments and decision-making contexts that involve humans, it is crucial to detect
and mitigate similar effects in our models in order to ensure they are reliable. Accordingly,
in this thesis we study the robustness of graph-based models to noise and adversaries.

1.1 Noise and Adversaries

While we can build models that show seemingly human-level performance (on narrowly
defined tasks in laboratory conditions) as soon as the distribution of inputs differs even
slightly from the one used during training2 the behavior of most models is unpredictable.
More importantly, adversaries can take advantage of this lack of robustness and easily
craft adversarial examples – deliberate perturbations of the data designed to achieve a
specific and often malicious goal. Even in scenarios where adversaries are not present
we should examine the performance of our models in the worst case, i.e. treat nature
as an adversary, since in reality data can be noisy, incomplete, anomalous, or simply
different from what we have previously observed. Ideally, we would like our models to
fail gracefully and provide guarantees about (the range of) their validity.

The sensitivity to noise, small adversarial perturbations, and more generally distribution
shift between the training and test environment, has been conclusively demonstrated
for many machine learning approaches from classic models like SVMs [15] to modern
deep learning models [16]. However, research mostly has focused on scenarios assuming
identically and independently distributed (i.i.d.) data such as images or tabular data. In
contrast, in this thesis we focus on models for graph data where the i.i.d. assumption is
explicitly violated which mandates a different set of techniques to study and improve
their robustness. Despite receiving less attention relative to e.g. images studying the
robustness of graph data, as we argue in the next section, is of utmost importance.

1If his owner Von Osten would ask Hans, “If the eighth day of the month comes on a Tuesday, what is
the date of the following Friday?” Hans would answer by tapping his hoof eleven times.

2For example, data generated during a pandemic can be significantly different from normal.
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1 Introduction

1.2 Machine Learning on Graphs

Neural connections in the brain, social networks, interactions between proteins, and the
structure of the Web seem to be entirely disparate phenomena at a first glance. Yet, if we
abstract them as graphs – simply a set of nodes connected by a set of edges – we can view
and study them through a common lens. This powerful abstraction dates back to 1736
when L. Euler used it to solve the famous problem of the seven bridges of Königsberg,
laying the foundations of graph theory. Beyond a shared abstraction these systems of
interconnected entities tend to exhibit similar structural patterns such as homophily or
small-world effects which we can leverage to build broadly applicable models. Indeed,
graph-based machine learning models are used across many domains for various high
impact applications such as: drug discovery [17], fraud detection [18], categorization of
scientific papers [19], traffic forecasting [20], and breast cancer classification [21].

Generally we can distinguish between two different scenarios: (i) we (partially) observe
a single (large) graph, e.g. a social network, and aim to make inferences about individual
nodes and the relations between them; (ii) we observe many (small) graphs, e.g. molecules,
and aim to reason about each graph as a whole. In this thesis we mostly focus on the first
scenario. We study the robustness of models for (semi-supervised) node classification,
link prediction, (unsupervised) node representation learning, and clustering.

As an example consider a social network where each node represents a person and
the edges encode friendship relations. Often we additionally observe a set of attributes
for each node, such as the age of the person or their education. We refer to such data
as attributed graphs.3 One task might be to classify individual nodes in the graph, for
example as either real user or bots, or to infer which edges are missing in the observed
graph in order to recommend friends. If we are interested in the community structure of
the network the task is to partition the set of nodes into (overlapping) clusters such that
similar nodes are placed in the same cluster. For all these tasks we take into account
both the network structure and the node attributes. For example, we may consider two
people similar if they have many friends in common or if they have similar attributes.
This similarity is (implicitly) leveraged to solve the downstream tasks.

1.2.1 Graph Neural Networks

One of the most effective ways to tackle the aforementioned tasks is with Graph Neural
Networks (GNNs) [19, 22, 23]. They have emerged as a fundamental building block
in many machine learning models, alongside CNNs and RNNs. Their inductive bias
is relational – the hidden representation of a node is (recursively) computed based on
its neighbors. Many GNN models fit into the message-passing framework proposed by
Gilmer et al. [24]. At each layer, input transformation, e.g. a linear projection plus a
non-linearity, is followed by an aggregation among neighbors, e.g. averaging. Increasing
the number of layers increases the receptive field. The non-linear coupling between the
node representations makes GNNs simultaneously powerful and difficult to analyze.

3We use the following terms interchangeably: graphs or networks, nodes or vertices, edges or links, and
attributes or features.
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1.2 Machine Learning on Graphs

Figure 1.1: Illustration of graph representation learning. Each node is mapped to a low-
dimensional vector. Similar nodes are close to each other. The embeddings are used to solve
various downstream tasks such as: node classification, link prediction, and anomaly detection.

Beyond uses where the structure of the graph is explicitly given (e.g. social networks)
GNNs show impressive performance for general object-oriented perception and reasoning
[25–27]. However, in the rush to apply them to new and exciting domains questions about
their robustness are routinely overlooked, and their reliability is poorly understood. We
remedy this in Part IV where we study the robustness of GNNs to noise and adversaries.

1.2.2 Unsupervised Representation Learning

The traditional approach for extracting features from graph data is based on user-defined
heuristics such as degree statistics, motifs, and graph kernels. In contrast, the goal of
network representation learning is to learn the features, also called representations or
embeddings, directly from data, removing the need for manual feature engineering. For
example, we can learn to map every node in the graph to a (low-dimensional) vector
such that similar nodes are close to each other in the embedding space. The embeddings
should preserve relevant information from the graph structure and the node features.

A big benefit of this approach is that we can use the same embeddings to solve many
different downstream tasks (see illustration in Fig. 1.1), often achieving state-of-the-results
and significantly improving upon traditional techniques [28]. Moreover, by operating
in the embedding space we can employ existing learning techniques (e.g. classifiers) for
vector data and bypass the difficulty of incorporating the graph structure. In this thesis,
we are concerned with learning node embeddings that are robust to noise. We also show
that popular node embedding techniques are vulnerable to adversarial examples.

1.2.3 Generative Models

Generative models for graphs have a longstanding history, with many applications
including missing data imputation, simulation, and data augmentation. The goal is to
capture the generative process behind the data and uncover latent factors. For example,
we often observe community structure. That is, we can partition the set of nodes into
communities such that the nodes within the same community have similar properties and
are more likely to form edges compared to nodes that belong to different communities.
With a generative model we can detect these latent communities and capture other
common patterns such as power-law degree distribution or sparsity. Since real graphs
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1 Introduction

(a) Partially labeled attributed graph (b) Labels inferred by a model (e.g. a GNN)

Figure 1.2: Illustration of the semi-supervised node-classification task. Given a subset of labeled
nodes the goal is to predict the class labels for the remaining nodes shown in different colors.

can be noisy and corrupted we design a generative model which additionally accounts for
(partial) anomalies. We leverage this model to perform robust graph clustering.

1.2.4 Semi-Supervised Learning

Given a subset of labelled nodes, e.g. a subset of nodes which are known to be either
real users or bots in a social network, we aim to predict the class labels (real or bot) for
the remaining nodes. This is the semi-supervised node classification task, also known as
collective classification [29], which we illustrate in Fig. 1.2. Here we are in a transductive
learning setting which means that both labeled and unlabeled nodes influence both
training and inference. We take advantage of correlations between the label of a node
and its own features, as well as correlations with the features and the (observed and
unobserved) labels of the nodes in its neighborhood. A major benefit compared to
standard supervised learning is that we can obtain excellent performance using very few
labels. This is appealing since labels can be labor-intensive and expensive to obtain. In
this thesis we focus on deriving robustness certificates – provable guarantees that no
perturbation regarding a specific threat model will change the prediction of an instance.

1.3 Graphs and Robustness

A priori two hypotheses for how the relational nature of the data impacts robustness
are plausible. On one hand, it might improve robustness since predictions are computed
jointly rather than for each node in isolation. For example, even if the features of a given
node are corrupted we might still be able to classify it correctly by taking advantage of
the graph structure and the features of the neighboring nodes. On the other hand, the
relational nature might cause cascading failures – perturbations in one part of the graph
can propagate to the rest of the graph. Both effects manifest in practice. In Chapter 6
we show that integrating the graph structure and the attributes jointly improves the
robustness of graph clustering, while in Chapter 5 we show that we can adversarially
perturb a small part of the graph to significantly damage the quality of the embeddings.

The unique aspect of the graph domain is that noisy or adversarial perturbations can
manifest in many different ways. Attackers can perturb the node features or modify the
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1.3 Graphs and Robustness

(a) Clean (latent) graph (b) Perturbed (observed) graph

Figure 1.3: Illustration of possible perturbations (marked in red) in a graph domain. Solid edges
are spurious additions, dashed edges are spurious removals. Node attributes can also be corrupted.

graph structure, i.e. insert or remove edges (see Fig. 1.3). More importantly, perturbing
even a single node could potentially influence the predictions for all other nodes in the
graph. This means that even if the attacker does not have access to a certain target node
they want to manipulate (direct attack) they can perturb other nodes under their control
in order to achieve their goal (indirect attack) [30]. This is in contrast to non-relational
data, where e.g. the predictions for a given image only depend on the pixel values of that
image, and are independent of perturbations to other images.

Similarly, a few noisy edges could have a significant impact on all predictions. This is
important to consider since often the process that gives rise to the graph is itself noisy.
For example in a protein-protein interaction network edges encode associations between
proteins which are derived from several (noisy) sources such as experimental data, text
mining of scientific articles, and genomic context [31]. Moreover, whether an edge is
inserted in the graph depends on an (arbitrary) threshold which reflects the likelihood
that an association exist between two proteins. This holds even in cases where the data
is “naturally” represented as a graph. For example in a social network an edge between
two nodes could mean they have explicitly indicated their friendship, or that they have
interacted a sufficient number of times (e.g. exchanged at least 10 messages), or some
other arbitrary rule. In other words, we should not assume that the explicitly given
structure of an observed graph is necessarily the ground-truth. Therefore, models for
graph data should be robust to spurious edges and other noise.

Going back to the example of real users and bots, the attacker has a strong incentive
to avoid detection so their fake accounts are not suspended. They attempt to find an
adversarial perturbation of the graph which fools the model into classifying bots as real
users. One naive way to achieve this would be to connect the fake accounts to a large
number of real users and/or spend a lot of effort to make sure that the account details
(i.e. node features) are realistic. This is inefficient and expensive. Instead, the attacker
can specify a perturbation budget, e.g. at most B edge flips and feature corruptions in
total, and search for a perturbed graph within their budget (by solving a constrained
optimization problem) that fools the model. Any additional knowledge can be beneficial,
e.g. they can encode the fact that for a two-layer GNN perturbing the neighbors which
are three or more hops away from a target node will not have any effect.
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1.4 Contributions and Outline

The contributions of this thesis deepen our understanding of the robustness of graph-based
models along three complementary axes: representation learning, generative models, and
semi-supervised learning. The overarching research question that we tackle is:

What is the impact of noise and adversarial perturbations on machine learning
models for graph data, and how can we improve and certify their robustness?

In this first part we introduce the main topic and in Chapter 2 we cover some necessary
background and theoretical fundamentals. The main matter is organized in three parts.

• In Part II we tackle the robustness of graph representation learning. First, in Chap-
ter 3 we derive RSC – a noise-resilient variant of the classical spectral embedding.
We propose to decompose the (similarity) graph into a latent clean graph and sparse
corruptions. We jointly learn the decomposition and the embedding, steered by the
underlying clustering. Next, in Chapter 4 we introduce Gaussian embeddings that
represent nodes as distributions to capture uncertainty. To learn the embeddings
we adopt an unsupervised personalized ranking formulation w.r.t. node distances.
Our method Graph2Gauss is inductive and generalizes to unseen nodes. Finally, in
Chapter 5 we expose the sensitivity of node embeddings to graph poisoning. We
derive efficient adversarial perturbations for a family of methods based on random
walks, and we show that they are transferable to other models.

• In Part III, Chapter 6 we develop PAICAN – a probabilistic generative model that
explicitly accounts for (partial) anomalies and detects clusters obfuscated by noise.
The key observation is that even if one source of information is corrupted (e.g. the
attributes for a given node are anomalous), by taking advantage of the other source
(e.g. the network structure) we can still derive meaningful cluster assignments.

• In Part IV we study the vulnerability of semi-supervised models to adversarial
examples. Specifically, in Chapter 7 we propose the first method for certifiable
robustness to graph perturbations for a large class of models that includes label
propagation and graph neural networks. By exploiting connections to PageRank
and Markov decision processes our certificates can be efficiently (and for many
threat models exactly) computed. In Chapter 8 we introduce a general method for
certifying the robustness of machine leaning models for discrete data based on the
randomized smoothing framework. Our certificate account for sparsity in the input
which, as our findings show, is often essential for obtaining non-trivial guarantees.

We highlight that at the end of each chapter we add a Retrospective section where we
discuss some limitations of the work and how we might overcome them, noteworthy follow
up research, and other aspects which in hindsight turn out to be interesting or relevant.

Finally, in Part V we give concluding remarks and we point out open questions for
future research. We also discuss how this work fits more broadly in the area of trustworthy
machine learning and its potential (positive and negative) impact.
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1.5 Own Publications

Table 1.1: List of own publications on which this thesis was based including the respective chapter.
Each publication is associated with a project page: https://www.daml.in.tum.de/[project]/.

Ch. Ref. Title Conference Project Page

3 [1] Robust Spectral Clustering for Noisy Data KDD 2017 /rsc/
4 [2] Deep Gaussian Embedding of Graphs ICLR 2018 /g2g/
5 [3] Adversarial Attacks on Node Embeddings ICML 2019 /embedding-attack/
6 [4] Bayesian Robust Attributed Graph Clustering AAAI 2019 /paican/
7 [5] Certifiable Robustness to Graph Perturbations NeurIPS 2019 /graph-cert/
8 [6] Efficient Robustness Certificates for Discrete Data ICML 2020 /sparse-smoothing/

1.5 Own Publications
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videos, posters, demonstrations, and examples.
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[3] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node
embeddings via graph poisoning. In International Conference on Machine Learning,
ICML, 2019

[4] Aleksandar Bojchevski and Stephan Günnemann. Bayesian robust attributed graph
clustering: Joint learning of partial anomalies and group structure. In Conference
on Artificial Intelligence, AAAI, 2018

[5] Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph
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propagate: Graph neural networks meet personalized PageRank. In International
Conference on Learning Representations, ICLR, 2019

[11] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
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2 Background

In this thesis we draw from spectral graph theory, probabilistic generative models, and
adversarial machine learning. This chapter gives a concise summary of the key concepts
and the notation we use, but it is not intended to be a representative overview. We
discuss eigenvalue perturbation theory and topic-sensitive PageRank since they recur in
several chapters. We also cover the necessary background on adversarial examples and
threat models. For a comprehensive overview of spectral graph theory see Mahoney [32],
and for Markov Decision Processes see Kallenberg [33].

2.1 Graphs

Let G = (V, E) be an (attributed) graph where V is the set of nodes and E ⊆ V ×V is the
set of edges. We denote with A ∈ {0, 1}N×N the binary adjacency matrix where Aij = 1
if there is an edge between node i and node j and Aij = 0 otherwise. N = |V| denotes the
number of nodes. In some cases we allow weighted graphs A ∈ RN×N≥0 with positive edge
weights. D typically denotes the diagonal matrix of node out-degrees with Dii =

∑
jAij .

For attributed graphs, let X ∈ RN×D be the matrix of D-dimensional features associated
with each node. Sometimes we denote attributed graphs with G = (A,X).

2.2 Topic-sensitive PageRank

The topic-sensitive (personalized) PageRank [34, 35] vector πG(z) for a graph G and a
given probability (topic) distribution over nodes z is defined as

πG,α(z) = (1− α)(I − αAD−1)−1z (2.1)

where I is the identity matrix and α ∈ (0, 1) is the damping parameter, or equivalently
(1− α) is the teleport parameter. Intuitively, π(z)u represent the probability of random
walker on the graph to land at node u when it follows edges uniformly at random with
probability α and teleports back to the node v with probability (1− α)zv.

In practice, to compute π instead of matrix inversion we solve the associated sparse
linear system of equations (I − αP ) · π = (1 − α)z where P = AD−1 is the column-
stochastic transition matrix. Alternatively, we compute π with power iteration:

r(0) = z r(k) = αPr(k−1) + (1− α)z (2.2)

where r(∞) = π(z), although the method converges in just a few iterations. To see this
note that we can rewrite π = (1−α)

∑∞
k=1 α

kP kz . The coefficients αk quickly go to zero
and have only a small contribution to the sum. We have π(z)u ≥ 0 and

∑
u π(z)u = 1.
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For z = ev, where ev is the v-th canonical basis vector we get the personalized
PageRank vector for node v. Here the random walker teleports only to node v with
probability 1− α. We drop the index on G,α and z in πG,α(z) when they are clear from
the context. We denote with Π = (1− α)(I − αP )−1 the personalized PageRank matrix,
where row Πv,: = π(ev) equals to the personalized PageRank vector of node v.

2.2.1 PageRank and Label Propagation

Given a subset VL ⊆ V of labelled nodes the goal of semi-supervised node classification is
to predict for each node v ∈ V \ VL one class in C = {1, . . . , C}. We denote with yv ∈ C
the label for node v. Label propagation is a classic method to achieve this task and there
have been many variants proposed over the years [36–38].

The general idea is to find a label assignment matrix F ∈ RN×C such that the training
nodes are predicted correctly (arg maxc Fic = yi) and the predicted labels change smoothly
w.r.t. the graph. The problem can be solved in closed form (even though in practice one
would use power iteration) and the solution for the standard Laplacian variant [38] is:

F = (1− α)
(
I − αD−1A

)−1
H = ΠH (2.3)

where H ∈ {0, 1}N×C is a matrix where the rows are one-hot vectors for the training
nodes and zero vectors otherwise (see Sec. F.1 for more details).

We see that solution to the label propagation problem can be obtained by simply
multiplying the personalized PageRank matrix Π with the training label matrix H . That
is, the initial beliefs are diffused using the PageRank scores. We can interpret Eq. 2.3
in two equivalent ways. One view is that we first compute the personalized PageRank
vector π(ev) for a given node v (i.e. the teleport vector is z = ev) and then we compute
the dot product with all columns of H. We have π(ev)

TH:,c =
∑

u∈Vl,yu=c π(ev)c, i.e.
we sum the scores that a random walker which teleports to v assigns to the labeled nodes
from class c. In the second view we set the teleport vector z = H:,c (normalizing it to
sum to 1) and compute C (one per class) topic-sensitive PageRank vectors π(H:,c). The
prediction for node v is arg maxc π(H:,c)v, where π(H:,c)v is the score assigned to v by
a random walker that teleports to the labeled nodes in class c.

2.3 Eigenvalue Perturbation Theory

We say u ∈ Rd is the generalized eigenvector associated with the generalized eigenvalue
λ ∈ R for a symmetric matrix A ∈ Rd×d and a symmetric positive-definite matrix
D ∈ Rd×d if they satisfy the following systems of equations:

Au = λDu and uTDu = 1 (2.4)

In matrix form we have AU = DUΛ where the columns of U = [u1, . . . ,ud] are the
eigenvectors and Λ = diag([λ1, . . . , λd]) is a diagonal matrix with the eigenvalues. We
assume that the eigenvalues are sorted in an non-decreasing order i.e. λ1 ≤ · · · ≤ λd. It
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holds UTDU = I where I is the identity matrix. For D = I we recover the standard
eigenvalue problem Au = λu.

Given symmetric perturbation matrices ∆A and ∆D we are interested in the solutions
of the perturbed generalized eigenvalue problem (A + ∆A)u′ = λ′(D + ∆D)u′. We
restate the following first-order perturbation results [39]:

λ′ ≈ λ+ ∆λ with ∆λ = uT (∆A− λ∆D)u (2.5)

u′ ≈ u+ ∆u with ∆u = −(A− λD)+(∆A−∆λD − λ∆D)u (2.6)

where (·)+ is the pseudo-inverse. Moreover, we can bound the difference in the eigenvalues
using the absolute Weyl theorem for generalized eigenvalue problems [40]. We have:

|λ′i − λi| ≤ ‖(D + ∆D)−1‖2‖∆A− λi∆D‖2 (2.7)

|λ′i − λi| ≤ ‖D−1‖2‖∆A− λi∆D‖2 (2.8)

for all 1 ≤ i ≤ d. For the standard eigenvalue problem (D = I,∆D = 0) these bound
reduce to |λ′i − λi| ≤ ‖∆A‖2. Using the Wielandt-Hoffman theorem [41] we also have

d∑

i=1

|λ′i − λi|2 = ‖∆A‖22 (2.9)

From these results we can see that for a small (in terms of the norm) perturbation the
change in the eigenvalues is also small. This suggest that the first-order approximation
is meaningful. While higher-order approximations can be easily derived, in practice we
observe that the gain is not worth the increase in computational complexity.

For our purposes A is the adjacency matrix of an undirected graph and D is the
associated diagonal degree matrix. We are interested in the change in the spectrum
resulting from changing the graph structure. For example if we flip (add or remove)
a single undirected edge (i, j) then we have that ∆A = (1 − 2Aij)(eie

T
j + eje

T
i ) and

∆D = (1− 2Aij)(eie
T
i + eje

T
j ) where ei = Ii is the i-th canonical basis vector. That is

∆A and ∆D have only two non-zero entries. Note that in this case Eq. 2.5 and Eq. 2.6
can be significantly simplified (see Chapter 5).

Unfortunately, for any connected graph and for any possible flip the above bounds
are not informative since −1 ≤ λi ≤ 1 and ‖∆A‖2 = ‖∆D‖2 = 1. To obtain an
alternative bound we can transform the generalized eigenvalue problem from Eq. 2.4
into the equivalent standard eigenvalue problem D−1Au = λu. Now we can compute
∆P = (D + ∆D)−1(A+ ∆A)−D−1A and evaluate the above bounds. Unlike before,
now the bounds depend on the specific edge flip (and whether we add or remove an edge).
For example, removing the edge between the two nodes with highest degree on Cora-ML
yields a bound of ≤ 0.01361, while for the edge between two nodes with degree 2 the
bound is ≤ 0.70711. This matches our intuition that changes to low-degree nodes have a
much higher impact on the spectrum compared to changes to high-degree nodes.

The bounds are tight but still conservative, for the example of removing the edge
between high-degree nodes using the exact λ′ we have maxi|λ′i−λi| ≤ 0.000141. Nonethe-
less, as we show in Chapter 3 and Chapter 5 the first-order estimates for ∆λ and ∆u
still yield a good approximation in practice for optimizing functions of the spectrum.
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Figure 2.1: Illustration of adversarial examples. For the input x1 there is no other input in the
set of admissible perturbations that crosses the decision boundary, i.e. the worst-case margin is
positive. If we can verify that the worst-case margin (or a lower bound, illustrated with a lighter
shade) is positive we say that x1 is certifiably robust. The input x2 is not robust since we can
find a perturbed input within the admissible set that crosses the decision boundary.

2.4 Adversarial Examples

Adversarial examples explicitly demonstrate a lack of robustness. They can pose a serious
threat for practitioners since attackers can leverage them to achieve malicious goals, e.g.
bypass a bot detection system. As researchers, on the other hand, we can use them to
better understand and mitigate the limitations of our models.

Given an admissible set of perturbations B encoding a threat model, e.g. all graphs
which are reachable by changing a small number of edges in the observed graph, the
goal is to find a perturbed input which causes the model to produce a given output. For
example, the attacker looks for a perturbed graph such that a target node is misclassified:

find G′ ∈ B such that arg max
y

f(G′, t)y 6= arg max
y

f(G, t)y (2.10)

where f(G, t)y returns the probability that the target node t is classified as class y, and G
is the unperturbed (clean) graph. Alternatively, the attacker’s goal might be to decrease
the overall quality of the learned embeddings, or to artificially increase the ranking of a
target website (e.g. using link spam farms [42]).

Interestingly, defenders also benefit from adversarial examples. To date, the most
successful defense strategies that can withstand strong attacks are based on adversarial
training [43]. The idea is simple: the defender augments the training data with adversarial
examples so the model can learn to correctly classified them. While such heuristic defenses
work well in practice, there are no guarantees (which might be necessary in safety-critical
applications) that some future attack will not be able to break them.

Robustness certificates are one way to avoid this cat-and-mouse game between the de-
fender and attacker. A certificate is a provable guarantee that there exists no perturbation
given a specific threat model that will lead to a certain outcome (e.g. misclassification).
We compute the worse-case margin m∗(t) for a target node t and a perturbation set B:

m∗(t) = min
G′∈B

m(G′, t, y∗) = min
G′∈B

(
f(G′, t)y∗ −max

y 6=y∗
f(G′, t)y

)
(2.11)

where y∗ = arg maxy f(G, t)y is the unperturbed prediction. If the worst-case m∗(t) > 0
is positive there is no G′ ∈ B which changes the prediction and node t is certifiably robust.
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See Fig. 2.1 for an illustration. Computing m∗(t) is often intractable, especially when
optimizing over a discrete and combinatorial graph domain, and when f is a complex
non-convex function like a GNN. A typical approach is to relax the problem in Eq. 2.11
to a problem that is easier to solve (e.g. convex) which will give a lower bound on m∗(t).

If the lower bound is positive we still have a valid certificate. If the lower bound is
negative we cannot conclude that the node is necessarily not robust due to the relaxation.
In this case, if can find a G′ ∈ B for which the margin is negative we can certify non-
robustness, e.g. if we also obtain the arg min for the relaxed problem, or if we can find an
adversarial example by other means. The gap between the ratio of certifiably robust and
certifiably non-robust nodes can helps us reason about the tightness of the lower bound.

2.5 Threat Models

A key challenge when studying adversarial examples is specifying and optimizing for the
right threat model. Generally, we can characterize the adversary based on their goals,
knowledge, and capabilities. Poisoning attacks target the training data – the model is
trained after the attack, while evasion attacks target the test data – the learned model is
assumed fixed. We tackle both types of attacks in this thesis.

The poisoning setting is typically more challenging (and therefore less studied) since
it often involves solving a difficult bi-level optimization problem. Note that for most
models for i.i.d. data poisoning is only possible if the attacker can manipulate the labeled
instances. However, for graph data since we are typically in a transductive learning setting
both the labeled and unlabeled nodes influence the training and the learned model.

Depending on whether we assume that the attacker has knowledge about the model,
and whether they have full access, query access, or no access to its parameters, its
gradients, and the data, we can distinguish between white, gray and black-box attacks.
While black-box attacks might be easier to carry out, studying the stronger (worse-case)
white-box attacks is equally important in order to understand the intrinsic limitations of
our models. This distinction might be less relevant in practice since we find that attacks
are often transferable. That is, adversarial perturbations derived assuming one (surrogate)
model can successfully damage other models previously unknown to the attacker. This
holds true even if the attacker has only partial (or even no) access to the target data as
evidenced by the existence of ‘universal’ adversarial perturbations [44].

For graph data the situation is more nuanced and we can distinguish between direct
and indirect attacks since perturbing one node can potentially influence the predictions
for all other nodes. For direct attacks we assume that the attacker has access to the target
node and they can manipulate its edges and features. For indirect attacks we assume
that the attacker controls some set of compromised nodes which they can leverage to
indirectly influence a target node which is not under their control. We focus only on
settings in which the size of the graph is fixed and the attacker can modify the edges
between existing nodes and perturb the node features. Scenarios in which attackers can
delete or add new nodes are interesting but are out of scope for this thesis.
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2 Background

In reality, perturbing the input is likely to incur some cost for the attacker. We model
this with a global budget – the attacker can make at most B perturbations, i.e. add or
delete at most B edges in total, or change at most B features. Furthermore, perturbing
many edges for a single node might not be desirable since such a perturbation might be
noticeable to defender. To ensure that the perturbation are unnoticeable we also model a
local budget – we limit the number of perturbations locally per node. Typically we set the
local budget relative to the node’s clean degree.1 More generally, the corruptions should
be sparse compared to the clean input. For example, if a node has only 3 clean edges in
its two-hop neighborhood and 30 adversarial edges, then it is reasonable and expected
that a model will misclassify it since the (adversarial) noise dominates the (clean) signal.

1Other unnoticeability constraints such as making sure that the power-law exponent of the degree
distribution is not significantly changed have also been explored [30].
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3 Robust Spectral Embedding

spectral
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Figure 3.1: Overview of the proposed Robust Spectral Clustering (RSC) approach. Given a
(similarity) graph we alternate between updating the spectral embedding based on the Laplacian
of the clean graph, and updating the latent clean graph by removing sparse corruptions.

3.1 Introduction

Clustering is a fundamental data mining task. Among the variety of methods that have
been introduced in the literature [45], spectral clustering [46] is one of the most prominent
and successful approaches. It has been successfully applied in many domains, ranging
from computer vision [47] to bioinformatics [48, 49] and social network analysis [50].

Since spectral clustering relies on a similarity graph only (e.g. connecting each instance
with its m nearest neighbors), it is applicable to almost any data type, with vector data
being the most frequent case. It embeds the data into a vector space that is spanned by
the k eigenvectors corresponding to the k smallest eigenvalues of the graph’s (normalized)
Laplacian matrix. By clustering in this space even complex structures living on a non-flat
manifold, such as the half-moon data shown in Fig. 3.2, can be detected.

The spectral embedding is the key behind its success and can be derived from first
principles, motivated by minimum-cut graph partitioning. Beyond clustering, we can use
this embedding for graph visualization (spectral layout [51]), and more generally as a
non-linear dimensionality reduction technique (Laplacian Eigenmaps [52]). In Chapter 4
we discuss an alternative approach where instead of embedding each node as a single
point in some vector space, we represent it as a Gaussian distribution instead.

Even though spectral clustering is widely used in practice, especially in the sciences,
one big issue is rarely addressed: it is highly sensitive to noisy input data. Fig. 3.2
illustrates this effect. While for the data on Fig. 3.2a spectral clustering perfectly recovers
the ground-truth clusters, the scenario on Fig. 3.2b – with only slightly perturbed data
– leads to a completely wrong clustering for any of the three established versions [46].
Spectral clustering fails in such noisy (and realistic) scenarios.

In this work, we introduce a principle to robustify spectral clustering. The core idea is
that the observed similarity graph is not perfect but corrupted by errors. Thus, instead of
operating on the original graph – or performing some, often arbitrary, data cleaning that
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3 Robust Spectral Embedding

(a) Gaussian noise, σ = 0.7 (b) Gaussian noise, σ = 0.9

Figure 3.2: Spectral Clustering (SC) is sensitive to noisy input: (a) SC detects the correct
clusters for the three moons data; (b) for only a slight perturbation SC fails. Our Robust Spectral
Clustering (RSC) method is successful in both scenarios (not shown).

precedes the analysis – we assume the graph to be decomposed into two latent factors:
the clean data and the corruptions. Assuming that the corruptions are sparse we jointly
learn the latent corruptions and the latent spectral embedding using the clean data.

For tasks such as regression [53], PCA [54], and auto-regression [55, 56], such ideas
have shown to significantly outperform non-robust techniques. Similarly, our Robust
Spectral Clustering (RSC) method leads to clustering that is more robust to corruptions.
On Fig. 3.2 our approach is able to detect the correct clustering structure (in both cases)
despite the noise. More precisely, our work is based on a sparse latent decomposition of the
graph with the aim to optimize the eigenspace of the graph’s Laplacian. This is in strong
contrast to, e.g., robust PCA where the decomposition is guided by the eigenspace of the
data itself. In particular, different Laplacians affect the eigenspace differently and require
different solutions. Our focus is not on finding the number of clusters automatically.
Principles based e.g. on the largest eigenvalue gap [57] can similarly be applied to our
work. We leave this aspect for future work. Overall, our contributions are:

• Model: We introduce a model for robust spectral clustering that handles noisy
input data. Our principle is based on the idea of sparse latent decompositions.
This is the first work exploiting this principle for spectral clustering, in particular
tackling also the challenging case of normalized Laplacians.

• Algorithms: We provide algorithmic solutions for our model for all three estab-
lished versions of spectral clustering using different Laplacian matrices. For our
solutions we relate to principles such as eigenvalue perturbation and the multidi-
mensional Knapsack problem. In each case, the complexity of the overall method is
linear in the number of edges.

• Experiments: We conduct extensive experiments demonstrating the benefits of
our method, with up to 15 percentage points improvement in accuracy on real-world
data compared to standard spectral clustering. Moreover, we propose two novel
measures – local purity and global separation – which enable us to evaluate the
intrinsic quality of an embedding without relying on a specific clustering technique.
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3.2 Preliminaries

3.2 Preliminaries

We start with some basic definitions required in our work. Let A be a matrix, we denote
with ai the vector corresponding to the i-th row and with Aij the value at position i, j. A
similarity graph is represented by a symmetric adjacency matrix A ∈ (R≥0)n×n, with n
being the number of instances. We denote the set of undirected edges as E = {(i, j) | Aij >
0∧ i > j}. The set of edges incident to node i is given by Ei = {(x, y) ∈ E | x = i∨ y = i}.
The vector representing the edges of A is written as [Aij ](i,j)∈E = [Ae]e∈E .

We denote with di =
∑

jAij the degree of node i, and with D(A) = diag(d1, . . . , dn)
the diagonal matrix representing all degrees. We denote with I the identity matrix, whose
dimensionality becomes clear from the context. Furthermore, as required for spectral
clustering, we introduce different notions of Laplacian matrices:

L(A) = D(A)−A (3.1)

Lrw(A) = D(A)−1L(A) = I −D(A)−1A (3.2)

Lsym(A) = D(A)−1/2L(A)D(A)−1/2 = I −D(A)−1/2AD(A)−1/2 (3.3)

where L is the unnormalized Laplacian, Lrw is the normalized random walk Laplacian
and Lsym is the normalized symmetric Laplacian.

3.2.1 Spectral Clustering

Spectral clustering can be briefly summarized in three steps (see [46] for details). First we
construct the similarity graph A. Different principles for the similarity graph construction
exist. We focus on the symmetric x-nearest-neighbor graph, as it is recommended by [46]
– any other construction can be used as well. Thus, the graph A is given by Aij = 1 if i
is a x nearest neighbor of j or vice versa, and Aij = 0 else.

Depending on the considered Laplacian, the next step is to compute the following
eigenvectors (corresponding to the k smallest eigenvalues):

• L(A): k first eigenvectors of L(A)

• Lrw(A): k first generalized eigenvectors of L(A)u = λD(A)u

• Lsym(A): k first eigenvectors of Lsym(A)

This step stems from the fact that spectral clustering tries to obtain solutions that
minimize the ratio-cut/normalized-cut in the similarity graph. As shown in [46], an
approximation to the ratio-cut is obtained by the following trace minimization problem:

min
H∈Rn×k

Tr(HTL(A)H) subject to HTH = I (3.4)

The solution being the k first eigenvectors of the Laplacian L(A) as stated above. Similar
trace minimization problems can be formulated for the other Laplacians. We denote with
H ∈ Rn×k the matrix storing the eigenvectors as columns.

The final step is to perform clustering on H . The spectral embedding of each instance
i is given by the i-th row of H . To find the final clustering, the vectors hi are (in case of
Lsym(A) first normalized and then) clustered using, e.g., k-means.
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3 Robust Spectral Embedding

3.3 Related Work

Multiple principles to improve spectral clustering have been introduced – focusing on
different kinds of robustness. Surprisingly, many of the techniques [57–60] are based on
fully connected similarity graphs – even though nearest-neighbor graphs are recommended
[46]. First, using fully connected graphs highly increases the runtime – the considered
matrices are no longer sparse – and, second, one has to select an appropriate scaling
factor σ, required, e.g., for the Gaussian Kernel when constructing the graph [46]. Thus,
many techniques [57–60] focus on robustness w.r.t. the scale σ.

Local similarity scaling [58] introduces a principle where the similarity is locally scaled
per instance, i.e. the parameter σ changes per instance. By doing so, an improved
similarity graph is obtained that better separates dense and sparse areas in the data
space. Kong et al. [59] extended this principle by using a weighted local scaling. The
methods work well on noise-free data, however, they are still sensitive to noisy inputs.

Laplacian smoothing [60] considers the problem of noisy data similar to our work,
and they propose the principle of eigenvector smoothing. The initial Laplacian matrix
is replaced by a smoothed version M =

∑n
i=2

1
γ+λi

hi · hTi where hi and λi are the
eigenvectors/values of the original Laplacian matrix. Clustering is then performed on
the eigenvectors of the matrix M . A significant drawback is that a full eigenvalue
decomposition is required.

Data warping [57] focuses on data where uniform noise has been added, not noisy data
itself. They propose the principle of data warping. Intuitively, the data is transformed to
a new space where noise points form their own cluster. Since they focus on fully connected
graphs, noise can easily be detected by inspecting points with the lowest overall similarity.
Since [60] and [57] are the most closely related works to our principle, we compare against
them in our experiments.

Focusing on a different scenario, multiple works have considered noisy/irrelevant
features. In [61] a global feature weighting is learned in a semi-supervised fashion, thus,
leading to an improved similarity matrix. Zhu et al. [62] learn an affinity matrix based
on random subspaces focusing on discriminative features. In [63], inspired by the idea of
subspace clustering, feature weights are learned locally per cluster.

All the above techniques (except [63]) follow a two-step, sequential approach. They
first construct an improved similarity graph/Laplacian and then apply standard spectral
clustering. In contrast, our method jointly learns the similarity graph and the spectral
embedding. Both steps repeatedly benefit from each other.

Besides the above works focusing on general spectral clustering, different extended
formulations have been introduced: Li et al. [64] consider hypergraphs to improve ro-
bustness, Chang and Yeung [65] use path-based characteristics. None of the techniques
jointly learns a similarity matrix and the spectral embedding. Not focusing on robustness
w.r.t. noise, Wang et al. [66] compute a doubly stochastic matrix by imposing low-rank
constraints on the graph’s Laplacian. It is restricted to the unnormalized Laplacian and
leads to dense graphs, making it impractical for large data. Moreover, works such as [67]
consider the problem of finding anomalous subgraphs using spectral principles, again not
focusing on the case of noise.
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3.4 Robust Spectral Clustering

We note that the spectral analysis is not restricted to a graph’s Laplacian as used in
standard spectral clustering. The classical works of Davis-Kahan [68], for example, study
the perturbation of a matrix X and the change of X’s eigenspace. Following this line,
[69] studies clustering based on the eigenspace of the adjacency matrix itself. In contrast,
we focus on the change of the eigenspace of L. In particular, we also consider the case of
normalized Laplacians, which often lead to better results [46].1

3.4 Robust Spectral Clustering

Here we introduce the major principle behind our technique. For illustration purposes,
we will start with spectral clustering based on the unnormalized Laplacian. The (more
complex) principles for normalized Laplacians are described in Sec. 3.5.

Let A ∈ (R≥0)n×n be the symmetric similarity graph extracted for the given data,
with n being the number of instances in our data. Our main idea is that the similarity
graph A is not perfect but might be corrupted (e.g. due to noisy input data). Any
analysis performed on A might lead to misleading results. Therefore, we assume that
the observed graph A is obtained by two latent factors: Ac representing the corruptions
and Ag representing the “good” (clean) graph. More formally, we assume an additive
decomposition2 (see also Fig. 3.1)

A = Ag +Ac with Ag,Ac ∈ (R≥0)n×n, both symmetric. (3.5)

Instead of performing the spectral clustering on the corrupted A, our goal is to perform
it on Ag. The key question is how to find the matrices Ag and Ac. In particular since
clustering is an unsupervised learning task we do not know which entries in A might be
wrong. To solve this challenge, we exploit two core ideas.

First, we assume that corruptions are relatively rare – if they were not rare, i.e. the
majority of the data is corrupted, a reasonable clustering structure can not be expected.
Technically, we assume the matrix Ac to be sparse. Let θ denote the maximal number of
corruptions a user expects in the data. We require ‖Ac‖0 ≤ 2 · θ where ‖·‖0 denotes the
element-wise L0 pseudo-norm and we have 2 · θ due to symmetry of the graph.

While θ constrains the number of corruptions globally, it is likewise beneficial to enforce
sparsity locally per node. This can be realized by the constraint ‖agi ‖0 ≥ m for each node
i, or equivalently ‖aci‖0 ≤ |Ei|−m. We chose the first version due to easier interpretability:
each node in Ag will be connected to at least m other nodes. Note that θ and m control
different effects. To ignore either global or local sparsity, one can simply set the parameter
to its extreme value (θ = 1

2‖A‖0 or m = 1).

Second, the detection of the latent clean Ag (corrupted Ac) is steered by the clustering
process, i.e., we jointly perform the spectral clustering and the decomposition of A. This
is in contrast to a sequential process where first the matrix Ag is constructed and then

1Surprisingly, many advanced spectral works still consider only the easier case of unnormalized Laplacians.
The baseline methods which we compare against [57, 60] handle normalized Laplacians.

2This general decomposition not only leads to good performance, as we show later, but also facilitates
easy interpretation.
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Figure 3.3: Spectral embeddings for the data of Fig. 3.2b. RSC enhances the discrimination of
the clusters as we increase θ. SC (or equivalently RSC with θ = 0) cannot detect the clusters.

the clustering is performed. A strong advantage of a simultaneous detection is that we
do not need to specify a separate – often arbitrary – objective for finding Ag since the
process is complete determined by the underlying spectral clustering.

We exploit the equivalence of spectral clustering to trace minimization problems (see
Sec. 3.2.1, Eq. 3.4). Intuitively, the value of the trace in Eq. 3.4 corresponds to an
approximation of the ratio-cut in the graph A. The smaller the value, the better the
clustering. Thus, we aim to find the matrix Ag by minimizing the trace based on the
Laplacian’s eigenspace – subject to the sparsity constraints. Concretely, we have:

Problem 3.1. Given the matrix A, the number of clusters k, the sparsity threshold
θ, and the minimal number of nearest neighbors m per node. Find H∗ ∈ Rn×k and
Ag∗ ∈ (R≥0)n×n such that

(H∗,Ag∗) = arg min
H,Ag

Tr(HT ·L(Ag) ·H)

subject to HTH = I,

Ag = AgT

‖A−Ag‖0 ≤ 2 · θ
‖agi ‖0 ≥ m ∀i ∈ {1, . . . , n}

(3.6)

The crucial difference between Eq. 3.4 and Problem 3.1 is that we now jointly optimize
the spectral embedding H and the similarity graph Ag. The Laplacian matrix L(Ag)
is no longer constant but adaptive. Fig. 3.3 shows the strong advantage of this joint
learning. Here, different spectral embeddings H for the data in Fig. 3.2b are shown
(second and third eigenvector since the first is constant). Fig. 3.3a shows the embedding
using standard spectral clustering. Due to the noisy input, the three groups are very
close to each other and each spread out. Clustering on this embedding merges multiple
groups and, thus, leads to low quality. For real-world data these embeddings look even
worse as we will see in the experimental section.

In contrast, Fig. 3.3b and Fig. 3.3c show the spectral embedding learned by our
technique when removing just 15 or 30 corrupted edges, respectively. Evidently, the learned
embeddings highlight the clustering structure more clearly. Thus, by simultaneously
learning the embedding and the corruptions, we improve the clustering quality.
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3.4 Robust Spectral Clustering

3.4.1 Algorithmic Solution

While our general objective is hard to optimize, in particular due to the ‖.‖0 constraints
the problem becomes NP-hard in general, we propose a highly efficient block coordinate-
descent (alternating) optimization scheme to approximate it. That is, given H, we
optimize for Ag/Ac; and given Ag/Ac we optimize for H (see Algorithm 3.1). Of
course, since Ac determines Ag and vice versa, it is sufficient to focus on the update
of one, e.g., Ac. It is worth pointing out that in many works, the ‖.‖0 norm is simply
handled by relaxation to the ‖.‖1 norm. In our work, in contrast, we aim to preserve the
interpretability of the ‖.‖0 norm. Thus, we derive a connection to the multidimensional
Knapsack problem.

Update of H. Given Ac, the update of H is straightforward. Since Ag = A−Ac,
L(Ag) is now constant. Therefore, finding H is a standard trace minimization problem
(Eq. 3.6). The solution H∗ is the k first eigenvectors of L(Ag).

Update of Ac. Clearly, since Ac needs to be non-negative, for all elements (i, j) with
Aij = 0, it also holds Ac

ij = 0. Thus, in the following, we only have to focus on the
elements Ac

ij with (i, j) ∈ E , i.e. the vector [Ac
e]e∈E . We base our update on the following

lemma:

Lemma 3.1. Given H, the solution for Ac minimizing Eq. 3.6 can be obtained by
maximizing

f1([Ac
e]e∈E) :=

∑

(i,j)∈E
Ac
ij · ‖hi − hj‖22 (3.7)

subject to the ‖.‖0 constraints and for each e: Ac
e ∈ {0,Ae}.

