
Linear Differential Games for Cooperative Behavior Planning of
Autonomous Vehicles Using Mixed-Integer Programming

Tobias Kessler1∗, Klemens Esterle1∗ and Alois Knoll2

Abstract— Cooperatively planning for multiple agents has
been proposed as a promising method for strategic and motion
planning for automated vehicles. By taking into account the
intent of every agent, the ego agent can incorporate future
interactions with human-driven vehicles into its planning. The
problem is often formulated as a multi-agent game and solved
using iterative algorithms operating on a discretized action or
state space. Even if converging to a Nash equilibrium, the result
will often be only sub-optimal. In this paper, we define a linear
differential game for a set of interacting agents and solve it
to optimality using mixed-integer programming. A disjunctive
formulation of the orientation allows us to formulate linear
constraints to prevent agent-to-agent collision while preserving
the non-holonomic motion properties of the vehicle model.
Soft constraints account for prediction errors. We then define
a joint cost function, where a cooperation factor can adapt
between altruistic, cooperative, and egoistic behavior. We study
the influence of the cooperation factor to solve scenarios,
where interaction between the agents is necessary to solve
them successfully. The approach is then evaluated in a racing
scenario, where we show the applicability of the formulation in a
closed-loop receding horizon replanning fashion. By accounting
for inaccuracies in the cooperative assumption and the actual
behavior, we can indeed successfully plan an optimal control
strategy interacting closely with other agents.

I. Introduction

When sharing the road with human drivers, autonomous
vehicles will have to cooperate with other vehicles to fit
safely into nowadays traffic scenarios while still asserting
their own goals. In dense traffic, where space is often limited,
such as highway overtaking or merging, the reactions of oth-
ers must be anticipated, and a maneuver-based prediction will
perform poorly. Instead, a planner must model the uncertain
interaction with the other traffic participants by planning a
joint action for the ego vehicle and the surrounding vehicles.
Fig. 1 depicts an exemplary scenario.

A variety of concepts have been proposed to cope with
these challenges, with game-theoretic approaches being ca-
pable of modeling the interaction between multiple agents
elegantly [1]. However, they often require a discretization
of the action or the state space, yielding an approximation
of the optimal solution, which are usually work well for
a limited set of scenarios. Furthermore, these algorithms
often rely on a random sampling of the solution space or
lack guarantees of convergence and thus pose open questions
towards certification of such systems. Optimal control theory,

∗These authors contributed equally to this work.
1Tobias Kessler and Klemens Esterle are with fortiss GmbH, Research In-

stitute of the Free State of Bavaria, Munich, Germany, surname@fortiss.org
2Alois Knoll is with Robotics, Artificial Intelligence and Real-time

Systems, Technische Universität München, Munich, Germany

290 300 310 320 330
80

90

100

110

120

x[m]

y[
m

]

Boundaries
Reference
History Other
History Ego
Trajectory Other
Prediction Other
Trajectory Ego

Fig. 1: Example of a multi-agent planning scenario. The green ego
agent wants to overtake the red agent but is unaware of its exact
future motion (gray). Both agents intend to track the same reference
line and must stay inside the road boundaries (blue). Dark-to-light
colors depict progressing time.

on the other hand, provides deterministic solution algorithms
converging to an optimum and has been successfully applied
to safety-critical systems.

In this work, we propose an approach how an autonomous
agent can safely interact with other agents while still achiev-
ing its own goals. For this, we formulate the multi-agent
planning problem as a differential game and solve it using
mixed-integer quadratic programming (MIQP) with an off-
the-shelf solver. Specifically, we contribute a linear differen-
tial game formulation featuring

• a set of linear constraints as inter-agent collision check,
• a leveraged joint cost function for collaborative plan-

ning, and
• a methodology to handle inaccurate models of other

agents using soft constraints.
We first examine the impact of cooperation in a symmetric

negotiation example. We then demonstrate the contributions
in a competitive race track example as this scenario poses
high demands on the accurate modeling of vehicle kinemat-
ics, handling of vehicle collisions, and interactive behavior.

II. Related Work
We follow the distinction of Ulbrich et al. [2] dividing

cooperative driving into explicit inter-vehicle communication
and cooperation in the form of collaboration. In Table I
we compare some approaches with comparable problem
formulations or similar solution methods. For a more com-
prehensive overview we refer to Schwarting et al. [1].

Game-theoretic formulations can be employed to model
collaboration. A decision tree often realizes the game-
theoretic setting. Kessler and Knoll [3] use motion primitives

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 4060

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of different solution approaches for multi-agent planning using the abbreviations mixed-integer quadratic
programming (MIQP), mixed-integer linear programming (MILP), Monte Carlo tree search (MCTS), dynamic programming (DP).