See Sec. B.1 for the proof. Exploiting Lemma 3.1, our problem can equivalently be
treated as a set selection problem. Let X ⊆ E and [vXe ]e∈E = vX ∈ R|E| be the vector

vXe =

{
Aij if (i, j) = e ∈ X
0 else

(3.8)

our goal is to find a set X ∗ ⊆ E maximizing f1(vX
∗
) subject to the constraints. Accordingly,

Problem 3.1 can be represented as (a special case of) a multidimensional Knapsack problem
[70] operating on the set of edges E .

Corollary 3.1. Given H. Let X = {e ∈ E | xe = 1} be the solution of the following
multidimensional Knapsack problem: Find xe ∈ {0, 1}, e ∈ E such that

∑
e∈E xe · pe is

maximized subject to
∑

e∈E xe ≤ θ and ∀i = 1, . . . , n :
∑

e∈Ei xe ≤ |Ei| −m where

pe = p(i,j) = Aij · ‖hi − hj‖22 (3.9)

The solution for Ac w.r.t. Eq. 3.6 corresponds to vX .

This result matches the intuition for corrupted edges. The term pe is high for instances
whose embeddings are very dissimilar (i.e. they should not belong to the same cluster)
but which are still connected by an edge.
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3 Robust Spectral Embedding

Algorithm 3.1 Robust Spectral Clustering

Require: Similarity graph A, number of clusters k, sparsity threshold θ, minimum
neighbors per node m

1: Ag ← A
2: while true do
3: Compute H∗ and Trace based on the eigenspace of L∗(Ag) . update of H
4: if Trace could not be lowered then break end if
5: X = ∅
6: for each node i do counti ← |Ei| −m end for
7: Initialize priority queue PQ on tuples (score, edge)
8: for each edge e ∈ E do
9: if pe > 0 then add tuple (pe, e) to PQ end if . Eq. 3.9 or Eq. 3.11

10: end for
11: while PQ not empty do
12: Get first element from PQ → (., ebest = (i, j))
13: if counti > 0 ∧ countj > 0 then
14: X ← X ∪ {ebest}
15: counti −= 1; countj −= 1
16: if |X | = θ then break end if
17: end if
18: end while
19: Construct Ac according to vX ; Ag = A−Ac . Update of Ac/Ag

20: end while
21: Apply k-means on (normalized) vectors (hi)i=1,...,n

22: return Clustering C1, . . . , Ck

While finding the optimal solution of a multidimensional Knapsack problem is in-
tractable, multiple efficient and effective approximate solutions exist [70, 71]. We exploit
these approaches for our final algorithm. Following the principle of [71], we first sort
the edges e ∈ E based on their ratio pe/

√
se. Here, se is the number of constraints the

variable xe participates in. Since in our special case, each xe participates in exactly three
constraints, se = 3, it is sufficient to sort the edges based on the value pe. We then
construct a solution by adding one edge after another to Ac as long as the constraints
are not violated. This leads to the best possible worst-case bound of 1/

√
n+ 1 [71].

Algorithm 3.1 (lines 5-19) shows the update of Ac/Ag. Note that we do not need to
sort the full edge set, it is sufficient to iteratively obtain the best edges. Thus, a priority
queue PQ (a heap) is used (line 7, 12). The local ‖.‖0 constraints can simply be ensured
by recording how many edges per node can still be removed (line 6, 15). Thus, an edge
can only be included in the result (line 14) if the incident nodes allow to do so (line 13).

The overall method for robust spectral clustering using unnormalized Laplacian iterates
between the two update steps (lines 3-19). Note that in each iteration (line 8) considers
all edges of the original graph. Thus, an edge marked as corrupted in a previous iteration
might be evaluated as non-corrupted later. The algorithm terminates when the trace
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3.5 RSC: Normalized Laplacians

can not been improved further. In the last step (line 21), the k-means clustering on the
improved H matrix is performed as usual.

Complexity. Using a heap, the update ofAc can be computed in timeO(|E|+θ′·log |E|),
where θ′ ≤ |E| is the number of iterations of the inner while loop. Using power iteration,
the eigenvectors H can be computed in time linear in the number of edges. Thus, overall,
linear runtime can be achieved, as also verified empirically. It is worth mentioning that
all operations performed in the algorithm operate on sparse data. This includes the
computation of the Laplacian, its eigenvectors, and the constructions of Ac and Ag. Thus,
even large datasets can easily be handled.

3.5 RSC: Normalized Laplacians

We now tackle the more complex cases of the two normalized Laplacians, which often
lead to better clustering. For this, different algorithmic solutions are required.

3.5.1 Random Walk Laplacian

Spectral clustering based on Lrw corresponds to a generalized eigenvector problem using
L [46]. Our problem definition becomes:

Problem 3.2. Identical to Problem 3.1 but replacing the constraint HT ·H = I with
HT ·D(Ag) ·H = I.

Again, our goal is to solve this problem via block-coordinate descent. While the update
of H is clear, it corresponds to the first k generalized eigenvectors w.r.t. L(Ag) and
D(Ag)), using the same approach for Ac/Ag as introduced in Sec. 3.4.1 turns out to be
impractical. Since the constraint HT ·D(Ag) ·H = I now also depends on Ag, we get a
highly restrictive constrained problem. As a solution, we propose a principle exploiting
the idea of eigenvalue perturbation [39].

Using eigenvalue perturbation, we derive a matrix Ag aiming to minimize the sum of
the k smallest generalized eigenvalues. Minimizing this sum is equivalent to minimizing
the trace based on the normalized Laplacian’s eigenspace. We obtain:

Lemma 3.2. Given the eigenvector matrix H and the corresponding eigenvalues λ =
(λ1, . . . , λk). An approximation of Ac minimizing the objective of Problem 3.2 can be
obtained by maximizing

f2([Ac
e]e∈E) =

∑

(i,j)∈E
Ac
ij

(
‖hi − hj‖22 − ‖

√
λ ◦ hi‖22 − ‖

√
λ ◦ hj‖22

)

︸ ︷︷ ︸
:=s(ij)

(3.10)

subject to the ‖.‖0 constraints and for each e: Ac
e ∈ {0,Ae}. Here,

√
. denotes the

element-wise square-root, and ◦ the Hadamard product.

Clearly, the solution of the unnormalized case (Eq. 3.7) and the normalized case
(Eq. 3.10) are structurally very similar – and for solving it we can use the same principle
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3 Robust Spectral Embedding

as before (Algorithm 3.1), simply using different edge scores:

pe = p(i,j) = Aij · s(ij) (3.11)

Accordingly, also the complexity for finding Ac remains unchanged. Note that only edges
with positive score need to be added to the queue (line 8).

Advantages. Comparing Eq. 3.11 with Eq. 3.9 we see an additional “penalty” term
which takes the norm/length of the vectors hi and hj into account. Thereby, instances
whose embeddings are far away from the origin get a lower (or even negative) score.
Intuitively, the clusters based on spectral embedding are separated by the origin. To
see this, recall that in the case of two clusters the final clustering can be obtained
by inspecting the sign of the one-dimensional Fiedler vector [46], i.e. the clusters are
separated by 0. This is true in general, e.g. see Fig. 3.3 where the origin is in the center
of the plots. Since instances that are far away from the origin can be clearly assigned to
their cluster, marking their edges as corrupt might improve the clustering only slightly.
In contrast, edges that are at the border between different clusters are more challenging,
and exactly these edges are preferred by Eq. 3.11. Therefore, the additional penalty term
has an overall effect of encouraging a better clustering.

3.5.2 Symmetric Laplacian

We now turn to the last case, spectral clustering using Lsym.

Problem 3.3. Identical to Problem 1 but replacing Eq. 3.6 with

(H∗,Ag∗) = arg min
H,Ag

Tr(HT ·Lsym(Ag) ·H) (3.12)

Using alternating optimization, the matrix H can easily be updated when Ag is given.
For updating the matrix Ag (or equivalently Ac) we have the following result:

Lemma 3.3. Given the eigenvector matrix H. The matrix Ac minimizing Eq. 3.12 can
be obtained by maximizing

f3([Ac
e]e∈E) :=

∑

(i,j)∈E

Aij −Ac
ij√

di − dci ·
√
dj − dcj

· hi · hTj (3.13)

subject to the ‖.‖0 constraints and 0 ≤ Ac
e ≤ Ae, where dci =

∑
e∈EiA

c
e.

What is the crucial difference between Lemma 3.3 and Lemma 3.1/Lemma 3.2? For the
previous solutions, the objective function has decomposed in independent terms. That is,
when adding an edge to Ac, i.e. changing Ac

ij from 0 to Aij , the scores of the other edges
are not affected. In Lemma 3.3, the sum in f3 does not decompose into independent
terms. In particular, the terms dci in the denominator lead to a coupling of multiple edges.

While, in principle, f3 can be optimized via projected gradient ascent, each gradient
step would require to iterate through all edges. Therefore, as an alternative, we propose
a more efficient greedy approximation. Similar to before, we focus on the solutions vX .
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3.5 RSC: Normalized Laplacians

Starting with X = ∅, we iteratively let this set grow following a steepest ascent strategy.
That is, we add the edge ebest to X fulfilling

ebest = arg max
e∈E ′

f3(vX∪{e}) (3.14)

where E ′ indicates the edges that could be added to X without violating the constraints.
Naively computing Eq. 3.14 requires |E ′| · |E| many steps – and since we perform multiple
iterations to let X grow, it results in a runtime complexity of O(θ · |E|2); obviously not
practical. In the following, we show how to compute this result more efficiently.

Let X ⊆ E , dXi := di −
∑

e∈Ei∩X Ae, and pij := Aij · hi · hTj . We define

s(i, w,X ) :=
∑

j
(i,j)∈Ei\X
∨(j,i)∈Ei\X

(
1√

dXi − w
√
dXj

− 1√
dXi
√
dXj

)
pij (3.15)

for each node i, and

δ(e,X ) :=

(
1√

dXi
√
dXj

− 1√
dXi −Ae

√
dXj

− 1√
dXi
√
dXj −Ae

)
pij (3.16)

for each edge e = (i, j), and ∆(e,X ) := s(i, ae,X ) + s(j, ae,X ) + δ(e,X ).

Corollary 3.2. Given X and E ′ ⊆ E\X . It holds

arg max
e∈E ′

f3(vX∪{e}) = arg max
e∈E ′

∆(e,X )

By exploiting Corollary 3.2, we can find the best edge according to Eq. 3.14, by only
considering the terms ∆(e,X ). This term can be interpreted as the gain in f3 when
adding the edge e to the set X . After computing the scores s(i, w,X ) for each node,
∆(e,X ) can be evaluated in constant time per edge.

Moreover, let e = (i, j), for each non-incident edge (i′, j′) = e′ ∈ E\(Ei∪Ej) it obviously
holds s(i′, w,X ) = s(i′, w,X ∪ {e}) and δ(e′,X ) = δ(e′,X ∪ {e}). Thus, assuming the
edge ebest = (i, j) has been identified and added to X , for finding the next best edge,
only the scores s(i, ., .) and s(j, ., .) need to be updated. We then evaluate δ for all edges
incident to the nodes i and j. The remaining nodes and edges are not affected since their
s, δ, and ∆ values are unchanged.

Exploiting these results, we compute the set X similar to Algorithm 3.1 (lines 5 - 19).
Initially, compute for each node i and unique edge weight Aij the term s(i,Aij ,X ). Then
compute for each edge e the term (∆(e,X ), e) and add it to the priority queue. These
steps can be done in time O(γ · |E|), where γ is the number of unique edge weights per
node. Every time the best element ebest = (i, j) from the PQ is retrieved, we recompute
s(i, .,X ) and s(j, .,X ), followed by a recomputation of δ(e,X ) for all incident edges.
Noticing that there are at most 2x many incident edges (x nearest-neighbor graph) these
steps can be done in time O(γ · x+ x · log(|E|)).
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3 Robust Spectral Embedding

Overall, this leads to a time complexity of O(γ · |E|+ θ · (x · log(|E|) + γ · x)). Note
that the worst case (each edge has a unique weight) corresponds to γ = x. In this case
we obtain O(x · |E| + θ · (x · log(|E|) + x2)). For our case of spectral clustering using
nearest-neighbor graphs, however, it holds γ = 1. In this case, we obtain an algorithm
with complexity O(|E|+ θ · x · log(|E|)) Thus, being linear in the number of edges.

In summary, the principle for solving Eq. 3.12 is almost identical to Algorithm 3.1 with
the additional overhead of re-evaluating the term ∆(e,X ) for the edges incident to ebest.

3.6 Local Purity and Global Separation

Our main hypothesis is that jointly learning the embedding and the corruptions improves
the embedding quality. How can we measure the quality? Instead of relying on an arbitrary
technique for clustering the embedding we derive statistics that depend on the embedding
itself and the ground-truth classes3. We argue that two properties should be fulfilled:

• Local Purity: In a good embedding the instances within every local neighborhood
should mostly belong to the same class.

• Global Separation: In a good embedding it should be possible to distinguish
between instances of different classes by inspecting the intra-class and inter-class
distances only. That is, the classes should be easily separable.

In Fig. 3.4 we illustrate different embeddings which different quality according to the
proposed metrics. A good embedding is both locally pure and globally separated (Fig. 3.4a).
In Sec. 3.7 we show that the embedding produced by RSC satisfies both of these criteria.

3.6.1 Local Purity

Let hi denote the embedding of instance i and ci ∈ C its class according to the ground
truth. Intuitively, we define the purity purx(i) of the neighborhood around instance i
given its x-nearest neighbors as the largest fraction of instances belonging to the same
class. Formally, let Ex(i) denote the set of x nearest neighbors of i in the embedding
space. Then the purity for node i is given by

purx(i) =
1

x+ 1
max
c∈C

∣∣{j ∈ (Ex(i) ∪ {i}) | cj = c}
∣∣

︸ ︷︷ ︸
frequency of class c in Ex(i)

(3.17)

i.e. equals the ratio of the majority class in the neighborhood of node i (including the node
itself). The overall local purity (at scale x) is defined as the average over all instances:

PURx =
1

N

N∑

i=1

purx(i) (3.18)

In the best case PURx = 1 and each neighborhood contains instances of a single class
only, and in the worst case PURx = 1/|C| the classes are uniform.

3We specifically use the term “class” to indicate the groups given by the ground truth, not the groups
detected by an arbitrary clustering method applied on the embedding.
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3.7 Experiments

(a) Both pure and separated (b) Pure but not separated (c) Separated but not pure

Figure 3.4: Illustration of the proposed local purity and global separation metrics for the quality
of an embedding. A good embedding is both locally pure and globally separated as in (a).

3.6.2 Global Separation

We formalize global separation by extending the idea of the Silhouette coefficient [72].
For each class c we compute the list of pairwise distances Pc,c of all instances within the
class, and the list of pairwise distances Pc,c′ between instances from class c and c′ 6= c

Pc,c′ = [dist(hi,hj)]i∈Cc,j∈Cc′ (3.19)

where Cc = {i | ci = c} is the set of all instances from class c.
For each list we compute the mean over the x% smallest elements, denoted as Pc,c′(x), i.e.

we compute the truncated mean discarding the top (1−x)% of the elements. Following the
Silhouette coefficient, we then compute the difference between the within class distances
and the distance to the closest other class c∗

GSc(x) =
Pc,c∗(x)− Pc,c(x)

max{Pc,c∗(x), Pc,c(x)}
, c∗ = arg min

c′ 6=c
Pc,c′(x) (3.20)

In the best case GSc(x) = 1, in the worst case −1. GSc(x) can intuitively be seen as a
robust extension of the Silhouette coefficient w.r.t. the ground-truth classes. For x = 1 it
resembles the Silhouette coefficient w.r.t. class c. For x < 1 only partial distances are
considered capturing that the embedding might not exactly represent the ground truth.

3.7 Experiments

Setup. We compare our method (RSC) against standard spectral clustering (SC), and
the two related works AHK [60] and NRSC [57]. We denote with RSC-Lxyz the different
variants of our method using the corresponding Laplacian. For all techniques, we set the
number of clusters k equal to the number of clusters in the data.

As default values we construct nearest-neighbor graphs with q = 15 neighbors, allowing
half of the edges to be removed per node (m = 0.5 · q). While Li et al. [57] use a
principle for automatically setting their parameters the obtained performance was often
below average, so we manually optimized their parameters to obtain better solutions.
All experiments are averaged over several k-means runs for stability. We evaluate the
clustering quality of the different approaches using normalized mutual information (NMI)
with 1 being the best.
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(c) RSC with θ = 20

Figure 3.5: Spectral embedding of the Banknote data based on Lsym. The learned embedding
increase the discrimination between the two clusters (denoted with different colors/markers).

Real-world data. We use three handwritten digits datasets: Pendigits [73] (n = 7494),
USPS [74] (n = 9298), and two subsamples of the MNIST dataset [75] (n = 20K) because
the baselines have complexity cubic in the number of instances. We also use the Banknote
authentication (n = 1372), and Iris (n = 150) dataset [73]. See Sec. A.1 for details.

Synthetic data. Besides the moon data (Fig. 3.2) which is perturbed with Gaussian
noise using different variance σ, we also generate synthetic similarity graphs based on
the planted partitions model [76]. Given the clusters we randomly connect each node to
p percent of the other nodes in its cluster. Additionally, we add a fraction of noisy edges
to the graph. By default we generate data with 1000 instances, p = 0.3 and 20 clusters.

3.7.1 Evaluating the Spectral Embedding

We start by analyzing the spectral embeddings obtained by RSC. In Fig. 3.3 we illustrated
the spectral embeddings for the data of Fig. 3.2b. Standard spectral clustering fails on
this data, since the embedding does not separate the clusters. In contrast, applying our
technique, we obtain the embeddings as shown in Fig. 3.3c where the three clusters are
clearly separated which means that we can perfectly remove the ground-truth clusters.

A similar behavior can be observed for real world data. Fig. 3.5 shows the spectral
embedding of the Banknote data regarding Lsym (the other Laplacians show similar
results). On Fig. 3.5a we see the original SC embedding. The points do not show a clear
separation in two groups. In the middle and right plot, we applied RSC with θ = 10 and
θ = 20, respectively. As shown, the separation between the points clearly increases. The
embedding is optimized leading to a higher clustering accuracy. As we will see later, for
the Banknote data, the NMI score increases from 0.46 for θ = 0 to 0.61 for θ = 20.

Sparsity threshold. As indicated in Fig. 3.5, increasing the sparsity threshold might
lead to a clearer separation. We now analyze this aspect in more detail. Fig. 3.6a analyzes
the Two Moons dataset with Gaussian noise of σ = 0.1. We vary θ for all three techniques.
θ = 0 corresponds to original spectral clustering using the corresponding Laplacian.
Clearly, its quality is low. As shown, for all techniques we observe an increase in the
clustering quality until a stable point is reached. Fig. 3.6b shows the same behavior for
the Banknote data. The removal of corrupted edges improves the clustering results. All
three variants are able to reach the highest NMI of 0.61.

32



3.7 Experiments

0,2

0,4

0,6

0,8

1

0 10 20 30

N
M
I

θ

RSC-L
RSC-Lrw
RSC-Lsym

(a) NMI, Two Moons

0,4

0,45

0,5

0,55

0,6

0,65

0 5 10 15 20

N
M
I

θ

RSC-L

RSC-Lrw
RSC-Lsym

(b) NMI, Banknote

0%

20%

40%

60%

80%

100%

0 10 20 30

Tr
ac
e

θ

RSC-L

RSC-Lrw

RSC-Lsym

(c) Trace, Banknote

Figure 3.6: Increasing the sparsity threshold θ improves the clustering quality (increases the
NMI score) and decreases the value of the trace (relative to the trace obtained by SC, θ = 0).

Remark: Using the variant based on L, at some point, the quality will surely drop
again. When all corrupted edges have been removed, one will start to remove “good”
edges. The reason is that the terms in Eq. 3.7 are always non-negative. In contrast, using
Lrw/Lsym (Eq. 3.7, Corollary 3.2, ∆), edges connecting points within the same cluster
will often obtain negative scores. Those edges will never be included in the matrix Ac,
independent of θ. Thus, in general, the later two versions are more robust regarding θ.

According to our problem description (e.g. Problem 3.1) we aim to minimize the trace.
In Fig. 3.6c we illustrate the value of the trace for the setting of Fig. 3.6b. Since the
trace between the different Laplacians can not be meaningfully compared in absolute
values, we plot it relative to the trace obtained by standard spectral clustering. For all
of our approaches the trace can successfully be lowered by a significant amount, which
confirms the effectiveness of our approach. Our algorithms often need only around 10
iterations to converge to these good results.

3.7.2 Detecting Corrupted Edges

Next, we analyze how well our approach is able to spot corrupted edges. For this, we
artificially added corrupted edges to the similarity graph based on the planted partition
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Figure 3.7: RSC achieves high precision and recall. Corrupted edges are successfully detected.
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model. We investigate two different settings: in one case 10% of all edges in the graph are
corrupted; in the other even 20% of all edges. Knowing the corrupted edges, we measure
the precision p = |A ∩B|/|B| and recall r = |A ∩B|/|A|, where A denotes the corrupted
edges, and B the edges removed by our technique.

Fig. 3.7 shows the results when increasing the number of removed edges (θ). For the 10%
noise case (Fig. 3.7a), we observe a very high precision which stays at the optimal value
until θ = 1200 – only the corrupted edges are removed. Note that the absolute number
of corrupted edges in the data is 1261. Likewise, the recall is continuously increasing
until ≈ 0.96 – only a few corrupted edges could not be detected. The scenario with 20%
noise (3605 corrupted edges in total) is more challenging. While Lsym obtains a result
very close to optimal, Lrw and L perform slightly worse. For these variants also some
‘good’ edges get removed. Note that the curves do not need to be monotonic. Due to the
joint optimization, different edges can be removed for each parameter setting. Overall,
for realistic noise levels all techniques perform well – with Lsym often being the best.

3.7.3 Evaluating Robustness

Next we study how increasing the noise affects the clustering quality. Specifically, we
randomly add Gaussian noise to the Two Moons data with variance σ increased from 0 to
0.14. To highlight the variation in the clustering quality we average the results over ten
seeds for each noise parameter. Fig. 3.8 shows the results. The lines represents the mean
NMI, while the error bands represent the 95% confidence interval. Note that for standard
SC we report the best result among all three Laplacian for each dataset individually.
Thus, standard spectral clustering gets an additional strong benefit. Clearly, spectral
clustering is not robust and rapidly decreases in quality. Lsym performs best and all of
our approaches clearly outperform the baseline.

Next, we analyze the robustness of the methods by artificially adding noise to real
data. To ensure that the cluster detection is indeed getting more difficult, we specifically
add corrupted edges to the similarity graph connecting different clusters. The results for
the Banknote data are presented in Fig. 3.9. As shown, at the beginning all techniques
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Figure 3.8: Robustness to noise. Our RSC
clearly outperforms spectral clustering.
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Figure 3.9: Robustness of all techniques
on Banknote. RSC is most stable.
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remain at their quality level obtained on the original data, with RSC obtaining the
highest quality. Adding more corruptions, however, standard spectral clustering drops
very quickly and sharply to low quality. In contrast, RSC stays at its highest level for
the longest time. AHK is quite stable as well, while NRSC is much more sensitive.

3.7.4 Cluster Quality Comparison

Next, we provide an overview of the clustering quality. For all techniques we used the
symmetric normalized Laplacian since it performed best. Even though our main aim is
to improve spectral clustering approaches, we additionally report the results of two other
popular clustering techniques: k-means and mean shift (density-based). For the later, we
tuned the bandwidth parameter to obtain highest scores. As already mentioned in the
setup, the competing techniques’ parameters were tuned as well. For RSC, we simply
used a very large θ and let the method automatically decide how many edges to mark as
corrupted – one advantage of Lsym. Table 3.1 summarizes the results for the different
datasets. Besides using the full datasets, we use the principle of [57, 60] and additionally
select subsets of the data. More precisely, from the Pendigits data we select specific digits
indicated with Pendigits-xyz.

RSC significantly outperforms the baselines. On some datasets we even see a 15%
improvement w.r.t. spectral clustering. Though, it is also fair to mention that not for all
datasets an improvement can be achieved. Our method clearly outperforms k-means and
density-based clustering and it finishes for all these datasets in a few seconds to minutes.
In contrast, NRSC and AHK required already around one and three hours respectively
on the larger MNIST data.

Table 3.1: Comparison of clustering performance (NMI) for different techniques and datasets.

Data SC NRSC AHK k-means mean-shift RSC

Moons 0.47 0.99 0.53 0.19 0.34 1.00
Banknote 0.46 0.47 0.52 0.03 0.03 0.61
USPS 0.78 0.83 0.77 0.61 0.15 0.85
MNIST-10 K 0.71 0.70 0.70 0.48 0.48 0.73
MNIST-20 K 0.70 0.76 0.71 0.48 d.n.f. 0.78
Iris 0.78 0.79 0.53 0.76 0.72 0.80
Pendigits 0.82 0.83 0.82 0.69 0.66 0.82
Pendigits-16 0.86 0.87 0.88 0.88 0.01 0.91
Pendigits-146 0.93 0.94 0.94 0.88 0.47 0.96

3.7.5 Local Purity and Global Separation

Local purity. Fig. 3.10a shows the results for the Banknote data for all competing
techniques. The number of neighbors (i.e. x in PURx) is scaled from 1 to the maximal
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Figure 3.10: Evaluation of local purity and global separation on the Banknote dataset.

cluster size to ensure that all scales are captured. As a baseline we also evaluate the
purity of the original input data (i.e. the embedding space is the raw input data). The
original data only has good purity for small x, but drops quickly. This indicates complex
shapes like in Fig. 3.2. For banknote, RSC has consistently the highest local purity. The
embedding well reflects the ground truth locally. SC and AHK perform slightly worse.
NRSC, in contrast, drops quicker similar to the baseline. We see similar qualitative results
for the other datasets as well.

Global separation. Fig. 3.10b shows the result for the Banknote data. We plot the
average global separation among the two classes (i.e. average of GS1(x) and GS2(x)).
Again, the raw data shows the worst result, with scores consistently below 0.4 indicating
no good separation/clusteredness of the class labels in the space. In contrast, RSC obtains
high scores up to a large-scale x. That is, a very large fraction of the instances are well
separated and clustered in the learned embedding. The competing approaches consistently
perform worse, showing no good match between the ground truth and the clusteredness
of the embedding. The results also indicate that local purity and global separation of an
embedding are indeed two different properties. The learned embeddings of RSC capture
well both properties confirming the benefit of our joint learning principle.

3.8 Conclusion

We proposed a robust spectral clustering technique for noisy data. Our core idea was to
decompose the similarity graph into two latent factors: sparse corruptions and clean data.
We jointly learned the spectral embedding as well as the corrupted data. We proposed
three different algorithmic solutions using different Laplacians. Our experiments have
shown that the learned embeddings clearly emphasize the clustering structure and that our
method outperforms standard spectral clustering and other state-of-the-art competitors.
In Chapter 4 we discuss a different notion of robustness for node embeddings. Namely,
rather than explicitly removing noisy edges we embed nodes as Gaussian distributions
which implicitly capture the uncertainty resulting from the corruptions.
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3.9 Retrospective

In Gu et al. [77] the authors study the unsupervised link selection problem which they see
as the network equivalent of the traditional feature selection problem. In short, their goal
is to select a subset of informative edges to enhance the quality of the community structure.
As it turns out, the resulting optimization problem is equivalent to our Problem 3.1 for
the standard Laplacian (without local budget constraints). Unsurprisingly, given the
widely diverging vocabulary (feature selection vs. node clustering) we did not identify
this paper as part of the relevant work during the initial literature search. Nonetheless,
we briefly discuss some relevant aspects for completeness.

First, it is interesting to highlight that the approach they took to approximately
solve the same problem differs from ours. Similar to our approach they propose an
iterative algorithm: they compute the impact of removing each edge based on first-order
partial derivatives and iteratively remove the edge with the highest score as in Eq. 3.9.
Specifically, they update the graph with the single highest scoring edge and recompute
the eigenvectors, repeating the procedure until the budget is exhausted. Compare this
to our iterative Algorithm 3.1 where we select the top scoring edges at once based on
the current estimate, and only then we recompute the embeddings (eigenvectors). Both
algorithms perform similar in practice. It is also worth mentioning that our alternative
derivation based on the connection to the multidimensional Knapsack problem gives us
the best possible worst-case bound on the approximation error of our algorithm.

A noteworthy observation which we omitted in the original paper is that if we relax the
binary constrains w.r.t. the selected edges, by replacing the ‖·‖0 with the ‖·‖1 in Eq. 3.6,
the problem can be exactly solved as a semi-definite program (SDP) [77, 78]. This holds
in general for optimizing any convex function of the graph Laplacian’s eigenvalues [79].

Given that the eigenvalues for Lrw and Lsym are the same, i.e. λ is an eigenvalue of Lrw

with eigenvector u if and only if λ is an eigenvalue of Lsym with eigenvector w = D1/2u,
an alternative approach to solving Problem 3.3 is to first solve Problem 3.2 obtaining H∗

and then simply return D1/2H∗. Note that the solutions for the two alternatives would be
the same if we can solve the problems exactly, however, since our approximations behave
differently for the different problems the solutions might also be different. Analogously,
we can first solve Problem 3.3 and then multiply by D−1/2 to obtain an alternative
solution for Problem 3.2.

An interesting extension of RSC would be to select the edges based on the non-
backtracking matrix (NB) of the graph rather then the Laplacian. In Krzakala et al.
[80] the authors show that the spectrum of this matrix (related to the non-backtracking
random walk) is better behaved and maintains a strong separation between the bulk
eigenvalues and the eigenvalues relevant for community structure. Moreover, spectral
clustering based on the NB matrix is optimal for graphs generated by the stochastic block
model and detects clusters down to the theoretical limit. Our approach using eigenvalue
perturbation theory can be adapted to approximate the eigenvalues of the NB matrix.

37





4 Gaussian Node Embeddings

(a) A simple graph with three main clus-
ters marked by different colors.

(b) Each node is represented as a two-
dimensional Gaussian distribution.

Figure 4.1: Graph2Gauss embeds nodes as distributions thereby capturing uncertainty.

4.1 Introduction

Node embeddings are a powerful and increasingly popular approach for analyzing graph
data [28]. By operating in the embedding space one can employ proved learning techniques
and bypass the difficulty of incorporating complex node interactions. Beyond clustering
(as in Chapter 3), other tasks such as link prediction, node classification, and graph
visualization, all greatly benefit from learning node representations. For attributed graphs
by leveraging both sources of information (network structure and attributes) we can learn
more useful representations [81–83] compared to approaches that only consider the graph,
such as the (robust) spectral embedding. Here we assume that the graph is explicitly
given, although the approach can also be applied to similarity graphs as with RSC.

All existing (attributed) graph embedding approaches represent each node by a single
point in a low-dimensional continuous vector space. Representing the nodes simply as
points, however, has a crucial limitation: we do not have information about the uncertainty
of that representation. Yet uncertainty is inherent when describing a node in a complex
graph by a single point only. Imagine a node for which the different sources of information
(attributes vs. graph structure) are conflicting with each other, e.g. pointing to different
communities. Such discrepancy, and any other noise in the data, should be reflected in the
uncertainty of its embedding. As a solution to this problem, we introduce an embedding
approach that represents nodes as Gaussian distributions: each node is represented with
an entire distribution rather than a single point, thereby capturing uncertainty.
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To effectively deal with the non-i.i.d. nature of the data arising from the complex
interactions between the nodes we propose an unsupervised personalized ranking for-
mulation to learn the embeddings. Intuitively, from the point of view of a single node,
we want nodes in its immediate neighborhood to be closest in the embedding space,
while nodes multiple hops away should become increasingly more distant. Our ranking
formulation arises by enforcing the distance between node embeddings to be proportional
to the geodesic distance between the nodes. Taking into account this natural ranking
from each node’s point of view, we learn more powerful embeddings since we incorporate
information about the network structure beyond first and second-order proximity.

Furthermore, when node attributes (e.g. text) are available our method is able to lever-
age them to easily generate embeddings for previously unseen nodes without additional
training. In other words, our proposed approach Graph2Gauss is inductive, which is a
significant benefit over existing methods that are inherently transductive and do not
generalize to unseen nodes easily. This desirable inductive property is due to our learned
encoder that maps node attributes to embeddings.

The main contributions of our approach are summarized as follows:

• We embed nodes as Gaussian distributions allowing us to capture uncertainty.

• Our unsupervised personalized ranking formulation exploits the natural ordering
of the nodes capturing the network structure at multiple scales.

• We propose an inductive method that generalizes to unseen nodes and is applicable
to different types of graphs: plain/attributed, directed/undirected.

4.2 Related Work

We focus on unsupervised learning of node embeddings for which many different ap-
proaches have been proposed. For a comprehensive recent survey see Cai et al. [28],
Hamilton et al. [84], or Goyal and Ferrara [85]. Approaches such as DeepWalk and
node2vec [86, 87] look at plain graphs and learn an embedding based on random walks
by extending or adapting the Skip-Gram [88] architecture. LINE [89] uses first- and
second-order proximity and trains the embedding via negative sampling. SDNE [90]
similarly has a component that preserves second-order proximity and exploits first-order
proximity to refine the representations. GraRep [91] is a factorization-based method that
considers local and global structural information.

Tri-Party Deep Network Representation (TRIDNR) [82] considers node attributes,
network structure and potentially node labels. CENE [92] similarly to Paper2Vec [83]
treats the attributes as special kinds of nodes and learns embeddings on the augmented
network. Text-Associated DeepWalk (TADW) [81] performs low-rank matrix factorization
considering graph structure and text features. Heterogeneous networks are consider in
[93, 94], while Huang et al. [95] similarly to Pan et al. [82] additionally consider labels.
GraphSAGE [96] is a (partially) inductive method that generates embeddings by sampling
and aggregating attributes from a node’s local neighborhood. Unlike Graph2Gauss, to
compute the embeddings GraphSAGE requires edge information at test/inference time.
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4.3 Deep Gaussian Embedding

Graph convolutional networks are another family of approaches that adapt conventional
CNNs to graph data [19, 97–100]. They utilize the graph Laplacian and the spectral
definition of a convolution and boil down to some form of aggregation over neighbors such
as averaging. They can be thought of as implicitly learning an embedding, e.g. by taking
the output of the last layer before the supervised component. See Monti et al. [98] for
an overview. In contrast to Graph2Gauss, most of these methods are (semi-)supervised.
The graph variational autoencoder (GAE) [101] is a notable exception that learns node
embeddings in an unsupervised manner.

Few approaches consider the idea of learning an embedding that is a distribution.
Vilnis and McCallum [102] are the first to learn Gaussian word embeddings to capture
uncertainty. Closest to our work, He et al. [103] represent knowledge graphs and Dos Santos
et al. [104] study heterogeneous graphs for node classification. Both approaches are not
applicable for the context of unsupervised learning of (attributed) graphs that we are
interested in. The method in He et al. [103] learns an embedding for each component of
the triplets (head, tail, relation) in the knowledge graph. Note that we cannot naively
employ this method by considering a single relation “has an edge” and a single entity
“node”. Since their approach considers similarity between entities and relations, all nodes
would be trivially similar to the single relation. Considering the semi-supervised approach
proposed in Dos Santos et al. [104] we cannot simply “turn off” the supervised component
to adapt their method for unsupervised learning, since given the defined loss we would
trivially map all nodes to the same Gaussian distribution. Additionally, both of these
approaches do not consider node attributes.

4.3 Deep Gaussian Embedding

In this section we introduce our method Graph2Gauss (G2G) and detail how both the
attributes and the network structure influence the learning of node representations. The
embedding is carried out in two steps: (i) the node attributes are passed through a
non-linear transformation via a deep neural network (encoder) and yield the parameters
associated with the node’s embedding distribution; (ii) we formulate an unsupervised
loss function that incorporates the natural ranking of the nodes as given by the network
structure w.r.t. a dissimilarity measure on the embedding distributions.

Problem definition. Let G = (A,X) be a directed attributed graph, where A ∈
RN×N is an adjacency matrix representing the edges between N nodes and X ∈ RN×D
collects the attribute information for each node where Xi is a D-dimensional attribute
vector of the ith node1. We aim to find a lower-dimensional Gaussian distribution
embedding hi = N (µi,Σi), µi ∈ RL,Σi ∈ RL×L with L� N,D such that nodes similar
w.r.t. attributes and network structure are also similar in the embedding space given a
dissimilarity measure ∆(hi,hj). In Fig. 4.1 for example we show nodes that are embedded
as two-dimensional Gaussian distributions.

1Note, in the absence of node attributes we can simply use one-hot encoding for the nodes (i.e. X = I,
where I is the identity matrix) and/or any other derived features such as node degrees.
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4.3.1 Structure Representation via Personalized Ranking

To capture the structural information of the network in the embedding space, we propose
a personalized ranking approach. That is, locally per node i we impose a ranking of all
remaining nodes w.r.t. their distance to node i in the embedding space. More precisely,
we exploit the k-hop neighborhoods of each node. Given some anchor node i, we define

Vik = {j ∈ V | i 6= j,min(sp(i, j),K) = k} (4.1)

to be the set of nodes who are exactly k hops away from node i (see Fig. 4.2). Here V
is the set of all nodes, K is a hyperparameter denoting the maximum distance we are
wiling to consider, and sp(i, j) returns either the length of the shortest path starting at
node i and ending in node j or ∞ if node j is not reachable from node i.

Intuitively, we want all nodes belonging to the 1-hop neighborhood of i to be closer to
i w.r.t. their embedding, compared to the all nodes in its 2-hop neighborhood, which in
turn are closer than the nodes in its 3-hop neighborhood and so on up to K. Thus, the
ranking that we want to ensure from the perspective of node i is

∆(hi,hk1) < ∆(hi,hk2) < · · · < ∆(hi,hkK ) k1 ∈ Vi1, k2 ∈ Vi2, . . . , kK ∈ ViK (4.2)

or equivalently, we aim to satisfy the following pairwise constraints

∆(hi,hj) < ∆(hi,hj′), i ∈ V, j ∈ Vik, j′ ∈ Vik′ , k < k′ (4.3)

Going beyond mere first-order and second-order proximity this enables us to capture the
network structure at multiple scales incorporating local and global structure.

Dissimilarity measure. To solve the above ranking task we have to define a suitable
dissimilarity measure between the latent representation of two nodes. Since our latent
representations are distributions, similarly to Dos Santos et al. [104] and He et al. [103]
we employ the asymmetric KL divergence. This gives the additional benefit of handling
directed graphs in a sound way. More specifically, given the latent Gaussian distribution
representation of two nodes hi,hj we define

∆(hi,hj) = DKL

(
N (µj ,Σj) || N (µi,Σi)

)

=
1

2

[
Tr(Σ−1

i Σj) + (µi − µj)TΣ−1
i (µi − µj)− L− log

det(Σj)

det(Σi)

]
(4.4)

Here we use the notation µi,Σi to denote the outputs of some functions µθ(Xi) and
Σθ(Xi) applied to the attributes Xi of node i and Tr(·) denotes the trace of a matrix.
The asymmetric KL divergence also applies to the case of an undirected graph by
simply processing both directions of the edge. We could alternatively use a symmetric
dissimilarity measure such as the Jensen-Shannon divergence, or the expected likelihood
(probability product kernel). See Sec. 4.6 for additional insights on the KL divergence.
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4.3 Deep Gaussian Embedding

Figure 4.2: K-hop neighborhood. Figure 4.3: Parametrized Encoder.

4.3.2 Deep Encoder

The functions µθ(Xi) and Σθ(Xi) are deep feed-forward non-linear neural networks
parametrized by θ. It is important to note that these parameters are shared across
instances and thus enjoy statistical strength benefits. Additionally, we design µθ(Xi) and
Σθ(Xi) such that they share parameters as well. More specifically, a deep encoder fθ(Xi)
processes the node’s attributes and outputs an intermediate hidden representation, which
is then in turn used to output µi and Σi in the final layer of the architecture (see Fig. 4.3).
We focus on diagonal covariance matrices.2 The mapping from the nodes’ attributes to
their embedding via the deep encoder is precisely what makes Graph2Gauss inductive.

4.3.3 Energy-based Loss

Since it is intractable to find a solution that satisfies all of the pairwise constraints
defined in Sec. 4.3.1 we turn to an energy-based learning approach. The idea is to define
an objective function that penalizes ranking errors given the energy of the pairs. More
specifically, denoting the KL divergence between two nodes as the respective energy,
Eij = DKL

(
N (µj ,Σj) || N (µi,Σi)

)
, we define the following loss to be optimized

L =
∑

i

∑

k<k′

∑

j∈Vik

∑

j′∈Vik′

(
Eij

2 + exp−Eij′
)

=
∑

(i,j,j′)∈Dt

(
Eij

2 + exp−Eij′
)

(4.5)

where Dt = {(i, j, j′) | sp(i, j) < sp(i, j′)} is the set of all valid triplets. The Eij terms
are positive examples whose energy should be lower compared to the energy of the
negative examples Eij′ . Here, we employed the so called square-exponential loss [105]
which unlike other typically used losses (e.g. hinge loss) does not have a fixed margin
and pushes the energy of the negative terms to infinity with exponentially decreasing
force. For a given anchor node i, the energy Eij should be lowest for nodes j in its 1-hop
neighborhood, followed by a higher energy for nodes in its 2-hop neighborhood, etc.

2To ensure that the diagonal covariance matrix is positive-definite in the final layer we output σ̃id ∈ R
and obtain σid = elu(σ̃id) + 1.
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We can optimize the parameters θ of the deep encoder such that the loss L is minimized
and the pairwise rankings are satisfied. Note again that the parameters are shared across
all instances, meaning that we share statistical strength and can learn them more easily
in comparison to treating the distribution parameters (µi, Σi) independently as free
variables. We optimize the parameters using Adam [106] with a fixed learning rate.

Sampling strategy. For large graphs, the complete loss is intractable to compute
imposing the need for a stochastic variant. The naive approach would be to sample
triplets from Dt uniformly, i.e. replace

∑
(i,j,j′)∈Dt with E(i,j,j′)∼Dt in Eq. 4.5. However,

with the naive sampling we are less likely to sample triplets that involve low-degree nodes
since high-degree nodes occur in many more pairwise constraints. This in turn means
that we update the embedding of low-degree nodes less often which is not desirable.

Therefore, we propose an alternative node-anchored sampling strategy. Intuitively,
for every node i, we randomly sample one other node from each of its neighborhoods
(1-hop, 2-hop, etc.) and then optimize over all the corresponding pairwise constraints
(Ei1 < Ei2, . . . , Ei1 < EiK , Ei2 < Ei3, . . . Ei2 < EiK , . . . , EiK−1 < EiK).

Naively applying the node-anchored sampling strategy and optimizing Eq. 4.5, however,
would lead to biased estimates of the gradient. Proposition 4.1 shows how to adapt the
loss such that it is equal in expectation to the original loss under our new sampling
strategy. As a consequence, we have unbiased estimates of the gradient using stochastic
optimization of the reformulated loss.

Proposition 4.1. For all i, let (j1, . . . , jK) be independent uniform random samples
from the sets (Vi1, . . . ,ViK) and |Vi∗| the cardinality of each set. Then L equals

Ls :=
∑

i

E(j1,...,jK)∼(Vi1,...,ViK)

[∑

k<k′

|Vik| · |Vik′ | ·
(
E2
ijk

+ exp−Eijk′
)]

= L (4.6)

See proof in Sec. C.1. For cases where the number of nodes N is particularly large we
can further subsample mini-batches, by selecting anchor nodes i uniformly at random.
Furthermore, in our experimental study, we analyze the effect of the sampling strategy on
convergence, as well as the quality of the stochastic variant w.r.t. the obtained solution
and the reached local optima.

4.3.4 Discussion

Inductive learning. While during learning we need both the network structure (to
evaluate the ranking loss) and the attributes, once the learning concludes the embedding
for a node can be obtained solely based on its attributes. This enables our method to
easily handle the issue of obtaining representations for new nodes that were not part of
the network during training. To do so we simply pass the attributes of the new node
through our learned deep encoder. Most approaches cannot handle this issue at all, with
a notable exception being SDNE and GraphSAGE [90, 96]. However, both approaches
require the edges of the new node to obtain the node’s representation, and cannot handle
nodes that have no existing connections. In contrast, our method can handle even such
nodes, since after the model is learned we rely only on the attribute information.
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Plain graph embedding. Even though attributed graphs are often found in the real
world, sometimes it is desirable to analyze plain graphs. As already discussed, our method
easily handles plain graphs, when the attributes are not available, by using e.g. one-hot
encoding of the nodes instead. As we later show in the experiments we are able to learn
useful representations in this scenario, even outperforming some attributed approaches.
Naturally, in this case we lose the inductive ability to handle unseen nodes. We compare
the one-hot encoding version, termed G2G-OH, with our full method G2G that utilizes
the attributes, as well as all remaining competitors.

Encoder architecture. Depending on the type of the node attributes (e.g. images,
text) we could in principle use CNNs/RNNs to process them. We could also easily
incorporate any of the proposed graph convolutional layers inheriting their benefits.
However, we observe that in practice using simple feed-forward architecture with ReLU
is sufficient, while being much faster and easier to train. Better yet, we observed that
Graph2Gauss is not sensitive to the choice of hyperparameters such as number and size
of hidden layers. We provide more details and sensible defaults in Sec. C.2.

Complexity. The time complexity for computing the original loss is O(N3) where N
is the number of nodes. Using our node-anchored sampling strategy, the complexity of
the stochastic version is O(K2N) where K is the maximum distance considered. Since
a small value of K ≤ 2 consistently showed good performance, K2 becomes negligible
and thus the complexity is O(N), meaning linear in the number of nodes. This coupled
with the small number of epochs T needed for convergence (T ≤ 2000 for all shown
experiments, see Fig. 4.6b) and an efficient GPU implementation also made our method
faster than most competitors in terms of wall-clock time.

4.4 Embedding Evaluation

Setup. We compare Graph2Gauss with and without using attributes (G2G, G2G-OH) to
several competitors namely: TRIDNR [82] and TADW [81] as representatives that consider
attributed graphs, GAE [101] as the unsupervised graph convolutional representative,
and node2vec [87] as a representative of the random-walk-based plain graph embeddings.
Additionally, we include a strong Logistic Regression baseline that considers only the
attributes. As with all other methods we train TRIDNR in a unsupervised manner,
however, since it can only process raw text as attributes (rather than e.g. bag-of-words)
it is not always applicable. Since TADW, and GAE only support undirected graphs we
must symmetrize the graph before using them – giving them a substantial advantage,
especially in the link prediction task.

In all experiments if the competing techniques use an L-dimensional embedding, G2G’s
embedding is actually only half of this dimensionality so that the overall number of
‘parameters’ per node (mean vector + variance terms of the diagonal Σi) matches L.

Datasets. We use several attributed graph datasets. Cora [107] is a well-known citation
network labeled based on the paper topic. While most approaches report on a small
subset of this dataset we additionally extract from the original data the entire network
and name these two datasets Cora (N = 19793, E = 65311, D = 8710,K = 70) and
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Cora-ML (N = 2995, E = 8416, D = 2879,K = 7) respectively. Furthermore, we evaluate
on three other commonly used benchmark citation datasets: Citeseer (N = 4230, E =
5358, D = 2701,K = 6) [108], DBLP [82] (N = 17716, E = 105734, D = 1639,K = 4)
and PubMed (N = 18230, E = 79612, D = 500,K = 3) [29]. See Sec. A.1.1 for more
details about the datasets and Sec. A.2 for information about the Graph2Gauss code.

4.4.1 Link Prediction

Setup. Link prediction is a commonly used task to evaluate embeddings. Given an
observed graph we hide a random set of edges/non-edges and train on the resulting graph.
As in previous work [90, 101], we create a validation/test set that contains 5%/10%
randomly selected edges respectively and equal number of randomly selected non-edges.
We used the validation set for hyperparameter tuning and early stopping and the test
set only to report the performance. We report the area under the ROC curve (AUC)
and the average precision (AP) scores for each method. To rank the candidate edges we
use the negative energy −Eij for Graph2Gauss, and the exact approach reported in the
respective papers for the baseline methods (e.g. dot product of the embeddings).

Performance on real-world datasets. Table 4.1 shows the performance on the link
prediction task for different datasets and embedding size L = 128. As we can see our
method significantly outperforms the competitors across all datasets which is a strong
sign that the learned embeddings are useful. Furthermore, even the constrained version of
our method G2G-OH that does not consider attributes at all outperforms the competitors
on some datasets. While GAE achieves comparable performance on some of the datasets
their approach does not scale to large graphs. In fact, for graphs beyond 15K nodes we
had to revert to slow training on the CPU since the data did not fit on the GPU memory
(12GB). The simple Logistic Regression baseline showed surprisingly strong performance,
even outperforming some of the more complicated methods.

We also include the performance on the so called “Cora-ML Easy” dataset, obtained
from the Cora-ML dataset by making it undirected and selecting only the nodes in the
largest connected component. We see that while node2vec struggles on the original real-
world data, it significantly improves in this “easy” setting. On the contrary, Graph2Gauss
handles both settings effortlessly. This demonstrates that Graph2Gauss can be readily
applied in realistic scenarios on potentially messy real-world data.

Table 4.1: Link prediction performance for real-world datasets with L = 128.

Method
Cora-ML Cora Citeseer DBLP Pubmed Cora-ML Easy

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Logistic Regression 90.01 89.75 86.58 86.51 81.70 79.10 82.04 81.91 90.50 90.99 90.28 90.99
node2vec [87] 76.80 75.26 79.95 78.98 83.04 83.74 95.42 95.33 95.42 95.33 93.47 93.53
TADW [81] 81.26 81.34 76.56 78.06 70.14 72.93 65.67 59.85 62.72 68.02 83.53 82.47
TRIDNR [82] 84.51 85.69 81.61 81.08 87.23 88.87 92.01 91.62 NTA NTA 85.59 86.16
GAE [101] 96.65 96.67 97.91 98.07 92.31 93.88 95.78 96.67 96.07 96.12 95.97 95.17

G2G-OH 96.95 97.54 98.41 98.63 95.89 95.78 98.29 98.46 96.75 96.47 96.98 96.42
G2G 98.01 98.03 98.81 98.78 96.09 96.16 98.65 98.78 97.42 97.85 98.03 98.12
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Figure 4.4: Link prediction performance for different embedding sizes (L) and of percentages of
training edges (%E) on Cora-ML. G2G consistently outperforms the baselines.

Sensitivity analysis. In Fig. 4.4a and Fig. 4.4b we show the performance w.r.t. the
dimensionality of the embedding, averaged over 10 trials. G2G is able to learn useful
embeddings with strong performance even for relatively small embedding sizes. Even for
the case L = 2, where we embed the points as one-dimensional Gaussian distributions
(L = 1 + 1 for the mean and the sigma of the Gaussian), G2G still outperforms all of the
competitors irrespective of their much higher embedding sizes.

Finally, we evaluate the performance w.r.t. the percentage of training edges varying
from 15% to 85%, averaged over 10 trials. We can see in Fig. 4.4c Graph2Gauss strongly
outperforms the competitors, especially for small number of training edges. The dashed
line indicates the percentage above which we can guarantee to have every node appear at
least once in the training set.3 The performance below that line is then indicative of the
performance in the inductive setting. Since, the structure-only methods are unable to
compute meaningful embeddings for unseen nodes we cannot report their performance
below the dashed line.

4.4.2 Node Classification

Setup. Node classification is another task commonly used to evaluate the quality of
the learned embeddings. We evaluate the node classification performance for three
datasets (Cora-ML, Citeseer and DBLP) that have ground-truth classes. First, we train
the embeddings on the entire training data in an unsupervised manner excluding the
class labels. Then, following Perozzi et al. [86] we use varying percentage of randomly
selected nodes and their learned embeddings along with their labels as training data
for a (L2-regularized) logistic regression. Finally, we evaluate the performance on the
remaining nodes. We also optimize the regularization strength for each method/dataset
via cross-validation. We show results averaged over 10 trials.

Performance on real-world datasets. Fig. 4.5 compares the methods w.r.t. the
classification performance for different percentage of labeled nodes. We can see that our
method clearly outperforms the baselines. Again, the constrained version of our method
that does not consider attributes is able to outperform some of the competing approaches.

3This percentage is derived from the size of the minimum edge-cover set. For more details see Sec. C.2.
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Figure 4.5: Classification performance comparison – both G2G and G2G-OH perform strongly.

We see that Graph2Gauss shows stable performance regardless of the percentage of
labeled nodes. This means that it is sufficient to train using a small number of labeled
nodes. It is highly desirable since labels are usually expensive to obtain.

4.4.3 Sampling Strategy

Fig. 4.6a shows the validation set ROC score for the link prediction task w.r.t. the number
of triplets (i, jk, jl) seen. We can see that both sampling strategies are able to reach the
same performance as the full loss in significantly fewer (< 4.2%) number of pairs seen
(note the logarithmic scale). It also shows that the naive random sampling converges
slower than the node-anchored sampling strategy. Fig. 4.6b gives us some insight as to
why – our node-anchored sampling strategy achieves significantly lower loss. Finally,
Fig. 4.6c shows that the gradients of our node-anchored sampling strategy have lower
variance which is another reason for faster convergence.
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Figure 4.6: Our sampling strategy converges significantly faster than the full loss, while main-
taining good performance. It also has lower loss and lower variance compared to naive sampling.

4.4.4 Embedding Uncertainty

Learning an embedding that is a distribution rather than a point-vector allows us
to capture uncertainty about the representation. We perform several experiments to
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Figure 4.7: The benefit of modeling the uncertainty of the nodes.

evaluate the benefit of modeling uncertainty. Fig. 4.7a shows that the learned uncertainty
is correlated with neighborhood diversity, where for a node i we define diversity as the
number of distinct classes among the nodes in its K-hop neighborhood (

⋃
1≤k≤K Vik).

Since the uncertainty for a node i is an L-dimensional vector (diagonal covariance) we
show the average across the dimensions. In line with our intuition, nodes with less diverse
neighborhood have significantly lower variance compare to more diverse nodes whose
immediate neighbors belong to many different classes, thus making their embedding more
uncertain. Fig. 4.7 shows the result on the Cora dataset for K = 3-hop neighborhood.
Similar results hold for the other datasets. This result is particularly impressive given
the fact that we learn our embedding in a completely unsupervised manner, yet the
uncertainty was able to capture the diversity w.r.t. the class labels of the neighbors of a
node which were never seen during training.

Fig. 4.7b shows that using the learned uncertainty we are able to detect the intrinsic
latent dimensionality of the graph. Each line represents the average variance over all nodes
(y-axis) for a given dimension l for each epoch (x-axis). We can see that as the training
progresses past the stopping criterion (link prediction performance on the validation
set) and we start to overfit, some dimensions exhibit a relatively stable average variance,
while for others the variance increases with each epoch. By creating a simply rule that
monitors the average change of the variance over time we were able to automatically
detect these relevant latent dimensions (colored in red). This result holds for multiple
datasets and is shown here for Cora-ML. Interestingly, the number of detected latent
dimensions (6) is close to the number of ground-truth communities (7).

The next obvious question is then how does the performance change if we remove these
highly uncertain dimensions whose variance keeps increasing with training. Fig. 4.7c
answers exactly that. By removing progressively more and more dimensions, starting with
the most uncertain (on average) first we see imperceptibly small change in performance.
Only once we start removing the true latent dimension we see a noticeable degradation
in performance. The dashed lines show the performance if we re-train the model, setting
L = 6, equal to the detected number of latent dimensions.

As a last study of uncertainty, in a use-case analysis, the nodes with high uncertainty
reveal additional interesting patterns. For example in the Cora dataset, one of the highly
uncertain nodes was the paper “The Use of Word Shape Information for Cursive Script
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Table 4.2: Inductive link prediction performance for different datasets.

Method (% hidden)
Cora-ML Cora Citeseer DBLP Pubmed

AUC AP AUC AP AUC AP AUC AP AUC AP

Logistic Regression (10%) 75.95 78.62 78.53 78.70 73.09 72.54 67.55 69.55 86.83 87.34
G2G (10%) 90.93 89.37 94.18 93.40 88.58 88.31 85.06 83.75 92.22 90.45
G2G (25%) 87.83 86.31 92.96 92.31 87.30 86.61 83.09 81.49 90.20 88.28

Recognition” – surprisingly, all citations (edges) of that paper (as extracted from the
dataset) were towards other papers by one of the coauthors, R.J. Whitrow.

4.4.5 Generalization to Unseen Nodes

As discussed in Sec. 4.3.4 G2G is able to learn embeddings even for nodes that were
not part of the networks structure during training time. Thus, it not only supports
transductive but also inductive learning. To evaluate how our approach generalizes to
unseen nodes we perform the following experiment: (i) first we completely hide 10%/25%
of nodes from the network at random; (ii) we proceed to learn the node embeddings for
the rest of the nodes; (iii) after learning is complete we pass the (new) unseen test nodes
through our deep encoder to obtain their embedding; (iv) we evaluate by calculating the
link prediction performance (AUC and AP scores) using all their edges and same number
of randomly sampled non-edges.

As the results in Table 4.2 clearly show, since we are utilizing the rich attribute
information, we are able to achieve strong performance for unseen nodes. This is true
even when a quarter of the nodes are missing. This makes our method applicable in
the context of large graphs where training on the entire network is not feasible. Note
that SDNE [90] and GraphSAGE [96] cannot be applied in this scenario, since they also
require the edges for the unseen nodes to produce an embedding. Graph2Gauss is the
only inductive method that can obtain embeddings based only on the node attributes.

4.4.6 Network Visualization

One key application of node embedding approaches is creating meaningful visualizations
of a network in 2D/3D that support tasks such as data exploration and understanding.
Following Tang et al. [89] and Pan et al. [82] we first learn a lower-dimensional L = 128
embedding for each node and then map those representations in 2D with TSNE [109].

Additionally, since our method is able to learn useful representations even in low
dimensions we embed the nodes as 2D Gaussian distributions and visualize the resulting
embedding. This has the added benefit of visualizing the nodes’ uncertainty as well.
Fig. 4.8 shows the visualization for the Cora-ML dataset. We see that Graph2Gauss
learns an embedding in which the different classes are clearly separated.
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(a) G2G, L = 2 + 2 = 4 (b) G2G, L = 128, projected with TSNE

Figure 4.8: 2D visualization of the embeddings on the Cora-ML dataset. Color indicates the
class label not used during training. Best viewed on screen.

4.5 Conclusion

We proposed Graph2Gauss – the first unsupervised approach that represents nodes in
attributed graphs as Gaussian distributions and is therefore able to capture uncertainty.
Analyzing the uncertainty reveals the latent dimensionality of a graph and gives insight
into the neighborhood diversity of a node. Since we exploit the attribute information of
the nodes we can effortlessly generalize to unseen nodes, enabling inductive reasoning.
Graph2Gauss leverages the natural ordering of the nodes w.r.t. their neighborhoods via
a personalized ranking formulation. The strength of the learned embeddings has been
demonstrated on several tasks – specifically achieving high link prediction performance
even in the case of low-dimensional embeddings.

4.6 Retrospective

Since we only learn a mapping from features to embeddings, one limitation of Graph2Gauss
is that if two nodes have the same input features they will also have the same output
embeddings regardless of their neighborhood structure and position in the graph. An easy
way to tackle this limitation is to add additional features that distinguish between the
nodes, e.g. one-hot encoding of the node IDs. However, doing so the model will no longer
be inductive, which might be an acceptable trade-off depending on the application.

After publishing this work we made several observations. First, when learning node
embeddings which are used in downstream node classification or link prediction tasks,
the direction of the KL divergence did not matter in practice. That is training with
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either ∆(hi,hj) or ∆(hj ,hi) for a directed edge i→ j resulted in similar performance.
The direction, however, still matters if we want to capture tree-like structures and
entailment and whether nodes closer to the “root” should have lower or higher variance
(see also [102]). Second, limiting the number of hops to two was often enough to achieve
state-of-the-art results for most datasets, and using k > 2 hops yielded marginal (or
no) improvements, despite higher-order proximity being one selling point of the method.
Considering that the benchmark datasets exhibit strong homophily this is not surprising.
Finally, for plain graphs, in the absence of node attributes we originally suggested to
simply use one-hot encoding for the nodes (i.e. X = I, where I is the identity matrix).
In subsequent experiments we observed that using the adjacency matrix A or the graph
Laplacian plus the identity matrix (X = L+ I) works significantly better. Again, this is
not surprising since the graph Laplacian encodes useful information about the graph.

In our other work [8, 10] we discovered that a predict then propagate scheme tends to
outperform the message-passing schemes typically used in GNNs. Given an input graph, in
the predict phase we generate predictions for each node individually using only that node’s
own features. In the propagate phase the individual logits are diffused with PageRank to
incorporate the graph information in a single non-recursive step. Furthermore, in Klicpera
et al. [10] we show that during inference we do not need to have access to the structure
information. As long we use the PageRank vectors to diffuse information during training,
simply predicting the individual logits during inference without propagation showed
almost no loss in performance. Interestingly, this is analogous to Graph2Gauss where we
similarly learn a mapping from features to embeddings and we utilize the graph structure
only during training (except unsupervised). This points to a more general phenomenon.
Another way to view this is that the graph serves as a regularizer during training.

Given that personalized PageRank vectors seem to capture the right information
for many tasks (beyond the above example they have also been used to directly learn
embeddings [110]) an interesting extension of Graph2Gauss would be to consider a
ranking loss w.r.t. the PageRank scores rather than the node distances.

In this chapter we mostly discussed the benefits of Graph2Gauss for improving the
clean performance. Zhu et al. [111] show evidence that Gaussian embeddings can also
significantly improve the robustness of GNNs to adversarial attacks. They show that the
effects of the adversarial perturbations can be absorbed in the variances of the Gaussian
distribution. To remedy the effect of perturbation propagation which we discussed in the
introduction, they further propose a variance-based attention mechanism.

We can embed data with hierarchical (tree-like) structure in low-dimensional hyperbolic
spaces with low distortion [112]. Since real graphs are often hierarchical, and since
Gaussian distributions are directly related to hyperbolic embeddings via the Fisher
distance, which defines the same local geometry as the KL divergence [113], it is not
surprising that G2G achieves excellent performance in low dimensions (Fig. 4.4a).

We also highlight an alternative sampling scheme for Eq. 4.5 proposed by Lienen [114].
They rewrite the loss such that we can obtain unbiased gradients by sampling edges from
a complete k-partite graph which potentially allows for a more fine-grained control over
the accuracy-performance trade-off.
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Figure 5.1: Overview of our adversarial attack. Given a set of random walks as input we express
the optimal loss via the graph spectrum and then approximate the poisoned graph’s spectrum.

5.1 Introduction

As we show in Chapter 3 and Chapter 4 graph representation learning is an effective
approach for simultaneously tackling many downstream tasks such as link prediction,
node classification, community detection, and visualization. To recap, the goal is to
embed each node in a low-dimensional feature space such that the relevant information
from the graph structure (and the node features if they are available) is captured. Among
the variety of proposed approaches, techniques based on random walks (RWs) [86, 87]
are often used in practice since they incorporate higher-order relational information.

Given the increasing popularity of these methods there is a strong need to analyse their
robustness. In particular, we study the existence and effects of adversarial perturbations.
This is critical, since especially in domains where graph embeddings are often used, such as
the web, adversaries are common and false data is easy to inject. For example, spammers
can easily create fake accounts on social networks. A large body of research [43, 115–120]
shows that both traditional and deep learning methods can be attacked: even slight
deliberate perturbations of the data can lead to wrong results. While adversarial attacks
for graph models have been recently proposed [121–123], they are all limited to the
semi-supervised learning setting.

Can we construct attacks that do no rely on a specific downstream task? Are node
embedding methods just as easily fooled, since compared to semi-supervised models they
do not incorporate a supervision signal that we can exploit? Answering these questions
positively, this is the first work on adversarial perturbations for unsupervised embeddings.

In the previous chapters we took on the role of a defender. We assumed that the data is
noisy or corrupted and we developed robust embeddings. Here we adopt the of role of an
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attacker – we poison the graph structure to asses the vulnerability of node embeddings
to adversarial perturbations. Interestingly, the core mathematical tool which we rely on,
eigenvalue perturbation theory (see Sec. 2.3), is the same in both cases.

Barring the few aforementioned attacks on graphs most existing adversarial attacks
perturb the features of individual instances. In our case however, since we are operating on
plain graph data (no features are available) we perturb the interactions (edges) between
instances instead. Manipulating the network structure (the graph) is a common scenario
in practice, with link spam farms [42] and Sybil attacks [124] as typical examples.

Since node embeddings are typically trained in an unsupervised and transductive fashion
we cannot rely on a single end-task that our attack might exploit to find appropriate
perturbations, and we have to handle a challenging poisoning attack where the model is
learned after the attack. That is, the model cannot be assumed to be static as in most
existing attacks. Lastly, since graphs are discrete, gradient-based approaches [115, 125]
for finding adversarial perturbations that were designed for continuous data are not well
suited. In particular, for methods based on random walks the gradient computation
is not directly possible since sampling random walks is not a differentiable operation.
The question is how to design efficient algorithms that are able to find adversarial
perturbations in such a challenging – discrete and combinatorial – graph domain?

We propose a principled strategy to efficiently solve a challenging bi-level optimization
problem associated with the poisoning attack by exploiting results from eigenvalue
perturbation theory [39]. We assume an attacker with full knowledge about the data and
the model, thus ensuring reliable vulnerability analysis in the worst case. Nonetheless,
our experiments on transferability demonstrate that our strategy generalizes – attacks
learned based on one model successfully fool other models as well. We study both general
and targeted attacks, as well as the effect of restricting the attacker.

Overall, we shed light on an important problem that has not been studied so far. We
show that node embeddings are sensitive to adversarial attacks. Relatively few changes
are needed to significantly damage the quality of the embeddings even in the scenario
where the attacker is restricted. Furthermore, our insights highlight that more work is
needed to make node embeddings robust to adversarial perturbations and thus readily
applicable in production systems.

5.2 Related Work

We focus on unsupervised node embedding approaches based on random walks (RWs)
and further show how one can easily apply a similar analysis to attack spectral-based
node embeddings. For a recent survey, also of other non-RW-based approaches, we refer
to Cai et al. [28]. Moreover, while many semi-supervised learning methods [10, 19, 126]
have been introduced, we focus on unsupervised methods since they are often used in
practice due to their flexibility in simultaneously solving various downstream tasks.

Adversarial attacks. Attacking machine learning models has a long history, with
seminal works on SVMs and logistic regression [15, 115]. Neural networks were also shown
to be highly sensitive to small adversarial perturbations to the input [43, 127]. While
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most works focus on image classification, recent works also study adversarial examples in
other domains [117, 128]. Different taxonomies exist characterizing the adversaries based
on their goals, knowledge, and capabilities [129–131]. See Sec. 2.5 for more details.

The two dominant attacks types are poisoning attacks targeting the training data (the
model is trained after the attack) and evasion attacks targeting the test data/application
phase (the learned model is assumed fixed). Compared to evasion attacks, poisoning
attacks are far less studied [115, 120, 125, 131, 132] since they usually require solving a
challenging bi-level optimization problem.

Attacks on semi-supervised graph models. The robustness of semi-supervised
graph classification methods to adversarial attacks has recently been analyzed [121–123].
The first work, introduced by Zügner et al. [121], linearizes a graph convolutional network
(GCN) [19] to derive a closed-form expression for the change in class probabilities for a
given edge/feature perturbation. They calculate a score for each possible edge flip based
on the classification margin and greedily pick the top edge flips with highest scores. Later,
Dai et al. [122] proposed a reinforcement (Q-)learning formulation where they decompose
the selection of relevant edge flips into selecting the two end-points. Finally, Zügner
and Günnemann [123] develop a general attack on the training procedure of a GCN
model using meta-gradients. All three approaches focus on the semi-supervised graph
classification task and take advantage of the supervision signal to construct the attacks. In
contrast, our work focuses on general attacks on unsupervised node embeddings applicable
to many downstream tasks.

Manipulating graphs. There is an extensive literature on optimizing the graph
structure to manipulate: information spread in a network [133, 134], user opinions
[135, 136], shortest paths [137, 138], page rank scores [139], and other metrics [140]. In
the context of graph clustering, Chen et al. [141] measure the performance changes when
injecting noise to a bipartite graph of DNS queries, but do not focus on automatically
generating attacks. Zhao et al. [142] study poisoning attacks on multi-task relationship
learning, although they exploit relations between tasks, they still deal with the classic
scenario of i.i.d. instances within each task.

Robustness and adversarial training. Robustification of machine learning models,
including graph-based models [1, 143], has been studied and is known as adversarial/robust
machine learning. These approaches are out of the scope for this thesis. Adversarial
training, e.g. via GANs [144], is similarly beyond our scope since the goal is to improve the
embeddings, while our goal is to asses the vulnerability of existing embedding methods
to adversarial perturbations.

5.3 Attacking Node Embeddings

We study poisoning attacks on the graph structure – the attacker is capable of adding or
removing (flipping) edges in the original graph within a given budget. We focus mainly
on approaches based on random walks and extend the analysis to spectral approaches
(see Sec. D.2). All proofs are deferred to Sec. D.1.
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5.3.1 Background and Preliminaries

Let G = (V, E) be an undirected unweighted graph where V is the set of nodes, E is
the set of edges, and A ∈ {0, 1}|V|×|V| is the adjacency matrix. The goal of network
representation learning is to find a low-dimensional embedding zv ∈ RK for each node
with K � |V|. This dense low-dimensional representation should preserve information
about the network structure – nodes similar in the original network should be close in
the embedding space. DeepWalk [86] and node2vec [87] learn an embedding based on
RWs by adapting the skip-gram architecture [88] for learning word embeddings. They
sample finite (biased) RWs and use the co-occurrence of node-context pairs in a given
window in each RW as a measure of similarity. To learn zv they maximize the probability
of observing v’s neighborhood.

5.3.2 Attack Model

We denote with Â the adjacency matrix of the graph obtained after the attacker has
modified certain entries in A. We assume the attacker has a given, fixed budget and is
only capable of modifying f entries, i.e. ||Â−A||0 = 2f (times 2 since G is undirected).
The goal of the attacker is to damage the quality of the learned embeddings, which in turn
harms subsequent learning tasks that use the embeddings such as node classification or
link prediction. We consider both a general attack that aims to degrade the embeddings
of the network as a whole, and a targeted attack that aims to damage the embeddings
regarding a specific target or specific task.

The quality of the embeddings is measured by the loss L(A,Z) of the model under
attack, with lower loss corresponding to higher quality, where Z ∈ RN×K is the matrix
containing the embeddings of all nodes. Thus, the goal of the attacker is to maximize the
loss. We can formalize this as the following bi-level optimization problem:

Â∗ = arg max
Â∈{0,1}N×N

L(Â,Z∗)

Z∗ = min
Z
L(Â,Z) (5.1)

subj. to ‖Â−A‖0 = 2f, Â = ÂT

Here, Z∗ is always the “optimal” embedding resulting from the (to be optimized) graph
Â, i.e. it minimizes the loss, while the attacker tries to maximize the loss. Solving such a
problem is challenging given its discrete and combinatorial nature, therefore we derive
efficient approximations using eigenvalue perturbation theory.

5.3.3 General Attack

The first step in RW-based embedding approaches is to sample a set of random walks that
serve as a training corpus further complicating the bi-level optimization problem. We
have Z∗ = minZ L({r1, r2, . . . },Z) with ri ∼ RW(Â), where RW(·) is an intermediate
stochastic procedure that generates RWs given the graph Â which we are optimizing. By
flipping (even a few) edges in the graph, the attacker necessarily changes the set of possible
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RWs, thus changing the training corpus. Therefore, this sampling procedure precludes any
gradient-based methods. To tackle this challenge we leverage recent results that show that
(given certain assumptions) RW-based embedding approaches are implicitly factorizing
the Pointwise Mutual Information (PMI) matrix [145, 146]. We study DeepWalk as an
RW-based representative approach since it’s one of the most popular methods and has
many extensions. Specifically, we use the results from Qiu et al. [146] to sidestep the
stochasticity induced by sampling random walks.

Lemma 5.1 (Qiu et al. [146]). DeepWalk is equivalent to factorizing M̂ with

M̂ = log(max(M , 1)), M = vol(A)
T ·b S, S =

( T∑

r=1

P r
)
D−1, P = D−1A (5.2)

where the embedding Z∗ is obtained by the Singular Value Decomposition (SVD) of

M̂ = UΣV T using the top-K largest singular values/vectors, i.e. Z∗ = UKΣ
1/2
K .

Here, D is the diagonal degree matrix with Dii =
∑

jAij , T is the window size, b is
the number of negative samples and vol(A) =

∑
ijAij is the volume. Since M is sparse

and has many zero entries the matrix log(M) where the log is elementwise is ill-defined
and dense. To cope with this, similar to the Shifted Positive PMI (PPMI), approach the
elementwise maximum is introduced to form M̂ . Using this insight we see that DeepWalk
is equivalent to optimizing M̂∗

K = arg minM̂K
||M̂ − M̂K ||2F , i.e M̂∗

K is the best rank-K

approximation to M̂ . This in turn means that the loss for DeepWalk when using the

optimal embedding Z∗ for a given graph A is LDW1(A,Z∗) =
[∑|V|

p=K+1 σ
2
p

]1/2
where

σp are the singular values of M̂(A) sorted decreasingly σ1 ≥ σ2 · · · ≥ σ|V|. This result
shows that we do not need to construct random walks, nor do we have to (explicitly)
learn the embedding Z∗ – it is implicitly considered via the singular values of M̂(A).
Accordingly, we have transformed the bi-level problem into a single-level optimization
problem. However, maximizing LDW1 is still challenging due to the SVD and the discrete
nature of the problem.

Gradient based approach. Maximizing LDW1 with a gradient-based approach is
not straightforward since we cannot easily backpropagate through the SVD. To tackle
this challenge we exploit ideas from eigenvalue perturbation theory [39] to efficiently
approximate LDW1(A) in closed form without needing to recompute the SVD.

Theorem 5.1. Let A be the initial adjacency matrix and M̂(A) be the respective
co-occurrence matrix. Let up be the p-th eigenvector corresponding to the p-th largest

eigenvalue of M̂ . Given a perturbed matrix A′, with A′ = A + ∆A, and the respec-

tive change ∆M̂ , LDW1(A′) ≈
[∑N

p=K+1

(
uTp (M̂ + ∆M̂)up

)2]1/2
=: LDW2(A′) is an

approximation of the loss and the error is bounded by |LDW1(A′)−LDW2(A′)| ≤ ||∆M̂ ||F .

For a small ∆A and thus small ∆M̂ we obtain a very good approximation, and if
∆A = ∆M̂ = 0 then the loss is exact. Intuitively, we can think of using eigenvalue
perturbation as analogous to taking the gradient of the loss w.r.t. M̂(A). Now, gradient-
based optimization is efficient since ∇ALDW2(A) avoids recomputing the eigenvalue
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decomposition. The gradient provides useful information for a small ε change, however,
here we are considering discrete flips, i.e. ε = ±1 so its usefulness is limited. Moreover,
using gradient-based optimization requires a dense instantiation of the adjacency matrix
which has complexity O(V|2) in both runtime and memory, infeasible for large graphs.
This motivates the need for our more advanced approach.

Sparse closed-form approach. Our goal is to efficiently compute the change in the
loss LDW1(A) given a set of flipped edges. To do so we will analyze the change in the
spectrum of some of the intermediate matrices and then derive a bound on the change in
the spectrum of the co-occurrence matrix, which in turn will give an estimate of the loss.
First, we need some results.

Lemma 5.2. S = U(
∑T

r=1 Λr)UT where the matrices U and Λ contain the eigenvectors
and eigenvalues solving the generalized eigen-problem Au = λDu.

We see that the spectrum of S (and the spectrum of M by taking the scalars into
account) is obtainable from the generalized spectrum of A. In contrast to Lemma 5.2, Qiu
et al. [146] factorize S using the (non-generalized) spectrum of Anorm := D−1/2AD−1/2.
As we will show, our formulation using the generalized spectrum of A is key for an
efficient approximation.

Let A′ = A+∆A be the adjacency matrix after the attacker performed some edge flips.
As above, by computing the generalized spectrum of A′, we can estimate the spectrum of
the resulting S′ and M ′. However, recomputing the eigenvalues λ′ of A′ for every possible
set of edge flips is still not efficient for large graphs, preventing an effective application of
the method. Thus, we derive our first main result: an efficient approximation bounding
the change in the singular values of M ′ for any edge flip.

Theorem 5.2. Let ∆A be a matrix with only 2 non-zero elements, namely ∆Aij =
∆Aji = 1− 2Aij corresponding to a single edge flip (i, j), and ∆D the respective change
in the degree matrix, i.e. A′ = A+∆A and D′ = D+∆D. Let uy be the y-th generalized
eigenvector of A with generalized eigenvalue λy. Then the generalized eigenvalue λ′y of

A′ solving A′u′y = λ′yD
′u′y is approximately λ′y ≈ λy + ∆λy := λ̃′y with:

∆λy = ∆wij(2uyi · uyj − λy(u2
yi + u2

yj)) (5.3)

where uyi is the i-th entry of the vector uy, and ∆wij = (1− 2Aij) indicates the direction
of the edge flip, i.e ±1.

By working with the generalized eigenvalue problem in Theorem 5.2 we were able
to express A′ and D′ after flipping an edge as additive changes to A and D, this in
turn enabled us to leverage results from eigenvalue perturbation theory to efficiently
approximate the change in the spectrum. If we used Anorm instead, the change to A′norm

would be multiplicative hindering efficient approximation. Using Eq. 5.3, instead of
recomputing λ′ we only need to compute ∆λ to obtain the approximation λ̃′ significantly
reducing the complexity when evaluating different edge flips (i, j). Using this result, we
can now efficiently bound the change in the singular values of S′.
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Lemma 5.3. Let A′ be defined as before and S′ be the resulting matrix. The singular
values of S′ are bounded: σp(S

′) ≤ σ̃p := 1
d′min
·
∣∣∑T

r=1(λ̃′π(p))
r
∣∣ where π is a permutation

ensuring that the final σ̃p are sorted decreasingly, and d′min is the smallest degree in A′.

Now we can efficiently compute the loss for a rank-K factorization of M ′, which we
would obtain when performing the edge flip (i, j), i.e.

LDW3(A′) =
vol(A) + 2∆wij

T · b

[ |V |∑

p=K+1

σ̃2
p

]1/2

(5.4)

where σ̃p is obtained by applying Lemma 5.3 and Theorem 5.2 and the leading constants
follow from Lemma 5.1.

While the original loss LDW1 is based on the matrix M̂ = log(max(M , 1)), there are
unfortunately currently no tools available to analyze the (change in the) spectrum of
M̂ given the spectrum of M . Therefore, we use LDW3 as a surrogate loss for LDW1

(Yang et al. [81] similarly exclude the element-wise logarithm). As our experiments show,
the surrogate loss is effective and we can successfully attack the node embeddings that
factorize the actual co-occurrence matrix M̂ , as well as the original skip-gram model.
Similarly, spectral embedding methods [147], factorize the graph Laplacian and have a
strong connection to the RW-based approaches. We provide an analysis of their adversarial
vulnerability in the appendix (Sec. D.2).

The overall algorithm. Our goal is to maximize LDW3 by performing f edge flips.
While Eq. 5.3 enables us to efficiently compute the loss for a single edge, there are still
O(|V|2) possible flips. To reduce the complexity when adding edges we instead form
a candidate set by randomly sampling C candidate pairs (non-edges). This introduces
a further approximation that nonetheless works well in practice. Since real graphs are
usually sparse, for removing, all edges are viable candidates with one random edge set
aside for each node to ensure we do not have singleton nodes. For every candidate we
compute its impact on the loss via LDW3 and greedily choose the top f flips.1

The runtime complexity of our overall approach is then: O(|V|· |E|+C · |V| log|V|). First,
we can compute the generalized eigenvectors of A in a sparse fashion in O(|V| · |E|). Then
we sample C candidate edges, and for each we can compute the approximate eigenvalues
in constant time (Theorem 5.2). To obtain the final loss, we sort the values leading to
the overall complexity. For the examined datasets the wall-clock time for our approach
is negligible: on the order of few seconds when calculating the change in eigenvalues.
Furthermore, our approach is trivially parallelizable since every candidate edge flip can
be evaluated in parallel.

5.3.4 Targeted Attack

If the goal of the attacker is to attack a specific target node t ∈ V , or a specific downstream
task, it is suboptimal to maximize the overall loss via LDW∗ . Rather, we should define

1Periodically recomputing the exact eigenvalues and eigenvectors when using the greedy approach did
not show any benefits.
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some other target specific loss that depends on t’s embedding – replacing the loss function
of the outer optimization by another one operating on t’s embedding. Thus, for any edge
flip (i, j) we now need the change in t’s embedding – meaning changes in the eigenvectors
– which is inherently more difficult to compute compared to changes in eigen/singular-
values. We study two cases: misclassifying a target node (node classification task) and
manipulating the similarity of node pairs (link prediction task).

Surrogate embeddings. We define surrogate embeddings such that we can efficiently
estimate the change for a given edge flip. Specifically, instead of performing an SVD of M
(or equivalently S scaled) we define Z̄∗ = U(

∑T
r=1 Λr), as in Lemma 5.2. Experimentally,

using Z̄∗ instead of Z∗ as the embedding showed no significant change in the performance
on downstream tasks. While we use the surrogate embeddings to select the adversarial
edges, for evaluation we use the standard embeddings produced by DeepWalk. We can
approximate Z̄∗(A′) in closed form by approximating the generalized eigenvectors of A′.

Theorem 5.3. Let ∆A,∆D and ∆wij be defined as before, and ∆λy be the change in
the y-th generalized eigenvalue λy as derived in Theorem 5.2. Then, the y-th generalized
eigenvector u′y of A′ after performing the edge flip (i, j) is approximately u′y ≈ uy + ∆uy

∆uy = −∆wij(A− λyD)+
(
−∆λyuy ◦ d+ Ei(uyj − λyuyi) + Ej(uyi − λyuyj)

)
(5.5)

where Ei(x) returns a vector of zeros except at position i where the value is x, d is a
vector of the node degrees, ◦ is the Hadamard product, and (·)+ is the pseudo-inverse.

Computing Eq. 5.5 seems expensive at first due to the pseudo-inverse term. However,
note that this term does not depend on the particular edge flip we perform. Thus, we
can pre-compute it once and furthermore, parallelize the computation for each y. The
additional complexity of computing the pseudo-inverse for all y is O(K ·|V|2.373). Similarly,
we can pre-compute uy ◦d, while the rest of the terms are all computable in O(1). Overall,
the wall-clock time for computing the change in the eigenvectors is on the order of few
minutes. For any edge flip we can now efficiently compute the optimal embedding Z̄∗(A′)
using Eq. 5.3 and Eq. 5.5. The t-th row of Z̄∗(A′) is the desired embedding for a target
node t after the attack.

Targeting node classification. Our goal is to misclassify a target node t given a
downstream node classification task. To specify the targeted attack we need to define the
candidate flips and the target-specific loss responsible for scoring the candidates. We let
the candidate set contain all edges (and non-edges) directly incident to the target node,
i.e. Ct = {(v, t) | v ∈ V, v 6= t}. We restricted our experiments to such candidate flips
since initial experiments showed that they can do significantly more damage compared to
candidate flips in other parts of the graph. This intuitively makes sense since the further
away we are from node t we can exert less influence on it. Zügner et al. [121] show similar
results (e.g. see their indirect attack). Note that for the general (non-targeted) attack all
edges/non-edges are viable candidates.

To obtain the loss, we first pre-train a classifier on the clean embedding Z̄∗. Then we
predict the class probabilities pt of the target t using the compromised Z̄∗t,· estimated for a
given candidate flip and we calculate the classification margin m(t) = pt,c(t)−maxc 6=c(t) pt,c,
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where c(t) is the ground-truth class for t. That is, our loss is the difference between
the probability of the ground-truth and the next most probable class after the attack.
Finally, we select the top f flips with smallest margin m (note when m(t) < 0 node t
is misclassified). In practice, we average over ten randomly trained classifiers. In future
work we plan to treat this as a tri-level optimization problem.

Targeting link prediction. The goal of this targeted attack is given a set of target
node pairs T ⊂ V ×V to decrease the similarity between the nodes that have an edge, and
increase the similarity between nodes that do not have an edge by modifying other parts
of the graph (i.e. we disallow to directly flip pairs in T ). For example, in an e-commerce
graph representing users and items the goal might be to increase the similarity between
a certain item and user by adding/removing connections between other users/items.

To achieve this goal, we first train an initial clean embedding on the graph excluding
the edges in T . Then, for a candidate flip we estimate the embedding Z̄∗ (Eq. 5.3 and
Eq. 5.5) and use it to calculate the average precision score (AP score) on the target set
T , with Z̄∗i (Z̄∗j )T measuring the similarity of nodes i and j, i.e. the likelihood of the link
(i, j). Low AP score then indicates that the edges in T are less likely (non-edges more
likely respectively). Finally, we pick the top f flips with the lowest AP scores and use
them to poison the network.

5.4 Experimental Evaluation

Setup. Since this is the first work considering adversarial attacks on node embeddings
there are no known baselines. Similar to methods that optimize the graph structure
[133, 134] we compare with several strong baselines. Brnd randomly flips edges (we
report averages over ten seeds), Beig removes edges based on their eigencentrality in
the line graph L(A), and Bdeg removes edges based on their degree centrality in L(A)
(equivalently sum of degrees in the graph). When adding edges we use the same baselines
as above now calculated on the complement graph except for Beig since it is infeasible to
compute even for medium size graphs. ADW2 denotes our gradient-based attack, ADW3

our closed-form attack, Alink our targeted link prediction attack, and Aclass is our targeted
node classification attack.

The size of the sampled candidate set for adding edges under the general attack is 20K
(we report averages over five trials). To evaluate the targeted link prediction attack we
form the target pairs T by randomly sampling 10% of the edges from the clean graph and
three times as many non-edges. This setup reflects the fact that in practice the attackers
often care more about increasing the likelihood of a new edge, e.g. increasing the chance
of recommending an item to a user.

We aim to answer the following questions: (Q1) how good are our approximations
of the loss; (Q2) how much damage is caused to the overall embedding quality by our
attacks compared to the baselines; (Q3) can we still perform a successful attack when
the attacker is restricted; (Q4) what characterizes the selected (top) adversarial edges;
(Q5) how do the targeted attacks affect downstream tasks; and (Q6) are the selected
adversarial edges transferable to other models.
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(a) Eigenvalues: |λ′ − λ̃′| (b) Sum of eigenvalues:
∣∣∑T

r=1 λ
′r
i −

∑T
r=1 λ̃

′r
i

∣∣
Figure 5.2: Comparison between the true eigenvalues λ′ after performing a flip (i.e. doing a
full eigen-decomposition) and our approximation λ̃′. Since the difference is several orders of
magnitude smaller than the eigenvalues (sums of powers of eigenvalues resp.) themselves, we
show a “zoomed-in” view (note the difference in the scale on the y-axis) of the average absolute
difference and the standard deviation across 5K randomly selected flips.

We set DeepWalk’s hyperparameters to: T = 5, b = 5,K = 64 and use logistic regression
for classification. We analyze three datasets: Cora-ML (N = 2810, |E| = 15962, McCallum
et al. [107], Bojchevski and Günnemann [148]) and Citeseer (N = 2110, |E| = 7336, Giles
et al. [108]) are citation networks commonly used to benchmark embedding approaches,
and PolBlogs (N = 1222, |E| = 33428, Adamic and Glance [149]) is a graph of political
blogs. Since we are in the poisoning setting, in all experiments after choosing the top f
flips we re-train the standard embeddings produced by DeepWalk and report the final
performance. Note, for the general attack the downstream node classification performance
is only a proxy for estimating the embedding quality after the attack, it is not our goal
to damage this task, but rather attack the unsupervised embeddings overall.

5.4.1 Approximation Quality

To estimate the approximation quality we randomly select 20K candidates from the
Cora-ML graph and we compute Pearson’s R score between the actual loss (including
the elementwise logarithm) and our approximations. For example, for dimensionality
K = 32 we have R(LDW2 ,LDW1) = 0.11 and R(LDW3 ,LDW1) = 0.90 showing that our

(a) PolBlogs (b) Cora-ML (c) Citeseer

Figure 5.3: Comparison between the singular values σi(S) of S and our upper bound

d−1min|
∑T

r=1 λ
r
i | ≥ σi(S) for different graphs.
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closed-form strategy approximates the loss significantly better than the gradient-based
one. This also holds for K = 64 and K = 128.

Additionally, we randomly select 5K candidates and we compare the true eigenvalues
λ′ after performing a flip (i.e. doing a full eigen-decomposition) and our approximation
λ̃′ based on Theorem 5.2. We can see in Fig. 5.2a that the average absolute difference
|λ′− λ̃′| is negligible: several orders of magnitude smaller than the eigenvalues themselves.
The difference between the terms |

∑T
r=1 λ

′r
i −

∑T
r=1 λ̃

′r
i | used in Lemma 5.3 is similarly

negligible as shown in Fig. 5.2b.

We also compare the true singular values σi(S) of the matrix S and their respective
upper bounds d−1

min|
∑T

r=1 λ
r
i | ≥ σi(S) obtained from Lemma 5.3. The gap is different

across graphs and it is relatively small overall. We plot all these quantities for all graphs
on Fig. 5.3. These results together show that we have a good approximation of both the
eigenvalues and the singular values, leading to a good overall approximation of the loss.