Source Interactiveness Action Space State Space Solution Method Globalization Strategy
Kessler and Knoll [3] Global cooperative costs discrete cont. MILP W.r.t. sampled motion tree
Lenz et al. [4] Multi-agent dynamic game, non-zero-sum discrete cont. MCTS None
Bahram et al. [5] Two-player dynamic game discrete cont. Alpha-beta pruning None
Liniger and Lygeros [6] Multi-agent dynamic game, non-zero-sum cont. cont. DP Solving Nash equilibrium
Schwarting et al. [7] Multi-agent dynamic game, non-zero-sum cont. cont. Iterative DP Solving iterative Nash equilibrium
Fabiani and Grammatico [8] Potential game mixed mixed MIQP Solving iterative Nash equilibrium
Eilbrecht and Stursberg [9] Global cooperative costs, shared plans cont. cont. MIQP Iterative conflict resolution
Manzinger and Althoff [10] Centralized planning, shared plans cont. discrete Reachability Auction-based conflict resolution
Frese and Beyerer [11] Global cooperative costs, centralized cont. cont. MILP Inherently
Esterle et al. [12] None cont. cont. MIQP Inherently

to generate a motion tree and use mixed-integer linear
programming (MILP) to solve for the optimal orchestra-
tion. While it is applicable in arbitrary environments, the
action space discretization can exclude the optimal solution,
yielding difficulties when applying to dense traffic scenarios.
They account for unknown cost functions of other agents by
updating the costs based on observations. Monte Carlo tree
search can be used to plan collaborative behavior, effectively
solving a multi-agent, non-zero-sum dynamic game [4]. A
cooperation factor serves as a tuning parameter in the ego
agents’ cost function. The formulation is highly flexible and
can incorporate any transition function for modeling the envi-
ronment. However, the discretized action space yields similar
problems to [3]. An extensive-form game is formulated in [5],
where the other traffic participants are modeled as part of the
environment. While the framework is highly flexible and has
proven to work in a real car under real-time requirements, the
approach does not ensure convergence to an optimal solution.
A two-player dynamic, non-zero-sum game is formulated as a
bimatrix game in [6], which allows for an efficient calculation
of the Nash equilibrium. Schwarting et al. [7] use iterative
dynamic programming to solve a multi-agent dynamic, non-
zero-sum game. They explicitly model partial observability
of the intention of others. The proposed believe-space variant
of the iterative Linear Quadratic Gaussian (iLQG) algorithm
can be executed in real-time. Exact costs and dynamics of
other agents are assumed to be known, and the algorithm con-
verges to a potentially sub-optimal Nash equilibrium. Multi-
vehicle driving as a potential game is formulated in [8] and
solved using MIQP. The potential function allows the authors
to compute a 𝜖-mixed-integer Nash equilibrium. However,
the discrete lateral action and state space complicate applying
this approach in reality.

For explicit communication between vehicles, the planning
problem effectively simplifies, as accounting for the unknown
intentions of other agents becomes irrelevant. Eilbrecht and
Stursberg [9] formulate a two-layered approach of iterative
conflict resolution using a cooperative cost function. The
underlying behavior of each agent is generated through
an optimal control problem using MIQP for each agent
while ensuring obstacle avoidance to the (known) plan of
the other agents. However, their approach is only valid for
straight driving on straight roads, and the iterative conflict
resolution does not offer any guarantees to converge to a
global optimum. Manzinger and Althoff [10] use reachability

analysis to compute conflicting space-time cells, which might
be occupied by multiple vehicles. An auction algorithm
then solves for those conflicts. Their approach requires a
discretization of the state space. Various approaches exist to
minimize a cooperative cost function based on the premise
that the cost functions of the other agents are known. Frese
and Beyerer [11] formulate a multi-agent optimal control
problem and solve it using MILP. However, their approach is
limited to straight driving on straight roads and yields a lot
of invalid solutions otherwise. Our previous work [12] solves
those issues but was not defined for a multi-agent context.

III. Problem Formulation and Assumptions
We aim to find a control strategy in an environment with

multiple agents, subject to the following set of assumptions.
Firstly, we only control one agent but indirectly assume
perfect observation of the dynamic state of other agents, as
well as their goals. Secondly, we assume a perfect perception
of the map and our localization within that. And thirdly, that
other agents do not behave destructively, for example, do not
aim for collisions. The problem then consists of

• multiple agents with continuous actions,
• a scene consisting of all individual states, road geometry,

and obstacle information,
• each agent tries to achieve its own goals, without

adversarial behavior, and
• perfect observation of states at 𝑡0.

We formulate this as a multi-agent, non-zero-sum, differential
game [13] with

• a set of agents 𝒜 with continuous actions, and
• a joint, non-zero-sum, cost function.
The strategy is executed in a receding horizon fashion. We

discretize the time horizon of one iteration into 𝑁 steps with
a time interval Δ𝑡. We denote the discrete time step by 𝑘
and the interval of 𝑁 steps by 𝒦. The goal is thus to find
a sequence of actions for the ego vehicle that minimizes its
costs while avoiding collisions with the environment.

IV. Linear Dynamic Game using MIQP
In this section, we formulate the differential game and then

solve it using MIQP. The linear constraint formulation yields
a linear differential game. Each agent in the optimization
problem satisfies the constraints from our previous work [12],
which we discussed in Section IV-A. Also, we introduce
linear constraints for agent-to-agent collision checking in
Section IV-B, and a joint cost function in Section IV-C.

4061

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

A. Preliminaries
The model in this paper builds upon our previously

proposed model. In the following, we will highlight the
contributions of our previous work; for a detailed model
formulation we refer to Esterle et al. [12].

a) Linear Model: We model the vehicle as a third-order
point-mass system in a global Cartesian frame with positions
𝑝𝑥(𝑘), 𝑝𝑦(𝑘), velocities 𝑣𝑦(𝑘), 𝑣𝑦(𝑘), and accelerations 𝑎𝑥(𝑘),
𝑎𝑦(𝑘) as states. Jerk in both directions 𝑗𝑥(𝑘) and 𝑗𝑦(𝑘) are
the inputs of the model. This model is subject to a set of
constraints for collision avoidance and non-holonomy.