5.4.2 General Attack

To better understand the attacks we investigate the effect of removing and adding edges
separately. We select the top f edges from the respective candidate sets according to our
approximation of the loss function. For adding edges, we also implemented an alternative
add-by-remove strategy denoted as Aabr. Here, we first add cf -many edges randomly
sampled from the candidate set to the graph and subsequently remove (c− 1)f -many
of them (equals to only f changes in total). This strategy performed better empirically.
Since the graph is undirected, for each (i, j) we also flip (j, i).

Fig. 5.4 answers question (Q2). Removed/added edges are denoted on the x-axis with
negative/positive values respectively. On Fig. 5.4a we see that our strategies achieve a
significantly higher loss compared to the baselines when removing edges. To analyze the
change in the embedding quality we consider the node classification task (i.e. using it as
a proxy to evaluate quality; this is not our targeted attack). Interestingly, Bdeg is the

DW2 DW3 link abr rnd deg eigDW2 DW3 link abr rnd deg eig

(a) Cora-ML: DeepWalk’s loss (b) Cora-ML: Classification (c) PolBlogs: Classification

Figure 5.4: Vulnerability of the embeddings under the general attack for increasing number of
flips. Positive (resp. negative) numbers on the x-axis indicate adding (resp. removing) edges. The
percentage of flips is w.r.t. the total number of edges in the clean graph. The dotted line shows
the performance on the clean graph before attacking.
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Figure 5.5: Classification per-
formance on Cora-ML for in-
creasingly restricted attacks.

(a) Degree centrality (b) Edge centrality

Figure 5.6: Analysis of the adversarial edges selected by
ADW3

on the Cora-ML graph w.r.t. different centrality mea-
sures.

strongest baseline w.r.t. to the loss, but this is not true for the downstream task. As
shown in Fig. 5.4b and Fig. 5.4c, our strategies significantly outperform the baselines.
As expected, ADW3 and Aabr perform better than ADW2 . On Cora-ML our attack can
cause up to around 5% more damage compared to the strongest baseline. On PolBlogs,
by adding only 6% edges we can decrease the classification performance by more than
23%, while being more robust to removing edges.

Restricted attacks. In the real world attackers cannot attack any node, but rather
only specific nodes under their control, which translates to restricting the candidate
set. To evaluate the restricted scenario, we first initialize the candidate sets as before,
then we randomly denote a given percentage pr of nodes as restricted and discard
every candidate that includes them. As expected, the results in Fig. 5.5 show that for
increasingly restrictive sets with pr = 10%, 25%, 50%, our attack is able to do less damage.
However, we always outperform the baselines (not plotted), and even in the case when
half of the nodes are restricted (pr = 50%) we are still able to damage the embeddings.
With this we can answer question (Q3): attacks are successful even when restricted.

Analysis of the selected adversarial edges. A natural question to ask is what
characterizes the adversarial edges that are selected by our attack, and whether its
effectiveness can be explained by a simple heuristic such as attacking “important” edges
(e.g. edges that have high centrality). To answer this question we analyze the top 1000
edges selected by ADW3 on the Cora-ML dataset. In Fig. 5.6a we analyze the adversarial
edges in terms of node degrees. Specifically, for each edge we consider the degree of its
source node and its destination node and plot it on the x-axis and y-axis respectively.
The heatmap shows the number of adversarial edges divided by total number of edges for
each degree (binned logarithmically). We see that low, medium and high-degree nodes are
all represented and therefore we conclude that we cannot distinguish between adversarial
and non-adversarial edges based solely on their degrees.

In Fig. 5.6b we plot the edge centrality distribution for the top 1000 adversarial edges
and compare it with the edge centrality distribution of the remaining edges. We can see
that there is no clear distinction. Both of these findings highlight the need for a principled
method such as ours since using intuitive heuristics such as degree centrality or edge
centrality cannot identify adversarial edges.
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(a) Before attack (b) Baseline Brnd

(c) Baseline Bdeg (d) Our Aclass attack

Figure 5.7: Margins for clean and corrupted graphs for
different attacks. Each dot represent one node binned loga-
rithmically according to its degree. The number above each
(box-) plot indicates the misclassification rate. Lower is better.

(a) Cora-ML

(b) Citeseer

Figure 5.8: Targeted attack
on the link prediction task for
different datasets.

5.4.3 Targeted Attack

To obtain a better understanding of the performance we study the margin m(t) on
Cora-ML before and after the attack considering every node t as a potential target. We
allow a budget of only (dt + 3) flips per each node (where dt is the degree of the target
node t) ensuring that the degrees do not change noticeably after the attack. Each dot in
Fig. 5.7 represents one node grouped by its degree in the clean graph (logarithmic bins).
We see that low-degree nodes are easier to misclassify (m(t) < 0), and that high-degree
nodes are more robust in general – the baselines have 0% success. Our method, however,
can successfully attack even high-degree nodes. In general, our attack is significantly more
effective across all bins – as shown by the numbers on top of each box – with 77.89%
nodes successfully misclassified on average compared to e.g. only 33.64% for Brnd.

For the link prediction task (Fig. 5.8) we are similarly able to cause significant damage
– e.g. Alink achieves almost 10% decrease in performance by flipping around 12.5% of
edges on Cora-ML, significantly better than all other baselines. Here again, compared to
adding edges, removing has a stronger effect. Overall, answering (Q5), both experiments
confirm that our attacks hinder the various downstream tasks.

5.4.4 Transferability

The question of whether attacks learned for one model generalize to other models is
important since in practice the attacker might not know the model used by the defender.
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Table 5.1: Percent change in F1 score (lower is better) compared to the clean graph. DW-SVD
and DW-SGNS stand for DeepWalk, SE for Spectral Embedding, and LP for Label Propagation.

DW-SVD DW-SGNS node2vec SE LP GCN
O

u
r

ap
p

ro
ac

h Cora-ML
f = 250(03.1%) -3.59 -3.97 -2.04 -2.11 -5.78 -3.34
f = 500(06.3%) -5.22 -4.71 -3.48 -4.57 -8.95 -2.33

Citeseer
f = 250(06.8%) -7.59 -5.73 -6.45 -3.58 -4.99 -2.21
f = 500(13.6%) -9.68 -11.47 -10.24 -4.57 -6.27 -8.61

B e
ig

b
as

el
in

e Cora-ML
f = 250(03.1%) -0.61 -0.65 -0.57 -0.86 -1.23 -6.33
f = 500(06.3%) -0.71 -1.22 -0.64 -0.51 -2.69 -0.64

Citeseer
f = 250(06.8%) -0.40 -1.16 -0.26 +0.11 -1.08 -0.70
f = 500(13.6%) -2.15 -2.33 -1.01 +0.38 -3.15 -1.40

However, if transferability holds, such knowledge is not required. To obtain the perturbed
graph, we remove the top f adversarial edges with ADW3 . The same perturbed graph
is used to learn embeddings using several other state-of-the-art approaches: DeepWalk
(DW) with both the SVD and the SGNS loss, node2vec [87], Spectral Embedding [147],
Label Propagation [150], and GCN [19].

Table 5.1 shows the change in node classification performance compared to the em-
beddings learned on the clean graph for each method respectively. Answering (Q6), the
results show that our attack generalizes: the adversarial edges have a noticeable impact on
other models as well. We see that we can damage DeepWalk trained with the skip-gram
objective with negative sampling (SGNS) showing that our factorization analysis via
SVD is successful. We can even damage the performance of semi-supervised approaches
such as Graph Convolutional Networks (GCN) and Label Propagation. Compared to the
transferability of the strongest baseline Beig, shown in the lower section of Table 5.1, we
can clearly see that our attack causes significantly more damage.

5.5 Conclusion

We demonstrated that node embeddings are vulnerable to adversarial attacks which
can be efficiently computed and have a significant negative effect on downstream tasks
such as node classification and link prediction. Furthermore, successfully poisoning
the graph is possible with relatively small perturbations and under restriction. More
importantly, our attacks generalize - the adversarial edges are transferable across different
models. Developing effective defenses and more comprehensive modelling of the attacker’s
knowledge are important directions for improving network representation learning.
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5.6 Retrospective

In this chapter we explored adversarial attacks for unsupervised node embeddings and
we showed the we can identify adversarial edges based on the spectrum of the normalized
adjacency matrix Anorm, or equivalently the generalized spectrum of (A,D).

In Sec. D.2 we extend our analysis to spectral embeddings. In contrast to Chapter 3
where the goal was to identify corrupted edges already present in the graph, here the
goal is to insert adversarial edges (poison the graph) to damage the embedding. This
idea of manipulating the graph structure to induce a certain change in the spectrum is
applicable more broadly and can be used to derive adversarial attacks for supervised
Graph Neural Networks (GNNs). For example, the SGC model [151] can be written as

softmax(SlXW ) S = D̃−1/2ÃD̃−1/2 Ã = A+ I D̃ = D + I (5.6)

where W are the learned parameters and X are the node features. As before, we can
easily characterize the change in the spectrum of Sl via the change in the generalized
spectrum of (Ã, D̃). It is also worth noting that for l = 1, SGC is equivalent to a one-layer
GCN [19]. The question is how to choose the loss function in this case.

Similar to our approach, Chang et al. [152] suggest to maximize ‖(S′)lX − (S′)lKX‖2F
where S′ is obtained from the perturbed adjacency matrix A′ = A+ ∆A as in Eq. 5.6,
and (S′)lK is the best K-rank approximation of (S′)l. The key difference is that here they
additionally consider the node features. More generally, they discuss different models
and view them as polynomial filters applied on the eigenvalues of the (shifted) graph
Laplacian. Alternatively, as in Sec. 5.3.4, we can easily derive suitable loss functions for
targeted attack on SGC and (by extension ignoring non-linear activations) for GCN.

We can draw further connections to our π-PPNP model [10], which can be summarized
as softmax(ΠH) where Π is the personalized PageRank matrix, and H = fθ(X) are the
logits (see Chapter 7 for more details). As we discussed in Sec. 2.2 we can express Π as

Π = (1− α)(I − αP )−1 = (1− α)

∞∑

k=1

αkP k = (1− α)U(

∞∑

k=1

αkΛk)UT (5.7)

where P = AD−1 = UΛUT . For a given A′ we can again estimate the spectrum (Λ′,U ′)
and approximate Π′ by truncating the infinite sum. Since the coefficients αk quickly
approach zero this will likely lead to a good approximation. In turn we can derive e.g. a
global non-targeted attack on PPNP. For targeted attacks, as we show in Chapter 7, we
can exactly compute the worst-case A′ for certain threat models. This is guaranteed to
either yield an adversarial example or a certificate that such an example does not exist.

In retrospective, it might be a good idea to renormalize the perturbed eigenvectors
after adding the change computed using Theorem 5.3 to ensure that U ′D′U ′T = I holds,
and that U ′ satisfies the eigenvector properties. Moreover, measuring the deviation from
the identity matrix I can serve as another estimate of the approximation quality.

While our attacks were designed for the poisoning scenario, it is likely that the inferred
adversarial edges can be successfully used for evasion attacks, since as we show in Sec. 5.4.4
they are transferable. Even though for DeepWalk evasion does not make sense (since it is
not inductive), we can use the perturbed graph to attack other models.
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6 Robust Attributed Graph Clustering

Figure 6.1: Three types of anomalies: node 1 is a partial anomaly w.r.t. the node attributes,
node 2 is a partial anomaly w.r.t. the graph structure, and node 3 is a complete anomaly.

6.1 Introduction

Attributed graph clustering is an important research field [153] with application domains
from social networks, over e-commerce, to gene analysis. By simultaneously utilizing
both network structure and attribute information clustering results can be significantly
improved. In real life scenarios datasets are often polluted by rare occurrences, anomalies,
or corruptions. A spammer, for example, might be trying to connect to as many nodes as
possible, inducing spurious edges and thus obscuring the real clusters in the data. Another
source of anomalies are users on a social network obfuscating some of their attributes (age,
political affiliation) on purpose due to privacy concerns. Since these anomalies hinder
the cluster detection, robust attributed graph clustering methods have been proposed
[154, 155]. Instead of first applying anomaly detection [156] then clustering the remaining
(cleaned) data, we perform anomaly detection and clustering simultaneously. Such joint
learning has shown excellent performance for many other tasks such as regression [53],
PCA [54, 157], matrix factorization [158], and auto-regression [55].

The big challenge – not sufficiently addressed by the existing works – is that anomalies
in attributed graphs materialize in different ways. Specifically one has to take into account
challenging camouflage behavior. A user in a social network for example might show
corrupted attributes (e.g. to hide their identity) but still their friendship relations are
normal. That is, the user is corrupted in only one of the views. We call this a partial
anomaly. Another example of a partial anomaly is a paper in a citation network, where
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the content of the paper fits well in some cluster, but the relevant citations are missing.
This can happen in an emerging subfield if everyone is not aware of the latest literature.

Fig. 6.1 illustrates this principle in general. Node 1 fits nicely w.r.t. the graph structure
but has different attributes compared to the other nodes in its cluster. On the other
hand, node 2 perfectly fits the assigned cluster if we only consider its attributes, but it
is obviously an anomaly with regards to the network structure. The crucial observation
is that we can still identify the partial anomalies’ latent cluster since two sources of
information are given. In the social network example, despite the users’ corrupted
attributes we are still able to derive their cluster. We observed such partial anomalies in
a variety of real-world datasets.

Existing approaches [154, 155] fail in handling partial anomalies. As soon as a node is
corrupted in one of the views, it is marked as an anomaly and no longer belongs to any
cluster, even though it might perfectly fit in the other view. Simply speaking, the benefit
of having both network structure and associated attributes is not taken into account for
anomaly detection in existing works. Solving this limitation, we propose a model for
attributed graph clustering that accounts for partial anomalies: a node may be corrupted
in one view but not in the other. As a strong benefit of this – and in contrast to all
existing works – we are still able to infer a node’s cluster even if it is (partially) corrupted.
This also enables a comparison between the nodes’ observed and expected information.
For example, for node 1 we can infer different attributes from what we have observed
based on its cluster membership.1 Our model also handles complete anomalies such as
node 3, which does not fit to any cluster w.r.t. neither the attributes nor the structure.

To realize these ideas, we propose a probabilistic generative model for attributed graphs,
PAICAN (Partial Anomaly Identification and Clustering in Attributed Networks). We
jointly model the attribute and network space, as well as the latent cluster assignments
and the latent anomaly indicators. We do so by introducing a generalized, anomaly-aware
Degree-Corrected Stochastic Block Models (DCSBM) combined with a Beta-Bernoulli
mixture model. We can also reason about the uncertainty of the cluster and the anomaly
assignments via their posterior distributions. The main contributions of this work are:

• Generative model: Our model jointly performs clustering and anomaly detection.
It is the first work that realizes robust clustering for attributed graphs following a
power-law degree distribution, thus capturing real-life properties.

• Partial anomalies: Our model accounts for nodes that might be only partially
anomalous enabling us to assign them to meaningful clusters.

• Scalable algorithm: Using variational inference and exploiting special properties
of our model we propose an algorithm with runtime linear in the number of edges.

6.2 Related Work

For a general overview of attributed graph clustering we refer to [153]. In line with
the focus of this chapter we describe here primarily works with the following aspects:

1Gao et al. [155] illustrate an example similar to node 1, though still fail to derive a cluster assignment.
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robustness to anomalies and principled probabilistic generative models. So far, only two
approaches jointly perform clustering and anomaly detection in attributed graphs: CODA
[155] and FocusCO [154]. Both detect complete anomalies only. They do not exploit the
fact that instances can be partially corrupted. CODA has the additional disadvantages
of poor scalability and high sensitivity to hyperparameter choice and initialization, thus,
requiring multiple restarts. FocusCO being a semi-supervised method needs labeled data
in the form of examples of similar nodes. In contrast, our technique does not require
supervision. We compare against both techniques in our experimental study.

Other approaches have been introduced that follow the spirit of generative models, but
are not robust to anomalies. Note that it is not sufficient to simply treat anomalies as
an additional cluster since anomalies might not show any specific clustering behavior.
Therefore, we cannot simply use these non-robust techniques for anomaly detection.
Among the non-robust methods, PICS [159], CESNA [160] and SIAN [161] only derive
point estimates of the learned parameters. BAGC [162] and GBAGC [163] learn a posterior
distribution over the model parameters but do not account for the power-law distribution
of node degrees. LSBM [164] uses agglomerative multilevel MCMC for inference and
hence also learns a posterior distribution. So far, only SIAN, LSBM, and our PAICAN
handle realistic network structure, all by relying on variants of DCSBMs. Even though
none of the above approaches is able to handle scenarios of corrupted data, we compare
against PICS, BAGC, SIAN, and LSBM in our experimental evaluation.

In the related task of multi-view anomaly detection for vector data [165] instances
which behave differently across views are detected. Our model of partial anomalies can
capture such behavior with the additional benefit of performing clustering. Likewise, our
approach handles classical anomaly detection where instances show an overall unusual
behavior. Focusing on a different notion of robustness, various methods for subspace
clustering on attributed graphs have been introduced [63, 166]. Their goal is to derive
robust clusters even if subsets of the attributes are noisy, and do not consider anomalies.

6.3 The PAICAN Model

Let G be an undirected attributed graph with N nodes, and let Aij be an element of
the adjacency matrix A ∈ {0, 1}N×N of the graph. We denote with X ∈ {0, 1}N×D the
attribute matrix where for each node i, Xi is a D-dimensional vector of binary attributes.
We denote with K the number of clusters. An overview of our probabilistic generative
model is given in Fig. 6.2. Note that the latent variables c and z are shared between the

Table 6.1: The latent variable c indicates different types of (partial) anomalies.

graph
attributes good anomalous

good ci = 0 ci = 1
anomalous ci = 2 ci = 3
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zi θi θ̃i

ci
Xid

π

ρ

Aij

tdk

ηklηbg

ηbb

i ∈ N

i, j ∈ N ×N

k ∈ K

d ∈ D

k, l ∈ K ×K

Figure 6.2: Probabilistic Graphical Model of PAICAN.

graph and the attribute space. The variables c = {ci}Ni=1 indicate if a node is (partially)
anomalous. Given the two views in an attributed graph, anomalies might materialize
in different ways, as indicated in Table 6.1. Accordingly, we define ci ∼ Categorical(ρ),
ρ ∼ Dirichlet4(β) where ρ is the usual Dirichlet prior.

To simplify the notation we introduce the following two shortcuts: cAi = 0 if ci ∈ {0, 2},
else cAi = 1, indicating whether the node is good or anomalous w.r.t. the graph, and
similarly regarding the attributes cXi = 0 if ci ∈ {0, 1}, else cXi = 1.

The latent variables z = {zi}Ni=1 encode the group/cluster assignment for each node:
zi | ci ∼ Categorical(π),π ∼ DirichletK(α), and are defined if and only if ci 6= 3. That is,
we can only reason about the cluster assignment of node i if it’s not a complete anomaly.

6.3.1 Graph Model

To incorporate anomalies into the graph structure we propose an anomaly-aware Degree-
Corrected Stochastic Block Model (DCSBM), as a generalization of the well-established
DCSBM [167, 168]. The probability of an edge between two nodes i and j is defined2 as:

Aij ∼





Poisson(1
2

I[i=j]
θiθjηzizj ) i ≤ j, cAi = 0, cAj = 0

}
Case 1

Poisson(θ̃iηbg) i < j, cAi = 1, cAj = 0
}

Case 2

Poisson(θ̃jηbg) i < j, cAi = 0, cAj = 1
}

Case 2

Poisson(1
2

I[i=j]
θ̃iθ̃jηbb) i ≤ j, cAi = 1, cAj = 1

}
Case 3

(6.1)

Case 1: Both nodes are good. If both considered nodes are good we have a classic
DCSBM. Using DCSBM as our base model we can capture diverse connection patterns
and network topologies such as assortativity, homophily/heterophily, bipartite graphs,
etc. The block matrix of group edge probabilities is denoted with η ∈ [0, 1]K×K , and

2For undirected graphs we only need to consider i ≤ j. As discussed in [168], in the sparse regime the
Poisson distribution represents the Bernoulli distribution well and simplifies the derivations. The
established DCSBM and follow up works are also based on the (non-truncated) Poisson distribution.
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θ = {θi}Ni=1 is the vector representing the latent degrees of the nodes. Nodes with higher
(latent) degree are more likely to form an edge, thus, enabling us to represent networks
with a power-law degree distribution.

Case 2: Only one node is anomalous. If exactly one of the nodes is anomalous, e.g.
a spammer i tries to establish a connection with a regular user j, we argue as follows: As
in a DCSBM, there might be anomalous nodes which try to establish more connections
than other anomalies. Thus, it is reasonable to account for different (latent) degrees of
anomalies, indicated by θ̃ = {θ̃i}Ni=1. However, since the anomalous connection itself is
often originated by the anomaly – i.e. a normal user in a social network is not really
interested in establishing a connection to a spammer – a high latent degree θj of the
good node should not be taken into account. Meaning, an anomaly does not specifically
prefer nodes with a high degree but uniformly establishes connections to other nodes.
Accordingly, only the latent degree of the anomalous node θ̃ is considered. Similarly, ηbg

denotes the base probability of an edge between any anomalous and any good node.

Case 3: Both nodes are anomalous. If both nodes are anomalous, we do not
assume any specific clustering behavior. Instead we assume a basic connectivity model
which takes into account the nodes’ latent degrees θ̃ as well as some base probability ηbb

that denotes the probability of any two anomalous nodes forming an edge.

Discussion of θ and θ̃. The graph model defined above is not only intuitive but
also fulfills two interesting properties. First, the maximum likelihood estimate of θ̃i
corresponds to the observed degree. Similarly, the MLE for θi is the number of “good”
neighbors of node i, i.e. i’s degree w.r.t. the good nodes (anomalies are excluded). From a
generative perspective, a node is either good or anomalous regarding the graph structure.
Thus, for each instance either only θ̃i or θi is used. Hence, in principle, we can combine
both vectors θ and θ̃ to a single one. However, since later in our learning procedure we
compute each node’s posterior distribution, i.e. each node is good/anomalous with a
some probability, it is beneficial to model both variables separately.

6.3.2 Attribute Model

We use an anomaly-aware Bernoulli mixture model (BMM). Let T ∈ [0, 1]K×D be the
matrix of mixture probabilities, where Tdk represent the probability of attribute d having
a value of 1 for the nodes in group k, we have

Xid ∼

{
Bernoulli(Tdzi) cXi = 0

Bernoulli(b) cXi = 1
(6.2)

If the node is good (cXi = 0) this is a standard BMM. Otherwise we can draw no
conclusions about the distribution and we pick a non-informative base probability b = 0.5
for the Bernoulli distribution.

The inferred probabilities Tdk yield insight into the importance of different attributes for
different clusters, and in the context of text data, T takes the role of a topic distribution.
It is trivial to extend this model to numerical attributes e.g. via Gaussian Mixture Models.
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6 Robust Attributed Graph Clustering

6.4 Posterior Inference

We are interested in the posterior distribution of the latent variables z and c as well as
point estimates for the remaining parameters – MAP estimates for the latent variables
(π,ρ) and MLE for (η, ηbg, ηbb,θ, θ̃,T ). For inference, we employ a mean-field variational
inference (MFVI) approximation, i.e. we learn a variational distribution q aiming to
maximize the evidence lower bound (ELBO) [169]:

L = Eq[log p(A,X, z, c | π,ρ,η, ηbg, ηbb,θ, θ̃,T )]− Eq[log q(z, c)] (6.3)

Our coordinate ascent MFVI algorithm has closed-form locally optimal updates and is
guaranteed to converge to a local optimum. We use the following mean-field family:

q(z, c | ψ,φ) =
∏

i

q(zi | ψi)
∏

i

q(ci | φi) (6.4)

s.t q(zi | ψi) ∼ Categorical(ψi), q(ci | φi) ∼ Categorical(φi)

where the free variational parameters ψi ∈ [0, 1]K ,φi ∈ [0, 1]4 satisfy
∑K

k=1ψik = 1,∑3
m=0φim = 1. As shortcuts for later use, we define φAi0 = φi0 + φi2, φAi1 = φi1 + φi3,

φXi0 = φi0 + φi1, φXi1 = φi2 + φi3, denoting whether node i is corrupted or not in the
graph and the attribute space respectively. Given our model, the ELBO decomposes as
follows:

L = Eq[log p(A | z, c,η, ηbg, ηbb,θ, θ̃)]︸ ︷︷ ︸
:=LA

+Eq[log p(X | z, c,T )]︸ ︷︷ ︸
:=LX

+ Eq[log p(z | c,π)] + Eq[log p(c | ρ)]− Eq[log q(z, c)]

(6.5)

The last four terms are straightforward (see Sec. E.2) and can all be evaluated in linear
time w.r.t. the number of nodes and dimensions. For LA we obtain:

LA =
∑

i<j

[∑

kl

ψikψjlφ
A
i0φ

A
j0

(
Aij log(θiθjηkl)− θiθjηkl

)

︸ ︷︷ ︸
case 1

(6.6)

+ φAi1φ
A
j0

(
Aij log(θ̃iηbg)− θ̃iηbg

)
+ φAi0φ

A
j1

(
Aij log(θ̃jηbg)− θ̃jηbg

)
︸ ︷︷ ︸

case 2

+ φAi1φ
A
j1

(
Aij log(θ̃iθ̃jηbb)− θ̃iθ̃jηbb

)
︸ ︷︷ ︸

case 3

]

+
∑

i

[∑

k

ψikφ
A
i0

(
Aii log(

1

2
θ2
i ηkk)−

1

2
θ2
i ηkk

)
+ φAi1

(
Aii log(

1

2
θ̃2
i ηbb)− 1

2
θ̃2
i ηbb

)

︸ ︷︷ ︸
self-loops

]

While this term seems to be quadratic in the number of nodes, which is impractical for
large networks, we will derive a method that is linear in the number of edges.
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6.4 Posterior Inference

6.4.1 Variational Expectation-Maximization

We use variational expectation-maximization (EM) [169] which is an iterative update
scheme. In the variational E-step we find the optimal variational parameters of q (Eq. 6.8 -
Eq. 6.9), and in the variational M-step we compute MAP/ML estimates for the remaining
parameters regarding the ELBO (Eq. 6.16 - Eq. 6.18), repeated until convergence. As we
will show in Sec. 6.5, in practice the ELBO converges after a small number of iterations
(≤ 30). For clarity, we present here the equations for graphs without self-loops (Aii = 0).
Full derivations and proofs are available in Sec. E.2.

We first note one result which is crucial to obtain linear complexity in the number of
edges. This result helps to obtain an efficient computation of the first term in Eq. 6.6.
Given the MLE/MAP estimates as derived in the M-Step, it holds for all k:

∑

j

∑

l

ψjlφ
A
j0θjηkl = 1 (6.7)

E-Step: Update of ψ (i.e. z) and φ (i.e. c). We employ coordinate ascent, i.e. we
optimize each variational parameter while holding the others fixed. In this case, we can
derive closed-form updates for the optimal parameters (see [169] (Ch. 10)).

The optimal variational parameters for the cluster assignments ψik are:

ψnew
ik ∝ exp

(
φAi0

[ ∑

j∈Ni
φAj0

∑

l

ψjl log(θiθjηkl)− θi −
1

2
θ2
i ηkk + θ2

iφ
A
i0

∑

l

ψilηkl

]

+φXi0
∑

d

log Ber(Xid | Tdk) + (1− φi3) log πk

) (6.8)

Here, we defined Ni as the set of neighbors of i and used the result of Eq. 6.7. Normalizing
them to 1, i.e.

∑
k ψ

new
ik = 1, gives the final update.

Similarly, the optimal variational parameters for the anomaly assignments φim are:

φnew
i0 ∝ exp(φ̂Ai0 + φ̂Xi0 + log ρ0)

φnew
i1 ∝ exp(φ̂Ai1 + φ̂Xi0 + log ρ1)

φnew
i2 ∝ exp(φ̂Ai0 + φ̂Xi1 + log ρ2)

φnew
i3 ∝ exp(φ̂Ai1 + φ̂Xi1 + log ρ3 −

∑

k

ψik log πk)

(6.9)

Here, the updates are based on the following terms regarding the attribute space:

φ̂Xi0 =
∑

k

ψik

(∑

d

log Ber(Xid | Tdk)
)
, φ̂Xi1 = D log(0.5) (6.10)
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6 Robust Attributed Graph Clustering

and regarding the graph space:

φ̂Ai0 =
∑

j∈Ni
φAj0

∑

kl

ψikψjl log(θiθjηkl)− θi(1− θiφAi0
∑

kl

ψikψjlηkl)

+
∑

j∈Ni
φAj1 log(θ̃jηbg)− ηbg(θ̃B − φAi1θ̃i)−

1

2
θ2
i

∑

k

ψikηkk (6.11)

φ̂Ai1 = log(θ̃iηbg)
∑

j∈Ni
φAj0 − ηbgθ̃i(g − φAi0)

+
∑

j∈Ni
φAj1 log(θ̃iθ̃jηbb)− θ̃iηbb(θ̃B − φAi1θ̃i)−

1

2
θ̃2
i ηbb (6.12)

where we defined g =
∑

iφ
A
i0 and θ̃B =

∑
iφ

A
i1θ̃i. The crucial observation is that the

terms g and θ̃B can be maintained incrementally, i.e. after updating the parameters of
node i both terms can be recomputed in constant time.

Overall, for each node i the updates of ψi and φi can be computed in linear time w.r.t.
the number of its neighbors Ni. Thus, updating all variables (the full E-step) can be done
in linear time w.r.t. the number edges, and also linear time in the number of dimensions.

M-Step: Update of remaining parameters. We first simplify LA (Eq. 6.6) by
introducing some abbreviations:

dGi =
∑

j∈Ni
φAj0, di = |Ni|, DG

k =
∑

i

θiψikφ
A
i0, DB =

∑

i

θ̃iφ
A
i1

mbg =
∑

ij

φAi1φ
A
j0Aij , mbb =

∑

ij

φAi1φ
A
j1Aij , mkl =

∑

i 6=j
Aijψikψilφ

A
i0φ

A
j0

Here DG
k is the total degree of good nodes in cluster k, and DB is the total degree of bad

nodes. Observe that all these terms can be computed in linear time w.r.t. the number of
edges or nodes. Furthermore, as also noted in [167, 168], since the likelihood stays the
same if we increase all {θi | zi = k} by some factor, given that we also decrease ηkl, ∀l
by the same factor we need constraints to ensure identifiability. Conveniently we pick as
constraints (w.r.t. θ and θ̃ respectively)

DG
k

!
=
∑

i

dGi ψikφ
A
i0 and DB !

=
∑

i

diφ
A
i1 (6.13)

Combining all aspects and after simplification we obtain:

LA =
1

2

(∑

kl

mkl log ηkl −DG
k D

G
l ηkl +mbb log ηbb +DBDBηbb

)

+
1

2

∑

i

∑

kl

ψikψilθ
2
iφ

A
i0(φAi0ηkl − ηkk) +mbg log ηbg − gDBηbg (6.14)

+
∑

i

φAi0 log θid
G
i + φAi1 log θ̃idi +

∑

i

θ̃iφ
A
i1(1− φAi1)(ηbg −

1

2
ηbb)
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We can further simplify this equation based on the following observations. If we have a
rather clear decision whether a node is a graph corruption or not, i.e. φAi1 → 0 or φAi1 → 1,

the term
∑

i θ̃iφ
A
i1(1− φAi1)(ηbg − 1

2ηbb) evaluates to zero. Similarly, for clear clustering
assignment, when ψik → 1 for a single k, the term 1

2

∑
i

∑
klψikψilθ

2
iφ

A
i0(φAi0ηkl − ηkk)

becomes zero. This is indeed what we observed for real data.

Besides, while most terms in LA grow quadratically with N (e.g. DG
k D

G
l ), these terms

grow only linearly. Thus, removing them only introduces an error of at most 1
N . Therefore,

for large graphs we can safely drop both terms, since the error they introduce approaches
zero in the limit case. We provide further analysis in Sec. E.3. Overall, we get:

LA =

[
1

2

∑

kl

mkl log ηkl −
1

2
DG
k D

G
l ηkl +

∑

i

φAi0d
G
i log θi + φAi1di log θ̃i +mbg log ηbg

+
1

2
mbb log ηbb −

1

2
DBDBηbb − gDBηbg

]
·
(

1 +O
( 1

N

))
(6.15)

Using this in the ELBO – and taking the identifiability constraints via Lagrange multipliers
into account – we can directly compute the MAP/ML estimates:

θi = dGi , θ̃i = di, Tdk =

∑
i rikXid

Rk
(6.16)

ηkl =
mkl

DG
k D

G
l

, ηbg =
mbg

DBg
, ηbb =

mbb

DBDB
(6.17)

where we have defined rik = φXi0ψik as expected responsibilities and Rk =
∑

i rik as
expected fraction of ones in the cluster k. The MAP estimates are

πk =

∑
i(1− φi3)ψik + αk∑
i(1− φi3) +

∑
k αk

, ρm =

∑
iφim + βm

N +
∑

m βm
(6.18)

Using these closed-form estimates the full M-step is also linear in the number of edges.

6.5 Experiments

We compare with CODA [155], FocusCO [154], PICS [159], BAGC [163], LSBM [164],
and SIAN [161]. There are no competing methods that handle partial anomalies. To
evaluate clustering quality we use normalized mutual information (NMI). To ensure a fair
evaluation of the non-robust techniques, we exclude the generated and detected complete
corruptions from the NMI calculation. That is, they are not penalized when they add
the corruptions to specific clusters – being a big advantage. To make sure that robust
techniques do not simply mark all instances as corruptions, we evaluate the anomaly
detection using the F1 score. Both metrics need to be high simultaneously.

For all methods we provide the true number of clusters K. We restart the nondeter-
ministic methods multiple times, and we tune the hyperparameters. For the baselines
we pick the solution achieving highest NMI, while for our approach, we simply perform
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Figure 6.3: Clustering and anomaly detection performance on synthetic data.

several restarts with different initializations and pick the one that gives us the highest
likelihood. The different initializations include multiple random cluster assignments, as
well as cluster assignments obtained from a baseline DCSBM. Due to this set-up CODA,
FocusCO, LSBM, and SIAN get a strong benefit. PICS and BAGC are deterministic.

We additionally include a constrained version of PAICAN where we disable the detection
of anomalies, called PAICAN-C. Note that we do not compare with classic DCSBM since
PAICAN-C is essentially a pure attributed DCSBM (without any anomalies), which is a
strictly stronger baseline. For more details on the experimental setup including all used
datasets and the PAICAN source code see Sec. E.1.

6.5.1 Synthetic Data

To ensure a fair evaluation on synthetic data, we do not simply generate data according
to our generative model, we use the configuration model [170] instead. Given a degree
sequence θ that follows a power-law distribution p(x) ∝ x−α and density ratio Ein

E , where
Ein is the number of edges within the clusters, the adjacency matrix A for the good nodes
is generated according to the configuration model conditioned on randomly generated
cluster assignments z. We also generate anomalous nodes forming random edges. We
generate he attribute matrix X for the good nodes given topic probabilities drawn from
Beta(0.1, 5). We generate the attributes for the anomalous nodes using an uninformative
prior. Unless otherwise noted we generate 5000 nodes, 100 attributes and 5 clusters. For
each setting of the parameters we generate 10 different random synthetic datasets and
report the mean and standard deviation of the relevant metric (NMI or F1 score).

Robustness and anomaly detection. We are interested in answering the following
three questions: (i) How is the clustering quality affected as we increase the percentage
of anomalous nodes in the data; (ii) How many anomalous nodes can we actually detect;
(iii) What is the effect of partial vs. complete anomalies.

To answer the first two questions, we vary the percentage of anomalies pa from 0%
to 30%, where we distributed the anomalies randomly such that 0.45 · pa are partial
anomalies w.r.t. graph space, 0.45 · pa w.r.t. to the attribute space, and the remaining
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Figure 6.4: Performance for different ratios of partially anomalous nodes.

0.10 · pa are generated as complete anomalies. The results are shown in Fig. 6.3. As we
can see our method is robust and is able to maintain a high clustering quality despite
the presence of anomalies. If we disable anomaly detection (PAICAN-C), the quality
drop is more evident. Similarly, for LSBM and SIAN we can see a clear decrease of the
performance as the percentage of anomalies increases.

Considering Fig. 6.3b we can answer the second question. Here, we plot the F1 score
w.r.t. the ground-truth anomalies. Since PAICAN is able to distinguish between graph
and attribute corruptions, we can analyze its performance in greater detail. PAICAN
A and PAICAN X indicate the F1 score regarding the graph and attribute corruptions
respectively. We observe that PAICAN is slightly better at detecting attribute corruptions,
though, in any case it clearly outperforms the competitors3. Finally, to answer the third
question, we analyze in Fig. 6.4a and Fig. 6.4b how the methods behave when nodes are
partially anomalous. As before, we examine the NMI and F1 score for 0%, 5% and 10%
anomalies – here generating either only graph anomalies (A), attribute anomalies (X),
or complete anomalies (A,X). Again, PAICAN consistently performs best.

Degree distribution and density ratio. Despite the fact that most real-world
networks have power-law like degree distributions, many graph clustering methods are
not equipped to properly handle such scenarios. To illustrate this effect we generate data
where we vary the power-law exponent to values often encountered in real-world networks
(2.0 ≤ α ≤ 3.0) [171]. We also include the simple case of uniform ‘blocky’ clusters (marked
as ‘None’), i.e. all degrees are the same. Fig. 6.5a shows the results. Our method clearly
outperforms all competitors and is not sensitive to the degree distribution. Furthermore,
PAICAN has high stability as shown by the low standard deviation across different runs.

We also explore how the methods behave w.r.t the density ratio Ein
E . We see in Fig. 6.5b

that most methods start failing as soon as the ratio of intra-cluster edges becomes too
small, with PAICAN being able to handle the disassortative case the best.

3PAICAN is the only method able to handle data with both power-law distributed degrees and anomalies
(see also Fig. 6.5). Therefore, although FocusCO and CODA can detect anomalies in principle, they
struggle in the power-law distributed case. They are relatively better for the less common case of
“blocky” clusters, however, PAICAN still outperforms them (see Fig. E.1).
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Figure 6.5: Effect of different degree distributions and density ratios on the clustering quality.

Runtime complexity. The complexity of our method is linear in the number of edges
and dimensions. This is confirmed in Fig. 6.6. BAGC and LSBM do not scale linear w.r.t.
the number of edges, while CODA does not perform well when increasing the number
of attributes (note the log scale in Fig. 6.6b). SIAN has the worst scaling out of all the
methods even though performs relatively well w.r.t. NMI. All of the methods except
CODA are not affected by the number of attributes.

6.5.2 Real-world Data

Dataset description. We use six attributed graph datasets. Cora-ML [107] is a well-
known citation network. The Lazega Lawyers [172] is a friendship network among
attorneys. HVR [161] is a dataset of highly recombinant malaria parasite genes. DBLP
[82] is a co-authorship network of computer science researchers. In the Parliament dataset
nodes are parliament members having an edge if they cosigned a bill together. We extract
an Amazon co-purchase attributed graph from review data [173] using binary product
category indicators as attributes. We also create a new SocialPapers dataset where nodes
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Figure 6.6: Runtime vs. number of edges and attributes. PAICAN scales linearly.
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Table 6.2: Comparison of NMI for real-world datasets.

CODA FocusCO BAGC PICS LSBM SIAN PAICAN

Lawyers 0.50 0.28 0.14 0.27 0.50 0.58 0.66
Parliament 0.06 0.00 0.53 0.47 0.77 0.73 0.78
Cora-ML d.n.f. 0.13 0.15 0.04 0.52 0.39 0.53
SocialPapers d.n.f. 0.25 0.17 0.10 0.50 d.n.f. 0.52
HVR 0.71 0.50 0.18 0.44 0.83 0.77 0.89

represent biomedical papers forming edges if they are frequently mentioned by the same
users on social media. See Sec. A.1 for detailed description of all datasets.

Ground-truth evaluation. Table 6.2 shows the NMI achieved by PAICAN and
the baselines on datasets with ground-truth labels. We see that PAICAN consistently
outperforms the competitors. The non-robust LSBM performs relatively well for most but
not all graphs. CODA shows promising results for some graphs, but has scaling issues.

Convergence and runtime. Fig. 6.7 shows the evolution of the ELBO per iteration
for the Cora-ML graph. PAICAN quickly converges after a few iterations showing the
effectiveness of our variational method. Overall, PAICAN easily handles large graphs as
the runtime statistics (seconds per iteration) on the real-world data in Table 6.3 show.

6.5.3 Case Studies

Anomaly detection. We analyzed the DBLP dataset. Overall, PAICAN found 37
partial attribute corruptions, 12 partial graph corruptions, and 71 complete corruptions.
Since we have no anomaly ground truth we manually analyze the detected anomalous
nodes. As an example, the author Srinivasan Parthasarathy was marked as anomalous
in attribute space. Inspecting his ego-network, we see that he fits nicely in graph space
since most of his neighbors belong to the same cluster (see Fig. E.3 for a plot of the
ego-network). Inspecting his attributes however, we observe that most of his co-authors
published in just a few conferences (mainly KDD, ICDM, SDM) while he published in
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Figure 6.7: ELBO convergence

Table 6.3: Runtime for different datasets

Dataset Nodes Edges Runtime

Lawyers 71 575 0.01 s
HVR 307 3263 0.01 s
Parliament 451 11 646 0.01 s
Cora-ML 2995 8416 0.15 s
DBLP 17 716 105 734 4.46 s
Soc. Papers 20 007 2 088 048 25.56 s
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Figure 6.8: Learned topics and detected clusters in the Amazon co-purchase graph.

18 different ones (including e.g. EDBT, IJCAI). We can conclude that he is justifiably
marked as a partial attribute anomaly.

Clustering. To enable visual inspection of the clustering we select a small subset
(N = 1549, E = 36934, D = 661) of the Amazon dataset. The results for K = 15
are visualized in Fig. 6.8. The learned topic distribution T is shown, where for easier
visualization we only plot dimensions where Tdk > 0.5 for at least one cluster. Intuitively,
this plot shows the “active” categories for each cluster. For example, the products in
cluster C2 have [Wii U, Nintendo 3DS, PlayStation 3, Xbox 360] as categories, clearly
showing a coherent cluster of products related to gaming consoles. Similarly, inspecting
the topics of C10 shows products about jewelry, and C14 cell phone cases related products.
This case study demonstrates that PAICAN learns meaningful clusters.

6.6 Conclusion

We proposed PAICAN, a probabilistic model for attributed graph clustering. PAICAN
jointly learns the clustering structure as well as potential anomalies. In particular, exploit-
ing the two views of information in attributed graphs, PAICAN introduces the notion of
partial anomalies. For learning, we proposed a scalable variational EM algorithm, whose
runtime complexity is linear in the number of edges and attributes. Our experimental
study confirmed the robustness of PAICAN regarding partial and complete corruptions.
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6.7 Retrospective

An interesting aspect which we did not highlight in this chapter (and the original
publication) is that the node order (i.e. fixed or random) in which we update ψi and φi in
the E-step of our coordinate ascent algorithm did not noticeably impact the performance.
In practice we sidestep this question and we update ψi and φi for all nodes i at once.
By taking advantage of vectorized computations on the GPU (via TensorFlow) this
significantly reduced the algorithm runtime without affecting the performance.

While it is generally known that the performance of variational inference methods tends
to be highly dependent on the initialization, in retrospective, it would have been more
transparent to highlight that this also holds for our model. As we discuss in Sec. 6.5 for
evaluation we perform several restarts with different initializations and pick the one that
gives us the highest likelihood. In practice, the best performance was usually obtained by
initializing with clusters inferred with a standard DCSBM (again using VI and updating
all parameters at once) whose initialization in turn is based on spectral clustering.

A considerable portion of the effort when developing probabilistic generative models
such as PAICAN comes down to the manual derivation of the variational updates which
is time-consuming and error-prone. This is especially true for graphs where we have to
additionally deal with the non-i.i.d. aspect of the data. Consequently, it is difficult to
quickly iterate over different models since the updates have to be re-derived every time.
When we originally worked on this model, black-box variational inference (BBVI) methods
[174] where starting to gain popularity, although the state of the art was far from today’s
powerful probabilistic programming languages. If we were to design a similar model today,
a more practical approach would be to focus on exploring different model variants by
implementing the model in generic probabilistic programming languages such as Edward
[175] and taking advantage of BBVI.4 Then, once we converge on a reasonable model
we can manually derive the exact updates if necessary. Relatedly, even though having
“free” variational parameters (one per node, unconstrained) is technically more expressive,
using an inference model where the variational parameters are the output of a learnable
parametric function (e.g. a GNN) tends to perform better in practice [101, 176]. The
general principle behind this success is statistical strength sharing, which also prevents
overfitting, and was similarly beneficial for our Graph2Gauss model (Chapter 4).