Although the vehicle’s orientation 𝜃 is not part of the
state space, we need it for a sufficient collision check in the
Cartesian coordinates within the optimization problem. We
define regions in the (𝑣𝑥, 𝑣𝑦) plane, allowing us to obtain an
approximation of the orientation based on linear inequalities
only dependent on 𝑣𝑥 and 𝑣𝑦. Note that computing the true
orientation 𝜃 = atan(𝑣𝑦/𝑣𝑥) would introduce non-linearity.
A binary decision variable 𝜌 defines in which region the
vehicle is at each time step. It is set by constraints based
on the upper and lower linear bounds of each region. We
impose region-dependent limits on acceleration and jerk.

We approximate the collision shape of the vehicle using
circles. We over-approximate the front axle collision shape
because the true front axle position (𝑓𝑥, 𝑓𝑦) is not directly
known from the linear model. Computing the upper and
lower bounds for sine and cosine functions of the orientation
leads to upper 𝑓𝑥, 𝑓𝑦 and lower bounds 𝑓𝑥, 𝑓𝑦 for the 𝑥 and 𝑦
position of the front axle. Fig. 2 illustrates the approximation.
For obtaining the lower and upper bounds for sine and cosine
functions of the true orientation, we fit linear polynomials on
𝑣𝑥 and 𝑣𝑦.

b) Modeling the Non-Holonomics: To ensure non-
holonomics of a vehicle for a point-mass system, we con-
strain the curvature, that is highly non-linear and thus cannot
be expressed as a linear constraint in MIQP. We thus model
the non-holonomics as linear constraints on the acceleration
in the 𝑦-direction, for which we provide the theory. For that,
the curvature is approximated using a linear combination of
𝑣𝑥, 𝑣𝑦, 𝑎𝑥, and is solved for 𝑎𝑦.

c) Environment and Obstacle Collision Avoidance: The
polygonal representation of the environment is deflated with
the radius of the collision circles. Non-convex environment
polygons are split into several convex sub-polygons. We
enforce the vehicle to be in at least one of these convex
sub-polygons. This way, the vehicle-to-environment-polygon
collision check becomes a point-to-polygon check for each
circle used to approximate the vehicle.

We ensure the vehicle not to collide with an arbitrary
number of static or dynamic convex obstacle polygons, such
as obtained from a prediction. However, our previous work
does not implement a vehicle-to-vehicle collision check,
which we contribute in this work.

B. Multi-Agent Collision Constraints
We approximate the shape of each vehicle to formulate an

agent-to-agent collision constraint. In our linear model, the

𝑓𝑥

𝑓𝑦

𝑓𝑦

𝑓𝑥 𝑥

𝑦

𝑝𝑦

𝑝𝑥

Fig. 2: Approximation of the vehicle shape to formulate the agent-
to-agent collision check based on the rectangles of the respective
agents. The black area indicates a collision.

actual orientation of the vehicle is not available, but with
the region-based formulation, we can compute a lower- and
upper-bounding rectangle for the center of the front axle.

In the following, the superscript �𝑖 refers to the respective
variable of the agent 𝑖. For collision avoidance, we approxi-
mate the vehicle shape by circles with radius 𝑅𝑖, one around
the rear axle center, and four for the front axle approxima-
tion. To avoid agent-to-agent collisions, we choose to over-
approximate these circles with axis-aligned squares again, as
sketched in Fig. 2. A better approximation of the circles, for
example, with two rectangles, yields more constraints and
binary variables, lowering the runtime without providing a
huge benefit. We formulate four sets of constraints, the first
prevents collisions between the rear parts of two agents, the
second prevents collisions between the rear part of the first
and the front part of the second agent, the third vice versa,
and the fourth prevents collisions between the front parts of
both agents for each pair of agents.

The rear part-to-rear part collision constraint of two agents
𝐴𝑖 and 𝐴𝑗 is based on the following logical formula. We
define the sum of both radii 𝑅𝑖+𝑗 ∶= 𝑅𝑖 + 𝑅𝑗. A collision
occurs at one time step 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) − 𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) + 𝑅𝑖+𝑗

∧ 𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) − 𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) + 𝑅𝑖+𝑗. (1)

Intuitively, (1) states that a collision occurs if both the
absolute distance in 𝑥-direction |𝑝𝑖

𝑥(𝑘)−𝑝𝑗
𝑥(𝑘)| and 𝑦-direction

|𝑝𝑖
𝑦(𝑘) − 𝑝𝑗

𝑦(𝑘)| is smaller 𝑅𝑖+𝑗. Logical negation yields that
two agents do not collide at time step 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) − 𝑅𝑖+𝑗 ∨ 𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) + 𝑅𝑖+𝑗

∨𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) − 𝑅𝑖+𝑗 ∨ 𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) + 𝑅𝑖+𝑗. (2)

We formulate this as linear constraints using a set of four
decision variables 𝛼𝑖𝑗

�, one for each inequality and an appro-
priately chosen big constant 𝑀.