Given the model is generative it would have been beneficial to highlight some of its
other inherent advantages. For example, probabilistic generative models are generally
useful for inferring missing data which in the context of graphs can be seen as link
prediction. In fact, in Bojchevski et al. [7] where we derive NetGAN – a deep generative
model for graphs – we showed that a standard DCSBM is a strong baseline. Therefore,
it might be interesting to use PAICAN not only for clustering but also for robust link
prediction. Since it generalizes DCSBM and additionally considers node features and
(partial) anomalies, it is reasonable to conclude that it will also show strong performance.

4However, support for non-i.i.d. data is still limited in all probabilistic programming languages.
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Figure 7.1: Overview of the proposed certificate. The upper part outlines our approach for local
budget only: the exact certificate is efficiently computed with policy iteration. The lower part
outlines our 3 step approach for local and global budget: (a) formulate an MDP on an auxiliary
graph, (b) augment the corresponding LP with quadratic constraints to enforce the global budget,
and (c) apply the RLT relaxation to the resulting QCLP (see Sec. 7.4.3 for details).

7.1 Introduction

In Chapter 5 we show that an adversary can easily craft perturbations that can have a
significant negative effect on node embeddings. Importantly, even though we derive the
attacks based on an unsupervised (surrogate) model, they generalize to other models,
and can even damage the performance of semi-supervised approaches such as graph
convolutional networks and label propagation. Given the mounting evidence that graph-
based models suffer from poor adversarial robustness [121, 122], the question is how
to develop effective defenses. This is critical since in the domains where they are often
deployed (e.g. the Web), adversaries are pervasive and attacks have a low cost [177–179].

In this chapter we focus on the certifiable robustness of semi-supervised node classifi-
cation models. Given a single large graph and the class labels of a few nodes the model
predicts the labels of the remaining unlabeled nodes. Our goal is to provide provable
guarantees that there exists no adversarial perturbation that can change the predictions.

Graph Neural Networks (GNNs) have emerged as the de-facto way to tackle this task,
significantly improving performance over the previous state of the art. They are used for
various high impact applications across many domains from protein interface prediction
[17], to fraud detection [18], and breast cancer classification [21]. Therefore, it is crucial
to asses their sensitivity to adversaries and ensure (certify) that they behave as expected.
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7 Certifiable Robustness to Graph Perturbations

However, despite their popularity there is scarcely any work on certifying or improving
the robustness of GNNs. As shown in Zügner et al. [121] node classification with GNNs is
not robust and can even be attacked on multiple fronts – slight perturbations of either the
node features or the graph structure can lead to wrong predictions. Moreover, since we
are dealing with non i.i.d. data by taking the graph structure into account, robustifying
GNNs is more difficult compared to traditional models – perturbing only a few edges
affects the predictions for all nodes. What can we do to fortify GNNs and make sure they
produce reliable predictions in the presence of adversarial perturbations?

We propose the first method for provable robustness regarding perturbations of the
graph structure. Our approach is applicable to a general family of models where the
predictions are a linear function of (personalized) PageRank. This includes GNNs [10]
and other graph-based models such as label/feature propagation [38, 180]. In Chapter 8
we derive a more general (model-agnostic) certificate. In this chapter we contribute:

• Certificates: Given a trained (PageRank-based) model and a general set of ad-
missible graph perturbations we can efficiently verify whether a node is certifiably
robust – there exists no perturbation that can change its prediction. We also provide
non-robustness certificates via adversarial examples.

• Robust training: We investigate robust training schemes based on our certificates
and show that they improve both robustness and clean accuracy.

Interestingly, in contrast to existing works on provable robustness [143, 181, 182] that
derive bounds (by relaxing the problem), by taking advantage of the structure of the
problem we can efficiently compute exact certificates for specific threat models.

7.2 Related Work

Neural networks [43, 183], and recently graph neural networks [121–123] and node
embeddings [3] were shown to be highly sensitive to small adversarial perturbations.
There exist many (heuristic) approaches aimed at robustifying these models, however,
they have only limited usefulness since there is always a new attack able to break them,
leading to a cat-and-mouse game between attackers and defenders. A more promising line
of research studies certifiable robustness [181, 182, 184]. Certificates provide guarantees
that no perturbation regarding a specific threat model will change the prediction of an
instance. So far there has been almost no work on certifying graph-based models.

Different heuristics have been explored in the literature to improve robustness of
graph-based models: (virtual) adversarial training [185–188], trainable edge weights
[189], graph encoder refining and adversarial contrastive learning [190], transfer learning
[191], smoothing distillation [185], decoupling structure from attributes [192], measuring
logit discrepancy [193], allocating reliable queries [194], representing nodes as Gaussian
distributions [111], and Bayesian graph neural networks [195]. Other robustness aspects
of graph-based models (e.g. noise or anomalies) have also been investigated [1, 4, 196].
However, none of these works provide provable guarantees or certificates.
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7.3 Background and Preliminaries

Zügner and Günnemann [143] is the only work that proposes robustness certificates for
graph neural networks (GNNs). However, their approach can handle perturbations only
to the node attributes. Our approach is completely orthogonal to theirs since we consider
adversarial perturbations to the graph structure instead. Furthermore, our certificates are
also valid for other semi-supervised learning approaches such as label/feature propagation.
Nonetheless, there is a critical need for both types of certificates given that GNNs are
shown to be vulnerable to attacks on both the attributes and the structure. In Chapter 8
we consider perturbations of the node features and the graph jointly.

7.3 Background and Preliminaries

Let G = (V, E) be an attributed graph with N = |V| nodes and edge set E ⊆ V × V.
We denote with A ∈ {0, 1}N×N the adjacency matrix and X ∈ RN×D the matrix of
D-dimensional node features for each node. Given a subset VL ⊆ V = {1, . . . , N} of
labelled nodes the goal of semi-supervised node classification is to predict for each node
v ∈ V one class in C = {1, . . . ,K}. We focus on deriving (exact) robustness certificates
for graph neural networks via optimizing personalized PageRank. We also show (Sec. F.1)
how to apply our approach for label/feature propagation [180].

Topic-sensitive PageRank. The topic-sensitive (personalized) PageRank [34, 35]
vector πG(z) for a graph G and a probability distribution over nodes z is defined1 as
πG,α(z) = (1− α)(IN − αAD−1)−1z. Here D is a diagonal matrix of node out-degrees
with Dii =

∑
jAij . Intuitively, π(z)u represent the probability of random walker on

the graph to land at node u when it follows edges at random with probability α and
teleports back to the node v with probability (1− α)zv. For z = ev, the v-th canonical
basis vector, we get the personalized PageRank vector for node v. We drop the index on
G,α and z in πG,α(z) when they are clear from the context. See Sec. 2.2 for more details.

Graph neural networks. As an instance of graph neural network (GNN) methods
we consider an adaptation of the recently proposed PPNP approach [10] since it shows
superior performance on the semi-supervised node classification task [197]. PPNP unlike
message-passing GNNs decouples the feature transformation from the propagation.

We have Y = softmax
(
ΠsymH

)
with

Hv,: = fθ(Xv,:), Πsym = (1− α)(IN − αD−1/2AD−1/2)−1 (7.1)

where IN is the identity, Πsym ∈ RN×N is a symmetric propagation matrix, H ∈ RN×C
collects the individual per-node logits, and Y ∈ RN×C collects the final predictions after
propagation. A neural network fθ outputs the logits Hv,: by processing the features
Xv,: of every node v independently. Multiplying them with Πsym we obtain the diffused
logits Hdiff := ΠsymH which implicitly incorporate the graph structure and avoid the
expensive multi-hop message-passing procedure.

To make PPNP more amenable to theoretical analysis we replace Πsym with the
personalized PageRank matrix Π = (1 − α)(IN − αD−1A)−1 which has a similar

1In practice, instead of inverting the matrix we solve the associated sparse linear system of equations.
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spectrum. Here each row Πv,: = π(ev) equals to the personalized PageRank vector of
node v. This model which we denote as π-PPNP has similar prediction performance to
PPNP. We can see that the diffused logit after propagation for class c of node v is a
linear function of its personalized PageRank score: Hdiff

v,c = π(ev)
TH:,c, i.e. a weighted

combination of the logits of all nodes for class c. Similarly, the margin

mc1,c2(v) = Hdiff
v,c1 −H

diff
v,c2 = π(ev)

T (H:,c1 −H:,c2) (7.2)

defined as the difference in logits for node v for two given classes c1 and c2 is also linear
in π(ev). If mincmyv ,c(v) < 0, where yv is the ground-truth label for v, the node is
misclassified since the prediction equals arg maxcH

diff
v,c .

7.4 Robustness Certificates

7.4.1 Threat Model, Fragile Edges, Global and Local Budget

We investigate the scenario in which a subset of edges in a directed graph are “fragile”,
i.e. an attacker has control over them, or in general we are not certain whether these
edges are present in the graph. Formally, we are given a set of fixed edges Ef ⊆ E that
cannot be modified (assumed to be reliable), and set of fragile edges F ⊆ (V × V) \ Ef .
For each fragile edge (i, j) ∈ F the attacker can decide whether to include it in the graph
or exclude it from the graph, i.e. set Aij to 1 or 0 respectively. For any subset of included
F+ ⊆ F edges we can form the perturbed graph G̃ = (V, Ẽ := Ef ∪ F+). An excluded
fragile edge (i, j) ∈ F \ F+ is a non-edge in G̃. This formulation is general, since we can
set Ef and F arbitrarily. For example, for our certificate scenario given an existing clean
graph G = (V, E) we can set Ef = E and F ⊆ (V × V) \ E which implies the attacker can
only add new edges to obtain perturbed graphs G̃. Or we can set Ef = ∅ and F = E
so that the attacker can only remove edges, and so on. There are 2|F| (exponential)
number of valid configurations leading to different perturbed graphs which highlights
that certificates are challenging for graph perturbations.

In reality, perturbing an edge is likely to incur some cost for the attacker. To capture
this we introduce a global budget. The constraint |Ẽ \ E|+ |E \ Ẽ| ≤ B implies that the
attacker can make at most B perturbations. The first term equals to the number of newly
added edges, and the second to the number of removed existing edges. Here, including
an edge that already exists does not count towards the budget. This is only a design
choice that depends on the application, and our method works in general. Furthermore,
perturbing many edges for a single node might not be desirable, thus we also allow to
limit the number of perturbations locally. Let Ev = {(v, j) ∈ E} be the set of edges that
share the same source node v. Then, the constraint |Ẽv \ Ev| + |Ev \ Ẽv| ≤ bv enforces
a local budget bv for the node v. By setting bv = |Fv| and B = |F| we can model
an unconstrained attacker. Letting P(F) be the power set of F , we define the set of
admissible perturbed graphs

QF = {(V, Ẽ := Ef ∪ F+) | F+ ∈ P(F), |Ẽ \ E|+ |E \ Ẽ| ≤ B,
|Ẽv \ Ev|+ |Ev \ Ẽv| ≤ bv,∀v}

(7.3)
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7.4.2 Robustness Certificates

Problem 7.1. Given a graph G, a set of fixed Ef and fragile F edges, global budget B,
local budgets bv, target node t, and a model with logits H. Let yt denote the class of node
t (predicted or ground-truth). The worst-case margin between class yt and class c under
any admissible perturbation G̃ ∈ QF is:

m∗yt,c(t) = minG̃∈QF myt,c(t) = minG̃∈QF πG̃(et)
T (H:,yt −H:,c) (7.4)

If m∗yt,∗(t) = minc 6=ytm
∗
yt,c(t) > 0, node t is certifiably robust w.r.t. the logits H, and the

admissible set QF .

Our goal is to verify whether no admissible G̃ ∈ QF can change the prediction for a
target node t. From Problem 7.1 we see that if the worst margin over all classes m∗yt,∗(t)
is positive, then m∗yt,c(t) > 0, for all yt 6= c, which implies that there exists no adversarial
example within QF that leads to a change in the prediction to some other class c, that
is, the logit for the given class yt is always largest.

Challenges and core idea. From a cursory look at Eq. 7.4 it appears that finding
the minimum is intractable. After all, our domain is discrete and we are optimizing over
exponentially many configurations. Moreover, the margin is a function of the personalized
PageRank which has a non-trivial dependency on the perturbed graph. But there is hope:
For a fixed H , the margin myt,c(t) is a linear function of π(et). Thus, Problem 7.1 reduces
to optimizing a linear function of personalized PageRank over a specific constraint set.
This is the core idea of our approach. As we will show, if we consider only local budget
constraints the exact certificate can be efficiently computed. This is in contrast to most
certificates for neural networks that rely on different relaxations to make the problem
tractable. Including the global budget constraint, however, makes the problem hard (see
Sec. F.5). For this case we derive an efficient to compute lower bound on the worst-case
margin. Thus, if the lower bound is positive we can still guarantee that our classifier is
robust w.r.t. the set of admissible perturbations.

7.4.3 Optimizing Topic-sensitive PageRank

We are interested in optimizing a linear function of the topic-sensitive PageRank vector
of a graph by modifying its structure. That is, we want to configure a set of fragile
edges into included/excluded to obtain a perturbed graph G̃ maximizing the objective.
Formally, we study the general problem:

Problem 7.2. Given a graph G, a set of admissible perturbations QF as in Problem 7.1,
and any fixed z, r ∈ RN , α ∈ (0, 1) solve the following optimization problem:

maxG̃∈QF r
TπG̃,α(z) (7.5)

Setting r = −(H:,yt −H:,c) and z = et, we see that Problem 7.1 is a special case of
Problem 7.2. We can think of r as a reward/cost vector, i.e. rv is the reward that a
random walker obtains when visiting node v. The objective value rTπ(z) is proportional

93



7 Certifiable Robustness to Graph Perturbations

to the overall reward obtained during an infinite random walk with teleportation since
π(z)v exactly equals to the frequency of visits to v.

Variations and special cases of this problem have been previously studied [139, 198–203].
Notably, Fercoq et al. [201] cast the problem as an average cost infinite horizon Markov
decision process (MDP), also called ergodic control problem, where each node corresponds
to a state and the actions correspond to choosing a subset of included fragile edges, i.e.
we have 2|F

v | actions at each state v (see also Fig. 7.2a). They show that despite the
exponential number of actions, the problem can be efficiently solved in polynomial time,
and they derive a value iteration algorithm with different local constraints. They enforce
that the final perturbed graph has at most bv total number of edges per node, while we
enforce that at most bv edges per node are perturbed (Sec. 7.4.1).

7.4.4 Optimizing PageRank with Local Constraints Only

Inspired by the MDP idea we derive a policy iteration (PI) algorithm which also runs
in polynomial time [202]. Intuitively, every policy corresponds to a perturbed graph in
QF , and each iteration improves the policy. The PI algorithm allows us to: incorporate
our local constraints easily, take advantage of efficient solvers for sparse systems of linear
equations (line 3 in Algorithm 7.1), and implement the policy improvement step in
parallel (lines 4-6 in Algorithm 7.1). It can easily handle very large sets of fragile edges
and it scales to large graphs.

Proposition 7.1. Algorithm 7.1 finds an optimal solution for Problem 7.2 with only
local constraints in a number of steps independent of the graph size.

We provide the proof in Sec. F.3 in the appendix. The main idea for Algorithm 7.1 is
starting from a random policy, in each iteration we first compute the mean reward before
teleportation x for the current policy by solving a sparse linear system of equations
(line 3), and then greedily select the top bv edges that improve the policy (lines 4-6).
This algorithm is guaranteed to converge to the optimal policy, and thus to the optimal
configuration of fragile edges.

Certificate for local budget only. Proposition 7.1 implies that for local constraints
only, the optimal solution does not depend on the teleport vector z. Regardless of the

Algorithm 7.1 Policy Iteration with Local Budget

Require: Graph G = (V, E), reward r, fixed Ef and fragile F edges, local budgets bv
1: Initialization: W0 ⊆ F as any arbitrary subset, AG corresponding to G
2: while Wk 6=Wk−1 do
3: Solve (IN − αD−1A)x = r for x, where Aij = 1−AG

ij if (i, j) ∈ Wk . flip edges

4: Let lij ← (1− 2AG
ij)(xj −

xi−ri
α ) for all (i, j) ∈ F . calculate the improvement

5: Let Lv ← {(v, j) ∈ F | lvj > 0 ∧ lvj ≥ top bv largest lvj}, ∀v ∈ V
6: Wk ←

⋃
v Lv, k ← k + 1

7: end while
8: return Wk . optimal graph G̃ ∈ QF obtained by flipping all (i, j) ∈ Wk of G
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node t (i.e. which z = et in Eq. 7.4), the optimal edges to perturb are the same if the
admissible set QF and the reward r are the same. This means that for a fixed QF we only
need to run the algorithm K ×K times to obtain the certificates for all N nodes: For
each pair of classes c1, c2 we have a different reward vector r = −(H:,c1 −H:,c2), and we
can recover the exact worst-case margins m∗yt,∗(t) for all N nodes by just computing Π

on the resulting K ×K many perturbed graphs G̃. Now, m∗yt,∗(t) > 0 implies certifiable
robustness, while m∗yt,∗(t) < 0 implies certifiable non-robustness due to the exactness of
our certificate, i.e. we have found an adversarial example for node t.

7.4.5 Optimizing PageRank with Global and Local Constraints

Algorithm 7.1 cannot handle a global budget constraint, and in general solving Problem 7.2
with global budget is NP-hard. More specifically, it generalizes the Link Building problem
[203] – find the set of k optimal edges that point to a given node such that its PageRank
score is maximized – which is W[1]-hard and for which there exists no fully-polynomial
time approximation scheme (FPTAS). It follows that Problem 7.2 is also W[1]-hard and
allows no FPTAS. We provide the proof and more details in Sec. F.5 in the appendix.

Therefore, we develop an alternative approach that consists of three steps and is
outlined in the lower part of Fig. 7.1:

(a) We propose an alternative un constrained MDP based on an auxiliary graph which
reduces the action set from exponential to binary, adding only |F| auxiliary nodes

(b) We reformulate the problem as a non-convex Quadratically Constrained Linear
Program (QCLP) to be able to handle the global budget

(c) We utilize the Reformulation Linearization Technique (RLT) to construct a convex
relaxation of the QCLP enabling us to efficiently compute a lower bound on the
worst-case margin

(a) Auxiliary graph. Given an input graph we add one auxiliary node vij for each
fragile edge (i, j) ∈ F . We define a total cost infinite horizon MDP on this auxiliary
graph (Fig. 7.2b) that solves Problem 7.2 without constraints. The MDP is defined by
the 4-tuple (S, (Ai)i∈S , p, r), where S is the state space (preexisting and auxiliary nodes),
and Ai is the set of admissible actions in state i.

Given action a ∈ Ai, p(j|i, a) is the probability to go to state j from state i and r(i, a)
the instantaneous reward. Each preexisting node i has a single action Ai = {a}, reward
r(i, a) = ri, and uniform transitions p(vij |i, a) = d−1

i , ∀vij ∈ F i, discounted by α for the
fixed edges p(j|i, a) = α · d−1

i , ∀(i, j) ∈ Ef , where di = |E if ∪ F i| is the degree. For each
auxiliary node we allow two actions Avij = {on, off}. For action “off” node vij goes back
to node i with probability 1 and obtains reward −ri: p(i|vij , off) = 1, r(vij , off) = −ri. For
action “on” node vij goes only to node j with probability α (the model is substochastic)
and obtains 0 reward: p(j|vij , on) = α, r(vij , on) = 0. We introduce fewer auxiliary nodes
compared to previous work [199, 204].

(b) Global and local budgets QCLP. Based on this unconstrained MDP, we can
derive a corresponding linear program (LP) solving the same problem [205]. Since the
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(a) Ai={∅, {j}, {k}, {j, k}} (b) Ai = {a} and Avij = Avik = {off, on}

Figure 7.2: Construction of the auxiliary graph. For each fragile edge (i, j) marked with a red
dashed line, we add one node vij and two actions: {on, off} to the auxiliary graph. If the edge is
configured as “on” vij goes back to node i with probability 1. If configured as “off” it goes only
to node j with probability α.

MDP on the auxiliary graph has (at most) binary action sets, the LP has only 2|V|+ 3|F|
constraints and variables. This is in strong contrast to the LP corresponding to the
previous average cost MPD [201] operating directly on the original graph that has an
exponential number of constraints and variables. Lastly, we enrich the LP for the auxiliary
graph MDP with additional constraints enforcing the local and global budgets. The local
budget constraints are linear, however, the global budget requires quadratic constraints
resulting in a quadratically constrained linear program (QCLP) equivalent to Problem 7.2.

Proposition 7.2. Solving the following QCLP with decision variables xv, x
0
ij , x

1
ij , β

0
ij , β

1
ij

is equivalent to solving Problem 7.2 with local and global constraints, i.e. the value of the
objective function is the same in the optimal solution

max
∑

v∈V
xvrv −

∑
(i,j)∈F

x0
ijri (7.6a)

xv − α
∑

(i,v)∈Ef
xi
di︸ ︷︷ ︸

incoming fixed edges

− α
∑

(j,v)∈F
x1
jv

︸ ︷︷ ︸
incoming “on” edges

−
∑

(v,k)∈F
x0
vk

︸ ︷︷ ︸
returning “off” edges

= (1− α)zv (7.6b)

x0
ij + x1

ij =
xi
di
, x0

ij ≥ 0, x1
ij ≥ 0 (7.6c)

∑
(v,i)∈F

[(v, i) ∈ E ]x0
ij︸ ︷︷ ︸

removed existing edges

+ [(v, i) /∈ E ]x1
ij︸ ︷︷ ︸

newly added edges

≤ xv
dv
bv, xv ≥ 0 (7.6d)

x0
ijβ

1
ij = 0, x1

ijβ
0
ij = 0, β1

ij = 1− β0
ij , 0 ≤ β0

ij ≤ 1 (7.6e)
∑

(i,j)∈F
[(i, j) ∈ E ]β0

ij + [(i, j) /∈ E ]β1
ij ≤ B (7.6f)

We can recover π∗(z)v from x∗v via π∗(z)v = (1− kvd−1
v )x∗v, with kv = |{x∗0vj | x∗0vj > 0}|.

Key idea and insights. Eq. 7.6b and Eq. 7.6c correspond to the LP of the un-
constrained MDP. Intuitively, the variable xv maps to the PageRank score of node v,
and from the variables x0

ij/x
1
ij we can recover the optimal policy: if the variable x0

ij

(respectively x1
ij) is non-zero then in the optimal policy the fragile edge (i, j) is turned off
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(respectively on). Since there exists a deterministic optimal policy, only one of them is
non-zero but never both. Eq. 7.6d corresponds to the local budget. Remarkably, despite
the variables x0

ij/x
1
ij not being integral, since they share the factor xid

−1
i from Eq. 7.6c

we can exactly count the number of edges that are turned off or on using only linear
constraints. Eq. 7.6e and Eq. 7.6f enforce the global budget. From Eq. 7.6e we have
that whenever x0

ij is non-zero it follows that β1
ij = 0 and β0

ij = 1 since that is the only

configuration that satisfies the constraints (similarly for x1
ij). Intuitively, this effectively

makes the β0
ij/β

1
ij variables “counters” and we can utilize them in Eq. 7.6f to enforce the

total number of perturbed edges to not exceed B. See detailed proof in Sec. F.3.
(c) Efficient Reformulation Linearization Technique (RLT). The quadratic

constraints in our QCLP make the problem non-convex and difficult to solve. We relax
the problem using the Reformulation Linearization Technique (RLT) [206] which gives
us an upper bound on the objective. The alternative SDP-relaxation [78] based on
semidefinite programming is not suitable for our problem since the constraints are
trivially satisfied (see Sec. F.4 for details). While in general, the RLT introduces many
new variables (replacing each product term mimj with a variable Mij) along with multiple
new linear inequality constraints, it turns out that in our case the solution is compact:

Proposition 7.3. Given fixed upper bounds xv for xv and using the RLT relaxation, the
quadratic constraints in Eq. 7.6e and Eq. 7.6f transform into the single linear constraint

∑
(i,j)∈F

[(i, j) ∈ E ]x0
ijdi(xi)

−1 + [(i, j) /∈ E ]x1
ijdi(xi)

−1 ≤ B (7.7)

Proof provided in Sec. F.3. By replacing Eq. 7.6e and Eq. 7.6f with Eq. 7.7 in Proposi-
tion 7.2, we obtain a linear program which can be efficiently solved. Remarkably, we only
have xv, x

0
ij , x

1
ij as decision variables since we were able to eliminate all other variables.

The solution is an upper bound on the solution for Problem 7.2 and a lower bound on the
solution for Problem 7.1. The final relaxed QCLP can also be interpreted as a constrained
MPD with a single additional constraint (Eq. 7.7) which admits a possibly randomized
optimal policy with at most one randomized state [207].

Certificate for local and global budget. To solve the relaxed QCLP and compute
the final certificate we need to provide the upper bounds xv for the constraint in Eq. 7.7.
Since the quality of the RLT relaxation depends on the tightness of these upper bounds, we
have to carefully select them. We provide here one solution (see Sec. F.6 in the appendix
for a faster to compute, but less tight, alternative): Given an instance of Problem 7.2, we
can set the reward to r = ev and invoke Algorithm 7.1, which is highly efficient, using
the same fragile set and the same local budget. Since this explicitly maximizes xv, the
objective value of the problem is guaranteed to give a valid upper bound xv. Invoking
this procedure for every node, leads to the required upper bounds.

Now, to compute the certificate with local and global budget for a target node t, we solve
the relaxed problem for all c 6= yt, leading to objective function values Lct ≥ −m∗yt,c(t)
(minus due to the change from min to max). Thus, L∗,t = minc6=yt −Lct is a lower bound
on the worst-case margin m∗yt,∗(t). If the lower bound is positive then node t is guaranteed
to be certifiably robust – there exists no adversarial attack (among all graphs in QF)
that can change the prediction for node t.
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7 Certifiable Robustness to Graph Perturbations

For our policy iteration approach if m∗yt,∗(t) < 0 we are guaranteed to have found
an adversarial example since the certificate is exact, i.e. we also have a non-robustness
certificate. However, in this case, if the lower bound L∗,t is negative we do not necessarily
have an adversarial example. Instead, we can perturb the graph with the optimal
configuration of fragile edges for the relaxed problem, and inspect whether the predictions
change. See Fig. 7.1 for an overview of both approaches.

7.5 Robust Training for Graph Neural Networks

In Sec. 7.4 we introduced two methods to efficiently compute certificates given a trained
π-PPNP model. We now show that these can naturally be used to go one step further
– to improve the robustness of the model. The main idea is to utilize the worst-case
margin during training to encourage the model to learn more robust weights. Optimizing
some robust loss Lθ with respect to the model parameters θ (e.g. for π-PNPP θ are the
neural network parameters) that depends on the worst-case margin m∗yv ,∗(v) is generally
hard since it involves an inner optimization problem, namely finding the worst-case
margin. This prevents us to easily take the gradient of m∗yv ,c(v) (and, thus, Lθ) w.r.t. the
parameters θ. Previous approaches tackle this challenge by using the dual [182].

Inspecting our problem, however, we see that we can directly compute the gradient.
Since m∗yv ,c(v) (respectively the corresponding lower bound) is a linear function of H =
fθ(X) and πG, and furthermore the admissible set QF over which we are optimizing is
compact, it follows from Danskin’s theorem [208] that we can simply compute the gradient

of the loss at the optimal point. We have
∂m∗yv,c(v)

∂Hi,yv
= π∗(ev)i and

∂m∗yv,c(v)

∂Hi,c
= −π∗(ev)i,

i.e. the gradient equals to the optimal (±) PageRank scores computed by our certificate.

To improve robustness Wong and Kolter [182] proposed to optimize the robust cross-
entropy loss: LRCE = LCE(y∗v ,−m∗yv(v)), where LCE is the standard cross-entropy loss
operating on the logits, and m∗yv(v) is a vector such that at index c we have m∗yv ,c(v).
Previous work has shown that if the model is overconfident there is a potential issue
when using LRCE since it encourages high certainty under the worst-case perturbations
[123]. Therefore, we also study the alternative robust hinge loss. Since the attacker wants
to minimize the worst-case margin m∗yt,∗(t) (or its lower bound), a straightforward idea
is to try to maximize it during training. To achieve this we add a hinge loss penalty term
to the standard cross-entropy loss. Specifically:

LCEM =
∑

v∈VL

[
LCE(y∗v ,H

diff
v,: ) +

∑
c∈C,c 6=y∗v

max(0,M −m∗y∗v ,c(v))

]
(7.8)

The second term for a single node v is positive if m∗yv ,c(v) < M and zero otherwise –
the node v is certifiably robust with a margin of at least M . Effectively, if all training
nodes are robust, the second term becomes zero, thus, reducing LCEM to the standard
cross-entropy loss with robustness guarantees. Note again that we can easily compute
the gradient of these losses w.r.t. the (neural network) parameters θ.
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Figure 7.3: Increasing local attack strength s (local budget bv = max(dv − 11 + s, 0)) decreases
ratio of certified nodes. (a) The graph is more robust to removing edges, π-PPNP is most robust
overall. (b) Lowering the damping factor α improves the robustness. (c) Nodes with higher
neighborhood purity are more robust.

7.6 Experimental Results

Setup. We focus on evaluating the robustness of π-PPNP and label/feature propagation
using our two certification methods. We demonstrate our claims on two publicly available
datasets: Cora-ML (N = 2, 995, |E| = 8, 416, D = 2, 879,K = 7) [2, 107] and Citeseer
(N = 3, 312, |E| = 4, 715, D = 3, 703,K = 6) [29] with further experiments on Pubmed
(N = 19, 717, |E| = 44, 324, D = 500,K = 3) [29] in the appendix. We configure π-PPNP
with one hidden layer of size 64 and set α = 0.85. We select 20 nodes per class for the
train/validation set and use the rest for the test set. We compute the certificates w.r.t. the
predictions, i.e. we set yt in m∗yt,∗(t) to the predicted class for node t on the clean graph.
See Sec. F.2 for further experiments and Sec. F.7 for more details. Note, we do not need
to compare to any previously introduced adversarial attacks on graphs [121–123], since
by the definition of a certificate for a certifiably robust node w.r.t. a given admissible set
QF there exist no successful attack within that set.

We construct several different configurations of fixed and fragile edges to gain a
better understanding of the robustness of the methods to different kind of adversarial
perturbations. Namely, “both” refers to the scenario where F = V ×V , i.e. the attacker is
allowed to add or remove any edge in the graph, while “rem.” refers to the scenario where
F = E for a given graph G = (V, E), i.e. the attacker can only remove existing edges. In
addition, for all scenarios we specify the fixed set as Ef = Emst, where (i, j) ∈ Emst if (i, j)
belongs to the minimum spanning tree (MST) on the graph G2.

Robustness certificates: Local budget only. We investigate the robustness of
different graphs and semi-supervised node classification methods when the attacker has
only local budget constraints. We set the local budget bv = max(dv − 11 + s, 0) relative
to the degree dv of node v in the clean graph, and we vary the local attack strength s
with lower s leading to a more restrictive budget. Such relative budget is justified since
higher degree nodes tend to be more robust in general [121, 143]. We then apply our
policy iteration algorithm to compute the (exact) worst-case margin for each node.

2Fixing the MST ensures that every node is reachable by every other node for any policy. This simplifies
our earlier exposition regarding the MDPs and can be relaxed to e.g. reachable at the optimal policy.
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Figure 7.4: (a) The global budget can significantly restrict the attacker compared to having only
local constraints. (b) Even for large fragile sets Algorithm 7.1 only needs few iterations to find
the optimal PageRank. (c) Our robust training successfully increases the percentage of certifiably
robust nodes. The increase is largest for the local attack strength that we used during training
(s = 10, dashed line).

In Fig. 7.3a we see that the number of certifiably robust nodes when the attacker can
only remove edges is significantly higher compared to when they can also add edges
which is consistent with previous work on adversarial attacks [121]. As expected, the
share of robust nodes decreases with higher budget, and π-PPNP is significantly more
robust than label propagation since besides the graph it also takes advantage of the node
attributes. Feature propagation has similar performance (F1 score) but it is less robust.
Note that since our certificate is exact, the remaining nodes are certifiably non-robust!
In Sec. F.2 in the appendix we also investigate certifiable accuracy – the ratio of nodes
that are both certifiably robust and at the same time have a correct prediction. We find
that the certifiable accuracy is relatively close to the clean accuracy, and it decreases
gracefully as we in increase the budget.

Analyzing influence on robustness. In Fig. 7.3b we see that decreasing the damping
factor α is an effective strategy to significantly increase the robustness with no noticeable
loss in accuracy (at most 0.5% for any α, not shown). Thus, α provides a useful trade-off
between robustness and the size of the effective neighborhood: higher α implies higher
PageRank scores (i.e. higher influence) for the neighbors. In general we recommend to
set the value as low as the accuracy allows. In Fig. 7.3c we investigate what contributes
to certain nodes being more robust than others. We see that neighborhood purity – the
share of nodes with the same class in a respective node’s two-hop neighborhood – plays
an important role. High purity leads to high worst-case margin, which translates to
improved certifiable robustness.

Robustness certificates: Local and global budget. We demonstrate our second
approach based on the relaxed QCLP problem by analyzing the robustness as we increase
the global budget. We set F = E , i.e. the attacker can only remove edges, and vary the
local attack strength s corresponding to local budget bv = max(dv − 11 + s, 0). We see
in Fig. 7.4a that by additionally enforcing a global budget we can significantly restrict
the success of the attacker compared to having only a local budget (dashed lines). The
global constraint increases the number of robust nodes, validating our approach.
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7.7 Conclusion

Efficiency. Fig. 7.4b demonstrates the efficiency of our approach: even for fragile sets
as large as 104, Algorithm 7.1 finds the optimal solution in just a few iterations. Since
each iteration is itself efficient by utilizing sparse matrix operations, the overall wall-clock
runtime (shown as text annotation) is on the order of few seconds. In Sec. F.2 in the
appendix, we further investigate the runtime as we increase the number of nodes in the
graph, as well as the runtime of our relaxed QCLP.

Robust training. While not being our core focus, we investigate whether robust
training improves the certifiable robustness of GNNs. We set the fragile set F = E and
vary the local budget. The vertical line on Fig. 7.4c indicates the local budget used to
train the robust models with losses LRCE and LCEM. We see that both of our approaches
are able to improve the percent of certifiably robust nodes, with the largest improvement
(around 13% increase) for the local attack strength we trained on (s = 10). Furthermore,
the F1 scores on the test split for Citeseer are as follows: 0.70 for LCE, 0.72 for LRCE,
and 0.73 for LCEM, i.e. the robust training besides improving the ratio of certified nodes,
it also improves the clean predictive accuracy of the model. LRCE has a higher certifiable
robustness, but LCEM has a higher F1 score. There is room for improvement in how
we approach the robust training: e.g. similar to Zügner and Günnemann [143] we can
optimize over the worst-case margin for the unlabeled in addition to the labeled nodes.
We leave this as a future research direction.

7.7 Conclusion

We derive the first (non-)robustness certificate for graph neural networks regarding
perturbations of the graph structure, and the first certificate overall for label/feature
propagation. Our certificates are flexible w.r.t. the threat model, can handle both local
(per node) and global budgets, and can be efficiently computed. We also propose a
robust training procedure that increases the number of certifiably robust nodes while
improving the predictive accuracy. One limitation of this certificate is that we do not
consider perturbations of the node features and the graph structure jointly. We tackle
this limitation (among other things) in Chapter 8.

7.8 Retrospective

Our certificate is “constructive” in the sense that as the solution of Problem 7.1 we
obtain not only the worst-case margin but also the set of adversarial edges that achieve
it. In retrospective, we can utilize these edges for an adversarial attack. In particular, we
could use them to estimate the gap between the certifiably robust and the certifiably
non-robust nodes under the global budget constraint by simply testing whether the
corresponding perturbed graphs lead to a misclassification when m∗yt,∗(t) < 0.3 This gap
is also indicative of the tightness of our lower bound. Moreover, it is likely that the
adversarial edges are transferable and can be used to attack other models.

3The gap for local budget only is always zero since the certificate is exact.
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7 Certifiable Robustness to Graph Perturbations

For problems with binary classes we can extend our approach to derive a non-targeted
global attack for label propagation. That is, the goal is to find a single perturbed graph
(single set of adversarial edges) that leads to as many misclassified nodes as possible. This
is in contrast to the current certificate where the adversarial edges can differ for different
target nodes. For a global attack on the GCN model see Zügner and Günnemann [123].

Let y = {0, 1}N be the vector of ground-truth binary labels. We configure the unnor-
malized teleport vector z̃ such that z̃i = yi if node i is in the training set and z̃i = 0.5
otherwise. The normalized z is obtained by setting zi = z̃i/c, where c =

∑
i z̃i is the

normalization constant. Let π be the corresponding PageRank vector, i.e. the solution
to (I − αP ) · π = (1 − α)z. Then, we predict class 1 for node i if π̃i > 0 and class 0
otherwise, where π̃i = πi · c− 0.5. This prediction is equivalent to Label Propagation [38],
and

∑
i I[ỹiπ̃i > 0] equals the number of correctly classified nodes where ỹi = yi − 0.5.

Therefore, minG̃∈QF ỹ
T π̃G̃ is a good proxy for minimizing the accuracy. We can directly

apply our proposed algorithms to solve this problem since it boils down to minimizing a
linear function of PageRank.

A recent preprint [209] studies how different adversarial immunization strategies affect
the certifiable robustness of π-PPNP. Their preliminary results show that immunizing
edges based on betweenness centrality is the strongest baseline compared to cosine
similarity between attributes, random choice, and bridgeness.
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8 Efficient Robustness Certificates for
Discrete Data

Figure 8.1: The smoothed classifier predicts the majority under random perturbations (left,
colors indicate labels). The majority vote changes slowly in a ball around x. For binary data the
randomization scheme φ flips zeros with probability p+ and ones with p− (top right). To derive
the certificate we partition the input space into regions of constant likelihood ratio (bottom right).

8.1 Introduction

Even a seemingly accurate classifier is of limited use if slight perturbations of the
input can lead to misclassification. As we show in Chapter 7 certificates can provide
provable guarantees that no perturbation regarding a specific threat model will change
the prediction of an instance. However, obtaining meaningful robustness guarantees is
challenging since it often involves solving a difficult optimization problem.

An overwhelming majority of certificates in the literature can handle only continuous
data. The few approaches that tackle discrete data either work for a small class of models,
or stay general while sacrificing efficiency or tightness. In this chapter we propose a
general certificate that can be used for any discrete data including sequences (text, audio),
discretized images, and molecules. In line with the rest of the thesis we highlight its use
for graphs – a particularly important instance of discrete data.

Specifically, we focus on Graph Neural Networks since they are a fundamental building
block for many machine learning models today, even though they suffer from poor
adversarial robustness [30, 210, 211]. Even in scenarios where adversaries are unlikely,
understanding and improving their robustness to worst-case noise is important, especially
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8 Efficient Robustness Certificates for Discrete Data

in safety-critical applications. While some (heuristic) defenses exist [212, 213], we should
never assume that the attackers will not be able to break them in the future [214].
Robustness certificates, on the other hand, are by definition unbreakable. Given a clean
input x and a perturbation set Br(x) encoding the threat model (e.g. all inputs within
an lp-ball of radius r centered at x) the goal is to verify that the prediction for x and
∀x̃ ∈ Br(x) is the same. If this holds, we say that x is certifiably robust w.r.t. Br(x).

Existing certificates for graphs, including our certificate from Chapter 7, handle either
attribute perturbations [215] or structure perturbations [216], but not both, and only work
for a small class of models. Furthermore, they are valid only for node-level classification,
and extending these techniques to new models and threat scenarios is not straightforward.
The approach that we develop in this chapter handles both types of perturbations and
applies to any GNN. This includes, for the first time, graph-level classification models for
which there are no existing certificates.

We utilize randomized smoothing [217] – a powerful general technique for building
certifiably robust models. Inspired by connections to differential privacy [218], this
method boils down to randomly perturbing the input and reporting the output/class
corresponding to the “majority vote” on the randomized samples. Given any function f(·),
e.g. any GNN, we can build a “smoothed” function g(·) that produces a similar output
to f (e.g. comparable accuracy if f is a classifier) and for which we can easily provide
(probabilistic) robustness guarantees. Importantly, to compute the certificate we need to
consider only the output of f for each sample. This is precisely what makes it particularly
appealing for certifying GNNs since it allows us to sidestep a complex analysis of the
message-passing dynamics and the non-linear interactions between the nodes. However,
randomized smoothing has some limitations which we discuss in Sec. G.10.

The bulk of the work on randomized smoothing [217–219] focuses on continuous data
and guarantees in terms of l1, l2 or l∞ balls, which is not suited for the discrete data
domain. Only a few approaches can tackle discrete data with l0-ball guarantees [220–
222]. None of these approaches attempt to certify discrete graph data, and there are
several major challenges we need to overcome to successfully do so. Jia et al. [223] apply
randomized smoothing to only certify the robustness of community detection against
structural perturbations. Their certificate also suffers from the same limitations.

The biggest limitation of all previous certificates for discrete data is that they rely
on randomization schemes that do not take sparsity into account. A common scheme is
to randomly flip bits in the input with a given probability p. This is clearly not feasible
for graph data due to the sparsity of real-world graphs. Even for a small flip probability
(e.g. p = 0.01) applying this scheme would introduce too many random edges in the
graph, which means that the graph structure is completely destroyed by the random
noise, rendering the resulting smoothed classifier useless.1 On the other hand, p has to
be sufficiently high to obtain any guarantees, since higher p’s lead to higher certified
radii. Similarly, the node attributes are also often sparse vectors, e.g. corresponding to

1For example, the Cora-ML dataset has n = 2810 nodes, so random sampling introduces pn2 =
0.01 · 28102 = 78961 random edges in expectation, i.e. around 28 random edges per node, which is
significantly higher than the average node degree of 6.
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bag-of-words representations of text, and suffer from the same issue. None of the existing
discrete certificates are sparsity-aware. The core idea of our approach is to incorporate
sparsity in the randomization scheme by perturbing non-zeros/edges and zeros/non-edges
separately in a way that preservers the structure of the data.

Besides the common issue with sparsity, Lee et al. [220]’s and Jia et al. [223]’s certificates
are tight but computationally expensive, while Levine and Feizi [221] and Dvijotham
et al. [222]’s certificates sacrifice tightness to obtain improved runtime. We overcome
these limitations and propose a certificate which is at the same time tight, efficient to
compute, and sparsity-aware. In summary, we make contributions on two fronts:

• GNN Certificates: Our certificates handle both structure and attribute pertur-
bations and can be applied to any GNN, including graph classification models.

• Discrete Certificates: (i) We generalize previous work by explicitly accounting for
sparsity; (ii) We obtain tight certificates with a dramatically reduced computational
complexity, independent of the input size.

The key observation behind these contributions is that we can partition the space of
binary vectors into a small number of regions of constant likelihood ratio. The certificate
is obtained by traversing these regions and keeping track of the PMF w.r.t. the clean
input and the adversarial example. For example, for binary data the number of regions in
our partitioning equals the size of the (certified) radius, i.e. grows linearly, and does not
depend on the input size. This is in stark contrast to previous work where the number
of regions is quadratic w.r.t. the input size. Considering that the adjacency matrix of a
graph with n nodes has n2 entries, this reduction in complexity from up to (n2)2 = n4

to r regions (where r is the radius) is necessary for feasibility. Furthermore, by drawing
connections between our randomization and the Poisson-Binomial distribution for binary
data (product of Multinomials for discrete data) we develop an algorithm to efficiently
traverse and compute these regions.

8.2 Background and Preliminaries

Let x ∈ X = {0, 1}d be an observed binary vector. For simplicity we keep the main
exposition w.r.t. binary data and we discuss the general discrete case in Sec. 8.5. In
Sec. 8.6 we show how to instantiate our framework for GNNs, where x corresponds to
the (flattened) adjacency and/or attribute matrix of a graph.

Given a classifier g(·) the goal of the attacker is to find an adversarial example x̃ ∈ B(x)
in the perturbation set such that x̃ is misclassified2, i.e. g(x) 6= g(x̃), corresponding to an
evasion attack. Our goal is to verify whether such an adversarial example exists, i.e. verify

whether g(x)
?
= g(x̃) for all x̃ ∈ B(x). We defer all proofs to the appendix (Sec. G.1).