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) − 𝑅𝑖+𝑗 + 𝑀𝛼𝑖𝑗
1(𝑘) (3a)

𝑝𝑖
𝑥(𝑘) ≥ 𝑝𝑗

𝑥(𝑘) + 𝑅𝑖+𝑗 − 𝑀𝛼𝑖𝑗
2(𝑘) (3b)

𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) − 𝑅𝑖+𝑗 + 𝑀𝛼𝑖𝑗
3(𝑘) (3c)

𝑝𝑖
𝑦(𝑘) ≥ 𝑝𝑗

𝑦(𝑘) + 𝑅𝑖+𝑗 − 𝑀𝛼𝑖𝑗
4(𝑘) (3d)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎(𝑘) ∀ 𝑘 ∈ 𝒦. (3e)

4062

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

(3e) represents the logical formulas (2) by coupling the four
constraints (3a) - (3d) and makes sure no more than three are
active, and hence no rear part-to-rear part collision occurs.

As we aim to cope with agents that are not controlled by
our algorithm (e.g., human-driven vehicles), the computed
motion will not exactly match the reality. This yields predic-
tion errors for the uncontrolled agents, which then can lead
to infeasible optimization problems or imminent collisions.
To account for these prediction errors, we introduce an
additional safety distance for the ego agent to all uncontrolled
agents as a soft constraint. Inspired by the formulation in
[14], we introduce slack variables 𝜉 to the agent-to-agent
collision constraints. With the desired safety distance of both
agents 𝐷(𝑘) and a set of slack variables 𝜉𝑥(𝑘), 𝜉𝑦(𝑘) ∈
[0, 𝐷(𝑘)], we modify (3) to

𝑝𝑖
𝑥(𝑘) ≤ 𝑝𝑗

𝑥(𝑘) − 𝑅𝑖+𝑗 − 𝐷(𝑘) + 𝜉𝑖𝑗
𝑥 (𝑘) + 𝑀𝛼𝑖𝑗

1(𝑘) (4a)
𝑝𝑖

𝑥(𝑘) ≥ 𝑝𝑗
𝑥(𝑘) + 𝑅𝑖+𝑗 + 𝐷(𝑘) − 𝜉𝑖𝑗

𝑥 (𝑘) − 𝑀𝛼𝑖𝑗
2(𝑘) (4b)

𝑝𝑖
𝑦(𝑘) ≤ 𝑝𝑗

𝑦(𝑘) − 𝑅𝑖+𝑗 − 𝐷(𝑘) + 𝜉𝑖𝑗
𝑦 (𝑘) + 𝑀𝛼𝑖𝑗

3(𝑘) (4c)
𝑝𝑖

𝑦(𝑘) ≥ 𝑝𝑗
𝑦(𝑘) + 𝑅𝑖+𝑗 + 𝐷(𝑘) − 𝜉𝑖𝑗

𝑦 (𝑘) − 𝑀𝛼𝑖𝑗
4(𝑘) (4d)

3 ≥
4

∑
𝑎=1

𝛼𝑖𝑗
𝑎(𝑘) ∀ 𝑘 ∈ 𝒦. (4e)

The slack variables will be included in the cost function
(see Section IV-C). The optimizer will then seek to keep the
slack variables as small as possible. Consequently, in (4), the
additional safety distance 𝐷 will be as high as possible. With
this concept, fatal prediction errors (immanent collisions) are
mitigated. Note that adding a hard safety margin only leads
to more conservative behavior and does not avoid infeasible
optimization problems.

To prevent collisions between the rear part of agent 𝐴𝑖

and the front part of agent 𝐴𝑗, we again formulate logical
constraints that a collision occurs at 𝑘 if and only if

𝑝𝑖
𝑥(𝑘) ≥ 𝑓𝑥

𝑗(𝑘) − 𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑥(𝑘) ≤ 𝑓𝑥

𝑗(𝑘) + 𝑅𝑖+𝑗

∧ 𝑝𝑖
𝑦(𝑘) ≥ 𝑓𝑦

𝑗(𝑘) − 𝑅𝑖+𝑗 ∧ 𝑝𝑖
𝑦(𝑘) ≤ 𝑓𝑥

𝑗(𝑘) + 𝑅𝑖+𝑗. (5)

Here we force the point (𝑝𝑖
𝑥, 𝑝𝑖

𝑦) to be outside the front axle
approximation rectangle enlarged by the sum of the collision
circle radii. The set of constraints is formulated as described
for the rear part-to-rear part collision case. Another analog
set of constraints prevents collisions between the rear part of
𝐴𝑗 and the front part of 𝐴𝑖.

We avoid collisions between the fronts of agents 𝐴𝑖 and
𝐴𝑗 applying the same strategy but forcing the center point
of the front axle approximation rectangle of 𝐴𝑗 to retain
sufficient distance to the front axle approximation rectangle
of 𝐴𝑖. Concretely, we define the sufficient distance as 𝑅𝑖+𝑗

plus the size of the approximation rectangle of agent 𝐴𝑗.
Hence, no front part-to-front part collision occurs at time

step 𝑘 if and only if
1
2(𝑓𝑥

𝑗(𝑘) + 𝑓𝑥
𝑗(𝑘)) ≤ 𝑓𝑥

𝑖(𝑘) − 𝑅𝑖+𝑗 − 1
2(𝑓𝑥

𝑗(𝑘) − 𝑓𝑥
𝑗(𝑘))∨

1
2(𝑓𝑥

𝑗(𝑘) + 𝑓𝑥
𝑗(𝑘)) ≥ 𝑓𝑥

𝑖(𝑘) + 𝑅𝑖+𝑗 + 1
2(𝑓𝑥

𝑗(𝑘) − 𝑓𝑥
𝑗(𝑘))∨

1
2(𝑓𝑦

𝑗(𝑘) + 𝑓𝑦
𝑗(𝑘)) ≤ 𝑓𝑦

𝑖(𝑘) − 𝑅𝑖+𝑗 − 1
2(𝑓𝑦

𝑗(𝑘) − 𝑓𝑦
𝑗(𝑘))∨

1
2(𝑓𝑦

𝑗(𝑘) + 𝑓𝑦
𝑗(𝑘)) ≥ 𝑓𝑦

𝑖(𝑘) + 𝑅𝑖+𝑗 + 1
2(𝑓𝑦

𝑗(𝑘) − 𝑓𝑦
𝑗(𝑘)). (6)

From (6) we again derive a set of constraints as in the rear
part-to-rear part collision case.

As an alternative, we also formulated tighter front part-
to-front part collision constraints by excluding the interval
overlap of [𝑓𝑥

𝑖 − 𝑅𝑖, 𝑓𝑥
𝑖 + 𝑅𝑖] with [𝑓𝑥

𝑗 − 𝑅𝑗, 𝑓𝑥
𝑗 + 𝑅𝑗] and in

𝑦-direction vice versa. This formulation is slower as it needs
more binary decision variables and does not provide huge
benefits. In dense and coupled scenarios, (6) can lead to harsh
braking or acceleration in front of narrow but still drivable
passages due to the over-conservative approximation.

C. Joint Cost Function
As the objective of the optimization problem, we chose

to minimize a weighted sum of individual cost functions per
agent. This approach if referred to centralized planning in a
model predictive control setting. We formulate the individual
cost function term of agent 𝐴𝑖 as

𝐽 𝑖 = ∑
𝑘∈𝒦

(𝑞𝑖
𝑝(𝑝𝑖

𝑥(𝑘) − 𝑝𝑖
𝑥,𝑟𝑒𝑓(𝑘))2 + 𝑞𝑖

𝑝(𝑝𝑖
𝑦(𝑘) − 𝑝𝑖

𝑦,𝑟𝑒𝑓(𝑘))2

+ 𝑞𝑖
𝑢𝑢𝑖

𝑥(𝑘)2 + 𝑞𝑖
𝑢𝑢𝑖

𝑦(𝑘)2) (7)

with suitable weighting factors 𝑞� consisting of terms for
tracking the reference trajectory and terms for penalizing the
jerk.

To leverage the interests of the agents, we introduce scaling
factors 𝜆 ∈ [0, 1] in the overall cost function. With these,
we can push the optimization problem to generate egoistic,
symmetric, or altruistic solutions. For each agent 𝐴𝑖, we
define a scaling factor 𝜆𝑖 with the following properties. First,

∑
𝑖∈𝒜

𝜆𝑖 = 1. (8)

The scaling factor of the ego agent 𝜆ego is chosen freely
within the interval [0, 1]. We then set

𝜆𝑖 = 1 − 𝜆ego

|𝒜| − 1 ∀ 𝑖 ≠ ego. (9)

The intuitive explanation of (9) is that high values for
𝜆ego will lead to egoistic ego behavior, all values equal a
symmetric solution, and for small values of 𝜆ego the ego
agent will not enforce its own goals, only trying to fulfill the
constraints.

The overall cost function is then defined as

𝐽 = ∑
𝑖∈𝒜

𝜆𝑖𝐽 𝑖 + 𝑞𝜉 ∑
𝑘∈𝒦

∑
𝑖∈𝒜, 𝑗∈𝒜⧵𝑖

(𝜉𝑖𝑗
𝑥 (𝑘) + 𝜉𝑖𝑗

𝑦 (𝑘))2 (10)

with the second term penalizing high values of the slack
variables and a weighting factor 𝑞𝜉.

4063

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50
−4

0
4

𝑥[𝑚]

𝑦[
𝑚

]

(a) Reference tracks and initial conditions

0 10 20 30 40 50
−4

0
4

𝑥[𝑚]

𝑦[
𝑚

]

(b) Solution for 𝜆 = 0.2

0 10 20 30 40 50
−4

0
4

𝑥[𝑚]

𝑦[
𝑚

]

(c) Solution for 𝜆 = 0.6

Fig. 3: A scenario with conflicting references. The optimized solution is leveraged with the cooperation factor 𝜆.

D. Receding Horizon Formulation of the MIQP
We execute the algorithm in a receding horizon fashion

and, therefore, only execute the first step of the optimized
trajectory. The instance of the MIQP model solved per time
step is formulated as in our previous work [12] sketched in
Section IV-A, the constraints here are calculated individually
for each agent. The model is enhanced with the agent-to-
agent collision avoidance constraints introduced in Section
IV-B. We minimize the joint cost function (10) defined in
Section IV-C. As initial conditions, we set the states of each
agent and the current region of each agent. Adding the latter
helps to avoid infeasible problems on the region boundaries.
In such cases, where the initial region is possibly ambiguous
due to numerical inaccuracies, we start the optimization for
both possible regions.