2Or classified as some chosen target class other than g(x).
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8 Efficient Robustness Certificates for Discrete Data

8.2.1 Randomized Smoothing Framework

Let f : X → Y denote a (deterministic or random) function corresponding to a base
classifier which takes a vector x ∈ X as input and outputs a single class f(x) = y ∈ Y
with Y = {1, . . . , C}. We construct a smoothed classifier g : X → Y from f as follows:

g(x) = arg max
y∈Y

Pr(f(φ(x)) = y) (8.1)

where φ is a randomization scheme to be specified (e.g. adding Gaussian noise to x),
which assigns probability mass Pr(φ(x) = z) for each randomized outcome z ∈ X . In
other words, g(x) returns the most likely class (the majority vote) if we first randomly
perturb the input x using φ and then classify the resulting vector φ(x) with the base
classifier f . To simplify notation let py(x) = Pr(f(φ(x)) = y) and y∗ = arg maxy∈Y py(x).
Let p∗ = py∗(x) be the probability of the most likely class. Following Lee et al. [220] we
define:

ρx,x̃(p, y) = min
h∈H:

Pr(h(φ(x))=y)=p

Pr(h(φ(x̃)) = y) (8.2)

where x̃ ∈ X is a given neighboring point, and H is the set of measurable classifiers with
respect to φ. We have that ρx,x̃(p, y) ≤ Pr(f(φ(x̃)) = y) is a tight lower bound on the
probability that a neighboring point x̃ is assigned to class y using the smoothed classifier
g. The bound is tight in the sense that the base classifier f satisfies the constraint. For an
input x and a perturbation set B(x) specifying a threat model (e.g. l0-ball of radius r) if

min
x̃∈B(x)

ρx,x̃(p∗, y∗) > 0.5 (8.3)

then we can guarantee that Pr(f(φ(x̃)) = y∗) > 0.5, for all x̃ ∈ B(x). This implies that
g(x) = g(x̃) = y∗ for any input within the ball, i.e. x is certifiably robust.

Computing py(x) exactly is difficult, so similar to previous work [217] we compute a
lower bound py(x) based on the Clopper-Pearson Bernoulli confidence interval [224] with

confidence level α using Monte Carlo samples from φ(·). Since ρx,x̃(p) is an increasing
function of p [220], a lower bound entails a valid certificate. The certificate is probabilistic
and holds with probability 1− α. Eq. 8.3 is tight for two classes and provides a sufficient
condition to guarantee robustness for more classes (|Y| > 2). In Sec. G.2 we show how to
obtain better guarantees for multi-class classification by computing confidence intervals
that hold simultaneously for all classes using Bonferroni correction.

8.2.2 Solving the Optimization Problem in Eq. 8.2

Assume we can partition X =
⋃I
i Ri,Ri ∩Rj = ∅ into regions Ri of constant likelihood

ratio, such that for every z ∈ Ri it holds Pr(φ(x) = z)/Pr(φ(x̃) = z) = ci for some
constant ci. Then, Eq. 8.2 is equivalent to the following Linear Program (LP) [220]:

min
h
hT r̃ s.t. hTr = p, 0 ≤ h ≤ 1 (8.4)
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where h ∈ [0, 1]I is the vector we are optimizing over corresponding to the classifier h,
and r is a vector where ri = Pr(φ(x) ∈ Ri) for each region, and similarly for r̃i. The
exact solution to this LP can be easily obtained with a greedy algorithm: first sort the
regions such that c1 ≥ c2 ≥ · · · ≥ cI , then iteratively assign hi = 1 for all regions Ri until
the budget constraint is met (except for the final region which we “consume” partially).
See Sec. G.1 for more details. Therefore, how efficiently we can compute the certificate
depends on the number of regions and how difficult it is to compute Pr(φ(x) ∈ Ri) for a
given Ri and x. This is why reducing the number of regions is crucial.

We show that the optimization problem for the multi-class certificate is also a simple
LP and can be exactly solved with a similar greedy algorithm (Sec. G.2). Another
interpretation of Eq. 8.2 is that it corresponds to likelihood ratio testing with significance
level p between two different hypotheses: Pr(φ(x) = z) vs. Pr(φ(x̃) = z) [225]. We show
in Sec. 8.4.3 that given our choice of randomization φ, the problem is equivalent to
hypothesis testing of two Poisson-Binomial distributions with different parameters.

8.3 Threat Model

We assume that an adversary can perturb x by flipping some of its bits. We define the
ball centered at the clean input x:

Bra,rd(x) =

{
x̃ : x̃ ∈ X ,

d∑

i=1

I(x̃i = xi − 1) ≤ rd,
d∑

i=1

I(x̃i = xi + 1) ≤ ra
}

(8.5)

which contains all binary vectors x̃ which can be obtained from x by deleting at most rd
bits (flipping from 1 to 0) and adding at most ra bits (flipping from 0 to 1). Analogously,
we define the sphere Sra,rd(x) where the inequalities in Eq. 8.5 are replaced by equalities.
The minimum over Bra,rd(x) in Eq. 8.3 is always attained at some x̃ ∈ Sra,rd(x).

Intuitively, the radii ra and rd control the global budget of the attacker, i.e. the overall
number of additions or deletions they can make. This is in contrast to other threat models
for binary/graph data which do not distinguish between addition and deletion. Threat
models for graphs often specify additional local budget constraints, e.g. at most a given
number of perturbations per node. We focus on global constraints which correspond
to more powerful attacks. We can also provide l0-ball guarantees, i.e. to certify w.r.t.
‖x− x̃‖0 ≤ r we can simply certify w.r.t. all balls Bra,rd(x) where ra + rd = r.

8.4 Sparsity-aware Certificate

8.4.1 Data-dependent Sparsity-aware Randomization

We define the noise distribution with two parameters p−, p+ ∈ [0, 1] independently per
dimension i:

Pr(φ(x)i 6= xi) = pxi− p
(1−xi)
+ (8.6)

The randomization scheme φ flips the bit xi = 1 to 0 (e.g. deletes an existing edge)
with probability p−, and similarly flips the bit xi = 0 to 1 (e.g. adds a new edge) with
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8 Efficient Robustness Certificates for Discrete Data

Figure 8.2: The vector x̃ is obtained from x by adding exactly ra bits and deleting exactly
rd bits. Any vector z in the region Rra,rd

q is obtained by flipping q bits in xC and not flipping
(retaining) q bits in x̃C . Solid boxes denote ones and empty boxes denote zeros.

probability p+. This allows us to control the amount of smoothing separately for the ones
and zeros (edges and non-edges). In other words, the noise distribution is data-dependent,
which is in contrast to all previous randomized smoothing certificates. Moreover, we
say that φ is sparsity-aware since often, for real-world data, the number of ones in x is
significantly smaller than the number of zeros, i.e. ‖x‖0 � d. As we will show in Sec. 8.8.2
sparsity-awareness is crucial for obtaining non-trivial certificates. The randomization
scheme defined in Lee et al. [220] is a special case which flips the i-th bit xi with a single
probability p = p− = p+ regardless of its value. For the general discrete case see Sec. 8.5.

8.4.2 Regions of Constant Likelihood Ratio

We can partition X into a small number of regions of constant likelihood which enables
us to use the greedy algorithm for solving Eq. 8.2 specified in Sec. 8.2.2 to obtain an
efficient certificate. Given any x and x̃ ∈ Sra,rd(x), let C = {i : xi 6= x̃i} be the set of
dimensions where x and x̃ disagree, and let C̃ = {1, . . . , d} \ C be its complement. Let
xC , x̃C ∈ {0, 1}|C| denote the vectors x, x̃ considering only the dimensions specified in C.

We define the region Rra,rdq containing all binary vectors z which can be obtained by
flipping exactly q bits in xC and which have any configuration of ones and zeros in xC̃ :

Rra,rdq = {z ∈ X : ‖xC − zC‖0 = q, ‖1− xC‖0 = ra, ‖xC‖0 = rd}

The region Rra,rdq contains at the same time all vectors z which can be obtained by
retaining (not flipping) q bits in x̃C , i.e. ‖x̃C − zC‖0 = rd + ra − q for all z ∈ Rra,rdq . To
see this, note that from the definition of Sra,rd(x), x̃C is the complement to xC , and we
can obtain x̃C from xC by flipping exactly rd bits from 1 to 0, and flipping exactly ra
bits from 0 to 1 (see Fig. 8.2). We can partition X in exactly ra + rd + 1 such regions.

Proposition 8.1. The set {Rra,rd0 , . . . ,Rra,rdra+rd
} partitions the entire space of binary

vectors X into disjoint regions, i.e. X =
⋃q=ra+rd
q=0 Rra,rdq and Rra,rdi ∩Rra,rdj = ∅, ∀i 6= j.

Since the smoothing is independent per dimension we can restrict our attention only
to those dimensions where x and x̃ disagree, otherwise Pr(φ(x)i 6= xi) = Pr(φ(x̃)i 6= x̃i)
for i ∈ C̃ which does not change the ratio cq for any region Rra,rdq . This implies that
the number of regions is independent of the dimension d. Furthermore, by definition
|C| = ra + rd, thus we can make between 0 and ra + rd flips in total counting only w.r.t.
the dimensions in C, and any given z vector belongs only to a single region.
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8.4 Sparsity-aware Certificate

8.4.3 Poisson-Binomial View of the Regions

Before we state further results, it is helpful to consider a different view of the randomization
scheme φ and how it influences the regions. The scheme φ(·) is equivalent to first drawing

a noise sample εi ∼ Ber(p = pxi− p
(1−xi)
+ ) from a Bernoulli distribution with probability

p = p− if xi = 1 or p = p+ otherwise, and setting φ(x)i = xi ⊕ εi, where ⊕ is the XOR.
φ is data-dependent and sparsity-aware since we can specify e.g. a relatively large p− for
the ones and relatively small p+ for the zeros to avoid introducing too many noisy bits.

Proposition 8.2. Given any x, x̃ ∈ Sra,rd(x) and any region Rra,rdq , the probability φ(x)
to land in the region is Pr(φ(x) ∈ Rra,rdq ) = Pr(Q = q) where Q ∼ PB([p+, ra], [p−, rd]) =
PB(p+, . . . , p+︸ ︷︷ ︸

ra times

, p−, . . . , p−︸ ︷︷ ︸
rd times

) is a Poisson-Binomial random variable on {0, . . . , ra + rd}.

Intuitively, all vectors z ∈ Rra,rdq correspond to observing q “successes” where a “success”
is interpreted as successfully flipping the bit of xC , which happens with probability p−
or p+. At the same time, “success” is interpreted as retaining (not flipping) the bit of
x̃C with probability (1− p−) or (1− p+). The probability distribution for the number
of successes is a sum of d independent, but not identical (since pi = p+ or pj = p−)
Bernoulli random variables which is a Poisson-Binomial random variable.

Since εi are independent Pr(φ(x)=z) =
∏
i∈C̃ Pr(φ(x)i=zi)

∏
j∈C Pr(φ(x)j =zj). By

definition Rra,rdq contains all vectors z that have any configuration of ones and zeros
in C̃ so when we sum over all z ∈ Rra,rdq the first product equals 1. Therefore, we can
equivalently consider a sum of only |C| non-identical Bernoulli random variables which is
a Poisson-Binomial random variable, i.e. Pr(φ(x) ∈ Rra,rdq ) = PB([p+, ra], [p−, rd]) is a
|C|-dimensional Poisson-Binomial distribution with two groups of distinct probabilities.

Alternatively, Eq. 8.2 can be seen as performing likelihood ratio testing where the two
hypotheses correspond to two Poisson-Binomial distributions with different parameters,
PB([p+, ra], [p−, rd]) vs. PB([1− p−, ra], [1− p+, rd]) relating to x and x̃ respectively.

For the special case p+ = p− = p, the Poisson-Binomial distribution reduces to a
standard Binomial distribution, i.e. Q ∼ Bin(p, ra + rd). Analogously, for discrete data
the probability for φ(x) to land in the respective regions is a Multinomial distribution
(see Sec. 8.5 and Sec. G.11). We obtain the same certificate as in Lee et al. [220] for a
significantly reduced cost, highlighting that the improved region partitioning is crucial.

Proposition 8.3. For all z ∈ Rra,rdq , the likelihood ratio is

ηra,rdq =
Pr(φ(x) = z)

Pr(φ(x̃) = z)
=

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra

and is constant in the region Rra,rdq . Moreover, for a fixed ra and rd, the ratio ηra,rdq is a
monotonically decreasing function of q if (p− + p+) < 1, constant if (p− + p+) = 1, or
monotonically increasing function of q if (p− + p+) > 1.

Linear number of regions. With Proposition 8.1 and Proposition 8.3 we can partition
X into exactly (ra+ rd+ 1) number of regions with constant likelihood ratio. The number
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8 Efficient Robustness Certificates for Discrete Data

of regions grows linearly with the radii. Crucially, this implies that the number of regions
is independent of the input size d. In the special case when p− = 0 and p+ > 0 (or
similarly p− > 0 and p+ = 0) there are only three non-empty regions (see Sec. G.3).

Data (size) independence. From Proposition 8.2 and Proposition 8.3 it follows that
the value of ρx,x̃(p, y), and hence the certificate, is exactly the same for any p, y,x and
x̃ ∈ Sra,rd(x). In other words, as long as x and x̃ differ in exactly rd zeros and ra ones,
the solution to Eq. 8.3 is the same. Moreover, the certificate does not depend on the
configuration of ones and zeros in the dimensions C̃ where x and x̃ agree since neither
the probability Pr(φ(x) ∈ Rra,rdq ) nor the ratio ηra,rdq depend on the values of xi and x̃i
for i ∈ C̃. Altogether this means that w.l.o.g. we can compute the certificate based on the
following two canonical vectors: xca = (1, . . . , 1, 0, . . . , 0) and x̃ca = (0, . . . , 0, 1, . . . , 1),
where ‖xca‖0 = rd and ‖x̃ca‖0 = ra. If several inputs have the same py(x), which holds
in practice, we only need to compute the certificate once to certify all of them.

No sorting. Since ηra,rdq is monotonic in q we do not need to construct all regions
in advance and afterwards sort them in a decreasing order. We can completely avoid
the sorting required for the greedy algorithm outlined in Sec. 8.2.2 and directly visit the
regions one by one, increasing q (or decreasing when p+ + p− > 1) each time until we
reach py(x). For more details and pseudo-code see Sec. G.4.

8.4.4 Efficiently Computing the Regions

Since Pr(φ(x) ∈ Rra,rdq ) = PB(q; [p+, ra], [p−, rd]) we need to compute the PMF of a
Poisson-Binomial distribution. If done naively we need to sum r!/[r!(r− q)!] terms where
r = ra + rd. Fortunately, there is a recursive formula that requires only O(qr) operations
[226]. Since we only have two distinct flip probabilities we can further simplify to obtain:

Tra,rd(i) = ra · (p+/(1− p+))i + rd · (p−(1− p−))i

Rra,rd(q) =
1

q

q∑

i=1

(−1)i+1 · Tra,rd(i) ·Rra,rd(q − i)

Now PB(q; ·) = Rra,rd(q) · (1− p+)ra · (1− p−)rd . To avoid unnecessary computations we
additionally unroll the recursion with dynamic programming.3 Compared to previous
discrete certificates [220, 221] we do not need to compute Binomial coefficients.

8.5 General Certificate for Discrete Data

Let x ∈ XK = {0, . . . ,K − 1}d be a d-dimensional vector where each xi belongs to one
of K different categories. We define the sparsity-aware randomization scheme φ(·):

Pr(φ(xi) = k) =

{
[ p+k−1 ](xi 6=k)(1− p+)(xi=k), xi = 0

[ p−k−1 ](xi 6=k)(1− p−)(xi=k), xi 6= 0

3For multiple-precision arithmetic we use the gmpy2 library: https://pypi.org/project/gmpy2/. An
alternative approach is to compute the PMF via the Discrete Fourier Transform [227].
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8.6 Instantiating the Certificate for GNNs

That is, we flip zeros with probability p+, and non-zeros with probability p−, uniformly
to any of the other values. For the special case p+ = p− we recover the certificate from
Lee et al. [220], and for K = 2 we recover our certificate for binary data.

As before, we can partition XK into disjoint regions of constant likelihood ratio and
efficiently solve the problem defined in Eq. 8.2. We show that the number of regions
does not depend on the number of discrete categories K or the dimension of the input d.
Specifically, for p+ = p− we have exactly 2r + 1 regions where r is the certified radius,
i.e. ‖x− x̃‖0 = r. For p+ 6= p− the number of regions is upper bounded by (r+ 1)2. Here
the key insight is that again Pr(φ(x)i 6= xi) = Pr(φ(x̃)i 6= x̃i) if xi = x̃i so w.l.o.g. we
can consider only the dimensions where x and x̃ disagree. For a detailed analysis of the
regions and how to efficiently compute them see Sec. G.11 in the appendix.

8.5.1 Comparison with Existing Discrete Certificates

There are up to (d+ 1)2 non-empty regions for the partitioning in Lee et al. [220], i.e.
quadratic w.r.t. input size. Since their certificate is a special case (p+ = p−) our partition-
ing provides a dramatic reduction of complexity. For example, to certify perturbations
to the binary adjacency matrix where d = n2 we have to traverse up to O(n4) regions
which is infeasible even for small graphs. With our certificate we have to examine at
most ra + rd + 1 regions regardless of the graph size. Beyond this, in Sec. 8.8.2 we show
that our sparsity-aware randomization yields a higher certified ratio. Other certificates
for discrete data which are based on f -divergences [222] or randomized ablation [221]
sacrifice tightness to gain computational efficiency and provide looser guarantees.

8.6 Instantiating the Certificate for GNNs

Let G = (V, E) be an attributed graph with n = |V| nodes. We denote with A ∈ {0, 1}n×n
the adjacency matrix and F ∈ {0, 1}n×m the matrix of m-dimensional binary features
for each node. We consider three different scenarios: (i) the adversary can only perturb
the graph structure: x = vec(A), (ii) only the node attributes: x = vec(F ), (iii) or both:
x = [vec(A), vec(F )]. Here vec(·) “flattens” a matrix into a vector, and [·, ·] denotes
concatenation. When the graph is undirected, vec(A) considers only the lower (or upper)-
triangular part of A. The base classifier f(·) can be any GNN. Perturbing a single given
graph can potentially change the predictions for all nodes. To certify a given target node
t we simply focus on its own predictions (its own distribution over node-level classes)
which in general could be computed based on the entire graph. Note, under our threat
model we can apply the perturbation anywhere in the graph/features, e.g. including the
neighbors of node t. Here we focus on node classification, however, our certificate can be
trivially extended to graph-level classification (see Sec. G.8).

Joint certificates. When perturbing both the graph structure and the node attributes,
if we set x = [vec(A), vec(F )] we have to share a single set of radii (ra, rd) and flip
probabilities (p+, p−) for both A and F . However, it may be beneficial to specify different
flip probabilities/radii. To achieve this we first independently calculate the set of regions
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RA = {. . . ,Rr
A
a ,r

A
d

q , . . . } and RF = {. . . ,Rr
F
a ,r

F
d

q , . . . }for x = vec(A) and x = vec(F )
respectively using different (rAa , r

A
d , r

F
a , r

F
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Pr
(
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)
= Pr

(
φ(x) ∈ Rr
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d

q

)
· Pr

(
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F
a ,r
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d

q′
)

The total number of Rq,q′ regions is thus (rAa + rAd + 1)(rFa + rFd + 1). Therefore, we pay
only a small price in terms of complexity for the flexibility of specifying different radii.
The size of the balls we can certify in practice is relatively small, e.g. the four radii are
typically below 100 so the certificate is feasible. Note that this can be trivially extended
to certify arbitrary groupings of x into subspaces with different radii/flip probabilities
per subspace. However, the complexity quickly increases. For more details see Sec. G.5.

8.6.1 Comparison with Existing Certificates for GNNs

There are only few certificates for GNNs: Zügner and Günnemann [215] can only handle
attribute attacks, while Bojchevski and Günnemann [5] and Zügner and Günnemann
[216] only handle graph attacks. All three certificates apply only to node classification
and a small class of models. Since their certificates hold for certain (base) classifiers, e.g.
GCN [19] or PPNP [10], which tend to be less robust than their smoothed counterparts,
we cannot make a fair comparison. Moreover, they rely on local budget constraints (at
most a given number of perturbations per node), and provide looser guarantees when
using global budget only (since e.g. the global budget certificate for PPNP is NP-Hard).
Nonetheless, we compare our certificate with these approaches in the appendix, and
show that it provides comparable or better guarantees (see Sec. G.6). Jia et al. [223]’s
certificate is neither sparsity-aware nor efficient, and does not apply to GNNs.

8.7 Training

Our certificates hold regardless of how the base classifier f is trained. However, in order
to classify the labeled example (x, y) correctly and robustly, g needs to consistently
classify the noisy φ(x) as y. To ensure this, similar to previous work [217], we train the
base classifier with perturbed inputs, that is we apply φ(·) during training which is akin
to data augmentation with noise. We also investigated the approach suggested by Salman
et al. [228], where one directly trains the smoothed classifier g, rather than f . When the
base classifier f is a GNN and the task is node-level classification, unlike Salman et al.
[228] we did not observe performance improvements with this strategy (see Sec. G.7).

Adversarial training. Even though adversarial training [229, 230] is a heuristic
defense adding adversarial examples during training tends to also improve the certifiable
robustness [215, 231]. This has also been demonstrated for smoothed classifiers [228],
especially given access to additional unlabeled data [232]. However, adversarial training
is useful only with a sufficiently powerful attack. For continuous data we can maximize
the loss w.r.t. x via projected gradient descent to find an adversarial example, but this
is not well suited for discrete data [30]. We leave it as future work to develop suitable
techniques for finding adversarial examples of g so we can employ adversarial training.
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8.8 Experimental Evaluation

8.8 Experimental Evaluation

Our goal is to answer the following questions: (i) What are the trade-offs for different
flip probabilities? (ii) What is the benefit of sparsity-awareness? (iii) How robust are
different GNNs for different threat models? (iv) How large is the efficiency gain?

8.8.1 Graph Neural Networks

Setup. We evaluate the certifiable robustness of three GNNs: GCN [19], GAT [233] and
APPNP [10]. We focus on the node classification task and the three scenarios we outlined
in Sec. 8.6. We demonstrate our claims on two datasets: Cora-ML (n = 2995, e = 8416)
and PubMed (n = 19717, e = 44324) [234]. The graphs are sparse, i.e. their number of
edges e� n2. See Sec. A.1 for further details about the data. For all experiments we set
the confidence level α = 0.01 and the number of samples for certification to 106 (105 for
MNIST and ImageNet). For hyperparameters and implementation details see Sec. G.9.

In Fig. 8.3 we show the certified ratio w.r.t. attribute perturbations for GCN on
Cora-ML, i.e. the ratio of nodes which can be certified given the provided radii. The
heatmap shows the trade-offs for certifying addition vs. deletion for p+ = 0.01, p− = 0.6.
Since p− is significantly higher we can certify a larger rd radius. To ensure the model is
robust to a few worst-case deletions, we need to ensure it is robust to many randomly
deleted bits. The contour lines show the radii for which the certified ratio is at least 0.3
(0.5), i.e. at least 30 % (50 %) of all nodes can be certified.

We repeat the experiment and compare the binary-class certificate ρx,x̃ vs. the multi-
class certificate µx,x̃. Fig. 8.4 shows that the multi-class certificate is better, i.e. achieves
a higher certified ratio for the majority of (smaller) radii, while the binary-class certificate
performs better for higher radii. In general, the absolute difference is relatively small,
with the multi-class certificate being better by 0.012 on average across different radii.
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Figure 8.3: Certifying attribute perturba-
tions for GCN on Cora-ML. We show the
ratio of certified nodes (darker cells corre-
spond to higher ratio) for different radii for
p+ = 0.01, p− = 0.6. We also show the contour
lines under which at least 30 % (and 50 %) of
the nodes are certifiably robust.
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Figure 8.4: Binary-class vs. multi-class certifi-
cate comparison. Cells with blue (red) colors
show the radii for which the multi-class (re-
spectively binary-class) certificate obtains a
higher certificated ratio. The darkest red cells
in the corners exceed the color map and have
value of around 0.15. Same setup as in Fig. 8.3.
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Figure 8.5: Trade-offs for different configurations of flip probabilities. We show the x and y-axis
of the heatmap on Fig. 8.3 for different flip probabilities, i.e. ra = 0, rd varies (blue histogram)
and rd = 0, ra varies (orange histogram) respectively.

In Fig. 8.5 we investigate the trade-offs for different degrees of smoothing. The y-axis
shows the ratio of certified nodes. By decreasing the flip probabilities we can certify a
larger portion of nodes but at lower radii, while increasing the probabilities allows for
larger certified radii overall at the price of smaller ratios. This implies that in practice
we can choose a suitable smoothing degree depending on the threat model since the
difference in clean accuracy is at most 2 % for all cases (see Sec. 8.8.1).

In Fig. 8.6 we compare the ratio of certified nodes for different GNNs and threat models.
We can see that when perturbing the attributes (Fig. 8.6a) GAT is more robust than
GCN and APPNP. On the other hand when perturbing the graph structure (Fig. 8.6b)
the order is inverted, now APPNP is more robust than GCN and GAT. This highlights
that different models have different robustness trade-offs. Furthermore, certifying the
attributes is in general easier compared to certifying the graph structure and edge addition
is most challenging. Intuitively, since most nodes have a low degree (e.g. average degree
on Cora-ML is 6) the attacker can easily misclassify them by adding a few edges.

Interestingly, if we consider the special case where φ only deletes edges (by setting
p+ = 0) the certified ratio for rd is significantly improved (Fig. 8.6c). In practice, the
observed graph x might already be corrupted. The certificate verifies that all x̃ in the
ball, including the unobserved clean graph, have the same prediction. From this point of
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Figure 8.6: Certifiable robustness for different models. Solid lines denote rd (with ra = 0) and
dotted lines denote ra (with rd = 0).
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Figure 8.7: Certifying joint perturbations
to the graph and attributes on Cora-ML.
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Figure 8.8: Certifying attribute perturba-
tions on PubMed, p+ = 0.01, p− = 0.6.

view, by randomly deleting edges we are reducing the influence of adversarial edges which
were potentially added. Since for many applications it is more feasible for the attacker to
add rather than remove edges, certifying rd is exactly the goal. In general, we see that
none of the graph models are really robust, especially w.r.t. structure perturbations.

Next, in Fig. 8.7 we show our method’s ability to certify robustness against joint
perturbations to both the graph structure and the node attributes. We set pA+ = 2 · 10−5,
pA− = 0.4 for the graph, and pF+ = 2 · 10−5, pF− = 0.6 for the attributes. This combined
scenario yields slightly worse certificates compared to perturbations w.r.t. one input.
Similar to before, we observe that certificates w.r.t. addition are especially hard to obtain.

Efficiency. The overall runtime to compute our certificate for all test nodes from the
Cora-ML dataset using a GCN model is less than 25 minutes, or around 0.54 seconds
per node. Most of the time is spent on py(x) and can be trivially reduced. Finally, to
demonstrate that our certificates scales to large graphs we certify w.r.t. the attributes on
the PubMed dataset which has over 19.5k nodes (results shown in Fig. 8.8).

Sparsity. Sparsity is crucial when certifying graphs. To show this we certify the
attributes and set p+ = p− = 0.1 since p+ = 0.1 is the largest value such that the
clean accuracy is still reasonably high. We further compare with the randomized ablation
certificate by Levine and Feizi [221] which also does not consider sparsity. Their certificate
depends on the number of retained pixels k, or in our case retained entries of the feature

Table 8.1: Maximum certified radius av-
eraged across nodes for attribute pertur-
bations on GCN. The certificates from
[220] and [221] are not sparsity-aware.

rd ra

k = 0.2d [221] 2.01 2.01
p+ = p− = 0.1 [220] 2.03 2.03
p+ = 0.01, p− = 0.6 9.99 3.38
p+ = 0.01, p− = 0.8 12.65 4.94
p+ = 0.00, p− = 0.8 18.66 2.14
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Figure 8.9: Accuracy for different flip probabilities.
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Figure 8.10: The benefit of sparsity
awareness on binarized MNIST.

Table 8.2: Certified accuracy for different radii
on ImageNet. We show only the time to compute
the certificate given py(x) since φ(·) is the same
for all certificates. The numbers for the baselines
are from the respective papers.

Cert. Time r = 1 r = 3 r = 5 r = 7

[222] 28 ms 0.36 0.22 0.14 0
[220] 4 days 0.54 0.34 0.24 0.18
Ours 2.5 ms 0.54 0.34 0.24 0.18

(adjacency) matrix. There is an inherent trade-off: a lower value of k equals a higher
certified radius but worse classification accuracy. We set k = 0.2d to the lowest value that
still maintains reasonable accuracy. For all certificates we compute the maximum certified
radius averaged across all nodes which we denote with r. We can see in Table 8.1 that
our sparsity-aware certificate is significantly better. The performance gap widens even
further for graph perturbations. We can conclude that sparsity-awareness is essential.

Clean accuracy. Next, we investigate the clean accuracy for different configurations
of smoothing probabilities. In general, we should set the flip probabilities to be as high as
possible while maintaining good clean accuracy for the smoothed classifier. On Fig. 8.9
we show the accuracy averaged across 10 different random train/validation/test splits
for a GCN base classifier on Cora-ML. Interestingly, when perturbing the attributes
increasing p− and p+ improves over the accuracy of the base classifier (bottom-left corner,
p− = 0, p+ = 0). We can interpret the perturbation as dropout (except applied during
both training and evaluation) which has been shown to improve performance [10, 233].
Similar to the conclusions in previous experiments we see that the graph structure is more
sensitive to perturbations and the accuracy decreases as we increase the flip probabilities.

8.8.2 Discretized Images

To show the general applicability of our method and the importance of sparsity and
efficiency we certify a CNN model on discretized images (see Sec. G.9 for details).

Sparsity. In Fig. 8.10 we compare our certificate with Lee et al. [220] on binarized
MNIST images. Since they have a single radius (ra = rd) we compare our radii by
setting rd = 0 and varying ra ≥ 0 (and similarly for rd ≥ 0). Their certificate is not
sparsity-aware and is a special case of ours (we set p+ = p− = 0.2). For our certificates
we can specify different flip probabilities (we set p+ = 0.1, p− = 0.2) which results in a
significant increase in the certified ratio w.r.t. rd and matching ratio w.r.t. ra. We also
compare our binary-class (bc) with our multi-class (mc) certificate and we see that the
tighter multi-class certificate tends to provide better guarantees.

Efficiency. In Table 8.2 we show the certified accuracy for discretized ImageNet data
(K = 256) and p+ = p− = 0.8. We see that our certificate matches Lee et al. [220]’s but
at a dramatically improved runtime, from 4 days to under a second. Dvijotham et al.
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[222]’s certificate is efficient at the expense of tightness and obtains worse guarantees.
Even though ρx,x̃ can be precomputed once and reused for different test inputs, without
our improvement it would still be infeasible if d is slightly larger or varies (e.g. sequences).

8.9 Related Work

GNNs are a fundamental part of the modern machine learning landscape and have been
successfully used for a variety of tasks from node-level classification [19, 233, 235] to
graph-level classification and regression [24, 236] across many domains. However, GNNs
are highly sensitive to small adversarial perturbations [3, 30, 210, 211] – a common
phenomenon observed for machine learning models in general [16, 43].

Beyond heuristic defenses [212, 213, 229, 230], which can be easily broken in practice
[237], certifiable robustness techniques provide provable guarantees [231, 238, 239]. Most
certificates either have scalability issues or rely on conservative relaxations. In contrast,
the recently proposed randomized smoothing technique [217–220] is a general approach
which is relatively inexpensive, yet provides good (probabilistic) guarantees.

Most work on randomized smoothing focuses on continuous data with a few exceptions
that can tackle binary/discrete data. In contrast to our approach, these certificates are
not sparsity-aware and are either computationally intractable or provide loose guarantees
(see Sec. 8.5.1). Moreover, we are the first to apply randomized smoothing to GNNs.
There are only few certificates for graphs [5, 215, 216] and as we discussed in Sec. 8.1
and in Sec. 8.6.1 they have serious limitations that we overcome.

8.10 Conclusion

We propose the first sparsity-aware certificate for discrete data based on the randomized
smoothing framework. Our certificate can be efficiently computed and the complexity does
not depend on the input size or the number of discrete categories. The sparsity-awareness
and the drastically improved efficiency significantly broaden its applicability compared
to previous work. We apply our certificate to study the robustness of different Graph
Neural Networks and show that there are clear trade-offs across GNNs models.

8.11 Retrospective

This retrospective is limited since we finished this work close to the thesis submission,
nonetheless we make some observations. First, it is interesting that smoothing significantly
improves the clean accuracy for graphs (Fig. 8.9), especially since this does not hold
for images [240, 241]. Why do we not observe a large trade-off between clean accuracy
and adversarial robustness as we often see for other methods? The relations to local
Lipschitzness [242] and data augmentation [243] may provide some answers. Second, we
did not fully exploit the generality of the certificate, and the focus on GNNs was mostly for
historical reasons. Since the certificate is directly applicable to e.g. text data, additional
experiments with NLP models can further increase the impact of the publication.
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8 Efficient Robustness Certificates for Discrete Data

Finally, it is worth highlighting that we can discretize continuous data to arbitrary
precision since the computational complexity is independent of the number of categories,
greatly increasing the applicability.4 In Lee et al. [220] the certificate for discretized
images even outperformed its continuous counterpart.

4The caveat is that continuous data is implicitly “ordered”, while the discrete categories are not.

118



Part V

Concluding Remarks

119





9 Conclusions and Outlook

9.1 Summary

In this thesis we study the impact of noise and adversarial perturbations on three types of
machine learning models for graph data: unsupervised, generative, and semi-supervised.
We design adversarial attacks to investigate the lack of robustness, we develop robust
models which are resilient to corruptions, and we derive provable robustness guarantees.
In each case we show the importance of robustness for ensuring that our models are
reliable. Along the way we tackle recurring challenges such as handling the non i.i.d.
nature of graph data and optimizing over a discrete and combinatorial graph domain.

First, in Part II we tackle unsupervised representation learning. We discuss two different
notions of robustness for node embeddings. Namely, in Chapter 3 we assume the data
is corrupted and the goal is to derive a robust spectral embedding by neutralizing the
corruptions. We achieve this by jointly learning the corruptions and the embedding of the
latent clean graph. In Chapter 4 we take a different approach and we achieve robustness
by accounting for uncertainty. Each node is represented as a Gaussian distribution
with some mean and a covariance matrix. Rather than explicitly removing corruptions,
their effects can be absorbed by increasing the uncertainty of the representation (i.e.
increasing the variance). In Chapter 5, taking the opposite role, we initiate the first study
of adversarial perturbations for node embeddings. We show that node embeddings are
highly sensitive to adversarial attacks by analyzing a family of methods based on random
walks. The adversarial perturbations can be efficiently computed, and they generalize to
other (unsupervised and semi-supervised) models.

Next, In Part III we design a robust generative model for graphs and a scalable inference
algorithm. The key idea is to explicitly consider partial anomalies in the generative process.
The main benefit is that if a node is only partially corrupt we can still infer something
meaningful about it (e.g. its cluster), rather than discarding it as an anomaly.

Finally, in Part IV we study semi-supervised learning focusing on certifiable robustness.
The goal is to provide provable guarantees. In Chapter 7 we tackle a specific class of
models – which includes label propagation and some graph neural networks – where
the predictions are a linear function of (personalized) PageRank. The main benefit of
specializing to this class of models it that we can compute the certificate exactly (assuming
a local budget for the attacker) by taking advantage of the structure of the problem. In
Chapter 8 we instead derive a certificate which is model-agnostic, i.e. it does not rely on
any assumptions about the model. With this approach we can certify any graph-based
classifier (or in fact any classifier by discretizing the input), however, this generality
comes at a price since we can only compute a lower bound on the true certified radius.
This bound is tight and cannot be improved unless we make additional assumptions.
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9 Conclusions and Outlook

9.2 Concluding Retrospective

Collectively looking at the different approaches in this thesis we observe an interesting
general principle: “joint or shared is better than separate”. In Chapter 3 we argue for
jointly learning the corruptions and the embedding. In Chapter 4 we show that sharing
the learnable parameters that generate the embeddings is effective and has the benefit
of being inductive. Similarly, as we discuss in Sec. 6.7, learning a joint inference model
for the variational parameters often performs better in practice. The PPNP model is a
notable exception, where the separation into two phases (predict then propagate) enables
superior scalability [8] and efficient certificates (Chapter 7).

Another observation is that proper evaluation is both more difficult and more essential
than it seems. In Shchur et al. [11] we examine the pitfalls of graph neural network
evaluation. We show that using fixed train/validation/test splits and differences in the
training procedure (e.g. early stopping criteria) lead to flawed comparisons. Our findings
show that simpler GNNs outperform more sophisticated ones if the hyperparameters and
the training procedure are fairly tuned for all models. More generally, it is critical to
include and tune all of the relevant baselines. For example, in Sec. 4.4.1 we show that
a simple logistic regression has a surprisingly strong link prediction performance, even
outperforming some of the more advanced methods. Due to sparsity, link prediction is
inherently difficult to evaluate [244] and using the wrong evaluation metric might be
misleading. Therefore, we spent a lot of time thinking about the design of a fair evaluation
scheme.1 Questions on how to choose the number of labeled nodes2, or whether we should
(roughly) match the number of trainable parameters for the baselines, are difficult to
answer and depend on the context and the application. Similarly, as we elaborate in
Sec. 9.3, assuming the right threat model is critical for evaluating adversarial robustness.

Evaluation is important not only for the final model but during development as well.
For example, since our NetGAN model [7] was the first implicit graph generative model
there were no established techniques for assessing the quality of the generated graphs
making it difficult to evaluate different architectures. In general, the lack of (large-scale)
graphs with ground-truth clusters (or anomalies, or labels) can impede progress.

In (writing about) research there is a challenge in balancing generality vs. having a
single focused message, and balancing simplicity vs. including additional modifications
that yield small improvements. For example, we discovered several small improvements
(consistency regularization, adding additional f-divergence constraints, etc.) for our sparse
smoothing certificate (Chapter 8). Ultimately however, we decided not to include them
in the publication (and the thesis) since they would have diluted the main message.
Similarly, generalizing the certificate to discrete data increases the impact, but makes is
more likely for the method to be overlooked in the graph mining community. Overall, we
strived to keep the methods as simple as possible, and I believe we struck a good balance.

1Ideally, we should train on graphs with edges observed up to a given point in time, and evaluate on
future edges. However, for the standard benchmarks the temporal information is absent so we have
to randomly split the data. This requires some care since some baselines cannot deal with singleton
nodes and disconnected components, others only work well for undirected graphs, etc.

2In Bojchevski et al. [8] we argue that the sparsely-labeled scenario is most relevant in practice.
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9.3 Open Questions

A central open question, concerning almost all of the work in this thesis, is how to
design realistic yet tractable threat models. Balancing the practical relevance of the
assumptions about the goals, knowledge, and capabilities of the adversary vs. the implied
computational feasibility is challenging. For example, so far we have not accounted for
the unequal cost of different perturbations3 – perturbing a node corresponding to a high-
profile or security-aware user is likely more difficult, and thus more expensive, compared
to a regular user. Similarly, not every perturbation is deterministically executable but
rather there is a certain probability that the attacker will be able to e.g. successfully
flip a certain edge. The attacker is also not likely to have access to all nodes in the
network but rather a certain subset, adding another optimization constraint. Moreover,
the defender and the attacker dynamically adapt to each other’s actions, e.g. the defender
can immunize the most vulnerable or influential nodes, forcing the attacker to change
their strategy, which in turn changes the defender’s optimal strategy. The list of relevant
aspects goes on, but the work in this thesis provides a solid foundation to address them.

So far our certifiable robustness estimates are too pessimistic since we allow the attacker
to find a potentially different perturbed graph for different target nodes. However, in
reality the attacker can only realize a single perturbation, i.e. a given edge can either be
present or not, which limits the amount of damage they can inflict. Deriving certificates
which account for this aspect of the threat model is an open problem.

From a theoretical perspective, another open question is to study adversarially robust
learning from the viewpoint of generalization. Can the inclusion of additional relational
information help close the generalization gap between standard and robust accuracy which
has been (empirically and theoretically) demonstrated for i.i.d. data? There is evidence
for example, that unlabeled data, which is implicitly considered in semi-supervised node
classification, improves adversarial robustness [232].

Typically, we assume that the graph is explicitly given (e.g. a social network), with the
robust spectral embedding from Chapter 3 as a notable exception. However, in many of
the interesting practical applications of e.g. GNNs the graph is inferred or jointly learned
with the rest of the model parameters during training. Developing robust graph-based
models where the graph is implicit or learned from data is an interesting future direction.

Beyond robustness, there are many challenging and impactful open problems in the
broader area of trustworthy machine learning for graph data. From criminal justice and
employment to healthcare and autonomous driving, in high-stakes applications we have
to consider questions about privacy, fairness, interpretability, and bias to ensure model
reliability in practice. Given the close connection between adversarial robustness and e.g.
differential privacy the tools we developed in this thesis can be useful for tackling these
questions. Similarly, we can exploit recently established connections between randomized
smoothing and fairness [245]. Specifically, an interesting line of research is to build upon
our approach from Chapter 8 to provably ensure individual fairness, e.g. ensure that
similar nodes are treated similarly.

3Although for our PageRank-based certificate described in Chapter 7 this is a trivial extension.
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9 Conclusions and Outlook

9.4 Broader Impact

In this section we discuss potential societal impacts of our research and related ethical
considerations. Inspired by NeurIPS which recently introduced4 a requirement that
submissions must include a similar discussion of broader impact, this exercise can help
inform policymakers to build policies that amplify the benefits and mitigate the risks.

At a first glance improving robustness seems like it should mostly have a positive
impact. The list of disadvantages for ensuring that our models are reliable and behave as
expected seems like it must be short, barring any potentially inherent clean accuracy
trade-offs. Upon reflection we find that depending on the setting and the sensitivity of
the data, improving (adversarial) robustness might be problematic. Since we highlight
positive impacts throughout the thesis, here we discuss some potential negative impacts.

Take for example the robust clustering model PAICAN which we develop in Chapter 6,
and assume we apply it to a social network. A person might be obfuscating some of
their attributes (age, political affiliation) on purpose due to privacy concerns or to avoid
being placed in a certain cluster. Such adversarial corruption might fool a classical model,
but a robust model such as PAICAN is more likely to correctly infer the user’s cluster
and thereby also their sensitivity attributes. One could argue that in the wrong hands,
e.g. a dictator persecuting their opposition, the robust model is more harmful. Similar
arguments can be made for allowing attacks on face recognition or surveillance systems.
A more direct negative impact of our work on adversarial attacks is the possibility that
malicious actors may use the techniques we develop to damage real-world systems.

Overall, we believe that studying robustness has a net positive impact. More broadly
however, to asses the true impact we have to engage and integrate the perspectives of
the communities which are most affected by machine learning systems. These (often
marginalized) communities are left out of the conversation when it comes to the design
and deployment of these systems: starting from the dataset collection, to the trade-offs
implied by different algorithmic choices, and ultimately the feedback loops which are
created and reinforced. The general goal of designing systems which are trustworthy
cannot be achieved without listening to their voices.

4See the call for papers at https://neurips.cc/Conferences/2020/CallForPapers
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representations. In Neural Information Processing Systems, NIPS, 2017.

[113] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove:
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[166] Stephan Günnemann, Brigitte Boden, and Thomas Seidl. Finding density-based
subspace clusters in graphs with feature vectors. Data Mining and Knowledge
Discovery, DMKD, 2012.

[167] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community
structure in networks. Physical Review E, 2011.

[168] Xiaoran Yan, Cosma Shalizi, Jacob E Jensen, Florent Krzakala, Cristopher Moore,
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A Data and Code

A.1 Datasets

A.1.1 Graph Datasets

Here we provide a description of the real-world datasets which we frequently use for
experimental evaluation in this thesis. Cora-ML [107], Cora (Cora-Full) [107], Citeseer
[108], DBLP [82], and PubMed [234] are citation networks. Here, the nodes correspond to
papers, the edges correspond to citations (references) between the papers, and the node
features correspond to bag-of-words representation of the paper’s abstract. The node labels
correspond to the paper’s field of study (e.g. formal languages or probabilistic methods).
Since citation graphs are commonly used as benchmark datasets in the literature you
will encounter them throughout this thesis.

Several slightly different versions of the Cora dataset are publicly available. Since the
metadata (e.g. which feature dimensions corresponds to which word) was not available
we manually processed the original raw data from McCallum et al. [107] to obtain the
two versions we use in this thesis. The larger graph contains papers from many different
computer science fields, while Cora-ML contains only a subset of machine learning papers.

In the PolBlogs [149] graph each node is a political blog, the edges correspond to links
between the blogs, and there are no node features available. Each blog is categorized
based on its political leaning as either blue or red which serves as the node label.

We created the SocialPapers dataset to evaluate the approach described in Chapter 6.
Here nodes represent biomedical papers forming edges if they are frequently mentioned
by the same users on social media. The attributes designate the paper’s subjects (e.g.
psychology, neurology), and the in which the papers are published are considered as
ground-truth labels. The data was collected using the Altmetric API [246]. Based on
product review data [173] we also created an Amazon co-purchase attributed graph. The
edges indicate that two products are often purchased together, and the attributes are
binary product category indicators (e.g. books, jewelry). Here labels are not available.