Due to the separation of 𝑥- and 𝑦-directions, absolute
terms such as a reference path or the velocity along this
path, cannot be included directly in the cost function. As we
still consider it desirable to track a reference speed along
a reference path, we compute the trajectory reference, a
sequence of 𝑥 and 𝑦 coordinates along the discrete time 𝑘,
from path and speed reference values in a preprocessing step.

To speed up the solution computation and to enforce
finding consistent solutions close to the solution of the
previous step, we warm-start the MIQP solver using the
solution from the previous receding horizon instance [15].
From this previous solution, we use the decision variables
from step two on and perform a simple extrapolation to
initialize the variables at the last time step which introduces
only a neglectable overhead regarding computation time. We
leave a more advanced strategy, such as warm-starting the
cuts or the branch-and-bound tree, to future work.

V. Evaluation
We demonstrate both the implications of the introduced

cooperation factor 𝜆 in the joint cost function and the agent-
to-agent collision constraint including the soft constraint term
to account for model inaccuracies in two simulated scenarios.
The algorithms are written in Mathworks MATLAB and the
generated MIQP is solved using IBM Cplex.

A. Levels of Cooperation in a Negotiation Scenario
We evaluate the effect of the cooperation factor 𝜆 in

a negotiation scenario with two agents 𝐴1 and 𝐴2. The
scenario is fully symmetric with two vehicles placed on a
two-lane road in oncoming direction with road boundaries.
Both reference lines do not track the lane centers but the road
center. This yields conflicting goals (Fig. 3a). The solution

TABLE II: Quantitative evaluation of the negotiation scenario. We
compare the overall distance to the reference, the time the reference
is reached, and the contributions to the cost function of each agent.

𝜆 Dist. 𝐴1 Dist. 𝐴2 Idx 𝐴1 Idx 𝐴2 Cost 𝐴1 Cost 𝐴2

0 54.684 19.645 - 11 3.7452 5006.2
0.1 33.872 20.181 18 11 899.19 4568.5
0.2 30.788 21.362 17 12 1552.6 4183.6
0.3 28.937 22.543 17 14 2114.1 3796.1
0.4 28.383 22.894 17 14 2731.3 3305.4
0.5 22.98 28.297 14 17 2773 3380.1
0.6 22.884 28.383 14 17 3304.4 2731.3
0.7 22.532 28.929 14 17 3795.5 2113.2
0.8 21.364 30.772 12 17 4183.5 1551.5
0.9 20.168 33.865 11 18 4568.3 898.88
1 19.646 54.666 11 - 5006.2 3.699

can be balanced to favor one or the other agent. The vehicle
trajectories change as 𝜆 changes (Fig. 3b and Fig. 3c).

In Table II, we qualitatively show the effect of varying
𝜆. We analyze a single run of the algorithm. By Dist. 𝐴�

we denote the accumulated distance over all 𝑁 time steps
in meters from the solution trajectory to the reference for
the respective agent. The column Idx 𝐴� indicates at which
time index the respective agent has reached the reference
trajectory. We also state the contribution of each agent to the
global cost function, denoted by Cost 𝐴�. All three metrics
show the same trend; by varying 𝜆 the respective agent is
favored. We observe that for 𝜆 ≈ 0.5 all metrics are balanced,
but also with a strong favor of one agent still, valid solutions
are computed.

B. Competitive Racing
We evaluate our algorithm in an autonomous vehicle

racing scenario, in which dense interactions with other agents

200 300 400 500

0

100

200

300

Start

Goal

Fig. 1

Fig. 5a
Fig. 5b
Fig. 5c

x[m]

y[
m

]

Track
Ideal Line
Other Agent
Ego Agent
Finish Line

Fig. 4: Setup of the racing scenario. The start points of scenes
depicted in the other figures are located on the track.

4064

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

490 500 510 520 530

220

230

240

250

x[m]

y[
m

]

(a) 𝑡 = 27𝑠

530

250

260

270

280

x[m]

y[
m

]

(b) 𝑡 = 31𝑠

510 520 530

270

280

290

x[m]

y[
m

]

Boundaries
Reference
History Other
History Ego
Trajectory Other
Prediction Other
Trajectory Ego

(c) 𝑡 = 34𝑠

Fig. 5: The ego agent 𝐴1 overtaking in the first curve with cooperation factor 𝜆 = 0.3. Fig. 1 depicts 𝑡 = 9𝑠.

usually occur. The goals of each agent are conflicting as each
agent wants to win the race. Besides the observations of
other agents no communication is involved. The uncertainty
in the intent of other agents is neglectable compared with
road traffic in this setting. We assume the optimal line on
the racetrack to be known and equal for all agents. Therefore,
each agent competes to stay on this ideal line, which we use
as a reference path. In the curves, we limit the maximum
velocity with respect to the maximum lateral acceleration
possible for the vehicle model.

We use a racing track of Berlin by Heilmeier et al. [16]
with the provided ideal line and track boundaries (Fig. 4).
We naively triangulate the track boundaries and greedily
merge the triangles to get the convex approximation of the
environment. We define the finish line after 1177 m. The ego
agent 𝐴1 starts with a disadvantage but has a slightly higher
top speed than the other agent 𝐴2, so it can eventually over-
take and win the race. The ego agent 𝐴1 uses our proposed
multi-agent MIQP method to plan its behavior and trajectory,
whereas the other agent 𝐴2 only tracks the reference line with
respect to its kinematic constraints without considering the
ego agent. Table III states the scenario parameters.

In the overtaking scene in Fig. 1 and Fig. 5, we show
exemplary for 𝜆 = 0.3 how 𝐴1 finally makes use of its higher
top speed. We observe, that even with a very inaccurate
model of 𝐴2 (Fig. 1), 𝐴1 can safely catch up (Fig. 5a), finally
overtake (Fig. 5b), and keep the leading position even though
it has to take a wider curve due to its higher speed (Fig. 5c).

In Fig. 6, we analyze how different scaling factors 𝜆 lead
to different agent behavior by tracking the lap time of both
agents. As a baseline, we simulate each agent alone on the
racetrack. If 𝐴1 ignores the predicted motion and intention
of 𝐴2 (𝜆 > 0.85), it drives too aggressive and eventually
provokes a crash of both vehicles. In the other extreme
(𝜆 < 0.1), 𝐴1 ignores its own goal, which leads to very
passive behavior. It cannot successfully overtake even though
it could accelerate to higher top speed. For scaling factors in
between, we observe that depending on the 𝜆, 𝐴1 sooner or

TABLE III: Parameter values of the racing scenario.
𝑣1

𝑑𝑒𝑠. 𝑣2
𝑑𝑒𝑠. 𝑞𝑖

𝑝 𝑞𝑖
𝑢 𝑞𝜉 𝐷 Δ𝑡 𝑁

12𝑚/𝑠 14𝑚/𝑠 10𝜆𝑖 0.5𝜆𝑖 30 3𝑚 0.2𝑠 20

0 0.2 0.4 0.6 0.8 1

96

98

100

102

104

𝜆

la
p

tim
e

[s
]

Ego Agent
Other Agent
Baseline Ego

Fig. 6: How can the ego agent 𝐴1 win the race? 𝐴1 incorporates the
motion of 𝐴2. It looses the race if parameterized too conservative
(𝜆 < 0.1) and overtakes the sooner the more aggressive 𝜆 is chosen.
If the interests of 𝐴2 are ignored, eventually a crash occurs while
overtaking (hatched area, 𝜆 > 0.85).

later successfully overtakes and wins the race. Hence, with a
balanced scaling factor 𝐴1 can achieve its own goal to drive
at higher top speed, also taking into account the intent of 𝐴2

to stay on the ideal line at a lower speed.
In Fig. 7, we analyze the effect of the scaling factor 𝜆

on the interaction of the agents and the safety distance the
ego agent 𝐴1 is willing to keep. If 𝐴1 behaves aggressively,
it implicitly models, that 𝐴2 will make room, which it will
not. This results in a high prediction error for high values
of 𝜆 which is compensated by the slack terms. We observe
that more slack is used to mitigate immanent collisions at
the beginning of the planning horizon (Fig. 7a). At the end
of the horizon, the magnitude of slack used is lower as
the optimizer has cheaper alternatives to avoid collisions
(changing position or jerk) even though the absolute errors
from a non-ideal prediction is higher (Fig. 7c). We show three
different values of 𝜆 representing three different behaviors of
𝐴1; early overtaking (𝜆 = 0.8, until 𝑡 = 17𝑠), late overtaking
(𝜆 = 0.3, until 𝑡 = 40𝑠, also see Fig. 5), and no overtaking
(𝜆 = 0.05). As soon as the overtaking maneuver has been
performed successfully, the slack costs tend to zero, as the
safety distance can trivially be fulfilled. In the edge case
𝜆 = 0.05, 𝐴1 behaves very passive and always tries to keep
the safety distance big. In the other extreme of 𝜆 = 0.9,
𝐴1 behaves too aggressive, accepts a high prediction error
that cannot be compensated by the slack terms and finally
provokes a crash. For 𝜆 = 0.8, 𝐴1 performs an aggressive,
but still safe, overtaking maneuver, whereas for 𝜆 = 0.3 it

4065

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100
0

0.5

1

t[s]

m
ea

n
𝜉

[m
] 𝜆 = 0.05

𝜆 = 0.3
𝜆 = 0.8

(a) Horizon index 𝑘 = 2

0 20 40 60 80 100
0

0.2

0.4

0.6

t[s]

m
ea

n
𝜉

[m
] 𝜆 = 0.05

𝜆 = 0.3
𝜆 = 0.8

(b) Horizon index 𝑘 = 10

0 20 40 60 80 100
0

0.1

0.2

0.3

t[s]

m
ea

n
𝜉

[m
] 𝜆 = 0.05

𝜆 = 0.3
𝜆 = 0.8

(c) Horizon index 𝑘 = 20

Fig. 7: The effect of soft constraints coping with prediction errors. At the respective horizon index, we depict the mean safety distance
compensated by the slack variables 𝜉 for different factors 𝜆.

initiates the overtaking late as more drivable area is available.
Hence, with appropriate parameter selection, our algorithm
can cope with not completely known cost functions of other
agents and the driving style of the ego agent, including its
willingness to take risks can be adopted.