The graphs above all have medium or large number of nodes. Since the baselines
discussed in Chapter 6 lack scalability we also use several small graphs. In the Parliament1

dataset the nodes are French parliament members having an edge if they cosigned a bill
together, while their attributes indicate their constituency. Here we consider political
parties as ground-truth clusters. The Lazega Lawyers [172] dataset contains different
networks, where edges indicate e.g. a strong coworker or friendship relation among
attorneys. We also have categorical attributes (e.g. seniority, formal status) for each
node. We use the friendship network and binarize the attributes. HVR [161] is a dataset

1Raw data obtained from https://github.com/briatte/parlement
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A Data and Code

Table A.1: Statistics about the graph datasets used in this thesis. Each column shows a different
number associated with the graph: n nodes, e edges, d features, ed non-zero elements in the sparse
feature matrix, k classes, c connected components. ns and es show the number of nodes and
edges after standardization (selecting the largest connected component and making the graph
undirected) and “-” indicates no changed compared to n and e.

Dataset n e d ed k c ns es type

Cora-ML 2995 8416 2879 151 171 7 61 2810 15 962 citation
Cora 19 793 65 311 8710 1 125 610 70 364 18 800 18 800 citation
Citeseer 3312 4715 3703 105 165 6 438 2110 7336 citation
DBLP 17 716 105 734 1639 92 192 4 589 16 191 103 826 citation
PubMed 19 717 88 648 500 988 031 3 1 - - citation
PolBlogs 1490 19 025 n/a n/a 2 268 1222 33 428 blog links
SocialPapers 20 007 2 088 048 96 24 615 836 1 - - co-mention
Amazon 29 618 850 348 4643 96 709 - 1 - - co-purchase
Parliament 451 11 646 108 451 7 1 - - co-sign
Lazega Lawyers 71 575 70 426 2 1 - 798 friendship
HVR 307 3263 6 307 2 1 - 6502 genes

consisting of several networks of highly recombinant malaria parasite genes. The edges
are based on the length of the longest substring shared between the genes sequences.

In Table A.1 we report detailed statistics about each graph. We see that most of them
are sparse. Since we often standardize the graphs as a preprocessing steps, i.e. we select
only the nodes that belong to the largest connected component and we make the graphs
undirected and unweighted, we also show the statistics after standardization. We note
that most graphs exhibit strong homophily, that is the edge density between nodes from
the same class is significantly larger compared to the edge density between nodes from
different classes (not shown).

A.1.2 Other Datasets

MNIST [75] (n = 70 000, d = 784, k = 10), USPS [74] (n = 9298, d = 256, k = 10), and
Pendigits [73] (n = 7494, d = 16, k = 10) are dataset of handwritten digits. Specifically, for
MNIST and USPS we have 8-bit grayscale images of size 28× 28 and 16× 16 respectively
of the digits 0 through 9.2 For Pendigits the features correspond to the (x, y) coordinate
information from a pressure sensitive tablet.

Iris [73] (n = 150, d = 4, k = 3) is a dataset about the morphologic variation of Iris
flowers. The Banknote authentication data [73] (n = 1372, d = 4, k = 3) is extracted
by applying the wavelet transform to images that were taken from genuine and forged
banknotes. The ImageNet [247] datasets (n = 14 197 122, d = 65 536, k = 21 841) has over
14 million color images scaled to 256× 256 pixels.

2Obtained from https://cs.nyu.edu/~roweis/data.html

148

https://cs.nyu.edu/~roweis/data.html


A.2 Code

A.2 Code

We provide an open-source implementation of all the methods discussed in this thesis. All
implementations are in Python. We often rely on the following packages: Numpy/Scipy
[248], Tensorflow [249], PyTorch [250] and CVXPY [251].

The code for each method can be found at https://github.com/abojchevski/[method]/
where ‘[method]’ is specified below:

• /rsc/ implements the RSC method discussed in Chapter 3

• /graph2gauss/ implements the Graph2Gauss method discussed in Chapter 4

• /node embedding attack/ implements the attack discussed in Chapter 5

• /paican/ implements the PAICAN method discussed in Chapter 6

• /graph cert/ implements the certificate discussed in Chapter 7

• /sparse smoothing/ implements the certificate discussed in Chapter 8
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B Robust Spectral Clustering

B.1 Proofs

Proof of Lemma 3.1. Note that

L(Ag) = D(Ag)−Ag = (D(A)−D(Ac))− (A−Ac) = L(A)−L(Ac) (B.1)

Thus, Tr(HTL(Ag)H) can equivalently be written as

Tr(HT · (L(A)−L(Ac)) ·H) = Tr(HT ·L(A) ·H)− Tr(HT ·L(Ac) ·H) (B.2)

Given H, the term Tr(HT · L(A) ·H) is constant. Thus, minimizing the previous
term is equivalent to maximizing Tr(HT ·L(Ac) ·H).

Let yk be a column vector of H, noticing that (see [46])

yTk L(Ac)yk =
∑

ij

1

2
·Ac

ij · (yki − ykj)2 (B.3)

and exploiting the orthogonality of H it follows:

Tr(HT ·L(Ac) ·H) =
∑

k

∑

ij

1

2
·Ac

ij · (yki − ykj)2 =
∑

ij

1

2
·Ac

ij · ‖hi − hj‖22 (B.4)

where the last step used yki = hik. To ensure that Ac as well as Ag are non-negative,
it holds 0 ≤ Ac

ij ≤ Aij . Thus, if Aij = 0 then Ac
ij = 0. Exploiting this fact and the

symmetry of the graph leads to
∑

ij
1
2 ·A

c
ij · ‖hi − hj‖22 =

∑
(i,j)∈E A

c
ij · ‖hi − hj‖22.

Next, we show that there exists a solution where each Ac
ij ∈ {0,Aij}. As known,

0 ≤ Ac
ij ≤ Aij . Let M = [Ac

e]e∈E be a maximum of Eq. 3.7 where some Ac
ij > 0 but

Ac
ij < Aij . Let M ′ be the solution where this entry is replaced by Ac

ij = Aij . Since

only ‖.‖0 constraints are used, M and M ′ fulfill the same constraints. Since ‖hi − hj‖22
is non-negative, f1(M ′) ≥ f1(M). It follows, that a solution minimizing Eq. 3.6 can be
found by investigating Ac

ij = 0 or Ac
ij = Aij only.

Proof of Lemma 3.2. The goal is to find a matrix Ag whose sum of the first k eigenvalues
is minimal (and fulfills the given constraints). Since, however, Ag is not known, we refer
to the principle of eigenvalue perturbation. Let At be the matrix obtained in the previous
iteration of the alternating optimization and let yi be the i-th generalized eigenvector of
L(At) (these are the columns of the matrix H from above, i.e. yij = hji). Furthermore,
denote the corresponding eigenvalues with λi. We define L(Ag) − L(At) =: ∆L and
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D(Ag)−D(At) = ∆D. Based on the theory of eigenvalue perturbation [39], the eigenvalue
λgi of L(Ag) can be approximated by

λgi ≈ λi + yTi · (∆L− λi ·∆D) · yi (B.5)

= λi + yTi · ((L(Ag)−L(At))− λi · (D(Ag)−D(At))) · yi

Using the fact that L(Ag) = L(A) − L(Ac) and D(Ag) = D(A) −D(Ac), and after
rearranging the terms, we obtain

λgi ≈ λi + yTi · ((L(A)−L(At))− λi · (D(A)−D(At))) · yi︸ ︷︷ ︸
=:ci

(B.6)

− yTi · ((L(Ac))− λi · (D(Ac)) · yi︸ ︷︷ ︸
=:gi

Since ci is constant, minimizing λgi is equivalent to maximizing gi. Simplifying yields:

gi = yTi ·L(Ac) · yi − λi · yTi ·D(Ac) · yi =
∑

jj′

1

2
Ac
jj′(yij − yij′)2 − λi

∑

j

y2
ij · dcj (B.7)

where dcj = [D(Ac)]jj =
∑

j′A
c
jj′ . Thus

gi =
∑

jj′

1

2
Ac
jj′(yij − yij′)2 − λiy2

ijA
c
jj′ =

∑

jj′

Ac
jj′

(
1

2
(yij − yij′)2 − λiy2

ij

)
(B.8)

and exploiting the symmetry of the graph, we obtain

gi =
∑

(j,j′)∈E
Ac
jj′
(
(yij − yij′)2 − λiy2

ij − λiy2
ij′
)

Since the overall goal is to minimize
∑k

i=1 λ
g
i , we aim at maximizing

k∑

i=1

gi =

k∑

i=1

∑

(j,j′)∈E
Ac
jj′
(
(yij − yij′)2 − λiy2

ij − λiy2
ij′
)

=
∑

(j,j′)∈E
Ac
jj′

(
k∑

i=1

(yij − yij′)2 −
k∑

i=1

λiy
2
ij −

k∑

i=1

λiy
2
ij′

)

By noticing that yij = hji we obtain

=
∑

(j,j′)∈E
Ac
jj′


‖hj − hj′‖22 − ‖

√
λ ◦ hj‖22 − ‖

√
λ ◦ hj′‖22︸ ︷︷ ︸

x




Note that some of the terms x might be negative. Clearly, since we aim to maximize
the equation – and since Ac

ij ≥ 0 – for these terms we have to choose Ac
ij = 0. For the

remaining (non-negative) terms, the same arguments apply as in the proof of Lemma 3.1:
i.e. they are either 0 or Aij . Thus, overall, for each term we have Ac

e ∈ {0,Ae}.
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Proof of Lemma 3.3. Note that Aij = Aij −Ac
ij and dgi = di − dci . Let yk be a column

vector of H. It holds

yTk ·Lsym(Ag) · yk =
∑

ij

1

2
Aij(

yki√
dgi
−
ykj√
dgj

)2 =
∑

ij

1

2
Aij(

y2
ki

dgi
+
y2
kj

dgj
−

2 · ykiykj√
dgi

√
dgj

)

=
∑

i

1

2
y2
ki +

∑

j

1

2
y2
kj −

∑

ij

Aijykiykj√
dgi

√
dgj

(B.9)

Since yk is given, the first two terms are constant. Furthermore, due to orthogonality
it holds Tr(HTLsym(Ag)H) =

∑
k y

T
k · Lsym(Ag) · yk. Thus, minimizing the trace is

equivalent to maximizing

∑

k

∑

ij

Aijykiykj√
dgi

√
dgj

=
∑

ij

Aij√
dgi

√
dgj

hi · hTj (B.10)

noticing that yki = hij . Exploiting the graph’s symmetry concludes the proof.

Proof of Corollary 3.2. Adding e = (i, j) to X has the following effects: the term ace
changes from 0 to ae; the degree of the two incident nodes becomes d

X∪{e}
i = dXi − ae.

Therefore,

f3(vX∪{e}) = f3(vX )− pe√
dXi ·

√
dXj

−
∑

(x,y)∈(Ei∪Ej)\X
(x,y)6=(i,j)

pxy√
dXx ·

√
dXx

(B.11)

+
∑

x 6=j
(i,x)∈Ei\X
∨(x,i)∈Ei\X

pix√
dXi − ae

√
dXx

+
∑

x 6=i
(j,x)∈Ej\X
∨(x,j)∈Ej\X

pxj√
dXj − ae

√
dXx

= f3(vX ) + s(i, ae,X ) + s(j, ae,X ) + δ(e,X ) = f3(vX ) + ∆(e,X )

Since X is given, f3(vX ) is constant. Thus, the edge e ∈ E ′ maximizing f3(vX∪{e}) is
found by maximizing ∆(e,X ).
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C Deep Gaussian Embedding of Graphs

C.1 Proofs

Proof (Proposition 4.1). Since both L and Ls are summing over i it is sufficient to show

that the losses are equal in expectation for a single node i. Denoting with L(i)
s the loss for

a single node i and with Ei,k,k′ = E2
ijk

+ exp−Eijk′ for notational convenience we have:

L(i)
s =E(j1,...,jK)∼(Vi1,...,ViK)

∑

k<k′

|Vik| · |Vik′ | · Ei,k,k′

(1)
=E(j1,...,jK)∼(Vi1,...,ViK)|Vi1| · |Vi2| · Ei,1,2

+ · · ·+ E(j1,...,jK)∼(Vi1,...,ViK)|ViK−1| · |ViK | · Ei,K−1,K

(2)
=E(j1,j2)∼(Vi1,Vi2)|Vi1| · |Vi2| · Ei,1,2

+ · · ·+ E(jK−1,jK)∼(ViK−1,ViK)|ViK−1| · |ViK | · Ei,K−1,K

(3)
=
∑

j1∈Vi1

∑

j2∈Vi2
p(j1)p(j2)|Vi1| · |Vi2| · Ei,1,2

+ · · ·+
∑

jK−1∈ViK−1

∑

jK∈ViK
p(jK−1)p(jK)|ViK−1| · |ViK | · Ei,K−1,K

(4)
=

1

|Vi1|
1

|Vi2|
|Vi1||Vi2|

∑

j1∈Vi1

∑

j2∈Vi2
·Ei,1,2

+ · · ·+ 1

|ViK−1|
1

|ViK |
|ViK−1||ViK |

∑

jK−1∈ViK−1

∑

jK∈ViK
·Ei,K−1,K

=
∑

j1∈Vi1

∑

j2∈Vi2
·Ei,1,2 + · · ·+

∑

jK−1∈ViK−1

∑

jK∈ViK
·Ei,K−1,K

=
∑

k<k′

∑

j∈Vik

∑

j′∈Vik′

(
Eij

2 + β · exp−Eij′
)

= L

(C.1)

In step (1) we have expanded the sum over k < k′ in independent terms. In step (2) we
have marginalized the expectation over the variables that do not appear in the expression,
e.g. for the term E(j1,...,jK)∼(Vi1,...,ViK)|Vi1| · |Vi2| · Ei12 we can marginalize over jp where
p 6= 1 and p 6= 2 since the term does not depend on them. In step (3) we have expanded
the expectation term. In step (4) we have substituted p(jp) with 1

|Vijp | since we are

sampling uniformly at random. Since L(i)
s is equal to L(i) it follows that ∇Ls based on a

set of samples is an unbiased estimate of ∇L.
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C.2 Implementation Details

Architecture and hyperparameters. We observed that Graph2Gauss is not sensitive
to the choice of hyperparameters such as number and size of hidden layers. Better yet, as
shown in Sec. 4.4.4, Graphs2Gauss is also not sensitive to the size of the embedding size
L. Thus, for a new graph, one can simply pick a relatively large embedding size and if
required prune it later similarly to the analysis performed in Fig. 4.7c.

As a sensible default we recommend an encoder with a single hidden layer of size
s1 = 512. More specifically, to obtain the embeddings for a node i we have

hi = relu(XiW + b) µi = hiWµ + bµ σi = elu(hiWΣ + bΣ) + 1

where Xi are node attributes, relu and elu are the rectified linear unit and exponential
linear unit respectively. In practice, we found that the softplus works equally well as
the elu for making sure that σi are positive and in turn Σi is positive-definite. We used
Xavier initialization [252] for the weight matrices W ∈ RD×s1 , b ∈ Rs1 , Wµ ∈ Rs1×L/2,
bµ ∈ RL/2, WΣ ∈ Rs1×L/2, bΣ ∈ RL/2. As discussed in Sec. 4.3.4, multiple hidden layers,
or other architectures such as CNNs/RNNs can also be used based on the specific problem.

Unlike other approaches using Gaussian embeddings [102–104] we do not explicitly
regularize the norm of the means and we do not clip the covariance matrices. Given the
self-regularizing nature of the KL divergence this is unnecessary, as was confirmed in our
experiments. The parameters are optimized using Adam [106] with a fixed learning rate
of 0.001 and no learning rate annealing/decay.

Edge cover. Some of the methods such as node2vec [87] are not able to produce an
embedding for nodes that have not been seen during training. Therefore, it is important
to make sure that during the train/validation/test split of the edge set, every node
appears at least once in the train set. Random sampling of the edges does not guarantee
this, especially when allocating a low percentage of edges in the train set during the split.
To guarantee that every node appears at least once in the train set we have to find an
edge cover. An edge cover of a graph is a set of edges such that every node of the graph is
incident to at least one edge of the set. The minimum edge cover problem is the problem
of finding an edge cover of minimum size. The dashed line in Fig. 4.4c indicates exactly
the size of the minimum edge cover. This condition had to be satisfied for the competing
methods, however, since Graph2Gauss is inductive, it does not require that every node is
in the train set.
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D Adversarial Attacks on Node
Embeddings

D.1 Proofs

Proof. Theorem 5.1. Applying eigenvalue perturbation theory we obtain that λ′p =

λp +uTp (∆M̂)up where λ′p is the eigenvalue of M̂ ′ based on A′ obtained after perturbing

the graph. Using the fact that λp = uTp M̂up, and the fact that singular values are equal
to the absolute value of the corresponding eigenvalues we obtain the desired result.

Proof. Theorem 5.2. Denote with ei the vector of all zeros and a single one at position i.
Then, we have ∆A = ∆wij(eie

T
j +eje

T
i ) and ∆D = ∆wij(eie

T
i +eje

T
j ). From eigenvalue

perturbation theory [39], we get: λ′y ≈ λy + uTy (∆A− λy∆D)uy. Substituting ∆A and
∆D concludes the proof.

We include an immediate result to prove Theorem 5.3.

Lemma D.1. Consider the generalized eigenvalue problem Au = λDu and suppose
that we have the changes in the respective matrices/vectors: ∆A,∆D and ∆λ, then the
approximate change in the eigenvectors ∆u can be expressed as:

∆u = −(A− λD)+

(
∆A−∆λD − λ∆D

)
u

Proof. Lemma D.1. We start from (A+ ∆A)(u+ ∆u) = (λ+ ∆λ)(D+ ∆D)(u+ ∆u).
Ignoring second-order terms and simplifying using Au = λDu we get

A∆u+ ∆Au = λ∆Du+ ∆λDu+ λD∆u

Collecting the terms for u and ∆u we get

(A− λD)∆u = −(∆A−∆λD − λ∆D)u

Since the matrix (A− λD) is singular we multiply with its Moore-Penrose pseudoinverse
(A − λD)+ to obtain the final result. Here (A − λD)+(A − λD) is not the identity
matrix, but the projection matrix onto the orthogonal complement of ker(A−λD). Thus,
since the respective eigenvector is not uniquely determined, we also choose ∆u to be
orthogonal to the eigenspace ker(A− λD).

Proof. Theorem 5.3. Let ∆A and ∆D be defined as in Theorem 5.2 and let ∆λ be
the change in the eigenvalues as computed in Theorem 5.2. Plugging these terms in
Lemma D.1 and simplifying we obtain the result.
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We include an intermediate result to prove Lemma 5.2 and Lemma 5.3.

Lemma D.2. λ is an eigenvalue of D−1/2AD−1/2 := Anorm with eigenvector û = D1/2u
if and only if λ and u solve the generalized eigen-problem Au = λDu.

Proof. Lemma D.2. We have Az = λDz =⇒ (Q−1AQ−T )(QTz) = λ(QTz) for any
real symmetric A and any positive-definite D, where D = QQT using the Cholesky
factorization. Substituting the adjacency/degree matrix and using Q = QT = D1/2 we
obtain the result.

Proof. Lemma 5.2. From Qiu et al. [146] we have S = D−1/2
(
Û
(∑T

r=1 Λ̂r
)
ÛT
)
D−1/2

where ÛΛ̂ÛT = D−1/2AD−1/2 =: Anorm is the eigenvalue decomposition of Anorm.
From Lemma D.2 we have that λ is an eigenvalue of D−1/2AD−1/2 with eigenvector
û = D1/2u if and only if λ and u solve the generalized eigen-problem Au = λDu.
Substitute Λ̂ = Λ and Û = D1/2U in S, and use the fact that D is diagonal.

Proof. Lemma 5.3. Following Qiu et al. [146], the singular values of S can be bounded
by σp(S) ≤ 1

dmin

∣∣∑T
r=1(µ̂π(p))

r
∣∣ where µ are the (standard) eigenvalues of Anorm. Using

Lemma D.2, the same bound applies using the generalized eigenvalues λp of A. Now
using Theorem 5.2, we obtain λ̃′p an approximation of the p-th generalized eigenvalue

of A′. Plugging it into the singular value bound we obtain: σp(S) ≤ 1
dmin

∣∣∑T
r=1(λ̃′π(p))

r
∣∣

which concludes the proof.

Note that the permutation π does not need be computed explicitly. In practice, for
every λ̃′p, we compute the term

∣∣∑T
r=1(λ̃′p)

r
∣∣. Afterwards, these terms are simply sorted.

D.2 Analysis of Spectral Embedding Methods

Attacking spectral embedding. Finding the spectral embedding is equivalent to the
following trace minimization problem:

min
Z∈R|V |×K

Tr(ZTLxyZ) =

K∑

i=1

λi(Lxy) = LSC (D.1)

subject to orthogonality constraints, where Lxy is the graph Laplacian. The solution is
obtained via the eigen-decomposition of L, with Z∗ = UK where UK are the K-first
eigenvectors corresponding to the K-smallest eigenvalues λi. The Laplacian is typically
defined in three different ways: the unnormalized Laplacian L = D −A, the normalized
random walk Laplacian Lrw = D−1L = I − D−1A and the normalized symmetric
Laplacian Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2 = I −Anorm, where A,D,Anorm

are defined as before.

Lemma D.3 ([147]). λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an
eigenvalue of Lsym with eigenvector w = D1/2u. Furthermore, λ is an eigenvalue of Lrw

with eigenvector u if and only if λ and u solve the generalized eigen-problem Lu = λDu.
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From Lemma D.3 we see that we can attack both normalized versions of the graph
Laplacian with a single attack strategy since they have the same eigenvalues. It also helps
us to do that efficiently similar to our previous analysis (Theorem 5.3).

Theorem D.1. Let Lrw (or equivalently Lsym) be the initial graph Laplacian before
performing a flip and λy and uy be any eigenvalue and eigenvector of Lrw. The eigenvalue
λ′y of L′rw obtained after flipping a single edge (i, j) is

λ′y ≈ λy + ∆wij((uyi − uyj)2 − λy(u2
yi + u2

yj)) (D.2)

where uyi is the i-th entry of the vector uy.

Proof. From Lemma D.3 we can estimate the change in Lrw (or equivalently Lsym)
by estimating the eigenvalues solving the generalized eigen-problem Lu = λDu. Let
∆L = L′−L be the change in the unnormalized graph Laplacian after performing a single
edge flip (i, j) and ∆D be the corresponding change in the degree matrix. Let ei be defined
as before. Then ∆L = (1− 2Aij)(ei− ej)(ei− ej)T and ∆D = (1− 2Aij)(eie

T
i + eje

T
j ).

Based on the theory of eigenvalue perturbation we have λ′y ≈ λy + uTy (∆L− λy∆D)uy.
Finally, we substitute ∆L and ∆D.

Using now Theorem D.1 and Eq. D.1 we finally estimate the loss of the spectral
embedding after flipping an edge LSC(L′rw,Z) ≈

∑K
p=1 λ

′
p. Note that here we are summing

over the K-first smallest eigenvalues. We see that spectral embedding and the random-
walk-based approaches are indeed very similar.

Theorem D.2. Let L be the initial unnormalized graph Laplacian before performing
a flip and λy and uy be any eigenvalue and eigenvector of L. The eigenvalue λ′y of L′

obtained after flipping a single edge (i, j) can be approximated by:

λ′y ≈ λy − (1− 2Aij)(uyi − uyj)2 (D.3)

Proof. Let ∆A = A′ − A be the change in the adjacency matrix after performing a
single edge flip (i, j) and ∆D be the corresponding change in the degree matrix. Let
ei be defined as before. Then ∆L = L′ − L = (D + ∆D) − (A + ∆A) − (D −A) =
∆D−∆A = (1− 2Aij)(eie

T
i +eje

T
j − (eie

T
j +eje

T
i )). Based on the theory of eigenvalue

perturbation we have λ′y ≈ λy + uTy (∆L)uy. Substituting ∆L and rearranging we get
the above results.
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E.1 Further Experiments and Details

Experimental setup. For all methods we provide the true number K of clusters to
detect. CODA is a nondeterministic algorithm that is highly sensitive to initialization and
parameter choice. Following [154], we tried the values of {0.05, 0.1, 0.5} for λ, perform
several restarts for each of them and report only the highest NMI achieved. Moreover,
CODA requires the percentage of anomalous nodes, for which we provide the true values.
FocusCO is a semi-supervised approach; we have to provide example nodes that belong
to the same single cluster. We pick the best possible scenario, i.e. we run FocusCO K
number of times and we provide all nodes from a given cluster. We then pick the run
which gave us the highest NMI. SIAN and LSBM are also executed multiple times and
we pick the solution achieving highest NMI. For our approach, we simply perform several
restarts with random initialization and pick the one that gives us the highest likelihood.
PICS and BAGC are deterministic.

Blocky clusters: Robustness and anomaly detection. In Fig. E.1a we see that
CODA performs relatively well achieving high NMI score for blocky clusters even though
it can not detect all the anomalies as shown in Fig. E.1b. FocusCO although performs
better compared to the power-law degree distributed graphs still has poor performance
in comparison. PAICAN consistently outperforms both methods. We can draw similar
conclusions for the case when we are generating either only graph anomalies (A), attribute
anomalies (X), or complete anomalies (A, X) shown in Fig. E.1c and Fig. E.1d.

Case study: Connectivity patterns. We run our method on the SocialPapers and
inspect the inferred block connectivity patterns η. The nature of this dataset yields
non-trivial block structure where some clusters have significant number of edges between
each other. In other words we have relatively high values on the off-diagonals of η rather
than just on the diagonal. For example our method detects a cluster where most of the
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Figure E.1: Clustering and anomaly detection performance when increasing the percentage of
anomalies on synthetic data with blocky clusters.
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(a) Adjacency matrix (b) Graph

Figure E.2: Clustering in the Amazon co-purchase graph. Colors indicate clusters. Bigger nodes
indicate partial graph anomalies.

papers are from the “neurology” subject. We observe that this cluster connects to two
other clusters with main subjects ’diagnostic imaging’ and “psychiatry” respectively.
These connection patterns are coherent and indicative of users who tend to mention
papers from the broader area of neuropsychiatry. Similarly we discover a cluster of
papers about “audiology” with preferred connections to a cluster about “speech language
pathology”.

Case study: Clustering. The adjacency matrix in Fig. E.2a reveals that the network
has mostly typical clusters – with most edges within the clusters and few edges between
the clusters. Notable is one off-diagonal entry between clusters C9 and C5. Interestingly,
this entry describes co-purchase behavior between the cluster with topic ’playsets, toys,
actionfigures’ and the cluster ’clothing, bags’, indicating co-buying behavior of families
where products for their kids are bought together with other products. PAICAN can easily
detect such kind of network topology. The graph embedding in Fig. E.2b visually confirms
the good clustering structure and shows that PAICAN can easily handle non-trivial
degree distributions. We also observe partial graph anomalies – marked bigger in size –
connecting to several unrelated (according to η) clusters.

Case study: Partial anomalies. We run our method on the DBLP dataset. Since
the data is too large to visualize and we have no anomaly ground truth to evaluate the
validity of our results we pick some of the detected partial anomalous nodes and inspect
their ego network and attributes. In Fig. E.3 we show the ego network for a node that
has been marked partially anomalous in attribute space corresponding to Srinivasan
Parthasarathy. As we can see from the ego-network he fits nicely in graph space since
most of his neighbors belong to the same cluster. However, as we discussed in Sec. 6.5 he
is an obvious anomaly w.r.t. attribute space. Overall, all these case studies indicate that
PAICAN is able to extract interesting patterns from attributed graphs.
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E.2 Proofs and Derivations

Terms of the ELBO. Given our model, the ELBO decomposes as follows:

L =Eq[log p(A|z, c,η, ηbg, ηbb,θ, θ̃)]︸ ︷︷ ︸
:=LA

+Eq[log p(X|z, c,T )]︸ ︷︷ ︸
:=LX

+Eq[log p(z|c,π)] + Eq[log p(c|ρ)]− Eq[log q(z, c)]

The last four terms are straightforward and can all be evaluated in linear time w.r.t. the
number of nodes and dimensions.

Eq[log p(c|ρ)] =
∑

i

3∑

m=0

φim log(ρm)

Eq[log p(z|c,π)] =
∑

i

∑

k

ψik(1− φi3) log(πk)

Eq[log q(z, c)] =
∑

i

∑

k

ψik log(ψik) +
∑

i

3∑

m=0

φim log(φim)

LX =
∑

i

∑

k

ψikφ
X
i0

(∑

d

Xid log(Tdk) + (1−Xid) log(1− Tdk)
)

+
∑

i

φXi1D log(0.5)

Proof of Eq. 6.7. We will show that
∑

iφ
A
i0θi

∑
lψilηkl = 1,∀k. We are using this

identity only in the E-step of our variational EM. That means we can substitute our
MLE solution for the parameters that we got in the M-step. We start by plugging in the
solution for ηkl and substituting DG

k , we get:

∑

i

φAi0θi
∑

l

ψilηkl =
∑

l

ψil
∑

i

φAi0θi
mkl

DG
k D

G
l

=

∑

l

∑

i

φAi0θiψil
mkl(∑

iφ
A
i0θiψik

)(∑
iφ

A
i0θiψil

) =

∑
lmkl∑

iφ
A
i0θiψik

Figure E.3: Ego graph of a partial anomaly in attribute space for DBLP. Colors indicate clusters.
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Substituting θi and mkl and taking advantage of
∑

k ψkC = C for any constant C:

∑
lmkl∑

iφ
A
i0θiψik

=

∑
l

∑
i 6=jAijφ

A
i0φ

A
j0ψikψjl∑

iφ
A
i0(
∑

j 6=iAijφAj0)ψik
= (E.1)

∑
lψjl

∑
i 6=jAijφ

A
i0φ

A
j0ψik∑

i 6=jAijφAi0φ
A
j0ψik

=

∑
i 6=jAijφ

A
i0φ

A
j0ψik∑

ijAijφAi0φ
A
j0ψik

= 1

E-Step. Following [169] (Ch. 10) the optimal variational distribution is

q∗(zi) ∝ exp(Eq\zi [log p(A,X,z, c | . . .) (E.2)

Thus, to derive the optimal variational parameters ψik for the cluster assignments, we
have to keep only the terms of the ELBO that include ψik and disregard the constants.
After rearranging we obtain (for the general case of graphs including potential self-loops):

ψnew
ik ∝ exp

(
φAi0

[ ∑

j∈Ni
φAj0

∑

l

ψjl log(θiθjηkl) (E.3)

− θi(1− θiφAi0
∑

l

ψilηkl)−
1

2
θ2
i ηkk +Aii log(

1

2
θ2
i ηkk)

]

+ φXi0

[∑

d

Xid log(Tdk) + (1−Xid) log(1− Tdk)
]

+ (1− φi3) log(πk)

)

When the graph contains no self-loops (Aii = 0) we obtain Eq. 6.8. Similarly, for the
anomaly assignments φim, when including the self-loops, the variables φ̂Ai0 and φ̂Ai1
become:

φ̂Ai0 =
∑

j∈Ni
φAj0

∑

kl

ψikψjl log(θiθjηkl)− θi(1− θiφAi0
∑

kl

ψikψilηkl) (E.4)

+
∑

j∈Ni
φAj1 log(θ̃jηbg)− ηbg(θ̃B − φAi1θ̃i)−

1

2
θ2
i

∑

k

ψikηkk +
∑

k

ψikAii log(
1

2
θ2
i ηkk)

φ̂Ai1 = log(θ̃iηbg)
∑

j∈Ni
φAj0 − ηbgθ̃i(g − φAi0) +

∑

j∈Ni
φAj1 log(θ̃iθ̃jηbb) (E.5)

− θ̃iηbb(θ̃B − φAi1θ̃i)−
1

2
θ̃2
i ηbb +Aii log(

1

2
θ̃2
i ηbb)
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ELBO Reformulation for the M-Step. We will simplify LA. From the definition:

LA =
∑

i<j

∑

kl

ψikψjlφ
A
i0φ

A
j0Aij log(θiθjηkl)−ψikψjlφAi0φAj0θiθjηkl (E.6)

+
∑

i<j

φAi1φ
A
j0Aij log(θ̃iηbg)− φAi1φAj0θ̃iηbg

+
∑

i<j

φAi0φ
A
j1Aij log(θ̃jηbg)− φAi0φAj1θ̃jηbg

+
∑

i<j

φAi1φ
A
j1Aij log(θ̃iθ̃jηbb)− φAi1φAj1θ̃iθ̃jηbb

+
∑

i

∑

k

ψikφ
A
i0Aii log(

1

2
θ2
i ηkk)−ψikφAi0

1

2
θ2
i ηkk

+
∑

i

φAi1Aii log(
1

2
θ̃2
i ηbb)− φAi1

1

2
θ̃2
i ηbb

Looking at terms involving θ in Eq. E.6, and taking advantage of symmetry, we write:

Lθ =
∑

i 6=j

∑

kl

ψikψjlφ
A
i0φ

A
j0Aij log(θi) +

1

2

∑

i 6=j

∑

kl

ψikψjlφ
A
i0φ

A
j0Aij log(ηkl) (E.7)

− 1

2

∑

i 6=j

∑

kl

ψikψjlφ
A
i0φ

A
j0θiθjηkl +

∑

i

∑

k

ψikφ
A
i0Aii log(

1

2
θ2
i ηkk)−ψikφAi0

1

2
θ2
i ηkk

Which we can rewrite using the definitions of mkl and DG
k :

Lθ =
∑

i

log(θi)φ
A
i0d

G
i +

1

2

∑

kl

mkl log(ηkl)−
1

2
DG
k D

G
l ηkl (E.8)

+
1

2

∑

i

∑

kl

ψikψilθ
2
iφ

A
i0(φAi0ηkl − ηkk) +

∑

i

φAi0Aii log(
1

2
θ2
i )

Taking advantage of symmetry we can rewrite terms involving θ̃:

L
θ̃

=
∑

i 6=j
φAi1φ

A
j0Aij log(θ̃i) + φAi1φ

A
j0Aij log(ηbg)− φAi1φAj0θ̃iηbg (E.9)

+
∑

i 6=j
φAi1φ

A
j1Aij log(θ̃i) +

1

2
φAi1φ

A
j1Aij log(ηbb)− 1

2
φAi1φ

A
j1θ̃iθ̃jηbb

+
∑

i

φAi1Aii log(
1

2
θ̃2
i ηbb)− φAi1

1

2
θ̃2
i ηbb

Which we can then rewrite using the definitions of mbg, mbb as:

L
θ̃

=
∑

i

∑

j∈Ni
φAi1φ

A
j0 log(θ̃i) +mbg log(ηbg)−

∑

i 6=j
φAi1φ

A
j0θ̃iηbg

∑

i

∑

j∈Ni
φAi1φ

A
j1 log(θ̃i)

1

2
mbb log(ηbb)− 1

2

∑

i 6=j
φAi1φ

A
j1θ̃iθ̃jηbb +

∑

i

φAi1Aii log(
1

2
θ̃2
i ηbb)− φAi1

1

2
θ̃2
i ηbb (E.10)
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Plugging in DB and further simplifying we arrive at:

L
θ̃

=
∑

i

φAi1di log(θ̃i) +mbg log(ηbg) +
1

2
mbb log(ηbb)− 1

2
DBDBηbb (E.11)

−DB
∑

i

(
∑

j

φAj0 − φAi0)ηbg +
1

2

∑

i

θ̃2
i ηbbφ

A
i1(φAi1 − 1) +

∑

i

φAi1Aii log(
1

2
θ̃2
i )

Joining the terms regarding θ and θ̃, plugging in the definition of g and rearranging
we get the complete log-likelihood w.r.t. to graph space:

LA =
1

2

∑

kl

mkl log(ηkl)−
1

2
DG
k D

G
l ηkl +

∑

i

φAi0 log(θi)d
G
i (E.12)

+
1

2

∑

i

∑

kl

ψikψilθ
2
iφ

A
i0(φAi0ηkl − ηkk) +

∑

i

φAi0Aii log(
1

2
θ2
i )

+
∑

i

φAi1di log(θ̃i) +mbg log(ηbg) +
1

2
mbb log(ηbb)− 1

2
DBDBηbb

−DB · g · ηbg +
∑

i

θ̃iφ
A
i1(1− φAi1)(ηbg −

1

2
ηbb) +

∑

i

φAi1Aii log(
1

2
θ̃2
i )

For the case that the observed graph has no self-loops (i.e. Aii = 0), we obtain the
simplified Eq. 6.14.

MLE/MAP of the parameters. Before we solve for the MLE of the parameters we
have to include the identifiability constraints

DG
k

!
=
∑

i

(dGi + 2Aii)ψikφ
A
i0, DB !

=
∑

i

(di + 2Aii)φ
A
i1 (E.13)

Our log-likelihood function has two additional terms

L = L −
∑

k

λk(D
G
k −

∑

i

(dGi + 2Aii)φikφ
A
i0)− λ(DB −

∑

i

(di + 2Aii)φ
A
i1) (E.14)

where λk and λ are Lagrangian multipliers. Similarly as above, focusing on graphs with
Aii = 0 we obtain the desired constraints.

Since θi are independent of each other we can find the MLE for each of them separately.

Taking the terms involving θi and setting the derivative to 0 we get:
∂Lθi
∂θi

=
φAi0d

G
i

θi
−∑

k λkψikφ
A
i0. Solving the N + K system of equations we get the following solution:

θi = dGi ,∀i and λk = 1, ∀k. Similarly, for θ̃i we have
∂L

θ̃i

∂θ̃i
=

φAi1di

θ̃i
− λφAi1. Solving the

N + 1 system of equations we get λ = 1 and θ̃i = di, ∀i.
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For the edge generating parameters we have:

∂Lηkl
∂ηkl

=
mkl

ηkl
−DG

k D
G
l = 0 =⇒ ηkl =

mkl

DG
k D

G
l

∂Lηbg
∂ηbg

=
mbg

ηbg
−DBg = 0 =⇒ ηbg =

mbg

DBg

∂Lηbb
∂ηbb

=
1

2

mbb

ηbb
− 1

2
DBDB = 0 =⇒ ηbb =

mbb

DBDB

For the topics we get:
∂LTdk
∂Tdk

=
∑

iψikφ
X
i0

(
Xid
Tdk
− 1−Xid
Tdk−1

)
= 0 =⇒ Tdk =

∑
i rikXid

Rk
. For

the cluster probabilities we introduce Lagrangian multipliers to enforce
∑

k πk = 1 we get

for πk =
∑
i(1−φi3)ψik+αk∑
i(1−φi3)+

∑
k αk

. Finally, for ρm and also introducing Lagrangian multipliers to

enforce
∑4

m=0 ρm = 1 we have: ρm =
∑
i φim+βm

N+
∑
m βm

.

E.3 Limit-case Analysis

In the following we justify the simplification of the term LA, by considering the limit
cases when the graph grows. As we will see, both terms

∑
i θ̃iφ

A
i1(1− φAi1)(ηbg − 1

2ηbb)
and 1

2

∑
i

∑
klψikψilθ

2
iφ

A
i0(φAi0ηkl − ηkk) become negligible. Recap the definition of LA:

LA =
1

2

(∑

kl

mkl log(ηkl)−DG
k D

G
l ηkl +mbb log(ηbb) +DBDBηbb

)
(E.15)

+
1

2

∑

i

∑

kl

ψikψilθ
2
iφ

A
i0(φAi0ηkl − ηkk) +mbg log(ηbg)− gDBηbg

+
∑

i

φAi0 log(θi)d
G
i + φAi1 log(θ̃i)di +

∑

i

θ̃iφ
A
i1(1− φAi1)(ηbg −

1

2
ηbb)

After carefully rearranging the terms ηkl, ηbg, and ηbb, we obtain:

LA =
1

2

(∑

kl

mkl log(ηkl)−
∑

i

ψikθiφ
A
i0ηkl(D

G
l −ψilθiφAi0) (E.16)

+mbb log(ηbb) +
∑

i

θ̃iφ
A
i1ηbb

(
DB − (1− φAi1)

))

+
1

2

∑

i

∑

k

ψikθ
2
iφ

A
i0(−ηkk) +mbg log(ηbg)−

∑

i

θ̃iφ
A
i1ηbg

(
g − (1− φAi1)

)

+
∑

i

φAi0 log(θi)d
G
i + φAi1 log(θ̃i)di)
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Splitting the
∑

kl into
∑

k 6=l and
∑

k, we can also rearrange the terms ηkk:

LA=
1

2

(∑

k 6=l
mkl log(ηkl)−

∑

i

ψikθiφ
A
i0ηkl(D

G
l −ψilθiφAi0) +

∑

k

mkk log(ηkk)

−
∑

i

ψikθiφ
A
i0ηkk(D

G
k −ψikθiφAi0 + θi) +mbb log(ηbb) +

∑

i

θ̃iφ
A
i1ηbb

(
DB − (1− φAi1)

))

+mbg log(ηbg)−
∑

i

θ̃iφ
A
i1ηbg

(
g − (1− φAi1)

)
+
∑

i

φAi0 log(θi)d
G
i + φAi1 log(θ̃i)di)

Which can further be written as:

LA=
1

2

(∑

k 6=l
mkl log(ηkl)−

∑

i

ψikθiφ
A
i0ηklD

G
l (1− ψilθiφ

A
i0

DG
l

) +
∑

k

mkk log(ηkk)

−
∑

i

ψikθiφ
A
i0ηkkD

G
k (1− ψikθiφ

A
i0

DG
k

+
θi

DG
k

) +mbb log(ηbb) +
∑

i

θ̃iφ
A
i1ηbbD

B(1− 1−φAi1
DB

)

)

+mbg log(ηbg)−
∑

i

θ̃iφ
A
i1ηbgg(1− 1− φAi1

g
) +

∑

i

φAi0 log(θi)d
G
i + φAi1 log(θ̃i)di)

Introducing the abbreviation ail = ψilθiφ
A
i0 and noticing that 1− φAi1 = φAi0, we have:

LA =
1

2

(∑

k 6=l
mkl log(ηkl)−

∑

i

ψikθiφ
A
i0ηklD

G
l (1− ail

DG
l

)

︸ ︷︷ ︸
(1)

+
∑

k

mkk log(ηkk)

−
∑

i

ψikθiφ
A
i0ηkkD

G
k (1− aik

DG
k

+
θi

DG
k

)

︸ ︷︷ ︸
(2)

+mbb log(ηbb) +
∑

i

θ̃iφ
A
i1D

Bηbb (1− φ
A
i0

DB
)

︸ ︷︷ ︸
(3)

)

+mbg log(ηbg)−
∑

i

θ̃iφ
A
i1ηbgg (1− φ

A
i0

g
)

︸ ︷︷ ︸
(4)

+
∑

i

φAi0 log(θi)d
G
i + φAi1 log(θ̃i)di)

For the limit case it is sufficient to consider the terms (1)-(4). Note that if we replace
each of the terms in the underbraces (1) through (4) with the value of 1 we obtain the
simplification. Thus, if we can show that (1)-(4) converge to 1 in the limit case, the
approximation error becomes negligible. As we will see this holds for almost all the cases
– and in the cases where it does not hold, the two terms

∑
i θ̃iφ

A
i1(1− φAi1)(ηbg − 1

2ηbb)
and 1

2

∑
i

∑
klψikψilθ

2
iφ

A
i0(φAi0ηkl − ηkk) vanish due to another reason.

We start with the simplest case (4): Since g =
∑N

i=1φ
A
i0, the term (4) obviously

approaches 1. More formally, we can distinguish two cases: First, if limN→∞ g = ∞,

then clearly (
φAi0
g ) → 0 since φAi0 is bounded by 1 and the denominator grows faster.
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Second, if limN→∞ g = c for some constant c, the series converges. Thus, it has to hold

limi→∞φAi0 = 0. And therefore again (
φAi0
g )→ 0.1

The exactly same argumentation holds for the term (1): We have DG
l =

∑N
i=1 ail. Either

it holds limN→∞DG
l =∞, in which case, in the fraction the denominator grows faster

than the nominator, i.e. the fraction becomes 0. Or we have limN→∞DG
l = c for some

constant c. The series converges and, thus, limi→∞ ail = 0. In this case the nominator
approaches 0. In both cases the fraction approaches 0 and therefore (1) approaches 1.

Let us now consider the term (3): Recap that DB =
∑N

i=1 θ̃iφ
A
i1. In the first case, if

limN→∞DB =∞ then (3) approaches 1. Note again, that this result combined with the
above result for (4) means that we can safely drop the term

∑
i θ̃iφ

A
i1(1−φAi1)(ηbg− 1

2ηbb).

In the second case, limN→∞DB = c for some constant c. Then limi→∞ θ̃iφAi1 = 0 has

to hold. Accordingly, almost all terms in
∑

i θ̃iφ
A
i1(1− φAi1)(ηbg − 1

2ηbb) evaluate to zero
(note that the variables are all bounded by 1). We can again safely drop the term.