VI. Conclusion and Future Work
We introduced a novel linear differential game formulation

for the multi-agent behavior planning problem leveraging
the interests of all agents. Using linear constraints for
checking collision between agents, we formulate a mixed-
integer quadratic program and obtain an optimal solution.
The introduction of slack variables to the collision constraints
makes our method robust against inaccuracies of the modeled
future motion of other agents.

We first studied the impact of an altruistic, cooperative,
and egoistic behavior setting on the outcome of a symmetric
scenario with conflicting goals of both agents. We then
demonstrated the effectiveness of our method in a compet-
itive autonomous vehicle racing scenario, where we intro-
duced inaccuracies between the true and modeled behavior
of the other agent. In this highly interactive scenario that
poses high requirements on the receding horizon replanning
scheme, we showed that the proposed multi-agent planning
approach correctly satisfies all model constraints and also
copes with inaccurate agent models. Furthermore, the intro-
duced cooperation factor in the joint cost function allows
leveraging the goals of either agent. In combination with our
previous work [12], which proved correctness in the model of
the vehicle kinematics and the obstacle avoidance, we have
successfully demonstrated the feasibility in simulation.

As a next step, we plan to apply the formulation in real-
road driving scenarios using the institute’s research vehicle
[17]. For this to be feasible regarding computation time,
we need to find a trade-off which agents to denote as
interacting and which others to predict maneuvers for solely.
The approach is applicable for an arbitrary number of agents,
but an analysis on the computational scalability has to be
conducted. Also, the assumption on perfect observation of
other agents has to be weakened by introducing suitable
observers and only optimizing within the sensing radius.
Uncertainty measures from the perception pipeline shall be
used to parametrize the soft constraints online. Furthermore,
modeling traffic rules as logical constraints, which pose
constraints to the possible behavior to choose from, shall
be elaborated to better approximate future behaviors.

Acknowledgment
This research was partly funded by the Bavarian Ministry

of Economic Affairs, Regional Development and Energy,
project Dependable AI and supported by the Intel Collab-
orative Research Institute - Safe Automated Vehicles.

References
[1] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and

Decision-Making for Autonomous Vehicles,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, no. 1, 2018.

[2] S. Ulbrich, S. Grossjohann, C. Appelt, et al., “Structuring Cooper-
ative Behavior Planning Implementations for Automated Driving,”
in IEEE Conference on Intelligent Transportation Systems (ITSC),
2015.

[3] T. Kessler and A. Knoll, “Cooperative Multi-Vehicle Behavior
Coordination for Autonomous Driving,” in IEEE Intelligent Vehicles
Symposium (IV), 2019.

[4] D. Lenz, T. Kessler, and A. Knoll, “Tactical Cooperative Planning
for Autonomous Vehicles using Monte-Carlo Tree Search,” in IEEE
Intelligent Vehicles Symposium (IV), 2016.

[5] M. Bahram, A. Lawitzky, J. Friedrichs, et al., “A Game-Theoretic
Approach to Replanning-Aware Interactive Scene Prediction and
Planning,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 6, 2016.

[6] A. Liniger and J. Lygeros, “A Noncooperative Game Approach
to Autonomous Racing,” IEEE Transactions on Control Systems
Technology, vol. 28, no. 3, 2020. arXiv: 1712.03913.

[7] W. Schwarting, A. Pierson, S. Karaman, et al., “Stochastic Dynamic
Games in Belief Space,” 2019. arXiv: 1909.06963.

[8] F. Fabiani and S. Grammatico, “Multi-Vehicle Automated Driving
as a Generalized Mixed-Integer Potential Game,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 3, 2020.

[9] J. Eilbrecht and O. Stursberg, “Cooperative Driving using a Hierar-
chy of Mixed-Integer Programming and Tracking Control,” in IEEE
Intelligent Vehicles Symposium (IV), 2017.

[10] S. Manzinger and M. Althoff, “Tactical Decision Making for Co-
operative Vehicles Using Reachable Sets,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2018.

[11] C. Frese and J. Beyerer, “A Comparison of Motion Planning Algo-
rithms for Cooperative Collision Avoidance of Multiple Cognitive
Automobiles,” in IEEE Intelligent Vehicles Symposium (IV), 2011.

[12] K. Esterle, T. Kessler, and A. Knoll, “Optimal Behavior Planning
for Autonomous Driving: A Generic Mixed-Integer Formulation,”
in IEEE Intelligent Vehicles Symposium (IV), 2020. arXiv: 2003.
13312.

[13] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[14] B. Gutjahr, L. Gröll, and M. Werling, “Lateral Vehicle Trajectory

Optimization Using Constrained Linear Time-Varying MPC,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 6,
2017.

[15] T. Marcucci and R. Tedrake, “Warm Start of Mixed-Integer Pro-
grams for Model Predictive Control of Hybrid Systems,” IEEE
Transactions on Automatic Control, 2020.

[16] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, et al., “Minimum
Curvature Trajectory Planning and Control for an Autonomous Race
Car,” Vehicle System Dynamics, 2019.

[17] T. Kessler, J. Bernhard, M. Buechel, et al., “Bridging the Gap be-
tween Open Source Software and Vehicle Hardware for Autonomous
Driving,” in IEEE Intelligent Vehicles Symposium (IV), 2019.

4066

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 09:59:59 UTC from IEEE Xplore. Restrictions apply.