Finally consider the term (2): Recap that DG
k =

∑N
i=1 aik = ψikθiφ

A
i0. Again, for

the case limN→∞DG
k = ∞ the overall term clearly approaches 1. Second, for the case

limN→∞DG
k = c, the terms aik approach 0. The same argument as for (3)+(4) can be

used: in combination with the result for (1), the term 1
2

∑
i

∑
klψikψilθ

2
iφ

A
i0(φAi0ηkl− ηkk)

can be dropped since almost all elements evaluate to zero.
Overall, in all cases (i.e. independent whether the individual series converge or diverge),

the resulting error we make by the approximation approaches zero. Finally, note that
is not possible that all series converge at the same time. At least one of the series has
to diverge when the graph grows since either infinitely many good or infinitely many
anomalous nodes have to be added (or both). This means that the overall term LA in the
simplified version also has to diverge. Thus, while this term grows, the error gets smaller.

1Note that in general the following holds: If limN→∞
∑N
i=1 xi = c for some constant c (i.e. the series

converges), then limi→∞ xi = 0 has to hold.
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F.1 Label Propagation and Feature Propagation Certificates

Label propagation is a classic method for semi-supervised node classification, and there
have been many variants proposed over the years [36–38]. The general idea is to find a
classification function F such that the training nodes are predicted correctly and the
predicted labels change smoothly over the graph. We can express this formally via the
following optimization problem [253]:

min
F

{ N∑

i=1

N∑

j=1

Aij

∥∥∥dσ−1
i Fi∗ − dσ−1

j Fj∗
∥∥∥

2
+ µ

N∑

i=1

d2σ−1
i ‖Fi∗ −Hi∗‖2

}
(F.1)

where, di is the node degree, µ is a regularization parameter trading off smoothness and
predicting the labeled nodes correctly, σ is a hyperparameter, andH is a matrix where the
rows are one-hot vectors for the training nodes and zero vectors otherwise (i.e. Hvc = 1
if {v ∈ VL ∧ yv = c} and Hvc = 0 otherwise). The resulting matrix F ∈ RN×K is the
learned classification function, i.e. the value Fvc gives us the (unnormalized) probability
that node v belongs to a class c, and we can make predictions by taking the argmax.
The problem can be solved in closed form (even though in practice one would use power

iteration) and the solution is: F = (1− α)
(
IN − αD−σADσ−1

)−1
H for α = 2/(2 + µ).

We can see that setting σ = 1, i.e. the standard Laplacian variant [38] we obtain:

F = (1− α)
(
IN − αD−1A

)−1
H = ΠH (F.2)

From Eq. F.2 we have that Label Propagation is very similar to our π-PPNP: instead of
diffusing logits which come from a neural network it propagates the one-hot vectors of
the labeled nodes instead. From here onwards we apply our proposed method without
any modifications by simply providing a different H matrix in Problem 7.1.

We can also certify the feature propagation (FP) approach of which there are several
variants: e.g. the normalized Laplacian FP [180], or a recently proposed equivalent model
termed simple graph convolution (SGC) [151]. Feature propagation is carried out in two
steps: (i) the node features are diffused to incorporate the graph structure Xdiff = ΠX,
and (ii) a simple logistic regression model is trained using the diffused features Xdiff

and subset of labelled nodes. Now, let the W ∈ RD×K be the weights corresponding
to a trained logistic regression model. The predictions for all nodes are calculated as
Y = softmax = (XdiffW ) = softmax(ΠXW ) = softmax(ΠH) with H = XW . By
simply providing a different matrix H in Problem 7.1 we can certify feature propagation.
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F.2 Further Experiments

In Fig. F.1a we show the percent of certifiable robust nodes for different local budgets on
the Pubmed graph (N = 19, 717, |E| = 44, 324, D = 500,K = 3) [29] demonstrating that
our method scales to large graphs. Similar to before (Fig. 7.3a), the models are more
robust to attackers that can only remove edges. In Fig. F.1b we analyze the robustness
of Citeseer w.r.t. increasing global budget. The global budget constraints are again able
to successfully restrict the attacker. The global budget makes a larger difference when
the attacker has a larger local attack strength (s = 10). In Fig. F.1c we show that the
robust training increases the percent of certifiably robust nodes. Comparing to Fig. 7.4c
we conclude that training with a larger local attack strength (s = 10 as opposed to s = 6)
makes the model more robust overall while the predictive performance (F1 score) is the
same in both cases.

We also investigate certifiable accuracy. The ratio of nodes that are both certifiably
robust and at the same time have a correct prediction is a lower bound on the overall
worst-case classification accuracy since the worst-case perturbation can be different for
each node. We plot this ratio in Fig. F.2a for Citeseer and see that the certifiable accuracy
is relatively close to the clean accuracy when the budget is restrictive, and it decreases
gracefully as we in increase the budget.

To show how the runtime scales with number of nodes and number of edges we randomly
generate SBM graphs of increasing size, and we set all edges in the generated graphs as
fragile (F = E). In Fig. F.2b we see the mean runtime across five runs for local budget
(VI algorithm). Even for graphs with more than 10K nodes the certificate runs in a few
seconds. Similarly, Fig. F.2c shows the runtime for global budget (RLT relaxation). We
see that the runtime scales linearly with the number of edges. Furthermore, the overall
runtime can be easily reduced by: (i) stopping early whenever the worst-case margin
becomes negative, (ii) using Gurobi’s distributed optimization capabilities to reduce solve
times, and (iii) having a single shared preprocessing step for all nodes.
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Figure F.1: (a,b) The local and global budget successfully restrict the attacker. Models are
more robust to removing edges than both removing and adding edges. (c) Our robust training
successfully increases the percentage of certifiably robust nodes.
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Figure F.2: Further experiments on certifiable accuracy (a) and runtime (b-c).

F.3 Proofs

Proof. Proposition 7.1. Problem 7.2 can be formulated as an average cost infinite horizon
Markov decision problem, where at each node v we decide which subset of Fv edges are
active, i.e. Av = P(Fv) where P(Fv) is the power set of Fv and the reward depends only
on the starting state but not on the action and the ending state r(v, a) = rv,∀a ∈ Av.
From the average cost infinite horizon optimality criterion as shown by Fercoq et al. [201]
we have:

lim
T→∞

1

T
E
( T−1∑

t=0

r
(
Xt, νt

))
= lim

T→∞
1

T
E
( T−1∑

t=0

rXt,jνj
(
Xt

))
=
∑

i,j∈[n]

πiPijri,j (F.3)

where Xt ∈ S is a random variable denoting the state of the system at the discrete
time t ≥ 0, and ν(ht) is deterministic control strategy determining a sequence of actions
and is a function of the history ht = (X0, ν0, . . . , Xt−1, νt−1, Xt). For this problem there
exists a stationary (feedback) strategy ν(Xt) that does not depend on the history such
that for all t ≥ 0, νt(ht) = ν(Xt). Eq. F.3 follows from the ergodic theorem for Markov
chains. Here the reward is more general and can be set depending on the edge (i, j).
Letting rij = ri, ∀j and plugging it in Eq. F.3 we get that the optimality criterion equals
rTπ since the transion matrix P = D−1A is row-stochastic. As shown by Hollanders
et al. [202] policy iteration is well suited to optimize PageRank and our Algorithm 7.1
corresponds to policy iteration with local budget for the above MDP. For a fixed damping
factor α (which is our case) policy iteration always converges in less iterations than value
iteration [205] and does so in weakly polynomial time that depends on the number of
fragile edges [202].

Proof. Proposition 7.2. Eq. 7.6b and Eq. 7.6c correspond to the LP of the unconstrained
MDP on the auxiliary graph. Intuitively, the variable xv maps to the PageRank score of
node v, and from the variables x0

ij/x
1
ij we can recover the optimal policy: if the variable

x0
ij (respectively x1

ij) is non-zero then in the optimal policy the fragile edge (i, j) is turned
off (respectively on). Since there exists a deterministic optimal policy, only one of them is
non-zero but never both. Eq. 7.6d corresponds to the local budget. Remarkably, despite
the variables x0

ij/x
1
ij not being integral, since they share the factor xi

di
from Eq. 7.6c
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we can exactly count the number of edges that are turned off or on using only linear
constraints. Eq. 7.6e and Eq. 7.6f enforce the global budget. From Eq. 7.6e we have
that whenever x0

ij is non-zero it follows that β1
ij = 0 and β0

ij = 1 since that is the only

configuration that satisfies the constraints (similarly for x1
ij). Intuitively, this effectively

makes the β0
ij/β

1
ij variables “counters” and thus, we can utilize them in Eq. 7.6f to enforce

the total number of perturbed edges to not exceed B.

We also have to show that solving the MDP on the auxiliary graph solves the same
problem as the MDP on the original graph. Recall that whenever we traverse any edge
from node i we obtain reward ri. On the other hand, whenever we traverse an edge from
the auxiliary node vij corresponding to a fragile edge (i, j) to the node i (action “off”)
we get negative reward −ri, and the transition probability is 1. Intuitively, traversing
back and forth between node i and node vij does not change the overall reward obtained
(since ri and −ri cancel out). That is, we have the same reward as in the original graph
with the edge (i, j) excluded. Similarly, when we traverse the edge from auxiliary node
vij to the node j (action “on”) we obtain 0 reward, i.e. no additional reward is gained
and the transition happens with probability α. Therefore, the overall reward is the same
as if the fragile edge (i, j) would be present in the original graph.

Formally, for any given arbitrary policy for the unconstrained MDP on the auxiliary
graph, let kv = |{x∗0vj | x∗0vj > 0}| be the current number of “off” fragile edges for node v
and let Fv+ be the current set of “on” fragile edges. From Eq. 7.6b and Eq. 7.6c we have:

xv − α
∑

(i,v)∈Ef∪Fv+

xid
−1
i − kvxvd

−1
v = (1− α)zv (F.4a)

xv − kvxvd−1
v = α

∑

(i,v)∈Ef∪Fv+

xid
−1
i + (1− α)zv (F.4b)

xv(1− kvd−1
v ) = π(z)v (F.4c)

where we can see that π(z)v is the personalized PageRank for node v for a perturbed
original graph corresponding to the current policy, i.e. the graph where all (v, j) ∈ Fv+
for all v ∈ V are turned “on”. Plugging in Eq. F.4c into the objective from Eq. 7.6a and
using Eq. 7.6c we have

max
∑

v∈V
xvrv −

∑
(i,j)∈F

x0
ijri = max

∑
v∈V

π(z)vrv

which exactly corresponds to the objective of Problem 7.2. Since the above analysis
holds for any policy it also holds for the optimal policy, and therefore solving the
unconstrained MDP on the auxiliary graph is equivalent to solving the unconstrained
MDP on the original graph. Combining everything together we have that solving the
QCLP is equivalent to solving Problem 7.2.

Proof. Proposition 7.3. Using the reformulation-linearization technique (RLT) we relax
the quadratic constraints in Eq. 7.6e. In general, from RLT it follows that we add the
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following four linear constraints for each pairwise quadratic constraint mimj = Mij

Mij −mimj −mjmi ≥ −mimj (F.5a)

Mij −mjmi −mimj ≤ −mjmi (F.5b)

Mij −mimj −mjmi ≤ −mimj (F.5c)

Mij −mimj −mjmi ≥ −mimj (F.5d)

where mi ≤ mi ≤ mi are lower and upper bounds for mi.
From Eq. 7.6e we see that our quadratic terms always equal to 0 (Mij = 0), and

we have the following upper β0
ij = β1

ij = 1, and x1
ij = x0

ij = xi
di
> 0, and lower bounds

β0
ij = β1

ij = x1
ij = x0

ij = 0. Plugging these upper/lower bounds into Eq. F.5 for our

quadratic terms x0
ijβ

1
ij = 0 and x1

ijβ
0
ij = 0 we see that the constraints arising from

Eq. F.5a, Eq. F.5b and Eq. F.5c are always trivially fulfilled. Thus, we are left with the
constraints arising from Eq. F.5d which for our problem are:

x0
ij + x0

ijβ
1
ij ≤ x0

ij and x1
ij + x1

ijβ
0
ij ≤ x1

ij (F.6)

There are two cases to consider:

• Case 1:The edge is turned “off”. We have x0
ij = xid

−1
i and x1

ij = 0.

x0
ij + x0

ijβ
1
ij ≤ x0

ij =⇒ x0
ij(x

0
ij)
−1 + β1

ij ≤ 1 =⇒

=⇒ x0
ij(x

0
ij)
−1 ≤ β0

ij =⇒ x0
ij(xid

appproofs−1
i )−1 ≤ β0

ij

And trivially: x1
ij + x1

ijβ
0
ij ≤ x1

ij =⇒ x1
ijβ

0
ij ≤ x1

ij =⇒ β0
ij ≤ 1.

• Case 2: The edge is turned “on”. We have x1
ij = xid

−1
i and x0

ij = 0.

x1
ij + x1

ijβ
0
ij ≤ x1

ij =⇒ x1
ij(x

1
ij)
−1 + β0

ij ≤ 1 =⇒ x1
ij(xid

−1
i )−1 ≤ β1

ij

And trivially: x0
ij + x0

ijβ
1
ij ≤ x0

ij =⇒ x0
ijβ

1
ij ≤ x0

ij =⇒ β1
ij ≤ 1

The above two cases are disjoint and we can plug β0
ij and β1

ij into Eq. 7.6f to obtain
Eq. 7.7.

F.4 SDP Relaxation

In this section we show that the SDP-relaxation [78] based on semidefinite programming
is not suitable for our problem since the constraints are trivially fulfilled. For convenience,
we rename the variables that participate in the quadratic constraints (β0

ij , x
0
ij , . . . ) to

(y1, y2, . . . ). The SDP relaxation replaces the product terms yiyj (e.g. x0
ijβ

1
ij) by an

element Yij of an n× n matrix Y and adds the constraint Y − yyT � 0, where y is the
vector of variables. Since in the QCLP there are no terms of the form yiyi corresponding
to the elements on the diagonal, we can make the diagonal elements Yii arbitrarily high
to make the matrix Y − yyT positive semidefinite and trivially satisfy the constraint.
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F.5 Hardness of PageRank Optimization with Global Budget

The Link Building problem [203, 254] aims at maximizing the PageRank of a single given
node v by selecting a set of k optimal edges that point to node v. We use the fact that
the Link Building problem is a special case of Problem 7.2 to derive our hardness result.

Problem F.1 (Link Building [203]). Given a graph G = (V, E), node v ∈ V, budget
k ∈ Z, and any fixed α ∈ (0, 1). Find a set S ⊆ V \ {v} with |S| = k maximizing
πG̃,α(e/n)v in the perturbed graph G̃ = (V, Ẽ := Ef ∪ (S ×{v})), where e/n is the teleport
vector for the uniform distribution.

Proposition F.1. Problem 7.2 with global budget is W[1]-hard and allows no FPTAS.

Proof. Setting the teleport vector to the uniform distribution z = e/n, the reward vector
to r = ev, the set of fragile edges to F = (V \ {v})×{v}, the set of fixed edges to Ef = E ,
and configuring the budgets as bv = 1, ∀v and B = k we see that the Problem F.1 is a
special case of Problem 7.2. Note that, since we can always increase πv by adding edges
pointing to v, the x ≤ B global constraint is equivalent to the x = B constraint where x
is the expression on the left-hand side in Eq. 7.6f.

Olsen [203] shows that the Link Building problem is W[1]-hard and admits no FPTAS
by reducing it to the Regular Independent Set problem which is W[1]-complete [255].
Therefore, Problem 7.2 with global budget is also W[1]-hard and allows no FPTAS since
k is preserved in the reduction.

F.6 Alternative Upper Bound

As an alternative upper bound for xv we can use the following approach: Assume we
have given a fixed set of edges Ef where every node has at least one fixed edge. From
Proposition 7.2 we have xv = (1− kvd−1

v )−1πv. To maximize this value, we can simply
set π(z)v = 1 (since this is the maximal PageRank score achievable) and kv = |Fv|. Since
every node has at least one fixed edge, we have dv > kv, i.e. the inverse is always defined.

F.7 Experimental Details

We preprocess each graph and keep only the nodes that belong to largest connected
component. The resulting graph for Cora-ML has N = 2, 810, |E| = 10, 138, for Citeseer
N = 2, 110, |E| = 7, 336 and for Pubmed N = 19, 717, |E| = 88, 648. Unless otherwise
specified we set α = 0.85. We compute the certificates with respect to the predicted class
label, i.e. we set yt in m∗yt,∗(t) to the predicted class for node t using the clean graph.
Experiments are run on Nvidia 1080Ti GPUs using CUDA and TensorFlow and on Intel
CPUs. We use the GUROBI solver to solve the linear programs.

We configure our π-PPNP model with one hidden layer and choose a latent dimension-
ality of 64. We randomly select 20 nodes per class for the training/validation set, and use
the rest for the testing. The weights θ are regularized with the L2 norm with strength of
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5e− 2. We train for a maximum of 10, 000 epoch with a fixed learning rate of 1e− 2 and
patience of 100 epochs for early stopping. We train the model for five different random
splits and report the averaged results.

When reporting results for local budget (e.g. Fig. 7.3, Fig. 7.4c, Fig. F.1a, Fig. F.1c)
we evaluate the certifiable robustness for all test nodes, since as we discussed in Sec. 7.4.3
we only need to run Algorithm 7.1 K×K times to obtain certificates for all nodes. When
reporting results for global budget (e.g. Fig. 7.4a and Fig. F.1b) we randomly select 150
test nodes for which we compute the certificate. For all results regarding runtime (e.g.
Fig. 7.4b, Fig. F.2b, Fig. F.2c) we report average time across five runs on a machine with
20 CPU cores.
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Discrete Data

G.1 Proofs

Proof. Proof (Proposition 8.1). First we show that the regions are disjoint. Let z ∈ Rra,rdi ,
and z ∈ Rra,rdj for some i 6= j. From the definition of a region it follows that ‖xC−zC‖0 = i
and ‖xC − zC‖0 = j. This can be true only if i = j which is a contradiction. Therefore, z
cannot belong to two different regions. For any z and x, ‖xC − zC‖0 ∈ {0, . . . , ra+rd}
since the ‖ · ‖0 (Hamming) distance between two |C|-dimensional vectors has the range
{0, . . . , |C|}. Thus, any z must land in some region Rra,rdq with q ≤ |C|, and for any
q > |C| = ra+rd we have Rra,rdq = ∅. Therefore, X =

⋃q=∞
q=0 R

ra,rd
q =

⋃q=ra+rd
q=0 Rra,rdq .

Proof. Proof (Proposition 8.2). For any x, x̃ ∈ Sra,rd(x), and Rra,rdq :

Pr
(
φ(x) ∈ Rra,rdq

)
= Pr

(
‖xC − φ(x)C‖0 = q

)
=

Pr
(∑

i∈C
I[xi 6= φ(x)i] = q

)
= Pr

(∑

i∈C
εi = q

)
(G.1)

where εi ∼ Ber(p = pxi− p
(1−xi)
+ ). The first equality in Eq. G.1 follows from the definition

of a region, and the last equality follows from the definition of φ(·). Since x ∈ Rra,rdq

we have
∑

i∈C xi = rd and
∑

i∈C 1 − xi = ra. Therefore,
∑

i∈C εi ∼ Q where Q =
PB([p+, ra][p−, rd]).

Proof. Proof (Proposition 8.3). For any z ∈ Rra,rdq , by definition it holds ‖xC − zC‖0 = q.
Let q− =

∑d
i=1 I(xi − 1 = zi) and q+ =

∑d
i=1 I(xi + 1 = zi), so q = q+ + q−. We have:

ηra,rdq =
Pr(φ(x) = z)

Pr(φ(x̃) = z)
=

∏
i∈C̃ Pr(φ(x)i=zi)

∏
j∈C Pr(φ(x)j =zj)∏

i∈C̃ Pr(φ(x̃)i=zi)
∏
j∈C Pr(φ(x̃)j =zj)

=

∏
j∈C Pr(φ(x)j =zj)∏
j∈C Pr(φ(x̃)j =zj)

=
p
q−
− (1− p−)rd−q−pq++ (1− p+)ra−q+

p
ra−q+
− (1− p−)q+p

rd−q−
+ (1− p+)q−

= pq−ra− (1− p−)rd−qpq−rd+ (1− p+)ra−q

=

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra

Where the second equality holds since φ is independent per dimension, and the third
equality holds since x and x̃ agree on C̃. Plugging in the definition of φ and rearranging
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we obtain ηra,rdq . Thus, the ratio is constant for any z ∈ Rra,rdq . Now we show that the
ratio is a monotonic function of q:

ηra,rdq =

[
p+

1− p−

]q−rd[ p−
1− p+

]q−ra
= C ·

[
p+p−

p+p− + 1− (p+ − p−)︸ ︷︷ ︸
:=u

]q
(G.2)

C =
[ p+p−

(1−p+)(1−p−)

]−(ra+rd) ≥ 0 is a non-negative constant that does not depend on q

since p+, p− ∈ [0, 1], and hence does not change the monotonicity. We have three cases:
(i) if p+ + p− < 1 then u > 0 in the denominator of Eq. G.2, the ratio is < 1 and a
decreasing function of q; (ii) if p+ + p− = 1 then u = 0 and the ratio becomes constant
C · 1q; (iii) if p+ +p− > 1 then u < 0, the ratio is > 1 and an increasing function of q.

G.2 Multi-class Certificates

For the multi-class certificate our goal is to solve the following optimization problem:

µx,x̃(p1(x), . . . , pY(x), y∗) (G.3)

= min
h∈H

Pr(h(φ(x̃)) = y∗)−max
y 6=y∗

Pr(h(φ(x̃)) = y)

s.t. Pr(h(φ(x)) = y∗) = py∗

and Pr(h(φ(x)) = y) = py, y 6= y∗

where y∗ is the (predicted or ground-truth) class we want to certify. Similar to before
computing py(x) exactly is difficult, thus we compute a lower bound py∗(x) for y∗ and an

upper bound py(x) for all other y. Since we are conservative in the estimates, the solution
to Eq. G.3 using these bounds yields a valid certificate. Estimating the lower and upper
bounds from Monte Carlo samples such that they hold simultaneously with confidence
level α requires some care. Specifically, we have to correct for multiple testing error.
Similar to Jia et al. [256] we estimate each bound individually using a Clopper-Pearson
Bernoulli confidence interval with confidence α

C where C = |Y| is the number of classes
and use Bonferroni correction to guarantee with confidence of α that the estimates hold
simultaneously.

The problem in Eq. G.3 is valid if py∗(x) + pỹ(x) < 1. The binary-class certificate

assumes that pỹ(x) = 1 − py∗(x). From here we can directly conclude that the multi-
class certificate is in principle always equal or better than the binary certificate, and
in particular the improvement can only occur when py∗(x) + pỹ(x) < 1. Note that,

however, the value of py∗(x) will be lower for the multi-class certificate compared to the
binary-class certificate due to the Bonferroni correction. This implies that in some cases
the binary-class certificate can yield a higher certified radius. For the majority of our
experiments the multi-class certificate was better.

Now, given an input x and a perturbation set Bra,rd(x) if it holds that:

min
x̃∈B(x)

µx,x̃(p1(x), . . . , pY(x), y∗) > 0
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we can guarantee that classification margin for the worst-case classifier is always bigger
than 0 for all x̃ ∈ B(x). This implies that g(x) = g(x̃) = y∗ for any input within the
ball, i.e. x is certifiably robust. Compare this to the previous certificate where we had to
verify whether ρx,x̃(p∗, y∗) > 0.5 which was not tight for |Y| > 2.

Similar to before, Eq. G.3 is equivalent to the following LP:

min
h,t

hT r̃ − tT r̃ (G.4)

s.t. hTr = py∗(x), tTr = pỹ(x),

0 ≤ h ≤ 1, 0 ≤ t ≤ 1

where ỹ = maxy 6=y∗ py(x) is the class with the second highest number of majority votes
after y∗. The proof is analogous to the proof of Lemma 2 in Lee et al. [220].

The exact solution to the LP is easily obtained with another greedy algorithm: first
sort the regions such that c1 ≥ c2 ≥ · · · ≥ cI , then iteratively assign hi = 1 in decreasing
order for all regions Ri until the constraint py∗(x) is met. Finally, iteratively assign tj = 1

now in increasing order for all regions Rj until the constraint pỹ(x) is met.

G.3 Special Cases for Flipping Probabilities

We derive the regions of constant likelihood ratio for the case p+ = 0 and p− > 0. There
are only three regions which we have to consider. First note that there is only one set of
vectors z which can be reached by both x and x̃ when applying the randomization φ and
these are the vectors which have all valid (reachable via deletion) configurations of ones
and zeros in C̃ and all zeros in C. This holds since xC and x̃C are complementary and we
can only delete edges. See Fig. 8.2 for an illustration. Denoting this region with R1 we
have that Pr(φ(x) ∈ R1) = prd− and Pr(φ(x̃) ∈ R1) = pra− since we need to successfully
delete all edges.

The second region R2 corresponds to the case where we flip less than rd bits in x and
this happens with probability Pr(φ(x) ∈ R2) = 1− prd− . By definition the vectors in the
intersection reachable by both x and x̃ are all in R1, thus Pr(φ(x̃) ∈ R2) = 0. Finally,
the third region R3 corresponds to the case where we flip less than ra bits in x̃, we have
Pr(φ(x̃) ∈ R3) = 1− pra− and Pr(φ(x) ∈ R3) = 0. For the binary-class certificate we can
ignore any regions Ri where Pr(φ(x) ∈ Ri) = 0, so the only two valid regions are R1 and
R2. However, for our multi-class certificate all three regions are necessary. The case for
p+ > 0, p− = 0 is analogous. We have: Pr(φ(x) ∈ R′1) = pra+ and Pr(φ(x̃) ∈ R′1) = prd+ for
the first region; Pr(φ(x) ∈ R′2) = 1− pra+ and Pr(φ(x̃) ∈ R′2) = 0 for the second region;
Pr(φ(x̃) ∈ R′3) = 1− prd+ and Pr(φ(x) ∈ R′3) = 0 for the third region.

G.4 Region Traversal

As we discussed in Sec. 8.4.3 we can efficiently compute ρx,x̃ by directly visiting the
regions Rra,rdq in decreasing order w.r.t. the ratio ηra,rdq without sorting. The pseudo-code
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Algorithm G.1 Compute ρx,x̃ # special cases omitted

Input: p+, p−, ra, rd, py∗(x)
if p+ + p− < 1 then

start = ra + rd, end = 0
else

start = 0, end = ra + rd
end if
Initialize p = 0, ρx,x̃ = 0.
for q = start to end do

Compute ηra,rdq ratio using Proposition 8.3
Compute PB(q; ·) = Pr(φ(x) ∈ Rra,rdq ) as in Sec. 8.4.4
Pr(φ(x̃) ∈ Rra,rdq ) = PB(q; ·)/ηra,rdq

if p = Pr(φ(x) ∈ Rra,rdq ) > py∗(x) then
break

else
p = p+ Pr(φ(x) ∈ Rra,rdq )
ρx,x̃ = ρx,x̃ + Pr(φ(x̃) ∈ Rra,rdq )

end if
end for
if py∗(x)− p > 0 then

ρx,x̃ = ρx,x̃ + (py∗(x)− p)/ηra,rdq

end if
Output: ρx,x̃

is given in Algorithm G.1 and corresponds to the greedy algorithm for solving the LP
in Eq. 8.4 and thus Eq. 8.3. Once ρx,x̃ is computed we simply have to check whether
ρx,x̃ > 0.5 to certify the input x w.r.t. the given radii ra and rd. The algorithm for the
multi-class certificate µx,x̃ is similar.

G.5 Joint Certificates

It may be beneficial to specify different flip probabilities and radii for the graph and
attributes. Let xA = vec(A) ∈ {0, 1}n×n and xF = vec(F ) ∈ {0, 1}n×m denote the
flattened adjacency and feature matrix respectively. Let x = [xA,xF ] ∈ XA,F where
XA,F = {0, 1}n×n+n×m. We apply the randomization schemes independently: for the
graph φ(xA) with pA+ , p

A
− , and for the attributes φ(xF ) with pF+ , p

F
− . We define the region:

Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ = {z = [zA, zF ] ∈ XA,F : zA ∈ Rr
A
a ,r

A
d

q , zF ∈ Rr
F
a ,r

F
d

q′ }

where Rr
A
a ,r

A
d

q and Rr
F
a ,r

F
d

q′ are defined similar to before. We have that the regions
{
Rr

A
a ,r

A
d ,r

F
a ,r

F
d

0,0 , . . . ,Rr
A
a ,r

A
d ,r

F
a ,r

F
d

rAa +rAd ,r
F
a +rFd

}
partition the space XA,F . This follows directly due

182



G.6 Existing Graph Certificates Comparison

to the independence and the fact that the regions w.r.t. graph/attributes partition their
respective spaces. The total number of regions is thus (rAa + rAd + 1)(rFa + rFd + 1).

As before we can compute

Pr(φ(x)∈Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ ) = Pr(φ(xA)∈Rr
A
a ,r

A
d

q ) · Pr(φ(xF )∈Rr
F
a ,r

F
d

q′ )

Similarly we have for the ratio:

η
rAa ,r

A
d ,r

F
a ,r

F
d

q,q′ =
Pr(φ(x)∈Rr

A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ )

Pr(φ(x̃)∈Rr
A
a ,r

A
d ,r

F
a ,r

F
d

q,q′ )
= η

rAa ,r
A
d

q · ηr
F
a ,r

F
d

q′

The above directly follows from the definition of the regions and because φ(xA) is
independent of φ(xF ). Given the values of ηq,q′ and Pr(φ(x)∈Rq,q′) for all q, q′ we can
again apply the greedy algorithm to compute ρx,x̃. Note that this can be trivially extended
to certify arbitrary groupings of x into subspaces with different radii/flip probabilities
per subspace, however, the complexity quickly increases and in general the number of
regions will be O((rmax

a + rmax
d + 1)v) where v is the number of groupings and rmax

a , rmax
d

are the maximum radii across the groupings.

G.6 Existing Graph Certificates Comparison

We compare our certificates with the only two existing works for certifying GNNs: Zügner
and Günnemann [215]’s certificate which can only handle attacks on F and works for
the GCN model [19]; and Bojchevski and Günnemann [5]’s certificate which can only
handle attacks on A and works for a small class of models where the predictions are a
linear function of (personalized) PageRank.

Both certificates specify local (per node) and global budgets/constraints, while our
radii correspond to having only global budget. Therefore, to ensure a fair comparison we
set their local budgets to be equal to their global budget which is equal to one of our
radii, i.e. q = Q = r∗ for Zügner and Günnemann [215]’s certificate, and bv = B = r∗ for
Bojchevski and Günnemann [5]’s certificate. As we discussed in Sec. 8.6.1 we can only
compare the certified robustness of the base classifier (existing certificates) versus the
smoothed variant of the same classifier (our certificate).

Zügner and Günnemann [215]’s certificate does not distinguish between adding/deleting
bits in the attributes so we compute a single radius corresponding to the total number
of perturbations. For our certificate we evaluate two cases: (i) rd = 0 and ra varies;
(ii) ra = 0 and rd varies. We use a different configuration of flip probabilities for each
case. The certified ratio for all test nodes is shown on figure Fig. G.1. We see that our
certificate is slightly better w.r.t. deletion and worse w.r.t. addition.

For Bojchevski and Günnemann [5]’s certificate we randomly select 50 test nodes to
certify since solving their relaxed QCLP with global budget is computationally expensive.
We evaluate the robustness of the (A)PPNP model, and we focus on edge removal since
their global budget certificate for edge addition took more than 12h to complete. That
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Figure G.1: Comparison between our cer-
tificate of the smoothed GCN classifier and
Zügner and Günnemann [215]’s certificate of
the base GCN classifier. We are certifying w.r.t.
the attributes on Cora-ML. Solid lines denote
rd (with ra = 0) and dotted lines denote ra
(with rd = 0).
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Figure G.2: Comparison between our cer-
tificate of the smoothed PPNP classifier and
Bojchevski and Günnemann [5]’s certificate of
the base PPNP classifier. We are certifying
edge deletion on Cora-ML. Our certificate is
significantly better despite the fact that we are
certifying undirected edges.

is, we configure the set of fragile edges F to contain only the existing edges (except the
edges along the minimum spanning tree which are fixed). The results for different values
of p− (for p+ = 0) are show in Fig. G.2. We see that we can certify significantly more
nodes, especially as we increase the radius. Note that the effective certified radius for our
approach is double of what is shown in Fig. G.2 since we are certifying undirected edges,
while Bojchevski and Günnemann [5]’s certificate is w.r.t. directed edges.

G.7 Training

To investigate the effect of smooth training [228] on certified robustness we approximate
the smoothed probability gy(x) = Ex′∼φ(x)[f(x′)y] for class y with m Monte Carlo

samples gy(x) ≈
∑m

i=1 f(x(i))y, and we compute the cross-entropy loss with l(g(x), y).
Note that m = 1 is equivalent to training f with noisy inputs. We vary the number of
Monte Carlo samples m we use during training for a fixed value of p+ = 0.01, p− = 0.6.
Fig. G.3 shows the results when perturbing the attributes on Cora-ML using GCN as a
base classifier. Specifically, we show the difference (∆) in the certified ratio relative to
standard (non-smoothed) training, i.e. m = 0. We see that including the perturbations
during training (m > 0) is consistently better than standard training (m = 0). The
difference for different values of m is relatively small overall, with m = 1 being the best.
Therefore, for all experiments we set m = 1.

G.8 Graph Classification

For most experiments we focused on the node-level classification task. However, our
certificate can be trivially adapted for the graph-level classification task. Currently, there
are no other existing certificate that can handle this scenario. Given any classifier f that
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Figure G.3: The difference (∆) in
the certificate ratio relative to m =
0 (standard training, dashed black
line). The color gradient denotes m ∈
{1, 5, 10, 25, 50, 100} with darker colors
corresponding to higher m. The dif-
ference is relatively small overall, and
m = 1 (lightest color) is best.
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Figure G.4: Certifying graph-level classification
w.r.t. perturbations of the graph structure on the
MUTAG dataset. We set p+ = 0.2 and p− = 0.4. We
can certify a high ratio of graphs for ra and rd.

takes a graph Gi as an input and outputs (a distribution over) graph-level classes, we
can form the smoothed classifier g by randomly perturbing Gi, e.g. by applying φ on
x = vec(Ai) where Ai is the adjacency matrix of the graph Gi. Then, we certify g simply
by calculating ρx,x̃ or µx,x̃. The certificates are still efficient to compute and independent
of the graph size.

To demonstrate the generality of our certificate we train GIN on the MUTAG dataset,
which consists of 188 graphs corresponding to chemical compounds. The graphs are
divided into two classes according to their mutagenic effect on bacteria. The results are
shown in Fig. G.4. We see that we can certify a high ratio of graphs for both ra and rd.
Similar results hold when perturbing the node features.

G.9 Hyperparameters

For node classification, for all GNN models we randomly select 20 nodes from each
class for the training set, and 20 nodes for the validation set. We train the models for a
maximum of 3000 epochs with a fixed learning rate of 10−3 and patience of 50 epochs
for early stopping. We optimize the parameters with Adam and use a weight decay of
10−3. For GCN and APPNP we use a single hidden layer of size 64, and we set the
hidden size for GAT to 8 and use 8 heads to match the number of trainable parameters.
For MNIST and ImageNet we use the standard train/validation/test split, and we train
a CNN classifier with the same configuration as described in Lee et al. [220]. We set
the confidence level α = 0.01 and the number of samples to 106 (105 for MNIST and
ImageNet). For all experiments, we use our multi-class certificate since it yields slightly
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Figure G.5: Illustration of the regions for the general sparsity-aware discrete certificate. We only
show the dimensions C where x and x̃ disagree. The triplets (qj , pj , sj) are used to parametrize
the regions. The variables a0, b0, c0, and a1, b1, c1 depend on the flip probabilities p+, p− and the
number of categories K (see text).

higher certified ratios compared to the binary-class certificate (see Sec. 8.8.1). Note that
to certify an input w.r.t. Bra,rd(x) we can simply compute the certificate w.r.t. Si,j(x)
for all 0 ≤ i ≤ ra, 0 ≤ j ≤ rd. In practice, we compute the maximum ra and rd for a
given py∗(x) and pỹ(x) such that the input is certifiably robust. Whenever the number

of majority votes is the same for several inputs, they have the same py∗(x) and pỹ(x) so
we only need to compute the maximum radii once to certify all of them.

G.10 Limitations

The main advantage of the randomized smoothing technique is that we can utilize
it without making any assumptions about the base classifier f since to compute the
certificate we need to consider only the output of f for each sample. This is also one
of its biggest disadvantages since it does not take into account any properties of f , e.g.
smoothness. More importantly, when applied for certifying graph data we can additionally
leverage the fact that the predictions for neighboring nodes are often highly correlated,
especially when the graph exhibits homophily. Extending our certificate to account for
these aspects is a viable future direction.

Moreover, to accurately estimate py(x) we need a large number of samples (e.g. we

used 106 samples in our experiments). Even though one can easily parallelize the sampling
procedure developing a more sample-efficient variant is desirable. Finally, the guarantees
provided are probabilistic, the certificate holds with probability 1− α, and as shown in
previous work [217, 220] the number of samples necessary to certify at a given radius
grows as we increase our confidence, i.e. decrease α.

G.11 Certificate for Discrete Data

As before, since the randomization scheme which we defined in Sec. 8.5 is applied
independently per dimension w.l.o.g. we can focus only on those dimensions C where
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x and x̃ disagree. We omit all proofs for the discrete case since they are analogous to
the binary case. The only difference is in how we partition the space XK and how we
compute the respective regions. Once we obtain the regions the computation of ρx,x̃ or
µx,x̃ and hence the certificate is the same.

Intuitively, we have variables q0, q1, q2 corresponding to the dimensions where zC
matches xC, variables p0, p1, p2 corresponding to the dimensions where zC matches x̃C,
and variables s0, s1, s2 corresponding to the dimensions where zC matches neither xC nor
x̃C (see illustration in Fig. G.5). The fourth-case where zC matches both xC and x̃C is
not possible since by definition xi 6= x̃i for all i ∈ C. We define the region parametrized
by (qj , pj , sj) triplets:

Rq0,q1,q2
p0,p1,p2
s0,s1,s2

= {z ∈ XK :

q0 =
∑

i∈C
I(zi = xi)I(xi = 0),

q1 =
∑

i∈C
I(zi = xi)I(x̃i = 0),

q2 =
∑

i∈C
I(zi = xi)I(x̃i 6= 0)I(xi 6= 0),

p0 =
∑

i∈C
I(zi = x̃i)I(xi = 0),

p1 =
∑

i∈C
I(zi = x̃i)I(x̃i = 0),

p2 =
∑

i∈C
I(zi = x̃i)I(xi 6= 0)I(x̃i 6= 0),

s0 =
∑

i∈C
I(zi 6= x̃i)I(zi 6= xi)I(xi = 0),

s1 =
∑

i∈C
I(zi 6= x̃i)I(zi 6= xi)I(x̃i = 0),

s2 =
∑

i∈C
I(zi 6= x̃i)I(zi 6= xi)I(xi 6= 0)I(x̃i 6= 0)}

for a given clean x ∈ XK and adversarial x̃ ∈ Sr0,r1,r2(x) which is defined subsequently.

We use a0 = 1 − p+ as a shorthand for the probability to keep (not flip) a zero,
b0 = p+

K−1 for the probability to flip a zero to some other value, and c0 = 1 − a0 − b0.
Similarly we define a1 = 1− p−, b1 = p−

K−1 , and c1 = 1− a1 − b1 for the non-zero values.
We can easily verify from the definitions that given a specific configuration of qj , pj , sj
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variables the ratio for the corresponding Rq0,q1,q2
p0,p1,p2
s0,s1,s2

region equals:

η = Pr(φ(x) ∈ Rq0,q1,q2
p0,p1,p2
s0,s1,s2

)/Pr(φ(x̃) ∈ Rq0,q1,q2
p0,p1,p2
s0,s1,s2

)

=

(
a0

b1

)q0−p1( b0
a1

)p0−q1(c0

c1

)s0−s1(a1

b1

)q2−p2
(G.5)

Furthermore, we define rj = qj + pj + sj for j = 0, 1, 2. Now, we can compute the
probability for φ(x) to land in the respective region as a product of Multinomials:

Pr(φ(x)∈Rq0,q1,q2
p0,p1,p2
s0,s1,s2

) =
2∏

j=0

Pr(uj=[qj , pj , sj ]) (G.6)

where uj are the following Multinomial random variables:

u0 ∼ Mul([a0, b0, c0], r0)

u1 ∼ Mul([a1, b1, c1], r1)

u2 ∼ Mul([a1, b1, c1], r2)

These variables have only 3 categories regardless of the number of discrete categories
in the input space. This is due to the fact that we only need to keep track of 3 states:
zi = xi, zi = x̃i, and xi 6= zi 6= x̃i for all i ∈ C.

This construction suggests that we should parametrize our threat model with three
radii: r0/ra which counts the number of added non-zeros, r1/rd which counts the number
of removed non-zeros, and r2/rc which counts how many non-zeros changed to another
non-zero value. We have:

Sr0,r1,r2(x) = {x̃ ∈ XK :
d∑

i=1

I(xi = 0)I(xi 6= x̃i) = r0,

d∑

i=1

I(x̃i = 0)I(xi 6= x̃i) = r1,

d∑

i=1

I(xi 6= 0)I(x̃i 6= 0)I(xi 6= x̃i) = r2}

Similarly, we define the respective ball Br0,r1,r2(x) by replacing equalities with inequalities.
We can directly verify that for the binary case (K = 2), r2 necessarily has to be equal

to 0. We recover the definition of our threat model for binary data. Moreover, all si’s, as
well as c0 = (K−2)·p+

K−1 and c1 = (K−2)·p−
K−1 also have to be zero.

In order to partition the entire space XK we have to generate all unique (qj , pj , sj)
triplets where qj+pj+sj = rj . There are Tj = (rj+1)(rj+2)/2 unique (qj , pj , sj) triplets
for j = 0, 1, 2. Therefore, the total number of regions is upper bounded by T0 · T1 · T2.
Note that this is an upper bound since the ratio in Eq. G.5 is the same for certain
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combinations of qj ’s, pj ’s, and sj ’s, e.q. when q0 − p1 = 1− 3 = 2− 4 and similarly for
p0 − q1, s0 − s1, and q2 − p2. In these cases we can merge these regions into one region.

The overall computation of the regions is efficient and it consists of: (i) generating all
unique (qj , pj , sj) triplets; (ii) computing the ratio defined in Eq. G.5; and (iii) computing
the probability for φ(x) to land in the respective region using Eq. G.6. Since the number
of regions is small the overall runtime is less than a second. We provide a reference
implementation in Python with further details.

For the special case of p+ = p− we have that a0 = a1, b0 = b1, and c0 = c1. Then the
ratio in Eq. G.5 simplifies to:

η =

(
a0

b1

)q0+q1+q2−p0−p1−p2
=

(
a0

b1

)q′−p′
(G.7)

where we set q′ = q0 + q1 + q2 and p′ = p0 + p1 + p2. This directly implies that in this
case we do not need to keep track of the different (qj , pj , sj) triplets, but rather it is
sufficient to parametrize the region with two variables, namely q′ and p′. The probability
that φ(x) lands in the respective Rq′,p′ region also simplifies (see Fig. G.5):

Pr(φ(x) ∈ Rq′,p′) = Pr(u = [q′, p′, r − q′ − p′]) (G.8)

where u ∼ Mul([a0, b0, c0], r). Moreover, we have that q′ ∈ {0, . . . , r0 + r1 + r2} =
{0, . . . , r}, where ‖x − x̃‖0 = r. Similarly, p′ ∈ {0, . . . , r}. It follows that (q′ − p′) ∈
{−r, . . . , r}, and thus there are only 2r + 1 regions in total.

G.12 Further Analysis of Joint Certificates

On Fig. G.6 we show our method’s ability to certify robustness against combined
perturbations on the graph and the attributes. The configuration of flip probabilities
is the same as in Sec. 8.8.1. Specifically to show different aspects of the 4D heatmap
(certified ratio w.r.t. the 4 different radii) we plot all pairwise heatmaps, e.g. rAa = rFd = 0
and varying rAd , r

A
a . The figure is symmetric w.r.t. the diagonal, which shows the certified

ratio as we fix all radii except one to 0. Similar to before we observe that we can certify
more easily w.r.t. ra compared to rd. Since we are perturbing both features and structure
at the same time we can obtain only modest certified radii. We leave it for future work
to design models that are robust to such joint perturbations.
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Figure G.6: Joint certificate for both graph and attributes on Cora-ML. We show all pairwise
heatmaps, e.g. rAa = rFd = 0 and varying rAd , r

A
a . The figure is symmetric w.r.t. the diagonal,

which shows the certified ratio as we fix all radii except one to 0.
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